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 Preface

Introduction
The AlphaStation 600 Series Technical Reference Information is provided to assist pro-
grammers writng operating system support code. It describes the AlphaStation 600 Sys-
tem design from the system block diagram level, down to discusssions relating to individ-
ual registers, software/firmware design information, and detailed  major physical
component layout designs, and signal paths.

Document Contents
The contents of this documents are organized as follows:

• This preface, which includes an overview of the manual, a summary of its contents
and a list of conventions used throughout the manual.

• An overview of the AlphaStation 600 system that includes a system block diagram
and information on cache sizes, memory capacity, number of IO slots, and so on.

• A high-level description of the basic ASIC functionality that includes basic system
transactions (for example, CPU I/O read and write, DMA read and writes). 

• A describes the EV5 address space partitioning and how this space coexists with the
PCI address space. Emphasis on dense- and sparse-space CPU I/O addressing and
details of the DMA scatter/gather address translation. 

• A discussion of memory motherboard SIMM and I/O Subsystem Module configura-
tions.

• A physical description of the system that includes board layout diagrams, pin designa-
tions/signals, and logic functions.

• A description of all Control and Status registers. 

• A hardware description of the AlphaStation 600 interrupts and error strategy. The er-
rors are defined from a hardware point of view (which bits in which error registers are
set for the various errors). This includes the format of the AlphaStation 600 Machine
Check logout to assist software developers write the machine check handler.

• System hardware and firmware power-up, initialization, and reset .

• A definition of the AlphaStation 600 I/O Subsystem Module bridge chip set, the com-
ponent parts it uses (for example, arbiter, interrupt logic, etc.), and sugges-
tions/requirements for programming the internal registers. 

• System coherency and instruction ordering for the conjunction of three architectures
(EISA, PCI, and Alpha). An explanation is provided to clarify which architectural re-
quirement subsumes the other architectures. Some issues are in the hardware do-
main, but in certain cases, the architecture/hardware has specific requirements that
the software must specify (for example, when to flush buffers; when I/O reads are re-
quired to guarantee coherency).  
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Conventions
The following conventions are used in this manual:

• All Numbers Are Hex unless otherwise noted

• UNP = stands for UNPredictable.

• MBZ = stands for Must Be Zero.

• IO or I/O. The term IO is used within technical terminology when a  /  is not appropri-
ate in a number string.  The I/O is used to reference the Input/Output functionality in
text. 

• Word = 2 bytes

• Longword = Doubleword (PCI term) = Dword  = 4 bytes.

• Quadword = 8 bytes

Abbreviations
The following abbreviations are used throughout the manual.

Symbol  Description

RO Read Only

RW Read Write

WO Write Only

RWC Read, Write to Clear
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AlphaStation 600 System Overview

Introduction

The AlphaStation 600 system is a high-performance, deskside workstation based on the
EV5 implementation of the Alpha architecture. It supports WNT, OSF/1, and OpenVMS
operating systems. Figure 1-1 shows the AlphaStation 600 system.  From the perspective
of the system programmer, the AlphaStation 600 system is:

• EV5 CPU with a 128 KB serial boot ROM. Jumpers are provided so that one-of-eight
alternative serial ROM patterns can be loaded into the EV5 (mainly for lab debug).
The EV5 8 KB I-cache can be fully loaded by any of the serial-ROM patterns. 

• EV5 speed bins:   Simple crystal swaps and serial ROM changes are all that are re-
quired to support various EV5 speed bins. The AlphaStation 600 system is synchro-
nous to the EV5 clock.

Thus, the PCI clock, the cache timing and the memory timing are an integer multiple
of the CPU frequency, as shown in the next table. Consequently, not all CPU frequen-
cies will optimize the Bcache and system timing (for example, a 4 ns EV5 will result in
a 7% slower PCI running at 32 ns).

•

  EV5 chip summary

  Cycle time 
  Address size 
  Pipeline depth
  On-chip  Icache:     
  On-chip  Dcache:   
  On-chip Secondary cache
  On-chip TLB
  Write Buffer
  Issue rate

4.4 ns - 3.2 ns
43 bit virtual address, 40 bit physical address,  8 KByte page
size
7 stage integer, 9 stage floating.
8 KB, virtual, direct-mapped 
8 KB, physical, direct-mapped
96 KB, physical, 3-way set-associative
64-entry ITB and 48-entry DTB, 128 Address space numbers.
six 32-byte entries
4 instructions per cycle (2 integer, 2 floating point).

CPU speed Bcache timing System timing

Mhz  ns  ns CPU cycles  ns CPU cycles

250  4.00  28         7  32         8

266.67  3.75  26.25         7  30         8

275  3.636  25.46         7  32.7         9

300  3.333 26.67         8 30          9

312.5  3.20  25.6         8  32        10
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• Direct-mapped, write-back, ECC protected, module-level Bcache . The Bcache is
a plug-in option allowing various speed and size configurations. The Bcache is parti-
tioned across 3 SIMMs which must all be inserted for the Bcache to function. The
block size is fixed at 64 B. The AlphaStation 600 system does not support a duplicate
TAG store. 

Current cache designs vary from 2 MB to 16 MB, with 4 MB as the "typical" size. The
first Bcache design uses 15 ns SRAMs and achieves an access time of 24.9 ns1 for
the first 128b and 21 ns thereafter for all subsequent, contiguous reads (called wave-
pipelining). Faster Bcache designs will be available.   

DMA writes invalidate the Bcache.

• System memory:  256-bit data-width, ECC protected . The system memory com-
prises two Memory Motherboards into which the memory SIMMs are inserted. The Al-
phaStation 600 system cannot be configured with only one memory motherboard;
both must be resident and symmetrically populated with SIMMs. The memory latency
with 60 ns SIMMs is 180 ns (timed from the EV5 requesting a fill, until the data is re-
ceived by the EV5).  Currently, there is only one memory motherboard variant
planned. 

• Each motherboard tower holds up to 16 standard 36-bit SIMMs providing a  capacity
from 32 MB to 1 GB (and eventually 4 GB when 64-Mbit chips become available).

• Maximum memory:  Although the AlphaStation 600 system chip set can support 8
GB of physical memory, the workstation implementation is limited to 4 GB.

• The AlphaStation 600 system I/O modules. The system comes with three I/O cards:
a PCI graphics card; the I/O Subsystem Module,  PCI-based, SCSI/Ethernet card; and
an ISA-based Audio card. The remainder of the system I/O (serial lines, etc.) are pro-
vided on the SystemBoard. Table 1-1 summarizes the I/O arrangement.

1Depends on the EV5 frequency and the multiple selected for the cache loop time 
  (for example, a 3.25 ns EV5 will have a 26 ns cache loop time).
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Figure 1-1 The AlphaStation 600 System Block Diagram
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Table 1-1 The AlphaStation 600 System I/O Summary

• I/O Subsystem Module Ethernet/SCSI PCI I/O module: The internal and external
SCSI PCI devices, with the Ethernet device, are mounted on a separate I/O module.
This allows for future upgrades (for example, better SCSI chip). This I/O module will
occupy one of the 32-bit slots. The devices on this card are:

— Qlogic ISP1020 PCI-SCSI - two chips

— PCI-Ethernet chip (DECchip 21040 - Tulip)

— PCI-PCI bridge chip (DECchip 21050 - PPB)

• The  AlphaStation 600 System uses the 87312 chip for serial/parallel I/O. This is
hardware auto-configured with CFGn<4:0> = 1. 

• Industry standard ISA Audio Module  - Microsoft Sound System or the OAK card.

• No on-board graphics - Graphics arre provided by plug-in options.

• 64-bit PCI  - The AlphaStation 600 system generates and accepts 64-bit data but does
not generate 64-bit PCI addresses.

• 33Mhz PCI -  The AlphaStation 600 system does not support the latest 66MHz incar-
nation of the PCI.

• Back-to-Back PCI cycles -   The AlphaStation 600 system will issue and accept fast
back-to-back PCI cycles in dense-space only (this logic can be disabled via a CSR). 

• 8 PCI and (E)ISA slots  - The AlphaStation 600 system has four PCI slots, three
(E)ISA slots and one shared PCI/EISA slot -- see table below. Three 64-bit slots are
provided. Two PCI slots are used for the graphics and the SCSI/Ethernet, and one
(E)ISA slot is used for audio. Five slots remain for customer expansion. 

 What  Where  Additional information

Keyboard and Mouse  Intel 8242

Time of year (TOY)  Dallas 1287

Battery-backed SRAM-8 KB  Dallas 1225

Operator Control Panel

 System module (on the X-bus) 

 PCD 8584

Parallel Port
Serial Port (2)
Floppy
IDE

 System module (EISA bus) 
  

 87312 Combo Chip
(hardware auto-configured with
FAR = 11)

Audio  ISA card  Microsoft Sound or OAK Card 

Ethernet  TULIP - DC287

Internal SCSI

External SCSI

 I/O Subsystem PCI option
module  Qlogic ISP 1020 

Graphics  PCI option module  TGA
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• PCI-EISA bridge chip set - Intel 82374EB (ESC chip) and Intel 82375EB (PCEB
chip) 

• 1 MB Flash ROM and serial ROM  - for console/diagnostics.

• Scatter/gather PCI to memory addressing  -  as defined for the reference machine
by the I/O task force. Thus both physical and virtual DMA capability are available. The
CIA ASIC contains a 32-entry TLB for the PTEs (configured as 8 TLB entries of 4 con-
tiguous PTEs).

• Dense/Sparse space: as defined for the reference machine by the I/O task force.

ASIC Summary 

The  AlphaStation 600 system block diagram is shown in Figure 1-1. The major compo-
nents are:-

• Five ASICS (2 designs): 4 Data Switch ASICs and 1 CIA ASIC: 

— The CIA  -  this ASIC accepts the address and command from the EV5 and drives
the memory array with the address, RAS and CAS, signals, among others.. In ad-
dition,  it also provides an interface to the PCI bus. The current CIA is in a 383-pin
PGA design.  Other packages are being evaluated to reduce cost.

— The DSW -  this is the data slice ASIC and provides the data path between the
EV5, memory and the CIA (for PCI data). It fits in a 208-pin PQFP. When used in
the AlphaStation 600 system, the DSW provides a 256-bit wide memory path; but
the ASIC can also be configured for a 128-bit memory datapath. Four ASICs are
always required, regardless of the memory width.

• Miscellaneous ASIC  -  the GRU ASIC is on the IOD bus. This small ASIC handles
the PCI-interrupt logic, the memory/cache presence detect logic, and  generates the
8-bit Lemmon Bus used to access the Flash ROMs and drive optional system LEDs. 

Hardware Jumpers
The following jumpers and DIP switches are for debugging prototypes. Details are not pro-
vided since these are purely for lab use. 

• SROM code select.  Used to select from one of the 8 stored patterns in the SROM.
Only one jumper should be shorted at a time.

• EV5 clock multiple DIP switch.  This DIP switch will only be provided on the first few
debug systemboards. This is used during reset time to select the EV5 system clock
multiple.

     Slot  Type  AlphaStation 600 reserved Usage

       1
       2
       3
       4

  PCI -- 64 bit
  PCI -- 64 bit
  PCI -- 64 bit
  PCI -- 32 bit

 Graphics
 
 
 PCI I/O module (ethernet/SCSI)

       5   EISA/PCI (32bit) shared
slot

 

       6
       7
       8

  (E)ISA
  (E)ISA
  (E)ISA

 
 
 Audio
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AlphaStation 600 ASIC Overview

Introduction

This chapter describes the  AlphaStation 600 system data path and focuses on the inter-
nals of the Control, I/O and Addressing (CIA) and Data SWitch (DSW) ASICS. Figure 2-1
shows a simplified system block diagram to help place the CIA and DSW in context:

Figure 2-1 System Block Diagram Showing CIA and DSW

Note that the  I/O Subsystem module is shown plugged into a 32-bit PCI. This is the pre-
ferred location but, as the module is a standard PCI module, it can be inserted in any of
the 64/32-bit slots. This chapter focuses on the main system data-path which is imple-
mented in two ASICs.
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The CIA ASIC
Figure 2-2 shows the CIA internals pertaining to the CIA implementation used with a 64-
bit PCI interface and 64-bit datapath to the DSW); the 32-bit PCI version of the CIA is not
described.

Figure 2-2  The CIA Block Diagram

Shading is used in the above figure to highlight the major datapaths and the major logical
entities. For instance, the darkest shaded datapath (bullets L, A, Q, I)  represents the path
for data returning from the PCI bus to the DSW (that is, the DMA write and I/O read
paths). All these highlighted paths sre described later in this chapter. The functional enti-
ties shown partitioned into five shaded boxes are described next. These are:

EV5 Instruction and Address Region 

Conceptually, this logic accepts the commands from the EV5 and directs the instruction to
the memory port (bullet D) or the I/O port (bullet C). The DMA read/write address (or the
scatter/gather TLB miss servicing address) also have access to the memory port through
the multiplexer at bullet E. A 3-deep CPU Instruction queue is provided to capture EV5
commands should the memory/I/O port be busy. 
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For example, three addresses would be held if the EV5 issues two read misses with, at
most, one having a victim1. This accounts for the three-entry buffer. 

The Flush Address register (bullet H) is used during DMA reads or writes to interrogate
the Bcache for the latest data (the Bcache is a write-back cache, and hence may have the
only valid copy of the required data).

PCI Datapath
The CIA is, in a PCI sense, the host-bridge. It generates/decodes the PCI addresses and
supplies/receives the data. Part of the PCI data path is in the CIA chip, and the remainder
resides in the DSW ASIC. The ECC generation and check logic is provided here since the
sliced nature of the DSW precludes placing ECC there.

Separate buffers are provided in the CIA (bullet J and A) for DMA and I/O read/writes.
These buffers are either 32B or 64B in size, and are shown partitioned into 16B entities
(which corresponds to the width of the EV5 data bus).  

The PCI commands which the CIA responds/sends are listed in the following table:

Table 2-1 CIA PCI Commands 

CIA PCI features:

• 64-bit PCI bus width

• 64-bit PCI addressing (using DAC cycles)

• Capability to issue PCI fast back-to-back cycles in dense space 

Note that the DSW also has buffers for the DMA and I/O paths. This duplication simplifies 
control logic (the PCI control logic uses a buffer if the IOD bus to the DSW is not free);
simplifies handling PCI target stalls and retries; the ECC logic requires that 32-bit PCI
data be built up to 64-bits; buffering is required to compensate for the various bus widths
(IOD is either 32 or 64 bits, memory is either 256 or 128 bits, and the EV5 bus is 128 bits). 

PCI command Command type CIA slave CIA master

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Interrupt Ack
Special cycle
I/O read
I/O write
reserved
reserved
Memory read
Memory write
reserved
reserved
Configuration read
Configuration write
Mem Read multiple
Dual addr cycle
Mem Read Line
Mem Write and Inv

No
No
No
No
--
--
Yes
Yes
--
--
No
No
Yes
Yes
Yes
Yes(1)

Yes
Yes
Yes
Yes
--
--
Yes
Yes
--
--
Yes
Yes
No
No
No
No

Note: (1) Aliased to Memory write

1 A victim is the cache block that has to be displaced to make room for the read miss (fill) data.
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Memory Logic
This logic (bullet F) provides the row and column address for the memory banks as well
as all the control signals (RAS, CAS, write enables, memory enable). The memory logic
provides control signals to the DSW to inform it when to send/strobe the data to/from
memory. Finally, this logic controls the memory refresh.

The next few paragraphs describe how the AlphaStation 600 system eliminates RAS cy-
cles for victim writes. This is a performance enhancement and is transparent to software.

The AlphaStation 600 system design uses a special technique to eliminate RAS cycles on
victim data. Instead of using the traditional approach of mapping the CPU address bit-for-
bit to the memory address (see Figure 2-3), The AlphaStation 600 system shuffles the
memory address bits so that the high-order CPU address bits (part of the Bcache Tag
portion) become the memory column address and the low-order CPU address bits (part of
the cache index portion) become the memory row address. Note that the high-order Tag
bits are used for memory bank selects in both schemes1.

Figure 2-3 Memory Address Swizzling

The reason for this method is apparent in Figure 2-4. Since a cache is much smaller than
the available memory, multiple memory locations will alias to the same cache location --
this is shown in the left-hand side of the figure below where data A1, B1, C1, etc. all map
to the same cache location. Suppose that data A1 currently resides in the Bcache, but the
CPU wishes to access data C1.  A cache miss will occur which will fetch data C1 and
overwrite A1 in the cache; if A1 is the only valid copy of the data (for example, if an earlier
CPU write had previously updated A1) then A1 has to be written to memory before the
requested data, C1, can overwrite A1. This displaced data is referred to as a victim, and is
fairly common (around 50% of read misses suffer victim displacements).

Referring again to Figure 2-4, note that in the traditional memory addressing scheme, the
data (for example, data A1)  and the potential victim (for example, data C1) are well sepa-
rated in memory -- they are separated by a multiple of the cache size2. This sparse distri-
bution of potential victim locations means a read fill block and its victim may not reside in
the same memory page-mode region. 

  Block offset 

Traditional memory address

"Almost" AlphaStation 600 memory address

CPU physical address

Cache address

 TAG                                       Index  

Bank   Select                     Row                       Column 

Bank   Select                     Row                       Column 

1 This description is only a first order approximation; the actual AlphaStation 600 system implementation
is a little different.

2 With a typical AlphaStation 600 system Bcache size of 4 MB, this separation will be many, many mega-
byes.



       AlphaStation 600 ASIC Overview   2-5

However, by interchanging the memory Row and Column address bits, the potential victim
locations now reside in the same memory SIMMs and the same row within the SIMMs.
Now the chance of a cache block and its victim residing in the same memory page-mode
region increases astronomically. This will remove most, if not all, RAS cycles from victim
writes.  In fact, for any cache greater than 1 MByte, all victims will be able to share a RAS
with the read Miss.  

Figure 2-4 Victim Aliasing

However, this approach hinders DMA transactions: the figure above shows that consecu-
tive blocks (for example, data A1, A2, A3)  end up being scattered a page-mode region
apart in the AlphaStation 600-type memory addressing scheme. This implies that con-
secutive DMA read/write blocks will require a RAS cycle, constraining the attainable band-
width. The traditional scheme does not suffer this problem. 

Hence, a compromise between the two schemes is used in the AlphaStation 600 system : 
four low-order bits of the index map straight to the low-order bits of the column address
(just like in a traditional scheme), while the remaining high-order index bits go to the mem-
ory row-address. The remainder of the column address uses the Tag-portion of the physi-
cal address.

Figure 2-5 AlphaStation 600 System Memory Addressing

With this compromise scheme, a DMA transaction will march through four 64B blocks
(that is, 64 longwords), on average, before requiring a RAS cycle. This constitutes a large
DMA transfer, minimizing the RAS penalty. Although the AlphaStation 600 system was
originally designed to take advantage of this scheme, it transpired that the simpler ap-
proach of a RAS cycle on every DMA 64-byte block provides more than enough band-
width for even a 64-bit PCI transfer (DMA read prefetch).
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The logic which determines if a RAS cycle is required is shown by bullet F.  The CPU-to-
memory path needs to be checked in case the Bcache is disabled, or if the Bcache is too
small.1

I/O Address Logic
This logic (bullet B) handles the I/O read/write addressing.  The Address decode logic ex-
tracts the PCI address from the dense/sparse space CPU address encodings (see Chap-
ter 4, AlphaStation 600 Addressing, for more details). This logic also increments the cur-
rent address  each data cycle for two reasons: first, in case of a PCI retry, which will
require the transaction to be resumed later, we need to start with the address of the
aborted data; and second, to provide a pointer to the next data item to be loaded/sent
from the I/O read/write buffers.

The AlphaStation 600 system can queue up to six I/O writes: two of the I/O writes can be
waiting in the CPU queue (bullet G); and four I/O writes can be sitting in the I/O address
queue (bullet B -- a three-entry I/O address queue is provided together with a single entry
Current Address register). This allows six I/O writes to be outstanding (the DSW provides
four corresponding I/O write data buffers -- bullet 4 in Figure 2-6; and the CIA provides
two more buffers -- bullet J). These buffers are required to sustain maximum bandwidth
for memory copy to I/O space. A bypass path is provided for certain dense-space I/O
writes (that is, the longword valid bits for the first 16-bytes of data are either 1111, 1011,
1010 and 1001 -- these cases are optimized for a 64-bit PCI with at least two PCI data
cycles). 

DMA Address Logic
This logic converts the PCI’s address to the CPU memory address space. Two conversion
methods are provided: a direct path where a base offset is concatenated with the PCI ad-
dress; or a scatter/gather map which maps any 8 KB PCI page to any 8 KB memory
space page (bullet P). See Chapter 3, AlphaStation 600 Addressing, for more details. The
scatter/gather TLB is 8 entries deep; but each entry holds four consecutive PTEs. A TLB
miss is handled by hardware; but software is required to invalidate stale entries by writing
to the SG_TBIA CSR.

A counter is used on the output of the PA register to generate the prefetch address for
certain DMA read misses. An 8 KB detector prevents prefetching across page boundaries.

The DSW ASIC
The DSW ASIC interfaces the data paths between the memory, EV5 and the CIA (for PCI
data). The ASIC is composed of mainly data buffers and multiplexers-- see Figure 2-6. All
control for the DSW is supplied by the CIA (albeit, some encoding and simple sequencing
is performed by the DSW). Features of the DSW design are:

• Victim buffer    -- 64B

• I/O read buffer -- 32B

• Four I/O write buffers -- 4 * 32B

• Two DMA buffer sets are provided for reads and writes. Each buffer set consists of
three buffers: one for the memory data, one for the Bcache data and one for the PCI
DMA write data (not used during DMA reads). The Bcache and memory data could
have shared one buffer (since only one of these two will provide valid data), but two

1 As an example: a 1 MB Bcache the Tag bits are <32:20>. The AlphaStation 600 system has 16 memory
banks which are addressed by <32:29>. This leaves <28:20> which is 2**9 = 512 victim blocks. A 1K-entry
memory page corresponds to 512 blocks (the memory width is half a block) which will just hold all the
victim blocks. A smaller 512 KB cache will have twice as many victims and would not fit. In the AlphaSta-
tion 600 system’s case, the situation is slightly worse since the low-order address bits map straight to the
column address.
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buffers simplified the control logic.

Quadword valid bits are provided for the DMA write buffer. These valid bits are used
to merge the appropriate DMA write quadword with the memory/Bcache data. Finer
granularity merging (for example, bytes) is performed in the CIA (because of ECC re-
quirements) by looping the appropriate memory/Bcache quadword through the CIA
and merging in the valid DMA write bytes (see bullet Q for this path in the CIA).

No data is preserved in the buffers across transactions (that is, no DMA read pre-
fetched data or posted DMA write data). Consequently, there are no coherency issues
regarding DMA read/write data lingering in the buffers.

Flash ROM
A 1 MB Flash ROM is provided on the system module (see bullet 6 in Figure 2-6). The
Flash ROM is visible to software by reading/writing certain CSRs in the GRU ASIC.



2-8   AlphaStation 600 ASIC Overview

Figure 2-6 The Data Switch Block Diagram

CPU Memory Read
The EV5 Read Miss command and address are sent to the CIA. If the CIA is idle the com-
mand will be stored directly in the memory port register (bullet D in Figure 2-2); otherwise
the command enters the three-deep CPU Instruction queue (bullet G) and remains there
until the memory port is free. The CIA will accept one more subsequent Read Miss from
the EV5 and store it in the CPU Instruction Queue. 

There are three paths to the memory port which have to be arbitrated for (bullet E): the
two paths described above -- namely the direct path and the CPU Instruction queue; and
thirdly, the DMA read/write address path  (which is also the path for scatter/gather TLB
miss addresses). Note that, up-stream of the multiplexer at E, all instruction ordering from
the EV5 is preserved; downstream, the ordering between I/O write transactions and CPU
memory transactions is lost. This "post and run" I/O write coherency issue is discussed in
Chapter 11, System Coherency.

Once the CPU Read Miss gets into the memory port, the memory controller (bullet F) 
generates the RAS, CAS, and address signals for the memory array. 
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The memory controller then waits for the memory access delay before instructing the
DSW to accept the memory data. The memory width for the AlphaStation 600 system is
256-bits (32 B), and thus two memory cycles (typically 60 ns) are required to access the
64 B block.

The DSW clocks the data into the Memory Data-in register (bullet 2 of Figure 2-6). This
register is clocked on a 15 ns clock (not a 30ns clock) in order to minimize memory la-
tency. The data is then sent to the EV5 through a further flip-flop (bullet 7) which synchro-
nizes the data to the EV5 system clock (30 ns). The read data is returned to the EV5 in
wrapped-order. The block size for read data is fixed at 64 bytes.

CPU Memory Read with Victim
This is similar to the Read Miss case previously described except that the EV5 will also
send out the victim block (that is, the modified [dirty] block which will be displaced from
the Bcache by the Read Miss data).

The command and address for the Victim always follow  the Read Miss command1. Con-
sequently, the Read Miss command will get to the Memory port first and thus the Victim
command and address are always written into the CPU Instruction Queue (G). The  victim
block data is saved in the Victim Buffer in the DSW (bullet 1).

The memory controller in the CIA (bullet F) generates the memory write pulses and in-
structs the DSW to send the victim data to memory. The victim data path is straightfor-
ward: the data is sent out of the victim buffer (bullet 1) and through the Memory Data-Out
register (bullet 2) to the two memory  banks. 

The victim data is written to memory after the read data has been fetched from memory
(the CIA arbiter ensures that a read miss and victim write are an atomic operation). The
row address portion of the victim address is compared to the row address of the current
read miss (bullet F). If they match then no memory RAS cycle is required, instead only
CAS strobes are performed. The address bits for the memory have been carefully inter-
spersed to maximize the chance of a victim row address "hitting" the read address -- this
performance feature is totally transparent to the software.  

The Victim buffer is invalidated if a DMA write (or DMA read with lock) "hits" the victim
buffer. Until the EV5 has its read data returned, the victim block is still in the Bcache and
is still "owned" by the EV5 (even though  the EV5 sent a copy of the victim data to the
DSW). It is possible for the Read-with-victim command from the EV5 to be stalled behind
a DMA write. The DMA write could "hit" the victim block -- in this case, the DMA write will
issue a FLUSH command to the EV5, which will result in the EV5 providing the victim data
to the DSW (to one of the Bcache buffers -- bullet 5) and then the EV5 will invalidate the
victim block in the Bcache. Consequently, the victim data waiting in the victim buffer (bul-
let 1) is no longer valid and is invalidated by logic in the CIA.

CPU I/O Read
An I/O read by the CPU can be to one of five places: the PCI memory space; the PCI I/O
space; the PCI configuration space; the GRU CSRs (which includes the Flash ROM); and
the CSRs in the CIA (there are no CSRs in the DSW). The address for the I/O read is
either in sparse space or dense space -- for details please refer to Chapter 3, AlphaSta-
tion 600 Addressing. 

The I/O read command is accepted by the CIA in a manner similar to a memory read ex-
cept that the instruction ends up in the I/O port (bullet C). All I/O read commands go to the
I/O address queue (bullet B); no bypass path is provided for dense space I/O reads.

Decode logic is provided on the output of the I/O address queue to extract the byte ad-
dress for the PCI from the CPUs sparse space encoding, and to decode the address for

1 The EV5 must have "Victim first"  disabled for the AlphaStation 600 system. 
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the correct region (PCI memory, I/O, configuration, CSR or Flash ROM). We will only con-
sider an I/O read destined for the PCI since this is the more interesting case.

An incrementer is provided to increment the current longword/quadword1 address stored
in the Current address register each data cycle. This is needed in case of a PCI retry and
is also used to index the next data item in the I/O write/read data buffers. The value in the
Current Address register corresponds to the address of the data item on the PCI bus (it
has the same canonical time as the PCI data-out register at bullet K).

The I/O read address is sent to the PCI after any prior I/O writes have completed2 (that is,
strict ordering is maintained). The PCI returns the requested data and places it in the I/O
Read buffer (bullet A).  The contents of this I/O read buffer are next copied to the I/O read
buffer in the DSW (bullet 3) and then sent to the EV5.

One may wonder why we have replicated the I/O read buffers. The I/O read buffer in the
CIA is provided for the following reasons: first, because the path to the DSW may be busy
with the tail end of a prior DMA write (especially if the data has to be merged with memory
data to build it up to the ECC width); second, at least 64 bits of storage are required for
ECC since the PCI can return 32 bits of data at a time; and finally, as a control conven-
ience to handle the vagaries of the PCI protocol (for example, retries). The I/O read buffer
in the DSW was provided to build the data up from 64-bits (width of the bus between the
CIA and DSW) to the 128 bits required by the EV5. 

I/O reads from the EV5 are of an 8 B resolution and the CIA always returns 32 B. If a finer
resolution is required, then sparse space must be used, the details of which are fully cov-
ered in Chapter 3,  AlphaStation 600 Addressing.  Data is returned in the appropriate byte
lanes.

CPU I/O Write
The EV5 issues uncached writes to its I/O space with a longword resolution. For a finer
granularity, use sparse space (see Chapter 3, AlphaStation 600 Addressing).

The data for I/O writes is captured in the I/O write buffer in the DSW (bullet 4). Four 32 B
buffers are available in the DSW and a further two in the CIA: this number of entries al-
lows AlphaStation 600 system to sustain maximum bandwidth on a large copy operation
from memory through the CPU to I/O space. The data from these I/O Write buffers is sent
to the two I/O write buffers in the CIA (bullet J): two buffers are provided, allowing one to
be emptied to the PCI bus while the other is filled. Each 32B buffer in the CIA constitutes
a separate PCI transaction (that is, no merging of the write buffers occurs). A secondary
benefit for the CIA’s I/O write buffers is simpler data-flow management when an obnox-
ious target PCI device stalls the I/O writes.

The address for an I/O write is sent to the CIA I/O port (bullet C). Thence, for a 32B
aligned dense space write, the I/O write is either sent directly to the PCI bus via the by-
pass path, or queued up in the I/O address queue (bullet B). The fast, direct (bypass) path
is used if: (1) there are no outstanding I/O commands; and (2) the command is an I/O
write in dense space and the first 16-bytes3 are mostly valid (that is, 1111, 1011, 1010,
1001 -- see the CIA ASIC chip spec for details). Note that this command also goes into
the I/O address queue, but only as a convenient path in the I/O addressing logic section,
to get the address into the Current Address register. 

A total of six I/O write addresses can be queued: two in the CPU-queue, three in the I/O
address queue, and the first I/O write in the Current Address register. The I/O address
queue maintains strict ordering for I/O operations (but does not maintain strict ordering of
I/O writes relative to any memory reads or writes -- see Chapter 11, System Coherency,
for the implications).

