Digital PDFs
Documents
Guest
Register
Log In
DEC-08-AJAE-PB
April 1972
22 pages
Original
8.9MB
view
download
Document:
focal8-226
Order Number:
DEC-08-AJAE-PB
Revision:
Pages:
22
Original Filename:
https://svn.so-much-stuff.com/svn/trunk/pdp8/src/decus/focal8-226/focal8-226.pdf
OCR Text
PROGRAM DECUS NO. TITLE AUTHOR COMPANY DATE SOURCE LANGUAGE LIBRARY FOCAL8-226 FREQUENCY TRANSFORMATION PROGRAM Klaus LIckteig Institut Fuer Kerntechnik Technische Universitat Berlin Berlin, Germany A p r i l 1972 FOCAL 1969; PAL I I I ATTENTION This is a USER program. Other than requiring that i t conform to submittal and review standards, no quality control has been imposed upon this program by DECUS. The DECUS Program Library is a clearing house only; i t does not generate or test programs. N o warranty, express or i m p l i e d , is mode by the contributor. Digital Equipment Computer Users Society or Digital Equipment Corporation as t o the accuracy or functioning of the program or related material, and no responsibility is assumed by these parties i n connection therewith. FREQUENCY TRANSFORMATION PROGRAM DECUS Program Library Write-up 1. DECUS N O . FOCAL8-226 ABSTRACT: V a r i o u s F o u r i e r t r a n s f o r m a t i o n m e t h o d s can be a p p l i e d w h e n u s i n g the F r e q u e n c y T r a n s f o r m a t i o n P r o g r a m d e s c r i b e d b e l o w . This p r o g r a m s h o u l d e x a m i n e in p a r t i c u l a r the a c c u r a c y of the F a s t F o u r i e r T r a n s f o r m a t i o n F O C A L p r o g r a m d e v e l o p e d by R O T H M A N / 2 / in c o m p a r i s o n w i t h n o r m a l F o u r i e r transformations. T h e r e s u l t is that the F a s t F o u r i e r T r a n s f o r m a t i o n s h o u l d be u s e d , NU if the n u m b e r of d i s c r e t e p o i n t s is N = 2 (NU =1,2,3,...). If not s o , the t r a n s f o r m a t ion m e t h o d w i t h t r a p e z o i d a l i n t e g r a t i o n and l a g w i n d o w " h a n n i n g " s h o u I d be u s e d . 2. REQUIREMENTS: 2. 1 H a r d w a r e : A n 8 - k P D P - S / 1 o r 8 / e c o m p u t e r w i t h an A S R - 3 3 t e l e t y p e is the m i n i m u m h a r d w a r e . 2. 2 S o f t w a r e : 1 ) F O C A L 1969, DEC-OB-AJAE-PB initial dialogue: NO - Y E S 2) U t i l i t y o v e r l a y s f o r F O C A L 1 969 ( 8 - k ) DEC-08-AJ1E-PB 3) if a v a i l a b l e : M O D V - C h o i c e , D E C U S No. F O C A L 8-135 4) F N E W - F u n c t ion f o r the F a s t Fourier T r a n s f o r m a t ion 3. LOADING PROCEDURE: 1) L o a d F O C A L 1 969 w i t h the B i N - L o a d e r i n t o f i e l d 0 a n d s t a r t F O C A L at l o c a t i o n 0 2 0 0 . 2) A n s w e r the i n i t i a l d i a l o g u e w i t h NO - Y E S 3) S t o p the c o m p u t e r . L o a d the 8 - k o v e r l a y w i t h the B I N - L o a d e r i n t o f i e l d 1. 4) If the p r o g r a m M O D V - C h o i c e is not a v a i l a b l e , l e a v e out this point. L o a d the D E C U S p r o g r a m M O D V - C h o i c e w i t h the B I N L o a d e r i n t o f i e l d 0. R e s t a r t F O C A L at l o c a t i o n 0 2 0 0 a n d a n s w e r the q u e s t i o n w i t h Y or N . S t o p the c o m p u t e r . 5) L o a d the F N E W - F u n c t ion w i t h the B I N - L o a d e r i n t o f i e l d 0. 6) R e s t a r t F O C A L at l o c a t i o n 0 2 0 0 . 7) L o a d the F O C A L F r e q u e n c y T r a n s f o r m a t i o n P r o g r a m . 8) S t a r t t h e F O C A L p r o g r a m w i t h the GO command. T h e t e l e t y p e w i l l g i v e a m e s s a g e a n d the p r o g r a m w i l l e r a s e the g r o u p 1 c o m m a n d s . 9) Y o u h a v e t o w r i t e the l i n e s 2 . 14 a n d 2 . 16 s p e c i a l l y f o r y o u r p r o b l e m ( f o r d e t a i l s see c h a p t e r 8: c o m m e n t of the F r e q u e n c y T r a n s f o r m a t i o n P r o g r a m in the I i s t i n g s , g r o u p I of F O C A L p r o g r a m ) . 1 0) W i t h a 4. GO c o m m a n d you w i l I s t a r t the t r a n s f o r m a t i o n . THEORY 4. 