
PRO/FMS-11
Documentation
Supplement

Order No. AA-P103C-TK

November 1985

This supplement describes the differences between
PRO/FMS-11 and FMS-11/RSX. You can use PRO/FMS-11 with
the PRO/Tool Kit or the Professional Host Tool Kit to
write applications for the Professional Series computers.

REQUIRED SOFTWARE:

OPERATING SYSTEM:

Professional Host Tool Kit V3.0,
or PRO/Tool Kit V3.0

P/OS V3.0

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts 01754-2571

First Printing, December 1982
Revised, May 1983

Revised, November 1985

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a
license and may only be used or copied in accordance with the
terms of such license.

No responsibility is assumed
software on equipment that
affiliated companies.

for the use or reliability of
is not supplied by DIGITAL or its

The specifications and drawings, herein, are the property
Digital Equipment Corporation and shall not be reproduced
copied or used in whole or in part as the basis for
manufacture or sale of items without written permission.

Copyright © 1985 by Digital Equipment Corporation
All Rights Reserved

The following are trademarks of Digital Equipment Corporation:

CTI BUS MASS BUS Rainbow
DEC PDP RSTS
DECmate P/OS RSX
DECsystem-10 PRO/BASIC Tool Kit
DECSYSTEM-20 PRO/Communications UNIBUS
DECUS Professional VAX
DECwriter PRO/FMS VMS
DIBOL PRO/RMS VT

mamaomaTM PROSE Work Processor
PROSE PLUS

of
or

the

CHAPTER 1

1.1
1. 2

CHAPTER 2

2.1
2.2
2.3

CHAPTER 3

3.1
3.2
3 . 2 . 1
3.2.2

3. 2. 3

3. 3
3.4

CHAPTER 4

4.1
4 .1.1
4 .1. 2
4.2
4.3

4. 4
4 • 4 • 1
4. 4. 2

4 • 4. 3

4 • 4 • 4
4.5

CONTENTS

PREFACE

INTRODUCTION TO PRO/FMS-11

DEVELOPING PROGRAMS THAT USE PRO/FMS-11
PRO/FMS DEVELOPMENT CYCLE

THE FORM EDITOR, PROFED

RUNNING PROFED IN TERMINAL EMULATION .
ATTRIBUTE DIFFERENCES

v

1-1
1-2

2-1
2-2

THE PROFESSIONAL KEYBOARD AND THE FORM EDITOR 2-2

THE FORM DRIVER

THE PROFESSIONAL KEYBOARD AND THE FORM DRIVER 3-1
LINKING WITH THE FORM DRIVER LIBRARY . 3-3

Editing the .CMD File 3-3
Editing the .ODL File for Media Resident
Forms 3 ·-5
Editing the .ODL File For Memory Resident
Forms 3--8

EXAMPLE FILES USING THE OBJECT MODULE LIBRARY 3-8
CHANGE IN FLOPEN 3-9

FORM DRIVER CLUSTER LIBRARIES

NEW CALLS TO THE CLUSTER LIBRARY
FNKON - Turn On Function Key Processing
FNKOFF - Turn Off Function Key Processing

LK201 FUNCTION KEY TERMINATOR VALUES
MAPPING FIELD TERMINATORS AND EDITING
FUNCTIONS
LINKING WITH THE CLUSTER LIBRARIES ..

Editing the .CMD File
Editing the .ODL File for Media Resident
Forms
Editing the .ODL File for Memory Resident
Forms
Editing Your Installation (.INS) File

EXAMPLE FILES USING THE CLUSTER LIBRARY

iii

4-1
4-2
4-3
4-4

4 -·6
4-· 7
4-· 7

4-8

4-8
4-8
4-9

CHAPTER 5

CHAPTER 6

CHAPTER 7

INDEX

FIGURES

TABLES

7.1
7 .1.1
7 .1. 2
7.2
7.2.1
7. 2. 2
7. 3
7. 4
7.5

1-1
1-2

3-1
3-2
4-1

4-2

4-3
4-4
4-5

BNHANCBMENTS TO PRO/FMS-11 HELP FACILITIES

INSTALLING OPTIONAL APPLICATIONS

SAMPLE PRO/FMS-11 PROGRAMS

TOOL KIT BASIC-PLUS-2
BASDEM • • • • •
MULLIB

TOOL KIT COBOL-81
Passing Variables by Descriptor
Passing Variables by Reference

TOOL KIT FORTRAN-77
TOOL KIT MACR0-11
TOOL KIT PASCAL

PRO/Tool Kit Development Cycle .
Host Tool Kit Development Cycle

Keyboard
Keyboard
Returned
Call . .

Differences -- All Regions
Differences -- Scrolled Regions
Status Values and Codes for FNKON

Returned Status Values and Codes for FNKOFF
Call
Function Key Terminator Values .
Mapping Function Keys - All Regions
Mapping Function Keys - Scrolled Regions

lV

7-1
7-1
7-4
7-7
7-7

7-12
7-17
7-22
7-28

1-4
1-5

3-2
3-2

4 ·-2

4-3
4-4
4-6
4-7

PREFACE

Manual Objectives

This document describes the differences between FMS-11/RSX
applications and PRO/FMS-11 applications. It supplements two
manuals: FMS-11/RSX Software Reference Manual and FMS-11/RSX
Release Notes. Both manuals are included in the Tool Kit
Documentation Set.

Intended Audience

This document is intended for experienced FMS-11 programmers. If
you have not previously programmed with FMS-11, read the
FMS-11/RSX Software Reference Manual.

Also, you should have some experience with the Professional Host
Tool Kit or the PRO/Tool Kit.

Structure of This Document

This document contains seven chapters.

Chapter 1, Introduction to PRO/FMS-11, describes the programming
languages that you can use to develop a PRO/FMS-11 application.
The chapter also illustrates the PRO/FMS-11 development cycle.

Chapter 2, The Form Editor, lists the steps you follow to run
PROFED in terminal emulation. It also lists attributes that you
should avoid when running PRO/FMS-11 applications.

Chapter 3, The Form Driver, describes how to use the object
module Form Driver. Included are directions for editing the
command (.CMD) and descriptor (.ODL) files and linking with the
object module.

Chapter 4, Cluster Libraries, provides information on using the
Form Driver cluster libraries. Included are directions for
linking with cluster libraries, and examples that use the cluster
1 ibraries.

Chapter 5, Enhancements to Help Facilities, explains how to
create and use help for PRO/FMS-11.

v

Chapter 6, Installing Optional Applications, tells you how to
install the Debug Form Driver and the demonstration library for
running the sample programs.

Chapter 7, Sample PRO/FMS-11 Programs, lists sample programs for
each of the following PRO/Tool Kit languages: BASIC-PLUS-2,
COBOL-81, FORTRAN-77, MACR0-11, PASCAL.

Associated Documents

This document supplements two manuals:

• FMS-11/RSX Software Reference Manual

• FMS-11/RSX Release Notes

These manuals are part of the Tool Kit documentation set.

Note that the FMS-11/RSX Mini-Reference is not part of
Kit documentation set, but may be useful when
PRO/FMS-11 applications.

the Tool
developing

Conventions Used in This Document

Convention/Term

[optional]

UPPERCASE

lowercase

Meaning

In a command line, square brackets indicate
that the enclosed item is optional. In a file
specification, square brackets are part of
the required syntax.

Uppercase words and letters, used in
examples, indicate that you should type the
word or letter exactly as shown.

Lowercase words and letters, used in format
examples, indicate that you should substitute
a word or value of your own. Usually the
lowercase word identifies the type of
substitution required.

vi

Convention/Term

Tool Kit

Host Tool Kit

PRO/Tool Kit

red

Meaning

A horizontal ellipsis indicates that you can
repeat the preceding item one or more times.
For example:

parameter [,parameter ...]

A vertical ellipsis in a
means that not all of
shown.

figure or example
the statements are

This general term refers to the software you
use to develop applications to run on a
Professional computer.

The Host Tool Kit is Tool Kit software that
runs on a host computer, rather than on the
Professional itself.

The PRO/Tool Kit is the Tool Kit software
that runs on the Professional computer.

Interactive input appears in red.

vii

CHAPTER 1

INTRODUCTION TO PRO/FMS-11

PRO/FMS-11 is a development tool based on FMS-11. A
forms-oriented video I/O management system, PRO/FMS-11 allows you
to develop applications on either the Professional Host Tool Kit
(under RSX-11M/11M-PLUS or VAX/VMS) or the PRO/Tool Kit (under
P/OS). You can then run the application on your Professional.

This documentation supplement describes the differences between
FMS-11 applications designed for minicomputerjVT100 systems and
PRO/FMS-11 applications designed for the Professional.

1.1 DEVELOPING RAMS THAT USE PRO/FMS-11

You can develop PRO/FMS-11 applications in the following Tool Kit
languages:

• BASIC-PLUS-2

e COBOL-81

fl FORTRAN-77

® MACR0-11

a PASCAL

For specific restrictions and sample programs, see Chapter 7.

1-1

PRO/FMS DEVELOPMENT CYCLE

1.2 PRO/FMS DEVELOPMENT CYCLE

The following sections describe the program development cycle for
PRO/FMS-11 applications.

Step 1: Create FMS Forms

Create forms on the development system with the PRO/FMS-11 Form
Editor, PROFED. To run PROFED, invoke one of the following
commands, depending on your development system:

• On RSX (Host Tool Kit) I type:

>RUN $PROFED

• On VMS (Host Tool Kit) I type:

$ RUN SYS$SYSTEM:PROFED

• On P/OS (PRO/Tool Kit) I type:

$ RUN $PROFED

See Chapter 2 for a complete description of PROFED.

Step 2: Create Form Library

Create a form library with the PRO/FMS-11 Form Utility, PROFUT.
To run PROFUT, invoke one of the following commands, depending on
your development system:

• On RSX (Host Tool Kit) I type:

>RUN $PROFUT

• On VMS (Host Tool Kit) I type:

$ RUN SYS$SYSTEM:PROFUT

• On P/OS (PRO/Tool Kit), type:

$ RUN $PROFUT

Step 3: Write Source Code

Write a source program containing the necessary Form Driver calls
in the source code.

1-2

PRO/FMS DEVELOPMENT CYCLE

Step 4: Compile or Assemble the Program

Use your compiler or assembler to process the source code.

Step 5: Modify Command (.CMD) File and Descriptor (.ODL) File

Choose either the object module Form Driver or cluster library
Form Driver. To use the object module Form Driver, follow the
instructions in Section 3.2.2. To use the cluster library Form
Driver, follow the instructions in Section 4.4.

You should use the debug version of the Form Driver to debug your
pr6gram on the Professional. Then, when the program is
error-free, use the non-debug version.

Step 6: Task Build the Program

Use the Professional Application Builder to task build your
program. See the Tool Kit user's Guide and the RSX-11M/M-PLUS
Task Builder Manual for details.

Step 7: Write Installation Command File

Create the application installation file.
User's Guide for details.

See the Tool Kit

Step 8: (Host Tool Kit Only) Copy Files to Professional

If you are using the Host Tool Kit for program development, copy
the form library, task image, and installation command file to
the Professional.

Step 9: Install Application Onto P/OS

Using either Fast Install or P/OS Install Application Services,
install the application onto a P/OS menu. See Tool Kit Reference
Manual for details on Fast Install. See the User's Guide Hard
Disk System for details on installing an application.

Step 10: Run the Program

Choose the installed application from the P/OS menu on which it
is installed.

1-3

PRO/FMS DEVELOPMENT CYCLE

Figure 1-1 illustrates the development cycle with the PRO/Tool
Kit.

PRO/FMS-11

CREATE/EDIT
FORMS

CREATE FORM
LIBRARY

OPTIONAL TERMINAL
ATTACHED FOR
DEBUGGING

YES

FROM P/OS
MAIN MENU,
ENTER
PRO/TOOL KIT

SELECT DESIRED
TOOL

FAST INSTALL

USE EDT TO
WRITE/EDIT
SOURCE CODE

COMPILE OR
ASSEMBLE SOURCE
PROGRAM

TASK BUILD
PROGRAM WITH
LINK COMMAND

APPLICATION
TASK IMAGE(S)

RUN APPLICATION
DISKETTE BUILDER

DISKETTE

NO

MA-1173-85

Figure 1-1: PRO/Tool Kit Development Cycle

1-4

PRO/FMS DEVELOPMENT CYCLE

Figure 1-2 illustrates the development cycle with the Host Tool
Kit.

PRO/FMS-11

CREATE/EDIT
FORMS

CREATE FORM
LIBRARY

HOST SYSTEM

APPLICATION
FILES

USE EDT TO
WRITE/EDIT
SOURCE.CODE

COMPILE OR
ASSEMBLE
SOURCE PROGRAM

TASK BUILD
PROGRAM WITH
LINK COMMAND

APPLICATION
TASK IMAGE(S)

PROFESSIONAL

TERMINAL EMULATION
MODE

FILE TRANSFER TO PROFESSIONAL

WRITE APPLICATION
INSTALLATION FILE

OPTIONAL TERMINAL
ATTACHED FOR
DEBUGGING

Figure 1-2: Host Tool Kit Development Cycle

1-5

LOCAL MODE

PROFESSIONAL
FAST INSTALL

RUN APPLICATION
DISKETTE BUILDER

[I·~ u I
DISKETTE

MA-1174-85

CHAPTER 2

THE FORM EDITOR, PROFED

2.1 RUNNING PROFED IN TERMINAL EMULATION

To run PROFED in terminal emulation, set your terminal to VT200
mode.

To use DEC multinational 8-bit mode characters, you must also:

• Set the Professional Terminal Emulator to 8-bit mode and no
parity by using the Line entry on the Communications Set-up
Menu.

