Digital PDFs
Documents
Guest
Register
Log In
DEC-08-H6BA-D
December 1968
66 pages
Original
3.2MB
view
download
Document:
AX08 Laboratory Peripheral
Order Number:
DEC-08-H6BA-D
Revision:
Pages:
66
Original Filename:
https://svn.so-much-stuff.com/svn/trunk/pdp8/src/dec/dec-08-h6b/dec-08-h6ba-d.pdf
OCR Text
Digital Equipment Corporation Maynard, Massachusetts a“Eula“ PPD-8 AX08 LABORATORY PERIPHERAL INSTRUCTION MANUAL DEC—O8— H6BA-D AXDB LABORATORY RERIRI—IERAL INSTRLIOTION MANUAL July 1968 DIGITAL EOLJIPMENT CORPORATION 0 MAYNARD, MASSACHUSETTS Copyright ©1968 by Digital Equipment Corporation The Following are registered trademarks of Digital Equipment Corporation, Maynard , Massachusetts . DEC PDP FLIP CHIP FOCAL DIGITAL COMPUTER LAB CONTENTS Page CHAPTER I GENERAL INFORMATION susub Introduction 1-] Physical Description I—I 1-] Physical Characteristics Functional Units 1-2 Options 1-3 System Characteristics 1-3 Reference Documents 1-4 CHAPTER 2' OPERATION AND PROGRAMMING General Controls and Indicators Enable Registers I/O Instructions 2.4.1 Microprogramming 2.5 Display Control 2.6 Enable Register Bit Configurations 2.7 Clocks and Schmitt Trigger Inputs 2.8 Multiplexer and ADC 2.9 Diagnostics CHAPTER 3 PRINCIPLES OF OPERATION 3.1 Block Diagram 3.2 IOT Decoding 3.3 Clocks V 3.3.] Crystal Clock 3.3.2 RC Clock 3.4 Enable Register 3.5 Contingency Register 3.6 Synchronization or "Sync" Channels 3.7 Input Channel Selection - Optional - Option XR CON TE NTS 3.7 Input Channel Selection 3.8 Analog-to-Digital Conversion 3.9 Display Control 3.10 Input Mixers (Cont) CHAPTER 4 MAINTENANCE 4.1 Introduction 4.2 Diagnostics 4.3 Calibration CHAPTER 5 ENGINEERING DRAWINGS ILLUSTRATIONS 1—] AX08 Operational Flow Diagram I—2 AX08 Front Panel Controls 2-2 DiSplay Axis Organization 2-4 3-I AX08 Block Diagram 3-2 3-2 IOT Decoding Logic 3-3 3-3 Crystal Clock Logic 3—4 3-4 RC Clock Flag Logic 3—5 Enable Register 3-6 3-6 Contingency Register 3-7 3-7 ”Sync” Channel Logic 3—7 3-8 Input Channel Selection Logic 3-8 3—9 Analog-to-Digital Timing 3—9 3-IO Analog-to-Digital Conversion 3-IO 3-II ‘X- and Y- Registers 3-I2 3—12 Display Command Logic 3—I3 3-I3 Intensity Logic 3-I4 3—I4 Display Registers 3—15 3-I5 Input Mixer 3-15 . 3—5 . TABLES 3992 1—] Operating Characteristics Anolog-to-Digitol Conversion 1—3 1—2 Power Requirements and Environment 1—3 A—D Conversion 1—4 2-1 AX08 IOT Instructions 2-2 2-2 Enable Register 2—5 weewmfit Type AXO8 Laboratory Peripheral CHAPTER I GENERAL INFORMATION 1.] INTRODUCTION The AX08 can be considered either a multi-purpose PDP-8—series peripheral or as an integral part of the Lab-8 Hardware/Software System (PDP-8 or 8/I, AX08, Lab-8 Averaging Program. The AX08 provides a facility for monitoring up to four channels of analog information see (expandable by option, Paragraph l .4), performing analog-to-digital conversion (ADC) for data storage at the computer, performing digital-to-analog conversion (DAC) on inputs from the computer for display, sensing time through two real-time clocks, and sensing digital inputs. For ADC, the AX08 uses the successive approximation technique. Standard PDP-8 I/O instructions initiate and monitor the operations of the AX08. This manual provides a description of operation, programming, theory, and maintenance of the AX08. The level of discussion assumes familiarity with the PDP-8 Programmed Data Processor and a working knowledge of DEC I .2 logic symbology. PHYSICAL DESCRIPTION The AX08 is housed in a single cabinet designed especially to provide simple interconnection» and easy access to logic modules. The back—wired panels provide interface with the PDP-8 type com- puters. The signal connections to the computer or to other external equipment are made via DEC cable connectors that plug directly into module slots. A control/indicator panel is located on the front of the AX08. Power is supplied from either the computer or from a standard DEC power supply . Reference power -l0V for ADC and DAC is provided by DEC Type A704. I .2 .1 Physical Characteristics Dimensions: Panel Width Panel Height - Standard - lO—l/Z in. Double Rack Depth 18-3/4 in. 1/0 Cables: DEC Type WOll or W02l modules located per drawing (see UML, Chapter 5) Power: Module power is supplied by Type 728 or (for 50 Hz operation) 728A power supplies. If the PC 8/1 option is selected, the Type 779 or (for 50 Hz operation) 779A power supply is also provided . Reference voltage is provided by an A704. 1-] 1.3 FUNCTIONAL UNITS The AX08 provides a 9—bit display with two axes and intensity control (see Paragraph 1 .4), a 9-bit ADC with four channels of multiplexed input (expandable to 24) incorporating preamplifiers ' and sample and hold. The basic operational flow is shown in Figure 1-] Channel selection is accomplished by . decoding IOT instructions From the computer, and conVersion is controlled by command, timing, and control sequences of the computer and AX08 logic; completed. analog-to—digital conversions are sent from the Y-register, through the input mixer to the computer. Computer inputs through the butter are controlled through decoded IOT instructions and AX08 logic to provide analog outputs for display. Both ADC and DAC use the same registers and in case of simultaneous requirement, ADC has priority. —T >I_'T F—V l tF—i/>I ———I\ o—v XM l— l I _l /—\ : km) : \V/ | xc | I l l _I .:1>I_ #7 I —— (INTENSITY) z I | OSCILLOSCOPE __ — I ‘ ImeF‘U—Hl—CZ — — m M —;R7;H:N‘E;S’IXTIP__—I _ *5 - D/A LADDER ______ ._ _J ]<"___—l_fiI BITSTK:1 "x”-REGI5TER D/A LADDER (9 q —— I— (i: (SBI‘TST "Y"-REGISTER SAMPLE AND HOLD , /77 COMPARATOR ADC-CONTROL | PDP-e/I EXTERNAL CLOCK 0 =1 VARIABLE] E SCHMITT TRIGGER = s T. F? l l l I 8 DIGITAL INPUTS I l I I FINE as @—~L-___J ifiié‘éEEI—H | RANGE R E l____-l CLOCK (FRONT PANEL) N A L 83 LCRYSTAL l—Jl CLOCK ’T‘ g (XRll |_ __j h So ‘ 1D|G|TAL I OUT@<—1'—I¢—————l I ‘ ‘ 3 MORE DIGITAL OUT V II <——| I (XR) 4—— I L_.J Figure 1-1 AX08 Operational Flow Diagram The interrupt and control scheme for this is described in Chapters 2 and 3. 1—2 l f: L — I .4 OPTIONS The following Options may be added to the AX08: OPTION XR - This Option expands the registers of the AX08 to include three levels of brightness control on the scope, eight digital inputs (contingency), three digital outputs and one additional pulse input. A single XR may be added to an AX08. OPTION XM (Multiplex expansion) The first four channels of additional analog input are This includes the preamplifiers, additional multiplexing and expansion of included in Option XM. the channel selection register. OPTION XC - - A single AXOBXM may be added to an AX08. This option is for the expansion of the ADC channels beyond eight. AX08XC adds four channels of preamplified multiplexed analog input. to an AX08 with XM option 1.5 Four option XC's may be added . SYSTEM CHARACTERISTICS The Following tables define the major operating characteristics of AX08. Table l-l Operating Characteristics Analog-to-Digital Conversion Conversion Successive approximation Word 9 bits Length including sign Accuracy il/Z LSB i0.2% Speed 5 17 ps Preamplifier Input i l Sample and Hold Full scale track in 2 ps Number Notation Signed 2's complement .024V full scale, 50K input impedance Clocks Crystal Clock Set to 100 ps RC Timing Clock Variable from 2 sec to 20 ps Each Table l-2 Power Requirements and Environment Reference Voltage -IOV nominal Input Power Std. DEC voltages Operating Temperature 0°C to 50°C Table I-3 A-D Conversion Analog Input Voltage (i2 mV) Digital Output (signed 2's complement) (ii/2 LSB) 0377 +1.020 +0.768 +0.5I2 +0.256 +0.004 +0.000 -0.004 -0.256 -0.5I2 -0.768 -I .024 L6 0300 0200 0100 0001 0000 7777 7700 7600 7500 7400 REFERENCE DOCUMENTS Title Document No. Digital Logic Handbook C-l05 Specifications and descriptions of FLIP CHIP modules, simplified explanation of the selection and use of these modules in numerous applications. Small Computer Handbook C800 Describes operation and programming of PDP-8/I (I967/I968 Edition) PDP-8 Interface Manual Description computer. F-85 Contains computer organization information,detailed description of all instructions, basic PDP—8 programming data, and operating procedures. AX08 Bulletin Contains operation and programming data at the user's level. CHAPTER 2 OPERATION AND PROGRAMMING 2.1 GENERAL This chapter contains operation and programming instructions for the AX08. Since the AXO8 is a special I/O device for the PDP-8 series of computers, refer to the applicable documents of PDP-8 literature for programming information. 2.2 CONTROLS AND INDICATORS Figure 2-l 2.3 AX08 Front Panel Controls ENABLE REGISTERS The Enable Register is used to a . Selectively enable interrupts for the ADC, the ADC timing error indicator, Schmitt triggers, the crystal clock and the RC clock . b. Initialize and run the RC clock. c . Shift between two speeds of the RC clock. d. Provide automatic initiation of ADC upon RC or external timing pulses. e. Enable an external clock pulse to set the'RC clock flag (and cause ADC if enabled). 