

CIXCD interface User Guide

Order Number EK-CIKCD-UG-003

dightal equipment corporaticn

maynard, massachuseits

First Edition, May 1980

Second Edition, October 1980

The information in this document is subject to change without nouvce and should not

be construed as a commitment by Digital Equipment Corporation. Digital Equipment

Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or

copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not

supplied by Digital Equipment Corporation or its affiliated co ~panies.

Restricted Rights: Use, duplication, or disclosure by the U. S. Government is subject to

resirictions as set forth in subparagraph (¢) (1) (ii’ of the Rights in Technical Data and

Computer Software clause at DFARS 252.227-7013.

Copyright © Digital Equipment Corporation 1990

All Rights Reserved.

Printed in USA.

The postpaid Reader's Comment Card included in this document requests the user’s

critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

Bl KDM RSTS VAX FORTRAN
Cl KLESI RSX VAX MACRO
DEC MASSBUS RT VAX3I
DECmate MicroVAX RV20 VAXcluster
DECUS NI RVé64 VAXsim
DECwriter PDP TA VAXELN
DHB32 P/OS TK VMS
DIBOL Professional ULTRIX VT
DRB32 RA UNIBUS Work Processor

EDT Rainbow VAX Ml
KDB50 RD VAX C i

®Plexiglas is a registered trademark of Rahm and Haas Company.

This document was prepared and published by Educatio~al Services Development and
Publishing, Digita! Equipment Corporation.

Contents

About This Manual xi

User Information

1 Introduction "
1.1 General Description it 1-2

i.1.1 Componentscvuut ittt 1-2

1.1.2 Featresot i i e e e 1-3

1.2 Specifications i e 1-3

1.3 Physical Hardware Description 1-6

131 CIXCDModule.........ciiiii i ettt 1-6

1.3.2 CIXCD Header Card Assembly 1-7

1.3.3 CI Bulkhead Cable Assembly 1-8

1.34 Jumpers........ ...te e e 1-9

2 Systems Overview

2.1 VAX6000Family.............. ... 2-2

2.1.1 VAX6000Cabinetsc.oiiniiiiiinnienannn 2-2

22 VAX9000Family........ i, 24

221 VAX9000Cabinetscviiiiiiainiann 2-5

iv Contents

installation Procedures

3 Site Preparation and Installation

3.1 OperatingEnvironmentot 3-1

3.1.1 Physical Elements 3-1

3.1.2 System Environment and Grounding Elements 3-2

3.2 System Configurations 3-2

3.2.1 VAXcluster Revision Levels 3-2

3.3 UnpackingandInventory................... 3-2

3.3.1 Unpacking the Shipping Boxes 33

3.3.2 Inventory e 33

3.4 Installation and Configuration 3-3

3.4.1 Removal of the CIBCAOption 3-4

3.4.2 Installation of the CIXCD Option. 3-9

3.4.3 Updating the VAX 6000 Console Microcode 3-11

3431 Determining the Need for Updated Microcode 3-11

3432 Performing the Update 3-13

3.5 Backplane Jumpers and Configuration Selection 3-16

3.5.1 CINodeAddressc.iiiiimiiinennennnnnn 3-17

352 Boot Time. e e 3-19

353 Disable Arbitration 3-20

354 Extend Header 3-20

35.5 AlterDeltaTimet 3-20

3.5.6 Cluster Sizeo e 3-21

3.5.7 Extend ACKTimeout 3-22

4 Verification and Acceptance Testing

4.1 Diagnostic Verification 4-2

4.1.1 Diagnostic Programs 4-2

412 Power-UpSelfTest 4-3

4.1.3 Preliminary DiagnosticSetup 44

4.13.1 Loopback Connectors, 44

4132 Loadirg the VAX Diagnostic Supervisor (VDS) Program 4-5

414 Repair-Level Testing 4-7

4.1.5 CI Functional Level Testing 4-9

Contents v

4.1.6 System Functional Level Testing 4-11

4.2 System MaintenanceTools, 4-13

Service

5 Diagnostics

5.1 CIXCD Self-Test/ROM-Based Diagnostics 5-2

5.1l XCDST ... e e et 5-2

5111 XCDST TestS ... oo v iiiii it ieneani e 5-3

5.1.2 RBDS ...te e e 5-8

5.1.2.1 RBD UserInterface 59

5122 RBD Information Printout 5-12

5.1.23 Example of RBD Printout 5-14

52 Macrodiagnostics i 5-14

5.2.1 Repair-Level Diagnostic— EVGEA 5-15

5.2.1.1 Running EVGEA 5-15

5.2.12 EventFlags i, 5-17

5.2.13 EVGEATestSccoiviiiieiienieinninnnn 5-18

5214 The MFG Section in. .. 5-19

5215 The EEPROM Update/Verification Utility 5-19

5.2.1.6 EEPROMMemory Map 5-24

5.2.1.7 EVGEAErrorMessagesc..0.un 5-26

5.2.2 CI Functional Diagnostics — EVGAA, EVGAB 5-26

5.2.3 Cluster Functional Diagnostic — EVGAC 5-27

5.2.3.1 EventFlags0t ininnn 5-27

5.23.2 EventTracing 5-28

5.2.3.3 Program Parameters 5-30

5234 SupportFiles i, 5-31

5.2.35 ProgramTestscoiiivinnnn 5-35

vi Contents

6 Functional Description

6.1 OVerVIEWt ittt ittt et 6~-2

6.1.1 XMIRespondercoiuiiiiieninennanennn 64

6.1.2 XMICommanderc. ceerrrirenennnronen 6-5

6.2 XMICOrnertttiitiantsn e 6-5

6.21 XCLOCKi ittt iannatannarinnnannnns 6-5

622 XLATCH0iiitiiititrrenaneanansennnns 6-6

6.3 XMI Interface Logicand DataMovers 6-6

631 XMlinterfaceLogic.......... ...t 6-6

6.3.2 Data Moversc.cciiiiiiiiiirinnnennnns 6-7

6.4 Port Microprocessorccoiutiiiiieiinnnaans 6-7

6.4.1 Processor DataPath. a. 6-8

6.4.2 Port Microcontrolt 6-8

6.4.3 Control Store RAMS'EEPROMs 6-9

6.44 O LI 7 o - A 6-9

6.5 CI Control Logic and Packet Memory 6-9

6.5.1 Packet Buffer Memory Organization 6-10

652 MemoryController................ .. .ottt 6-11

6.5.3 ClWirelnterfaceciviiiiiinnnnnennnn. 6-11

6.5.4 ClControllercciiiiiiiiiiinnnoanannns 6-11

6.6 CICOMMer. viiiiiiiieeataasserecncasennans 6-12

6.6.1 ReceiverHybrido ittt 6-13

6.6.2 CI Receive/Transmit Gate Array 6-13

A CIXCD Registers

B EVGEA Sections

C Ciusier Upgrades

C.1 CIXCD VAXcluster Minimum Revision ievels............ C-1

C.2 Quiet Slot Time Settingsot C-3

index

Contents vii

Examples

3-1 SHOW CONFIGURATION With Old Microcode. 3-12

3-2 SHOW CONFIGURATION With New Microcode 3-12

3-3 Updating VAX 6000 Console Microcode 3-15

4-1 VAX6000ConsolePrintout.......................... 4-4

4-2 ‘Trace Printout for EVGEA(OnePass).................. 4-8

4-3 Trace Printout for EVGAA(OnePass).................. 4-10

4-4 'Trace Printout for EVGAB(OnePass).................. 4-11

4-5 ‘'Trace Printout for EVGAC (OnePass).................. 4-12

5-1 Sample Printout of Exam Section 5-24

52 EVGEAErrorMessage i, 5-26

5-3 Sample ParameterFile 5-33

54 SamplePatternFile................... .. 0 i, 5-34

55 EVGACFullListing..............0 c0iiiitiiinnnnn. 5-36

B-1 UPDATE Sectionviiiiiiineeneeeanannanns B-1

B-2 VERIFY Section, NoErrors B-2

B-3 VERIFY Section, Errors.................cciiiiinann. B-3

B—4 RVERIFY Section, NoErrors B4

B-5 RVERIFY Section, Errors.0viviinneennn. B-5

B6 REPLACE Sectionccoitiiiiirneenonnonnns B-6

B-7 RESTORE Sectionc.oiuiiuieiriereenarnnnss B-7

B8 ERRORLOG Sectionciiiiinrnennennennnns B-8

B-29 EXAMLOG Sectioncciiiiinriineninnnnanns B-9

Figures

1-1 Simplified CIXCD Adapter Connection 1-2

1-2 CIXCD HeaderCard Assembly 1-7

1-3 CIXCD-AA BulkheadCable 1-8

14 CIXCD-AB BulkheadCable 1-9

2-1 VAX6000Cabinetit iiiarranns 2-3

22 VAX 9000 Model 210Cabinet.c.... 2-5

2-3 VAX 9000 Model 400Cabinets 2-6

3-1 CIBCAIntermoduleCsgbles 3-5

3-2 CIBCACableLocationccicuvieneennnnn. 3-6

3-3 NodeIDPluglocation...................c.ouann. 3-7

vii Contents

3-4

3-5

3-6

3-7

4-1

4-2

5~1

5-2

6~1

6-2

6-3

A-1

A-2

A3

A4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12

A-13

A-14

A-15

A-16

A-17

A-18

A-19

A-20

CIBCAJUMPETIS ittt it et iie i aaeinnnes 3-8

CIXCD Module InstalledinCard Cage 3-10

The Update Positiont 3-13

CIXCDJumper Pinningoiiviinininnan.. 3-17

CIXCD Acceptance Testing Flow Diagram 4-2

Diagnostic Loopback Cable Connections 4-5

EEPROM Memory Mapooovvineiiecaannnnn. 5-25

Program Parameter Register 5-28

CIXCD Simplified Block Diagram 6-2

CIXCDBlock Diagram c.iiiinnnnn. 6-3

Packet Buffer Format 6-10

XMI Device Register (XDEV) Offset = 06000 A-1

XMI Bus Error Register (XBER) Offset =900004 A-2

XMI Failing Address Register LWO (XFADR) Offset = 00008. A-9

XMI Communications Register (XCOMM) Offset = 00010 ... A-9

Port Scan Control Register (PSCR) Offset = 00014 A-9

Port Scan Data Register (PSDR) Offset = 00018 A-9

Port Maintenance Control/Status Register (PMCSR) Offset =
0001 . . . e e e A-10

Port Diagnostic Control/Status Register (PDCSR) Offset =

00020 i e e e e e e A-18

Port Status Register (PSR) Offset = 00024............... A-18

XMI Failing Address Register LW1 (XFAER) Offset = 0002C A-18

Port Queue Block Base Register (PQBBR) Offset = 01000 ... A-19

Port Error Status Register (PESR) Offset = 01008. A-19

Port Failing Address Register (PFAR) Offset = 0100C A-19

Port Parameter Register (PPR) Offset =01010 A-19

Port Serial Number Register (PSNR) Offset = 01014 A-19

Port Interrupt Destination Register (PIDR) Offset = 01018 . . A-20

Port Interrupt Vector Register (PIVR) Offset = 01020 A-20

Port Command Queue 0 Control Register (PCQOCR) Offset =

01028 . . . o e A-20

Port Command Queue 1 Control Register (PCQ1CR) Offset =

0102C ee A-20

Port Command Queue 2 Control Register (PCQ2CR) Offset =
01030 e e e e A-20

Contents ix

A-21 Port Command Queue 3 Control Register (PCQ3CR) Offset =

1) 0 7 A-21

A-22 Port Status Release Control Register (PSRCR) Offset =
01038 e e e e e A-21

A-23 Port Enable Control Register (PECR) Offset = 0103C A-21

A-24 Port Disable Control Register (PDCR) Offset = 01040 A-21

A-25 Port Initialize Control Register (PICR) Offset = 01044 A-21

A-26 Port Datagram Free Queue Control Regisier (PDFQCR)
Offset = 01048 it A-22

A-27 Port Message Free Queue Control Register (PMFQCR) Offset

= 01040 . ..e A-22

A-28 Port Maintenance/Sanity Timer Control Register (PMTCR)

Offset = 01050 it A-22

A-29 Port Maintenance/Sanity Timer Expiration Control Register

(PMTECR) Offset = 01054c.cuuun. A-22

A-30 Port Parameter Extension Register (PPER) Offset=01058 ... A-22

Tables

' 1-1 CIXCD-AA Hardware Components 1-6
1-2 CIXCD-AB Hardware Components 16

2-1 VAX6000Family 2-2

2-2 VAX9000 Family it 24

3-1 CI Node Address Table — True/Complement 3-18

3-2 Boot Time BackplanedJumpers. 3-19

3-3 Quiet Slot Time Backplane Jumpers 3-20

3—4 Cluster Size BackplaneJumpers 3-21

4-1 CIXCD Diagnostic Prcgrams 4-3

4-2 VAXcluster System Maintenance Tools 4-13

5-1 Functional Microcode Test Failure Error Codes 5-3

5-2 RBDCommands......................c0iiiieiriein. 5-10

5-3 START Qualifiers................ iiiieninenn. 5-10

5-4 RBD Control Characters 5-11

5-5 EEPROM Update/Verification Utility Program Sections 5-20

5-6 Trace Bit Field Definitions 5-29

5-7 EVGAC Program Parameters......................... 5-30

5-8 Parameter FileStructure 5-32

C-1 Minimum Revision Levels C-2

PAGE x INTENTIONALLY LEFT BLANK

About This Manual

This manual desecribes the CIXCD interconnect hardware option,
which provides the parallel-to-seria! interface between two corporate
interconnect bus architecture protocols: the XMI bus and the dual-path
CI bus. Included in the manual are the installation procedures, as well as
the testing procedures to determine if the option is working correctly.

intended Audience

This manual is intended for Digital Customer Service personnel, or

customers who install and/or maintain this option. Such topics as
installation and testing are covered in this manual. Digital personnel
includes Customer Service branch-level engineers.

Manual Structure

This manual is divided into three main sections:

User information

Installation procedures

Service

The User Information section has two chapters: the CIXCD introduction
that gives the option’s specifications, and an overview of the VAX
systems that use this option. The Installation Procedures section has
twe chapters: one on site preparation and installation and the other on
verification and acceptance testing. The Service section has two chapters:

a description of the CIXCD diagnostics, and a functional description of
the CIXCD option. Also, there is an appendix with a description of all the
visible registers.

Xi

xii About This Manual

Related Documents

The following manuals can provide additional information about the

CIXCD option and the XMI bus.

Title Order Number

CIXCD Technical Manual’ EK-CIXCD-TM

VAX 6000-400 System Technical User’s Guide® EK-640EA-TM

VAX 6000-400 Installation Guide EK-640EA-IN

VAX 9000 Model 200 Installation Guide EK-92001-IN

VAX 9000 Model 200 Hardware User Guide EK-9201U-UG

VAX Diagnostic User’s Guide® EK.VXDSU-UG

VAX Diagnostic User’s Guide Update' EK-VXDSU-U1

VAX Diagnostic System User’s Guide' EK.VX11D-.UG

VAX Diagnostic Software Handbook! AA-F152A-TE

SC008 Star Coupler User’s Guide EK-SC008-UG

CISCE-AA Installation Guide EK-CISCE-UG

VAXcluster Service Reference Manual’ EK-VCSRM-PK

1Available only to Digital Customer Service personnel or licensed self-maintenance
customers.

Userinformation

This section of the manual contains user information rega-ding the

CIXCD. Important information is included regarding the various

systems that use the CIXCD.

1

introduction

This chapter introduces the computer interconnect hardware interface
options CIXCD-AA and CIXCD-AB. These options provide the interface
between computer systems that use the high-speed XMI bus and the
CI bus. Also included in this chapter are the physical description and
specifications of the hardware.

The sections inciude:

e General description

e Specifications

e Physical hardware description

1-1

1-2 introduction

1.1 General Description

This section describes the components and the features of the CIXCD.

1 1.1 Components

The computer interconnect interface, shown in Figure 1-1, is designated
the CIXCD port adapter. It is an intelligent interface, residing on a single
module, that connects the XMI bus to the high-speed CI bus.

NOTE

All modules that plug into the XMI bus are considered XMI “native
adapters.” We will refer to the CIXCD as the CIXCD adapter, or as
the port adapter.

VAN

! ;CIXCD - STAR

COUPLER
ADAPTER

Figure 1-1 Simpilifiec¢ CIXCD Adapter Connection

As a buffered communications port, the CIXCD adapter completes high-
level computer communications, thereby reducing software processing

overhead. This is accomplished with hardware that provides all of
the necessary data buffering, address translations, and serial data

encoding/decoding. The CIXCD uses queue structures provided under
the VMS operating system to transfer packet messages and to initiate the
transfer of blocks of data between the VAX host memory system and/or

other nodes within the VAXcluster configuration.

The CIXCD-AA adapter is made up of a single hardware module, T2080,

a single header card assembly, 54-20225-01, and a single cable assembly:
either 17-02894-01 for the CIXCD-AA or 17-02894-02 for the CIXCD-AB.

N

introduction 1-3

' 1.1.2 Features
e Resequencing dual path

e XMI bus design

e Typical performance of up to 8 Mbyte/s

e Parity on all internal buses and control stores

¢ Updateable control store

e Diagnostic loopback capability (both internal and external)

e Data integrity through cyclic redundancy checking (CRC)

e Round-robin arbitration at heavy loading, for each path

o Contention arbitration at light loading, for each path

o Packet-oriented data transmission

* Immediate acknowledgment of packet reception

s Operational modes:

. ~ Uninitialized
— Disabled

— Enabled

1.2 Specifications

Ci General Specifications

Priority arbitration

Light loading Contention

Heavy loading Round-rebin

Parity Cyclic redundancy check

Data format Manchester-encoded serial packet

1-4 Introduction

Environmental Specifications

Temperature

Operating 10°C to 40°C (50°F to 104°F) ambient

Storage/shipping

kelative humidity

Operating

Storage/shipping

Altitude

Operating

Shipping/storage

Shock

Electrical Spaecifications

Power consumption:

+5.0 V at 5.9 A nominal

-5.2 V at 1.8 A nominal

-2.0 V at 0.5 A nominal

temperature with a gradient of 10°C (18°FVhr

-40°C to 70°C (-40°F to 158°F) ambient

temperature with a gradient of 20°C (36°F)/hr

10% to 90% with a maximum wet bulb

temperature of 28°C (82°F) with a minimum

dew point of 2°C (36°F) with no condensation

5% to 95% with no condensation

Sea level to 2.4 km (8000 ft)

Maximum operating temperatures decrease by a

factor of 1°C/1000 ft (1.8°F/1000 ft) for operation

above sea level

Up to 9.1 km (30,000 ft) above sea level (actual or

effective by means of cabin pressurization)

5 Gs peak at 7 to 13 ms duration in three axes

mutually perpendicular (maximum)

Maximum ripple:

300 mV

150 mV

150 mV

Introduction

XM Dus Specifications

Bus characteristics

Type Synchronous, pended

Width 64 data bits

Cycle time 64 ns

Priority arbitration Modified round-robin

Parity Even

Data transfers Longword

Quadword

Octaword

Hexword

Transmission characteristics

Bandwidth 100 Mbytes/s (for HW transfers)

Length 17 inches

Bus loading (maximum) 16 nodes

D Ci Bus Specifications

Bus characteristics

Width Serial

External length 45 m (14764 ft)

(maximun;)

Data transfer rate 140 Mbits/s (maximum)

Bus loading (maximum) 32 nodes

Cable type Double-shielded coaxial

(BNCIA-XX)

Cable impedance 50 ohms

1-6 Introduction

1.3 Physical Hardware Description

Refer to Tables 1-1 and 1-2 for an overview of the CIXCD hardware

components. The CIXCD-AA is used on VAX 9000 systems, while the

CIXCD-AB is used on VAX 6000 systems.

Table 1-1 CIXCD-AA Hardware Components

Component Part Number

CIXCD port adapter module T2080

CIXCD header card assembly 54-20225-01

VAX 9000 bulkhead cable assembly 17-02894-01

Jumpers 12-14314-01

CIXCD Interface User Guide EK-CIXCD-UG

Table 1-2 CIXCD-AB Hardware Components

Component Part Number

CIXCD port adapter module T2080

CIXCD header card assembly 54-20225-01

VAX 6000 bulkhead cable assembly 17-02834-02

Jumpers 12-14314-01

CIXCD Interface User Guide EK-CIXCD-UG

1.3.1 CiIXCD Module

The CIXCD module contains the following:

¢ XMI interface logic

e Packet buffer (PB) RAMs

¢ Control store RAMs

¢ Control store EEPROMs

e Local store RAMs

* Five gate arrays:

— XMOV: data movers, XMI interface control

— MCWI: PB memory control, ClI wire interface and control ‘

Introduction 1-7

— MCDP: microprocessor, sequencer

— CIRT (2): Manchester encode/decode logic, byte framer, shift
register

1.3.2 CIXCD Header Card Assembly

The CIXCD header card assembly is made up of two connected parts: a
header card and a plastic cover. The header card is a circuit board that
provides active logic to convert the received CI signals to ECL levels. The

CI bulkhead cables connect to the header card, which then is plugged into
the XMI backplane. The plastic cover provides dual protection: it protects
the components from other cables plugged into the XMI backplane and
it protects the other cables from the components. It also provides a key,
so the assembly can only be plugged into the backplane the correct way.
Figure 1-2 shows the CIXCD header card assembly.