1 Integration Methods A certain integral b a can be e v a l u a t e d n u m e r i c a l ly o n l y by a p p r o x i m a t i o n . In the d i f f e r e n t e x i s t i n g i n t e g r a t •on m e t h o d s the f o r m a l ism i n c r e a s e s t o some e x t e n t f o r m o r e a c c u r a c y . 4 . 1. 1 T r a p e z integration W h e n e v a l u a t i n g an i n t e g r a l of a c u r v e w i t h o n l y t w o ordinates ( t ^ , y ^ ) ; (t^ , y ^ ) 2 , you get the g r e a t e s t error. T h i s linear interpolation (or trapezoidal integration) can be e a s i l y d e v e l o p e d . 4 . 1. 2 S i m p s o n Integration In the S i m p s o n integration an i n t e g r a l is e v a l u a t e d w i t h t h r e e o r d i n a t e s (t c J y ) ; ( t , , y , ) ; ( t „ , y „ ) . if the i n t e g r a l has t o be d e t e r o 1 1 2 2 m i n e d f o r a l o n g e r i n t e r v a l , the r e s p e c t i v e f o r m u l a s can be e x p r e s s e d as f o l l o w s ( e q u a t i o n 1): H e r e the i n t e r v a l is d i v i d e d i n t o a l i n e a r n u m b e r of s e g m e n t s of e q u a l w i d t h 2 Fourier N M . Transformation W i t h the F o u r i e r t r a n s f o r m a t i o n a f u n c t i o n of the t i m e d o m a i n is t r a n s f o r m e d i n t o one of the f r e q u e n c y d o m a i n , if t h i s f u n c - t i o n is o n l y g i v e n in d i s c r e t e o r d i n a t e s , t h e f r e q u e n c y a f t e r the t r a n s f o r m a t i o n is l i m i t e d . The frequency interval is: -i/ca-^i-Y/Y 3 domain Here At is t h e t i m e i n t e r v a l a n d N the n u m b e r of o r d i n a t e s . ^ o the l i m i t e d f r e q u e n c y d o m a i n a f t e r the transformation is f = k • Af = 0, Af, for k = 0, 1 , . . . , N or f k 2 • Af, 4.21 F o u r i e r Integral 3 - A f , . . . , N- A f = 1 / (2- At) Transformation The equation P(fJ yW - }-t ad s h o w s the F o u r i e r t r a n s f o r m of a f u n c t i o n y(t) . If the f u n c t i o n is n o n - e x i s t e n t f o r t i m e s t F 0 , P ( f ) i s as f o l l o w s ( e q u a t i o n 2 ) : d-/y/iJe'-'^'^'^c/i P(/; o o r it is d i v i d e d into r e a l a n d i m a g i n a r y p a r t s ( e q u a t i o n 3 ) : pe P(/J - ^-fyiP o cosCuAi) Im PffJ--^ sib fyW M UiJ o 4 . 2. 2 D e r i v a t i o n f r o m a F o u r i e r Series P e r i o d i c v a r i a b l e s c a n be r e p r e s e n t e d in t h e t i m e d o m a i n b y a F o u r i e r s e r i e s of the f o r m w h e r e the c o e f f i c i e n t s a and b a r e defined by (equation 4 ) : A'-.ttf a^,= J o yl-f) cosl^tc-t) oli J Y'-^^ S-h(u>^-IJ DT 4 = N • At u) , the K is the p e r i o d i c of the v a r i a b l e , and k - t h h a r m o n i c of the f u n d a m e n t a l f r e q u e n c y , is g i v e n by ( e q u a t i o n 5 ) : Z-Tk If the v a r i a b l e points At y(t) is s a m p l e d at seconds N equally spaced a p a r t , the F o u r i e r t r a n s f o r m is / 3 / (equation 6): Pip . ^[y(0j.E.2^yaja>S 4r ^ P'bydA.^] p(/y--aX 2x^473/^ ^''^ H e r e the c o e f f i c i e n t s a and k trapezoidal b a r e e v a l u a t e d by k integration. 4. 2. 3 F a s t F o u r i e r Transformation T h e F a s t F o u r i e r T r a n s f o r m a t i o n is e x t r e m e l y u s e f u l in the c o n v o l u t i o n of t i m e s e r i e s . T h e a l g o r i t h m has been w e l l d e s c r i b e d by B R I G H A M / l / a n d R O T H M A N / 2 / . S i n c e the F a s t F o u r i e r T r a n s f o r m a t i o n F O C A L program d e v e l o p e d by R O T H M A N / 2 / is u s e d in t h i s F r e q u e n c y 5 T r a n s f o r m a t i o n P r o g r a m t o o , t h e r e w i l I be n o d e t a i l e d d e s c r ipt ion of the F a s t F o u r i e r T r a n s f o r m a t ion h e r e . 4. 