1/0 INSTRUCTIONS 2.4 The AX08 IOT instructions are called by PDP-8 IOP l, 2, and 4 pulses. cussion of PDP-8 programmed data transfers, Chapter 2 of the PDP-8 User's Handbook including IOP l, 2, and 4 generation is contained in . The PDP-8 instruction op codes for the AX08 IOT's are of the form: bits 6 through 8, and B represents bits 9 through ll of the instruction word. IOT instructions. A complete dis— 63AB, where A represents All AX08 instructions are Table 2-] lists the IOT instructions and defines them in terms of IOP l, 2 and 4 control. Table 2-l AX08 IOT Instructions IOT ' Instruction IOP IOP l' 2 ~ 630x 631X 632X Dxc DXL Clear X Register Load X from AC ’DYC DYL Clear Y Register Load Y trom 'AC IOP 4 91s (6304) Intensity point E (6314) Intensity point SKXK SKER Skip on Crystal Skip on ADC timing error Clk flag convert command received DSB (OPT XR) Set Brightness - DSBVO when last conversion not = DSB l = DSB 2 = dim normal ' yet read into AC 633X XRIN ' OR external sense _S_l_<_A_D Skip on ADC done . XRCL bright ‘ _ Clear all bits of external sense register register into AC that correspond to set bits in AC 634x SKRK ZTEN OTEN Skip on RC timing clock flag Zeros in AC clear Ones in AC set bits in , 635x bits in Enable Enable Register then AC Register is cleared CLER CLXK CLRK Clear ADC timing Clear crystal Clear RC clock flag and error Flag error condition - 0 —% ADCERR, o % ADCIP clock flag Table 2-I (Cont) AX08 IOT Instructions IOT . Instruction 636X IOP IOP I 2 IOP 4 ICMX Increment multiplexer RADC (6362) ADCV (6364) channel (set to Chan 0 O 9 AC Initiate Conversion if at maximum imple- ADC buffer% AC mented channel) 0 —> ADC done 0 % 637X ACMX ADCIP RADC (6372) O——> AC Set multiplex register from AC ADCV (6374) Initiate Conversion ADC buffere AC 0 ——> ADC DONE O —> ADCIP 2 .4. I Microprogramming Microprogramming of most AX08 IOT's (except SKXK DSB or SKER DSB) is allowed. As an example of microprogramming effectiveness, note that with the combination of instructions ACMX RADC ADCV, it is possible to set up a multiplex channel, start a conversion, and read the results of a previous conversion all in one instruction. 2.5 DISPLAY CONTROL In AX08 operations, ADC takes precedence so that a display command will have no effect if an ADC is taking place (conversion in progress or complete and value not yet read from buffer). The display control consists of two 9-bit DAC's and scope blanking facility. The axis organization for display is shown in Figure 2-2. Loading the Register X with DXC DXL and Y with DYC DYL drives the display as shown in Figure 2-2. Intensification is accomplished with 6304 or 6314 (DIS = 6304). The commands DCX (Display X-Axis Clear-630I) and DYC (Display Y-Axis Clear-63I I) clear the X- and Y-registers (to 000), and set X-OUT and Y-OUT to -5V. effect. Power clear has the same The IOT's DXL (Display X-Axis Load-6302) and DYL (Display Y-Axis Load-63I2) load from the accumulator into the X- and Y-registers (AC bits 3-“ to X and Y bits 0-8). Since 000 inthe X- and Y-registers implies half—scale, AC bit 3 is complemented before being transferred to the X-register (half—scale on X is represented in the AC as 400). 2-3 YOUT = 0V 0,377 0.0 777,377 ———————— X I I l l l l I —10v 0,—377 XOUT= -10V I 777,~377 0V NOTES Figure 2-2 SYSTEM REVERTS DYC POWER CLEAR OR TO X UNDER DXC; Display Axis Organization If an ADC conversion is in process (a convert pulse has been given but RADC or CLER has not) then the display control instructions DYC, DXC, DIS DXL and DYL will have no effect. Thus, in automatic conversion mode, an inadvertent diSplay command will not destroy the conversion. Brightness control is set from MB bits IO and II when instruction DSB (6324) is given. (Optional - option XR) IOT's 6304 and 6314 both intensify a point; however it is obvious that within the structure of PAL III (symbolic machine language assembler, see DEC document Digital-8-3-5), it is only necessary to specify one mnemonic (DIS = 6304) to handle both sequences of micro instructions: DXC DXL DIS and DYC DYL DIS. 2.6 ENABLE REGISTER BIT CONFIGURATIONS Enable Register flip-flop outputs, control certain optional modes of operation . A description of the Enable Register bits and how they are set from the AC with the instructions ZTEN OTEN is shown in Table 2-2. Table 2-2 Enable Register “£02? 2:215? SKEN 0 Slows RC Clock rate by Factor of 8 CVEN l Conversions initiated by RC or external clock pulse RKEN 2 RC Clock flag causes interrupt XKEN 3 Crystal clock Flag causes interrupt EREN 4 ADC timing error causes interrupt ADEN 5 ADC Done flag causes interrupt R4 6 R4 = l (option XR) R2 7 R2 = l (aption XR) RT 8 RT = l (option XR) EXEN 9 External clock available as RC timer. Sl , S2,S3 can cause interrupts. CNEN l0 RC counting chain enabled SO ll Set pulse channel 0 (SO) Flag to l R4, R2, and Rl may (if implemented) be used to provide logic control of digital devices (e.g. relays). 2.7 CLOCKS AND SCHMITT TRIGGER INPUTS There are four instructions concerned with the two clocks in the AX08. Crystal Clock: IOT 632i - IOT 6352 - Skip on crystal clock Flag Clear crystal clock Flag RC or External Clock: IOT 634i - IOT 6352 - Skip an RC clock flag Clear RC clock flag The crystal clock Flag Enable Register = l . = l will cause an interrupt request to be generated it bit 3 of the .Note that there is no way to stop and start the crystal clock and to absolutely synchronize the clock. with a program. The sequence CLXK SKXK JMP.-l will synchronize within a jitter of 0 to 5.75 ps (i30%). 2-5 The RC clock flag Register = T will cause an interrupt request to be generated it bit 2 of the Enable l. = The rate of clock pulses can be changed by a Factor of 8 by changing bit 0 of the Enable Bit O Register. = l selects the slower speed. Power clear sets bit 0 = 0. By turning the RC counting chain off and then on (OTEN with AClO) program-RC clock synchrony is possible. The ADC may also operate in synchrony with the RC clock by setting enable register bit 1 = 1. RC clock pulses, if so enabled, cause an A/D conversion, starting at the RC pulse time. This eliminates the jitter characteristic of programmed ADC control. The ”external" input on the front panel can be used as an RC clock by setting bit 9 (l) in the Enable Register. to enable interrupts from pulse inputs Sl SO, Sl XRIN. (It the user wishes, RC clock may be disabled by bit 10 (0). , , $2, or 53. 52, S3 and the ”contingency" inputs may be read into the AC by the instruction (S3 and the ”contingency" inputs C0 through C7 are Optional, part of option XR.) 51 through S3 are set by front panel a Bit 9 (l) also serves inputs to Schmitt triggers. CO through C7 are set by digital logic level OV. $0 is set under program control via the Enable Register. ENABLE ll(l). 50 through S3 and CO through C7 are cleared by setting corresponding bits in the AC and executing the instruction XRCL. the bits in the register events = Note that in the microprogrammed sequence: = l XRIN XRCL, only l, at the time of the XRIN are cleared by the XRCL. This prevents missing that occur in the 2 ps between XRIN and XRCL (provided that the maximum rate on any single input does not exceed the programmed sampling rate on the register). 2.8 ,MULTIPLEXER AND ADC Power clear sets the multiplexer register to Os. until the The ICMX instruction increments this register largest implemented channel number is reached. The next ICMX resets the multiplex register to channel 0. The instruction ACMX iam sets the contents of the AC into the multiplex register. RADC clears the accumulator and the Flag ADCIP then sets the AC with the contents of the ADC buffer. ADCV initiates a conversion and sets theflag ADCIP(l) the same action if auto conversion mode is enabled CVEN(l) . . RC 17 ps later, the conversion is complete and the ADC DONE Flag is raised which causes an interrupt if ADEN(l) SKAD senses the state of ADC DONE. (or external) clock pulses cause (see Table 2-2). Skip is on ADC DONE(l). 7 ADC DONE flag. 2-6 RADC will clear the The IOT's ACMX, RADC, and ADCV may be microprogrammed since ACMX iam sets the multiplex register and RADC iam sets the AC. Reading of conversion result on one channel and initiation of conversion on another may all be done in one instruction . If conversions are done at a rate that does not permit the operating program to read the result before initiation of another conversion, the Flag "ADC Timing Error" will be raised. may be sensed by the instruction SKER. it EREN(l) - ENABLE 4(1). Skip is on ADC ERR(l). This Flag ADC ERR“) will request an interrupt ADC ERR may be cleared by the instruction CLER (which also clears ADC DONE and ADCIP). ADCIP(l) disables the display instructions 630X and 63lX. Front panel analog knobs are connected to channels 34, 35, 36 and 37 (from top to bottom) DIAGNOSTICS 2.9 Chapter 4, Maintenance, contains descriptive material on diagnostic testing philosophy for the AX08 . CHAPTER 3 PRINCIPLES OF OPERATION 3 .l BLOCK DIAGRAM The major Functional elements oF the system are shown in Figure 3-1 , AX08 Block Diagram. All AX08 operations are controlled by the computer program; decoded IOT's provide the commands that initiate ADC or DAC operations, and skip and interrupt request logic alerts the computer to conditions in the AX08. Analog inputs are processed through preamplifiers, multiplexers, and sample and hold circuits to a comparator (in the ADC Control). Successive approximation is achieved by the Y-OUT analog equivalent oF the digital value in the Y-register being Fed back to the comparator to control The X-register keeps track oF the step number in the approximation the input to the Y-register. . Final output value oF the ADC is the content oF Y-register which is sent to the computer via the input mixer. DAC For display, is accomplished by transfer oF data words From the computer AC to the Xand Y-registers where the ladder networks provide the Y-OUT and X-OUT analog equivalents as out- puts to the display. The display control (with option XR) provides three diSplay intensity levels; bright, normal, or dim. The system has two clocks: a crystal controlled clock that is set to ICC ps and an RC timing clock that is variable From roughly 20 ps to 25. The crystal clock can be used to calibrate the RC clock. The external register provides a buFFer For inputs 50 through 52, ($0 is sync 9M) and as part oF option XR, S3 and 8-bits oF digital inputs . . The IOT decoder decodes IOT instructions From the computer to control AX08 operation together with the l2-bit Enable Register. The Enable Register provides Function control levels which selectively enable interrupt conditions and in general, control optional modes oF operation. 