
Firefox Error-Handling Specification

Revision 0.1

Michael Nielsen (DECWSE::NIELSEN)

Workstation Systems Engineering
Digital Equipment Corporation

100 Hamilton A venue
Palo Alto, CA 94301

415-853-6779

December 29, 1987

RESTRICTED DISTRIBUTION

Copyright 1987 by Digital Equipment Corporation

The information in this document is subject to change without notice and should not be construed as a com­
mitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for
any errors that may occur in this document. This specification does not describe any program or product
currently available from Digital Equipment Corporation. Nor does Digital Equipment Corporation commit
to implement this specification in any product or program. Digital Equipment Corporation makes no com­
mitment that this document accurately describes any product it might ever make.

Blank Page

ii

Table of Contents

15. Firefox Error-Handling Specification

15.1. M-Bus Error Handling ... 1

15.1.1. FBIC Error Handling .. 2

15.1.1.1. Validating FBIC Error-Logging Registers .. 2
15 .1.1.2. Determining the Source of the Error 4

15.1.1.2.1. ARB Error Resolution .. 5
15.1.1.2.2. MCPE Error Resolution .. 6
15.1.1.2.3. MSPE Error Resolution .. 6
15.1.1.2.4. MDPE Error Resolution ... 7
15.1.1.2.5. ICMD Error Resolution .. 8
15.1.1.2.6. ILCK Error Resolution ... 8
15.1.1.2. 7. MTO Error Resolution .. 8
15.1.1.2.8. MTPE Error Resolution .. 8
151 l ,2.9. SERR Error Resolution ... 8
15.1.1.2.10. IDAT Error Resolution ... 9
15.1.1.2.11. NOS Error Resolution ... 9
15.1.1.2.12. FR.ZN" Error Resolution .. 9
15.1.1.2.13. Resolution Accuracy ... 9

15.1.1.3. Determining whether System Recovery Is Possible 9

15.1.2. FMDC Error Handling .. 10

15.2. L2001 Dual-CV AX Processor Module Error Handling .. 10

15.2.1. M-Bus Monitor Errors .. 10
15.2.2. M-Bus Slave Errors .. 10
15.2.3. M-Bus I/0 Reads/Writes .. 10
15.2.4. M-Bus Interrupt Acknowledges 11
15.2.5. Cache References ... 11
15.2.6. Local I/0 Reads/Writes .. 12

15.3. L2002 Q-Bus Adapter Module Error Handling ... 12

15.3.1. M-Bus Monitor Errors .. 12
15.3.2. M-Bus Slave Errors .. 12
15.3.3. M-Bus Master Errors .. 13
15.3.4. Q-Bus DMA Errors ... 13

15 .4. L2003 Workstation I/0 Module Error Handling 13

15.4.1. M-Bus Monitor Errors .. 14

iii

15.4.2. M-Bus Slave Errors .. 14

15 .5. L2007 Memory Module Error Handling 14

15.6. System Error Analysis and Recovery .. 14

iv

Revision History

Date Version Content/Changes
3 Dec 87 0.1 Preliminary release

v

Blank Page

vi

15. Firefox Error-Handling Specification

The following is a discussion of hardware errors that can occur in a Firefox workstation and be detected by
operating system software. It includes descriptions of the possible errors, error symptoms, recommended
error logging, and required error-recovery procedures for the M-bus, L2001 dual-CV AX processor module,
L2002 Q-bus adapter module, L2003 workstation I/0 module, and L2007 memory module. This chapter
assumes familiarity with the M-bus and all of the modules discussed herein.

The general Firefox error strategy is detection of single-bit data errors throughout the system. Specific sub­
systems may have more or less error detection depending on need and implementation constraints. For
example, the M-bus implements single-bit error detection on both control and data signals, the L2007
memory module implements ECC on the DRAM array to achieve double-bit error detection and single-bit
error correction because of higher failure rates of the DRAMs, and the L2003 workstation I/O module has
no parity on internal data paths because of lack of parity support on the VLSI device controllers.

These error-handling descriptions and recommendations presume that hard failures are detected by diag­
nostics prior to operating system startup. If hard errors develop on the M-bus or on a critical system
module during normal system operations, the system will not be able to continue execution of even the
error-handling procedures. Instead, that the hard failure will be detected by diagnostics during the subse­
quent system restart.

The following sections discuss only single-point failures that are transient or that do not affect a critical
system element. Firefox can reliably recover from single-point transient errors in cache data stores and
memory arrays provided they do not affect a critical operating system data structure. It can recover from
single-point transient errors on the M-bus only if the error affects peer-to-peer communication and the
communicating peers can recover. Firefox does not reliably detect multipoint failures, nor is error recovery
possible in such situations.

15.1. M-Bus Error Handling

All M-bus interfaces perform error checking on the value of the arbitration, command, data, and status
busses and verify the proper sequencing of transactions. M-bus interfaces also perform additional types of
error checking appropriate to their functions. For example, M-bus interfaces that support issuing inter­
locked transactions must maintain the interlock CAM, honor the interlock protocol, and detect violations of
the interlock protocol.