1 Depending if  a 32- or 64-bit PCI transfer is in effect.
2 Completed means that the CIA has issued the writes on the PCI bus and the target devices have accepted

them.
3 Since we only see 16B each cycle from the EV5.
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DMA Transactions
The PCI address and command are captured in the Address/Command register (bullet M)
and the data/address register (bullet L). The address is compared against four address
windows to determine if this PCI command should be accepted or ignored by the CIA1.
Address windows are a requirement of the PCI specification and are software program-
mable -- they are described in detail in Chapter 3, AlphaStation 600 Addressing. All PCI
commands destined for memory are accepted by the CIA.

There are three registers associated with each of the four PCI Windows: 

• Window Base register: This defines the start of the Target Window. This register
holds the SG bit which determines if the scatter/gather map is used for the translation.

• Window Mask Register: This defines the size of the Window

• Translation Base register: This holds a Base address used to relocate the PCI ad-
dress in the CPU memory space (for direct mapping); and is also used to hold the
Scatter/Gather Map Base address for scatter/gather mapping.

The Window Base register (see Chapter 3, AlphaStation 600 Addressing) SG bit deter-
mines how the PCI address is translated: if SG is clear, then the address is directly
mapped by concatenating theTranslation Base Register to it; otherwise the address is
mapped through the scatter/gather table, allowing any 8 KB of PCI address to map to any
8 KB of memory address. 

Implementation detail: Two registers sample the incoming PCI bus. One is
used to capture the address and command (bullet M), and to hold onto the
values for the duration of the transaction; while the other (bullet L) is used to
primarily capture data cycles, but will also strobe in the address. The Target
Window logic is attached to the Data-in register (L)  rather than the Address
register (M). The reason for this is the case of a DMA Write Scatter/Gather
TLB miss. The intention is to grab a buffer’s worth of data (64B) and then re-
try the master PCI device should it have more data. Thus we have freed the
PCI bus for further transactions; but as we are busy servicing the TLB miss, 
we need to hold the virtual address in the Address register (M). Should an-
other PCI transaction occur while we are servicing the TLB miss, we must ac-
cept that address and check it against our Target window. Consequently, the
Target Window logic is attached to the free-running PCI data-in register (L).

1 DOS address space is decoded by the PCI-EISA bridge chip and signaled to the CIA via the MEMCS#
wire. See Chapter 3, AlphaStation 600 Addressing, for more information.
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Figure 2-7 Scatter/Gather TLB

Figure 2-7  illustrates this mapping. This Scatter/gather table is located in memory, but the
CIA provides an 8-entry TLB which caches the most recent scatter/gather table entries.
Each TLB entry holds 4 consecutive scatter/gather table entries (thus mapping a contigu-
ous 32 KB of virtual PCI addresses to any four 8 KB memory pages).

DMA Read
The translated address stored in the PA register (bullet P) is sent to the EV5 through the
Flush/Read Address register (bullet H), and also to memory via the memory port (bullet
D). If an EV5 data cache contains valid (modified) data then a copy is sent to the Bcache-
buffer portion of one of the two1 DMA buffers in the DSW (bullet 5); and the valid bit is set.
Memory data is always fetched and lands in the Memory-buffer of the DMA buffer. The
PCI-buffer part of the DMA buffer is not used for DMA reads (see Appendix A).

As soon as the first valid QW is available in the DSW’s DMA buffer (bullet 5) it is sent to
the DMA read buffer in the CIA (bullet J) via the multiplexers at bullets 5 and 8. Any ECC
correction is done in the CIA (bullet I). From the DMA buffer in the CIA the data goes out
on the PCI a cycle later (through the register at K). The DMA read data also takes the
bypass path around the Big Multiplexer (bullet J)  for as long as the PCI can accept this
stream of data; once the PCI stalls then the buffers start to be used.

DMA Read Prefetching
The PCI supports three types of memory read commands. The following is the use
as specified in the PCI Local Bus specification:

• Read command:  used for small transfers (up to 1/2 a cache line)

• Read Line command:  used for medium transfers (1/2 to 3 cache lines) 

• Read Multiple:  used for large transfers (more than 3 cache lines)

Note that for the PCI environment most devices will tacitly assume an Intel processor
cache of 32 bytes (compared to the AlphaStation 600 system’s cache line of 64 bytes).
Hence, the AlphaStation 600 system’s prefetch strategy is:

CPU  Memory PCI  memory  

Scatter
Gather
Map

space (4 GB)space (6 GB)

PCI 
Window 

PCI 
Window 

Direct
map

8 KB
page

1 PCI address<6> -- the even/odd 64B block bit -- determines which DMA buffer is used
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Table 2-2 AlphaStation 600  Series Prefetch Strategy1

The counter used to increment the memory block address for prefetching is shown by bul-
let P.
This address goes to the Bcache and memory as per a normal DMA read. The returned
data is sent to the next free DMA buffer in the DSW. So as one buffer is being copied
down to the CIA, the other is free to accept DMA prefetched data. At the completion of a
transaction, all prefetched data in the DMA read buffers is ignored (that is, no prefetch
caching is performed). Prefetching does not occur over an 8 KB page boundary.

The 64B DMA read buffer in the CIA (bullet J) acts like two 32B halves during DMAs -- as
one half is emptying to the PCI bus the other half is being filled. 

DMA Write
The translated address stored in the PA register (bullet P) is sent to the Bcache through
the Flush/Read Address register (bullet H), and also to memory via the memory port (bul-
let D). If the Bcache contains valid (modified) data, then the data is sent to the Bcache-
buffer portion of the DMA buffer in the DSW (bullet 5), and the Bcache data is invalidated.
Memory data is always fetched and lands in the Memory-buffer of the DMA buffer (see
Appendix A).

The DMA write data is taken off the PCI bus and placed in the DMA write buffer (bullet A).
If the data is a complete quadword then ECC is generated (bullet I) and the data is sent to
the PCI-write portion of the DMA buffer in the DSW. If the data is an incomplete quadword
then a merge operation has to be performed (bullet Q). The valid Bcache or memory
quadword is sent to the CIA from the DMA buffer in the DSW, and the valid bytes of the
DMA write data are merged in. This merged quadword then is ECC generated and is sent
to the PCI-write buffer portion of the DMA buffer in the DSW.

The DMA buffer in the DSW builds the data up to 64B (the block size) before sending the
data to memory. The memory logic (bullet F) generates the memory write pulses. The
memory address is read from the PA register (bullet P) using the mux at bullet E. Note
that should the I/O port (bullet C) be busy with an I/O write/read transaction, the memory
port (bullet D) will be available for DMA writes2.   

One reason for providing a copy of the DMA write buffer in the CIA is because the data
path to the DSW may not be available at the start of a DMA write (it could be busy trans-
ferring I/O write data from the DSW to the I/O write buffers if CPU I/O write had been re-
ceived concurrently with a PCI DMA write).

Note that the DMA write data is always written to memory, and never stored (cached) in
the DMA write buffers across transactions. The complexity of caching was deemed too
risky relative to the potential benefit gained.

MB Instruction
The MB instruction can be disabled from leaving the EV5 (this is the expected AlphaSta-
tion 600 mode). If MB instructions are allowed to the CIA, then the CIA will effectively treat
the MBs as NOPs (that is, in accordance with the "posted-write" ECO to the Alpha SRM --
see Chapter 11, System Coherency). 

    PCI memory read command       Prefetching

              Read
              Read Line
              Read multiple

None
Prefetch 1 block 
Prefetch till end of transaction

1 Any PCI read can be mapped to any prefetch algorithm using the CIA_CTRL CSR. 
2 The memory port may be busy with a CPU operation; but once the CPU operation completes, the DMA

will get through.
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LOCK Instructions
The AlphaStation 600 system has to contend with locks originating on either the CPU or
the PCI. There are two cases which require that the EV5’s internal lock-state on a block
be cleared (from a system point of view). The first is during a DMA write to the locked
block, and the second is when a PCI device has established a lock. The things to consider
about system lock behavior are:

• DMA write case: The EV5 maintains its own lock flag and lock address in the EV5’s
BIU. This state is correctly maintained, even if the locked block is displaced from the
Scache, as long as the system sends all DMA write FLUSH commands to the EV5
(that is, no duplicate cache tag). This is the case for the AlphaStation 600 system.

• PCI lock established:  A PCI device can only establish a lock on a 16B block of data
during a DMA READ. Once the lock is established (by the read succeeding), the PCI
device  has exclusive access to that 16B block (although the PCI target -- in this case,
the AlphaStation 600 system -- is at liberty to lock a larger block). This PCI lock allows
the device to do an atomic read-modify-write on a 16B entity.

The Alpha and PCI architectures have different mechanism for establishing a lock.
For the PCI, it is a successful READ (with the PCI LOCK signal asserted) that estab-
lishes a lock; for Alpha, it is a successful WRITE (STx_C) that establishes a lock.
Hence, a PCI READ with LOCK must be treated by the EV5  as if it were a WRITE
(that is, in terms of the Alpha architecture, it must have the same effect as would a
write from some other processor). The figure below gives an example of the CPU and
PCI vying for a memory flag:

Both the  EV5 and the PCI are attempting to do an atomic read-modify-write of a
memory flag (for example, a semaphore). The EV5 starts first with the LDQ_L but will
not know if the update is successful until the STQ_C completes successfully. How-
ever, assume that the PCI obtains the lock to the memory flag before the STQ_C --
with the READ/LOCK PCI command. For correct operation, the EV5’s STQ_C must
fail, otherwise the EV5 and the PCI device will both believe they have successfully
modified the flag (for example, obtained a semaphore). To achieve the correct opera-
tion, the follwing is required: 

Before a PCI lock is established, the EV5 must clear its lock flag. The only mecha-
nism to do this is a system write/flush to the locked block. Normally the CIA will han-
dle a  DMA read by sending a READ command to the EV5. However, in this case, a
FLUSH command is required (in order to clear any lock which may be set on that
block in the EV5). This unfortunately means that the system must not only do a DMA
read operation, but must also write the flushed-out block to memory. Once the CIA
successfully sends data to the PCI device, the PCI lock is established.

During the PCI lock, the CPU may attempt to refill the flushed-out block (this will hap-
pen if it is in a loop repeatedly executing LDX_L - as depicted in the figure above).
This requested block however cannot be provided by the system until the PCI lock
has completed (because, once the block gets inside the EV5, the system loses control

try_again:   

                 LDQ_L    R1, mem_flag 

                 modify mem_flag

                 STQ_C    R1, mem_flag

                 BEQ        R1, no_store

no_store:
                check for excessive iterations

                 BR      try_again

EV5 Atomic Update PCI  Atomic Update

                 READ/LOCK   mem_flag 
                 modify mem_flag

                 WRITE/UNLOCK mem_flag

                                      :
                                      :
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of the block. The system could prevent the EV5 from setting its internal lock bit on the
block initially, by using the SYSTEM_LOCK_FLAG_H, but the next time around the 
LDx_L/STx_C loop, the EV5 will enjoy a cache hit on the block and will be oblivious to
the system lock state; thus, the loop will succeed this second time around).

The lock rules are: 

• The SYSTEM_LOCK_FLAG_H signal to the EV5 is not used and is always tied true.

• All DMA write operations will result in the CIA issuing a FLUSH command to the EV5
(this is normal AlphaStation 600 system behavior). 

• All DMA reads with the PCI LOCK asserted will result in the CIA issuing a FLUSH
command to the EV5;  the CIA must write the flushed-out block to memory. The inter-
nal CIA Lock Address register will be set with the locking address.

• If the EV5 requests a fill which hits the CIA lock address register then the fill is stalled
until the PCI lock is relinquished by the PCI device.

• The EV5 LOCK command will be a NOP in the AlphaStation 600 system (this com-
mand is only required for systems with duplicate TAGs).

• The EV5 WRITE_BLOCK_LOCK will be treated as a WRITE BLOCK (that is, a plain
write).
                                  

Locks to Uncached Space
The AlphaStation 600 system does not support LDx_L and STx_C to uncached space;
these are converted to plain LDx and STx. 

GRU ASIC
The GRU chip (DC7560A) contains sections of miscellaneous logic necessary for system
operation.  The major sections are:

• Flash ROM Interface 

• Interrupt Logic

• Configuration registers for Cache and Memory

• System Reset 

Refer to the GRU ASIC Specification for details.

IOD Interface
The GRU interfaces with the CIA ASIC via the low byte of the IOD bus and two control
signals (GRU_SEL and GRU_ACK). CIA asserts GRU_SEL to pass a command on the
IOD bus and GRU asserts GRU_ACK to inform CIA that read data is being returned. The
commands are:

• CSR Write: CIA sends a CMD (1 byte) to the GRU, followed by 4 bytes of data

• CSR Read: CIA sends a CMD (1 byte) to the GRU, the GRU sends back 1 LW of data

• Flash ROM Read: CIA sends a CMD (1 byte) to the GRU, and then 3 bytes of ad-
dress, the GRU sends back 1 LW of data

• Flash ROM Write: CIA sends a CMD (1 byte) to the GRU, and then 3 bytes of ad-
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dress, followed by 4 bytes of data

The command sent to the GRU is based on the CSR_ADDR from the EV5  and whether
the cycle is a read or write. The format is:  

GRU Addressing
The physical address region 87.8000.0000 to 87.FFFF.FFFF is used to access the GRU
ASIC on the IOD bus.  These addresses access a number of CSRs as well as external
Flash ROM space.  

Bit[7] Bit[6] Bits[5:0]

CSR/Flash Read/write Address

1 = CSR
0 = Flash ROM

1 = Read
0 = Write

Address of internal CSR or partial address of the
FROM
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Table 2-3 GRU Address Space

Flash ROM Interface
The GRU ASIC is controlled and addressed over the IOD bus.  The GRU also has a bi-
directional interface called the GRU_DAT<7:0> bus.  The GRU_DAT bus attaches to
1024 KByte of Flash ROM and LEDs.  The Flash ROM is divided into four banks each
having 256 KB.  The Flash ROM addressing scheme is shown in Figure 2-8. Also refer to
Table 2-3  for the GRU address space.

CPU Address Selected Region Mnemonic

87.8000.0000 
87.8000.0040 
87.8000.0080 
87.8000.00C0 
87.8000.0100

Interrupt Request register
Interrupt Mask register
Interrupt Level/Edge Select register
Interrupt High/Low IRQ select register
Interrupt Clear register

INT_REQ
INT_MASK
INT_EDGE
INT_HILO
INT_CLEAR

87.8000.0140 to
87.8000.01C0

reserved

87.8000.0200 Cache and Memory Configuration register1 CACHE_CNFG

87.8000.0240 to
87.8000.02C0

reserved

87.8000.0300 SET Configuration register1 SCR

87.8000.0340 to
87.8000.07C0

reserved

87.8000.0800 LEDs (not used in current theAlphaStation 600
system)

LED

87.8000.0840 to
87.8000.08C0

reserved

87.8000.0900 Force System Reset RESET

87.8000.0940 to
87.8000.0BC0

reserved

87.8000.0Cxx to
87.BFFF.FCxx 

Flash ROM bank 0
256 KB byte-addressed by CPU address<29:12>

87.8000.0Dxx to
87.BFFF.FDxx 

Flash ROM bank 1
256 KB byte-addressed by CPU address<29:12>

87.8000.0Exx to
87.BFFF.FExx 

Flash ROM bank 2
256 KB byte-addressed by CPU address<29:12>

87.8000.0Fxx to
87.FFFF.FFxx 

Flash ROM bank 3
256 KB byte-addressed by CPU address<29:12>

1 This functionality is not provided in version 1.0 of the GRU asic
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Figure 2-8 Flash ROM Address scheme

The data read from the Flash ROM travels over the GRU_DAT bus and back to the CIA
on the IOD bus.  It travels the opposite direction for Flash ROM writes.  In all cases the
address is sent to the Flash ROM from the GRU on a dedicated output bus
(FROM_ADDR<17:0>).  Also controlled from the GRU are the Flash ROM chip enable,
output enable, and write enable signals.

Interrupt Logic
The Interrupt logic in the GRU is controlled by the primary interrupt inputs (PCI interrupts,
CIA_ERROR interrupt, NMI, TOY and CIA_INT) and the values of the interrupt registers 
These registers include the Interrupt Request register, the Interrupt Mask register, the In-
terrupt Level/Edge register, the Interrupt High/Low register and the Interrupt Clear regis-
ter. A block diagram of the interrupt logic is shown Figure 2-9

Figure 2-9 GRU Interrupt Logic

 31  30  29                                                                                      12  11  10  9   8   7    6  5            0

10           256 KB  Flash ROM byte-address          1 1        x x  000000

00 : Flash ROM 0
01 : Flash ROM 1
10 : Flash ROM 2
11 : Flash ROM 3

PRE_ IRQ<1>

Register
<31:0>

INT_MASK

Register
<31:0>

INT_EDGE

INT_CLR
Register
<31:0>INT_HILO

Register
<31:0>

    INT<31:0>

Pulse logic used for Edge 
interrupts (less prone to false
triggering)

3
2
1
0

3
2
1
0

1

0

       CIA_ERROR

NMI

     TOY
PRE_IRQ<1>

     CIA_INT

     CLK_DIV<3:0>

RESET_L

IRQ<3:0>

 SYNCH

INT_REQ

INT_REQ

<31:0>
Register

SYS_MCH_CHK_IRQ

RESERVED
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Configuration Registers for Cache and Memory
The GRU contains a Cache and Memory Configuration register (CACHE_CNFG) which
contains the size and speed information for each individual cache SIMM (see Figure
2-10). Also included is the SET Configuration register.  This register contains the access
rate (speed) information for each memory SIMM (see Figure 2-11).  Both the registers are
loaded following system reset from the information on the presence detect pins of the
SIMMs.

Figure 2-10 Cache and Memory Configuration Register

Figure 2-11 SET Configuration1

Reset Logic
The system reset signal (SYS_RST_L) is generated and output by the GRU.  This signal
resets all the chips on the module.  Reset can be asserted asynchronously with the pri-
mary inputs DC_OK_L or OCP_RESET_L.  It can also be asserted synchronously by writ-
ing a value of "0000DEADhex" into the Reset register in the GRU.  In all cases
SYS_RST_L is asserted for 256 cycles and deasserted synchronously..

In the GRU, following reset, the presence detect logic begins shifting data bits from the
module into the CACHE_CNFG register and the SCR.  Control to the SIMMs to select the
bits to be shifted in is output from the GRU on the GRU_DAT bus. 
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AlphaStation 600 PCI-EISA Bridge
The PCI-EISA chip bridge set consists of the PCI to EISA bridge chip, the PCEB
(82375EB); and the EISA system controller, the ESC (82374EB). These chips are essen-
tially a collection of peripheral chip designs (such as interrupt logic, timers, DMA control,
arbiters, etc.) coerced into two packages. 

Figure 2-12 shows the AlphaStation 600 system’s standard I/O busses and devices, and
indicates how the PCI-EISA bridge is used and what devices are attached to the X-bus. 

Figure 2-12 AlphaStation 600 System Standard I/O Busses
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1 This functionality is not provided in version 1.0 of the GRU asic
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ESC  functionality
The stepping (revision) of the chip the AlphaStation 600 system will use at power-up is
A-2. The AlphaStation 600 system’s use of the ESC chip is almost a standard implemen-
tation. Some of the specific details/features are:

• Keyboard controller:  This is based on the standard 8242. The mouse interrupt (the
so called ABFULL# signal) is not wired to the ABFULL# input. Software should dis-
able its path to IRQ<12> via the ESC register CLKDIV bit<4>.

• SERR and PERR:  Software must NOT enable these inputs to the NMI logic in the
ESC.

• Interrupt logic: This logic is used for the EISA interrupts. The ESC should disable
the connection of ABFULL# to irq<12>. The Real Time Clock is not  wired to this inter-
rupt logic; instead it is wired directly to an EV5 interrupt pin. 

• TOY - Real time clock:   This is based on the Dallas 1287 and is wired to the X-bus in
the conventional manner. 

• Configuration RAM:   8 KByte of non-volatile RAM is provided on the X-bus for the
EISA configuration space.

• BIOS:   There is NO BIOS ROM on the X-bus. Instead, the AlphaStation 600 system
provides Flash ROM on the GRU_DAT bus. The GRU_DAT bus is "closer" to the
CPU and thus a preferred location for this RAM (that is, serial ROM code needs to
check less of the system before it is confident it can access the Flash RAM code).

• Speaker:  This is provided to enable the operating systems to signal the operator
audibly. 

• General Purpose device . The Operator Control Panel interface chip (PCD8584) is
wired to GPCS[0] -- the GPCS[0] signal is gated with CMD_L just as the SABLE im-
plementation to allow consecutive access of the PCD8584 -- that is, software does
not need to do anything special)

PCEB Functionality
The AlphaStation 600 system’s use of the PCEB is relatively standard.

PCI-to-EISA Address Decode
Subtractive decode must be used for the PCEB (negative decode does not work).

PC Compatibility Addressing and Holes

The PC architecture allows certain (E)ISA devices to respond to hardwired memory ad-
dresses. For example, a VGA  graphics devices that has its frame buffer located in mem-
ory address region A0000 - BFFFF Main memory must be made inaccessible for such
memory-mapped regions, and this inaccessible region is called a PC compatibility hole
(or "hole" for short).

The EISA-PCI bridge provides access for (E)ISA devices to main memory (which is nor-
mally behind a HOST-PCI bridge) via positive address decode. The lower 512 MB of
EISA address range is partitioned into many sub-segments which can be enabled by the
MCSTOM, MCSTOH, MCSBOH, EADC1, EADC2 registers. These registers allow main
memory "holes" to be created.

For more detail refer to the Intel 82375EB specification. 

1 This functionality is not provided in version 1.0 of the GRU ASIC
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MEMCS#

PCI window 0 in the CIA can be enabled to accept the MEMCS# signal as the PCI mem-
ory decode signal. With this path enabled, the PCI window hit logic simply uses the
MEMCS# signal (that is, if MEMCS# is asserted then a PCI window 0 hit occurs and the
PCI DEVSEL signal is asserted).

PCI Arbitration
The PCEB does not allow the use of an external arbiter; the internal PCI arbiter must be
used. The AlphaStation 600 system has one PCI slot more than the PCEB can handle.
This problem is solved by providing a sub-arbiter on the system module for the 32 bit slots
in conjunction with the PCEBs arbiter. 

PCI Arbitration - Power-Up
The PCEB arbiter is initialized to provide round-robin arbitration but parks the host bridge
(CIA) on the PCI. This means that the CIA normally is driving AD[31:0], C/BE[3:0] and
PAR. The remaining 64-bit PCI signals are pulled up by resistors and need not be driven.

Figure 2-13 AlphaStation 600 System PCI arbiter scheme

Table 2-4 Round-robin PCI Arbitration

Round-robin arbitration assumes all slots are requesting.  If a bank or slot is not request-
ing, the priority is passed on to the next slot or bank that is requesting.

PCEB chip

Bank 0

Bank 3

Bank 1

Bank 2

Sub-arb

PCEB req

Slot 3 req
Slot 4 req

Slot 1 req

Slot 2 req

Slot 0 req

CPU   req

PCI slots
REQ0#

REQ1#

REQ2#

CPUREQ#

REQ3#

64-bit

64-bit

64-bit

32-bit

32-bit

CIA

Current Least Recently Used State Next Least Recently Used State

Bank 2 Bank 0 Bank 3 Bank 1 Sub-arb

Highest
Priority Bank 2 Bank 0 Bank 3 Bank 1 Sub-arb

Bank 0 x Slot 1 x x  Slot 2 Bank 3  same Slot 2 same same

Bank 0 x Slot 2 x x  Slot 1 Bank 3  same Slot 2 same same

Bank 3 x x Sub-arb x  CPU Bank 1  same same CPU same

Bank 3 x x CPU Slot 3  Slot 4 Bank 1  same same Sub-arb Slot 4

Bank 3 x x CPU Slot 4  Slot 3 Bank 1  same same Sub-arb Slot 3

Bank 1 PCEB x x x  Slot 0 Bank 0  Slot 0 same same same

Bank 1 Slot 0 x x x  PCEB Bank 0  PCEB same same same
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Data Buffering in the PCEB
The AlphaStation 600 system expects that the Line Buffer is enabled in the PCEB chip. 

The latest errata from Intel requires that the PCEB Posted Write Buffer is disabled. This
means that a PCI master requesting a PCI-to-EISA transfer is retried until the PCEB owns
the EISA bus. Each PCI-to-EISA transfer must complete all the way to the EISA destina-
tion before the next transfer may begin. In other words, performance through to EISA will
be abysmal (and the fewer EISA options installed the better). 
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3

AlphaStation 600 Addressing

Introduction
This chapter describes the mapping of the 40-bit processor physical address space into
memory and I/O space addresses; it explains the translation of processor initiated ad-
dresses into a PCI address; and the translation of a PCI initiated address into physical
memory address.

Topics include dense and sparse address spaces; scatter/gather address translation for
DMA operations, PCI addressing, and EISA requirements.

Address Mapping Introduction
The EV5 address space is divided into two regions using physical address <39>: if clear,
then EV5 access is to the cached memory space; if set, then the accesses are not
cached. This uncached space is used in the AlphaStation 600 system to access memory-
mapped I/O devices -- It does not support mailboxes.

The uncached space for the AlphaStation 600 system contains the CSRs, uncached
memory access (for diagnostics), and the PCI address space. The PCI defines three
physical address spaces: firstly, a 64-bit PCI memory space; secondly, a 4 GB PCI I/O
space; and thirdly, a 256B per device, PCI configuration space. In addition to these three
address spaces on the PCI, the CPU’s uncached space is also used to generate PCI In-
terrupt Acknowledge cycles and PCI Special cycles.

Figure 3-1 Address Space Overview

The CPU has visibility to the complete address space: it can access cached memory,
CSRs and all the PCI memory, I/O and configuration regions (see Figure 3-1).
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The PCI devices have a restricted view of the address space and can only access any
PCI device through the PCI memory or PCI  I/O space. They have no access to the PCI
configuration space. Furthermore, the AlphaStation 600 system restricts access to the 

system memory (for DMA operations) through four programmable "windows" (that is,
memory regions) in the PCI memory space -- see Figure 3-1. Address "windows" are a
PCI requirement (the window is defined via the Base register), and are implemented
(either directly/indirectly via positive/subtractive decode) by all PCI devices.

DMA access to the system memory is achieved in one of two ways: either "directly-
mapped" by concatenating an offset to a portion of the PCI address; or "virtually" through
a scatter/gather translation map. This scatter/gather map allows any 8 KB PCI memory
address region (page) to be redirected to any 8 KB cached memory page, as shown be-
low.

PCI Addressing 
The AlphaStation 600 system generates 32-bit PCI addresses but accepts both 64-bit ad-
dress (DAC1) cycles and 32-bit PCI address (SAC2) cycles. However, the 64-bit address-
ing support is constrained as follows: 

• The least-significant 40-bits of the PCI address are used in the window comparison
logic, the remaining PCI address<63:40> must be zero; 

• Only one of the four PCI windows can be programmed to accept a 64-bit (DAC) PCI
address; the remaining three windows only accept 32-bit  (SAC) address cycles.

• The AlphaStation 600 system does not generate DAC cycles; it only accepts DAC cy-
cles. With a 4 GB DAC window and a 4 GB SAC window(s), a PCI agent can access
all 8 GB of memory supported by the AlphaStation 600 system chip set. 

CPU Address Space
Figure 3-3 shows an overview of the CPU address space and Table 3-2 defines the ad-
dress regions in more detail. Figure 3-2 shows how the CPU address map translates to
the PCI address space; and also shows how the PCI access the CPU memory space via
DMAs. Note how the PCI memory space is double mapped via dense and sparse space. 

The rational behind the CPU I/O address map is as follows: 

• Limit the number of address pins sent to the pin constrained CIA. 

• Provide 4 GB of dense3 space to completely map the 32-bit PCI memory space.

CPU  Cached Mem PCI  memory  

Scatter
Gather
Map

space space (8 GB)

PCI 
Window 

PCI 
Window 

Direct
map

8 KB
page

1 Double Address Cycle (PCI 64-bit address transfer) -- only used if address <63:32> are non-zero.
2 Single Address Cycle -- used for 32-bit PCI addresses, or if <63:32> are zero for a 64-bit address.
3 Dense and Sparse -space are explained later in this chapter.
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• Provide abundant PCI sparse1 memory space since sparse-space has byte granular-
ity and is the safest memory-space to use (for example, no prefetching). Furthermore,
the larger the space the less likely software will need to dynamically relocate the
sparse space segments. The main problem with sparse space is that it is wasteful of
CPU address space (for example, 16 GB of CPU address space maps to 512 MB of
PCI sparse space).

The AlphaStation 600 system provides 3 PCI memory, sparse-space regions, allowing
704 MB  of total sparse memory space. The three regions are relocatable via the
HAE_MEM CSR, and the simplest configuration allows for 704 MB of contiguous
memory space.

— 512 MB region which may be located in any naturally-aligned 512 MB segment of
the PCI memory space. Software may find this region sufficient for their needs and
can ignore the remaining two regions.

— 128 MB regions which may be located on any naturally-aligned 128 MB segment
of the PCI memory space.

— 64 MB region which may be located on any naturally-aligned 64 MB segment of
the PCI memory space. 

• Limit the PCI I/O space to sparse space: although the PCI I/O space can handle 4
GB, the Pentium chip can only access 64 KB. Consequently, most PCI devices will
not exceed 64 KB for the foreseeable future. The AlphaStation 600 system provides
64 MB of sparse I/O space because the hardware decode is faster.

The AlphaStation 600 system provides two PCI IO sparse-space regions: region A,
which is 32 MB and is fixed in PCI segment 0-32 MB; and region B, which is also 32
MB, but is relocatable using the HAE_IO register.

CPU Address <38:35>
Pin constraints on the CIA ASIC prevent CPU address <38:35> from being used. The
software must ensure that CPU address <38:35> is zero (strictly speaking, even parity);
otherwise the CIA will induce a parity error interrupt.

1 Dense and Sparse -space are explained later in this chapter.
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Figure 3-2 CPU and DMA  Reads and Writes

Figure 3-3   CPU Addressing

 

Cached Memory

Reserved

EV5  memory space

PCI  mem & I/O space 

Scatter/
Gather
     or
Direct
Translation

PCI windows

PCI - Memory
Dense Space

PCI - Memory 
Sparse Space

PCI - I/0 space 
Legend:

CPU programmed I/O

DMA read/write

39

8 GB Cached Memory

Reserved0: Cached 

    Space

1: Uncached 

    Memory

  I/O

PCI  Memory Dense Space - 4 GB

PCI - Memory  
Sparse Space

PCI  I/0 Sparse space - 64 MB 

34 33 32 31

0  x  x  x

1  0  0  x

1  0  1  0

1  1  0  x

Physical address

  Space

0  0  x  x

S B Z 

1  0  1  1

512 MB

128MB

2GB => 64MB

1  1  1  x
PCI  Config, CIA CSRs, Flash ROM.

