
EK-DCJ11-UG-PRE

DCJI11

Microprocessor

User's Guide

4

]
AR
]i
i

s!
‘B
) |
N

PRELIMINARY

2020020

EK-DCJ11-UG-PRE

DCJI11

Microprocessor

User’s Guide

PRELIMINARY

Prepared by Educational Services

of

Digital Equipment Corporation

Preliminary, October 1983

Copyright © 1983 by Digital Equipment Corporation
All Rights Reserved

The material in this manual is for informational purposes and is

subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any

errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSTS

DECnet IAS RSX

DECUS MASSBUS TOPS-10

DECsystem-10 MI! 'C-11 TOPS-20

DECSYSTEM-20 OM. RUS UNIBUS

DECwriter 0S/8 VAX

DIBOL PDP VMS

025050 POT VT

CONTENTS

Page

PREFACE | -

CHAPTER 1 ARCHITECTURE

INTRODUCTION o ¢ & 0 ¢ &6 6 0 o

GENERAL-PURPOSE REGISTERS.....

e & & 0 & % O 5 ¢ O 0 0 0 O O S BO SO SN

PROCESSOR STATUS WORD...:ecevoeenens ® 6 & ¢ & ¢ O 0 0 0 0 O 0 S e 0 0 0 0D

Processor Modeso..Q.......O.‘.......Q..............

Priority Levels.0.........'0.0.............

.1l

.2

.3 The Trace/Trap Bit.iceeseeecesesssccoscssscsssncccss

.4 Condition COdeS.ceeeeoceoscccosssscsnssssssscssscscscsce

.5

1

2

3

3

3

3

3

3 Processor Status (PS) ProtectioN..cceceecececccecses

4 INTERRUPTS AND TRAPS . v coveeesoceesocscscssssssosesossos
5

6

7

8

9

1

1

1

H
E
E
O
A
O
A
O
N
R
O
O
W
N
D
E

o
o
t

HALTING DCJ1l OPERATION...cceesoeoss

PROGRAM INTERRUPT REQUEST REGISTER.....................

CPU ERROR REGISTER.:ccceoeescsovsescssosvscssosvcsos

STACK PROTECTION...vcceecovcocoss

FLOATING-POINT PROCESSING cecevsescrssres ss e

.10 MEMORY SYSTEM REGISTERS..........;..................... 1-17

.11 DIRECT-MEMORY ACCESS (DMA) MECHANISM......

® & 6 & & 6 ¢ 0 0 ¢ ¢ 0 0 " o 0 0

I

o
t

=

=

~
N
o
o
o

l
d
h
‘
t
h
k
f
l
t
h
f
i
‘
H
r
d
h
f
l
d
h
f
l
H

-

|
T ~
]

® & & O 0 & 0 0 0 0 o 0 0

CHAPTER 2 PIN DESCRIPTION

® ® ¢ 6 0 & O 8 0 & & & 0 0 S 0O O O O OO NS SO SO e

N

-

|

O
O
V

I

N
N

N
N

E
B
L
E
R
W
N
O
D
N
D
N
D
N
D

2

2

2.1 Upper Data/Address Lines (DAL<21:16>)..cecceccccses 2

2.2 Lower Data/Address Lines (DAL<15:00>).ccceececccces 2

. SYSTEM CONTROL LINES . . ¢tecesetoecsoscsosscscssscscsoscsscsscsssncsese 2~

3.1 Bank Select (BS<l:0>) .eieeceesooescsossosnosssssncss 2=

3.2 Address Input/Output (AJO<3:0>).ceeeresecccoscanoes 2=

3.3 Buffer Control (BUFCTL) veeeecoocoosossosccsossssssesee 2=

.3.4 Continue (CONT)..eeeoses 6t esoecesscesecseesssssesssess 2=

3.5 Data Valid (DV).oevoe cec oo ee e cecsesesesessssssense 2=
TIMING SIGNALS. e ceeeevocsonscosse e s s ee o s s s s e e s .o 2-

2Address Latch Enable (ALE) ¢t vveevoevocsosssoocsoscscss

Stretch Control (SCTL).ovee.n ceeeceevsccsssanns

Strobe (STRB) tcceteeens se oo c oo eesccs s s sssecsasee

CloCK 1 (CLK) ¢eeeeeecoonssossessossossosssssscossasse

Clock 2 (CLK2) toeeeevoonvnersnseossssnssssssssoscasssscass

START/STOP CONTROL..... cecee rees s e e e s e s s s cs s s s v oo s

Initialize (INIT) ceevesvoscsosossscsonssesssccsosscos

Halt (HALT) ¢ e e voeeo ss e s tsavssss

STATUS SIGNALS . ¢ ¢ cesccoesoesssssossscsessscscnscsscsosstsssssse

Cache MisSsS (MISS) teveeeroessocsossosososssssosssccsscscss

Parity Error (PARITY) .cuceeereccccnscs

Abort (ABORT) .eceeeeesoes

Map Enable (MAP) ... ceeereececosossoscssscescssacsccssss

Predecode (PRDC) cveeeotorescnoscosooscsocssosssccnssscs

INTERRUPT AND DMA CONTROL.:¢teeeewe ctisesscesssesanose e .

Interrupt Request (IRQ<3:0>).ccses.

Direct-Memory Access Request (DMR). .

Power FAail (PWRF) ceeeeceoeessosscosssnsoncscsnnsces coee

iii

e

s

8

o

o

e

s

o

o

e

o

e

®

o

o

o

N

-

V
b
w

N

|

I
I

|

¢ & ¢ & 5 0 0 ¢ O B O T S O NS 000

e«

o

o

o

@

D
W
=

5

e

e

N
N
N
U
N
A
O
A
A
A
A
A
A
A
T

V
U
L

D
O
B
E
D
L
H
E
L
E
D
W
W
W
W
W
W
I
N
N

e
o

.

W

o

1
N
N
N
M
N
N
N
N
(
}
)
N
N
M
M
N
N
N
M

L
]

L
]

|

Event (EVENT)..'.'.....'..

7

7

8

8 Test 1 (TEST1). ce s e s s un

8 Test 2 (TEST2) ceveveesooos

9 OSCILLATOR PINS..¢eesceesoosene

9.1 XTALI and XTALO Generation

10 POWER PINS.. ceseeco e e e s e e e e

.10.1 Power (VCC)lieessersooonnns

10.2

11

Ground (GND) ceeveeecossece

CHAPTER 3 BUS CYCLES

INTRODUCTION. ¢ v v v vovnsoonnonses

DURATION OF BUS CYCLES........

BUS CYCLE PARTS..vevveeenonsns

NON-I/O (NIO) CYCLE..::oooesos

BUS READ CYCLE...veeueeenoonnns

BUS WRITE CYCLE...... e

=
~

W
O

-
J
I
H
h
I
N

L
&

W
w
N

INTERRUPT ACKNOWLEDGE CYCLE.

W

W

w

W
w
W
w
i
w

W

W
e

e

¢

®

CHAPTER 4 MEMORY MANAGEMENT

ADDRESSING.e cesvsosossassnscoes

MANAGEMENT REGISTERS.........

.
s

s
.

.
.

e
[}

.
.

)

\
l
\
l
\
l
\
l
\
l
\
l
\
l
\
l
\
l
\
l
\
]
\
J
\
J
\
I
\
J
\
I
J
\
U
I
\
D
J
‘
I
J
‘
U
\
J
\
U
‘
I
J
\
'
\
D
J
}
U
)
(
\
J
H

3
.

.
«

@
[}

.

Page Descriptor Registers

Page Length Field (PLF

.1

.2

. 2.

2.

2. Page Written..........

e 2.

2.

2. J
\
w
b
'
u
)
(
\
.
)
i
—
‘

Reserved BitS..eei oo

FAULT RECOVERY REGISTERS.....

Error Flags. ceco v

w

N

-

Abort -- Read Only

.

*
L]

B
B

W

N

H

R

-

.

[

.

.

.

.

.

[

.

Processor Mode...v.eeee

Page Address Space....

Page Number....eceeeee

.

A
W

.

o

Memory Management Register

Memory Management Register

Memory Management Register

Reserved Bits...

b
b
b
b
b
b
b
-
f
i
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
&
-
&
b
b
b
b

s
®

@
L]

.
¢«

e
¢«

o
.

e

L
®

o

.

N

o
~

iv

I SPACE AND D SPACE...o eveesnn

CONSTRUCTION OF A PHYSICAL ADDRESS..........

Enable RelocationN........

#1

42

#3

® % O @ ¢ & & 5 B O @ O O ¢ O O 0 0

Enable I/O Map"...Q...l'...........

.4 Floating-Point Exception (FPE).........

5

PIN DESCRIPTION SUMMARY....ceceoe oo

GENERAL-PURPOSE (GP) READ CYCLF...

GENERAL-PURPOSE (GP) WRITE CYCLE.

0 DMA REQUESTS AND GRANTS....¢e0c00

INTRODUCTION., . coeeeeeeoosccsenacs

Page Address Registers (PARs)

TEST PINS...O.I..0.C..l.'....l..‘.'l".....

L
] []

[
L]

[]

e
L]

L]

*
*

*
e

L] L]

L]

L]

*
L]

.
L]

®
.

*
[]

*
*

L]

L]

* *

L]

L]

*
*

L
.

L]

L J

® & 8 & 9 B & & 0 3 & 0

(PDRs).

) .

Expansion Direction (ED).

Access Control Field.......coc0 .o

Memory Management Reglster #0

Abort -- Non-Resident..

Abort -- Page Length....

Reserved Bits..... e e e e s e

¢ o o

a @ o & ¢ & o

INTERRUPT CONDITIONS UNDER WEMORY MANAGFMENT

(MMR1) . . .
(MMR2). . .

(MMR3). . .

Bypass Cache......iviirivvecsnnencncns
L

L

®
*

L]

*
[l

L]

N

A

N

-

1
l\
')
N(
T)
NN

{

e

=

O
O

O
O

O
O

O

®

o
o
o

NN
(T
)(
\)
(\
)N

w

W

I

|

U
J
W
&
U
U
J
$
L
Q
q
u

O
O

D
W
W
N

-

=

O

O

N
-

L

t
o D
R
V

W
N

[

L

=
W

O

O
W
O
W
O
D
O
O
E
N
I
N
I
I
I

-

1

S

O
N

S

N

L

R

CHAPTER 5

.

L]

w

N
~

D
D

W

-
)

.
.

.

[
°

.
.

.
.

.

.

°

.

.

.

.

.

.

N
~

W

e

¢

L]

q
m
m
»
b
b
b
w
w
w
w
w
w
w
w
w
m
w
w
t
—
w
—
'
l
—
'
t
—
d
t
—
a

Ll
L

e
e

Ll
O

J

A
N

L

W

*

L

L
 d

.

b
b
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
u
w
w
u

.1

CHAPTER 6

6.1

6.2

INTRODUCTION .

CACHE MEMORY STATUS AND CONTROL REGISTERS.

CONSOLE ODT...covvven

INTRODUCTION...

ADDRESSING MODES..

Enable 22-Bit Mapplng..........................

Enable Call To Supervisor Mode Instruction.....
Kernel, Supervisor, and User Mode D Space Bits.

Instruction Back-Up/Restart RecCOvVery..coceeeseesscs

Clearing Status Registers Following Abort........

Multiple Faults...

IMPLEMENTATION.. v coescsccescccccccccsssss

Typical Memory Page.... ..

Non-Consecutive Memory PageS.cceceecocscns

Stack MemoOry PaAgeS..ceicececsccecscscsccssnns

TransparencCy.....

MEMORY MANAGEMENT UNIT -- REGISTER MAP........

SPECIAL FEATURES

Unconditional Cache Bypass (R/W)..
Force Cache MisSsS (R/W) eeseeecsanns

Uninterpreted Bits.

Hit/Miss Register......

General Overation...

Cache Control RegisSter..cececeeeccocccs

[]

]
L J

*

[]

L]

Ll

L
L

e

[]

*
L]

*
®

@O ® & 8 & & & & ¢ 8 O b 0 0 0 0 0 0 0

¢ 6 & ® @ O ¢ 6 & 5 0o 0 0 " 6 o O &

.
L

[]

L]

[]

*

.

*

Ll

L

o ¢ 0 5 ¢ 0O

® ® 9 ¢ & @ ©& & S & & 0 0 S & S 5 O O b O O 0O O

Cache Memory In A Multiprocessor Environment.....

Sample Implementation..iceecececessosscsccsasonsns

Terminal Interface...

O o 8 & » & & & 0

Receiver Control/Status Register (RCSR)

Receiver Buffer Register (RBUF).....

Transmitter Buffer Register (XBUF)...

Console ODT OperationN..iceesecsccocsconcnse

Console ODT Initialization.....eeoeeee

Console ODT Output Sequence...ceesecnse

Console ODT Command Set.ceesseoscsccscoscons

(ASCTI 057) Slash.e.:veeeeoesccecosonscs

<CR> (ASCII 01l5) Carriage Return vooo

<LF> (ASCII 012) Uine Feed...ceevocees

S (ASCII 044) Or R (ASCII 122)ceevecses

S (ASCII 123) Processor Status Word...

G (ASCII 107) GOueeresnsssssscscsesssns

P (ASCII 120) Proceed.

Control-Shift-S (ASCII 023)....

Address Specification.

.1 General RegisSterS...ceesocscscccsesans

.2 Stack POINtErS.iu. ieesessessesssssossss

.3 Floating-Point Accumulators...........

Entering Octal DigitS...eceeeeeecssasosens

ODT Timeout...... Gt s e e s esesessse s e

Invalid CharactersS..cieescevscsscsscssccscs

DCJ11 PIPELINE PROCESSING..:.veccecececsccascsccs

Pipeline Flow Example..cciceveeesscsscnnvsos

ADDRESSING MODES AND BASE INSTRUCTION SET

® & & &6 & ¢ & & o

e & & & & 0 & O

Transmitter Control and Status Register

o @ & 6 0 & 6 & & & 0 s s 0 0 0

® o o o & 0

(XSCR)

® 9 6 6 5 0 0 0 ¢ " 0 G O O O S P S D OO OO 2 0 0o

(
5
2
0)

[
T

I
I

o

|

Y
O
O

H

W
O

o

w
u
n
u
n
n
f
i
w
m
u
n
u
w
w
u
r
u
1
m
g
n
u
1
w
u
n
u
r

P = N
N

5-12

5-13

5-14

5-14

5-15

5-15

5-16

5-16

5-17

5-17

5-17

5-18

5-18

5-18

5-19

5-19

5-20

5-21

A
N
V

N
N

s

W
W
W
W
W
w
N
o
E

L]

[
*

L]

L]

|]

®
]

[}

L]

[]

L[]

*
L

*
L]

L]

L]

*
L]

L[]

L]

.
[]

*
[]

L]

[]

®
[]

L]

[)

[]

[
]

L]

W
W
W
W
W
W
w
W
w
W
w
W
w
w
W
w
w
W
w
w
W
w
w
w

w
W
w
w
w
w
u
w
w

w
w

o
D

N
N

N
N

[]

LJ

®
L]

[]

L]

[]

[]

®
[]

[]

L]

L]

®
®

[]

°
L[]

L]

L]

L]

[]

[]

[]

L 4

®
L]

L]

®
[]

L

L
L]

e
*

]
]

[
]

L[]

*
L

L J

*

L
[}

e

L
[]

*
]

D
I
V

W
K

N

-

B

W
K

e

B

W

N

-

S

W

N

I
R

N
N

H
E

b
b
b
W
N

-

A
N

A
A
A
R
A
T
R
A
A
R
A
A
A
N

A
N

D
A

V
O

le
aW

e
W
e
Mo

 W
e
Wo

 \
Jo

o
 W

Yo

e
e

) J
o,

 B
oy

)

Single-operand AddreSSingoofoooooooo..ooooooo.ooooo

.1

DOUble-operand Addressing.l........................

Direct AAAressSing....cccecceccecssccccecscoccooccnss

Register MoOde€...ieeeerocosssccoscssscenssonsoans

Autoincrement MOAe. ... ceeceoesccsosososcscscocese

Autodecrement MOde@...ceeeesocsccsscoscocoonnnos

IndeX MOAE. . ceeeeoeeccsosscssossscsosssosscsosscsnsses

Deferred (Indirect) AQAressSing..ccceeececsccececcsns

Use of the PC As a General-Purpose Register........

Immediate Mode. ® & & & & ¢ & 0 O 0 B OO OO DO OS OGNS G OO NS SO S 0o

Absolute AddreSSing- e & 0 & 0 & 0 . * 0 @ ‘. *® O O 9 &0 0 09 0 0 0 0 s o0

Relative AddressSing....ccceececeescccscccccscses

Relative-Deferred Addressing.cceecoceceee

Use of the Stack Pointer As a General-Purpose

Register......... @ & & & % ¢ & O & DO O SO OISO OO OO E T SO O EN O e

INSTRUCTION SET ¢.eececocssesssscsoscecsossssscoocssocssass
Instruction FOIMAatS..ieeeceetscccccocossscccsonasss

Byte INStruCtionS..icieceeeeesscnssocecsscssancccsssocs

List of InstructionsS.ceeeeeceecsccosscsececoooccscss

Single-Operand INStruCtioNS.cecececsocccocoscccocse

General...l.'...Q..............................

Shifts and Rotates. ® & @ & & 6 0 & 0 6 0 0 0 O O PSS O OO 0 NS O 0o

MUItiple—PreCiSiono ® & & & O 5 & VOO O OBO S SO OO PSSO PO N O S SO

PS Word OperatorS. ® © 8 & 0 6 6 0 5 6 OO SO O PO OO ST O 00 s s 0o

Double-Operand INStruCtionNS..ceececssoscccsscscconsce

Generalo.O...l..0....C.......................Q.

Logicalioo0.0l.............‘...................

Program Control InsStructionS...ceececececceccccccns

BranChesS..eeeseeecesossssssnccossssossscsssssssse

Signed Conditional Branches...cccteeececsccssnas

Unsigned Conditional BrancheS....eeeeseccessssce

Jump and Subroutine InstructionS....cccceececoe

Traps ® @ & & & 0 5 0 O U O O 5 DO SO OO OO S OSSO O SO S e D

‘Miscellaneous Program CONtrol....eeeesscecocooss
Reserved Instruction TrapS..cceecesescecsocccsss

Trace Trap.... ® & ¢ 5 6 5 0 & 5 B G D OO O S B GO O P OO S B e L OO N OO

Special Cases Of The T-Bit..eeeceececessone
Miscellaneous INStruUCtioNS.. ceeeceeeecrsocossanonnses

Condition Code OperatoOrS..icececcscccccccccssssoscsnss

G\
O\
O\
O\
O\
?O
\O
\O
\O
\

H
E
=
O
O
N
O
O
U
D
W
W

CHAPTER 7 FLOATING-POINT ARITHMETIC

INTRODUCTION. s st o eeseesassoscscsoscsossossscscocsacooosssssss

FLOATING-POINT DATA FORMATS ..t coesessscvsosscssscssosccces

.1l Non-Vanishing Floating-Point Numbers...cceceeeoeeceoeo

.2 Floating-Point Zer0...ceceecesecsee coossnsscccccss

.3 Undefined Variables..... et eccecrrsetcecsot n 0o

4 Floating-Point Data..c.iceeeeeeesecoessoocencsancsnsos

CHAPTER 8 INTERFACING

FLOATING-POINT STATUS REGISTER.:ececeeecsscccocssscsssoe
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS..:¢scese.

FLOATING-POINT INSTRUCTION ADDRESSING... ceceseeccsoccsses
ACCURACY.. ceeoveencsncnnne

FLOATING-POINT INSTRUCTIONS

8.1 INTRODUCTION..00........O.I..i........l.'...l.'.......‘

vi

=
0
0

J
W
N

N
N

8.2 GENERAL-PURPOSE (GP) CODES. © @ & ¢ & @ & 4 0 0 0 0 06 0 0 0 6 O 0 O O O S e O G 0 o0 8-1
8.3 POWER UP AND INITIALIZATION»..Q....l....‘......‘....... 8-2
8.3.1 Initialization Timing..seeeeeeeeeecscoscocscccsnsess 8-2
8.3.2 Initialization Microroutine.....vveeeeeoecoeesaness 8=2
8.3.3 Power-Up Configuration.v.eicieeececececosccsccsccsoces 8=6
803.4 Power-Up Circuit....O..00.0.0...................... 8_8
8.4 OTHER MICROROUTINESQ...'. OQ...........O....?...... 8-8

APPENDIX A DC CHARACTERISTICS

APPENDIX B AC CHARACTERISTICS

APPENDIX C HARDWARE AND SOFTWARE DIFFERENCES

APPENDIX D INSTRUCTION TIMING

APPENDIX E GLOSSARY

INDEX

FIGURES

Figure Page

- DCJll BlOCk Diagram ® & & & 6 6 ¢ & & 0 0 0 O 0 O O O O OO OO PO N E SO 0 1-1

- DCJll GeneralPurpose Reglsters........................ 1-2
- Processor Status Word.......... e £

- PIRQ Reglster......’.. O o o @ & o & & 0 & ¢ O 0 O 6 6 S GG e OO ® 0 l-ls

CPU Error Register..l....Q'1’......................l.... 1-15

DCJll PinAssignments...00.00..0......0.........0.....0 2-1

1-1

1-2

1-3

1-4

1-5

2-1

2-2 Typical XTALI and XTALO GeneratioON...ceesescccsaccceses 2=9

3-1 Non-Stretched Non-I/O CYCle.cveeececcsoccscccosssssssss 3=3

3-2 Stretched Non-I/0O CYCle...coeteeecconcossosscssosasocsosse 3=4

3-3 Non-Stretched Bus Read CyCle..cceeeesescsssscsssssscsss 3=5

3-4 Stretched Bus Read CyCle..iieeeeeseecscncsscsscssocsnse 3=5

3-5 Bus Write CyCle.iiiciierersoeovoossosceososcsosssscssonecnse 3=7

3-6 General-Purpose (GP) Read CyCle..ceeeeececsccsncccesssece 3-8

3-7 General-Purpose (GP) Write CYCle.iiceesecescsoscsccssss 3-9

3-8 1Interrupt Acknowledge CYCle..ccceeeecocoecocssseoccosss 3-10

4-1 Virtual Address Mapping Into Physical AddresS....ccee.. 4-2

4-2 Interpretation Of A Virtual AddressS....cceeecesccossses 4-3

4-3 Displacement Field Of Virtual AdAresSS..eeceeececcecsccces 4=4
4-4 Construction Of A Physical AdAressS...cceesesccesscncess 4-4
4-5 Active Page Registers........... ceccsescsesrsrssesescses 4=6
4-6 Page Address Register..... ceeeceseccssssssssesssescssess 4=6
4-7 Page Descriptor Register (PDR)...eeeeeesceosossscossnnee 4=7

4-8 Memory Management Register #0 (MMRO) e veveoesovocvcoceccess 4=9
4-9 Memory Management Register #1 (MMR1) ..vveeeoeoeseocoess 4=11
4-10 Memory Management Register #3 (MMR3)...ceesecesccossess 4=11
4=11 16-Bit MappPing..e:veeeieeeevoeoeeeneronsesocnnsosansess 4=12
4-12 18-Bit MapPPiNg.eeeeeetrveeevesosssessensoosesancsoossoes 4=12

4-13 22-Bit Mapping.......... ceevaee e A

4-14 Typical Memory Page. ceetneen Y e

4-15 Non-Consecutive Memory Pageé........................... 4-17

4~1¢ Typical Stack Memory Page.....o.. teesecsscsescscsaceseses 4-18

vii

i

o

L
y

[
N

T
N

T
TR

T
A

O
TR

N
T

N
TN

O
N

I
=
=

O
O
~

D

W

O
O

b
W

—

O

e

A
R

A
A
R

 A
R

A
R

A
R
A

 M
R

AR
 A
N

NR
C

U
L
 IR

 S

R
VL

V
L
R
V
 L
R

L

Cache Control Re

Hit/Miss Register..ceeceeeessns ce

Cache Entry......

gister.......

e % 6 &8 0 & 3 5 0 0 8 s

Physical Address Partitioning For Cache Memory.

Cache Entry With Parity.ecceeeestencsssscocccccccoces

Sample Cache Control Register.......covevnvaccccccnns

Receiver Control/Status Register (RCSR).cieevecccccsn

Receiver Buffer Register (RBUF) ...ciceeecssecsccsocane

Transmitter Control/Status Register (XCSR)...eeeeenen

Transmitter Buffer Register (XBUF)....cooeeeeccccccns

Pipeline Filling ProCesSS...ccceesesscosssccscsscssocce

Single-Operand Addressing...c.ceeeeeeecrsossccccasonne

Double-Operand Addressing.......... s esersssssse e

Mode O Register...eeeeeeccenocennns Ceetecaear e

Mode 2 Autoincrement...cceeecosossossosososocscnnssosccsen

Mode 4 Autodecrement....cceceveeccessscscssccosssosos

Mode 6 IndeX..eeoens . A

INC R3 Increment....... cevee TT

ADD R2,R4 Add...veve..n v e e v s e e e . c e s e s e s s s e

COMB R4 Complement Byte. cesesao e ceresse e

CLR (RS5)+ Clear...cceveeeseavens ee s eses e s s s e eeree s us

CLRB (R5)+ Clear Bytee.iceeeevoesrsaossossn c e ete s s

ADD (R2)+ R4 Add... e ee e s et e s e et s s s eeeesee s e

INC -(RO) Increment....cceeceeoocceeos cesssesss e

INCB - (R0O) Increment Byte......... ce e e ceseees e

ADD -(R3),R0O Add...vccveeeeecennss ceee e Gt e es e

CLR 200(R4) Clear..... ceece st sseen e e e cececseass e

COMBR 200 (R1l) Complement Byte...vieeeesescocscooncasos

ADD 30(R2),20(RS) Add...cceeesns e sts et eses e eesss e

Mode 1 Register-Deferred......... s e e e e cresecssenens

Mode 3 Autoincrement-Deferred......ceieevcvecocsncs

Mode 5 Autodecrement-Deferred........ C et esesessseeee

Mode 7 Index-Deferred...... Ceteseaes R

CLR GRS Clea@r.cesessscsossossoscnsnsssssos ceeecasessense

INC @(R2)+ Increment...ceeeecvcosnoscssoconsocs e s e e

COM @-(RO) Complement...ccecveeveeoceocnns cessssees e

ADD @1000(R2),R1l Add....... C e e st s esscaeses s e s e

ADD #10,R0O Add. .. :eeeesecceconocsossosns e e e s

CLR Q#1100 Clear.ceeeeseessososoanenossanossas Ceresesn e

ADD @#2000 Add.....cccveeun et e e e e e e e .

INC A Increment.....c... s o e o oo o e e s es e oo

CLR QA Clear....... cea s e s e e e e e ceeer e soee

Single-Operand Group e et e Ceee e oo

Double-Operand Group l.......00c00 . cessrsnen e s

Double-Operand Group 2.....ve000 “ o ceee sesseees

Program Control Group Branch..... P

Program Control Group JSR.......cccuevn teeres s s e

Program Control Group RTS........ v ee e s ces e s

Program Control Group TrapS....... “ o cesrssass e

Program Control Group Subtract. .« o Cr et e e

MALK .o oooeoososoosocsossssnsssosssssossescssssncessocsesns

Call To Supervisor MOAe..v.eetoot osonseoossoroncssnns

Set Priority Level....oeeeeeeeeeeoerssensscsoscsscscaso

Operate Group..

Condition Group. e & 9 ¥ © ¢ ¢ O & O & o o 2 ° *® # & & &

Move To And From Previous Instructlon/Data Space Group.

Byte InstructionS e o @ O ¢ o o

viili

|
|

V
W
W
N
O
H
R
E
F
R
O
M
N
D
D
S
D
N

g
y

o
o
yo
y

1
1

O
~
0
O

0

m
c
\
a
\
m
a
\
f
\
m
m
m
m
m

i
|

=
=

O
O

O

O
R
I

I
,

o

T o

H
A
A
I
I
T
I
I
T
A
A
A
R
A
D
N
N
I
D
H
I
H
N

i
D
A

N
i

= N
N

h=12

6-23

6-24

6-13

h-14

6-15

h-16

6-16

6-17

h-18

6-19

A=-20

h-20

6-20

5-20

6-20

6-20

h-21

h-21

6-21

h=-21

6-21

h=-21

6-22

=22

7-1 Single-Precision Format..

2 Double-Precision Format..

7-3 2”s Complement Format..

4

ooooo

e ® & 0 & & 0

Floating-Point Status Register..

® ¢ &6 & & 6 5

7-5 Floating-Point Addressing Modes.

8-1 Initialization......eccevecccens

8-2 Initialization Sequence.....cse.

8-3 Power-Up Configuration Register.

8-4 Power-Up Circuit..... Ceeee “oo

8-5 Power-Down SequenCe....cceeevosse

8-6 Console ODT Start Seguenceé......

A-1 Voltage Waveforms....... cerenen

B-1 Clock Timing. Chcecrrsasenoe

B-2 Three State Dlsable Test Circuit,

B-3 TTL Output Test Circuit.....oeee

B-4 MOS Output Test Circuit........o

B-5 Non-Stretched Bus Read Timing...

B-6 Stretched Bus Read Timing.......

B-7 Bus Write Timing...coeecoosenoeos

B-8 General-Purpose Read Timing.....

B-9 General-Purpose Write Timing.....

B-10 Interrupt Acknowledge Timing....

B-11 Interrupt Timing........ cesee e

TABLES

Table

1-1 Instructions Influenced By Processor Modes.

1-2 Priority LevelS...ieveeeececsssceccocossnnce

1-3 PS Protection For Explicit Accesses cesenn

1-4 PS Protection For Traps And Interrupts....

1-5 PS Protection For RTI, RTT Instructions...
1-6 PS Protection For MTPS Instruction........

1-7 PS Initialization During Power-Up....cceso

1-8 Interrupts, Traps, and Aborts..... cece e

2-1 BS Device Selection..... ceerreensesaes e e

2-2 AIO Decode. e o vensans ceereasracace e e .

2-3 Interrupt Requests on IRQ<3:0>....... ceene

2-4 1IRQ<3:0> Interrupt Request Levels.........

3-1 AIO Codes for Bus Cycles..... C etses e en s

3-2 General-Purpose Read Codes...... ceeseseses

3-3 General-Purvose Write CodesS..cceeocccossnns

3-4 Interrupt Acknowledgement......ccececocoene

4-1 I and D Space ReferenCing..ceecececeececas

4-2 Mode Bit OperationS......... . ceesus e

5-1 Typical Hit/Miss OperationS..ccceeeececceses

5-2 Console ODT Commands.... cereseees e

5-3 Pipeline Flow........ ce e s s s es s s esesnoe e

7-1 FPS Register BitS..iiseeeeeeesocsosccccscnss

8-=1 GP Codes and FUnCctionS..e.eeeeosocescscsss

C-1 DCJ1l Programming DifferencesS..eeeecsocese

ix

o & & 6 & & & & 0 o o

e o

[

L]

[4

L]

*

Q
N
N

N
N

|

-

W

W
l

P
P
P
P
O
O
O
O
D
O
D

I
B

|
R

L

L

L
.

o

po
nd

1

N
N
V

L
D

B
W
E
E
H
E
O
O
I
W
N

m
m
m
m
u
l
n
m
m
m

-
U

1)
)

O o

O

L
e
l

s
l

e
l

e
l

([
T

N
D

W
O

[
T
R

N
N

I
R
N

 |
I

T
T

|
A
R

A
M
N
N
H
W
H
W
H
E
H
O
N
O
O
L

W
H
R
F
R
F
W
O
J
I
O
N
W
,
M

N

W

w

=

O

N
O
J
U
V
U
T
U
N
E

D
B
W
W
W
W
N
N
N

N

i

PREFACE

This user”s guide is intended to familiarize the reader with thehardware and software characteristics of the DCJ11 microprocessor
CPU chip. It is assumed that the reader has had some experiencewith microprocessor design. Readers should also have somefamiliarity with PDP-11 architecture.

The book is organized as follows:

Chapter 1 provides an architectural overview of the DCJ1l.

Chapter 2 describes the function of each DCJ11l pin.

Chapter 3 describes the various types of DCJ11l bus cycles and
provides an overview of the timing relationships among DCJ11
inputs and outputs during these cycles.

Chapter 4 describes the architecture and operation of the DCJ1ll’s
integral memory management unit.

Chapter 5 provides information on three special features integral
to the DCJll: cache memory registers (this description alsoincludes cache memory design considerations), console ODT (alsocalled micro-ODT), and pipeline processing.

Chapter 6 describes the DCJ1l base inStfuction set.

Chapter 7 describes the integral floating-point wunit and its
instruction set. -

Chapter 8 provides some introductory information on interfacing
external logic to the DCJ11l. Power-up and initialization circuits
are provided.

Appendix A contains a summaryof the DCJ1l DC characteristics.

Appendix B contains a summary of the DCJ1l AC characteristics.

Appendix C summarizes the hardware differences between: (1) the
DCJ1l and the PDP-11/44 and (2) the DCJ11 and the PDP-11/70.
Appendix C also contains a summary of the software differences
between the DCJ11 and other processors in the PDP-11 family.

Appendix D describes how to determine the duration of a DCJ1l1
instruction. Timings for both the base instruction set and the
floating-point instruction set are provided.,

Appendix E contains a brief glossary of some DCJ1l terms.

X1

CHAPTER 1

ARCHITECTURE

1.1 INTRODUCTION

This chapter provides a brief introduction to the architecture of
the DCJ1ll microprocessor. The DCJ1l 1is organized as shown in
Figure 1-1.

r— ’_- DATA CHIP

ABOAY

ABORY }———0FAR 7 e p—— A_F ' L CARRY
GR. "oLXX —JEPS——— o ——& STRR 0 PALLL'

A AN —— STATE e CCT [N SRS
"

|- COMPAHATOR [pap

aR~rv — o SECUENCE —e BofCT: VA (176

—_— ——< PRD LK
S

C

Y

b-

ATT E B
— e — Gmmne ow—— ——

—

FLE - NCLUDES
{ MULTPLEY

MMRG Catg e

INPUIY

MEMOR Y ! MMEY Pz . CATCHES

MANALGEMENT

S —— — —— o— t— — a———— " — — —— —— — ——— — t—— o— ——

NAIN REGISTE & 8RUSIZEY FHS3IPALTFALE 1CONTAING : : ARITHMETIC | SHIFTER ‘J\: NPT
GE'iERAL PUAPOSE LOGIC $6us328'T B et n ouTruT DATA 7781
1] WA MULIPLEXER

RESSTERS ARUSINET) DAL 21-00

ISH'” EXFCOTION
SHIFT CONTROL CONTHOL
REGISTER

5

~ @ =

—

m
—

e
t

e

e

e
r
m
a
y

w
—

o
m
v
m
e

c
m
m
e

—

o
—
—

4

| PAR PR REGISTER

COND'TION

C
e

EXECUTION A BUS32 BIT

< 1DAL BUS 16 8 ° >
- 1DAL. i 3PARF e

At
ABDRYRALT TS avERayueY
s;snvrrrsam Ty SERVICE

'

— z
LOGIC

EVEST e L50IC PLa NEXT
(LI ADDRESS NAE

BN e—

R, QTER
[Reieild

T
NA

l . —e AI00
o A1P

arp

N | l I | l | | I | I | | I I | | | l |

S
R

|
R

I
cnt e A1012

I\.;IC:OQ?“?’{
GF'L RATOR A3

I CONTROL mnn CONTROL CHIP |

Figure 1-1 DCJ1l1 Block Diagram

As shown in Figure 1-1, the DCJ11 microprocessor consists of a
data chip and a control chip.

The data chip performs all arithmetic and logic functions, handles
all data and address transfers, and generates most of the signals
used for system timing. 1In addition to the primary execution data
path, the data chip contains memory management logic, an I/O state
sequencer, and floating-point and cache control registers.

The controllchip directs the operation of the data chip with

microinstructions. The major components of the control chip are

the microprogram control store and the microprogram sequencing

logic.

A detailed description of the data chip and control chip and the

interface between them is beyond the scope of this book. We will

consider the data chip and control chip as one functional unit and

will describe only those portions of this unit that are

architecturally significant to the design engineer.

The remainder of this chapter briefly describes each of the major
components of the DCJ1l architecture. The chapter covers six

major topics:

General-purpose registers

Processor status word

Traps and interrupts

Floating point processing

Memory system registers

DMA mechanism0
0
0
0
0
0

1.2 GENERAL-PURPOSE REGISTERS

As shown in Figure 1-2, the DCJ1l has a dual set of Ssix registers

RO through R5 and RO” through R5”, three stack pointers (R6)

corresponding to the three processor modes (see Paragraph 1l.3.1),

and a program counter (R7). RO through RS is also referred to as

register set 0 and RO” through R5° is also called register set 1.

These registers are called general-purpose because’ they can be

used in a variety of ways. General-purpose registers serve as

accumulators, index registers, autoincrement registers,

autodecrement registers, or as stack pointers for temporary

storage of data. Arithmetic operations can be performed between
one general-purpose register and another or between a

general-purpose register and memory or an I/0 device register.

RO RO KSP

R1 RY’ sSSP

R2 R2 uspP

R3 RJ’

R4 R4’ PC

RS RS’ PSW

Figure 1-2 DCJ1l General-Purpose Registers

At any given time, either register set RO through R5 is used or

register set RO0” through R5” is used. The two sets can not be
used simultaneously. These general-purpose registers are

organized as two sets to increase the speed of context switching

and some types of real-time data handling.

Register R6 is used as the hardware stack pointer (SP), which
indicates the last entry in the appropriate stack (the stacks are
common temporary areas with LIFO - 1last 1in, first out -
characteristics). There are three stack pointers: a kernel stack
pointer (KSP), a supervisor stack pointer (SSP), and a user stack
pointer (USP). Each stack pointer is associated with a different
processor mode (see Paragraph 1.3.1). When &an interrupt or trap
occurs, the current CPU state (PC and PS) is automatically pushed
on the stack indicated by the interrupt or trap vector (see
Paragraph 1.4 for more information on interrupts and traps). The
stack-based architecture also facilitates reentrant programming.

Register R7 is used as the program counter- (PC). The PC contains
the address of the next instruction to be executed; thereby
controlling the order of execution of instructions. The PC 1is a
general-purpose register in the sense that it is directly
accessible by all single- and double-operand instructions. Much
of the power of the DCJ1l instruction set is achieved by utilizing
the PC in conjunction with various addressing modes. The PC is
not normally used as an accumulator for arithmetic operations.

1.3 PROCESSOR STATUS WORD

As shown in Figure 1-3, the processor status word (PS) contains
the condition codes describing the arithmetic or logical results
of the last instruction, a trace bit that forces a trap at the end
of an instruction (used for program debugging), the current
processor priority, and the current and previous processor modes.
The PS is located at physical address 17777776.

15 14 13 12 1 10 09 08 07 05 04 03 00
] T T T

0 0 7 T N 2 v c]] /A 1 |
‘r N , w) 4 — "} vx {

CURRENT
CONDITION

MODE
CODES

PREVIOUS
MODE

TRACE BIT

REGISTER SET '
PRIORITY

UNUSED

MR 11042

Figure 1-3 Processor Status Word

BIT NAME FUNCTION

15:14 Carrent Mode Current processor mode:
(RW, protected) '

Bits Mode

15 14

0 O Kernel

0 1 Supervisor

l1 O Illegal

1 1 User

13:12

11

10:9

3:0

Previous Mode

(RW, protected)

Register Set

(RW, protected)

Unused

(Read only)

Reserved

(RW)

Priority

(RW, protected)

Trace Trap

(RW, protected)

Condition Codes

(RW)

C
Q
O
O
O
H
K
H
F
H
F
N

Previous processor mode; same

encoding as for bits <15:14>.

General register set select:

0 register set 0 (RO--RS).

1 register set 1 (RO“--R57).

The bits are unused and are always

read as zeroes.

This bit is reserved for future

DIGITAL use.

Processor interrupt priority level:

Bits Priority Level

C
O
F
H
M
H
F
H
F
O
O
H
K
M
F
O
®
O

O
H
O
R
F
R
O
K
H
F
O
F
H
W
U
V
,

O

N
W
H
E

U

Also called the T-bit. When set,

the processor traps to location 14

at the end of the current

instruction. This bit cannot be

set directly by writing data to the

PS. This bit is typically set by the

RTI/RTT instruction. Trace trap is

disabled when this bit is zero.

Processor condition codes:

N: Set if the result of the

previous operation was negative.

Z: Set if the result of the

previous operation was zero.

V: Set if the previous operation

resulted in an ar_thmetic

overflow.

C: Set if the previous operation

resulted in a carry of its most

significant bit.

1.3.1 Processor Modes - Three processor modes (user, supervisor,
and kernel) permit a fully protected environment for a
multiprogramming system by providing the programmer with three
distinct sets of processor stacks and memory management registers
for memory mapping. In addition, certain PDP-11 instructions are
privileged in that their operation is inhibited in supervisor and
user modes. For example, 1in supervisor or user mode, the
processor will ignore the RESET and SPL (Set Priority Level)
instructions and the HALT instruction will cause a trap through
the wvector at virtual address 4 in kernel data space. In kernel
mode, the processor will execute all instructions. A summary of
the effects of processor modes on various instruction types is
provided in Table 1-1.

Table 1-1 Instructions Influenced by Processor Modes

Instruction

or Instruction Operation in Operation in
Type ' Kernel Mode Supervisor/User Mode

HALT Depends on Traps through a vector
halt option at location 4 in kernel
selected (see data space.
Paragraph 1.5)

WAIT, RESET, Executes as Executes as a NOP.
SPL specified

RTI, RTT, Can alter Can not alter PS<7:5>
MPTS PS<7:5>

Stack Checked for Not checked for stack
Reference stack overflow.

overflow, |

1.3.2 Priority Levels -‘'The priority 1level (mask bits) iscontained in bits <7:5> of the P8 and is used by software to
determine which interrupts will be processed, as indicated inTable 1-2.

Table 1-2 Priority Levels

Octal Value Interrupt Level

of PS<7:5> Acknowledged

""" 7 None

6 7

5 7, 6

4 7, 6, 5

3 7, 6, 5, 4

2 7, 6, 5, 4, 3

1 7, 6, 5, 4, 3, 2

0 7, 6, 5, 4, 3, 2, 1

1.3.3 The Trace/Trap Bit - The trace/trap bit (bit 4) is used for

program debugging, enabling single-step execution of instructions

for step-by-step monitoring.

1.3.4 Condition Codes - The four condition codes N, Z, V, and C
contain information about the result of the last CPU operation.

These bits are set as described in Paragraph 1.3.

1.3.5 Processor Status (PS) Protection - Tables 1-3, 1-4, 1-5,

1-6, and 1-7 summarize how the PS is protected under a variety of

conditions. The PS is initialized at power-up (the value to which

it is 1initialized depends on power-up options) and is cleared at

console start. The RESET instruction does not affect the PS.

Table 1-3

PS Bit(s)
D G G e G D e exp EE D e

Condition

Codes

PS <3:0>

Trap Bit

PS <4>

Processor

Priority

PS <7:5>

Register
Select

PS «<11>

Previous

Mode

PS «13:12>

Current

Mode

PS «<15:14>

PS Protection For Explicit Accesses

User

un-

loaded

from

source

loaded

from

source

loaded

from

source

loaded

from

source

Super

-— e s oMt wwe - o

loaded

from

source

loaded

from

source

loaded

from

source

Kernel

loaded

from

source

from

source

loaded

from

source

Table 1-4 PS Protection For Traps and Interrupts

Rt Eettenteed ity
TRAPS & INTERRUPTS

PS Bit(s) User Super Kernel

Condition loaded loaded loaded

Codes from from from

PS <3:0> vector vector vector

loaded loaded loaded

Trap Bit from from from

PS <4> vecto vector vector

Processor loaded 1oaded loaded
Priority from from from

PS <7:5> vector vector vector

Register loaded loaded loaded

Select from from from

PS <11»> vector vector vector

Previous copied copied copied

Mode from from from

PS <13:12> PS PS PS

<15:14>) <15:14>| <15:14>

Current loaded loaded loaded

Mode from from from

PS <15:14> vector vector vector

1-8

Table 1-5 PS Protection For RTI, RTT Instructions

________ | - —— - | ———e -

RTI, RTT

PS Bit (s) User Super Kernel

Condition loaded loaded loaded
Codes from from from
PS <3:0> stack stack stack

loaded loaded loaded
Trap Bit from from from

PS <4> stack stack stack

Processor un- un- loaded

Priority changed| changed| from
PS <7:5> stack

Register ORed ORed loaded
Select from from from
PS «<1ll> stack* stack* stack

Previous ORed ORed loaded
Mode from from from
PS <13:12> stack¥* stack* stack

Current ORed ORed loaded
Mode from from from
PS <15:14> stack* stack* stack

* "ORed from stack" means that when the old
PS is popped from the stack

it cannot clear PS<15:11> in the current
PS if these bits have been set.

(restored),

1-9

Table 1-6

PS Bit(s)

Condition

Codes

PS <3:0>

Trap Bit

PS <4>

Processor

Priority

PS <7:5>

Register

Select

PS «11l>

Previous

Mode

PS <13:12>

Current

Mode

PS <15:14>

loaded

from

source

un-

changed

un-

changed

un-—

changed

un-

un-

un-

un-

un-=

PS Protection for MTPS Instruction

un-

un-

un-

Table 1-7 PS Initialization During Power-Up

’I POWER-UP
PS Bit(s)

Condition

Codes cleared
PS <3:0>

Trap Bit

PS <4> cleared

Processor depends

Priority on power-

PS <7:5> up option

Register

Select Cleared

PS «11»>

Previous

Mode cleared

PS <13:12>

Current cleared

Mode i.e.,
PS <15:14> kernel

mode

1.4 INTERRUPTS AND TRAPS

This paragraph provides a brief overview of DCJ11 interrupts and
traps and describes user-visible registers related to interrupts
and traps. Abort conditions are also covered. For detailed
timing and bus information, see Chapter 3 - Bus Cycles.

Interrupts and traps are requests that cause the DCJ1l to
temporarily suspend the execution of the current program and
provide service for the device or condition that caused the
interrupt or trap. Interrupts differ from traps in that
interrupts are initiated by some external event, while traps are
caused by conditions internal to the DCJ11l.

The DCJ1ll operates at any of 8 levels of priority. 1In general, an
interrupt or trap affects the DCJ1l if its priority is greater
than the DCJ11”s priority as indicated by PS<7:5>. The exception
to this is a non-maskable interrupt or trap, which occurs
independently of the processor priority. Note that non-maskable

interrupts and traps have a priority structure amongst themselves.

When an interrupt or trap occurs, the current PS and PC are

preserved in order to allow a return to the interrupted program.