TA ¢ “ °%

B s

0 -:.'" -4 '/// w'og
MR_x0712_80.RAGS

Figure 1-2 CiXCD Header Card Assembly

i-8 Introduction

1.3.3 Cl Bulkhead Cable Assembly

The CIXCD is connected from the XMI backplane, through the header

card and the CI bulkhead cable to the CI bulkhead connector panel.

The CI bulkhead cable is made up of four coaxial cables, each of which

connects to the header card on one end and to the CI bulkhead connector

panel on the other end. The CI bulkhead connector panel is mounted

on the V/O panels of the cabinet (quad panel size for VAX 6000 systems)
and provides an EMI/RFI shield without compromising signal integrity.

Figures 1-3 and 1-4 show the CI bulkhead cable.

A @

MA_XCARY 80 CPG

Figure 1-3 CIXCD-AA Sulkhead Cable

Introduction 1-9

Q Q@ -
> ® T8 §@

—

@ = RB ——fHh
N © %

MA_Rpess 20 CPG

Figure 1-4 CIXCD-AB Bulkhead Cable

1.3.4 Jumpers

The jumpers are required to provide specific configuration information to
the MCDP microprocessor. They are placed in zones D2 and E2 of the
XMI backplane (refer to Section 3.5 for placement information).

O 0000GOAGGROaSHONO0

2
Systems Overview

This chapter describes the families of hardware systems that can use
the CIXCD interface. All these systems have the XMI bus as either the
system bus or as an /O bus.

They include:

e VAX 6000 family (model 200, model 300, model 400, model 500)

e VAX 9000 family (model 200, model 400)

2-2 Sysiems Overview

2.1 VAX 6000 Family

All members of the VAX 6000 family can use the CIXCD-AB interface. In

this family there are four entries, each of which comes with many models.
Table 2—-1 shows the members of this family.

Table 2-1 VAX 6000 Family

Model Members Model Members

VAX 8000 Model 210 VAX 6000 Model 410

model 200 model 400

Model 220 Model 420

Model 230 *%ode] 430

Model 240 Model 440

Model 450

Model 460

VAX 8000 Model 310 VAX 6000 Model 510

model 300 model 500

Model 320 Model 520

Mode! 330 Model 530

Model 340 Model 540

Model 350 Model 550

Model 350 Model 560

2.1.1 VAX 6000 Cabinets

All VAX 60G0 systems use the same standard system cabinet. Figure 2-1

shows the VAX 6000 family cabinet.

AX 6000 Cabinet

£

2-4 Systems Overview

2.2 VAX 9000 Family

All members of the VAX 9000 family can use the CIXCD-AA interface.
In this family there are two entries, one of which comes in many models.
Table 2-2 shows the members of this family.

Tabie 2-2 VAX 9000 Family

Model Members

VAX 8000 model 200 Model 210

VAX 9000 model 400 Model 410

Model 420

Model 430

Model 440

Systems Overview 2-5

2.2.1 VAX 9000 Cabinets

The VAX 9000 family of systems can have many different cabinet
configurations, depending on model type. Model 210 has a unique set
of cabinets, while modei 400 systems all use the same cabinet types, but
with different configurations. Figures 2-2 and 2-3 show the different
cabinets.

) r.-.'q o' OV

[TiT
—

o

-]
(re e

SCU CABINET CPU CABINET 1-O CABINET

vy RIess 82

Figure 2-2 VAX 9009 Model 210 Cabinet

2-6 Systems Overview

|4e,

L]

cano [l caro OFOflOfi0 OFoJioflo carof|carn
CAGE [CAGE ollollol O olo] ollo D CAGEJ (CAGE

(2 (=) (s (o) 06006 E
OHOORO 1010110

- -

108 CABINET CPB CABINET SCU CABINET CPA CABIMET 10A CABINET

©R 25083 o0

Figure 2-3 VAX 9000 MModei 400 Cabinets

BR it aa e IR I N R

Installation Procedures

This section of the manual contains the information necessary to

install the CIXCD option.

3
Site Preparation and installation

This chapter describes the site preparations necessary for installation,
and steps that must be followed to install the CIXCD option.

The sections include:

¢ QOperating environment

e System configurations

o Unpacking and inventory

¢ [Installation and configuration

¢ Backplane jumpers and configuration selection

3.1 Operating Environment

This section describes the system physical specifications that must be

available to install the CIXCD option.

3.1.1 Physical Elements

The CIXCD option requires one /O slot in the XMI backplane.!

There must be the equivalent of two available /O connector panel

openings in the appropriate cabinet? to hold the CI bulkhead cable
connector panel. For VAX 6000 systems, there must be one 102 mm x
102 mm (4 in x 4 in) opening or two adjacent 51 mm x 102 mm (2 in x
4 in) openings. For VAX 9000 systems, there must be one available /O
connector panel opening (4.2 in square).

! All XMI slets are VO slots, except slot 7 in VAX 9000 systems, slots 6-9 in VAX
6000 mod. 500 systems, and slots 5-A in all other VAX 6000 systems.

2 CPU cabi: : for VAX 6000 systems, /O cabinet for VAX 9000 systems.

3~1

3-2 Site Preparation and Installation

3.1.2 System Environment and Grounding Elements

Consult the appropriate system installation manual for information
regarding system environment and grounding requirements.

3.2 System Configurations

The CIXCD option may be installed in many systems under many
different circumstances. For VAX 9000 systems, it might be a new
installation with the CIXCD option already installed, or it might be
an existing standalone system being upgraded to add a CIXCD. For VAX
6000 systems, you might have an existing unclustered system being added
to a cluster, or you might have a clustered system being upgraded from a
CIBCA option to the CIXCD option.

For clustered VAX 6000 and VAX 9000 systems performing initial
installation, since the module and hardware are already installed, go
to Section 3.5.

For nonclustered VAX 9000 systems being upgraded to a clustered system,
begin the installation at Section 3.4.2.

For nonclustered VAX 6000 systems being upgraded to a clustered system,
go to Section 3.4.2 to start the installation.

For clustered VAX 6000 systems, with the CIBCA option, being upgraded
to a CIXCD option, start the installation at Section 3.4.1.

3.2.1 VAXcluster Revision Levels

Ensure that the CIXCD hardware and microcode revision levels are
consistent with the revision level of the cluster, which must be at least

at the N1 level. Consult the VAXcluster Revision Matrix Document (K-
RM-CLUSTER-V-0) for the latest information on N1. For the minimum
acceptable revision levels, refer to Section C.1.

3.3 Unpacking and inventory

The customer is responsible for the actual movement of the equipment to
the installation site. Ensure that all equipment for the CIXCD option is
moved to the designated installation site.

Site Preparation and Instaliation 3-3

3.3.1 Unpacking the Shipping Boxes

1. Locate and open the box marked “OPEN ME FIRST". It contains the
shipping/accessory list.

2. Notify the customer of any opened boxes or cartons, and document
this fact on the installation report.

3. Check all boxes for external damage (dents, holes, or crushed corners).

4. Notify the customer of all damage, and list all damage on the
installation report.

5. Open all remaining boxes.

3.3.2 Inventory

Check the shipment against the shipping/accessory list.

2. Inspect the equipment for damage. Note any damage on the
installation report.

3. If damage is extensive, notify the Customer Service unit manager for
. instructions on how to proceed.

4. Notify the Customer Service unit manager of any missing or incorrect

items.

5. Request that the customer contact the shipping carrier to locate any
missing items.

6. Request that the Customer Service unit manager check with the
Digital Equipment Corporation Traffic and Shipping Department if
the shipping carrier does not have the missing items.

3.4 Instaliation and Configuration

There are three separate procedures involved in the installation of the
CIXCD option. Instailations require one, two. or all three of the following
procedures. Perform them in the order listed.

1. Removal of the CIBCA option. This is required only on currently
clustered systems that are upgrading to the CIXCD option. Refer to
Section 3.4.1.

2. Installation of the CIXCD option. This is performed on all
installations. Refer to Section 3.4.2.

3-4 Site Preparation and Installation

3. Updating the VAX 6000 console microcode. This is required on any

VAX 6000 systems with microcode that does not recognize the CIXCD.

Refer to Section 3.4.3.

3.4.1 Removal of the CIBCA Option

This section describes the steps involved in removing the CIBCA option

from VAX 6000 systems.

CAUTION

Use an antistatic wrist ground strap when you work on a VAXBI
system with its covers removed or when you handle any VAXBI

module. Do not remove any module from the card cage until you

have antistatic packaging ready for it.

1.

2.

Power down the system.

Open the front door of the cabinet and ground yourself with the
attached wrist strap.

Open the Plexiglas doors to gain access to the modules.

Remove the T1045 module and the adjacent T1046 module from the
card cage, taking care to place each one in an antistatic package. Note

the slot numbers.

Open the rear door of the cabinet and ground yourself with the

attached wrist strap.

Checking for the correct slots, carefully remove the 51 mm (2 in) cable

(the outermost one, PN 17-01504-01) from section C of the backplane.
Then remove the inner cable (PN 17-01504-02). Refer to Figure 3-1.

Remove the internal Cl bulkhead cables and the dummy connectors
from sections D and E of the T1046 module slot. Refer to Figure 3-2.

Site Preparation and Installation 3-5

)

\ 2 0INCH CABLE
17-01504-01

S

,,,,, N\

EEEEE

Figure 3-1 CIBCA Intermodule Cables

3-6 Site Preparation and Instailation

ZONE C

ZONE D

ZONE E

RA
]

T8
ouMMY

CONNECTORS

T
A

1]

] C! INTERFACE

-0

BULKHEAD
PANEL

R
B

—

T1045

T1046

Figure 3-2 CIBCA Cable Location

L 13 %

o @

\ J)

A _KoesH 98.CPG

Site Preparation and Installation 3-7

8. Remove the node ID plug from section A of the T'1045 module slot.

Refer to Figure 3-3.

NODE ID PLUGS

©
,

: 8

]
s B

=

.=
=

. i :=3lo] |o] [o] [o] lo] Jumumm
O _ 000 00006000o0 |

VAXBI BACKPLANE

MR _X088290 CPG

Figure 3-3 Node ID Plug Location

9. Remove ail jumpers from sections D and E of the same slot. Refer to

Figure 34.

3-8 Site Preparation and Installation

BOOT TIME ©

EXT HEADER

| EXT ACKTO

CLUSSIZE

CLUSSIZE O

i

o0

6o

80

00

00

[00
00

60

oe

8o

©0

806

00

00

|
e
0
0
Q
0
0
Q
0
6
G
C
O
0
C
O
O
O
6
0

G
Q
O
Q
O
@
O
E
%
@
G
@
Q

SECTIOND

Q0O

e

i

006

06

80

90]
0

o6

o0

o

o

60

69| 60

00 00

SECTION E

e

CNODE A 27

CNODE A 2% |

CNODE A 2%

CNODE A 24

CNODE A 2?

CNODE A 2°

CNODE A 2"

cNODE A 2°

80OOT TIME 3

BOOT TIME 2

BOOY TIME 1

NODE A 27

NODE A 25

NODE A 2°

~NopE A 2°¢

NODE A 23

NODE A 2°

NOOE A 2

NODE A 2°

DELTA TIME 2

DELTA TIME 1

DELTA TIME 0

DiS ARB

Figure 3-4 CIBCA Jumpers

VAXB! BACKPLANE

ASSEMBLY

Jé

MA_X0660 80 CPG

Site Preparation and Installation 3-9

' 3.4.2 Installation of the CIXCD Option
This section describes the steps required to install and connect the T2080-

00 module (CIXCD option) to VAX 9000 systems.

CAUTICN

You must use an antistatic wrist strap when you work on any

VAX system with its covers removed or when you handle any XMI

module. Do not remove any module from its antistatic packaging
until you are ready to install it.

1. Power down the system.

2. Open the front door of the cabinet and ground yourself with the

attached wrist strap.

Open the Plexiglas doors to access the XMI card cage.

Remove the T2080-00 module from the antistatic package and
carefully insert it into an unoccupied module slot in the XMI card

cage (I/O slots only).

On VAX 6000 systems, you cannot configure the CIXCD in the

center six slots (5-A) of the XMI card cage (the restriction for model

. 500 systems is slots 6-9). This area of the card cage is covered
by the arbitration daughter card, so the header card and CIXCD
configuration jumpers cannot be installed.

On the VAX 9000 systems, this restriction applies only to slot 7. All
others are I/O slots.

Figure 3-5 shows the T2080-00 module installed in the XMI card

cage. Notice the proper module orientation in relation to side 1 of the
module. Side 1 of the T2080-00 module has the greater number of

components on it, and should be facing to the right, when viewing the

module from the front of the cabinet.

3-10 Site Preparation and installation

SLOT 11 (CIXCD)

SLOT 8 (XJA)

SLOT 7 (CCARD)

MR 20880 90

Flgure 3-5 CIXCD Module Instalied In Card Cage

5.

6.

Close the Plexiglas doors and remove the wrist strap. Open the rear
door of the cabinet and ground yourself with the attached wrist strap.

Instal! the configuration jumpers into the I/O header in zones D2 and

E2 of the slot containing the T2080-00 module (refer to Figure 3-7).

Route the internal CIXCD bulkhead cables and install the VO
bulkhead panel.

Using a torque wrench (PN 29-27973-01), connect each of the CIXCD

bulkhead cables to its corresponding coaxial connector on the header
card (refer to Figure 1-2). The torque specificat.on for this connector
is 7-10 inch-pounds. The cables and their corresponding connectors

are:

TA- J6

TB= J5

RA= J4

RB=J3

Site Praparaticn and Installation 3-11

' 9. Carefully insert the header card into the I/0 headers in zones D1 and
E1 of the slot containing the T2980-00 module. Side 1 of the card
(with the cables attached) should be facing to the right as you view
the backplane from the rear of the cabinet. The header cover is keyed,
so the header card cannot be plugged in incorrectly. This also secures
the header card to the backplane.

NOTES

1. Unlike the CIBCA adapter for the VAXBI bus, the CIXCD
does not use “dummy” connectors.

T+ ks owor cover is keyed in such a way that the header
cars o - eaby & in DI/EL

3. The recommended quiet slot time for all nodes in clusters
is 10. A quict slot time of 10 is reguired for all clusters that
contain a CIXCD. Refer to Section C.2.

3.4.3 Updating the VAX 6000 Cor:sole Microcode

Some VAX 6000 systems must have updated console microcode to
boot th~ough the CIXCD. This section describes the steps required to
determ:ne if the update is needed and te perform the update.

3.4.3.1 Determining the Need for Updated RMicrocode

At the >>> prompt, issue the SHOW CONFIGURATION command. If the
system does not recognize the CIXCD, then it needs updated microcode.
Refer to Examples 3-1 and 3-2.

NOTE

The XMI device type code for the CIXCD is 0CO05.

3-12 Site Preparation and Instaliation

>>> SHOW CONFIG

Type Rev

1+ KA64A (8001} 8002

2+ MS62A {4001 0002

4+ 2?22?7272 (0CO5) 0621

D+ DWMBA/A (2001) 0002

E+ DWMBA/A (2001) 0002

¥XBI D

1+ DWMBA/B (2107) 0007

5+ DMB22 (01C9) 210B

6+ DEBNA (410F) 0248

XBI E

1+ DWMBA/B (2107) 0007

2+ KDB50 (010E) OF1C

€+ TBKSO (410E) 0248

>>>

Example 3-1 SHOW CONFIGURATION With Oid Microcode

>>> SHOW CONFIG

Type Rev

1+ KA64A (8001) 8002

2+ MS62A (4001) 00C2

4+ CIXCD (0C05) 0621

D+ DWMBA/A (2001) 0002

E+ DWMBA/A (2001) 0002

XBI D

1+ DWMBA/B (2107) 0007

5+ DMB32 (0109) 2108

6+ DEBNA (410F) 0248

XBI E

1+ DWMBA/B (2107) 0007

2+ KDB5O0 (O10E) OF1C

6+ TBKS50 (410E) 0248

Exampie 3-2 SHOW CONFIGU'RATION With New Microcode

Site Preparation and Installation 3-13

1. Locate and insert the update tape cartridge into the TK tape drive
following these steps:

a. Check that the tape drive LOAD/UNLOAD button is out and the

power is on.

b. Open the drive door by pushing the cartridge-release handle to
the left.

c. Hold the tape cartridge with the write-protect switch up, the

arrow on the side of the cartridge pointing toward the tape drive.

d. Insert the cartridge into the TK drive.

e. Close the door by firmly moving the cartridge-release handle to

the right.

f. Depress the LOAD/UNLOAD button.

2. Turn the lower keyswitch to the Update position. Refer to Figure 3-6.

Update

Hah

Auto Strart

MR _x086' 90 CPG

Figure 3-6 The Update Position

3-14 Site Preparation and Instaliation

3. At the >>> prompt, type the PATCH EEPROM command, and reply
“Y” to the PROCEED? query.

>>>

>>> PATCH EE

26D EEPROM Revision = 2.0/4.4

?6F Tape image Revision = 2.0/4.E

Proceed with EEPROM update? (Y or N} >>> Y

?69 EEPROM changed successfully.

>>>

>>>

4. If the VAX 6000 system is a multiprocessor system, the new console
microcode must be propagated to all other processors. At the >>>

prompt, type in the UPDATE ALL command.

5. Check that the new microcode has been r.orrectly loaded into the
system. At the >>> prompt, type the INITIALIZE command. Check
the microcode revision level listed in the last line of the printout.

6. The VAX 6000 is now ready to boot through the CIXCD.

>>>

35>

26D

PATCH £F

26F

EEPROM Revisior - 2.0/4.4

Proceeg w:.r EEPROM .update? (Y

269 EEPRCM changed successfu.ly.

>>>

>>»> 1

F

ROM = 13,1 EEPROM

22C For Secondary

283

22D For Secondary

253

>>>

23>

»>»> U ALL

23>

»>>]

F E D Cc 8

A . A .

Q . + .

ROM = 3.1 EEPROM

53>

22>

Exampie3-3 Upsisting VAX 6000 Console Microcode

> o @

.

»

2

s

e

s

e

o

@

= 2.0/4,E SN

Processor 4

EEPROM revision mismatch.

Processor 5

EEPROM revision mismatch,

= 2,0/4,E &R

Tape image Revision = 2.0/4,E

ar

Secondary processor

Secondary processor has revision

Site Preparation and Installation 3-15

N} >>> Y

6 5 4

. P p

. + +

. E E

. + +

- E E

hd . -

AGR&. 22189

6 5 4

. P P

Y + +

. E E

“ + +

- E E

+ - -

AGB84102189

has revision

Al

32

W
+

T
+

O

+
W
+

W
+

O

NODE ¢

TYP

STF

BPD

ETF

BPD

XBl E +

1wV

2w

2.0/4.4

2.0/4.4

NODE #

TYP

STF

BPD

ETF

8PD

XBl E +

ILV

32 Mb

3-16 Site Preparation and Installation

3.5 Backplane Jumpers and Configuration

Selection

To correctly configure the CIXCD, place the jumpers in the correct place
in the backplane. The XMI bus backplane-pin numbering is the same as

the VAXBI bus backpiane-pin numbering. There are 29 possible pins that
may need jumpers on the backplane, in sections D and E of the backplane.
The corresponding jumpers are denoted W1 through W30, with W9 being
reserved. Refer to Figure 3-7 to determine which jumper corresponds to
which backplane pin. Note that the jumpers are only placed in zones D2

and E2.

The functions that can be modified by jumper placement are the following:

e CI node address

¢ Beot time

e Disable arbitration

o Extend header

e Alter delta time (quiet slot time)

® Cluster size

o Extend ACK timeout

Site Preparation and Installation 3-17

JONE D 20NEE
1 2 A\ 2

W% 16 3 - Ot w1 W &% 16 it - 01 wm\

47 17 i = 02 W2 4 V7 32 = 02 w7

48 18 31 e 03 w3 48 18 3 = 03 wis
COMPLEMENT TRUE

@ 9 4 = 04 Wa Ci NODE o 9 M = 04 w19 CINODE
& ADDRESS b ADDRESS

&% X 35 @ 08 WS 5 20 35 = 05 W20

51 2 36 = 08 w6 &t 24 3 = 06 w21

% 2 3? - 07 w? 2 22 37 = 07 W22

L $3 23 u—oa]wa) [5 23 u-eajw«aJ
%4 24 30 - 09 wo RESERVED 54 24 »] W24 N
55 2% 40 = 10 W10 DISABLE ARB % 28 & = 10 WS

b BOOT TIME

5% 26 4 - W EXTEND “EADER 56 26 €1 = 1Y W26

87 7 Q2 - 12 w12 EXTEND AC- TO 57 27 Q2 - 12 w27 y

58 2 43 = 13 Wi 8 28 a3 = 3 w28
ALTER

% 2 i = 13 wWis CLUSTER SIZE % 29 “ - 14 w29 gELETA'
I

60 30 @ o 15 wis 60 45 = 15 W30

@ CLUSTERAS THAT HAVE A CIXCD INSTALLED MUST WAVE THE QUIET SLOT TIMES FOR
ALL NODES SET TO 10

MA X2 B8

Figure 3-7 CIXCD Jumper Pinning

3.5.1 CiNode Address

The CI node address is obtained from the CIXC port adapter module’s
backplane slot, with both the CI node address and its complement
configured exactly the same. To configure the jumpers for the node’s
address, refer to Table 3-1 for the true-address and the complement-
address configurations.