704 MB max

80.0000.0000

84.0000.0000

85.0000.0000

85.8000.0000
86.0000.0000

87.0000.0000

16 GB =>

 4GB =>



       AlphaStation 600 Addressing   3-5

Table 3-1 AlphaStation 600 Series CPU Address Space

CPU address Size () Selection

00.0000.0000 -- 01.FFFF.FFFF       8 Main memory

80.0000.0000 -- 83.FFFF.FFFF      16 PCI Memory,   512 MB           -- Sparse Space  - Region 0

84.0000.0000 -- 84.FFFF.FFFF        4 PCI Memory,   128 MB           -- Sparse Space  - Region 1

85.0000.0000 -- 85.7FFF.FFFF        2 PCI Memory,     64 MB           -- Sparse Space  - Region 2

85.8000.0000 -- 85.BFFF.FFFF        1 PCI I/O space,   32 MB           -- Sparse Space  - Region A

85.C000.0000 -- 85.FFFF.FFFF        1 PCI I/O space,   32 MB           -- Sparse Space  - Region B

86.0000.0000 -- 86.FFFF.FFFF        4 PCI Memory,       4 GB           -- Dense Space

87.0000.0000 -- 87.1FFF.FFFF        0.5 PCI Configuration,                 -- Sparse Space

87.2000.0000 -- 87.3FFF.FFFF        0.5 PCI Special/Int. Ack.              -- Sparse Space

87.4000.0000 -- 87.4FFF.FFFF        0.25 CIA Main CSRs,                     -- Pseudo Sparse1

87.5000.0000 -- 87.5FFF.FFFF        0.25 CIA Memory control CSRs,    -- Pseudo Sparse1

87.6000.0000 -- 87.6FFF.FFFF        0.25 CIA PCI address translation,  -- Pseudo Sparse1

87.7000.0000 -- 87.7FFF.FFFF        0.25     Reserved

87.8000.0000 -- 87.FFFF.FFFF        2 Flash ROM, GRU asic CSRs -- Pseudo Sparse1

Note 1: Pseudo sparse space is a hardware-specific, restricted version of sparse-space
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Table 3-2 AlphaStation 600 Series Address Map

                                      CPU  address    Description

0

39  34  33 5

Memory address0     SBZ      0 0

AlphaStation 600 main memory - 8 GB 
All accesses are cache block (64B)  aligned
and are cached by the EV5.
Istream and Dstream access.

Size = used to generate byte enables
            and PCI  address <2:0>

 34 

SBZ       0                  PCI  Memory LW  addr.        Size   0001

PCI sparse mem space - 512 MB
Region 1
Uncached EV5 access. Byte, word, tri-byte,
LW, QW read/write allowed. No read
prefetching. 

39  34 33 32 31 7  6  5  4  3  2 1 0

SBZ       1  0  0          PCI  Memory LW  addr.        Size   0001

PCI sparse mem space - 128 MB
Region 2

39  34 33 32 31 30 7  6  5  4  3  2 1 0

SBZ       1  0  1 0        PCI  I/O LW  addr.               Size    0001

PCI sparse mem space - 64 MB
Region 3

39  34 33 32 31 30 7  6  5  4  3  2 1 0

SBZ       1  0 1  1  0      PCI  I/O LW  addr.             Size    0001

PCI I/O sparse space - 32 MB
Region A
Uncached EV5 access. Byte, word, tri-byte,
LW, QW read/write allowed. No read
prefetching. 
Used to address (E)ISA devices.

39  34 33 32 31 30 7  6  5  4  3  2 1 0

SBZ       1  0 1  1  1      PCI  I/O LW  addr.             Size    0001

PCI I/O sparse space - 32 MB
Region B
Relocatable via HAE_IO

39  34 33 32 31 7  6  5  4  3  2 1 0

SBZ       1  1  0          PCI  Memory LW  addr.                     001

PCI dense memory space - 4 GB
Uncached EV5 access
Used for devices with access granularity
greater or equal to a LW. Read Prefetching
is allowed, and thus reads can have no side
effects.

PCI configuration space.
Uncached EV5 access
Sparse space
Byte, word, tri-byte, LW, QW read/write
No read prefetching

39  34 33 32 31         28 7  6  5  4  3  2 1 0

SBZ       1  1 1                              address             Size    0001

CPU addr
31 30 29 28

Size
GB

0   0    0    0.5 PCI Configuration Space

0   0    1    

PCI

0.5 PCI IACK/Special cycle

0   1    0    0 0.25 CIA main CSRs 

0   1    0    1 0.25 Memory Control

0   1    1    0 0.25 Scatter/Gather Translation 

0   1    1    1

CIA 
CSRs

0.25 reserved 

1   x    x    x Misc. 2.0 Flash ROM, GRU asic CSRs

CIA CSRs (including Flash ROM)
Uncached EV5 access. The CSRs addresses
are chosen for hardware convenience. See
CSR section for specific addresses.
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Cacheable Memory Space
This is located in the range: 00 0000 0000 to 01 FFFF FFFF. 

The AlphaStation 600 chip set recognizes the first 8 GB to be in cacheable memory
space. The block size is fixed at 64B. Read and Flush commands to the EV5 caches oc-
cur for DMA traffic.

PCI Dense Memory Space 

This is located in the range: 86 0000 0000 to 86 FFFF FFFF. 

PCI dense memory space is typically used for "memory-like" data buffers such as a video
frame buffer or a non-volatile RAM. Dense space does not allow byte or word access un-
like sparse space (see later), but enjoys the following advantages (over sparse space):

• Memory model: some software, for example, WNT default graphics routines, require
memory-like accesses. It cannot use sparse space addressing, since it requires ac-
cesses on the PCI bus to be at adjacent Alpha addresses, instead of being widely
separated as in sparse space. As as result, if the user-mode driver uses sparse-space
for its frame-buffer manipulation, it cannot "hand over" the buffer to the common Win-
dows NT graphics code.

• Higher bus bandwidth : PCI bus burst transfers are not usable in sparse space apart
from a two-longword burst for quadword writes. Dense space is defined to allow both
burst reads and writes.

• Efficient read/write buffering:  In sparse space, separate accesses use separate
read or write buffer entries. Dense space allows separate accesses to be "collapsed"
in read and write buffers (this is exactly what the EV5 does).

• Few memory barriers (MBs): In general, sparse space accesses are  separated by
memory barriers to avoid read/write buffer collapsing. Dense space accesses only re-
quire barriers when explicit ordering is required by the software.

Dense space is provided for CPU addresses accessing PCI memory space only, and not
for accessing PCI IO space. Dense space has the following characteristics:

• There is a one-to-one mapping between CPU addresses and PCI addresses: a long-
word address from the CPU will map to a longword on the PCI with no shifting of the
address field. Hence the term dense space (as compared to sparse space, which
maps a large chunk of CPU memory space (for example, 32B) to a byte on the PCI  --
see section on the PCI sparse space).

• The concept of dense space (and sparse space) is only applicable to generated   ad-
dresses. There is no such thing as dense space (or sparse space) for PCI generated
address.

• Byte or word accesses are NOT possible in cacheable space. The minimum access
granularity is a longword on writes and a quadword on reads. The maximum transfer
length is 32 bytes (performed as a burst of 8 longwords on the PCI). Any combination
of longwords may be valid on writes. Valid longwords surrounding an invalid long-
word(s) (called a "hole")  are required to be handled correctly by all PCI devices. The
AlphaStation 600 system allows such combinations to be issued.

• Reads will always be performed as a burst of two or more longwords on the PCI be-
cause the minimum granularity is a quadword. The processor can request a longword
but the AlphaStation 600 system will always fetch a quadword that is, prefetch a long-
word. Hence this space cannot be used for devices which have read side effects. Al-
though a longword may be prefetched the prefetch buffer is not treated as a cache
and thus coherency is not an issue. Note that a quadword read is not atomic on the
PCI -- that is, the target device is at liberty to force a retry after the first longword of
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data is sent, and then allow another PCI device in1. 

The EV5 merges uncached reads up to 32B maximum. The largest dense space read
is thus 32B from the PCI bus.

• Writes to this space are buffered in the EV5 chip. The AlphaStation 600 system sup-
ports a burst length of 8 on the PCI, corresponding to 32B of data. In addition, the CIA
ASIC provides four 32B write buffers to maximize IO write performance. These four
buffers are strictly ordered (See Chapter 11, System Coherency, for information on
coherency issues).

The address generation in dense space is as follows:

Figure 3-4 Dense Space Address Generation

CPU address<31:5> is directly sent out on PCI address <31:5>. CPU address<4:2> is not
sent out of the EV5 and instead is inferred from the Int4_valid pins; however, for software
concerns, this is a mere implementation detail. PCI address<4:3> is a copy of CPU ad-
dress<4:3>. For a read transaction, the PCI_address<2> is zero (that is, minimum read
resolution in uncached space is a quadword). For a write PCI address<2> equals CPU
address<2>.

PCI Sparse Memory Space
The AlphaStation 600 system provides three regions of contiguous CPU address space
which maps to PCI sparse memory space. The total CPU range is from 80 0000 0000 to        
85 7FFF FFFF. 

The Alpha instruction set can express only aligned longword and quadword data refer-
ences. The PCI bus requires the ability to express byte, word, tri-byte, longword (double-
word) and quadword references. Furthermore, Intel processors are also capable of gener-
ating unaligned references, and it should be possible to emulate the resulting PCI
transactions to insure compatibility with PCI devices designed for Intel-based systems.

For an Alpha architecture, it is necessary to encode the size of the data transfer (byte,
word, etc.) and the byte enables in the CPU address. Address bits <6:3> are used for this
purpose, leaving the remaining bits <31:7>  This loss of address bits has resulted in a
"sparse" 22 GB CPU 32-bit address space that maps to only 704 MB of address space on
the PCI.

 The rules for accessing sparse space are as follows:

• Sparse space supports all the byte encodings which may be generated in an Intel sys-
tem to ensure compatibility with PCI devices/drivers. The results of some references
are not explicitly defined -- these are the missing entries in Table 3-3 (for example,
word size with address<6:5> = 11). The hardware will complete the reference but the
reference is not required to produce any particular result nor will the AlphaStation 600
system report an  error. The error strategy is defined in the Hardware Exceptions and
Interrupts chapter.

1
39   34 33 32 31 5  4  3  2  1  0

00

31

00

5  4  3  2  1  0

Int4_
Valid

CPU addr <4:2>  must be inferred
from the int4_valid pins. For 
reads, PCI addr <2> is always 
zero

CPU address

EV5

PCI Dense Memory address

<31:5>

1 1 0

1 The AlphaStation 600 system does not drive the PCI LOCK signal and thus cannot ensure atomicity. This
is true of all current alpha platforms. 
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• Software must use longword load or store instructions (LDL/STL) to perform a refer-
ence which is of longword length or less on the PCI bus. The bytes to be transferred
must be positioned within the longword in the correct byte lanes as indicated by the
PCI byte enables. The hardware will do no byte shifting within the longword. Quad-
word loads and stores must only be used to perform a quadword transfer. Use of
STQ/LDQ instructions for any other references will produce unpredictable results. 

• Read-ahead (prefetch) is not performed in sparse space by the AlphaStation 600 sys-
tem hardware since the read-ahead may result in detrimental side-effects.

• Programmers are required to insert MB instructions between sparse space accesses
to prevent collapsing in the EV5 write buffer. However, this is not always required: for
instance, consecutive sparse space addresses will be separated by 32B (and will not
be collapsed by the EV5).

• Programmers are required to insert MB instructions if the sparse space address syno-
nyms to a dense space address (that is, if ordering/coherency is to be maintained).

• The encoding of the EV5 address for sparse space read accesses to PCI space is
shown in Table 3-3. An important point to note is that CPU address[33..5] are directly
available from the processor chip pins. On read transactions the processor sends out
address bits [4.3] indirectly on the Int4_valid pins. CPU address [2:0] are required to
be zero: accesses with [2:0] non-zero will produce unpredictable results.

• The relation between Int4_valid[3:0] and CPU address[4:3] for a sparse space write is
shown below. The important point is that all other int4_valid patterns will produce un-
predictable results -- for example, as a result of collapsing in the EV5 write buffer; or
by issuing a STQ when a STL was required.

Table 3-3 defines the low-order PCI sparse memory address bits. CPU address<7:3> is
used to generate the length of the PCI transaction in bytes, the byte enables, and address
bits<2:0>. CPU address<30:8> correspond to the quadword PCI address and is sent out
on PCI address <25:3>. 

The high-order PCI address bits <31:26> are obtained from either the Hardware Exten-
sion Register (HAE_MEM) or the CPU address depending on sparse space regions, as
shown in Table 3-4. The  HAE_MEM is described in the next section and is a CSR in the
CIA ASIC. Figures 3-5 through 3-7 shows the mapping for the three regions.

   EV5 Data cycle  Int4_Valid3:0>   Address<4:3>

        First
         00 01
       00 10
         01 00
         10 00

           0 0 
           0 0
           0 1
           0 1

 
      Second

         00 01
         00 10
         01 00
         10 00
         11 00 (STQ)

           1 0
           1 0
           1 1
           1 1
           1 1

  Note: (1) All other Int4_valid patterns result in  unpredictable
                 results.
            (2)  Only one valid STQ case is allowed.
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Table 3-3 PCI  Memory Sparse Space Read/Write Encodings 

Table 3-4 High-order Sparse Space bits

        Size Byte Offset

CPU_Addr
<4:3>

CPU_Addr
<6:5>

CPU
Instruction
allowed

PCI
Addr
<2:0> 
see
notes

PCI
Byte
Enable

 Data in Register    
 byte  lanes

63             31        0

          00 A<7>,0
0

  1110

          01 A<7>,0
0

  1101

          10 A<7>,0
0

  1011Byte           00
 

          11

   LDL, STL

A<7>,0
0

  0111

          00 A<7>,0
0

  1100

          01 A<7>,0
0

  1001
Word

          01
        10

   LDL, STL

A<7>,0
0

  0011

          00 A<7>,0
0

  1000

Byte           10           01    LDL, STL A<7>,0
0

  0001

Long-
Word

          11           00    LDL, STL A<7>,0
0

  0000

Quad-
Word

          11           11    LDQ, STQ   000
 

  0000 
 

Note: A<7> = CPU_address<7>.
         Byte Enable set to 0 indicates that byte lane carries meaningful data.
         In PCI sparse memory space, PCI Address<1:0> is always zero.
         Missing entries (for example, word size with CPU address <6:5> = 11) enjoy
UNPREDICTABLE          results.

                                           PCI_ Address   CPU address  ROM

     31      30      29      28     27      26 

80.0000.0000 -
83.FFFF.FFFF

 1  HAE_ME
M<31>

HAE_ME
M<30>

HAE_ME
M<29>

CPU<33
>

CPU<32
>

CPU<31
>

84.0000.0000 -
84.FFFF.FFFF

 2 HAE_ME
M<15>

HAE_ME
M<14>

HAE_ME
M<13>

HAE_ME
M<12>

HAE_ME
M<11>

CPU<31
>

85.0000.0000 -
85.7FFF.FFFF

 3  HAE_ME
M<7>

HAE_ME
M<6>

HAE_ME
M<5>

HAE_ME
M<4>

HAE_ME
M<3>

HAE_ME
M<2>
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Figure 3-5 CI Memory Sparse Space Address Generation - Region 1

Figure 3-6 PCI Memory Sparse Space Address Generation - Region 2

Figure 3-7 PCI Memory Sparse Space Address Generation - Region 3 

1 0
39   34 33 8   7  6  5 4  3  2  1  0 

PCI  QW addr

31    29
00

3  2  1  0

Int4_
Valid

CPU addr <4:3>  must be inferred
from the int4_valid pins. 

CPU address

EV5

PCI address

 4  3

Length in Bytes
Byte Offset

(refer to table 

31      29 
HAE_MEM CSR

for translation)

SBZ

1
39 34 33 32 8  7  6  5  4  3  2  1  0 

PCI  QW addr

31       27
00

3  2  1  0

Int4_
Valid

CPU addr <4:3>  must be inferred
from the int4_valid pins. 

CPU address

EV5

PCI address

 4  3

Length in Bytes
Byte Offset

(refer to table 

31                         15        11
HAE_MEM CSR

for translation)

SBZ 1 0  0

1
39 34 33 32 31 8  7  6  5  4  3  2  1  0 

PCI  QW addr

31         26
00

3  2  1  0

Int4_
Valid

CPU addr <4:3>  must be inferred
from the int4_valid pins. 

CPU address

EV5

PCI address

 4  3

Length in Bytes
Byte Offset

(refer to table 

31                                      7            2
HAE_MEM CSR

for translation)

SBZ 1 0  1 0



3-12   AlphaStation 600 Addressing

Hardware Extension Registers (HAE)
In sparse space, CPU_Address[7:3] are "wasted" on encoding byte enables, size and the
low-order PCI address<2:0>. This means that there are now 5 fewer address bits avail-
able to generate the PCI physical address. This problem is solved in the EV4 based sys-
tems (Sable, APECS, and LCalpha) by a Hardware Extension register (HAE1), which is
used to provide the missing high-order bits. The HAE registers are intended to be system
specific and are not defined by the Reference Implementation. The expectation is that the
HAE registers are set by POST2 software and thereafter never modified.

Compared to the EV4, the EV5 provides six extra physical address bits <39:34>. These
extra bits could be use to back-fill the "lost" sparse space bits. However, the CIA ASIC is
pin-constrained and the high-order address bits <38:35> are not available. 

Furthermore, other EV5 platforms use these high-order bits in different ways (encoding
multiple PCI ports for instance), and so for easier software portability these bits are best
not used. The Sable/APECS/LC-alpha designs effectively provide two address regions for
sparse PCI memory access: one region has CPU address  bits <31:29> = 0 (lower 16
MB of the PCI sparse address range) which is not relocated; and a second region, when
bits <31:29> are non-zero, which is relocated using bits <31:29> of the HAE register. 

The AlphaStation 600 system provides more PCI sparse memory space than the other
designs and consequently has a different address decode scheme: the AlphaStation 600
system provides three sparse space PCI memory regions. Furthermore, It allows all three
sparse space regions to be relocated via bits in the HAE_MEM register. This provides
software with far greater flexibility.

Finally, to complete this section on HAE registers, we will note that a similar technique is
used for the PCI IO sparse space. Two regions are provided: region A addresses the
lower 32 MB of PCI IO space and is never relocated. This region will be used to address
the (E)ISA devices. Region B, is used to address a further 32 MB of PCI IO space and is
relocatable using HAE_IO. More details will be found in Chapter 7, Control and Status
Registers.

1 generally pronounced hay 
2 Power-on Self Test (PCI-speak for firmware). 
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PCI Sparse I/O Space
PCI sparse I/O space is located in the range: 85 8000 0000 to 85 FFFF FFFF and has
similar characteristics to the PCI Sparse Memory Space. This 2 GB CPU address seg-
ment maps to two 32 MB regions of PCI I/O address space. A read or write to this space
causes a PCI I/O read or write command.

The high order PCI address bits are handled as follows: 

• Region A:   This region has CPU address<34:30> = 10110 and addresses the lower
32 MB of PCI sparse I/O space; thus PCI address<31:25> isset to zero by the hard-
ware (see top of Figure 3-9). This region is used for (E)ISA addressing (the EISA 64
KB I/O space cannot be relocated).

• Region B:   This region has CPU address<34:30> = 10111 and addresses a relocat-
able 32 MB of PCI sparse I/O space. This 32 MB segment is relocated by assigning
PCI address <31:25> to equal HAE_IO<31:25>.

The remainder of the PCI I/O address is formed in the same way for both regions.

• PCI address<24:3> are derived from CPU address<29:8>

• PCI_address<2:0> are defined in Table 3-5.

The (E)ISA devices have reserved the lower 64 KB of this space. Hence all PCI devices
should be relocated above this region. The four AlphaStation 600 system (E)ISA slots are
hardwired through the AEN* allocating 4 KB per slot (as per EISA standard) -- the first slot
is reserved for the EISA system board (that is, X-bus addressing, Interrupt controller, etc).
Figure 3-8 shows the PCI and (E)ISA I/O map for the AlphaStation 600 system.

Figure 3-8   AlphaStation 600 System PCI and (E)ISA I/O Map

WARNING:  A quadword access to the PCI sparse I/O space will result in a 2 longword
burst on the PCI. However, PCI devices may not support bursting in I/O space.

CPU address PCI addr Range (KB) Selection

85.8000.0000 0000.0000      0 -  4 EISA system board (X-bus, I/O ports, etc)

85.8002.0000 0000.1000      4 -  8 EISA slot 1

85.8004.0000 0000.2000      8 - 12 EISA slot 2

85.8006.0000 0000.3000    12 - 16 EISA slot 3

85.8008.0000 0000.4000    16 - 20 EISA slot 4

85.800A.0000 0000.5000    20 - 24     Reserved

85.800C.0000 0000.6000    24 - 28     Reserved

85.800E.0000 0000.7000    28 - 32     Reserved

85.8010.0000 0000.8000    32 - 36     Reserved

85.8012.0000 
        :
85.801F.FFFF

0000.9000 
        :
0000.FFFF

   36 - 64     Reserved

85.8020.0000 
        :
        :
85.BFFF.FFFF

0001.0000 
        :
        :
01FF.FFFF

   64 KB to  
   32 MB

PCI I/O area -- fixed

85.C000.0000 
        :
        :
85.FFFF.FFFF

0200.0000 
        :
        :
03FF.FFFF

   32 MB PCI I/O area -- relocatable

EISA 
0-64 KB 
region

PCI
region
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Table 3-5 PCI Sparse I/O Space Read/Write Encodings

        Size Byte Offset

CPU_Addr
<4:3>
  

CPU_Addr
<6:5>

CPU
Instruction
allowed

PCI Addr
<2:0> 
see notes

PCI Byte
Enable

 Data in Register    
byte  lanes

63             31        0

          00 A<7>,00   1110

          01 A<7>,01   1101

          10 A<7>,10   1011Byte           00
 

          11

   LDL, STL

A<7>,11   0111

          00 A<7>,00   1100

          01 A<7>,01   1001Word           01

          10

   LDL, STL

A<7>,10   0011

          00 A<7>,00   1000

Tri-
Byte

          10
          01

   LDL, STL
A<7>,01   0001

Long-
Word

          11           00    LDL, STL A<7>,00   0000

Quad-
Word

          11           11    LDQ, STQ   000
 

  0000 
 

Note: A<7> = CPU_address<7>.
         Byte Enable set to 0 indicates that byte lane carries meaningful data.
         Missing entries (for example, word size with CPU address <6:5> = 11) have UNPREDICTABLE
results.



       AlphaStation 600 Addressing   3-15

Figure 3-9 PCI sparse I/O Space Address Translation

PCI Configuration Space
This is located in the range: 87 0000 0000 to 87 1FFF FFFF. Software is advised to clear
CIA_CTRL<fill_err_en> when probing for PCI devices via configuration space reads. This
will prevent the CIA from generating an ECC error if no device responds to the configura-
tion cycle (and garbage data is on the PCI bus).

A read or write access to this space causes a Configuration read or write cycle on the
PCI. There are two classes of targets, which are selected based on the value of the CFG
CSR.

• Type 0:   These are targets on the primary 64-bit the AlphaStation 600 system PCI
bus. These are selected by making the CSR CFG<1:0> = 0.

• Type 1:   These are targets on the secondary 32-bit AlphaStation 600 system PCI bus
(that is, behind a PCI-PCI bridge). These are selected by making CFG<1:0> = 1.

• CFG<1:0> = 10 or 11 are reserved (by the PCI spec).

Software must first program the CFG register before running a configuration cycle. Note
that the AlphaStation 600 system uses the CFG<1:0> instead of unused CPU address
bits <38:35> to be compatible with Sable and the APECS chip set. 

Sparse address decoding is used. CPU address<6:3> is used to generate both the length
of the PCI transaction in bytes and the byte enables. PCI Address bits <1:0> are obtained

1     SBZ   1  0  1  1  0
39      34 33 32 31 30 29 8  7  6  5  4  3  2  1  0 

<29:8>

31             25 24

Address translation for lower 32 MB of PCI sparse IO space

00

 3 2 1 0

CPU addr <4:3>  must be inferred
from the int4_valid pins. 

CPU address

EV5

PCI address

Length in Bytes
Byte Offset

(refer to table 

0 0 0 0 0 0 0

Address translation for remainder of PCI sparse IO space

31           25  24
HAE_IO CSR

for translation)

31        25  24
00

3 2 1 0

Int4_
Valid

CPU addr <4:3>  must be inferred
from the int4_valid pins. 

CPU address

EV5

PCI address

Length in Bytes
Byte Offset

(refer to table 
for translation)

Reserved

 4  3

Int4_
Valid

1     SBZ   1  0  1  1  1
39      34 33 32 31 30 29 8  7  6  5  4  3  2  1  0 

 4  3

<29:8>
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from CFG <1:0>. CPU address<28:7> corresponds to PCI address<23:2> and provides
the configuration command information (for example, which device to select). The high-
order PCI address bits <31:24> are always zero. 

Figure 3-10 PCI Configuration Space Definition

Peripherals are selected during a PCI configuration cycle if: (a) their IDSEL pin is as-
serted; (b) the PCI bus command indicates a configuration read or write; and (c) address
bits <1:0> are 00. Address bits <7:2> select a dword (longword) register in the periph-
eral’s 256-Byte configuration address space. Accesses can use byte masks. 

Peripherals that integrate multiple functional units (for example, SCSI and ethernet) can
provide configuration space for each function. Address bits <10:8> can be decoded by the
peripheral to select one of eight functional units.

PCI Address bits <31:11> are available to generate the IDSELs (note that IDSELs behind
a PCI-PCI bridge are determined from the Device field encoding of a type 1 access). The
IDSEL pin of each device is connected to a unique PCI address bit from the set <31:11>.
The binary value of CPU address <20:16> is used to select which PCI address <31:11> is
asserted, as follows:

WARNING:  If a quadword access is specified for the configuration cycle then the least
significant bit of the register number field (that is, PCI address<2>) must be zero  -- that
is, quadword accesses must access quadword aligned registers.

If the PCI cycle is a configuration read or write cycle but the PCI address<1:0> are 01
(that is, a type 1 transfer), then a device on a hierarchical bus is being selected via a
PCI/PCI bridge. This cycle is accepted by the PCI/PCI bridge for propagation to its secon-
dary PCI bus. During this cycle <23:16> select a unique bus number, and address <15:8>

 1  MBZ   1 1 1 0 0 0

   31                                                             10         8  7                       2 1  0 

    31       27 26     24 23            16 15      11 10        8  7                        2 1 0 

CFG<1:0>

                           IDSEL                               Function        Register          00

     00000       000         Bus           Device   Function        Register          01

TYPE 0 

TYPE 1  

Length
Byte offset

 39            34      31       28                 20     16 15        13 12                     7  6    5  4    3  2   1  0 
CPU
address

PCI  config addr

PCI  config addr

CPU Address <20:16> PCI address <31:11> -- IDSEL

             00000  
             00001
             00010  
             00011
                 :
             10011
             10100

  0000 0000 0000 0000 0000 1
  0000 0000 0000 0000 0001 0
  0000 0000 0000 0000 0010 0
  0000 0000 0000 0000 0100 0
                       :
  0100 0000 0000 0000 0000 0
  1000 0000 0000 0000 0000 0

             10101
                 :
             11111

  0000 0000 0000 0000 0000 0
 (No device selected)
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selects a device on that bus (typically decoded by the PCI/PCI bridge to generate the sec-
ondary PCI address pattern for IDSEL), and address <7:2> selects a Dword (longword) in
the devices configuration space.

Figure 3-11 PCI Configuration Space Read/Write Encodings

Each PCI/PCI bridge can be configured via PCI configuration cycles on its primary PCI
interface. Configuration parameters in the PCI/PCI bridge will identify the bus number for
its secondary PCI interface, and a range of bus numbers that may exist hierarchically be-
hind it. 

If the bus number of the configuration cycle matches the bus number of the bridge chips
secondary PCI interface, it will accept the configuration cycle, decode it, and generate a
PCI configuration cycle with address <1:0> = 00 on its secondary PCI interface. If the bus
number is within the range of bus numbers that may exist hierarchically behind its secon-
dary PCI interface, the bridge chip passes the PCI configuration cycle on unmodified (ad-
dress <1:0> = 01). It will be accepted by a bridge further downstream.

        Size Byte Offset

CPU_Addr
<4:3>

CPU_Addr
<6:5>

CPU
Instruction
Allowed

PCI Addr
<1:0> 

PCI
Byte
Enable

 Data in Register    
Byte  Lanes

63             31        0

          00 CFG<1:0>   1110

          01 CFG<1:0>   1101

          10 CFG<1:0>   1011Byte           00
 

          11

   LDL, STL

CFG<1:0>   0111

          00 CFG<1:0>   1100

          01 CFG<1:0>   1001Word           01

          10

   LDL, STL

CFG<1:0>   0011

          00 CFG<1:0>   1000

Tri-
Byte

          10
          01

   LDL, STL
CFG<1:0>   0001

Long-
Word

          11           00    LDL, STL CFG<1:0>   0000

Quad-
Word

          11           11    LDQ, STQ CFG<1:0>   0000 
 

Note: A<7> = CPU_address<7>.
         Byte Enable set to 0 indicates that byte lane carries meaningful data.
         Missing entries (for example, word size with CPU address <6:5> = 11) have UNPREDICTABLE
results.
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Figure 3-12 shows the AlphaStation 600 system’s PCI hierarchy. The IDSEL lines are sig-
nificant in Type 0 Configuration cycles, and the PCI nodes are connected as tabulated in
Table 3-6. (The choice of address bit assignments to the IDSEL lines was because of a
module ECO)

Figure 3-12 AlphaStation 600  System PCI Bus Hierarchy

 

Table 3-6 Primary 64-bit PCI Slot to IDSEL Mapping

PCI Special/Interrupt Cycles
PCI Special/Interrupt Cycles are located in the range 87 2000 0000 to 87 3FFF FFFF.

The Special cycle command provides a simple message broadcasting mechanism on the
PCI. The Intel processor uses this cycle to broadcast processor status; but in general it
may be used for logical sideband signaling between PCI agents. 

The Special cycle contains no explicit destination address, but is broadcast to all agents.
The AlphaStation 600 system will drive all zero’s as the Special cycle address. Each re-
ceiving agent must determines if the message contained in the data field is applicable to
it.