The new contents of the PC and the PS are fetched from two

consecutive memory words called a vector. The first word of the
vector contains the interrupt or trap service routine starting
address (the new PC), and the second word contains the new PS.
Vectors are either predefined by the DCJ11l or are user defined.
User defined vectors are vectors associated with interrupts

occuring on IRQ<3:0>. The predefined vectors are shown in Table

1-8. - '

specifically, for an interrupt or trap, the following seguence of
events occurs:

PS --> templ ssave PS, PC in temporary

PC --> temp2 sscratchpad locations
0 --> PS<15:14> ;force kernel mode

M[V] =--> PC sfetch PC from vector, data space

M[V+2] --> PS sfetch PS from vector, data space

templ<l5:14> =-> PS<13:12> ;set previous mode
SP-2 -=-> SP spushed stack selected by new PS

templ --> M[SP] ;push old PS on stack, data space

Sp-2 --> SP

temp2 --> M[SP] ;push old PC on stack, data space

- s then execute interrupt service
sroutine . :

After the interrupt or trap service routine has been completed, an

RTI (Return From Interrupt) or RTT (Return From Trap) instruction

is typically executed. The top two words of the stack are

automatically popped off the stack and placed in the PC and PS,

respectively, thereby restoring the state of the interrupted

program.,

The DCJ1l also responds to a variety of conditions which can abort

the current operation. An abort is similar to an interrupt or

trap in that a vector is used to point to a service routine.
Aborts differ from traps and interrupts in that the DCJ1ll services

an abort immediately rather than waiting until the end of the

current macroinstruction. Aborts generated by the DCJ1ll itself
include memory managementand address errors. Aborts which must

be generated by external logic include bus timeouts, non-existent

memory accesses, and parity aborts. The signal ABORT is asserted
to indicate the presence of an abort condition.

DCJ11l interrupts, traps, and aborts (with their associated

priorities) are summarized in Table 1-8. For interrupts and

aborts, the name of the signal which initiates the interrupt or

abort (if any) appears in .the last column. For completeness,

Table 1-8 also lists several instructions that result in traps.

These instructions are mutually exclusive and have no priority

structure.

Table 1-8 Interrupts, Traps, and Aborts

Description

Red stack violation
(CPU error register,

bit 2)

Address error

(CPU error register,

bit 6)

Memory management

violation (MMRO,
bits <15:13>)

Timeout/non-existent
memory (CPU error

register, bits <5:4>)

Parity error

Trace (T bit) set

(PSW, bit 4)

Yellow stack violation

(CPU error register,

bit 3)

Power fail (PWRF)

Floating point

exception (FPA

present)

Floating point

exception (no

FPA)

PIR 7 (PIRQ, bit 15)

Interrupt level 7

EVENT

PIR 6 (PIRQ, bit 14)

Interrupt level 6

PIR 5 (PIRQ, bit 13)

Interrupt,

Trap, or Vector

Abort Address

Abort 4

Abort 4

Abort 250

Abort 4

Interrupt 114

or Abort

Trap 14

Trap 4

Interrupt 24

Interrupt 244

Trap 244

Trap 240

Interrupt UD

Interrupt 100

Trap 240

Interrupt UuD

Trap 240

Priority

Level Signal

NM -

NM -

NM -

NM ABORT

NM PARITY,

ABORT

NM -

NM -

NM PWRF

NM FPE

NM -

7 -

7 IRQ7

6 EVENT

6 -

6 IRQ6

5 -

Interrupt level 5 Interrupt © UD 5 IRQ5

PIR 4 (PIRQ, bit 12) Trap 240 4 -

Interrupt level 4 Interrupt uD 4 IRQ4

PIR 3 (PIRQ, bit 11) Trap 240 3 --

PIR 2 (PIRQ, bit 10) Trap 240 2 --

PIR 1 (PIRQ, bit 9) Trap 240 | 1 -

TRAP Instruction Trap 34 | -— -

.EMT Instruction Trap 30 - --

IOT Instruction Trap 20 - -

- Illeqgal Instruction Trap 10 - -

NM = Non-maskable
UD = User-defined

-- = None

1.5 HALTING DCJ1l OPERATION

A halt operation differs from a interrupt, trap, or abort in that

there is no vector associated with it. It is similar, however, in

the sense that it interrupts the usual operation of the DCJ11.
The two main means of halting the operation of the DCJll are to:

(1) assert the HALT line or (2) execute a HALT instruction.

The HALT line has a lower priority than any interrupt, trap, or

abort. However, it has the highest priority during vector reads.

This is to allow the user to break out of potential infinite
loops. An infinite loop could occur for example if a vector is
not properly mapped during a memory management operation.

Execution of the HALT instruction performs different operations
depending upon the CPU operating mode and the halt option

currently selected. See Chapter 8 - Interfacing for more details

on halt options. 1In kernel mode, a halt option of 1 causes a trap

through laecation 4 and sets bit 7 of the CPU e~ror register when-

HALT is executed. If the halt option is 0 in kernel mode,
execution of the HALT instruction causes the DCJ1l into console

ODT. Execution of the HALT instruction in user or supervisor mode

causes a trap through location 4 and sets bit 7 of the CPU error

register.

1-14

1.6 PROGRAM INTERRUPT REQUEST REGISTER

The program interrupt request register (PIRQ) provides seven
levels of software interrupt (i.e., trap) capability. An
interrupt request is queued by setting one of bits <15:9>, which
correspond to interrupt priority levels 7 through 1
(respectively). Bits <7:5> and <3:1> are set-by the DCJ1ll to the
encoded value of the highest pending request. When the program
interrupt request is granted, the processor traps through a vector
at wvirtual location 240. It is the responsibility of the
interrupt service routine to clear the appropriate bit in the PIRQ
before exiting. The format of the PIRQ is as shown in figure 1-4,

15 14 13 12 1" 10 03 08 07 05 04 03 01 00

PIR7|{PIR6|{PIRS|{PIR4|PIR3|PIR2]|PIR 0 0 0

| N
J [” | N— J

4 4

REQUESTLEVELS——;] .
PRIOR!TY ENCODED VALUE OF BITS <15.9>

Figure 1-4 PIRQ Register
MR.9013

Bits <15:9> can be read or written. Bits <7:5> and <3:1> are
read-only. The remaining bits are always read as zeros. PIRQ is
cleared by a console start, by a RESET instruction, and at
power-up time. The PIRQ resides at physical address 17777772.

1.7 CPU ERROR REGISTER

The CPU error register assists the operating system by identifying
the source of a trap through location 4. The CPU error register
is located at physical address 17777766. The format of the CPU
error register is as shown in Figure 1-5.

15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00

ofo] o] of| ofofoo 0 o | o

ILLEGAL HALT

ADDRESS ERROR

NON-EXISTENT MEMORY

1/0 BUS TIMEOUT

YELLOW STACK VIOLATION

RED STACK VIOLATION

MR.822¢

Figure 1-5 CPU Error Register

Bit

<15:8>

<1:0>

The CPU error register

itself,

Name

Unused

Illegal HALT

(Read only)

Address Error

(Read only)

Non-Existent

Memory

(Read only)

I/0 Bus

Timeout

(Read only)

Yellow Stack

Trap

(Read only)

Red Stack Trap

(Read only)

Unused

by a power-up, Or by a

Description

These bits are unused and are always

read as zeros.

Set when execution of a HALT instruction

is attempted in user or supervisor mode,

or in kernel mode when the HALT option is
enabled (refer to the power-up options in

Paragraph 8.3.3).

Set when a word access is made to an odd

byte address, or when an instruction

fetch from an internal register is
attempted.

Set when reference is made to a

non-existent memory address.

Set when reference is made to a

non-existent I/0 page address.

Set when a yellow zone stack

overflow trap occurs.

set when a red stack trap occurs.

These bits are unused and are always

read as zeros.

reference to

The

write

start.
is cleared by any

console

instruction has no effect on this register.

1.8

The DCJ1l provides hardware protection for the kernel stac
k.

supervisor

be checked by memory man

Stack protection in k

stack

fixed 1limit of 400

reference 1is

occurs at the end of the current instruction. A

occur on a kernel stack reference,

push on the kernel

ference in kerne

red

stack

only

trap or interrupt

kernel mode,

STACK PROTECTION

and

traps.

user stac

ora re

ks are not protected by hardware but may

agement and appropriate software,

ernel mode is provided by defining yellow and
Kernel stack references are checked against a

(octal).

less

If the virtual address of a kernel

than 400 (octal), a yellow stack trap
stack ¢trap can

which is defined as: any

stack, a JSR instruction in

1 mode using addressing Mode 4

RESET

The

or 5 with R6 as the selected register.

The DCJ1l also checks for kernel stack aborts during interrupt,
trap, or abort sequences. If an abort is caused by a kernel stack
push during an interrupt, a trap, or an abort sequence, the DCJ11
initiates a red stack trap by creating an emergency stack at
vector locations 0 and 2, vectoring through 1location 4, and
setting bit 2 of the CPU error register.

1.9 FLOATING-POINT PROCESSING

The DCJ1l containsan integral floating-point processor which can
perform single- and double-precision floating-point operations.
User-accessible architecture associated with floating-point
processing includes: six 64-bit floating-point accumulators
(ACO0--ACS), a floating-point status register (FPS) , a
floating-point exception address (FEA) register, and a
floating-point exception code (FEC) register. Chapter 7 describes
these in detail and provides information on programming with
floating-point instructions.

1.10 * MEMORY SYSTEM REGISTERS

Memory system registers are used for: (1) cache memory
implementation and (2) memory management.

The memory system registers associated with cache memory are the
cache control register (CCR) and the hit/miss register (HMR).
These registers are described in detail in Chapter 5 - Special
Features,

The memory system registers associated with memory management
include page address registers (PARs), page descriptor registers
(PDRs), and memory management registers 0, 1, 2, and 3 (MMRO,
MMR1, MMR2, MMR3). These are described in detail in Chapter 4 -
Memory Management.

1.11 DIRECT-MEMORY ACCESS (DMA) MECHANISM

An external device typically performs a DMA transfer by taking
control of a buffered version of the DCJ1ll”’s data/address bus
(DAL<21:00>). A device requests control of the DAL lines by
asserting the DMR input to the DCJ1l. This causes the DCJ11 to
place DAL«15:00> in a high impedance state (DAL<21:16> is placed
in a high impedance state via external buffers) and extend the
current microcycle. It is the responsibility of external logic to
end the microcycle by asserting the DCJ11’s CONT input.

The DCJ11l acknowledges a DMA request by asserting its MAP output

at the appropriate time. See Chapter 3 - Bus Cycleg for the

specific timing involved. This also causes the current microcycle

to extend until CONT is asserted.

A DMA request may be acknowledged and granted for all types of

microcycles except bus writes and GP writes. The lack of a DMA

grant, however, does not necessarily prevent external logic fgom
performing a DMA transfer during these cycles. A buffered version
of the DAL for example could be used for a DMA transfer when SCTL

is asserted (the DAL itself would not be used since it carries the

write data during this portion of the cycle).

NOTE

It is possible to acknowledge a DMA

request between the read and write

portions of a bus locked

Read-Modify-Write cycle (see Paragraph

3.2). If this is not desirable, external

logic should be designed to disable DMA

requests at this time.

1-18

CHAPTER 2

PIN DESCRIPTIONS

2.1 INTRODUCTION

This chapter describes the functions performed by each DCJ11 pin.
The pins, and thus the chapter, are divided into nine groups:

Data/address lines (DAL<21:00>)
System control lines (BS<1:0>, AIO<3:0>, BUFCTL, CONT, DV)
Timing signals (ALE, SCTL, STRE, CLK,. CLK2)
Start/stop control (INIT, HALT) :
Status signals (MISS, PARITY, ABORT, MAP, PRDC)
Interrupt and DMA control (IRQ<3:0>, DMR, PWRF, FPE, EVENT)
Test pins (TEST1, TEST2) :
Oscillator pins (XTLI, XTLO)
Power pins (Vcc, GND)0

0
0
0
0
0
0
0
0

Figure 2-1 illustrates the pin assignments of the DCJ11 and
indicates whether a signal associated with a pin is an input, an
output, or both (bidirectional).

TEST1 - 4 60 o> DALG6
AIO0 0O -2 59 les DAL7

PWET —»{6 55 jae DAL 10
FPE —{ 7 54 e DAL 11
EVENT —e! g 53 jen DAL 12
HALT —{ g 52 pon DAL 13

IRQ O —{ 10 51 o DAL 14

FARTTY —s! 14 47 la DAL3

GND — 15 46 — Vee
Voe —e 1 a5~ oND

BS § - 17 44 Lep DAL4

BS 1 -4 18 43 len DALS
VAP - 19 42 pa— DV
AEGRT < 20 41 | BUFCTL

DAL 21 -1 21 40 > E .

DAL 19 - 23 38 - SCTC
DAL 18 - 24 37 b~ XTALO

DAL 17 -1 25 36 fu— XTALI

DAL 16 - 26 35 lae CLK
T —a{ 27 3 CLK?2

FEDC - 29 32 ju— CONT

NOT USED —30 31— TEST2

MR 8BBS

Figure 2-1 DCJ1l Pin Assignments

2.2 DATA/ADDRESS LINES (DAL<21:00>)

There are 22 pins associated with data and address information.

These are usually referred to as the data/address (or DAL) lines.

The DAL lines are functionally divided into two groups: the upper

data/address lines (DAL<21:16>) which are output only and the

lower data/address lines (DAL<15:00>) which are bidirectional.

2.2.1 Upper Data/Address Lines (DAL<21:16>) - These six

time-multiplexed output lines constitute the most significant 6

bits of a 22-bit physical address. DAL<21:16> carries wvalid
information at the beginning of every bus cycle. Internal status

is asserted on these lines during the second part of every bus

cycle for manufacturing test purposes only.

2.2.2 Lower Data/Address Lines (DAL<15:00>) - These

time-multiplexed 1I/0 lines constitute the 16-bit data and address

bus. During the first part of a cycle that involves an 1I/0
transfer, the DAL 1lines carry a physical address, an interrupt

acknowledge priority level, or a general-purpose (GP) code,

depending upon the type of cycle being performed (see Chapter 3 -
Bus Cycles for more information on cycle types). During a Bus

Read or Bus Write cycle, DAL<15:00> carries the lower 16 bits of a

physical address. During an Interrupt Acknowledge cycle, DAL<3:0>

carries the priority of the acknowledged 1level. During a

General-Purpose Read or General-Purpose Write cycle, DAL<7:0>

carries the GP code.

During the second part of a cycle that involves an I/0 transfer,

the DAL 1lines carry 8 or 16 bits of data. During read cycles,

external logic places data onto the DAL. If the DCJ11 only

requires a byte of information, it reads a full word but ignores

either the upper of lower byte. For write cycles, the DAL carries

8 or 16 bits of data, depending upon whether the cycle involves

the writing of a byte or a word.

2.3 SYSTEM CONTROL LINES,

There are nine pins associated with system control: BS<1:0>,

AIO<3:0>, BUOFCTL, CONT, and DV.

2.3.1 Bank Select (BS<l:0>») - These time-multiplexed output

signals transmit bank select and cache access information. At the
beginning of a Bus Read or Bus Write cycle, the BS signals define
the type of device being accessed by the physical address on the

DAL as shown in Table 2-1.

Table 2-1 BS Device Selection

BS1 BSO DESCRIPTION

1 1 Internal register -
| A memory-addressable register that resides

within the DCJ1l. Included are the
processor status word, all MMU registers,

the PIRQ register, the CPU error register
and the cache hit/miss register. Excluded
are the general-purpose registers, which
are not memory addressable.

1 0 External I/O device -
Any device or register external to the
DCJ11l that is referenced by a bus
address in the upper 8K bytes of the
physical address range (17760000 to
17777777). Excluded are system registers
(BS code 0l) and internal registers (BS
code 11).

0 1 System register -

A memory-addressable register in the
address range 17777740 to 17777750.
Always included as a system register is
the DCJ11”s internal cache control
register (CCR).

NOTE

The CCR is the only system register
implemented in the DCJ1l. Accesses to
the CCR generate the same BS code as for
the other system registers mentioned
above. This facilitates the creation of
"shadow" read-only copies of the CCR on
cache based systems.

0 0 Memory -

- A reference to any location in physical
address space in the range 00000000 to
177577717.

During the second part of an I/0 cycle, BS1 is asserted when the
cache memory (if present) is to be bypassed. 1In the second part
of the cycle, BSO is asserted whenever a cache memory force miss
is required.

2.3.2 Address Input/Output (AIO«<3:0>) - The AIO outputs identify
the type of cycle currently being executed. External logic
typically latches and decodes these signals. Table 2-2 specifies
the AIO code associated with each cycle type. See Chapter 3 - BusCycles for detailed information on the various cycle types.

Table 2-2 AIO Decode

AIO3 AIO2 AIO1l AIOO CYCLE TYPE

NIO (internal operation only, no I/0)

GP (General-Purpose) read

Interrupt acknowledge, vector read

Instruction-stream request read

Read/Modify/Write - no bus lock

Read/Modify/Write - bus lock

Data-stream read ,

Instruction-stream demand read

GP word write

Bus byte write

Bus word writeC
O
O
H

I

H
H
K
F

M

O
O
H
O
O
O
O
H
K
K
F
K

o
e
o
o
o
w
w
o
o
w
p

H
R
H
O
H
O
H
O
H
O
M

2.3.3 Buffer Control (BUFCTL) - The BUFCIL output defines whether

the DCJ11 is driving or receiving data on the DAL. BUFCTL is
typically used by external logic to control the direction of data
passing through buffers that send data to the DCJ1ll. When

asserted, BUFCTL indicates that the DCJ1l is not driving data on

the DAL. This occurs: (1) during the portion of a read cycle
when data is being driven on the DAL, and (2) during the stretched

portion of any nonwrite cycle. BUFCTL is deasserted when the
DCJ1l is driving data or an address on the DAL.

2.3.4 Continue (ZONT) - The CONT input is asserted by external
logic to _terminate a stretched cycle after it has finished using
the DAL. OONT is so named because it enables the DCJ1l to

continue on to the next cycle.

2.3.5 Data Valid (DV) - The DV input is typically asserted by

external logic to latch data into the DCJ1l from the DAL. When

asserted, DV causes the DCJll to latch data when BUFCTL and SCTL

are asserted, that 1is, during stretched non-write cycles.

External logic must ensure that DV is not asserted during DMA

gransactions, since this would cause the latching of unpredictable
ata.

2.4 TIMING SIGNALS

There are five pins associated with timing and synchronization:
ALE, 3CTL, 3TRE, CLK, and CLK2.

2.4.1 Address Latch Enable (ALE) - ATE when asserted indicates
that DAL<21:00>, AIO<3:0>, BS<1:0>, and MAP all contain valid
data. The leading edge of ALE is typically used by external logic
to latch_addresses, AIO codes, bank select (BS) codes, and the map
enable (MAP) control signal.

2.4.2 Stretch Control (8CTL) - The SCTL output, when asserted,
identifies the stretched portion of a cycle. During write cycles,
the leading or trailing edge of SCTL can be used for latching
data. During read cycles, the trailing edge of SCTL can be used
for latching data. 5CTL can also be used to determine when
externally generated aborts may occur.

2.4.3 Strobe (STRB) - The assertion of the STRB output occurs one
clock period after the assertion of ALE. The deassertion of STRB
identifies the end of one microcycle and the beginning of another.
STRE is a general-purpose strobe signal and is typically used for
system bus control.

2.4.4 Clock 1 (CLK) - CLK is wusually a clock output for
diagnostic wuse only. When wused as an output, CLK reflects the
state of the DCJ11”s internal clock. The frequency of CLK equals
the frequency of the external crystal oscillator circuit connected
to the XTALI and XTALO pins. If TESTZ2 is asserted, the DCJ1ll’s
internal clock is disabled and CLK is placed in the high-impedance
state. 1In this case, CLK can serve as a MOS input (Vrr, = .3Vcc,
Vg = .7Vcc, tyg = tyr = 7 ns) driven by an external clock.

2.4.5 Clock 2 (CLK2) - The CLK2 output has the same frequency as
CLK. Like CLK, CLK2 reflects the state of the DCJ1l”s internal
clock and is disabled by the assertion of TEST2. Unlike CLK, CLK2
is typically used as a system clock or master clock for external
logic. CLK and CLK2 have minimal skew when loaded equally.

2.5 START/STOP CONTROL

There are two pins associated with starting and stopping the
operation of the DCJ1l: INIT and HALT.

2.5.1 1Initialize (INIT) - The INIT input, when asserted,
initializes (resets) the DCJ1l by forcing it through a power-up
procedure. The power-up sequence 1is described in detail in
Paragraph 8.3.2.

2,5,2 Halt (HALT) - The HALT input, when asserted, forces the
DCJ11 into console mode (i.e., initiates console ODT). HALT is
the lowest priority nonmaskable interrupt except during vector

read cycles. During vector read cycles, HALT becomes the highest
priority non-maskable interrupt. This allows escape fgom
potential infinite looping which could result from programming

errors. Since it is non-maskable, HALT is unaffected by the CPU

priority specified by pPS<7:5>. See Chapter 1 - Architecture.fgr a
list of the non-maskable interrupts and their relative pri

orities.

See Chapter 5 - Special Features for a description of console ODT.

2.6 STATUS SIGNALS

There are five pins associated with indicating DCJ1ll status:

WMTZT, PARITY, ABORT, MAP, and PRDC.

2.6.1 Cache Miss (MISS) - The MISS input is generated by external
logic in DCJ1ll based systems incorporating cache memory. The
assertion of MISS typically indicates that the current memory

reference resulted in a cache memory miss. If MISS is asserted
during the first part of a bus read cycle, the cycle is stretched.

2.6.2 Parity Error (PARITY) - The assertion of the PARITY. input
indicates the occurrence of a memory parity error. PARITY is used

to generate parity aborts and parity interrupts. If PARITY 1is
asserted and ABORT is also asserted, then a parity error abort is
generated. The DCJ1l immediately traps through a vector 1located

at virtual address 114 without completing the current instruction.

1f PARITY is asserted but ABORT is not asserted, then a parity
error interrupt 1is generated. At the end of the current

instruction, the interrupt is serviced through the vector located
at virtual address 114. Note that PARITY is sampled only during

the stretched portion of a cycle.

2.6.3 Abort (ABORT) - ABGRT can serve as an input or an output of
the DCJ1ll. ABORT is typically configured in an open-collector

driver circuit such that aborts generated by either external logic

or the DCJ1l can cause ABORT to be asserted (i.e., a wired OR

arrangement). Note that the DCJ1l1 pulls ABORT high internally.

The DCJ1l asserts ABORT during the first part of an I/0 cycle if a
memory management error or address error occurs, For a memory

management error, the DCJ1ll traps through a vector located at

virtual address 250 in kernel data space. For an address error,

the DCJ1l traps through a vector located at virtual address 4 1in
kernel data space. The DCJ1ll sets the appropriate bit in the CPU
error register.

ABORT can also be asserted by external logic in the event of such

conditions as a bus timeout, non-existent memory reference, parity

2-6

error, etc. External logic must ensure that: (1) the cycle is
stretched and that AB is asserted during the stretched portion
(i.e., when SCTL is asserted) and (2) KBORT is not asserted during
a__non-1/0 cycle. If PARITY is not asserted, the assertion of

T by external logic causes a trap through a vector located at
virtual address 4 in kernel data space. The CPU error register
specifies the cause of the abort. If PARITY and are
asserted, the DCJ1l immediately performs a trap through a vector
located at virtual address 114 in virtual address space.

2.6.4 Map Enable (MAP) - MAP is a time-multiplexed output. The
assertion of MAP during the first part of a cycle indicates that
the I/0 map has been enabled (the I1/0 map is enabled by setting
bit 5 of MMR3 to 1). The assertion of MAP during the second part
of a cycle acknowledges the assertion of the DMR input.

. NOTE

The I/0 map, if needed, is implemented in
circuitry external to the DCJ11l.

2.6.5 Predecode (PRDC) - The PRDC output, when asserted,
indicates that the contents of the prefetch buffer (PB) are being
decoded as the next macroinstruction. "This implies that the
contents of the PB are valid. The PB is part of the DCJ11l
prefetch pipeline, the operation of which is explained in Chapter
5 - Special Features. -

2.7 INTERRUPT AND DMA CONTROL

There are eight pins associated with the control of program
interrupts and DMA transfers: IRQ<3:0>, DOMR, BPWRF, FPE, and
EVENT.

2,7.1 1Interrupt Request (IRQ<3:0>) - IRQ<3:0> are four input
lines that correspond to four different levels of external
interrupt requests. Interrupt requests at any of these four
levels can be masked by PS<7:5>. 1In order to be serviced, the
requesting device must have an interrupt priority higher than the
priority indicated by PS<7:5>. Interrupt requests on IRQ<3:0> are
blocked or allowed as summarized in Table 2-3:

2=-7

PS<7:5>

111

110

101

100

Oxx

Table 2-3 Interrrupt Requests on IRQ<3:0>

CPU

Priority

Level

7

6

5

4

3-0

x = Irrelevant

From Table 2-3, it is seen that each IRQ line is associated with a

IRQ3

Blocked

Allowed

Allowed

Allowed

Allowed

IRQ2

Blocked

Blocked

Allowed

Allowed

Allowed

IRQ1

Blocked

Blocked

Blocked

Allowed

Allowed

IRQO

Blocked

Blocked

Blocked

Blocked

Allowed

different interrupt level, as summarized in Table 2-4.

Table 2-4 IRQ<3:0> Interrupt Request Levels

2.7.2 Direct Memory Access Request (

DCJ11 when asserted typically means
is samp

IRQ Line

IRQ3

IRQ2

IRQ1

IRQO

Interrupt
Request Level

U

to perform a DMA transaction.

start

operation,

stretching the cycle,

state, and (3) acknowledging the
part of

write operation, the cycle is

placed in the high-impedance state and

during

of all

the second

cycles.

the DCJ1l responds to the assertion
(2) placing DAL<15:00> in the high-

by asserting

If the cycle involves a

stretched but DAL<15:00>

MAP is not asserted.

the

2.7.3 Power Pail (PWRF) ~ PWRF is
interrupt

vector located

External

of an AC power failure.
logic

input

cycle

DMA

the cycle.

request

PMR) - The DMR input

that an external device wants

led by the DCJ1l1l at

does not involve a write

of DMR by:

a high-priority

user-defined power fail service routine.

2.7.4 Ploating-Point Exception
nonmaskable

through a vect

space,

indicate the occurrence o

point to an appropriate user-vector

FPE

would

interrupt

or located at virtual address

would be asserted by an external FPA coprocessor to
£ a floating-point exception.

defined floating-point

exception service routine.

input

2-8

that,
(FPE) - FPE

that, when asserted, forces

virtual address 24 in kernel

typically asserts PWRF to indicate the occurrence

The trap vector points to an appropriate

is a

244 in

impedance

nonmaskable

a trap through a

high-priority

when asserted, forces a trap

kernel data

2.7.5 BEvent (EVENT) - The EVENT input is a maskable prioritylevel 6 interrupt (i.e., it is acknowledged if PS<7:5> is less
than 6). When EVENT is asserted (and not masked), the DCJ11
performs a trap through a vector located at virtual address 100 inkernel data space, E%ENT is typically used by external logic as a
line time clock (LTC) interrupt input. -

2.8 TEST PINS

There are two pins associated with testing, TESTI and TESTZ.
These signals disable DCJ11 functions and are are used in
connection with board-level testing.

2.8.1 Test 1 (TESTL) - The TEZTI input (when asserted by external
logic) disables all DCJ1l1 outputs by placing them in the
high-impedance state. This permits external logic to operate on
the data and control 1lines connected to the DCJ1l1 without
interference from the DCJ11.

2.8.2 Test 2 (TE3T2) - The TEST? input, when asserted, disables
the DCJ1l”s internal clock. The CLK and CLK? pins are placed in
the high-impedance state. Board level in-circuit testing logic
can be designed such that when TEST? is asserted, an external
clock drives the DCJ1l clock circuitry through the CLK pin.

2.9 OSCILLATOR PINS (XTALI, XTALO)

The XTALI and XTALO pins are used to connect an external crystal
circuit to the DCJ1l. The recommended crystal circuit is shown in
Figure 2-2.

68pF

)}* XTAL!

crysTaL T 1M
iy

J_____é} XTALO

» 68pF

MR 9379

Figure 2-2 Typical XTALI and XTALO Generation

2.10 POWER PINS

There are four pins associated with power: two for +5VDC (Vce)
and two for ground (GND).

2.10.1 Power (Vcc) - There are two pins, both called Vcc, which
are used to input +5VDC to the DCJ1l. +5VDC is supplied by
external circuitry and is typically maintained to within = 5%.

2.10.2' Ground (GND) - The two GND pins provide a ground reference
for the DCJ1l. Typically, these pins are connected to the ground

reference of external logic.

2.11 PIN DESCRIPTION SUMMARY

INPUT

OR

PIN NO. PIN NAME DEFINITION OUTPUT FUNCTION

1 TEST1 Test 1 Input Disables all DCJ1ll
outputs.

2-5 AIO<3:0> Address Output 1Indicate the type of
Input/Output cycle currently béing

executed (e.g., bus

read, GP write, IACK,

etc.)

6 PWRF Power Fail Input A high-priority non-
maskable interrupt

that forces a trap

through vector

location 24.

Indicates an AC power

failure.

|

7 FPE Floating-Point Input A high-priority non-
Exception maskable interrupt

that forces a trap

through vector

location 244,

Typically generated

by a floating-point

coprocessor to

indicate an exception

condition,

8 EVENT Event Input A maskable interrupt
that forces a trap

through vector

location 100.

Typically used as a

line time clock.

10-13

14

15

16

17-18

19

20

21-26

27

HALT

IRQ<3:0>

PARITY

GND

Vece

BS<1:0>

DAL<21:16>

DMR

Halt

Interrupt

Request

Parity Error

Ground

Power

Bank Select

Map Enable

Abort

Data/Address

Lines

Direct Memor

Access Reque

Input

Input

Input

Input

Input

Output

Output

I1/0

Output

Yy Input

st

A low-priority non-

maskable interrupt

that forces the

DCJ1l into console

OoDT.

Four maskable

interrupt requecst

lines.

Indicates a memory

parity error.

Ground reference.

+5 VDC power input.

Multiplexed. Either

define the type of

physical address on

the DAL or indicate

if a cache memory

bypass or force miss

should occur.

Multiplexed,

indicates that either

the I/0 map is

enabled or a DMA

request has been

granted.

Indicates the

occurrence of an

abort condition,

i.e.; a memory

management or address

error, bus timeout,

non-existent memory,

or parity error.

Most significant six

bits of the time

multiplexed data and

address bus,.

Forces the current

cycle to be extended

and causes to be

asserted during the

second part of the

cycle,

28

29

30

31

32

33

34

35

36

37

38

39

40

MISS

PRDC

Not Used

TEST2

CONT

INIT

CLK?2

CLK

XTALI

XTALO

SCTL

g
g

Caéhe Miss

Predecode

Test 2

Continue

Initialize

Clock 2

Clock 1

Crystal Input

Crystal Output

Stretch

Control

Strobe

Address Latch

Enable

Input

Output

Input

Input

Input

Output

Output

Input

Output

Output

Output

Output

Indicates whether the

current memory

reference resulted in

a cache hit or miss.

Indicates when the

contents of the

prefetch buffer are

being decoded as the

next macroinstruction.

Disables the clock

outputs. Permits

external logic to

drive the DCJ1ll”s

internal clock

circuitry through the

CLK pin.

Terminates a stretched

cycle.

Initializes or resets

the system by forcing

it through a power-up

procedure.

Clock output with the

same frequency as CLK.

Typically used as a

system clock.

Clock output for

diagnostic use

only.

Oscillator input line.

Oscillator output

line.

Indicates that a cycle

is being stretched.

The edges can be used

to strobe data.

General-purpose

strobe.

Typically used to

latch addresses, AIO

codes, and the map

enable and BS control

signals.

41

42

47-60

45

46

BUFCTL

DV

DAL<15:00>

Vecce

Buffer Control

Data Valiad

Data/Address

Lines

Ground

Power

Output

Input

I/0

Input

Input

Indicates the

direction of data on

the DAL. Asserted when

the DCJ1l is not

driving the DAL.

Causes the DCJ1ll to

to latch data from the

DAL.

Lower 16 bits of the

time multiplexed
data and address bus.,

Ground reference.

+5 VDC power input.

CHAPTER 3

BUS CYCLES

3.1 INTRODUCTION

This chapter describes the various types of DCJ1l bus cycles. A
bus cycle 1is a sequence of events which defines the activity on
the DCJ11”°s I/0 bus. Bus cycles are also sometimes referred to as
"microcycles", since each bus cycle 1is associated with the
execution of one microinstruction. The execution of a DCJ1ll
macroinstruction such as ADD, JMP, etc., can involve the execution
of several bus cycles. The type of bus cycle that the DCJ11
performs depends upon the type of bus activity (if any) required
to complete the execution of a microinstruction.

Sometimes the DCJ1l performs an internal operation which requires
no bus activity. If this 1is the case, the DCJ11l executes a
non-I/0 (NIO) cycle. An NIO bus cycle (described in detail in
Paragraph 3.4) is the only type of bus cycle that does not involve
the transfer of information over the DCJ11”s I/0 bus.

DCJ11l bus cycles fall into six broad categories:

l. Non-I/0

2. Bus Read

3. Bus Write

4. General-Purpose Read

5. General-Purpose Write

6. .Interrupt Acknowledge

The deassertion of the signal STRB marks the beginning (and the
end) of a bus cycle. ALE (asserted shortly after &8TRB is
deasserted) can be used by external logic to latch AIO<3:0>. The
information on AIO<3:0> specifies the type of bus cycle being
performed according to Table 3-1:

Table 3-1 AIO Codes for Bus Cycles

AIO<3:0> Description Bus Cycle Type

1111 Non-1/0 operation Non-1/0

1110 GP read General-Purpose Read

1101 Interrupt acknowledge/ Interrupt Acknowledge
vector read

1100 Instruction stream Bus Read
request read

1011 Read-Modify-Write, Bus Read*

no bus lock '

1010 Read-Modify-Write, Bus Read¥*
bus lock

1001 Data stream read Bus Read

1000 Instruction stream Bus Read

demand read

0101 GP word write General-Purpose Write
0011 Bus byte write Bus Write
0001 Bus word write Bus Write

* Note that the AIO codes for read-modify-write cycles are

identified as Bus Read cycles. This refers to the first part
of the cycle (i.e., the "read" part). The second part of the
cycle (i.e., the "write" part) will be a Bus Write cycle with
a different AIO code.

3.2 DURATION OF BUS CYCLES

The length of a bus cycle is usually expressed as a number of
periods of the DCJ11l”s master clock (CLK). All bus cycles last
for a minimum of four <clock periods. However, cycles may be

extended or "stretched" beyond this minimum by an internal event

or by external logic. When a cycle is stretched, it 1is always
stretched for a minimum of four additional clock periods. A cycle

can continue to be stretched in increments of two periods and can

remain stretched indefinitely. Stretched cycles are ended by the

assertion of the signal CONT. CONT is sampled by the DCJ1l1l on the

first falling edge of T4 and on every other succeeding falling
edge of T4.

A bus cycle will be stretched unless either of the following two

groups of conditions exists: |

1. A Bus Read cycle is executed and BS<1l:0> = 00 throughout the
cycle (i.e., the <cycle involves a memory read and does not

involve a cache bypass or force miss) and DMR and MISS are not
asserted during the cycle (no DMA grant or cache miss).
Furthermore, ABORT must not be asserted if the cycle involves
an instruction stream demand read.

2. A Non-1/0 cycle is executed and DMR is not asserted during the
cycle.

Timing diagrams for both stretched and non-stretched cycles are
provided in the paragraphs that follow.

3.3 Bus Cycle Parts

Reference is sometimes made to the "first" (or "early") part and
the "second" (or "later") part of a bus cycle. The first part of
a bus cycle is defined as the duration of the first ¢two clock
periods, shown as T0O and Tl in the bus cycle timing diagrams. The
second part of a bus cycle is defined as the duration of the
remaining clock periods in the cycle. A non-stretched cycle has
only two clock periods in its second part. These are shown as T2
and T3 in the bus cycle timing diagrams. A stretched cycle has at
least six clock periods in its second part. These are shown as T2
through T7 in the bus cycle timing diagrams. Note that if a cycle
is stretched for more than six clock periods in its second part,
T4 is repeated in pairs.

3.4 NON-I/O (NIO) CYCLE

When the DCJ11 executes a microinstruction which involves no
interaction with external logic (i.e., requires no I/0 bus
activity), it performs a Non-I/0 (or NIO) «cycle. Non-stretched
and stretched Non-I/0 cycles are illustrated in Figures 3-1 and
3-2, respectively. |

cLk F\j‘_/&_,’?—’_f‘z‘_/fi_)—pi,—_
D)D))Y(C

Alo T T NN

o TTIAN
e TM T o

MR-11484

Figure 3-1 Non-Stretched Non-I/0 Cycle

3-3

T0 T T2 T3 T4 T4 174 . T4 T4 T5 T6 17

TR) —@C]

|

te TM i :

A10 JI - ~ococe ML 1')
- 22"&55%,// ‘ ' 5

suFCTT T . | /8

. . CONTINUE ‘

TONT l |

MHA 11456

Figure 3-2 Stretched Non-I/O Cycle

The deassertion of STRB marks the beginning of the cycle, which_is

followed shortly afterwards by the assertion of ALE. ALE

typically latches the AIO code which identifies the cycle as
non-I1/0. The DAL, BS<l:0>, MAP, and ABORT outputs are undefined
and should be ignored by external logic. External logic must not

assert ABORT during an NIO cycle. If a direct memory access
request (DMR) is granted, the cycle 1is stretched and L and
BUFCTL are asserted.

As shown in Figure 3-1, a non-stretched NIO cycle 1is four clock
periods in duration. If a DMA request is received during the

first part of the cycle the cycle is stretched to eight or more

clock periods (note the assertion of DMR during the first part of
the cycle in Figure 3-2). Otherwise, the cycle does not stretch.
If the NIO cycle is stretched, BUFCTL and SCTL are asserted during
the stretched part of the cycle. The time-multiplexed signal MAP
asserted during the second part of the stretched cycle indicates

the granting of the DMA request. The cycle continues to be
stretched in increments of two clock periods (T4) until CONT is
asserted. '

3.5 BUS READ CYCLE

The different types of bus read cycles which the DCJ11l can perform
include instruction-stream request or demand reads, data-stream

reads, and the read portion of a read/modify/write cycle. The AIO

code defines which -of these is selected. The types of devices
from which information can be read include memory, I/O devices,

and explicitly addressable registers. During the first part of

the cycle, BS<1l:0> defines which of these is selected. All read
cycles involve the reading of a full word. If the DCJ1l needs

only a byte, it reads a word and ignores the unused byte.

3-4

Note the distinction between request reads and demand reads. A
request read occurs when the DCJ1l is prefetching information. 1If
an abort occurs at this time, it does not affect macroinstruction
flow (i.e., aborts are ignored). All other types of reads are
demand reads, during which aborts are recognized and serviced via
the service vectors shown in Table 1-8.

Non--stretched and stretched Bus Read cycles are illustrated in
Figure 3-3 and 3-4, respectively. :

cLk / '_-_./ L‘_-_&; oH
: SUBSYSTEM

DAL a) Db HEK
PHYSICAL ADDRESS | DAL

N
1y

W omA N\ $DMR REQUEST DMA REQUESTI
o DAL 8[| omagranT \\\

1/0 MAP ENABLE _ .
. \W\I/O BANK SELECT CACHE STATUS /7))

BS 1 ! . CACHE HIT

. r)))((}(MMU ABORT STATUS DY

r iBUFCTL | i Q&% i
MA-8910

Figure 3-3 Non-Stretched Bus Read Cycle

i : ‘10 T T2 3 T4 'Ta

CLK , /
. .

PHYSICAL ADDRESS— géc\;«EESSussvsrw ' SvsTEM llNTERFACE !

DAL (e DAL 'm DRIVES DAL - ' ;
| i i

are w i — ;
DMA REQUEST- | | :

oV 1000y S L
1/0 MAP ENABLE ‘ C

- WV TN owacrant —
1/0 BANK SELECT— D

BS D) (G W{(cacHE sTaTUS .

- CACHE HIT .

. y// N

MISS ICACHE MISS : :
AEORT W({ MMU ABORT STATUS AN MMU AND SYSTEM AB‘ORE STATUS

. T Q | o i

’ clommue ,
.

i

DV _ fl//l |

MH KO

Figure 3-4 Stretched Bus Read Cycle

ALE can be used to latch the AIO code, the physical address on the
data/address 1lines (DAL), the Bank Select (BS) information, and
1/0 Map Enable (MAP) information.

A Bus Read cycle will stretch if any of the following conditions

exist: '

o BS<1l:0> does not equal 00 during the first part of the cycle

(anything other than a memory reference)

o BS<1l:0> does not equal 00 during the second part of the cycle

(a cache memory force miss or a cache bypass)

o MAP is asserted during the second part of the cycle (a DMA

grant)

o MISS is asserted during the second part of the cycle (a cache

miss)

o ABORT is asserted by the DCJ1ll during an instruction stream

demand read, data stream read, or read-modify-write cycle

Otherwise, a Bus Read cycle will execute in four clock periods.

For non-stretched Bus Read cycles, the read data is synchronously

latched into the DCJ1l only on the rising edge of T3, as shown in

Figure 3-3.

For stretched Bus Read cycles, data is latched into the DCJ1ll both

at the rising edge of T3 and when DV is asserted during the

stretched portion of the cycle (see Figure 3-4). Thus if read

data is valid at the rising edge of T3, it is latched at that time

and DV is not required. 1If the read data 1is not wvalid at the

rising edge of T3, DV is required to latch the valid data. Note

that DV should be inhibited if the stretched Bus Read is due only

to a DMA grant,.

A stretched cycle lasts at least eight clock periods. A cycle Iis

stretched in increments of two clock periods (T4) and is ended by

the assertion of CONT.

If an internally generated abort condition such as an MMU error or

address error exists, she DCJ1l asserts ABORT during the first

part of the cycle. If this type of abort occurs, the DAL, BS, and

MAP information should be ignored for the remainder of the cycle.

If an abort is externally generated (such as bus timeout,

non-existent memory reference, etc.), it must occur during the

stretched portion of the cycle.

3.6 BUS WRITE CYCLE

There are two different types of bus write cycles: Bus Word Write

cycles and Bus Byte Write cycles. The AIO code defines which of

these is selected. The types of devices to which information can

be written include memory, I/0 devices, and bus addressable

registers. During the first part of the c¢ycle, BS<1l:0> defines

3-6

which of these is selected.

Bus Write cycle timing is illustrated in Figure 3-5. Note that

Bus Write cycles are always stretched cycles.

LTO T it2 |13 T4 |T4 |74 T4 ‘T4 iTs 1 Te DY

: L ' | o .

oaL e ——{{{{(0 o DDXCUOXEAXA(((Daraout I P
- ~ LPHYSICAL ADDRESS | !
ATE AN gy b |

_ | ‘ L -

WA) Jll/,omaA GRANT Lo :
L (/0 MAP ENABLE | ; L |

es D) () (R - ;
' —1/0 BANK SELECT ; ‘ ' \ !

ABORT MW MMU ABORT STATUS AW MMU AND SYSTEM ABORT\STATUS |

BUFCTL f : - : . s : .

! ; CONTINUE '

| j ' i | l ! | . I |
MR APL2

Figure 3-5 Bus Write Cycle

ALE typically latches the AIO code, the physical memory address on
the DAL, the BS information, and the I/O map enable signal (MAP).

SCTL is asserted during the stretched portion of the cycle. The

write data is valid when 38CTL is asserted and the leading and
trailing edges of S5CTL can be used by external logic to latch this

data. gUFCTL is not asserted during Bus Write cycles.

If an MMU error or address error abort occurs, the DCJ1ll asserts

ABORT during the first part of the cycle. Externally generated

aborts must cause ABORT to be asserted during the stretched

portion of the cycle.

NOTE

If an abort occurs during the first part

of the <cycle, the DAL, BS, and MAP

information should be ignored for the

remainder of the cycle.

During Bus Byte Write cycles, all 16 bits of DAL<15:0> are driven.

If the address is even, the correct data is on the low byte. 1If

the address is odd, the correct data is on the high byte. The

data on the unused byte is unspecified.

Since a Bus Write cycle is always stretched, CONT must be asserted
to end the cycle. ‘

3-7

3,7 GENERAL-PURPOSE (GP) READ CYCLE

General-purpose read cycles allow the DCJ1l to read data from

non-PDP-11 addressable external logic. A general-purpose read
cycle involves the driving of an address on DAL<7:0> (called the
general-purpose or GP code) which external logic must decode and
respond to. General-purpose read cycles involve the reading of a
full word. If the DCJ1l requires only a byte, it reads a word and

ignores the unneeded byte. Timing for General-Purpose Read cycles

is shown in Figure 3-6.

o T T2 T3 T4 T4 T4 T4 T4 75 !T6 17

cLK /__f__f_\m/__f__f__f—_f__f__/__/—_/__j—_J_\

on. | ———C G cooe I)——TD —— oK
S

e N/]
| I ; |

SUFCTT AN/ L ? /)
, —

SCTT ~ AN ' /.
_ , CONTINUE ; !

oy A 1 EQ&_4__
i . ‘ . ' . . f {]]]

Figure 3-6 General-Purpose Read Cycle

ALE is typically used to latch the AIO code and the
general-purpose code on the DAL, A GP Read is always stretched

and thus always lasts a minimum of eight clock periods. The GP

code (which specifies the source of the read data) is driven onto

DAL<7:0> during the first part of the cycle. At this time,

DAL<21:8> should be ignored. The general-purpose read codes are

summarized in Table 3-2.

Table 3-2 General-Purpose Read Codes

Code Function

000 Reads the power-up mode, HALT

option, FPA option, POK, and

boot address. See Chapter 8

- Interfacing for further

details.

001 - Reads FPA data (if FPA exists).

002 Reads the power-up mode, HALT

option, FPA option, POK, and

boot address,and clears FPA”s

rPS. '

003 Acknowledges FPE and reads FEC

(floating exception code)

register (if FPA exists).

Note that GP Read data is latched into the DCJ1l both at the

3-8

rising edge of T3 and when DV is asserted during the stretched
portion of the cycle (see Figure 3-6). Thus if the data is wvalid
at the rising edge of T3, it is latched at that time and DV is not

required. If the data is not valid at the rising edge of T3, DV
is required to 1latch the valid data. Since a GP Read cycle is
stretched, it must be ended by the assertion of CONT.

NOTE

General-Purpose Read cycles can not be

aborted by the DCJ11l and should not be
aborted by external logic.

3.8 GENERAL-PURPOSE (GP) WRITE CYCLE

General-Purpose Write cycles allow the DCJ1l to write data to
non-PDP~-11 external logic. A General-Purpose Write cycle involves

the driving of an address on DAL<7:0> (called the general-purpose
or GP code) which external logic must decode and respond to. GP
write cycles involve the writing of either a word or a byte.
Timing for General-Purpose Write cycles is shown in Figure 3-7.

‘ ‘7O LT ‘T2 T3 ' T4 | T4 |74 T4 T4 |TS T6 T7

CLK M/—\J—_/—_ . | _ j ! \
ot ——{T oF oot TRo2 oot

]

——i ! ! ! ? {

ATt m 17 o

BUFCTL : f :]
—

i | ;

CONT
i

I
MR 8819. | |

Figure 3-7 General-Purpose Write Cycle

ALE is typically used to latch the AIO «code and the
general-purpose code on the DAL. A GP Write is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the destination of the write data) is driven
onto DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. Table 3-3 provides a summary of the
GP Write codes. See Chapter 8 - Interfacing for further details.