418 Site Preparation and Installation

Tabie 3-1 Ci Node Address Table — True/Complement

True Address

Ci

Node wie W17 wis W19 Wab w2l wa2 waa

Addr(10) E1/31 E2/32 E333 E¢34 EBS5 Ees8 E737 Ew3s

0 Out Out Out Out Out Out Out Out

1 Out Out Uut Out Out Out Out In

2 Out Out Out Out Cut Out In Out

223 In In Out In In In In In

Complement Address

Ci

Node wi w2 ws W4 D§ Deé D7 D8

Adde(10) D1/31 D2/32 D933 D434 D&/3 D@38 D737 D8a3s

0 Out QOut Out Out Out Out Out Out

i Out Out Out Out COut Out Out In

2 Out Out Out Out Out Out In Out

223 In In Out In In In In In

NOTES

CI node addresses 224 through 255 are reserved for Digital

Equipment Corporation.

The address in the complement address field must be exactly the

same as the address in the (rue address field.

Site Preparation and installation 3-19

3.5.2 Boot Time

The boot time is the length of time the port will wait after power-
up to exit the uninit state. Refer to Table 3-2 for the correct jumper
configuration. All jumpers out is the default configuration.

NOTE

‘The boot time is the maximum length of time the port will wait
after power-up to exit the uninit state. In normal operation, the
port will exit this state in conjunction with the virtual machine
bootsirap (VMB) long before exhaustion of this timer. To ensure
proper operation, all jumpers must be left in the default (out)
configuration.

fable 3-2 Boot Time Backplane Jumpers

W24 wWas was wer

fime E® 39 E10/40 Elv/41 E12/42

500 Out Out Out Out (Default)

400 Out Out Out In

300 Out Out In Out

200 Out Out In In

100 Out In Out Out

000 Out In Out In

‘900 Out In In Out

1800 Out In In In

1700 In Out Out Out

1600 In Out Out In

1506 In Out In Out

J400 In Out In In

0300 In in Out Out

0200 In In Out In

0100 In In In Out

0000 In In In In

3-20 Site Preparation and installation

3.5.3 Disable Arbitration

The disable arbitration bit, when set, defeats the normal arbitration

sequence and allows the CI controller logic Lo transmii after waiting only
one basic quiet slot (delta’ time. The jumper that controls this bit is W10

(D10/40).

Jumper out = Allow normal CI arbitration (default)

Jumper in = Disable normal CI arbitration

3.5.4 Extend Header

Jumper W11 (D11/41) controls the extend header bit that, when set,
allows the CI controller logic to extend the numbes of bit sync characters
in the header.

Jumper out = Normal header (default)

jumper in = Extended header

3.5.5 Aiter Deita Time

These bits force the CI controller logic to increase the basic quiet slot

delta time. Refer to Teble 3-3 for the configurations.

Table 3-3 Quiet Siot Time Backplane Jumpers

Quiet was wee w30
Slot Count Eiv43 El44< E158/48

7 Out Out Out

10 Oat Out In (Required setting for
CIXCD)

Reserved Out In Out

Reserved Out In In

Reserved In Out Out

Reserved In QOut In

Reserved In In Out

Programmable In In In

NOTE

For clusters that have a CIXCD installed, all nodes in that cluster

must have their quiet slot time set for 10. Refer to Section C.2.

Site Preparation and Installation 3-21

3.5.6 Cluster Size

The cluster size bits cause the arbitration logic to arbitrate for more than

16 nodes (which is the default). If any node in the cluster has a node

number greater than 15, the appropriate cluster size must be indicated

with these jumpers. Refer to Table 3—4 for the configurations.

Table 3-4 Cluster Size Backplane Jumpers

wis Wié W18

Node Count D13/43 Dile44 D185/48

16 Out Out Out (Defauit)

32 Out Out In

64 Out In Out

128 Out In In

224 In Out Out

Reserved In Out In

Reserved In In Out

Reserved In In In

3-22 Site Preparation and Installation

3.5.7 Extend ACK Timeout

The extend ACK timeout bit forces the CI controller logic to increase the
timeout period for an ACK return. The jumper that represents this bit is

W12 (D12/42).

Jumper out = Short timeout (default)

Jumper in = Long timeout

NOTE

A system with no jumpers would be configured in the following

way:

o (I node address = 0

e Boot time = 1500 s

¢ Normal CI arbitration

e Normal header

¢ Quiet slot delta time = 7

o Cluster size = 16

o Short ACK timeout

4

Verification and Acceptance Testing

This chapter describes the procedures to verify that the system is in good
working condition. The sections include:

¢ Diagnostic verification

e System maintenance tools

4-1

4-2 \Verfication and Acceptance Testing

4.1 Diagnostic Verification

After completing the CIXCD installation, verify that the system works

as it is supposed to. This section lists the steps required to test out the

system.

4.1.1 Diagnostic Programs

There is a specific set of diagnostic programs used to determine if the

CIXCD adapter is working properly. Figure 4-1 describes the testing

procedure for the CIXCD, while Table 4-1 lists the diagnostic programs

that must be run as part of this procedure.

‘ START ’

'l POWER-UP SELFTESY J

3
REPAIR-LEVEL DIAGNOSTIC

TESTING WiTH ATTENUATORS

ATTACHED TO C! BULKHEAD

CONNECTORS

:
FUNCTIONAL DIAGNOSTIC

TESTING OF CIXCD LOCALLY

)
FUNCTIONAL DIAGNOSTIC

TESTING OF CIXCD

CONNECTED TO STAR COUPLER.
COMMUNICATING WITH OTHER

CINODES

MR x-7°2 &9

Figure 4-1 CIXCD Acceptance Testing Flow Diagram

Verification and Acceptance Testing 4-3

Table 4-1 CIXCD Diagnostic Programs

Program Program Program

Designation Level Title

XCDST 5 CIXCD self-test

EVGEA 3 CIXCD repair-level diagnostic

EVGEB 3 CIXCD microcode update utility

EVGAA 3 CI functional diagnostic 1

EVGAS 3 ClI functional diagnostic 2

EVGAC 3 Cluster functional diagnostic

EVXCI 2R CI exerciser diagnostic

4.1.2 Power-Up Self-Test

After a system power-up or reset, the CIXCD runs its self-test (XCDST),
which provides logic level testing for the module. It is designed to provide
coverage of > 95% of all possible “stuck at” faults.

After successfully completing XCDST, the CIXCD turns on its yellow
self-test LED. The pass/fail information is also available to the console
terminal. To get the steps necessary to retrieve this information, refer to
the VAX 9000 Model 200 Hardware User Guide.

On VAX 6000 systems, there is console printout at power-up that shows
the status of the system elements, including the CIXCD. Example 4-1
shows a console printout in which the CIXCD is at node C.

4-4 Verification and Acceptance Testing

F E P o B A 9 8 7 [5 4 3 2 1 0 NODE #

A A A bdt | M TM P P 4 P TYP

o o . * + . STH

- . 3 E D B BPC

. R - * [y - ETE

E C B BPD

e e . s XBI D

+ v . + + . XB! E -

A4 A3 Az Al . . . - . ILV

32 32 32 32 i128ma

Example41 VAX 6800 Console Printout

In this system, the CIXCD is node C and it passed its self-test. This is

shown by the plus sign (+) in the third row (labeled on the right side with
“STFTM). We can tell that nodes D and E are not CIXCDs because they have

an “o” in the self-test row, which indicates that they did not run a self-
test, and the DWMBA/A is the only option that does not run self-test. The
notation for failing self-test is the minus sign (-). For more information

about this printout, refer to the VAX 6000-400 System Technical User’s
Guide (EK-640EB-TM).

4.1.3 Preliminary Diagnostic Setup

Prior to running the macrodiagnostics, you must set up the system

both hardware- and software-wise. The hardware setup requires the

installation of CI bus loopback connectors; the software setup requires the

running of the VAX Diagnostic Supervisor (""DS) program.

4.1.3.1 Loopback Connectors

Before running the diagnostics, make the following CI bus loopback

connections on the CI bulkhead connector panel located at the back of the

panel (refer to Figure 4-2).

1. Using one of the attenuator pads (PN 12-19907-01) and two of the

Kodularity cables (PN 70-18530-00), connect the transmit A to receive

2. Perform the same connection for path B using another attenuator pad

and two more modularity cables, connecting transmit B to receive B.

Verification and Acceptance Testing 4-5

MODULARITY CABLE
P:N 70.185%3000

ATTENUATYOR PAD

P/N12.16907-01

MODULARITY CadLe

L P:N 70-18530-00

R 20862 80 CPG

Figure 4-2 Diagnostic Loopback Cable Connections

4.1.3.2 Loading the VAX Diasgnostic Supervisor (VDS) Program

The level 3 diagnostics are stand-alone programs that require the support
of VDS in order to run. Follow the steps listed below:

1. Load VDS into physical memory from the console load device. This

procedure can vary, depending on the type of system in which the
CIXCD is being installed. (Refer to the applicable system installation

. manual for the VDS load and run procedures.)
2. Identify the CIXCD adapter to VDS, specifying its node configuration

parameters. The ATTACH/SELECT sequence of VDS varies according

to the system.

NOTE

Before installing the CIXCD hardware, yo* should be familiar

with the ATTACH and SELECT sequences of VDS for the
processor that is used.

If VDS is loaded through a CIXCD, VDS assigns the designation

PAAO to that CIXCD. Otaer CIXCDs to be tested should be
assigned other designations (for example, PABO or PACO).

Be careful to avoid the command SELECT ALL under these
circumstances, as it will cause PAAD to be tested. (Not
booting through the CIXCD allows you to use both the PAAO
designation and the SELECT ALL command.)

VAX 6000 example:

Ds> ATTACH CIXCD HUB PABO C 5

4-6 Verification and Acceptance Testing

VAX 9000 example:

DS> ATTACH XJA HUB XJAO O 8

DS> ATTACH ZIXCD XJAO PABO 3 7

3. Select the CIXCD :dapter as the test unit, as follows:

DS> SELECT PABO, XJAO

4. Show the unit selected, as follows:

DS> SHOW SELECT

Verification and Acceptance Testing 4-7

4.1.4 Repair-Level Testing

The repair-level diagnostic for the CIXCD is EVGEA. You must
successfully complete five passes of this program to satisfy acceptance
testing requirements.

1. Ensure that the diagnostics are accessible through the default
load path during diagnostic acceptance testing. This might require
changing diagnostic media in the current load-path device.

2. Load EVGEA, as follows:

DS> LOAD EVGEA

3. Set the desired VDS control flags:

* Enable printing of the number and title of each test before it runs.

¢ Enable halting on a detected error.

DS> SET FLAGS TRACE, HALT

4. Start the diagnostic program.

DS> START/PASS:5

Example 4-2 provides trace printouts for EVGEA.

4-8 Verification and Acceptance Testing

DS> st/pass:l

. Program: EVGEA CIXCD Functional Level 3 Diag , revision 2 0, 25 tests,

at 13:53:14.27.

Testing: _PABO

Test - 1 Scan Data

Subtest

Subtest

Subtest

Subtest

-1

- 2

-3

- 4

Test - 2 PMCS

Subtest

Subtest

Subtest

Subtest

-1

-2

-3

- 4

Scan

Port

Port

PMCS

Path Verification

Data Register Loopback

Scan Control Register

Scan Shift Register

RAM Data Path

EEPROM region Checksum

Backup region Functional Microcode Checksum

Primary region Functional Microcode Checksum

Backup region Self-test Microcode Checksum

Primary region Self-test Microcode Checksum

Tast - 3 PMCS RAM Memory

Test - 5 CIXCD Node RESET

Subtest - 1 Run Self-test via XBER NRST - Check XBER status

Subtest - 2 XMOV loads RAM from EEPROM - Check XMOV and RAM data

Test - 6 Scan Visibility Bus CS Address Field

Loading Microcode file EVGEA.BIN

Test - 7 XMI Device (XDEV) and Port Serial Number Register (PSNR)

Test - 8 ROM Based Diagnostic Interface

- Power Up Self-test

Test 1 - Port

Subtest

Subtest

Subtest

Subtest

Subtest

Subtest

Subtest

Subtest

Subtest

Subtest

Subtest

. End of

time is 30-MAR-1990 13:54:13.34

DS>

1

2

3

4

-5

6

7

8

-9

run,

RBD

RBD

RBD

RBD

RBD

RBD

RBD

RBD

RBD

o]

2

2

2

2

3

3

4

1

Test 2

Test 3

Test 4

Test 1

Test 2

Port

Port

Port

Port

Port

Local Store Data Integrity

Local Store Address Independence

Leccal Store Literal Addressing

Local Store TCB Base Relative Addressing

Packet Buffer Data Integrity

Packet Buffer Address Independence

- #MI Commander

- Verify CI jumpers

- 10 RBD 1 - External Loopback on Path A

- 11 RBD 1 - External Loopback on Path B

0 errors detected, pass count is 1,

Example 4-2 Trace Printout for EVGEA (One Pass)

Verification and Acceptance Testing 4-9

4.1.5 Cl Functional Level Testing

With the CI bus cables and attenuator pads providing signal loopback,

load and run the CI functional diagnostics EVGAA and EVGAB. You

must successfully complete a minimum of five passes of each diagnostic
program to satisfy acceptance testing requirements. Examples 4-3 and

4-4 show trace printouts for EVGAA and EVGAB respectively.

1. Ensure that the diagnostics are accessible through the default

load path during diagnostic acceptance testing. This might require

changing diagnostic media in the current load-path device.

2. Load the EVGAA diagnostic program.

DS> LOAD EVGAA

3. Set the desired VDS control flags:

a. Enable printing of the number and title of each test before it runs.

b. Enable halting on a detected error.

DS> SET FLAGS TRACE, HALT

4. Start the EVGAA diagnostic program.

DS> START/PASS:5

5. After five successful passes of EVGAA, load and run EVGAB.

DS> LOAD EVGAB

Ds> START/PASS:5

6. Disconnect the attenuators from the ends of the CI bus cables in
preparation for routing and connecting the cables to the star coupler.

7. Route and connect the cables to the star coupler.

NOTE

For information on connecting the coaxial CI bus cables, refer

to the SC008 Star Coupler User’s Guide.

8. Repeat steps 2, 4, and 5 of this procedure.

4-10 Verificationand Acceptance Testing

DS> st/pass;s:

«s Programs

at oo

Testing

Evert Flag 1

58::2.89.

_PABO

= Load 1 Microcode

EVGARA - CI Furctiora. Part I,

SET

Event F.ag 2 SET = Print Queue Entries
€ETEvent F1l

Testing Device PABC

EEPROM Revision = 00zC

Test 13

Yo. CANNOT Difterentiate between a CI'80, CI750,

ag 3

C.uster Corn

funcl:ona.

figuration

Levei 3,

= REQID Loop Function in Test 1

Revision = QOFC

Cilster Configurat:or for Path A
(A S A LA RERE RS R 2R ZALRRR RSS2 N2 NN}

{PS = Parr Se.eu1,

You CAKNOT Differertiate petween a CJ783, CI750, or a CIHCI remotely.

-evice

TP - Transm.tu Path,

#ard Soft

Rev. FRev.

Extended Port

Fanctionality

: C0J1 OFFFB81IC(X)

gocl ¢c0020C0(X)

Path

Status

C.uster Corfiguraticn for Path B

ehbedddsdtadddddvsonantndRddgindne

{PS = PaL" Se.ect,

Test

Tes"

Tes:

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Tess

Test

Test

e

s
s

8
8

e

8
0

s

e

a
n

[
V

-
I
R

S
C
I
R
N
R

 V
I
R
)

.

[

R
E
I
E
-
B
NL
N

B
V
 L
N

S

1

e

e

8
0

o
3

o
o

e

b

e

s

Cevice

Tyce

TP = Transmit pPath,

rard Sof:

Rev. Rev.

RP = Receive Path)

fRtended Fort

tunctiona.ity

i3l 002sl OFFFB1CC(X}

clll 2508200000

Noges WIT l.steu a2

SYTCHT witr Var.o.s Masks ard M Val.es

SETCKT fcr

S*TCKT for

REQID Bas.¢

REQ.L Witr 6 Packetrs orn [(FQ

Satagram !

tav- Val.a Port

LrVa.L LG Pert

scarg

rect ex.st

Response Quieue Aval.an.e [(nterrypt

Send Catagrar

n No Virtuia, Circult Open

Serd Message lrossing Page Bourdary

Message Lergin Test

Packet S.ze Vio.ation

Send Icopback {SNDIB)

SNDMSS Wit

SNOLB Ful.

SN2L3 Fu.l

8.f%er on Pat" A

B.:!fer on Pat* B

SNDLB Autcratic Fa'n Se.ect.on

.. Era of rur, C errors tetected,

time

28>

Example4-3 Trace Printout for EVGAA (One Pass)

.5 CZ-APR-99C .1:58:36.4C

pass count

Path

Status

oK

o]4

on C..uster

w
w
m
y

t
a
w

W
W
y

o

?

s

A

A >
,

w
d

revision 6.0, 17 tests

or a CIBCl remotely.

RP = Receive Path)

>
»
P

L
u
R
n

Y
@
t

v
x

Verification and Acceptance Testing 4-11

08> sr/passy.

.. Programs FVCAB « O Vinctiora, Part !, Leve: 3, revision 6,0, 12 tests

ar LeilBicd.By

4

Testing _PARD

Evert Flag 1 SET = lLoad C! Microcode

Event Piag ¢ SET - Print qaeur Entries

Fvent F.ag 3 S&T « Not Used 8y Tris Claghostic

Testing Levice PABD

EEFROM Revislen =« 2020 Functiona. Revision = JQFC

iest 1% Send Data witn Offset Compinations

Test 2: Request Data witn Uffset Corpinaticns

Test 33 'nva.icale Trars.at!on Cache

Test 4: SNOMIAT irn Erabied/Maintenance State

Pert functionality aoes not s.ppor® thn.s lest

Test 5: SNDMDAT {n Erabied State

Port functionality does rot s.pport *rn.s Test

Test 6: REQMDAT (n Enap.ea/Majrntenance State

Port functioraiity does rot support this tes:

Test ': REQMUAT [rn Enabled State

Port funhctional!ity does not support this test

Test B; SEND RESET irn Enabiea State

Test 9: Queue Frotoco.

Test (0% Buffer Reaa Access

Test 11! Buffer Write Access

Test 10t Write ¢ Zlopal Huffer

.. Era of rur, 0 errors detected, pass count is L.

t.me (s C2~APR~.99C 12:05:47.34

o8>

Example-4 Trace Printout for EVGAB (One Pass)

With the CIXCD still connected to the star coupler, load and run the
system functional diagnostic EVGAC. You must successfully complete a
minimum of five passes of this diagnostic program tc satisfy acceptance
testing requirements.

1. Ensure that the diagnostics are accessible through the default
load path during diagnostic acceptance testing. This might require
changing diagnostic media in the current load-path device.

2. Load the EVGAC diagnostic program.

DS> LOAD EVGAC

4-12 Verificationand Acceptance Testing

3. Set the desired VDS control flags:

2. Enable printing of the number and title of each test before it runs.

b. Enable halting on a detected error.

DS> SET FLAGS TRACE, HALT

4. Start the EVGAC diagnostic program.

DS> START/PASS:S

Example 4-5 shows trace printouts for EVGAC.

PS> st/pass:]

.. Program: EVGAC - CI Functional Exerciser, revision 1.1, 8 tasats

at 11:51:09.89,

Testing _PABO

Test 1: Local Configuration

Test 2: Local Adapter Test

Test 3: Datagram Test

Test 4: Virtual Circuits Teat

Test S: Message Test

Test 6: Multiple Message Test

Test 7: Write/Read Buffer Test

Test 8: Activity Test

.« End of run, 0 errors detected, pass count is },

time is 02-APR-1990 11:55:53,84

DS>

Example 4-5 Trace Printout for EVGAC (One Pass)

Verification and Acceptance Testing 4~13

4.2 System Maintenance Tools

In addition to the specified stand-alone diagnostics, there are some

additional tools available to verify the CIXCD adapter. Table 4-2 provides

a summary of the VAXcluster system maintenance tools.

Table -2 VAXcluster System Maintenance Tools

Tool Function

EVXCI A level 2R multipurpose exerciser that provides local
CI interface functiona! testing, as well as a means to

determine the ability of VAXcluster nodes to reliably
communicate using the CI bus.

ERF The Errorlog Report Formatter. The user may create
reports with the system errors catalogued in various

1
ways.

VAXsim A VAX System Integrity Monitor utility progr.um
that monitors and filters errors as they are logged

by the VMS operating system. The VAXsim prograrn

provides the user with a warning mechanism that

quickly identifies an option that has either failed or has

degraded operationally.?

SHOW CLUSTER Allows the display of a large variety of utility

information relevant to the configuration and operation

of the VAXcluster system of which the host system is a

member.?