When an M-bus error occurs, error-handling software must read the MODTYPE register of each M-bus
interface and then select an error-handling routine for the appropriate interface chip type and revision. All
of the M-bus interface error-handling procedures follow the same general format:

1. Record the error-logging information from all M-bus interfaces and reenable error logging.
Because M-bus double errors mandate a full system restart, it is important to reenable error
logging as soon as possible.

2. Use the M-bus interface chip type and revision to select an error-handling routine.

3. To enumerate the possible error states, encode the transaction type and error type. Encoding
the error type also implicitly ranks the errors according to dominance, filtering out secondary
errors. For example, if an MC:MD parity error occurs during P2 of a transaction, the MCMD
decoders might also report a spurious invalid command.

4. Verify that the M-bus interface error-logging registers indicate a known error state by com­
paring the encoded transaction type and error type against templates of valid error cases.
The M-bus error-logging registers can represent millions of possible error states, of which

15 .1. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification l

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBlJTION

only a small percentage can actually occur. For example, because the MST AT signals are
not driven during P2 of transactions, there cannot be an MST AT parity error for that cycle.
M-bus interfaces that have inconsistent error-logging information are considered faulty and
are immediately excluded from further error diagnosis.

5. Determine which module caused the error by comparing the error-logging registers of all the
M-bus interfaces in the system. If a single M-bus interface detected an error, or if more than
one module detected an error from the same source, log that module as the probable source
of the error. The algorithms presented are predicated on at having at least three FBIC-class
error-detecting and error-logging M-bus interfaces in the system. If there are less than three
such M-bus interfaces, it is not possible to reliably identify the source of the error.

6. The remaining legitimate errors are then classified according to whether they affect system­
wide data integrity or only peer-to-peer data integrity. If systemwide data integrity is
affected, the system must be shut down and then restarted after completing the error­
handling routines.

7. If the error was a peer-to-peer recoverable error, execute the recovery procedure and then
return to normal system operation.

15.1.1. FBIC Error Handling

The following is a discussion of error handling for revision 1 of the FBIC; that is, the FBIC MODTYPE
register has value 0101XXXX#l6.

The FBIC BUSCSR, BUSCTL, BUSADR, and BUSDAT registers are normally updated with the state of
various M-bus signals. When the FBIC detects an M-bus error, it asserts appropriate status bits in the
BUSCSR register and freezes the state of the BUSXXX registers. Whenever an M-bus error occurs, error­
handling software should immediately copy and log the FBIC MODTYPE, BUSCSR, BUSCTL,
BUSADR, BUSDAT, FBICSR, RANGE, IPDVINT, CPUID, IADRl, and IADR2 registers. Error­
handling software should then reenable error logging by writing, in the following order, 00000000#16 to
BUSADR, 00000000#16 to BUSCTL, and FFFFFFFF#16 to BUSCSR. If the BUSCSR<FRZN> bit is not
asserted in a given interface, zero the copy of that interface's BUSCTL and BUSADR registers before vali­
dating them or using them for error-cause resolution. All further references to FBIC registers in this section
refer to the saved copy of the registers.

The BUSXXX registers can represent more than 2,000,000 possible transaction phases and error states.
However, many of these error states represent nonexistent M-bus transaction phases. Although considering
only the possible M-bus transaction phases reduces the number of representable error states to approxi­
mately 300,000 states, many of the remaining error states represent impossible error conditions for the
given M-bus transaction phase. There are only 74 M-bus errors a properly functioning FBIC will detect
for the various transaction phases.

15.1.1.1. Valldatlng FBIC Error-Logging Registers

To reduce the number of error states, first validate the error-logging information by comparing the value of
BUSCTL<PHASE> against the values of the BUSCSR register, the BUSCTL<SVDMC:MD> field, the
BUSCTL<MASTER, SLAVE> bits, and the BUSADR<31> bit.

2 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15. l. l. l.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Use the following fom1ula to construct a bit vector that encodes the command in a longword:

CMD = 1 << (16*BUSADR<31> + BUSCTL<SVDMCMD>)

Table 15-1 shows the encodings and masks for the valid M-bus transaction types.

Table 15-1: CMD Encodings and Masks

Transaction Encoding Mask

:MR.BAD 5 00000020#16
?vIWRITET 7 00000080#16
:MREADI 9 00000200#16
MWRITE 10 00000400#16
MWRITEU 11 00000800#16
:MREADU 14 00004000#16
!READ 21 00200000#16
IREADI 25 02000000#16
I WRITE 26 04000000#16
IWRITEU 27 08000000#16
IACK 29 20000000#16

Construct a bit vector that encodes the BUSCSR<FRZN, ARB. ICMD, IDAT, MTPE, \-1DPE, MSPE,
MCPE, ILCK, MTO, NOS, SERR>, and BUSCTL<MASTER, SLAVE> bits as shown in Table 15-2.
When constructing the mask for the BUSCSR bits, add the first asserted bit found in BUSCSR in the fol­
lowing order: ARB, MCPE, MSPE, :MOPE, ICMD, ILCK, MTO, rvITPE, SERR, IDAT, NOS, FRZN. This
algorithm includes only the dominant error in the mask and thus filters spurious secondary errors.