3-9

Table 3-3 General-Purpose Write Codes

Code Function

003 Writes FPA 16-bit data

014 Asserts bus reset signal

034 Indicates exit from console ODT

040 Reserved for future use

100 Acknowledges assertion of EVENT

140 Acknowledges Power Fail

214 Negates bus reset signal

220 Microdiagnostic test 1 passed
224 Microdiagnostic test 2 passed

230 ~ Microdiagnostic test 3 passed

234 Indicates entry into console ODT

SCTL is asserted during the stretched portion of the GP Write

cycle. The write data is valid (and can be latched) on the rising
or falling edges of 8CTL. The write data 1is driven onto

DAL<15:00>. Since a GP Write cycle is always stretched, it must

be ended by the assertion of CONT.

NOTE

General-Purpose Write cycles can not be

aborted by the DCJ11 and should not be

aborted by external logic.

3.9 INTERRUPT ACRNOWLEDGE BUS CYCLE

An Interrupt Acknowledge cycle (also called an Interrupt Vector

Read cycle) 1is performed to service an interrupt request from

IR0<3:0>. Interrupt Acknowledge timing is illustrated in Figure

3-8. Note that the ' interrupt request on IRQ<3:0> must be

deasserted by the end of the cycle.

SYSTEMINTERFACE

DRIVESDALDAL

INTERRUPTLEVEL

! CONTINUE

CONT | | : g 3 _ | !

e W/ ; ! .
' : E . | L L ! i |oo //[[/ ! ' \\\ SYSTEM ABORT STATUS |) ~

sUFCTL W7 W . L I
L

f S i

SCTT ; AL ; 1 T

|
bv

MR 8913

Figure 3-8 1Interrupt Acknowledge Cycle

3-10

ALE is typically used by external logic to latch the AIO code and
the acknowledged interrupt level. The interrupt level

acknowledged is driven onto DAL<3:0> at the beginning of the cycle

as shown in the table below.

Table 3-4 Interrupt Acknowledgement

DAL<3:0> IRQ level acknowledged

0001 . 4 '

0010 5

0100 6

1000 7

At this time DAL<21:4>=0.

As shown in Figure 3-8, the interrupt vector -address is placed on

the DAL by the interrupting device during the second part of the

cycle. An Interrupt Acknowledge cycle 1is always stretched and

consists of at 1least eight «clock periods. It is stretched in

increments of two clock periods (T4) until the CONT input |is
asserted, at which time the cycle is ended.

Note that the interrupt vector is latched into the DCJ1l both at

the rising edge of T3 and when DV is asserted during the stretched

portion of the cycle. Thus if the interrupt vector 1is valid at

the rising edge of T3, it is latched at that time and DV is not

required. If the interrupt vector is not valid at the rising edge

of T3, DV is required to latch it.

An Interrupt.Acknowledge cycle can be aborted during the stretched

portion of the cycle if ABORT is asserted by external logic. The

DCJ11l does not assert ABORT during the first part of an Interrupt

Acknowledge «cycle. If an abort occurs, the DCJ1ll ignores the

interrupt request and continues execution. '

3.10 DMA REQUESTS AND GRANTS

If external logic needs to use the DAL to transfer data, it must:

(1) cause the DCJ1l to put the DAL in the high-impedance state,

and (2) stretch the cycle currently in progress while external

logic makes use of the DAL, This is accomplished by asserting the
DMR input during the firsf part of a cycle. 1In response, the DMA

request will be acknowledged and granted for all cycle types

except Bus Write and GP Write cycles. During Write cycles (which

are always stretched), the DAL carries write data during the

second part of a cycle, during which time the DAL is not placed in

the high-impedance state. External logic could be designed such

that DMA transfers could occur during Write cycles as long as the

DMA transfer did not use the DAL coming directly from the DCJ1l1l (a

buffered version of the DAL could be used instead). In other

words, external 1logic 1is not prevented from performing a DMA

operation simply because a DMA grant does not occur.

A DMA request is acknowledged by asserting MAP during the second

part of a «cycle. A cycle involving a DMA transfer is stretched

and thus lasts a minimum of eight clock periods. It will continue

3-11

to be stretched in increments of two clock periods until the CONT
input is asserted. Note that the deassertion of DMR does not end
the cycle.

CHAPTER 4

MEMORY MANAGEMENT

4.1 INTRODUCTION

The DCJ1l contains a memory management unit (MMU) which provides

the user with the hardware necessary to effect complete memory
management and protection. The MMU is designed to provide access
to all of physical memory and is an important part of multi-user,
multiprogramming systems where memory protection and relocation
facilities are necessary. '

The MMU is used to assign segments of memory called pages to a
user program and prevent that user from making unauthorized
accesses to pages outside his assigned area. A user 1is thus
prevented from accidental or willful destruction of any other user

program or the system executive program.

The MMU is usually used in conjunction with a supervisory program
which determines how the MMU is to operate. 1In multiprogramming
environments this supervisory program controls the execution of
the various wuser programs, manages the allocation of memory and
peripheral device resources, and safeguards the integrity of the
system as a whole by careful control of each user program.

The basic characteristics of the DCJ1l memory management unit are:
16 kernel mode memory pages

16 supervisor mode memory pages

16 user mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 64 to 8192 bytes

Each page provided with full protection and relocation
Transparent operation

Memory access to 4 million bytesO
0
0
0
0
0
0
0
0
O
0

The remainder of this chapter explains these characteristics in
detail.

4.2 ADDRESSING

When the MMU is active, a 16-bit address referenced in a program
is interpreted as a virtual address (VA) containing information to
be used in constructing a new 22-bit physical address (PA). The
~information contained in the wirtual address is combined with
relocation information contained in a register called the page
address register (PAR) to vyield the 22-bit physical address.
Using the MMU, memory can be dynamically allocated in pages
composed of from 1 to 128 contiguous blocks of 64 bytes each .
Figure 4-1 illustrates the relocation of wvirtual addresses to

physical addresses via page address registers.
PHYSICAL

ADDRESS SPACE

17777777 PAGE 5

VIRTUAL

INSTRUCTION/DATA

ADDRESS SPACE
PAGE 6

1777177 > PAR 7

> PAR 6

PAR S PAGE 7

> PAR 4

PAR 3 \
PAR 2 PAGE 4

PAR 1

0 PAR O 0

VIRTUAL ADDRESS PAGE ADDRESS REGISTERS PHYSICAL ADDRESS

(16 BITS) (22 8ITS)

PAR = PAGE ADDRESS REGISTER

MR.-11482

Figure 4-1 Virtual Address Mapping Into Physical Address

The starting physical address for each page is an integral

multiple of 64 bytes, and each page has a maximum size of 8192
bytes. Pages may be located anywhere within the 22-bit physical
address space.

Only one set of eight page address registers are illustrated in

Figure 4-1. Actually, six such sets of page address registers are

used by the MMU., The determination of which set of page registers

is enabled at any given time depends on the current CPU mode of"

operation (i.e., kernel, supervisor, or user mode) and whether the

MMU is mapping instructions (into I space) or data (into D space).

Refer to Paragraph 4.5 for further details. '

4.3 I SPACE AND D SPACE

When the MMU is active, all addresses are mapped into either

instruction (I) space or data (D) space. I space is used for all

instruction fetches, index words, absolute addresses and immediate

operands. D space is used for all other references. I space and

D space each have 8 PARs in each mode of CPU operation (kernel,

supervisor, and user). Using memory management register %3
(MMR3), D space can be disabled such that all references

(instruction and data) are mapped through I space.

Table 4-1 defines how memory references are mapped into the I and
D spaces. Note that the determination of whether a memory

reference gets mapped into I space or D space depends on: the
type of instruction, the addressing mode, and the register

selected.

Table 4-1 I and D Space Referencing
(first/second/third memory references)

Address Mode Normal MTPI, MTPD ,MFPD,
and Reg Select Instruction MFPI MFPI

(not MTPI, MFPI (PS<15:12> (PS<15:12>
MTPD, or MFPD) not 1111) = 1111)

00 - 07 na na na
10 - 16 D I D
17 I I D
20-- 26 D I D
27 I I D
30 - 36 D/D D/1 D/D
37 I/D 1/1 I1/D
40 - 46 D I D
47 I I D
50 - 56 D/D D/1 D/D
57 I/D I1/1 I/D
60 - 67 I1/D I1/1 I/D
70 - 77 I1/D/D I/D/1 I1/D/D

4.4 CONSTRUCTION OF A PHYSICAL ADDRESS

The basic information needed for the construction of a physical
address comes from the virtual address (illustrated in Figure 4-2)
and the appropriate PAR set.

I ! 1 T 1 I 1 i T |} I 1 L T
APF DF

! I 1 | I] I] ! I] | ! I

\.—fi | W— —
o

ACTIVE PAGE DISPLACEMENT FIELD

FIELD

MR 11049

Figure 4-2 Interpretation ofa Virtual Address

The virtual address consists of:

l. The active page field' (APF). This 3-bit field determines
which of eight page address registers (PARO through PAR7) will
be used to form the physical address.

2. The displacement field (DF). This 13-bit field contains an
address relative to the beginning of a page. This permits
page lengths up to 8K bytes. The DF is further subdivided
into two fields as shown in Figure 4-3.

T T T T T T T T T T T

BN Dis

]]] ! 1 1 | ! 1] i

M L} —

Y Y

8LOCK NUMBER DISPLACEMENTIN BLOCK
MA-11080

Figure 4-3 Displacement Field of Virtual Address

The displacement field (DF) consists of:

1. The block number (BN). This 7-bit field is interpreted as the
block number within the current page.

2. The displacement in block (DIB). This 6-bit field contains
the displacement of the address within the block specified by

the block number.

The remainder of the information needed to construct the physical

address comes from the 16-bit page address field (PAF) (i.e. the

contents of the page address register (PAR)) that specifies the
starting address of a particular memory page. The PAF is actually

a block number in physical memory, e.g., PAF = 3 indicates a

starting address of 192 (3 x 64 bytes per block) decimal or 300
octal in physical memory.

The formation of the physical address is 1illustrated in Figure

16 13 12 06 08 00

VIRTUAL
A P F

ADDRESS

A ~ A ~ —

r* PLUS———J
SELECTS £

s — N
l 15 00
PAR

N ——

]
EQUALS

‘ '

r;‘ 06 05 00

PHYS!ICAL

ADDRESS

T .4494

Figure 4-4 Construction of a Physical Address

The logical sequence involved in constructing a physical address

is as follows:

1. Select a set of page address registers depending on the CPU
mode (kernel, supervisor, or user) and the type of memory

reference (I or D space).

2. Use the active page field (APF) from the virtual address to

select one of eight page address registers (PARO through
PAR7).

3. The page address field (PAF) of the selected page address
register (PAR) contains the starting address of the currently
active page as a block number in physical memory.

4. The block number (BN) from the virtual address is added to the
page address field to yield the number of the block in
physical memory which will contain the Physical address being
constructed.

5. The displacementin block (DIB) from the displacement field of
the wvirtual address is appended to the physical block number
to yield a true 22-bit DCJ11 physical address.

4.5 MANAGEMENT REGISTERS

The DCJ11 MMU implements three sets of 32 16-bit registers as
shown in Figure 4-5. One set of registers is used in kernel mode,
another in supervisor mode, and the other in user mode. The
choice of which set to be used is determined by the current CPU
mode contained in the processor status register (PS). Each set
consists of "two groups of 16 registers. One group is used for
references to instruction (I) space and one to data (D) space.
The I space group is used for all instruction fetches, index
words, absolute addresses, and immediate operands. The D space
group is used for all other references, providing D space has not
been disabled by memory management register $3. Each group
contains - 8 pairs of 16-bit registers. Half of the registers in
each group are page address registers, which operate as explained
previously. The other registers are page descriptor registers
(PDRs). PARs and PDRs are always selected in pairs. A PAR/PDR
pPair contains all the information needed to describe and locate a
currently active memory page. |

Each of the memory management registers described above are
located in the uppermost 8K bytes of the physical address space
(see Paragraph 4.9).

PROCESS STATUS WORD ;
1

v ' '
KERNEL (00) SUPERVISOR (01) USER (11)

PARO | PDRO PARO | PORO PARO | PORO

t SPACE

PAR? POR? PART POR7 PAR? PDR7

PARO PDRO PARO | PORO PARO | PDRO

D SPACE

1

PAR7 POR7 PART POR? PAR? | POR?
LBRL)

Figure 4-5 Active Page Registers

4.5.1 Page Address Registers (PARs) - As shown in Figure 4-6,

each page address register contains a 16-bit page address field

(PAF) which specifies the starting address of a page as a block

number in physical memory.
15

00

1 I 1 i I ¥ 1 1] 1] 1 1 ¥]
PAF

|] { | 1 1]] L L 1 | |] |

Figure 4-6 Page Address Register MA11083

\

The page address register which contains the page address field

may be thought of as a relocation register containing a relocation

constant, or as a base register containing a base address.

4.5.2 Page Descriptor Registers (PDRs) =- Page descriptor

registers (PDRs) contain information on page expansion direction,
page length, and access control. Refer to Figure 4-7.

15 14 13 2 11 10 09 08 0’ 06 05 04 03 02 01 00

PAGE LENGTH FIELD (PLF) 0 w 0 0 ED ACF 0

| | i i] | l 1

T . . ") \—1,._0

BYPASS CACHE |
PAGE LENGTH FIELD . 3

PAGE WRITTEN

EXPANSION DIRECTION

ACCESS CONTROL FIELD —

MR.B920

Figure 4-7 Page Descriptor Register (PDR)

4.5.2.1 Bypass Cache - Bit 15 implements a conditional cache
bypass mechanism. If set, references to the selected virtual page
can bypass cache memory if a cache is present in the system.

4.5.2.2 Page Length Field (PLF) - This 7-bit field occupying bits
<l4:8> of the PDR specifies the block number, which defines the
boundary of that page. The block number of the virtual address is
compared against the page length field to detect length errors.
An error occurs when expanding upwards if the block number is
greater than the page length field and when expanding downwards if
the block number is less than the page length field.

4.5.2.3 Page Written - Bit 6 (the W bit) indicates whether or not
this page has been modified (i.e., written into) since either the
PAR or PDR was loaded (W = 1 means the page has been modified).
The W bit 1is useful in applications which involve disk swapping
and memory overlays. It is used to determine which pages have
been modified and hence must be saved in their new form and which
pages have not been modified and can simply be overlaid.

Note that the W bit is reset to 0 whenever either PAR or PDR is
modified (written into).

4.5.2.4 Expansion Direction (ED) - Bit 3 specifies in which
direction the page expands. If ED = 0 the page expands upwards
from block number 0 to include blocks with higher addresses; if
ED = 1 the page expands downwards from block number 127 to include
blocks with lower addresses. Upward expansion is usually used for
program space while downward expansion is usually used for stack

space. |

4.5.2.5 Access Control Field - This 2-bit field, occupying bits
<2:1> of the page descriptor register contains the access rights
of a particular page. The access codes or "keys" specify the
manner in which a page may be accessedand whether or not a given
access should result in an abort of the current operation. A
memory reference which causes an abort must not be completed by

the system interface. Aborts are used to catch "missing page

faults", prevent illegal accesses, etc.

In the context of access control the term "write" 1is used to
indicate the action of any instruction which modifies the co

ntents

of any addressable byte. "Write" 1is synonymous with what is

sometimes called a "store" or "modify" in many computer systems.

The modes of access are as follows:

00 non-resident abort all accesses

0l read-only abort on write attempt

10 unused abort all accesses

11 read/write access

4.5.2.6 Reserved Bits - Bits 7, 5, 4, and 0 are spare and are
always read as O. These bits are reserved for possible future

expansion.

4.6 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT CONTROL

With the MMU enabled, all trap, abort, and interrupt vectors are

considered to be in kernel mode virtual address space. When a

trap, abort, or interrupt occurs, control is transferred according

to a new program counter (PC) and processor status word (PS)

contained in a two-word vector that is relocated through the
kernel page address register set. The old PC and PS is pushed
onto the R6 stack specified by bits <15:14> of the new PS (00 =

kernel, 01 = supervisor, 1l = user). Bits <15:14> also determine

the new PAR set. In this manner it is possible for a kernel mode
program to have complete control over service assignments for all

interrupt conditions since the interrupt vector is located in
kernel space. The kernel program may assign the service of a
trap, abort, or interrupt condition to a supervisor or user mode

program by simply setting bits <15:14> of the new PS.

4.7 FAULT RECOVERY REGISTERS

Aborts generated by the MMU are vectored through kernel wvirtual
location 250. Memory management registers #0, #1, $2, and #3 are

used to determine why the abort occurred, and allow for easy

program restarting. Note - that an abort to a location which is
itself an invalid address will cause another abort. Thus the

kernel program must insure that kernel virtual address 250 is
mapped to a valid address, otherwise a loop will occur which will

4-8

require console intervention.

4.7.1 Memory Management Register #0 (MMR0O) - MMRO contains error
flags, the page number whose reference caused the abort, and

various other status flags. The register is organized as shown in
Figure 4-8.

15 14 13 12 1 1C o 08 07 -06 05 04 03 0? 01 oC

ABORT J b -) N J
NON-RESIDENT

,

ABORT PAGE

LENGTH ERROR

ABORT READ-ONLY PAGE MODE PAGE NUMBER

ACCESS VIOLATION
PAGE ADDRESS

SPACE /O ENABLE RELOCATION

Figure 4-8 Memory Management Register #0 (MMRO)

4.7.1.1 Error Flags - Bits <15:13> are error flags. They may be

considered to be in a "priority queue" in that flags to the right

are less significant and should be ignored if a higher bit is set.

That 1is, a non-resident fault service routine would ignore length

and access control faults. A page length fault service routine

would ignore access control faults,

Bits <15:13> when set (error conditions) cause the MMU to freeze
the contents of MMRO bits <6:1>, MMR1l, and MMR2. This is to

facilitate error recovery.

Bits <15:13> may be written under program control. No abort will

occur, but the contents of the memory management registers will be

frozen as in an abort.

Bits <15:13> are cleared at power-up, by a console start, or by a

RESET instruction.

4.7.1.1.1 Abort -- Non-Resident - Bit 15 is set by attempting to

access a page with an access control field key equal to 0 or 2.

It is also set by attempting to use memory relocation with a

processor mode of 2 (i.e., the illegal processor mode).

4.7.1.1.2 Abort -- Page Length - Bit 14 is set by attempting ¢to
access a location in a page with a block number (virtual address

bits <12:6>) that is outside the area authorized by the page

length field of the PDR for that page. Bits 14 and 15 may be set

simultaneously by the same access attempt. Bit 14 may also be set

by attempting to use memory relocation with a processor mode of 2.

4-9

4.7.1.1.3 Abort -- Read Only - Bit 13 is set by attempting to
write in a "read-only" page. Read-only pages have access keys of
01.

4.7.1.2 Reserved Bits - Bits <12:7> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.1.3 Processor Mode - Bits <6:5> indicate the CPU mode

(kernel, supervisor, or user) associated with the page causing an

abort (kernel = 00, supervisor = 0l, user = 11, illegal mode =

10). If an illegal mode is specified, bit 15 is set.

4.7.1.4 Page Address Space - Bit 4 indicates the type of mapping
(I or D) the MMU attempted when an abort occurred (0 = I space, 1

= D space). It is used in conjunction with bits <«3:1>, page

number.

4.7.1.5 Page Number - Bits <3:1> contain the page number of a
reference causing an MMU abort. Note that pages, like blocks, are

numbered from 0 upwards.

4.7.1.6 Enable Relocation - When bit 0 is set to a 1, the MMU is
enabled and performs address relocation. When bit 0 is cleared,

the MMU 1is 1inoperative and addresses are not relocated or
protected. Bit 0 is cleared at power-up, by a console start, or

by a RESET instruction. '

4.7.2 Memory Management Register #1 (MMR1l) - MMR1l (see Figure

4-9) records any autoincrement/autodecrement of the

general-purpose registers, including references through the PC.

This information is necessary to recover from an error resulting
in an abort. MMR1 is cleared at the beginning of each instruction

fetch. Whenever a general-purpose register is autoincremented or

autodecremented, the register number and the amount (in 2°s
complement notation) by which the register was modified is written

into MMR1. The low order byte of MMR1l is written first. It is

not possible for a DCJ1ll instruction to autoincrement/decrement

more than two general-purpose registers per instruction before an

"abort-causing" reference.

It is up to the software to determine which set of registers

(kernel/supervisor/user =-- deneral set 0/general set l) was

modified, by determining the CPU and register modes as contained

in the PS at the time of the abort.

1 i] ! | | |] | |] L

v A = A at A - 4
AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER
(2°'S COMPLEMENT) NUMBER (2'S COMPLEMENT) NUMBER

MR 8924

Figure 4-9 Memory Management Register #1 (MMR1)

4.7.3 Memory Management Register $#2 (MMR2) - MMR2 is loaded with
the current 16-bit wvirtual address at the beginning of each

instruction fetch. MMR2 is read-only; it can not be written.
MMR2 is the virtual program counter.

4.7.4 Memory Management Register #3 (MMR3) - As shown in Figure
4-10, MMR3 enables or disables the use of D space PARs and PDRs
and 22-bit mapping and controls data on the time-multiplexed
output MAP (pin 19 of the DCJ1ll).

' 14 13 12 11 10 09 08 0T ©06 05 ©04 03 02 01 00
v

0 0 0 0 0 o| o 0 0 0 MODE

| 4

ENABLE I/O MAP

ENABLE 22-BIT MAPPING

ENABLE CSM INSTRUCTION

KERNEL

SUPERVISOR

USER ’ L LE 1]
Figure 4-10 Memory Management Register #3 (MMR3)

4.7.4.1 Reserved Bits - Bits <15:6> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.4.2 Enable I/0 Map - Bit 5 is set to assert the MAP output of
the DCJ11l. If bit 5 = 1 MAP is asserted. 1If bit 5 = 0 MAP is
unasserted. On initialization, MMR3 is cleared.

4.7.4.3 Enable 22-Bit Mapping - If bit 4 = 0 and the MMU is
enabled (bit 0 of MMRO = 1), the DCJ1l uses 18-bit mapping. If
bit 4 = 1 and the MMU is enabled, the DCJ1l uses 22-bit mapping.
If the MMU 1is disabled, bit 4 is ignored and 16-bit mapping is
used. Figures 4-11, 4-12, and 4-13 illustrates the three mapping
alternatives available.

'

1n

110

PAGE

17760000

177

60000 0V o _ — /
1572277 00157777

ooooc0 | — 00000000

INCOMING VIRTUAL PHYSICAL

ADDRESS (16 B1TS) ADDRESS SPACE

(22 BITS)

— = RELOCATION

NOT ACCESSIBLE IN THIS MODE

------ NO ADDRESS AELOCATION
L IRRFIYY

Figure 4-11 16-Bit Mapping

117711

/0

PAGE

17760000

00757277

1711717

MEMORY/
MANAGEMENT

000000 DO000000
INCOMING VIRTUAL PHYSICAL

ADDRESS (16 BITS) ADORESS SPACE

(22 BITS)

—————g RELOCATION

NOT ACCESSIBLE (N THIS MODE

T REY" V)

Figure 4-12 18-Bit Mapping

mnnn

110

PAGE

17760000

17718271717

Y777

'/‘

MEMORY

MANAGEMENT

7
000000 00000000

INCOMING VIRTUAL PHYSICAL
ADDRESS (16 BITS) ADDRESS SPACE

(22 BITS)

e RELOCATION

ME Vies

Figure 4-13 22-Bit Mapping

4.7.4.4 Enable Call To Supervisor Mode (CSM) Instruction - Bit 3
is used to enable a CSM instruction. 1If bit 3 is set to a 1, a
CSM instruction will execute. 1If bit 3 = 0, a CSM instruction
will cause a trap through vector location 10. 4

4.7.4.5 Kernel, Supervisor, And User Mode D Space Bits - Bits 2,
1, and 0 are the kernel, supervisor, and user mode D space bits,
respectively. These bits determine whether D space mapping is
enabled or disabled for each CPU mode. When D space is disabled,
all memory references use the I space registers; when D space is
enabled, both the I space and the D space registers are used.
When a mode bit is set, D space is enabled; when a mode bit is
clear, D space is disabled (see Table 4-2).

Table 4-2 Mode Bit Operations

BIT STATE OPERATION

2 0 Disable kernel D space
1 Enable kernel D space

1 0 Disable supervisor D space
1 Enable supervisor D space

0 0 Disable user D space
1 Enable user D space

4-13

4,7,% Instruction Back-Up/Restart Recovery - The process of
"backing-up" and restarting a partially completed instruction
involves:

1. Performing the appropriate memory management tasks to
alleviate the cause of the abort (e.g., loading a missing

page).

2. Restoring the general-purpose registers indicated in MMR1l to

their original contents at the start of the instruction by

subtracting the "modify value" specified in MMRI1.

3. Restoring the PC to the "abort time"TM PC by loading R/ with the
contents of MMR2, which contains the value of the virtual PC

at the time the instruction generating the abort was fetched.

Note that this back-up/restart procedure assumes that the

general-purpose register used in the aborted program segment will

not be used by the abort recovery routine. This is automatically

the case if the recovery program uses a different general register
set.

4.7.6 Clearing Status Registers Following Abort - At the end of
an abort service routine, bits <15:13> of MMRO must be set to 0 to

resume error checking. On the next memory reference following the

clearing of these bits, the various memory management registers

will resume monitoring the status of the addressing operations.

MMR2 will be loaded with the next instruction address, MMR1 will
store register change information, and MMRO will log MMU status

information.

4.7.7 Multiple Faults - Once an abort has occurred, any

subsequent errors that occur will not affect the state of the
memory management status registers. The information saved 1in
MMRO, MMR1l, MMR2, and MMR3 will always refer to the first abort

that was detected.

4.8 MMU IMPLEMENTATION

The MMU is a very general purpose memory management tool. It can

be used in a manner as simple or as intricate as desired. It can

be anything from a simple memory expansion device to a very

complete memory management facility.

In most normal applications, it is assumed that control over

memory page assignments and their protection resides 1in a
supervisory type program which operates at the nucleus of a CPU’s
executive (i.e. in kernel mode). It is further assumed that this
kernel mode program would set access keys in such a way as to

protect itself from willful or accidental destruction by

supervisor mode or user mode programs. Facilities are also

provided so that the nucleus can dynamically assign memory pages

4-14

of varying sizes in response to system needs.

4.8.1 Typical Memory Page - When the MMU is enabled, the kernel
mode program, a supervisor mode program, and a user mode program
each have eight active pages (described by the appropriate PARs
and PDRs) for data, and eight for instructions. Each page is made
up of from 1 to 128 blocks and is pointed to by the page address
field of the corresponding PAR as i{llustrated in Figure 4-14.

//, 8LOCK1115 (2110l 74

7//// BLOCK 176g (11210)

-

-
_

.
VA 144777 PA 316777

BLOCK 47g (394!

VA 157777 PA 331777

BLOCK 1

BLOCK O
PA 312000

PAR 6 3120

PAF

3910 ACF

01
7

ons (P
8C DPLF W E

VA 140000

| Figure 4-14 Typical Memory Pagé

The memory segment illustrated in Figure 4-14 has the following
attributes:

l. Page length: 40 blocks.

Virtual address range: 140000 - 144777.

w [
} Physical address range: 312000 - 316777.

o
>

. Nothing has been modified (i.e., written) in this page.

S. Read-only protection.

6. Upward expansion.

7. Cache (if present in the system) is not bypassed.

These attributes were determined according to the following

scheme:

1. PAR6 and PDR6 were selected by the active page field of the
virtual address. (Bits <15:13> of the virtual address = 110)

2. fThe initial address of the page was determined from the page

address field of PAR6. (312000 (octal) = 3120 (octal) blocks

x 64 (octal) bytes). Note that the PAR which contains the PAF

constitutes what is often referred to as a base register

containing a base address or a relocation register containing

a relocation constant.

3. The page length (47 (octal) + 1 = 40 (decimal) blocks) was

determined from the page length field contained in PDR6. Any

attempts to reference beyond the 40 blocks in this page will

cause a page length error which will result in an abort,

vectored through kernel virtual address 250.

4. The physical addresses were constructed according to the

scheme illustrated in Figure 4-4.

5. The W bit (W = 0) indicates that no locations 1in this page

have been modified (i.e., written). If an attempt is made to

modify any location in this particular page, an access control

violation abort will occur. 1If this page were involved in a

disk swapping or memory overlay scheme, the W bit would be

used to determine whether it had been modified and thus

required saving before overlay.

6. This page is read-only protected, i.e. no locations in this

page may be modified. The mode of protection is specified by

the access control field of PDR6.

7. The direction of expansion is upward (ED = 0). 1If more blocks

are required in this segment, they will be added by assigning

blocks with higher relative addresses.

8. The Bypass Cache bit (bit 15) = 0 which means that cache

memory is not bypassed during this relocation operation.

Note that the various attributes which describe this page can all

be determined under software control. The parameters describing

the page are all loaded into the appropriate PAR and PDR under

program control. In a normal application it is assumed that the

particular page which itself contains these registers would be

assigned to the control of a supervisory type program operating in
kernel mode.)

4.8.2 MNon—-Consecutive Memory Pages - It should be noted that
although the correspondance between virtual addresses and PAR/PDR
pairs is such that higher VAs have higher PAR/PDRs, this does not
mean that higher wvirtual addresses necessarily correspond to
higher physical addresses. It is quite simple to set up the PAFs
of the PARs so that higher virtual address blocks may be located
in lower physical address blocks as illustrated in Figure 4-15.

VA 037777 PA 467777

H
[}

[]

H

VA 020000 PA 460000PAR 7 AF

VA 0177717 PA 560777

¥

[]

]

]

1

PAR 1 PAF

PAR 0 FAF wm o

MA 11085

Figure 4-15 Non-Consecutive Memory Pages

Note that although a single memory page must consist of a block of
contiguous locations, memory pages do not have to be located in
consecutive physical address 1locations. Also note that the
assignment. of memory pages 1is not 1limited to consecutive
non-overlapping physical address locations.

4.8.3 Stack Memory Pages - When constructing DCJ1l1 programs, it
is often desirable to isolate all program variables from program
instructions by placing them on a register-indexed stack. These
variables can then be pushed or popped from the stack as needed.
DCJ1ll stacks expand linearly downward to lower addresses when data
is pushed onto them. Thus, when a memory page which contains a
stack needs more room, it must expand downward. Blocks with lower
addresses relative to the current page must be added. This mode
of operation is specified.by setting the expansion direction (ED)
bit of the appropriate PDR to a 1. Figqure 4-16 illustrates a
typical stack memory page.

VA 157777 PA 331777

BLOCK 177g {12740)

BLOCK 176g (12610)

BLOCK 175g (12510)

7

4

VA 157500 PA 331500

VA 140000

PAR 6 PAF

POR6 {BC PLF W ED ACF%

MR 11458

Figure 4-16 Typical Stack Memory Page

This page will have the following parameters:

o PAR6: PAF = 3120

o PDR6: PLF = 175 (octal) or 125 (decimal) (128 - 3).

o ED =1

o W= 0orl

o ACF = n (to be determined by the programmer as the need
dictates)

Note: the W bit is set by internal chip hardware.

In this case the stack begins 128 blocks above the relative origin

of this memory page and extends downward for a length of three

blocks. A page length error abort vectored through kernel virtual
address 250 will be generated by the MMU when an attemptis made

to reference any location below the assigned area, i.e. when the

block number from the virtual address is less than the page length
field of the appropriate PDR. ‘

4,8.4 Transparency - In a multiprogramming application memory

pages can be allocated such that a particular program seems to

have a complete 64K memory configuration. Using relocation, a

kernel mode supervisory type program can easily perform all memory

management tasks in a manner entirely transparent to a supervisor
mode or user mode program. In effect, a DCJ1ll system can be

configured to provide maximum throughput and response to a variety
of users each of which seems to have a powerful system all to
himself.

4.9 MEMORY MANAGEMENT UNIT -- REGISTER MAP

Memory

Memory

Memory

Memory

User I

User 1

User D

User D

USer I

-Uset I

User D

User D

REGISTER

Management Register

Management Register

Management Register
Management Register

Space PDRO

Séace PDR7

Space PDRO

Space PDR7

Space PARO

L

Space PAR?7

Space PARO

L

Space PAR7

Supervisor I Space PDRO

Supervisor I Space PDR7

Supervisor D Space PDRO

Supervisor D Space PDR7

Supervisor I Space PARO

Supervisor I Space PAR7

$0

$1

$2

43

(MMRO)

(MMR1)

(MMR2)

(MMR3)

ADDRESS

17777572

17777574

17777576

17772516

17777600

17777616

17777620

17777636

17777640

17777656

17777660

17777676

17772200

17772216

17772220

17772236

17772240

17772256

Supervisor D Space PARO

Supervisor D Space PAR7

Kernel I Space PDRO

Kernel I Space PDR7

Kernel D Space PDRO

Kernel D Space PDR7

Kernel I Space PARO

Kernel I Space PAR7

Kernel D Space PARO

Kernel D Space PAR7

17772260

17772276

17772300

17772316

17772320

17772336

17772340

17772356

17772360

17772376

CHAPTER 5

SPECIAL FEATURES

5.1 INTRODUCTION

This chapter discusses three special features incorporated into
the DCJ11l: cache memory status and control registers, console
ODT, and pipeline processing hardware.

5.2 CACHE MEMORY STATUS AND CONTROL REGISTERS

The DCJ11l contains hardware that allows the user to incorporate
cache memory into his system. This hardware consists of the cache
control register and the hit/miss register. This hardware allows
for a broad spectrum of cache implementations and the user has
considerable flexibility in designing a cache memory scheme to fit
his application. The paragraphs that follow not only describe the
cache memory status and control registers in detail but also
present some general considerations involved in designing cache
memory into a DCJ1l1 based system. A sample cache memory
implementation is - also presented to illustrate a typical
application of the cache memory status and control registers.

5.2.1 Cache Control Register - The cache control register (CCR)
contains information which 1is used to control the operation of
cache memory. It is accessed by referencing location 17777746.
Only bits 9 and <3:2> of the CCR are interpreted by the DCJ11.
Bits <10:0> are read/write bits. Bits <15:11,8> are always read
as zeroes.

In order for the uninterpreted read/write bits (bits 10, <8:4>,
and <1:0> to be used by external logic, the user must include a
"shadow register"TM (write only) in his DCJ11 design. The shadow
register simply retains a hardware accessible copy of the CCR
information. Although theé DCJ1l allows the reading and writing of
CCR<10:0> and the writing of CCR<15:11>, changing bits <15:11>, 8,
<7:4>, and <1:0> will have no hardware effect on the DCJ11l.

CCR bits <15:11> are uninterpreted and always read as zeroes by
the DCJ1ll (see sample implementation in Paragraph 5.2.5). The
user typically designs an external register for these bits if they
must be interpreted. The format of the CCR is shown in Figure
5-1.

08 03 02 o1

) 1 (——

5
]

o o [T
e]

o o o o (@
] \

N

4
7\ VN

{)
UNINTERPRETED l
{READ AS ZEROES)

UNINTERPRETED

(READ/WRITE])

UNCONDITIONAL

CACHE BYPASS

UNINTERPRETED

(READ AS ZERQ}*

UNINTERPRETED

(READ/WRITE)

FORCE CACHE MISS

UNINTERPRETED

(READ/WRITE}

MR 11436

*Written as a logic 1 at power-up or when console ODT is started

Figure 5-~1 Cache Control Register

5.2.1.1 Unconditional Cache Bypass (R/W) - When bit 9 is set to

1, all memory references access main memory, and all cache hits

are invalidated. |

5.2.1.2 Force Cache Miss (R/W) - When either of bits <3:2> is set

to 1, all references are forced to main memory and all cache

activity is suspended. This in effect disables the cache system.

5.2.1.3 Uninterpreted Bits - Bits <15:10>, <8:4>, and <1:0> are

uninterpreted by the DCJ1l. Bits 10, <8:4>, and <1:0> are

read/write bits and bits <15:11> are always read as zeroes.

5.2.2 Hit/Miss Register - The Hit/Miss Register (HMR) indicates

whether the six most recent CPU memory references resulted in

cache hits or cache misses. It 1is accessed by referencing

location 17777752. Refer to Figure 5-2. Bits <15:6> are always

read as zeroes. Bits <5:0> are read-only bits. Bits enter from

the right (at bit 0) and are shifted leftward. A logical one

indicates a cache hit, and a zero indicates a cache miss. This

register is used to help diagnose the cache system.

15 14 13 12 11 10 09 08 07 06 05 00

0 0 0 0 0 0 0 0 o 0 *-————F LOW

MR 8899

Figure 5-2 Hit/Miss Register

5-2

5.2.3 General Operation - Cache memory is typically a high-speed
memory that buffers data between the CPU and main memory. When a
memory access occurs, the system looks for data in the fast cache
memory first. If found (a hit), the data is read or written to or
from the cache and execution proceeds at the fastest rate. If not
found (a miss), the data must be read from or written to main
memory.

In a write-through cache system a CPU request to write data into
memory causes data to be written to both the cache and to main
memory. This is to insure that both stores are always updated
immediately. PDP-11 systems with cache normally use the
write-through technique.

Typical hit/miss operations in a write-through cache system are
summarized in Table 5-1.

Table 5-1: Typical Hit/Miss Operations

What Happens In
——————————————————— :—--—l-—----—--—-—------—---———

CACHE MAIN MEMORY

READ ,

hit | no change no change
miss updated no change

WRITE

“hit : updated updated
miss no change updated

In a typical program, WRITEs occur only 10-15% of the time and
READs occur 85-90% of the time. Thus, READ misses cause the cache
to be updated.

The I/0 page of physical memory (the top 8K bytes) 1is not
typically cached. This 1is because the I/0 page contains device
status registers which,when read, must always convey the latest
information.

When a DMA device writes to a cached location, the overwritten
cache entry is typically invalidated. The cache system monitors
DMA transactions to determine if this action is needed.

There are several design parameters that must be considered when
constructing a cache memory, cache size and block size to name but
two. A detailed discussion of cache design is beyond the scope of
this document, but an introduction to the subject is found in
Section VI of the KB11l-C Processor Manual (EK-KB11C-TM). An 8 KB
direct mapped cache is presented as an implementation example in
Paragraph 5.2.5.

5§,2,4 Cache Memory In A Multiprocessor Environment - In a
multiprocessor system where each processor has 1its own cache

memory, care must be taken to avoid caching data that was
invalidated by another processor ("stale" data). A simple

software method can prevent this situation. Any shared address

must bypass the cache, i.e., the reference must go to main memory,

and if the address was previously cached, the entry must be

invalidated. The DCJ1ll provides three bypass mechanisms: an
unconditional bypass in which every reference is bypassed; a

conditional bypass in which bypassing is on a page-by-page basis;

and finally, a selective bypass in which the bypassing is done

during operand references. The unconditional bypass is selected

by setting bit 9 of the Cache Control Register (see Paragraph
5.2.1). The .conditional bypass is selected when bit 15 of the

currently selected Page Descriptor Register PDR 1is set (see

Paragraph 4.5.2). The selective bypass occurs during the operand

references of the instructions used in multiprocessing functions

(TSTSET, WRTLCK and ASRB).

5.2.5 Sample Implementation - The following is a description of
the operation of an 8 Kb direct mapped cache with a block size of

two bytes as implemented on a DCJ1ll based system. This 1is only

one of many possible implementations.

A direct mapped cache is organized such that each physical memory

address 1is associated with a particular "block" of memory in the

cache. 1In this case we have an 8 KB cache with a block size of

two bytes. This means there are 4K blocks in the cache. Each

word in physical memory is associated with one of these 4K blocks.

Consider each physical address as being made up of three parts

(see Figure 5-3). The first part is bit zero. Bit zero specifies
which of the two bytes in a two-byte block is to be accessed. The

next part, bits <12:1>, is called the cache index and specifies

which of the 4K blocks in the cache is to be accessed. The third

part, bits <21:13>, 1is called the cache tag. One cache tag per

block is stored in the cache to uniquely identify physical memory

locations.
21 1312 0100

T v U ¢ 1T 17 T 17 v 1 17T U VvV 1 T 7T

PO WD UL UGN W SN-UU VU S VI SN S S W S S W Y

- J \ J

CACHE TAG-j T
CACHE INDEX

BYTE WITHIN BLOCK

MA 11437

Figure 5-3 'Physical Address Partitioning for Cache Memory

For example, if the DCJ1l accesses location 10002477, cache

control 1logic (designed by the user) looks at the cache tag

- associated with the information currently in cache block number

1237 (bits <12:1>). If this cache tag is 400 (bits <21:13>), the

cache control logic sends both bytes in that block to the DCJ1ll.

Since bit 0 is a 1, the DCJ1ll automatically selects the high byte

5-4

(the low byte is ignored). If the stored cache tag is not 400,
the control 1logic fetches two bytes from memory (10002476 and
10002477), sends 10002477 to the DCJ1l, loads the two bytes into
cache block 1237, and changes the cache tag of that block to 400.

Any location whose cache index is 1237 will be loaded into block
1237 of cache memory. This is the only place the cache control
logic has to look if the DCJ1l accesses the data from a location
whose cacheTMindex is 1237.

Figure 5-4 illustrates a format for each cache block. The 9-bit
cache tag 1is stored in bits <24:16> and the two bytes of data
which comprise the block are stored in bits <15:0>. Bit 25 is a
Valid Bit which indicates whether or not this cache block contains
valid data. Data would be invalid for example immediately after
power-up, and the cache control logic would clear the valid bit in
this case.

2524 16 15 0807 00
LANNE D BN SENR SNEN RN | LA L O B B O r v 77T

lllll L bl A . | il L 4 i Ll - |

|?)\ A J
VALID BIT I
TAG FIELD

DATA BLOCK - BYTE 1

DATA BLOCK - BYTE O

MR 114038

Figure 5-4 Cache Entry

Notice that only the cache tag of a location need be stored in a
cache entry because only the cache tag is required to uniquely
identify a location. The cache index need not be compared because
anything stored in block 1237 (for example) is known to have bits
<12:1> of its address set to 1237.

If desired, cache entries can also include parity information as
shown in Figure 5-5,.

282726 181716 0908 07 00
T T LANEE MR A BN S | T LA | L LA AL LML D S SR NN | LI

i L.l I -} i /]] 11 i i Lol 1.4 i i Ll I

[[
[

1\
) —

J

PARITY 2 — T { ‘f
VALID BIT

TAG FIELD

PARITY 1

DATA BLOCK- BYTE 1

PARITY O

DATA BLOCK - BYTE 0

Figure 5-5 Cache Entry With Parity

The Parity 0 Bit stores parity information for byte 0, the Parity1 Bit stores parity information for byte 1, and the Parity 2 Bitstores parity information for the cache tag/valid bit combination.

The Cache Control Register for this example is configured as shown

5-5

in Figure 5-6.

BIT

08 07 06 05 04 03 02 01 00

WRITE WRONG TAG PARITY

BYPASS CACHE

FLUSH CACHE

WRITE WRONG DATA PARITY

FORCE MISS

DISABLE CACHE TRAPS

MR 11440

Figure 5-6 Sample Cache Control Register

NAME

<15:11> Not Used

10

(read as zeroes)

Write Wrong Tag

Parity (read/write)

Bypass Cache

(read/write)

Flush Cache

(read as zero)

Not Used

(read/write)

Write Wrong

Data Parity

(read/write)

FUNCTION

These bits are not used in this

example. The DCJ1l1l will ignore

any data written to these bits and

will always read these bits as

zeroes.

This bit, when set, causes the

cache tag parity bit (Parity 2) to

be written with wrong parity when

a cache entry is updated (i.e.

upon CPU read misses and write

hits). This causes a cache tag

parity error on the next access to

a location referenced by the

entry.

This bit, when set, forces all CPU

memory references to go directly

to main memory. Read or write hits

will result in invalidation of

accessed locations in the cache.

Setting this bit causes the entire

contents of the cache to be

declared invalid. Writing a "O"

into this bit will have no effect.

This bit is not used in this

example.

This bit, when set, causes the

parity bits of the two data bytes

(Parity 0 and Parity 1) to be

written with wrong parity when

5-6

updated (i.e. upon CPU read misses

and write hits). This causes a
cache parity error to occur on the

next access to a location

referenced by the entry.

<5:4> Not Used These bits are not used in this
(read/write) example.

<3:2> Force Miss | These bits, when either is set,
(read/write) force all DCJ1ll memory references

to go directly to main memory.

Unlike cache bypasses, force

misses have no effect on cache

entries. Enabling force miss

effectively removes cache memory

from the system.

1 Not Used These bits are not used in this
(read/write) . example.

0 Disable Cache Traps This bit, when set, disables cache
(read/write) parity interrupts. When this bit

1s cleared, an interrupt occurs
when a parity error is

encountered.

All words read from the cache are checked for parity. A parity
error in the accessed word causes the following CPU responses:

CCR<0> Action

0 Interrupt through vector 114 and force miss.
1 Force miss only.

The CCR is cleared on power-up or by a console start. It |is
unaffected by a RESET instruction.

The cache response matrix for this example would be:

5-7

Read

Write

Read bypass

Write bypass

Read forced

miss

Write forced

miss

na =

Read cached

data

Write thru

cache to

memory

Invalidate

cache &

read mem

Invalidate

cache &

write mem

Read

memory

Write

memory

not applicable

Read memory

& allocate

cache

Write

memory

Read

memory

Write

memory

Read

memory

Write

memory

5-8

Read

Invalidate

cachg &

write mem

Read

Write

3.3 CONSOLE ODT

The console octal debugging technique or console ODT ‘allows the
DCJ1l to respond to commands and information entered via a
user-designed console terminal interface. The interface bus uses
addresses 17777560 through 17777566 to communicate with console
ODT. These addresses are generated in the DCJ1l and cannot be
changed, Console ODT is a very useful aid in running and
debugging programs. Communication between the user and DCJ1ll 1is
via a stream of ASCII characters which are interpreted by the
DCJ11 as console commands. These commands are a subset of the
commands used in DIGITAL”s ODT-11 software for minicomputers.

5.3.1 Terminal Interface - The minimum optional hardware
requirements for an interface permitting communication with
console ODT are outlined in the paragraphs that follow (these
requirements are met by the DLART DL-compatible asynchronous
receiver/transceiver peripheral chip - DIGITAL Part No."
DC319-aA). .

5.3.1.1 Receiver Control/Status Register (RCSR) - The RCSR
(Figure 5-7) must exist at address 17777560 for character input to
console ODT. Console ODT does not execute output bus cycles to
this address; therefore the RCSR only needs to respond to input
bus cycles. System software may affect certain bits, such as
Interrupt Enable (bit 6), but console ODT ignores this,

Figure 5-7 Receiver Control/Status Register (RCSR) - Address 17777560

Bit Description

<15:8> Unused. These bits may be in any state since console ODT
does not use them.

<7> Done flag. After a character is received and exists in
the receiver buffer register (RBUF), the Done flag must
be set to a 1. When the character is read from RBUF
Done flag must be cleared by hardware.

<6:0> Unused. These bits may be in any state since console ODT
does not use them.