• Set the host to 8-bit mode.

To do this on RSX (Host Tool Kit), type:

> SET /EBC=TI:

To do this on VMS (Host Tool Kit), type:

$ SET TERMINAL/EIGHT_BIT

The default is 7-bit mode.

The following features are available once your system is in 8-bit
mode:

• Field-marker characters include characters 241-277 octal.

• Background text includes the entire DEC Multinational
Character Set.

• During application execution, PROFED forms (named data, form
wide attributes, and field attributes) accept the DEC
Multinational Character Set as input where any displayable
character is requested.

The DEC Multinational Character Set uses 8-bit codes. You must

2-1

RUNNING PROFED IN TERMINAL EMULATION

create the forms in 8-bit mode to use 8-bit codes in form
descriptions. (See the Terminal Subsystem Manual for more
information on the DEC Multinational Character Set.) If you
create your forms in 7-bit mode, you can use only the ACSII
character set, not the DEC Multinational Character Set.

2.2 ATTRIBUTE DIFFERENC

The following FMS attributes operate differently on the
Professional than on the VT100 running under FMS/RSX-11:

e Bold field. Not supported in wide-screen (132-column) mode.

e Bold reverse video field. Not recommended because of poor
readability.

• Blink field. Can detract from PRO/FMS-11 performance if used
excessively.

These differences may affect Professional system performance
and/or form reliability. You should avoid these attributes when
creating PRO/FMS-11 applications.

Also, note that PRO/FMS-11 allows fixed decimal fields to include
a comma in place of a period for European applications.

2.3 THE PROFESSIONAL KEYBOARD D THE FORM EDITOR

PRO/FMS uses different keys for some editing functions.
3-1 lists these differences.

2-2

Table

CHAPTER 3

THE FORM DRIVER

The form library file specification
specification. For more information
refer to the Tool Kit User's Guide.

must be a valid file
on file specifications,

To determine the device and directory of the application, use the
TRALOG system directive to translate the logical APPL$DIR. Refer
to the P/OS System Reference Manual for more details.

The Form Driver can access a maximum of 60 forms per library. If
you need more than 60 forms for your application, you must place
the forms in multiple libraries (up to 4). You can access your
forms in two ways:

1. When you need forms from another library, close the current
library and open another library file. This option is slower
than the second, but requires less data space.

2. You may have multiple impure areas with a library open in
each. You can switch between impure areas to access the
forms in each respective library. (See the sample BASIC
program MULLIB in Chapter 7). This option is faster than the
first, but requires more data space.

3.1 THE PROFESSIONAL KEYBOARD AND THE FORM DRIVER

With the Form Driver, PRO/FMS-11 uses different keys for some
field terminators and interactive functions. Tables 3-1 and 3-2
list the differences.

3-1

THE PROFESSIONAL KEYBOARD AND THE FORM DRIVER

Table 3-1: Keyboard Differences -- All Regions

FUNCTION VT100 Professional

Enter form ENTER/RETURN DO, ENTER/RETURN

Move to next field TAB F12, TAB

Move to previous field BACKSPACE Fl1

Erase character DELETE <X

Erase field LINEFEED REMOVE

Insert/Overstrike PFl F13

Help PF2 HELP

Repaint screen CTRL/W F20

Table 3-2: Keyboard Differences -- Scrolled Regi.ons

FUNCTION VT100 Professional

Exit field backward PFl F17

Exit field forward PF2 F18

NOTE

On the Professional you can display a help form
by using the <RESUME> key instead of the <DO>
key, and the <NEXT SCREEN> key instead of the
<HELP> key.

3-2

LINKING WITH THE FORM DRIVER LIBRARY

3.2 LINKING WITH THE FORM DRIVER LIBRARY

PRO/FMS-11 provides two versions of the Form Driver Library:

• Object Module

• Cluster Library

You must link your application with one of these libraries.
Before you can link your application with either library, you
must perform two preliminary steps.

1. Because the Form Driver requires P/OS User Interface Service
Routines support, you must edit your command file as
described in the section on "POSRES Task Image Requirements"
in the Tool Kit User's Guide.

2. You must also edit your command file for the language you are
using. See language documentation for details.

After performing these steps, you can link your program with the
library you selected. In either case, you must edit the command
(.CMD) and descriptor (.ODL) files to include the Form Driver
library of your choice.

This chapter describes how to link your program with the object
module. Chapter 4 describes how to link your program with the
cluster library.

You can use the object module version of the Form Driver with
P/OS Vl.O or later.

Suppose your source code is in BASIC-PLUS-2. The BASIC-PLUS-2
compiler generates a command file (filename.CMD) and an overlay
descriptor language file (filename.ODL) when you enter the BUILD
command. The following sections describe how to edit the .CMD
and .ODL files.

3.2.1 Editing the .CMD File

After the preliminary editing described above, the .CMD file
generated by the BASIC-PLUS-2 compiler for an application named
"BASDEM" would look something like this:

3-3

LINKING WITH THE FORM DRIVER LIBRARY

SY:BASDEM/CP=SY:BASDEM/MP
TASK = BASDEM
UNITS = 19
ASG = TI:13:15
ASG = SY:1:5:6:7:8:9:10:11:12
EXTTSK= 952
CLSTR = PBESML,POSRES,RMSRES:RO
EXTSCT MN$BUF:0 STATIC SINGLE CHOICE MENU
EXTSCT DM$BUF:0 DYNAMIC SINGLE CHOICE MENU
EXTSCT HL$BUF:3410 HELP TEXT/MENU
EXTSCT MM$BUF:0 MULTI-CHOICE MENU
EXTSCT FL$BUF:O FILE SELECTION/SPECIFICATION
GBLDEF MN$LUN:20 MENU FRAME FILE
GBLDEF HL$LUN:21 HELP FRAME FILE
GBLDEF MS$LUN:16 MESSAGE FRAME FILE
GBLDEF TT$LUN:15 TERMINAL I/0 EVENT FLAG
GBLDEF MB$LUN:23 MESSAGE/STATUS DISPLAY
GBLDEF WC$LUN:22 DIRECTORY SEARCHES FOR OLDFIL and NEWFILE
GBLDEF TT$EFN:l I/0 EVENT FLAG
II

To use your command file with PRO/FMS-11, you must edit it.
Because FDV uses Logical Unit 5 for input and output to the
terminal, edit the command file by doing the following:

• Find the lines beginning with "ASG" and edit them to read:

ASG = TI:13:15:5
ASG = SY:1:6:7:8:9:10:11:12

• Set the extend section (EXTSCT) command to:

EXTSCT = HL$BUF:3500 ; HELP TEXT/MENU

If your application uses the P/OS Help Services (described in
Chapter 5), compute your frame size and set the extension to this
value if it is larger than the current value. See the Tool Kit
User's Guide for information on calculating frame size.

The fully edited command file for "BASDEM" would look like this
(changed lines appear with an asterisk):

3-4

LINKING WITH THE FORM DRIVER LIBRARY

SY:BASDEM/CP=SY:BASDEM/MP
TASK = BASDEM
UNITS = 19

* ASG = TI:13:15:5
* ASG = SY:1:6:7:8:9:10:11:12

EXTTSK= 952
CLSTR = PBESML,POSRES,RMSRES:RO
EXTSCT MN$BUF:0 STATIC SINGLE CHOICE MENU
EXTSCT DM$BUF:0 DYNAMIC SINGLE CHOICE MENU

* EXTSCT HL$BUF:3500 HELP TEXT/MENU
EXTSCT MM$BUF:0 MULTI-CHOICE MENU
EXTSCT FL$BUF:O FILE SELECTION/SPECIFICATION
GBLDEF MN$LUN:20 MENU FRAME FI-LE
GBLDEF HL$LUN:21 HELP FRAME FILE
GBLDEF MS$LUN:16 MESSAGE FRAME FILE
GBLDEF TT$LUN:15 TERMINAL I/O EVENT FLAG
GBLDEF MB$LUN:23 MESSAGE/STATUS DISPLAY
GBLDEF WC$LUN:22 DIRECTORY SEARCHES FOR OLDFIL
GBLDEF TT$EFN:1 I/0 EVENT FLAG
II

3.2.2 Editing the .OOL File for Media Resident Forms

and NEWFILE

Your application must reference the PRO/FMS-11 Form Driver,
either the non-debug version (FDV) or the debug version (FDVDBG).
To do this, edit the .ODL file to include the Form Driver as part
of the root segment of the program, concatenated with the object
module.

For example,
BASIC-PLUS-2
this:

to include
.ODL file,

the non-debug Form Driver in a
change the line containing .ROOT from

.ROOT BASIC2-RMSROT-USER,RMSALL

to this:

.ROOT BASIC2-RMSROT-USER-FDV,RMSALL

In addition to including the Form Driver (either FDV or FDVDBG)
as part of the line containing .ROOT, you must insert a new FDV:
.FCTR line after the LIBR: line of your ODL file. Examples of
the FDV: .FCTR lines for each Tool Kit language follow.

3-5

LINKING WITH THE FORM DRIVER LIBRARY

e BASIC-PLUS-2

For the non-debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,5]HLLBP2-LB:[1,5]FDV/LB

For the debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,5]HLLBP2-LB:[l,5]FDVDBG/LB

• COBOL-81

Refer to Section 7.2 for more information and sample
programs. In most cases, you should build with the HLLCOB
(COBOL high level language FMS support) module. (This means
that calls to FDV in your application pass string parameters
without delimiters BY DESCRIPTOR.)

If you use the non-debug version of the Form Driver, add the
line:

FDV: .FCTR LB:[1,5]HLLCOB-LB:[1,5]FDV.OLB/LB

If you use the debug version of the Form Driver, add the
line:

FDV: .FCTR LB:[1,5]HLLCOB-LB:[l,5JFDVDBG.OLB/LB

If, however, your COBOL program calls FDV only BY REFERENCE
(the default), and, therefore, has delimiters on the string
parameters (for example, for migrated PDP-11 COBOL V4.0
programs), you need to build with the HLLCBL module.

If you use the non-debug version of the Form Driver, add the
line:

FDV: .FCTR LB:[l,5]HLLCBL-LB:[1,5]FDV.OLB/LB

If you use the debug version of the Form Driver, add the
line:

FDV: .FCTR LB:[1,5]HLLCBL-LB:[l,5]FDVDBG.OLB/LB

3-6

LINKING WITH THE FORM DRIVER LIBRARY

e FORTRAN-77

For the non-debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,S]HLLFOR-LB:[1,S]FDV/LB

For the debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,S]HLLFOR-LB:[1,S]FDVDBG/LB

e MACR0-11

For the non-debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,S]FDV/LB

For the debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,S]FDVDBG/LB

e PASCAL

PASCAL uses the FORTRAN version of the PRO/FMS-11 Form
Driver. For the non-debug version of the Form Driver, add
the line:

FDV: .FCTR LB:[1,S]HLLFOR-LB:[1,S]FDV/LB

For the debug version of the Form Driver, add the line:

FDV: .FCTR LB:[1,S]HLLFOR-LB:[1,S]FDVDBG/LB

3-7

LINKING WITH THE FORM DRIVER LIBRARY

3.2.3 Editing the .ODL File For Memory Resident Forms

If you use memory resident forms with the object module version
of the Form Driver, you must add the object module that contains
the form data (FORMS) to the .ODL file. For example, to use
memory resident forms in a BASIC-PLUS-2 .ODL file, change the
FDV: .FCTR line from this:

FDV: .FCTR LB:[1,5]HLLBP2 ~ LB:[1,5]FDV/LB

to this:

FDV: .FCTR LB:[1,5]HLLBP2 - LB:[1,5]FDV/LB - FORMS

where FORMS is the name of the object file created by the Forms
Utility (PROFUT).

3.3 EXAMPLE FILES USING THE OBJECT MODULE LIBRARY

The following example shows an .ODL file before and after
editing. The original .ODL file for a BASIC-PLUS-2 application
named "BASDEM" would look like this:

.ROOT BASIC2-RMSROT-USER,RMSALL
USER: .FCTR SY:BASDEM-LIBR
-LIBR: . FCTR LB: [1, 5] PBEOTS/LB
@LB:[l,5]PBEIC1
@LB:[l,5]RMSRLX

.END

Edited to reference the non-debug version of the PRO/FMS-11 Form
Driver, the BASIC-PLUS-2 .ODL file would look like this (new
lines appear with an asterisk):

* .ROOT BASIC2-RMSROT-USER-FDV,RMSALL
USER: .FCTR SY:BASDEM-LIBR
LIBR: .FCTR LB:[1,5]PBEOTS/LB

* FDV: .FCTR LB: [1,5]HLLBP2-LB:[1,5]FDV/LB
@LB:[1,5]PBEIC1
@LB:[1,5]RMSRLX

.END

3-8

EXAMPLE FILES USING THE OBJECT MODULE LIBRARY

The debug version of the edited BASIC-PLUS-2 .ODL would look like
this:

* .ROOT BASIC2-RMSROT-USER-FDV,RMSALL
USER: .FCTR SY:BASDEM-LIBR
LIBR: . FCTR LB: [1, 5] PBEOTS/LB

* FDV: .FCTR LB:[1,5]HLLBP2-LB:[1,5]FDVDBG/LB
@LB:[1,5]PBEIC1
@LB:[1,5]RMSRLX

.END

See the programs in Chapter 7 of this manual for sample edited
.ODL files for other languages.

3.4 CHANGE IN FLOPEN

Before V2.0 of PRO/FMS-11, the Form Driver call to FLOPEN always
returned a successful status. In V2.0 and later, FLOPEN returns
the correct status. Refer to the FMS-11/RSX Software Reference
Manual for the correct status values. Use the FSTAT call to
check the file's status when issuing calls.