Table 15-2: ERR Masks

Log Bit

BUSCSR<FRZN>
BUSCSR<ARB>
BUSCSR<ICMD>
BUSCSR<IDAT>
BUSCSR<MTPE>
BUSCSR<MDPE>
BUS CSR <MSPE>
BUSCSR<MCPE>
BUSCSR<ILCK>
BUSCSR<MTO>
BUSCSR<NOS>
BUSCSR<SERR>
BUSCTL<MASTER>
BUSCTL<SLA VE>

Mask

80000000#16
40000000#16
20000000#16
10000000#16
08000000#16
04000000#16
02000000#16
01000000#16
00800000#16
00400000#16
00200000#16
00020000#16
00000002#16
00000001#16

15. l. l. l. Firefox Error-Handling Specification

Error

Error occurred and logging frozen
Arbitration bus error (MBRQ signals)
Invalid command received during P2
Invalid data transmitted
Tag-store parity error during M-bus probe
Address/data-bus parity error (MDAL signals)
Status-bus parity error (MSTAT signals)
Command-bus parity error (MCMD signals)
Interlock protocol error
M-bus MBUSY or WAIT status timeout
No slave response to transaction master
Slave ERROR status to transaction master
FBIC acting as M-bus master
FBIC acting as M-bus slave

December 29, 1987 Firefox System Specification 3

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Then index the VALID_CMDS and VALID_ERRS tables (shown in Table 15-3) with BUSCTL<PHASE>
and compare the table entries against CMD and ERR. If a bit is asserted in CMD/ERR that is not asserted
in the VALID_CMDSNALID_ERRS table entry, the error-logging information is inconsistent. The M­
bus interface under examination has incurred a hardware failure. After logging this module as the source
of the failure, the system should be shut down, and diagnostics should be run on the faulty module. Other­
wise, the error-logging information is consistent and error handling for this module should continue.

Table 15-3: VALID_CMDSNALID_ERRS for CMD/ERR Masks

PHASE

0
1
2
3
4
5
6
7

VALID CMD

2E20EEA1 #16
00000001#16

FFFFFFFF#l6
2E204EA1#16
2E204EA1#16
20004EA1#16
00004EA1#16
00004221#16

VALID ERR

80600003#16
80000000#16
F5800002#16
D5400003#16
C7420003#16
CF000003#16
D5600003#16
C6020003#16

15.1.1.2. Determining the Source of the Error

To determine the original source of the error in the system, it is necessary to determine the dominant error
in the system. Using the set of error-logging registers that have passed validation, scan through all
BUSCSR registers to find the dominant error in the same fashion as the ERR mask was constructed. This
may be accomplished by constructing a table with the error masks ranked in order and then stepping
through the table checking to see if any BUSCSR register has the corresponding error bit asserted. Exam­
ple 15-1 illustrates this procedure in Modula-2 pseudocode.

Example 15-1: Determining Dominant System Error

procedure Init();
begin

(* Build table in order of decreasing significance *)
DorninantTable[O] .BitPos .- ARB_BitPos;
DorninantTable[l] .BitPos .- MCPE_BitPos;

DorninantTable[ll] .BitPos
end Init;

FRZN_BitPos;

procedure DominantError(): integer;
begin

for i := 0 to high(DorninantTable) do
for j := 0 to MaxErrLog do

if BitClear(ErrLog[j] .BUSCSR, DorninantTable[i] .BitPos) then
return(DorninantTable[i] .BitPos);

end;
end;

end;
return(O);

end DominantError;

Use the dominant system error code obtained in this fashion to select the corresponding error-resolution
routine. The following subsections describe error resolution for each of the error cases.

4 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15. l .1.2. l .

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

15.1.1.2.1. ARB Error Resolution

The FBIC checks for loss of MBRQ signals during a transaction. For example, the M-bus master should
always assert its MBRQ signal during P2. It also checks for multiple MBRQ signals when it is driving the
M-bus as a bus master or bus slave.

The first step in resolving arbitration errors is counting the number of modules that believe they are acting
as bus masters or slaves by examining the BUSCIL<MASTER> and BUSCIL<SLA VE> bits. If more
than one module believes it is the bus master, log all of those modules as potential causes of the bus error.
Similarly, if more than one module believes it is the bus slave, log all of those modules as potential causes
of the error. In the case of multiple slaves, if software can determine which module should have
responded, log only the spurious slaves.

If there is at most one bus master, and at most one bus slave, count the number of modules that logged
ARB errors. If more than one FBIC logged ARB errors, log the master of the transaction as the probable
cause of the bus error. Example 15-2 illustrates a procedure for determining the master of the transaction.
If no module can be conclusively determined as the bus master, log the backplane as the probable cause of
the bus error.