SET HOST/HSC Allows a terminal on a host VMS system to effectively
become an HSC50/70 terminal. The user can then

issue any standard HSC50/70 commands and look at
or control the HSC50/70 just as if it were a terminal

connested directly to one of the HSC50/70 terminal

ports.

1For more information, consult the VAX/VMS Error Log Utility Reference Manual, (AA-
Z402C-TE).

2For more information, consult the VAX System Integrity Monitor User Guide, (AD-KNSOA-
Th.

3For more information, consult the VAX/VMS Show Cluster Utility Manual, (AA-LA46A.
TE).

4For more information, consult the VAX/VMS DCL Dictionary, (AA-LA12A-TE) under SET
HOST/HSC.

Service

This section of the manual contains service information regarding

the CIXCD. It includes information about the self-tests, as well as

information about the diagnostics, both ROM-based (RBDs) and

macros. It also details the acceptance tests and procedures required

as part of installation.

5
Diagnostics

This chapter describes the diagnostic programs that are used to test the

CIXCD. The main sections of this chapter are:

e CIXCD self-test/ROM-based diagnostics

o Macrodiagnostics

5-1

5-2 Diagnostics

5.1 CIXCD Self-Test’/ROM-Based Diagnostics

The CIXCD self-test (XCDST) and the ROM-based diagnostic (RBDs) are

microdiagnostics for the CIXCD.

5.1.1 XCDSY

The CIXCD self-test is run automatically on a system power-up or XMI

reset. It can also be run as RBDO, from the RBD user interface (refer to
Section 5.1.2.1). The test, located in the CIXCD EEPROM, is designed to

provide logic-level testing for the module, making sure that the CIXCD is
fully operational. The testing is done under the control of the CIXCD port

processor, using a bottom-up approach, meaning that each test executes

only after all preceding tests have successfully completed.

When XCDST runs automatically and fails, the indication is that the

self-test passed (STP) LED on the module does not turn on, and the self-
test failed (STF) bit 10 in the XMI bus error register (XBER) is set. In

addition, an error code is written into the port diagnostic control/status
register (PDCSR). The error code is the number of the failing test.

NOTE

The diagnostic tests are numbered in decimal (1-22), while the
error codes are in hexadecimal (1-18). Be aware that, for example,
error code 11 indicates a failure of test 17.

There are additional tests, performed by the functional microcode, whose

failure prevents the STP LED from turning on. In the course of loading

itself into the control store RAMs, the functional microcode must test

the CI jumpers on the backplane to make sure they contain the correct

information. If an error is found, one of the codes listed in Table 5-1 is

put into the PDFLT field of the PDCSR. Note that bit <07> is always set
by these codes.

If no errors are found by either the diagnostics or the functional

microcode, the code AO(hex) is put into the PDFLT field.

Diagnostics 5-3

Table 5-1 Functional Microcode Test Fallure Error Codes

Error Code Description

81 Illegal cluster size value in jumpers.

82 Node number does not validate. The node number given in the
backplane jumpers is greater than the cluster size given in the

jumpers.

83 Quiet slot time is illegal. The slot time field in the backplane

jumpers is an 1illegal value.

84 Node and complement node addresses different. The node

number and complement node number address fields in the

jumpers do not match.

5.1.1.1 XCDST Tests

The tests that are performed by the XCDST are as follows:

Test 1: Port Processor ALU Status and Branch Test

Subtest i: ALU Z bit set, ALU NZ bit cleared
Subtest 2: ALU NZ bit set, ALU Z bit cleared
Subtest 3: ALU N bit

Subtest 4: ALU C bit

Subtest 5: LOOP COUNT ZERO condition
Subtest 6: PDP RREG

Subtest 7: PDP YREG <07:00>

Subtest 8: PDP YREG <07:08>

Subtest 9: PDP micro status register

Subtest 10: Masked hranch bits <03:01>

Subtest 11: Masked branch bits <03:02>

Subtest 12: Masked branch bits <03>

Test 2: ALU Arithmetic/Logical Function Test

Subtest 1: ALU ADD function

Subtest 2: ALU SUB function

Subtest 3: ALU AND function

Subtest 4: ALU OR function

Subtest 5: ALU XOR function

5-4 Diagnostics

Test 3;: General Purpose Register Test

Subtest 1. GPR data independence

Subtest 2: GPR address independence

Test 4: Microsequencer Stack Testing

Test 5: Internal Bus Loopback

Subtest 1: PORT IB buffer through the X bypass and Y bypass
Subtest 2: PORT IB buffer through the X MUX and Y MUX
Subtest 3: PORT IB direct through the X MUX and Y MUX

Test 6: Interval Timer Testing

Subtest 1: Verify short interval

Subtest 2: Verify long interval

Test 7: Local Store Testing

Subtest 1: Local store data independence
Subtest 2: Local store address independence

Subtest 3: Local store literal addressing

Subtest 4: Local store TCB base relative addressing

Test 8: Memory Control and Wire Interface Tests ‘
Subtest 1: Mover A packet buffer address register

Subtest 2: Mover B packet buffer address register

Subtest 3: Port packet buffer address register
Subtest 4: Memory controller register independence
Subtest 5: Packet buffer data independeiice

Subtest 6: Packet buffer address independence

Test 9: Data Mover A

Subtest 1: Data mover A byte count register (MVABCR)
Subtest 2: Data mover A XM! address register (MVAADR)
Subtest 3: Data mover A XMI next page register (MVANPR)

Subtest 4: Data mover A register independence

Test 10: Data Mover B

Subtest 1: Data mover B byte count register (MVBBCR)
Subtest 2: Data mover B XMI address register (MVBADR)
Subtest 3: Data mover B XMI next page register (MVBNFPR)
Subtest 4: Data mover B register independence

Diagnostics 5-5

Test 11: XMI Commander test

Subtest 1:

Subtest 2:

Subtest 3:

Subtest 4:

Subtest 5:

Subtest 6:

Subtest 7:

Subtest 8:

Commander address A register (CMDRAAR)
Commander address B r~gister (CMDRABR)

Commander XMI datal LO register (CDAT1LR)
Commander XMI datal HI register (CDAT1HR)
Commander XMI data2 LO register (CDAT2LR)

Commander XMI data2 HI register (CDAT2HR)
Commander register independence
Commander longword data transfer

Test 12: XMI Responder

Subtest 1:

Subtest 2:

Responder data register

Responder offset

Test 13: Data Mover Loopback

Subtest 1: Hexword data transfer

Subtest 2-16: Mover byte rotation

Subtest 17: Page data transfer

Subtest 18: Page boundary crossing

Subtest 19: Next page empty interrupt

Test 14: XMI Bus Error Register test

Subtest 1:

Subtest 2:

Subtest 3:

Subtest 4:

Subtest 5:

Subtest 6:

Subtest 7:

Subtest 8:

Subtest 9:

Commander TTO, NRR, and RIDNAK
Mover A TTO and CNAK

Mover B TTO and CNAK

Interrupt TTO and CNAK
XBER command NAK and NRR
XBER no read response

XBER read error response bit
XBER read sequence error bit
Commander write data NAK

Subtest 10: Mover B write data NAK
Subtest 11: XBER parity error

Subtest 12: XBER node halt

Test 15: XMI Device Register (XDEV)

Test 168: XMI Failing Address Registers

Subtest 1:

Subtest 2:

XFADR data test

XFAER data test

5-6 Diagnostics

Test 17: Port Processor Internal Conditions

Subtest 1:

Subtest 2:

Subiest 3:

Subtest 4:

Subtest 5:

Subtest 6:

Subtest 7:

Stack overflow

Stack underflow

Control store parity error

X MUX parity error

Y MUX parity error

Internal bus parity error

AC_LO

Test 18: MCWI Error Detection Logic

Subtest 1:

Subtest 2:

Subtest 3:

Subtest 4:

Subtest 5:

MCWI PORT_IB_H receive parity checker
MCDP packet buffer read parity checker

MCWI PB_OR_IB_DATA_H parity checker

Mover A packot buffer write parity checker

Mover B packet buffer read parity error

Test 19: XMOV Error Detection Logic

Subtest 1:

Subtest 2:

Subtest 3:

Subtest 4:

Subtest 5:

Subtest 6:

Subtest 7:

Subtest 8:

Data mover A register PB_OR_IB parity error

Data mover B register PB_OR_IB parity error

Commande: register PB_OR_IB parity error

Interrupt controlier register PB_OR_IB parity error

Responder register PB_OR_IB parity error

Mover B packet buffer PB_OR_IB parity error

Mover A byte parity error

Mover B byte parity error

Test 20: Interrupt Control Registers

Subtest 1:

Subtest 2:

Subtest 3:

Subtest 4:

Subtest 5

Interrupt vector/interrupt priority level register

Interrupt destination mask register

Software initiated interrupt

Send XMI error interrupt

Send write error interrupt

Diagnostics 5-7

Test 21: CI Internal Maintenance Loopback

Subtest 1: Verify Cl jumpers

Subtest 2: Loopback at CIC, path A

Subtest 3: Loopback at CIC, path B

Subtest 4: Internal loopback path A

Subtest 5: Internal loopback path B

Subtest 6: Internal loopback 4K packet

Subtest 7: Swap true/complement node address, path A

Subtest 8: Swap true/complement node address, path B
Subtest 9: Internal loopback bad CRC, path A
Subtest 10: Internal loopback bad CRC, path B
Subtest 11: Internal loopback RX byte parity error, path A

Subtest 12: Internal loopback RX byte parity error, path B
Subtest. 13: Internal loopback TX byte parity error, path A
Subtest 14: Internal loopback TX byte parity error, path B

Subtest 15: Internal loopback invalid tail pointer, path A
Subtest 16: Internal loopback invalid tail pointer, path B

Test 22: MCDP Priority Interrupt Logic

Subtest 1: Interrupt level disable
Subtest 2: Interrupt level 7

Subtest 3: Interrupt level 6

Subtest 4: Interrupt level 5

Subtest 5: Interrupt level 4

Subtest 6. Interrupt level 3

Subtest 7: Interrupt level 2

Subtest 8: Interrupt level 1

Subtest 9: Interrupt level 0

Subtest 10: Interrupt priority encoder

5-8 Diagnostics

5.1.2 RBDs

In addition to the tests that run automatically, there are additional tests

stored in the CIXCD EEPROM space. These are the RBDs that can be
run by calling up the RBD user interface.

Once you have called ap the RBD user interface, you can run the 2BDs
individually, getting pass/fail information from each test. RBD 0 is the

XCDST, while RBD 1 through 3 are additional tests that can be run. The

diagnostics are:

RBD 0 — Power-Up Self-Test (XCDST)

RBD 1 — CI External Maintenance Loopback!

Test 1: Verify CI jumpers

Test 2: External loopback on path A

Test 3: External loopback on path B

RBD 2 — Port Local Store Exerciser

Test 1: Local store data integrity

Test 2: Local store address independence
Test 3: Local store literal addressing

Test 4: Local store TCB base relative addressing

RBD 3 — Port Packet Buffer Exerciser

Test 1: Packet buffer data integrity

Test 2: Packet buffer address independence

' Loopback connectors are required. Refer to Section 4.1.3.1.

Diagnostics 5-9

5.1.2.1 RBD User Interface

The RBD user interface communicates with the console of the host device

through the XMI communications register (XCOMM). It is made up of two
main parts: the RBD parser, and the RBD commands. You can get to the
RBD user interface by “Z"ing to the CIXCD node that you want to test.

For VAX 9000 systems, type:

>>>

>>>»Z 1A ;1 ie the XMI number,

;A is the XMI node number of the CIXCD

[Use Ctrl/P to exit Z-MODE]

;Note that there is no prompt.

For VAX 6000 systems, type:

>>>

>>>Z C ;C is the XMI node number of the CIXCD

743 Z connection successfully started

Cc>>

Then type the console command language (CCL) command TEST/RBD (or

use the abbreviation T/R) and the interface returns with the RBD prompt:
“RBDn> ", where n represents XMI node number of the CIXCD under
test.

RB8D Parser

The RBD parser supports the minimum subset of commands that are
required by the XMI RBD specification. It accepts either uppercase or

lowercase command input, converting all input to uppercase before acting
on it. The parser performs the command if it recognizes correct syntax,

or it returns the bell character and a question mark if it sees incorrect
syntax.

RBD Commands

The RBD parser supports three commands (START, QUIT, and
EXAMINE), four control characters, and eight qualifiers to the START
command. Only the correct abbreviations of the commands and qualifiers
will be accepted by the parser. Table 5-2 describes the commands,

Table 5-3 describes the qualifiers for START, and Table 5-4 explains

the control characters.

5-10 Diagnostics

Yabie 5~2 RBD Commands

Acceptable

Command Format Description

START n ST n This command starts the specified diagnostic

(n).

QUIT QU This command returns control to the CIXCD'’s
functional firmware. After this command is

issued, the module will be initialized and the
command T/R must be issued to resume RBD
execution.

EXAMINE x Ex This command examines the contents at
address x. X must be a hexadecimal number.

Table 5-3 START Qualifiers

Qualifier Name Description

/LE Loop on test This qualifier causes the diagnostic

to loop on the test where the first

error is detected, with error reporting

still in effect (if enabled). The loop

can be terminated only by typing

a CtrV/C, CtrV/Z, or Ctrl/Y. Upon

interruption of the tests (by typing a

control charactzr), an error summary is

printed on the console terminal. Refer to

Section 5.1.2.2.

/HE Halt on error This qualifier causes the diagnostic

to stop execution after the first error

is detected. It reports the error and

executes the cleanup code. CONTINUE

ON ERROR is the default condition.

/18 Inhibit summary This qualifier causes the diagnostic to
suppress the printing of the summary

message on the console at the completion
of the selected RBD.

/1E Inhibit error output This qualifier causes the diagnostic

to suppress the printing of detected

error reports on the console terminal.

This qualifier is useful in combination

with /LE. Error reporting is enabled by

default. Refer to Secticn 5.1.2.2.

Diagnostics 5-11

Table 5-3 (Cont.) START Qualifiers

Qualifier Name Description

/TR Enable trace test This qualifier enables the printing of the
number of each test before it is executed.

This condition is disabled by default.

/BE Bell on error This qualifier causes the diagnostic to
send a bel! character to the termina!
whenever an error is encountered. This

is useful when the error printout is

inhibited and the diagnostic is looping on

an intermittent error.

/P=n Pass count This qualifier allows the diagnostic to
run multiple passes of each test (n is
a decimal number). The default is one

pass. If n = 0, the diagnostic makes an

infinite number of passes, halted only

by typing Ctrl/C, Ctrl/Z, or Ctrl/Y on the

console.

/T=n|:m| Test number This qualifier allows the user to invoke
an individual test (/T = n) or a range

. of tests (/T = n:m) (both n and m cre
decimal numbers). The default is all

tests.

Tabie 5-4 RBD Control Characters

Character Function

Cunn'U Running: Ignored.

Parser: Disregard previous input.

Cul/Z Running: Stop execution of diagnostic and execute cleanup
code.

Parser: Same as QUIT command.

Crl/C Running: Same as Ctrl/Z.

PARSER: Same as Ctrl/U.

Ctrl’Y Running: Stop execution of diagnostic and do rot execute
cleanup code.

Parser: Same as Ctrl/U.

5-12 Diagnostics

5.1.2.2 RBD Information Printout

When you run an RBD, it immediately prints a header line, and at the

end of the test (either successful or unsuccessful), it prints a summary

report. Additional information is also printed, if necessary. A trace

message is printed if the trace qualifier is used, and an error report is

supplied if the test detects an error.

Header Line Format

When a diagnostic is started with the ST n command, the first lire

printed is a header line that consists of the test name followed Ly the

diagnostic revision number. The revision number is of the form R.uu,

where R is the major revision level and uu is the minor (or update)

revision level. This line is only printed once and cannot be inhibited. An

example of the format follows:

Example:

:XCD_ST 1.00

Trace Message Format

If the trace qualifier /TR is appended to the command string, the trace

messages are printed in the following format:

Example:

; TO1 TO02 TO3 TO4 TOS5 TO6 TO7 TO8 TO9 TI1O

; Tl11 Ti12

At the beginning of each test, the test number about to be executed is

sent to the console. It is preceded and followed by one space. Note that

if it is the first entry on a line, a semicolon is sent first. When the end of

the line is reached, a <CR><LF5; is issued and printing resumes. If the

trace is interrupted by error or status messages, the next trace number is

started on a new line. Since the test number is written prior to starting

the test, the last number written will indicate the failing test.

Self-Test Summary Report

XCDST supports one level of summary. This information is printed when

test execution is completed or terminated by a control character. The

summary report line consists of a pass/fail indicator, followed by the XMI

node number, XMI device code, and the pass count.

Diagnostics 5-13

Two examples:

: F c 0C05 00000005

and

P B 0CaQs 00000007

In the first example, the indication is that the test failed, while in the

second, the test was successful. The device was node C in the first and

node B in the second. In both cases, the 0C05 indicates the CIXCD, and

they completed five and seven passes respe ttively.

Self-Test Ervor Reports

XCDST follows the XMI standard for RBD error reports. It supports three

levels of error reporting, each one on a separate line. The three levels are:

1. XMI infermation (same as the summary report)

2. Error class/device type information

3. Errvor specific information

The level 1 error report line consists of the same four fields as the

summary line: a failure indi~.ior. the XMI node number, the CIXCD

identifier, and a decimal pass count.

The level 2 error report line consists of an error class, hard error (HE)

or fatal error (FE), followed by the device under test, the unit number (if

applicable), and the diagnostic test number.

The level 3 report contains six fields of error specific information. The

first field is the two-digit subtest number, while the remaining five fields

contain eight hex digits each. The second and third fields contain the

expected and actual data respectively. The fourth field (if nonzero)
indicates a failing address. The fifth field is unused and will be filled
with 0s. The last field is the error PC.

Example:

F c 0C05 00000005

HE XCD XX TO1

07 55555555 55555554 00000800 00000000 00000000

5-14 Diagnostics

This tells us that:

e For level 1: diagnostic failed, the device being tested was node C, it
was a CIXCD, and 't completed five passes.

o For level 2: a hard error occurred, the XCD was being tested, it failed

in test 1.

e For level 3: subtest 7 failed, expected data was 55555555(hex), actual
data was 55555554(hex), the failing address was 800(hex), and the

error PC was 0.

5.1.2.3 Exampie of RBD Printout

An example of an RBD being called in and detecting an error in a VAX
9000 system follows:

>>>

>>»> Z 04

[Use "“P to exit Z-MODE]

T/R

RBD4>

RBD4>ST 0 /TR /HE

;XCD_ST 1.00

: TO1 TO2 TO3 TO4 TOS5 TO6 TO?7 Tua

: F 4 0C0S5 00000001

; HE XCD XX TOB

; 23 55555555 55545555 0000064C 000C0000 00000000

RBDG>

5.2 Macrodiagnostics

To test the CIXCD’s ability to function correctly, beyond the self-testRBD
lavel, there are additional macrodiagnostics availabie. Level 3 diagnostics

include EVGEA (repair level), EVGAA and EVGAB (CI functional), and
EVGAC (cluster functional). In addition, there is EVXCI, which is a level
2R diagnostic, run under the VMS operating system. Only the level 3
diagnostics are discussed here.

Diagnostics 5-15

5.2.1 Repair-Level Diagnostic — EVGEA

EVGEA provides extensive testing of the CIXCD at the logic level and

at the functional level. At the logic level, EVGEA verifies that the
components are working correctly. At the functional level, EVGEA verifies
that the CIXCD adapter is performing the error-free operations it is
capable of performing.

The functions tested include:

e Being able to invoke XCDST and read the results

e (Calculating the checksum of the EEPROM code (functional and
diagnostic)

e Testing the read/write capability of the control store

¢ Performing a function-level test for RAM memory

Also, included in EVGEA is the EEPROM update/verification utility,
which is accessed through the /SSECTION qualifier of VDS.

5.2.1.1 Running £VGEA

Since EVGEA is a level 3 diagnostic, you must first load and run VDS.
(Refer to the applicable system installation manual for the VDS load and
run procedures.)

NOTE

If VDS is loaded through a CIXCD, VDS autcmatically assigns the
designation PAAO to that CIXCD. Other CIXCDs to be tested must
be assigned other designations (for example, PABO or PACO).
Be careful to avoid the command SELECT ALL under these
circumstances, as it will cause PAAO to be tested. (Not booting
through the CIXCD allows you to use the PAAO designation and
the SELECT ALL command.)