PCI  to EISA
Bridge

(E)ISA bus

64-bit  PCI  bus

32-bit 

PCI  to PCI
Bridge

PCI  
Graphics

Audio

Slot

64-bit Slots

Slot

I/O Subsysterm module I/O board

SCSI Ether- 
net

slots

Internal PCI 

Slot

CIA  Asic

EV5 Data MemSwitch

SCSI

SLOT  PCI  Address
used as IDSEL

Slot location on system Module
Reference

PCI Slot
Number

(Firmware)

64-bit PCI slot 0         <18> Next to Memory board J11 7

64-bit PCI slot 1        <23> J10 12

64-bit PCI slot 2        <22> J9 11

32-bit PCI slot 3        <19> J8 8

32-bit PCI slot 4        <20> Next to EISA slots J7 9

PCI/EISA Bridge        <21> 10
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A write access in the range 87.2000.0000 to 87.3FFF.FFFF causes a special cycle on the
PCI.  The CPU’s write data will be passed unmodified to the PCI. Software must write the
data in longword 0 of the hexword with the following field: 

• Byte 0 and 1  contain the encoded message

• Bytes 2 and 3 are message dependent (optional) data field. 

A read of the same address range will result in an Interrupt Acknowledge cycle on the PCI
and return the vector data provided by the PCI-EISA bridge to the CPU. 

Hardware Specific and Miscellaneous Register Space
This register space is located in the range: 87 4000 0000 to 87 FFFF FFFF. 

Table 3-7 Hardware Specific Register Address Map

The address space here is a hardware-specific variant of sparse space encoding. For the
CSRs, CPU address bits <27:6> specify a longword address where CPU address <5:0>
must be zero. All the CIA registers are accessed with a LW granularity. For more specific
details on the CIA CSRs please refer to the CSR chapter. 

For the Flash ROM, CPU address <30:6> defines a byte address; please refer to the CSR
chapter. The fetched byte is always returned in the first byte lane (bits <7:0>). 

A number of CSRs in the GRU ASIC (for example, the main interrupt registers) are ac-
cessed in this region.

PCI to Physical Memory Addressing
Incoming PCI addresses (32-bit or 64-bit) have to be mapped to the CPU cached memory
space (8 GB). The AlphaStation 600 system provides four programmable address win-
dows that control access of PCI peripherals to system memory1. The mapping from the
PCI address to the physical address can be direct mapped (physical mapping with an ad-
dress offset) or Scatter/Gather mapped (virtual mapping). These four address windows
are referred to as the PCI target Windows.

Each window has three registers associated with it. These are: 

• Window Base  (W_BASE) register

• Window Mask  (W_MASK) register

• Translated Base  (T_BASE) register

In addition, there is an extra register associated with Window 3 only. This is the Window 
DAC register and is used for PCI 64-bit addressing (that is, the Dual Address Cycle
mode). 

CPU Address
<39:28>

Selected Region CPU Address
<27:6>

CPU Address
<5:0>

1000 0111 0100  CIA control, diagnostic, error registers  LW address  000000

1000 0111 0101  CIA  Memory Control registers.  LW address  000000

1000 0111 0110  CIA: PCI Address Translation (S/G, Windows,
etc)

 LW address  000000

1000 0111 0111  Reserved

1000 0111 1xxx  Flash RAM, GRU asic CSRs  Byte address  000000

1 DOS compatibility is included later in this chapter.
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The Window Mask register provides a mask corresponding to bits <31:20> of an incoming
PCI address. The size of each window can be programmed to be from 1 MB to 4 GB in
powers of two, by masking bits of the incoming PCI address using the Window Mask reg-
ister as shown in Table 3-8 (note that the Mask field pattern was chosen to speed-up tim-
ing critical hardware logic). 

Table 3-8 PCI Target Window MASK Register

Based on the value of the Window Mask register, the unmasked bits of the incoming PCI
address are compared with the corresponding bits of each window’s Window Base regis-
ter. If one of the Window Base registers and the incoming PCI address match, then the
PCI address has hit the PCI target window; otherwise it has missed the window. A window
enable bit WENB, is provided in each window’s Window Base register to allow windows to
be independently enabled (WENB = 1)  or disabled (WENB = 0). 

If a hit occurs in any of the four windows that are enabled, then the CIA will respond to the
PCI cycle by asserting the DEVSEL signal. The PCI target windows must be programmed
so that their address ranges do not overlap (otherwise the hardware gets confused and
results are undefined).

The Window base address must be on a naturally aligned address boundary de-
pending on the size of the window 1. This restriction is not particularly onerous, since
the address space of any PCI device can be located anywhere in the PCI’s 4 GB memory
space. This scheme is also compatible with the PCI specification: 

• A PCI device specifies the amount of memory space it requires via the Base registers
in its configuration space. The Base Address registers are implemented such that, the
address space consumed by the device is a power of two in size, and is naturally
aligned on the size of the space consumed. 

A PCI device need not use all the address range it  consumes (that is, the size of the PCI
address window defined by the Base Address); nor need it respond to unused portions of
the address space. The one exception to this is a PCI-bridge which requires two addi-
tional registers (the Base and Limit address registers). These registers accurately specify
the address space which the bridge device will respond to2 and are programmed by the
POST code. The CIA, as a PCI host-bridge device, does not have BASE and LIMIT regis-

PCI_MASK <31:20>    Size of Window  Value of n

  0000 0000 0000
  0000 0000 0001
  0000 0000 0011
  0000 0000 0111
  0000 0000 1111
  0000 0001 1111
  0000 0011 1111
  0000 0111 1111
  0000 1111 1111
  0001 1111 1111
  0011 1111 1111
  0111 1111 1111
  1111 1111 1111
       other

         1 Megabyte
         2 Megabyte
         4 Megabyte
         8 Megabyte
       16 Megabyte
       32 Megabyte
       64 Megabyte
     128 Megabyte
     256 Megabyte
     512 Megabyte
         1 Gigabyte
         2 Gigabyte
         4 Gigabyte
      Unpredictable

         20
         21
         22
         23
         24
         25
         26
         27
         28
         29
         30
         31
         32
         ---

Only the incoming PCI address bits <31:n> are compared with <31:n> of
the Window Base register as shown in figure 3-14. If n=32 no comparison
is performed. 
Windows are not allowed to overlap.

1 for example, a 4 MB window cannot start at address 1 MB; it must start at addresses 4 MB, 8 MB, 12 MB,
etc.

2 a bridge responds to all addresses in the range: Base <= address < Limit.
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ters1, but does respond to all the addresses defined by the Window Base register (that is,
all addresses within a window.)

Figure 3-13 PCI DMA Addressing Example

Figure 3-13 shows how the DMA address ranges of a number of PCI devices are  ac-
cepted by the AlphaStation 600 system PCI-window ranges. Note that PCI devices are al-
lowed to have multiple DMA address ranges (for example, device 2). The example also
shows that the AlphaStation 600 system window can be larger than the corresponding de-
vices DMA address range (see device 0). Device 1 and device 2 have address ranges
which are accepted by one AlphaStation 600 system window. Each window determines
whether direct- or scatter/gather-mapping is used to access physical memory (see S/G-bit
later)

Figure 3-14 PCI Target Window Compare 

Figure 3-14 depicts the PCI window logic. The comparison logic associated with PCI ad-
dress bits <63:32> is only used for the DAC2 mode; and only if enabled by a bit in the
Window Base register for Window 3. This logic is only applicable to Window 3; the re-
maining Windows only recognize 32-bit PCI addresses (that is, SAC3 cycles). For a hit to
occur in a DAC address, address bits <63:40> must be zero; bits<39:32> must match the
Window DAC Base register; and the low-order address bits <31:20> must also hit. This

CPU  Memory PCI  memory  

Scatter
Gather
Map

space (4 GB)space (16 GB)

Direct
map

8KB
page

PCI            PCI            PCI
device 0

AlphaStation 600 system

PCI devices DMA memory space   

 device 1    device 2

63                  40 39           32          31           n  n-1   20                         0
PCI  address

Target  

31             n  n-1   20
Window  Base

31             n  n-1   20
Window  Mask

 XXXXX

  1111100000000

registers

registers The Mask registers determines  n

Hit Window 3

Window Enable

Window 3 SG bit

(WENB)

Window
Hit logic Hit Window 2

Hit Window 1
Hit Window 0

Window 2 SG bit
Window 1 SG bit
Window 0 SG bit

(1 per Window)

(1 per Window)

Compare Hit  (Window 3 only)

WINDOW  DAC
Base  register
(Window 3 only)

& Hit logic  
Zero
Detect

for each Window -- the drawing
shows different n values for the 4
windows.

D
A
C

1 Host-bridges, since they are under system control, are free to violate the rules!
2 Dual-Address cycle -- only issued if <63:32> are non-zero for a 64-bit PCI address.
3 Single Address cycle -- all 32-bit addresses. A PCI device must use SAC if  <63:32> = 0 of a 64-bit address.
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scheme allows a naturally aligned, 1 MB-4 GB PCI window to be placed anywhere in the
first 1TB of a 64-bit PCI address.

When an address match occurs with a PCI Target Window, the CIA ASIC  translates the
32-bit PCI address to a memory address <33:0>. The translated address is generated in
one of two ways as determined by the SG (Scatter/Gather) bit of the Window’s PCI BASE
register. 

Direct-mapped Addressing
If the SG bit is cleared, the DMA address is direct mapped, and the translated address is
generated by concatenating bits from the matching window’s Translated Base register
(T_BASE) with bits from the incoming PCI address. The bits involved in the concatenation
are defined by the Window Mask register as shown in Table 3-9 . Note that the unused
bits of the Translated Base register as indicated in Table 3-9 must be cleared (that is, the
hardware performs an AND-OR for the concatenation). Since memory is located in the
lower 8 GB of the CPU address space, the AlphaStation 600 chip-set ensures (implicitly)
that address <39:33> is always zero.

Note that since the Translated Base is simply concatenated to the PCI address, then the
direct mapping is to a naturally-aligned memory region. For example, a 4 MB direct-
mapped window will map to any 4 MB region in main memory which falls on a 4 MB
boundary (for instance, it is not possible to map a 4 MB region to the main memory region
1 MB-5 MB).

Table 3-9 Direct-mapped PCI Target Address Translation

WINDOW_MASK                 
<31:20> 

Size of
Window

                    Translated Address<32:2>

32                                20 19                     2

32                             21  20                       2

32                           22 21                          2

32                        23 22                             2

0000 0000 0000             1 MB

0000 0000 0001             2 MB

0000 0000 0011             4 MB

0000 0000 0111             8 MB

32                    24 23                                2

32                 25  24                                  2

32               26  25                                    2

32            27 26                                        2

0000 0000 1111           16 MB

0000 0001 1111           32 MB

0000 0011 1111           64 MB

0000 0111 1111         128 MB
32           28  27                                        2

32        29  28                                           2

32     29  28                                              2

32   30 29                                                 2

0000 1111 1111         256 MB

0001 1111 1111         512 MB

0011 1111 1111             1 GB

0111 1111 1111             2 GB

32  31                                                       2
1111 1111 1111             4 GB

T_BASE PCI address

Note: unused bits of the Translation Base register must be zero for correct operation.
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Figure 3-15 Direct-mapped Translation

Scatter/Gather Addressing
If the SG bit of the PCI Base register is set, then the translated address is generated by a
table lookup. This table is referred to as a Scatter/Gather Map. Figure 3-18 shows the
scatter/gather addressing scheme -- full details of this scheme are provided later in this
section; but for now a quick description is provided: The incoming PCI address is com-
pared to the PCI Window addresses for a hit. The Translated Base register, associated
with the PCI-window which hit, is used to specify the starting address of the Scat-
ter/Gather map table in memory. Bits of the incoming PCI address are used as an offset
from this starting address, to access the scatter/gather PTE.  This PTE in conjunction with
the remaining, least-significant PCI address bits, forms the required memory address. 

Each Scatter Gather (SG) map entry maps an 8 KB page of PCI address space into an 8
KB page of the processor’s address space. This offers a number of advantages to soft-
ware:

• Performance: ISA devices map to the lower 16 MB of memory. NT currently copies
data from here to user space. The Scatter/Gather map avoids this copy.

• User IO buffers cannot be counted on to be physically contiguous nor contained within
a page. Without scatter/gather, the software needs to manage the "scattered" nature
of the user buffer by copies.

In the PC world, the term scatter/gather is not an address translation scheme but instead
is used to signify a DMA transfer list. An element in this transfer list contains the DMA
address and the number of data items to transfer. The DMA device fetches each item of
the list until the list is empty. Many of the PCI devices (for example, EISA bridge) support
this form of scatter/gather.

Each SG entry (PTE) is a quadword and has a valid bit in bit position 0. Address bit 13 is
at bit position 1 of the map entry. Since the AlphaStation 600 chip set only implements
valid memory addresses up to 8 GB, then bits <63:21> of the SG map entry must be pro-
grammed to 0. Bits <20:1> of the SG map entry are used to generate the physical page
address. This is appended to the bits <12:5> of the incoming PCI address to generate the
memory address.

63                                40 39      32 31           n  n-1    20                3    0

PCI  address

31             n  n-1   20
Window Base

Window  Mask

 XXXXX

  1111100000000

Window
Hit

Compare

33                                  n-10  n-11        10

  000000000  0

        32               n   n-1                                                                2Physical 

Translated
Base

Memory 
Address

T_BASE determined by
which window hit 

0000000000000000000

Logic

Window 

Used for 64-bit
PCI addressing
Window 3 only

Mask <31:20>     n

0000 0000 0000
0000 0000 0001
0000 0000 0011
0000 0000 0111
0000 0000 1111
0000 0001 1111
            :
0111 1111 1111
1111 1111 1111

   20
   21
   22
   23
   24
   25
    :
   31
   32

DAC Base
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Figure 3-16 Scatter/Gather PTE Format

The size of the Scatter/Gather Map table is determined by the size of the PCI Target Win-
dow as defined by the Window Mask register as shown in Table 3-10. The number of en-
tries is the Window size divided by the page size (8 KB). The size of the table is simply
the number of entries multiplied by 8B.

The Scatter/Gather map table address is obtained from the Translated Base register and
the  PCI address as shown in Table 3-10.

Table 3-10   Scatter/Gather Mapped PCI Target Address Translation.

Scatter/Gather TLB
An eight-entry Translation-lookaside Buffer (TLB) is provided in the CIA for Scatter/Gather
map entries. The TLB is a fully associative cache and holds the eight most recent Scat-
ter/Gather map look-ups. Four of these entries can be "locked" preventing their displace-
ment by the hardware TLB-miss handler. Each of the eight TLB entries holds a PCI ad-
dress for the tag, and  four consecutive 8 KB CPU page addresses as the TLB data (see
Figure 3-17).

63                                                                 21   20                                    1  0

Valid bitPage address<32:13>Must be zero

WINDOW_MASK
<31:20> 

Size of
Window

SG Map
Table size

 Scatter Gather Map  Address<33:3>

32                                      10 19             13

32                                    11  20              13

32                                  12  21                13

32                               13  22                   13

0000 0000 0000           1 MB               1 KB

0000 0000 0001           2 MB               2 KB

0000 0000 0011           4 MB               4 KB

0000 0000 0111           8 MB               8 KB

32                            14  23                      13

32                        16   25                         13

32                      17   26                           13

0000 0000 1111         16 MB             16 KB

0000 0001 1111         32 MB             32 KB

0000 0011 1111         64 MB             64 KB

0000 0111 1111       128 MB           128 KB
32                    18   27                            13

32                  19   28                               13

32               20   29                                  13

32              21   30                                   13

0000 1111 1111       256 MB           256 KB

0001 1111 1111       512 MB           512 KB

0011 1111 1111           1 GB              1 MB

0111 1111 1111           2 GB              2 MB
32           22   31                                      13

1111 1111 1111           4 GB             4 MB

T_BASE PCI address

32                          15  24                        13

Note: unused bits of the Translated Base register must be zero for correct operation.
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Figure 3-17 Scatter/Gather Associative TLB

Each time an incoming PCI address hits in a PCI Target Window which has scatter/gather
enabled, bits <31:15> of the PCI address are compared with the 32KB PCI page address
in the TLB tag. If a match is found, the required CPU page address is one of the four
items provided by the data of the matching TLB entry. PCI address <14:13> selects the
correct 8 KB CPU page from the four fetched.

With a TLB hit, the Scatter/Gather map table look-up in memory is avoided, resulting in
enhanced performance. If no match is found in the TLB, the Scatter/Gather map lookup is
performed and four PTE entries are fetched and written over an existing entry in the TLB.
The TLB entry to be replaced is determined by a round robin algorithm on the "unlocked"
entries. Coherency of the TLB is maintained by software writes to the SG_TBIA (scatter
gather translation buffer invalidate all) CSR.

The TAG portion contains a DAC flag to indicate that the PCI Tag address <31:15> corre-
sponds to a 64-bit DAC address. Only one bit is required instead of the high-order PCI
address bits <39:32> since only one window is assigned to a DAC cycle, and the Window-
hit logic has already performed a comparison of the high-order bits against the PCI DAC
BASE register.

Figure 3-18 shows the entire translation from PCI address to physical address on a win-
dow that implements scatter/gather. Both paths are indicated: the right side shows the
path for a TLB hit, while the left side shows the path for a TLB miss. The Scatter/Gather
TLB is shown in a slightly simplified, but functionally equivalent form. 

The process for a Scatter/gather TLB hit is as follows:

• The Window compare logic determines if the PCI address has hit in one of the four
windows, and the PCI BASE<SG> bit determines if the scatter/gather path should be
taken. If Window 3 has DAC mode enabled, and the PCI cycle is a DAC cycle, then a
further comparison is made between the high-order PCI bits and the PCI DAC BASE
register. 

• PCI address <31:13> is sent to the TLB associative Tag together with the DAC-HIT
indication. If the address and DAC bits match in the TLB then the corresponding CPU
8 KB page-address is read out of the TLB. If this entry is valid then a TLB hit has oc-
curred and this page-address is concatenated with PCI address <12:2> to form the
physical memory address. If the data entry is invalid, or if the TAG compare failed,
then a TLB miss occurs (see Chapter 8, Control and Status Registers).

Memory Page Address<32:13>

PCI Address <31:15>

PCI Address <14:13>

DAC
cycle

Hit

PCI addr <12:2>

Index
Physical Memory
Dword address 

TAG D A  T A
v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v

v
v
v
v
v
v
v
v

8 KB CPU Page Address
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The process for a scatter/gather TLB miss is as follows:

• The relevant bits of the PCI address (as determined by the Window Mask register) are
concatenated with the relevant TRANSLATED BASE register bits to form the address
used to access the Scatter/Gather map entry from a table located in main memory.

• Bits <20:1> of the map entry (that is, the PTE from memory) are used to generate the
physical page address, which is appended to the page offset to generate the physical
memory address. The TLB is also updated at this point (round-robin algorithm) with
the four PTE entries which correspond to the 32 KB PCI page address which first
missed the TLB. The Tag portion of the TLB is loaded with this PCI page address and
the DAC bit is set if this PCI cycle is a DAC cycle.

• If the requested PTE is marked invalid (bit 0 clear) then a TLB invalid entry exception
is taken (see Chapter 9, Hardware Exceptions and Interrupts).

Figure 3-18 Scatter/Gather Map Translation

PCI Window Suggested Use
Figure 3-19 shows the power-up PCI window assignment (configured by firmware) and
Table 3-11 tabulates the details. PCI window 0 was chosen for the 8 MB-16 MB "EISA"
region since this window incorporates the MEMCS# logic. PCI window 3 was avoided
since this window incorporates the DAC-cycle logic. Of the remaining two windows, PCI
window 1 was chosen arbitrarily for the 1 GB direct-mapped region, and PCI window 2 is
not assigned.

63                                40 39      32 31           n  n-1    20 13  12          2

PCI  LW  addressOffset

31             n  n-1   20
Window Base

Window  Mask

 XXXXX

  1111100000000

Window
Hit

Compare

33                                  n-10  n-11        10

  000000000  0

33                                  n-10  n-11                                                      3     0

  0   000

000000000000000000 V

 63                             21 20                 1  0

Scatter Gather Map in Memory

32           13  12          2
Offset

Physical 

Base

Offset

TRANSLATED

Scatter/gather

BASE

table address

Memory 
Address

Tag addr <31:13> V

                                        20                1  0

Scatter Gather TLB 

T_BASE determined by
which window hit 

TAG                  DATA

PCI address <31:13> is sent  to the TLB
if  PCI address hit  in a PCI windows.

DAC

DAC indication also sent to differentiate 
between 32-bit and 64-bit  PCI addresses.

0000000000000000000

Logic

Window
DAC Base

Used for 64-bit
PCI addressing
Window 3 only

Mask <31:20>     n

0000 0000 0000
0000 0000 0001
0000 0000 0011
0000 0000 0111
0000 0000 1111
0000 0001 1111
            :
0111 1111 1111
1111 1111 1111

   20
   21
   22
   23
   24
   25
    :
   31
   32
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Figure 3-19 Default PCI Window Allocation

Table 3-11 PCI Window POST Configuration

PC Compatibility Addressing and Holes
The PC architecture allows certain (E)ISA devices to respond to hardwired memory ad-
dresses. An example is a VGA  graphics device which has its frame buffer located in
memory address region A0000-BFFFF. Such devices, pepper memory space with "
holes", which are collectively known as PC compatibility holes. 

This is described in more detail in the PCI-EISA bridge chapter. This bridge chip decodes
PCI addresses and generates a signal, MEMCS#, which takes into account the various
PC compatibility holes. 

MEMCS#
The PCEB chip of the PCI-EISA bridge  provides address decode logic with considerable
attributes and features  (for example, read only, write only, VGA frame buffer, memory
holes, BIOS shadowing) to help manage the EISA memory map and PC compatibility
holes. This is known as main memory decoding in the PCEB chip, and results in the gen-
eration of the MEMCS# (MEMory Chip Select) signal. The CIA uses this signal if enabled
via the PCI BASE register for window 0.

1 GB

2 GB

4 GB

8 MB
16MB

0 MB0

1 GB

4 GB

CPU memory space PCI  memory space

Direct-mapped
Window 11 GB

Scatter/Gather
Window 08 MB1 GB

PCI
window

Assignment Size  Comments

0 Scatter/Gather 8 MB  Not used by firmware. MEMCS disabled

1 Direct mapped 1 GB  Mapped to 0-1 GB of main memory

2 Disabled

3 Disabled
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Figure 3-20 MEMCS# Decode Area

In Figure 3-21 the MEMCS# range is shown shaded lightly; the two main holes are shown
shaded darkly. This range is subdivided into numerous portions (for example, BIOS ar-
eas) which are individually enabled/disabled using various registers.

• The MCSTOM (top of memory) register. This has a 2 MB granularity and can be pro-
grammed to select the regions from 1MB up to 512 MBs.

• The MCSTOH (top of hole) and MCSBOH (bottom of hole) registers define a memory
hole region where MEMCS# is not selected. The granularity of the hole is 64 KB.

• The MAR1,2,3 registers. These enable various BIOS regions. 

• The MCSCON (control) register. This register enables the MEMCS# decode logic,
and selects a number of regions (for example, 0-512 KB). 

• The VGA memory hole region never asserts MEMCS#.

For more detail refer to the Intel 82375EB specification. 

PCI window 0 in the CIA can be enabled to accept the MEMCS# signal as the PCI mem-
ory decode signal. With this path enabled, the PCI window hit logic simply uses the
MEMCS# signal (that is, if MEMCS# is asserted then a PCI window 0 hit occurs and the
PCI DEVSEL signal is asserted).

Figure 3-21 MEMCS# Logic

Consequently, the PCI BASE address must be large enough to encompass the MEMCS
region programmed into the PCI-EISA bridge. The remaining window attributes are still
applicable and required: 

• The SG bit in the PCI BASE determines if scatter/gather or direct-mapping is applica-
ble.

• The MASK register size information must match the MEMCS# size (in order for the
S/G and direct mapping algorithms to correctly use the Translated Base register).

• The MEMCS_Enable bit in the W_BASE0 CSR takes precedence over the PCI win-
dow enable bit (that is, W_BASE<W_EN>).

Main Memory Hole

VGA memory

1 MB

16 MB

512 MB Max

4 GB

BIOS area

Note: Shaded area represents main memory decode region for MEMCS#

(A0000-BFFFF)

512 KB

MCSTOM

1 MB-64 KB

MCSTOH

MCSBOH

MCSCON

MAR1,2,3

MCSCON

MCSCON

HOLE

HOLE

MEMCS#

DEVSEL

W_BASE0<MEMCS_enable>

Window 0
Hit detect 
logic

W_BASE
W_MASK

PCI address

1

0
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4 Modules

Memory MotherBoard
There are two Memory MotherBoards (MMBs) in the AlphaStation 600 system. 

Each MMB supplies 144 bits of data (128 bits + ecc) making a total of 288 bits. Thus,
there must be at least four industry-standard 36 bit SIMMs on each MMB, making the total
minimum memory requirement eight SIMMs. Each MMB supports a maximum of sixteen
SIMMs.

The AlphaStation 600 system supports 1M x 36, 2M x 36, 4M x 36, 8M x 36, 16M x 36,
and 32M x 36 SIMMs. However the first implementation of the MMB does not support the
16M x 36, and 32M x 36 SIMMs. 

The maximum memory is calculated as 32 x (8M x 36) = 1 GByte.

Figure 4-1 MMB Layout

Figure 4-1 shows the layout of the MMB. 

The address and control signals are routed to the center of the module and data to each
end. Each MMB receives two copies of the ADDRESS, CAS, RAS and WE and one copy
of the SET_SELECTs. The ADDRESS, CAS and WE are fanned out so that each SIMM
gets its own copy. RAS is gated with SET SELECT and fanned out four times such that a
SET SELECT drives a set of four SIMMs. Each SIMM receives two copies of RAS (each
gated by a unique SET SELECT), one to drive side 0 and the other to drive side1.

The sets are organized from the bottom of each quadrant towards the top of the module
(see Figure 4-2 SIMM Population Order). Single sided SIMMs contain one set and double
sided SIMMs have two sets, Starting with SET 0, 1 at the bottom and SET 6, 7 at the top.

Data[71:36]

Data[35:0] Data[107:72]

Data[107:143

Address 
and
Control
Fanout
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Figure 4-2 SIMM Population Order

Presence Detect Bits
Each MMB provides presence detect bits to the GRU.

Two of the Presence Detect (PD) bits of each SIMM 0 (bits[4:3]) from each set are wired
to a multiplexor. At power up, these bits are muxed out serially into the GRU. The mux
selects are generated by the GRU and the output data is sampled at the relevant time.

First set of four SIMMs (SET 0, 1)

Both MMBs must be populated with the same type of SIMMs in each set

Second Set of four SIMMs

Third Set of four SIMMs

Fourth Set of four SIMMs

(SET  2, 3) 

(SET 4, 5)

(SET 6, 7)
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Table 4-1 shows the various SIMM speeds. The size of the DRAMs on each SIMM and
whether there are one or two sets per SIMM is determined by firmware during initializa-
tion. 

Table 4-1 SIMM Speed

Cache SIMM
There are three Cache SIMMs in each AlphaStation 600 system. Each SIMM contains
SRAMs to store 48 data bits and eight tag bits. This provides 144 data bits (= 16 Bytes +
4 Bytes of ECC) and 24 tag bits total. The data bits were assigned to the Cache SIMMs
on an individual bit basis so there is not necessarily a correlation between bit number and
a particular SRAM. The AlphaStation 600 system uses less than 24 tag bits so some bits
are not connected.

The  initial version of cache SIMM configurations using different SRAM speeds and sizes
are:

• 4 MByte SIMM - 13 (128K x 8) SRAMs (7 on side 0, 6 on side 1)

• 2 MByte SIMM - 7 (128K x 8) SRAMs ( 7 on side 0)

The larger variant WIRE-ORs two SRAMs to each data bit. The smaller version does not.
When suitable SRAMs become available, 8 MByte and 16 MByte versions will be offered.

The EV5 supplies the INDEX_H which is fanned out as the SRAM address. The data
SRAMs use INDEX_H[21:4] (mapped to INDEX[17:0] at the connector) and the tag
SRAMs use INDEX_H[21:6] (tag address does not change within a cache block). 

The 4 MByte SIMM uses  INDEX_H[22] to select between the WIRE-ORed SRAMs (a true
copy is fanned out to one side output enable and an inverse copy fanned out to the other
output enable). It also uses INDEX_H[22] as an extra tag address bit.

Each variant of Cache SIMM is defined by a coded placement of zero ohm resistors to
form the PD_CACHE[4:0] field. At power up, these bits from Cache SIMM 0 are loaded
into the GRU so they can be used by firmware during initialization (see CACHE_CNFG
register - address 87.8000.0200). Firmware will assume all Cache SIMMs are the same
variant as Cache SIMM 0. The encodings are shown in Table 4-2 and Table 4-3.

Table 4-2 Cache Speed Encodings

PD[4] PD[3] DRAM Speed

0 0 60/100 ns

0 1 80 ns 

1 0 70 ns 

1 1 60 ns 

PD_CACHE[1:0] Cache RAM Speed

00 8 ns

01 10 ns

10 12 ns

11 15 ns
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Table 4-3 Cache Size Encodings

   I/O Subsystem Module
The I/O Subsystem module is a PCI option card intended for the AlphaStation 600 system
and Sable families, but it could be considered for any PCI-based system. It allows for sig-
nificant system expansion by providing four I/O ports in one PCI slot. The module features
two high performance fast/wide SCSI controllers and an Ethernet controller which can be
connected to twisted-pair, thickwire (AUI), or thinwire network.

The block diagram is shown in Figure 4-3.

Major Components
The major components of the module are :

• PCI - PCI Bridge (DECchip 21050) 

• PCI - Ethernet Controller (DECchip 21040) 

• PCI - SCSI Controller (QLogic ISP1020) (two)

• DEC Standard 134-0, Rev-B, Version 2.0.0

PD_CACHE[4:2] Cache RAM Size

000 No Cache Present

001  reserved

010 2 Mbyte Total

011 4 Mbyte Total

100 - 111 reserved
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Figure 4-3  I/O Subsystem Module Block Diagram
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5 Power Up and Reset

Introduction
This chapter describes the power up signal sequences and the halt and reset se-
quences.

Power Up
The power supply outputs two signals, PRESENT_L and DC_OK_L.  These four signals
produce two signals SYS_DC_OK and SYS_DC_OK_L.  If a power supply asserts PRE-
SENT_L then it must assert DC_OK_L before SYS_DC_OK and SYS_DC_OK_L will be
asserted.