Example 15-2: Determining the Transaction Bus Master

procedure MasterSlot(): integer;

for i := 0 to MaxErrLog do
if ErrLog[i] .BUSCTL.MASTER

return(ErrLog[ij .Slot);
end;

end;

(*

1 then

* Because of pipelining, errors during the last cycle of
* transactions that are undetected by the master cause the
* master to return to idle before receiving MABORT. Pick
* the idle slot as the most likely master.
*)

for i := 0 to MaxErrLog do
if ErrLog[i] .BUSCTL.PHASE

return(ErrLog[i] .Slot);
end;

end;

(*
* Something bizarre happened.
*)

return(8);
end MasterSlot;

0 then

If only one module logged an ARB error, use that module's BUSCTL<MBRP, MBRM> error-log bits to
determine whether another module spuriously asserted its MBRQ signal. If another module is indicated by
the BUSCTL<MBRP, MBRM> bits, log that module as the probable cause of the bus error. If none of the
BUSCTL<MBRP, MBRM> bits are asserted, log this module as the probable cause of the error. Example
15-3 illustrates a procedure for selecting a slot from the BUSCTL<MBRP, MBRM> bits, given a BUSCTL
register and the slot that the register came from.

15.1.1.2. l. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification 5

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Example 15-3: Decoding BUSCTL<MBRP, MBRM> Bits

procedure WhichSlot(MySlot: integer; BUSCTL: BusCtlType): integer;
begin

for i := 0 to 6 do
if BUSCTL.MBRM[i] = 1 then

if i < MySlot then
return(i);

else
return(i+l);

end;
end;

end;
if BUSCTL.MBRP = 1 then

return(MySlot);
end;
return(8);

end WhichSlot;

15.1.1.2.2. MCPE Error Resolution

To resolve MCMD parity errors, count the number of modules reporting MCPE errors. If more than one
module reported MCPE errors, log the bus master as the probable cause of the error. Use the MasterSlot
routine presented in the ARB error resolution section to determine the bus master. If no bus master can be
conclusively selected or the module selected did not log a MCPE error, log the backplane as the probable
cause of the error. If only one module reported a MCPE error, log that module as the probable cause of the
error.

15.1.1.2.3. MSPE Error Resolution

To resolve MSTAT parity errors, count the number of modules reporting MSPE errors. If more than one
module reported MSPE errors, log the bus slave as the probable cause of the error. Example 15-4 shows a
procedure for determining the bus slave from the error logs. If no bus slave can be conclusively selected,
log the backplane as the probable cause of the error. If only one module reported an MSPE error, log that
module as the probable cause of the error.

6 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15.1.1.2.3.

DIGIT AL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

Example 15-4: Determining the Transaction Bus Slave

procedure SlaveSlot(): integer;
begin

for i := 0 to MaxErrLog do

end;

(*

if ErrLog[i] .BUSCTL.SLAVE
return(ErrLog[i] .Slot);

end;

1 then

* Because of pipelining, errors during the last cycle of
* transactions that are undetected by the slave cause the
* slave to return to idle before receiving MABORT. Pick
* the idle slot as the most likely slave.
*)

for i := 0 to MaxErrLog do
if ErrLog[i] .BUSCTL.PHASE

return(ErrLog[i] .Slot);
end;

end;

(*
* Something bizarre happened.
*)

return (8);

end SlaveSlot;

15.1.1.2.4. MOPE Error Resolution

0 then

To resolve MDAL parity errors, count the number of modules reporting MDPE errors. If more than one
module reported MDPE errors, determine the module that first detected the error. Example 15-5 shows a
procedure for determining the first module that detected a given error.

Example 15-5: Determining the First Error-Detector

procedure FirstDetector(ErrBitPos: integer; var Phase: integer)
begin

First .- 8;
Phase 8;
for i 0 to MaxErrLog do

if (ErrLog[i] .BUSCTL.PHASE < Phase) and
BitClear(ErrLog[i] .BUSCSR, ErrBitPos) then

Phase ErrLog[i] .BUSCTL.PHASE;
First
end;

ErrLog[i] .Slot;

end;
return(First);

end FirstDetector;

integer;

Use the transaction phase recorded in the first detector's error log to determine which module was driving
the MDAL signals at the time of the error. Example 15-6 shows a procedure for determining the slot

15.1.1.2.4. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification 7

DIGIT AL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

driving the M-bus in a ·given error-log phase. If no bus driver can be conclusively determined, or if the slot
selected did not log an MDPE error, log the backplane as the probable cause of the error. Otheiwise, log
the bus driver as the probable cause of the error.

Example 15-6: Determining the Bus Driver from an Error-Log Phase

procedure BusErrDriver(Phase: integer): integer;
begin

for i := 0 to MaxErrLog do
if ErrLog[i] .BUSCTL.MASTER

if (Phase <= 3) or
1 then

(BitAnd(ErrLog[i] .CMD, 00004ea3h) * 0) and (Phase<= 6)) then
return(i);

end;
if ErrLog[i] .BUSCTL.SLAVE

return(i);
end;

end;
return(8);

end BusErrDriver;

1 then

If only one module logged an :MDPE error, log that module as the probable cause of the error.

15.1.1.2.5. ICMD Error Resolution

To resolve IC:MD errors, count the number of modules that logged IC:MD errors. If more than one module
logged IC:MD errors, log the bus master as the probable cause of the error. Use the MasterSlot routine to
select the bus master. If only one module logged an IC:MD error, log that module as the probable cause of
the error.