3.2 IOT DECODING Generation oF all IOT commands For the system is shown in Figure 3-2. Memory buFFer bits ' 6, 7 and 8 From the computer provide the 3-bit cOde For generation OF 100 through 107, and memory buFFer bits 3, 4 and 5 when Oll enable the decoder gates. with the IOP timing pulses For system operation The decoded IOO through IO7, in coniunc- l, 2 and 4 From the computer, generate the IOT and maior control commands . Table 2-l presents the generation and operation oF all IOT's. 3-] (TO OSCILLOSCOPEI Z X - ""I Fr DISPLAY CONTROL __.._J INTENSIFY D M u —I>% x-REGISTER L r I P E E I Y—OUT "—‘——I_°—’A_:I= x SAMPLE —H Y-REGISTER _ , AND HOLD IOT DECODER COMPARATOR p—-—— Aoc CONTROL _ A CHANNEL SELECT'ON EXTERNAL (H }————<>—.l PL A H [VARIABLE I. I CLOCK r Z-S I TI IO LOGIC MB —> RANGE CRYSTAL I G SCHMITT TRIGGER c SCHMITT TRIGGER . SO s ENABLE I REGISTER , Ii; ‘ ACCUMULATOR A $2 F"“1 SCHMITT TRIGGER I“"‘ 33 @ Co —-——-—_.I LI ___ __I INPUT MIXER I s 3 I ' I I ———————>‘ —— CR0 . .1 I ———-—————q :~:: I '. I | . 'CONTINGENCY" REGISTER 7 I c1 ' A— \l I._I s2 INTERRUPT SKIP —> so@—— s1 —> CLOCK FINE ————.|_-_J EXTERNAL REGISTER Figure 3—1 AXO8 Block Diagram TYPICAL DECODER COMMAND +MB 6,7,8 000$ 000 -——— 001 — — — — — — — — ~ — — — -— — - - — - — — — 010 011 100 101 110 111 DEVICE CODE 011 AND IOT DXC 104 —r> w—D 105 1—D 106 1—. 107 102 ——m 1———> DIS GRP 100 ——> 105 —-———-—. IOT DSB IOP4 ———H —————> IOT Dxc 10131 ——> 103 AND ‘———————> IOT DXL IOPZ ———-> 1 ————————> XTAL CLK (01 (IOT CLXK) _.______. RCLK (O) (IOT CLRK) 105 AND -——————-—. IOT XRIN 10P1—-—D 100 —> AND IOP 2 103 —. AND 8'8 ——> 4—» 103 ——q 0R 101 101 —1--D 102 f 3,4,5 100 100———— TL. AND , IOP 4 IOP 2 AND ———————D IOT SKAD IOP 2 106 104 107 1 AND *—-. IOT RADC OR 101 _. IOP1 ——> 101 ——> AND ———-——§ IOT DYC 102 ———> ,——————> IOT ZTEN ——>1 IOP 1 104 AND ——> H AND .—————T AND 4 T IOT AND -—-> 10T SKER IOP2 MBQ(O) OTEN AND 1——————-’ IOT ACMX AND ———————> IOT XRCL 1 Figure 3-2 IOP 1 —u -———————D IOT CLER IOP1——-D ——h L———> IOT ICMX 103 AND AND AND ——u AC CLEAR 105 —. 102 ———H IOT ADCV 107 ———u —> IOT SKXK IOP4 r—> 106 _. AND IOP2 AND IOP 4 ————-——u ————-—> IOT DYL IOPZ ——> M89101 ‘—-————-D IOT SKRK 104 AND 10P1’ AND 10P1 IOT Decoding Logic IOP 4 ——> 3.3 CLOCKS 3.3.] Crystal Clock The crystal clock serves as a timer and provides a pulse every TOO ps to set the XTAL CLK flag (flip—Flop) (Figure 3-3). The state of the crystal clock flag is used by the IOT SKXK (skip on crystal clock Flag) to cause a skip request if the flag is set. ' IOT SKXK is caused by BMB bit 9(0) and the combination of 102 decoded in the decoder (MB 6, 7, 8 as CW) and the IOP 1 pulse from the com- puter. To cause an interrupt request, the l state of the flag is ANDed with XKEN(l) from the Enable Register. XKEN is set by IOT OTEN (AC bit 3 (1)). XKEN —‘> INT REQ AND L—D SKIP REO CLXK IOT Figure 3—3 3.3.2 AND XTAL CLK FLAG 100JJSEC IOT (1) SKXK —D‘ Crystal Clock Logic RC Clock The RC Clock consists of a 5-stage counter, count control terrupt request logic. can logic, and output skip and in- The clock's counting rate is adjustable by front panel control and the RCLK flag be set at the end of either 32 or 4 pulses From this counter chain . The operator can control the RC clock pulse rate by using the timing control RANGE switch and the FINE (potentiometer) adiustment in the front panel. Variable Clock that produces 100 ns These adiustment inputs control an R401 pulses From a stable RC-coupled oscillator. The RANGE switch selects one of ten capacitor controlled Frequency ranges; the FINE control permits fine adjustment to the desired pulse rate to provide the CNT CL pulses to the counter. As shown in Figure 3—4, it the Flag (flip-flop RCLK) is cleared and SKEN (l) is present (from the Enable Register, caused by IOT OTEN and ACO(l)), then the RCLK flag will be set every 32-clock pulses (enabled by IOT OTEN and AC bit lO(l) in the Enable Register). It SKEN (0) is present (from the Enable Register by IOT ZTEN, which commands reset it AC bit is 0, and AC bit 0 (O), the RCLK flag is set at the count of tour in the counter. 3-4 SKEN (1) ———-> IOT SKRK AND AND AND l—> SKIP REQ AND l—p INT 25:: OR SKEN (0) —D RANGE FINE SPEE CLOC RKEN REC (1) EXEN (1) -——D AND '————-——~———p RCT ICK EXCK —'>I RC Clock Flag Figure 3—4 Logic Whenever the EXEN(l) from the Enable Register is present, (set by IOT OTEN and AC 9(l)0 and positive going external clock pulse EXCK arrive, the flag RCLK will be set. The state of the flag may be tested by the computer command IOT SKRK(skip on RC clock flag). An interrupt request occurs when RKEN (T) from the Enable Register (set by IOT OTEN and AC2(l)) and the RCLK flag is set. 3.4 ENABLE REGISTER The Enable Register is used to: Selectively enable interrupts from the ADC, the ADC timing error indicator, crystal controlled clock, the RC clock, and the Schmitt triggers; I Initialize and run the RC clock; _ Shift between two speeds of the RC clock, one 8-times faster than the other; Provide for automatic initiation of ADC conversion upon receipt of every RC flag setting pulse; Enable an external clock pulse to set the RC flag instead of the RC timer provided; Control 3 digital outputs (Optional The Enable Register control level - option XR) flip-flops are . reset under control of IOT ZTEN (zeros in the AC clear corresponding bits in the Enable Register) ,- and are set under control of IOT OTEN (ones in the AC set bits in the enable) as shown in Figure 3-5. Three bits of the Enable Register are reserved for the optional digital outputs . These bits, as with other bits of the Enable Register, are set with the combination of instruction ZTEN OTEN The effects of the Enable Register are described in Chapter 2 (Paragraph 2.5). . IOT ZTEN IOT ZTEN AND AND 0 —> $st (0) Aco (O) —u $st IO T 0 T EN ADEN —. IOT OTEN SKENI” ‘ AND —.l IOT ZTEN —v AND AND AC1 (D) 0 ~—-» —> 9’5le o AC6lO) ——u CVEN IOT OTEN ——> ‘ IOT OTEN csz 111 ' 1 AND A02 (01 ——> AND 0 ———-D RK EN (0) R2 IOT OTEN ——> xDT OTEN 1 AND 1 RK F. N 1) H 1 ——> R2“) o —> R1 (0) 1 ——> AND AC7 (1) —> AC2 (11 —> IOT ZTEN ——> —> AND AND XKEN (01 D —> AC8 (01 —u AC3 10) —> R1 XKEN 107 OTEN _.‘ )(KENH) 1 AND AND Acsm —u Rlll) Acam —. —-—. IOT ZTEN AND AC4 (0) —-> —u AND o ”T, EREN l0) ——-> D —p AC9(O) % EREN :xeN 10) EXEN . 1or OTEN __. . EREN (1) 1 AND AC4 (11 o ,_. R2 (0) ACT (01 —~ RKEN IOT OTEN R4“) ———u IOT ZTEN IOT ZTEN —u lOT ZTEN ' AND AC6 11) Ac1111—u IOT OTEN —. R4 (0) R4 AND IOT ZTEN ADEN (1) 1 AND Acs (11 —. Aco (11 —> IOT ZTEN 0 a ADEN (0) AC5 (0) —~ ‘ AND —> EXEN (1) mm) —> -——9 IOT ZTEN —AND CNEN (0) O ACIO lo) ‘—. CNEN tOT OTEN ———’ 1 AND ' CNEN (1) A010 (i) —. Figure 3-5 3.5 CONTINGENCY REGISTER - Enable Register OPTIONAL (OPTION XR) The contingency register Flip—Flops CRO through CR7 are set by CO through C7 inputs applied through the connector on the control panel. The basic logic is shown on Figure 3-6. are 3.6 sent to the AC through the input mixer by IOT XRIN The CR outputs . SYNCHRONIZATION OR "SYNC” A level may be output on $0 (sync channel) by the instruction OTEN with ACT I (l) as shown in Figure 3-7. Flip-Flops SI and 52 are set by the output of Schmitt triggers. The inputs and lower threshold levels For these Schmitt'triggers are available on the front panel of the AX08. part of option XR, as are the contingency inputs (CO through C7) . Sync $3 is IOT XRCL IOT XRCL —.1 AND AND 0 -———D CRO (0) AC4 (1) —' —u o AC6 (1) —. ——> c R4 (0) CR4 CRO —D CRO(1) CO——-—-———’ 1 —> CR4 (1) 0 —-—> CR5(O) 1 —> C R51) 0 —> CR6(0) C4 IOT XRCL —u IOT XRCL —-> AND AND 0 r-—> CR1 (0) AC5 (1) —> AC9 11) —> CR5 CR1 1 —. CR1 (1) 0 —-'> CRZ(O) C1—. c5 IOT XRCL IOT XRCL AND AND AC6 (1) -—DI mm (1) —> CR6 CR2 _. C2—~—--D -—-D CR2(1) cs 1 ——> CRem 0 —§ CR7(O) 1 —> c R7 1 1 1 ‘ IOT XRCL IOT XRCL AND AC7 (1) AND 0 —-> CR3 (0) mu m —> CR3 C3 -—->‘ CR7 CR3 (1) .. Figure 3-6 10 T C7 ‘ Contingency Register XRCL AND ——> AND 1—. 0 ACO(1) so I 0T OTEN 1 »—> so AC11(1) 0-» AND a o ' AC1(1) s1 PULSE1 TR LEVEL1 1 ST. —> AND —’ —> 51 ‘ 0—. 0 A02“) 52 PULSEZ ‘ 7 $.T. I 52 I 33 —>1 TR LEVELZ -> AND 0 Acsm ——> 33 PULSE3 ——o 1 —. ST. TR LEVEL 3 —. Figure 3-7 "Sync " 3-7 Channel Logic IOT RESET ACMX MPX ) MXA—‘ A AC 7 (O) —> CHANNEL AND —> MX-A ._. UNIT MXBj CHANNEL —> 4 -CHANNEL —> MX-B AND —> MX-C AC8 (0) 1 2 3 MPXO AC7 (1) 0 —. 4 —. 