The DECchip 21164-AA takes SYS_DC_OK and the GRU and CS on the cache RAMs
take SYS_DC_OK_L.  This protects the cache RAMs during power up.  While
SYS_DC_OK is deasserted, the DECchip 21164-AA tristates every output and bi-
directional and weakly pulls them to ground.

Halt  and Reset
The OCP outputs two signals, OCP_RESET_L and OCP_HALT_L., from the control
panel. OCP_RESET_L goes to the GRU. OCP_HALT_L is inverted and then goes to the
DECchip 21164-AA as MCH_HLT_IRQ_H on the DECchip 21164-AA.

SYS_DC_OK_L and OCP_RESET_L are synchronized in the GRU through a two-stage
synchronizer.  The output of the synchronizers are ORed with the input to provide an
asynchronously asserting, synchronously deasserting master reset signal.
SYS_DC_OK_L asserts the master reset when it is deasserted. OCP_RESET_L asserts
the master reset when it is asserted.

The master reset initializes the reset counter in the GRU and asserts SYS_RST_L.  The
reset counter counts 256 cycles.  While counting, SYS_RST_L remains asserted. While
SYS_RST_L is asserted, the GRU internal reset, GRU_RESET_L, is also asserted.  The
GRU outputs CLK_DIV<3:0> onto IRQ<3:0> three cycles after SYS_RST_L is asserted
and for three cycles after it is deasserted.  SYS_RST_L is input into the DECchip 21164-
AA, DSW, SROM counters, and CIA.

The DECchip 21164-AA takes SYS_RST_L into the input SYS_RESET_L.  While in reset,
the DECchip 21164-AA reads sysclock configuration parameters from the interrupt pins,
IRQ_H<3:0>.  It also reads delay configuration parameters for SYS_CLK_OUT2_x from
the SYS_MCH_CHK_IRQ_H, PWR_FAIL_IRQ_H, and MCH_HLT_IRQ_H pins.  This
clock is not used by this system, so no special attention is given to the value of the signals
during reset.  For the values of the sysclock configuration and internal state after reset,
see the DECchip 21164-AA Functional Specification.

The four DSW’s take SYS_RST_L into the asynchronous clear pin of an FD2.  This pro-
vides an asynchronously asserting, synchronously deasserting reset signal, RESET_L.
While RESET_L is asserted, the internal state of the DSW is reset.  The SROM counter is
cleared when reset is asserted.
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The CIA takes SYS_RST_L and synchronizes it with a two-stage synchronizer.  The out-
put of the synchronizers are ORed with the input to provide an asynchronously asserting,
synchronously deasserting reset signal, RESET_L.  While RESET_L is asserted, the in-
ternal state is reset to its default state. The CIA asserts RST_L, the PCI reset signal, until
software sets the PCI enable in the CIA_CNTL register. 

The following is a table of the CIA output and bi-directional signals and their state during
reset:

RST_L is distributed to the ESC, EISA System Component, the PCEB, PCI-EISA Bridge,
and to the PCI slots through an FCT805 buffer.

The ESC takes RST_L and resets its internal state and asserts RSTDRV, which is the ISA
hardware reset signal. The PCEB takes RST_L and resets its internal state.

RSTDRV resets the TOY, 8242, and 87312.

Signal
Reset
State Signal

Reset
State

ADDR_CMD_PAR z PAR z

ADDR39 z PAR64 z

ADDR[34:4] z REQ64_L 0

CMD[3:0] z ACK64_L z

ADDR_BUS_REQ z FRAME_L z

CACK z IRDY_L z

DACK z DEVSEL_L z

FILL z TRDY_L z

FILL_ID z STOP_L z

FILL_ERROR z PERR_L z

IDLE_BC z SERR_L z

TAG_DIRTY z REQ_L 1

TAG_CTL_PAR z RST_L 0

MEM_ADDR[12:0] x CMC[8:0] 0

SET_SEL[15:0] 0 IOC[6:0] 52

RAS[3:0] 0 IOD[63:0] z

CAS[3:0] 0 IOD_E[7:0] z

MEM_WE_L[1:0] 3 INT 0

MEM_EN 1 ERROR 0

AD[63:0] z TEST_OR_SCAN_OUT 0

CBE_L[7:0] z
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6

AlphaStation 600 Physical Partitioning

Introduction
This chapter describes the physical partitioning of the AlphaStation 600 system. which is 
based on the  EV5 implementation of the Alpha architecture. Refer to Figure 6-1 for the
AlphaStation 600 system block diagram.. 

The widths of the AlphaStation 600 system busses shown in the block diagram are shown
in Table 6-1.

Table 6-1 AlphaStation 600 System Busses

Hardware Jumpers
There are various jumpers and DIP switches on the Systemboard which are mainly for
Prototype debugging. 

Fan Fail Detect Jumpers
The Fan Fail Detect circuit is design to operate in both the AlphaStation 600 "Tower" and
the "Wide Tower". Wide Tower systems have two fans, and Tower systems have one.
Both systems have a power supply fan as well. The Fan Fail Detect circuit senses the
power used by each fan. If the fan stops or is disconnected the circuit triggers a failure. 

Fans 1 and 2 are plugged into headers, J24 or J26. The system can work if FAN1 is
plugged into either J24 or J26, and FAN2 (Wide Tower only) plugged into the other
header. 

The fan cable connectors are polarized and have wires in only 2 of 3 sockets. Therefore, if
properly assembled, FAN1 connects to pins 1 and 2  of J24 and FAN2 connects to pins 2
and 3 of J26. The black wire is always on pin 2. Pin 1 of J24 and J26 and all jumpers is
closest to the top of the module as oriented in Figure 6-3. 

The logic on the system board detects a fan failure and initiates a power system shut-
down. If the fan failure occurs on power up, the power-on light will be on for a half second.

Bus Name Description Data Width ECC Width Cycle Time

CPU_DAT CPU/Bcache Bus 128 bits 16 bits 25/30 ns

MEM_DAT Memory Data Bus 256 bits 32 bits

IOD DSW/CIA/GRU I/O Bus 64 bits 8 bits 30 ns

AD PCI Address/Data Bus 64/32 bits 2/1 (Parity) 30 ns

SD EISA Data Bus 32 bits None 120 ns

LA EISA Latched Address 32 bits None 120 ns

SA EISA Slave Address 20 bits None 120 ns

XD X-Bus Data 8 bits None 120 ns
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The power light being on for a half second could indicate that the power supply detected a
short. In the case of a fan failure the Fan Fail Detect LED will be on for a half second. 

The "Fan Fail Detect" logic for FAN1, which is in both the Tower and Wide Tower enclo-
sures, is enabled by installing a jumper between pins 1 and 2 of W11. (Manufacturing can
disable this circuit by connecting a jumper from pin 2 to pin 3.)

The Fan Fail Detect logic for FAN2 should be disabled in Tower systems and enabled in
Wide Tower systems. The FAN2 detect logic is disabled by installing a 2-pin jumper on
W9 (connecting a jumper between pin 2 and pin 3) . It will be enabled if no jumper is used.

Manufacturing will leave the W11 jumper in the enable position and the W9 jumper in the
disable position (in the Wide Tower the W9 jumper must be enabled).

Flash ROM Write Jumper
The Flash ROM Write Jumper, W13, enables or disables writes to all four Flash ROMs.
Writes are enabled when a 2-pin jumper is installed between pins 2 and 3 and disabled
when installed between pins 1 and 2. Manufacturing will normally leave the jumper in the
disable position.

Alternate Console Jumper
The Alternate Console Jumper, W17, is used to report boot information through the serial
port instead of through the graphics device.  The alternate console is enabled by connect-
ing a jumper from pins 1 and 2  of W17 and disabled by connecting a jumper from pins 2
and 3. Manufacturing will normally leave the jumper in the disable position.  

Secure Console Jumper
When enabled , the Secure Console jumper, W14, disables all privileged console com-
mands . This security feature is enabled by connecting a jumper between pins 1 and 2.
When enabled, BOOT, START, CONTINUE and LOGIN are the only commands allowed.
All console commands are enabled when W14’s jumper is connected between pins 2 and
3 (Secure Console disabled). Manufacturing will normally leave the jumper in the disable
position.

SROM Code Select Jumper
Jumpers W1-W8 are used to select boot or test code stored in the SROM. Only one
jumper can be installed at a time. The contents are outlined below :

• W1 -  normal power up flow. SROM will default to floppy boot if Flash ROM is not
loaded. 

• W2 - mini-console with initialized system interface

• W3 - floppy boot

• W4 - memory test

• W5 - normal power up flow with only set 1 of SCache enabled

• W6 - normal power up flow with only set 2 of SCache enabled

• w7 - normal power up flow with only set 3 of SCache enabled

• W8 - non-initialized  mini-console with un-initialized system interface (requires user to
type uppercase U before any output is seen)

For normal system operation, W1 is selected. Manufacturing will normally leave the
jumper in the W1 position.
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EV5 clock multiple DIP switch
This DIP switch will only be provided on the first few debug systemboards. This is used
during reset time to select the EV5 system clock multiple.

Physical Organization
The base model of the AlphaStation 600 system is physically organized into six modules,
of three different types.  There is one system board, into which the other five modules fit. 
There are two MMB modules, which hold the memory SIMMs (not included in this count),
and there are three cache SIMM modules.  A real AlphaStation 600 system, however, is
likely to include other modules, including memory SIMMs, PCI options for graphics and
disk/ethernet access, EISA options for disks, audio, etc.  Figure 6-2 shows the AlphaSta-
tion 600 system board layout, and the organization of logical functions on the system
board. The following list provides a description of the functional areas shown in Figure
6-3.

System Board Functional Areas
1 An EV5 Alpha CPU, running at 266 MHz for prototype machines, and 300+ MHz for

later implementations

2 SROM interface to allow serial loading of the EV5 from onboard EPROM, and serial
communication via an SROM/RS-232 adapter card plugged into a special 10-pin con-
nector.

3 A configurable third-level BCache, organized into three Cache SIMMs plugged into
the system board.  Cache SIMMs can be single or double sided, allowing 2 MB or 4
MB of cache, respectively.  Next generation SRAMS will allow 8 MB and 16 MB
cache sizes.

4 A data switch, composed of four custom ASIC chips, called DSW in a sliced configu-
ration. The data switch allows data from the I/O and memory systems to get to and
from the CPU. Total width of the data paths through the data is as follows:  Memory -
256 bits, CPU/cache - 128 bits, I/O - 64 bits.  All paths carry error correction code bits
(ECC)

5 A control chip (CIA) which controls the PCI system and acts as a data path from PCI
to the data switch, controls main memory and Bcache operations, and controls the
system support chip, GRU.

6 A system support chip (GRU) which provides access to the four Flash ROMs used to
store system firmware, provides access to the presence detect bits which are used to
size memory and cache, and gathers system interrupts and sends them to the CPU.

7 A set of two memory motherboards (MMBs) which plug into the System Board.  Both
MMBs must be present for main memory to work;  together they provide up to 1.0 GB
of memory with current technology (4Mx4) DRAMS.  The system board is designed to
accommodate later versions of the MMB which could support up to 4 GB of main
memory.

8 A PCI I/O system, consisting of three 64 bit PCI slots, and two 32 bit PCI slots.  One
of the two 32 bit slots is a "shared" slot with EISA, meaning that the slot can be occu-
pied by a PCI option, or a neighboring EISA option, but not both simultaneously.

9 An EISA I/O system, which is connected off the PCI I/O system via the Intel
82374/82375 (Mercury) chip set.  This chip set provides a bridge between the PCI
and EISA busses, and ISA support functions for ISA devices such as TOY clock,
NVRAM, and other ISA I/O devices.
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10 An ISA / X-bus I/O system, which includes two serial ports, one parallel port, a key-
board/mouse port, floppy drive port, and Operator Control Panel (OCP) port.

11 Miscellaneous support functions, implemented directly on the System Board.  These
include generation of DC_OK for the system from signals supplied by one or two
power supplies, fan fail detect logic, clock distribution.
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Figure 6-1 AlphaStation 600 System Block Diagram
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Figure 6-2 AlphaStation 600 System Board Layout
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Figure 6-3 AlphaStation 600 System Board Function Map
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The function map shows roughly what logic functions are in what area of the system
board.  Another useful map showing logical/physical relationships is the Cache/Memory
map.  Figure 6-4 shows the AlphaStation 600 system cache, data switch, CPU, and mem-
ory in their approximate physical locations on the system board.  The numbers shown in-
side the components represent the CPU words that reside in that physical entity.  In the
case of EV5, cache and memory, the order in which the words are shown roughly corre-
sponds to where the bits of the given word are pinned. A table of word versus bit range is
also given as a reference in Table 6-2. This is useful when looking at schematics to deter-
mine which bits fall into which words, etc.

Table 6-2 Data Word / Bit Range Map

Word Number Data Bits Only ECC Bits Only
Data and ECC
(mem data)

0 15:0 1:0 17:0

1 31:16 3:2 35:18

2 47:32 5:4 53:36

3 63:48 7:6 71:54

4 79:64 9:8 89:72

5 95:80 11:10 107:90

6 111:96 13:12 125:108

7 127:112 15:14 143:126

8 143:128 161:144

9 159:144 179:162

10 175:160 197:180

11 191:176 215:198

12 207:192 233:216

13 223:208 251:234

14 239:224 269:252

15 255:240 287:270
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Figure 6-4 Memory Data Mapping

Figure 6-4 shows how CPU, memory, and I/O data is connected to the EV5, DSW, mem-
ory, cache, and CIA chip.  Finer detail of exact bit assignments should be referenced from
the AlphaStation 600 System Board schematics, MDA file
B_CS_5423242_0_0_AX02_ALL.PS ,or succeeding revision.  

This map is intended to roughly show how data is routed on the system board; actual rout-
ing paths or nets are not shown.

The mapping shown above is the result of several constraints, mostly physical in nature,
which drove the assignment of data switch, memory, and cache pinning, as well as the
orientation of the CPU. Some of these constraints are:

• Due to pinning constraints, the data is sliced among four physical DSW chips.  The
same chip design must be used in all four chips, thus each DSW chip must have 1/4
of every bus: I/O, CPU, and memory.
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• The I/O system must have access to the lower 64 bits of the EV5 data, that is, words
3-0.  This, along with the previous constraint, caused words 0,1,2,3 to be sent to dif-
ferent data switches.

• Keeping cache address lines short required rotation of EV5 into the current position; a
more optimal data routing position would be +90 degrees, to allow data to travel hori-
zontally across without crisscrossing in the vertical.  However, doing so lengthens the
address lines enough to offset any gain in timing.

• Cache SIMM bit assignments were picked in order to minimize the overall CPU data
line length. Word positions were chosen to be as close as possible to the DSW pins
with the same word.

• Memory assignments were chosen based on the need to keep words within a set to-
gether, and the desire not to have memory lines crossing the already congested
cache area (that is, DSWs talk to the MMB that is closest to them).  Words are also
organized to minimize memory data etch length;  DSWs talk to the closest side of the
MMB to them.

I/O Subsystem Organization
The AlphaStation 600 I/O subsystem is mostly confined to the system board, but some I/O
functions reside on PCI or EISA/ISA option cards.  The table below summarizes the Al-
phaStation 600 system I/O physical and logical locations:

I/O Function Connector Location Driven By Bus Name

Keyboard System Board (J28)  8242 (E14) X-BUS (ISA subset)

Mouse System Board (J28) 8242 (E14) X-BUS (ISA subset)

Serial Ports (2) System Board (J6) 87312 (E37) ISA Bus (EISA subset)

Parallel Port System Board (J5) 87312 (E37) ISA Bus (EISA subset)

Floppy Drive System Board (J18) 87312 (E37) ISA Bus (EISA subset)

Operator Control Panel
(OCP)

System Board (J22) 8584 (E28) I2C Bus (via X-BUS)

Graphics TGAx graphics PCI

Ethernet I/O Subsystem Card I/O
Subsystem

PCI

SCSI I/O Subsystem card I/O
Subsystem

PCI

Sound/Multimedia Microsoft Audio ISA
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AlphaStation 600 Module Overview

System Board
The AlphaStation 600 system board is the motherboard for the AlphaStation 600 system,
and serves as a central interconnect for other AlphaStation 600 system components.  The
following is a brief summary of the major components of the AlphaStation 600 system
board:

The AlphaStation 600 system board contains all the power, I/O, and module connectors
for the system.  These connectors are listed in the table below, along with their DEC Part
Numbers, and their reference designators.

Table 6-3 AlphaStation 600 Interconnect Reference

The following sections briefly describe the major components of the system board:

Memory Motherboard
The Memory Motherboard (MMB) provides physical space for SIMM connectors,
as well as fanout drivers for memory control lines.  These MMB modules are similar in
form factor and function to the MMB modules used on previous Alpha workstations, but
there are several significant differences, described in  Table 6-4.

Connector Part Number Function Designator

12-38939-01 Serial Port J6

12-32998-02 Parallel Port J5

12-14978-02 Fan Conn. J24, J26

12-27247-05 Floppy Connector J18

12-14630-03 Test Port J17

12-14434-33 Speaker Connector J23

12-19039-03 OCP Connector J22 

12-29570-06 Power Connector 5V J19

12-29570-08 Power Connector 3V J20

12-29570-11 Power Control J21

12-33538-02 EISA 32 bit J1-J4

12-39839-06 PCI 32 bit J7,J8

12-39839-10 PCI 64 bit J9-J11

12-39839-11 Cache Connector J13-J15

12-39839-12 Memory Connector J12,J16
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Table 6-4 AlphaStation 600 MMB Feature Comparison

Cache SIMM
The AlphaStation 600 system supports a third-level, direct-mapped write-back cache (also
called BCache) in the form of SIMM modules on the system board.  The system board
has three cache SIMMs, which function together as a single logical unit; three SIMMs
must always be in place for the BCache to function. SIMMs can use different sized
SRAMs, and can be full or half populated, allowing different cache sizes. See Table 6-5
for a summary of Bcache features.

Table 6-5 BCache Features

PCI Options
The AlphaStation 600 system supports up to three 64-bit PCI options and two 32-bit PCI
options. One of the 32-bit option slots is shared with an EISA slot (that is, either an EISA
or PCI option may occupy that position in the cabinet, but not both simultaneously. The
PCI system is controlled from the CIA, and also includes a bridge chip at the end of the
PCI bus which connects to the EISA I/O system (see below).  The PCI options plug into
the system board via connectors at the lower left area of the system board (J7-J11); 64-bit
options must plug in to the upper three connectors (J9-J11), while 32-bit options may plug
in anywhere, in a 64-bit or 32-bit slot. All system board connectors are wired for 5 volt PCI
options (connector orientation is the 5V system variety; 3V is supplied to the options, how-
ever).

PCI options are identified by their ID Select lines (IDSEL).  Each option has its ID select
tied to a different PCI address line so that it can be identified uniquely during configura-
tion.  The table below shows the PCI address for the various slots in the AlphaStation 600
system.

Feature AlphaStation 600
MMB

 MMB

MMB layers / etch width  8 / 5  8 / 5

SMT technology Double sided SMT Single sided SMT

MMB’s per system (min/max) 2/2 4/4

SIMMs per MMB (min/max) 4/16 2/8

Total System Memory Capacity Using 16 MB RAMs 1.0 GB 1.0 GB

Logical Sets (AlphaStation 600) or Banks per
System

8 8

SIMMs per Set (or Bank) per MMB 4 2

System Memory Data Bus 256 bits + ECC 256 bits + ECC

Minimum Data write size 128 bits 32 bits

Memory Data Bus cycle time 30ns 40 ns

Feature AlphaStation 600 Cache

SIMM Layers / Etch Width 8 / 5

SIMMs per System 3

Cache Memory Size (min/max)  2 MB/4 MB  (8/16 MB future)

Cache data width 128 bits

CPU read cycle time (min) 25 ns
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Table 6-6 PCI Slot Assignments

For more information about PCI pinouts and operation, see the PCI System Specification
V2.0.

EISA Options
The AlphaStation 600 system supports an EISA/ISA subsystem, including up to four EISA
or ISA plug-in option cards.  There are four EISA connectors, J1-J4, in the lower left cor-
ner of the system board, one of which (J4) is a shared connector with a PCI slot.  (See
Table 6-6). EISA I/O operations are controlled from the Intel PCI/EISA bridge chip set.

AlphaStation 600 SystemBoard - ASICs
In the pinouts that follow, the key is:  I=Input, O=Output, B=Bi-directional, N=Not Con-
nected, P=Power.  All pinouts for ASICs and connectors are shown top view.

EV5 CPU
The EV5 CPU is a follow-on to the EV4 processor, the Alpha processor used in previous
workstations and PC’s.  There are many architectural differences between the two;  EV5
is a new design, not simply a scaling of the current design (like EV45).  Some important
differences from the system perspective:

• More pins - EV5 has 499 pins in the package, compared to (431) for EV4.

• The EV5 package is an interstitial pin grid array, where pins are 100 mils apart from
each other in a row, and the rows are offset by 50 mils from each other, and sepa-
rated by 50 mils from each other.  Compared to the EV4 package, which had a stan-
dard 100x100 mil PGA grid, the pin density is higher.  The result is a package with
more pins, in a smaller footprint than EV4.  This allows good signal integrity character-
istics, increased pin count, etc. in the same footprint.  On the down side, routing is
more difficult, and debug probing is much tighter.

• External Cache now has a private set of address lines (INDEX) so that the cache
does not have to share loading with other system components.

• A third level of cache.  The external cache on EV5 is a third level, as opposed to EV4
second level cache.  The EV5 has an onboard "S-cache", which is broken into three
sets.  Total S-cache capacity is 96K bytes.  The third level cache can be up to 16 MB
in size on an AlphaStation 600 system.

Slot Designator Size PCI AD [31:0] (hex)

S0 J9 64B 0040 0000  (ID=AD22)

S1 J10 64B 0080 0000  (ID=AD23)

S2 J11 64B 0100 0000  (ID=AD24)

S3 J7 32B 0200 0000  (ID=AD25)

S4 J8 32B 0400 0000  (ID=AD26)

PCEB E11 32B 0800 0000  (ID=AD27)
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Figure 6-5 EV5 CPU Package - Top View  
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Table 6-7 EV5 PIN OUT - Sorted by Pin
Number

PIN SIGNAL USE
A11 TAG_DATA_H[32] B
A13 TAG_DATA_H[36] B
A15 TAG_SHARED_H B
A17 SCACHE_SET_H[1] O
A19 CMD_H[1] B
A21 TAG_RAM_WE_H O
A23 DATA_RAM_WE_H O
A25 FILL_ERROR_H I
A27 IDLE_BC_H I
A29 INDEX_H[4] O
A3 GND P
A31 INDEX_H[9] O
A33 INDEX_H[13] O
A35 INDEX_H[17] O
A37 INDEX_H[21] O
A39 INDEX_H[25] O
A41 GND P
A43 GND P
A5 TAG_DATA_H[20] B
A7 TAG_DATA_H[24] B
A9 TAG_DATA_H[28] B
AA1 DATA_H[89] B
AA3 DATA_H[88] B
AA37 GND P
AA39 DATA_H[23] B
AA41 DATA_H[24] B
AA43 DATA_H[25] B
AA5 DATA_H[87] B
AA7 GND P
AB2 PWR3 P
AB38 DATA_H[26] B
AB4 PWR3 P
AB40 PWR3 P
AB42 PWR3 P
AB6 DATA_H[90] B
AC1 DATA_H[91] B
AC3 DATA_H[92] B
AC37 GND P
AC39 DATA_H[29] B
AC41 DATA_H[28] B
AC43 DATA_H[27] B
AC5 DATA_H[93] B
AC7 GND P
AD2 DATA_H[94] B
AD38 DATA_H[31] B
AD4 GND P
AD40 GND P
AD42 DATA_H[30] B
AD6 DATA_H[95] B
AE1 DATA_H[96] B
AE3 DATA_H[97] B
AE37 PWR3 P
AE39 DATA_H[34] B
AE41 DATA_H[33] B
AE43 DATA_H[32] B
AE5 DATA_H[98] B
AE7 PWR3 P
AF2 GND P
AF38 DATA_H[37] B
AF4 PWR3 P
AF40 PWR3 P
AF42 GND P
AF6 DATA_H[101] B

PIN SIGNAL USE
AG1 DATA_H[99] B
AG3 DATA_H[100] B
AG37 GND P
AG39 DATA_H[38] B
AG41 DATA_H[36] B
AG43 DATA_H[35] B
AG5 DATA_H[102] B
AG7 GND P
AH2 PWR3 P
AH38 DATA_H[41] B
AH4 GND P
AH40 GND P
AH42 PWR3 P
AH6 DATA_H[105] B
AJ1 DATA_H[103] B
AJ3 DATA_H[104] B
AJ37 PWR3 P
AJ39 DATA_H[42] B
AJ41 DATA_H[40] B
AJ43 DATA_H[39] B
AJ5 DATA_H[106] B
AJ7 PWR3 P
AK2 DATA_H[107] B
AK38 DATA_H[46] B
AK4 PWR3 P
AK40 PWR3 P
AK42 DATA_H[43] B
AK6 DATA_H[110] B
AL1 DATA_H[108] B
AL3 DATA_H[109] B
AL37 GND P
AL39 DATA_H[47] B
AL41 DATA_H[45] B
AL43 DATA_H[44] B
AL5 DATA_H[111] B
AL7 GND P
AM2 PWR3 P
AM38 DATA_H[50] B
AM4 GND P
AM40 GND P
AM42 PWR3 P
AM6 DATA_H[114] B
AN1 DATA_H[112] B
AN3 DATA_H[113] B
AN37 PWR3 P
AN39 DATA_H[51] B
AN41 DATA_H[49] B
AN43 DATA_H[48] B
AN5 DATA_H[115] B
AN7 PWR3 P
AP2 GND P
AP38 DATA_H[54] B
AP4 PWR3 P
AP40 PWR3 P
AP42 GND P
AP6 DATA_H[118] B
AR1 DATA_H[116] B
AR3 DATA_H[117] B
AR37 GND P
AR39 DATA_H[55] B
AR41 DATA_H[53] B
AR43 DATA_H[52] B
AR5 DATA_H[119] B
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PIN SIGNAL USE

AR7 GND P
AT2 PWR3 P
AT38 DATA_H[58] B
AT4 GND P
AT40 GND P
AT42 PWR3 P
AT6 DATA_H[122] B
AU1 DATA_H[120] B
AU11 PWR3 P
AU13 GND P
AU15 PWR3 P
AU17 GND P
AU19 PWR3 P
AU21 CLK_MODE_H[0] I
AU23 DC_OK_H I
AU25 MCH_HLT_IRQ_H I
AU27 IRQ_H[1] I
AU29 PWR3 P
AU3 DATA_H[121] B
AU31 GND P
AU33 PWR3 P
AU35 GND P
AU37 PWR3 P
AU39 DATA_H[59] B
AU41 DATA_H[57] B
AU43 DATA_H[56] B
AU5 DATA_H[123] B
AU7 PWR3 P
AU9 GND P
AV10 ADDR_H[15] B
AV12 ADDR_H[11] B
AV14 ADDR_H[7] B
AV16 TEST_STATUS_H[1] O
AV18 TMS_H I
AV2 GND P
AV20 SROM_PRESENT_L I
AV22 GND P
AV24 SYS_CLK_OUT2_H O
AV26 PWR_FAIL_IRQ_H I
AV28 NC N
AV30 ADDR_H[36] B
AV32 ADDR_H[32] B
AV34 ADDR_H[28] B
AV36 ADDR_H[24] B
AV38 DATA_H[62] B
AV4 PWR3 P
AV40 PWR3 P
AV42 GND P
AV6 DATA_H[126] B
AV8 ADDR_H[19] B
AW1 DATA_H[124] B
AW11 ADDR_H[12] B
AW13 ADDR_H[8] B
AW15 TEMP_SENS_H I
AW17 TCK_H I
AW19 SROM_OE_L O
AW21 GND P
AW23 SYS_CLK_OUT1_H O
AW25 REF_CLK_IN_H I
AW27 IRQ_H[3] I
AW29 PERF_MON_H I
AW3 DATA_H[125] B
AW31 ADDR_H[35] B
AW33 ADDR_H[31] B

PIN SIGNAL USE

AW35 ADDR_H[27] B
AW37 ADDR_H[23] B
AW39 DATA_H[63] B
AW41 DATA_H[61] B
AW43 DATA_H[60] B
AW5 DATA_H[127] B
AW7 ADDR_H[20] B
AW9 ADDR_H[16] B
AY10 PWR3 P
AY12 GND P
AY14 PWR3 P
AY16 GND P
AY18 PWR3 P
AY2 PWR3 P
AY20 PORT_MODE_H[0] I
AY22 GND P
AY24 GND P
AY26 PWR3 P
AY28 GND P
AY30 PWR3 P
AY32 GND P
AY34 PWR3 P
AY36 GND P
AY38 PWR3 P
AY4 GND P
AY40 GND P
AY42 PWR3 P
AY6 PWR3 P
AY8 GND P
B10 GND P
B12 PWR3 P
B14 TAG_DATA_H[37] B
B16 PWR3 P
B18 GND P
B2 GND P
B20 ADDR_CMD_PAR_H B
B22 PWR3 P
B24 DACK_H I
B26 GND P
B28 PWR3 P
B30 INDEX_H[8] O
B32 PWR3 P
B34 GND P
B36 PWR3 P
B38 GND P
B4 PWR3 P
B40 PWR3 P
B42 GND P
B6 GND P
B8 PWR3 P
BA1 GND P
BA11 ADDR_H[10] B
BA13 ADDR_H[6] B
BA15 TEST_STATUS_H[0] O
BA17 TDO_H O
BA19 SROM_CLK_H O
BA21 GND P
BA23 CLK_MODE_H[1] I
BA25 CPU_CLK_OUT_H O
BA27 SYS_MCH_CHK_IRQ_H I
BA29 IRQ_H[0] I
BA3 PWR3 P
BA31 ADDR_H[37] B
BA33 ADDR_H[33] B
BA35 ADDR_H[29] B
BA37 ADDR_H[25] B
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BPIN SIGNAL USE