15.1.1.2.6. ILCK Error Resolution

To resolve ILCK errors, count the number of modules that logged ILCK errors. If more than one module
logged ILCK errors, log the bus master as the probable cause of the error. Use the MasterSlot routine to
select the bus master. If only one module logged an ILCK error, log that module as the probable cause of
the error.

15.1.1.2.7. MTO Error Resolution

To resolve MTO errors, count the number of modules that logged MTO errors. If more than one module
logged MTO errors, examine the bus-master BUSADR contents to determine whether the slave should
have responded to the transaction. If no slave should have responded, log the bus master as the probable
cause of the error. If a slave should have responded, log that bus slave as the probable cause of the error. If
only one module logged an MTO error, log that module as the probable cause of the error.

15.1.1.2.8. MTPE Error Resolutlon

To resolve MTPE errors, log all modules reporting MfPE errors as the cause of the error.

15.1.1.2.9. SERR Error Resolution

To resolve a SERR error logged by a bus master, use either the saved address from BUSADR or the
BUSCTL<MBRP, MBRM> bits together with the WhichSlot procedure to determine the bus slave. Log
the bus slave as the cause of the error.

8 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15.1.1.2.10.

DIGIT AL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

15.1.1.2.10. IDAT Error Resolution

To resolve !DAT errors, log all modules reporting IDAT errors as the cause of the error. Refer to module­
specific error-recover procedures for any necessary internal module recovery actions.

15.1.1.2.11. NOS Error Resolution

To resolve an NOS error logged by a bus master, use the saved address from BUSADR to determine the
bus slave. If a slave should have responded to the transaction address, log the bus slave as the cause of the
error. Otherwise, log the bus master as the cause of the error.

15.1.1.2.12. FRZN Error Resolution

To resolve FR.ZN errors, count the number of modules reporting FR.ZN errors. If all modules reported a
FR.ZN error and all modules have the same BUSCTL<PHASE> value, log the backplane as the probable
cause of the error. If more than one module reported a FR.ZN error, but one of the modules has a different
BUSCTL<PHASE> value, log that module as the probable cause of the error. If only one module logged a
FR.ZN error, log that module as the probable cause of the error.

In the case of only one module logging a FR.ZN error, the BUSCSR<CTO, CDPE, CTPE> bits should be
checked. Because these bits represent local module errors and there is no FBIC logging of the error
address, module-specific error-handling procedures must be consulted.

15. 1, 1.2. 13. Resolution Accuracy

To verify the error resolution algorithms presented here, a test system with three FBIC-based modules was
constructed. With one module acting as the bus master, one module acting as the bus slave, and one
module acting as a bus monitor, transactions were simulated with one-cycle-duration transient faults
inserted on the MBRQ/MBUSY, MCMD/MCPAR, MSTAT/MSPAR, and MDAL/MDPAR signals. Tran­
sient faults were inserted at four points:

• At the FBIC output of the bus driver

• On the M-bus

• At the FBIC input of the bus master/slave receiver

• At the FBIC input of the bus monitor receiver

Canonical transactions with transient fault insertion representative of 67 4 7 error cases were simulated. The
resulting FBIC error logs were gathered and analyzed using the algorithms presented in this section.

Because of idiosyncrasies of the FBIC implementation, 2.9 percent of the transient fault cases did not
report errors. For example, an FBIC acting as a monitor of a transaction does not check that exactly one
MBRQ signal is asserted on the backplane, so it is insensitive to spurious pulses on MBRQ signals at those
times.

In cases in which any FBIC in the system logged an error, the error resolution algorithms identified the
correct module 94.5 percent of the time.

15.1.1.3. Determining whether System Recovery Is Possible

If the systemwide dominant error was ARB, MCPE, MSPE, MDPE, ICMD, ILCK, MTO, or MTPE, the
system must be shut down and restarted because system data integrity cannot be guaranteed.

If the BUSCSR<DBL> bit is asserted in any error log, regardless of the dominant system error, the system
must be shut down and restarted.

15. l. l .3. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification 9

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

If the systemwide dominant error was SERR, IDAT, NOS, or FRZN, the system can be restarted provided
the communicating peers can recover from the error. It is recommended that error-handling software keep
track of the frequency of these recovered errors for each module, and if an occurance threshold is
exceeded, the system be shut down until the problem is rectified. Refer to module-specific error-handling
guidelines for any necessary internal module-recovery procedures.

15.1.2. FMDC Error Handling

TBD

15.2. L2001 Dual-CV AX Processor Module Error Handling

The L2001 implements two independent CV AX-based processors. Each CV AX processor has an external
64-Kbyte snoopy cache, 128 Kbytes of ROM, and an FBIC M-bus interface. The processors act as M-bus
masters for system I/0 space references and interrupt acknowledges. The FBICs also act as M-bus masters
to service cache misses and write-throughs. The FBICs act as M-bus slaves for FBIC register access and
snoopy cache shared reads and write-throughs. (The FBIC also supports M-bus access to the ROM, but
software should not read the ROM of other processors via the M-bus during normal system operation.)

The external-cache tag and data stores have parity. The bus connecting a CV AX to its FBIC is also parity
protected, but the ROM is not. It is recommended that the ROM contain a checksum that is verified by
software before extensive use is made of the ROM contents.