3 L a g Windows W h e n u s i n g the F o u r i e r t r a n s f o r m a t ion f r o m a n u m b e r of d i s c r e t e o r d i n a t e s , t h e r e a r e u s u a l l y side lobes apart f r o m the m a i n l o b e . In o r d e r t o c o n c e n t r a t e the ma in I obe and k e e p the s i d e lobe as low as p o s s i b i e , the o r d i n a t e s of the f u n c t i o n c a n be m u l t i p l i e d by a l a g w i n d o w . T h e l a g w i n d o w ( e q u a t i o n 7) D o (t) = 1 for It j ^ t = 0 for |t I >• t max max is p r a c t i c a i i y of n o c o n s e q u e n c e . A s i m p l e and c o n v e n i e n t c o m p r o m i s e is r e p r e s e n t e d by the l a g w i n d o w c a l l e d " b a n n i n g " (equation 6): D. it) = 0.5 (1 f COS ) _ Q {c lil yc It I ' tn-tajc A n a l t e r n a t i v e c o m p r o m i s e is r e p r e s e n t e d by the l a g w i n d o w " h a m m i n g " (equation 9): T-i J), li) ' O.St + a.tSaxs—- ~0 6 far It I F t^^, 1^' ""^ 9m*jr 5. Frequency Transformation Program T h e p r e s e n t F O C A L p r o g r a m t r a n s f o r m s a n u m b e r of o r d i n a t e s ( t i m e d o m a i n ) i n t o the f r e q u e n c y d o m a i n . H e r e d i f f e r e n t integration and t r a n s f o r m a t i o n m e t h o d s a r e u s e d . 1) S i m p s o n i n t e g r a t i o n : The F o u r i e r t r a n s f o r m a t i o n takes place a c c o r d i n g to equation 3. H e r e the i n t e g r a t i o n m e t h o d is t h e S i m p s o n integration ( e q u a t i o n 1). 2) S i m p s o n i n t e g r a t i o n w i t h " b a n n i n g " w i n d o w : In a d d i t i o n t o t h e a b o v e m e t h o d 1 t h e l a g w i n d o w D (t) "hanning" ( e q u a t i o n 6) i s c o n s i d e r e d t o s m o o t h the c u r v e . 3) S i m p s o n i n t e g r a t i o n w i t h " h a m m i n g " w i n d o w : in a d d i t i o n t o m e t h o d 1 t h e l a g w i n d o w D (t) "hamming" 3 ( e q u a t i o n 9) is c o n s i d e r e d . 4) T r a p e z integration: The F o u r i e r t r a n s f o r m a t i o n takes place a c c o r d i n g to equation H e r e the i n t e g r a t i o n m e t h o d is t h e t r a p e z o i d a l 6. integration. 5) T r a p e z i n t e g r a t i o n w i t h " h a n n i n g " w i n d o w : D _ ( t ) " h a n n i n g " is c o n s l i d e r e d in e q u a t i o n 6 , it 2 is r e d u c e d t o ( e q u a t i o n 1 0 ) : If t h e l a g w i n d o w df 1^ p(f) = - i Z rck (^^'^^ k = C ' 7 ^ y 7 - V 6) F a s t F o u r i e r Transformation: The F a s t F o u r i e r T r a n s f o r m a t i o n a c c o r d i n g to R O T H M A N / 2 / is m a d e . 6. C o m p a r i s o n of the O i f f e r e n t Methods T h e q u a l i t y of a F o u r i e r t r a n s f o r m a t i o n m e t h o d w a s s e e n in the e r r o r s that o c c u r w h e n a t h e o r e t i c a l p e a k ( t h e a m p l i t u d e of the p e a k t h e a m p l i t u d e of t h e h a r m o n i c s ; w i d t h of the p e a k a p p r o x i m a t e l y is e v a l u a t e d b y d i f f e r e n t zero) methods. W i t h the F r e q u e n c y T r a n s f o r m a t i o n P r o g r a m s e v e r a l operations w e r e made to f i n d out the q u a l i t y of the i n d i v i d u a l m e t h o d s , l a r l y t h a t of the F a s t F o u r i e r T r a n s f o r m a t i o n . particu- T h e r e s u l t w a s as f o l l o w s ( t h e p e r c e n t a g e s b e l o w r e f e r t o the e x a m p l e d e s c r i b e d in chapter 8): 1) T h e S i m p s o n i n t e g r a t i o n h a s b e t t e r r e s u l t s (as c o u l d h a v e b e e n e x p e c t e d f r o m the t h e o r y ) t h a n the t r a p e z o i d a l integration (without u s i n g a lag w i n d o w ) . T h e S i m p s o n i n t e g r a t i o n has a s h a r p p e a k at OJ, = -4 (FSEC) h o w e v e r the r a t i o of the a m p l i t u d e s (the a m p l i t u d e s of the h i g h e r h a r m o n i c s t o the a m p l i t u d e of the m a i n l o b e ) is a p p r . T h e r e i s a n a d d i t i o n a l p e a k at 6,5 • 8 per cent. ( p a r t i c u l a r l y in t h i s example). T h e t r a p e z o i d a l i n t e g r a t i o n h a s a s o m e w h a t NA'ider (and t h u s l e s s c o r r e c t ) m a i n l o b e ; the r a t i o of the a m p l i t u d e s is a p p r . c e n t ; h o w e v e r t h e r e is n o a d d i t i o n a l p e a k . 