3-9

CHAPTER 4

FORM DRIVER CLUSTER LIBRARIES

Starting with V2.0 of the Tool Kit, the PRO/FMS-11 Form Driver is
available in two cluster libraries:

• A non-debug version named FMSRES which comes with P/OS.

• A debug version named FMSDBG. This cluster library is
shipped with the Tool Kit on the diskette labelled PRO/APP
DSKT BLDR. See Chapter 6 for installation of this library.

The Vl.7 object module Form Driver will continue as part of the
Host Tool Kit for backward compatibilty. The new functions
described in this chapter and the changes to the key function
correlation exist only in the cluster libraries. Also, DIGITAL
will enhance only the cluster libraries, providing support to
Vl.7 of the object module Form Driver.

Existing applications will run as they currently do. In order to
take advantage of the new functions, however, you must link your
application with the new cluster library. Source code changes
are only necessary to take advantage of the new FNKON and FNKOFF
functions.

4.1 NEW CALLS TO THE CLUSTER LIBRARY

The two new calls to the Form Driver (for higher level languages)
are FNKON and FNKOFF. For MACRO programmers, the new function
codes are FON (for FNKON) and FOF (for FNKOF).

4-1

NEW CALLS TO THE CLUSTER LIBRARY

4.1.1 FNKON - Turn On Function Key Processing

This call turns on function key processing. If you press a
function key that PRO/FMS-11 doesn't use for its editing and form
control functions, the terminator value for that function key is
returned to the calling program.

BASIC-PLUS-2 and FORTRAN call:

CALL FNKON

COBOL call:

CALL "FNKON"

MACR0-11 call:

$FDV ARG=arglst, FNC=FON, REQ=reqlst

Table 4-1 lists the returned status values and codes for the
FNKON call.

Table 4-1: Returned Status Values and Codes for FNKON Call

Status Value
High-Level
Languages

1

-20

-21

Status
Code
Macro-11

FS$SUC

none

none

Meaning

Successful completion

Wrong number of arguments in call
(High-level languages only)

Impure area not yet initialized
(High-level languages only)

4-2

NEW CALLS TO THE CLUSTER LIBRARY

4.1.2 FNKOFF - Turn Off Function Key Processing

This call turns off function key processing. If the terminal
operator presses one of the function keys that PRO/FMS-11 doesn't
recognize, the terminal bell rings.

BASIC-PLUS-2 and FORTRAN call:

CALL FNKOFF

COBOL call:

CALL "FNKOFF"

MACR0-11 call:

$FDV ARG=arglst, FNC=FOF, REQ=reqlst

Table 4-2 lists the returned status values and codes for the
FNKOFF call.

Table 4-2: Returned Status Values and Codes for FNKOFF Call

Status Value
High-Level
Languages

Status
Code
Macro-11 Meaning

1

-20

-21

FS$SUC

none

none

Successful completion

Wrong number of arguments in call
(High-level languages only)

Impure area not yet initialized
(High-level languages only)

NOTE

The call to the Form Driver to process field
terminators (for example, FPFT) returns the value
of an undefined terminator if one of the special
function key terminators is passed to it. These
function key terminators have no meaning to
PRO/FMS-11.

4-3

LK201 FUNCTION KEY TERMINATOR VALUES

4.2 LK201 FUNCTION KEY TERMINATOR VALUES

The PRO/FMS-11 Cluster Libraries include support to return most
of the LK201 function keys as terminators.

To use this new capability, you must change your source code
link with the cluster libraries. If you do not want to use
new capability, you can still build the application against
PRO/FMS-11 cluster libraries. The d~fault for function
processing does not return the function keys as terminators.

and
this
the
key

If the current mode is set to pass back function keys, the form
driver returns the function key to the application in the
terminator variable. However, if the current mode is to disallow
function keys, the form driver rings the terminal bell when the
terminal operator presses a function key.

Table 4-3 lists the terminators for the LK201 function keys. All
key values are in decimal.

Table 4-3: Function Key Terminator Values

Professional
Label Strip

El (Find)

E2 (Insert Here)

E3 (Remove)

E4 (Select)

E5 (Previous Screen)

E6 (Next Screen)

Fl (Hold Screen)

F2 (Print Screen)

F3 (Break)

F4 (Set-Up)

PRO/FMS-11 V2.0
High-Level
Languages

33

34

35

36

37

38

*

*

46

47

4-4

Keycode Name
Macro Global

Symbols

FT$FND

FT$INS

FT$RMV

FT$SEL

FT$PRS

FT$NXS

*

*

FT$BRK

FT$SET

LK201 FUNCTION KEY TERMINATOR VALUES

PRO/FMS-11 V2.0 Keycode Name
Professional High-Level Macro Global
Label Strip Languages Symbols

F5 (F5) 48 FT$F5K

F6 (Interrupt) * *
F7 (Resume) 50 FT$RSM

F8 (Cancel) 51 FT$CAN

F9 (Main Screen) 52 FT$MSC

F10 (Exit) 53 FT$EXI

F11 (Esc) 55 FT$F11

F12 (BS) 2 FT$PRV

F13 (Lf) * *
F14 (Addtnl Options) 58 FT$AOP

Help * *
Do 0 FT$NTR

F17 63 FT$F17

F18 64 FT$F18

F19 65 FT$F19

F20 66 FT$F20

* Function values are not returnable to the application.

NOTE

Under certain circumstances the following two
keys are not returned to the application. If the
current displayed form is an FMS or FDT help
form, the RESUME and NEXT SCREEN key are not
returned. Instead, the RESUME key signals that
the terminal operator has completed the help
function. The NEXT SCREEN key displays the next
HELP form, if any.

4-5

MAPPING FIELD TERMINATORS AND EDITING FUNCTIONS

4.3 MAPPING FIELD TERMINATORS AND EDITING FUNCTIONS

The Cluster Libraries use different keys for the field
terminators and editing functions than the object module version.
These changes make PRO/FMS-11 more compatible with VAX-11 FMS.

Tables 4-4 and 4-5 show the differences between the cluster
library and object module version of the PRO/FMS-11 Form Driver's
mapping of function keys.

Table 4-4: Mapping Function Keys - Ali Regions

Function

Move to Previous Field

Move to Next Field

Erase Field

Insert

Overstrike

Help

Repaint Screen

* Toggles current mode

Object Module
Form Driver

TAB, Fll

F12

Remove

F13 *

F13 *

HELP

F20

4-6

Cluster Libraries
Form Driver

TAB

F12 (BS)

F13 (LF)

PF1/PF3

PF3

PF2, HELP

<CTRL/W>, <CTRL/R>

MAPPING FIELD TERMINATORS AND EDITING FUNCTIONS

Table 4-5: Mapping Function Keys - Scrolled Regions

Function

Exit Field Backward

Exit Field Forward

Object Module
Form Driver

F17

F18

4.4 LINKING WITH THE CLUSTER LIBRARIES

Cluster Libraries
Form Driver

PF1/Up Arrow

PF1/Down Arrow

Before you can link your program with the cluster library, you
must perform the preliminary steps described in Section 3.2.
Then you can edit your command (.CMD) and descriptor (.ODL) files
to include the cluster library Form Driver.

The following sections describe how to edit the .CMD and .ODL
files using the Basic-Plus-2 example "BASDEM'' listed in Section
3.2.1.

4.4.1 Editing the .CMD File

Edit the "ASG" lines and extend section file (EXTSCT) as
described in section 3.2.1.

Next, find the line:

CLSTR = PBESML,RMSRES,POSRES:RO

Modify it to include the PRO/FMS-11 cluster library (for the
non-debug version):

CLSTR = PBESML,FMSRES,RMSRES,POSRES:RO

Or (for the debug version):

CLSTR = PBESML,FMSDBG,RMSRES,POSRES:RO

4-7

LINKING WITH THE CLUSTER LIBRARIES

4.4.2 Editing the .ODL File for Media Resident Forms

Edit the .ROOT line to include
debug (FDVDBG) version of
3.2.2.

either the non-debug (FDV) or
the Form Driver, just as in Section

However, the .FCTR line is different for the cluster library.
After the LIBR: line, insert the following .FCTR line:

FDV: .FCTR LB:[1,5]HLLBP2

4.4.3 Editing the .ODL File for Memory Resident Forms

If you want to use memory resident forms with the cluster
library, edit the .FCTR line as follows:

For the non-debug cluster library, change the line to read:

FDV: .FCTR LB:[1,5]HLLBP2 - LB:[l,S]SYSLIB/LB:FDVDAT - FORMS

where FORMS is the object module created by the Forms Utility
containing your forms.

For the the debug cluster library, change the line to read:

FDV: .FCTR LB:[1,5]HLLBP2 - LB:[l,S]SYSLIB/LB:FDVDBG - FORMS

where FORMS is the object module created by the Forms Utility
containing your forms.

4.4.4 Editing Your Installation (.INS) File

Add the appropriate line to your application installation (.INS)
file.

If you built against the non-debug cluster library, add the
following line:

INSTALL [ZZSYS]FMSRES.TSK/LIBRARY

If you built against the debug cluster library, add the following
line:

INSTALL [ZZSYS]FMSDBG.TSK/LIBRARY

4-8

LINKING WITH THE CLUSTER LIBRARIES

NOTE

Remember--you can build against a maximum of six
cluster libraries.

4.5 EXAMPLE FILES USING THE CLUSTER LIBRARY

The following is the BASIC-PLUS-2 example .CMD file edited to
link the application with the non-debug version of the PRO/FMS-11
cluster library. (Changed lines appear with an asterisk.)

SY:BASDEM/CP/-FP,BASDEM/-SP=SY:BASDEM/MP
TASK = BASDEM
UNITS = 19

* ASG = TI:13:15:5
* ASG = SY:1:6:7:8:9:10:11:12

EXTTSK= 952
* CLSTR=PBESML,FMSRES,POSRES,RMSRES:RO

*

EXTSCT=MN_$BUF:0
EXTSCT=DM_$BUF:O
EXTSCT=HL_$BUF:3500
EXTSCT=MM_$BUF:O
EXTSCT=FL_$BUF:O
GBLDEF=MN $LUN:20
GBLDEF=HL_$LUN:21
GBLDEF=MS_$LUN:l6
GBLDEF=TT_$LUN:15
GBLDEF=MB_$LUN:23
GBLDEF=WC_$LUN:22
GBLDEF=TT_$EFN:l
II

;STATIC SINGLE CHOICE MENU
;DYNAMIC SINGLE CHOICE MENU
;HELP TEXT/MENU
;MUTLI-CHOICE MENU
;FILE SELECTION/SPECIFICATION
;MENU FRAME FILE
;HELP FRAME FILE
;MESSAGE FRAME FILE
;TERMINAL I/O EVENT FLAG
;MESSAGE/STATUS DISPLAY
;DIRECTORY SEARCHES FOR OLDFIL AND NEWFILE
; I/0 EVENT FLAG

The following is the BASIC-PLUS-2 example .ODL file modified to
link the application with the non-debug version of the PRO/FMS-11
cluster library.

* .ROOT BASIC2-RMSROT-USER-FDV,RMSALL
USER: . FCTR SY: BASDEM-LIBR
LIBR: . FCTR LB: [1, 5] PBEOTS/LB

* FDV: .FCTR LB:[l,S]HLLBP2
@LB:[1,5]PBEIC1
@LB:[l,5]RMSRLX

.END

4-9

CHAPTER 5

ENHANCEMENTS TO PRO/FMS-11 HELP FACILITIES

PRO/FMS-11 applications can use P/OS help frames in addition to
regular FMS help forms.

When the terminal operator presses the HELP key while using an
FMS form, help appears in the following order:

1. A one-line help message for the current field.

2. The help form specified by the current form.

3. The P/OS help frame specified in the Named Data section
of the current form.

When the terminal operator presses the HELP key again or presses
the NEXT SCREEN key, help appears in this order:

1. The help form specified by the current form.

2. The P/OS help frame specified in the Named Data section
of the last form displayed.

5-1

HELP FACILITIES

Follow these steps to provide P/OS Help Services with PRO/FMS-11:

Step 1: Create Help Frame Files

Use the Frame Development Tool (FDT) to create help frame files.
See the Toolkit Reference Manual for details.

Step 2: Run PRO/FMS-11 Forms Editor

Run the PRO/FMS-11 Forms Editor (PROFED) and retrieve the form.
Enter the NAME command. PROFED will display the Named Data Entry
Form.

Step 3: Enter .HELP.

In Named Data Entry Form, enter .HELP. in the Name field; and
the frame identifier (frameid) in the Data field.

Step 4: Edit the Source Code

Edit the source code so that it includes calls to P/OS Help
Services to open the Help file before it calls the Form Driver,
and to close the HELP file before the program exits.

Step 5: Edit Command File

Make sure you edit the command file according to Section 3.2.1.

Step 6: Run PRO/FMS-11 Forms Utility

Run the PRO/FMS-11 Forms Utility (PROFUT) and replace the old
form with the new one.

A completed Named Data Entry form would look something like this:

Name Data
!----! !---!
.HELP. INF02

5-2

CHAPTER 6

INSTALLING OPTIONAL APPLICATIONS

Several optional applications are on the diskette labelled
PRO/APP DSKT BLDR, supplied with both the Host Tool Kit and the
PRO/Tool Kit. Install and remove them as needed.

To use the Debug Form Driver, copy the following files:

• FMSDBG.TSK

e FMSDBG.MSG

To run the example programs listed in Chapter 7, copy the
following files:

e DEMLIB.FLB

e LIBRARYl.FLB

e LIBRARY2.FLB

Copy these files to your Professional from the diskette labelled
PRO/APP DSKT BLDR as follows.