Because the FBIC generates a MEMERR interrupt to its processor whenever it logs any error condition,
this will not be explicitly mentioned in the following descriptions, all of which assume the L2001 has been
initialized in accordance with the L2001 "Firefox Workstation Dual-CV AX Processor Functional
Specification."

15.2.1. M-Bus Monitor Errors

If the L2001 FBIC detects an M-bus error while it is monitoring a transaction, it freezes its error-logging
registers.

15.2.2. M-Bus Slave Errors

L2001 Dual-CV AX processors act as M-bus slaves during FBIC register access and snoopy cache opera­
tions. FBIC register access never causes errors unless a bus error occurs in the communication path to the
register. Tag- and data-store parity errors can occur during snoopy cache operations.

If the FBIC detects a parity error in the tag store during M-bus memory-space transactions, it logs a
BUSCSR<MTPE> error and generates an M-bus abort.

If an L2001 external cache is supplying read data to complete a shared memory read and the FBIC detects
a data store parity error, the FBIC will log a BUSCSR<IDAT> error and assert the M-bus MDATINV sig­
nal while driving read data onto the M-bus.

If an L2001 external cache is receiving write-through data and the M-bus MDA TINY signal is asserted, it
writes the data store with invalid parity. No explicit error is generated to this processor, although subse­
quent references to those cache locations will cause a bus parity error.

15.2.3. M-Bus 1/0 Reads/Writes

If a processor references an I/0 device and an M-bus abort occurs during the transaction, the FBIC will log
the error and generate a bus-error machine check.

10 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15.2.3.

DIGIT AL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

If the processor tries to reference a slot-specific address for an empty M-bus slot, the FBIC will log a
BUSCSR<.NOS> error and generate a bus-error machine check.

If the processor references a nonexistent region of slot-specific I/0 space, an M-bus timeout will generally
result, causing the FBIC to log a BUSCSR<MTO> error and generate a bus-error machine check.

If a processor references an I/O device and the device returns M-bus ERROR status, the FBIC will log a
BUS CSR <SERR> error and generate a bus-error machine check.

If a processor writes an I/0 device, but the FBIC detects a parity error on the CV AX data, it will assert the
M-bus MDATINV signal when it drives the data onto the M-bus and log a BUSCSR<IDAT> error.

15.2.4. M-Bus Interrupt Acknowledges

Because of the passive release mechanism, all errors during interrupt acknowledges become passive
releases. Consequently, higher-level, software-based failure-detection mechanisms, such as device
timeouts, should always be implemented.

15.2.5. Cache References

If the FBIC detects a tag-store parity error during a cache read or write from its processor, the FBIC logs a
BUS CSR <CTPE> error and generates a bus~rror machine check.

If a cache reference to a dirty line misses and the victim write fails because of an M-bus abort, the FBIC
will log the error and generate a bus-error machine check.

If a cache reference to a dirty line misses, and the victim write fails because of no slave response, the FBIC
logs a BUSCSR<.NOS> error and generates a bus-error machine check. This situation should never occur
because the presence of a dirty victim implies that the cache fill occurred successfully.

If a cache reference misses and an M-bus abort occurs during the memory read, the FBIC will log the error
and generate a bus-error machine check.

If a cache reference misses and the memory read does not receive a slave response, the FBIC logs a
BUSCSR<.NOS> error and generates a bus-error machine check.

If a cache reference misses and the memory slave specifies M-bus ERROR status, the FBIC logs a
BUSCSR<SERR> error and generates a bus-error machine check.

If a cache reference misses and the memory slave specifies that the data has had a single-bit error
corrected, the FBIC generates a CRD interrupt.

If a cache references misses, and the memory slave specifies an uncorrectable data error, the FBIC writes
the data store with invalid parity during the cache fill.

If a cache read hits, but the data store has invalid parity and parity checking is enabled, the CV AX gen­
erates a parity-error machine check.

If a cache write hits, but the CV AX supplies bad parity, the data store is written with invalid parity. A par­
ity error will be detected by a subsequent CV AX or FBIC cache read.

If a cache write generates a shared write-through and an M-bus abort occurs during the write-through, the
FBIC will log the cause of the M-bus abort.

If a cache write-through does not receive a response from the memory module, the FBIC logs a
BUSCSR<NOS> error. This situation should never occur because the presence of a cache line implies that

15.2.5. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification 11

DIGITAL EQUIPMENT CORPORATION - R.ESTRlCTED DISTRlBUTION

the cache fill occurred ·successfully.

If the FBIC detects a parity error during a cache write-through, it logs a BUSCSR<IDAT> error and asserts
the M-bus MDATINV signal while driving the data onto the M-bus. The data store is also written with
invalid parity.

15.2.6. Local 1/0 Reads/Writes

If a CV AX tries to reference any part of its own slot-specific I/O space other than the ROM, tag-store, and
FBIC registers, a local bus timeout will result. The FBIC will log a BUSCSR<CTO> error and generate a
bus-error machine check.

If a transient error occurs on the bus connecting the CV AX and FBIC during a tag-store or FBIC register
read, it will cause a parity-error machine check, provided that it is a single-bit failure.