8 10 p e r 2) W h e n u s i n g lag w i n d o w s in the F o u r i e r transformation, the c u r v e is s m o o t h e d , i. e. the a m p l i t u d e s of the h i g h e r harmonics are reduced, whereas the m a i n lobe b e c o m e s w i d e r . In the S i m p s o n i n t e g r a t i o n the l a g w i n d o w s " h a n n i n g " a n d " h a m m i n g " a r e u s e d . T h e " h a n n i n g " w i n d o w (at the r a t i o of the a m p l i t u d e s of a p p r . z e r o ) w i d e n s the m a i n lobe a b i t m o r e t h a n the " h a m m i n g " w i n d o w (at the r a t i o of the a m p l i t u d e s of a p p r . c e n t ) . T h e a d d i t i o n a l p e a k at 6 , 5 • <Vj 1,5 p e r was again t h e r e . 3) If the l a g w i n d o w " h a n n i n g " is u s e d in the t r a p e z o i d a l integration, the m a i n lobe is a l s o w i d e r , h o w e v e r the r a t i o of the a m p l i t u d e s is o n l y about 0 . 2 p e r c e n t . T h e r e is n o a d d i t i o n a l p e a k . A p a r t f r o m t h a t , the i m a g i n a r y p a r t ( t h e o r e t i c a l l y e q u a l z e r o in the e x a m p l e ) is much s m a l l e r t h a n in the S i m p s o n i n t e g r a t i o n . 4) T h e F a s t F o u r i e r T r a n s f o r m a t i o n s h o w s a s h a r p m a i n l o b e ; the a m p l i t u d e s of the h i g h e r h a r m o n i c s a r e r e d u c e d v e r y q u i c k l y w h e r e a s the f r e q u e n c y increases. The imaginary part is K e v a l u a t e d b e t t e r t h a n w i t h the a b o v e m e n t i o n e d m e t h o d s . T h e c o m p a r i s o n of the v a r i o u s m e t h o d s s h o w s t h a t the F a s t Fourier T r a n s f o r m a t i o n F O C A L p r o g r a m d e v e l o p e d by R O T H M A N / 2 / has not o n l y a much h i g h e r o p e r a t i n g s p e e d , but that it is a l s o m o r e a c c u r a t e than the o t h e r d e s c r i b e d m e t h o d s . S o it s h o u W be u s e d , if the F o u r i e r t r a n s f o r m is t o be e v a l u a t e d out of a t i m e s e r i e s of NU N = 2 d i s c r e t e o r d i n a t e s . H o w e v e r it s h o u l d be k e p t in m i n d , that the f r e q u e n c y s t e p is Af = 1 / (N - At) in the F a s t F o u r i e r T r a n s f o r m a t i o n F O C A L p r o g r a m a n d t h a t the r e s u l t s f o r the f r e q u e n c i e s 9 f > 1 / (2 - A t ) c a n n o t be r e g a r d e d as e x a c t . However, if t h e r e is a n u m b e r of i n t e g r a t i o n w i t h lag window D (t) N ^0= 2'^'"' o r d i n a t e s , the t r a p e z " h a n n i n g " , ( e q u a t i o n 1 0 ) , is u s e - Zt f u l , s i n c e t h i s m e t h o d i s c o m p a r a t i v e l y e x a c t . H e r e the f r e q u e n c y s t e p is Af = 1 / ( 2 - A t A N) and the maximum f r e q u e n c y : f max =1/(2- At) LITERATURE / 1 / B R I G H A M , E . O . ; M O R R O W , R. E . : The fast F o u r i e r transform I E E E E p e c t r u m , D e c . 1 9 6 7 , p. 63 - 70 JlJ R O T H M A N , J. E. : The F a s t F o u r i e r T r a n s f o r m and its Implementation D E C U S C O P E 1 9 6 8 , V o l . 7 , N o . 3 , p. 3 - 1 /3/ U H R I G , R. E . : R a n d o m N o i s e T e c h n i q u e s in N u c l e a r Reactor Systems Ranold P r e s s Comp. , New Y o r k 10 LISTINGS OF PROGRAMS T h e F a s t F o u r i e r T r a n s f o r m a t i o n F O C A L p r o g r a m w r i t t e n by R O T H M A N / 2 / w i l l be r e p e a t e d o n c e m o r e b e l o w , b e c a u s e t h e r e a r e d i f f e r e n t , s o m e t i m e s e v e n i n c o r r e c t v e r s i o n s in the v a r i o u s existing publications. The following listings are attached: 1) L i s t i n g of the F N E W - F u n c t ion f o r the F a s t Fourier Transformation 2) L i s t i n g of the F O C A L F r e q u e n c y T r a n s f o r m a t i o n P r o g r a m 3) T h e t e l e t y p e o u t p u t w h e n s t a r t i n g t h e F r e q u e n c y P r o g r a m a n d an e x a m p l e . n Transformation / / Pwr)!jKAM: M r H r t O U T l M F F l M t N !