BA41 PWR3 P
BA43 GND P
BA5 PWR3 P
BA7 ADDR_H[18] B
BA9 ADDR_H[14] B
BB10 GND P
BB12 PWR3 P
BB14 ADDR_H[4] B
BB16 PWR3 P
BB18 GND P
BB2 GND P
BB20 PORT_MODE_H[1] I
BB22 OSC_CLK_IN_L I
BB24 SYS_CLK_OUT1_L O
BB26 GND P
BB28 PWR3 P
BB30 ADDR_H[39] B
BB32 PWR3 P
BB34 GND P
BB36 PWR3 P
BB38 GND P
BB4 PWR3 P
BB40 PWR3 P
BB42 GND P
BB6 GND P
BB8 PWR3 P
BC1 GND P
BC11 ADDR_H[9] B
BC13 ADDR_H[5] B
BC15 TRST_L I
BC17 TDI_H I
BC19 SROM_DAT_H I
BC21 OSC_CLK_IN_H I
BC23 PWR3 P
BC25 SYS_CLK_OUT2_L O
BC27 SYS_RESET_L I
BC29 IRQ_H[2] I
BC3 GND P
BC31 ADDR_H[38] B
BC33 ADDR_H[34] B
BC35 ADDR_H[30] B
BC37 ADDR_H[26] B
BC39 ADDR_H[22] B
BC41 GND P
BC43 GND P
BC5 ADDR_H[21] B
BC7 ADDR_H[17] B
BC9 ADDR_H[13] B
C1 GND P
C11 TAG_DATA_H[31] B
C13 TAG_DATA_H[35] B
C15 TAG_DATA_PAR_H B
C17 SCACHE_SET_H[0] O
C19 CMD_H[2] B
C21 TAG_RAM_OE_H O
C23 NC N
C25 CFAIL_H I
C27 ADDR_RES_H[0] O
C29 INDEX_H[5] O
C3 PWR3 P
C31 INDEX_H[10] O
C33 INDEX_H[14] O
C35 INDEX_H[18] O
C37 INDEX_H[22] O
C39 PWR3 P

PIN SIGNAL USE

C41 PWR3 P
C43 GND P
C5 PWR3 P
C7 TAG_DATA_H[23] B
C9 TAG_DATA_H[27] B
D10 PWR3 P
D12 GND P
D14 PWR3 P
D16 GND P
D18 PWR3 P
D2 PWR3 P
D20 GND P
D22 PWR3 P
D24 GND P
D26 PWR3 P
D28 GND P
D30 PWR3 P
D32 GND P
D34 PWR3 P
D36 GND P
D38 PWR3 P
D4 GND P
D40 GND P
D42 PWR3 P
D6 PWR3 P
D8 GND P
E1 DATA_CHECK_H[15] B
E11 TAG_DATA_H[29] B
E13 TAG_DATA_H[33] B
E15 TAG_DATA_H[38] B
E17 TAG_DIRTY_H B
E19 CMD_H[3] B
E21 VICTIM_PENDING_H O
E23 ADDR_BUS_REQ_H I
E25 DATA_BUS_REQ_H I
E27 NC N
E29 INDEX_H[7] O
E3 INT4_VALID_H[3] O
E31 INDEX_H[12] O
E33 INDEX_H[16] O
E35 INDEX_H[20] O
E37 INDEX_H[24] O
E39 NC N
E41 INT4_VALID_H[1] O
E43 DATA_CHECK_H[7] B
E5 NC N
E7 TAG_DATA_H[21] B
E9 TAG_DATA_H[25] B
F10 TAG_DATA_H[26] B
F12 TAG_DATA_H[30] B
F14 TAG_DATA_H[34] B
F16 TAG_VALID_H B
F18 TAG_CTL_PAR_H B
F2 GND P
F20 CMD_H[0] B
F22 DATA_RAM_OE_H O
F24 FILL_ID_H I
F26 ADDR_RES_H[1] O
F28 INDEX_H[6] O
F30 INDEX_H[11] O
F32 INDEX_H[15] O
F34 INDEX_H[19] O
F36 INDEX_H[23] O
F38 INT4_VALID_H[0] O
F4 PWR3 P
F40 PWR3 P
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PIN SIGNAL USE

F42 GND P
F6 INT4_VALID_H[2] O
F8 TAG_DATA_H[22] B
G1 DATA_CHECK_H[11] B
G11 PWR3 P
G13 GND P

Table 6-8 EV5 PINS - Alphabetic Order

PIN SIGNAL        USE
E23 ADDR_BUS_REQ_H I
B20 ADDR_CMD_PAR_H B
BA11 ADDR_H[10] B
AV12 ADDR_H[11] B
AW11 ADDR_H[12] B
BC9 ADDR_H[13] B
BA9 ADDR_H[14] B
AV10 ADDR_H[15] B
AW9 ADDR_H[16] B
BC7 ADDR_H[17] B
BA7 ADDR_H[18] B
AV8 ADDR_H[19] B
AW7 ADDR_H[20] B
BC5 ADDR_H[21] B
BC39 ADDR_H[22] B
AW37 ADDR_H[23] B
AV36 ADDR_H[24] B
BA37 ADDR_H[25] B
BC37 ADDR_H[26] B
AW35 ADDR_H[27] B
AV34 ADDR_H[28] B
BA35 ADDR_H[29] B
BC35 ADDR_H[30] B
AW33 ADDR_H[31] B
AV32 ADDR_H[32] B
BA33 ADDR_H[33] B
BC33 ADDR_H[34] B
AW31 ADDR_H[35] B
AV30 ADDR_H[36] B
BA31 ADDR_H[37] B
BC31 ADDR_H[38] B
BB30 ADDR_H[39] B
BB14 ADDR_H[4] B
BC13 ADDR_H[5] B
BA13 ADDR_H[6] B
AV14 ADDR_H[7] B
AW13 ADDR_H[8] B
BC11 ADDR_H[9] B
C27 ADDR_RES_H[0] O
F26 ADDR_RES_H[1] O
G21 CACK_H I
C25 CFAIL_H I
AU21 CLK_MODE_H[0] I
BA23 CLK_MODE_H[1] I
F20 CMD_H[0] B
A19 CMD_H[1] B
C19 CMD_H[2] B
E19 CMD_H[3] B
BA25 CPU_CLK_OUT_H O
B24 DACK_H I
E25 DATA_BUS_REQ_H I
J41 DATA_CHECK_H[0] B
J5 DATA_CHECK_H[10] B

PIN SIGNAL USE
G1 DATA_CHECK_H[11] B
G3 DATA_CHECK_H[12] B
H6 DATA_CHECK_H[13] B
G5 DATA_CHECK_H[14] B
E1 DATA_CHECK_H[15] B
K38 DATA_CHECK_H[1] B
J39 DATA_CHECK_H[2] B
G43 DATA_CHECK_H[3] B
G41 DATA_CHECK_H[4] B
H38 DATA_CHECK_H[5] B
G39 DATA_CHECK_H[6] B
E43 DATA_CHECK_H[7] B
J3 DATA_CHECK_H[8] B
K6 DATA_CHECK_H[9] B
J43 DATA_H[0] B
AG3 DATA_H[100] B
AF6 DATA_H[101] B
AG5 DATA_H[102] B
AJ1 DATA_H[103] B
AJ3 DATA_H[104] B
AH6 DATA_H[105] B
AJ5 DATA_H[106] B
AK2 DATA_H[107] B
AL1 DATA_H[108] B
AL3 DATA_H[109] B
R39 DATA_H[10] B
AK6 DATA_H[110] B
AL5 DATA_H[111] B
AN1 DATA_H[112] B
AN3 DATA_H[113] B
AM6 DATA_H[114] B
AN5 DATA_H[115] B
AR1 DATA_H[116] B
AR3 DATA_H[117] B
AP6 DATA_H[118] B
AR5 DATA_H[119] B
T38 DATA_H[11] B
AU1 DATA_H[120] B
AU3 DATA_H[121] B
AT6 DATA_H[122] B
AU5 DATA_H[123] B
AW1 DATA_H[124] B
AW3 DATA_H[125] B
AV6 DATA_H[126] B
AW5 DATA_H[127] B
R41 DATA_H[12] B
R43 DATA_H[13] B
U39 DATA_H[14] B
V38 DATA_H[15] B
U41 DATA_H[16] B
U43 DATA_H[17] B
W39 DATA_H[18] B
W41 DATA_H[19] B
L39 DATA_H[1] B
W43 DATA_H[20] B
Y38 DATA_H[21] B
Y42 DATA_H[22] B
AA39 DATA_H[23] B
AA41 DATA_H[24] B
AA43 DATA_H[25] B
AB38 DATA_H[26] B
AC43 DATA_H[27] B
AC41 DATA_H[28] B
AC39 DATA_H[29] B
M38 DATA_H[2] B
AD42 DATA_H[30] B
AD38 DATA_H[31] B
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PIN SIGNAL USE

AE43 DATA_H[32] B
AE41 DATA_H[33] B
AE39 DATA_H[34] B
AG43 DATA_H[35] B
AG41 DATA_H[36] B
AF38 DATA_H[37] B
AG39 DATA_H[38] B
AJ43 DATA_H[39] B
L41 DATA_H[3] B
AJ41 DATA_H[40] B
AH38 DATA_H[41] B
AJ39 DATA_H[42] B
AK42 DATA_H[43] B
E41 INT4_VALID_H[1] O
F6 INT4_VALID_H[2] O
E3 INT4_VALID_H[3] O
BA29 IRQ_H[0] I
AU27 IRQ_H[1] I
BC29 IRQ_H[2] I
AW27 IRQ_H[3] I
AU25 MCH_HLT_IRQ_H I
AV28 NC N
C23 NC N
E27 NC N
E39 NC N
E5 NC N
BC21 OSC_CLK_IN_H I
BB22 OSC_CLK_IN_L I
AW29 PERF_MON_H I
AY20 PORT_MODE_H[0] I
BB20 PORT_MODE_H[1] I
G33 PWR P
AB2 PWR3 P
AB4 PWR3 P
AB40 PWR3 P
AB42 PWR3 P
AE37 PWR3 P
AE7 PWR3 P
AF4 PWR3 P
AF40 PWR3 P
AH2 PWR3 P
AH42 PWR3 P
AJ37 PWR3 P
AJ7 PWR3 P
AK4 PWR3 P
AK40 PWR3 P
AM2 PWR3 P
AM42 PWR3 P
AN37 PWR3 P
AN7 PWR3 P
AP4 PWR3 P
AP40 PWR3 P
AT2 PWR3 P
AT42 PWR3 P
AU11 PWR3 P
AU15 PWR3 P
AU19 PWR3 P
AU29 PWR3 P
AU33 PWR3 P
AU37 PWR3 P
AU7 PWR3 P
AV4 PWR3 P
AV40 PWR3 P
AY10 PWR3 P
AY14 PWR3 P
AY18 PWR3 P
AY2 PWR3 P
AY26 PWR3 P

PIN SIGNAL USE

AY30 PWR3 P
AY34 PWR3 P
AY38 PWR3 P
AY42 PWR3 P
AY6 PWR3 P
B12 PWR3 P
B16 PWR3 P
B22 PWR3 P
B28 PWR3 P
B32 PWR3 P
B36 PWR3 P
B4 PWR3 P
B40 PWR3 P
B8 PWR3 P
BA3 PWR3 P
BA39 PWR3 P
BA41 PWR3 P
BA5 PWR3 P
BB12 PWR3 P
BB16 PWR3 P
BB28 PWR3 P
BB32 PWR3 P
BB36 PWR3 P
BB4 PWR3 P
BB40 PWR3 P
BB8 PWR3 P
BC23 PWR3 P
C3 PWR3 P
C39 PWR3 P
C41 PWR3 P
C5 PWR3 P
D10 PWR3 P
D14 PWR3 P
D18 PWR3 P
D2 PWR3 P
D22 PWR3 P
D26 PWR3 P
D30 PWR3 P
D34 PWR3 P
D38 PWR3 P
D42 PWR3 P
D6 PWR3 P
F4 PWR3 P
F40 PWR3 P
G11 PWR3 P
G15 PWR3 P
G19 PWR3 P
G29 PWR3 P
G37 PWR3 P
G7 PWR3 P
H2 PWR3 P
H42 PWR3 P
K4 PWR3 P
K40 PWR3 P
L37 PWR3 P
L7 PWR3 P
M2 PWR3 P
M42 PWR3 P
P4 PWR3 P
P40 PWR3 P
R37 PWR3 P
R7 PWR3 P
T2 PWR3 P
T42 PWR3 P
V4 PWR3 P
V40 PWR3 P
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W37 PWR3 P
W7 PWR3 P
AV26 PWR_FAIL_IRQ_H I
AW25 REF_CLK_IN_H I
C17 SCACHE_SET_H[0] O
A17 SCACHE_SET_H[1] O
BA19 SROM_CLK_H O
BC19 SROM_DAT_H I
AW19 SROM_OE_L O
AV20 SROM_PRESENT_L I
G27 SYSTEM_LOCK_FLAG_H I
AW23 SYS_CLK_OUT1_H O
BB24 SYS_CLK_OUT1_L O
AV24 SYS_CLK_OUT2_H O
BC25 SYS_CLK_OUT2_L O
BA27 SYS_MCH_CHK_IRQ_H I
BC27 SYS_RESET_L I
F18 TAG_CTL_PAR_H B
A5 TAG_DATA_H[20] B
E7 TAG_DATA_H[21] B
F8 TAG_DATA_H[22] B
C7 TAG_DATA_H[23] B
A7 TAG_DATA_H[24] B
E9 TAG_DATA_H[25] B
F10 TAG_DATA_H[26] B
C9 TAG_DATA_H[27] B
A9 TAG_DATA_H[28] B
E11 TAG_DATA_H[29] B
F12 TAG_DATA_H[30] B
C11 TAG_DATA_H[31] B
A11 TAG_DATA_H[32] B
E13 TAG_DATA_H[33] B
F14 TAG_DATA_H[34] B
C13 TAG_DATA_H[35] B
A13 TAG_DATA_H[36] B
B14 TAG_DATA_H[37] B
E15 TAG_DATA_H[38] B
C15 TAG_DATA_PAR_H B
E17 TAG_DIRTY_H B
C21 TAG_RAM_OE_H O
A21 TAG_RAM_WE_H O
A15 TAG_SHARED_H B
F16 TAG_VALID_H B
AW17 TCK_H I
BC17 TDI_H I
BA17 TDO_H O
AW15 TEMP_SENS_H I
BA15 TEST_STATUS_H[0] O
AV16 TEST_STATUS_H[1] O
AV18 TMS_H I
BC15 TRST_L I
E21 VICTIM_PENDING_H O
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DSW ASIC

The DSW ASIC is a sliced data switch design that allows the AlphaStation 600 system
cache, memory, and I/O systems to talk to each other. All DSW data paths are protected
by quadword ECC.  Table 6-9 summarizes DSW features:

Table 6-9 DSW Features

Figure 6-6 DSW Pinout - Top View

Feature GRU ASIC

Vendor LSI Logic

Technology LCA 100K CMOS

Package type 208 Pin PQFP  (.5 mm pin pitch)

Number of I/O pins 158

Gate Count 25 K gates

Supply Voltage  5V

Clocking Scheme Single ended input; internal PLL circuit

External Clock cycle time 30ns

Internal Clock cycle time 15/30 ns

Chips per AlphaStation 600 system 4
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Table 6-10 DSW PIN OUT - Sorted by Pin
Number

PIN SIGNAL USE
1 PWR5 P
2 IOD[0] B
3 CPU_DAT[0] B
4 CPU_DAT[1] B
5 GND P
6 MEM_DAT[0] B
7 MEM_DAT[1] B
8 MEM_DAT[2] B
9 MEM_DAT[3] B
10 PWR5 P
11 IOD[1] B
12 CPU_DAT[2] B
13 CPU_DAT[3] B
14 GND P
15 MEM_DAT[4] B
16 MEM_DAT[5] B
17 MEM_DAT[6] B
18 MEM_DAT[7] B
19 PWR5 P
20 IOD[2] B
21 CPU_DAT[4] B
22 CPU_DAT[5] B
23 GND P
24 MEM_DAT[8] B
25 MEM_DAT[9] B
26 MEM_DAT[10] B
27 MEM_DAT[11] B
28 PWR5 P
29 IOD[3] B
30 CPU_DAT[6] B
31 CPU_DAT[7] B
32 GND P
33 MEM_DAT[12] B
34 MEM_DAT[13] B
35 MEM_DAT[14] B
36 MEM_DAT[15] B
37 PWR5 P
38 IOC[6] I
39 IOC[5] I
40 IOC[4] I
41 IOC[3] I
42 IOC[2] I
43 IOC[1] I
44 GND P
45 IOC[0] I
46 MEM_EN I
47 TEST_MODE[0] I
48 TEST_MODE[1] I
49 CONFIG[0] I
50 CONFIG[1] I
51 TEST_OR_SCAN_OUT O
52 PWR5 P
53 GND P
54 IOD[4] B
55 CPU_DAT[8] B
56 CPU_DAT[9] B
57 PWR5 P
58 MEM_DAT[16] B
59 MEM_DAT[17] B
60 MEM_DAT[18] B
61 MEM_DAT[19] B
62 GND P
63 IOD[5] B
64 CPU_DAT[10] B

PIN SIGNAL USE
65 CPU_DAT[11] B
66 PWR5 P
67 MEM_DAT[20] B
68 MEM_DAT[21] B
69 MEM_DAT[22] B
70 MEM_DAT[23] B
71 GND P
72 IOD[6] B
73 CPU_DAT[12] B
74 CPU_DAT[13] B
75 PWR5 P
76 MEM_DAT[24] B
77 MEM_DAT[25] B
78 MEM_DAT[26] B
79 MEM_DAT[27] B
80 GND P
81 IOD[7] B
82 CPU_DAT[14] B
83 CPU_DAT[15] B
84 PWR5 P
85 MEM_DAT[28] B
86 MEM_DAT[29] B
87 MEM_DAT[30] B
88 MEM_DAT[31] B
89 GND P
90 IOD[8] B
91 CPU_DAT[16] B
92 CPU_DAT[17] B
93 PWR5 P
94 MEM_DAT[32] B
95 MEM_DAT[33] B
96 MEM_DAT[34] B
97 MEM_DAT[35] B
98 GND P
99 CMC[4] I
100 CMC[3] I
101 CMC[2] I
102 CMC[1] I
103 CMC[0] I
104 PWR5 P
105 PLL_CLK I
106 GND P
107 PLL_LP2 I
108 PWR5 P
109 PLL_AGND I
110 PLL_VSS I
111 GND P
112 PLL_VDD I
113 PLL_LP1 I
114 PWR5 P
115 RESET_L I
116 CMC[5] I
117 CMC[6] I
118 CMC[7] I
119 CMC[8] I
120 GND P
121 MEM_DAT[39] B
122 MEM_DAT[38] B
123 MEM_DAT[37] B
124 MEM_DAT[36] B
125 PWR5 P
126 CPU_DAT[19] B
127 CPU_DAT[18] B
128 IOD[9] B
129 GND P
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PIN SIGNAL USE
130 MEM_DAT[43] B
131 MEM_DAT[42] B
132 MEM_DAT[41] B
133 MEM_DAT[40] B
134 PWR5 P
135 CPU_DAT[21] B
136 CPU_DAT[20] B
137 IOD[10] B
138 GND P
139 MEM_DAT[47] B
140 MEM_DAT[46] B
141 MEM_DAT[45] B
142 MEM_DAT[44] B
143 PWR5 P
144 CPU_DAT[23] B
145 CPU_DAT[22] B
146 IOD[11] B
147 GND P
148 MEM_DAT[51] B
149 MEM_DAT[50] B
150 MEM_DAT[49] B
151 MEM_DAT[48] B
152 GND P
153 CPU_DAT[25] B
154 CPU_DAT[24] B
155 IOD[12] B
156 PWR5 P
157 PWR5 P
158 IOD[13] B
159 CPU_DAT[26] B
160 CPU_DAT[27] B
161 GND P
162 MEM_DAT[52] B
163 MEM_DAT[53] B
164 MEM_DAT[54] B
165 MEM_DAT[55] B
166 PWR5 P
167 IOD[14] B
168 CPU_DAT[28] B
169 CPU_DAT[29] B
170 GND P
171 MEM_DAT[56] B
172 MEM_DAT[57] B
173 MEM_DAT[58] B
174 MEM_DAT[59] B
175 PWR5 P
176 IOD[15] B
177 CPU_DAT[30] B
178 CPU_DAT[31] B
179 GND P
180 MEM_DAT[60] B
181 MEM_DAT[61] B
182 MEM_DAT[62] B
183 MEM_DAT[63] B
184 PWR5 P
185 IOD[16] B
186 CPU_DAT[32] B
187 CPU_DAT[33] B
188 GND P
189 MEM_DAT[64] B
190 MEM_DAT[65] B
191 MEM_DAT[66] B
192 MEM_DAT[67] B
193 PWR5 P
194 IOD[17] B
195 CPU_DAT[34] B
196 CPU_DAT[35] B

PIN SIGNAL USE
197 GND P
198 MEM_DAT[68] B
199 MEM_DAT[69] B
200 MEM_DAT[70] B
201 MEM_DAT[71] B
202 PWR5 P
203 SCAN_IN I
204 SPARE1_OR_COUNT_OUT     O
205 SPARE2 I
206 SPARE3 I
207 SPARE4 I
208 GND P
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Table 6-11 DSW PIN OUT - Sorted
Alphabetically

PIN SIGNAL USE
103 CMC[0] I
102 CMC[1] I
101 CMC[2] I
100 CMC[3] I
99 CMC[4] I
116 CMC[5] I
117 CMC[6] I
118 CMC[7] I
119 CMC[8] I
49 CONFIG[0] I
50 CONFIG[1] I
3 CPU_DAT[0] B
64 CPU_DAT[10] B
65 CPU_DAT[11] B
73 CPU_DAT[12] B
74 CPU_DAT[13] B
82 CPU_DAT[14] B
83 CPU_DAT[15] B
91 CPU_DAT[16] B
92 CPU_DAT[17] B
127 CPU_DAT[18] B
126 CPU_DAT[19] B
4 CPU_DAT[1] B
136 CPU_DAT[20] B
135 CPU_DAT[21] B
145 CPU_DAT[22] B
144 CPU_DAT[23] B
154 CPU_DAT[24] B
153 CPU_DAT[25] B
159 CPU_DAT[26] B
160 CPU_DAT[27] B
168 CPU_DAT[28] B
169 CPU_DAT[29] B
12 CPU_DAT[2] B
177 CPU_DAT[30] B
178 CPU_DAT[31] B
186 CPU_DAT[32] B
187 CPU_DAT[33] B
195 CPU_DAT[34] B
196 CPU_DAT[35] B
13 CPU_DAT[3] B
21 CPU_DAT[4] B
22 CPU_DAT[5] B
30 CPU_DAT[6] B
31 CPU_DAT[7] B
55 CPU_DAT[8] B
56 CPU_DAT[9] B
106 GND P
111 GND P
120 GND P
129 GND P
138 GND P
14 GND P
147 GND P
152 GND P
161 GND P
170 GND P
179 GND P
188 GND P
197 GND P
208 GND P
23 GND P
32 GND P

PIN SIGNAL USE
44 GND P
5 GND P
53 GND P
62 GND P
71 GND P
80 GND P
89 GND P
98 GND P
45 IOC[0] I
43 IOC[1] I
42 IOC[2] I
41 IOC[3] I
40 IOC[4] I
39 IOC[5] I
38 IOC[6] I
2 IOD[0] B
137 IOD[10] B
146 IOD[11] B
155 IOD[12] B
158 IOD[13] B
167 IOD[14] B
176 IOD[15] B
185 IOD[16] B
194 IOD[17] B
11 IOD[1] B
20 IOD[2] B
29 IOD[3] B
54 IOD[4] B
63 IOD[5] B
72 IOD[6] B
81 IOD[7] B
90 IOD[8] B
128 IOD[9] B
6 MEM_DAT[0] B
26 MEM_DAT[10] B
27 MEM_DAT[11] B
33 MEM_DAT[12] B
34 MEM_DAT[13] B
35 MEM_DAT[14] B
36 MEM_DAT[15] B
58 MEM_DAT[16] B
59 MEM_DAT[17] B
60 MEM_DAT[18] B
61 MEM_DAT[19] B
7 MEM_DAT[1] B
67 MEM_DAT[20] B
68 MEM_DAT[21] B
69 MEM_DAT[22] B
70 MEM_DAT[23] B
76 MEM_DAT[24] B
77 MEM_DAT[25] B
78 MEM_DAT[26] B
79 MEM_DAT[27] B
85 MEM_DAT[28] B
86 MEM_DAT[29] B
8 MEM_DAT[2] B
87 MEM_DAT[30] B
88 MEM_DAT[31] B
94 MEM_DAT[32] B
95 MEM_DAT[33] B
96 MEM_DAT[34] B
97 MEM_DAT[35] B
124 MEM_DAT[36] B
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PIN SIGNAL USE
123 MEM_DAT[37] B
122 MEM_DAT[38] B
121 MEM_DAT[39] B
9 MEM_DAT[3] B
133 MEM_DAT[40] B
132 MEM_DAT[41] B
131 MEM_DAT[42] B
130 MEM_DAT[43] B
142 MEM_DAT[44] B
141 MEM_DAT[45] B
140 MEM_DAT[46] B
139 MEM_DAT[47] B
151 MEM_DAT[48] B
150 MEM_DAT[49] B
15 MEM_DAT[4] B
149 MEM_DAT[50] B
148 MEM_DAT[51] B
162 MEM_DAT[52] B
163 MEM_DAT[53] B
164 MEM_DAT[54] B
165 MEM_DAT[55] B
171 MEM_DAT[56] B
172 MEM_DAT[57] B
173 MEM_DAT[58] B
174 MEM_DAT[59] B
16 MEM_DAT[5] B
180 MEM_DAT[60] B
181 MEM_DAT[61] B
182 MEM_DAT[62] B
183 MEM_DAT[63] B
189 MEM_DAT[64] B
190 MEM_DAT[65] B
191 MEM_DAT[66] B
192 MEM_DAT[67] B
198 MEM_DAT[68] B
199 MEM_DAT[69] B
17 MEM_DAT[6] B
200 MEM_DAT[70] B
201 MEM_DAT[71] B
18 MEM_DAT[7] B
24 MEM_DAT[8] B
25 MEM_DAT[9] B
46 MEM_EN I
109 PLL_AGND I
105 PLL_CLK I

PIN SIGNAL USE
113 PLL_LP1 I
107 PLL_LP2 I
112 PLL_VDD I
110 PLL_VSS I
1 PWR5 P
10 PWR5 P
104 PWR5 P
108 PWR5 P
114 PWR5 P
125 PWR5 P
134 PWR5 P
143 PWR5 P
156 PWR5 P
157 PWR5 P
166 PWR5 P
175 PWR5 P
184 PWR5 P
19 PWR5 P
193 PWR5 P
202 PWR5 P
28 PWR5 P
37 PWR5 P
52 PWR5 P
57 PWR5 P
66 PWR5 P
75 PWR5 P
84 PWR5 P
93 PWR5 P
115 RESET_L I
203 SCAN_IN I
204 SPARE1_OR_COUNT_OUT  O
205 SPARE2 I
206 SPARE3 I
207 SPARE4 I
47 TEST_MODE[0] I
48 TEST_MODE[1] I
51 TEST_OR_SCAN_OUT O
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GRU ASIC
The GRU ASIC is a single support chip that implements miscellaneous system functions
that normally require additional system board parts.  These functions include Flash ROM
control, gathering of presence detect bits (PD bits) from memory, gathering/masking of in-
terrupt bits from the CIA and I/O subsystem, assertion of the system clock divisor to the
EV5, and creation of the system reset pulse from the DC_OK signal.