5-9

§,3,1.2 Receiver Buffer Register (RBUF) - The RBUF (Figure 5-8)
must exist at address 17777562 for character input to consol

e ODT.
This register only needs to respond to input bus cycles since
console ODT does not execute output bus cycles to this address.
System software operates similarly, but DIGITAL diagnostics may
cause output cycles and thus may not operate properly.

Figure 5-8 Receiver Buffer Register (RBUF) - Address 17777562

Bit | Description

Q7 00

<15:8> Unused. These bits can be in any state since console

, ODT does not use them.

<7:0> ASCII character. These eight bits are read by the
processor and interpreted as a console ODT command.

When bit 7 of RCSR is a 1, the processor reads data

from the RBUF. After the input cycle, the hardware

must clear bit 7 of RCSR to 0.

5.3,1.3 Transmitter Control And Status Register (XCSR) - The XCSR

(Figure 5-9) must exist at address 17777564 for character output

from console ODT. ODT does not execute output bus cycles to this

address; therefore, the XCSR only needs to respond to input bus

cycles. System software may cause output cycles to affect certain
bits, such as Interrupt Enable, but console ODT ignores this.

07 06 00

MR -BHO0

08

Figure 5-9 Transmitter Control/Status Register (XCSR) - Address 17777564

Bit | Description

<15:8> Unused. These bits may be in any state since console ODT

does not use them.

<7> Done flag. 1In the idle state, this bit is a1l indicating
that the XBUF is ready to receive a character. After an

output cycle to the transmitter buffer register (XBUF) by

the processor, this bit-must be cleared to 0 by the

hardware. When the XBUF is ready to receive another

character, the hardware sets this bit to 1.

<6:0> Unused. These bits may be in any state since console oDT

does not use them. Note that these bits may be

meaningful to other DIGITAL interfaces.

5.3.1.4 Transmitter Buffer Register (XBUF) - The XBUF (Figure
5-10) must exist at address 17777566 for character output from

console ODT. This register only needs to respond to output bus

cycles since console ODT does not execute input bus cycles to this

address. System software operates similarly but DIGITAL

diagnostics may cause an input cycle and thus may not operate
properly. -

08 07 00

Figure 5-10 Transmitter Buffer Register (XBUF) - Address 17777566

Bit Description

<15:8> Unused. These bits may be in any state since console
: ODT does not use them. '

<7:0> ASCII character. These eight bits are written by the

processor with the ASCII character output by ODT. When
bit 7 of XCSR is a 1, the processor may perform an
output cycle to XBUF.

$5.3.2 Console ODT Operation - Console ODT operates the console

terminal interface in half-duplex mode. Communication between
console ODT and the interface is accomplished via programmed 1I/0
techniques rather than interrupts. When console ODT is outputting

characters using the transmit side of the interface, the receive

side of the interface is not monitored for incoming characters.

Any characters coming in at this time are lost. Console ODT does

not check for error bits in the interface. If another processor

is at the other end of the interface, that processor must operate

within the format of half-duplex transmission. No input

characters should be sent until console ODT has finished

outputting.

5.3.2.1 Console ODT 1Initialization - Console ODT operation is

initiated by any of the following:

l. Execution of a HALT instruction in kernel mode (if kernel HALT
is enabled).

2. Assertion of the HALT signal on the system bus. The signal
must be asserted 1long enough so that it 1is seen by the

processor at the end of the current macroinstruction

3. At.power-up, if the appropriate power-up option is selected.

Console ODT Input Sequence

The Console ODT entry sequence is as follows:

1. Output <CR><LF> to XBUF.

2. Output the contents of PC in six digits to XBUF.

3. Read and ignore character in RBUF. (May be a program

character.)

4. Output <CR><LF> to XBUF.

5., Output the prompt character, Q, to XBUF.

6. Enter a wait loop for input. The Done flag, bit 7 in RCSR, is

tested. If it is 0, the test continues.

7. If RCSR bit 7 is a 1, then the low byte of RBUF is read.

5.3.2.2 Console ODT Output Sequence -

Console ODT does the following when it has a character ready for
output:

1. Test XCSR bit 7 (Done flag) and if a 0, continue testing.

2. TIf XCSR bit 7 is a 1, write character to low byte of XBUF

(high byte should be ignored by interface).

5.3.3 Console ODT Command Set - The console ODT command set is a

subset of ODT-11 and uses the same command characters. Only
specific characters are recognized as valid inputs; other inputs

invoke a "?" response. The commands are summarized in Table 5-2.

The word "location,“ as used in the paragraphs that follow refers
to a memory location, an I/0 device register, an internal

processor register, or the processor status word (PS).

5 12

Table 5-2 Console ODT Commands

Command Symbol o Function

Slash n/ Opens the specified

location (n) and outputs

its contents. n is an

octal number.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location

and then opens the next

contiguous location.

Internal Register $n or Rn ' Opens a specific processor

Designator - register (n). n is an

integer from 0 to 7 or the

character S.

Processor Status S Opens the PS - must follow

Word Designator ' an $§ or R command.

Go G Starts program execution.

Proceed P Resumes execution of a

program.

Binary Dump Control-Shift-S Manufacturing use only.

The parity bit (bit 7) on all input characters is ignored (i.e.,

not stripped) by console ODT. If an input character is echoed,

the state of the parity bit is copied to the output buffer (XBUF).

Output characters internally generated (e.g., <CR>) by ODT have

the parity bit equal to 0. All commands are echoed except for

ASCII codes in the range 0-17 (octal). Where applicable, the

upper- and lowercases of command characters are recognized.

NOTE

In the examples that follow, the response

from the processor is underlined, while

the user”s entry is not. When the user

inputs an address or data, leading zeroes

are not required. The DCJ1ll, however,
outputs 8 digit octal addresses and 6

digit octal data words.

$5.3.3.1 / (ASCII 057) Slash - This command is used to open a
memory location, I/O device register, internal processor register,

or processor status word and must be preceded by other characters

which specify a 1location. 1In response to /, console ODT prints

- the contents of the location (i.e., six characters) and then a
space (ASCII 40). After printing is complete, console ODT waits

for either new data for that location or a valid close command. '

5-13

Example: €001000/012525<SPACE>

where:

e = console ODT prompt character.

001000 = octal location desired by the user
(leading 0s are not required).

/ = command to open and print contents of
location. :

012525 = contents of octal location 1000.

<SPACE> = space character generated by console
ODT.

5.3.3.2 <CR> (ASCII 015) Carriage Return - This command is used
to close an open location. If a location®s contents are to be
changed, the user should precede the <CR> with the new data. If
no change 1is desired, <CR> closes the location without altering

its contents.

Example: @R1/004321<SPACE> <CR> <CR><LF>

' ¢

Processor register Rl was opened and no change was desired so the

user issued<CR>. In response to the <CR>, console ODT printed

<CR><LF>@.

Example: @R1/004321<SPACE> 1234 <CR> <CR><LF>

@

In this case the user desired to change Rl, so new data, 1234, was

entered before issuing the <CR>. Console ODT deposited the new
data in the open location and then printed <CR><LF>@.

Console ODT does not directly echo the <CR> entered by the user

but instead prints a <CR>, followed by an <LF>, and @.

5.3.3.3 <LF> (ASCII 0l12) Line Feed - This command 1is used to
close an open location and then open the next contiguous location.
Memory locations and processor registers are incremented by 2 and

1 respectively. If the PS is open when a <LF> is issued, it is
closed and a <CR><LF>@ is printed; no new location is opened. If
the open location’s contents are to be changed, the new data
should precede the <LF>. If no data is entered, the 1location is
closed without being altered.

Example: BR2/123456<SPACE> <LF> <CR><LF>

R3/054321<SPACE>

In this case, the user entered <LF> with no data preceding it. 1In

5-14

response, console ODT closed R2 and then opened R3. When a user
has the last register, R7, open, and 1issues <LF>, console ODT

opens the beginning register, RO. |

Example: @R7/000000<SPACE> <LF> <CR><LF>

R0O/123456<SPACE>

Unlike with most other commands, console ODT does not echo the
<LF>. Instead it prints <CR>, then <LF>, so that terminal
printers operate properly. In order to make this easier to
decode, console ODT does not echo ASCII characters in the range 0

- 17 (octal).

5.3.3.4 8 (ASCII 044) Or R (ASCII 122) 1Internal Register
Designator - Either character when followed by a register

number, 0 to 7, or PS designator, S, will open that specific

processor register.

The $ character is recognized to be compatible with ODT-11l. The R

character was introduced because it can be conveniently typed with
one key stroke and because it is an easily remembered symbol for a

register. -

Example: @$0/000123<SPACE>

or

@R7/000123<SPACE> <LF>

R0/054321< >

If more than one character is typed after the R or §, console ODT

uses the last character typed as the register designator.

5.3.3.5 S (ASCII 123) Processor Status Word - This designator is

for opening the PS (processor status word) and may be employed

only after the user has entered an R or $ register designator.

Example: BRS/100377<SP > 0 <CR> <CR><LF>

NOTE

The trace bit (bit <4>) of the PS cannot

be modified by the user. This is done so

that PDP-11 program debugging utilities

(e.g., ODT-11), which use the T bit for

single-stepping, are not accidentally

harmed by the user.

If the user issues a <LF> while the PS is open, the PS is closed
and ODT prints <CR><LF>@. No new location is opened in this case.

5-15

5,3,3.6 G (ASCII 107) Go - This command is used to start program

execution at a location entered immediately before the G. This
function is equivalent to the LOAD ADDRESS and START switch

sequence on other PDP-1ll consoles.

Example: 8200G<NULL><NULL>

The console ODT sequence for a G, after echoing the command
character, is as follows.

1. Print two nulls (ASCII 0). This is intended to prevent the G

character from getting flushed during the bus initialization
sequence that follows, assuming a double-buffered UART chip is

used in the console terminal interface.

2. Load R7 (PC) with the entered data. If no data is entered, O

is used. (In the above example, R7 is set to 200, and that is
where program execution begins.)

3. The PS, MMR0<15:13,0>, MMR3, PIRQ, CPU Error Register, Memory

System Error Register, Cache Control Register, and Floating

Point Status Register are cleared to zero.

4. The cache, if present, is flushed (if so implemented).

5. The system bus is initialized by the processor.

6. The service state is entered by the DCJ1ll. Any outstanding

service requests are processed. If the bus HALT signal is

asserted, the processor reenters the console ODT state. This
feature 1is used to initialize a system without starting a

program (R7 is altered).

5.3.3.7 P (ASCII 120) Proceed - This command is wused to resume
execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No programmer-visible machine state 1is

altered using this command.

Example: ap

Program execution resumes at the address pointed to by R7. After
the P is echoed, the DCJ1ll 1immediately fetches the next

instruction. After the instruction 1is executed, outstanding

interrupts, if any, are serviced. If the HALT bus signal is
asserted, it is recognized at the end of the instruction, and the

DCJ1ll enters the console ODT state. Upon entry, the content of
the PC (R7) 1is printed. In this fashion, the user can
single-instruction step through a program and obtain a PC "trace"

on the terminal.

5.3.3.8 Control-Shift-S (ASCII 023) Binary Dump - This commandis
used for manufacturing test purposes and is not a normal user
command. It is described here to explain the processor’s response
if accidentally invoked. It 1is intended to more efficiently
display a portion of memory compared to using the "/" and <LF>
commands. The protocol is as follows.

l. After a prompt character, console ODT receives a
control-shift-S command and echoes it.

2, The host system at the other end of the serial line must send
two 8 bit bytes which console ODT interprets as a starting
address. These two bytes are not echoed.

The first byte specifies starting address <15:08> and the
second byte specifies starting address <07:00>. Address bits
<21:16> are always forced to be 0; the dump command 1is
restricted to the first 32K words of address space.

3. After the second address byte has been received, console ODT
outputs ten bytes to the serial line starting at the address
previously specified. When the output is finished, console
ODT prints <CR><LF>Q.

If a user accidentally enters this command, it is recommended
in order to exit from the command that two @ characters (ASCII
100) be entered as a starting address. After the binary dump,
an @ prompt character is printed. ‘

5.3.4 Address Specification - All I/0 addresses (17760000 to
17777777) must be entered by the user with all 22 bits specified.
For example, if a user desires to open the RCSR of the console
serial interface he must enter 17777560, not 177560, or 777560.

5.3.4.1 General Registers - Whenever RO-R5 are referenced in
console ODT, they access the g¢general register set currently

specified by PS bit 11 (PS<1ll>). If a program operating in
general register set zero (PS<ll> = 0) is halted and a general
register is opened, register set zero is accessed. Similarily, if
a program 1is operating in register set one, references to RO-RS
access register set one,.

If a specific register set is desired, PS<ll> must be set by the
user to the appropriate value, and then the RO through RS commands
can be used. If an operating program has been halted, the
original value of PS<1ll> must be restored in order to continue
execution. |

Example: PS = 000000

€R4/052525<SPACE> <CR> <CR><LF>

R4 in register set zero has been opened.

5-17

@RS/000000<SPACE> 4000 <CR> <CR><LF>

@R4/177777<SPACE> <CR> <CR><LF>

@RS/004000<SPACE> 0 <CR> <CR><LF>

ep

In this case, R4 in register set one was desired. The PS was

opened, and PS<ll> was set to 1 (register set one). Then R4 was

examined and closed. The original value of PS<ll> was restored,

and the program was continued using the P command.

5.3.4.2 8tack Pointers - Whenever R6 is referenced in console

ODT, it accesses the stack pointer specified by the PS current

mode bits (PS<15:14>). If a program operating in kernel mode

(PS<15:14> = 00) 1is halted and R6 is opened, the kernel stack

pointer is accessed. Similarly, if a program is operating in

supervisor or user mode, R6 accesses the supervisor or user stack

pointers. '

If a specific stack pointer is desired, PS<15:14> must be set by

the user to the appropriate value and then the R6 command can be

used. If an operating program has been halted, the original value

of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000

@R6/123456<SPACE> <CR> <CR><LF>

The user mode stack pointer has been opened.

@RS/140000<SPACE> 0 <CR> <CR><LF>

@R6/123456<SPACE> <CR> <CR><LF>

@RS/000000<SPACE> 140000<CR> <CR><LE>

ep
.

In this case, the kernel mode stack pointer was desired. The PS

was opened, and PS<15:14> were set to 00 (kernel mode). Then R6

was examined and closed. The original wvalue of PS<15:14> was

restored, and then the program was continued using the P command.

5.3.4.3 Floating Point Accumulators - The floating point

accumulators cannot be accessed from console ODT. Only floating

point instructions can access these registers,

5.3.5 Entering Octal Digits - When the user 1is specifying an

address, console ODT will use the last eight octal digits if more

than eight have been entered. When the user is specifying data,

console ODT will use the last six octal digits if more than six

have been entered. The user need not enter leading Os for either

address or data; console ODT forces 0s as the default. If an odd

address is entered, console ODT responds to the error by printing

?<CR><LF>@.

5.3.6 ODT Timeout - If the user specifies a nonexistent address
or causes a parity error, console ODT responds to the error by

printing ?<CR><LF>@.

5.3.7 1Invalid Characters - Console ODT will recognize upper- or

lowercase characters as commands. Any character that console ODT

does not recognize during a particular sequence is echbed (except

for ASCII characters in the range 0 - 17 (octal)), and console ODT

prints ?<CR><LF>@.

5.4 DCJ1l1 PIPELINE PROCESSING

The DCJ11l gets much of its performance from its prefetch and

predecode mechanisms. The primary benefit of prefetch and
predecode is that memory references are overlapped with internal

operations, and the need for explicit instruction fetch and decode

cycles is minimized. The prefetch and predecode operations are

performed automatically by the DCJ11l chip and cannot be altered by

the user.

A primary function of the prefetch mechanism 1is ¢to fill four

registers with information and replenish theé registers as

required. These four registers, the virtual program counter

(VPC), the physical program counter (PPC), the prefetch buffer

(pB), and the instruction register (IR) are collectively referred

to as the prefetch pipeline. The contents of registers in the
beginning of the pipeline are used to determine the contents of

registers further down the pipeline. When the pipeline is filled,

the prefetch mechanism is said to be in steady state. Four

microcycles are required to fill an empty pipeline. Figure 5-11

illustrates the process of filling the pipeline.

Microcycle 1 Microcycle 2 Microcycle 3 Microcycle 4

VPC <-- PC PPC <-- MMU(VPC) PB <-- M[PPC] IR <-- PB
VPC <-- VPC + 2 PPC <-- MMU(VPC) PB <=-- M[PPC]

VPC <-- VPC + 2 PPC <-- MMU (VPC)

VPC <-- VPC + 2

PC <-- PC + 2

MMR2 <-- PC

Figure 5-11 Pipeline Filling Process

In microcycle 1, the VPC is is simply set to the same value as the

PC. In microcycle 2, the VPC is sent through the MMU and the

resulting physical address is loaded into the PPC. The VPC 1is

then incrementedby 2. At this point we have a valid VPC and PPC

and the pipeline is said to be synchronized. Sometimes while

executing a macroinstruction, the pipeline is synchronized but not

filled. In that case, only microcycles 3 and 4 need be performed

for the next macroinstruction.

In microcycle 3, the word in memory addressed by the PPC is

fetched 1into the PB. The PPC is updated with the relocated

(mapped) VPC and the VPC is incremented again. In microcycle 4,

the PB is sent to the IR and 1is decoded as the next

macroinstruction (note that the DCJ1l asserts PDRC at this time)..

The new contents of the PB are fetched from the memory location
referenced by the PPC. The PPC is again updated with the

relocated (mapped) VPC and the VPC is updated (incremented) once

again. Also during microcycle 4, the original PC is loaded into
MMR2 (if MMRO<15:13> = 000) and is incremented by 2.

In steady state (i.e., when microcycle 4 is complete), the IR

contains the macroinstruction being executed, the PB contains the

data from the memory location pointed to by the PC, the PPC

contains the physical address of the next word to be prefetched,

5-20

and the VPC contains the incremented value of the PC.

Once in steady state, a stream of macroinstructions that operate

only on registers may be executed at the rate of one per

microcycle (i.e., microcycle 4). While one instruction is being

executed, the next one is being decoded, and the following one is

being prefetched into the PB. As illustrated in Figure 5-11

during microcycle 4: the contents of the prefetch buvffer are

loaded into the IR, the word addressed by the PPC is 1loaded 1into

the PB, the VPC is relocatedand loaded into the PPC, and the VPC

is incremented by 2. This maintains the steady state, allowing

the next macroinstruction to be executed in the next microcycle.

Note also that the DCJ1ll bus is kept busy 100% of the time.

The instructions that operate on immediate data and a register

also make maximum use of the prefetch mechanism. At steady state,

a stream of these macroinstructions execute in two microcycles

(microcycles 3 and 4). During microcycle 3, the data in the PB is

moved to a scratch register. During microcycle 4, the operation

is performed. In both cycles, the steady state of the prefetch

mechanism is maintained by prefetching the next instruction stream

word. The DCJ1ll bus is again kept busy 100% of the time.

The prefetch pipeline is refilled aftera power-up sequence or if

a prefetch fault occurs. Prefetch faults occur when the PS, CCR,

PC, or any of the memory management registers are written. A

prefetch fault invalidates only the PB. This means that the

pipeline remains synchronized and can be refilled in two

microcycles.

5.4.1 Pipeline Flow Example - Consider the following example
program:

Virtual - Symbolic Octal

‘Address Representation Code

1000 MOV R2,R3 010203

1002 BIS #1,R3 052703

000001

1004 ADD R1,R3 060105

1006 CLR RO . 005000

1012 ADD R3,RO 060300

The flow of information through the pipeline occurs as shown in

Table 5-3.

Table 5-3 Pipeline Fldw

Pipeline

Register Microcycle

n | n+l n+2 n+3 n+4 n+5

PC 1002 1004 1006 1010 1012 1014

IR MOV BIS BIS _ ADD CLR ADD

(010203) (052703) (052703) (060105) (005000) (060300)

PB BIS 000001 ADD CLR ADD *
(052703) (060105) (005000) (060300)

PPC MMU (1004) MMU (1006) MMU(1010) MMU(1012) MMU(1014) MMU (1016)

VPC 1006 1010 1012 1014 1016 1020

* Instruction at location 1014

Note that the example starts at microcycle n, by which time the

prefetch pipeline has been filled (i.e., the pipeline is in steady
state). All the instructions in the example execute in one

microcycle except the BIS instruction, which executes in two

microcycles.

_ CHAPTER 6

ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION
-

The first part of this chapter is divided into six major sections:

0 Single-Operand Addressing -- One part of the instruction word

specifies the registers; the other part provides information

for locating the operand. |

o Double-Operahd Addressing -- One part of the instruction wgrd
specifies the registers; the remaining parts provide

information for locating two operands.

0 Direct Addressing =-- The operand is the content of the
selected register. '

o0 Deferred (Indirect) Addressing -- The contents of the selected
register is the address of the operand.

o Use of the PC as a General-Purpose Register -- The PC is

different from other general-purpose registers in one

important respect. Whenever the processor retrieves an

instruction, it automatically advances the PC by 2. By

combining this automatic advancement of the PC with four of

the basic addressing modes, we produce the four special PC

modes -- immediate, absolute, relative, and relative-deferred.

o Use of the Stack Pointer as a General-Purpose Register --
General-purpose registers can be used for stack operations.

The second part of this chapter describes each of the instructions

in the DCJ11l instruction set.

6.2 ADDRESSING MODES

Data stored in memory must be accessed and manipulated. Data

handling 1is specified by a DCJ1l instruction (MOV, ADD, etc.),

which usually specifies the:

o Function to be performed (operation code).

O General-purpose register to be used when locating the source

operand, and/or destination operand (where required).

© Addressing mode, which specifies how the selected registers

are to be used. '

A large portion of the data handledby a computer is structured

6-1

(in charadter strings, arrays, lists, etc.). The DCJ11 addressing
modes provide for efficient and flexible handling of structured
data.

.

A general-purpose register may be used with an instruction in any

of the following ways.

1. As an accumulator -- The data to be manipulated resides in the
register.

2. As a pointer -- The contents of the register is the address of
an operand, rather than the operand itself..

3. As a pointer that automatically steps through memory locations
-- Automatically stepping forward through consecutive

locations is known as autoincrement addressing; automatically

stepping backwards is known as autodecrement addressing.
These modes are particularly useful for processing tabular or

array data.

4. As an index register -- In this instance, the contents of the

register and the word following the instruction are summed to

produce the address of the operand. This allows easy access

to variable entries in a list.

An important DCJ1l feature, which should be considered with the

addressing modes, is the register arrangement.

o Two sets of six general-purpose registers (RO--RS and
RO“~=R57)

o A hardware stack pointer (SP) register (R6) for each processor

mode (kernel, supervisor, user)

o A program counter (PC) register (R7)

Registers RO--R5 and R0O“--R5° are not dedicated to any specific

function; their use 1is determined by the instruction that is
decoded.

o They can be used for operand storage. For example, the
contents of two registers can be added and stored in another

register.

o They can contain the address of an operand or serve as

pointers to the address of an operand.

o They can be wused for the autoincrement or autodecrement
features.

o They can be used as index registers for convenient data and

program access.

The DCJ1l also has instruction addressing mode combinations that

facilitate temporary data storage structures. These can be used
for convenient handling of data that must be accessed frequently.

This 1is known as stack manipulation. The register that keeps

track of stack manipulation is known as the stack pointer (SP).

6-2

Any register can be used as a stack pointer under program control;

however, certain instructions associated with subroutine 1linkage

and interrupt service automatically use register R6 as a "hardware

stack pointer." For this reason, R6 is frequently referred to as

the SP.

o The stack pointer (SP) keeps trackof the latest entry on the
stack. ’

o The stack pointer moves down as items are added to the stack

and moves up as items are removed. Therefore, the stack

pointer always points to the top of the stack.

o The hardware stack is used during trap or interrupt handling

to store information, ‘allowing an orderly return to the

interrupted progranm.

Register R7 is used by the processor as its program counter (PC).

It is recommended that R7 not be used as a stack pointer or

accumulator. Whenever an instruction is fetched from memory, the

program counter is automatically incremented by two to point to

the next instruction word.

6.2.1 8ingle-Operand Addressing - The instruction format for all

single-operand instructions (such as CLR, INC, TST) is shown in
Figure 6-1.

15 06 05 04 03 02 00
1 R L LA T T T Ll) J A T) 4 t

MODE Rn

I 1 { ke A I 1 A

| AL /J

OP CODE DESTINATION ADDRESS

MA B4se

Figure 6-1 Single-Operand Addressing

Bits <15:6> specify the operation code that defines the type of
instruction to be executed.

Bits <5:0> form a 6-bit field called the destination address
field. The destination address field consists of two subfields:

O Bits <5:3> specify the destination mode. Bit 3 is set to
indicate deferred (indirect) addressing.

© Bits <2:0> specify which of the 8 general-purpose registers is
to be referenced by this instruction word.

6.2.2 Double-Operand Addressing - Operations that imply two
operands (such as ADD, SUB, MOV, and CMP) are handled by
instructions that specify two addresses. The first operand is
called the source operand; the second is called the destination
operand. Bit assignments in the source and destination address
fields may specify different modes and different registers. The
instruction format for the double operand instruction is shown in

6-3

Figure 6-2.
15 12 11 10 09 08

]

OpP CODE

|

MODE

L

RAn

SOURCE ADDRESS DESTINATION ADDRESS

Figure 6-2 Double-Operand Addressing
MR 5459

The source address field is used to select the source operand (the

first operand).

the second operand and the result.
B adds the contents (source operand) of location A to theADD A,

contents (destination operand) of location

The destination is used similarly, and locates
For example, the instruction

B. After execution, B

will contain the result of the addition and the contents of A w
ill

be unchanged.

Examples in this paragraph and the rest of the chapter use the
following sample DCJ1ll instructions. (A complete listing of the

DCJ11l instructions appears in Paragraph 6.3.)

Mnemonic Description Octal Code

CLR Clear. (Zero the specified destination.) 0050DD

CLRB Clear byte. (Zero the byte in the specified 1050DD
‘destination.)

INC Increment. (Add one to contents of the 0052DD
destination.)

INCB Increment byte. (Add one to the contents of 1052DD
the destination byte.)

COM Complement. (Replace the contents of the 0051DD
destination by its logical complement;

each 0 bit is set and each one bit is

cleared.)

COMB Complement byte. (Replace the contents of 1051DD
the destination byte by its logical

complement; each 0 bit is set and each

1 bit is cleared.)

ADD Add. (Add the source operand to the 06SSDD
destination operand and store the result

at the destination address.)

DD destination field (six bits)

n n

e()

source field (six bits)

contents of

6.2.3 Direct Addressing - The following summarizes the four basic
modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Mode

0

Mode

Mode

Modé

Register contains operand.

Autoincrement (Rn)+

Assembler

Name Syntax Function

Register Rn

INSTRUCTION OPERAND

MA- 5460

Figure 6-3 Mode (0 Register

Assembler

Name Syntax Function

Register is used as a pointer

to sequential data and then

6-5

incremented.

INSTRUCTION ADDRESS OPERAND

+2 FORWORD,

+1 FOR BYTE

Figure 6-4 Mode 2 Autoincrement

Assembler

Name Syntax Function

Autodecrement - (Rn) Register is decremented and

then used as a pointer.

INSTRUCTION - ADDRESS -2 FORWORD OPERAND
-1 FORBYTE

Figure 6-5 Mode 4 Autodecrement

Assembler

Name Syntax Function

Index X (Rn) Value X is added to (Rn) to

produce address of operand.

Neither X nor (Rn) is modified.

INSTRUCTION ADDRESS

“,:O—- S
X

Figure 6-6 Mode 6 Index

6.2.3.1 Register Mode - With register mode any of the ‘general
registers may be used as simple accumulators, with the operand
contained in the selected register. Since they are hardware

registers (within the processor), the general registers operate at

high speeds and provide speed advantages when used for operating

on frequently accessed variables. The assembler interprets and

assembles instructions of the form OPR Rn as register mode

operations. Rn represents a general register name or number and
OPR is used to represent a general instruction mnemonic.

Assembler syntax requires that a general register be defined as

follows.

RO = %0 (% sign indicates register definition)

Rl = %1

R2 = %2, etc.

Registers are typically referred to by name as RO, Rl, R2, R3, R4,

R5, R6, and R7. However, R6 and R7 are also referred to as SP and

PC, respectively.

OPR Rn

Register Mode Examples (Figures 6-7 to 6-9)

1. Symbolic Octal Code Instruction Name

INC R3 005203 Increment

Operation: Add one to the contents of general-purpose redister

R3.

15 06 05 04 03 02 00
T ¥ A i T L { T ¥ k T 1| T T

y 1 i A 4 A 1 A A d | REGISTER
N

.

A

.
./

|

OP CODE (INC(0052)) DESTINATION FIELD |
|

|

RO '
|

R1 |

R2 :

R3 o

R4 |

RS

R6 (SP)

R7 (PC)

Figure 6-7 1INC R3 Increment MA-sa67

2. Symbolic Octal Code Instruction Name

ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

6-6

BEFORE AFTER

R2 000002 R2 000002

R4 000004 R4 000006

MR- 5468

Figure 6-8 ADD R2,R4 Add

3. Symbolic Octal Code Instruction Name

COMB R4 105104 Complement byte
Operation: 1°s complement bits <7:0> (byte) in R4. (When general
registers are used, byte instructions operate only on bits <7:0>;
i.e., byte 0 of the register.)

BEFORE AFTER

R4 022222 R4 022155

MA-65469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2)
provides for automatic stepping of a pointer through sequential
elements of a table of operands. It assumes the contents of the
selected general-purpose register to be the address of the
operand. Contents of registers are stepped (by one for byte
instructions, by two for word instructions, always hy two for R6
and R7) to address the next sequential location. The
autoincrement mode is especially useful for array processing and
stack processing. It will access an element of a table and then
step the pointer to address the next operand in the table.
Although most useful for table handling, this mode is completely
general and may be used for a variety of purposes.

OPR (Rn)+

Autoincrement Mode Examples (Figures 6-10 to 6-12)

1. Symbolic Octal Code Instruction Name

CLR (RS)+ | 005025 Clear

Operation: Use contents of RS as the address of the operand.
Clear selected operand and then increment the contents of RS by

two. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 | 005025 Rs | 030000 20000 | 005025 Rs | 030002

r |

30000 | 1111116 30000 | 000000

MR.5464

Figure 6-10 CLR (R5)+ Clear

2, Symbolic Octal Code Instruction Name

CLRB (RS5)+ 105025 Clear byte

6-7

Operation: Use contents of RS> as the address of the operand.
Clear selected byte operand and then increment the contents of RS
by one.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 | 105025 RS | 030000 20000 | 105025 rRs | 030001

]

T r 1]
30000 | 111| 116 30000 | 111| 000

30002 ' 30002 :

MR 5485

Figure 6-11 CLRB (R5)+ Clear Byte

3. Symbolic Octal Code Instruction Name

ADD (R2)+,R4 062204 Add

Operation: The contents of R2 are used as the address of the

operand, which is added to the contents of R4. R2 is then

incremented by two.

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS

10000 062204 R2 100002 10000 062204 R2 100004

R4 010000 r4 | 020000

100002 | 010000 100002 010000

MR .5470

Figure 6-12 ADD (R2)+,R4 Ad4d

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) is

useful for processing data ina list in reverse direction. The

contents of the selected general-purpose register are decremented
(by one for byte instructions, by two for word instructions) and

then used as the address of the operand. The choice of

postincrement, predecrement features for the DCJ1l were not

arbitrary decisions, but were intended = to facilitate

hardware/software stack operations.

OPR- (Rn)

Autodecrement Mode Examples (Figures 6-13 to 6-15)

1. Symbolic Octal Code Instruction Name

INC - (RO) 005240 Increment

Operation: The contents of RO are decremented by two and used as

the address of the operand. The operand is incremented by one.

6-8

1000

17774

2.. Symbol

INCB -

Operation:

REGISTER

RO 017774

]

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE

005240 RO 017776 1000 005240

v
000000 17774 000001

Figure 6-13 INC -(RO) Increment

ic Octal Code

(RO) 105240

MR 5466

Instruction Name

Increment byte

The contents of RO are decremented by one
used as the address of the operand.
by one. BEFORE

ADDRESS SPACE

1000 | 105240

17774 | 000 | 000

i

L

17776 |
1

Figure 6-14

3. Symbolic

contents

word following the

ADD - (R3),RO

of the selected general-purpose register, and an index
instruction

AFTER

REGISTER ADDRESS SPACE REGISTER

RO 017776 1000 105240 RO

|

17774 001 ; 000

17776 ;

INCB - (RO) Increment Byte

Octal Code Instruction Name

064300 ‘Add

address of the operand.

in

random access to

The operand byte is increased

017775

MR 5471

word,

The contents o
be used as a base for calculating
allowing

selected re

the

a

elements

6--9

series

of data
gister can then be modified by program to

table.

are

f the selected register may

addresses,

structures.

access

Index addressing instructions are of the form OPR

Operation: The contents of R3 are decremented by two
used as a pointer to an operand (source), which is added to the
contents of RO (destination operand).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10020 064300 RO 000020 10020 064300 RO 0000070

R3 077776 R3 077774

l

'
77774 000050 77774 000050

77776 77776

Figure 6-15 ADD - (R3),R0 Add MR 8472

6.2.3.4 1Index Mode [OPR X(Rn)] - In this mode (mode

summed to

of

X (Rn), where X is the indexed word located in the memory 1location
following the instruction word and Rn 1is the selected
general-purpose register.

OPR X (Rn)

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic Octal Code Instruction Name

CLR 200 (R4) 005064 Clear
000200

Operation: The address of the operand is determined by adding 200

to the contents of R4. The operand location is then cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 | 005064 R4 1020 | 005064 A4

1022 000200 1022 G00200

1024 1000 1024

+200

‘* 1200

1200 1777177 1200 000000

1202

Figure 6-16 CLR 200(R4) Clear

2. Symbolic Octal Code Instruction Name -

COMB 200 (R1) 105161 Complement byte
000200

Operation: The contents of a location, which are determined by
adding 200 to the contents of Rl, are 1°s complemented (i.e.,
logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 105161 R1 1020 105161 R 012727

1022 000200 1022 000200

T

20176 o011 | ooo 20176 166| 000

20200 20200 !

MR 4T

Figure 6-17 COMB 200(Rl) Complement Byte

3. Symbolic Octal Code Instruction Name

ADD 30(R2),20(RS5) 066265 Add

000030

000020

Operation: The contents of a location, which are determined by

6-10

adding 30 to the contents of R2, are added to the contents of a

location that is determined by adding 20 to the contents of RS.

The result is stored at the destination address, that is, 20 (RS) .

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 066265 R2 001100 1020 066265 R2 001100

1022 000030 1022 000030

1024 000020 R5 002000 1024 000020 RS 002000

1130 000001 1130 000001

2020 000001 2020 000002

1100 2000

+30 +20

1130 2020

MR 5475

Figure 6-18 ADD 30(R2),20(R5) Add

6.2.4 Deferred (Indirect) Addressing - The four basic modes may

also be wused with deferred addressing. Whereas in register mode

the operand 1is the contents of the selected register, in

register-deferred mode the contents of the selected register is

the address of the operand.

In the three other deferred modes, the contents of the register

select the address of the operand rather than the operand itself.

These modes are therefore used when a table consists of addresses

rather than operands. The assembler syntax for indicating

deferred addressing is @ [or () when this is not ambiguous]. The

following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Assembler

Mode Name Syntax Function

1 Register-

deferred @Rn or (Rn) Register contains the address

' of the operand.

INSTRUCTION ADDRESS OPERAND

MR 5476

Figure 6-19 Mode 1 Register-Deferred

_ Assembler

Mode Name . Syntax Function

3 Autoincrement-

Deferred -~ @(Rn)+ Register is first used as a

6-11

Mode

Mode

pointer to a word containing

the address of the operand and
then incremented (always by

two, even for byte

instructions).

INSTRUCTION ADDRESSA > ADDRESS OPERAND

+2

MRA.5477

Figure 6-20 Mode 3 Autoincrement-Deferred

Assembler

Name Syntax Function

Autodecrement--

deferred @~ (Rn) Register is decremented (always
by two, even for byte

instructions) and then used as

a pointer to a word containing

the address of the operand.

INSTRUCTION ADDRESS -2 »f ADDRESS OPERAND

t
MA.-5478

Figure 6-21 Mode 5 Autodecrement-Deferred

Name

Assembler

Syntax

Index-deferred @X(Rn)

INSTRUCTION ADDRESS ? :

Figure 6-22 Mode 7 Index-Deferred

Function

Value X (stored in a word

following the instruction) and

(Rn) are added; the sum is used

as a pointer to a word

containing the address of the

operand. Neither X nor (Rn) is

modified.

OPERANDADDRESS

MR-5479

The following examples illustrate the deferred modes.

Register-Deferred Mode Example (Figure 6-23)

Symbolic

CLR @R5

Octal Code

005015

Instruction Name

Clear

6-12

Operation: The contents of location specified in RS are cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 R5 001700 1677 R5 001700

1700 000100 1700 000000

MR.6480

Figure 6-23 CLR @R5 Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)

Symbolic ‘ Octal Code Instruction Name

INC @(R2)+ 005232 Increment

Operation: The contents of R2 are'used as the address of the
address of the operand. The operand is increased by one; the
contents of R2 are incremented by two.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

R2 010300 R2 010302

1010 000025 1010 000026

1012 1012

10300 001010 10300 001010

Figure 6-24 1INC @(R2)+ Increment

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)

Symbolic Octal Code

COM @- (RO) | 005150

Operation: The contents of RO are decremented by two and then
used as the address of the address of the operand. The operand is
1°s complemented (i.e., logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10100 012345 RO 010776 10100 165432 RO 010774

10102 | 10102

10774 010100 10774 | 010100

10776 10776

MR .6482

Figure 6-25 COM @-(R0) Complement

6-13

Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name

ADD @1000(R2),R1 067201 add
_ 001000

Operation: 1000 and the contents of R2 are summed to produce the
address of the address of the source operand, the contents of

which are added to the contents of Rl; the result is stored in
R1l.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 Al 001234 1020 067201 A1 001236

1 1022 001000

1022 001000 R2 000100 R2 000100

1024 1024

1050 000002 1050 000002

1100 001050 1100 001050

1000

+100

L 1100

MR 5482

Figure 6-26 ADD @1000(R2),Rl Add

6.2.5 Use Of The PC As A General-Purpose Register - Although

register 7 1is a general-purpose register, it doubles in function

as the program counter for the DCJ1l. Whenever the processor uses

the program counter to acquire a word from memory, the program

counter is automatically incremented by two to contain the address

of the next word of the instruction being executed or the address

of the next instruction to be executed. (When the program uses

the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard DCJ1ll addressing modes.

However, with four of these modes the PC can provide advantages

for handling position-independent code and unstructured data.
When utilizing the PC, these modes are termed immediate, absolute

(or immediate-deferred), relative, and relative~-deferred. The

modes are summarized below.

Assembler

Mode Name Syntax Function

2 Immediate #n Operand follows instruction.

3 Absolute QA Absolute address of operand
follows instruction.

6 Relative A Relative address (index value)

' follows the instruction.

7 Relative-

deferred @A Index value (stored in the word
after the instruction) is the

relative address for the

addrecs of the operand.

When a standard program is available for different users, it |is
often helpful to be able to load it into different areas of memory
and run it 1in those areas. The DCJ1ll can accomplish the
relocation of a program very efficiently through the use of

position-independent code (PIC), which is written by using the PC

addressing modes. If an instruction and its operands are moved in

such a way that the relative distance between them is not altered,
the same offset relative to the PC can be used in all positions in
memory. Thus, PIC usually references locations relative to the
current location.

The PC also greatly facilitates the handling of unstructured data.

This is particularly true of the immediate and relative modes.

6.2.5.1 Immediate Mode [OPR N,DD] - Immediate mode (mode 2) |is

equivalent in wuse to the autoincrement mode with the PC. It

provides time improvements for accessing constant operands by

including the constant in the memory location immediately
following the instruction word.

QPR #n,DD

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name

ADD #10,R0 062700 Add

000010

Operation: The value 10 is located in the second word of the

instruction and is added to the contents of RO. Just before this

instruction is fetched and executed, the PC points to the first
word of the instruction. The processor fetches the first word and

increments the PC by two. The source operand mode is 27

(autoincrement the PC). Thus, the PC is used as a pointer to

fetch the operand (the second word of the instruction) before it

is incremented by two to point to the next instruction.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 062700 \RO 000020 1020 062700 RO 000030

1022 000010 PC 1022 000010 PC

1024 1024 ’///

Figure 6-27 ADD #10,R0 Add

MR.-5484

6-15

6.2.5.2 Absolute Addressing [OPR @ A] - This mode (mode 3) is the

equivalent of immediate-deferred or autoincrement-deferred using

the PC. The contents of the location following the instruction
are taken as the address of the operand. Immediate data is

interpreted as an absolute address (i.e., an address that remains

constant no matter where in memory the assembled instruction is
executed).

OPR @#A

Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name

CLR @#1100 005037 Clear
001100

Operation: Clear the contents of location 1100.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

20 005037 20 005037

22 001100 PC 22 | 001100 PC

24 Ar//
—

1100 177777 1100 000000

1102 1102

MAR-5485

Figure 6-28 CLR @#1100 Clear

2. Symbolic Octal Code Instrucfion Name

ADD @42000,R3 | 063703 Add
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20 063703 R3 000500 20 063703 R3 001000

002000 PC22 002000 PC 22

24 24 r

2000 000300 2000 000300

MR.-3406

Figure 6-29 ADD @4#2000 Add

6.2,5.3 Relative Addressing [OPR A Or OPR X(PC)) - This mode
(mode 6) 1is assembled as index mode using R7. The base of the
address calculation, which is stored in the second or third word
of the instruction, is not the address of the operand, but the
number which, when added to the (PC), becomes the address of the
operand. This mode is wuseful for writing position-independent
code since the location referenced is always fixed relative to the
PC. When instructions are to be relocated, the operand is moved
by the same amount.

OPR A or OPR X(PC) (X is the 1location of A relative to the
instruction)

Relative Addressing Example (Figure 6-30)

Symbolic - Octal Code Instruction Name

INC A 005267 Increment

000054

Operation: To increment location A, contents of memory location
immediately following instruction word are added to (PC) to
produce address A. Contents of A are increased by one.

BEFORE - AFTER .
ADDRESS SPACE ADDRESS SPACE

1020 005267 1020 0005267

1022 000054 PC 1022 000054

"1024 1024 f—pC

1026 1026

1100 000000 1024 1100 000001

t ke
1100

MR.5487

Figure 6-30 INC A Increment

6.2.5.4 Relative-Deferred Addressing [OPR @A Or OPR ex(peC)] -
This mode (mode 7) is similar to relative mode, except that the
second word of the instruction, when added to the PC, contains the
address of the address of the operand, rather than the address of
the operand.

OPR @A or OPR @X(PC) (X is the location containing the address of
A, relative to the instruction)

Relative-Deferred Mode Example (Figure 6-31)

o
) i~-17

Symbolic Octal Code Instruction Name

CLR €A 005077 Clear

| 000020

Operation: Add second word of instruction to updated PC to

produce address of address of operand. Clear operand.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE -

{PC = 1020} 1020 005077 .\\\ 1020 005077

1022 000020 PC 1022 000020 PC

(PC = 1022) 1024 1024 1024
+20 .

r 1044

1044 010100 1044 | 010100

10100 100001 10100 000000

Figure 6-31 CLR @A Clear

é€.2.6 Use Of The Stack Pointer As A General-Purpose Register -
The processor stack pointer (SP, register 6) is in most cases the

general register used for the stack operations related to program

nesting. Autodecrement with register 6 "pushes" data onto the

stack and autoincrement with register 6 "pops" data off the stack.

Since the SP is used by the processor for interrupt handling, it

has a special attribute: autoincrements and autodecrements are

always done in steps of two. Byte operations using the SP in this

way leave odd addresses unmodified.

6.3 INSTRUCTION SET

The rest of this chapter describes the DCJ11“s instruction set.

- Each instruction®s explanation includes the instruction’s
mnemonic, octal code, binary code, a diagram showing the format of

the instruction, a symbolic notation describing its execution and.
effect on the condition codes, a description, special comments,

and examples.

Each instruction”s explanation is headed by its mnemonic. When

the word instruction has a byte equivalent, the byte mnemonic also

appears.

The diagram that accompanies each instruction shows the octal op

code, binary op code, and bit assignments. [Note that in byte

instructions the most significant bit (bit 15) is always a one.]

Symbols:

() = contents of

SS or src source address

DD or dst destination address

loc = location

<-- = becomes

= "is popped from stack"

= "is pushed onto stack"

boolean AND

= boolean OR

§

<
>

e

>

]

= exclusive OR

= boolean not

REG or R = register

o 1 Byte

B = 0 for word, 1 for byte

+ = concatenated

6.3.1 Instruction Formats - The following formats include allinstructions wused in the DCJ11l. Refer to individual instructions
for more detailed information.

1. Single-Operand Group: CLR, CLRB, COM, COMB, INC, INCB,
(Figure 6-32) DEC, DECB, NEG, NEGB, ADC, ADCB,

SBC, SBCB, TST, TSTB, ROR, RORB,
ROL, ROLB, ASR, ASRB, ASL, ASLB,
JMP, SWAB, MFPS, MTPS, SXT,
TSTSET, WRTLCK, XOR

15
06 05 00L4 T 1 T T T T T T ¥ 1 ¥ ¥ ¥

OP CODE DD(SS)
R L H g } { j — ' I

t { i 1 1

Figure 6-32 Single-Operand Group

2. Double-Operand Group:

a. Group 1: BIT, BITB, BIC, BICB, BIS, BISB,
(Figure 6-33) ADD, SUB, MOV, MOVB, CMP, CMPB

00

OP CODE SS D

Figure 6-33 Double-Operand Group 1

b. Group 2: ASH, ASHC, DIV, MUL

(Figure 6-34)

MR 5192

00

1

1

Figure 6-34 Double-Operand Group 2

3. Program Control Group:

a. Branch (all branch instructions)

MR 11554

(Figure 6-35)

15 08 07 00

OP CODE OF FSET
5 ——] 1 o 4 | 1 } y

MR 5193

Figure 6-35 Program Control Group Branch

b. Jump to Subroutine (JSR) (Figure 6-36)

15 . ; . . ' 09 08 06 05 00

0 0 4 R DD)
' 4 L 34 1 1 1 N N 1 . S

Figure 6-36 Program Control Group JSR

c. Subroutine Return (RTS) (Figure 6-37)

15 Y Y T - T Y T T v Y ' - 03 02 00

0 0 0 2 0 R
d A i o i 4 1 1

Figure 6-37 Program Control Group RTS

MA-5195

Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 6-38)

00

OP CODE

e n g 1 n '

) §

1

Figure 6-38 Program Control Group Traps

e. Subtract 1 and Branch (if = 0) (SOB)

MRA.5196

(Figure 6-39)

MR.5197

Figure 6-39 Program Control Group Subtract

f. Mark (Figure 6-40)

00
! i ! I I

0 0

MR V1548

Figure 6-40 Mark

g. Call to Supervisor Mode (CSM) (Figure 6-41)

15

06 05
00[T f T 1 j 1 1 I L T I T]0 0 7 0

DD| — 1 I] | } L 1 3 i { L1 {

Figure 6-41 Call to Supervisor Mode

h, Set Priority Level (SPL) (Figure 6-42)

15 : I : ' ' : 03 02 00

|S | 1 § 1 1 |S | . § 4 [l 1
1 {

Figure 6-42

MR-11880

Set Priority Level

4. Operate Group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT
(Figure 6-43)

15

00

OP CODE ' '

MR 8198

Figure 6-43 Operate Group

5. Condition Code Operators (all condition code instructions)
(Figure 6-44)

0 0 0 2 4 lon | N 2 | v |¢

Figure 6-44 Condition Group

6. Move To/From
Previous

Instruction/Data

Space Group: MTPD, MTPI, MFPD, MFPI

6-21

(Figure 6-45)

1 |} i

T T I I ¥ T I I I I |
DD(SS)

]

L | | | | { L 1 | | |

MAR-1158)

Figure 6-45 Move To And From Previous Instruction/Data Space Group

6.3.2 Byte Instructions - The DCJ11l includes a full complement
 of

instructions that manipulate byte operands. Since all DCJ1ll
addressing is byte-oriented, byte manipulation addressing is
straightforward. Byte instructions with autoincrement or

autodecrement direct addressing cause the specified register t
o be

modified by one to point to the next byte of data. Byte

operations in register mode access the low-order byte of the
specified register. These provisions enable the DCJ1l to perform
as either a word or byte processor. The numbering scheme for word
and byte addresses in memory is shown in Figure 6-46.