Once you have successfully loaded and run VDS, attach and select all
CIXCDs to be tested. Avoid using the SELECT ALL command when VDS
is booted through a CIXCD. An example of the format follows:

For VAX 6000 systems:

US> ATTACH CIXCD HUB PABC C 3 ;C is XMI node number,

;3 is CI node number

0S> SELECT PABO

5-16 Diagnostics

For VAX 9000 systems:

DS> ATTACH XJA HUB XJAO O 8 is XMI number,

is XMI node number

is XM node number,

is CI node number

DS> ATTACH CIXCD XJAO PABO 2 3

w
n
n

o

DS> SELECT PABO,XJAO

DS>

EVGEA is divided into 12 sections that are individually accessible through
the use of the /SSECTION qualifier of VDS. The sections of EVGEA and
their functions are:

¢ DEFAULT — Tests the CIXCD with microcode loaded into the
EEPROM

o MFG — Tests the CIXCD without microcode in the EEPROM

e RBD — Interfaces the user to the RBDs on the CIXCD

o UPDATE — Updates the microcode in EEPROM

e VERIFY — Verifies the microcode in the EEPROM against the load
media

¢ RVERIFY — Verifies the primary EEPROM regions against the
backup regions

o REPLACE — Replaces the backup region from the primary region

¢ RESTORE — Restores the primary region from the backup region

o ERRORLOG — Examines error log header information in the
EEPROM

o EXAMLOG — Examines error log entry information in the EEPROM

o INIT_DCB — Initializes the error log data in the EEPROM from the
keyboard

¢ BAR_DCB — Initializes the error log data in the EEPROM from the
barcode

Diagnostics 5-17

The diagnostics make up the DEFAULT section of EVGEA. You can run

them by not using the /SECTION qualifier, or by using the qualifier and

specifying the DEFAULT section. The diagnostics test the CIXCD as if

the EEPROM has been initialized with valid microcode. The DEFAULT

section does not destroy any microcode data contained in the EEPROM,

which limits the testing of the EEPROM data and addresses.

The MFG section tests the CIXCD as if there were no valid microcode

loaded, resulting in the destruction of any microcode that is loaded. The

MFG section tests all addresses and data bits in the EEPROM. This

section should only be run when the the UPDATE section has failed, and

then you should run the INIT_DCB section to reload the module serial
number and hardware revision. Run the UPDATE section again to load

valid microcode into the EEPROM, and then run the diagnostics so tests

that require valid microcode in EEPROM can be executed.

The RBD section provides an interface to run the RBDs, while preserving

the VDS environment.

The other nine sections of EVGEA are not really diagnostics. They make

up the EEPROM update/verification utility. For more information about

them, refer to Section 5.2.1.5.

CAUTION
To execute the diagnostics or the DEFAULT, MFG, UPDATE,
REPLACE, or RESTORE sections, the system must be in update

¢ For VAX 8000 systems, the lower console keyswitch must be in

the update position (refer to Figure 3-8).

e For VAX 8000 systems, use the SET XMI_UPDATEXMIm ON

console command. For correct command syntax, refer to the

VAX 9000 Model 200 Hardware User Guide.

5.2.1.2 Event Flags

EVGEA uses two of the VDS event flags. They are:

e Event flag 1 — set enables the execution sf the CI external loopback

subtests (test 8, subtests 10 and 11); clear inhibits execution

¢ Event flag 2 — set inhibits loading of failing-test information into the

EEPROM; clear allows loading

5-18 Diagnostics

5.2.1.3 EVGEA Tests

EVGEA is a repair-level diagnostic designed to test the CIXCD for
functional hardware failures. It uses a bottom-up approach, with each
test running only after all preceding tests have run successfully. The tests
are:

Test 1: CIXCD Scan Data Path Verification

Subtest 1: Port scan data register loopback
Subtest 2: Port scan control register

Subtest 3: Port scan shift register

Subtest 4: PMCS RAM data path

Test 2: PMCS EEPROM Region Checksums

Subtest 1: Backup region functional microcode checksum
Subtest 2: Primary region functional microcode checksum
Subtest 3: Backup region self-test microcode checksum

Subtest 4: Primary region self-test microcode checksum

Test 3: PMCS RAM Memory

Test 4: PMCS EEPROM Memory! (MFG section only)

Test 5: CIXCD Node Reset

Subtest 1: Run self-test using XBER NRST — Check XBER status
Subtest 2: XMOV loads RAM from EEPROM — Check XMOV and
RAM data

Test 8: Scan Visibility Bus CS Address Field

Test 7: XM!I Device (XDEV) and Port Serial Number (PSNR)
Registers

! Since the EEPROMs have a lifetime of approximately 10,000 write cycles, this

test is not run as part of the DEFAULT program section. It is in the MFG
section and must be called out specifically.

Diagnostics 5-19

Test 8: ROM-Based Diagnostic (RBD) Interface

Subtest 1: RBD 0 — Power up self-test

Subtest 2: RBD 2 Test 1 — Port local store data integrity
Subtest 3: RBD 2 Test 2 — Port local store address independence
Subtest 4: RBD 2 Test 3 — Port local store literal addressing
Subtest 5: RBD 2 Test 4 — Port local store TCB base relative
addressing

Subtest 6: RBD 3 Test 1 — Port packet buffer data integrity
Subtest 7: RBD 3 Test 2 — Port packet buffer address

independence

Subtest 8: RBD 4! — XMI commander
Subtest 9: RBD 1 Test 1 — Verify CI jumpers

Subtest 10: RBD 1 Test 2 — External loopback on path A2
Subtest 11: RBD 1 Test 3 — External loopback on path B2

5.2.1.4 The MFG Section

The MFG section is designed to be run by manufacturing on modules that
do not yet have the valid microcode loaded. It tests the EEPROM and
associated logic, including the ability to write to the EEPROM. The MFG
section runs tests 1, 3, and 4. This section requires that the system be in
update mode (refer to the caution at the end of Seci.on 5.2.1.1).

5.2.1.5 The EEPROWM Update/Verification Utliity

The EEPROM update/verification utility has nine separate sections in
EVGEA: UPDATE, VERIFY, RVERIFY, REPLACE, RESTORE, INIT_
DCB, BAR_DCB, ERRORLOG, and EXAMLOG. (These sections are also
contained in a separate program called EVGEB, which is supplied to
customers who do not have a diagnostic license.) The program sections
and their functions arc shown in Table 5-5.

! RBD 4 is designed to be run only under the control of EVGEA. Do not run RBD
4 standalone under any circumstances.

2 Subtests 10 and 11 require CI bus loopback connectors (refer to Section 4.1.3.1)
and are not run by default. To run these subtests, they must be enabled by

event flag 1. Executing these subtests on a system connected to running cluster

may cause unexpected errors.

5-20 Diagnnstics

Table 5-5 EEPROM Update/Verification Utliity Program Sections

Section Function

UPDATE! Initializes or updates the functional and diagnostic microcode
from a file on the load media.

VERIFY Verifies the functional and diagnostic microcode against a file
on the load media.

RVERIFY Verifies the functional and diagnostic microcode primary
regions against the backup regions without the use of a file

on the load media.

REPLACE!' Replaces the backup regions from the primary regions.

RESTORE' Copies the backup versions of the microcode (both diagnostic
and functional) into the main areas (refer to Figure 5-1).

INIT_DCB Initializes the diagnostic control biock (DCB) and error
history from the keyboard.

BAR_DCB Initializes DCB and error history from a bar code reader.

ERRORLOG Examines DCB and error history header.

EXAMLOG Examines DCB and error history entries.

1System must be in update mode. Refer to the caution at the end of Section 5.2.1.1.

Update Functional and Diagnostic Firmware

This section provides the user with the ability to load or update the
firmware stored in the PMCS EEPROM. A checksum is generated for

both the functional arnd diagnostic microcode and stored in the DCB,
then the microcode is loaded to both the primary and backup EEPROM
regions. After each region is loaded, it is reread and verified to be correct.

Verify Functiona! and Diagnostic Firmware

This section allows the user to compare the firmware stored in the
EEPROM, in the primary and backup regions, against a file on the
load media, to verify its integrity.

Diagnostics 5-21

Rverlfy Functional and Diagnostic Flrmware

This section provides the user with the ability to verify the firmware

stored in the PMCS EEPROM primary regions against the backup regions
without the use of a file on the load media. The microcods in the primary
and backup EEPROM regions is checked.

Replace the Backup EEPROM Regions

This section allows the user to copy the EEPROM primary regions into

the backup regions. This provides the means to recover from an EEPROM
data error.

Restore Functional and Diagnostic Microcode

This section allows the user to copy the EEPROM backup regions into the
grimary regions. This provides the means to recover from an EEPROM
ata error.

initialize DCB from Keyboard

This program section is used to initialize the DCB from operator keyboard
input. The information initialized follows:

e Module serial number

e Module revision

¢ Number of ERRORLOG entries

¢ Number of EEPROM write cycles

When selected for other than manufacturing use, this section gives
the user the option to ciear the error history buffer. The error history

buffer may contain valuable information for future diagnosis of the

CIXCD. Because of this, the error history buffer should only be cleared if

necessary.

initialize DCB from a Bar Code Reader

When selected, this program section is used to initialize the DCB from the

bar code reader input. Refer to the previous section for details.

5-22 Diagnostics

Examine DCB Errorlog Header information (ERRORLOG)

This program section allows the user to view the DCB and all error
history header information for this CIXCD. When executed, the following
information is displayed:

¢ Current XMI node number

¢ Current date and time

e Date and time the EEPROM was last updated

e Module serial number

° Module revision

¢ Functional microcode revision

¢ Diagnostic microcode revision

¢ Functional microcode region checksum

e Diagnostic microcode region checksum

e Diagnostic contrcl block checksum

¢ Number of ERRORLOG entries

¢ Number of EEPROM write cycles

Examine DCB Erroriog Entry Information (EXAMLOG)

This program section allows the user to view the DCB errorlog history

information for this CIXCD.

If there are any errorlog entries, the user is then given the option of

viewing either an individual entry or all errorlog entries for this CIXCD

error log. (Refer to Example 5-1.)

NOTE

There is 2 maximum of eight entries that can be viewed. Entries
1-7 contain information about the first seven errors detected.

Entry 8 contains information about the most recent error.

Diagnostics 5-23

When executed the following informatior is displayed:

e Current XMI node number

* Number of valid errorlog entries

¢ Error log entry number

¢ Failing test/subtest number

¢ Failing address

¢ Expected data

e Actual data

¢ Date and time of error

NOTE

The failing test number listed in the entry refers to the diagnostic
test number. Also, each section of EVGEA has an assigned number

to indicate which section was under test at the time of the failure.

The sections and their corresponding numbers are:

o UPDATE: Test 12

¢ VERIFY: Test 13

o INIT_DCB: Test 14

¢ BAR_DCB: Test 15

» ERRORLOG: Test 16

o RESTORE: Test 17

e REPLACE: Test 18

+ RVERIFY: Test 19

e RBD: Test *"

o EXAMLOG: Test 25

5-24 Diagnostics

DS> START/SECTION=EXAM

. Program: EVGEA CIXCD Functional Level 3 Diag , revision 2.0, 25 tests,

at 14:23:26.74.

Testing: _PABO

CIXCD EEPROM examine ERRORLOG entry utility

The current CIXCD XMI node aumber is 04

Number of valid ERRORLOG entries = 05

Examine error entry # (RETURN = All) [(00000000), 00000001~00000008(X}] S

Error Log entry 05:

Failing Test Number- - - B, Subtest 8

Failing Address- - = - - 00000005

Expected Data- - - - - = 00000000 00000000 00000034

Actual Data- = = - - - = 00000000 00000000 Q0000000

Date and Time of Error - 28-MAR-1990 17:56:20.22

. End of run, C errors detected, pass count is 1,

time is 29-MAR-1990 07:43:06.12

DS>

Example 5-1 Sample Printout of Exam Section

5.2.1.6 EEPROM Memory Map

Figure 5-1 shows the iayout of the EEPROM.

Diagnostics &-25

EEPROM MAP

171 85 0

0000

DIAGNOSTIC

BACKUP

MICROCODE
OFFF

1000

DIAGNOSTIC FIRMWARE

(XCDST;
1FAF

DIAGNOSTIC 1F80
CONTROL BLOCK $FFF

2000

FUNCTIONAL

BACKUP

MICROCODE
2FFF

3000

FUNCTIONAL MICROCODE

3FFF

MA_K+2'3_09

' Figure 5-1 EEPROM Memory Map

5-26 Diagnostics

5.2.1.7 EVGEA Emor Messages

When EVGEA detects an error, it prints an error message. Example 5-2
shows the format.

swwwaw CIXCD Functional Diag =~ 2Z-EVGER -- 1,0 wweree

Pass ., Tes. ., S.b-c:si 3, error 1, 18-MAY-1990 14:36:47.83

Hard error while testing PABO: CIXCD Port Scar Shift Register Error

Address Expected Receivea XOR

00300800 (X) FFFFFCO0 (X) FFEFFBOO (X) 00000100 (X)

""" . End of Hard Error number i seseea

Example 5-2 EVGEA Ermor Message

5.2.2 ClI Functional Diagnostics — EVGAA, EVGAB

These two diagnostics are the standard CI bus adapter diagnostics,
upgraded to include the CIXCD.

The tests that make up these diagnostics are:

EVGAA:

Test 1: Cluster Configuration
Test 2: SETCKT Test with Various Masks and M_values
Test 3: SETCKT Test for Each Valid Port
Test 4: SETCKT Test for Invalid Port

Test 5: REQID Test
Test 6: REQID Test with 6 Packets of DGFQ
Test 7: Datagram Discard Test

Test 8: RESPONSE Queue Available Interrupt Test

Test 9: Send Datagram -SNDDG- Test
Test 10: SNDMSG Test with No Virtual Circuit Set
Test 11: Send Message Test, Crossing Page Boundary

Test 12: Message Length Test
Test 13: Packet Size Violation Test

‘Test 14: Send Loopback -SNDLB- Test
Test 15: SNDLB Test, Full Buffer Path A
Test 16: SNDLB Test, Full Buffer Path B
Test 17: SNDLB Test, Both Paths

Diagnostics 5-27

EVGAB:

Test 1: Send Data Test, with Offset Combinations

Test 2: Request Data Test, with Offset Combinations

Test 3: Invalidate Translation Cache Test

Test 4: SNDMDAT Test, Enabled/Maintenance State

‘Test 5: SNDMDAT Test, Enabled State

Test 8: REQMDAT Test, Enabled/Maintenance State

Test 7: REQMDAT Test, Enabled State

Test 8 Send RESET Test, Enabled State

Test 9: Queue Contention Test

Test 10: Buffer Read Access Test

Test 11: Ruffer Write Access Test

Test 12: Write to Global Buffer Test

5.2.3 Cluster Functional Diagnostic — EVGAC

EVGAC is a functional port-to-port exerciser, similar to EVXCI, but

while EVXCI is a level-2 exerciser run under the VMS operating system,

EVGAC is a level-3 standalone diagnostic run under VDS. The faults it

detects are of a communication and data corruption type. It must be run

under VDS on an inactive CI cluster, and the adapter microcode must

. be on the same medium as the diagnostic. Also, it assumes that both
EVGAA and EVGAB have run successfully.

5.2.3.1 Event Flags

EVGAC uses the VDS event flags to determine how the tests should be

run. There are four event flags.

e Event flag 1: Set causes the loading of microcode; clear prevents the

loading. When set during CIXCD testing, it causes the CIXCD to

set the NRST bit (bit <30>) of XBER, initiating a complete power-up

reset.

o Event flag 2: Set displays the following (while clear does not display):

— CI configuration (test 1)

— Total number of usable pages in memory

~ Changes in virtual circuit state

— Port to which traffic is being sent (tests 3:8)

5-28 Diagnostics

¢ Event flag 3: Set for displaying confirmation received (CNFREC) and

data received (DATREC) packets; clear does not display.

°* Event flag 4: Set for displaying packets taken from the response

queue which contain a nonzero error status; clear does not display.

Note that the RUN ccmmand clears all event flags, as does the LOAD

command. To use them, you must first load EVGAC, set the desired event

flags, and then start the diagnostic.

§.2.32 Event Tracing

In EVGAC, the user is allowed to trace specific events and to

enable/disable specific program routines. This is done through the use

of the 32-bit program parameter register (only the lower 12 bits are used).

Refer to Figure 5-2. EVGAC prompts the user for input into this register,

with the default being all bits clear. If the operator flag is cleared, the

diagnostic does not prompt for input and uses the register with all bits
clear. If trace bits are set by the user (Table 5-6), the interrupt-driven

print routines might interfere with other common print routines.

31 12 11 10 0908 07 08 05 04 03 02 01 00

UNUSED

NF SN

NEAS

RDP

DOt

NDCK

NCFG

NVCD

COUNTEAS

PiC

e

MFOE

RQA

MA_K1214_09

Figure 5-2 Program Parameter Register

Diagnostics 5-29

Table 56 Trace BRt Fisld Definitions

Bit Name Function

<31:12>

h]211>

<10>

<09>

<08>

<07>

<06>

<05>

<04>

<03>

<02>

<01>

Unused

NFSN

NEAS

RDP

NVCD

COUNTERS

PIC

PDC

MFQE

Unused.

If set, this causes the FSN bit in the local

adapter’s virtual circuit descriptor entry in the

VCDT to clear.

If set, this causes the EAS bit in the local

adapter’s virtual circuit descriptor entry in the

VCDT to clear.

If set, this causes the RDP bit in the local

adapter’s virtual circuit descriptor entry in the

VCDT to set.

If set, this causes the DQI bit in the local

adapter’s virtual circuit descriptor entry in the

VCDT to set.

If set, this disables the data-checking routines.

If set, this disables the running of the

configuration routine at the beginning of

each test. The exception to this is that the

configuration routine will always be run in

test 1.

If clear, this allows the program to re-establish

virtual circuits between the local and remote

nodes when a virtual circuit is dropped. If

set, will inhibit program re-establishment of

virtual circuits for that test pass.

(Specific to test 8) If set, this causes the

program to read and display the counters of

the local adapter.

If set, this causes a message to be displayed

when a port initialization complete interrupt

accurs.

If set, this causes a message to be displayed
when a port disable complete interrupt occurs.

If set, this causes a message to be displayed
when a message free queue empty interrupt

eccurs.

5-30 Diagnostics

Table 5-6 (Coni.) Trace Bit Fleld Definitions

Bit Name Function

<00> RQA If set, this causes a message to be displayed

when a response queue available interrupt

occurs.

5.2.3.3 Program Parameters

The user has the ability to control the diagnostic by setting up the

program’s parameters. These parameters can be defined in one of three

ways:

¢ Program default values

¢ User entering the values of the console device at program prompts

° Parameter file

The function of each parameter and the default values are explained in

Table 5-7.

Tebie 5-7 EVGAC Program Parameters

Parameter Default! Function

minport CIXCD’s CI The minimum port number to which the
port number diagnostic sends test packets. The limit is

the maximum cluster size found in the port

parameter register (PPR).

Range: 0 to PPR

maxport CIXCD's CI The maximum port number to which the
port number diagnostic sends test packets. The limit is

the maximum cluster size found in the PPR.

Range: minport to PPR

sanity 0 Sanity timer value, with limits of 0 to 99.

maxcmd 47 The number of commands the program sends to

each node per pass of the activity test (test 8)

ranging from 0 through 400.

TAll default values are in decimal.

Diagnostics 5-31

Table 5-7 (Cont.) EVGAC Program Parameters

Parameter Default’ Function

degfq 50 The number of datagram free queue entries,
with limits from O to 2048.2

msgfq 50 The initial number of message free queue

entries, with limits from 0 to 2048. This can be

considered dynamic; that is, when the program

receives an MFQE interrupt from the CIXCD,

it tries to allocate five queue entries to place

onto the message free queue. If EVGAC is

unsuccessful in allocating the buffers, it aborts.

entrysize Internal The maximum datagram and message queue
buffer size, which is used by EVGAC if it is less than
length the internal buffer length found in the PPR. If

it is greater than the internal buffer length, it

defaults to the value in the PPR.

nbuffmin 512 Minimum size of named buffers, with limits

from 1 to 2147480000. This value can be
dynamically cha if insufficient host

memory is available.

. nbuffmax 13739 Maximum size of named buffers, with limits
from nbuffmin to 2147483647. This value can

be dynamically changed, if insufficient host

memory is available.

pm PPR value Packet multiple. This value is used if it is

less than or equal to the value calculated from

the PPR. The value in the PPR is used if it is

greater.

TAll default values are in decimal.

2If a less than acceptable amount of datagram free queues are created, it will, in effect,
inhibit the port from receiving necessary packets from remote ports. Try increasing the

number if tests are failing due to unreceipt of datagram type packets.

3Any dynamic changes arc displayed on the console.

5.2.3.4 Support Files

There are two support files that the user can set up to pass parameters

to EVGAC: a parameter file (PARAMETER.PAR) and a pattern file

(PATTERN.PTN). At runtime, the diagnostic allows the user to select

whether to use either, both, or neither of these files. The diagnostic also

offers the user the opportunity at this time to pass parameters directly

from the console.

5-32 Diagnostics

If the VDS operator flag is clear, the parameter and pattern files are not

used, no prompt is issued, and default values are used.

PARAMETER.PAR, the Parameter File

PARAMETER.PAR, created by the user and copied to the load media,
allows the user to set program parameters by reading in a file, rather
than having to input each value using the console device or using the
program default values. It must be done exactly as described below.

The perameter file is an ASCII file of eight characters per line with each
line re presenting one parameter. Each line is read in by the program,
and that hexadecimal value (remember that the defaults were listed in
decimal) is placed in the appropriate parameter location, The parameters
need to be placed in exact order as deacribed in Table 5-8. Program
default values are used if the values entered exceed the maximum values
of the adapter specified in Table 5-7.