1. Log into a system manager's account or a privileged account.

2. Insert the diskette into a diskette drive slot.

3. Copy the files as follows, using either PRO DCL or P/OS File
Services. All files are in directory [PROFMS] on the volume
labelled TOOLKIT.

Copy TOOLKIT:[PROFMS]FMSDBG.TSK to LB:[ZZSYS]
Copy TOOLKIT:[PROFMSJFMSDBG.MSG to LB:[001002]
Copy TOOLKIT:[PROFMS]DEMLIB.FLB to LB:[001002J
Copy TOOLKIT:[PROFMS]LIBRARYl.FLB to LB:[001002]
Copy TOOLKIT:[PROFMSJLIBRARY2.FLB to LB:[001002]

The optional files are now on your system.

6-1

CHAPTER 7

SAMPLE PRO/FMS-11 PROGRAMS

Sample PRO/FMS-11 programs for each of the Tool Kit languages are
part of the Tool Kit in directory LB:[l,5].

Copy the files to your own area. The accompanying forms are in
the file DEMLIB.FLB on the PRO/APP DSKT BLDR diskette distributed
with both the Host Tool Kit and the PRO/Tool Kit. Use the
instructions in Chapter 6 to copy the file to your Professional.

This section contains listings of the sample programs, with any
restrictions or comments you may need.

7.1 TOOL KIT BASIC-PLUS-2

BASIC-PLUS-2 programs can use either the Object Module Form
Driver or Cluster Library Form Driver.

7 .1.1 BAS DEM

The first BASIC-PLUS-2 program, BASDEM, is an FMS-11/RSX generic
program modified to run on P/OS. It demonstrates use of an
Object Module Form Driver.

7-1

TOOL KIT BASIC-PLUS-2

100 REM
110 REM BASDEM.B2S
120 REM
130 REM
140 REM COPYRIGHT <C> 1979 BY
150 REM DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.
160 REM
170 REM
180 REM MODULE: BASDEM
190 REM
200 REM VERSION: VOl.00
210 REM
220 REM AUTHOR: MEGAN
230 REM
240 REM DATE:
245 REM
250 REM MODIFIED:
255 REM
257 REM DATE:
260 REM

10-APRIL-79

ll-MARCH-1983 Changed Command and Odl file

270 REM BASIC-PLUS-2 V2.0 demonstration program for FMS illusrating a
280 REM simple form-driven, data entry application.
290 REM
292 REM Below is an example of a command and ODL file to build
294 REM this demonstration program.
296 REM
298 REM
300 REM BASDEM.CMD
301 REM SY:BASDEM/CP/FP,BASDEM/-SP=SY:BASDEM/MP
302 REM TASK = BASDEM
303 REM UNITS = 19
304 REM ASG = TI:l3:15:5
305 REM ASG = SY:l:6:7:8:9:10:11:12
306 REM EXTTSK = 952
307 REM CLSTR=PBESML,POSSUM,POSRES,RMSRES:RO
308 REM EXTSCT=MN$BUF:O ;SINGLE CHOICE MENU
309 REM EXTSCT=DM$BUF:O ;DYNAMIC SINGLE CHOICE
310 REM EXTSCT=HL$BUF:3410 ;HELP
312 REM EXTSCT=MM$BUF:O ;MULTI-CHOICE MENU
313 REM EXTSCT=FL$BUF:O ;MULTI-CHOICE MENU
314 REM GBLDEF=MN$LUN:22 ;MENU
315 REM GBLDEF=HL$LUN:20 ;HELP
316 REM GBLDEF=MS$LUN:21 ;MESSAGE
317 REM GBLDEF=TT$LUN:l5 ;TERMINAL I/O LUN
318 REM GBLDEF=WC$LUN:23 ;FILE LUN
319 REM GBLDEF=TT$EFN:l ;I/O EVENT FLAG
320 REM //
321 REM
421 REM
422 REM TKB overlay descriptor language file to build BASDEM
423 REM
424 REM .ROOT BASIC2-RMSROT-USER-FDV,RMSALL
425 REM USER: .FCTR SY:BASDEM-LIBR
426 REM LIBR: .FCTR LB: [l,S]PBEOTS/LB
427 REM FDV: .FCTR LB: [l,5]HLLBP2-LB: [l,5]FDV/LB
428 REM @LB:[l,5]PBEIC1
429 REM @LB: [l,5]RMSRLX
430 REM .END
440 REM
450 REM
500 REM Defined variables.
501 DIM I%(1500)
502 C$=STRING$(2%,65%)
503 Fl$=STRING$(6%,32%)
504 F2$=STRING$(13%,32%)
505 A$=STRING$(255%,32%)

7-2

TOOL KIT BASIC-PLUS-2

510 REM VARIABLE
520 REM

DESCRIPTION

530 REM C$
550 REM S%

Choice specified by the user
FDV status

560 REM T% Terminator code
570 REM_Fl$ The initial form name of the series
580 REM F2$ The output file name
590 REM F3$ The current form name
600 REM
610 REM Initialize Form Driver and open library.
620 REM
625 CALL WTQI0(768%,5%,5%)
630 CALL FINIT(I%(),1500%)
635 CALL FLCHAN(6%) \ GOSUB 2000
640 CALL FLOPEN ("LB: [l,2JDEMLIB") \ GOSUB 2000
650 REM
660 REM Show the menu form for operator to select the data
670 REM collection series. Get the first form name from
680 REM named data.
690 REM
700 CALL FCLRSH("FIRST") \ GOSUB 2000
710 CALL FGET(C$,T%,"CHOICE") \ GOSUB 2000
720 CALL FNDATA(C$,Fl$) \CALL FSTAT(S%) \IF S%>0% GO TO 770
730 CALL FPUTL("Illegal choice") \GO TO 710
740 REM
750 REM If form name is ".EXIT.", terminal operator is done.
760 REM
770 IF Fl$=".EXIT." GO TO 1290
780 REM
790 REM Get the output file name from named data and open it.
800 REM
810 CALL FNDATA(TRM$(C$)+"F",F2$)
820 OPEN F2$ FOR OUTPUT AS FILE #1%, FILESIZE 10%
830 REM
840 REM
850 REM

THIS IS THE DATA COLLECTION LOOP

860 REM Set current form= first form in series.
870 REM
880 F3$=Fl$
890 REM
900 REM Show the form.
910 REM
920 CALL FCLRSH(F3$) \ GOSUB 2000
930 REM
940 REM Get data for current form and output it.
950 REM
960 CALL FGETAL(A$) \ GOSUB 2000
970 PRINT #l%,TRM$(A$)
980 REM
990 REM Get name of next form. If found, loop for more data.
1000 REM
1010 CALL FNDATA("NXTFRM",F3$)
1020 IF F3$<>".NONE."GO TO 920
1030 REM
1040 REM End of the form series.
1050 REM we're done or not.
1060 REM

Show last to determine if

1070 CALL FCLRSH("LAST") \ GOSUB 2000
1080 CALL FGET(C$,T%,"CHOICE") \ GOSUB 2000
1090 REM
1100 REM If response= "l", repeat data collection loop.
1110 REM
1120 IF C$="1" GO TO 880
1130 REM
1140 REM Get named data corresponding to response.
1150 REM Get field again if illegal response.
1160 REM Close output file for valid response other than 1.
1170 REM

7-3

TOOL KIT BASIC-PLUS-2

1180 CALL FNDATA(C$,F3$) \ CALL FSTAT(S%) \ IF S%>0% GO TO 1200
1190 CALL FPUTL(Illegal choice") \GO TO 1080
1200 CLOSE #1%
1210 REM
1220 REM If named data is ".EXIT.", terminal operator is done, else
1230 REM display menu form again.
1240 REM
1250 IF F3$<>".EXIT." GO TO 700
1260 REM Close form library and exit.
1270 REM
1280 REM
1290 CALL FLCLOS \ GO TO 9999
2000 REM
2010 REM Output message and exit if I/O error returned from
2020 REM form Driver. This is the only error expected in a
2030 REM debugged application.
2040 REM
2050 CALL FSTAT(S%)
2060 IF S%>0% THEN RETURN
2070 CALL FPUTL("Fatal I/O Error") \STOP
9999 END

7.1.2 MULLIS

The following BASIC-PLUS-2 program, MULLIB, demonstrates
the Cluster Library Form Driver.

100 REM
110 REM
120 REM
130 REM
140 REM
150 REM
160 REM
170 REM
180 REM
190 REM
200 REM
210 REM
220 REM
230 REM
257 REM
260 REM
270 REM
280 REM
290 REM
292 REM
294 REM
296 REM
298 REM
300 REM
301 REM
302 REM
303 REM
304 REM
305 REM
306 REM
307 REM
308 REM
309 REM
310 REM
311 REM
312 REM

MULLIB.B2S

COPYRIGHT (C>)l984 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: MULLIB

VERSION: VOl. 00

AUTHOR:

DATE: 8/4/84

BASIC- Plus- 2 V2.0 demonstration program for FMS illustrating
access to multiple libraries at the same time.

Below is an example of a command and ODL file to build
this demonstration program.

MULLIB.CMD
SY:MULLIB/CP/-FP,MULLIB/-SP=SY:MULLIB/MP
TASK = MULLIB
UNITS = 19
ASG = TI:l3:15:5
ASG = SY:l:6:7:8:9:10:11:12
EXTTSK= 952
CLSTR=PBESML,FMSRES,POSRES,RMSRES:RO
EXTSCT=MN$BUF:O ;STATIC SINGLE CHOICE MENU
EXTSCT=DM$BUF:O ;DYNAMIC SINGLE CHOICE MENU
EXTSCT=HL$BUF:3500 ;HELP TEXT/MENU
EXTSCT=MM$BUF:O ;MUTLI-CHOICE MENU
EXTSCT=FL$BUF:O ;FILE SELECTION/SPECIFICATION

7-4

use of

TOOL KIT BASIC-PLUS-2

313 REM GBLDEF=MN$LUN:l
314 REM GBLDEF=HL$LUN:O
315 REM GBLDEF=MS$LUN:l0
316 REM GBLDEF=TT$LUN:l5
317 REM GBLDEF=MB$LUN:ll
318 REM GBLDEF=WC$LUN:l2
319 REM GBLDEF=TT$EFN:l
320 REM //

;MENU FRAME FILE
;HELP FRAME FILE
;MESSAGE FRAME FILE
;TERMINAL I/O
;MESSAGE/STATUS DISPLAY
;DIRECTORY SEARCHES FOR OLDFIL AND NEWFILE
;I/O EVENT FLAG

321 REM
421 REM
422 REM
423 REM

TKB command file to build MULLIB

424 REM .ROOT BASIC2-RMSROT-USER-FDV,RMSALL
425 REM USER: .FCTR SY:MULLIB-LIBR
426 REM LIBR: .FCTR LB: [l,5]PBEOTS/LB
427 REM FDV: .FCTR LB: [l,5]HLLBP2
428 REM @LB:[l,5]PBEIC1
429 REM @LB:[l,5]RMSRLX
430 REM .END
440 REM
450 REM
500 REM
510 REM

Defined Variables

520 DIM Il%(1000)
530 DIM I2%(1000)
540 C$=STRING$(2%,32%)
550 A$=STRING$(100%,43%)

REM 599
600
610
620

REM VARIABLE
REM

DESCRIPTION

REM
630 REM
640 REM
650 REM
699 REM

Il%
I 21;

C$
A$

First Impure Area
Second Impure Area
Choice specified by the user
Data returned from the form

700 REM Initialize Form Driver and open first library
710 REM
720 CALL WTQIO (768%,5%,5%)
730 CALL FINIT (Il%() ,2000%)
740 CALL FLCHAN (6%) \ GOSUB 2000
750 CALL FLOPEN ("LB: [l,2]LIBRARY1") \ GOSUB 2000
760 REM
770 REM Show the first form from the first library
780 REM
790 CALL FCLRSH ("FIRST") \ GOSUB 2000
800 CALL FGETAL (A$) \ GOSUB 2000
810 REM
820 REM Now open the second library using channel 7
830 REM
840 CALL FI NIT (I2% (), 2000%)
850 CALL FLCHAN (7%) \ GOSUB 2000
860 CALL FLOPEN ("LB: [l,2]LIBRARY2") \ GOSUB 2000
870 REM
880 REM Show the first form from the second library
890 REM
900 CALL FCLRSH ("FIRST") \GOSUB 2000
910 CALL
1000 REM
1010 REM
1020 REM
1020 REM
1030 CALL
1040 CALL
1050 CALL
1060 CALL
1070 REM
1080 REM
1090 REM

FGETAL (A$) \ GOSUB 2000

Now set the Impure back to the first library and
display another form.

FINIT (Il%(),1000)
FLCHAN (6%) \ GOSUB 2000
FCLRSH ("SECOND") \ GOSUB 2000
FGETAL (A$) \ GOSUB 2000

Close the first library

7-S

TOOL KIT BASIC-PLUS-2

1100 CALL FLCLOS
1110 REM
1120 REM Now close the second library
1130 REM
1140 CALL FINIT (I2%(), 1000)
1150 CALL FLCHAN (7%)
1160 CALL FLCLOS \ GOTO 9999
1170 REM
2000 REM Output message and exit if I/O error returned from
2010 REM the Form Driver. This is the only error expected in a
2020 REM debugged application.
2040 REM
2050 CALL FSTAT(S%)
2060 IF S%>0% THEN RETURN
2070 CALL FPUTL("Fatal I/O Error") \STOP
9999 END

7-6

TOOL KIT COBOL-81

7.2 TOOL KIT COBOL-81

When calling PRO/FMS-11 from a COBOL-81 program,

• Use the By Descriptor argument-passing mechanism for
character-type parameters.