HIGH BYTE WORD OR BYTE

ADDRESS ADDRESS

002001 BYTE 1 BYTE O 002000

002003 BYTE 3 BYTE 2 002002

MA-5201

Figure 6-46 Byte Instructions

The most significant bit (bit 15) of the instruction word
1is set

to indicate a byte instruction.

Example:

Symbolic Octal Code Instruction Name

CLR 0050DD Clear word

CLRB 1050DD Clear byte

6.3.3 List Of Instructlons - The follOW1ng is a list of the DCJ11
instruction set.

SINGLE-OPERAND

General

Mnemonic

CLR (B)

COM (B)

INC (B)

DEC (B)

NEG (B)

TST (B)

WRTLCK

TSTSET

Instruction

Clear destination

Complement destination
Increment destination

Decrement destination

Negate destination
Test destination

Read/lock destination,
write/unlock RO into
destination

Test destination, set low bit

Shift and Rotate

Mnemonic

ASR (B)

ASL (B)

ROR (B)

ROL (B)

SWAB

Instruction

Arithmetic shift right
Arithmetic shift left
Rotate right

Rotate left

Swap bytes

Multiple-Precision

Mnemonic

ADC (B)

SBC (B)

SXT

Instruction

Add carry

Subtract carry

Sign extend

PS Word Operators

Mnemonic

MFPS

MTPS

Instruction

Move byte from PS

Move byte to PS

DOUBLE-OPERAND

General

Mnemonic

MOV (B)

CMP (B)

ADD

Instruction

Move source to destination
Compare source to destination
Add source to destination

6-23

Op Code

B 050DD

W 051DD

B 052DD

B 053DD

@ 054DD

B 057DD

0073DD

0072DD

Op Code

W 062DD

W 063DD

B 060DD

B 061DD

0003DD

Op Code

W 055DD
B 056DD

0067DD

Op Code

1067DD

1064SS

Op Code

B 1SSDD

B 2SSDD

06SSDD

SUB

ASH

ASHC

MUL

DIV

Logical

Mnemonic

BIT (B)

BIC (B)

BIS (B)

XOR

Subtract source from destination

Arithmetic shift

Arithmetic shift combined

Multiply

Divide

Instruction

Bit test

Bit clear

Bit set

Exclusive OR

PROGRAM CONTROL

Mnemonic

Branch

BR

BNE

BEQ

BPL

BMI

BVC

BVS

BCC

BCS

Instruction

Branch (unconditional)

Branch if not equal (to zero)

Branch if equal (to zero)

Branch if plus

Branch if minus

Branch if overflow is clear

Branch if overflow is set

Branch if carry is clear

Branch if carry is set

Signed Conditional Branch

Mnemonic

BGE

BLT

BGT

BLE

Instruction

Branch if greater than or equal

(to zero)

Branch if less than (zero)

Branch if greater than (zero)

Branch if less than or equal

(to zero)

Unsigned Conditional Branch

Mnemonic

BHI

BLOS

BHIS

BLO

Instruction

Branch if higher

Branch if lower or same

Branch if higher or same

Branch if lower

16SSDD

072RSS

073RSS

070RSS

071RSS

Op Code

B 3SSDD

B 4SSDD

#l 5SSbD
07 4RDD

Op Code

or

Base Code

000400

001000

001400

100000

100400

102000

102400

103000

103400

Op Code

or

Base Code

002000

002400

003000

003400

Op Code

or

Base Code

101000

101400

103000

103400

Jump and Subroutine

Mnemonic

JMP

JSR

RTS

SOB

Instruction

Jump

Jump to subroutine

Return from subroutine

Op Code

or

Base Code

0001DD

004RDD

00020R
Subtract one and branch (if # 0) 077R00

Trap and Interrupt

Mnemonic

EMT

TRAP

BPT

I0T

RTI

RTT

Instruction

Emulator trap

Op Code

or

Base Code

104000 - 104377
Trap 104400 - 104777

Breakpoint trap

Input/output trap

Return from interrupt

Return from interrupt

Miscellaneous Program Control

Mnemonic Instruction

CSM Call to supervisor mode
MARK Mark

SPL Set Priority Level

MISCELLANEOUS

Mnemonic Instruction

HALT Halt

WAIT Wait for interrupt

RESET Reset external bus
MFPT Move processor type .
MTPD Move to previous data space
MTPI Move to previous instruction

space

MFPD Move from previous data space
MFPI Move from previous instruction

space

CONDITION CODE OPERATORS

Mnemonic

CLC

CLV

CLZ

CLN

Instruction

Clear

Clear

Clear

Clear F
A
S

R
N

000003

000004

000002

000006

Op Code

or

Base Code

- 0070DD
006 4NN

00023N

Op Code

or

Base Code

000000

000001

000005

000007

1066SS

0066SS

0065SS

1065SS

Op Code

or

Base Code

000241

000242

000244

000250

cccC Clear all CC bits 000257

SEC Set C 000261
SEV Set V 000262

SEZ Set 2 000264

SEN Set N 000270

sCC Set all CC bits 000277

NOP No operation 000240

6.3.4 Single-Operand Instructions - The DCJ1ll' instructions that

involve only one operand are described in the paragraphs that
follow.

CLR

CLRB

CLEAR DESTINATION 805000

15 06 05 | 00
T A | T L 1 T T T T 1 T L 1 ¥

0N c C 0 1 0} 1 0 o 0 oD

A 1 1 t 1 L

MR 11504

Operation: (dst) <-- 0

Condition Codes: N: cleared

Z: set

V: cleared

C: cleared

Description: Word: The contents of the specified destination
are replaced with 0s. |

Byte: Same.

Example: CLR Rl

Before After

(R1) = 177777 (R1) = 000000

NZVC NZVC

1111 0100

COM

COMB

COMPLEMENT DST 05100

15 . : , . 06 05 00

0/1 O< 0 0 1 0 1 0 0 1 DD

Operation: (dst) <=-=- " (dst)

Condition Codes: N: set if most significant bit of result is set;

6-26

cleared otherwise .
Z: set if result is 0; cleared otherwise

V: cleared .

C: set

Description: Word: Replaces the contents of the destination

address by their logical complement. (Each bit

equal to 0 is set and each bit equal to 1 is

Ccleared.)

Byte: Same.

Example: COM RO

Before After’

(RO) = 013333 (RO) = 164444

NZVC NZVC
0110 1001

INC

INCB

INCREMENT DST
n0520D

15 . . ; i . 06 05 00

01 0 0 0 1 0 1 0] 1 0 DD , ‘

Operation: , (dst) <-- (dst) + 1 e

Condition Codes: N: set if result is < 0; cleared otherwise

Z: set if result is 0; cleared otherwise
V: set if (dst) held 077777; cleared otherwise

C: not affected

Description: Word: Add 1 to the contents of the destination.

Byte: Same.

Example: INC R2

Before After

(R2) = 000333 (R2) = 000334

NzZVC NZVC

0000 0000

DEC

DECB

DECREMENT DST 05300

1¢ : . . : : : : 06 05 00

01 0 0 0 1 0 1 0 1 1 ' C;D I l

Operation: (dst) <=- (dst) -1

Condition Codes: N: set if result is < 0:; cleared otherwise

6-27

Z: set if result is 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise

C: not affected

Description: Word: Subtract 1 from the contents of the

destination.

Byte: Same.

Example: DEC RS

Before After

(R5) = 000001 (RS) = 000000

NZVC NZVC
1000 0100

NEG

NEGB

NEGATE DST
0054DD

15 06 05 00

0/1 0 0 0 1 0 1 1 0 0 ' DD ' ;

Operation: (dst) <-- - (dst)

Condition Codes: N: set if result is < 0; cleared otherwise

Z: set if result is 0; cleared otherwise

V: set if result is 100000; cleared otherwise

C: cleared if result is 0; set otherwise

Description: Word: Replaces the contents of the destination

address by its 2°s complement. Note that 100000

is replaced by itself. (In 2°s complement

notation the most negative number has no

positive counterpart.)

Byte: Same.

Example: NEG RO

Before | After

(RO) = 000010 (RO) = 177770

NZVC NzZVC

0000 1001

TST

TSTB

TEST DST 05700

16 . 06 05 00

0/1 0 0 0 1 0 1 1 1 1 DD

Operation: (dst) <-- (dst)

Condition Codes:

Description:

N: set if result is < 0; cleared otherwise
2: set if result is 0; cleared otherwise
V: cleared

C: cleared

Word: Sets the condition codes N and 2 according
to the contents of the destination address; the
contents of dst remain unmodified.
Byte: Same.

Example: TST Rl

Before After

(R1) = 012340 (Rl) = 012340

NZVC NZVC
0011 0000

WRTLCK

READ/LOCK DESTINATION
WRITE/UNLOCK RO INTO DESTINATION

00730015
06 05

00T T I ! 1 1 I I 1 T 1 T 1 |0 0 0 1 1 1 1 1) DD|S | § 1 1 1 | .| } 1 1 L))

Operation:

Condition Codes:

Description:

MR 11498

(dst) <-- (RO)

N: set if RO < 0

Z: set if RO = 0

V: cleared

C: unchanged

Writes contents of RO into destination using
bus lock. If mode is 0, traps to 10.

TSTSET

TEST DESTINATION AND SET LOW BIT
007200

15
06 05 00

1 T T I I T f I 1 I |)| | I

0 o] 0 1 1 1 0 1 0 DD
L 1 | | 1 { L) 1 1 1 L)

Operation: (RO) <=- (dst), (dst) <-- (dst)V 000001 (octal)

Condition Codes:

Description:

N: set if RO < O

Z: set if RO = 0

V: cleared

C: gets contents of destination bit 0.

Reads/locks destination word and stores it
in RO. Writes/unlocks (R0O) V 1 into
destination. If mode is 0, traps to 10.

6-29

6.3.4.2 Shifts And Rotates - Scaling data by factors of two |is
accomplished by the shift instructions:

ASR -- Arithmetic shift right

ASL -- Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to
the right. The low-order bit is filled with 0s in shifts to the

left. Bits shifted out of the C bit, as shown in the following

instructions, are lost.

The rotate instructions operate on the destination word and the C

bit as though they formed a 17-bit "circular buffer."” These

instructions facilitate sequential bit testing and detailed bit

manipulation.

ASR

ASRB

ARITHMETIC SHIFT RIGHT 006200

15 06 05 00

01 0 0 0 1 1 0 0 1 0 oD

A 4 1 § 1 1 q

MA 11502

Operation: (dst) <-- (dst) shifted one place to the right

Condition Codes: N: set if high-order bit of result is set
(result < 0); cleared otherwise

72: set if result = 0; cleared otherwise

V: loaded from exclusive OR of N bit and C bit

(as set by the completion of the shift

operation)

C: loaded from low-order bit of destination

Description: Word: Shifts all bits of the destination right
one place. Bit 15 is reproduced. The C bit is

loaded from bit 0 of the destination. ASR

performs signed division of the destination by

2.

Byte: Same.

Example:

BYTE:

15 00D ADDRESS 08 l 07 EVEN ADDRESS 00
T Y T T T T Y \ T T Y Y

h A ‘ 1 h A ol Il 1 TY n

MA 5200

ASL

ASLB

ARITHMETIC SHIFT LEFT
#063D0D

06 05 ' 00

Operation:

Condition Codes:

Description:

MR 11510

(dst) <-- (dst) shifted one place to the left

N: set if high-order bit of result is set
(result < 0); cleared otherwise

Z: set if result = 0; cleared otherwise
V: loaded with exclusive OR of N bit and C bit

(as set by the completion of the shift
operation) ,

C: loaded with high-order bit of destination

Word: Shifts all bits of the destination left
one place. Bit0 is loaded with a 0. The C bit
of the status word is loaded from the most
significant bit of the destination. ASL
performs a signed multiplication of the
destination by 2 with overflow indication.
Byte: Same.

Example:

WORD.

15
00

C jpo—
-0

A i j — } } j —

BYTE.

15 ODD ADDRESS 08 07 EVEN ADDRESS 00

o
of C jo—

-0
L 1 J E—— i F| 1] 1 [—

MA 521

ROR

RORB

ROTATE RIGHT

060DD15
06 05

00T I 1 | I 1] i 1 ¥ T 1 T01 0 0 1 1 0 0 [¢ 0 DDi | | | { 1 | | 1] | | {

MR 11500

Operation: (dst) <-- (dst) rotate right one place

Condition Codes:

Description:

N: set if high-order bit of result is set
(result < 0); cleared otherwise

Z2: set if all bits of result = 0;
otherwise

V: loaded with exclusive OR of N bit and C bit
(as set by the completion of the rotate
operation)

C: loaded with low-order bit of destination

cleared

Word: Rotates all bits of the destination right
one place. Bit 0 is loaded into the C bit and
the previous contents of the C bit are loaded

6-31

into bit 15 of the destination.

Byte: Same.

Example:

WORD:

1

15 00
1 J) J L] v T v L i T 1 v) J L] v) |

c |—

A 1 { 1 A . 4 1 i 1 g 1

BYTE:

{ ; [: |
15 08 07 00

L)) Al v ¥) | ¥ R j ¥ v v L |

oDO EVEN

4 -l A 4 i 4 __ 1 1 1 " i

MR 521)

ROL

ROLB

ROTATE LEFT s06100D

15 06 05 00
T T T T T ¥ T T L T ¥ v) ¥

0/1 0 0 0 1 1 0 0 0 i DD
{ g 1 i 1) |

MRA.11509

Operation: (dst) <-- (dst) rotate left one place

condition Codes: N: set if high-order bit of result word is set

- | (result < 0); cleared otherwise
2: set if all bits of result word = 0; cleared

otherwise

V: loaded with exclusive OR of the N bit and C

bit (as set by the completion of the rotate

operation)

C: loaded with high-order bit of destination

Description: Word: Rotates all bits of the destination left
one place. Bit 15 is loaded into the C bit of

the status word and the previous contents of the

C bit are loaded into bit 0 of the destination.

Byte: Same.

Example:

WORD:

15 D5T 00

i ' T v T Y T T | ~Y Y T L =T =T
C jo—o

- A] 1 L 1] 1 1 e A n

BYTE:

15 08 07 00
T Y T T Y T Y g T Y Y ~T T Y

ODD . , EVEN

d d J 1 j— i L L I

MR.5215

SWAB

SWAPBYTES
0003DD

15 06 05 001 T T i ¥ T ¥ T T L] ¥ T |

0 0 0 0 0 0 0 0 1 1 DD

b b 4 | 1 i Sma— I { 1 [N)

MR.11508

Operation: byte 1/byte 0 <-- byte 0/byte 1

Condition Codes: N: set if high-order bit of low-order byte (bit

7) of result is set; cleared otherwise

Z: set if low-order byte of result = 0; cleared

otherwise 4

V: cleared

C: cleared

Description: Exchanges high-order byte and low-order byte of

| the destination word. (The destination must be a

word address.)

Example: SWAB R1

Before After

(R1) = 077777 (R1) = 177577

NZVC NZVC

1111 0000

6.3.4.3 Multiple-Precision - It is sometimes necessary to do
arithmetic operations on operands considered as multiple words or
bytes. The DCJ1ll makes special provision for such operations with
the instructions ADC (add carry) and SBC (subtract carry) and
their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit
double-precision word and added or subtracted as shown below.

6--33

32.8IT WORD
.

(1
31 16 15 0

OPERAND Al AO

N,

()
31 16 15 0

OPERAND B1 80

A 16 15 0

. RESULT

MR.5217

Example:

The addition of -1 and -1 could be performed as follows.

-1 = 37777777

(R1) = 177777
177777

ADD R1,R2

ADC R3

ADD R4 ,R3

After (R1l) and

777

(R2) = 177777 (R3) = 177777 (R4) =

(R2) are added, 1 is loaded into the C bit.1.

2. The ADC instruction adds the C bit to (R3); (R3) = 0.

3

4

The (R3) and (R4) are added.

The result is 37777777776, or =2.

ADC

ADCB

ADD CARRY 805500

15 . . 06 05 00

01 0 0 0 1 o 1 1 0 1 DD

Operation: (dst) <-- (dst) + (C bit)

Condition Codes: N:

Z:

V:

C:

set if result < 0; cleared otherwise

set if result = 0: cleared otherwise

set if (dst) was 077777 and (C) was 1;

cleared otherwise

set if (dst) was 177777 and (C) was 1;

cleared otherwise

6-34

Description: Word: Adds the contents of theC bit to the

: destination. This permits the carry from the

addition of the low-order words to be carried to

the high-order result..

Byte: Same.

Example: Double-precision addition may be done with the

following instruction sequence.

ADD AQ0,BO sadd low-order parts

ADC Bl sadd carry into high-order

ADD Al,Bl ;add high-order parts

SBC

SBCB

SUBTRACT CARRY 805600

15 1 T L A8 1 1 T 06 os R w
on 0 0 0 1 0 1 1 1 0 DD

Operation: (dst) <=-=- (dst) - (C)

Condition Codes:

Description:

Example:

SXT

SIGN EXTEND

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if (dst) was 100000; cleared otherwise

C: set if (dst) was 0 and C was 1l; cleared

otherwise

Word: Subtracts the contents of the C bit from

the destination. This permits the carry from

the subtraction of two low-order words to be

subtracted from the high-order part of the

result.

Byte: Same.

Double-precision subtraction is done by:

SUB A0,BO

SBC Bl

SUB Al,Bl

006700

06 05 00
T A1 T 1 T v T T LY ¥ 1

d 1 L " .t | 1 L Il I

Operation:

Condition Codes:

Description:

MR.11574

(dst) <-- 0 if N bit is clear

(dst) <-- 1 if N bit is set

N: not affected

Z: set if N bit is clear

V: cleared

C: not affected

If the condition code bit N is set, a -1 is

6-35

Example:

laced in the destination operand; if the N bit
is clear, a 0 is placed in the destination
operand. This instruction is particularly

useful in multiple-precision arithmetic because

it permits the sign to be extended through

multiple words.

SXT A

Before After

(A) = 012345 (AYy = 177777

NZVC NZVC

1000 1000

6.3.4.4 PS Word Operators -

MFPS

MOVE BYTE FROM PROCESSOR STATUS WORD 10670D

15 08 07 00

1 0 0 1 1 0 1 1 1 DD

Operation: (dst) <-- PS
dst lower 8 bits

Condition Codes: N: set if PS <7> = 1; cleared otherwise
72: set if PS <7:0> = 0; cleared otherwise

V: cleared

C: not affected

Description: The 8-bit contents of the PS are moved to the
effective destination. If the destination is

mode 0, PS bit 7 is sign-extended through the

upper byte of the register. The destination

operand address is treated as a byte address.

Example: MFPS RO

Before After

RO [0] RO [000014]

PS [000014] A PS [000000]

MTPS

MOVE BYTE TO PROCESSOR STATUS WORD 10645S

15 . . —_— : 08 07 00

1 0 0 1 1 0 1 0 0 ' é ' '

Operation:

MA-11498

PS <=-- (src)

6-36

Condition Codes: Set according to effective SRC operand bits

<3:0>

Description: The eight bits of the effective operand replace
the current contents of the lower byte of the

PS. The source operand address is treated as a

byte address. Note: The T bit (PS bit 4)

cannot be set with this instruction. The SRC

operand remains unchanged. This instruction can

be used to change the priority bits (PS bits /

<7:5>) in the PS only in kernel mode. If not in

kernel mode, PS bits <7:5> cannot be changed.

Example: MTPS R1

Before After

(R1) = 000777 (R1) = 000777

(PS) = XXX000 (PS) = XXX357

NZVC NZVC

0000 1111

6.3.5 Double-Operand Instructions - Double-operand instructions
save instructions (and time) since they eliminate the need for

"load" and "save" sequences such as those used in

accumulator-oriented machines.

MOV

MOVB

MOVE SOURCE TO DESTINATION «1SSDD

15 12 1 06 05 00
Y T TM T T T T Y Y T 3 ! !

01 0 0 1 85 DD
G " 4 1 1 4 I ! b . do

MR-11497

Operation: (dst) <-- (src¢)

cleared otherwise

cleared otherwise

Condition Codes: N: set if (src¢)

Z: set if (src)

V: cleared

C: not affected

A O
O

-
e

=

Description: Word: Moves the source operand to the

destination location. The previous contents of

the destination are lost. Contents of the

source address are not affected.

Byte: Same as MOV. The MOVB to a register

(unique among byte instructions) extends the

most significant bit of the low-order byte (sign

6-37

Example:

CMP

CMPB

COMPARE SRC TO DST

15

extension). Otherwise, MOVB operates on bytes
exactly as MOV operates on words.

MOV XXX,Rl sloads register 1
with the contents of

memory location; XXX

represents a

programmer-defined

mnemonic used to

represent a memory

location

MOV %#20,R0 :1loads the number 20
. into register 0; #

indicates that the

value 20 is the

operand

MOV @#20,-(R6) spushes the operand
contained in location

20 onto the stack

MOV (R6)+,@#177566 ;pops the operand off
a stack and moves it

into memory location

177566 (terminal

print buffer)

MOV R1l,R3 ;performs an
inter-register

transfer

MOVB @#177562,0%#177566 smoves a character
from the terminal

keyboard buffer to

the terminal printer

buffer

825SDD

12 11 06 0% 00
T T

on 0 1

T

4

0

T Bl R) 1] L] ¥ |) ¥

SS (310)

{ 1 A 1 I 1 1 1 q I

Operation:

Condition Codes:

MR.11562

(src) = (dst)

N: set if result < 0; cleared otherwise

2: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow; that

is, operands were of opposite signs and the

sign of the destination was the same as the

sign of the result; cleared otherwise

C: cleared if there was a carry from the

result’s most significant bit; set otherwise

6-38

Description:

ADD

ADD SRC TO DST -

Compares the source and destination operands and
sets the condition codes, which may then be used
for arithmetic and logical conditional branches.
Both operands are not affected. The only action
is to set the condition codes. The compare is
customarily followed by a conditional branch
instruction. Note: Unlike the subtract
instruction, the order of operation is
(src) - (dst), not (dst) - (src).

T ¥) T L { ¥ ¥ ¥ T T

| 1 L 2 4 I 9 |W | 4

Operation:

Condition Codes:

Description:

MR- 11583

(dst) <-- (src) + (dst)

N: set if result < 0; cleared otherwise
Z2: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow as a

result of the operation; that is, both
operands were of the same sign and the result
was of the opposite sign; cleared otherwise

C: set if there was a carry from the result’s
most significant bit; cleared otherwise

Adds the source operand to the destination
operand and stores the result at the destination
address. The original contentsof the
destination are lost. The contents of the
source are not affected. Two”s complement

addition is performed. Note: There is no
equivalent byte mode.

Example: Add to register: ADD 20,RO

Add to memory: ADD Rl ,XXX

Add register to register: ADD R1l,R2

Add memory to memory: ADD @#17750,XXX

XXX is a programmer-defined mnemonic for a
memory location,

SUB

SUBTRACT SRC FROM DST ’ 16SSDD

16 12 1 i . 06 . 05 00

1 1 1 0 sS DD

Operation: (dst) <-- (dst) - (src)

6-39

Condition Codes: . get if result < 0; cleared otherwise
. set if result = 0; cleared otherwise
. set if there was arithmetic overflow as a

result of the operation; that is, if operands
were of opposite signs and the sign of the

source was the same as the sign of the

result; cleared otherwise

C: cleared if there was a carry from the

result’s most significant bit; set otherwise

Subtracts the source operand from theDescription:
destination operand and leaves the result at

the destination address. The original

contents of the destination are lost. The

contents of the source are not affected. 1In

double-precision arithmetic the C bit, when

set, indicates a "borrow." Note: There is no

equivalent byte mode.

Example: SUB R1,R2

Before After

(R1) = 011111 (R1) = 011111

(R2) = 012345 (R2) = 001234

NzVC NZVC

1111 0000

ASH
ARITHMETIC SHIFT 072RSS

15 09 08 06 05 00
T T] i I I T I 1 1 I 1

0 1 1 1 0 1 0 R " 8S

Operation:

Condition Codes:

Descriptions:

ASHC

MR- 11660

R <-- R shifted arithmetically NN places to

the right or left where NN = (src)

N: set if result < O

2: set if result = 0

V: set if sign of register changed during shift
C: loaded from last bit shifted out of register

The contents of the register are shifted right

or left the number of times specified by the
source operand. The shift count is taken as the

low-order six bits of the source operand. This

number ranges from -32 to +31. Negative is a

right shift and positive is a left shift.

ARITHMETIC SHIFT COMBINED s073RSS

09 08 06 05 00

Operation:.

Condition Codes:

Description:

MUL

MULTIPLY

MA.11661

R, RV1<--R, RV1
The double word is shifted NN places to the
right or left where NN = (src)

N: set if result < 0

set if result = 0

set if sign bit changes during shift
loaded with high-orderbit when left shift;

loaded with low-order bit when right shift

(loaded with the last bit shifted out of

the 32-bit operand)
A
<

T
M

The contents of the register and the register

ORed with 1 are treated as one 32-bit word.
R v 1l (bits<15:0>) and R (bits<31:16>) are

shifted right or left the number of times

specified by the shift count. The shift count
is taken as the low-order six bits of the

source operand. This number ranges from =32

to +31. Negative is a right shift and positive

is a left shift.

When the register chosen is an odd number, the

register and the register ORed with 1 are the

same. In this case, the right shift becomes a

rotate., The 16-bit word is rotated right the

number of times specified by the shift count.

070RSS

C9 08 06 05 00
I T i I I 1 { 1 4 !

Operation:

Condition Codes:

Description:

MR 1157,

R, RVv1l «<==- R x (src)

N: set if product < 0

Z: set if product = 0

V: cleared

C: set if the result is less than -2 ** 15

Oor greater than or equal to 2 **]15 - 1,

The contents of the destination register and

source taken as 2°s complement integers are

multiplied and stored in the destination

register and the succeeding register, if R is

even. If R is odd, only the low-order product

is stored. Assembler syntax is: MUL S,R.
(Note that the actual destination is R, R v 1,

which reduces to just R when R is odd.

6-41

DIV

071RSSDIVIDE

15 09 08 06 05 00
T ¥ I} T 1§ 1 I 1 I | ¥ T

0 1 1 1 0 0 1 R S

- _ | 1 It 1 { .

Operation: R, RV1 <-- R, RV 1/(src)

Condition Codes: N: set if quotient < 0
Z: set if quotient = 0

V: set if source = 0 or if the absolute value

of the register is larger than the absolute

Description:

value of the instruction in the source. (In

this case the instruction is aborted because

the quotient would exceed 15 bits.)

C: set if divide by zero is attempted.

The 32-bit 2°s complement integer in R and

R v 1l is divided by the source operand. The

gquotient is left in R; the remainder is of the

same sign as the dividend. R must be even.

6.3.5.2 Logical - These instructions have the same format a
those in the double-operand arithmetic group. They permi
operations on data at the bit level.

BIT

BITB

BIT TEST] a3SSDD

15 12 1 06 05 00

on 0 1 1 SS DD

Operation: (src) /\ (dst) |

Condition Codes:

Description:

N: set if high-order bit of result set; cleared

otherwise

Z: set if result = 0;

V: cleared

C: not affected

cleared otherwise

Performs logical AND comparison of the source

and destination operands and modifies condition
codes accordingly. Neither the source nor the

destination is affected. The BIT instruction

may be used to test whether any of the |

corresponding bits set in the destination are

also set in the source, or whether all

corresponding bits set in the destination are

clear in the source.

Condition Codes:

Example: BIT #30,R3 stest bits three and four of R3

to see if both are off.

R3 = 0 000 000 000 011 000

Before After

NZVC NzZVC

1111 0001

'BIC
BICB

8IT CLEAR 84SSDD

16 12 11 06 05 ' . . v 00

01 1 0 0 ss DD

Operation: (dst) <-=- “(src) /\ (dst)

N: set if high-order bit of result set; cleared

otherwise

Z: set if result = 0; cleared otherwise

V: cleared

C: not affected

Description: Clears each bit in the destination that

corresponds to a set bit in the source. The

original contents of the destination are lost.

The contents of the source are not affected.

Example: BIC R3,R4

Before After

(R3) = 001234 (R3) = 001234

(R4) = 001111 (R4) = 000101

NZVC NZVC

1111 0001

Before: (R3)= 0 000 001 010 011l 100

(R4) = 0 000 001 001 001 001

After: (R4) = 0 000 000 001 000 001

BIS

BISB

BIT SET e5550D

15 - 12 A - . 06 05 i 00

0. 1 0 1 Ss DD

Operation: (dst) <-- (src) \/ (dst)

6-43

Condition Codes:

Description:

Example:

XOR

EXCLUSIVE OR

N: set if high-order bit of result set; cleared
otherwise

2: set if result = 0; cleared otherwise

V: cleared

C: not affected

Performs an inclusive OR operation between the

source and destination operands and leaves the

result at the destination address; *hat is,

corresponding bits set in the source are set in

the destination. The contents of the

destination are lost.

BIS RO,R1

Before After

(RO) = 001234 (RO) = 001234

(R1) = 001111l (R1) = 001335

NZVC NZVC

0000 0000

0 000 001 010 01l 100

0 000 001 001 001 001
Before: (RO)

(R1)

0 000 001 011 011 101After: (R1)

074RDD

03 08 06 05 00
T 1 L T 1 ¥ T ¥ ¥ ¥

Operation:

Condition Codes:

Description:

Example:

MR.1186¢

(dst) <-= (reg)# (dst)

N: set if result < 0; cleared otherwise

2: set if result = 0; cleared otherwise

V: cleared

C: not affected

The exclusive OR of the register and destination
operand is stored in the destination address.

The contents of the register are not affected.

The assembler format is XOR R,D.

XOR RO,R2

Before After

(RO) = 001234 (RO) = 001234

(R2) = 001111 (R2) = 000325

NzZVC | ' NzVC
1111 0001

o
] l 44

0 000 001 010 011 100

0 000 001 001 001 001

Before: (RO)

(R2)

After: (R2) = 0 000 000 011 010 101

6.3.6 Program Control Instructions - The following paragraphs

describe the DCJ1l instructions that affect program control.

6.3.6.1 Branches - These instructions cause a branch to a
location defined by the sum of the offset (multiplied by 2) and

the current contents of the program counter if:

1. The branch instruction is unconditional.

2. It is conditional and the conditions are met after

testing the condition codes (NZVC).

The offset is the number of words from the current contents of the

PC, forward or backward. Note that the current contents of the PC

point to the word following the branch instruction. -

Although the offset expresses a byte address, the PC is expressed

in words. The offset is automatically multiplied by 2 and
sign-extended to express words before it is added to the PC. Bit

7 is the sign of the offset. 1If it is set, the offset is negative

and the branch is done in the backward direction. If it is not
set, the offset is positive and the branch is done in the forward

direction.

The 8-bit offset allows branching in the backward direction by 200

(octal) words (400 octal bytes) from the current PC, and in the

forward direction by 177 (octal) words (376 octal bytes) from the
current PC.

The DCJ11 assembler'typically handles address arithmetic for the
user and computes and assembles the proper offset field for branch
instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the
branch 1is to be made. The assembler gives an error indication in
the instruction if the permissible branch range is exceeded.
Branch instructions have no effect on condition codes.
Conditional branch instructions where the branch condition is not
met are treated as NOPs,

BR

BRANCH (UNCONDITIONAL) 000400PLUS OFFSET

0 0 0 0 0 0 0 1 OFFSET

A i 1 g 1 1 J 4 1 1 -t |- 1 -y

MR 523

Operation:

Condition Codes:

PC <-- PC + (2 X offset)

Not affected

Description: Provides a way of transferring program control
within a range of -128 to +127 words with a

one word instruction.

New PC address = updated PC + (2 X offset)

Updated PC = address of branch ihstruction +2

Example: With the branch instruction at location 500, the
following offsets apply.-

New PC Address Offset Code Offset (decimal)

474 375 =3
476 376 -2

500 377 -1

502 000 0

504 001 +1

506 002 +2

BNE
BRANCH IF NOT EQUAL (TO ZERO) 001000 PLUS OFFSET

15 08 07 00

o o 0 o o 1 0 OFFSET S

Opefation: PC <-- PC + (2 X offset) if 2 = 0

Condition Codes:

Description:

Example:

Not affected

Tests the state of the 2 bit and causes a branch

if the 2 bit is clear. BNE is the complementary

operation of BEQ. It is used to test: (1)

inequality following a CMP, (2) that some bits

set in the destination were also in the source

following a BIT operation, and (3) generally,

that the result of the previous operation was

not 0.

Branch to C if A ¢ B

;jcompare A and B

sbranch if they are not equal
CMP A,B

BNE C

Branch to C if A + B # 0

ADD A,B t;add A to B

BNE C sbranch if the result is not
equal to 0

BEQ

BRANCH IF EQUAL (TO ZEROI 001400PLUS OFFSET

08 07 : 00
T Y T T T Y T T T T Y

0 0 1 1 OFFSET

l 1 b Iy i g 1 1 | Yy

Operation:

Condition Codes:

Description:

MR 52233

PC <-- PC + (2 X offset) if 2 =1

Not affected

Tests the state of the 2 bit and causes a branch

if 2 is set. It is used to test: (l) equality

following a CMP operation, (2) that no bits set

in the destination were also set in the source

following a BIT operation, and (3) generally,

that the result of the previous operation was 0.

Example: Branch to C if A = B (A - B = 0)

CMP A,B ;compare A and B

BEQ C sbranch if they are equal

Branch to C if A + B = 0

ADD A,B) sadd A to B

BEQ C sbranch if the result = 0

BPL

BRANCH IF PLUS 100000PLUS OFFSET

15 08 07 00

1 0 0] 0 0 0 0 0 ’ OFFSET

Operation: PC <-- PC + (2 X offset) if N = 0 e

Condition Codes:

Description:

Not affected

Tests the state of the N bit and causes a branch
if N is clear (positive result). BPL is the

complementary operation of BMI.

BMI

BRANCHIF MINUS 100400 PLUS OFFSET

15 08 07 00
T Y A S T)| T B T T 1 ¥ T T

1 o] 0] 0 0 0 0 1 OFFSET

1 1 ke b 4 Fl | L 4 3

. MR 5235

Operation: PC <== PC + (2 X offset) if N =1

Condition Codes:

Description:

Not affected

Tests the state of the N bit and causes a branch
if N is set. It is used to test the sign (most

6-47

significant bit) of the result of the previous

operation), branching if negative. BMI is the
complementary function of BPL.

BVC

BRANCH IF OVERFLOW IS CLEAR 102000 PLUS OFFSET

15 08 07 00
)] L \J) | A 1 1 J 1 -1 T ¥ v 1

1 0 0 0o 0 1 0 0 OFFSET
|) | 1 A] q 1 A i I

MR.5236

Operation: PC <-- PC + (2 X offset) if V=20

Condition Codes:

Description:

BVS

BRANCH IF OVERFLOW !SSET

Not affected

Tests the state of the V bit and causes a branch

if the V bit is clear. BVC is complementary

operation to BVS.

102400 PLUS OFFSET

00
| T 1 1

OFFSET

| L 2 o 1 1 .

Operation:

Condition Codes:

Description:

BCC

MR 5237

PC <-- PC + (2 X offset) if Vv 1

Not affected

Tests the state of the V bit (overflow) and

causes a branch if V is set. BVS is used to

detect arithmetic overflow in the previous

operation.

103000 PLUS OFFSET
BRANCH IF _CARF\Y iI5SCLEAR

08 07 00

0 1 1 0

T

e

T

)

v

1

T

OFFSET

J

H H 1

4

Operation:

Condition Codes:

MR 5238

0PC <-- PC + (2 X offset) if C =

Not affected

Tests the state of the C bit and causes a branchDescription:
if C is clear. BCC is the complementary

operation of BCS.

BCS
BRANCHIF CARRYIS SET 103400 PLUS OFFSET

15 08 07 00
i i L] 1 T T T T T v H M T i

1 0 0 0 0 1 1 1 OFFSET

4 4 ! e d 4 w 3 4 {

MR 5239

Operation: PC <-=- PC + (2 X offset) if C=1

Condition Codes: Not affected

Description: Tests the state of the C bit and causes a branch
if C is set. It is used to test for a carry in
the result of a previous operation.

6.3.6,2 Bigned Conditional Branches - Particular combinations of
the condition code bits are tested with the signed conditionalbranches. These instructions are used to test the results ofinstructions in which the operands were considered as signed (2°s
complement) values.

Note that the sense of signed comparisons differs from that of
unsigned comparisons in that in signed, 16-bit, 2°s complementarithmetic the sequence of values is as follows.
largest . 077777
positive 077776

000001
000000

177777

177776

smallest iOOOOl
negative 100000

Whereas, in unsigned, 16-bit arithmetic, the sequence isconsidered to be:

highest - 177777

000002

000001
lowest 000000

BGE |

BRANCH IF GREATER THAN OR EQUAL

(TO ZERO)

002000 PLUS OFFSET

00
15 08 07

hj 1 1 T

0 0 0
OFFSET

J 1) 1 } 2

Operation:

Condition Codes:

Description:

MR 5240

PC <-- PC + (2 X offset) if NXAL V =0

Not affected

Causes a branch if N and V are either both clear

or both set. BGE is the complementary operation

of BLT. Thus, BGE will always cause a branch

when it follows an operation that caused

addition of two positive numbers. BGE will also

cause a branch on a 0 result.

BLT

BRANCH IF LESS THAN (ZERO) 002400 PLUS OFFSET

15 08 07 00
1 T T | 1 1 L T A\ 1 T 1 1 1

0 0 0 0 1 0 1 OFFSET
4 L { i = o 1 |

MR 240

Operation: PC <-- PC + (2 x offset) if NJAL V =1

Condition Codes:

Description:

Not affected

Causes a branch if the exclusive OR of the N and

V bits is one. Thus, BLT will always branch

following an operation that added two negative

numbers, even if overflow occurred. In

particular, BLT will always cause a branch if it

follows a CMP instruction operating on a

negative source and a positive destination (even

if overflow occurred). Further, BLT will never

cause a branch when it follows a CMP instruction

operating on a positive source and negative

destination. BLT will not cause a branch if the

result of the previous operation was 0 (without

overflow).

BGT

BRANCH IF GREATER THAN (ZERO) 003000 PLUS OFFSET

15 08 07 00
T A A T R 1 T T L] ¥ T B i]

o 0 0 o 1 1 0 OFFSET

5 4 b M— 1 i . I J | 1 |1 ¢ |

.
MR 5242

Operation: PC <-- PC + (2 X offset) if 2 \/ (N \f V)

Condition Codes:

Description:

= 0

Not affected

Operation of BGT is similar to BGE, except that

BGT will not cause a branch on a 0 result.

6-50

BLE

BRANCH IF LESS THAN OR EQUAL (TO ZERO) 003400 PLUS OFFSET

00

1 1 L i

L
1

4

-y

OFFSET

-l

v

j-

.

i

1

1

Operation:

Condition Codes:

Description:

6.3.6.3 Unsigned Conditional Branches - The unsigned

MR §$243

PC <~-- PC + (2 X offset) if 2 \/ (N)£ V)
=1

Not affected

Operation is similar to BLT, but in addition

will cause a branch if thé result of the

previous operation was 0.

conditional

branches provide a means for testing the result of comparison

operations in which the operands are considered as unsigned

values.

BHI

BRANCH IF HIGHER 101000PLUS OF FSET

15 08 Q7 00
Y T T T T T T T T Rj Y 1 T Y

1 0 0 0 0 0 1 0 OFFSET
i 1 1 L n | B 1 [4 L

Operation:

Condition Codes:

Description:

MA 5244

PC <==- PC + (2 X offset) if C =0 and 2 =0

Not affected

Causes a branch if the previous operation caused

neither a carry nor a 0 result. This will

happen in comparison (CMP) operations as long as

the source has a higher unsigned value than the

destination.

BLOS

BRANCH IF LOWER OR SAME 101400 PLUS OFFSET

15 08 07 00
T T T Y Y T T Y T Y B | Y T Y

1t 0 0 0 0 0 o1 1 OFFSET

o " { Fl e 3§ | 1 i [n 4

. A MR.-B3245

Operation: PC <-- PC + (2 X offset) if C\/ 2 =1

Condition Codes:

Description:

Not affected

Causes a branch if the previous operation caused

either a carry or a 0 result. BLOS is the

complementary operation of BHI. The branch will

occur in comparison operations as long as the

source is equal to or has a lower unsigned value

than the destination.

6-51

BHIS

BRANCH IF HIGHER OR SAME 103000 PLUS OFFSET

15 08 07 00
1 7 14 T 1 T 1 ki T T T ¥ A B

1 0 0 0 0 1 1 0 OFFSET

L 4‘ | N " 1 } L : { |

MR 5246

Operation: PC <-- PC + (2 X offset) if C =0

Condition Codes: Not affected

Description: ‘ BHIS is the same instruction as BCC. This
mnemonic is included for convenience caly.

BLO

BRANCH IF LOWER 103400 PLUS OFFSET

15 08 07 00
i T \J T T T T T | T 1§ ¥ 1 A

1 0 0] 0 0] ! 1 1 OFFSET

o e -t 1 1 i e Jd I 4 i -y e

MR 5247

Operation: PC <== PC + (2 X offset) if C =1

Condition Codes: Not affected

Description: BLO is the same instruction as BCS. This

mnemonic is included for convenience only.

6.3.6.4 Jump And Subroutine Instructions - The subroutine call in

the DCJ11l provides for automatic nesting of subroutines,

reentrancy, and multiple entry points. Subroutines may call other

subroutines (or indeed themselves) to any levelof nesting without

making special provision for storage of return addresses at each

level of subroutine call. The subroutine calling mechanism does

not modify any fixed location in memory, and thus provides for

reentrancy. This allows one copy of a subroutine to be shared

among several interrupting processes.

JMP

Jump ' 0001DD

15 06 05 00
T 1 L T) 1]) | T A T T | T 1

0 0 0 0 0 0) 0 0 1 DD

i 1 1 L 2 1 1 1 I]

MR 11558

Operation: PC <=-- (dst)

Condition Codes: Not affected

Description: JMP provides more flexible program branching

than the branch instructions do. Control may be

transferred to any location in memory (no range

limitation) and can be accomplished with the
full flexibility of the addressing modes, with

the exception of register mode 0. Execution of

6-52

a jump with mode 0 will cause an "illegal

instruction" condition, and will cause the CPU

to trap to vector address four. (Program

control cannot be transferred to a register.)

Register-deferred mode is legal and will cause

program control to be transferred to the address

held in the specified register. Note that

instructions are word data and must therefore be

fetched from an even-numbered address.

Deferred-index mode JMP instructions permit

transfer of control to the address contained in

a selectable element of a table of dispatch

vectors.

Example: First:

JMP FIRST stransfers to FIRST

JMP @LIST stransfers to location

pointed to at LIST

List:

FIRST ;pointer to FIRST

JMP @ (SP)+ stransfer to location

pointed to by the top of

the stack, and remove the

pointer from the stack

JSR

JUMP TO SUBROUTINE 004ROD

15 . . 09 08 06 05 00

] 0 0 0 1 0 o R DD

Operation: (tmp) <-- (dst) (tmp is an internal processor
register)

(SP) <-- reg (Push reg contents onto processor

stack)

reg <-- PC (PC holds location following JSR; this

address now put in regq)

PC <=- (dst) (PC now points to subroutine

destination) -

Description: In execution of the JSR, the 0ld contents of the
specified register (the "linkage pointer") are

automatically pushed onto the processor stack

and new linkage information is placed in the

register. Thus, subroutines nested within

subroutines to any depth may all be called with

6-53

Example:

SBCALL:

SBCALL+4:

SBCALL+2+2M:

CONT:

SBR:

the same linkage register. There is no need
either to plan the maximum depth at which any
particular subroutine will be called or to

include instructions in each routine to save and
restore the linkage pointer. Further, since all
linkages are saved in a reentrant manner on the

processor stack, execution of a subroutine may

be interrupted. The same subroutine may be

reentered and executed by an interrupt service

routine, Execution of the initial subroutine

can then be resumed when other requests are

satisfied. This process (called "nesting") can

proceed to any level. '

‘A subroutine called with a JSR reg,dst

instruction can access the arguments following

the call with either autoincrement addressing,

(reg) +, if arguments are accessed sequentially,

or by indexed addressing, X(reg), if accessed in

random order. These addressing modes may also

be deferred, @(reg)+ and @X(reg), if the

parameters are operand addresses rather than the

operands themselves.

JSR PC, dst is a special case of the DCJ1l1l

subroutine call suitable for subroutine calls
that transmit parameters through the general

registers. The SP and the PC are the only

registers that may be modified by this call.

Another special case of the JSR instruction is

JSR PC,@(SP) +, which exchanges the top element
of the processor stack with the contents of the

program counter. This instruction allows two

routines to swap program control and resume
operation from where they left off when they are

recalled. Such routines are called "coroutines."

Return from a subroutine is done by the RTS

instruction. RTS reg loads the contents of reg
into the PC and pops the top element of the
processor stack into the specified register.

- RS R6 R7

JSR R5,SBR $1 n SBCALL

ARG 1

ARG 2

ARG M

Next Instruction #$1 n CONT

MOV (R5)+,dst 1 SBCALL+4 n-2 SBR
MOV (RS5)+,dst 2

MOV (RS)+,dst M SBCALL+2+4+2M

Other Instructions CONT '

EXIT: RTS RS CONT n-2 EXIT

JSR R5, SBR

JEFORE. (PC) R? - PC STACK

JSR PC. SBR

(SP) R6 n DATA O BEFORE: (PC) R7 PC | STACK

RS #1 (SP) R'6 n DATAO

\FTER. R7 SBR AFTER: R7 LS8R .