If a transient error occurs on the bus connecting the CV AX and FBIC during a tag-store or FBIC register
write, it will cause a parity error. The FBIC will log a BUSCSR<CDPE> error, provided that it is a single­
bit failure.

15.3. L2002 Q-Bus Adapter Module Error Handling

The L2002 allows use of Q-bus 1/0 options in a Firefox system. The L2002 is an M-bus slave device for
access to FBIC registers, ROM, CQBIC registers, and Q-bus option registers. The L2002 is an M-bus
slave device for interrupt acknowledges to the FBIC, CQBIC, and Q-bus interrupts. To maintain cache con­
sistency, the L2002 can also act as a memory-space slave The L2002 is an M-bus memory-space master for
Q-bus option DMA.

The FBIC supports the full M-bus error detection and logging protocol. The CQBIC detects and logs: Q­
bus parity errors, nonexistent Q-bus memory and 1/0 references, no-grant timeouts, no-sack aborts, and
M-bus memory errors.

There is no parity protection between the FBIC and CQBIC or on the ROM. It is recommended that the
ROM contain a checksum that is verified by software before use of the ROM contents.

The following descriptions assume the L2002 has been initialized in accordance with the L2002 "Firefox
Workstation Q-bus Adapter Module Functional Specification."

15.3.1. M-Bus Monitor Errors

If the L2002 FBIC detects an M-bus error, it freezes its error-logging registers and generates an IPL 17 M­
bus interrupt.

15.3.2. M-Bus Slave Errors

References to the L2002 can timeout if a nonexistent address within the L2002 slot-specific region is refer­
enced or if there is a failure of the control logic on the module.

If the CQBIC detects error conditions internal to itself or from the Q-bus, it returns ERR to the FBIC for
read class transactions or generates a MEMERR to the FBIC for write class transactions. Assertion of the
ERR signal causes a processor machine check with a bus-error status code, and the processor FBIC logs a
BUSCSR<SERR> error. Assertion of the CQBIC MEMERR signals causes an IPL 16 M-bus interrupt.
The CQBIC DSER<7, 5> bits will be asserted depending on whether a nonexistent Q-bus address was
referenced or a Q-bus parity error occurred. (Because the L2002 CQBIC is always configured as the Q-bus
arbiter, no-grant errors should never occur.) When the system error-handling procedures select the L2002
as the source of errors, the CQBIC DBR, DSER, MEAR, and SEAR registers should be logged. The
CQBIC DSER register should then be written with OOOOOOBD#l6 to restart CQBIC error logging. Finally,
the appropriate Q-bus error-recovery procedures should be executed.

12 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15.3.2.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

If the L2002's FBIC has a line in its internal cache that had an uncorrectable error when it was read from
memory, the FBIC marks the line as containing invalid data. If the FBIC supplies that data to the M-bus
during a shared read, victim write, or write-through, it will assert the 1\-IDA TINY signal, log an IDAT
error, and generate an IPL 17 M-bus interrupt. The invalid line can be removed from the L2002 FBIC
internal cache by issuing a local-miss-global-hit read transaction (reading M-bus memory through Q-bus
memory space) to a memory line that does not have an uncorrectable error. Alternatively, the invalid line
can be left in the L2002 FBIC until it is flushed by subsequent Q-bus DMA activity.

15.3.3. M-Bus Master Errors

If the CQBIC issues a memory read to the L2002 FBIC and the memory read incurs an M-bus abort, refer­
ences nonexistent memory, or reads a memory line with an uncorrectable error, the FBIC logs the appropri­
ate error and returns ERR to the CQBIC. This causes the CQBIC to abort the Q-bus transaction and log a
slave memory error by asserting DSER<4>.

If a nonexistent memory reference caused the error, the FBIC BUSCSR<NOS> bit will be asserted. If the
L2002 has issued an invalid memory address, there has been a failure of either the CQBIC mapping logic
or the L2002 map store. This should be logged as the cause of the failure, the system should be shut down,
and diagnostics should be run on the L2002.

After a CQBIC error occurs, the DBR, DSER, :MEAR, and SEAR registers should be logged. The CQBIC
DSER register should then be written with OOOOOOBD#l6 to restart CQBIC error logging, and the appropri­
aw Q-bus error recover procedures should be executed.

If reading a memory line with an uncorrectable error caused the error, the invalid line can be removed from
the L2002 FBIC internal cache by issuing a local-miss-global-hit read transaction (reading M-bus memory
through Q-bus memory space) to a memory line that does not have an uncorrectable error. Alternatively,
the invalid line may be left in the L2002 FBIC until it is flushed by subsequent Q-bus DMA activity.

15.3.4. Q-Bus OMA Errors

If Q-bus option DMA references an address that is not mapped, the CQBIC will let the DMA master
timeout. The CQBIC does not log any errors. The Q-bus option should log a bus error and generate an
interrupt.

15.4. L2003 Workstation 1/0 Module Error Handling

The L2003 implements a DSSI mass storage controller, an Ethernet network interface, a DZ serial inter­
face, and miscellaneous system support functions. The L2003 is a passive slave device; it never acts as a
M-bus master. The L2003 exists only in I/0 space; it neither references nor responds to memory space.