• Use the By Reference argument-passing mechanism for
numeric-type parameters, such as the starting line parameter
of FCLRSH or the LUN for the FLCHAN call.

The ODL file should then use the HLLCOB interface.
3.2.2 on editing the descriptor file.

See Section

Another option is available,
passing By Reference, but
character-type parameters.
demonstrate each method.

however, which allows all parameter
requires string delimiters on all
The following sample programs

7.2.1 Passing Variables by Descriptor

This COBOL program passes data variables by descriptor to the
Form Driver. (Numeric variables are passed by reference.) It
uses the interface HLLCOB.

*

CBLDESDEM.CBL

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: CBLDESDEM

VERSION: VOl.00

AUTHOR:

DATE: l-APRIL-79

MODIFIED: To run on the Professional

DATE: 3-MARCH-83

COBOL demonstration program for FMS illustrating a
simple form-driven, data entry application. This program
demonstrates the Call By Descriptor method to call the
Form Driver.

The following is a brief description on compiling and
building CBLDESDEM.

The command to compile the program is:

MCR PROC81 CBLDESDEM,CBLDESDEM=CBLDESDEM

7-7

TOOL KIT COBOL-81

Below is an example of a TKB command file to build
this demonstration program.

CBLDESDEM.CMD

TKB command file to build CBLDESDEM

;TKB COMMAND FILE CREATED ON Ol-MAR-83 AT 14:16:02
CBLDESDEMICPl-FP,CBLDESDEMl-SP=CBLDESDEMIMP
TASK=CBLDEM
CLSTR=C81LIB,POSRES,RMSRES:RO

EXTSCT=MN$BUF:O
EXTSCT=DM$BUF:O
EXTSCT=HL$BUF:3410
EXTSCT=MS$BUF:3100
EXTSCT=MM$BUF:O
EXTSCT=FL$BUF:O

;SINGLE CHOICE MENU
;DYNAMIC SINGLE CHOICE
;HELP
;MESSAGE
;MUTLI-CHOICE MENU
;FILE SELECTION FOR OLDFIL
;AND NEWFIL
;MENU
;HELP

GBLDEF=MN$LUN:22
GBLDEF=HL$LUN:20
GBLDEF=TT$LUN:l5
GBLDEF=WC$LUN:23
GBLDEF=TT$EFN:l

;TERMINAL IIO

;IIO EVENT FLAG

UNITS = 19
ASG TI:l3:15:5
ASG SY:6:7:8:9:10:11:12
II

Below is an example ODL file to build the Demonstration Program

;MERGED ODL FILE CREATED ON
@CBLDESDEM.SKL
SCOBJ$: .FCTR CBLDESDEM.OBJ
@LB: [l,l]RMSRLX.ODL

.NAME RMS$TR
RMSTR$: .FCTR RMS$TR-RMSALL
RMS$: RMS ROT

01-MAR-83 AT 14:16:02

SCLIB$:
OBJRT$:

.FCTR

.FCTR

.FCTR

.FCTR

.ROOT

LB: [l,l]C81LIBILB
SCOBJ$-FDV-SCLIB$-RMS$

FDV: LB: [l,S]HLLCOB-LB: [l,5]FDV.OLBILB
OBJRT$,RMSTR$

.END

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDEM.

TEST PROGRAM

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OUTPUT-FILE ASSIGN TO "SY:".
DATA DIVISION.
FILE SECTION.

7-8

TOOL KIT COBOL-81

Create a sequential file for output of form data.

D OUTPUT-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS ANSWER2.

01 POOL PIC X(256).

Data follows.

WORKING-STORAGE SECTION.
System form library.

01 DEMLIB PIC X(25) VALUE "LB: [l,2]DEMLIB.FLB".
Logical unit number for FMS 11brarv file.

01 LUN PIC 99 COMP VALUE 6.
Impure area.

01 IMPURE PIC X (2000).
Size of

01 ISIZE
01 INUM
01 UN

impure area.
PIC 9999 COMP VALUE 2000.
PIC 999 COMP VALUE 768.
PIC 9 COMP VALUE 5.

Special work area.
ANSWERl -> The initial form name of the series.
ANSWER2 -> The output file name.
ANSWER3 -> The current form name.

01 ANSWERl.
02 PART PIC X(6).
02 FILLER PIC X(7).

01 ANSWER2 PIC X(l3).

01 ANSWER3.
02 PART PIC X(6).
02 FILLER PIC X(7)

Fieldf used to create a field name.

01 FIELDF.
02 DAT PIC X.
02 FILLER PIC X(5) VALUE "F

01 FIELD PIC X(6).

Status

01 STAT PIC 99 COMP.
01 STAT2 PIC 99 COMP.

Error message on program errors.

01 ERRl.
02 PARTl
02 ERR-STAT
02 PART2

PIC X(23) VALUE "FATAL I/O ERROR, STAT=".
PIC ZZZZ9- DISPLAY.

02 ERR-STAT2
01 ILL-CHOICE

PIC X(S) VALUE ", STAT2=".
PIC ZZZZ9- DISPLAY.
PIC X(l6) VALUE "ILLEGAL CHOICE".

FORM DESCRIPTION STARTS HERE

COPY "LB:[l,5]DEMLIB.LIB".

7-9

TOOL KIT COBOL-81

PROCEDURE DIVISION.
MAIN-CONTROL SECTION.
Pl.

*

P6.

*
P2.

*

P4.

P3.

Attach the terminal.
CALL "WTQIO" USING INUM, UN, UN.

Initialize and open the library.
CALL "FINIT" USING BY DESCRIPTOR IMPURE,

BY REFERENCE ISIZE.
CALL "FLCHAN" USING BY REFERENCE LUN.
PERFORM STATUS-CHECK.
CALL "FLOPEN" USING BY DESCRIPTOR DEMLIB.
PERFORM STATUS-CHECK.

Display first form.

CALL "FCLRSH" USING BY DESCRIPTOR FORM-FIRST.
PERFORM STATUS-CHECK.

Show the menu form for operator to select the data
collection series. Get the first form name from
named data.

CALL "FGET" USING BY DESCRIPTOR D-FIRST-CHOICE,
BY REFERENCE STAT,
BY DESCRIPTOR N-FIRST-CHOICE.

PERFORM STATUS-CHECK.
MOVE D-FIRST-CHOICE TO FIELD.
MOVE SPACES TO ANSWERl.
CALL "FNDATA" USING BY DESCRIPTOR FIELD, ANSWER!.
CALL "FSTAT" USING BY REFERENCE STAT.
IF STAT NOT > 0

CALL "FPUTL" USING BY DESCRIPTOR ILL-CHOICE
PERFORM STATUS-CHECK
GO TO P2.

If form name is ''.EXIT.'', terminal operator is done.

IF PART OF ANSWER!= ".EXIT." GO TO LIB-CLOSE.

Get the output file name from named data and open it.

MOVE D-FIRST-CHOICE TO DAT OF FIELDF.
MOVE SPACES TO ANSWER2.
CALL "FNDATA" USING BY DESCRIPTOR

FIELDF, ANSWER2.
PERFORM STATUS-CHECK.
OPEN OUTPUT OUTPUT-FILE.

This is the data collection loop.

MOVE ANSWERl TO ANSWER3.
Show the form.

CALL "FCLRSH" USING BY DESCRIPTOR ANSWER3.
PERFORM STATUS-CHECK.

Get data for current form and output it.

MOVE SPACES TO POOL.
CALL "FGETAL" USING BY DESCRIPTOR POOL.
PERFORM STATUS-CHECK.
WRITE POOL.

7-10

PS.

TOOL KIT COBOL-81

Get name of next form. If found, loop for more data.

MOVE "NXTFRM" TO FIELD.
CALL "FNDATA" USING BY DESCRIPTOR FIELD, ANSWER3.
PERFORM STATUS-CHECK.
IF PART OF ANSWER3 NOT= ".NONE." GO TO P3.

End of the form series.
we're done or not.

Show last to determine if

CALL "FCLRSH" USING BY DESCRIPTOR FORM-LAST.
PERFORM STATUS-CHECK.

CALL "FGET" USING BY DESCRIPTOR D-LAST-CHOICE,
BY REFERENCE STAT,
BY DESCRIPTOR N-LAST-CHOICE.

PERFORM STATUS-CHECK.
MOVE D-LAST-CHOICE TO FIELD.

If response= '1 1' 1 , repeat data collection loop.

IF FIELD= "l" GO TO P4.

Get named data corresponding to response.
Get field again if illegal response.
Close output file for valid response other than l.

CALL "FNDATA" USING BY DESCRIPTOR FIELD, ANSWER3.
CALL "FSTAT" USING BY REFERENCE STAT.
IF STAT NOT > 0

CALL "FPUTL" USING BY DESCRIPTOR ILL-CHOICE
PERFORM STATUS-CHECK
GO TO P5.

CLOSE OUTPUT-FILE.

If named data is 1'.EXIT. 11 , terminal operator
is done, else display menu form again.

IF PART OF ANSWER3 NOT= ".EXIT." GO TO P6.

Close form library and exit.

LIB-CLOSE.
CALL "FLCLOS".
PERFORM STATUS-CHECK.
STOP RUN.

Output message and exit if I.O error returned from
Form Driver. This is the only error expected in a
debugged application.

STATUS-CHECK SECTION.
SCl.

SC2.

CALL "FSTAT" USING BY REFERENCE STAT, STAT2.
IF STAT > 0 GO TO SC2.
MOVE STAT TO ERR-STAT.
MOVE STAT2 TO ERR-STAT2.
DISPLAY ERRl AT LINE 1 AT COLUMN 1, ERASE TO END OF SCREEN.
DISPLAY "Press RESUME to continue." AT LINE 3 AT COLUMN 1.
CALL "WTRES".
STOP RUN.

EXIT.

7-11

TOOL KIT COBOL-81

7.2.2 Passing Variables by Reference

This COBOL program passes all variables by reference to the
Driver. It uses the interface HLLCBL.

*

*

CBLDEM.CBL

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: CBLDEM

VERSION: VOl.00

AUTHOR:

DATE: l-APRIL-79

MODIFIED: To run on the Professional

DATE: 3-MARCH-83

COBOL demonstration program for FMS illustrating a
simple form-driven, data entry application. This COBOL
example program uses the By Reference method (default)
for all calls to the Form Driver.

The following is a brief description on compiling and
building CBLDEM.

The command to compile the program is:

MCR PROC8l CBLDEM,CBLDEM=CBLDEM

Below is an example of a TKB command file to build
this demonstration program.

CBLDEM.CMD

TKB command file to build CBLDEM

;TKB COMMAND FILE CREATED ON Ol-MAR-83 AT 14:16:02
CBLDEMICPl-FP,CBLDEMl-SP=CBLDEMIMP
TASK=CBLDEM
CLSTR=C81LIB,POSRES,RMSRES:RO

EXTSCT=MN$BUF:O
EXTSCT=DM$BUF:O
EXTSCT=HL$BUF:3410
EXTSCT=MM$BUF:O
EXTSCT=FL$BUF:O
GBLDEF=MN$LUN:22
GBLDEF=HL$LUN:20
GBLDEF=MS$LUN:21
GBLDEF=TT$LUN:l5
GBLDEF=WC$LUN:23
GBLDEF=TT$EFN:l

UNITS = 19
ASG TI:l3:15:5

;SINGLE CHOICE MENU
;DYNAMIC SINGLE CHOICE
;HELP
;MUTLI-CHOICE MENU
;MULTI-CHOICE MENU
;MENU
;HELP
;MESSAGE
;TERMINAL I/O

;I/O EVENT FLAG

ASG SY:6:7:8:9:10:11:12
II

7-12

Form

TOOL KIT COBOL-81

Below is an example ODL file to build the Demonstration Program

;MERGED ODL FILE CREATED ON 01-MAR-83 AT 14:16:02
@CBLDEM.SKL
SCOBJ$: . FCTR CBLDEM. OBJ
@LB: [l,l]RMSRLX.ODL

.NAME RMS$TR
RMSTR$: .FCTR RMS$TR-RMSALL
RMS$:
SCLIB$:
OBJRT$:

.FCTR

.FCTR

.FCTR

.FCTR

.ROOT

RMS ROT
LB:[l,l]C81LIB/LB
SCOBJ$-FDV-SCLIB$-RMS$

FDV: LB: [l,S]HLLCBL-LB: [l,S]FDV.OLB/LB
OBJRT$,RMSTR$

.END

IDENTIFICATION DIVISION.
PROGRAM-ID. CBLDEM.

TEST PROGRAM

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT OUTPUT-FILE ASSIGN TO "SY:".
DATA DIVISION.
FILE SECTION.

Create a sequential file for output of form data.

FD OUTPUT-FILE
LABEL RECORDS ARE STANDARD
VALUE OF ID IS ANSWER2.

01 POOL PIC X(256).

Data follows.

WORKING-STORAGE SECTION.
System form library.

01 DEMLIB PIC X(25) VALUE "#LB: [l,2]DEMLIB.FLB#".
Logical unit number for FMS library file.

01 LUN PIC 99 COMP VALUE 6.
Impure area.

01 IMPURE PIC X(2000).
impure area. Size of

01 ISIZE
0 l INUM
01 UN

PIC 9999 COMP VALUE 2000.
PIC 999 COMP VALUE 768.
PIC 9 COMP VALUE 5.

Special work area.
ANSWERl -> The initial form name of the series.
ANSWER2 -> The output file name.
ANSWER3 -> The current form name.

01 ANSWERl.
02 PART PIC X(6).
02 FILLER PIC X(7).

01 ANSWER2 PIC X(l3).
01 ANSWER3.

02 PART PIC X(6).
02 FILLER PIC X(7).

7-13

TOOL KIT COBOL-81

Fieldf used to create a field name.