DATA O DATAO

R6 n-2 #1 R6 n-2 PC+2

MAR.82800

RE PC+2

RTS

RETURN FROM SUBROUTINE ’ 00020R

15
03 02 00

T T T T T T T T T 4 T T) g

0 0 0 0 0 0 0 0 1 0 0 0 0 R

h i i b 1 q g

MA 115857

Operation: PC <-- (regq)

(reg) <-- (SP)

Description: Loads the contents of the register into PC and

pops the top element of the processor stack into

the specified register.

Return from a nonreentrant subroutine is

typically made through the same register that

was used in its call. Thus, a subroutine called

with a JSR PC, dst exits with a RTS PC and a

subroutine called with a JSR R5, dst, may pick
up parameters with addressing modes (R5) +,

X(R5), or @X(R5) and finally exits, with an RTS

RS.

Example: RTS RS

RTS R5
STACK

BEFORE: {PC) R? SBR

DATAO

(SP) R6 n #1

RS PC

AFTER. R7 PC

R6 n+2 DATAO

RS #1

MR.-5$282

SOB
SUBTRACT ONE AND BRANCH (IF = 0) 077RNN

15 . : 09 08 06 05 00

0 ! ! 1 L ! 1 R OFFSET
B 4 L | 1 I 1 L 1 1 | W I 1

MA 11882

Operation: ~ (R) <-- (R) = 1; if this result # 0, then PC
<-=- PC - (2 x offset); if (R) = 0 then PC <--

PC

Condition Codes: Not affected

Description: The register is decremented. If the contents
does not equal 0, twice the offset is subtracted

from the PC (now pointing to the following

word). The offset is interpreted as a 6-bit

positive number. This instruction provides a

fast, efficient method of loop control. The

assembler syntax is SOB R,A where A is the

address to which transfer is to be made if the

decremented R is not equal to 0. Note: the SOB

instruction cannot be used to transfer control

in the forward direction.

6.3.6.5 Traps - Trap instructions provide for calls to emulators,
1/0 monitors, debugging packages, and user-defined interpreters.

A trap is effectively an interrupt generated by software. When a

trap occurs, the contents of the current program counter (PC) and

processor status word (PS) are pushed onto the processor stack and

replaced by the contents of a 2-word trap vector containing a new

PC and new PS. The return sequence from a trap involves executing

an RTI or RTT instruction, which restores the 0ld PC and old PS by

popping them from the stack. Trap instruction vectors are located

6-56

at permanently assigned fixed addresses.

EMT

EMULATOR TRAP 104000104377

12 Y v - 08 07 00

! 0 0 0 1 0 0

Operation: (SP) <«<-- PS MR.5254

(SP) <-- PC

PS <-- (32)

Condition Codes:

Description:

BEFORE:

N:

Z:

V:

C:

loaded from trap

loaded from trap

loaded from trap

loaded from trap

All operation codes

EMT is at address 30.

vector

vector

vector

vector

from 104000 to 104377 are
EMT instructions and may be used to transmit
information to the emulating routine (e.q.,
function to be performed). The trap vector for

The new PC is taken from
the word at address 30; the new processor status
(PS) is taken from the word at address 32.

CAUTION: EMT is used frequently by DIGITAL
system software and is therefore not recommended
for general use. .

AFTER:

) PS1.

PC PC1

se

STACK

PS {32)

PC {30)

Sp

DATA 1

DATA 1

PS1

PC1

MRA.5265

TRAP

TRAP
104400104777

00
) A

Operation:

Condition Codes:

Description:

!
PC

PS

N:

Z:

Qoo

P

<-- PS

<-- PC

(34)

(36)

loaded from trap

loaded from trap

vector

vector

vector

vector

V: loaded from trap

C: loaded from trap

Operation codes from 104400 to 104777 are TRAP

instructions. TRAPs and EMTs are identical in

operation, except that the trap vector for TRAP

is at address 34.

NOTE: Since DIGITAL software makes frequent use

of EMT, the TRAP instruction is recommended for

general use.

BPT

B_REAKPOlENT TRAP 000003

15 00

0 0 0 0 0 0 0 0 0 0 0] 0 0 0 1 1

"l 4 1] n 1 1 3 9

Operation: (SP) <-- PS

(SP) <=-- PC

PC <-- (14)

PS <-- (16)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Performs a trap sequence with a trap vector

address of 14. Used to call debugging aids.

The user is cautioned against employing code

000003 in programs run under these debugging

aids. (No information is transmitted in the low
byte.)

I0T

INPUT/OUTPUT TRAP 000004

15 00
T 1 h | T B 1 T T 1 L] I ¥ | 4 T 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

& d 4 1 1 4 N 1 1 L 2 N

. MR 5258

Operation: (SP) <-- PS

(SP) <-- PC

6-58

PC <= (20)
PS <-- (22)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector
address of 20. (No information is transmitted in
the low byte.)

RTI

RETURN FROM INTERRUPT ‘
000002

15

00T ¥ T T 1§ 1§ ¥ T ¥ ¥ ¥ L T } §)0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0Lo I 1 1 |
1 i | -

Operation: PC <--= (SP)
Hn o299

PS <-- (SP)

Condition Codes: N: loaded from processor stack
‘ Z2: loaded from processor stack

V: loaded from processor stack
C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service
: ‘routine. The PC and PS are restored (popped)

from the processor stack. If the RTI sets the
T bit in the PS, a trace trap will occur prior
to executing the next instruction. When
executed in supervisor mode, the current and
previous mode bits in the restored PS cannot
be kernel. When executed in user mode, the
current and previous mode bits in the restored
PS can only be user. RTI cannot clear PS bit
11 if it was already set.

RTT

RETURN FROM TRAP

000006

15

00
0 0 0] 0 0 0 0 0 0 0 0 0 0 1 1]| R I { 1 | S— 4 ' 1) '

MA.-8260

Operation: PC <-- (SP)

PS <-- (SP)

Condition Codes: N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Description: Operation is the same as RTI except that it’ inhibits a trace trap whereas RTI permits a
trace trap. If the new PS has the T bit set,

6-59

a trap will occur after execution of the first
instruction after RTT. When executed in
supervisor mode, the current and previous mode

bits in the restored PS cannot be kernel.

When executed in user mode, the current and

previous mode bits in the restored PS can only

be user. RTT cannot clear PS bit 11 if it was

already set.

6.3.6.6 Miscellaneous Program Control -

MARK

0064NN

06 05 00

Operation:

Condition Codes:

Description:

Example:

MR- 11566

SP <=-- PC + 2 x NN

PC <=- RS

RS5 <-- (SP)+

NN = number of parameters

N: unaffected

Z2: unaffected

V: unaffected

C: unaffected

Used as part of the standard subroutine return

convention. MARK facilitates the stack clean-up

procedures involved in subroutine exit.

Assembler format is: MARK N.

MOV R5,-(SP) ;place old R5 on stack

MOV P1l,-(SP) ;jplace N parameters on

MOV P2,-(SP) ;the stack to be used

; there by the subroutine

MOV PN,- (SP)

MOV =MARKN,-(SP) ;place the instruction

;MARK N on the stack

MOV SP,R5 ;set up address at MARK N

;instruction

JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD R5

P1

PN

MARKN

OoLDPC
MR 118669

And the program is at the address SUB which

is the beginning of the subroutine.

6-60

SUB: ~ iexecution of the
jsubroutine itself

RTS RS sthe return begins:
;this causes the contents
;0f R5 to be placed in the
:PC which then results in
; the execution of the

;instruction MARK N. The
rcontents of the old pC

rare placed in RS.

MARK N causes: (1) the stack pointer to be
adjusted to point to the old RS value; (2) the
value now in R5 (the old PC) to be placed in
the PC; and (3) contents of the old R5 to be
popped into R5 thus completing the return from
subroutine,

NOTE

If memory management is in use, the stack
must be mapped through both I and D space
to execute the MARK instruction.

SPL

SET PRIORITY LEVEL

15 00023N

Operation: PS bits <7:5> <-- priority
(priority = N)

Condition Codes: N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Description: In kernel mode, the least significant
three bits of the instruction are loaded
into the processor status word (PS) bits
<7:5>, thus causing a changed priority.
The o0ld priority is lost. In user or
supervisor modes, SPL executes as a NOP.

Assembler syntax is: SPL N

CSM

CALL TO SUPERVISOR MODE)
007000

15
06 05 00I 1 { T]] 1 1 T I { 1 | T6 o0 0 0 ! 1) 0 o 0 DD|-] | | | i] i 1 L |

MR 11468

6-61

Operation: | If MMR3 bit 3 = 1 and current
mode = kernel then

supervisor SP <-- current mode SP

temp<l5:4> <-- PS<15:4>

temp<3:0> <-- 0

PS<13:12> <-- PS<15:14>

PS<15:14> <-- 01

PS 4 <-- 0

- (SP) <-- temp

- (SP) <~-- PC

- (SP) <-- (dst)

PC <=-- (10)

otherwise, traps to 10 in kernel mode.

Condition Codes: N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Description: CSM may be executed in user or supervisor

mode, but is an illegal instruction in kernel

mode. CSM copies the current stack pointer

(SP) to the supervisor mode, switches to

supervisor mode, stacks three words on the

supervisor stack (the PS with the condition

codes cleared, the PC, and the argument word

addressed by the operand), and sets the PC to

the contents of location 10 (in supervisor

space). The called program in supervisor

space may return to the calling program by

popping the argument word from the stack and

executing RTI. On return, the condition codes

are determined by the PS word on the stack.

Hence, the called program in supervisor space

may control the condition code values following

return.

6.3.6.7 Reserved Instruction Traps - These are caused by attempts

to execute instruction codes reserved for future ©processor

expansion (reserved instructions) or instructions with 1illegal

addressing modes (illegal instructions). Order codes not

corresponding to any of the .instructions described are considered

to be reserved instructions. JMP and JSR with register mode

destinations are 1illegal instructions; they ¢trap to wvirtual

address 4 1in kernel data space. Reserved instructions trap to

vector address 10 in kernel data space.

6.3.6.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and

causes processor traps at the end of instruction execution. The

instruction that is executed after the instruction that set the T

bit will proceed to completion and then trap through the trap

vector at address 14. ‘lote that the trace ¢trap is a system

debugging aid and is transparent to the general programmer.

6-62

- NOTE

Bit 4 of the PS can only be set
indirectly by executing a RTI or RTT
instruction with the desired PS on the
stack.

6.3.6.8.1 Special Cases Of The T Bit - The following are special
cases of the T bit.

NOTE

The traced instruction is the instruction
after the one that set the T bit.

‘An instruction that cleared the T bit -- Upon fetching
the traced instruction, an internal flag, the trace flag,
was set. The trap will still occur at the end of this
instruction’s execution. The status word on the stack,
however, will have a clear T bit. '

An instruction that set the T bit -- Since the T bit was
already set, setting it again has no effect. The trap
will occur.

An instruction that caused an instruction trap -- The
instruction trap is performed and the entire routine for
the service trap is executed. If the service routine
exits with an RTI, or in any other way restores the
stacked status word, the T bit is set again, the
instruction following the traced instruction is executed,
and, unless it is one of the special cases noted
previously, a trace trap occurs.

An instruction that caused a stack overflow -- The
instruction completes execution as usual. The stack
overflow does not cause a trap. The trace trap vector
is loaded into the PC and PS and the old PC and PS are
pushed onto the stack. Stack overflow occurs again,
and this time the trap is made.

An interrupt between setting of the T-bit and fetch
of the traced instruction -- The entire interrupt
service routine is executed and then the T-bit is
set again by the exiting RTI. The traced instruction
is executed (if there have been no other interrupts)
and, unless it is a special case noted above, causes
a trace trap.

Interrupt trap priorities -- See Table 1-8.

6-63

6.3.7 Miscellaneous Instructions -

HALT

HALT
000000

15
o

o o0 © o o o0 o0 o0 o0 o o 0' o o .
] 4 1] L L s 3 L ,

Operation: (SP) <-- PS ma 5261

| (SP) <-- PC
PC <-- restart address

PS <-- 340

Condition Codes:

Description:

WAIT

Not affected

The effect of HALT depends upon the CPU

operating mode and the halt option

currently selected. See Chapter 8 -

Interfacing for more details on halt

options. In kernel mode, a halt option of

1 (external logic driving a 1 on DAL3 in

response to a GP Read with a GP code of 000)

causes a trap through location 4 and sets

bit 7 of the CPU error register when HALT is

executed. If the halt option is 0 in kernel

mode, execution of the HALT instruction

causes the DCJ1l into console ODT.
Execution of the HALT instruction in user or

supervisor mode causes a trap through

location 4 and sets bit 7 of the CPU error

register.

WAIT FOR INTERRUPT
200001

15

o

Y T T T T Y L T T T) -r T Y T

0 0 0 0 0 0 0 0 0 0 0 0 0 0 .

g } 1 1 L N f Y | .

Not affected MR.5262
Condition Codes:

Description: In WAIT, as in all instructions, the PC points

to the next instruction following the WAIT

instruction. Thus, when an interrupt causes the

PC and PS to be pushed onto the processor stack,

the address of the next instruction following
the WAIT is saved. The exit from the interrupt

routine (i.e., execution of an RTI instruction)

will cause resumption of the interrupted process

at the instruction following the WAIT. If not

in kernel mode, WAIT executes as a NOP.

RESET

RESET EXTERNAL BUS
000005

15 00
B 1 ¥ T T ¥] | § LB ¥ L § L ¥ ¥ §

0 0 0 0 0 0 0 0 0 0 o 0 0 1 0 1
j — 4 1 1 L - " |] 1 4 vl |

MR 5263Condition Codes: Not affected

Description: The following sequence of events occurs: (1)

a GP Write cycle is performed and a GP code

of 014 is generated, (2) operation is delayed

for 69 microcycles, (3) a GP Write is

performed and a GP code of 214 is generated,

(4) operation is delayed for 600 microcycles

delay. If not in kernel mode, RESET operates

as a NO°P,

MFPT

MOVE FROM PROCESSOR TYPE WORD 000007

15 00
T T T 1 T I T T ¥ LA L [} 1 L | A

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

- 4 i 1 '] 1) — -

Operation: RO <-- 5§ me e

Condition Codes: Not affected

Description: The number 5 is placed in RO, indicating to the
system software that the processor type is

DCJ1l.

MTPD/MTPI

MOVE TO PREVIOUS DATA SPACE

MOVE TO PREVIOUS INSTRUCTION SPACE 806600

15 06 05 00
[I] 1 T T T T T T T Y Y T

on 0 0 0 1 1 0 1 1 o] DD

Operation: (temp) <=-- (SP)+

(dst) <=- (temp)

Condition Codes: N: set if the source < 0

Z2: set if the source = 0

V: cleared

Z2: unaffected

Description: The instruction pops a word off the current

stack determinedby PS bits <15:14> and stores

that word into an address in the previous space

(PS bits <13:12>). The destination address is

computed using the current registers and memory

map.

MFPD/MFPI

6-65

MOVE FROM PREVIOUS DATA SPACE)

MOVE FROM PREVIOUS INSTRUCTION SPACE
® 06555

15 06 05 00

01 0 0 0 1 1 0 1 0 1 sS
] i]) -] 1 A

Operation: (temp) <-- (src)
- (SP) <-- (temp)

Condition Codes: N: set if the source < 0
72: set if the source = 0

V: cleared :

7: unaffected

Description: Pushes a word onto the current stack from an

address in the previous space determined by

PS<13:12>. The source address is computed
using the current registers and memory map

.

When MFPS is executed and both previous mode
current mode are user, the instruction functions
as though it were MFPD.

6.3.8 Condition Code Operators -

CLN SEN

CLZ SEZ

CLV SEV

CLC SEC

CCC sCC

CONDITION CODE OPERATORS
0002 X X

05 04 03 02 o1 00

T AJ T 1 ¥ ¥ 1

on N Z v c

_ I 1 L 1

Description: Set and clear condition code bits. Selectable

combinations of these bits may be cleared or se

together. Condition code bits corresponding to

bits in the condition code operator (bits <3:0>

are modified according to the sense of bit 4,

the set/clear bit of the operator; i.e., set th
bit specified by bit 0, 1, 2, or 3, if bit 4 =

1. Clear corresponding bits if bit 4 = 0.

Mnemonic Operation OP Code

CLC Clear C 000241

CLV Clear V 000242

CL2 Clear 2 000244

CLN Clear N 000250
SEC Set C 000261

SEV Set V 000262

SEZ Set 2 000264
SEN Set N 000270

SCC Set all CCs 000277

6-66

cce Clear all CCs 000257
Clear V and C 000243

NOP No operation 000240

Combinations of the above set or clear
operations may be ORed together to form combined
instructions.

6-67

| CHAPTER 7

FLOATING-POINT ARITHMETIC

7.1 INTRODUCTION

The DCJ1l executes forty-six floating-point instructions. The

floating-point instruction set is compatible with the FP1l

instruction set for PDP-1l1 computers. Both single- and

double-precision floating-point capabilities are available with

other features, including floating-to-integer and

integer-to-floating conversion. :

7.2 PFLOATING-POINT DATA FORMATS

Mathematically, a floating-point number may be defined as having

the form (2 ** K) * f, where K is an integer and f is a fraction.

For a nonvanishing number, K and f are uniquely determined by

imposing the condition 1/2 ¢ £ < 1. The fractional part (f) of

the number is then said to be normalized. For the number 0, f is

assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical

representation for floating-point numbers. Two types of

floating-point data are provided. In single~precision, or

floating mode, the data is 32 bits long. 1In double-precision, or

double mode, the data is 64 bits long. Sign magnitude notation is

used. ,

7.2.1 Nonvanishing Floating-Point Numbers - The fractional part

(f) is assumed normalized, so that its most significant bit must

be 1. This 1 is the "hidden" bit: it is not stored explicitly in
the data word, but the microcode restores it before carrying out

arithmetic operations. The floating and double modes reserve 23

and 55 bits, respectively, for f. These bits, with the hidden
bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess

200 notation (i.e., as K + 200 (octal)), giving a biased exponent.

Thus, exponents from -128 to +127 could be represented by 0 to 377

(base 8), or O to 255 (base 10). For reasons given below, a

biased exponent of 0 (the true exponent of -200 (octal)), is

reserved for floating-point 0. Therefore, exponents are

restricted to the range -127 to +127 inclusive (-177 to +177

octal) or, in excess 200 notation, 1 to 377.

The remaining bit of the floating-point word is the sign bit. The

number is negative if the sign bit is a 1l. ‘

7.2.2 Floating-Point Zero - Because of the hidden bit, the

fractional part 1is not available ¢to distinguish between 0 and

nonvanishing numbers whose fractional part is exactly 1/2.

Therefore, the DCJ1l reserves a biased exponent of 0 for this
purpose, and any floating-point number with a biased exponent of 0

either traps or is treated as if it were an exact 0 in arithmetic

operations. An exact or "clean" 0 is represented by a word whose

bits are all O0s. A "dirty" 0 is a floating-point number with a

biased exponent of 0 and a nonzero fractional part. An arithmetic

operation for which the resulting true exponent exceeds 277

(octal) is regarded as producing a floating overflow; if the true

exponent is less than -177 (octal), the operation is regarded as

producing a floating underflow. A biased exponent of 0 can thus

arise from arithmetic operations as a special case of overflow

(true exponent = -200 octal). (Recall that only eight bits are

reserved for the biased exponent.) The fractional part of results

obtained from such overflow and underflow is correct.

7.2.3 Undefined Variables - An undefined variable 1is any bit

pattern with a sign bit of 1 and a biased exponent of 0. The term
"undefined variable" is used, for historical reasons, to indicate
that these bit patterns are not assigned a corresponding
floating-point arithmetic value. Note that the undefined variable
is frequently referred to as -0 elsewhere in this chapter.

A design objective was to assure that the undefined variable would
not be stored as the result of any floating-point operation in a
program run with the overflow and underflow interrupts disabled.
This 1is achieved by storing an exact 0 on overflow and underflow,

if the corresponding interrupt 1is disabled. This feature,

together with an ability to detect reference to the undefined
variable (implemented by the FIUV bit discussed later), is
intended to provide the user with a debugging aid: if -0 occurs,
it did not result from a previous floating-point arithmetic
instruction.

7.2.4 Floating-Point Data - Floating-point data is stored in
words of memory as illustrated in Figures 7-1 and 7-2.

F FORMAT FLOATING POINT SINGLE PREC!SION

.2
FRACTION 15C.>

MEMORY +Q S EXP FRACT <22 16>

i e 4 I\ 1 i N A l |) 1 L

MA 604

Figure 7-1 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

+6 FRACTION <15 0>

1 1 1 L 1 1 i L AL 1 1 1 A 1 L.

15 00

+4 FRACTION <31 16>

1 1 Il 1 4 L L 1 1 L I 1 1 —l 1

15 00

+2 FRACTION <47 32>

1 L A4 i 1 1 s 1 A 1 1 i i L 1

15 07 06 00

MEMORY +0 S EXP FRACT <54:48>

1 3 1 Tl L 1 4 i 1 A A1 i A

S = SIGN OF FRACTION

EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NON-VANISHING NUMBERS

FRACTION = 23 BITS IN F FORMAT 55 BITS IN D FORMAT + ONE HIDDEN

8IT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

Figure 7-2 Double-Precision Format

The DCJ11 provides for conversion of floating-point to integer
format and vice-versa. The processor recognizes single-precision
integer (I) and double-precision integer long (L) numbers, which

are stored in standard 2°s complement form. (See Figure 7-3.)

| FORMAT INTEGER SINGLE PRECISION

15 14 00

S NUMBER <156.0>

| i l 1 b 1 d A L i A I - i

L FORMAT, DOUBLE PRECISION INTEGER LONG

15 14 00

MEMORY +0 | S ' NUMBER <30:16>
1 | i B e L i 1 1 1 1 I 1 i £

15 00

+2 NUMBER <1%:0>

| i 1] i 1 1 1 | L i 1 . _k] 1

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.

Figure 7-3 2°s Complement Format

7.3 FLOATING-POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the
currently executing floating-point instruction and also reflects
conditions resulting from the execution of the previous

instruction. (See Figure 7-4.) In this discussion a set bit =1
and a reset bit = 0. Three bits of the FPS register control the
modes of operation.

7-3

l. Single/Double -- Floating-point numbers can be either single-

or double-precision.

2. Long/Short -- Integer numbers can be 16 bits or 32 bits.

3. Chop/Round -- The result of a floating-point operation can be

either "chopped" or "rounded." The term "chop" is used instead

of "truncate" in order to avoid confusion with truncation of

series used in approximations for function subroutines.

16 14 13 12 1 10 09 08 0?7 06 05 04 03 02 o1 00

% > LFER | FID ///// Fiuvl FIV| IV fic | FO] fL | FT // FN | F2 | Fv | FC
77 /A

RESERVED RESERVED

MR- 3807

Figure 7-4 Floating-Point Status Register

The FPS register contains an error flag and four condition codes

(5 bits): carry, overflow, zero, and negative, which are

analogous to the CPU condition codes.

The DCJ1l recognizes six floating-point exceptions:

o Detection of the presence of the undefined variable in memory

o Floating overflow

o Floating underflow

o Failure of floating-to-integer conversion

o Attempt to divide by 0

o Illegal floating op code

For the first four of these exceptions, bits in the FPS register

are available to individually enable and disable interrupts. An

interrupt on the occurrence of either of the last two exceptions

can be disabled only by setting a bit that disables interrupts on

all six of the exceptions, as a group.

Of the 13 FPS bits, 5 are set as part of the output of a

floating-point instruction: the error flag and condition codes.

Any of the mode and interrupt control bits may be set by the user;

the LDFPS instruction is available for this purpose. These

thirteen bits are stored in the FPS register as shown in Figure

7-4. The FPS register bits are described in Table 7-1.

Table 7-1 FPS Register Bits

Bit Name Description

15 Floating Error (FER) The FER bit is set by the DCJ11l
.

if:

7-4

14

13

12

11

Interrupt Disable

(FID)

Interrupt on

Undefined Variable

(FIUV)

1. division by zero occurs.

2. an illegal op code occurs.

3. any one of the remaining floating

point exceptions occurs and the

corresponding interrupt is enabled.

Note that the above action is

independent of whether the FID bit

is set or clear.

Note also that the DCJ1ll never

resets the FER bit. Once the FER bit

is set by the DCJ1l, it can be

cleared only by an LDFPS instruction

(note the RESET instruction does not

clear the FER bit). This means that

the FER bit is up-to-date only if

the most recent floating-point

instruction produced a floating-point

exception.

If the FID bit is set, all floating-

point interrupts are disabled.

NOTE

l. The FID bit is primarily a

maintenance feature. It should

normally be clear. 1In particular,

it must be clear is one wishes to

assure that storage of -0 by the

DCJ1l is always accompanied by

an interrupt.

2. Throughout the rest of the chapter

assume that the FID bit is clear

in all discussions involving

overflow, underflow, occurrence of

-0, and integer conversion errors.

Reserved for future DIGITAL use.

Reserved for future DIGITAL use.

An interrupt occurs if FIUV is set

and a -0 is obtained from memory as

an operand of ADD, SUB, MUL, DIV,

CMP, MOD, NEG, ABS, TST, or any LOAD

instruction. The interrupt occurs

before execution on all instructions.

When FIUV is reset, -0 can be loaded

and used in any floating-point
operation. Note that the interupt is

not activated by the presence of -0
in an AC operand of an arithmetic

instruction; in particular, trap on

7-5

10 Interrupt on

Underflow (FIU)

9 Interrupt on

Overflow (FIV)

8 Interrupt on

Integer Conversion

Error (FIC)

7 Floating Double-

Precision Mode (FD)

-0 never occurs in mode 0.

A result of -0 will not be stored

without the simultaneous occurrence

of an interrupt.

When the FIU bit is set, floating

underflow will cause an interrupt.

The fractional part of the result

of the operation causing the

interrupt will be correct. The

biased exponent will be too large

by 400, except for the special case

of 0, which is correct. An exception

is discussed later in the detailed

description of the LDEXP instruction.

When the FIV bit is set, floating

overflow will cause an interrupt.

The fractional part of the result

of the operation causing the overflow

will be correct. The biased exponent

will be too small by 400.

If the FIV bit is reset and overflow

occurs, there is no interrupt. The

DCJ1l1l returns exact 0.

Special cases of overflow are

discussed in the detailed

descriptions of the MOD and LDEXP

instructions.

When the FIC bit is set and a

conversion to integer instruction

fails, an interrupt will occur. If

the interrupt occurs, the destination

is set to 0, and all other registers

are left untouched.

If the FIC bit is reset, the result

of the operation will be the same as

detailed above, but no interrupt will
occur.

The conversion instruction fails if

it generates an integer with more

bits than can fit in the short or

long integer word specified by the
FL bit.

The FD bit determines the precision

that is used for floating-point
calculations. When set, double-

precision is assumed; when reset,
single-precision is used.

7-6

Floating Long-

Integer Mode (FL)

Floating Chop Mode

(FT)

Floatlng Negative

(FN).

Floating Zero

(FZ)

Floatlng Overflow

(FV)

Floatlng Carry

(FC)

‘When reset,

The FL bit is active in conversion

between integer and floating-point

formats. When set, the integer

format assumed is double-prec151on

2°s complement (i.e., 32 bits).

the integer format is

assumed to be single-precision 2°s
complement (i.e.; 16 bits).

When the FT bit is set, the result
of any arithmetic operation is

chopped (truncated). When reset,

the result is rounded.

Reserved for future DIGITAL use.

FN is set if the result of the

last floating-point operation

was negative; otherwise it is

reset.

FZ is set if the result of the

last floating-point operation was

0; otherwise it is reset.

FV is set if the last floating-
point operation resulted in an

exponent overflow; otherwise it

'1s reset.

FC is set if the last floating-

point operation resulted in a

carry of the most significant

bit. This can only occur in

floating double-to-integer

conversions.

7.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS

One interrupt assigned to
floating-point exceptions (location 244).

vector 1is ‘take care of
The six possible errors

are coded in the 4-bit floating exception code (FEC) register

follows.

2 Floating op-code error
4 Floating divide by zero

6 Floating-to-integer or double-to-integer conversion error

8 Floating overflow

10 Floating underflow

12 Floating undefined variable

The address of the instruction producing the exception is stored
in the floating exception address (FEA) register. :

The FEC and FEA registers are updated only when one of the

7-7

following occurs.

l. Division by zero.

2. Illegal op code.

3. Any of the other four exceptions with the corresponding

interrupt enabled.

This implies that only when the FER bit is set are the FEC and FEA

registers updated.

NOTE

l. If one of the last four exceptions occurs with the

corresponding interrupt disabled, the FEC and FEA are
not updated.

2. 1If an exception occurs, inhibition of interrupts by
the FID bit does not inhibit updating of the FEC and

FEA.

3. The FEC and FEA are not updated if no exception

occurs. This means that the STST (store status)

instruction will return current information only if
the most recent floating-point instruction produced an

exception.

4. Unlike the FPS, no instructions are provided for
storage into the FEC and FEA registers.

7.5 FLOATING-POINT INSTRUCTION ADDRESSING

Floating-point instructions use the same type of addressing as the
central processor instructions. A source or destination operand
is specified by designating one of eight addressing modes and one

-of eight <central processor general registers to be used in the
specified mode. The modes of addressing are the same as those of
the central processor, except in mode 0. In mode 0 the operand is
located in the designated floating-point processor accumulator
rather than in a central processor general register. The modes of
addressing are as follows.

Floating-point accumulator
0 =

l = Deferred

2 = Autoincrement

3 = Autoincrement-deferred
4 = Autodecrement

5 = Autodecrement-deferred
6 = Indexed

7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and
decrements of 4 for F format and 10 (octal) for D format.

In mode 0 users can make use of all six floating-point
accumulators (ACO = AC5) as their source or destination.
Specifying floating-point accumulators AC6 or AC7 will result in
an 1illegal op code trap. In all other modes, which involve
transfer of data to or from memory or the general registers, users
are restricted to the first four floating-point accumulators (ACO
= AC3). When reading or writing a floating-point number from or
to memory, the low memory word contains the most significant word
of the floating-point number, and the high memory word the 1least
significant word.

7.6 ACCURACY

General comments on the accuracy of the DCJ11l floating-point
instructions are presented here. The descriptions of the
individual instructions include the accuracy at which they
operate. An instruction or operation is regarded as "exact" if
the result is identical to an infinite precision calculation
involving the same operands. The a priori accuracy of the
operands is thus ignored. All arithmetic instructions treat an
operand whose biased exponent is 0 as an exact 0 (unless FIUV is
enabled and the operand is -0, in which case an interrupt occurs).
For all arithmetic operations, except DIV, a 0 operand implies
that the instruction is exact. The same statement holds for DIV
if the 0 operand is the dividend. But if it is the divisor,
division is undefined and an interrupt occurs.

For nonvanishing floating~point operands, the fractional part is
binary normalized. It contains 24 bits or 56 bits for floating
mode and double mode, respectively. For ADD, SUB, MUL, and DIV,
two guard bits are necessary and sufficient for the general case
to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded
to the specified word 1length. Thus, with two guard bits, a
chopped result has an error bound of one least significant bit
(LSB); a rounded result has an error bound of l/2 LSB. These
error bounds are realized by the DCJ11 of all instructions.

In the rest of this chapter, an arithmetic result is called exact
if no nonvanishing bits would be lost by chopping. The first bit
lost in chopping is referred to as the "rounding” bit. The value
of a rounded result is related to the chopped result as follows.

1. If the rounding bit is 1, the rounded result is the chopped
result incremented by an LS5B.

2. If the rounding bit is 0, the rounded and chopped results are
identical.

It follows that:

l. If the result is exact: rounded value = chopped value = exact

value,

2. If the result is not exact, its magnitudeis:

o always decreased by chopping.

o decreased by rounding if the rounding bit is 0.

0 increased by rounding if the rounding bit is 1.

Occurrenceof floating-point overflow and underflow 1is an error

condition: the result of the calculation cannot be correctly

stored because the exponent is too large to fit into the eight

bits reserved for it. However, the internal hardware has produced

the correct answer. For the case of underflow, replacement of the

correct answer by 0 is a reasonable resolution of the problem for

many applications. This is done by the DCJ1l1l if the underflow

interrupt 1is disabled. The error incurred by this action is an

absolute rather than a relative error; it is bounded (in absolute

value) by 2 ** -128, There is no such simple resolution for the

case of overflow. The action taken, if the overflow interrupt is

disabled, is described under FIV (bit 9) in Table 7-1.

The FIV and FIU bits (of the floating-point status word) provide

users with an opportunity to implement their own correction of an

overflow or underflow condition. 1If such a condition occurs and

the corresponding interrupt is enabled, the microcode stores the

fractional part and the low eight bits of the biased exponent.

The interrupt will take place and users can identify the cause by

examination of the FV (floating overflow) bit or the FEC (floating

exception) register. The reader can readily verify that (for the

standard arithmetic operations ADD, SUB, MUL, and DIV) the biased

exponent returned by the instruction bears the following relation

to the correct exponent.

1. On overflow, it is too small by 400 (octal)

2. On underflow, if the biased exponent is 0, it is correct. If

the biased exponent is not 0, it is too large by 400 (octal).

Thus, with the interrupt enable, enough information is available

to determine the correct answer. Users may, for example, rescale

their variables (via STEXP and LDEXP) to continue a calculation.

Note that the accuracy of the fractional part is unaffected by the

occurrence of underflow or overflow.

7-10

7.7 FLOATING-POINT INSTRUCTIONS

Each instruction that references a floating-point number can

operate on either single- or double-precision numbers, depending
on the state of the FD mode bit.
FL that determines whether a 32-bit integer (FL = 1) or a 16-bit
integer (FL = 0) is wused in conversion between

floating-point representations. FSRC and FDST operands
floating-point addressing modes (see Figure 7-5);

operands use CPU addressing modes.

DOUBLE-OPERAND ADDRESSING

15 12 1B 05 00

oC

4) e

FOC AC FSRC.FDST.SRC,OST
- A -l 4 b

SINGLE-OPERAND ADDRESSING

15 12 " 05 00

FSRC, FDST, SRC, DST

- - 1 A 4 L

OC = OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3)

FSRC AND FDST USE FPP ADDRESSING MODES

SRC AND DST USE CPU ADDRESSING MODES

Figure 7-5

MA.JS08

Floating-Point Addressing Modes

Terms Used in Instruction Definitions_

ocC = opcode = 17

FOC = floating opcode

AC = contents of accumulator, as specified by AC

field of instruction,

fsrc = address of floating-point source operand

fdst = address of floating-point destination operand

f = fraction

XL = largest fraction that can be represented:

l - 2 ** (=-24), FD = (; single-precision

l - 2 ** (-56), FD = 1; double-precision

XLL = smallest number that is not identically =zero

2 ** (-128)

XUL = largest number that can be represented =

2 ** (127) * XL

JL = largest integer that can be represented:

7-11

integer

Similarly, there is a mode bit

and

use

and DST

2 ** (15) - 1; FL

2 ** (31) - 1; FL

ABS (address)

EXP (address)

.LT.

LE.

0; short integer

l; long integer

absolute value of (address)

biased exponent of (address)

"less than"

"less than or equal to"

.GT. = "greater than"

.GE, "greater than or equal to"

LSB = least significant bit

Boolean Symbols

/\= AND

\/

.;VL

- = NOT

ABSF/ABSD

inclusive OR

exclusive OR

MAKE ABSOLUTE FLOATING/DOUBLE © 1706 FOST

12 1 06 05 00

Format:

Operation:

Condition Codes:

Description:-

Interrupts:

Accuracy:

MR.11467

ABSF FDST

If (FDST) < 0, (FDST) <=-- =-(FDST).

If EXP(FDST) = 0, (FDST) <-- exact 0.

For all other cases, (FDST) <-- (FDST).

FC <=--

FV <==

FZ <--

FN <=-=

if (FDST) = 0, else FZ <-- 0

O

O
O

Sét the contents of FDST to its absolute value.

If FIUV is enabled, trap on -0 occurs before

execution. Overflow and underflow cannot occur.

These instructions are exact.

7-12

ADDF/ADDD

ADD FLOATING/DOUBLE 172(ACIFSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR 11408

ADDF FSRC,AC

Let SUM = (AC) + (FSRC)

If underflow occurs and FIU is not enabled, AC

<=-- exact 0.

If overflow occurs and FIV is not enabled, AC

<-- exact 0.

For all others cases, AC <-- SUM,

FC <-- 0

FV <-=- 1 if overflow occurs, else FV <-= 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Add the contents of FSRC to the contents of AC.

The addition is carried out in single- or

double-precision and is rounded or chopped in

accordance with the values of the FD and FT bits

in the FPS register. The result is stored in AC

except for:

l. Overflow with interrupt disabled.

2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow

occurs, and if the corresponding interrupt is

enabled, the trap occurs with the faulty result

in AC. The fractional parts are correctly
stored. The exponent part is too. small by 400

for overflow. It is too large by 400 for

underflow, except for the special case of 0,

which is correct.

Errors due to overflow and underflow are

described above. If neither occurs, then: for

oppositely signed operands with exponent

difference of 0 or 1, the answer returned is

exact if a loss of significance of one or more

bits can occur. Note that these are the only

cases for which loss of significance of more

than one bit can occur. For all other cases the

7-13

result is inexact with error bounds of:

1. LSB in chopping mode with either single- or

double-precision.

2. 1/2 LSB in rounding mode with either single-
or double-precision.

Special Comment: The undefined variable -0 can occur only in

conjunction with overflow or underflow. It will
be stored in AC only if the corresponding

interrupt is enabled.

CFCC

COPY FLOATING CONDITION CODES 170000

15 12 1 00

T T T T T i T T T f 1 I I f

1 1 1 1 0 0 0 0 0 0 o o] 0 0 0 0

Format: CFCC

Operation: C <-- FC

V <== FV

Z <-- FZ

N <-- FN

Description: Copy the floating-point condition codes into
the CPU”s condition codes.

CLRF/CLRD

CLEAR FLOATING/DOUBLE
1704 FOST

15 12 " 06 05 001 I 1 1 i i 1 ¥ i I i [T

1 1 1 1 0 0] 0 1 0 0 FOST
o— d 1 L I 1 i | - {

Format: CLRF FDST

Operation: (FDST) <-- exact O

Condition Codes: FC <-- 0
FV <-= 0

FZ <=--1

FN <-- 0

Description: Set FDST to 0. Set FZ condition code and clear
other condition code bits.

Interrupts: No interrupts will occur. Overflow and underflow
cannot occur.

Accuracy: These instructions are exact.

7-14

CMPF /CMPD

COMPARE FLOATING/DOUBLE 173({AC+4)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MA-11471

CMPF FSRC,AC

(FSRC) - (AC)

FC <-- 0

FV <=-=- 0

FZ <-- 1 if (FSRC) = 0, else FZ <-- 0

FN <-- 1 if (FSRC) < 0, else FN <-- 0

Compare the contents of FSRC with the

accumulator. Set the appropriate floating-point

condition codes. FSRC and the accumulator are

left unchanged except as noted below.

If FIUV is enabled, trap on -0 occurs before
execution. '

These instructions are exact.

An operand that has a biased exponent of 0 is

treated as if it were an exact 0. In this case,
where both operands are 0, the DCJ1l will

store an exact 0 in AC.

DIVF/DIVD

DIVIDE FLOATING/DOUBLE 174(AC+4)FSRC

15 12 N 08 07 06 05 00
¥ i l 1 1 { 1 1 1 T A

1 1 1 1 1 0 0] 1 AC FSRC
| 1) I ! N 1 1 t

Format: DIVF FSRC,AC

Operation: If EXP(FSRC) = 0, (AC) <-- (AC) and the
instruction is aborted.

If EXP(AC) = 0, (AC) <-- exact 0.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occurs and FIU is not enabled, AC

<-- exact O.

If overflow occurs and FIV is not enabled, AC

<=-- exact 0. :

~

1 15

For all others cases, AC <-- QUOT.

Condition Codes: FC <-- 0

FV <-- 1 if overflow occurs, else FV <-= 0

FZ <-- 1 if (AC) = 0, else FZ <-=- 0

FN <-- 1 if (AC) < 0, else FN <-=- 0

Description: If either operand has a biased exponent of 0, it
is treated as an exact 0. For FSRC this would
imply division by 0; in this case the

instruction is aborted, the FEC register is set
to 4, and an interrupt occurs. Otherwise, the
quotient is developed to single- or

double-precision with two guard bits for correct
rounding. The quotient is rounded or chopped in

accordance with the values of the FD and FT bits
in the FPS register. The result is stored in
the AC except for:

l., Overflow with interrupt disabled.

2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is

stored in AC.

Interrupts: If FIUV is enabled, trap on -0 in FSRC occurs

Accuracy:

before execution. If (FSRC) = 0, interrupt traps
on an attempt to divide by 0. If overflow or

underflow occurs, and if the corresponding
interrupt is enabled, the trap occurs with the
faulty result in AC. The fractional parts are
correctly stored. The exponent part is too

small by 400 for overflow. It is too large by

400 for underflow, except for the special case

of 0, which is correct.

Errors due to overflow and underflow are

described above. 1If none of these occurs, the
error in the quotient will be bounded by 1 LSB

in chopping mode and by 1/2 LSB in rounding

mode.

Special Comment: The undeflned variable -0 can occur only in
conjunctlon with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

LDCDF/LDCFD

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING

AND FROM FLOATING-TO-DOUBLE 177(AC+4)FSRC

15 12 1 08 Q7 06 05 00
1 T v 1 T 1 1 L ¥ T 1 L

1 1 1 1 1 1 1 1 AC FSRC

MR-1147)

Format: ‘ LDCDF FSRC,AC

Operation: If EXP(FSRC) = 0, AC <-- exact O.

If FD =1, FT = 0, FIV = 0 and rounding causes

overflow, AC «<-- exact 0.

In all other cases, AC <-=- Cxy(FSRC), where Cxy

specifies conversion from floating mode x to

floating mode y.

x =D, y=V¥ if FD = 0 (single) LDCDF

y =F, y=D if FD = 1 (double) LDCFD

Condition Codes: FC <-- 0 |

FV <-- if conversion produces overflow, else1

FV <-- 0

F2 <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Description: If the current mode is floating mode (FD = 0),

the source is assumed to be a double-precision

number and is converted to single-precision. 1If

the floating chop bit (FT) is set, the number is

chopped; otherwise, the number is rounded.

If the current mode is double mode (FD = 1), the

source is assumed to be a single-precision

number and is loaded left-justified in AC. The

lower half of AC is cleared.

Interrupts: If FIUV is enabled, trap on -0 occurs before
execution. Overflow cannot occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding

with LDCDF causes overflow. AC <-- overflowed

result. This result must be +0 or -0. Underflow

cannot occur.

Accuracy: LDCFD is an exact instruction. Except for
overflow, described above, LDCDF incurs an error

bounded by1 LSB in chopping mode and by 1/2 LSB

in rounding mode.

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER

TO FLOATING OR DOUBLE-PRECISION 177{AC)SRC

15 12 N 08 07 06 05 00
] 1 | 1 i 1] Al I T 1§ i T

1 1 1 1 1 1 1 0 AC SRC

" 1 |- i 1 { [}

Format: LDCIF SRC,AC

Operation: AC <-- Cjx(SRC), where Cjx specifies conversion

from integer mode j to floating mode v.

7-17

Condition Codes:

Description:

Interrupts:

Accuracy:

LDEXP

LOAD EXPONENT

L if FL

D if FD

if FL

if FD
|
X n

n

o
o

~

~

%

L

o

FV <=~

FZ <~-

FN <==

I

F

FC <-- 0

0

1 if (AC) = 0, else FZ <-- 0

l if (Ac) < 0, else FN <-- 0

Conversion is performed on the contents of SRC
from a 2°s complement integer with precision j
to a floating-point number of precision x. Note
that j and x are determinedby the state of the
mode bits FL and FD.

If a 32-bit integer is specified(L mode) and
(SRC) has an addressing mode of 0 or immediate
addressing mode is specified, the 16 bits of the
source register are left-justified and the
remaining 16 bits loaded with 0s before
conversion.

In the case of LDCLF, the fractional part of the
floating-point representation is chopped or
rounded to 24 bits for FT = 1 or 0,
respectively.

None; SRC is not floating-point, so trap on -0
cannot occur.

LDCIF, LDCID, and LDCLD are exact instructions.
The error incurred by LDCLF is bounded by 1 LSB
in chopping mode and by 1/2 LSB in rounding
mode.

176(AC+4)SRC

12 11 08 07 06 05 00

Format:

Operation:

MR.11475

LDEXP SRC,AR

NOTE: 177 and 200, appearing below, are octal
numbers.

If -200< SRC < 200, EXP(AC) <-- SRC + 200 and
the rest of AC is unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) <--
[(SRC) + 200]<7:0>.

If (SRC) > 177 and FIV is disabled, AC <-- exact
0.

Condition Codes:-

Description:

Interrupts:

Accuracy:

LDF/LDD

If (SRC) < =177 and FIU is enabled, EXP(AC) <--
[(SRC) + 200)<7:0>.

If (SRC) < -177 and FIU is disabled, AC <--
exact 0.

-

FC <=-- 0

FV <-- 1 if (SRC) > 177, else FV <== 0

F2 <-- 1 if (AC) = 0, else FZ <-- 0
FN <~-- 1 if (AC) < 0, else FN <-- 0

Change AC so that its unbiased exponent = (SRC).

That is, convert (SRC) from 2°s complement to

excess 200 notation and insert it into the EXP

field of AC. This is a meaningful operation

only if ABS(SRC) LE 177. '

If SRC > 177, the result is treated as overflow.
If SRC < =177, the result is treated as

underflow.

No trap on -0 in AC occurs, even if FIUV is

enabled. If SRC > 177 and FIV is enabled, trap

on overflow will occur., If SRC < -177 and FIU is

enabled, trap on underflow will occur.

Errors due to overflow and underflow are

described above. If EXP(AC) = 0 and (SRC) =

=200, AC changes from a floating-point number

treated as 0 by all floating arithmetic

operations to a non-0 number. This happens

because the insertion of the "hidden" bit in the

microcode implementation of arithmetic

instructions is triggered by a nonvanishing

value of EXP.

For all other cases, LDEXP implements exactly

the transformation of a floating-point number (2

**x K) * £ into (2 ** (SRC)) * f where 1/2 .LE.
ABS(f) .LT. 1.

LOAD FLOATING/DOUBLE 172(AC+4)FSRC

Format:

Operation:

Condition Codes:

MR 11476

LDF FSRC,AC

AC <-- (FSRC)

FC <-=- 0

FV <-=- 0

Description:

Interrupts:

Accuracy:

Special Comment:

FZ <-- 1 if (AC) = 0, else FZ2 <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

Load single- or double-precision number into AC,

If FIUV is enabled, trap on -0 occurs before AC
is loaded. Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit use of -0 in a
subsequent floating-point instruction if FIUV is
not enabled and (FSRC) = -0.

LDFPS

LOAD FLOATING-POINT PROGRAM STATUS
1701 SRC

15 12 1t
06 0%

00T T 1§ T I I 1 I |]) 1 I1 i 1 1 0 0 0 0 0 1 SRC[E—
!] | S L | i 1) S— A

MR- V1427

Format: LDFPS SRC

Operation: FPS <-- (SRC)

Description:

Special Comment:

MODF /MODD

Load floating-point status register from SRC.