• U K F O C A L 19 6 9 , I'4ITIAL DIALuGOc,: N()-":'cS f-Nt"/( •<,'') / i-iJUAL nUK FAST UhHSION n ' O l j H I n.H A. J An, i K A N S n O K N A T I UN s P L U I n I L A T I O'-J hn ' j ! ; I = 1 J 6 t v AJ.= 1 o 1 J hLAU=^9 9 >ib fL-AbAD I '-I T h, i V,H= 6 iJj I s {. ( = Z4 -,74 -s SPyJi| K = 9 D O " i * 3P ui/i 3 b b 1b 2 i/W 1 w 3 1 33 P 1 3 3 995 3 bloA 1 09 1 i oO T T U N , < t i\)pP- 1 * 9 1 ''1 / < r 'V L " ' hi) G A L P.pRSIiHO A.I An. + 513 3 < !• Pl 5 3 T \ r r..3 L;< .L4 S I. / nIP rLOATlxio 7 A! ) i- L A I . + 1 / T A:< h. 1- ( A H T Li-ITh P 3 7 0 9 i L T A 3 i 3 t> 3 37 7 PLK / •4 UP t i p A 13? i n i/ i 9 3 3 yi SP/iO H / i41) 7 L 9 59 5 -I b'i'L / 0 t.r bio 1 9 59 PIJ 5:4.1 / pPALbA'ip 3 !oK 1O 1 3 3 1 o 3 / 3 ! OA 99 5 3 3 09 3 p 7 AL • I'-'ib I n r< PUT 3 3 IJi'r_3p:A IJLA fLAL+ 1 / on 5PA L P S LO'-ii'iA NPKT ARoUi-ipNT n L . p. AL I T I N r LAL+ 1 iJLA n L AL+ P / hiilLU TAIJ KLAL+ 1 / ThAMbPOhp 110 LLL KAK / A' b 17 (4 5 17 i 309 5 iJLA l'LAL+ 1 / 109 5 TAP i-LAL+P / HIT b 1 7 K 7 0 09 309 6 HAL / I N SLHT L)LA t-LAG+P / K37 7 T 57, GNTR / nUh b 17 5 b3bb .JNP LOOP 3 17 6 bb3b • JNP [ / R p4' L! Rpl T 0 4 A s '4 5 17 7 0 0 01'! 7 P0 0 / NO ": " rip A5K 7 P0 0 / NO " 1 = " bY 3 163 309 o b i O 5 1 09 blo7 7 5 17 3 3 17 9 3 LOOP, OrJ T K , Ll-Ui.jai AL biTS A A 5 1• PAST POPvlf A ^ i Ij-"! A 7 f up b p S O L 4' 9b R O T A T To 3 / ANO 40 bb / 0h '4 3 9b JTLAG+P I Tb Lpi-T I'-l L U O OHUCR 9 o i4 i j HLrs P K O 3 ^ AO 0 •« 1 P 17 13 17 7 K0 0 OMOP 7 20 A L O N N A JiJ * D0MP 12 LPNTB Kt3li' TPHNbPOSp INTO ALL IM AHOUT TYPh, GUMNANu L I N < BI T C-.8Y MOUU 0 1.01 c c c c . l/i 7, P . 0 3 9-307 0 K H t i O U E N G",' T H A N S F O K M A T I ON 0 . 09 0 . 05 G M . 00 C 8-K C MOUV-CKOIGE . 07 0 . 08 0 0 . 09 0 . 10 0 . FOCAL 19 5 9 , FOCAL I N I T I A L AND IJT A L O G I J E CNOT NO-YES NEGESSARY) CUECUSiMO. 8 - 13b) C C c . 1 1 c 0 L A N G U A G E : PKOG R A ' i FUNCTION: F"NEN(K,Y) FOURIER T R A 4 S I - 0 K N A T I ON IP G A G FHEOUENG'7 0 . lb G THE 0 . 18 C 1. ) S I M P S O N - I N T E G R A T I UN 0 . 9 0 c c c c 2. ) S i M P S O N - I N T E i l R A T i ON AN u H A N N I NG - w I N DO W 3. ) SIMPSON-INTEGRATION A<7 u H AMM I NG - - i l N DO W" 9. ) T R A P E Y - I i . J T E G R A T I ON 5. ) T R A P E Y - I N T E G R A T I 0:\ 0 . ) FAST 22 0 ) . 29 0 . 2o 0 0 . 28 . 29 C I'i . 30 G 0 . 31 C 0 . 32 0 . 39 0 . 30 G . 38 G '/'} . 39 G . 9 0 DOMAIN) A R E T R AN S i - 0 RM E D SIX DIFFERENT CALCULATIONS G DATA INPU'T: OUTPUT 1.) I N P U T 2.) ;JA F A - A R R A Y O F DATA: OF G 'YOU 0 . 9 9 G IF T I E T I M E INTER9/)L '/i . . 9 0 C OF O A TA CN(MAX)-128J . 97 G THEN 0 . /i8 G 0 2.19 S G f• (/ 2 . y^; 0 . 31 . 52 I N P U T .lA.HE To N WRITE: i i j T I= WRITE NEWL I N E S I S 01- FROM DAT A , I MAG I N A R E P A R T G 3 0 A TRANSi-ORi-1 M D H AiMN I N i3 - WI N DO T H E NUMBER T H E TIME, 0 ] . 9 2 t • 1. INTO WILL T R A 7 S F 0 Hi 1 A T I OX F 0 IJ rcl E R 9 1 b ] . (TIME G 0 l/i DATA DOMAIN. DATA: G C UF FAST . 19 0] . NUMBER FOR T H E DAT A - A R R A Y S FIGH REoUbN G Y , OF NU. TIE AM.V SEGONDS I S PUNCHED HEADER r'OURl ERKUEF F l CI h J F 5 2 . 19 O.06bb SPEED REAL A N D 7II. 2. lo A N D T H E N DM E E H O N PA»->ER TAPE, 0. 0 6 b b A i7 ; * G I'l! . D o G . 59 T ! ! ! ! , " P L E A S E 0 1. 3 6 T "NO. 02. 01 . 38 T " P R O B L E M . " T ;: " t T 01 . b 1 C 0 1. OX G (•'• 1 . n 3 G . 69 b 1 19", N R I I E !, " ! " , ! ! , T I M E T H E NhN N O . ' Y O U HAVE I N T E R V A L " , L I N E S " , 02. T O ! , "N 13 10", Dur !, " !, " S P E C I A L L Y I M E T H E NUMBER F O R Y O U R V A R I A B L E S : " , ! O F D A T A " , ! ! (•)9. ' 1 G h R t (.lijhN G"' ''/it-. N 2 G Mb. MR T ! ! ! ! ! 02.10 A "NUMBER On UAT A-ARRAYS ? 02. T ! ! ! ! ! ! ! ! ! ! , " U A T A - A R R A Y : " , 12 TRANSFORMATION 02. 19 T "PLEASE rlEW 02. lb T "0 2. lo ? ? ? " , ! !; L I -MES b2. 