5 AND 4-CHANNEL U NIT 6 l 7 MPX1 AC8 (1) —u DECODER -—-> MX-D MXCj J. AND CHANNEL 10 —. —> MX-E AC9 (O) ——-> 8-8 J ——> MX—F l —. MX-H —>( 4-CHANNEL 12 UN IT 13 MPX2 AC9 (1) 11 MX D CHANNEL 14 —D 15 4-CHANNEL UN 15 IT 17 AC10 (O) AND > MXO MX E AND MPX3 CHANNEL 20 —. AC10 (1) 2‘ AND 4-CHANNEL UNIT 22 AND AC11 (0) ) )——-. MX1 23 AND MXF—l 3 MXZ MPX4 AND CHANNEL 24 25 AC11 (1) i 26 27 AND —-’ MX3 IOT ICMX NEXT MX OK I06 Hi AND Figure 3-8 Input Channel Selection Logic —‘I 4-CHANNEL UNIT = SELECTED CHANNEL INPUT 3.7 INPUT CHANNEL SELECTION The multiplexer register is iamset from the AC7 through II with IOT ACMX (Figure 3-8). The register may be incremented by the IOT ICMX. channel number implemented at each installation. A diode card (W002) is cut to decode the highest If the highest channel number is reached, the multiplex register is reset to zero at the next ICMX. Thus, for all but the highest channel number in the MPX register, NEXT MX OK is available and ICMX counts the MPX register. In the highest chan- nel , NEXT MX OK is not present, therefore ICMX will not count the register but instead generates RESET MPX, which sets the register to 0. MXO through MX3 select the channel within a AI30 multiplexer module. MXA through MXF select the channel group (multiplexer module) if option XM is implemented. MX-H selects the multiplexer module assigned to the Front panel knobs. 3.8 ANALOG-TO-DIGITAL CONVERSION The overall Function diagram and the major timing of the analog-to-digital conversion (ADC) operation are shown in Figures 3-9 and 3—I0 respectively. approximation type ADC 60 The converter is a 9-bit successive . T HOLD TRACK———————— MSB T T‘wl l l i i l l T DONE Figure 3-9 Analog-to—Digital Timing 3-9 L i ‘L L i l i i i T i I l i i IOT RADc [ ‘ >_ .! >’_ E CLR Ac SAMPLE a. HOLD 5 _ COMP— MULTI— PLEXORS TRACK 0 ARATOR 0 n Y-OUT 0——> HOLD 2 D/A INPUT MIXER (Y-OUT Is POSITIVE) TOO :>AC ADC GO IOT - OR ADCV Y-REGISTER \ CERR AND ADC so ‘ ‘ (SET-X,SET-Y) F SKAD ‘@ CVENH) CVT 2 A __.T AND AND A x— REGISTER RCTICK CVT 1 ADClP( m (FROM Rc OR EXTERNAL CLOCK) J 01-8 INT REQ T CLOCK) (D AND CONVERT 1 EREN W 1 M88 DELAY IOT SKER . Q——- 0 1500 ns 1 ADCERR HOLD 1—. 0 AND J L. AND 1 ADC DoNEm —> “"1" IOT CLER IOT RADC ADC GO IOT CLER Figure 3-10 Analog-fo-Digifql Conversion REQ t f f f J ADEN (1) ENAaLEs AND SKP ’D A ’b A 750 ns CLOCK SKP REQ 00%; —> INT REQ The ADC in the AX08 has preamplifier input channels that accept ii .024V full scale. The input channels and multiplexing are available in multiples of from four to 24 channels. Channel select signals are applied to all multiplexer modules (a module switches 4 channels). The conversion sequence begins by a clock pulse enabled by CVEN a computer command ADCV and ADCIP (0). (l) and ADCIP (0) or by This generates ADC GO, setting the sample and hold in the track state, which sets the X- and Y-registers to 000 (half analog scale). 2 ps later, the sample and hold returns to the hold state and a l .5 ps delay provides settling time for the MSB (most significant bit) decision. When the l.5 ps times out, the CV clock is enabled to generate 9 CVT 1's and CVT 2's as shown on the timing diagram. A CVT l pulse shifts the X-register one place to the right as shown in Figure 3-] l complemented before shifting to Xl through X8 into ADC DONE , . . X0 is When the bit originally set to 0 by ADC GO is shifted (as a the conversion is complete and terminates at the next CVT2 pulse. l) CVTl and CVT2 pulses are alternately generated (as shown on the timing diagram) by clock pulses which also cause generation of STROBE COMPARE pulses. In the conversion process, the X—register serves as a step marker. The active X bit is used to select which bit of the Y-register will be through the X-register by CVTl . set by CVT2 and which bit will be cleared by CERR. the DAC. One set bit is stepped The X-register is then shifted by CVTl . CVT2 and the X-register generate test values for Slightly before the next CVT2, Y-OUT-from the DAC ladder network is compared with the sample and hold output in the comparator. If, as a result, Y-OUT is too positive, STROBE COMPAR generates CERR clearing the test bit set at the last CVT2 or, for the first decision, sets to T. This is done by using the X-register to point to the last test bit. Then CVT2, slightly after CERR time, sets the next test bit in the Y-register (CVTl has shifted the X-register right). In this way, all bits of Y are successively set and reset. After 8 shifts, CVTl and X8(l) set ADC DONE. 3.9 (if this results in Y-OUT too positive) are DISPLAY CONTROL D/A ladders (X and Y) for display control reSpectively. , are cleared by pulses ”SET X” and "SET Y" These are generated by IOT DXC and IOT DYC ifthere is no A/D conversion in progress (ADCIP(0)) (See Figure 3-12). IOT's DXL and DYL generate LOAD X and LOAD Y to transfer from the AC3 through ll into X0 through X8, Y0 through Y8 (again if ADCIP(0)). AC3 is complemented before setting X0. If option XR is implemented, DB-register and associated delays are installed cleared to O which selects normal . DB is power intensity (also selected at all times if XR not implemented). This Y OUT 10V REF TO LADDERS AC+t 1 1 D Y0 o Y1 1 1D Y2 1 SET x x111) J x211) CVT 2 x311) A x111) LOAD Y AC3“) “-8 1 1 D V fl 7L3] A AhL AC4“) ACSU) 1 D J D 1 x511) {pi} 1 D 1 Y8 1 A ‘J 1A} {‘1‘} xs11) A ACBU) D A xs11) fl] AC7“) D 1 ,L'J—‘Al x711) [JD x411) EFL D Y7 'LlJ—‘Al xe11) AC 6(1) 1 Y6 = ‘LAE x311) D 71-1 A I, x511) {1:} x211) 1 - .LIJ-IAL x411) fl o \ Y5 I A A 1 Y4 _ CERR D Y3 D 1 A x711) xa11) FA'L HA‘L AC9“) AC‘MG) D 1 D 1 ‘ x0; x1 x2 x3 X4 x5 xe x7 xs SET x I!“ CVT1 an an x111) xom) x311) x211) x11D) xe 11 ) HE an x2111) x31D) an x411) an x511) X4(@) x510) flfl xe11) x711) X6(0) x7110) LOAD x AND AND AND AND T T f T Ac411) A0511) A0611) Ac711) AC8(1) AND AND AND AND T T AC9(1) Ac1o11) mm AND AC 316) Figure 3—H X- and Y- Regis’re rs setting of DB disables BRIGHT and DIM intensity (see Figure 3—13). Disabling may be removed by setting either DBO(l) or DBl(l). This is done by strobing BMBIO and complement of BMBll upon IOT DSB. into DB Thus, DSBO: DIM DSBl: NORM DSB2: BRIGHT - DB(Ol) DB(OO) — - DB(IO) IOT IOT DXC AND ADCIPm) ADC 35. i AND ‘ SETY ADCIP (D) —- —> (SO—J DYC x ADC ’b GO —.l 'b IOT DYL IOT DXL AND a» LOAD x AND L——————> LOAD Y ADCIPlOl .._.. ADCIPM) ——D Figure 3-l2 Display Command Logic INPUT MIXERS 3.l0 ICT's RADC and XRIN strobe contents of AX08 registers into accumulator as shown in Figure 3-l5. RADC sends AC CLEAR with data on input mixers. AC CLEAR, causes lOO ns pulse, clearing AC. 100 ns In PDP-8, the 500 ns delay insures that data is still available at AC when the internal clear pulse ends. In the PDP-8/I these pulses are examined at IOP strobe time, the AC is disabled, and the I/O bus enabled on buffer as a signed 2's complement, l2-bit, right-justified word. the transfer bus. ‘(50 through 53, CRO through CR7) into AC as shown. Sign extension is performed, loading ADC XRIN strobes entire external register ADCIPU) INTENSIFY NORM (088 (1) BRIGHT (DSB(2I DIM (088(3) ON INTENS DISABLE BRIGHT DISABLE IOP 4 DIM DIS GRP MBIIII) MBIIDM) IOT DSB M310“) Figure 3—13 MBI‘IIID) In’rensi’ry Logic D/A Y- DEFLECTION D/A X- DEFLECTION LADDER LADDER . SET = Y - — 9 r — I BAC BAC4“) BAC 3 (0) 3 (I) 4 500 nsec — — I AND AND LOAD X'—‘.' Y -——-.I Figure 3-I4 RADC - . AND LOAD X1 X0 Y0 1 0 1 0 I 0 Display Registers IMOQ IMQI IMDZ 1M9?) IM@4 IMOS XMQG IMO7 IM08 IMQS IMID IMH AND AND AND AND AND AND AND AND AND AND AND AND Y0“) Y1“) Y2“) Y3“) Y4“) Y5“) Y6“) Y7“) Y8“) Y0“) # L FROM Y REG IMDO IM¢I IMEZ- $0“) $1“) $2“) IM¢4 IM¢5 IM¢6 IM¢7 IMQB IM¢9 IMID IMII CR9“) CRI“) CR2“) CR3“) CR4“) CR5“) CR6“) CR7“) IM¢3 IOT XRIN k+ $3“) #/ L SYNCHRONIZATION (OR SYNC) CHANNELS # CONTINGENCY (OPTION Figure 3-I5 Inpu’r Mixer REGISTER XR) CHAPTER 4 MAINTENANCE 4.I INTRODUCTION This chapter contains the information required for maintaining the AX08 System when operating with a PDP-8 or 8/1 programmed data processor. Preventive maintenance includes such routine periodic checks as, visual inspections, stand- ard cleaning procedures, adjustments, and the occasional running of diagnostics to expose weakened conditions before they become malfunctions. Both troubleshooting and preventive maintenance include procedures that range from basic power supply checks to intricate logic checking techniques involving programmed operation (diagnos— tics) of the processor (PDP-8 or PDP-8/I). For a detailed understanding of diagnostic procedures, reference should be made to the pertinent processor maintenance manual and applicable software documentation. The maintenance equipment specified in the PDP-8 Maintenance Manual with the addition of a precision voltage supply (EDC VS-ll or equivalent), is adequate for performing tests on the LAB-8 system. Detailed designations and location information of all modules are and assemblies in the system presented on drawings D-MU-AXO8-0—II and A-PL-AXO8—0-II listed in Chapter 6. All input/ output connectors with pin and signal information are shown on drawing D-BS-AXO8—0-9 in Chapter 6. 