Users are cautioned not to use bits 13, 12, and
4 for their own purposes, since these bits are
not recoverable by.the STFPS instruction.

MULT'PLYAND SEPARATE INTEGER
AND FRACTION FLOATING DOUBLE

171(AC+4)FSRC
15 12 " 08 07 06 05 - 00

! 1 1
T

1 0 0 1 1 AC FSRC

Format:

Description

~and Operation:

MR 11478

MODF FSRC,AC

This instruction generates the product of its
two floating-point operands, separates the
product into integer and fractional parts, and
then stores one or both parts as floating-point
numbers.

Let PROD = (AC) * (FSRC) so that in

Floating-point: ABS (PROD) = (2 ** gK) * f, where

7-20

1/2 .LE.£ .LT. 1, and
EXP (PROD) = (200 + K)

Fixed-point binary: PROD = N + g, where

N = INT(PROD) = integer part of PROD, and

g = PROD - INT(PROD) = fractional part of

Both N and g have the same sign as PROD. They

are returnedas follows:

If AC is an even-numbered accumulator (0 or

2), N is stored in AC+l (1 or 3), and g is

stored in AC.

If AC is an odd-numbered accumulator, N is

not stored and g is stored in AC.

The two statements above can be combined as

follows:

N is returned to AC \/ 1 and g is returned

to AC,. :

Five special cases occur, as indicated in the

following formal description with L = 24 for

floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, AC \/
1 <-- N, chopped to L bits, AC <-- exact 0.

Note that EXP(N) is too small by 400 and
that -0 can be stored in AC \/ 1.

If FIV is not enabled, AC \/ 1 <-- exact 0,

AC <-- exact 0, and -0 will never be stored.

2. If 2 ** 1, ,LE, ABS(PROD) and no overflow,

AC \/ 1 <-- N, chopped to L bits, AC <-- exact

0. :

The éign and EXP of N are correct, but
low-order bit information is lost.

3. If 1 .LE. ABS(PROD) .LT. 2 ** L, AC \/ 1 <--

The integer part N is exact. The fractional

part g is normalized, and chopped or rounded

in accordance with FT. Rounding may cause a

return of + unity for the fractional part.

For I, = 24, the error in g is bounded by 1

LSB in chopping mode and by 1/2 LSB in

rounding mode. For L = 56, the error in g

increases from the above limits as ABS (N)

increases above 8 because only 59 bits of

7-21

Condition Codes:

Interrupts:

Accuracy:

Applications:

FC

FV

FZ

FN

If

PROD are generated.

If 2 ** p .LE. ABS(N) .LT. 2 ** (p + 1), with

p > 2, the low order p - 2 bits of g may be
in error.

If ABS(PROD) .LT. 1 and no underflow, AC \/

l <-- exact 0 and AC <-- g.

There is no error in the integer part. The

error in the fractional part is bounded by 1

LSB in chopping mode and 1/2 LSB in rounding

mode. Rounding may cause a return of + unity

for the fractional part.

If PROD underflows and FIU is enabled, AC

\/ 1 <-- exact 0 and AC <-- g.

Errors are as in case 4, except that EXP (AC)

will be too large by 4008 (if EXP = 0, it is

correct). Interrupt will occur and -0 can be

stored in AC.

If FIU is not enabled, AC \/ 1 <-- exact O

and AC <-- exact 0.

For this case the error in the fractional

part is less than 2 ** (-128).

<== 0

<-= 1 if PROD overflows, else FV <-- 0

<=-- 1 if (AC) = 0, else FZ <-- 0

<-=- 1 if (AC) < 0, else FN <-- 0

FIUV is enabled, trap on -0 in FSRC occurs

before execution. Overflow and underflow are

discussed above.

Discussed above.

1. Binary-to-decimal conversion of a proper
fraction. The following algorithm, using

MOD, will generate decimal digits D(1l), D(2)

. « . from left to right.

Initialize: I <-- 0;

X <-= number to be converted;

ABS (X) < 1;

While X # 0 do

Begin PROD <-- X * 10;

I <-- T + 1;

D(I) <-- INT(PROD);

X <-- PROD - INT (PROD);

End;

This algorithm is exact. It is case 3 in the
description because the number of

nonvanishing bits in the fractional part of

7-22

PROD never exceeds L, and hence neither

choppingnor rounding can introduce error.

2. To reduce the argument of a trigonometric
function,

ARG * 2/PI = N + g. The low two bits of N

identify the quadrant, and g is the argument

reduced to the first gquadrant. The accuracy

of N + g is limited to L bits because of the

factor 2/PI. The accuracy of the reduced

argument thus depends on the size of N.

To evaluate the exponedtial function e ** x,
obtain x * (log e base 2) = N + g,

then e ** x = (2 ** N) * (e ** (g * 1ln 2)).

The reduced argument is g * 1n2 < 1 and the

factor 2 ** N is an exact power of 2, which
may be scaled in at the end via STEXP, ADD N

to EXP and LDEXP. The accuracy of N + g is

limited to L bits because of the factor (log

e base 2). The accuracy of the reduced

argument thus depends on the size of N.

MULF/MULD

MULTIPLY FLOATING,’DOUBLE 171{AC)FSRC

15 12 1" 08 Q7 06 05 - 00
1 i I 1 i 1 1 1 T T T

1 1 1 1 0 0 1 0 AC FSRC

| Nl B D| ! 'l 1 1 ! i

Format: MULF FSRC,AC

Operation: Let PROD = (AC) * (FSRC)

Condition Codes:

Description:

If underflow occurs and FIU is not enabled, AC

<=~ exact 0.

Tf overflow occurs and FIV is not enabled, AC

<-- exact 0.

For all others cases, AC <-- PROD.

FC <-- 0 |

FV <=- 1 if overflow occurs, else FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

I1f the biased exponent of either operand is 0,

(AC) <-- exact 0. For all other cases PROD is

generated to 48 bits for floating mode and 59
bits for double mode. The product is rounded or

chopped for FT = 0 or 1, respectively, and is

stored in AC except for:

7-23

Interrupts:

Accuracy:

Special Comment:

l. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is
stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs
before execution. If overflow or underflow
occurs, and if the corresponding interrupt is
enabled, the trap occurs with the faulty result
in AC. The fractional parts are correctly
Stored. The exponent part i's too small by 400for overflow. It is too large by 400 for
underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are
described above. 1If neither occurs, the errorincurred is bounded by 1 LSB in chopping mode
and 1/2 LSB in rounding mode. |

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will
be stored in AC only if the corresponding
interrupt is enabled.

NEGF/NEGD

NEGATEFLOANNG/DOUBLE
1707 FOST

15 12 "
06 05

001 lf T T i 1 T] { 4 T1 1 1 0 0 0 1 1 1 FOSTy — { { | — 1 i | 1 1

Format: NEGF FDST

Operation: (FDST) <-- - (FDST) if (FDST) = 0, else
(FDST) <-- exact 0

Condition Codes: FC <-- 0

FV <-- 0

Description:

Interrupts:

Accuracy:

SETD

FZ <-- 1 if (FDST) = 0, else FZ2 <-- 0
FN <-- 1 if (FDST) < 0, else FN <-- 0

Negate the single- or double-precision number;
store result in same location (FDST) . '

If FIUV is enabled, trap on -0 occurs before
execution. Overflow and underflow cannot occur.

These instructions are exact.

SET FLOATING DOUBLE MODE 170011

15 12 11 00

T 1 1) T i 1 1 1 } i L] T Al

1 1) 1 0 0 0 0 0 0 0 0 1 0 0 1
L 1 L 1 1 L Fl { t 1 1 |- 1 1

MR 11461

Format: SETD

Operation: FD <--1

Description: Set the DCJ1ll in double precision mode.

SETF

SET FLOATING MODE 170001

15 12 B! : 00

1 I ¥ 1 T 1} 1 1 I 1 ! 1 T |}

1 1 1) 0 0 0 0 0 0 0 0 0 0 4] 1

we | 1 } { L 4 1 1 ju. 1 ¢

MRA. 11482

Format: SETF

Operation: FD <-- 0

Description: Set the DCJ1ll in single-precision mode.

SETI

SET INTEGER MODE | 177002
15 12 11 00

T T T 1 1 i 1 1 § i R | 1 1

1 1 1 i 0 0 0 0 0 0 0 0 0 0 1 0

| h - J . A 5 4 i | L L .

Format: SETI

Operation: FL <-- 0

Description: Set the DCJ1ll for short-integer data.

SETL

SET LONG-INTEGER MODE 177012

16 12 11 00
T T T T T ! | 1 | | 1 [i 1

1 1 1] 0 0) 0 0 0 0 0 1 0 1 0

L | L B 1 1 L 1 1 Il 1 . il L

MR 11484

Format: SETL

Operation: FL <=-= 1

Description:

STCFD/STCDF

Set the DCJ1l for long-integer data.

STORE AND CONVERT FROM FLOATING-TC DOUBLE
AND FROM DOUBLE-TO-FLOATING

‘ V6(ACIFDST
12 11 08 07 06 05

00

Format:

Operation:

~Condition Codes:

Description:

Interrupts:

Accuracy:

MA.11488

STCFD AC,FDST

If FD = 1, FT = 0, FIV = 0 and rounding causes
overflow, (FDST) <-=- exact 0.

In all other cases, (FDST) <-- Cxy(AC), where
Cxy specifies conversion from floating mode x to
floating mode v.

Xx=F, y=D if FD = 0 (single) STCFD
X =D, y=PF if FD = 1 (double) STCDF

FC <-= 0

FV <-- 1 if conversion produces overflow, else
FV <-=- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0
FN <-- 1 if (AC) < 0, else FN <-- 0

If the current mode is single-precision, the
accumulator is stored left-justified in FDST and
the lower half is cleared.

If the current mode is double-precision, the
contents of the accumulator are converted to
single-precision, chopped or rounded depending
on the state of FT, and stored in FDST.

Trap on -0 will not occur even if FIUV is
enabled because FSRC is an accumulator.
Underflow cannot occur. Overflow cannot occur
for STCFD.

A trap occurs if FIV is enabled, and if rounding
with STCDF causes overflow. (FDST) <=-
overflowed result. This must be +0 or -0.

STCFD is an exact instruction. Except for
overflow, described above, STCDF incurs an error
bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode. -

STCFI/STCFL/STCDI/STCDL

STORE AND CONVERT FROM FLOATING OR DOUBLE

TO INTEGER OR LONG INTEGER 175(AC+4)DST

12 11 08 07 06 0% 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MA. 11486

STCFI AC,DST

(DST) <-- Cxj(AC) if -JL - 1 < Cxj(AC) < JL + 1,
else (DST) <-- 0, where Cjx specifies conversion
from floating mode x to integer mode j.

1

1

L' if FL

D if FD

I if FL = 0, j

F if FD = 0, x

3
X

'JL is the largest integer.

0

1

2 ** 15 - 1 for FL

‘2 ** 32 - 1 for FL

C, FC <-- 0 if -JL - 1 < Cxj(AC) < JL + 1, else
C, FC <-- 1 ‘
V, FV <-- 0

2, FZ <-- 1 if (DST) = 0, else Z, FZ <-- ¢

N, FN <-- 1 if (DST)< 0, else N, FN <-- 0

Conversion is performed from a floating-point
representation of the data in the accumulator to
an integer representation.

If the conversion is to a 32-bit word (L mode),
and an addressing mode of 0 or immediate
addressing mode is specified, only the most
significant 16 bits are stored in the
destination register,.

If the operation is out of the integer range

selected by FL, FC is set to 1 and the contents

of the DST are set to 0.

Numbersto be converted are always chopped
(rather than rounded) before they are converted.
This is true even when the chop mode bit FT is
cleared in the FPS register.

These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory. If FIC is enabled, trap on
conversion failure will occur.

These instructions store the integer part of the
floating-point operand, which may not be the
integer most closely approximating the operand.
They are exact if the integer part is within the
range implied by FL.

7-27

STEXP

STORE EXPONENT 175(AC)DST

15 12 H 08 07 06 05 00
1 7 T T T T L I

1 1 1 1 1 0 1 0 AC OST

Format: STEXP AC,DST

Operation: (DST) <-- EXP(AC) - 200

Condition Codes: C, FC <-- 0

N, FN <-- 1 if (DST) < 0, else N, FN <-- 0

Description:

Interrupts:

Accuracy:

STF/STD

STORE FLOATING/DOUBLE

Convert AC”s exponent from excess 200 notation
to 2°s complement and store the result in DST.

This instruction will not trap on -0. Overflow
and underflow cannot occur.

This instruction is exact.

174(AC)FDST

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MRA.11488

STF AC,FDST

(FDST) <-- AC

FC

FV

F2Z

FN

o

&

C =

FC

FV

Pz
FN

Store single- or double-precision number from

These instructions do not interrupt if FIUV is
enabled, because the -0, if present, is in AC,
not in memory. Overflow and underflow cannot
occur.

-

These instructions are exact.

These instructions permit storage of a -0 in

memory from AC. There are two conditions in

which -0 can be stored in an AC of the DCJ11l.

One occurs when underflow or overflow is present

and the corresponding interrupt is enabled. A

second occurs when an LDF or LDD instruction is

executed and the FIUV bit is disabled.

STFPS

STORE FLOATING-POINT PROGRAM STATUS 1702 DST

15 12 " 06 05 00
i i R 1 I | ! 1 i T 1 T

1 i 1 1 ¢] 0 0 0 1 0 DST

.]) S— ul 1 i -)

Format: STFPS DST

Operation: (DST) <-- FPS

Description: Store the floating-point status register in DST.

Special Comment: Bits 13, 12, and 4 are loaded with 0. All other

bits are the corresponding bits in the FPS.

STST

STORE FPP'SSTATUS 1703 DST

15 12 n 06 05 00
i 1 i I 1 1§ ot ki 1 1 ¥ ¥ {

1 1 1 1 0 0 0 0 1 1 DST

in 4 L - A 1 1 - i I

Format: STST DST

Operation: (DST) <=-- FEC

(DST + 2) <-- FEA

Description: Store the FEC and FEA in DST and DST+2. Note the

following.

l. If the destination mode specifies a general

register or immediate addressing, only the
FEC is saved.

2. The information in these registers is current

only if the most recently executed

floating-point instruction caused a

floating~-point exception.

SUBF/SUBD

SUBTRACT FLOATING/DOUBLE . 173(ACIFSRC

12 I 08 07 06 05 00

1 o 1 1 0 AC FSRC

- -

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR 11491

SUBF FSRC,AC

Let DIFF = (AC) - (FSRC)

If underflow occurs and FIU is not enabled, AC

<-= exact 0.

If overflow occurs and FIV is not enabled, AC
<=-- exact 0.

For all others cases, AC <-- DIFF.

FC <-- 0

FV <=-- 1 if overflow occurs, else FV <-- 0

FZ <-- 1 if (AC) = 0, else FZ <-- 0

FN <-- 1 if (AC) < 0, else FN <-- 0

Subtract the contents of FSRC from the contents

of AC. The subtraction is carried out in
single- or double-precision and is rounded or

chopped in accordance with the values of the FD

and FT bits in the FPS register. The result is

stored in AC except for:

1. Overflow with interrupt disabled.
2. Underflow with interrupt disabled.

For these exceptional cases, an exact 0 is

stored in AC.

If FIUV is enabled, trap on -0 in FSRC occurs

before execution. If overflowor underflow

occurs, and if the corresponding interrupt is

enabled, the trap occurs with the faulty result

in AC. The fractional parts are correctly

stored. The exponent part is too small by 400

for overflow. It is too large by 400 for

underflow, except for the special case of 0,
which is correct.

Errors due to overflow and underflow are

described above. 1If neither occurs: for

like-signed operands with exponent difference of

0 or 1, the answer returned is exact if a loss

of significance of one or more bits can occur.

Note that these are the only cases for which

loss of significance of more than one bit can

occur. For all other cases the result is

inexact with error bounds of:

1. LSB in chopping mode with either single- or

double~-precision.

7-30

Special Comment:

2. 1/2 LSB in rounding mode with either single-
or double-precision.

The undefined variable -0 can occur only in
conjunction with overflow or underflow. It will

be stored in AC only if the corresponding

interrupt is enabled. -

TSTF/TSTD

TEST FLOATING/DOUBLE 1705 FDST

15 12 11 06 05 00
i 1 1 T 1 1 T T L i ¥]

1 1 1 1 0 0 0 1 4] 1 FOST

ok B 1 L Il | !

Format: TSTF FDST

Operation: (FDST)

Condition Codes: FC <-=- 0

FV <-- 0

Description:

Interrupts:

Accuracy:

FZ <-- 1 if (FDST) 0, else FZ2 <-- 0

FN <-- 1 if (FDST) < 0, else FN <-- 0

Set the floating-point condition codes according

to the contents of FDST.

If FIUV is set, ftrap on -0 occurs before

execution. Overflow and underflow cannot occur.

These instructions are exact.

7-31

CHAPTER 8

INTERFACING

8.1 INTRODUCTION

This chapter covers topics related to the interfacing of external

logic to the DCJ1ll.

8.2 GENERAL-PURPOSE (GP) CODES

An important means of communicating with external logic is through

the use of GP Reads and Writes (see Chapter 3 - Bus Cycles). GP

Reads and Writes are associated with codes that specify the

function performed during the GP Read or Write cycle. External

logic interprets these codes to implement system functions. Table

8-1 summarizes the GP codes.

Table 8-1 GP Codes and Functions

GP Code GP Read

(octal) or Write Function

000 Read Reads the power-up mode, HALT

option, FPA option, POK, and

boot address.

001 Read Reads FPA data (if FPA exists)

002 Read Reads the power-up mode, HALT

option, FPA option, POK, and

boot address, and (if an FPA

exists) clears the FPA“s FPS.

003 Read Acknowledges FPE and reads the FEC

(floating exception code) register

003 Write Writes FPA 16-bit data (if FPA exists)

014 Write Asserts bus reset signal

034 Write Signals exit from console ODT

040 Write Reserved for future use

100 Write Acknowledges EVENT

140 Write Acknowledges power fail

214 Write Negates bus reset signal

220 Write Microdiagnostic test 1 passed

224 Write Microdiagnostic test 2 passed

230 Write Microdiagnostic test 3 passed

234 Write Signals entry into console ODT

Specific external logic designs may need to interpret only
subset of the GP codes. For example, a minimal system with no FPA

and no need for POK or a bus reset signal would only have

identify GP associated with the reading of power-up

configuration data during the DCJ11”s initializtion sequence.

shown in the flowchart in Paragraph 8.3.2, this is GP code 002.

CLK

{OFFSET) _/—_/_
INIT o \w—-—'mww-—-l/

tIND — L
SCTL ~ e tSCTLLH ’Il

8.3 POWER-UP AND INITIALIZATION

The DCJ1ll performs a specific sequence of events at power-up or
when it 1is initialized. These initialization microroutines are
described in this paragraph. Also, during power-up the DCJ11
reads the contents of a configuration register to determine its
initial mode of operation. This configuration register 1is also
described. A typical power-up circuit is also provided.

8.3.1 1Initialization Timing - Initialization timing is shown in

Figure 8-1. When external logic asserts INIT for a minimum of 25

clock periods, the DCJ1ll is forced into a power-up initialization
sequence, As shown in Figure 8-1, the DCJ1l asserts SCTL shortly
after the assertion of INIT. SCTL 1is deasserted approximately
five clock periods after INIT is deasserted.

1 2 3 4 5 TO

4MCLKXD

. S S

Figure 8~1 1Initialization

8.3.2 1Initialization Microroutine - The microroutine that is
~executed when the DCJ1l is powered up or initialized is shown in
Figure 8-2. Note that GP codes that indicate some event (such as
the passing of a microdiagnostic test) can be used by external
logic to light LEDs for a visual indication of the event.

MR 9380

BUS CYCLE DCJ11-AA NOTES

OPERATION

EXTERNAL LOGIC

ASSERTS INTT FOR
A MINIMUM OF

25 CLK PERIODS

GENERATE SYSTEM IS NOT
GP WRITE GP CODE OF IN CONSOLE ODT

034 MODE

GENERATE GP SET SYSTEM RESET
GP WRITE CODE OF FLIP-FLOP

014
~

4
DELAY QOPERATION

NIO FOR 69

MICROCYCLES

GENERATE
GP WRITE GP CODE OF CLEAR SYSTEM RESET

FLIP-FLOP
214

NIO CLEAR MMRO

NIO CLEAR MMR3)

DELAY OPERATION

NIO FOR 600

MICROCYCLES

CLEAR

BUS WRITE PIRQ REGISTER

(LOC. 17777772)

!

NIO CLEAR FPS

MA. 11446

Figure 8-2 Initialization Sequence

BUSCYCLE

GP READ

NIO

BUS WRITE

BUS WRITE

NIO

BUS READ

N1O

Figure 8-2

DCJ- 11 AA

OPERATION

GENERATE

GP CODE OF

!
CLEAR CPU

ERROR REGISTER

(LOC 17777766)

POK

ASSERTED

WRITE 400 TO

THE CCR

(LOC 17777746)

i
WRITE 2ZEROES TO
THE MSER

(LOC 17777744)

i
WRITE 177766

TO THE CPU

ERROR REGISTER

(LOC 17777766}

:
READ THE CPU

ERROR REGISTER

{LOC 17777766)

:
WRITE ZEROQES

TO THE CPU

ERROR REGISTER

{(LOC 17777766}

NOTES

READ POWER-UP CONFIGURATION

DATA THAT 1S DRIVEN ON DAL

B8Y EXTERNAL LOGIC.

SET BIT 8 OF THE CCR, WHICH 1S
TYPICALLY IMPLEMENTED BY
THE USER AS THE FLUSH CACHE
BIT (IN CACHE SYSTEMS). CLEAR
THE OTHER CCR 8ITS.

CLEAR THE MEMORY SYSTEM
ERROR REGISTER, WHICH MAY
OR MAY NOT BE IMPLEMENTED
8Y THE USER.

MR 11447

Initialization Sequence (Continued)

BUS CYCLE

GP WRITE

BUS READ

BUS READ

GP WRITE

BUS READ

Figure 8-2

DCJ-11-AA

OPERATION

DATA

READ FROM

CPU ERRORREG =

177766

GENERATE

GP CODE OF 220

-

READ MEMORY

LOCATION

00000000

NXM YES

ABORT

NO

READ MEMORY

LOCATION

17777700

NXM NO
ABORT

YES

GENERATE GP CODE

OF 224

READ MEMORY

LOCATION

17777560 ‘

NOTES

TEST 1 PASSED. CPU ERROR REGISTER

WRITTEN AND READ CORRECTLY.

DETERMINE IF EXTERNAL LOGIC THINKS

LOCATION O IS IN NONEXISTENT MEMORY

{IT SHOULD NOT]). IF |T DOES, EXTERNAL

LOGIC TYPICALLY GENERATES AN ABORT.

DETERMINE IF EXTERNAL LOGIC THINKS

LOCATION 17777700 1S IN NONEXISTENT

MEMORY (IT SHOULD). IF IT DOES,

EXTERNAL LOGIC TYPICALLY GENERATES

AN ABORT.

TEST 2 PASSED. NXM ABORT NOT

GENERATED BY REFERENCE TO

LOCATION 0 BUT WAS GENERATED

8Y REFERENCE TO LOCATION

17777700.

READ RECEIVER CONTROL

AND STATUS REGISTER (RCSR)

MA. 11440

Initialization Sequence (Continued)

BUS CYCLE DCJ-11-AA NOTES

" OPERATION [

DETERMINE IF EXTERNAL LOGIC

THINKS LOCATION 17777560 (THE

RCSR) 1S IN NONEXISTENT MEMORY

{{T SHOULD NOT). IF IT DOES,
EXTERNAL LOGIC TYPICALLY

GENERATES AN ABORT.

GP WRITE GENERATE GP CODE TEST 3 PASSED. NXM ABORT NOT

' OF 230 GENERATED BY REFERENCE TO RCSR.

YESPOWER-UP

OPTION

0 !
PC« M{24] TRAP THROUGH

PS — M[26] LOCATION 24

BEGIN EXECUTING CODE

POWER-UP YES
OPTION

1

>

ENTER CONSOLE QDT

PS «0

POWER-UP YES
OPTION 1

2

PC + 173000
NO PS « 340

PC<15:9> «— USER BEGIN EXECUTING CODE
BOOT

PC<8:0> -0

PS - 340

BEGIN EXECUTING CODE

MR 11466

Figure 8-2 Initialization Sequence (Continued)

8.3.3 Power-Up Configuration - The power-up configuration isspecified by setting bits in an external register which is read(via the DAL) during the DCJ1ll’s initialization sequence. Itspecifies various user-defined initial conditions. The registeris shown in Figure 8-3.

Bit(s)

<15:9>

<7:4>

<2:1>

800T ADDRESS

FPA HERE

UNUSED -

HALT OPTION

POWER UP MODE

POK
MR.11450

Figure 8-3 Power-Up Cohfiguraton Register

Name

Boot Addresé

FPA Here

Unused

Halt Option

Power-Up Mode

- POK

Description

Contains the most significant

~seven bits (bits <15:9>) of a

user-defined boot address used
in power-up mode 3. The lower

bits of the boot address (bits

<8:0>) are zeroes.

Indicates the presence of an

optional floating-point

accelerator (FPA) when set.

When cleared, the FPA is

not present.

These bits are not interpreted

by the DCJ1l.

Indicates how a HALT instruction

will execute in kernel mode. 1If

set, the DCJ1ll traps through

location 4 and sets bit 7 of the

CPU error register when HALT is

executed. If cleared, the

DCJ11l enters console ODT when

HALT is executed.

Indicates one of four power-

up mode options,

Bits

2 1 Mode

0O O Trap through location 24

0 1 Enter console ODT
1 0 Power-up to 17773000

1 1 Power-up to the

user-defined address

specified by bits <15:9>

Indicates whether the power supply

8-7

is operating within its normal range.
Set when power is at an acceptable
value. '

8.3.4 Power-Up Circuit - A circuit such as that shown in PFigqure
8-4 can be used to power-up the DCJ11l.

INIT is provided to the DCJ1ll by power-up logic and the AIO code
is latched by the assertion of ALE. The decoder indicates whether
a GP Read of 000 or 002 is being executed.

In this simple application, only DAL<8,3:0> are affected by the
power-up configuration register. The register is configured to
indicate that no FPA is present, power-up mode 0 (trap through
location 24) 1is selected, and power is always OK. The DAL is
driven with configuration data when BUFCTL is asserted and a GP
Read with a code of 000 or 002 occurs.

POWERUP

REGISTER

74152444

DAL

0 t——{>—— <8>

+V —o- —o—t+—r—3>

GND TDT<>
P<1>

DCJ11 ‘ —{D>—F—<>

' 4
p - AID GP READ

POWER | pup A10<3:0> P 4 AND (20R0
uP NIT FF) GP CODE ::::>>____

8 DECODER 1LOGIC TONT F Cc . o BUFCTL

MR.)11449

Figure 8~-4 Power-Up Circuit

8.4 OTHER MICROROUTINES

Figures 8-5 and 8-6 illustrate two other microroutines whoseoperation can be monitored by external logic: the power-downmicroroutine and the console ODT response to entering the "go"
command,

8-8

DCJ11.AA

BUS CYCLE OPERATION

POWER DOWN

GENERATE
GP WRITE GP CODEOF

140

2 BUS READS TRAP THROUGH
2 BUS WRITES LOCATION 24

EXECUTEHALT\ NO NEXT POWER
INSTRUCTION >'—° DOWN SERVICE
FETCHED ROUTINE

INSTRUCTION

GENERATE
GP READ GP CODEOF

000

SETBIT?
NO OF CPU ERROR

fisgggL :>___. REGISTER AND
, " TRAP THROUGH

LOC4

POK YES START

T :>___. INITIALIZATION
ASSERTED SEQUENCE

SETBIT7
HALT YES OF CPU ERROR
OPTION ~ >——4l REGISTER AND
BITSET TRAP THROUGH

LoC4

ENTER

CONSOLE

00T

Figure 8-5 Power-Down Sequence

8-9

MA-1145)

BUS CYCLE

GP WRITE

GP WRITE

NIO

GP WRITE

NIO

NIO

NI1Q

8US WRITE

N1Q

DCJ11-AA

OPERATION

TYPE IN G WHILE

IN CONSOLE ODT

MODE

!
GENERATE

GP CODE OF

034

]
GENERATE GP

COOE oF

014

!
DELAY OPERATION

FOR 69

MICROCYCLES

i
GENERATE

GP CODE OF

214
—

:
L CL&ARlMMRO j

CLEAR MMR3

'
DELAY OPERATION

FOR 600
MICROCYCLES

:
CLEAR

PIRQ REGISTER

{(LOC17777772)

!

CLEAR

FPS

NOTES

SYSTEM IS NOT

IN CONSOLE ODT

MODE

SET SYSTEM RESET

FLIP-FLOP

CLEAR SYSTEM RESET
FLIP-FLOP

MR. 11452

Figure 8-6 Console Start Sequence

BUS CYCLE DCJ-11-AA NOTES

QPERATION |

/
GENERATE READ POWER-UP CONFIGURATION

GP CODE OF DATA THAT IS DRIVEN ON DAL

002 BY EXTERNAL LOGIC

:
CLEAR CPU

ERROR REGISTER

(LOC 17777766)

POK

ASSERTED

NC)_J

YES .
3

SET BIT 8 OF THE CCR, WHICH

BUS WRITE Tt copl TO IS TYPICALLY IMPLEMENTED BY
(LOC17777746) THE USER AS THE FLUSH CACHE

BIT (IN CACHE SYSTEMS). CLEAR

l . THE OTHER CCR BITS.

WRITE ZEROES TO CLEAR THE MEMORY SYSTEM

BUS WRITE THE MSER ERROR REGISTER, WHICH MAY OR.
(LOC 17777744) MAY NOT BE IMPLEMENTED BY

1 THE USER.

WRITE ZEROES TO

BUS WRITE LOC 17777744

NIO CLEAR PS]

BEGIN EXECUTING CODE
MK 11453

Figure 8-6 Console Start Sequence (Continued)

Absolute Maximum Rating

Storage Temperature Range:

Active Temperature Range:
Supply Voltage:

Input or Output Voltage Applied:

Electrical Characteristics

Specified Temperature Range
Specified Voltage Range

Test Conditions

Symbol Parameter Min.

v High level 70% V
IH MOS input cc

\Y Low level

IL MOS input

\Y High level 2.2
IHT TTL input

\Y Low level
ILT rTL input

I Input leakage -10.0

I current except
TEST inputs

(note 1)

I Input current 0.1

ILL TEST inputs
(note 1)

IOH Output current -2.0
at high level

I oL Output current 2.0

at low level

APPENDIX A

DC CHARACTERISTICS

-65 C to +150 C

-55 C to +125 C

+7 .0V

Vss =-0.3V

Vce +0.3V

0 C to +70 C :
+4.75V to +5.25V

Temperature = +70 C

Vss = (V

Vcec = +4.75V (except as noted)

Max. Units Test Condition

v

30% Vcc \Y

\Y

0.8 \Y

10.0 uA 0V5VI < Vee

5.0 mA VI = 0V

mA Vo = Vcc - 0.4V

mA Vo = 0.4V

Symbol Parameter

I:OHT

OSH

OSL

02

I ccse

l. Tested at Vcc = 5,25V,

Output current

at high TTL

level

High level

sustainer

current

(note 1)

Low level

sustainer

current

(note 1)

Output leakage

current

(notes 1,2)

Static power

supply current

(notes 1,3)

Input _

capacitance

(note 4)

Input/output

capacitance

(note 4)

Output

capacitance

(note 4)

DCJ11l capacitance

plus external

capacitance

Min.

-2.0

0.2

-10.0

NOTES

Max.

0.6

10.0

30

15

15

50

Units

mA

pF

pF

PF

PF

2. Only applies in the high impedance condition.

3. With TEST1 and TEST2 asserted, all outputs

circuit, and all other inputs equal to Vcc.

4, Sampled and guaranteed, but not tested.

apply to TEST1 or TEST2.

Does not

open

Test Condition

Vo = 2.4V

Vo = Voo = 1.0V

Vg = 1.0V

ov < Vo $Vee

SIGNAL SUMMARY

TYPE

TTL INPUT

TTL OUTPUT

MOS INPUT

MOS OUTPUT

TTL I/0

TTL I/0

Power

NAME

IRQ<3:0>, HALT, PWRF,
EVENT, Ffii"r'%fifinv,
MIs3, CONT,
INIT, FPE

DAL<21:16>, AIO<3:0>,

ALE, BUFCTL, SCTL,
STRE, BS<1l:0>, MAP,
PRDC

TEST1, TEST2

CLK, CLK2

ABORT*

DAL<15:00>

Vec

APPLICABLE DC TEST

Viar + Vour 0 T1

Io * Tour + oz

Vg r Vo v T 1L

Ion' Iorr 1oz

IOSH

OHT ' I 0z

IVivrr Toor Tour Toz°

Vigr Viprr Tonr !

T ccsB

* ABORT must be driven with an open collector driver because the

DCJ1l has a pull-up device that supplies IOSH°

L—‘en

90% VYou
ety HI Z

10% VoL

fo—len

VoM 90%

Hi 2
HI 2

VoL 10%

Vig V

H TIHT REFERENCE
CLK (MOS) OUTPUT
DVITTL)

VoL
MIRTR,

--‘u" (QUTPUT) ot y—{ (QUTPUT)

MOS, TTL

VoL == Vi Vier

Vor R v ViKT

-7{ Vie Vet VoL

e--Q 1) be= (INPUT) =+ ' pe—(INPUT)

VonVowT — (INPUT) el U e (INPUT)

VgV AtH YINT VOH - VCC -.04

Vit Vier - VoL tg® DELAY TIME

th = HOLD TIME

YoH Your 1= SETUP TIME
Vi Vimt L ten” ENABLE TIME

tgis * DISABLE TIME

VoL
IS

MR 8430

Figure A-1 Voltage wWaveforms

- APPENDIX B

AC CHARACTERISTICS

Test Conditions:

Temperature = +70 C

Vss = 0V :

Vecc = +4.75V (except as noted)

CMAX = 50 pF

Timing Requirements

Symbol

tINITW

t SCTLLH

ps

DH

DVDS

DVDH

DVW

DVF

t DVH

t DVS

Parameter Min Max Units

INIT pulse width 10 clock
periods

Initialization 225 ns

interval

DAL<15:00> setup, 35 ns

with respect to

T3

DAL<15:00> hold, 20 ns

with respect to

T3

'DAL<15:00> setup, 35 ns
with respect to

DV

DAL<«15:00> hold, 35 ns

with respect to

DV

DV Pulse width 35 ns

DV Fall time 15 ns

DV deassertion 0 ns

with respect to

DV deassertion -0 | ns
with respect to

T4.

MISS setup 30 ns

MISS hold 10 ns

IRQ<3:0>, HALT, 20 ns

PWRF, FPE,

VENT setup

(see note)

Symbol Parameter Min Max Units

t .. IRQ<3:0>, HALT, 20 ns

SVCH pRRF, FPE,
EVENT hold

(see note)

t PARITY setup 20 ns
PARS (see note)

t PARITY hold 20 . ns

PARH (see note)

t.ABS ABORT drive 30 ns

t‘ABD ABORT delay 0 ns

t ABW ABORT width 40 + tCLKH ns

t CONT setup 30 ns
CNTS (see note)

t CONT hold 20 ' ns

CNTH (see note)

t DMR setup 30 ns
DMRS (see note)

t DMR hold 20 ns

DMRH (see note)

Note:

Setup and hold requirements are only to guarantee recognition at
next sample point,. '

Timing Responses

Figure
Symbol Parameter Min Max Units References

‘tCYCLE CLK cycle time 67 ns B-1, B-4

'tCLKH CLK high width 28 ns B-1, B-4

<tCLKL CLK low width 28 ns B-1, B-4§

tR CLK rise time 7 ns B-1, B-4

t!, CLK fall time 7 ns B=-1, B-4

'tPCYC CLK2 cycle time 67 ns B-1, B-3

t CLK2 high width 28 ns B-1, B=3PCLKH B2

Figure

Symbol Parameter Min Max Units References

t pCLRL CLK2 low width 28 ns B-1, B-3

t pr CLK2 rise time 7 ns B-1, B-3

t oF CLK2 fall time 7 ns B-1, B-3

t pCcLKD CLK2 valid delay tbs ns B-1, B-3

t varD MAP delay 45 ns B-1, B-3

t sp Strobe active 0 ' ns B~3
delay

t s1p Strobe inactive 0 ns B-3
delay

t p1s DAL output disable 35 ns . B-2

t pALD DAL valid delay 65 ns B-3

t bALH DAL valid h‘old 0 ns B-3

t op PRDC valid delay 50 ns B-3

tp1D PRDC invalid 50 ns B-3
delay

t AIOD AIO<3:0> delay 75 ns B-3

'n— tPCLKL

MR- 11492

Figure B-1 Clock Timing

OUTPUT

UNDER o—

vce

1K

"
A

 A

TEST

p

:F"(SOPF
b3 / , N

Figure B-2

Three State

=

‘[-0 TEST POINT

MA 9422

Disable Test Circuit

CLK

DAL

ov

ouUTPUT

UNDER o-

OUTPUT

UNDER

TES
T

RIS SELECTED TO PROVIDE
loL OF 2MA AT 0.4 VOLTS

ALL DIODES ARE EITHER
ING18 OR INJ064 :

TTL

-~

TEST

CLoaD T

Figure B-4

CLOAD * Chax =411 PIN CAPACITANCE

NA paZe

Figure B-3

Cutput Test Circuit

TEST

POINT

LS 1]

MOS Output Test Circuit

ts
— N

-)

T2/T6 T3/T? TO T T2 T3 TO

tAI10D

t - - PID

-~

i - ¢
THMS— Ja HMH

'SO pa—n -o |e-t5p

MAP /I

'DMRS o ~ " la— OMRH

— |tgp sp

BS<1:0> | BYP/FORCE

| —)

\ESD
—» je-t5p

'0S =& = t5D

Jl

""tDH

DS- --
(s

FAST

.
READDALD 'DALH - A DATA

ADDRESS

MA.11878

Figure B-5 Non-Stretched Bus Read Timing

B-4

T2:T6 1377 70 T T2 T3 T4 T4 Ta T4 T4 T4 5 6 7 T0

<—1A10D —* LAIQD (1) e—— o FL
A10 | __ Loob

. e—eliD : - Lo
PRDC NN Tt | { |

--lpn-» i — “— Mg ‘) |

3 <X - —
5D He—e! tSD—-> h— . o

IDMRS + ~ TM “* 'DMARH o i S

DR XXX S S
— a— 1D~ = 15D :]:

8S DR d BYP/FORCE o i
1SD - le— lg1p—+ -— _ | ’

AL ___" N / 3

gD ' — w-l5p ’ .
STREB - ; __ P

oo TSD— a— tSIDe

ScTL { N L |

—> - 1sD —» =—'ABD tABS— |-— tABD— te—
ABORT pd N " j ‘ y

' ‘— tCNTs—‘Aaw >

CONT ISIp—> -— _—\.L___?‘—’l TCNTH
tgp— e [—e 15D — tsiD

BUFCTL pig ___/__\ L
- - ; : -

—t SLOW

e READ

toaLD > le— O —— 1015 9”“ !
DAL ' 0T X

5v 'DVH >

MA 11582

Figure B-6 Stretched Bus Read Timing

T2/T6 TI/T7 7O T T2 T3 T4 5 T6 7 T0

cux , N\ /"_/'_F_/"\J—\._
we— TAIOD — | = TAIOD (1) -

AIO i : > —

-~ ;r-tpo-l_ — =-1p|D i - L
ADC — Tt :

IDALD—» le—| —oie ‘DALH _—= o= DALD . —wlla—1DALH

DAL ':_':.'{TFADDRES >< BUS WRITE DATA_

Tt T tgp—e e — 1D '
e T T N | Ry |
L ‘—a re— g | | ‘SlD"'""I
STRB / N] ! :

. o | 1 f

BUFCTL 7 . T |
7 | 1SD— -— —+ & 'sio

' | t Py - | ‘
SD —» r.— — — 'SD -

BS > 8510 _ ; BYP/FORCE

tgp—e pe— —e e lSD : -

MAP > WaAP Y DMG ____

'SD— ~a—ISD ' TABD— 4— _ —» fe—1aBS —ei le—'ABD

ABORT i N o |7

1 T ABW e TCNTS —
conT TNonT

Figure B-7 Bus Write Timing

B-5

NMit 15Ty

T2/76 T3/7T7 T0 T T2 T3 T4 T4 T4 T4 T4 T4 T5 T6 T7 T0

cLx () ’—_f__/___/"__/___/__/—\r_/—__fl \ [\.
—'AIOD — 'a100 (1)

AIO
[

o prs _’L- fe— tpID |

PROC - | T =

1SD le—s ‘—o{ |la—1t5p

MAP AP DMG .4
tOMRSo " le— 'DMRH

DMR

» >
—* D) — fe— tsi0

ALE P]

T 7 s #'-.\". 'sp
STRB

“
' o 15D —= |Je=t5p

SCTL

— }4—150

ABORT /] ICNTS o : \

— ICNTH

CONT 15D — !-p—

tsp — 1= —tso — }o—‘suo

IDALD je DAL H-»{je— GP DATA

DAL —| 6pcooE
X------ t \} ~ pa—

ov GP DATA oo

' 4 tovFr——— lpyg ———

MR 11580

Figure B-8 General-Purpose Read Timing

T2:T6 TIT? T0 T T2 T3 T4 T4 T4 T4 T4 TS T6 T7 T0

cLx VAN U A U A W A U o W'AIOD =+ > 00D (1)

'PS | e [*lop* i
- TM - - e W e w ew

- -PRDC L\t tpr g % i
.

IDALD = "?'D —f-tDALH =% e tDALD -'1*- 'DALH
DAL ———<__GPCOoDE > D¢ GP WRITE DATA .

'—» a-tgp | 1510~ e
STRB 5 i)—

; - - i

F . -BUFCTL Lot o o R ’}._

| 'siD
SCTL

NGO l/
- =

1 i
-

8s D . >
tSD —o -— — be—t5p

MAP ! MAP ‘, OMG N
'SD— -

ABORT --

CONT

Figure B-9 General-Purpose Write Timing

B-6

1

MA 1188

T2/T6 T3/77 T0 T T2 T3 T4 T4 T4 T4 T4 T4 T5 T6 T7 T0

. LR R XY LR L EE)csssmcossnasaphhemges

Figure B-11 Interrupt Timing

B-7

~—

RN O S [I Ve S U VA U W W N W W o WY
'AIOD tA1OD (1) __

AIO } ‘

RS, .PRDC tpH-u_—‘E > e tivn

4-‘PD:’ 'p1D e tHMS _
MISS

'sD ISD— o
MAP MAP

DMG

IDMRS # TMo [* IDMRH
-DMR

BS -

'sD 'SID-* e -
AL ’ !

- — l !

151D~ — 50

STRB \r

' tgp — t510—
SCTL

- t— 'sp —» - 'ABD _taps—» |e— 'ABD —

ABORT
AN [/

ICNTS— 'ABW

tg D — - ==& 5D e 51D
BUFCTL ‘]— N\

INTERRUPT

VECTOR

t IS (SLOW)
tDALD—» foa— 915.:;: 'DALH / L

e =] <] 7> DGTTE e s iDVDS—:""— -— ! DH TINTERRUPT INTERRUPT VECTOR ‘ - DV .
oV LEVEL (FAST) P e

DVW, ! —

re——1pvs

M YIGH

Figure B-10 Interrupt Acknowledge Timing

TO T1 T2T6é TIT? TO T1 T2 T3 T4 T4 T4 TS5 T6 T0

CLK [~ A
'sves 'svCH sves e lsves ey e SVCs 4 svcs 1 'svcs 'SVCH

» -IRQ< 30> > 0 | 'sveH 'SVCH
HALT, PWRF, ! T T T 1
FPE, EVENT

'PARH 'PARS|'PARH 'PARS|'PARH
'PARS

PARITY z -- i

MR 17494

APPENDIX C

DCJ11 HARDWARE AND SOFTWARE DIFFERENCES

C.l1 HARDWARE DIFFERENCES BETWEEN THE DCJ11 AND THE PDP-11/44

The DCJ1l may replace the PDP-11/44 in 'certain applications;
however, it does not contain the following PDP-11/44 hardware
features:

o Cache Data and Maintenance Registers (17777750} 17777754)

O Memory System Error Register (17777744)

O Switch Register (17777570).

The DCJ11l does contain additional functionality not present in the
11/44:

©0 Dual general register set

o SPL, MTPS, MFPS, TSTSET, WRTLCK instructions.

The following list summarizes the hardware differences between the
11/44 and the DCJ1l1:

Address Function Differences

17777776 PS | Added register set select

bit<ll>.

17777772 PIRQ No difference.

17777766 CPU Error Unibus monitoring bits

not implemented.

17777754 Cache Data Not implemented.

17777752 Hit/Miss , No difference.

17777750

17777746

17777744

17777676

to

17777660

17777656

to

17777640

17777636

to

17777620

17777616

to

17777600

17777576

17777574

17777572

17777570

17772516

17772376

to

17772360

17772356

to

17772340

17772336

to

17772320

17772316

to

17772300

17772276

to

17772260

Maintenance

Cache Control

Memory Error

User Data PAR

User Instruction

PAR

User Data PDR

User Instruction’

PDR

MMR2

MMR1

MMRO

Switch Register

MMR3

Kernel Data PAR

Kernel Instruction

PAR

Kernel Data PDR

Kernel Instruction

PDR

Supervisor Data PAR

Not implemented.

Hardware specific changes

(see Paragraph 5.2.1).

Not implemented.

No difference.

No difference,

No difference.

No difference.

No difference.

No difference.

Eliminated maintenance

mode.

Not implemented.

No difference.

No difference.

No difference.

No difference.

No difference.

No difference.

17772256

to Supervisor No difference.
17772240 Instruction PAR ‘

17772236 ,
to Supervisor Data PDR No difference.

17772220

17772216

to Supervisor No difference.
17772200 Instruction PDR

C.2 HARDWARE DIFFERENCES BETWEEN THE DCJ11 AND THE PDP1l1l/70

The DCJ1l may replace the PDP-11/70 in certain applications;
however, it does not contain the following PDP-11/70 hardware
features:

O0 Stack Limit Register (17777774)

O Micro Break Register (17777770)

O System ID Register (17777764)

O System Size Registers§ (17777760, 17777762)

O Maintenance Register (17777750)

O Memory System Error Register (17777744)

©0 Physical Error Address Registers (17777740, 17777742)

O Switch Register (17777570).

The DCJ1ll does contain additional functionality not present in the
11/70:

© MTPS, MFPS, MFPT, CSM, TSTSET, WRTLCK instructions

O Bypass cache bit in PDRs.