Table 6-12 GRU Features

Figure 6-7 GRU Pinout - Top View

Feature GRU ASIC

Vendor LSI Logic

Technology LSI 100K CMOS

Package type 144 Pin PQFP

Number of I/O pins 88

Gate Count 6K gates

Supply Voltage  5V

Clocking Scheme Single ended input; internal PLL circuit

External Clock cycle time 30ns

Internal Clock cycle time 15/30 ns

Chips per AlphaStation 600 system 1
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Table 6-13 GRU PIN OUT - Sorted by Pin
Number

PIN SIGNAL        USE
1 PWR5 P
2 FROM_ADDR[0] O
3 FROM_ADDR[1] O
4 FROM_ADDR[2] O
5 FROM_ADDR[3] O
6 FROM_ADDR[4] O
7 FROM_ADDR[5] O
8 GND P
9 PWR5 P
10 FROM_ADDR[6] O
11 FROM_ADDR[7] O
12 FROM_ADDR[8] O
13 FROM_ADDR[9] O
14 FROM_ADDR[10] O
15 FROM_ADDR[11] O
16 PWR5 P
17 GND P
18 GND P
19 GND P
20 FROM_ADDR[12] O
21 FROM_ADDR[13] O
22 FROM_ADDR[14] O
23 FROM_ADDR[15] O
24 FROM_ADDR[16] O
25 FROM_ADDR[17] O
26 PWR5 P
27 GND P
28 SYS_RST_L O
29 TEST_OUT_OR_COUNT_OUT     O
30 CIA_INT I
31 CIA_ERROR I
32 SCAN_IN I
33 GRU_ACK O
34 GRU_SEL I
35 IOD[0] B
36 PWR5 P
37 PWR5 P
38 GND P
39 IOD[1] B
40 IOD[2] B
41 IOD[3] B
42 IOD[4] B
43 IOD[5] B
44 IOD[6] B
45 IOD[7] B
46 INT[0] I
47 INT[1] I
48 INT[2] I
49 INT[3] I
50 INT[4] I
51 INT[5] I
52 INT[6] I
53 GND P
54 PLL_CLK I
55 GND P
56 PWR5 P
57 INT[7] I
58 INT[8] I
59 INT[9] I
60 INT[10] I
61 INT[11] I
62 INT[12] I
63 INT[13] I

PIN SIGNAL USE
64 GND P
65 INT[14] I
66 INT[15] I                  
67 INT[16] I
68 INT[17] I
69 INT[18] I
70 INT[19] I
71 INT[20] I
72 PWR5  P
73 PWR5 P
74 PLL_LP2 I
75 PLL_AGND I
76 PLL_VSS I
77 PLL_VDD I
78 PLL_LP1 I
79 INT[21] I
80 INT[22] I
81 INT[23]   I
82 INT[24] I
83 INT[25] I
84 INT[26] I
85 INT[27] I
86 INT[28] I
87 INT[29] I
88 INT[30] I
89 INT[31] I
90 GND P
91 GND P
92 GND P
93 PWR5 P
94 TOY I
95 IRQ[0] O
96 IRQ[1] O
97 IRQ[2] O
98 IRQ[3] O
99 NMI I
100 GND P
101 PWR5 P
102 GRU_DATA[0] B
103 GRU_DATA[1] B
104 GRU_DATA[2] B
105 GRU_DATA[3] B
106 GRU_DATA[4] B
107 GRU_DATA[5] B
108 PWR5 P
109 PWR5 P
110 GRU_DATA[6] B
111 GRU_DATA[7] B
112 PD_CACHE[0] I
113 PD_CACHE[1] I
114 PD_CACHE[2] I
115 PD_CACHE[3] I
116 PD_CACHE[4] I
117 PWR5 P
118 GND P
119 PD_MEM[0] I
120 PD_MEM[1] I
121 DC_OK_L I
122 TEST_MODE[0] I
123 TEST_MODE[1] I
124 OCP_RESET_L I
125 PWR5 P
126 GND P
127 GND P
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PIN SIGNAL USE
128 GND P
129 USER_INT I
130 CLK_DIV[3] I
131 CLK_DIV[2] I
132 CLK_DIV[1] I
133 CLK_DIV[0] I
134 FROM_CE3_L O
135 FROM_CE2_L o
136 PWR5 P
137 GND P
138 FROM_CE1_L O
139 FROM_CE0_L O
140 FROM_WE_L O
141 FROM_OE_L O
142 SCAN_OUT O
143 SYS_MCHK O
144 PWR5 P

Table 6-14 GRU PINS-Sorted
Alphabetically

PIN SIGNAL USE
31 CIA_ERROR I
30 CIA_INT I
133 CLK_DIV[0] I
132 CLK_DIV[1] I
131 CLK_DIV[2] I
130 CLK_DIV[3] I
121 DC_OK_L I
2 FROM_ADDR[0] O
14 FROM_ADDR[10] O
15 FROM_ADDR[11] O
20 FROM_ADDR[12] O
21 FROM_ADDR[13] O
22 FROM_ADDR[14] O
23 FROM_ADDR[15] O
24 FROM_ADDR[16] O
25 FROM_ADDR[17] O
3 FROM_ADDR[1] O
4 FROM_ADDR[2] O
5 FROM_ADDR[3] O
6 FROM_ADDR[4] O
7 FROM_ADDR[5] O
10 FROM_ADDR[6] 0
11 FROM_ADDR[7] O
12 FROM_ADDR[8] O
13 FROM_ADDR[9] O
139 FROM_CE0_L O
138 FROM_CE1_L O
135 FROM_CE2_L O
134 FROM_CE3_L O
141 FROM_OE_L O
140 FROM_WE_L O
100 GND P
118 GND P
126 GND P
127 GND P
128 GND P
137 GND P
17 GND P
18 GND P
19 GND P
27 GND P
8 GND P
53 GND P

PIN SIGNAL USE

55 GND P
64 GND P
8 GND P
90 GND P
91 GND P
92 GND P
33 GRU_ACK O
102 GRU_DATA[0] B
103 GRU_DATA[1] B
104 GRU_DATA[2] B
105 GRU_DATA[3] B
106 GRU_DATA[4] B
107 GRU_DATA[5] B
110 GRU_DATA[6] B
111 GRU_DATA[7] B
34 GRU_SEL I
46 INT[0] I
60 INT[10] I
61 INT[11] I
62 INT[12] I
63 INT[13] I
65 INT[14] I
66 INT[15] I
67 INT[16] I
68 INT[17] I
69 INT[18] I
70 INT[19] I
47 INT[1] I
71 INT[20] I
79 INT[21] I
80 INT[22] I
81 INT[23] I
82 INT[24] I
83 INT[25] I
84 INT[26] I
85 INT[27] I
86 INT[28] I
87 INT[29] I
48 INT[2] I
88 INT[30] I
89 INT[31] I
49 INT[3] I
50 INT[4] I
51 INT[5] I
52 INT[6] I
57 INT[7] I
58 INT[8] I
59 INT[9] I
35 IOD[0] B
39 IOD[1] B
40 IOD[2] B
41 IOD[3] B
42 IOD[4] B
43 IOD[5] B
44 IOD[6] B
45 IOD[7] B
95 IRQ[0] O
96 IRQ[1] O
97 IRQ[2] O
98 IRQ[3] O
99 NMI I
124 OCP_RESET_L I
112 PD_CACHE[0] I
113 PD_CACHE[1] I
114 PD_CACHE[2] I
115 PD_CACHE[3] I
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PIN SIGNAL                                   USE

116 PD_CACHE[4] I
119 PD_MEM[0] I
120 PD_MEM[1] I
75 PLL_AGND I
54 PLL_CLK I
78 PLL_LP1 I
74 PLL_LP2 I
77 PLL_VDD I
76 PLL_VSS I
1 PWR5 P
101 PWR5 P
108 PWR5 P
109 PWR5 P
117 PWR5 P
125 PWR5 P
136 PWR5 P
144 PWR5 P
16 PWR5 P
26 PWR5 P
36 PWR5 P

PIN SIGNAL                                   USE

37 PWR5 P
56 PWR5 P
72 PWR5 P
73 PWR5 P
9 PWR5 P
93 PWR5 P
32 SCAN_IN I
142 SCAN_OUT O
143 SYS_MCHK O
28 SYS_RST_L O
122 TEST_MODE[0] I
123 TEST_MODE[1] I
29 TEST_OUT_OR_COUNT_OUT O
94 TOY I
129 USER_INT I
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CIA ASIC
The CIA is the control ASIC for the AlphaStation 600 System; it controls PCI, Cache, and
Memory transactions.  The CIA also controls the data switch (DSW) and support chip
(GRU) operations.  Table 6-15 summarizes CIA features:

Table 6-15 CIA Features

Feature CIA ASIC

Vendor LSI Logic

Technology LSI 300K CMOS

Package type 383 Pin Ceramic PGA

Number of I/O pins 292 

Gate Count 105K gates

Supply Voltage  5V

Clocking Scheme Single ended input; internal PLL circuit

External Clock cycle time 30ns

Internal Clock cycle time 15/30 ns

Chips per AlphaStation 600
System

1
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Figure 6-8 CIA Pinout - Top View
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Table 6-16 CIA PIN OUT - Sorted by Pin
Number

PIN SIGNAL USE
A10 GND P
A11 PWR5 P
A12 GND P
A13 PWR5 P
A14 GND P
A15 PWR5 P
A16 GND P
A17 GND P
A18 GND P
A19 PWR5 P
A2 GND P
A20 GND P
A21 GND P
A22 PWR5 P
A3 PWR5 P
A4 GND P
A5 GND P
A6 GND P
A7 PWR5 P
A8 GND P
A9 PWR5 P
AA1 PWR5 P
AA10 AD[15] B
AA11 AD[14] B
AA12 AD[13] B
AA13 AD[12] B
AA14 AD[10] B
AA15 AD[39] B
AA16 AD[38] B
AA17 AD[35] B
AA18 AD[33] B
AA19 CBE_L[0] B
AA2 AD[29] B
AA20 CBE_L[1] B
AA21 PERR_L B
AA22 GND P
AA3 AD[28] B
AA4 AD[26] B
AA5 AD[55] B
AA6 AD[53] B
AA7 AD[51] B
AA8 AD[18] B
AA9 AD[48] B
AB1 PWR5 P
AB10 PWR5 P
AB11 PWR5 P
AB12 GND P
AB13 GND P
AB14 PWR5 P
AB15 GND P
AB16 PWR5 P
AB17 GND P
AB18 GND P
AB19 GND P
AB2 GND P
AB20 PWR5 P
AB21 GND P
AB22 PWR5 P
AB3 GND P
AB4 PWR5 P
AB5 GND P
AB6 PWR5 P
AB7 GND P
AB8 PWR5 P
AB9 GND P

PIN SIGNAL USE
B1 GND P
B10 IOD[0] B
B11 RES[1] I
B12 IOC[5] O
B13 IOC[3] O
B14 CMC[8] O
B15 CMC[3] O
B16 CMC[1] O
B17 VICTIM_PENDING I
B18 CMD[0] B
B19 ADDR[32] B
B2 PWR5 P
B20 IDLE_BC O
B21 CACK O
B22 PWR5 P
B3 PLL_LP1 I
B4 IOD[22] B
B5 IOD[17] B
B6 IOD[13] B
B7 IOD[9] B
B8 IOD[6] B
B9 IOD[3] B
C1 PWR5 P
C10 IOD[1] B
C11 IOC[6] O
C12 IOC[4] O
C13 IOC[1] O
C14 CMC[5] O
C15 CMC[2] O
C16 INT4_VALID[1] I
C17 CMD[2] B
C18 ADDR[34] B
C19 FILL O
C2 IOD_E[3] B
C20 SET_SEL[2] O
C21 SET_SEL[4] O
C22 GND P
C3 IOD_E[1] B
C4 AUX_VDD P
C5 IOD[20] B
C6 IOD[15] B
C7 IOD[11] B
C8 IOD[7] B
C9 IOD[5] B
D1 GND P
D10 RES[0] I
D11 TEST_MODE[1] I
D12 IOC[2] O
D13 CMC[7] O
D14 CMC[0] O
D15 INT4_VALID[3] I
D16 CMD[3] B
D17 ADDR39 B
D18 ADDR_BUS_REQ B
D19 GND P
D2 IOD[35] B
D20 SET_SEL[5] O
D21 SET_SEL[8] O
D22 PWR5 P
D3 IOD[32] B
D4 PLL_VSS I
D5 AUX_VSS P
D6 IOD[19] B
D7 IOD[14] B
D8 IOD[12] B
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PIN SIGNAL USE

D9 IOD[8] B
E1 PWR5 P
E10 IOD[2] B
E11 TEST_MODE[0] I
E12 IOC[0] O
E13 CMC[4] O
E14 INT4_VALID[0] I
E15 ADDR_CMD_PAR B
E16 ADDR[31] B
E17 TEST_OR_SCAN_OUT O
E18 SPARE5 I
E19 SET_SEL[6] O
E2 IOD[40] B
E20 SET_SEL[10] O
E21 SET_SEL[13] O
E22 GND P
E3 IOD[37] B
E4 IOD[33] B
E5 PLL_VDD p
E6 PLL_AGND O
E7 IOD[21] B
E8 IOD[18] B
E9 IOD[10] B
F1 GND P
F10 IOD[4] B
F11 PLL_CLK I
F12 CMC[6] O
F13 INT4_VALID[2] I
F14 CMD[1] B
F15 ADDR[33] B
F16 DACK O
F17 SET_SEL[0] O
F18 SET_SEL[3] O
F19 SET_SEL[11] O
F2 IOD[44] B
F20 SET_SEL[15] O
F21 CAS[1] O
F22 GND P
F3 IOD[42] B
F4 IOD[38] B
F5 IOD_E[0] B
F6 IOD[31] B
F7 PLL_LP2 P
F8 IOD[23] B
F9 IOD[16] B
G1 GND P
G17 SET_SEL[1] O
G18 SET_SEL[9] O
G19 CAS[0] O
G2 IOD[48] B
G20 CAS[3] O
G21 RAS[1] O
G22 GND P
G3 IOD[46] B
G4 IOD[43] B
G5 IOD[34] B
G6 IOD_E[2] B
H1 PWR5 P
H17 SET_SEL[7] O
H18 SET_SEL[12] O
H19 CAS[2] O
H2 IOD[51] B
H20 RAS[3] O
H21 MEM_EN O
H22 PWR5 P
H3 IOD[50] B

PIN SIGNAL USE

H4 IOD[41] B
H5 IOD[39] B
H6 IOD[36] B
J1 GND P
J17 SET_SEL[14] O
J18 RAS[0] O
J19 RAS[2] O
J2 IOD[54] B
J20 MEM_ADDR[0] O
J21 MEM_ADDR[2] O
J22 GND P
J3 IOD[52] B
J4 IOD[49] B
J5 IOD[47] B
J6 IOD[45] B
K1 GND P
K17 MEM_ADDR[1] O
K18 MEM_ADDR[3] O
K19 MEM_ADDR[6] O
K2 IOD[57] B
K20 MEM_ADDR[4] O
K21 MEM_ADDR[5] O
K22 PWR5 P
K3 IOD[56] B
K4 IOD[58] B
K5 IOD[55] B
K6 IOD[53] B
L1 PWR5 P
L17 INT O
L18 SYS_RST_L I
L19 SCAN_IN I
L2 IOD[59] B
L20 MEM_ADDR[8] O
L21 MEM_ADDR[7] O
L22 PWR5 P
L3 IOD[60] B
L4 SPARE4 I
L5 GRU_SEL O
L6 GRU_ACK I
M1 GND P
M17 FILL_ERROR O
M18 MEM_WE_L[1] O
M19 MEM_ADDR[12] O
M2 IOD[61] B
M20 MEM_ADDR[10] O
M21 MEM_ADDR[9] O
M22 GND P
M3 IOD[62] B
M4 IOD[30] B
M5 IOD_E[4] B
M6 IOD_E[6] B
N1 PWR5 P
N17 ADDR[8] B
N18 ADDR[4] B
N19 TAG_DIRTY O
N2 IOD[63] B
N20 MEM_WE_L[0] O
N21 MEM_ADDR[11] O
N22 GND P
N3 IOD_E[5] B
N4 IOD[24] B
N5 IOD[29] B
N6 IOD[27] B
P1 GND P
P17 ADDR[16] B
P18 ADDR[12] B
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PIN SIGNAL USE

P19 ADDR[10] B
P2 IOD_E[7] B
P20 FILL_ID B
P21 TAG_CTL_PAR O
P22 PWR5 P
P3 IOD[25] B
P4 IOD[26] B
P5 ERROR O
P6 REQ_L O
R1 PWR5 P
R17 ADDR[21] B
R18 ADDR[18] B
R19 ADDR[9] B
R2 SPARE3 I
R20 ADDR[6] B
R21 ADDR[5] B
R22 GND P
R3 SPARE2 I
R4 MEM_ACK_L O
R5 PAR B
R6 COUNT_OUT O
T1 GND P
T17 ADDR[27] B
T18 ADDR[23] B
T19 ADDR[14] B
T2 IOD[28] B
T20 ADDR[11] B
T21 ADDR[7] B
T22 PWR5 P
T3 SPARE7 I
T4 MEM_REQ_L I
T5 CBE_L[5] B
T6 AD[62] B
U1 GND P
U10 AD[17] B
U11 SPARE1 I
U12 AD[42] B
U13 AD[6] B
U14 AD[2] B
U15 LOCK_L I
U16 RST_L O
U17 ADDR[30] B
U18 ADDR[29] B
U19 ADDR[19 B
U2 MEM_CS_L I
U20 ADDR[15] B
U21 ADDR[13] B
U22 GND P
U3 GNT_L I
U4 CBE_L[7] B
U5 ACK64_L B
U6 AD[30] B
U7 AD[60] B
U8 AD[57] B
U9 AD[21] B
V1 GND P
V10 AD[16] B
V11 IRDY_L B
V12 AD[43] B
V13 AD[8] B
V14 AD[4] B
V15 AD[1] B
V16 ADDR[26] B
V17 DEVSEL_L B
V18 FRAME_L B
V19 ADDR[24] B

PIN SIGNAL USE

V2 PAR64 B
V20 ADDR[20] B
V21 ADDR[17] B
V22 PWR5 P
V3 CBE_L[6] B
V4 REQ64_L B
V5 SPARE6 I
V6 AD[61] B
V7 AD[58] B
V8 AD[24] B
V9 AD[20] B
W1 PWR5 P
W10 AD[46] B
W11 TRDY_L B
W12 AD[9] B
W13 AD[41] B
W14 AD[5] B
W15 AD[37] B
W16 AD[3] B
W17 AD[32] B
W18 CBE_L[3] B
W19 GND P
W2 CBE_L[4] B
W20 ADDR[25] B
W21 ADDR[22] B
W22 GND P
W3 SERR_L B
W4 GND P
W5 AD[27] B
W6 AD[56] B
W7 AD[22] B
W8 AD[23] B
W9 AD[19] B
Y1 GND P
Y10 AD[47] B
Y11 AD[45] B
Y12 AD[44] B
Y13 AD[11] B
Y14 AD[40] B
Y15 AD[7] B
Y16 AD[36] B
Y17 AD[34] B
Y18 AD[0] B
Y19 STOP_L B
Y2 AD[63] B
Y20 ADDR[28] B
Y21 CBE_L[2] B
Y22 PWR5 P
Y3 AD[31] B
Y4 AD[59] B
Y5 AD[25] B
Y6 AD[54] B
Y7 AD[52] B
Y8 AD[50] B
Y9 AD[49] B
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Table 6-17 CIA PIN OUT - Sorted
Alphabetically

PIN SIGNAL USE
U5 ACK64_L B
D17 ADDR39 B
P19 ADDR[10] B
T20 ADDR[11] B
P18 ADDR[12] B
U21 ADDR[13] B
T19 ADDR[14] B
U20 ADDR[15] B
P17 ADDR[16] B
V21 ADDR[17] B
R18 ADDR[18] B
U19 ADDR[19 B
V20 ADDR[20] B
R17 ADDR[21] B
W21 ADDR[22] B
T18 ADDR[23] B
V19 ADDR[24] B
W20 ADDR[25] B
V16 ADDR[26] B
T17 ADDR[27] B
Y20 ADDR[28] B
U18 ADDR[29] B
U17 ADDR[30] B
E16 ADDR[31] B
B19 ADDR[32] B
F15 ADDR[33] B
C18 ADDR[34] B
N18 ADDR[4] B
R21 ADDR[5] B
R20 ADDR[6] B
T21 ADDR[7] B
N17 ADDR[8] B
R19 ADDR[9] B
D18 ADDR_BUS_REQ B
E15 ADDR_CMD_PAR B
Y18 AD[0] B
AA14 AD[10] B
Y13 AD[11] B
AA13 AD[12] B
AA12 AD[13] B
AA11 AD[14] B
AA10 AD[15] B
V10 AD[16] B
U10 AD[17] B
AA8 AD[18] B
W9 AD[19] B
V15 AD[1] B
V9 AD[20] B
U9 AD[21] B
W7 AD[22] B
W8 AD[23] B
V8 AD[24] B
Y5 AD[25] B
AA4 AD[26] B
W5 AD[27] B
AA3 AD[28] B
AA2 AD[29] B
U14 AD[2] B
U6 AD[30] B
Y3 AD[31] B
W17 AD[32] B
AA18 AD[33] B
Y17 AD[34] B

PIN SIGNAL USE
AA17 AD[35] B
Y16 AD[36] B
W15 AD[37] B
AA16 AD[38] B
AA15 AD[39] B
W16 AD[3] B
Y14 AD[40] B
W13 AD[41] B
U12 AD[42] B
V12 AD[43] B
Y12 AD[44] B
Y11 AD[45] B
W10 AD[46] B
Y10 AD[47] B
AA9 AD[48] B
Y9 AD[49] B
V14 AD[4] B
Y8 AD[50] B
AA7 AD[51] B
Y7 AD[52] B
AA6 AD[53] B
Y6 AD[54] B
AA5 AD[55] B
W6 AD[56] B
U8 AD[57] B
V7 AD[58] B
Y4 AD[59] B
W14 AD[5] B
U7 AD[60] B
V6 AD[61] B
T6 AD[62] B
Y2 AD[63] B
U13 AD[6] B
Y15 AD[7] B
V13 AD[8] B
W12 AD[9] B
C4 AUX_VDD P
D5 AUX_VSS P
B21 CACK O
G19 CAS[0] O
F21 CAS[1] O
H19 CAS[2] O
G20 CAS[3] O
AA19 CBE_L[0] B
AA20 CBE_L[1] B
Y21 CBE_L[2] B
W18 CBE_L[3] B
W2 CBE_L[4] B
T5 CBE_L[5] B
V3 CBE_L[6] B
U4 CBE_L[7] B
D14 CMC[0] O
B16 CMC[1] O
C15 CMC[2] O
B15 CMC[3] O
E13 CMC[4] O
C14 CMC[5] O
F12 CMC[6] O
D13 CMC[7] O
B14 CMC[8] O
B18 CMD[0] B
F14 CMD[1] B
C17 CMD[2] B
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PIN SIGNAL USE
D16 CMD[3] B
R6 COUNT_OUT O
F16 DACK O
V17 DEVSEL_L B
P5 ERROR O
C19 FILL O
M17 FILL_ERROR O
P20 FILL_ID B
V18 FRAME_L B
A10 GND P
A12 GND P
A14 GND P
A16 GND P
A17 GND P
A18 GND P
A2 GND P
A20 GND P
A21 GND P
A4 GND P
A5 GND P
A6 GND P
A8 GND P
AA22 GND P
AB12 GND P
AB13 GND P
AB15 GND P
AB17 GND P
AB18 GND P
AB19 GND P
AB2 GND P
AB21 GND P
AB3 GND P
AB5 GND P
AB7 GND P
AB9 GND P
B1 GND P
C22 GND P
D1 GND P
D19 GND P
E22 GND P
F1 GND P
F22 GND P
G1 GND P
G22 GND P
J1 GND P
J22 GND P
K1 GND P
M1 GND P
M22 GND P
N22 GND P
P1 GND P
R22 GND P
T1 GND P
U1 GND P
U22 GND P
V1 GND P
W19 GND P
W22 GND P
W4 GND P
Y1 GND P
U3 GNT_L I
L6 GRU_ACK I
L5 GRU_SEL O
B20 IDLE_BC O
L17 INT O
E14 INT4_VALID[0] I
C16 INT4_VALID[1] I

PIN SIGNAL USE
F13 INT4_VALID[2] I
D15 INT4_VALID[3] I
E12 IOC[0] O
C13 IOC[1] O
D12 IOC[2] O
B13 IOC[3] O
C12 IOC[4] O
B12 IOC[5] O
C11 IOC[6] O
B10 IOD[0] B
E9 IOD[10] B
C7 IOD[11] B
D8 IOD[12] B
B6 IOD[13] B
D7 IOD[14] B
C6 IOD[15] B
F9 IOD[16] B
B5 IOD[17] B
E8 IOD[18] B
D6 IOD[19] B
C10 IOD[1] B
C5 IOD[20] B
E7 IOD[21] B
B4 IOD[22] B
F8 IOD[23] B
N4 IOD[24] B
P3 IOD[25] B
P4 IOD[26] B
N6 IOD[27] B
T2 IOD[28] B
N5 IOD[29] B
E10 IOD[2] B
M4 IOD[30] B
F6 IOD[31] B
D3 IOD[32] B
E4 IOD[33] B
G5 IOD[34] B
D2 IOD[35] B
H6 IOD[36] B
E3 IOD[37] B
F4 IOD[38] B
H5 IOD[39] B
B9 IOD[3] B
E2 IOD[40] B
H4 IOD[41] B
F3 IOD[42] B
G4 IOD[43] B
F2 IOD[44] B
J6 IOD[45] B
G3 IOD[46] B
J5 IOD[47] B
G2 IOD[48] B
J4 IOD[49] B
F10 IOD[4] B
H3 IOD[50] B
H2 IOD[51] B
J3 IOD[52] B
K6 IOD[53] B
J2 IOD[54] B
K5 IOD[55] B
K3 IOD[56] B
K2 IOD[57] B
K4 IOD[58] B
L2 IOD[59] B
C9 IOD[5] B
L3 IOD[60] B
M2 IOD[61] B
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PIN SIGNAL USE
M3 IOD[62] B
N2 IOD[63] B
B8 IOD[6] B
C8 IOD[7] B
D9 IOD[8] B
B7 IOD[9] B
F5 IOD_E[0] B
C3 IOD_E[1] B
G6 IOD_E[2] B
C2 IOD_E[3] B
M5 IOD_E[4] B
N3 IOD_E[5] B
M6 IOD_E[6] B
P2 IOD_E[7] B
V11 IRDY_L B
U15 LOCK_L I
R4 MEM_ACK_L O
J20 MEM_ADDR[0] O
M20 MEM_ADDR[10] O
N21 MEM_ADDR[11] O
M19 MEM_ADDR[12] O
K17 MEM_ADDR[1] O
J21 MEM_ADDR[2] O
K18 MEM_ADDR[3] O
K20 MEM_ADDR[4] O
K21 MEM_ADDR[5] O
K19 MEM_ADDR[6] O
L21 MEM_ADDR[7] O
L20 MEM_ADDR[8] O
M21 MEM_ADDR[9] O
U2 MEM_CS_L I
H21 MEM_EN O
T4 MEM_REQ_L I
N20 MEM_WE_L[0] O
M18 MEM_WE_L[1] O
R5 PAR B
V2 PAR64 B
AA21 PERR_L B
E6 PLL_AGND O
F11 PLL_CLK I
B3 PLL_LP1 I
F7 PLL_LP2 P
E5 PLL_VDD P
D4 PLL_VSS I
A11 PWR5 P
A13 PWR5 P
A15 PWR5 P
A19 PWR5 P
A22 PWR5 P
A3 PWR5 P
A7 PWR5 P
A9 PWR5 P
AA1 PWR5 P
AB1 PWR5 P
AB10 PWR5 P
AB11 PWR5 P
AB14 PWR5 P
AB16 PWR5 P
AB20 PWR5 P
AB22 PWR5 P
AB4 PWR5 P
AB6 PWR5 P
AB8 PWR5 P
B2 PWR5 P
B22 PWR5 P
C1 PWR5 P
D22 PWR5 P
E1 PWR5 P

PIN SIGNAL USE
H1 PWR5 P
H22 PWR5 P
K22 PWR5 P
L1 PWR5 P
L22 PWR5 P
N1 PWR5 P
P22 PWR5 P
R1 PWR5 P
T22 PWR5 P
V22 PWR5 P
W1 PWR5 P
Y22 PWR5 P
J18 RAS[0] O
G21 RAS[1] O
J19 RAS[2] O
H20 RAS[3] O
V4 REQ64_L B
P6 REQ_L O
D10 RES[0] I
B11 RES[1] I
U16 RST_L O
L19 SCAN_IN I
W3 SERR_L B
F17 SET_SEL[0] O
E20 SET_SEL[10] O
F19 SET_SEL[11] O
H18 SET_SEL[12] O
E21 SET_SEL[13] O
J17 SET_SEL[14] O
F20 SET_SEL[15] O
G17 SET_SEL[1] O
C20 SET_SEL[2] O
F18 SET_SEL[3] O
C21 SET_SEL[4] O
D20 SET_SEL[5] O
E19 SET_SEL[6] O
H17 SET_SEL[7] O
D21 SET_SEL[8] O
G18 SET_SEL[9] O
U11 SPARE1 I
R3 SPARE2 I
R2 SPARE3 I
L4 SPARE4 I
E18 SPARE5 I
V5 SPARE6 I
T3 SPARE7 I
Y19 STOP_L B
L18 SYS_RST_L I
P21 TAG_CTL_PAR O
N19 TAG_DIRTY O
E11 TEST_MODE[0] I
D11 TEST_MODE[1] I
E17 TEST_OR_SCAN_OUT O
W11 TRDY_L B
B17 VICTIM_PENDING I
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AlphaStation 600 I/O & External Interconnect
The AlphaStation 600 system has a number of connectors that provide I/O, control,
power, and diagnostic interfaces to the system.  These interconnects, outlined briefly in
the physical description, are described in more detail in this section.  Connector pinout
drawings and tables are listed for most connectors, especially nonstandard ones.  All con-
nector pinout drawings are shown from a side 1 (top) view.

Serial Ports
The AlphaStation 600 system has two serial port connectors, which are arranged in a
stacked configuration in the I/O area at the upper left of the system board. Figure 6-9
shows the pinning of the serial port connector as viewed from the top of the connector.

Figure 6-9 Serial Port Connector

Parallel Port
The AlphaStation 600 SystemBoard contains one 25-pin parallel port, intended for use as
a printer port or other compatible Centronix device.  The parallel Port is located at the up-
per left hand area of the SystemBoard, and is identified as J5 on the UA drawing.