4.2 - DIAGNOSTICS The AX08 diagnostic (MAINDEC 8/I-D6AA-D) tests the functions described here . The operation of this diagnostic is described in the writeup supplied in the Software Kit. 4.3 CALIBRATION In an Operating system, (with part III of the AX08 diagnostic) readings of 0000. iI/Z LSB is produced with 0V i2 mV (offset); 0376 iI/Z LSB with 1.016V i2 mV (gain); and 7402 iI/Z LSB with -I .016V i2 mV. tion . Adjustment of the A202's may be necessary from time to time to provide this calibra— GAIN GAIN //-376 OFFSET I +376 oo “0' oo AZOZoo / OFFSET Channels 34 through 37 (front-panel knobs) may be used to set up the A401 if it should l/2 to l turn From Full stop in either direction should range the converter from require readiustment. -376 to 740i . If this cannot be set to convert to 0376. to convert to 7402. done, set the pot to 3/4 turn from Full clockwise, and adjust A40l off- Then set the pot 3/4 turn From Full counter—clockwise, and adjust A401 gain Repeat until both end conditions are met. CHAPTER 5 ENGINEERING DRAWINGS This chapter contains copies of all engineering drawings and replacement schematics necessary to understand and maintain the Type AX08 Laboratory Peripheral System. The engineering drawings supplied here are in addition to a complete set of drawings supplied with each system . Should any discrepancy exist between the drawings in this manual and those supplied with the equipment, assume that the drawings supplied with the equipment are correct. Drawings are listed below in the order in which they appear in the manual. Engineering Drawings Drawing No D—BS-AXOS-O—l . Title Revision _P_age (Sheet I) IOT Decoders 5-3 D-BS-AXOB-O—I (Sheet 2) IOT Decoders 5—5 D-BS-AXO8-O—2 Timers and Synchronization or D-BS—AX08-0-3 ADC Control 5-9 D-BS-AX08-0—4 Enable and Contingency Registers 5-H D-BS-AXO8-O-5 Buttered AC Bits and MPX IOT's 5—13 D—BS-AXO8-0-6 Scope and Multiplexer Controls "Sync" Channels 5—7 5—15 \ D-BS-AXO8—O-7 Input Mixers 5—1 7 D-BS-AX08-0-8 X and Y Registers 5-l9 D—BS-AXO8—O-9 I/O Connectors 5—21 D-BS-AXOB-O-IO Additional Channels (Option XC) 5-23 D-MU-AXOB-O-ll (Sheet 1) AX08 Lab Peripheral (UML) 5—25 D—MU-AXO8-0-ll (Sheet 2) AX08 Lab Peripheral (UML) 5—27 D-AD-70q583l-O—O Control Panel Assembly D-AD-7005832-0-0 Rear Panel Assembly ‘ / B 5-29 A 5-3l Revision Page Replacement Schematics ' Type Title A130 Multiplex Linc-8 A 5-34 A202 Two Analog Preamplifiers B 5-34 A40l Sample and Hold A 5-35 Replacement Schematics (Cont) Title Type Revision Page A502 Comparator 5-35 A601 Digital-Analog Converter 5—36 A604 Digital-Analog 5-36 A704 Reference Supply 5-37 V A706 Power Supply for A202 R002 Diode Network R107 Inverter R113 NAND/NOR Gate R121 NAND/NOR Gate R122 NOR/NAND Gate R123 Input Bus R151 Binary to Octal Decoder R202 Dual Flip-Flop R203 Triple Flip-Flop R205 Dual Flip-Flop R302 Dual Delay Multivibrator R401 Variable Clock R405 Crystal Clock R603 Pulse Amplifier VV500 High Impedance Follower VV501 Schmitt Trigger VV681 Scope Intensifier ogzmwmwn>wl>gzgm 5-37 5-38 5-39 5-39 5-40 5-40 5-41 5-41 5-42 ' 5-42 5-43 5-43 5-44 5-44 5-45 5-45 5-46 5-46 XOT SKER IOT 5mm o—AAFT—DXQT L WT—DIOT D E —4> M m m ms? SW7 'N ::C¢(5_<> M Rug 10P2—>A\¢ m R\¢7 1032M c 109 N R\¢7 Arpg “915) BMB em P BMB ¢2 ¢3 10 R 7c¢> BMB (251 lo :0 5 BMB 703 10 (64 “3 Q35 :0 956 10 ¢7 T BMB e<¢> u BMB 80) v L 10p 10p F 4—» TD 5 ADCV N (\)/\ 3 v T UVNA mP\ 4mm; lOP A\¢ N u R me PA E To Q’ZY H u ¢¢—<> NV K IO gzn ND iH D R\¢7 POWER W9 E CLEAR —» : D E m ‘: F23; C ¢e N WT—aro XRIN [Q J o—M—T—R PA F 10P4§va edibmA RCLKM) RHBHIO ¢5 Rns AM— A\4 \ F 3» N'A 10p H 2 m 3+ m /\ E o—A/v—TN—om‘f IOQSa-EO kWT—MD Ag. 1.0T v XRCL 8x2. m3 SKAD F Rests—>101- m a 109 (\J K "LOP ¢6—<> R\¢7 m [OP ~— ““5 .0225; M98 K R\\3 N4 D P 10 p 4' __,\:\\3 ma 2—.‘RH3 p XTAL CLKU’J) D SB m/\ R63¢3—{>F B PWR CLR IO IOT mT CLER ”SOT ls V m/\ ms em: A\¢ PHB IT 3-13 RADC R\¢7 U M 10¢? TFE ' E. 10p 2—. M38 BMB 50) 10555—0 .._JDR\22 R\aa 3x3 O—Mv—q T' o—MIL RUB D' Q“; 31/? BMB 4(1) XOP\¥>m/\ m H K /\ T_“_‘.-_—‘<> NA it?” a—+MZ SC(5 > BMB E R\¢7 W R s ¢6 IO 567—0 I0 K qqh—o \ M ‘J A939 o—A/v—o MS 10 in? \—bm¢ E. N $3937 RUB m BMB m R O—‘VV—TT—O‘NA K Am M H m s P rv/\ H Rua o—MvT—bXOT BYL F \l 'K d .JWT————Lom/\ \—>A\¢ IOP F HVV-T—v 101‘ DYC H I! AM 'F DXL D F . axe 4 H i— D 7 E. 7 10 ¢3 <__ ‘2‘“: m PM" HNT—DBIOPl AH P 10P\—D w R\¢7 AH E D XOT SKRK N m o—A/vT—DBXQPZ 5 XOPZ—D R m RM? R\¢7 MES AQq O-WT—«DBXDPQ- \J 1094—» T m mas? AQSq N R\¢7 B\é> AC PA R®¢3—{>IOT —_LN B 10P4 4:” R _ 5 ’5 10P\—>m/\ R OTEN NE _ 10,04 T PG¢3——{>SOT ZTEN AlS onpaK P PA M 1C) W s ¢4—<> RUE m4 R 10p U CLEAR 4—-br\;/\ T mag BM- B R N R\¢7 AH D-BS-AXOS-O—l IOT Decoders (Sheet 1) 5-3 >x:&m Hz4mmn7nm y 54 m o mw<x b N / S OX0 army» x , O/«O nrmZ» /\ N MXXX 0x5 UvCI r070 x nmoz, mmmnmglmx OJ): r070 4 om<m4>r 9.00; MSW,» xmmHmnlmm :0 on 70 am on 70 a flaw OZ flmoi @ Xfl/Mz mmpo mx4mn2>r Mmme flmowwgfim H240 >0 Mix/U 050 OZ 44.7320 mmmom 3.7m: may oZ 700 MEN/A man m lefl 0573 4.9320 mnmon 3‘70 0 w07>¢r ”Zommzfiz4 Zcrjnrmxom Eu Qtyzzwr 204 Zvrm24m0 0.9. 73,143er 40 017224? a. q >073» mg. 02 no 43320 9.09» €093 UWW mmfi mflHmI4mew £354an owm mm% 0.3 9 , 03 29»; umm 0mm N mm). E50141 VCNOF ormZ» mqm 0n 554.322. mmzmm memHmm its. 73 mmlfl HZ 70 204 UOZmAWmfi m4 noivrmjoz on 200. nrmymmo mi nmvgznw 700 £703 . # Orwnry/x e :60 noZ<mflfi mmacmmfimo $35. Cymd ooz<mnw62 (m4 OOZflrmJumOv ’1 NlfimZ .mmmom Hz 70 org/m oomflmmnozgzm mid HZ mz7wrm mmofimjmm OgumZ ozmw Hz 70 mmd ooxmmmvoZEZo mid HZ mzywrm 3.03.49 4ImZ orm7m 70 QrXX nrmZu £10in 059» 3'70 91%? armyfl .273sz 9.09» 0 3:70 All flb/UO Zcrfifinrmx nmoflmfimm wmrmna 723100 mmoi 70 nIpZZWr - zmro ran <yrcm flfloz, 4 mm05&mfl nrmpm >0 nimA 5me0 7Ufl< ooz<mm21 722.00 9027,. 3005 m > ~ 0 m a k“ w # m Unwm|>XomloL H04 Umoomma Amrmg my mum I 6 7 1 5 SKIP K Excx EXT-ERMA: M L N R M? ¢ K P smaums) CLB (l) L. BPWE, CLR 1: cum 0) W23 QB SKID L cm RCLK D 101- VR‘ZB ‘ B T N b EXEN «0 ‘2“: EXCK NA SKEN m EYE 04’ (U V (was MS) T . NA u BIC. N /\ MENU, was was CV5 CB __ NO‘ ES: 2. H D [T s [T s T “.9510. ‘ T s R “4 s S! 52 INPUT COHTPOL 7» INPUT CONTPOL. n RSIANALOG T INPUT CONTROL 3. WHEN XR IS OPTION PLACE INSTALLED PIN 2 INPUT CONTROL 3 R8=ANALOG PRom N INPUT s3 Re=ANALoG P7=ANALOG Cw R CL?" INPU. R2= PULSE INPUT men,- R4: FINE : 03924120, MS .ORZMOT. <p as“ ¢C'°’ T s RI=PULSE - ' » s *sMOUNTED ON Tm: CONTROL PANEL. R3=PUL$E J ,_c, " A F' C“ _ ‘2‘}; r. m I. may R'W p F C¢OR2¢EEOIO XTi’CELK CLR PWR F CLK RCTICK N F sxxx 03 K" ,4 ‘p ‘ J H A w 1 INT REC»). REQ P E t <> NA 2 3 OORmsOO \ A24 §I; [M L J INT REQ REQ N NA wax—'1 M IOT M 4 C¢6T TO NOT JUMPER GROUND, U CLR———-DV pA a PWR V P V = = T R6953-T-D CLR CL an s J_ H H (7R2¢z<> \ set r s T H H <23 C937 J D '— J I D N D N ' | P E aac¢u> BAC BACKD u ‘LOT OTEN 5‘ : : F PULSE INPUT 5“” R 5: Egg » R PULsE INPUT '52 5T W Egg | «6 RULSE [INPUT l U | L V L BACHCD p BAcam V E, J -: F R 5T W5 SST £234 # {@3196 I ' l I 3K P L yr. 5' F2774; Ezq l 45V I 7 R/ZZ 5'3 _ — _— P L N L 12/23 MC .V v 8/4- 5X5~(,)./_YP : 2 ale [RANGE] l l I I 0—) — | o——) _- j | '—) l I 0—) I l ’——) I I R/ZZ 13 ° ) ) " l L_ , W L —' (0—; satay—V. I — | $2 —. ’_) J 3 R j ._) INT REG; — _l R41: «t _ Ha __ ;. _ / l l h. '—) 5 [9K _ T _ _ _ | “N _' 4* 4K R_ r" __ —— l— P28 CNEN m I IOT XRCL __(> C N T CL R2223"? ‘ s 2. F 5\ R J R2¢z OOszO‘O ¢ c¢7 ¢ Cass B PWR OR T s q _ I F32C __ _ __ _J T a n— Rl'lh 6 5 1 4 | 3 2 T 1 D-BS-AXO8—0—2 Timers and Stimulus Channeis 5-7 SET X B PWR N V CLR PA A; T RG¢3—-—4>RE5ET MPX ADC GO—‘DNV 0 RH: l0 xcmx mT SKIP 5 NEXT MX H D R237 XOT SKAD D E F gsm—‘W/gz mm | K SET m—o MPX ugh—o MPY L 2.03 —o MPX amp!) Mo SEE. N rv/\ MPX cues—0 (\JA N GO ADC "WT" RI¢7 -D 5 R N V ADC 1p D (W RHB WIN—c D\7 H . -—~4> RADC IOT (\J/\ M N K RIIB V D18 CLER—‘JO RH3 T U "PM”. __. M RCTICK CVTI CVEN a) H T)" __.. RD‘ll‘? QLR /\ . L Azqsa. K K NMiaEIER 0....4 NPLXR “39‘ caq : N MK ¢> ‘ (>3 MX 2 T F u v E 5 CHI 0—- MX (>— MX 3: l 5 I Acwa T R7 /\__o__ L I P R 0— T J —— M J 3 5 /\_._o_ cs2. a R CH3 PWR DELAY [1 /\ "—0—: — pA H * _ Anne; C3¢ F UIV H H U V r: r: MX—A E D m SAMPLE A5252 CV PHASE L E 3%? ‘: L t STROBE COMPAR ms NOTE: mu HOLD REF NJ l. MOUNTED ON THE FRONT 3 PANEL. RI = DULSE mpm- 5| R2 = PULSE mpur sz CN SUPPLY CF— fi>L -\;2(REE GND M 02,450 R3552 CC DZKZ ' l— ADC 00 J K l_l E F ’ 7 CONTROL PULSE INPUT 53 R4: FINE. R5=ANALOG INPUT CONTROL R3 M A HQ F E : M/v M R\¢7 75¢ n s CT —CDa7 C26 F HOLD CM. lcv .LK CU A754 F— A ND HOLD cv PHASEU) K DZ‘ _ L— d —— \ (22% MK d BAsmm P A4 [H RHs D Ia COMP H; Mx—OUT v ' /\ H D gem“ 5 (I) ——0 T N R GO A Dc N N\ CONVERT J 9¢0§%%20\0 V D ‘Efi? i—N 5 STROBE COMPAR y om- : ADC DONE m; —l> CERR AMPLXFXER ANALOG PUPPLY H D ‘3 P EJT K E I H R3321? s __ D22 0| 5,0; ?LJ MX : CLR Dw T D23 CONVERT R vTIT—.‘*v N —>” MX-OUT Vflg A z¢a C33 R6¢3—{>F CVT \ T s u MSB AMPanER F U T .ORWZO. B p 1P0) DA S A7¢6 K iN -_ K (<25) PHASE. cv ADC MXB HQ GND Aaara CVT2 ADC IP(¢) F. CH2 GO MXZ 827 V ADC E NAL SUPPLY AMPLIFXER M '- v ,u 5 ‘ °——' V D K |s R8 F: ADCV | MPLXRO— Mx¢ 1 0““ MX‘ EM A13¢ 828 we R6033 D23 Rg’gs l P5 I l— R V—Eo I PA U PA I; ‘J ADCIP D FWR X8“) —————— CH¢ (P 0'9 W957 D\5 /\ m R2¢>3<>\9 N V T ADC 1E LD /\ RUB we T s T 5, P v - N H ERR N ‘8 RUB m7 ADC 33¢) V cxs B PWRCLR /\ N Ab c K N L. DIS L 101- mm was SET Y P am— J v s ERENm—O r\_)/\ (\J/\ R\?_3 C13 m7 O¢ORZ§DSO‘. F ADCBDZNE x S R MPX 5C¢3 —. 