18 S TM=(N- 1)*T 1 02. MM S !JF= l / T M / p : S " N UM H E R DATA ! ! ! ", Pb.OGHA-i KU; %2. [ 00, ! ! , " 0 2 . l9 P 1= 3 . I ' i 1 5 9 3 ; S 02.>'i T "OEL T A - T = " , 4,7. 0 b , T 1 , " C SEC3 " , 09. 2o T "TAOCt AX) = " , %7 . 0 3 , CSEG3 ", 02.26 T "DELTA-n' = " , %7 . 0 6 , U r , " CBY3 ", ! 02. 28 X ' , 02.3 0 * 02.39 T "DATA-ARRAY", ! !, 02. n T = 0, 0 3 , I *T 1, " T ! ! ! ! 39 0b. b b 02. 5 0 t :z M, M - 1 ; i- 1; T A = " , 0 3 . 00, N, I'M, " %1. " I I I TSEGI T U A T A " , T " S I M PSON - I N T LG H AT I O N " ; 5 i.Ei = - i ; 02. C s 1)2=1. ; 5 0 8 .0 3 = 1 . ; o 02. 08 r " S I M R b i j N - I i J T E G H A T i Ob) 02, o0 5 u 1 = 0; 09. 0 9 G h ,99=0.5; s r " b l " ! P S ( ) N - I N T E i l H A T l ON 02.00 S 1)9=0.59; S 1)5=0.9b; 68 G 02. /'' T " i ' R A ^ E Y - I N T E G R A r i ON " 02.7 2 9 8; 02. 79 C 02. 7 o T " T H A D R Y - T : \ I T h G R A T l OA) 09. /•< 9 8 ; 8 "; 9 8 3 9 9 9 U 3 .o •{ A ' i i - N I) 02. 3 MANNING"; jjb=i').n; 09.09 H A H A I I N G " O >b . ^ G 02, R2 T 02. 89 S -Or-o; 09. 3o b NiJ='40+l; 02. <8 G 2. .3 o [ NU3 "n A R T n!)OHTER T THAAlShORMATl O N " [ 1 - 1 2 8 1 I 2. 10,2.80; C C 9T-,,| u ) - b j ] 2.99,2.99; •lb. •' 0 I 09. 99 S KU=KU- 1 ; I "•3. i L I N T E G R A T I O N S I N A S C H b C-.KUl b 9=123 2.88, 2.90; N = 2 T N U; 2 . 12; T \J b NU = ' 4 u - ] ; 16 ! ! ! ! ! ! ! ! ! !; G b 8 = 03.12 b 0"1 = K * 9 V ; 0b. 19 I CU 1 ] • "'.-i, ? ! " , X7 . 06, AC I ) , ! C 09. b'l 03. 28318b ! AC I ) 02.52 no '???", ! P2-b. T i- 2 . 9 9 , 2 . 9 9 , 2 . 1 ! ! ! ! ! 9 02. 2 2 OF C i< U ] Ku, 1 0 S b. 18; T=T 1; D S K = 0!'1 * P 2 x T 10 03.18 S R P = AC 0 ) + 9 * U 2 * A C 03.20 S I P = 9 * 9 2 * AC l)*FSIf\lCK) 03. 1 = 2, 2, N-2; 92 S T=T+Ti; 03.2b b K P = 94<T i * H P / 3 ; F 03.21 S 8 = 8 + 1; I CK-N] 1)*FG0SCH) S J 11 I P = - 2 * T 1*1 3.12,3.12; 9/3; T 14 9 !!!!!.; 12 R b G 2.90 m . 0 1 G T R A P E 7, - I A] T E G R A T I O ' 4 lYA. ME G l/Pi. 1 0 S 09.12 9 K=0 13 09. 19 n 1 = 1 , 4 - p; 09 . 1 8 S R P = C T 1 / 2 ) « C AC 0 ) + 2 * R P + AC N - 1 ) * C C - 1 ) T 8 ) 3 9 19 0 9 . -A'l S I P= - C T 1 ) * I p ; 09 . 2 2 S 8 = '8+ i ; 05. Mi G T R A P b Y - I G T E G R A T I Oi4 0D . 0 2 C 0n. 1 '4 T 9 C C-IV] 12 9. 1 2 , 9 . 125 9 13 05. 19 h 1=1,9-2; 05.18 S R P = C T l / 2 ) * [ AC 0 ) + R P l 03.20 S I P= - C T 1 / 2 ) * I P ; 05.22 S 8 =8+1; MM . M l G 0 0 1 f'U T 08 . 0 2 G 04.10 T ! ! , " 08. V " 9 lb I CK-N] r CHY3 U 12 3 . 1 2 , 5 . 1 2 ; T ! ! ! ! ! ; G 9 A M IM I N G G - I". I'V S U2=99+U5*EG0SC P1*T/Ti'i3 10.12 S 93=99+95*KG0Sr t - 1 * c T'+T 1 ) / T M 3 11.01 G r Rr,:'.iuEi4 C'-:' T R A ' N S I - O R M A T I 0:4 11.00 G SI 4 MSiji..! TEilHATI'l-J iN K I NAGI NA R E " , HEAL PART 10. 02 3 R H AN N I .M G 10.01 1 J. ! ! ! ! ! ; S 8= 0 ' 0 5 . 12 12 T PART", -lAMMING G S R l = O.0*9q;,teC T + T 1 ) 11.10 S H= 0 M * P 2 * T ; 11.19 r 1 9 14 11.1b S RP= H P + 2:< 9 2 * AC I ) * i- UU SC T ) + 9 * 9 3 * AC I + 1 ) * F G O SC 4 1 ) 11.18 S T P = I P+ 2 * 9 2 * A C I ) * n S I (4 C 8 ) + 9 * 9 3 * P C I + 1 ) * hASPN C 8 1 ) 1 1. 20 S T = T + T 1+T1 1 1. l b ; 12.'0 1 G OUTPUT 12. 0 2 G 12.12 T %'f, 0 9 , O N , " PARAMETER 13.01 G 13.02 G 13. lb. S s 10 12 Rb=,M; S 0 " l = C* i h ON 9 10 TELETYPE ", I P, ! " , %, H P , "' IP=f0 1 9 . 0 1 G r Rr.'RJEM G Y TH AM S E O R 4A T I O N 1 9 . 0 2 G T R A P E 7. - I iN T EG R A T I (.) M l9 . 0 3 G 14. 10 S H=P1*I * 8 / M 19.19 S P P = K P + A C T ) * J - G O SC K ) 19.15 S I P = T F^+AC T ) * E h I i \ l C H ) 15.01 C FRE0liE:4G8 15.02 G T R A P E Y - I M T E G R A T I OM TRAIMSFORMATIOIM 15. 0 3 G ] 0 S H = P 1 * I * K / N ; 15.1 9 S R P = P P + AC I ) *!-( 1 * F G O SC T ) 13.16 S I P=I P+ACI )*K 15. S H A N W I Ntl H 1= 1 + h U O S C P 1 * I / M ) l*r SI'MCK) 15 ! ! lo.M! lb. 02 lo.l'/l lo.lP 16.14 I D . 16 l o . 18 1O.20 16. 2 2 16.24 lo. 26 lo.28 U (J S K S 16.30 S 0 = P - S ; lo. 52 l b . 34 16.36 l b . 38 l b . 'i'8 16. 4 2 1(3. 6 0 S S S I S U s K C (-1) = X C 0 ) - G I ; I I s S S S b / AST j-OURIEK T=P2/N; S S=N/2; S L= l; S (0=5-1; S {=1-NU l =0,!