Table 5-8 Parameter Flle Structure

Line Paramelesr

minport

maxport

sanity

maxcemd

megfq

entrysize

nbuffmin

nbuffmax

pm

W

W

=
3

O

N

b

W

D
N

=

g

[
y

[
~

If the parameter file c....not b2 accessed or the format of the file is

incorrect, an error message is generated and the user is then prompted to
either input the parameters or use default values. If the parameter file
contains an invalid parameter, the user is prompted to either use default
values or abort the program. Example 5-3 shows a sample parameter

file.

Diagnostics 5-33

30000000

00000010

00000000

0000005D

00000064

00C00064

000GC3F8

00000200

00007C1B

00000000

Exampls 5-3 Sample Parameter File

PATYTERN.PTN, tho Pattern File

The pattern file (Example 5—4) allows the user to select the text to be
used in all message, datagram, and named buffer transfers. It must be
created by the user, in the format described below, and copied to the load
media.

The pattern file is an ASCII file of eight characters per line, where each
line is read and stored in a data area. The pattern file can be any size
greater than one 8-character line, up to 1024 bytes. If the program
detects an end-of-file condition before the data area is complete, it closes
the pattern file and fills the remainder of the data area with characters
previously read. The size of the pattern data area to be filled is 1024

bytes.

If the pattern file cannot be accessed or the format of the file is incorrect,

a message is generated and the program uses a default pattern.

5-34 Diagnostics

111l

20202820

#3434343

45454545

15:5 5 5

676"6"6"

&§7676767

gxg+g+g+

(9(9(9(9

0)0)0)10)

:+:+:+;+

Q3QqQ9Qq
wHWwWwWwiW

EeEeLeEe

rRrRrRrR

TETtTtTt

YYyYyYyY

UuUuUully

iTiTiIil

00000000

pPpPpPpP

(oot

Jh1ED 1))
AaAaAaAa

8585358S

DdDdDdDd

fFEFEFEF

GgGgGgGyg

hHhHhHhH

J3iJiJidj

kKkKkKkK

L1L1LlL]

LUNL I LI A L B L

NINENTN

>L>LILDL

z222z7222

XxXxXxXx

cCcCclcC

VvVvyVyVy

bBbBbBbEB

NnNnNnNn

mMmMmMmM

Example 5-4 Sample Pattern Flle

Diagnostics 5-35

5.2.3.5 Program Tests

At the start of each test, a cluster configuration routine is displayed.

The configuration routine first initializes the configuration table memory

area. Then it sends a REQID datagram on both paths to each node on

the CI bus, limited between the minimum and maximum port number

parameters passed to the program. The program waits until it receives
responses, error or nonerror, for the REQID packet it sent. On receipt of

an IDREC packet, the configuration table is searched for an entry of the

port identified in the packet. If no entry is found, an entry is created to

include the data found in the IDREC packet. If the entry is found, the

entry is updated using the contents of the IDREC packet.

After sending and receiving the necessary REQID and IDREC packets,

the cluster configuration routine sends a parameter request packet to
each remote port requesting their datagram, message, DMA buffer sizes,

and their virtual circuit descriptor (VCD) entry. The message, datagram,

and DMA sizes are placed in the configuration entry for the remote port.

It is possible that a datagram packet, such as these, could be lost. A count

and wait loop is exercised as to not be caught in a timeless loop and to

ensure that all remote ports have sufficient time to respond to the local

port’s requests.

The above routine is always executed in test 1, but not necessarily in

other tests. This is dependent on the CONFIG bit in the program
parameter register. If set, the program allows the above routine to

execute only once for each pass of the program. The configuration tabie is

displayed to the console if event flag 2 is set.

Before each test, excluding test 1 and test 2, the program checks the

configuration entry for the node currently being tested. If the port did not

return a parameter returned packet, the port is not tested. When a path

is marked bad, no packets are sent to the port along that path. Message,

datagram, and DMA sizes are compared against the local port’s values to

:fistrigs the packet and buffer sizes to the lesser of the two values between

e nodes.

The tests are:

Test 1: Local Configuration Test
Test 2: Local Adapter Test

Subtest 1: Local adapter loopback
Subtest 2: Local adapter datagram
Subtest 3: Local adapter message

Test 3: Datagram Test

Test 4: Virtual Circuits Test

5-36 Diagnostics

Test §: Message Test

Test @: Multiple Message Test
Test 7: Write and Read Buffer Test
Test 8: Activity Test

Example 5-5 shows a full listing of EVGAC tests and responses to these
tests.

DS> st/passsl

.. Program: EVGAC - Cl Functional Exerciser, revision 1.0, 8 tests

at 11:42:21.26,

Testing PABC

Event Flag 1 Microcode Loading

Event Fiag 2 Miscellaneous Status Messages

Event Flag 3 Datrec and Cnfrec

Event Flag 4 Display Bad Status Packets

~*- Nfsn Neas Rdp Dqi =-*- Ndck Ncfg Nvcd Cntr -*- PIC PDC MFQE RQA -*-

Program Parameter Register. > [(C0D00000), 00000000-0D00COFFF (X)]

Use the Pattern Flle? > ! (No), Yes'

Use the Parameter File? > [(No), Yes)

Modify Parameters? > [(No!, Yes]

Test 1: Local Configuration

Test 2: Local Adapter Test

Test 3: Datagram Test

Test 4: Virtual Circuits Test

Test 5: Message Test

Test 6: Multiple Message Test

Test 7: Write/Read Buffer Test

Test 8: Activity Test

sssssvse EVCAC -~ CI FUNCTIONAL EXERCISER - 1,. estserss

Pass 1, test 8, subtest 0, error 6, 31-AUG-1989 11:46:59.31

Soft error while testing PABO: Buffered Data Error.

Port Number: 00000006

Cffset: 0CCCOEDD

Expected: I05A3159

Received. AARAARAAA

vesvsass Fnd of Soft error number 6 rresenes

.. Ha.t on error at PC O00COA36B (X)

DS> cont

..Continuing from O000CA3éB

.. End of run, 0 errors detected, pass count is 1,

time is 31-MAR-1990 11:47:17.98

£Ss>

Exampie 5-8§ EVGAC Full Listing

6
Functional Description

This chapter provides a description of how the CIXCD port adapter
works. It first gives an overview of the functions, and then describes each
function in more detail.

The sections include:

Overview

XMI corner

XMI interface logic and data movers

Port microprocessor

CI control logic and packet memory

CI corner

6-1

6-2 Functional Description

6.1 Overview

The CIXCD port is an intelligent controller that connects the high-speed
ClI bus to the XMI bus. It implements the VAX-11 CI port architecture

with its own integral microprocessor and EEPROM/RAM control store.

The CIXCD processes commands found on the port queue blaock (PQB)

and packets received from the CI bus. The CIXCD supports dual CI paths
in resequencing dual path (RDP) operation. Refer to Figure 6~1 for a

simplified CIXCD block diagram.

XM Cl

LOGIC LOGIC

AND AND peomee I PATH A

DATA PACKET
XM M MOVERS | MEMORY Ci

8us CORNER CORNER

PORT

MICROPROCESSOR = CIPATHB

MR _X07%4 89

Figure 6-1 CIXCD Simplified Block Diagram

The CIXCD can be logically divided into five parts (Figure 6~2): ‘

o XMI corner — This logical partition contains the XMI specific

XCLOCK and XLATCH chips that interface the CIXCD to the XMI
backplane bus. It consists of seven XLATCH chips and one XCLOCK

chip.

o XMI logic and data movers — This partition consists of the XMOV

gate array. The logic contained in this XMOV gate array controls
and responds to the XMI corner. The XMI data path contains 64

data and 2 parity bits, organized into two 32-bit registers when

dealing with the port microprocessor. The interrupt logic, also in this

section, supports one interrupt vector. Two 32-bit-wide data movers

are capable of 40-Mbytes bandwidth combined. Once started by the

port microprocessor, the movers are free running. Each data mover

transfers in a single direction. Mover A does XMI read transactions

and mover B does XMI write transactions.

Functional Description 5-3

]AHO
WIN

TOHINOD

D$NB WX¢
Eg=3S-]goQ3]2o&&gS2i

6-4 Functional Description

¢ Port microprocessor — A custom designed microprocessor and
microsequencer allow the execution of ALU operations every 64

ns and next address calculations every 128 ns. Addressing for the

microcode is 8K x 86. The port microprocessor implements a 32-

bit-wide data path with internal parity and contains 32 GPRs and

a 16-location microaddress stack, and has 8K x 33 of local storage
available for use. This logical partition consists of the MCDP gate
array, control store random access memory (CSRAM), control store
electrically erasable and programmable read only memory (EEPROM),
and the local store random access meriory (LSRAM).

o CI control logic axd packet memory — This partition consists
of the MCWI gate array and its associated PB RAMs. The MCWI

contains the logic that implements the CI protocol and controls the
CI interface. PB RAM access requests from the CI wire, data movers,

and port microprocessor are arbitrated and controlled by the buffer
access control contained in the MCWI gate array.

e (I corner — This pariition contains two independent interfaces to

the CI wires. This logic performs Manchester encoding, clock from
data separation, and byte framing and synchronization. This logical
partition consists of two CIRT gate arrays, the header card, a 140
MHz oscillator, a hybrid receiver, a set of CI wire drivers, and four
transformers.

6.1.1 XM) Responder

The CIXCD responds to the following XMI transactions:

e LW read (READ)

e LW interlock read (IREAD)

°* LW unlock write mask (UWMASK)

o LW write mask (WMASK)

° Interrupt acknowledge (IDENT)

Functional Description 6-5

6.1.2 XMI Commander

The CIXCD is capable of generating the following XMI transactions:

o LW/QW/OW READ/IREAD

o HW READ/READ MORE

o LW/QW/OW WMASK/UWMASK

e HW WMASK/WRITE MORE

e [Interrupt (INTR)

e [DENT (for diagnostic purposes)

e Implied vector interrupt (IVINTR) (host register writes to invalid
address)

6.2 XMi Corner

The XMI corner is a 1.8 in x 5 in area on both sides of the module that
provides all the components necessary to connect to the XMI bus. All
components in the XMI corne. are surface-mounted. Seven XLATCH
chips in the corner provide the data and control signal interface to the
XMI bus, while a single XCLOCK chip provides the six-phase clocking
system used by the CIXCD module.

6.2.1 XCLOCK

The XMI clock decoder chip, called the XCLOCK, is a CMOS integrated
circuit that provides all required clock decoding for XMI nodes. It also
drives and receives the XMI CNF lines and XMI DC LO L line. The
following list summarizes the highlights of the XCLOCK chip:

e Provides low-skew clock decoding of XMI backplane clocks.

¢ Single XCLOCK provides a complete family of clocks synchronous
with the XMI bus. The XLATCH clocks and output enables are driven
by a set of XCLOCK lines. This provides for consistent loading and
consistent skew for bus timing calculation purposes. Another set of
clocks are provided for use by the CIXCD sea of gates (SOG) arrays.

e Provides CMOS clock levels that permit the use of high-performance
clock input buffers on the SOG arrays.

6-8 Functional Description

6.22 XLATCH

The XMI interface chip, called the XLATCH, is a CMOS integrated circuit
that provides the primary interface to the XMI bus. The following list
summarizes the highlights of the XLATCH chip:

¢ Provides a high-performance interface to the XMI bus.

e Seven chips provide a complete XMI interface.

¢ Uses “reduced-swing” CMOS levels (voltage divider techniques)
to reduce power consumption and peak currents, and improve
propagation delay times.

e Provides CMOS levels on the CIXCD side, permitting the use of
high-performance CMOS input buffers in the interface gate arrays.

6.3 XMiI Interface Logic and Data Movers

The XMOV array consists of the XMI interface logic and dual
data movers. The interface contains the required XMl registers,
XMI arbitration, protocol checking (XMI and port errors), and
commander/responder sequencing. The data movers are two register files
with state machine control that allows high-speed transfers of packets
between the PB memory and the system memory. On memory reads,
the 64-bit XMI data word is unpacked to two 32-bit words for the PB
controller. On memory writes, a 64-bit XMI word is assembled from the
two 32-bit PB memory words.

6.3.1 XMl interface Logic

The XMI interface performs the following functions:

e Monitors the XMI for transactions addressed to the port. Their
occurrence is independent of activity in the port and is initiated by a
host. The XMI interface will respond to the entire 512 Kbyte address
block (node space) for the port. These addresses will be decoded and
can point to registers maintained locally in the XMOV array (such as,
XMI required registers) or registers maintained by the port processor
(this in:ludes local store access). In the latter case, the XMI interface
notifies the port processor that a register read or write needs to
be conipleted. The XMI interface treats all node space accesses as
longword operations; interlocked read accesses will be treated the

same as ordinary reads.

Functional Description 6-7

e Initiates an XMI transaction as requested by either the port processor

or one of the two data movers. The port processor can initiate

READ, WMASK, IREAD, and UWMASK commands in lengths up
to octawords, as well as INTR cycles. Mover B can initiate octaword
WMASK, hexword WMASK (if enabled), and mover A can initiate
hexword READ commands.

e Generates interrupts as a result of detected errors or port processor
requests and responds to IDENT with the appropriate vector
information.

6.3.2 Data Movers

The CIXCD contains two data movers. One data mover reads host

memory and writes the transmit PB (mover A). The other data mover
goes in the opposite direction, emptying the receive packet buffer into

host memory (mover B).

The operation of the movers is under port microcontrol. When the port

processor has determined that a packet is ready to be transferred from

or to XMI memory, it initializes the appropriate mover with the packet’s

starting XMI physical memory address and the number of bytes to move.

The mover is also loaded with the XMI address of the next page, so when
a packet crosses a page boundary it may continue transferring to or from
that address. Once started, the mover continues transferring a packet
until completion, interrupting the port processor only to notify it that the

next page register has been emptied, or that the transfer completed or

aborted due to a fatal error. Each mover, as well as the port processor
commandcer, uses separate XMI ID codes, thus enabling each to operate
independently.

6.4 Port Microprocessor

The microcontrol and data path (MCDP) gate array contains a 32-bit

microprocessor, custom designed for the CIXCD. The main parts of the

microprocessor are:

e Processor data path, which is centered on a 32-bit-wide arithmetic
logic unit (ALU)

e Port microcontrol (PMC) microsequencer, a custom designed
microsequencer with a 4K x 172-bit microaddress space.

6-8 Functional Description

6.4.1 Processor Data Path

The processor data path is designed to process data as necessary, with

the main functionality provided by the 32-bit-wide ALU. There are two
paralle! paths in the ALU: one providing arithmetic functions and the
other performing either Boolean operations or barrel shifts. The correct

path for the required operation is selected just prior to ALU output. The
output of the ALU is clocked into the result register and then is sent
directly to the PORT IB, or it can be channeled back into the ALU using
various paths for further manipulation.

The data feeding into the ALU comes from one of three sources: its

own output (from the result register), the PORT IB (either directly or
buffered), or the microword literal field (also either directly or buffered).
Part of the buffering available to the processor data path is the set of
multiported GPRs (32 locations x 33 bits).

6.4.2 Port Microcontrol

The PMC microsequencer uses a control store of 4K locations by 172 bits,

producing a new microaddress and its resulting microword every 128 ns
(two XCI cycles). However, the microwords are organized so there are two
86-bit fields (first field and second field), which are read out of the control

store in sequence every 64 ns. Since the bit definitions of both fields are
identical (except for next address information), the MCDP can perform an
ALU operation every 64 ns, while calculating next addresses at a rate of
128 ns.

The first field or the microword contains a NEXT_ADDRESS_FIELD
(NAF) combined with branch/dispatch conditions to determine the next
microaddress. In addition to normal sequencing, branches and interrupts

are allowed, giving the PMC the ability to handle events asynchronously.
There is a microaddress stack that is used to allow the normal thread to
be picked up after the interrupts have been handled.

Functional Description 6-9

6.4.3 Control Store RAMs/EEPROMs

The control store, which is external to the MCDP, consists of both

EEPROMs (used for on-board storage of the microcode) and RAMs (which,

at 25 ns, provide fast execution). At power-up, the EEPROM data is

copied into the faster RAMs using the MCDP’s copy mode.

The EEPROMs can have in-system field microcode updates using the

special MCDP scan path. The upgrading of the EEPROMs is done under

diagnostic control.

The CS RAM microword fields are fed to the PMC across the PMCS

natural bus, which is an 86-bit-wide bidirectional bus. The natural bus is

also used during sopy mode to load the RAMs with the EEPROM data and
under diagnostic control when the RAMs can be loaded or the EEPROMs

updated.

6.4.4 Local Store

The local store RAMs are external to the MCDP gate array and are used

for a virtual circuit descriptor table (VCDT), which is required by the CI

bus. The local store is an 8K x 33-bit RAM and is also used for software-

implemented registers. The processor accesses the local store data across

the PORT IB and addresses it across the local store address lines.

The port driver has access to local store when the port is in the unitialized
state. Local store is mapped into the port's XMI node space addresses.

An XMI read or write request is all that is required to access local store.

Local store address 0 corresponds to XMl node space address 2000, 1
corresponds to 2004, up to 1FFF corresponds to FFFC.

6.5 CIlControl Logic and Packet Memory

The memory controller wire interface (MCWI) gate array controls all of

the functions associated with the CI corner. This includes the CI interface
protoecol, CI arbitration, and reporting of CI corner transaction status to

the port processor. It also controls the packet bnffer address and data
lines and forms the data path between the PB and the CI bus. There are

three functional blocks that make up the MCWI: the memory controller
(CMEM), the CI wire interface (CWIN), and the CI controller (CIC).

6-10 Functiona! Description

6.5.1 Packet Buffer Memory Organization

The MCWI has access to and control over the external 8K x 33-bit RAM
that is used as a PB. It does this by providing both read and output
enable controls to che PB to establish the direction of the transfer, as well
as the address and data lines for reading and writing the memory.

The MCWI maintains independent packet buffer address registers for
each device or piece of logic that requires access to the PB. They are for
th > port procesaor, mover A, mover B, zone 0, zone 1, Xmit path A, and
Xmit path B.

Address registers are automatically incremented after a PB access is
made by the associated function. This allows multiple, simultaneous
block transfers to and from the PB, with minimum processor overhead.
Ail address registers consist of an 11.-bit loadable counter (bits 0 through
10), and two simple register bits (bits 11 and 12). This results in a wrap
boundary of 2K longwords, with bits 11 and 12 defining which quadrant
of the memory is being addressed. Refer to Figure 6-3.

In this way, the starting address of any PB transaction defines which
quadrant is being accessed, while subsequent accesses and resulting
automatic increments follow a 2K ring buffer format.

PACKETY ADDR 8I1TS ADOR BITS «12 11>
BUFFER MEMORY <10 00x(HEN)

0000 Q—T

2K LONGWORDS 20

07FF

0800 4——-1

2K LONGWORDS l 01
OFFF

1000 B——

2K LONGWORDS l 10
TTFF |

1800 <@——

2K LONGWORDS l 1"
1FFF .

MR X0027 90

Figure 6-3 Packet Butfer Format

Functional Description 6~11

6.5.2 Memaory Controller

The packet buffer memory is used as a temporary store for packets of
data that have just been received from the CI bus or are about to be
transmitted over the CI bus. Consequently, there is a requirement for
the data movers, the CI interface, and the port processor to have access
to this memory at various times. The function of the memory controller

is to supply the packet buffer memory with address and data direction

information, and to establish a data path between the packet buffer

memory and the appropriate functional block within the CIXCD. Data is

transferred to and from the PB over the PB data bus with longword parity
while the PB is addressed by the PB address lines.

6.5.3 Cl Wire interface

The purpose of this section of logic is to interface the CI controller to the
packet buffer memory through CMEM. This involves the reformatting of

data for transmission, from 32-bit longwords that are stored in the packet
buffer memory to 8-bit bytes that are handled by the CI controller; and
the reverse for receptions. Also during this process, the data must be
transferred between two asynchronous clocks: the port side uses the XMl

based 64-ns clock, while the CI controller side uses the 114-ns Xmit clock
(XCLK). Sufficient buffering is built in to ensure an uninterrupted flow
of data on or off the CI bus when allowing for delays caused by access

availability of the PB and clock synchronization.

CWIN also contains the logic that controls the organization of the packet

buffer memory. The 32 Kbyte of packet buffer RAMs are divided into 16

Kbyte for transmit and 16 Kbyte for receive, with no fixed size for a single
entry.

6.5.4 ClControlier

The port processor controls the CI interface using register reads and
writes. These transactions are conveyed to the MCWI across the PORT

IB, and addressed by the literal address lines, with the direction indicated

by the level of the signal MCDP_PROC_WRITE_H.

The CI controller formats and controls the data that is passed during a

transmit or receive transaction. In addition, the CIC stores the status
information for these transactions.

6~-12 Functional Description

The CIC contains a transmitter block, receiver block, and control block.

The transmitter formats and checks the data packet as it is transmitted
to the CI bus. The receiver checks and stores data as it is received

from the CI bus. Both the transmitter and receiver function under the

direction of the control block. The control is split up into three separate
control units. The transmitter control unit is responsible for the control

of the transmitter block as well as other aspects of a transmission, which

include CI arbitration, timeouts, and status. The receiver control unit is
responsible for the control of the receiver block. The command control

unit combines with CWIN to interface to the port processor, receiving

command information that is integrated into the control block.

Status information for transmit and receive transactions are stored in the

status register.

There are iwo separate CIC functions implemented in the MCWI, one for

each CI path.