4—(0—0 E L) f u DI’? ADC 1P( gs) —0 Ens ‘3 XNT R EQ REQ DIS L MPX 3m —0 MPX (NOTES XOT DXC —~+ ADEN (n—O NA Rxaa mop V (Mb-0 Dld- E ? R123 \ D15 MPY REQ REQ OK T MPX INT p- D : SKXP R|¢7 K H D13 3, _ - a Re: ANALOG INPUT CONTROL I R 7=ANALOO INPUT CONTROL 2 R3=ANALOO INPUT CONTROL 3 (Om-M (5Km—3 (5K—m) (Cw—r») CLJ'T' DiODES TO FORM LARGEST IMPLEMENTED CHANNEL NUMBER 4. x MOUNTED ON THE. FRONT CONTROL PANEL. = RM? D\5 D-BS-AXO8—0—3 5-9 ADC Con’rrol 7 6 HJHJ STST HJHJ OORZ 200 OOquSZOO ‘ 009292520. ‘ F ¢c¢gi ‘ ¢c<z>n 5mm F 4 HJHJ ORZ¢ZO. ‘ OR2¢20 cws‘ ‘5 ¢c¢z ¢C¢2 CVEN F? STST RKEN XKEN Fe PWR CLR B l 5 STSTIHQ 0R2 200 ‘ORaQSZOO Q3 age» c¢5 l ‘ EREN F 3 R 2 ADEN 0R2¢2 ¢c¢5 R4 F HJHJ sTsT J ‘ OORweOO ¢C¢6 ‘ R2. R F RI I "LOT ZTEN N D P E IOT‘ E B BAc¢ Lg!) B BAC\(¢) K U OTEN R B BAG. 521m P B BM. 2<¢> B BAC K E 5(¢) B BAC 44525) B BAc N D P l 5c¢> IB BAC eqfi) U K U IV TL ?v TL B BAC \m B BAC am B BAC 3m B BACMD EXEN F CNE‘N F B BAc 7(95) K l [3 BAC U iv B BAG 7va B BM. em 6(a)) E BAC IB K FL L—j B BAC 5m N I E p D 1 D E , v “’CQSM ¢C¢4‘ I ‘ I N D N D s-rso; R2¢>a HJHO; URaqfie I L) K I iLL" B BAC P B BAQ m3 (<25) 9(a)) ?x_ 80) B SAC. v 80‘) BBAC; up m | r_______________._________ ‘ XR I o P no N 1 SEE NOTE l I ———————— . I F E F {$229330 B059 I l J CRQS M n. M CORaqSBO ¢ 'BQSB‘ ' CR\ Dc¢ IL. : T s T F s CORN-:5 9’ F Bub R CR2 C‘ E E M 00R2¢3<>O ‘ ‘33 Bae‘ K CR3 (:2 L M T O¢0Rz¢3<>9 5‘?) R4 s K CR5 (:4 U N T OOR2¢3<>9 95 BHZS ‘ D C3 H u N H 101— H; ]__1 I B s E F F E M .QQRZ‘ZBO’ Bl] CR6 R C5 H l. M I _ O¢OR2¢30§ BH CR7 D CC: l K Q7 I N XRCL J I BBAC4<D ‘3 B BAC6U) V P J V B BAC Bun B BAC B m B BAC7 <0 B BAC \¢<\) I P J B BAC q m c L— B BAC \\ m J NOTE: I. WHEN XI? OPTION IS NOT INSTALLED PLACE JUMPER AND FROM PINS B¢9E E>¢9L TD GEOUND. B A 7 6 I 5 1 4 l 3 2 I 1 D—BS-AX08-0-4 Enable and Contingency Registers 5-H l 5 6 7 4 3 1 D F H B BMB \¢ 0) E BMB \¢(\)"—<> 8%? BMB {ND—KO H F B BAC 4U) Egg m mew B§252 J BAC\¢<\>—<> m m BAC Bab—EC R\Q$7 354 BACHCD B BAC S U} w. Egg m BAc m r: R‘ R\¢7 B¢4 D E 7 R\ BAC \(I)—O R\ m BAC T u N \_ 109 \—D M 'R 10 537 7(|)—P<> m m m RH? A14 101' R\ B BAC 20) J K ‘ B BAC7U§ 7 Egg (\J M BAC ECU—O 8&3 BAc Bm—o T m RN57 8653 B SAC 30) N R\¢7 N B¢2 was? T B SAC 80) P N U L BQSE U —o 7 RM? B¢4 5 BAC cub—o R m RKZS‘I N B BAC q u) w R\¢7 B¢4 C mm ACM‘A PA M Féfi’gisL—DXOT XCMX B35)? N3 B mp\ _]_N K : m m R S RHZ>7 qua R Rub? B BAC um ___. S SAC 20) B¢Z N N N p m 7 B¢3 7 Bgz54 (B R\ B BAC Q30) —o 7 B¢3 mos? ' f\) RI¢7 L (E; .5 3&4 8 BACK“ ‘ am M bub—KO T u T u B¢3 F H (\J R\¢7 7 \ mew B BAC\ 525 w _. m L ¢(\)—<> B¢3 K M F H D D B BAC ¢m R\¢7 B¢l am —9 N BAC cum—o BAC Ba: 803! N p 8g} r\) R s m 7 R\ R\¢7 mas-7 E B BMB \\ U) m ‘J m N l— M N D L 7 M953 1° $5" B A 7 6 5 1 4 3 1 2 D—BS-AXO8—O—5 Buffered AC Bits and MPX IOT's 5-13 ______ 7 I____—“___—_*‘-———’——’__ I NIX-B Mx-A MX-C MX—D mm: MX—H MX-F | J H J H I 0012295200 I I ‘73 D¢<=I I I BAsxc IF RESET MPX I P N M I I ma | r J H L K F E T 0R2 20 I ¢ m3 5 0R2 20 mg ‘15 ‘ MPX\ R MM N U H TI ‘ 90 93 I 9: 9 MPX s D K U <93) I MPX 34¢) P W P v MPX4L¢D I: m A OK—‘I‘BIIE I“ “WT—D H “Am/45¢) gm) P rmA F‘ D a. BA <2 MPX\C IN I_ I v E D338. R gig M .DIC: SIB ‘DIe 2 R MPX 4- N u “MB V MPX aux—jg 9 NA MPX4<¢>>—¢IR‘I3 v P L. F O-MI-T—D '13 R wax 4m me MPXEL as ) IV EBA c, K H I BBAC\ D¢8 I6 c T (1 MOR‘\3 \¢) MPXBC I N NA D937 r\2/\ u q: $23 >—ORII3 Mpxsm O-Vv-T—D I_ IE BACq (I 5—. RIG B ¢8 BBAC MPXZU) NA chz—OWB d: 3 I MPX\<\ ) NA T NA M BBAC, 8( ‘5>—OR\‘3 DODE >——oRH3 ¢I 5 O-M-T—D I was IOT'ACMXHNA BBAC‘1( J MPX BBAC7(D-*R“3 I | \_ ‘5 /\ m RUB me r I I R2 101' ‘LCMX f D ””4“” T s M‘AI MX¢ K 0(bow?$ 0‘. I???“ F T s a H u 3C¢3 1. MXZ I max \ ‘73 F T s a 0R2 2.0 03% MPX ,2 MPX H a H MPX _‘I _ I— TS 3 I NEXTMX | I D 1 I 10 ¢ 6.... E ,U DCDR R\S\ I I I RESET T s R I v U RUB “40¢? W57 ¢D I, J‘NA III A BBC MPX4CD IV NA I MPX$( 95 ) s va a BA Cll()—-OR“3 93D—QRH3 95 D937 D¢7 | | o p 'TION I_ I _I 1' I ‘b ‘: ‘> ID—o ADC XM I—E—o DIM H 1P0) —E¢ m Rm)? Id BRIGHT I‘ m NORM m RI¢7 RI¢7 P | | an NORM I 1* ERIEHL v 2.5415 Raga A18 LJS T N 010,44 I RBQ I M I I DB I_ RUB Ram qub—o MB A18 MK 310::ch N ¢<¢>—Mo m/\ be, M 02115 | BPWR V v I SCOPE INTENSIFIER we 8\ Am E I __I D was; . F : H d VORngzOO K F H F D xor BRW ws DXL—t NA N I RM? —m_oao xI BIe RI<2S7 BK, ADC 1w ‘25 3—. RIIs AIe A23 BMB\¢(\) B M BR l BMBIIU) a amanqb) OPTXQN _ L W5¢¢ A23 I I I a BMBI¢(¢) B wsew I K E I__ DEFL A23 J I Az¢ ‘2‘ DB CLIR I BIg 1‘93 BR H D18 em: RI¢7 N 2®¢¢PF F (‘6) K NA LOAD x2 \I H ”LI“ E H DYL———v ADC 1P : Y ou—r 101- DSB F N m-r INTENSIFY AIQ I p K t NC+>| M L I 1 N TENS ON I _ M v LOAD Y _________ I. XR ___________ X OUT x DEFL A23 I P NOTES’ .* DSB DSB a INORM: BRIGHT: D58 2 DIM: 'l BI? I _I N w5¢¢ R w5¢ID A23 BR 8 7 6 5 I 4 I A23 3 I 2 I 1 D-BS-AXO8-O-6 Scope and MUIfip-Iexer Controls 5-15 IM W15 F v¢(1)——¢m/\ D IM R123 m/\ E R123 13¢? v (23' J H 1M M K ¢2 953 IM P m/\ m/\ R123 L7R123 13¢? 13de IM N YI(1) R T 13¢? (254 1M U v20) 5 (b5 TV IM T” D IM¢7 (be T‘J -E. NA Yam—omA Y4(1)——¢m/\ R123 R123. R123 R123 13¢? 13¢? B¢5 3418 mA F 1M IM¢8 v5 (1) K M (bq TN Y6(I)-—.m/\ TP L. Vr\)/\ R123 v R123 3155 B€b8 IMIcp Y7(l) TU Y8(1) R T IM 11 5 NA R123 8258 3:33 y Ac CLEAR osdxbns 113.92 RADci TV N/\ R123 - K ‘5 T N N ' R123 P 814 ____________________________________________ IM (Mb (:51 IM ¢a IM (:33 IM s¢(1)2¢m/\ s1(1)£¢m/\ $Z(|)—K—.f\)/\ TP R _F'_,R123 R123 R123 R123 T B¢5 13455 H IOT IM XRIN BtbS N Bd>5 M 53(|)-L-.m/\ CR¢(1) (:54 IM u mA .CR,1,(1) S QSS v m/\ R123 R123 B¢5 B¢>5 1 1 1 1M $6 H CR2(|)—D-Om/\ (2133(1) ‘ F‘ 1 IM IM 9)? T (158 J N IM ‘- an j P m/\ CR4(1)—5¢m/\ R123 R123 R123 R123 que Bq§6 5M; 5ch M CRSU) mA IM 1d) IM 11 u v CRe(1)—R-qm/\ c1270) T 5 _| 1 1 ' m/\ 912: R123 I Baa 13d>e 1 I l I l_ l _________________________ 33‘0“ XR_ ___J D-BS-AXO8—O-7 5-17 Input Mixers —l¢v REF 35K K Y OUT ~ K \E— s TU 00R2¢10 V OORZQOO Y 7 ‘A E X10) x5m L LOAD (I) —0 NA ___.RH3 Y V L BBAC 440—. ADC B B P x70) xam 5 BBAC\¢U)—-0 w/\ _______,R\\3 R\\3_ BBAC V T m/\ nay—9U Rn} Q\5 CA4» C14 P P BkCQflh—O M Rug DONE—O) N L D Baacflu—«o NA M R V V KEG) yam ) D K H BAG 3 Y 8 R U L mm B OOR2¢ZOO ———¢®cn7'—~—m¢cxel Y6: D REF GND sTs‘Vs Ts ———u¢cx7 R F HG? F T .JHJ 00R OOR2¢2<>O M "—DQS Y¢ CERR TU TL] .JHHT s OREgsZOO ¢c2¢>l M SETY :— e——-I C22 5 : JHJHT H A6¢\ S : J K GAS -r¢ v REF 33K s A6954- E 325 F’ U T R P R ‘25 F E J J L. F— Aengq- A6¢l F 3223 B22 2 R F. ‘5 Bu P R E P E R2¢5<>O OOPzaSsOO BZ! W f T P .ORZQSSO. ‘ sET x K L. x OUT ‘ BM ‘ 5“ ' D L. 195m Z T K was?» My (95) X4. L93) X30) V LOAD X U1 B BAC 3 (95) 49% B BAC 4U) LOAD X2 H '5 B BAC 7 U) S B BRC q (D B BAC \¢ 0) EBA HQ) D-BS-AXO8—O-8 X and Y Regis’rers 5—19 J 7 6 L 5 1 2 | D W31 W31 w¢31 Ag) om A02 D o E E H H K K BAC 0 (1) BAC 1 (1) BAC 2 (1) mm mm 095 A94 0134 o o 0 D E E E E w¢31 A953 0912 o w¢31 mean) E BAC 3 E BAC1¢(1) H H K K (1) H H K K M H H K K EMS 3(0)) 9 (1) BAC (1) p s 5 M M T s s (1) r BAC 7 (1) BAG 8 (1) p s T T s v p p s s r T T MB 5(a)) V v V V V 8MB 5(1) POWER CLEAR 0 D D E E E E H H K K M BMBB (0) was aMs 4(1) 12 V o p p s s (1) 1 v 0 IM 1 1“ 2 IM 3 IM 4 IM 5 IM 6 1M 7 In a T Enema) menu) 1M M was“) ameaw) T1 T V p p mp4 s SAC e was (1) 1092 p W31 ogre 8MB 7(1) M M W31 8MB 7(0) ‘ BAG 4 w¢31 8MB 6 (1) 8MB 2(1) IOP 1 M EMS e (0) 8MB ¢ (1) 8M8 1(1) aAcnm M M w¢31 v .— 9 IM 1M 10) H H K K M M ”‘11 p P s s SKIP REG 1m REG CLE‘“ AC T r V V C RUN(1) *— w¢2¢ A22 x DEFL 3) E Y DEFL~> o F INTENSIFY ——> o H O a O K O L O M O L,/\_ LT GROUND PINS c,F,J,L,N,R,U ON ALL w¢3l B ’ PEN o CONNECTORS A I 7 1 6 5 T l I 2 I 1 D-BS-AXO8—0—9 5—2] 1/0 Connectors e m o u C m N d U lllllllllllllll IIIIIIIIIIIIII 4 W _ C 243:“me PNQN OIQAvnlv x WW. _ , ZflFXflquZIVSXS Fifi _ _ _ _ " n: fiwlv _ _ :E E 9i aww 7:335» ( 4%Hem >224? mam OCJ‘ mag CE C n _ _ _ 114w Zx >13 _ :0 oIZm . w; 020 I 737W _| Flill‘lmCUHflzIMQ/PIII— o: u . _ 9 A _ _ _ # _ 2 >25 2% lllll stiflmm x >Nam o w a n le 2% ”Emu x AvIZxS Z WWW Nwmw 240539 4 >NQN m > mm VaaH “ >230 _ _ _ _ T. . m man. I (Iv WMQQG c7|||<w m A fl I0 mZU _ C 237m Zx 0C4: l L " _ E 15%? OI TIOHWZIXWCII. _ .u wmam 921w _ _ _ _ _ , _ _ . _ _ _ _ b _ _ _ _ L pinilmm x >m&~ pmm 91 ~p¢ .quwwmmm u _oI _ 3% >me~ >N0 aCa _ ID 020 _ _ z, _ _ _ Io OcJ. 0 _ _ _ C A? _ _ _ filllllrllmuHoVAVOWNiL AII A . _ _ m . I .lIv Ex OcJ. _ _ _ _ w _ CTIIKW fl 0Z0 IIIVZ; u U >>4%4® n men, 2570 In] m >250C. man _ _ . C 73%? 2% mdlw " m 4ch Ill“ 0| .5 x m EWNWMHQ 4 U m 0 >Nm C _ m >4em OIZCQu . _ _e%ww; 2,5. ii; W pywvwmwwmm WWW»? n i? :3mequ 73: Em? 01 mm L _ fl. En 01 _ lllllllll 77>“ mm n _ _ _ rlllllllloflwzlvnmlC E: _ C E: _ w OI mm Lrw _ m _ _ _ _ _ _ _ _ 4 NA i! Z370 I. Ham x w; :0 020 lnnlrll flmwgmomix. WV yZMWMHNmm 4 c7||1|<¢ C r 9w. hlv ix 091 >35 ‘ 1:??? _ m _aaam 2: NN m >230. mam n fl r zsnEImx _ OI E.“ >NQN x x AVIZIZXS_ UN» MWWMNAVILSX _ 0mm Z x m O.fl _ Avl Z x m yznrwflmm 4i _ oIfil _ _ _ n o w m pd. 01 Z IIIIIIIIIIIIIII _ sass _ _ LI _ _ _ 2. x m 0!? x w " OI,pr%W/menfi E? 9., 03 m wZnSBmm 4 a . C 0W4 flwW/muAlex_ Om; gflrfiu Hmfl x C _ w malv AVflZXS _ . r x E: u _ _ _ L. x ow. _ _ _ mewm fl _ H w 7NQN N??? _ . is? DI ,9¢ OI _ v WNW _ . _ _ Z m m; v/Z flrafl wmfl “ Avmlix Z. x m OWN 91 z x w )NSN _ “ m3 _ 2,314.; _ _ TacZMHm yiafiflmm fl _ r 4 w _ _ _ C 2371 I _ _ rlllliitmnmolzlleHIL > u o m a a. w d M UlmmJDXomIoLo >o_%1039_ Grossor A9020: XOV mnmw I USAG I 2 3 4 5 6 7 8 IO || l2 I3 I4 I5 I6 I7 l8 111351 111331 CABLE 11.531 CABLE R121 R1137 R113 R137 R113 R137 R113 m3 R113 R392 REM CABLE 111331 CABLE R151 13111111: 119:1 CABLE ACCV DIS GRP RA01: 101 DXC 101 SKAD B PIIIR CLR RCLK a (0) PWR LOAD x 1111 9 0100 TC 0110 0 01135 11120 10 1000 10 EACH 10 10 10 1011 10 A REC INT REC 11 12 a IUP R1-fl7 R197 R137 R157 0 0110 10 a BAC 4 a a R123 R123 R123 —- 8213 -- -— (1) (l) (1) B11]: 1000 -_ .. 