\i-i; S X ( T ) = 0. S H = AC fO+S) + A C 0 ) ; S AC 0 + S ) = AC Q ) - A C (0+S) ; S AC (0) = SR C (0 3 1 6 . 1 8 , 1 6 . 1 8 ; 6 P= (0- 1 ; G l o . 1-1 CL-NUl 16.2 0 , l b .4 2 , 16. 2 U L=L+i; s s=s/2; s 8=8+1; -S p = i v j - i ; s Y = i / [ 2 t c - i)] G= 1 U= n I T R C P * Y ) ; S 'C = T * niN E N C M CJ , U ) Gu=f'GO SCK) ; b SN=F5Ii\jCK) G R = G O * AC P ) + S ' \ I * < C P ) ; S ' M = C O * < C P ) - S ' \ l * yR P ) S S H = G R + A C (-'-),• S S I = G I + K C O F 1-T T 8 7 . 8 4 ,I*L>F, " "; S •<=l-NEi'7CNu, I ) b H = 2 * AC 8 ) / N ; S SI= 2*8C 8 ) /N 8, SR, " " , SI , ! : Gu H..E/1SE WRITE NO. N't. SPr.GIAH/Y Ojii il N T I E NEW L T N E S 0 2 . 14 0 2. 16 F O R 'YOUR PROBLE"! ! WAVE TO U b F I N E T H E V A H I A P L E T I M E rMTERV/Al. N U M B E R On wyVFA 14 * . 1 6 *i.>0 S T 1 = 0. -* ; Q) 5 S AC P ) = SR; S K C P ) = S I P = P - i ; I C G - b ] l b . 3 o , l o . 3 8 , 1 6 .36 G= G+ 1; G 1 6 . 2 4 [0-8+13 16.40, l b . 18, 1 6 . 4 0 ;3=0- b; G 1 6 . 2 2 8 u;"= 1 / c T i * c N - 1 ) ) ; i- 1 = 0 , 4 - 1 ; u i ? 17. 0 ! 0 O b T P U T ii .02 G 17.1") I 1'7 . 1 2 s 17 . 14 T T H A N b n ' O R M A T I ON 0o66o7 / • ') • * 16 5 P C O )= ACIO)-GR vlU'lrfcR O F DATA-ARRAYS ? 1 D A T A - ARRAY : •Tii'i;iER Of' iJA.TA = 16 D E L T A - T = 0. A D O 6 67 C SECI T A b ( 1.1 A X ) IJELTA-F = = 1 . O0M 7.46Q6 98 r SEC] CHZl DATA- ARRAY r c SEC] i>i. O-vp/i 0. 0n7 0 . 13 3 0 • 2 l/i " I 0 . 2to7 M. 3 33 0. 4 0 0 0. 4 6 7 o. 5 33 0. 6 M 0 0 . 6 67 0.733 A. 8 00 0. 8 6 7 /). 5 3 3 1 . 000 DATA 1. 00 0 O0 0 0.91354 5 0 . 6to9 1 27 0. 309 0 1 1 0 . 1 0 4 537 0 . 50 0 0 1 0 0. 8 09 0 2 5 0.978152 0 . 9 7 8 1 4 to O . 4 09 0 08 0.49 998 4 0 . 104 5 0 6 0 . 3 0 9 0 39 o 6 69 1to0 0 . 9 13557 1.000000 ',/), S I M P.SUiM- I N T E G R A T I (A. (AiA9,iA ii. Sf/H/)") UN HEAL I M AG I i\ yjRE PART PART 5 E - 0 1 0 . 0 0 ('i 0 0 0 E + 0 0 •0.889 030t-0 1 M . 4 2 9 1 1 0E+ 0 0 0 . 8 8 8 9 7 1 . 0 \A 0 0 1. 5 0 0 0 • 0 . 8 8 8 7 Q 7 E - 0 1 • i'i. 7 4 9 7 7 4E+ 0 0 2 . 0 0 00 0 . 8 8 8 8 4 5 E - 0 1 •0 . 208 o7 P E - 0 1 • 0 . 8 8 8 8 b2E- 0 1 • 0 . 27 9 222E+ 0 0 i'i'. 2 . 9 0 0 10 1 088 9 0E+ 01 • 0 . 9 8 7 6 28 £ - 0 2 0E- 0 1 • 0 . 3 4to72 9 t , - 0 1 3.50 0 0 •0. 88888 0E- 01 • 0 . 1 6 3 9 i. v 9 E+ 0 0 4.000 0 0. 88888 ME-01 •0. b4o33bE-01 4.5 0 0 0 • 0.888884E-0l •0 . 3. 0. X 0(000 P . 0 0 00 5.5 000 • 2 10 37 2 D E + 0 0 0. 8 8 8 8 8 1 E - 0 1 • 0 . 9 307 1 o E - 0 1 0 . 8 8 8 8 8 4 L - 0 1 • 0 . 6 26;')99 E- 0 1 8E-01 • 0 . 2 4 9 9 17 E+ 0 0 4222 27 E+ 00 • 0 . 2 9 r,4 b 3 E - 0 1 8 8 8 9 1 I E - 0 1 0. 1 4 304 4E+ 0 0 f). 000 0 f>. P M 0 0 • 0 . 7 . Hl>i0(0 0 . 7 . 5 i'l 0 0 •0 .8889 2 o E - 0 1 • 0 . 4 9 09 1 o E - 0 5 4 . 0 0 0 0 0. 8 8 8 9 • 0 . 14 3 0 3ME+ 0 0 0 . 8 8 8 8 7 4 P E - 0 1 S r i P b O W - I N T E G R A T I O'M f C(Yl i l A i M N I NG I N/\ HEAL H . I ' i 0 i/i 0 i \ ARE PAhT P A H T 2 8 8fa5 4 E - 0 P 0('ii4 0t'5iE+ 0 0 •••. r> 01/1 I'l 0 , 2 4 9 9 9 8 E+ p i ) (':. 2 1 2 ' - i 4 b E + 0 0 1 . 0. 50 000 2E+ 00 • 0 . 8 5 104 I E - 0 1 0. 2b000faE+ 0 0 • 0. 38 2 o 7 2 E + 0 0 0 0 0 0 0 . 179 3 1 1 E - 0 O • 0 . 2 b 7 o 8 3E+ 0 0 2 . D 0 0 M - 0 . 1 2 4 8 38 E - 0O •0 . 3 . 0 0 0 0 - 0 . 4 f a 4 9 fa 1 E - 0 o . " 0 0 0 1.5000 H. piViMH - '4. 1 3 16 0 8 E - 0 o 4 . 0 0 0 0 - 0 . 4 5 6 18 6 E - 0 o 4.5000 0 . 4 39 b 2 9 E - 0 o p.0000 -.3000 - 0 . 1 5 34 / i E+ 0 0 • 0 . 1 2 8 07 0 E + 0 0 • 0 . 1 042D6E+ 00 ' i/i. 9 4 2 2 3 P E " 1 . 0 1 88 749ME- 0 1 P37 4 3 9 L- 0 b • 0 . 8 8 1 19 3 E - 0 1 2E-0o • 0 . 117 0 p 2 L+ 0 0 0. 18999 3 . 0 0 0 0 - 0. 8 33349 E-01 '0. o.5000 - 0 . • 0. 4 1 D P 1 PE- 01 7" . - 0. 8 3334 3E- 01 0 0 0 0 7 . D'/MM '< . ' 1 i'i 0 I ' l 0 . lDfafa68E+00 / 2b 5 18L- 0 b - >/.. 8 3 3 3 2 4 E - 0 1 148 0 3 3E+ 0 0 0.04M99 2 E - 0 1 0 . 18 l b b 4 E - 0 b - 0 . 5 4 09 9 1 E - 0 1 18 SI 1 -SON - I N TEG H A T I O N HAMMI NG REAL I NAG I R A R E PART PART 0 . 0 0 0 0 0. 5 0 0 0 1 . A (A (A (A 1 . b00 0 2 . 0 000 2.5000 3 . A (A A'A 0.7109 1 IE-02 0 . 2 2 2 8 8 6 E+ 0 0 0 . 54 7 1 14E+ 0 0 0. 2 2 2 8 9 5E+0 0 0. 7 1 1 09 3 E - 0 2 - 0 . 7 11 1 0 0 E - 0 2 0. 