01 FIELDF.
02 DAT PIC X.
02 FILLER PIC X(5) VALUE "F

01 FIELD PIC X(6).

Status

01 STAT PIC 99 COMP.
01 STAT2 PIC 99 COMP.

Error message on program errors.

01 ERRl.
02 PARTl PIC X(22) VALUE "FATAL I/O ERROR, STAT=".

PIC ZZZZ9- DISPLAY. 02 ERR-STAT
02 PART2
02 ERR-STAT2

01 ILL-CHOICE

PIC X(8) VALUE ", STAT2=".
PIC ZZZZ9- DISPLAY.
PIC X(l6) VALUE "#ILLEGAL CHOICE#".

FORM DESCRIPTION STARTS HERE

COPY "LB: [l,5JDEMLIB.LIB".

PROCEDURE DIVISION.
MAIN-CONTROL SECTION.
Pl.

*

P6.

P2.

*

Attach the terminal.
CALL "WTQIO" USING INUM, UN, UN.

Initialize and open the library.
CALL "FINIT" USING IMPURE, !SIZE.
CALL "FLCHAN" USING LUN.
PERFORM STATUS-CHECK.
CALL "FLOPEN" USING DEMLIB.
PERFORM STATUS-CHECK.

Display first form.

CALL "FCLRSH" USING FORM-FIRST.
PERFORM STATUS-CHECK.

Show the menu form for operator to select the data
collection series. Get the first form name from
named data.

CALL "FGET" USING
0-FIRST-CHOICE, STAT, N-FIRST-CHOICE.

PERFORM STATUS-CHECK.
MOVE 0-FIRST-CHOICE TO FIELD.
MOVE SPACES TO ANSWERl.
CALL "FNDATA" USING

FIELD, ANSWERl.
CALL "FSTAT" USING STAT.
IF STAT NOT > 0

CALL "FPUTL" USING ILL-CHOICE
PERFORM STATUS-CHECK
GO TO P2.

If form name is ".EXIT.", terminal operator is done.

7-14

P4.

P3.

*

*

PS.

TOOL KIT COBOL-81

IF PART OF ANSWERl = ".EXIT." GO TO LIB-CLOSE.

Get the output file name from named data and open it.

MOVE D-FIRST-CHOICE TO DAT OF FIELDF.
MOVE SPACES TO ANSWER2.
CALL "FNDATA" USING

DAT OF FIELDF, ANSWER2.
PERFORM STATUS-CHECK.
OPEN OUTPUT OUTPUT-FILE.

This is the data collection loop.

MOVE ANSWERl TO ANSWER3.
Show the form.

CALL "FCLRSH" USING ANSWER3.
PERFORM STATUS-CHECK.

Get data for current form and output it.

MOVE SPACES TO POOL.
CALL "FGETAL" USING POOL.
PERFORM STATUS-CHECK.
WRITE POOL.

Get name of next form.

MOVE "NXTFRM" TO FIELD.
CALL "FNDATA" USING
FIELD, ANSWER3.
PERFORM STATUS-CHECK.

If found, loop for more data.

IF PART OF ANSWER3 NOT= ".NONE." GO TO P3.

End of the form series.
we're done or not.

CALL "FCLRSH" USING FORM-LAST.
PERFORM STATUS-CHECK.

CALL "FGET" USING

Show last to determine if

D-LAST-CHOICE, STAT, N-LAST-CHOICE.
PERFORM STATUS-CHECK.
MOVE D-LAST-CHOICE TO FIELD.

If response= "l", repeat data collection loop.

IF FIELD= "l" GO TO P4.

Get named data corresponding to response.
Get field again if illegal response.
Close output file for valid response other than 1.

CALL "FNDATA" USING FIELD, ANSWER3.
CALL "FSTAT" USING STAT.
IF STAT NOT > 0

CALL "FPUTL" USING ILL-CHOICE
PERFORM STATUS-CHECK
GO TO PS.

CLOSE OUTPUT-FILE.

If named data is ".EXIT.", terminal operator
is done, else display menu form again.

IF PART OF ANSWER] NOT= ".EXIT." GO TO P6.

7-15

TOOL KIT COBOL-81

Close form library and exit.

LIB-CLOSE.
CALL "FLCLOS".
PERFORM STATUS-CHECK.
STOP Rl,JN.

Output message and exit if I.O error returned from
Form Driver. This is the only error expected in a
debugged application.

STATUS-CHECK SECTION.
SCl.

SC2.

CALL "FSTAT" USING STAT, STAT2.
IF STAT > 0 GO TO SC2.
MOVE STAT TO ERR-STAT.
MOVE STAT2 TO ERR-STAT2.
DISPLAY ERRl AT LINE 1 AT COLUMN 1, ERASE TO END OF SCREEN.
DISPLAY "Press RESUME to continue." AT LINE 3 AT COLUMN l.
CALL "WTRES".
STOP RUN.

EXIT.

7-16

TOOL KIT FORTRAN-77

7.3 TOOL KIT FORTRAN-77

c
C FORDEM.FTN
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: FORDEM

VERSION: VOl. 00

AUTHOR:

DATE: l-APRIL-79

MODIFIED

DATE: 2-MARCH-83 To run on the Professional

C FORTRAN demonstration program for FMS illustrating a
C simple form-driven, data entry application.
c
C Below is an example command file to build this demonstration program
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

SY:FORDEMICP,SY:FORDEMl-SP=SY:FORDEMIMP

TASK = FORDEM

UNITS = 19

ASG=TI:5:13:15
ASG=SY:l:2:7:8:9:10:11:12

CLSTR=PROF77,POSRES,RMSRES:RO

EXTSCT=MN$BUF:O
EXTSCT=DM$BUF:O
EXTSCT=HL$BUF:3410
EXTSCT=MS$BUF:3100
EXTSCT=MM$BUF:O
EXTSCT=FL$BUF:O
GBLDEF=MN$LUN:22
GBLDEF=HL$LUN:20
GBLDEF=MS$LUN:21
GBLDEF=TT$LUN:l5
GBLDEF=WC$LUN:23
GBLDEF=TT$EFN:l
II

;SINGLE CHOICE MENU
;DYNAMIC SINGLE CHOICE
;HELP
;MESSAGE
;MUTLI-CHOICE MENU
;MULTI-CHOICE MENU
;MENU
;HELP
;MESSAGE
;TERMINAL IIO

;IIO EVENT FLAG

c Below is an example ODL file to build this demonstration program
c
c
c
c
c
c
c
c
c

.ROOT FORDEM-FDV-RMSROT~OTSROT-OTSALL
FDV: .FCTR LB:[l,S]HLLFOR-LB:[l,S]FDVILB
@LB:[l,S]PROF77
@LB:[l,S]RMSRLX

.END

7-17

TOOL KIT FORTRAN-77

IMPLICIT INTEGER (A-Z)
DIMENSION IMPURE (1000)
BYTE RESP(3), FORM(7), FORM1(7), DNAM(3), FILE(30), DATA(255)

c
C Initialize impure area for Form Driver and open form library.
c

CALL WTQIO (768,5,5) !ATTACH THE TERMINAL
CALL FINIT (IMPURE, 1000)
CHAN=2
CALL FLCHAN(CHAN)
CALL ERROR (FLOPEN ('LB: [l,2]DEMLIB'))

c
C Display menu form.
c

10 CALL ERROR (FCLRSH ('FIRST '))
c
C Get input from terminal. Get named data (name of first form in
C series or .EXIT.) corresponding to user's choice. If named data
C doesn't exist,
c

input invalid.

20

c

CALL ERROR (FGET (RESP, TERM, 'CHOICE'))
IF (FNDATA (RESP, FORMl) .GT. 0) GOTO 30
CALL FPUTL ('Illegal choice')
GOTO 20

C Check for exit. If choice not exit, get name of corresponding
C file and open it for output.
c

c

30 IF (SCOMP (FORMl,
CALL FLCLOS
STOP

'.EXIT.') .NE. 0) GOTO 40
CLOSE FORM LIBRARY

40 CALL CONCAT (RESP, 'F', DNAM)
CALL FNDATA (DNAM, FILE)
OPEN (NAME=FILE,UNIT=l,STATUS='NEW' ,INITIALSIZE=lO)

C Display form and collect data; write data to output file.
c

c

50 CALL SCOPY (FORMl, FORM, 6)
60 CALL ERROR (FCLRSH (FORM))

CALL ERROR (FGETAL (DATA))
WRITE (1,70) (DATA(I), I=l,LENGTH(DATA)

70 FORMAT (78Al) ! DATA IS BROKEN INTO SEGMENTS FOR OUTPUT

C Get name of next form in series. Check for none.
c

CALL FNDATA ('NXTFRM', FORM)
IF (SCOMP (FORM, '.NONE.') .NE. 0) GOTO 60

c
C If last form in series done, display a menu form.
C Get input from terminal. Get named data corresponding
C to user's choice. If no named data, invalid input.

c

c

CALL ERROR (FCLRSH ('LAST'))
80 CALL ERROR (FGET (RESP, TERM, 'CHOICE' I I

IF (FNDATA (RESP, FORM) .GT. 0) GOTO 90
CALL FPUTL ('Illegal choice')
GOTO 80

C If choice = l, repeat series.
C Else close output file; check for exit or go back to
c initial menu form.
c

90 IF (RESP(l) .EQ.
CLOSE (UNIT=l)
IF (SCOMP(FORM,
CALL FLCLOS
STOP
END

'l') GOTO 50

.EXIT.') .NE. 0) GOTO 10
CLOSE FORM LIBRARY

7-18

TOOL KIT FORTRAN-77

SUBROUTINE ERROR (RESULT)
c
C Output message and exit if I/O error returned from
C Form Driver. This is the only error expected in a
C debugged application.
c

c
IMPLICIT INTEGER (A-Z)

IF (RESULT .GT. 0) RETURN
CALL FPUTL ('Fatal I/O Error')
STOP
END

SUBROUTINE SCOPY (SRC, DST, LEN)
c
c Copy a
c
c SRC
c DST
c LEN
c

c

string of a specified

source byte string
destination byte string
number of characters

BYTE SRC(l), DST(l)
INTEGER LEN

to

length

to be ended
copy

C Copy source to destination for length
c

DO 10 I = 1, LEN
DST(I) = SRC(I)

10 CONTINUE
c
C End destination string with zero byte
c

c

DST(LEN+l) = 0
RETURN
END

INTEGER FUNCTION SCOMP (SRCl, SRC2)

C Compare two strings
c

by a zero

C SRCl
C SRC2

first comparand byte string ended by a zero
second comparand byte string ended by a zero

c
C Value of function is zero for equal, nonzero for not equal
C Compare returns failure if string lengths are not the same
c

BYTE SRCl(l), SRC2(1)
c
C Compare until either string ends in zero byte or does not match
c

10

c
c Return
c
20

c
c Return
c
30

c

I = 1
IF (SRCl(I)

IF (SRCl(I)
I = I + l
GOTO 10

success

SCOMP = 0
RETURN

failure

SCOMP = 1
RETURN

nm

.EQ. 0 .AND. SRC2(I) .EQ. 0) GOTO 20

.NE. SRC2(I)) GOTO 30

7-19

TOOL KIT FORTRAN-77

SUBROUTINE CONCAT (SRCl, SRC2, DST)
c
C Concatenate two strings into a third
c
C SRCl = first source string ended by a zero
C SRC2 = second source string ended by a zero
c DST = destination string ended by a zero
c

BYTE SRCl(l), SRC2(1), DST(l)
c
C Copy the first string into destination
c

J = 1
I = 1

10 IF (SRCl(I) .EQ. 0) GOTO 20
DST(J) = SRCl(I)
J = J + 1
I = I + l
GOTO 10

c
C Now for second string to destination
c
20 I = 1
30 DST(J) = SRC2(I)

c
c Return
c
40

IF (SRC2(I) .EQ. 0) GOTO 40
J = J + 1
I = I + 1
GOTO 30

RETURN
END

SUBROUTINE INSERT (SRC, DST, POS)
c
c Replace a portion of one string with another
c
C SRC
C DST
C POS
c

source string ended by a zero
destination string ended by a zero
position in destination for source string contents

c

BYTE SRC(l), DST(l)
INTEGER POS

c Scan the destination string for its end
c

J = 1
10 IF (DST(J) .EQ. 0) GOTO 20

J = J + 1
GOTO 10

c
c Copy source into destination at position given
c
20 I = 1
30 IF (SRC(I) .EQ. 0) GOTO 40

DST(I+POS-1) = SRC(I)
I = I + l
GOTO 30

c
C End destination string if source extends it and return
c
40 IF (I .GT. J) DST(J) = 0

RETURN
END

7-20

TOOL KIT FORTRAN-77

INTEGER FUNCTION INDEX (SRC, STR)
c
C Find position of one string in another
c
C SRC
C STR
c

source string
target string

C Value of function is zero if not found,
C or position of first character of STR in SRC if found
c

BYTE SRC (l) , STR (1)
c
C Look for STR in SRC until end of SRC
c

10

c

J

J
0
J + 1

I 0
IF (SRC(J) .EQ. 0) GOTO 30

C If end of STR then success
C If not match look at next position in SRC
c
20 IF (STR(I+l) .EQ. 0) GOTO 40

IF (SRC(J+I) .NE. STR(I+l)) GOTO 10
I = I + 1
GOTO 20

c
C Return failure
c
30 INDEX = 0

RETURN
c
C Return success, position of string
c
40 INDEX = J

RETURN
c

END

INTEGER FUNCTION LENGTH (STR)
c
c Return length of string ended by a zero
c
C STR = string ended by a zero
c
c Value of the function is the length of the string without the zero
c