10 11 a BAC 3 B RAC a (1) (I) (I) B —BAC 0 __ R273 R233 R233 XR XR XR BAC 7 —— CR0 101 SKXK IC BAC_ 11105 - CR3 101 DSB 101 SKER -— B RAC~ 9 (1) (1) (1) (1) B SAC a BAG 0 SAC a BAC 1(1) 1(1) 11(1) 0(1) —— 101 SKAO 01300 INTEN— DEFL BRIGHT SIFY INTENS 1005 101 ACMX — — RCTICK 101 SKRK 101 CLER CR6 R123 R137 ICT 101 SKXK SKIP REC 101 SKRK XRCL INT CR 4 CR7 x043 ADC Ip M (01124) (0025) Min—Ted, _DEFI. II DEFL mm _ _ CR 2 CR 5 A00 R225 R235 R725 x3 x5 x7 (01120) (01122) 11x 001 11x 001 11x 001 11x 001 MX 007 __ 11x 001 40 4| 42 \ 43 44 . x1 A7¢6 A634 A51fl4 Afigfl' A631 x x x x 001 001 001 001 A13“ A135 A7155 Azflz XII x11 x11 x11 (0114) (CH6) 11x 001 11x 001 CLR 3' CL :3 110 116 x4 x2 x0 2I II I2 l3 I4 I5 I6 I7 I8 I9 20 R2213 R123 R113 R113 R202 R202 R202 R202 R202 XR m SKIP REC RCTICK x1AL x1111 1N1 REC 001 11x 001 MX 001 MPLXR MPLXR ANALCC SKIP — REC (0115) CL2 C10 014 (C117) 22 23 24 25 26 27 28 29 30 3| 32 A601 A004 A504 A504 A502 A704 A401 A130 A706 A202 A202 (CH8) (CH2) 11x 11x ' ' - 33 10 12 14 v Y Y Y 001 001 001 001 -10 CERR CERR — —_ TC 10 1:1 10 _ __ _ _. 2- _ Y7 Y3 $313 34 35 36 37 38 39 4O 4! 42 43 44 - \ Y6 14 REF 11x 11x 001 001 001 MPLXR 11 113 115 ANAL00 001 7— 7 1N1 REC __ __ — 110 RCLK / RCTICK R635 CLK A202 / SUPPLY BRIGHT IO C 112% 0111 AC CLEAR R202 ' SUPPLY J. 9 CL3 ANALCC (01121) (01123) . R202 CL1 NPLXR MPLXR 100 SUPPLY _ REG 8 s0 __ INT “EN R2152 SI 39 REF 7 33 38 suppL, R202 R2 37 __ __ __ (01127) ANA: (01125) DEFL LCAC 6 CNEN 36 11x 001 11x 001 __ EXCK MX R202 ACEN 35 I CCNE 5 XKEN 34 a R202 CVEN 33 x1311) L1 PEN 4 32 x1303 1 0001 R202 R1 x1344 A2132 xc..3 1 101 ICMX (.1 __ R2135 LCAC x _ AC CLEAR CR1 0111 NCRM 3 R4 32 A2132 xc_3 _ REC — AC _CLEAR _ R202 EXEN 3| “fig _ 101 CTEN 2 EREN 30 A13 _ R202 RKEN 29 X I SKEN 28 A135 CR INTENS R202 USACE 27 A756 xc_4 INTEN- R122 __ __ __ _ 26 [1ng SIFY 101 ACIAx II —— __ __ _ 25 11ng CAELE XR ICT ZTEN 101 SKER III 24 RI¢7 ADC 101 XRIN R633 “ 11105 11 IM —— . x LCALI 1 XTAL 1.0 (1) r 7 0N CLK(;0) 10 “ ‘” 23 visaa 22 05 _ __ 10 TC E332 8 _ B _ B B -—BAC 2 AC CLEAR (1) ” _BMB __ 101 SKAC R123 1005 11100 111106 101 010 RADC XR SACE I 0 ICP 2 B ICP 4 A0017 x. RUN(1) 2| 1 I ADC 011 101 XRIN 101 ML 101 0110 20 R232 2 3 _ A0 CLEAR PCwER CLEAR B 101 030 10 DCDR 101 SKER I9 4 101 101 010 101 0XL 101 DYL 015 GRP 1007 SKIP IMB 011011 01105 ICPI 10P2 |0P4 BACR -—"'—1 CLR 101 0x1 1 5 WE] BAG 9 — I 6 7 3 ‘ (0113) ( CHI ) . SUPPLY INT REC _ 1 WWI—1031 USACE CABLE BAC 11 1 CABLE 0A0 9 10 10 BAG 8 131113 11031 CABLE BMB .0 031 CABLE 0110 5 W031 CABLE ' IM 0 T031 R113 R202 R113 R202 R202 R151 R603 R002 ICP 1 ICP 2 1111 9 12 PowER CLEAR R113 112103 R302 ~ R4 0 1 R202 R501 A202 x0—2 MPX 2 MPX 0 NEXT W A - 10 TC 10 10 B MB 5 00011 IMB IM 11 (1) MPX 3 SKIP 111 A00 (,0) 11111 A 1(0) MPX 'B BASIC (1) MPX 1 m (1) (11) MP)( 4 MPX m (‘5) RUN (1) 1.1x 1 11sz0 11sz _ SET P11115E _ F H0 11] M ' ADC E A13 A. MP” (1) (0) max 2 SET Ip 1 “El (0H10) (mm) (01114) (01116) Y CERR 11x 11x) COMPAR PHASE ADC CU 1 001 * __ 11x 11x 11x 11x 001 001 001 001 11x 11x _001 __001_ _ ERR 5U MSB “‘0 351 REM 11x 0K XCE] CV DELAY CON— VERT (01111) (C1113) (01115) (01117) ' 7 MP“ A22 A22 A76 1312 “ET XCEI 110—2 STROBE CVT 2 MX 3 “ xcgz X 2 11x X MPH RESET 011 ERR 299mm CERR _ AC CLR PX 11 10 4 - STRUBE 10 1 ABC A706 .A22 A00 ERR _ 11an INT REC _ GD MPX 3 RED ICP 411 R113 R113 CABLE ‘ 11 R107 101 ACCV ADC ANALCC IP ERR 1 MPL‘XR MPLXR SUPPLY ANALCC \ / SUPPLY NCTES; 1. As USED IN THE USACE 11011. XM=OPTION x11 XR=0P110N XR x0—1= CPTICN x0 15—I xc USED XC—2=0PTION xc. zflxc XC-3=0PTION XC 359 xc USED AH xc USED XC-4=0PTICN x0 USED 2. CABLE—REFER 10 THE UNIT ASSEMBLY 8 7 6 5 1 4 3 2 1 D-MU—AX08-O-11 1 AX08 Lab Peripheral (Sheef 1) 5-25 (UML) 6 IO II I2 I3 I4 L 5 I5 I6 I7 I8 I9 20 2| 22 23 4 24 25 2 26 27 wag: wsm 28'29 wsm 30 3| 32 33 34 35 37 36 38 39 1 42 4| 40 43 44 7I6 \ SAGE TR3 E»; 55 52 SI / \\ TRZ \ TRI TIMER R TRZ \ TRI mm cm I: CL IO H \ / SAGE II I2 I3 I4 I5 I6 I7 I8 I9 20 2| 22 23 24 25 26 27 28 / 29 30 3| 32 33 34 35 36 / x / \ 37 38 39 40 \ 4| 42 43 44 // \\ / J / / // / >2 \ D—MU-AXO8—O—H N AX08 Lab Peripheral (Shee’r 2) 5-27 (UML) I 8 6 7 l 5 4 ,ITEMDESCRIPTION No. AWG. I\ I! 21 SEE DETAIL A 22REF 22 COLOR GRN CONNECTIONS ¢ 83 ORN GR y ZBREF .3 I I 2 -3 BRN R2 J7 CNO 2 V SI A VIO -8 BRN 26, EXTERNAL 30 RI 3 /(‘-5 I L—__._\ IRS—3 24 22 VIO RB-I C30u £252 24 22 V10 FIB-2 8285 COGJ 24 22 VIO R8-3 C3¢v 24 22 VIO JI—I COST 7 COSJ 22 BRN a C3IC VIO -JI—2 JI-3 2I CRN 9 32590 24 22 V10 JI-3 22-2 IQ! B¢9I< 22 22 BRN JI—4 42-4 II BOSR I2 C3IR I4 BI¢D BIQIK BIOR I5 BIID PI-IG BIIK 22 23 22 CRN ' 24 FNT 24 22 VIO J2—I 24 22 V10 J2—2 J2—3 24 22 VIO 42—3 CSIF 22 22 BRN J2—4 43-4 24 22 VIO \JB—l CSZJ ORN RI—A E29L 24 22 VIO J3—2 43—3 23 22 ORN RI—B E28M 24 22 VIO J3—3 34—2 22 ORN RI—C E29U 22 22 BRN 43-4 J4—4 c32R 23 22 ORN RZ-A £294 24 22 VIO J4—l 23 22 ORN RZ—B 22m 24 22 VIO J4—2 J4—3 23 22 ORN R2-C £299 24 22 VIO J4-3 C32F 22 22 BRN 34-4 C3IC 22 CRY 35 EZSR 22 BLK JSGND ezec 22 CRY J6 227R 22 BLK JGGND EZ7C ORN 23 22 ORN 23 22 ORN 29 22 29 22 24 24 R3-A 2 K ANALOG INF‘UTJAK PNL AMP ~— ANALOG INPUT IJAX EZ‘aF R3—I3 R3-c E26M WHT R4-2 £29p’ WHT R4—3 ern 22 VIO R5-I RG—I 22 VIO R5-2 azsxr 24 22 VIO R5-3 RC-3 24 22 VIO RC—I RH 24 22 VIO Re-2 828M 24 22 VIO RES-5 R7-3 ' 25 E290 25 25 24 22 VIO R7-I Ra-I 24 22 VIO R7—2 BZBP 22 CRY J7 EZBR 22 BLK J7GND ezsc } Tw PR Tw PR >_Tw 22 CRY J8 COCJ BLK JBGND case 22 WHT 39 A24M 22 BLK J9GND A24C } 22 22 BRN CT—I F32c +S|DE OF CAP, 29 22 WHT CT—Z R4—3 26 C PR 22 25 24 22 CESIJ 23 22 - 2 ; REMARK” D 6 CRN 23 C _____ TO R7—3 VIO E27R I3 c FROM 22 5 R3 A CONNECTIONS NO.AWG. COLOR 24 2I 2I ‘ ITEM DESCRIPTION 4 c 82 ‘ PNL AMP Egg; J6 GND FNT 3 ~A BRN __\ TO .‘ PI—I2 J5 GND REMARKS ‘_ FROM VIO BLK 2| i 3 I Tw PR Tw pR 4-— TO LOGIC ASSY 23 IT—l 27 TO LOGIC ASSY II/u‘ WIRING DIAGRAM wew LOOMNCATBACKOFFmNEL m IO; BOTTOM TOP WAFER 5 TO F32C REF WAFER ”—4 4 1 7 IO 2 CTZ ., 8 I5 B Z T géfi’3 9 fi IG/ Fir—1 [fl I8; A 9/ DETAIL “A" 8 7 6 5 1 4 I 3 I 2 D—AD-7005831—O-O Confro-l Panel Assembly 5—29 l 6 4 I 3 .AWG COLOR II GRN PH 33” BRN 1 2 85”: 2 BBIF BRN 9 R EF 8 \ II _ Q3 \ _ + O 3 E I I f ‘ ! - ‘ i ADDITION 6) ANALOG“ I 1 —l5 GRN 3 BSIR GRN 4 03M BRN 5 D3IF BRN 5 D3IF GRN 6 DSIR GRN 7 024d BRN 8 D24F BRN 8 024F GRN 9 024R GRN Io A3|J BRN II ASIF BRN II ASIF GRN I2 A3IR GRN I5 A25J BRN I4 A25F BRN I4 A25F GRN I5 A25R I5 RESERVE GRN I7 832d BRN l8 B32F : . 6ND To 1 6 5 \ FROM 22 I INPUTS I I 1 I | I _ E g (.9 IO ____.‘_ T I NOTES‘ ITEM DESCRIPTION CONNECTION N 2 TABLE WIRE BRN l8 3st GRN I9 832R GRN 20 D32J BRN 2I 0st BRN 2I D32F GRN 22 032R GRN 23 D25J REMARKS LALL TO BE SOLDERED IN RLACE LOGIC ASSY TO BE WIRES 2.:I8I.+WI§IEEGTO }Tw pAIR aDSE BRADY IDENTIFY MARKERS ITEM #}8 TO WIRES )Tw PAIR kw PAIR hw PAIR }Tw PAIR }Tw PAIR }Tw PAIR 3‘ Tw PAIR }rw PA'R ' }TW PAIR 3‘ TW PA IR _ T PAIR 3w } TW PAIR 3W PAIR ' I J 7 I6 4 II 8 9 [6 l '6 Pl \ I7 I 9 >I I 0 ELM—p . I< 9 /|l I I I 0 I5 '2 I ' I I I | I I I I I I II 22 D25F 24 D25I= GRN 25 DZSR GRN 26 A32J BRN 27 A52F BRN 27 A32F GRN 28 A32R GRN 29 A26d BRN 30 A2GF 3O A26F BRN 3! I PI— 32 I | I 24 GRN I I A26R BTW PARI BTW pAIR 3 T w PAIR 3 T w PNR 3m PAIR 3 TW PAIR RESERVE I2 I8 RED +IO FDIA POWER WIRING I3 |8 BLUE -l5 FOIB POWER WIRING I4 I8 BLK GND FDIC POWER WIRING I4 l I I I . |32 O BRN BRN I I3 IGI TO LOGIC TO LOGIC WIRING DIAGRAM VIEW LOOKING AT BACK OF PANEL 6 5 I 4 3 I D—AD-7005832—0-0 Rear Panel Assembly 5-31 SO CO 51 C1 52 C2 53 C3 R4 C4 R2 C5 R1 C6 GND C7 Front Panel Amphenol Connector Pins (Front View) 4 6 HQ HQ 5 ' 7 10 12 HQ HQ 11 13 14 16 HQ HQ 15 17 2O 22 HQ HQ 23 21 I 24 26 HQ HQ 25 27 r» GND GND Rear Panel Amphenol Connector (Front View of Panel) Numbers refer to Channel Numbers, HQ is HQGND for Pair of channels on either side of GND is chassis GND. 5-33 R8 R32 100.00 0 IO0.000 R5 20.000 R6 2,200 UNLESS R7 R 10 RIS R17 R16 R23 R26 R3| 100,000 15,000 100,000 1.500 15,000 100.000 15.000 |00,000 OTHERWISE INDICATED: ARE l/4W; 5°/o RESISTORS DIODES ARE 0664 MF RESISTORS ARE l/BW; 1% A130 Multiplex Linc-8 R4 22,000 MMFD 02 RM DEC 2219 '09 5 /o _Lc4 3362 4 660 MMFD - - - _ A c1 4:560 R21 05 R3] 22,000 05c loo 3&2 5% 2219 03 06 DEC 05c 65343 65343 0A +10v gRse 2,700 5 °/. + I.3V .. L 02 ‘R3 1”“3 IOMEG D664 5 O” 1:01 0664 56,000 R01 €30,000 100,000 0 5/. ‘ R 21252) o <’Ra ’ 1 2,700 5% 5% > SDA-5 % [D7 0662 2,70 0 R16 os Slossz 04 1 m9 R6 RI R20 10 MEG 0664 5%, SBA-5 2.700 c [D4 ‘> 7.500 01 R2 1 K 5 3’° 1:0664 03 RIB 56,000 3 R23 <; 100.000 ‘ 5 o/. a F GND 28 RH 1.200 1,200 06 5% 52/. R10 R27 100 1! 0662 IOO POT PDT figs-10v E-IOV 4 05 0662 —1.3v ,R5 R7 R9 E2700 820 32 1 R22 R 5% ‘>R24 2.700 3820 > 1 62 1 '0' MFD ‘ng6 82 R32 32 5% 5% R34 820 . 