7 1 1 0 5 2 E - 0 2 3000 7.0000 7.5000 - 0 . 7 1 1 09 2r,- 0 2 0.71106EE-0 2 - !A. 7 1 1 0 0 O E - 0 2 M. 7 1 1 0 5 4 E - 0 2 - <A. 7 1 1 0 8 9 E - 0 2 - 0 . 09 3 57 l E - 0 1 - 0 . 187 1 1 2E+ 0 0 69 5 5 0 3 E - 0 1 - 0 . 7 1 1 07 5 E - 02 -'< . 0(/)l/)(/! - 0 . 09 5 5 4 2 E ~ 0 1 3. 5 0 0 0 4.000 0 4 . 5 000 3.000 0 5. 5 0 0 0 6.00 00 O. 0. 000yi00E+ 00 0 . 2 2 9 4 4 8 E+ 0 0 •0 . 79 08 D 0 E - 0 1 • 0 . 4 1 19 4 8 E + 0 0 • 0. 24 79 3 8 E + 0 0 0. l o 3 5 32E+ 00 •0 . 12059 0E+00 • 0 . 109 0 2 9 E + 0 0 •0.91058 0E-01 • 0 . 8 9 9 8 39 E - 0 1 0 . 8 8 5 1 57 L - 0 1 • 0 . 1 1 2 o 9 7 E+ 0 0 •0. 1 3 O 1 8 4 E+ 0 0 • 0 . 4 0(5 1 1 O E - 0 1 0 . 7 0 4 148 E - 0 1 0.130258E-05 •0. 7 0 4 1 3DE-0 1 P I A P E Y - I N T E G R A T I ON r 8Y] REAL PART '/ . [A i/1 \A iA 'A. b(A'A lA 1 . l A </, (A 0 1 . 5 'A A 0 2 . A AAA 2.5000 3. 0 0 0 0 3. 5 0 0 0 4 . 00 0 0 4 . 5 000 5.0000 5. 50 0 0 6.0000 o . 5A 0 0 7.0000 '7 . 3 0 0 0 8.0000 0 . 08 3 0 5 1 E - 0 5 19 3 14 3 E - 0 1 (A. 4 7 4 9 1 4 E + 0 0 0 . 1 1 9 7 4 / I E + 01'1 • 0 . 7 09 7 3 b E - 0 1 0 . 4 9 5 0 19 E - 0 1 • 0 . 3 3 0 18 2 E - 0 1 0. 17799 3 E -0 1 •0. 3 15498E-0 2 • 0 . 1 0 9 13 7 E - 0 1 0 . 2 4 14 0 3 E - 0 1 • 0 . 3 6 16 6 5 E - 0 1 0. 4 6 6 IQQE- 01 •0. 5 3 1 5 3 3 E - 0 1 0 . O 147 3 I E - 0 1 •0 . O 5 3 3 0 9 E - 0 1 0. 00067 I E - 0 1 •A. T N An{ I A R E PART 0 , i/)l/ini''i/>0E+ 0 0 0 . 198 0 7 1 E + 0 0 0.4 !2137E-0 1 • 0 . 39 4 7 2 4 E + 0-0 • • . 57 n 1 35 E- 0 1 • 0 . 9 2 / 2 1 0 K- 0 1 • 0 . 60 6 0 8 7 E - 0 1 - 0 . 2 1 D88 3 E - 01 • 0 . 098 2 2 2 E - 0 1 0 . 89 57 3 b E - 0 2 • 0. D 3 0 4 6 7 E - 0 1 0 . 19 3 3 1 3 E - 0 1 . 0 . 4 8 39 4 2 E - 0 1 0 . 1D7O 0 5 E - 0 1 •0.2b1 123E-0 1 0. o4 3 O 4 D E - 0 2 0 . 7 b8 25 3 E - M b 19 • J ' H A ' - P . Y - I iM T t , G KM 0"j(/i"l A . 5 1/1 M M I Mj piG I i\ A H E HEAl. PAHT CHYl A. •H AN N I N ti I'l PART • Ml. 9 7 5 5 2 8 E - M)2 0 . Ml Mj 0 yi 0 M E+ M Ml 0. 0 . 1 19 3 3 9 E + MM) 1 . !')(/ll/jl/| 1 089 7 2E+ 0 0 2 b 2 5 14 E+ f ) 0 0.8 tooo77 E~ 0 2 1. 5 MOM Ml. 1 6 0 8 5 7 E + Mife) 0. 2.MMMA "1. 68 3 9 t o 8 E - 0 2 • 0. • 0. 1 2 17 0 0 E - 0 2 • )•). 7 7 2 o o M i E - Ml 1 M.331308E-0 3 0 . b 19 (/ib8 E - 0 1 2. DMMM 3 , l.'H'UAiA 19 13 1 2 E + 0 0 1toM-i 3 o 8 E+ Mi A M l . 4 4 9 to MM Mi E - 0 1 3. 5 M 0 0 4 . 0M0 0 • 0 . 4 . to (;i M "1 • M l . 2 1 0 5 17 E - M)3 • 0 . 2 8 8 4 8 o E - M) 1 to . "' '/• M 0 M l . 3 0 M ) 14 3 E - 0 3 • 0 . 2 4 7 to 1 2 E - M 1 to . to 0 M 0 • 0 . 39 327 3 E - 0 3 (N. 18 3/4 5 6 E - (A 1 M). 4 7 9 9 9 8 E - 0 3 0. o« ('] M " I Ml 0. 14 3 5 0 9 E - 0 3 1440to3E- 03 0 . 3 8 (-19 3 9 - E - 0 1 1 5 18 3 4 E - 0 1 to0M;M • M). 5 5 3 4 6 8 E - '0 3 0 . 1 02to24E- 0 1 7 . MM)MiM) M). b 0 9 0 5 1 E - M:i 3 0 . 7 2 o 4 39 E - M 2 7.toMMM • 0 . 64 349 b E - M 3 M1. 3 3Mi9 7 2 E - 0 2 i . 0 00M 0. 6548 8 3 E - 0 3 0. o. •psV rOljHIr.b 1 T H A N bn O H N M T I OiM I NAG I j A n E i'i E PiL C i I' 1 l b 11 !9E-0b PAiiT PAHT A . 0 ' Mi M 0 M E+ A 3 • A . MM)MM M. 1 2 5/1M9 E+ M M 1 . MJMMM 0. 2 . 0 Ml M M •" I . 4 4 b ' i O ! E - 0 1 0 . 18 to 1 1 M E - M 1 3 . 0 M Mi M) • Mi. 14 M)7 5 o E - 0; 1 0 . 9 4 '-'14 7 0 E — i'i M: Ml/If.'I I ' I • - i . 59 i b C V E - 0 2 ('1. 5 9 1 toboE- 0 2 G-i4E- 0 2 • M l . 3 8 to 2 2 4 E - M!2 4, to. 0 0 Mi Ml - 0. 1 0 0 Si) b E + 0 1 257 0 . 2 ' - 1 1 i 2 E+ 0 Mi . 0 i ' i i/i (-1 •0.97 60 11 E - 0 3 • ( ' i . 2 3to8 i M E - Mi2 7 . 0 Mi Mi 0 • Ml. 2 2 4 2 3 3 E - Mi 3 •0. 8 . 0 0 0 0 (8. 2 9 MS o H b E - 0 7 0 . ;1 i l M i']0MiE+ 0 0 9 . 0 M0 0 • Ml. 2 2 3 8 7 5 E - 0 3 M. 1 1 2 4 7 7 E - 0 2 10 . M0MM • Mj. 9 7 6(07 I E - 0 3 0 . 2 3 t o 8 19 E - Mir- i i . Ml Mi 0 M • Mi. 2 5 7 3 2 1 E - 0 2 M . 3 8 5 1 17 E - (T2 1 1 . 9 9 9 9 • 0 . 5 9 15 0 8 E - 0 2 0 . 59 i 5 5 6 E - 0 2 1 2 . 9 9 9 9 • 0. M . 9 4 0 3 8 9 E - (M 2 i 3. 9 9 9 9 • !8. 4 4 6 8 6 2 E - 0 1 D 1 4 . 9 9 9 9 0. i4M)743E- M 1 10059 5E+ 0 1 1 14b2 3 E - 0 2 M1. 18 5 1 0 9 E - Mi 1 • (A. 2 Mi Mi 1 M!9 E+ 0 0 20
Home
Privacy and Data
Site structure and layout ©2025 Majenko Technologies