Due to implementation constraints of the VLSI device controllers utilized in the L2003, there is no internal
bus parity. It is recommended that the ROM contain a checksum that is verified by software before use of
the ROM contents. It is also recommended that disk and network packets contain an CRC value that is
generated/checked by the host processors to safeguard against undetected errors in the L2003 buffers and
data paths.

The L2003 FBIC supports the full M-bus error detection and logging protocol. It never returns RETRY or
ERROR status to the M-bus. The only module-level error possible when referencing the L2003 is an M­
bus timeout.

The following descriptions assume the L2003 has been initialized in accordance with the L2003 "Firefox
Workstation I/0 Module Functional Specification."

15.4.1. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification 13

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBUTION

15.4.1. M-Bus Monitor Errors

If the L2003 FBIC detects an M-bus error, it freezes its error-logging registers and generates an IPL 17 M­
bus interrupt.

15.4.2. M-Bus Slave Errors

An M-bus timeout can result if a nonexistent address within the L2003 slot-specific region is referenced or
if there is a failure of the control logic on the module. Device controllers should never report host-bus­
related errors. That is, the LANCE network controller should never report a memory error
(CSRO<MERR> bit asserted), and the SII disk controller should never report a FIFO overflow error
(CSTAT<BER> bit asserted). (Note that the CSTAT<BER> bit may also be asserted for certain types of
DSSI bus errors.)

If the LANCE or SII reports a host bus error, the L2003 must be reset by either a module reset or a full sys­
tem reset. No error recovery of current device controller activity is possible.

Peripheral-related device controller errors are beyond the scope of this chapter.

15.5. L2007 Memory Module Error Handling

TBD

15.6. System Error Analysis and Recovery

The following system error analysis and recovery procedure is recommended whenever a processor
receives a bus-error machine check, a parity-error machine check, or an MEMERR intermpt. The operating
system should define a semaphore that serializes system error handling to a single processor. That is, sys­
tem error handling should be treated as a systemwide critical section that is executed by the first processor
to detect an error. Subsequent processors will execute the same error-handling procedures but as a degen­
erate case that takes no additional action. This is the easiest mechanism for dismissing the MEMERR
interrupts that all processors receive when an M-bus error occurs.

When a processor receives a bus-related machine check or an MEMERR interrupt, it should first acquire
the system error-handler semaphore. It should then copy the error-logging registers of all M-bus interfaces
to a memory buffer. If any of the M-bus interfaces indicate an error has been logged, those M-bus inter­
faces should be reenabled for error logging. If possible, system activity should be minimized during this
procedure to minimize the possibility of inadvertently overwriting logs of secondary errors.

If any of the M-bus interfaces indicate an error has occurred, all of the interface error logs should be writ­
ten to the system error log. The processor should then validate the copy of the error log from each M-bus
interface using the validation procedure for the appropriate interface type and revision. If any of the error
logs fail the validation process, those modules should be indicated in the system error log as the cause of
the error and the system should be shut down.

The error-cause resolution procedures should then be executed to identify the module that caused the error.
The selected module or modules should then be indicated in the system error log as the failure cause. If the
error belongs to the class of error specified as nonrecoverable by any of the M-bus interfaces, the system
should be shut down at this point.

If the error is a BUSCSR<CTPE> or BUSCSR<CDPE> error, the system should be shut down.

If the error is a BUSCSR<CTO> or BUSCSR<NOS> error, the process that issued the reference should be
terminated.

14 Firefox System Specification December 29, 1987 Firefox Error-Handling Specification 15.6.

DIGITAL EQUIPMENT CORPORATION - RESTRICTED DISTRIBtrrlON

If the error is a BUSCSR<SERR> error, the error-handling procedures for the slave module should be
invoked. Unless the process that issued the reference is known to have error-recovery capabilities--for
example, an expansion I/O bus configuration poller--the process should be terminated.

If the error is a BUSCSR<IDAT> error and it was an I/0-space transaction, the affected I/0 devices should
be reinitialized.

If the error is a BUSCSR<IDAT> error and it was a memory-space transaction, the line should be flushed
from all caches, the line reinitialized in the appropriate memory module via a victim write, and the affected
process(es) terminated.

To flush a line from a processor cache perform the following:

• Examine the tag store to determine if the line is present.

• If the line is present, read each byte and rewrite it. If software wishes to isolate the parity
error down to the byte-address level, log which bytes cause parity-error machine checks
when read. Otherwise, disable parity checking during the reads by clearing the
FBICSR<CDPE> bit.

• Victim the cache line by accessing memory at an address congruent to the 64-Kbyte segment
containing the cache line.

To Hush a ime from an I;O module cache, lllltlate device DMA at another lme ot memory. For example,
for the L2002 a local-miss-global-hit transaction (reading M-bus memory space through Q-bus memory
space) can be used. Any secondary BUSCSR<IDAT'> errors caused by these cache flushes should be
dismissed.

If the error was a parity-error machine check, terminate the affected process.

Finally, release the system error-handler semaphore and resume system operation.

15.6. Firefox Error-Handling Specification December 29, 1987 Firefox System Specification 15

	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15