6.6 CliCorner

The CI corner of the CIXCD consists of two CIRT gate arrays, one header

card containing a hybrid receiver chip, a pair of 10192 drivers, four

transformers (two of which are on the header card), and a loopback
multiplexer.

This portion of the CIXCD provides the actual interface to the CI bus

and is capable of servicing a dual-path CI system. This allows for the

simultaneous use of both paths to transmit er receive independently of

each other.

Two of the primary finctions carried out by the CI corner are:

1. Transmit data from the MCWI gate array over the CI bus. The data

is converted to ECL logic levels, serialized, Manchester encoded, and

sent out over the CI bus.

2. Receive data from the CI bus and pass it to the MCWI gate array.

The CI interface detects the presence of traffic on the CI bus. If the

ClI interface is able to receive data, the MCWI gate array will enable

the appropriate CI receive/transmit (CIRT) gate array to decode and

deserialize the incoming data. The data is passed from the CIRT gate

array to the MCWI gate array.

Functional Description 6-13

6.6.1 Receiver Hybrid

On the header card, the low-level, high-speed CI signals are detected

and received through a thick-film, chip-and-wire hybrid, containing four

analog comparators that detect the CI signal and amplify it to nominal

ECL levels. The carrier detect circuit monitors the signal level on the CI

wire and asserts the appropriate carrier detect output when the CI signal

amplitude exceeds a predetermined level. The receive circuit amplifies

the CI signal and converts it to standard ECL levels.

6.6.2 Cl Receive/Transmit Gate Array

The CIRT gate array provides the CIXCD with the capability of servicing
a CI path, with one transmit interface and one receive interface. The

receive path is Manchester-encoded serial data, which is deserialized

into byte-wide data. Odd parity is generated on the byte-wide receive

data. The transmit path is nibble-wide data, which is serialized into

Manchester-encoded serial data. Four data bits are transmitted to the CI
every 57 ns, and eight data bits are received every 114 ns.

The CIRT gate array synchronizes and locks the incoming receive data to

the local 114-ns master-byte clock. The incoming Manchester-formatted
CI receive data is decoded and deserialized in the CIRT gate array. The

array suppiies byte-wide parallel data with parity to the port interface.
On a transmit, the data is serialized, Manchester-encoded, and ser:t

out over the CI bus. The serializer inputs nibble-wide transmit data
and shifts out serial data at 70 Mbits/s. The serial data is Manchester-

encoded and driven out on either the Cl path or the maintenance loop

path as directed by the port interface.

An internal maintenance loop mode is provided to allow a node to

transmit a packet to itself. In the internal maintenance loop operation,

the data from the transmit channel is looped back into the receive

channel. Internal loopback forces the CIRT gate array to receive its

own transmissions.

A
CIXCD Registers

This appendix describes the CIXCD registers accessible from the console.

31 2928 24 23 2019 161514 131211100908 07 00

DEVICE REVISION DEVICE TYPE

FIRMWARE HARDWARE

MAJOR| MINOR MAJOR | MINCR 00400141100 0!0LOLOL0[11011
\ -/

CPU DEVICE A 4

MEMORY DEVICE l iD
BUS WINDOW (1Q)

BUS WINDOW (MEMORY)

170 DEVICE

XCOMM REGISTER PRESENT

MR X073 90

Figure A-1 XMl Device Register (XDEV) Offset = 00000

A-2 CIXCD Registers

313020282726 262322212019 1817161514 1312111009 06 0% 04 03 02 01 00

0 0 ¢ 0 o} | wNopED 0

EMP

DXTO

EHWW

CMDRID

§TF

NSES

70

CNAK Q\
RER

RSE ¢~ CMODR ERRORS

NAR

WDONAK

-/

RIDNAK

WSE RSPDOR ERRORS
PE

cc

NHALY

MISC ERRORS

NRST

ES

HA_X076n_0%

Figure A~-2 XMI Bus Error Register (XBER) Offset = 00004

CIXCD Registers A-3

Bit Name Description

<31> ES Error summary (RO:RO) — This bit represents the

logical-OR of the error bits in this register. These

bits are: CC, PE, WSE, RIDNAK, WDNAK, NRR,

RSE, RER, CNAK, TTO, and NSES. When this bit

is set, an XMI interrupt will be generated, using

IVIR an INTDMR for IPL, destination mask, and

vector if PMCSR_MIE is set.

Miscelianeous Errors

<30> NRST Node reset (WO:ROZ,DCLOC) — Writing a one
to this location initiates a complete power-up

reset (similar to what happens in response to the

assertion and deassertion of XMI#DC#LO#L —

see note below); the CIXCD performs self-test

and asserts XMI BAD L until it is successfully

completed. Just like during power-up reset, other

nodes are precluded from accessing the CIXCD

from the time NODE RESET has been set until

it completes self-test (or the maximum self-test

time is exceeded). In response to a real power-up

sequence (caused by XMI DC LO L), the NRST bit

wili be reset; following a NODE RESET sequence,

it will remain set.

NOTE

During the time the CIXCD is responding

to NODE RESET, the CIXCD will not access

remote nodes on the XMI. In response to a

real power-up sequence (caused by XMI DC

LO L), this NRST bit will be reset. Following

a NODE RESET sequence, NRST will remain

set allowing the XMI processor to recognize

that it should not attempt to go through the

normal boot process.

A-4 CIXCD Registers

Description

Node halt (R'W:ROZ,DCLOC) — Writing this

bit forces the CIXCD to go into a “quiet state”
while retaining as much siate as possible. When

this bit is set, CIXCD commander transacticns

will be disabled, while responder transactions

will complete normally. When this bit is set,

RESPCSR_NHALT will also set.

0

Corrected confirmation (R'W1C:RO,DCLOC) —

This bit is set when the node detects a single-bit

CNF error (single-bit CNF errors are automatically

corrected by the XCLOCK chip in the XMI corner).
When set, this bit sets XBER_ES.

0

RBit Name

<29> NHALT

<28> -

<27 CC

<26:24> -

Responder Errors

<23> PE

<22> WSE

<21> RIDNAK

Parity error (R/'W1C:RO,DCLOC) — When set,
indicates that the CIXCD has detected a parity
error on an XMI cycle. The cycle need not have

been directed to the CIXCD. When set, this bit ssts

XBER_ES.

Write sequence error (R'W1C:RO,DCLOC) —

When set, indicates that the CIXCD aborted a

write transaction due to a missing data cycle.

When set, this bit sets XBER_ES.

Read/IDENT data noack (R'W1C:RO,DCLOC)

— When set, indicates that a read data cycle
transmitted by the CIXCD has received a noack

confirmation. When set, this bit sets XBER_ES.

CIXCD Registers A-5

Commander Errors

<20> WDNAK

<19> -

<18> NRR

<17> RSE

<16> RER

<15> CNAK

<1l4> -

Write data noack (RA'W1C:RO,DCLOC) — When

set, indicates that a write data cycle transmitted

by the CIXCD has received repeated noack

confirmations for the duratio~ of the timeout

period. Upon receipt of a noack confirmation
code on a write data cycle, the CIXCD will retry

the entire transaction until it either completes

successfully or a TTO (transaction timeout —

XBER bit 13) is encountered; in wilich case this bit

will also be set. When set, this bit sets XBER_ES.

0

No read response (R'W1C:RO,DCLOC) — When

set, indicates that a read or IDENT transaction

initiated by the CIXCD failed to receive all of its

requested data within the timeout period. If this

bit is set, XBER_ES and XBER_TTO will also be

set.

Read sequence error (R/W1C:RO,DCLOC) — When
set, indicates that a read transaction initiated by

the CIXCD received its read data out of sequence.

When set, this bit sets XBER_ES and the offending

m;nd/address will be available in XFADR and

Read error response (R‘'W1C:RO,DCLOC) — When

set, indicates that the CIXCD has received a Read

Error Response. When set, this bit sets XBER_
ES and the offending command/address will be

available in XFADR and XFAER.

Command noack (R'W1C:RO,DCLOC) — When

set, indicates that a command cycle transmitted

by the CIXCD has received repeated noack

confirmations for the entire duration of the timeout

period. This can result frem a reference to a non-

existent memory location or a command cycle
parity error. The CIXCD will set this bit when

1t repeatedly receives a noack confirmation for a

given command/address that has been retried for

the timeout period. When set, this bit sets XBER_

ES and XBER_TTO.

0

A-6 CIXCD Registers

Bit Name Description

<13> TTO Transaction timeout (R'W1C:RO,DCLOC) — When
set, indicates that a transection initiated by the

CIXCD has not completed within the timeout

period. This bit may sat in conjunction with

XBER_NRR, XBER_WDNACK, or XBER_CNAK.
If none of these bits is set, the CI{CD has either:

e Failed to win bus arbitration within the

timeout period

° Attempted to execute an [read command, but

XMI lockout remained asserted for the timeout
period

When set, this bit sets XBER_ES and the offending
%;Lndladdm will be available in XFADR and

CIXCD Registers A-7

DescriptionBit Name

Node Specific Errors

<125 NSES

<1l> -

<10> STF

<09:06> NODEID

<05:04> CMDRID

<03> EHWW

Node-specific error summary (RO:RO) — This bit is

set when a node-specific error condition is detected.
The CIXCD sets this bit when one Jf the following

error bits is set in PMCSR: CPDED, CPERR,
PRER, PWER, STUF, STOF, YRPE, XRPE, IBPE,
CSPE, PRIBPE, MPPBPE, XMRGPE, MAPBPE,

MBPBPE, CWXAPE, CWXBPE, MAIBE, MBIBE,
CDIBE, ITIBE, RSIBE, MBPIE, MABPE, or

MBBPE. The error bit in PMCSR must be cleared
in order to clear NSES. When set, this bit sets
XBER_ES.

0

Self-test fail (R’'W1C:STS,WO) — While set, this

bit indicates that the CIXCD has not yet passed

its self-test. The port processor must clear this bit
when the CIXCD passes its self-test.

Node ID <03:00> (RO:RO) — This field represents

the CIXCD’s position in the XMI backplane and,
therefore, the XMI node ID.

Commander ID <01:00> (RO:R/W,DCLOC) —
This field is used to log the commander ID of

a failing transaction. When a CMDR, MOVA,
MOVRB, or INTR XMI fatal error occurs, it is the
responsibility of the microcode to load the code of

the failing commander in this field. The codes are
as follows:

0 = Port xmit mover (mover a)

1 = Port rev mover (mover B)

2 = Microcode CMDR

3 = [NTR

Enable hexword writes (R/'W:R'W DCLOC) — This

bit is written by the host during initialization

to enable the transmission of hexword writes

(hexword write masked) by mover B. If this bit is
clear, the maximum write data length will be an

octaword.

A-8 CIXCD Registers

Bit Name Description

<02> DXTO Disable XMI timeout (R/W:ROZ,DCLOC) — This
bit is used to enable/disable the reporting of all

XMI timeouts by the CIXCD. When this bit is set,
the CIXCD’s internal timeout counter is disabled,

preventing any TTO errors. If the CIXCD has a

current outstanding XMI transaction when this

bit transitions from 0 to 1 (the TTO counters are

counting), the given timeout is disabled, and the

CIXCD will retry the transaction indefinitely.

If the CIXCD has a current outstanding XMI

transaction when this bit transitions from 1 to 0

(the TTO counters are not counting), the given
timeouts will continue from where they were prior

to DXTO being set.

<01> EMP Enable more protocol (R'W:R/W,DCLOC) — When

set, this bit enables XMOV’s data movers to

generate read more and write more transactions.

More is used only on hexword transfers.

<00> - 0

CIXCD Registers A-9

31302928 00

FLN FAILING ADDRESS <28 00>

ADDRES8<39>

M RG89 89

Figure A~3 X0l Failing Address Registier LWO (XFADR) Offsst = 00008

31 30 28 27 24 23 1615 14 12 1 08 07 Q00

4] NIDOUT CHAROUY 0 NIDIN CHARIN

BUSYQuUY BUSYiIN

MA X078 o0

Figure A-4 XM Communications Register (XCOMM) Otfsst = 00010

31 30 05 04 0302 1 0C

ZERO

SFTDN EEPON
————

EUCLD

EEWRY

CTL

WA %0792 89

Figure A-5 Port Scan Control Register (PSCR) Offeet = 00014

31 00

DATA

MR X;'9) 89

Figure A-6 Port Scan Data Register (PSDR) Offset = 00018

A-10 CIXCD Registers

3130292827 262524232221201918 1716 151413 12111009080706 05040302 0100

0 0 0

weere | MIN

MABPE MTD

MBPIE ‘ MIE

ASIBE CPDED

ITIBE CPERR

CDIBE PRER

MBIBE PWER

MAIBE STUF

CWXBPE STOF

CWXAPE YAPE

MRPBPE XRPE

MAPBPE 'BPE

XMAGFE CSPE

PRIBPE

MPPBPE

WR R0?0a 89

Figure A-7 Port Maintenance Control/Status Regleter (PRCSR) Offsst

= 0001C

Bit Name Description

<31> - 0

CIXCD Registers A-11

Error Bits

XMOV Parity Ervors

<30> MBBPE Mover B byte parity error (R’'W1C:R/'W,DCLOC)

— This bit may be get by the microcode after

receiving repeated mover B aborts with MVBCSR_

MVBBPE as the error. This allows the microcode

the option of retrying the packet before reporting

the error to the XMI bus. The setting of this bit

also sets XBER_NSES.

<29> MABPE Mover A byte parity error (R’'W1C:R/W,DCLOC)
— This bit may be set by the microcode after

receiving repeated mover A aborts with MVACSR_

MVABPE as the error. This allows the microcode
the option of retrying the packet before reporting

the error to the XMi bus. The setting of this bit

also sets XBER_NSES.

<28> MBPIE MOVB detected PB_IB parity error on PB read
(RW1C:RW,DCLOC) — This bit may be set by the

microcode after receiving repeated mover B aborts

with MVBCSR_MVBPBE as the error. This allows
the microcode the option of retrying the packet

before reporting the error to the XMI bus. The

setting of this bit also sets XBER_NSES.

<27> RSIBE RESP PB_IB parity error on reg write

(R'W1C:RW,DCLOC) — This bit, when set,
indicates that a parity error was detected over

the PB_OR_IB bus on a register write to the

responder. The setting of this bit also sets XBER_

NSES.

<26> ITIBE INTR PB_IB parity error on reg write

(RAW1C:R/'W,DCLOC) — This bit, when set,
indicates that a parity error was detected over

the PB_OR_IB bus on a register write to the

interrupt controller. The setting of this bit also

sets XBER_NSES.

A-12 CIXCD Registers

Bit Name Description

<25>

<24>

<23>

CDIBE

MBIBE

MAIBE

CMDR PB_IB parity error on reg write

(RW1C:R’'W,DCLOC) — This bit, when set,
indicates that a parity error was detected over

the PB_OR_IB bus on a register write to the

commander. The setting of this bit alsc sets

XBER_NSES.

MOVB PB_IB parity error on reg write

(R'W1C:R'W,DCLOC) — This bit, when set,
indicates that a parity error was detected over

the PB_OR_IB bus on a register write toc mover B.

The setting of this bit also sets XBER_NSES.

MOVA PB_IB parity error on reg write

(R'W1C:R/'W,DCLOC) — This bit, when set,
indicates that a parity error was detected over

the PB_OR_IB bus on a register write to mover A.

The setting of this bit also sets XBER_NSES.

CIXCD Registers A-13

Bit Name Description

MCWI Parity Errors

<22>

<21

<20:19>

<18>

<17>

CWXBPE

CWXAPE

MBPBPE

MAPBPE

CWIN transmit path B parity error

(RAW1C:RW,DCLOC) — This bit is set by the

microcode when the CI wire interface logic, during

a transmit function on path B, detects bad parity

from either the byte wide transmit data path
leaving the MCWI to the CI corner logic or the

conversion of longword PB data to byte-wide

transmit data in the MCWI. The setting of this bit

also sets XBER_NSES.

CWIN transmit path A parity error

(R'W1C:R/W,DCLOC) — This bit is set by the

microcode when the CI wire interface logic, during

a transmit function on path A, detects bad parity

from either the byte-wide transmit data path

leaving the MCWI to the CI corner logic or the

conversion of longword PB data to byte-wide

transmit data in the MCWI. The setting of this bit

also sets XBER_NSES.

0

Mover B packet buffer read parity error

(R'W1C:R/W,DCLOC) — The memory controller
sets this bit to indicate that bad parity was

detected on mover B PB read data received by
the memory controller from the PB RAMs over the

MCWI_PB data bus (PB memory bus).

Mover A packet buffer write parity error

(R'W1C:R/W,DCLOC) — The memory controller

sets this bit to indicate that bad parity was

detected on mover A packet buffer write data

received by the memory controller from the XMOV

gate arrays over the PB_OR_IB data bus.

A-14 CIXCD Registers

Description

XMOV register read parity error

(R'W1C:R'W,DCLOC) — The memory controller

sets this bit to indicate that bad parity was
detected on XMOV register read data received by

the memory controller from the XMOV gate array

over the PB_OR_IB data bus. The destination

of this XMOV register read data is the MCDP

microcontrol and data path gate array.

MCDP packet buffer read parity error

(R'W1C:R/W,DCLOC) — The memory controller

sets this bit to indicate that bad parity was
detected on MCDP packet buffer read data

received by the memory controller from the PB
RAMs over the MCWI_PB dates bus (PB memory
bus).

PORT_IB receive parity error

(RW1C:R'W,DCLOC) — The memory controller
sets this bit to indicate that bad parity was

detected on data received by the memory controller
from the MCDP gate array over the PORT IB.

Bit Name

<16> XMRGPE

<15> MPPBPE

<l4> PRIBPE

MCDP Pavity Errors

<13> CSPE

<12> IBPE

Control store parity error (R'W1C:R/W,DCLOC)

— This Lit is set by the microcode when the port
processor encounters a control store parity error.

This bit can only be set if the microcode can
recover enough to write this bit. This bit must

be written by the port processor when the error
occurs. The setting of this bit also sets XBER_

NSES.

Internal bus parity error (RW1C:R/W,DCLOC) —

This bit 1s set when the port processor encounters

an internal bus parity error. This bit can only be

set if the microcode can recover enough to write

this bit. This bit must be written by the port

processor when the error occurs. The setting of
this bit also sets XBER_NSES.

CIXCD Registers A-15

. Bit Name Description
<1l> XRPE X register parity error (R’'W1C:R/W,DCLOC) —

This bit is set when the parity of the X register in

the port processor data path is incorrect. This bit

can only be set if the microcode can recover enough

to write this bit. This bit must be written by the

port processcr when the error occurs. The setting

of this bit also sets XBER_NSES.

<10> YRPE Y register parity error (R’'W1C:R/WDCLOC) —
This bit is set when the parity of the Y register in

the port processor data path is incorrect. This bit

can only be set if the microcode can recover enough

to write this bit. This bit must be written by the

port processor when the error occurs. The setting

of this bit also sets XBER_NSES.

<09> STOF Microatack overflow (R/W1C:R/W,DCLOC) — This
bit is set when the microstack is overflowed by

too many pushes. This bit can only be set if the

microcode can recover enough to write this bit.

This bit must be written by the port processor
when the error occurs. The satting of this bit also

sets XBER_NSES.

. <08> STUF Microstack underflow (RW1C:R/W,DCLOC) —
This bit is set when the microstack is underflowed

by too many pops. This bit can only be set if the

microcode can recover enough to write this bit.

This bit must be written by the port processor

when the error occurs. The setting of this bit also

sets XBER_NSES.

Port Ervors

<07> PWER Port write error response (R/'W1C:R'W,DCLOC) —

This bit is set as a result of the microcode having

set INTCTR_SWEIL INTCTR_SWEI is set by the

microcode when it wishes to send a write error

IVINTR, if the CIXCD is unable to complete a

register write transaction to its node space but not
to a valid register.

A-16 CIXCD Registers

Bit Name Description

<06>

<05>

<04>

PRER

CPERR

CPDED

Port read error response (RW1C:R/W,DCLOC) —

This bit is set as a result of the microcode having
set RESPCSR_SNDRER. RESPCSR_SNDRER is
set by the microcode when it wishes to send an

RER response to a register read, if the read is
within its node space but not to a valid register.

Since the read error response caused a machine

check, an interrupt is not generated.

CP_ERROR_STATUS (R/'W1C:RO,DCLOC) —

This bit is set if the CP_ERROR_STATUS signal

remains asserted for more than 32 cycles. CP_

ERROR_STATUS is set when any of the bits in

the MCDP internal conditions register are set.

When one of these errors occurs, the microcode

will trap and execute a port shutdown routine,

which clears CP_ERROR_STATUS, if the failure

was intermittent. If this bit is set, all other MCDP

error bits in this register are not valid; this is the

only indication that the port processor has had

an unrecoverable failure. Scan data can provide

additional data. The setting of this bit also sets

XBER_NSES.

CPU no response error (RRW1C:RO,DCLOC) —

This bit is set if the port processor fails to respond

to a responder interrupt within 512 cycles. The

port processor is assumed to have failed. The

setting of this bit also sets XBER_NSES.

CIXCD Registers A-17

DescriptionBit Name

Control Bits

<02> MIE

<01> MTD

<00> MIN

Maintenance interrupt enable (R/W:RO,DCLOC) —

This bit, when set, enables XMI interrupts.