0v R35 2,700 #0U 57. -% B -15v UNLESS OTHERWISE INDICATED: RESISTORS ARE mm, 10% POTS ARE #275? . . A202 Two Analog Preampl Iflers 5-34 A o +|OV v - T — R2 R4 R6 Re Ioo,ooo I0,ooo I0,000 220 5% RI3 220 R17 UN 5% 5% I,500 + KO—1 DEC I (Dec 1 DI 95 0664 ‘ cmac 0” ' “'2 DI2 0664 I,5oo ‘5 5% 06 DI~:022I9 9 Cl 1 I 0I MFD 0F 9&5 ”7 3638 R2| 200 BOURNS - 3638 SK 3254 I50 '°V MFD 1 SLDIO ”56" 9" SL0664 270 c2 £3262 3638 D5 03 R28 — 2894" Hosea 3!” Des 2 R22 L63 DEC 22l9 02 c OGND 3~ 39 0: ‘ ANALOG INPUT 0+7v I l INPUT FRDMAIso -'—OJ 4Q? 0664 ee,Ioo MFl/SW l‘l. a4 DEC R19 22m ,800 $3110ng OIO DEC 3533 . MF l/BW |°/o RIa R5 R8 2,700 I5,ooo 5% 5% §220,000 5 -IOV l - RI R3 R7 R23 |5,000 3,900 220 22,000 5% WW 5% 5% R26 I00 a - :O-ISV - UNLESS OTHERWISE INDICATED: RESISTORS ARE I/4w;I0% Sample and Hold A401 oA+I0v (AI an 68I __c2 V INOI MFD '* ~0c 352cm33 a“ 2:40 l% ”5 IND-551 I $40 [56 06m GND 1!” f [€ch‘33 N DI7 ch D“ Taro D's“ : "DIG 35% 2894-23 v . DI5 ov DI: 0-664 PC =: c: UNLESS OTHERWISE 0| INDICATED: W RESISTORS ARE IMW; loss. “'37me AND Rl3 ARE LowTEMP cosr METALLIC ’ > “:00 FILM I/ew; IOOPPMI°C . ‘ DIODES ARE 0662 m2 Rn cm I.5oo 5% ., I, "5 5* L mo L500 5% “luv 5|.soo 5% "RI .;I,5oo I 535',st 59x9 I, 45 B-Isv A502 Comparator 5—35 6ND IovtA) no. can sun one on 47 20v #0 ~ E-IOV REE 327 7“ I“ 3.000 ' 1,000 MFIOQPPM W m umsss mamas: INDICATEDRESISTORS ARE uw; not MF RESISTORS ARE 0.I%;I/8W cam-dons ARE man) 50mm D‘c OUTPUT '"PUT nor: WHEN USED AS THE LEAST SIGNIFICANT BIT, CONNECT J T0 L AND CONNECT H TO H. 0. GND. A60I Digital—Analog Converter 6ND F ".0. GND GND DZ 0-662 R2 5,600 CI 330 07 DECSOOSB a UNLESS ornamse INDICATED: RESISTORS ARE wwu CAPACITORS ARE MMFD an as a ms ARE I/aw;o.m;25ppm Rlé 5 R20 ARE BECKMAN CODE 5778-2 DAC INPUT A604 DIgiIaI-Ana Iog 5-36 - I5V - IOV REF c m u nu 21.000 woo .sxmw 51‘ n: 21.000 .SSSJUq 4 ms 1.000 4 R22 5% 1 Iopoa + sans: Tci ‘ no mo 725 00900 .sxww .57.,w 1 03 m mu” oscsssw czv fl :51; 37 33:, 20.000 cw J c: ’F zov + $ ,' 41 an: 4 on 304-; ’ F—o? ‘ n9 IOO w c2 _ .. ,2 I00 n ' ww n5 cw T? fl 33".; I5.ooo .sxmw u é no 025 02 I!'9. 002 - - flE-tov our - m R2l g: on; WW low ‘ vc UNLESS I -ISV OTHERWISE mmcnanz RESISTORS IO% ARE |/4W‘, RIOI R6 AND RI ARE DAVEN 3PPM TYPE “95 R3, R4, R5 AND R8 ARE DAVEN 20 PPM TYPE |283 R2, R9 ARE 50 PPM DAYSTRUM TRANSITRIM R7 IS A 20v .5159“! 450 —SENSE 47 an “275? A704 Reference Supply B O-ISV OF UNLESS OTHERWISE RESISTORS ARE TRANSISTORS INDICATED: 1/4W; [0% ARE DEC3638 A706 Power Supply for A202 5-37 mo hi DC 'l 0664 05 E0 #1 D664 09 5L Ho 7| 0664 04 JG .4 7. 0664 06 .4 4'1 LC>” 0664 M047 23 ’1 0664 07 P0 ”'1 0664 Rc; as ,1 0664 06 -.L TC> ”'1 0664 0 UC? .1 '1 0664 G716 Resistor Card R002 Diode Network 5-38 {— EQKIIPIE “I DGL2 I RI Ioo.ooo I II R3 R4 R5 R6 | R7 Ioo.ooo Ioo,ooo Ioo.ooo Ioo.ooo Ioo,ooo | Ioo.oooI - I A I I I 02 03 04 05 I 06 I I l I I F [02 R9 m: [0662 1:03 on SIDSGZ 7.500 No Lo J I 1:04 on me I: 0:5 Rll EZDSGZ 7.500 05 D61: lzDGGZ 7.500 I I I I DIG m2 ][0662 7.500 I R l‘ O A(+IOVI 43* R2 I ————— - J ————— r k 6: 0662I I l I 09 ":0" IS! 0662 I l I MFDI '1’? I I 1 4 I![0662 RM l! RI7 I5.ooo I! 0662 5,000 El 020 0662 Rue j [0662 ms 02I 5.000 l I5,ooo 022 R20 0662 I5.ooo 023 [0662 RZI I l | [5.000 R22 I}! 0662 - . 026 ‘2 “021 1:02. 1:029 I 9 I n UNLESS OTHERWISE “030 I I.500: I l | I RI5 I . . - W I I I—s-T—RfiT—E—J l l . I L_§____ “025 . I5.000I I . I zI 024 5 I I 7.500I I 0662- I —————— — 0|? I ms OH I! I I I 0662I I I I— I me ll! I [07 I ' RI6 I | I I DIa 0662 I DB Il I 07 RIs ' fi—O' C(GNDI 2 I 7.500 ‘ I I I _____ _I 1‘0“ v INDICATED; RESISTORS AR: mm 535 DIODES ARE 0-664 TRANSISTORS ARE 056 36398 PRINTED CIRCUIT ’REV. FOR DGL BOARD Is sm RI07 Inverter <’R2 1 ‘i I5,ooo 04 0564 06 0Io {R6 «ins mo 0664 0 - T I I> lap 00 K 02 DEC36393 03 D664 I oa-Isv RI6 7,500 N 026 me me 027 026 0564 H L as 04 0I3 025 0664 DEC3639B 0664 E - In” RI2 ll 020 35,000 08 - 05636396 J OAHOV - L - 4. T T T - T _— I'I R7 I DZ 0664 I S 3mg 0664 I5,ooo I 7,500 | ‘>I,500 I V DI2 0664 DI5 0'7 I6 | . T m DI 0664 R DEC36398 Dll 0664 R9 mm U 03 DIODES ARE ARE E D 2 '4 I : °EC35393I][022I CI "FD | i2 RESISTORs RI3 I1i023| I ?=-°I I] UNLESS\0THERWISE ‘I RII 02I| I "3" 5m": INDICATED: l/4VI,5'/. 0662 R113 NAND/NOR Gate 5-39 06 (mo OB(-|5V) 40A+I0v(A) ‘ R2 R5 Ioo,ooo Ioo,ooo 06 0I2 0—662 D—662! s on 020 MO—H—c- O—H—0 OR D8 o—fl—T O—N—1* RI R3 5,000 7,500 “07 5R6 $24 I5,ooo 32:62 II 0L r—OH ' I 026462 I : I I I I éRIO I 1 ‘ I o—N—Ai I5,ooo I I I RI3 I I 500 I I I I 403-l5V I_ ARE DEC 36393 D-664 ARE _, _ J v STRATE INDICATED: TRANSISTORS DIODES RESISTORS I ._.l - ARE I I f UNLESS OTHERWISE I I Eo—H—o Tr4500 ‘ I 04562] F [DIS 026 II a IEDIB _, I! m v GND | l ' P ._ 7 -662 l ms D N _ __ 3! K 09 0+ L 02 u 022 0-662 1[0-662 0Io 03 1- Ioo,ooo 3! 05 SID-662 04 % 400 RII I/4w-, 5% R121 NAND/NOR Gate AOIOVIA) l T R5 « 22 0! RH 05c 22,000 30098 I0% 10% mo 06 04 6 I 026 0-662 0-6623! 02 E0662 0I7 0I4 u I0°A b 07 me D|3 ' R l N R3 033 K D—662 025 Elma D-GSZ 022 n 024 J 02I R20 023 RIs ( ‘ P - ins 2R7 R2 ‘ ‘ R8 7,500 I 05 0I 030 D28 F RI4 Dl5 0I2 u ! S 0-662 E K R9 06' 02 029 03I Rl5 I 1 032 =69 l RIo 1' R2I 000 I ‘ 09 R4 03 lo% ms 045623! > me 22,0 I on v I SRIZ : 1 I K RI - O B-I5V UNLESS OTHERWISE RESISTWS DIODES ARE ARE TRANSISTORS INDICATED: I5,000; I/4W; 5% 0-664 ARE DEC 36393 R122 NOR/NAND Gate 5-40 O A HOV (A) R 2 R 5 IO0,00 o qu000 Ioopoo - 1 S 08 D4 SID-662 D662 H 1 [)6 DZ ->—-|(-—oo E on {RI <§R4 Timooo ilspoo OTHERWISE TRANSISTORS DIODES ARE ARE ARE 0-662 ms 3 D-662 3 v 0-662 023 022 so—fl—4 DI7 T Dl3 M 05 3 ms Ds F 024 1[0-662 ->—I1—on LO—H—GI on D I RESISTORS 0-662 m4 BIG DI . UNLESS P m5 3 0—662 ->—fl—ox . 020 “0-662 N SID—662 06 1 m6 m2 3 0-662 4423c 6ND A. 05 1 J 07 03 SID-662 quooo _ 04 I 1 I - o 3 R I? I4 <> Ioo,ooo |00,000 - 02 0| ER R ll R e R7 RIO RIS RIG I5,ooo I5,ooo Ispoo I5,ooo . o a -I5v INDICATED: DEC 3639 I/4W,5% 0—664 R123 IhpU‘I' Bus A +IOV C GND B-I5V 035 RI2 036 R|3 037 R14 FF FF R151 Binary to Octal Decoder 5-4] 039 RIG A+|OV R I4 R4 I00.00 0 loo.ooo 3 0| 6ND D42 0-662 Ddl 0-662 D40 0-662 R7 C5 |5.000 .0! DIZ 700 D39 MFD Rll RI5 ms RIS R 20 l5.000 4,700 4,700 I5.000 l5,000 0-662 UNLESS OTHERWISE INDICATED: RESISTORS ARE I/4W55’la' CAPACITORS ARE MMFD DIODES ARE 0-664 R202 Dual 047 D48 J H D49 R2 t as >100.000! on <;Ioo.ooo 050 I A+IOVIAI o - £100,000 n14 ,Ioopoollozs RIB Iloza - o2 ol ‘I'1(——‘ PLO l‘ 04 0-6623! 03 SID-662 09 3 0-662 De 1 too I3 017 1‘ 1" D7 012 1! SID-652 1‘ u ‘N 05 oz N DIS 0662 N I one one F M n 0 - 05 039 0‘33 53 fi I 02:1 0-662 0221 0-662 fiDZ'I N I‘ VI N 02: D26 N 032 0-662 031 l SID-662 I‘ IV I 033 030 6 0 1' L K #042 oc GND 06 32 9‘24 ‘ 7' 0-662 04 éwopoolF R22 ‘ 03 052 U - RIO <iloo.ooo ”on DSI N P - . Flip—Flop 1 0373! 0-66 ossllossz I00 N [A D46 3! 9'55? ' _‘ no“ 'I VI N 035 040 ] 33262 _ C4 '°' MFD 5 1‘ D44 3! 0-662 R D43 m R Ispoo 4,700 3R4 «:4,700 R5 I5.000 >R1 R8 $5,000 15.000 I Km 06 gas 3R” 2 R12 Mia fims Elwooirmoo f4,moc;|5,ooo ilspoo lions ¢R|s <,|5.ooo [020 m1 ms :;I5.o 4,700 ‘ 029 ‘ R20 €4,700 1 3R2] 35:23 ’Ispoo - $5.000 R24 1! 0‘66? mom - Ace-Isv 034 Anzs 1.500 UNLESS OTHERWISE INDICATED: RESISTORS ARE IMW', 5% CAPACITORS ARE MMFD DIODES ARE 0-664 TRANSISTORS ARE DEC 3639C R203 Triple Flip-Flop 5-42 +IOV D 1! 07 03 cacaoosa 032 0662 051 9 Rs CGND - + 4.150 °5 06 V __0662 6 ELDGGZ "S"! .1990 -MFD 029 0662 028 1£0662 __} R5 15.000 RI 02 n4 1,500 1.500 15.000 “0' '4 933 p :4->.l Rl2 n14 R|5 7.500 1.500 1,500 1.000 RIG RIB 1.500 15.000 R7 R3 15.000 15,000 1.000 024 022 ,ce c1 100 100 N ‘ , —06 -15v 14 '1': #I 02 05 01 R2l R27 $15,000 1,000 E *‘I u T 20%60 1‘ BOURNS on 010 Il'zw 2§%%o V1 021 025 UNLESS OTHERWISE INDICATED: RESISTORS ARE'I/4W; 5% CAPACITORS ARE MMFD DIODES ARE 0664 TRANSISTORS ARE DEO3639 Flip-Flop RIG “30,000 UNLESS OTHERWISE INDICATED: RESISTORS ARE I/4Vl; 5 7. CAPACITORS ARE MMFD DIODES ARE D-664 R302 Dual Delay Multivibrafor 5-43 L K I: DAYSTROM R205 Dual 1,500 7.500 -7, 15.000 R28 R26 44 V Rl7 0662 F 034 06 06 R3 . R22 15.000 {0'7 027 ‘ — R19 172»! aounus on DAYSTROM J 026 N 1 VI DIO 0-662 5 as IIOOO 100,000 ENABLE? 09 SID-662 <3A+I0V(A) m0 GND T . as null 07 [3-8862 ea 09 0 c c 2954-23 [33662 {ms D6 K D 65 2 0-662 [021 353 020 I! - I096 0.4 3! 0-662 D18 2894-28 1 «“37 OD I! 1: 023 022 025 F03 I095 ma 0., 037 ca DEcsoos [05 0-662 32“ 5‘0" R [st62 ca 7 c5 I200 N I ' 000 HO—H—o POE)J—'—OO|5 03 [0-662 NonF—‘Lal—Ics [3-2662 0905 R8 MOjPL—II 022 Low - zDIS D! E [0-662 Lofl-P-a ‘LRM ms R20 3,000 3,000 ilspoo Rl8 7.500 foe-Isv UNLESS OTHERWISE INDICATED: RESISTORS ARE MW 596 CAPAaTDRS A E MMED DIODES ARE 0-664 TRANSISTORS ARE DEC 3639-0 R'll Is A 4:275? . R401 VarIchle Clock :01: +l0 v I - RI R4 R7 4,700 4.700 4.700 WA 10% 1 0 - 1 I0°/. I 03 ma I | + I 00:64 “33 39 J MFD ‘ : n l 05 R9 I I : I,5oo D|4 1‘05 9'5“ |N748 1:0.2} 0: UNLESS OTHERWISE INDICATED: RESISTORS ARE RII m3 390 I,5oo I5.ooo |.500 . - - Rl7 RIG 7.500 I l I I I I I I I l - I 0500; - ma I 1| {.500 : : J I l/4W; 5% -3v =STRATE TRANSISTORS ARE DEC 3639-0 I I I mo :‘OB-lsv I I |——————| L|,Cl acm SEE owe CHART A-005I7-2 R405 Crysfol Clock 5 -44 MFD I ' I I as T : C5 .0I 0-662| 0664: 0-664 I FOR VALUES 0F GND RI3 l0,000 04 DEC 2894-28 EC2894-28 UNLESS OTI'ERWISE INDICATED= RESISTORS ARE l/4W;IO% CAPACITORS AREMMFD DIODES ARE 0-6 TRANSISTORS ARE DEC 3639-0 R603 Pulse Amplifier *0 A¢IOV(AI R4 l,500 3,000 D INPUT F .J L ‘ ‘3 |5V O C GND 0 3 IGJI RI R 2 l,500 l,500 RI2 I: UNLESS DIODES OTHERWISE ARE TRANSISTORS RESISTORS INDICATED: {J l,500 p R9 R II 3,000 1,500. 0— 654 ARE ARE DEC 2894-3 I/4 W, R T 5% W500 High Impedance FoIIower 5-45 ’OAHOVM) 2 4,700 UO—Wr ‘ LR4 LRs 7,500 7,500 5% 5% ‘ ‘ flB-ISV R5 RIO Rll 4,700 |.500 L500 5% 5% 07 0—664 PO————<E DI 0' 0-664 a C 2N3605 ‘ on 2:12-652 02 NO—II '1 mo 0-664 10—662 04 D3 SID-664 ZED-664 m 6 33° SO—ANV—o—OT L I 0 , 09 0-662 KO—fl u CI as in K9462 35V {F IAFD #OCN GND UNLESS OTHERWISE INDICATED= RESISTORS ARE I/4Vl; [0% W501 Schmif’r Trigger A HOV (A) 4 |,500 DB DIS 0662 06 DEC 2894-35 05 DEC3646 -E POSOTIVE C 6ND mv: m2 IO 0-670 | an 5,000 UNLESS omswse "nuance.moozs an: 0-5“ ramsls‘rons nzsm'rons ARE an: muss-a 9"" mm”; W681 Scope Infensifier 5—46
Home
Privacy and Data
Site structure and layout ©2025 Majenko Technologies