The following list summarizes the hardware differences between the
11/70 and the DCJ11l:

Address

17777776

17777774

17777772

17777770

17777766

17777764

17777762

17777760

17777752

17777750

17777746

17777744

17777742

17777740

17777676

to

17777660

17777656

to

17777640

17777636

to

17777620

17777616

to

17777600

17777576

17777574

Function

PS

Stack Limit

PIRQ

Micro Break

CPU Error

System ID

System Size

System Size

Hit/Miss

Maintenance

Cache Control

Memory Error

High Error Address

Low Error Address

User Data PAR

User Instruction PAR

User Data PDR

User Instruction PDR

MMR2

MMR1

Differences

Added suspended instruction

bit <8>.

Not implemented.

No difference.

Not implemented.

No difference.

Not implemented.

Not implémented.

Not implemented.

No difference.

Not implemented.

Hardware specific changes

(see section 5.2.1).

Not implemented.

Not implemented.

Not implemented.

No difference.

No difference.

Added bypass cache,

eliminated access flags

and access modes other

than 0, 2, and 6.

Added bypass cache,

eliminated access flags

and access modes other

than 0, 2, and 6.

No difference.

No difference.

17777572 MMRO Eliminated traps,
maintenance mode, and
instruction complete.

Not implemented.
17777570 Switch Register

17772516 MMR 3 Added CSM enable bit <3>,

17772376
|

to Kernel Data PAR No difference.
17772360

17772356 _ .
to Kernel Instruction PAR No difference.

17772340 ‘

17772336

to Kernel Data PDR Added bypass cache,
17772320 eliminated access flag

-
and access modes other

than 0, 2, and 6.

17772316

to Kernel Instruction PDR Added bypass cache,
17772300 eliminated access flag

and access modes other
than 0, 2, and 6.

17772276 , ‘ '
to Supervisor Data PAR No difference.

17772260
_
/

17772256
,

to Supervisor Instruction No difference.
17772240 PAR

17772236

to Supervisor Data PDR Added bypass cache,
17772220 eliminated access flag

and access modes other

than 0, 2, and 6.

17772216

to Supervisor Instruction Added bypass cache,
17772200 PDR eliminated access flag

and access modes other
than 0, 2, and 6.

C.3 SOFTWARE DIFFERENCES

Table C~1 summarizes the programming differences (at the assembly
language level) between the DCJ1l and other processors in the
PDP-11 family.

'

C-5

9
-
0

PROCESSORS

ITEM 23/24 44 04 34 LSH11 05/10 15/20 35/40 45 70 60 VAX

1. OPR %R, (R) +; OPR %R, — (R) using

the same register as both source and

destination: contents of R are incre-

mented (decremented) by 2 before being

used as the source operand.

OPR %R, (R) +; OPR %R, — (R) using the

same register as both register and des-

tination: initial contents of R are used as

the source operand.

2. OPR %R, @ (R) +; OPR %R, @ — (R)

using the same register as both source

and destination: contents of R are incre-

mented (decremented) by 2 before being

used as the source operand.

OPR %R, @ (R) +; OPR %R, @ — (R)

using the same register as both source

and destination: initial contents of R are

used as the source operand.

3.0PRPC, X (R); OPRPC, @ X (R); OPR

PC, @ A; OPR PC, A: location A will con-

tain the PC of OPR +4.

OPR PC, X (R); OPR PC, @ X (R), OPR

PC, A; OPR PC, @ A: location A will con-

tain the PC of OPR +2.

4. JMP (R) + or JSR reg, (R) +: contents

of R are incremented by 2, then used as

the new PC address.

JMP (R) + or JSR reg, (R) +: initial con-

tents of R are used as the new PC.

Table C-1 DCJ11 Programming Diffenences

L
D

ITEM 23/24 44 04 34 LSI1 05/10 15/20 35/40 45 70 60 J-1 T-11 VAX

5. JMP %R or JSR reg, %R traps to 10

(iflegal instruction).

JMP %R or JSR reg, %R traps to 4 (illegal

instruction).

NA

NA

6. SWAB does not change V.

SWAB clears V.

7. Register addresses (177700-177717)

are valid program addresses when used

by CPU.

Register addresses (177700-177717)

time out when used as a program

address by the CPU. Can be addressed

under console operation.

Register addresses (177700-177717)

_time out when used as an address by

CPU or console.

NA

8. Basic instructions noted in PDP-11

processor handbook.

-S0OB, MARK, RTT, SXT instructions*

ASH, ASHC, DIV, MUL, XOR

Floating Point instructions in bas

machine. '

MFPT Instruction.

The external option KE11-A provides

MUL, DIV, SHIFT operation in the same

data format.

> > > >

x

* RTT instruction is available in 11/04 but is different than other implementations.

! Register addresses (177700-177717) are handled as regular memory addresses in the 1/0 page.

2 All but MARK.

ITEM 23/24 44 04 34 LSI11 05/10 15/20 35/40 45 70 60. VAX

The KE11-E (Expansion Instruction Set)

provides the instructions MUL, DIV, ASH,

and ASHC. These new instructions are

11/45 compatible.

The KE11-F (Floating Instruction Set)

adds unique stack ordered oriented point

instructions: FADD, FSUB, FMUL, FDIV.

The KEV-11 adds EIS/FIS instructions

MFP, MTP instructions

SPL |nstruction

CSM Instruction

x

X

>

X

9. Power fail during RESET instruction is

not recognized until after the instruction

is finished (70 milliseconds). RESET

instruction consists of 70 millisecond

pause with INIT occurring during first

20 milliseconds.

Power fail immediately ends the RESET

instruction and traps if an INIT is in

progress. A minimum INIT of 1 micro-

second occurs if instruction aborted.

PDP11-04/34/44 are similar with no

minimum INIT time.

Power fail acts the same as 11/45

(22 milliseconds with about 300 nano-

seconds minimum). Power fail during

RESET fetch is fatal with no power

down sequence.

6
-
-
0

ITEM 23/24 44 04 34 LSI1 05/10 15/20 35/40 45 70 60 J-11 -1 VAX

RESET instruction consists of 10 micro-

seconds of INIT followed by a 90 micro-

second pause. Reset instruction con-

sists of a minimum 8.4 microseconds

followed by a minimum 100 nanosecond

pause. Power fail not recognized until

the instruction completes.

10. No RTT instruction

if RTT sets the “T" bit, the “T" bit trap

occurs after the instruction following RTT.

111t RTI sets “T” bit, “T” bit trap is

acknowledged after instruction following

RTI.

If RTI sets “T” bit, “T” bit trap is

acknowledged immediately following RTI.

12.if an interrupt occurs during an

instruction that has the “T” bit set, the

“T" bit trap is acknowledged before the

interrupt.

If an interrupt occurs during an instruc-

tion and the “T” bit is set, the interrupt is

acknowledged before “T” bit trap.

NA!

NA

13. “T” bit trap will sequence out of WAIT

instruction.

“T" bit trap will not sequence out of WAIT

instruction. Waits until an interrupt.

NA

Yinterrupts not visible to VAX compatibility mode.

0
1
-
0

ITEM 23/24 44 04 34 LSI1 05/10 15/20 35/40 45 70 60 VAX

14. Explicit reference (direct access) to

PS can load “T" bit. Console can also

load “T" bit.

Only implicit references (RTI, RTT, traps

and interrupts) can load “T” bit. Console

cannot load “T" bit.

15. Odd address/non-existent references

using the SP cause a HALT. This is a

case of double bus error with the second

error occurring in the trap servicing the

first error. Odd address trap not imple-

mented in LSI-11, 11/23 or 11/24.

Odd address/non-existent references

using the stack pointer cause a fatal trap.

On bus error in trap service, new stack

created at 0/2.

16. The first instruction in an interrupt

routine will not be executed if another

interrupt occurs at a higher priority level

than assumed by the first interrupt.

The first interrupt in an interrupt service

IS guaranteed to be executed.

17. Single general purpose register set

implemented.

Dual general purpose register set

implemented.

1 Odd address/non-existent references using SP do not trap.
2 0dd address aborts to native mode.

I
T
~
-
0

ITEM 23/24 44 04 34 LSI1 05/10 15/20 35/40 45 70 60 T-11 VAX

18. PSW address, 177776, not imple-

mented; must use instructions MTPS

(move to PS) and MFPS (move from PS).

PSW address implemented, MTPS and

MFPS not implemented.

PSW address and MTPS and MFPS

implemented.

19. Only one intérrupt level (BR4) exists.
Four interrupt levels exist. NA

20. Stack overflow not implemented.

Some sort of stack overflow implemented.

21. Odd address trap not implemented.

Odd address trap implemented.

22. FMUL and FDIV instructions implicity

use R6 (one push and pop); hence R6

must be set up correctly

FMUL and FDIV instructions do not

implicitly use R6.
NA

23. Due to their execution time, EIS

instructions can abort because of a

device interrupt.

EIS instructions do not abort because of

a device interrupt.
NA

24. Due to their execution time, FIS

instructions can abort because of a

device interrupt.

NA

3 Can reference PSW only from native mode.

¢
1
-
C

ITEM 23/24 44 04 34 LSI1 05/10 15/20 35/40 45 70 60 VAX

25. Due to their execution time, FP11

instructions can abort because of a

device interrupt*

FP11 instructions do not abort because

of a device interrupt.

NA

26. EIS instructions do a DATIP and

DATO bus sequence when fetching

source operand.

EIS instructions do a DATI bus sequence

when fetching source operand.

NA

27. MOV instruction does just a DATO

bus sequence for the last memory cycle.

MOV instruction does a DATIP and DATO

bus sequence for the last memory cycle.

28. If PC contains non-existent memory

and a bus error occurs, PC will have

been incremented.

If PC contains non-existent memory

address and a bus error occurs, PC will

be unchanged.

29. If register contains non-existent

memory address in mode 2 and a bus

Same as above but register is unchanged.

error occurs, register will be incremented.

X X X

* Integral floating point assumed on 11/23 and 11/24; FP11E assumed for 11/60.

' Implementation dependent.

2 MOV instruction does a DAT! and a DATO bus sequence for last memory cycle.

3 Does not support bus errors.

€
T
-
O

ITEM 23/24] 44 04 34 | LSH1[05/10|15/20|35/40| 45 70 60 | J-11 | T-11 | VAX

30. If register contains an odd value in X , X X X X
mode 2 and a bus error occurs, register

will be incremented.

If register contains an odd value in mode X X | X X X
2 and a bus error occurs, register will be

unchanged.

31. Condition codes restored to original X
values after FIS interrupt abort (EIS

doesn’t abort on 35/40). '

Condition codes that are restored after X : NA
EIS/FIS interrupt abort are indeterminate.

32. Opcodes 075040 through 075377 X X X X X X X X X X X X -1
unconditionally trap to 10 as reserved

opcodes.

If KEV-11 option is present, opcodes X
75040 through 07533 perform a memory

read using the register specified by the

low order 3 bits as a pointer. If the

register contents are a non-existent

address, a trap to 4 occurs. If the

register contents are an existent address,

a trap to 10 occurs.

33. Opcodes 210 thru 217 trap to 10 as X X X X X X X X X X X X -1
reserved instructions.

Opcodes 210 thru 217 are used as a - X
maintenance instruction. \

3Does not support bus errors.
4 Unpredictable.
! Traps to native mode.

p
1
-
0

ITEM 23/24 44 04 34 LSIN 05/10 15/20 35/40 45 70 60 J-1 T-11 VAX

34. Opcodes 75040 thru 75777 trap to

10 as reserved instructions.

If KEV-11 options is present, opcodes

75040 thru 75577 can be used as

escapes to user microcode. If no user

microcode exists, a trap to 10 occurs.

35. Opcodes 170000 thru 177777 trap to

10 as reserved instructions.

Opcodes 170000 thru 177777 are

implemented as floating point instructions.

Opcodes 170000 thru 177777 can be

used as escapes to user microcode. |f

no user microcode exists, a trap to 10

oCCurs. -

Opcode 076600 used for maintenance.

36. CLR and SXT do just a DATO

sequence for the last bus cycle.

CLR and SXT do DATIP-DATO sequence

for the last bus cycle.

37. MEM MGT maintenance mode MMRO

bit 8 is implemented.

MEM MGT maintenance mode MMRO bit

8 is not implemented.

NA

38. PS<15:12>, non-kernel mode, non-

kernel stack pointer and MTPx and

MFPx instructions exist even when MEM

MGT is not configured.

1 Traps to native mode.

' Unpredictable.
2 CLR and SXT do DATI-DATO.

S
T
-
O

ITEM 23/24 44 04 34 LS1 05/10 15/20 35/40 45 70 60 J-11 -1 VAX

PS<15:12>, non-kernel mode, non-

kernel stack pointer, and MTPx and

MFPx instructions exist only when MEM

MGT is configured.

NA

39. Current mode PS bits <15:14> set

to 01 or 10 will cause a MEM MGT trap

upon any memory reference.

Current mode PS bits <15:14> set to 10
will be treated as kernel mode (00) and

not cause a MEM MGT trap.

Current mode PS bits <15:14> set to 10
will cause a MEM MGT trap upon any

memory reference.

NA

40. MTPS in user mode will cause MEM

MGT trap if PS address 177776 not

mapped. If mapped, PS <7:5> and

<3:0> affected.

MTPS in non-user mode will not cause

MEM MGT trap and will only affect

PS <3:0> regardless of whether PS

address 177776 is mapped.

> NA

41. MFPS in user mode will cause MEM

MGT if PS address 177776 not mapped.

If mapped, PS <7:0> are accessed.

MTPS in user mode will not trap regard-

less of whether PS address 177776 is

mapped.

NA

1 Unpredictable.

2 CLR and SXT do DATI-DATO.

9
T
1
-
0

ITEM 23/24 44 04 34 LSI11 05/10 15/20 35/40 45 70 60 J-11 T-11 VAX

42. Programs cannot execute out of

internal processor registers.

Programs can execute out of internal

processor registers.

43. A HALT instruction in user or super-

visor mod_e will trap thru location 4.

A HALT instruction in user or supervisor

mode will trap thru location 10.

44. PDR bit <0> implemented.

PDR bit <0> not implemented.

45. PDR bit <7> (any access)

implemented.

PDR bit <7> (any access) not

implemented.

46. Full PAR <15:0> implemented.

Only PAR <11:0> implemented.

47. MMR0O <12> —trap-memory

management—implemented.

MMRO0< 12> not implemented.

48 MMR3< 2:0>—D space enable—

implemented.

MMR3< 2:0> not implemented.

49. MMR3<5:4> —IOMAP, 22-bit

mapping enabled—implemented.

MMR3<5:4> not implemented. X

1 HALT pushes PC & PSW to stack, loads PS with 340 and PC with < powerup address> + 40.

2Traps to native mode.

L
T
-
D

ITEM 23/24] 44 04 34 | LSI11]05/10]15/20|35/40 45 70 60 J-1 T-11 VAX
50. MMR3<3>—-CSM enable—
implemented.

MMR3 <3> not implemented.

interrupt vectors.

51. MMR2 tracks instruction fetches and

MMR2 tracks only instruction fetches.
NA NA

52. MFPx %6, MTPx when PS<1

10 gives unpredictable results.

10 uses user stack pointer.

MTPx %6, MTPx %6 when PS<13:12> =

3:12>=

NA NA

' HALT pushes PC & PSW to stack, loa
2 Traps to native mode.

ds PS with 340 and PC with < powerup address> + 40.

APPENDIX D

INSTRUCTION TIMING

The execution time for an instruction depends on: (1) the type of
instruction executed, (2) the the mode of addressing used, and (3)
the type of memory being referenced. In general, the total
execution time 1is the sum of the base instruction fetch/execute
time plus the operand(s) address calculation/fetch time.

The tables in this appendix can be used to calculate the length of
an instruction in terms of microcycles (MC). 1In the first group
of tables, the first column specifies the number of microcycles
required to fetch/execute the base instruction. The R/W column
specifies how many of these microcycles are read microcycles and
how many are write microcycles (any remaining microcycles are
NIO). 1If the instruction involves the calculation/fetchof one or
more operands, a reference to a separate table (a source or
destination table) 1is made in the last column(s). The
source/destination tables reveal how many microcycles the
source/destination calculation/fetch takes and also specifies how
many of these are read or write microcycles (again, any remaining
microcycles are NIO). |

The numbers in the tables are based on the assumption that a
memory read must last a minimum of four CLK periods, a memory
write must last a minimum of eight CLK periods, and an NIO lasts
four CLK periods (no DMA). Any wait states caused by slower
memory or a DMA transfer must be added to the total instruction
time. If wait states are required, the first wait state of a
non-stretched read or NIO cycle will last four clock periods, and
can continue in increments of two clock periods. Further wait
states for stretched cycles occur in increments of two clock
periods.

Floating-point instruction execution times are given as a range.
The actual execution time will vary depending on the type of data
being operated on.

Here are two examples of how to use the tables:

Example 1l:

How long does a MOV RO,@#2044 instruction last?

Step 1: From the tables, the execution time for the MOV base
. instruction is found to be 1 microcycle (MC), or four

CLK periods. This consists of one read and no write
microcycles. Depending upon the type of memory in the
system, the microcycle may be stretched. If so, the
microcycle lasts at least eight CLK periods and may be
stretched thereafter in increments of two CLK periods.

Step 2: To find the operand calculation/fetch time for the
source operand (R0), refer to Table S1. From Table
S1l, it is seen that a mode 0 register 0 calculate/fetch
takes 0 microcycles. Note that the operand is already
availableto the DCJ1l (in the register file).

Step 3: To find the operand calculation/fetch time for the
destination operand (the contents of memory location
2044), refer to Table D3. From Table D3, it is seen
that a mode3 register 7 calculate/fetch takes 3
microcycles, one of which is a read microcycle and
one of which is a write microcycle. Note that the
remaining microcycle is an NIO microcycle. Once
again, the type of memory in the system must be taken
into account. 1If the read cycle is stretched, the
stretched cycle lasts at least eight CLK periods and
may be stretched thereafter in increments of two CLK
periods. The write microcycle lasts at least eight
CLK periods and may be stretched in increments of two
CLK periods.

Step 4: For a determination of the minimum time required, total
up the microcycles. In this example, It is 1 + 0 + 3,
or 4 microcycles (which is 16 CLK periods if no microcycle
stretching occurs).

Example 2:

The source and destination tables for floating point instructions
show a negative number in the MC column for certain mode 2
register 7 operations. This example shows a timing calculation
for one of these.

How long does an CLRD #2000 instruction last?

Step 1l: The base instruction time for the CLRD instruction is
14 microcycles.

Step 2:

Step 3:

From Table F2, the calculation/fetch tim? for the
operand (a mode 2 register7 reference) is shown as

(-1). This means that one microcycle should be subtracted

from the base instruction time. However, add one microcycle
for the memory write operation. There are no memory read
cycles to account for.

Total up the microcycles: 14 - 1 + 1 = 14 microcycles
minimum (assumes no cycle stretching).

SINGLE OPERAND

Mnemonic Instruction

General

CLR(B) Clear

CcaM(B) Complement (1's)

INC (B) Increment

DEC(B) Decrement

NEG (B) Negate (2's complement)

TST(B) Test

Rotate and Shift

ROR (B) Rotate right

ROL (B) Rotate left

ASR(B) Arithmetic shift right

SWAB Swap bytes

Multiple-Precision

ADC (B) Add carry

SBC(B) Subtract carry

SXT Sign extend

Multiprocessing

TSTSET Test and set

(low bit interlocked)

WRTLCK Wwrite interlocked

DOUBLE OPERAND

Mnemonic Instruction

General

MOV (B) Move

Q¥P (B) Compare

ADD Add

SUB Subtract

Logical

BIT (B) Bit test (AND)

BIC(B) Bit clear

BIS (B) Bit set (OR)

Execution

MC R/W

1 1/0

1 1/0

1 1/0
1 1/0

1 1/0

1 1/0

1 1/0

1 1/0

1 1/0

1 1/0

1 1/0

1 1/0

1 1/0

5 171

4 1/1

Execution

MC R/W

1 1/0

1 1/0

1 1/0

l 1/0

1 1/0

1 1/0

1 1/0

TIMING

Source

Table

TIMING

Source

Table

Sl

Sl

Sl

Sl

Sl

Sl

Dest

Table

D3

D4

D4

D4

‘D4

D4

D4

D4

D4

D4

D4

D4

D3

D4

D4

Dest

Table

D3

D2

D4

D4

D2

D4

D4

Register

MUL

DIV

ASH

ASHC

XOR

BRANCH

Mnemonic

Branches

BR

BNE

BEQ

BPL

BMI

BVC

BVS

BCC

BCS

Multiply

Divide

‘Shift automatically
Arith shift combined

Exclusive (OR)

Instruction

Branch (unconditional)

Br if not equal (to 0)

Br if equal (to 0)

Br if plus

Br if minus

Br if overflow is clear

Br if overflow is set

Br if carry is clear

Br if carry is set

Signed Conditional Branches

BGE

BLT

BGT

BLE

Mnemonic

Br if greater or equal (to 0)

" Br if less than (0)

Br if greater than (0)
Br if less or equal (to 0)

Instruction

Unsigned Conditional Branches

BHI

BLOS

BHIS

BLO

SOB

Branch if higher

Branch if lower or same

Branch if higher or same

Branch if lower

Subtract 1 and branch

(if # 0)

JUMP and SUBROUTINE

Mnemonic

JMP

JSR

RTS

MARK

Instruction

Jump

Junp to subroutine

Return from subroutine

Stack cleanup

22 1/0

34 1/0

4 1/0

1 1,0

5 1/0

Branch

Not Taken

MC R/W

S
I
F
S
E

S
H

 S
E
S
E
S
E
S
E
S
YN

(
S
I
S

B

N
8]

Br

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0

1/0
1/0

anch

Not Taken

MC R/W

N
N

O
N

W

{
1

=

u
n

1/0

1/0

1/0

1/0

1/0

Dl (Notes 5,11)

— D1 (Notes 6,7,12)
_— Dl
—-_— D]l (Note 13)

— D4

TIMING

Branch

Taken

MC RMW

4 2/0

4 2/0

4 2/0

4 2/0

4 2/0

4 2/0

4 2/0

- 4 2/0

4 2/0

4 2/0

4 2/0

4 2/0
4 2/C

Branch

Taken

MC R/MW

4 2/0

4 2/0

4 2/0

4 2/0

5 2/0

DST Table

DS)
D6 (Note 4)

== (Note 1l4)

TRAP and INTERRUPT TIMING

Execution

Mnemonic Instruction MC RMW

EMT Emulator trap 20 4/2

TRAP Trap 20 4/2
BPT Breakpoint trap 20 4/2

10T Input/output trap 20 4/2
RTI Return from interrupt 9 4/0
RTT Return from interrupt 9 4/0

CONDITION CODE OPERATORS TIMING

) - Execution
Mnemonic Instruction MC R/

CLC Clear C 3 1/0

CLV Clear V 3 1/0

CLZ Clear Z 3 1/0

CLN Clear N 3 1/0

ccc Clear all CC bits 3 1/0

SEC Set C 3 1/0

SEV Set V 3 1/0

SEZ Set Z 3 1,0

SEN Set N 3 1/0

SCC Set all CC bits 3 1/0

MISCELLANEOUS TIMING

Execution

Mnemonic Instruction MC R/W

HALT Halt -

WAIT wWait for interrupt -

RESET Reset external bus -

NOP (No operation) 3 1/0

SPL Set priority level to N 7 1/0

MFPI Move from previous instr space 5 1/1

MTPI Move to previous instr space 3 2/0

MFPD Move from previous data space 5 1/1

MTPD Move to previous data space 3 2/0

MTPS Move byte to PSW PS <€ (svc) 8 1/0

MFPS Move byte from PSW (dst) € PS <7:0> 1 1/0

MFPT Move from processor (R0<7:0><proc code 2 1/0

cSM Call to supervisor mode 28 3/3

Dest

Table

Dl

D3

Dl

D3

D3

Dl

FLOATING POINT

Mnemonic Instruction

ABSD

ABSF

ADDD

ADDF

CFCC

CLRD

CLRF

QMPD

QMPF

DIVD

DIVF

LDCDF

LDCFD

LDCID

LOCIF

LDCLD

LOCLF

LDD

LDEXP

LDF

LDFPS

MODD

MODF

MULD

MULF

NEGD

NEGE

SETD

SETF

SETI

SETL

STCDF

STCDI

STCDL

STCFD

STCrI

STCFL

STD

STECP

STF

STFPD

STST

SUBD

SUBF

TSTD

TSTF

Make Absolute

Make Absolute

Add

Add ‘

Copy Floating Condition Codes

Clear

Clear

Compare

Compare

Divide

Divide

Ld&C fromD to F

[d & C from F to D

Ld & C Integer to D

Id & C Integer to F -

Ld & C Long Integer to D

Ld & C Long Integer to F

Load

Load Exponent

Load

Load FPP Program Status

Multiply and Separate

Integer and Fraction

Multiply

Multiply

Negate

~ Negate

Set Floating Double Mode

Set Floating Mode

Set Integer Mode

Set Long Integer Mode

St & C from D to F

St & C from D to Integer

St & C from D to Long Integer

St & C from F to D

St & C from F to Integer

St & C from F to Long Integer

Store

Store Exponent

Store

Store FPP Program Status

Store FPP Status

Subtract

Subtract

Test

Test

TIMING

Execution (MC)

Min Typ Max

23

19

41 48

31 35

5

14

12

24

18

160

59

24

20

31

26

31

26

16

17

12

6

202 217

82 94

165

56

22

18

6

6

6

6

17

26

26

19

23

23

12

16

8

9
9

47 55

37 41

1l

9

24

20

119

102

5

14

12

25

19

167

63

26

21

42

36

52

44

17

18

13

6

268

115

173

61

23

19

6

6

6

6

20

38

54

20

35

Sl

12

16

8

9

7

122

104

12

10

Non

Mode O
_Table

Fl

Fl

Fl

Fl

Fl

'SOURCE AND DESTINATION TABLES:

Table Sl Source Address Time: All Double Operand

Read

Source Source Microcode Memory

Mode Register Cycles Cycles

0 0-7 0 0

1 0-7 2 1

2 0-6 2 1

2 7 1 1

3 0-6 4 2

3 7 3 2

4 0-6 3 1

4 7 6 2 (Note 1)

5 0-6 5 2

5 7 8 3 (Note 1)

6 0-7 4 2

7 0-7 6 3

Table D1 Destination Address Time: Read Only Single Operand

, Read

Destination Destination Microcode Memory

Mode Register Cycles Cycles

0 0-7 0 0

1 0-7 2 1

2 0-6 2 1

2 7 1 1

3 0-6 4 2

3 7 3 2

4 0-6 3 1

4 7 7 2 (Note 2)
5 0-6 5 2

5 7 9 3 (Note 3)

6 0-7 4 2

7 0-7 6 3

Table D2 Destination Address Time: Read Only Double Operand

Read

Destination Destination Microcode Memory

Mode Register Cycles Cycles

0 0=-7 0 0

1 0-7 3 1

2 0-6 3 1

2 7 2 1

3 0-6 5 2

3 7 4 2

4 0-6 4 1

4 7 8 2 (Note 2)

5 0-6 6 2

5 7 10 3 (Note 3)

6 0-7 5 2

7 0-7 7 3

Table D3 Destination Address Time: Write Only

Destination Destination Microcode Memory Cycles
-Mode Register Cycles Read Write

0 0-6 0 0 0
0 7 5 1 0
1 0-6 2 0 1
1 7 6 1 1
2 0-6 2 0 1
2 7 6 1 1
3 0-6 4 1 1
3 7 3 1. 1
4 0-6 3 0 1
4 7 7 1 1
5 0-6 5 1 1
5 7 9 2 1
6 0-7 4 1 1
7 0-7 6 2 1

Table D4 Destination Address Time: Read Modify Write

Destination Dest4nation Microcode Memory Cycles

Mode Register Cycles Read Write

l
o
)
}

\
|

o
)

(o)
)

C
O
N
O
N
O
U
O
J
O
u
Y
O
9
O

)
o

N
O
H
A
O
L
E
L
O
N
I
W
I
W
W
NO

i
~
N

o
)

i
1
)

(Note 2)

(Note 3)

W
R
H
O
W
O
N
E
N
D
N
D
N
F
N
D
F
H
E
F
E
O

S
N
A
U
U
N

L
S

W
W
N
N
N
N
H
E
O
O

P

i

i

-
0

O

Table DS Destination Address Time: JMP

Destination Destination Microcode Memory Cycles
Mode Register Cycles Read Write

1 0-7 4 2 0

2 0-7 6 2 0
3 0-7 5 3 0
4 0-7 S 2 0

5 0-7 6 3 0
6 0-6 6 3 0
6 7 5 3 0
7 0-7 7 4 0

Table D6 Destination Address Time: JSR

Destination Destination Microcode Memory Cycles

Mode Register - Cycles Read Write

1 0-7 9 2 1

2 0-7 10 2 1

3 0-6 10 3 1

3 7 9 3 1

4 0-7 10 2 1
5 0-7 11 3 1

6 0-6 10 3 1

6 7 9 3 %

7 0-7 12 4 -

Table Fl Floating Source Modes 1-7

Single Precision

Microcode Memory Memory

Mode Register Cycles Read Write

0-7 3 2 0

2 0-6 3 2 0

2 7 1 1 0

3 0-6 4 3 0

3 7 3 3 0

4 0-7 4 2 0

5 0-7 5 3 0

6 0-7 4 3 0

7 0-7 6 4 0

Double Precision

Microcode Memory Memory

Mode Register Cycles Read Write

1 0-7 5 4 0

2 0-6 5 4 0

2 7 0 (Note 15) 1 0

3 0-6 6 5 0

3 7 5 5 0

4 0-7 6 4 0

5 0-7 7 5 0

6 0-7 6 5 0

7 0-7 8 6 0

Table P2 Floating Destination Modes 1-7

Single Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 3 0 2
2 0-6 3 0 2
2 7 1 0 1
3 0-6 4 1 2
3 7 3 1 2
4 0-7 4 0 2
5 0=7 5 1 T2
6 0-7 4 1 2
7 0-7 6 2 2

Double_PteCision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 5 0 4
2 0-6 5 0 4
2 7 (=1) (Note 15) O 1l
3 0-6 6 1 4
3 7 5 1 4
4 0-7 6 0 4
5 0-7 7 1 4
6 0-7 6 1 4
7 0-7 8 2 4

Table F3 Floating Read Modify Write Modes 1-7

Single Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 5 2 2
2 0-6 5 2 2
2 7 1l (Note 15) 1 1

3 0-6 6 3 2
3 7 5 3 2
4 0-7 6 2 2
5 0-7 7 3 2
6 0-7 6 3 2
7 0-7 8 4 2

D-11

Table F3 Floating Read Modify Write Modes 1-7

Double Precision

Microcode Memory Memory
Mode Register Cycles Read Write

1 0=-7 9 4 4

2 0-6 9 - 4 4

2 7 (=2) (Note 15) 1 1

3 0-6 10 : 5 4

3 7 9 5 4

4 0=-7 10 4 4

5 0-7 11 5 4

6 0-7 10 S 4

7 0-7 12 6 4

Table F4 Integer Source Modes 1-7

Integer

Microcode Memory Memory

Mode Register Cycles Read Write

1 0-7 2 1 0

2 0-6 2 1 0

2 7 0 (Note 15) 1 0

3 0-6 3 2 0

3 7 2 2 0

4 0-7 3 1 0

5 0-7 4 2 0

6 0-7 3 2 0

7 0-7 5 3 0

Long Integer

Microcode Memory Memory

Mode Register Cycles Read Write

1 0-7 4 2 0

2 0-6 4 2 0

2 7 0 (Note 15) 1 0

3 0-6 5 3 0

3 7 4 3 0

4 0=-7 5 2 0

5 - 0=7 6 3 0

6 0-7 5 3 0

7 0-7 7 4 0

D-12

Table F5 Integer Destination Modes 1-7

Integer

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 2 0 1
2 0-6 2 0 1
2 7 2 0 1
3 0-6 3 1 1
3 7 2 1 1
4 0-7 3 0 1
5 0-7 4 1 1
6 0-7 3 1 1
7 0-7 5 2 1

Long Integer

Microcode Memory Memory
Mode Register Cycles Read Write

1 0-7 4 0 2
2 0-6 4 0 2
2 7 2 0 1
3 0-6 5 | 2
3 7 4 1 2
4 0-7 5 0 2
5 0-7 6 1 2
6 0-7 5 1 2
7 0-7 7 2 2

D-13

5.

6.

10.

11l.

12.

13.

14.

15.

NOTES

Subtract 2 microcycles (MC) and one read if both source and
destination modes autodecrement PC, oI if WRITE-ONLY or

READ-MODIFY-WRITE mode 07 or 17 is used.

READ-ONLY and READ-MODIFY-WRITE destination mode 47
references actually perform 3 READ operations. For book-
keeping purposes, one of the READs is accounted ..or in the
EXECUTE, FETCH TIMING.

READ-ONLY and READ-MODIFY-WRITE destination mode 57
references actually perform 4 READ operations. For book-
keeping purposes, one of the READs is accounted for in the
EXECUTE, FETCHING TIMING.

Subtract 1 MC if the link register is PC.

Add 1 MC if the source operand is negative.

subtract 1 MC if the source mode is not zero.

Add 1 MC if the quotient is even.

Add 2 MC if overflow occurs.

Add 5 MC and 1 read if the PC is used as a destination

register, but only if source mode 47 or 57 is not us
ed. |

Add 1 MC per shift.

Add 1 MC if source operand <15:6> is not zero.

Subtract 1 MC if one shift only.

Add 4 MC and 1 read if the PC is used as a destination

register, but only if source mode 47 or 57 is not
used.

Divide by zero executes in 5 MC (see note 6).

Timing for no shift. Add 1 MC if a left shift. (Notes 8, 9,
11 apply.) Add 2 MC for a right shift. (Notes 8, 10, 11
apply.)

Add one MC if a register other than R7 is used.

Mode 27 references only access single word operands. The
execution time 1listed has been compensated in order to

accurately compute the total execution time
.

D-14

APPENDIX E

GLOSSARY

Bus lock -

An indication to memory to prevent or "lock" out other accesses to
that location until it is unlocked. This occurs during an RMW
read bus microcycle with the bus lock control bit asserted. Memory
is automatically unlocked by the following Bus Write microcycle by
that processor.

Cache bypass -

Unconditionally bypass cache and access main memory directly. 1If
the cache entry is valid, typically invalidate it.

Cache force miss - :

Unconditionally bypass cache and access main memory directly. 1If
the cache entry is valid, typically do not invalidate it but
ignore it.

Data stream bus cycle -

Any microcycle which is a Read, Read/Modify/Write or Write
microcycle. -

Demand abort -

An abort during a demand bus microcycle.

Instruction stream bus cycle -
Any microcycle which is a prefetch microcycle.

Internal registers -
These explicitly addressable registers are the PS, PIRQ, MMRO,
MMR1, MMR2, MMR3, Hit/Miss, CPU Error, PARs, and PDRs.

Predecode -

An indication to decode the next PDP-11 instruction. This occurs
during a microcycle in which the DCJ1l1l asserts PRDC and decodes
the prefetch buffer contents as the next PDPll instruction.

Read/Modify/Write (RMW) operation -
Two consecutive microcycles in which the first is a Bus Read
microcycle and the second is a Bus Write microcycle. Both
microcycles access the same location.

Request abort -

An abort during a request bus microcycle., If it is a memory
management or address abort, it will not stretch the microcycle.

INDEX

Abort (ABORT) 1line,

Aborts, 1-12, 1-13

AC characteristics, B-1

through B-7

Address input/output (AIO) line,
2-3, 2-10

Address latch enable (ALE)

2-5, 2-12

Addressing modes

direct register, 6-6

direct autoincrement, 6-7

direct autodecrement, 6-8

direct index, 6-9 through

6-11

deferred, 6-11 through 6-14

double-operand, 6-3 through

6-4

general,

2-6, 2-11

line,

6-1 through 6-3

PC relative, 6-14 through

6-18

single-operand, 6-3

Bank select (BS) lines, 2-2,

2-11 -

Buffer control (BUFCTL) lines,

2-4, 2-13

Bus cycles

AIO codes for, 3-2

bus read, 3-4 through 3-6

bus write, 3-6 through 3-7

durationof, 3-2

general-purpose read, 3-8

general-purpose write, 3-9

interrupt acknowledge, 3-10

non-1/0 (NIO), 3-3

parts of, 3-3

Bus read cycle, 3-4 through 3-6

non-stretched, 3-5

stretched, 3-5

Bus write cycle, 3-6 through 3-7

Cache control register

force cache miss bit, 5-2

unconditional cache bypass

bit, 5-2

uninterpreted bits, 5-2

Cache memory

cache control register

5-1 through 5-2

general operation, 5-3

in multiprocesing

environment, 5-4

(CCR),

'Index-l

Cache memory (continued)

sample implementation, 5-4

through 5-8

Cache miss (MISS) line,

2-12

Clock 1 (CLK) line, 2-5, 2-12

Clock 2 (CLK2) line, 2-5, 2-12

Console start microroutine,
8-10 through 8-11

ConsOle ODT, 5-9 through 5-19

address specification, 5-17

carriage return command, 5-14

command set, 5-12 through

5-17

control-shift-S command, 5-17

floating-point accumulators

and, 5-18

general register references,

2-6’

go command, 5-16 _

initialization, 5-11

invalid characters, 5-19

internal register designator,

5-15

line feed command, 5-14

octal notation for, 5-18

output sequence, 5-12

proceed command, 5-16

processor status word

designator, 5-15

receiver control/status

register (RCSR), 5-9

receiver buffer register

(RBUF), 5-10

slash command, 5-13

stack pointer references,

5-18

terminal interface, 5-9

timeout, 5-19

transmitter control/status

register (XSCR), 5-10

transmitter buffer register

(XBUF), 5-11

Continue (CONT) line,

Control chip, 1-1

CPU error register,

1-16

2-4, 2-12

1-15 througt

Data/address

2-11,

lower, 2-2

upper, 2-2

Data chip, 1-1

Data valid (DV)

(DAL) lines,

2-13

2-2'

line, 2-4, 2-13

DC characteristics, A-1 through

A-4

DCJ11l block diagram, 1l-1

DCJ1l pin assignments, 2-1

Direct memory access (DMA)

mechanism, 1-17

Direct memory access (DMA)

requests and grants,

3-11

Direct memory access request

(DMR) line, 2-8, 2-11

Event (EVENT) line, 2-9, 2-10

Floating-point arithmetic

data formats, 7-2 through

7-3

nonvanishing numbers, 7-1

zero, 1-2

undefined variables, 7-2

Floating-point exception code

(FEC) register, 7-7

Floating-point exception (FPE

line, 2-8, 2-10

point instructions

7-12

7-12

7-13

7-13

7-14

7-14

7-14

7-15

7-15

7-15

7-15

7-16

7-16

7-17

7-17

7-17

Floating

ABSF,

ABSD,

ADDF,

ADDD,

CFCC,

CLRF,

CLRD,

CMPF,

CMPD,

DIVF,

DIVD,

LDCDF,

LDCFD,

LDCIF,

LDCID,

LDCLF,

LDCLD, 7-17

LDEXpP, 7-18

LDF, 7-19

LDD, 7-19

LDFPS, 7-20

MODF, 7-20

MODD, 7-20

MULF, 7-23

MULD, 7-23

NEGF, 7-24.

NEGD, 7-24

SETF, 7-25

SETI, 7-25

SETL, 7-25

STCFD, 7-26

STCDF, 7-26

)

Index-2

Floating point instructions

(continued)

STCFI, 7-26

STCFL, 7-26

STCDI, 7-26

STCDL, 7-26

STEXP, 7-28

STF, 7-28

STD, 7-28

STFPS, 7-29

STST,

SUBF,

SUBD,

TSTF,

TSTD,

7-29

7-29

7-29

7-31

7-31

‘General-purpose

accuracy, 7-9 through 7-10

addressing, 7-8 through 7-9

Floating-point status (FPS)

register, 7-3 through

7-7

Floating-point processing, 1-17

General-purpose 8-1

General-purpose

(GP) codes,

read cycle, 3-8

registers, 1-2

General-purpose write cycle, 3-9

Ground (GND) pins, 2-10, 2-11,

2-13 |

Halt line, 2-6, 2-11

Halting DCJ1ll operation, 2-24

I space and D space, 4-2

through 4-3

Initialization microroutine,

through 8-6

Initialize (INIT) line,

2-12

Instruction set

ADC, 6-34

ADCB, 6-34

ADD, 6-39

ASH, 6-40

ASHC, 6-41

ASL, 6-31

ASLB, 6-31

ASR, 6-30

ASRB, 6-30

BCC, 6-48

BCS, 6-48

BEQ, 6-47

BGE, 6-50

BGT, 6-50

BHI, 6-51

BHIS, 6-52

BIC, 6-43

BICB, 6-43

BIS, 6-43

8-2

2-5’

BISB,

BIT, 6-42

BITB, 6-42

BLE, 6-51

BLO, 6-52

BLOS, 6-51

BLT, 6-50

BMI, 6-47

BNE, 6-46

BPL, 6-47

BPT, 6-58

BR, 6-45

BVC, 6-48

BVS, 6-48

CCC, 6-66

CLC. 6-66

CLN, 6-66

CLV, 6-66

CLZ, 6-66

CLR, 6-26

CLRB, 6-26

COM, 6-26

COMB, 6-26

cCMP, 6-38

CMPB, 6-38

CSM, 6-61

DEC, 6-27

DECB, 6-27

DIV, 6-42

EMT, 6-57

HALT, 6-64

I0T, 6-58

INC, 6-27

INCB, 6-27

JMP, 6-52

JSR, 6-53

MARK, 6-60

MFPS, 6-36

MFPT, 6-65

MOV, 6-37

MOVB, 6-37

MFPD, 6-65

MFPI, 6-65

MTPD, 6-65

MTPI, 6-65

MTPS, 6-36

MUL, 6-41

NEG, 6-28

NEGB, 6-28

NOP, 6-67

RESET, 6-65

ROL, 6-32

ROLB, 6-32

ROR, 6-31

RORB, 6-31

RTI, 6-59

RTS, 6-55

RTT, 6-59

6-43

Index-3

SBC, 6-35

SBCB, 6-35

SEC, 6-66

SEN, 6-66

SEV, 6-66

SEZ, 6-66

SCC, 6-66

SPL, 6-61

SUB, 6-39

SWAB 6-33

SXT, 6-35

TRAP, 6-58

TST, 6-28

TSTB, 6-28

TSTSET, 6-29

WAIT, 6-64

WRTLCK, 6-29

XOR, 6-44

byte instructions, 6-22

formats, 6-19 through 6-22
list, 6-23 through 6-26

symbols, 6-18 through 6-19

Interrupt acknowledge cycle, 3-10
Interrupt and DMA control lines,

2-7

interrupt request (IRQ) lines,
2-7, 2-11

direct memory access request

(DMR), 2-8, 2-11

power fail (PWRF), 2-8,

floating-point exception

(FPE), 2-8, 2-10

event (EVENT), 2-9, 2-10

Interrupt request (IRQ) lines,

2-10

2-7, 2-11

Interrupts and traps, 1-11

through 1-14

Map enable (MAP) line, 2-7, 2-11

Memory management

addressing, 4-1

fault recovery, 4-8

I space and D space,

through 4-3

implementation,

4-2

4-14 through

4-18

instruction back-up/restart

with, 4-14

interrupt conditions, 4-8
multiple faults, 4-14

page address registers

(PARs), 4-6

page descriptor registers
-~ (PDRs), 4-6

physical address construction
4-3 through 4-5

register #0 (MMRO),

register #1 (MMR1),

register #2 (MMR2),

4-9

4-10

4-11

Memory management (continued)

register #3 (MMR3), 4-11

register map, 4-19 through

4-20

registers, 4-5

Memory management register #0

(MMRO), 4-9

enable relocation bits, 4-10

error flags, 4-9

page address space bits, 4-10

page number bits, 4-10

processor mode bits, 4-10

reserved bits, 4-10

Memory management register 1

(MMR1), 4-10

Memory management register #2

(MMR2), 4-11

Memory management register #3

(MMR3), 4-11

enable 22-bit mapping bit,

4-11

enable CSM instruction bit,

4-13

enable I/0 map bits, 4-11

Kernel, supervisor, and user

mode D space bits, 4-13

reserved bits, 4-11

Memory system registers, 1-17

Non-I/0 (NIO) bus cycle, 3-3

Oscillator pins, 2-9

XTALI, 2-9, 2-12

XTALO, 2-9, 2-12

Page address registers, 4-6

Page descriptor registers

access control field, 4-8

bypass cache bit, 4-7

expansion direction bit, 4-7

page length field, 4-7

page written bit, 4-7

reserved bits, 4-8

Parity error (PARITY) line, 2-6,

2-11

Pin description summary, 2-10

through 2-13

Pipeline processing, 5-20
through 5-22

Power-down microroutine, 8-9

Power fail (PWRF) line, 2-8,

2~10

Power pins, 2-9

ground (GND), 2-10, 2-11,

2-13

power (Vcc), 2-10, 2-11, 2-13

Power-up circuit, 8-8

Index-4

Power-up configuration, 8-6

through 8-8

Predecode (PRDC) line, 2-7, 2-1.

Processor status word (PS), 1-3

through 1-11

condition code bits, 1-6

initialization, 1-11

processor mode bits, 1-5

protection, 1-7 through 1-10

priority level bits, 1-5

trace/trap bit, 1-6

Program ‘interrupt request

register, (PIRQ), 1-15

Receiver buffer register (RBUF)

5-10

Receiver control/status

register (RCSR), 5-9

Stack protection, 1-16

Start/stop control lines, 2-5

halt (HALT), 2-6, 2-11

initialize (INIT), 2-5, 2-12

Status signals, 2-6

abort (ABORT), 2-6, 2-11

cache miss (MISS), 2-6, 2-12

map enable (MAP), 2-7, 2-11

parity error (PARITY), 2-6,

2-11

predecode (PRDC), 2-7, 2-12

Stretch control (SCTL) line,

2-5, 2-12

Strobe (STRB) line, 2-5, 2-12

System control lines, 2-2

address input/output (AIO),

2-3, 2-10

bank select (BS), 2-2, 2-11

buffer control (BUFCTL), 2-4

2-13

continue (CONT), 2- 2-12

data valid (DV), 2- , 2-13[
=

Test 1 (TEST1l) line, 2-9, 2-10

Test 2 (TEST2) line, 2-9,

Test pins, 2-9

test 1 (TEST1l), 2-9, 2-10

test 2 (TEST2), 2-9, 2-12

Timing signals, 2-4

address latch enable (ALE),

2-5, 2-12

clock 1 (CLK), 2-5, 2-12

clock 2 (CLK2), 2-5, 2-12

stretch control (SCTL), 2-5,

2-12

strobe (STRB), 2-5, 2-12

Transmitter buffer register

(XBUF), 5-11

Transmitter control/status

register (XSCR), 5-10

Digital Equipment Corporation « Bedford, MA 01730

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	6-39
	6-40
	6-41
	6-42
	6-43
	6-44
	6-45
	6-46
	6-47
	6-48
	6-49
	6-50
	6-51
	6-52
	6-53
	6-54
	6-55
	6-56
	6-57
	6-58
	6-59
	6-60
	6-61
	6-62
	6-63
	6-64
	6-65
	6-66
	6-67
	6-68
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	E-01
	E-02
	index-1
	index-2
	index-3
	index-4
	xBack