Maintenance/sanity timer disable

(R'W:RO,DCLOC) — If set, the maintenance

sanity/timer is set to the initial value and

suspended. If clear, the timer functions normally.

This bit resides as a flip-flop in XMOV hardware,

which sets or clears when this bit is written. On

PMCSR reads from the XMI bus, the state of this

flip-flop is returned as MTD; on PMCSR writes

from the XMI bus, the register write is sent to

the port processor as 2 virtual write, and the local

MTD flip-flop is updated as well.

Maintenance init (WO:RO,DCLOC) — When set,

clears all hardware state including errors and puts

the port in the uninitialized state, without copying

miltt:.mcode from EEPROM to RAM or executing

self-test

A-18 CIXCD Registers

31 08 07 00

ZERO PODFLY

BR_Xo7es ad

Figure A-8 Port Diagnostic Control/Statug Roglste: (PDCSR) Otfaet =

00020

21 30 11 10 02 08 07 06 05 04 03 02 01 00

ZEROQ 0

NASPE UNIN

MR_RO0768 89

Figure A-9 Port Siatus Register (PSR) Offset = 00024

3 28 27 26 25 1615 00

CuD 0 XM! ADDRESS <38 29> MASK <15 00>

WA _N0790 a9

Figure A-10 XMl Falling Address Register LW1 (XFAER) Ofiset =

0002C

CIXCD Registers A-19

31 30 00

0 PORT QUEUE BL.OCHK BASE ADDRESS <38 08>

MR _Rerer e

Figure A-11 Port Queue Block Base Register (PQBBR) Offset = 01000

31 16 18 00

MISC ERROR CODE DSE ERROR CODE

HA_Xo’ts 89

Figure A-12 Port Error Status Register (PFESR) Offset = 01008

31 0t

FAILING ADDRESS

MRA_X0700_00

Figure A-13 Port Falling Address Register (PFAR) Offset = 0100C

31 2028 16151413121110 0807 00

C8Z» PACKET BUFFER LENGTH 0 ALTDx | NODE ADDR <07 00>

PPE EXTHDR

EXTATO DISARS

UR _N%e00_e0

Figure A-14 Port Parameter Register (PPR) Offest = 01010

31 28 27 00

PMFGP PMFCN

KA X080 09

Figure A-15 Port Serial Number Register (PSNR) Offsst = 01014

A-20 CIXCD Registers

31 1615 00

ZERO INTDES

MR_X0802 09

Figure A-16 Port interrupt Destination Register (PIDR) Offest = 01018

31 20 19 16 15 02 0100

ZERO PpL PIVEC 0

UR X006 a9

Figure A-17 Port Interrupt Vector Register (PIVR) Offset = 01020

31 00

cQos

MR x0p0s 89

Figure A-18 Port Command Queue 0 Control Register (PCQOCR)

Offset = 01028

31 00

MR X080% 89

Figure A-19 Port Command Queue 1 Control Register (PCQ1CR)

Offset = 0102C

k) 00

cQ2s

HR X080s 89

Figure A-20 Port Command Queue 2 Control Register (PCQ2CR)

Ofiset = 01030

CIXCD Registers A-21

N 00

cO3s

YR _X020? &9

Figure A-21 Port Command Queue 3 Control Register (PCQ3CR)

Oftfest = 01034

31 00

PSRS

Figure A-22 Port Status Releass Control Register (PSTMCR) Offsst =

01038

31 00

PEC

. HR_X8600 00
Figure A-23 Port Enable Control Register (PECR) Offsst = 0103C

kL 00

POC

MA N0B‘0_8%

Figure A-24 Port Disable Conirol Register (PDCR) Otfest = 01040

3 00

PICS

Figure A-25 Port inilialize Control Reglster (PICR) Offsst = 01044

A-22 CIXCD Registers

kAl 00

PDQE

Figure A-26 Port Datagram Free Queus Control Register (PDFQCR)

Offget = 01048

k) 00

PMOE

WA K083 89

Figure A-27 Port Message Free Queus Control Register (PMFQCR)

Offget = 0104C

31 00

PMTC

UR_xp8'400

Flaure A-28 Port Maintenance/Senity Timer Control Register (PMTCR)

Offset = 01050

31 ! 00

PMTE

Figure A-29 Port Maintenance/Sanity Timer Expiration Control

Register (PMTECR) Offgst = 01054

31 1615 08 07 00

RESERVED SUB_NO <07 00> AASB<07 00>

WA X088 &

Figure A-30 Port Parameter Extension Register (PPER) Otiest=01058

EVGEA Sections

o8>

OS> start/sect ion=update

.. Program: EVGEA CIXCD Functional Level 3 Diag , revision 2,0, 25

tests,

at 14:04:25.68,

Testing: _PABC

CIXCD EEPROM update utility

The current CIXCD XMl node number is 0OC

inpur the CIXCD BINARY filename to use [default= CIXCD,.BINj:

lLoading Microcode fiie CIXCD.BIN

e ilbt- srart of Microcode file header text block =ecwceccced

Copyright (c) Digital Equipment Corporation 198%. All rights reserved.

Diagnostic Firmware Revision 1.0 , Functional Firmware Revision 1.04

Let end of Microcode file header text block e~emveveca>

Starting to write EEPROM Diagnostic BACKUP

Starting to write EEPROM Diagnostic PRIMARY

Starting to write EEPROM Functional BACKUP

Starting to write FEPROM Functiona. PRIMARY

Writting EEPROM has been completed

Numper of EEPROM write cycles = 0001

.. End of run, O errors detected, pass count is 1,

time is 27-MAR-1990 15:59:56,75

Ds>

Example B-1 UPDATE Section

B-1

B-2 EVGEA Sections

o8>

L8> start/sectjon=verify

.. Programg EVCEA CIXCD Functionai Leve., 3 Diag , revision 2.0, 25
tests,

at 14:06:42,06.

Testirg: PABC

CI!XCD EEPROM verify atility

The current CIXCD XMT node rumper .s OC

Input tre CIXCD BINARY fi.erame Lo use ,gefauits CIXCD.BIN]: [REIURN]

Microzode fi.e a.ready .caged in VAX ram memory

Cemeevecomcaca start 0f Microcode fie reaaer teXxt block =ew—v==e==d

Copyright (c) Digital Equipment Corporation 1989, A.. rignts reserved,

Dlagnost.c Firrware Rev.s.cn 1.0 , Functional F.rmware Revision 1,04

Crommercon— === @ng ¢! Yicrocode f{1.e neader tek: b.OCK =-=e—-=o-e==>

Ver fyi'q TEPROM tas been comploted

.. End of run, 0 errors derected, pass count is i,

tire is 3C-MAR~(990 14:06:35,34

Ds>»

Example B-2 VERIFY Section, No Errore

EVGEA Sections B8-3

o5

DS> star' rsec' .on=ver.fy

.. Program: EVGIA TIXCZ runctiona. Leve. 3 Diag , revision 2.0, 25
Les:s,

at 14:09:4.,82,

Test.rg. _PABC

CIXCD EEPROM verify .tilltly

The c.rrent CINCZ XMI rcde number i1s 0OC

Inpur the CIXCD BINARY filename to use ‘defauit- CIXCD.BIN): {REIURN]

Microcode fi.e already ioaded in VAX ram memory

Cecornomcevane SLArY Of Microcode fl.e header text DIOCK =ve-e-eceso>

Copyr!ght (c) Digital Eguipment Corporatijor 1989, All rights reserved.

Diagnostic Firmware Revision ..0C , Ffurnctionai Firmware Revisjon 1.04

Commmncw ~wses=x= @rna 0! Microcode f!.e neazer taAt DIOCK =e~c-o=seed

sewes-ss EVGEA CIXCD Functicra. leve, 3 Diag =« 1,0 eteneees

rass i, test .3, suptest J, error 6, 30-MAR~-.990 .4:09:50,52

Hard erzor whi.e -esting PABC: EEPROM reg.on data did not VERIFY

correctly

Xorea CS EEPROM = 5C00100C 00000000 C000C002

Reading C5 EEPROM = (CQOCO000 0100C11C 25000000

Verify ucoge f.le - 0000DOOO 01000110 0CTCOCOC2, Loc i234

seessses Prg of Hard error number 6 eeesses

Trere were 1, EEPROM aadresses in error

cerpes.t of a.) CS EEPRCM XOR'd bits = error - 0C.C20 00000000 CC00CL02

Moduie f'w revision=- = D02

Chip fa..t data g 0 0C 083 @) 00 <CO s 0c

Crip fau.: .ist e LTe

¢ G2

Verifying EEFRCM has been completea

.. Eng of run, 1 error delecteq, pPass count .s],

time 18 3C-MAR~:990 14:10:01.54

28>

ExampleB-3 VERIFY Section, Enrors

B-4 EVGEA Sections

DS>

DS> start/sectionerverify

. Program: EVGEA CIXCD Functional Level 3 Diag , revision 2.0, 25

tests,

at 14:23:08.47.

Testing: _PABO

CIXCD EEPROM Region-Verify EEPROM utility

The current CIXCD XMI node number is 0OC

Starting to verify EEPROM Diagnostic PRIMARY->BACKUP

There were 0. Diagnostic region EEPROM locations different

Starting to verify EEPROM Functional PRIMARY->BACKUP

There were 0. Functional region EEPROM locations different

Verifying EEPROM has been completed

.. End of run, 0 errors detected, pass count is 1,

time is 30-MAR-1990 14:23:17.78

DS> st /se=eaxam

DS>

ExampleB-4 RVERIFY Section, No Errors

EVGEA Sections B-5

Ds>

DS> start/section=rverify

.. Program: EVGEA CIXCD Functional Level 3 Diag , revision 2.0, 25

tests,

at 14:19:01.83.

Testing: _PABO

CIXCD EEPROM Region-Verify EEPROM utility

The current CIXCD XMI node number is 0C

Starting to verify EEPROM Diagnostic PRIMARY->BACKUP

rakdntan PYGEA CIXCD Functional Level 3 Diag - 1.0 f#avswtss

Pass 1, test 19, subtest 0, error 65535, 30-MAR-1990 14:19:05.86

Hard error while testing PABO: EEPROM region data did not compare

correctly

Backup region = 0000C000 01000110 00000000, Address = 1234

Primary region = 0000D000 01000110 0000C002, Address = 3234

tekaedtd End of Hard error number 65535 *awantss

There were 1. Diagnostic region EEPROM locations different

Starting to verify EEPROM Functional PRIMARY->BACKUP

There were 0. Functional region EEPROM locations different

Verifying EEPROM has been completed

.. End of run, 1 error detected, pass count is 1,

time is 30-MAR~1990 14:19:14.90

DS>

Example B-3 RVERIFY Section, Errors

B-6 EVGEA Sections

ps>

DS> start/section=replace

. Program: EVGEA CIXCD Functicnal Level 3 Diag , revision 2.0,

tests,

at 14:22:32.36.

Testing: _PABO

CIXCD EEPROM replace EEPROM utility

The current CIXCD XMI node number is OC

Starting to write EEPROM Diagnostic BACKUP

There were 1. Diagnostic region EEPROM locations written

Starting to write EEPROM Functional BACKUP

There were 0. Functional region EEPROM locations written

Writting EEPROM has been completed

. End of run, 0 errors detected, pass count is 1,

time is 30-MAR-1990 14:22:42.86

DS>

Example B-6 REPLACE Section

25

EVGEA Sections B-7

DS>

DS> start/section=restore

Program: EVGEA CIXCD Functicnal Level 3 Diag , revision 2.0, 25

tests,

at 14:25:43.24.

Testing: _PABO

CIXCD EEPROM restore EEPROM utility

The current CIXCD XMI node number is OC

Starting to write EEPROM Diagnostic PRIMARY

There were 0. Diagnostic region EEPROM locations written

Starting to write EEPROM Functional PRIMARY

There were 0. Functional region EEPROM locations written

Writting EEPROM has been completed

. End of run, 0 errors detected, pass count is 1,

time is 30-MAR-1990 14:25:53.74

Ds>

Exampie B-7 RESTORE Section

B-8 EVGEA Sections

DS>

DS> start/section=errorlog

. Program: EVGEA CIXCD Functional Level 3 Diag , revision 2.0, 25

tests,

at 14:01:41.31.

Testing: _PABO

CIXCD EEPROM examine DCB~ERRORLOG wutility

The current CIXCD XMI node number is OC

The current date and time is = 30-MAR-1990 14:01:43.84

EEPROM UPDATE date and time is = 27-MAR-1990 15:59:56.75

Values currently read from EEPROM

Module Serial Number = AS00400190

Module H/W revision- = EQ03

Functional Microcode revision= - = = = 1.04

This version of microcode supports 1K Packet buffer size

Diagnostic Microcode revision- - - - = 1.0

Functional Microcode region Checksum = E75B631B

Diagnostic Microcode region Checksum = C2442F6B

Diagnostic Control Block Checksum- - = 00000000

Number of valid ERRORLOG entries = 08

Number of EEPROM write cycles = 0C01

. End of run, 0 errors detected, pass count is 1,

time is 30-MAR-1990 14:01:50.02

Ds>

Exampie B-8 ERRORLOG Section

EVGEA Sections 8-9

DS>

0S> START/SECTION=EXAM

.« Program: EVGEA CIXCD Functionai Level 3 Diag , revision 2.0, 25

tests,

at 14:117322,93.

Testing: _PABQ

CIXCD EEPAOM examine ERRORLOG entry utllity

The current CINCD XMI node number {s 0C

Number of valld ERRORLOG entries = 08

Examine error entry ® (RETURN = All) {(0000), 0001-0008(X)] 1 [REIURN]

Error Log entry Ol:

“ailing Test Number- - - 13, Subtest O

Falling Address- - ~ - « 00001234

Expected Data- - - - = = 0000DCOC 01000110 000OCO02

Actual Data~ = = = « - = 0000CO00 01000110 00000000

Date and Time of Error - 30-MAR-1990 14:09:50,%0

.« Era of run, 0 errors detected, pass count is 1,

time is 30-MAR-1990 14:17:34,14

ps>

Example8-9 EXAMLOG Section

C

C-2 Cluster Upgrades

Table C-1 Minkwum Revision Levels

Environment

1-16 Nodes

Device (S8C008) 1-32 Nodes (CISCE)

VM8 V5.4 V5.4

CIXCD

T2080 Rev E02 Rev E02

CIXCD.BIN V1.0 V1o

HSC

Link module L0100 revE or 10118 rev B

L0118 rev B

CRONIC:!

HSC50 V400 V400

HSC40/70 V500 V500

CiTu0, CIBCI

Link module L0160 rev E or 10118 rev B
L0118 rev B

C1780.BIN/L01012 Rev 8.7/L0101 rev K Rev 20.20/L0101-YA

(l,{ev 20.20/L0101-YA
CIBCA-A

CIBCA.BIN® Rev 75 Rev 7.5

CIBCA-B

CIBCB.BIN¢ Rev 5.2 Rev 5.2

TCRONIC and microcode revision levels can be examined using the SHOW CLUSTER utility
with the ADD RP_REV cormnmand.

2C1780.BIN is displayed as either 80007 or 200020, which equate to 8.7 and 20.20.

3CIBCA.BIN is displayed as 70005, which equates to 7.5.

{CIBCB.BIN is displayed as 40054002, which equates to 5.2.

Cluster Upgrades C-3

C.2 Quiet Slot Time Settings

A quiet slot time of seven (7-tick mode) does not ensure correct
propogation time to avoid excessive collisions during arbitration. It is
recommended that all nodes be set to have the quiet slot time set to 10

(10-tick mode) regardless of the environment. Clusters must not have
individual nodes running in mixed mode operation (that is, some 7-tick
mode and others in 10-tick mode).

Ten-tick mode is required in all clusters containing a CIXCD or otherwise
having high-traffic applications.

If a cluster is running with nodes operating in both 7-tick mode and
10-tick mode, then all nodes must be changed to 10-tick mcde. For the
recommended procedure for upgrading a node from 7-tick mode to 10-tick
mode, refer to the following steps:

1. Examine all nodes before making any changes to the slot times.

2. If changes are required, shut down all nodes not currently in 10-tick
mode before making any changes.

3. Change all nodes currently in 7-tick mode to 10-tick mode using the
following procedures:

e CIXCD-AA, CIXCD-AB — Put a jumper (12-14314-01) into jumper
position W30 (E15/45, refer to Section 3.5.5) of the slot in the
XMI backplane containing the T2080 module. Ensure that W28

(E13/43) and W29 (E14/44) do not have jumpers.

e CIBCA-AA, CIBCA-BA — Put a jumper (12-14314-01) into jumper
position E11/41 (refer to Figure 3-4) of the slot in the VAXBI
backplane that contains the T1015/T1045 module. Ensure that
E09/39 and E10/40 de not have jumpers.

e CI780, C1750, CIBCI, all HSCs — Change the required switch
gettings as follows:

— For devices with L0100 modules: Place both elements of S3
in the ON position. S3 is a two-segment DIP switch located

adjacent to S1 and S2.

NOTE

All L0100 rev D modules must be replaced with either
L0100 rev E or L0118 rev B modules.

C-4 Cluster Upgrades

— For devices with L0118 modulzs: Place switch elements 2

and 3 in the off position an4 element 4 in the on position.

S3 is a four-segment DIP switch located adjacent to S1

and S2. (Element 1 of S3 must be turn«d on in VAXcluster
configurations utilizing the CISCE star coupler expander, or it
must be turned off in all other star coupler configurations.

4. Reboot node after change is compleic.

index

A

Acceptance testing flow diagram,

4-2

Alter delta time, 3-20

B

Backplane jumpers

alter delta time, 3-20

boot time, 3-19

CI node jumpers, 3-17

cluster size, 3-21

disable arbitration, 3-20

extend ACK timeout, 3-22

extend header, 3-20

Boot time, 3-19

C

CIBCA removal, 3-4 to 3-8

CI bulkhead cable, 1-8

CI buikhead cable assembly, 1-8

CI bus specifications, 1-5

CIC, 6-11

CI controller, 6-11

CI corner, 6-12

Cl general specifications, 1-3

Cl link, 6-4

Cl logic, 64

CI node address, 3-17

CIRT, 6-13

CI wire interface, 6-11

CIXCD features, 1-3

CIXCD header card, 1-7, 6-12

CIXCD installation, 3-9 to 3-11

CIXCD registers, A-1 to A-22

CIXCD systems

VAX 6000s, 2-2

VAX 90008, 24

Cluster size, 3-21

Cluster upgrades, C~1

CMEM, 6-11

Control store, 6-9

CWIN, 6-11

Data movers, 6-2, 6-7

Decoding, 6-4

Diagnostic programs, 4-2

Disable arbitration, 3-20

EEPROM memory map, 5-24

EEPROMs, 6-9

EEPROM update/verification utility,

5-19 to 5-24

Electrical specifications, 14

Encoding, 6-4

Environmental specifications, 14

Event flags

EVGAC, 5-27

EVGEA, 5-17

EVGAA, 5-26

EVGAB, 5-27

EVGAC, 5-27 to 5-36

EVGAC event flags, 5-27

EVGAC program parameters, 5-30

index 1

2 (ndex

EVGAC support files, 5-31

EVGEA, 515 to 5-26

EVGEA error messages, 5-26

EVGEA event flags, 5-17

EVGEA section examples

errorlog section, B-8

examlog section, B-9

replace section, B-6

restore section, B-7

rverify section, B4, B-5

update section, B-1

verify section, B-2, B-3

EVGEB, 5-19

Extend ACK timeout, 3-22

Extend header, 3-20

F

Features, 1-3

Functional level testing, 4-9

(4]

Header card, 1-7, 6-12

i

Installation, 3-3, 3-9

Inventory, 3-3

J

Jumpers, 3-16 to 3-22

L

Local store, 6-9

Loopback connectors, 44, 5-8,
5-19

Macrodiagnostics, 5-14

Memory controller, 6-11

Minimum revision levels, C-1

Module description, 1-6

P

Packet buffer memory, 6-10

Packet buffers, 6-4

PhC, 6-8

Port microcontrol, 6-8

Port microprocessor, 6-4, 6-7
Port processor, 6-7

Processor data path, 6-8

RBD commands, 5-9

RBD parser, 5-9

RBD printout, 5-12

RBDs, 5-8

RBD user interface, 5-9

Registers, A-1 to A-22

Repcir 1o2! testing, 4-7

Revision levels, 3-2, C-1

ROM-based diagnostics, 5-8

S
Self-test, 4-3, 5-2

Specifications

Cl bus, 1-5

CI general, 1-3

electrical, 1-4

environmental, 1-4

XMI bus, 1-5

Synchronization, 6-4

System functional level testing,

4-11

System maintenance tools, 4-13

T

Testing

functional ievel, 4-9

repair level, 4-7

system functional level, 4-11

U

Unpacking, 3-3

Update/verification utility, 5-19 to
5-24

Updating microcode

CIXCD, 5-20

VAX 6000, 3-11

Index 3

Upgrades

cluster, C-1

')

Valid XM] transactions, 64

X

XCDST tests, 5-3 to 5-7

XCLOCK, 6-2,6-5

XLATCH, 6-2,6-6

XMI bus specifications, 1-5

XMI corner, 6-5

XMI interface logic, 6-6