BYTE STR(l)

c
c Scan for the zero byte
c

I = l
10 IF (STR(I) .EQ. 0) GOTO 20

I = I + 1
GOTO 10

c
c Return the length of the string
c
20 LENGTH = I - 1

RETURN
END

7-21

TOOL KIT MACR0-11

7.4 TOOL KIT MACR0-11

.TITLE MACDEM - FMS DEMONSTRATION SUBROUTINE

MACDEM.MAC

COPYRIGHT (C) 1979 BY
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

MODULE: MAC DEM

VERSION: VOl.00

AUTHOR:

DATE: 19-NOVEMBER-79

MODIFIED: SGDOOl

DATE: 14-APRIL-1983 -- TO RUN ON THE PROFESSIONAL

Assembly and Compile instructions: (VAX)

To assemble type:
MCR PMA <RET>
PMA> MACDEM,MACDEM/-SP=LB: [l,S]FMSMAC/ML,LB: [l,S]RMSMAC/ML,DEV:(UIC]MACDEM

To compile type:
MCR PROTKB
PAB> @MACDEM.CMD

Assembly and Compile instructions: (RSX)

To assemble type:
RUN $PMA <RET>
PMA> MACDEM,MACDEM/-SP=LB: [l,S]FMSMAC/ML,LB: [l,5]RMSMAC/ML,DEV: [UICJMACDEM

To compile type:
RUN $PROTKB
PAB> @MACDEM.CMD

.ENABL LC

.MCALL $FDV,$FDVDF

.MCALL QIOW$S,EXIT$S,DIR$,ALUN$

.MCALL FABB, RABB, POOL$B

.MCALL $STORE, $COMPARE, $CREATE

.MCALL $CONNECT, $DISCONNECT

.MCALL $PUT, $CLOSE, ORG$

$FDVDF

Equated symbols

ISIZ=l024.
IN$CHN=l
OU$CHN=2

Allow lower case source text

Identify Form Driver macro calls
RSX I/O related macros
RMS related macros

Init the Form Driver definitions

Size of FDV impure area
Input channel number (Form Library)
Output channel number (Output File)

7-22

.SBTTL

EXTNAM: .ASCII
NONNAM: .ASCII
FSTNAM: .ASCII
LSTNAM: .ASCII
CHCNAM: .ASCII
NXTNAM: .ASCII
LIBNAM: .ASCIZ
MSGl: .ASCIZ
MSG2: .ASCIZ

.EVEN

TOOL KIT MACR0-11

Local data

/.EXIT./
/.NONE./
/FIRST I
/LAST I
/CHOICE/
/NXTFRM/
/LB: [1, 2 JDEMLIB/
/Illegal choice/
Fatal I/O error

Exit name
No more forms in series
ASCII form name
ASCII form name
ASCII field name
ASCII named data field name
ASCII library name
Message for illegal menu choice
Message with embedded '/'

Argument lists and data area

ARGLST: .BLKB
REQLST: .BLKB

STAT: .BLKW

VARl: .BLKB

FRMNAM: .BLKW
SAVNAM: .BLKW
IMPURE: .WORD

.BLKB

I/O section

FABADD:

RABADD:

RMS$LUN:

.EVEN

FAB$B
F$DEQ
F$ALQ
F$FOP
F$FAC
FAB$E

.EVEN

RAB$B
R$FAB
R$RAC
RAB$E

.EVEN
POOL$B
P$BDB
P$FAB
P$RAB
P$BUF
POOL$E

.EVEN

ALUN$
.EVEN
ORG$

F$ASIZ
F$RSIZ

2

6

3
3
ISIZ
ISIZ-2

2
2
FB$SUP
FB$PUT

FABADD
RB$SEQ

2
1
1
512.

OU$CHN, SY, 0

SEQ,<CRE,PUT>

Form Driver argument list
Form Driver required list

Form Driver status block

Variable 6-byte block for general use

Area for form names
Save area for a form name
Form Driver impure area

Allocate RMS FAB
Default file extension size
Allocation size for the file
Create new file
File access operations
End FAB declarations

Allocate RMS RAB
Connect to FAB address
Record access is sequential

Begin Pool declarations
Allow two buffer desc blocks
Only one file will be open
Need only one RAB
I/O Buffer space

Assign a LUN to the Disk

Define RMS needed functions

.SBTTL MACDEM · FMS Demonstration Subroutine

7-23

TOOL KIT MACR0-11

;++
FUNCTIONAL DESCRIPTION:

DEMO:

1 $:

FIRST:

10$:

20$:

3 0 $:

This is the MACRO demonstration program for FMS
illustrating a simple form-driven, data-entry
application .

. PSECT MACDEM

DIR$
QIOW$S
BCC
CALL

MOV

MOV
MOV
MOV
MOV

$FDV
$FDV
CALL

$FDV
CALL

$FDV
CALL

MOV
CALL
MOVB
$FDV

CMP
BEQ
$FDV
BR

MOV
MOV
CALL
BNE
JMP

CALL
MOV
MOV
.REPT

MOV
.ENDR
MOVB
MOV
$FDV

MOV

#RMS$LUN
#IO.ATT,#T$LUN,#T$EFN
1$
LEAVE

#ARGLST,RO

#REQLST,Rl
#STAT,F$STS(Rl)
#INCHN,FCHN(Rl)
#IMPURE,F$IMP(Rl)

REQ=Rl
FNC=OPN,NAM=#LIBNAM
ERR EX

FNC=CSH,NAM=#FSTNAM
ERR EX

FNC=GET,NAM=#CHCNAM
ERR EX

#VARl,Rl
BL KN AM
@F$VAL(RO) ,VARl
FNC=DAT,NAM=#VARl

STAT,#FS$SUC
20$
FNC=LST,VAL=#MSGl,LEN=#-1
10$

F$VAL(RO) ,Rl
#EXTNAM,R2
CMPNAM
30$
LIBCLS

MOVNAM
#FRMNAM,Rl
#SAVNAM,R2
3

(Rl)+,(R2)+

#'F,VARl+l
#VARl,Rl
FNC=DAT,NAM=Rl

#FABADD,R3
MOV #RABADD,R4
$STORE F$VAL(RO) ,FNA,R3
$STORE F$LEN(RO),FNS,R3
$STORE #0U$CHN,LCH,R3
$CREATE R3
$COMPARE #SU$SUC,STS,R3
BEQ 40$
CALL LEAVE

Assign the LUN 0 to the Disk
Attach the terminal
If error then just leave
Done for now

RO addr of FDV arg list

Rl addr of FDV required arg list
Set addr of status block
Set I/O channel for FDV
Set addr of FDV impure area

Init required arg list pointer
Open form library
Exit with error

Show menu form
Exit if error

Get field 'CHOICE'
Exit if error

Rl = ptr to 6-byte block
Blank out VARl
VARl = menu choice
Get named data with the name being

the response to 'CHOICE'
Was get successful?
Continue if ok
; Else print message on line 24
Try again

Rl = addr of name from named data
R2 = addr of exit name
Zero set on match
Continue on match
Else close form library and exit

Save named data
Rl = adr of source name
Adr to save form name

Save form name

Make 2nd letter = F
Rl = addr of 6-byte block
Get named data at VARl

Move the FAB address to R4
Move the RAB address to R4
Move the addr of the file name
Move the file name size
Set the LUN in the FAB
Create the file
Check RMS Status
Continue if status
Leave on I/O error

7-24

40$:

60$:

70$:

80$:

90$:

TOOL KIT MACR0-11

$CONNECT R4 Connect the RAB to the FAB
Check RMS Status $COMPARE #SU$SUC,STS,R4

BEQ 60$ Continue if ok
CALL

$FDV
CALL

$FDV
CALL

CALL

$FDV
CALL
MOV
MOV
CALL
SEQ
BR

$FDV
CALL

$FDV
CALL

MOV
CMPB
BNE
MOV
MOV
.REPT

MOV
.ENDR
BR

MOVB
MOVB
$FDV
TST
SGT

$FDV
BR

LEAVE Leave on I/O error

ARG=#ARGLST,FNC=CSH,NAM=#FRMNAM
ERREX Exit with error

FNC=ALL
ERR EX

SAVDAT

Get all data from form
Exit with error

Put data in file

ARG=#ARGLST,FNC=DAT,NAM=#NXTNAM ; Get name of next form
MOVNAM Put form name in FRMNAM
#NONNAM,Rl Rl = adr of ASCII .NONE.
#FRMNAM,R2 R2 = adr of returned name
CMPNAM Zero set on match
70$ Display last form on match
60$ Else get data from next form

FNC=CSH,NAM=#LSTNAM
ERR EX

FNC=GET,NAM=#CHCNAM
ERR EX

F$VAL(RO) ,Rl
(Rl), #' 1
90$
#SAVNAM,Rl
#FRMNAM,R2
3

(Rl)+,(R2)+

60$

(Rl),VARl
#40,VARl+l
FNC=DAT,NAM=#VARl
STAT
CH KC LS

FNC=LST,VAL=#MSGl,LEN=#-1
80$

Exit with error

Exit with error

Rl adr of answer
Is it = 1

Rl sout"ce name
R2 dest name

Move name

Get more data

Move into variable for name
Make 2nd char blank
Get named data
Check status
If ok then close file

; Print message on line 24
Try again

Close the output file

CH KC LS::
MOV #FABADD,R3
$DISCONNECT R4
$COMPARE #SU$SUC,STS,R4
SEQ 95$
CALL LEAVE

95$: $CLOSE R3
MOV #EXTNAM,Rl
MOV #ARGLST,RO
MOV F$VAL(RO),R2
CALL CMPNAM
BEQ LIBCLS
JMP FIRST

LIBCLS: $FDV FNC=CLS
BR EXIT

Move the addr of the FAS to R3
Disconnect the access stream
Check RMS Status
Branch if Status OK
Else I/O error
Close output file
Name of exit named data
Get ARGLST
R2 = adr of named data
Zero set if match
Exit on match
Back to start on no match
Close form library
And exit

7-25

TOOL KIT MACR0-11

Routine to check for error return from Form Driver.
Print message and exit on error.

ERREX: STAT,#FS$SUC Was call ok?
LEAVE

LEAVE: ARG=#ARGLST

CMP
BNE
RETURN
$FDV
$FDV
EXIT$S

FNC=LST,VAL=#MSG2,LEN=#-l Print message on line 24
EXIT:

Subroutine to store data in output file

SAVDAT: $STORE F$VAL(RO),RBF,R4
$STORE F$LEN(RO),RSZ,R4
$COMPARE #0,RSZ,R4

10$:

BEQ 10$
$PUT R4
$COMPARE #SU$SUC,STS,R4
BEQ 10$
CALL
RETURN

LEAVE

Move the addr data to the RAB
Move the len of data to RAB
See if the data length is zero
If not return
Store away the string of data
Check the RMS Status
Branch if equal
Leave on I/O error

Subroutine to move name and blank fill to 6 chars
F$VAL(RO) = Addr of source name
F$LEN(RO) = Length of source name
FRMNAM = Addr of destination of name

MOVNAM:
MOV #FRMNAM,Rl
CALL BLKNAM
MOV F$VAL(RO) ,Rl
MOV #FRMNAM,R2
MOV F$LEN(RO),R3

10$: MOVB (Rl)+, (R2)+
DEC R3
BNE 10$
RETURN

Subroutine to blank 6 bytes

BLKNAM:

5$:

Rl = Addr of name to blank

MOV
MOVB
DEC
BNE
RETURN

#6,R2
#40,(Rl)+
R2
5$

Subroutine to compare two 6-byte names
Rl,R2 point to names
R3 = 0 if match on return

CMPNAM:
MOV #6,R3

10$: CMPB (Rl)+, (R2)+
BNE 20$
DEC R3
BNE 10$

20$: RETURN

.END DEMO

Rl = addr to store form
Blank out name
Rl = addr of named data
R2 = addr to store form
Length of named data
Move named data to form
Dec char ctr

R2 = 6
Init name with blanks
Dec byte ctr

6 char compare
Compare 2 bytes
Leave loop if no match
Dec char ctr

7-26

name

name

name

TOOL KIT MACR0-11

MACDEM.CMD

Command file for FMS - MACRO Demonstration program

MACDEM/CP/-FP,MACDEM/-SP=MACDEM/MP
TASK = MACDEM
UNITS = 8
ASG = TI:5
ASG = SY:l:2:3:4:6:7:8
CLSTR = FMSRES,POSRES,RMSRES:RO

EXTSCT=MN$BUF:O
EXTSCT=DM$BUF:O
EXTSCT=HL$BUF:3500
EXTSCT=MM$BUF:O
EXTSCT=FL$BUF:O
GBLDEF=MN$LUN:2
GBLDEF=HL$LUN:3
GBLDEF=MS$LUN:4
GBLDEF=TT$LUN:S
GBLDEF=MB$LUN:6
GBLDEF=WC$LUN:7
GBLDEF=TT$EFN:l
II

MACDEM.ODL

;STATIC SINGLE CHOICE MENU
;DYNAMIC SINGLE CHOICE MENU
;HELP TEXT/MENU
;MUTLI-CHOICE MENU
;FILE SELECTION/SPECIFICATION
;MENU FRAME FILE
;HELP FRAME FILE
;MESSAGE FRAME FILE
;TERMINAL I/O
;MESSAGE/STATUS DISPLAY
;DIRECTORY SEARCHES FOR OLDFIL AND NEWFILE
;I/O EVENT FLAG

ODL file for the FMS - MACRO Demonstration program .

. ROOT USER-RMSROT
USER: .FCTR MACDEM - LB: [l,5]SYSLIB/DL
@LB: [l,S]RMSRLX

.END

7-27

TOOL KIT PASCAL

7.5 TOOL KIT PASCAL

When using PASCAL with PRO/FMS-11, follow these instructions:

• Source Code. PRO/FMS-11 calls for PASCAL are in the Tool
Kit file FMS.PAS in directory LB:[l,5]. Use the %INCLUDE
directive to include the file in your PASCAL source code:

{ Include PRO/FMS Procedures
%Include 'LB:[l,5]FMS.PAS'

• Calling Sequence. FMS.PAS consists of SEQll procedures,
which pass all parameters by reference. To determine the
appropriate calling sequences for your application, refer to
FMS.PAS and the section in the Tool Kit PASCAL User's Guide
on interfaces between Tool Kit Pascal and P/OS and other Tool
Kit Software.

NOTE

Pad PASCAL form and field
spaces. Otherwise, the
access the form or field.

names with six
Form Driver cannot

• Parameters. There are no optional parameters for PASCAL
calls to PRO/FMS-11. You must include all parameters. For
example, in FMS.PAS, declare FCLRSH as a SEQll procedure with
two parameters. If you want to use the FCLRSH call, but you
do not want to specify a new value for the starting line,
pass 0 as the first parameter. The form displays at the
starting line specified.

• Indexes. When using an FMS.PAS routine that allows
indexes, you must specify an index for the variable. When
you access the field, assign it an index of 1. For example:

index := 1;
field := 'CHOICE';
FGET (response, terminator, field, index);

• variables. PASCAL can pass only variables when calling
routines declared in FMS.PAS. For example, the following
source statement would fail:

FCLRSH("FIRST ",0);

The correct calling sequence for FCLRSH is:

7-28

TOOL KIT PASCAL

VAR Form_Name
Starting_Line

{ Main Program

Packed Array (1 .. 6] Of Char;
Integer;

Form_Name := 'FIRST ';
Starting_Line := 1;
FCLRSH(Form_Name,Starting_Line);

If you want to pass constants as parameters, edit FMS.PAS and
assign the appropriate formal parameters the READONLY
attribute. For example, if you edited FMS.PAS so that both
FCLRSH parameters were READONLY, you could use the call:

FCLRSH('FIRST' ,1);

See the PASCAL User's Guide for details on interfaces between
Tool Kit Pascal and PO/S and other Tool Kit software.

• Library File Specification. You must terminate a library
file specification with a NUL character. Without it,
PRO/FMS-11 cannot access the library file. For example, this
is a correct PASCAL library file specification:

VAR File_Spec : Packed Array (1 .. 15] Of Char;

Main Program

File_Spec := 'LB:[l,2]DEMLIB'(0);

FLOPEN(File_Spec);

• FPUTL. You must terminate data sent to the FPUTL call with
a NUL character. Without it, random data might appear on the
screen. For example, this PASCAL sequence would successfully
pass data to FPUTL:

VAR Message : Packed Array [l .. 16] Of Char;

Main Program

Begin
Message := 'Example message'(0);
FPUTL(Message);

End.

7-29

TOOL KIT PASCAL

• Impure Area and Data String Restrictions. Using PASCAL
with FMS.PAS, you can define an impure area as large as 1500
bytes and pass a data string of up to 1500 characters. If
you need larger values, increase the variable MAX_FMS PAR_LEN
in FMS.PAS.

Add one byte to the size of your buffer where any call to the FMS
Form Driver produces data returned to your program as a buffer.
The Fortran Interface places a null byte at the end of the string
returned to the caller to signify the end of the string. If you
do not add the extra byte, the PRO/FMS-11 Form Driver overwrites
part of your data space or program.

For example,if the field is one character
buffer must be two characters long.

long, the response

The following is a sample PRO/FMS-11
FMS.PAS.

program in PASCAL, using

PROGRAM PASDEM (INPUT,OUTPUT);

PASDEM.PAS

Copyright (C) 1983 By
Digital Equipment Corporation, Maynard, Mass.

Module: PASDEM

Version VOl.00

Author:
Date: 27-Apr-1983

PASCAL Demonstration program for PRO/FMS illustrating a
simple Form-Driven, data entry application.

Below is an example command and odl file to build
this demonstration program.

;PASDEM.CMD

SY:PASDEM/CP/-FP,PASDEM/MA/-SP=SY:PASDEM/MP
CLSTR=PASRES,POSRES,RMSRES,DAPRES:RO
TASK=PASDEM
UNITS 20
ASG
ASG
EXTSCT
EXTSCT
GBLDEF
GBLDEF
GBLDEF
GBLDEF
GBLDEF
GBLDEF
II

TI:5:13:15
SY:6:7:8:9:10:11:12
MN$BUF:O
HL$BUF:3410
MS$LUN:2l
WC$LUN:23
HL$LUN:20
MN$LUN:22
TT$LUN:l5
TT$EFN:l

7-30

TYPE

VAR

TOOL KIT PASCAL

Example ODL file:

;PASDEM.ODL

.ROOT USER - PASCAL

USER: .FCTR SY:PASDEM

PASCAL: . FCTR
FDV: . FCTR
@LB:[l,S]DAPRLX

LB:[l,S]PASLIB/LB-FDV-RMSROT
LB:[l,5]HLLFOR-LB:[l,5]FDV.OLB/LB

.END

Include PRO/FMS Procedures

%Include 'LB:[l,5]FMS.PAS'

Declare types and variables

Impure
Forms
File_ Spec
Buffer
Out Line
Named Data

QIO_Function,
TT_LUN,
TT_EFN,
Index,
Length,

PACKED ARRAY
PACKED ARRAY
PACKED ARRAY
PACKED ARRAY
PACKED ARRAY
PACKED ARRAY

Channel,
Terminator,
Starting Line,
Status_!~ Status 2,
Impure_Size: Integer;
Impure Area: Impure;
Library: File_Spec;
Field,
Response,
Next_Form,
Current Form:
Message:
All Data:
Name Data:
More Data:
Out File:

Forms;
Out_ Line;
Buffer;
Named_ Data;
Boolean;
Text;

[l .. 1000] Of Integer;
[1.. 6] Of Char;
[1. . 15] Of Char;
[l. .225] Of Char;
[1. . 41]
[1.. 66]

Of Char;
Of Char;

Qio function code
Terminal LUN
I/O event flag
FMS field index
Length of data
FMS Library channel
Form terminator
Starting line for forms
Status values of FMS calls
FMS Impure area
Size of FMS Impure area
Forms library
FMS field name
User's response
Next form to display
Current form to display
Message for FPUTL call
Storage for all data in a form
Storage for named data
Flag for more data
File variable for outf ile

***** Procedure to wait for the RESUME key *****

This procedure is called in the event that the forms library can not
be opened. This procedure calls the routine WTRES in the P/OS callable
library. I

PROCEDURE WTRES; SEQll;

***** Procedure to attach the terminal *****

Call this procedure to attach the terminal. The Form Driver
needs the terminal attached. Call the FORTRAN routine WTQIO in
SYSLIB.

PROCEDURE WTQIO(VAR QIO Function: Integer;
VAR TT_LUN: Integer;

(Function code for QIO
[I/O Channel

7-31

TOOL KIT PASCAL

VAR TT EFN: Integer
); SEQll;

(I/O Channel

***** Procedure to move data in one variable to another *****

Call this procedure to move character data from one variable
to another variable. This is useful if the two variables differ in

length. Three parameters pass. Copy the two variables and the number
of characters from the first variable to the second variable.

PROCEDURE MOVE(VAR Varl: Packed Array{LBl .. UPl
VAR Var2: Packed Array{LB2 .. UP2

Integer] Of Char;
Integer] Of Char;

VAR

Begin

End;

Begin

VAR Length Integer
) ;

I Integer;

: = l;
While I <= Length Do

Begin
Var2[I] .- Varl[I];
I .- I + l

End

End of Procedure MOVE

Main Program **********

***** Initialize variables *****

Index := O;
Channel := 7;
Impure Size .- 1000;
Library.- 'LB:[l,2]DEMLIB'(0);
QIO Function .- 768;
TT_LUN := 5;
TT EFN := 5;
Start1ng_Line := l;
Current Form ::::::

***** Initialize FMS Impure Area and Open Library *****

WTQIO(QIO_Function,TT_LUN,TT_EFN);

FINIT(Impure Area,Impure Size,Status l);
FLCHAN(Channel); -
FLOPEN(Library);
Writeln(CHR(27),' (2J');

(Attach the terminal

(Iniatilize FMS Impure Area }
{Set the library channel }
{Open demonstration library }
(Clear the screen }

Display menu form for operator to select the data collection
series. This will continue until the operator chooses the exit
selection from either the form called FIRST or the form called LAST

While Current Form <> '.EXIT.' Do

Begin

Current Form .- 'FIRST
FCLRSH(Current Form,Starting Line)
FSTAT(Status_l~Status 2);

7-32

(Display the first form
{Check the status

If Status l = 1 Then
Begin

Field :=

Status 1
End

'CHOICE';
.- 0

TOOL KIT PASCAL

Else
Begin

Status

(Else display error message
(and exit.

: = l;
Next Form .- '.EXIT.';
Length := 6;
MOVE(Next Form,Name Data,Length)
Writeln('Error opening library file, Press RESUME to continue.');
Writeln;
WT RES

End; [IF]
[Wait for the operator to
[read error message

While Status l <> l Do

Begin
FGET(Response,Terminator,Field,Index);
FNDATA(Response,Name_Data);
FSTAT(Status l,Status 2);
If Status l (0 Then -
Begin

Message .- 'Illegal Choice
FPUTL(Message)

End; [IF}

End; (While Status]

Length := 6;
MOVE(Name_Data,Current_Form,Length);

If Current Form <> '.EXIT.
Begin

Field := Response;
Field[2] .- 'F';
FNDATA(Field,Name Data);
Open(Out_File, -

Then

File_name:=Narne_Data,
History:==New,
Record_length:=255
) ;

More Data := TRUE;
While More Data Do
Begin;

Next Form .- Current_Form;
Whil; Next Form <> '.NONE. Do
Begin

FCLRSH(Next_Form,Starting Line);
FGETAL(ALL Data,Terminator);
Write(Out_File,All_Data);
Field .- 'NXTFRM';
FNDATA(Field,Name_Data);
MOVE(Name Data,Next Form,Length);

End; [While-Next Form}

Status .- 0;
Field . - 'CHOICE';
Next Form .- 'LAST
FCLRSH(Next Form,Starting Line);
While Statu~ l <> 1 Do
Begin

FGET(Response,Terminator,Field,Index);
FSTAT(Status_l,Status 2);
FNDATA(Response,Name_Data);

7-33

' (o I

End.

TOOL KIT PASCAL

FSTAT(Status_l,Status_2);
If Status 1 < 0 Then
Begin

Message := 'Illegal Choice
FPUTL(Message)

End {IF}
End; {End While Status)

If Response[l] = '2' Then
Begin

More Data .- FALSE
Close(Out File)

End; {IF}

If Response[l] = '3' Then
Begin

More Data .- FALSE;
Close(Out File);
Current Form .- 1 .EXIT.

End; {IF}

End; {While More Data

End; {IF}

End; { While Current_Form }

FLCLOS; (Close FMS library file

7-34

' (o I ;

Associated documents, vi
Audience

for this manual, v

Cluster libraries
copy DEMLIB.LIB, 6-1
copy FMSDBG.MSG, 6-1
debug, 6-1
example files, 4-9
Form Driver, 4-1
linking routine libraries, 4-7

Command file
editing cluster libraries, 4-7
editing object module, 3-3

DEMLIB.FLB, 7-1
Descriptor file (.ODL)

editing cluster libraries, 4-7
editing object module, 3-5

Editing functions
mapping, 4-6

Field terminators
mapping, 4-6

FLOP EN
Changes in call, 3-9

Form Driver
command file editing

cluster libraries, 4-7
object library, 3-3

linking with
cluster libraries, 4-7
object library, 3-3

memory resident
cluster libraries, 4-8

object library, 3-8
(.ODL) file editing

cluster libraries, 4-8
object library, 3-5

Professional keyboard, 3-1
Form Driver calls

new calls (cluster library
only), 4-1

Form Editor
Professional Keyboard, 2-2

Function keys, 4-4

INDEX

terminator values, 4-4
turn off processing, 4-3
turn on processing, 4-2

HELP
creating new Help frames, 5-2
P/OS Help frames, 5-1

Impure areas
need for, 3-1

Keyboard differences
Form Driver, 3-1
Form Editor, 2-2

Linking
cluster libraries Form Driver,

4-7
object module Form Driver, 3-3

Media resident forms
with cluster libraries, 4-8
with object module, 3-5

Memory resident forms
with cluster libraries, 4-8
with object module, 3-8

Passing variables
COBOL-81, By Descriptor, 7-7
COBOL-81, By Reference, 7-12

PROF ED
attribute differences, 2-1
creating forms with, 1-2
running in terminal emulation,

2-1
PRO FUT

creating a form library with,
1-2

Program development
compile or assemble, 1-3
copy files to Professional, 1-3
create form library, 1-2
create forms, 1-2
cycle, 1-2
illustration

Host Tool Kit, 1-5
Pro/Tool Kit, 1-4

Index-1

install application, 1-3
installation command file, 1-3
languages, 1-1
modify (.ODL) file, 1-3
run program, 1-3
sample program, 1-1
task building, 1-3
write source code, 1-2

INDEX

Sample programs
BASIC-PLUS-2, 7-1
COBOL-81, 7-7
FORTRAN-77, 7-17
MACR0-11, 7-22
PASCAL, 7-28

Terminal operator
languages, 4-3

Index-2