Both the serial and Parallel ports have standard I/O pin assignments. See the RS232 or
Centronics specs for pinout information, or the AlphaStation 600 System Board schemat-
ics.
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Figure 6-10 Parallel Port Connector

Keyboard/Mouse Connectors
The AlphaStation 600 system provides a keyboard/mouse connector in a stacked, mini-
DIN configuration.  Both the keyboard and mouse connectors accept industry standard
PC-compatible keyboards and mice.  The Keyboard/Mouse connector is designated as
J28, in the upper left hand corner of the system board.  The pinout organization of the
connector is shown in Figure 6-11

Figure 6-11 Keyboard/Mouse 
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PCI Connector

Table 6-18 PCI Pin Out - Sorted by pin
number

PIN# PIN NAME PIN TYPE
 A1 TRST_L BI
 A15 RST_L IN
 A17 GNT_L BI
 A20 AD[30] BI
 A22 AD[28] BI
 A23 AD[26] BI
 A25 AD[24] BI
 A26 IDSEL IN
 A28 AD[22] BI
 A29 AD[20] BI
 A3 TMS BI
 A31 AD[18] BI
 A32 AD[16] BI
 A34 FRAME_L BI
 A36 TRDY_L BI
 A38 STOP_L BI
 A4 TDI BI
 A40 SDONE BI
 A41 SBO_L BI
 A43 PAR BI
 A44 AD[15] BI
 A46 AD[13] BI
 A47 AD[11] BI
 A49 AD[9] BI
 A52 CBE_L[0] BI
 A54 AD[6] BI
 A55 AD[4] BI
 A57 AD[2] BI
 A58 AD[0] BI
 A6 INTA_L BI
 A60 REQ64_L BI
 A64 CBE_L[7] BI
 A65 CBE_L[5] BI
 A67 PAR64 BI
 A68 AD[62] BI
 A7 INTC_L BI
 A70 AD[60] BI
 A71 AD[58] BI
 A73 AD[56] BI
 A74 AD[54] BI
 A76 AD[52] BI
 A77 AD[50] BI
 A79 AD[48] BI
 A80 AD[46] BI
 A82 AD[44] BI
 A83 AD[42] BI
 A85 AD[40] BI
 A86 AD[38] BI
 A88 AD[36] BI
 A89 AD[34] BI
 A91 AD[32] BI

PIN# PIN NAME PIN TYPE
 B11 PRSNT2_L BI
 B16 CLK IN
 B18 REQ_L BI
 B2 TCK BI
 B20 AD[31] BI
 B21 AD[29] BI  
B23 AD[27] BI
 B24 AD[25] BI
 B26 CBE_L[3] BI
 B27 AD[23] BI
 B29 AD[21] BI
 B30 AD[19] BI  
B32 AD[17] BI
 B33 CBE_L[2] BI
 B35 IRDY_L BI
 B37 DEVSEL_L BI
 B39 LOCK_L BI
 B4 TDO BI
 B40 PERR_L BI
 B42 SERR_L BI
 B44 CBE_L[1] BI
 B45 AD[14] BI
 B47 AD[12] BI
 B48 AD[10] BI
 B52 AD[8] BI
 B53 AD[7] BI
 B55 AD[5] BI
 B56 AD[3] BI
 B58 AD[1] BI
 B60 ACK64_L BI
 B65 CBE_L[6] BI
 B66 CBE_L[4] BI
 B68 AD[63] BI
 B69 AD[61] BI
 B7 INTB_L BI
 B71 AD[59] BI
 B72 AD[57] BI
 B74 AD[55] BI
 B75 AD[53] BI
 B77 AD[51] BI
 B78 AD[49] BI
 B8 INTD_L BI
 B80 AD[47] BI
 B81 AD[45] BI
 B83 AD[43] BI
 B84 AD[41] BI
 B86 AD[39] BI
 B87 AD[37] BI
 B89 AD[35] BI
 B9 PRSNT1_L BI
 B90 AD[33] BI
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Table 6-19 PCI Pin Out - Sorted by Signal
Name

 PIN# PIN NAME PIN TYPE
 B60 ACK64_L BI
 A58 AD[0] BI
 B48 AD[10] BI
 A47 AD[11] BI
 B47 AD[12] BI
 A46 AD[13] BI
 B45 AD[14] BI
 A44 AD[15] BI
 A32 AD[16] BI
 B32 AD[17] BI
 A31 AD[18] BI
 B30 AD[19] BI
 B58 AD[1] BI
 A29 AD[20] BI
 B29 AD[21] BI
 A28 AD[22] BI
 B27 AD[23] BI
 A25 AD[24] BI
 B24 AD[25] BI
 A23 AD[26] BI
 B23 AD[27] BI
 A22 AD[28] BI
 B21 AD[29] BI
 A57 AD[2] BI
 A20 AD[30] BI
 B20 AD[31] BI
 A91 AD[32] BI
 B90 AD[33] BI
 A89 AD[34] BI
 B89 AD[35] BI
 A88 AD[36] BI
 B87 AD[37] BI
 A86 AD[38] BI
 B86 AD[39] BI
 B56 AD[3] BI
 A85 AD[40] BI
 B84 AD[41] BI
 A83 AD[42] BI
 B83 AD[43] BI
 A82 AD[44] BI
 B81 AD[45] BI
 A80 AD[46] BI
 B80 AD[47] BI
 A79 AD[48] BI
 B78 AD[49] BI
 A55 AD[4] BI
 A77 AD[50] BI
 B77 AD[51] BI
 A76 AD[52] BI
 B75 AD[53] BI
 A74 AD[54] BI
 B74 AD[55] BI

PIN# PIN NAME PIN TYPE
 A73 AD[56] BI
 B72 AD[57] BI
 A71 AD[58] BI
 B71 AD[59] BI
  B55 AD[5] BI
 A70 AD[60] BI
 B69 AD[61] BI
 A68 AD[62] BI
 B68 AD[63] BI
 A54 AD[6] BI
 B53 AD[7] BI
 B52 AD[8] BI
 A49 AD[9] BI
 A52 CBE_L[0] BI
 B44 CBE_L[1] BI
 B33 CBE_L[2] BI
 B26 CBE_L[3] BI
 B66 CBE_L[4] BI
 A65 CBE_L[5] BI
 B65 CBE_L[6] BI
 A64 CBE_L[7] BI
 B16 CLK IN
 B37 DEVSEL_L BI
 A34 FRAME_L BI
 A17 GNT_L BI
 A26 IDSEL IN
 A6 INTA_L BI
 B7 INTB_L BI
 A7 INTC_L BI
 B8 INTD_L BI
 B35 IRDY_L BI
 B39 LOCK_L BI
 A43 PAR BI
 A67 PAR64 BI
 B40 PERR_L BI
 B9 PRSNT1_L BI
 B11 PRSNT2_L BI
 A60 REQ64_L BI
 B18 REQ_L BI
 A15 RST_L IN
 A41 SBO_L BI
 A40 SDONE BI
 B42 SERR_L BI
 A38 STOP_L BI
 B2 TCK BI
 A4 TDI BI
 B4 TDO BI
 A3 TMS BI
 A36 TRDY_L BI
 A1 TRST_L BI
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EISA Connector

Table 6-20 EISA Pin Out - Sorted by Pin
Number

PIN# PIN NAME      PIN TYPE
 A1 IOCHK_L OUT
 A10 CHRDY BI
 A11 AEN IN
 A12 SA[19] BI
 A13 SA[18] BI
 A14 SA[17] BI
 A15 SA[16] BI
 A16 SA[15] BI
 A17 SA[14] BI
 A18 SA[13] BI
 A19 SA[12] BI
 A2 D[7] BI
 A20 SA[11] BI
 A21 SA[10] BI
 A22 SA[9] BI
 A23 SA[8] BI
 A24 SA[7] BI
 A25 SA[6] BI
 A26 SA[5] BI
 A27 SA[4] BI
 A28 SA[3] BI
 A29 SA[2] BI
 A3 D[6] BI
 A30 SA[1] BI
 A31 SA[0] BI
 A4 D[5] BI
 A5 D[4] BI
 A6 D[3] BI
 A7 D[2] BI
 A8 D[1] BI
 A9 D[0] BI
 B11 SMWTC_L IN
 B12 SMRDC_L IN
 B13 IOWC_L IN
 B14 IORC_L IN
 B15 DAK_L[3]  IN
 B16 DRQ[3] OUT
 B17 DAK_L[1] IN
 B18 DRQ[1] OUT
 B19 REFRESH_L BI
 B2 RESDRV IN
 B20 BCLK IN
 B21 IRQ[7] OUT
 B22 IRQ[6] OUT
 B23 IRQ[5] OUT
 B24 IRQ[4] OUT
 B25 IRQ[3] OUT
 B26 DAK_L[2] IN
 B27 TC BI
 B28 BALE IN
 B30 OSC IN
 B4 IRQ[9] OUT
 B6 DRQ[2] OUT
 B8 NOWS_L OUT
 C1 SBHE_L BI
 C10 MWTC_L BI
 C11 D[8] BI
 C12 D[9] BI
 C13 D[10] BI
 C14 D[11] BI
 C15 D[12] BI
 C16 D[13] BI
 C17 D[14] BI
C18 D[15] BI
 C2 LA[23] BI
 C3 LA[22] BI
 C4 LA[21] BI
 C5 LA[20] BI

PIN# PIN NAME    PIN TYPE
 C6 LA[19] BI
 C7 LA[18] BI
 C8 LA[17] BI
 C9 MRDC_L IN
 D1 M16_L IN
 D10 DAK_L[5] IN
 D11 DRQ[5] OUT
 D12 DAK_L[6] IN
 D13 DRQ[6] OUT
 D14 DAK_L[7] IN
 D15 DRQ[7] OUT
 D17 MASTER16_L OUT
 D2 IO16_L OUT
 D3 IRQ[10] OUT
 D4 IRQ[11] OUT
 D5 IRQ[12] OUT
 D6 IRQ[15] OUT
 D7 IRQ[14] OUT
 D8 DAK_L[0] IN
 D9 DRQ[0] OUT
 E1 CMD_L IN
 E10 WR BI
 E17 BE_L[1] BI
 E18 LA_L[31] BI
 E2 START_L BI
 E20 LA_L[30] BI
 E21 LA_L[28] BI
 E22 LA_L[27] BI
 E23 LA_L[25] BI
 E26 LA[15] BI
 E27 LA[13] BI
 E28 LA[12] BI
 E29 LA[11] BI
 E3 EXRDY BI
 E31 LA[9] BI
 E4 EX32_L BI
 E7 EX16_L BI
 E8 SLBURST_L BI
 E9 MSBURST_L BI
 F10 MIO BI
 F11 LOCK_L BI
 F15 BE_L[3] BI
 F17 BE_L[2] BI
 F18 BE_L[0] BI
 F21 LA_L[29] BI
 F23 LA_L[26] BI
 F24 LA_L[24]  BI
 F26 LA[16] BI
 F27 LA[14] BI
 F31 LA[10] BI
 G1 LA[7] BI
 G10 D[22] BI
 G12 D[25] BI
 G13 D[26] BI
 G14 D[28] BI
 G17 D[30] BI
 G18 D[31] BI
 G19 MREQ_L OUT
 G3 LA[4] BI
 G4 LA[3] BI
 G7 D[17] BI
 G8 D[19] BI
 G9 D[20] BI
 H1 LA[8] BI
 H10 D[21] BI
 H11 D[23] BI
 H12 D[24] BI
 H14 D[27] BI
 H16 D[29] BI
 H19 MAK_L IN
 H2 LA[6] BI
 H3 LA[5] BI
 H5 LA[2] BI
 H7 D[16] BI
 H8 D[18] BI
 



       AlphaStation 600 Physical Partitioning   6-43

Table 6-21 EISA Pin Out Sorted by Signal
Name

PIN# PIN NAME PIN TYPE
 A11 AEN   IN
 B28 BALE IN
 B20 BCLK IN
 F18 BE_L[0] BI
 E17 BE_L[1] BI
 F17 BE_L[2] BI
 F15 BE_L[3] BI
 A10 CHRDY BI
 E1 CMD_L IN
 D8 DAK_L[0]  IN
 B17 DAK_L[1]  IN
 B26 DAK_L[2]  IN
 B15 DAK_L[3]  IN
 D10 DAK_L[5]  IN
 D12 DAK_L[6]  IN
 D14 DAK_L[7]  IN
 D9 DRQ[0] OUT
 B18 DRQ[1] OUT
 B6 DRQ[2] OUT
 B16 DRQ[3] OUT
 D11 DRQ[5] OUT
 D13 DRQ[6] OUT
 D15 DRQ[7] OUT
 A9 D[0] BI
 C13 D[10] BI
 C14 D[11] BI
 C15 D[12] BI
 C16 D[13] BI
 C17 D[14] BI
 C18 D[15] BI
 H7 D[16] BI
 G7 D[17] BI
 H8 D[18] BI
 G8 D[19] BI
 A8 D[1] BI
 G9 D[20] BI
 H10 D[21] BI
 G10 D[22] BI
 H11 D[23] BI
 H12 D[24] BI
 G12 D[25] BI
 G13 D[26] BI
 H14 D[27] BI
 G14 D[28] BI
 H16 D[29] BI
 A7 D[2] BI
 G17 D[30] BI
 G18 D[31] BI
 A6 D[3] BI
 A5 D[4] BI
 A4 D[5] BI
 A3 D[6] BI
 A2 D[7] BI
 C11 D[8] BI
 C12 D[9] BI
 E7 EX16_L BI
 E4 EX32_L BI
 E3 EXRDY BI
 D2 IO16_L OUT
 A1 IOCHK_L OUT
 B14 IORC_L IN
 B13 IOWC_L IN
 D3 IRQ[10] OUT
 D4 IRQ[11] OUT
 D5 IRQ[12] OUT
 D7 IRQ[14] OUT
 D6 IRQ[15] OUT
 B25 IRQ[3] OUT
 B24 IRQ[4] OUT
 B23 IRQ[5] OUT
 B22 IRQ[6] OUT
 B21 IRQ[7] OUT
 B4 IRQ[9] OUT
F31 LA[10] BI

PIN# PIN NAME PIN TYPE
 E29 LA[11] BI
 E28 LA[12] BI
 E27 LA[13] BI
 F27 LA[14] BI
 E26 LA[15] BI
 F26 LA[16] BI
 C8 LA[17] BI
 C7 LA[18] BI
 C6 LA[19] BI
 C5 LA[20] BI
 C4 LA[21] BI
 C3 LA[22] BI
 C2 LA[23] BI
 H5 LA[2] BI
 G4 LA[3] BI
 G3 LA[4] BI
 H3 LA[5] BI
 H2 LA[6] BI
 G1 LA[7] BI
 H1 LA[8] BI
 E31 LA[9] BI
 F24 LA_L[24] BI
 E23 LA_L[25] BI
 F23 LA_L[26] BI
 E22 LA_L[27] BI
 E21 LA_L[28] BI
 F21 LA_L[29] BI
 E20 LA_L[30] BI
 E18 LA_L[31] BI
 F11 LOCK_L BI
 D1 M16_L IN
 H19 MAK_L IN
 D17 MASTER16_L OUT
 F10 MIO BI
 C9 MRDC_L IN
 G19 MREQ_L OUT
 E9 MSBURST_L BI
 C10 MWTC_L BI 
 B8 NOWS_L OUT
 B30 OSC IN
 B19 REFRESH_L BI
 B2 RESDRV IN
 A31 SA[0] BI
 A21 SA[10] BI
 A20 SA[11] BI
 A19 SA[12] BI
 A18 SA[13] BI
 A17 SA[14] BI
 A16 SA[15] BI
 A15 SA[16] BI
 A14 SA[17] BI
 A13 SA[18] BI
 A12 SA[19] BI
 A30 SA[1] BI
 A29 SA[2] BI
 A28 SA[3] BI
 A27 SA[4] BI
 A26 SA[5] BI
 A25 SA[6] BI
 A24 SA[7] BI
 A23 SA[8] BI
 A22 SA[9] BI
 C1 SBHE_L BI
 E8 SLBURST_L BI
 B12 SMRDC_L IN
 B11 SMWTC_L IN
 E2 START_L BI
 B27 TC BI
 E10 WR BI
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Power Connectors
The SystemBoard has three power connectors, each connectors is keyed to prevent re-
versal and all three are different sizes to prevent mixing connector and plug.  The three
connectors supply the following voltages:  +5.0, +3.3 +12.0, -5.0, -12.0.  The primary volt-
ages (that is, significant current supplied) are +5 and +3 volts.  One connector is dedi-
cated to +5.0V, another to +3.3V, while the final connector supplies the remaining volt-
ages, and the control signals to the power supply.  The AlphaStation 600 system is
designed to accommodate dual power supplies for additional power requirements (not as
a redundancy feature).  The current AlphaStation 600 configurations will only use a single
supply, however.  Table 6-22 lists the signal pinout and description for the third (control)
power connector.

Figure 6-12 Control Power Connector Pinout
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Table 6-22 Control Power Connector Pinout

The other two power connectors (J19 and J20) supply +5.0 and +3.3 Volts respectively;
the connector keying and pin numbering is identical to J21, except for the pin count.  

Pinout for these is as follows:

• J19 :  pins 1-12 = GND (Ground), pins 13-24 = PWR5 (+5.0 Volts)

• J20 : pins 1-10 = GND (Ground), pins 11-20 = PWR3 (+3.3 Volts)

Fan Connectors
The AlphaStation 600 SystemBoard has connectors for two fans, which run off a sepa-
rately supplied voltage from the control power connector (J21).  This voltage varies from
-6.0V to -12.0V depending on thermal conditions.  There are two keyed connectors on the
SystemBoard (J24, J26) for fan power, into which the fan cables connect.  The System-
Board monitors the current being drawn through these connectors and asserts
FAN_FAULT_H if either fan stops running, causing the power supply to shut down the
system.  Pinning for J24, J26 is as follows:

• Pin 1 = FAN_P (ground)

• Pin 2 = FAN_M (-12.0 Volts)

PIN SIGNAL DESCRIPTION

1 FAN_P Positive Fan Power (actually GND)

2 GND System GND

3 PWR12  + 12.0 Volts

4 PWR-12 - 12.0 Volts

5 PWR5 +5.0 Volt Sense Line 

6 GND +5.0 Volt Sense Return

7 FAN_FAULT_H 0=Fan OK, 1= Fan Failure (shutdown supply)

8 DC_OK1_H Power supply 1 DC OK.  (1= power OK, 0 = bad)

9 DC_OK2_H Power supply 2 DC OK. (as above)

10 NC Reserved for future use

11 NC Reserved for future use

12 FAN_M Negative Fan Power (actually -12V)

13 PRESENT_L1 Power Supply 1 Present (0=not present, 1= present)

14 PRESENT_L2 Power Supply 2 Present (as above)

15 NC Reserved for future use

16 PWR-5 -5.0 Volts

17 PWR3 +3.3 Volt Sense line

18 GND +3.3 Volt Sense Return

19 DC_ENABLE_L 0= DC power off, 1 = DC power on

20 NC Reserved for future use

21 NC Reserved for future use

22 NC Reserved for future use
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OCP Connector
The Operator Control Panel (OCP) plugs into the SystemBoard via a connector at the bot-
tom of the SystemBoard (J22).  The OCP is a liquid crystal display panel and push-button
switch assembly which is located at the front of the cabinet.  The following functions are
controlled from the OCP:

• System Power  (DC_ENABLE is connected to the leftmost of the OCP switches)

• CPU Halt  (the EV5 Halt interrupt is connected to the middle OCP switch)

• System Reset (OCP_RESET, which is combined to form SYS_RST inside the GRU,
is connected to the rightmost OCP switch)

• Status display via the LCD panel.  This panel is driven from an I2C controller which
sits on the X-BUS, a utility bus controlled from the PCI/EISA bridge chips.  The con-
sole uses the OCP to display system status.
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Figure 6-13 OCP Connector Pinout

Table 6-23 OCP Connector Pinout

Pin Signal Description

1 PWR12 +12.0 Volts

2 PWR5 +5.0 Volts

3 GND Ground

4 PWR5 +5.0 Volts

5 GND Ground

6 OCP_HALT_L System Halt, inverted & sent to EV5

7 OCP_RESET_L System Reset button, sent to GRU and then to EV5

8 SDA Serial Data out to OCP display panel

9 SCL Serial Clock out to OCP display panel

10 DC_ENABLE_L Power supply enable switch (0=power on) 



6-48   AlphaStation 600 Physical Partitioning

Floppy Connector
The AlphaStation 600 System Board supports an internal floppy drive, which connects to
the system board via a standard 34-pin floppy connector at the lower right corner of the
board (J18).
The floppy drive is controlled from a National 87312 Super-I/O controller, which acts as an
ISA device in the system.

Figure 6-14 Floppy Connector Pinout

Table 6-24 Floppy Connector Pinout (Signals only)

Pins 1,3,5,7,9,11,13,15,19,21,23,25,29,31,33 are GND (ground)
Pins 4,17,27 are not connected

Pin Signal

2 DENSEL

6 DRATE0

8 INDEX_L

10 MTR0_L

12 DRSEL1

14 DRSEL0

16 MTR1_L

18 DIR_L

20 STEP_L

22 WRDATA_L

24 WGATE_L

26 TRK0_L

28 WP_L

30 RDDATA_L

32 HDSEL_L

34 DISKCH_L
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Serial ROM Connector
A serial ROM port connector is provided to allow downline loading of code directly into
EV5 ICache, and also functions as a serial communication port to allow mini-console pro-
grams to communicate without using the system’s serial I/O features.  The SROM port is
a "standard" 10 pin interface, which has been used previously on other workstation prod-
ucts.  Pinout is shown in Figure 6-15 and listed in Table 6-25.

Figure 6-15 SROM Port Connector Pinout

Table 6-25 SROM Port Connector Pinout

Pin Signal Description

1 PWR5 +5.0 Volts

2 GND Ground

3 PWR12 +12.0 Volts

4 GND Ground

5 GND Ground

6 GND Ground

7 VSDETECT Power supply sense line

8 PWR5 +5.0 Volts

9 SROM_CLK SROM clock & EV5 Data XMIT

10 SROM_DAT SROM data & EV5 Data RCV
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System Testability Features
The AlphaStation 600 system has a number of built-in test hooks for chip and module
level testing.  The list that follows provides a brief overview of these features.

• The EV5 SROM interface allows direct communication with EV5, allowing mini-
console or diagnostic programs to be run in EV5 with a minimum set of hardware run-
ning.

• SROM diagnostics can be run by selecting different positions for the SROM jumpers. 
The AlphaStation 600 system can select among 8 programs in SROM.

• EV5 contains a JTAG port which can be used in In-Circuit-Test or during chip testing. 
The AlphaStation 600 system board does not provide a JTAG connector to this port,
however.

• The GRU, and CIA have scan capability, and outputs can be tri-stated for ICT testing. 
TEST_MODE bit values are defined in table 6-26.

• Vendor supplied chips, such as the PCEB, ESC, Super I/O, and 8242 controller, have
varying degrees of test features.  Output enables on these devices have soft grounds,
and test outputs have been brought out to via sites accessible from both sides of the
module.

• PCI options slots have JTAG test pins, which are accessible for ICT testing.  The Al-
phaStation 600 system does not chain the JTAG ports together or provide any JTAG
support logic.

• PAL devices are tri-state-able.  There is only one PAL in the AlphaStation 600 sys-
tem; it provides PCI arbitration and I2C bus decoding.  The PAL has an output enable
to allow tri-stating.

Table 6-26 describes the values of the TEST_MODE bits on the CIA, DSW, and GRU
ASICs.  These pins are tied via resistors to the "Normal Operation" setting (01).  They can
be pulled up/down during In-Circuit test to select Scan mode or to Tri-State the outputs of
the device.  

Table 6-26 ASIC Test Mode Settings

The AlphaStation 600 system has incorporated a number of features to minimize system
noise transmission to the outside environment (in order to comply with FCC regulations),
to prevent outside noise from getting in, and to prevent internal noise coupling (crosstalk). 
Some of these features are outlined below:

• The external I/O area of the board (upper left corner of the system board) has been
isolated from the rest of the system with an all-layer void of 100 mils.  Signals cross-
ing this void do so over in-line choke devices.

• The AlphaStation 600 system board provides a set of plated slots, connected to the
I/O area ground plane, for use with an attachable I/O shield.  The shield is used to
keep EMI noise from leaking through gaps in the cabinet from the I/O connectors.

• Transorb components and capacitors have been added to external I/O lines to help
suppress line transients that may be induced from the outside environment.           

T1 T0 Description

0 0 Tri-State all Outputs

0 1 Normal Operation Mode

1 0 SCAN mode

1 1 PLL Test Mode
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The serial, parallel, keyboard, and mouse ports all reside in the plane split area and
share this protection.

• MMB modules serve as an EMI barrier between the high speed section (top), and the
I/O area (bottom).  MMB modules are connected to chassis via a conductive outer
edge, and have shunts to ground on the system board at selected locations;  spring
clips are used to contact EMI landing pads on the system board to close off the gap
below the MMB modules in order to reduce EMI noise.

• Selected mounting holes on the system board have been plated to allow the system
board ground plane to be attached directly to the chassis for EMI reduction purposes.
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7 Control and Status Registers

Register Types
All registers are on naturally aligned 64-byte addresses. There are several categories of
AlphaStation 600 system registers.

Table 7-1 AlphaStation 600 Register Categories

Most of the CSRs can be read/written by the software. Some of the Diagnostic registers
are reserved for hardware debug and should not be touched by software (that is, these
registers should only be manipulated in a well-controlled environment (for example,
power-up)).

Register Addressing
The CSRs and Flash ROM are located in the range: 87 4000 0000 to 87 FFFF FFFF: 

Table 7-2 Hardware Specific Register Address Map

The address space is a hardware-specific variant of sparse space encoding. For the
CSRs, CPU address bits <27:6> are used as a longword address and CPU address <5:0>
must be zero. All the CIA registers are accessed with a LW granularity.  

For the Flash ROM, CPU address <30:6> defines a byte address. The fetched byte is al-
ways returned to the CPU  in the first byte lane (bits <7:0>). 

 Category  Primary User.

 PCI Control  registers
 Scatter/Gather Address Translation registers
 Error Reporting Registers
 Hardware Configuration Registers
 Diagnostic Registers

 software
 hardware, software. 
 software, firmware/diagnostics
 firmware/diagnostics
 hardware debug, diagnostics

Start address Selected Region

87.4000.0000 CIA General Control, Diagnostic, Performance Monitoring, and Error
Logging registers

87.5000.0000 CIA  Memory Control registers.

87.6000.0000 CIA: PCI Address Translation (S/G, Windows, etc)

87.7000.0000  reserved

87.8000.0000 Flash ROM, CSRs in the GRU ASIC, LEDs
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General Registers

Table 7-3 General CIA CSRs  (Base = 87.4000.0000 Hex)

Table 7-4 Diagnostic Registers (Base = 87.4000.0000 Hex)

Table 7-5 Performance Monitoring Registers (Base = 87.4000.0000 Hex)

Table 7-6 Error Registers (Base = 87.4000.0000 Hex)

Name Mnemonic Offset

CIA Revision CIA_REV 080

PCI Latency PCI_LAT 0C0

CIA Control Register CIA_CTRL 100

Hardware Address Extension Sparse memory HAE_MEM 400

Hardware Address Extension Sparse I/O space HAE_IO 440

Configuration Register CFG 480

CIA Acknowledgment Control Register CACK_EN 600

Name Mnemonic Offset

CIA Diagnostic Control Register CIA_DIAG 2000

Diagnostic Check Register DIAG_CHECK 3000

Name Mnemonic Offset

Performance Monitor Register PERF_MONITO
R

4000

Performance Monitor Control Register PERF_CONTRO
L

4040

Name Mnemonic Offset

CPU Error Information Register 0 CPU_ERR0 8000

CPU Error Information Register 1 CPU_ERR1 8040

CIA Error Register CIA_ERR 8200

CIA Status Register CIA_STAT 8240

CIA Error Mask Register ERR_MASK 8280

CIA Syndrome Register CIA_SYN 8300

CIA Memory Port Status Register 0 MEM_ERR0 8400

CIA Memory Port Status Register 1 MEM_ERR1 8440

PCI Error Status Register 0 PCI_ERR0 8800

PCI Error Status Register 1 PCI_ERR1 8840

PCI Error Status Register 2  PCI_ERR2 8880
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Memory Control Registers 

Table 7-7 System Configuration Registers
 (Base Address = 87.5000.0000 Hex)

PCI Address-related Registers

Table 7-8 PCI Address and Scatter/Gather Registers 
 (Base Address = 87.6000.0000 Hex)

Name Mnemonic Offset

Memory Configuration Register MCR 000

Memory Base Address Register 0
Memory Base Address Register 2
Memory Base Address Register 4
Memory Base Address Register 6
Memory Base Address Register 8
Memory Base Address Register 10
Memory Base Address Register 12
Memory Base Address Register 14

MBA0
MBA2
MBA4
MBA6
MBA8
MBAA
MBAC
MBAE

600
680
700
780
800
880
900
980

Memory Timing Information Register 0
Memory Timing Information Register 1
Memory Timing Information Register 2

TMG0
TMG1
TMG2

B00
B40
B80

Name Mnemonic Offset

Scatter/Gather Translation Buffer Invalidate TBIA 100

Window Base0 
Window Mask0
Translated Base0 

W0_BASE
W0_MASK
T0_BASE

400
440
480

Window Base1 
Window Mask1
Translated Base1 

W1_BASE
W1_MASK
T1_BASE

500
540
580

Window Base2 
Window Mask2
Translated Base2 

W2_BASE
W2_MASK
T2_BASE

600
640
680

Window Base3 
Window Mask3
Translated Base3 

W3_BASE
W3_MASK
T3_BASE

700
740
780

Window DAC Base DAC 7C0
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Scatter/Gather Address Translation Registers

Table 7-9 Address Translation Registers
 (Base Address = 87.6000.0000 Hex)

Name Mnemonic Offset

Lockable Translation Buffer Tag0
Lockable Translation Buffer Tag1
Lockable Translation Buffer Tag2 
Lockable Translation Buffer Tag3 

LTB_TAG0
LTB_TAG1
LTB_TAG2
LTB_TAG3

800
840
880
8C0

Translation Buffer Tag0 
Translation Buffer Tag1 
Translation Buffer Tag2 
Translation Buffer Tag3 

TB_TAG0
TB_TAG1
TB_TAG2
TB_TAG3

900
940
980
9C0

Translation Buffer 0 Page0 
Translation Buffer 0 Page1 
Translation Buffer 0 Page2
Translation Buffer 0 Page3 

TB0_PAGE0
TB0_PAGE1
TB0_PAGE2
TB0_PAGE3

1000
1040
1080
10C0

Translation Buffer 1 Page0 
Translation Buffer 1 Page1 
Translation Buffer 1 Page2
Translation Buffer 1 Page3 

TB1_PAGE0
TB1_PAGE1
TB1_PAGE2
TB1_PAGE3

1100
1140
1180
11C0

Translation Buffer 2 Page0 
Translation Buffer 2 Page1 
Translation Buffer 2 Page2
Translation Buffer 2 Page3 

TB2_PAGE0
TB2_PAGE1
TB2_PAGE2
TB2_PAGE3

1200
1240
1280
12C0

Translation Buffer 3 Page0 
Translation Buffer 3 Page1 
Translation Buffer 3 Page2
Translation Buffer 3 Page3 

TB3_PAGE0
TB3_PAGE1
TB3_PAGE2
TB3_PAGE3

1300
1340
1380
13C0

Translation Buffer 4 Page0 
Translation Buffer 4 Page1 
Translation Buffer 4 Page2
Translation Buffer 4 Page3 

TB4_PAGE0
TB4_PAGE1
TB4_PAGE2
TB4_PAGE3

1400
1440
1480
14C0

Translation Buffer 5 Page0 
Translation Buffer 5 Page1 
Translation Buffer 5 Page2
Translation Buffer 5 Page3 

TB5_PAGE0
TB5_PAGE1
TB5_PAGE2
TB5_PAGE3

1500
1540
1580
15C0

Translation Buffer 6 Page0 
Translation Buffer 6 Page1 
Translation Buffer 6 Page2
Translation Buffer 6 Page3 

TB6_PAGE0
TB6_PAGE1
TB6_PAGE2
TB6_PAGE3

1600
1640
1680
16C0

Translation Buffer 7 Page0 
Translation Buffer 7 Page1 
Translation Buffer 7 Page2
Translation Buffer 7 Page3 

TB7_PAGE0
TB7_PAGE1
TB7_PAGE2
TB7_PAGE3

1700
1740
1780
17C0
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Flash ROM Space
The region 87.8000.0000 to 87.FFFF.FFFF is used to access the GRU ASIC on the IOD
bus. The GRU has a number of CSRs for the interrupt logic and the memory/cache pres-
ence detect logic. The GRU sources the Lemmon bus on which are attached 1024 KB of
Flash ROM, (optional) LEDs and (possibly) some jumpers. 

This section describes the software visible features (registers, Flash ROM, etc). For more
details on the IOD bus protocol to the GRU, please refer to the GRU ASIC specification.

Addressing
For hardware convenience, a simplified version of sparse-space is used to address this
region. CPU address <5:0> must be zero. The remainder of the CPU address space de-
pends on whether the CSRs or the Flash ROM is being accessed:

• CSRs:  CPU address <29:6> is used as a longword address for the various CSRs
(see Table 7-10). 

• FLASH ROM:  The address is defined in Figure 7-1 and is tabulated in Table 7-10. 

• Flash ROM address scheme

Figure 1-1 Flash ROM Address Scheme

There is a jumper to enable the VPP pin the Flash ROMs and also the FROM_WRT_EN 
bit <0> of CIA_DIAG must be set before the FROM can be programmed or erased. For
more details of how to program the FROM see the 23000Z4-01 EPROM 256Kx8 CMOS
Flash specification.

 31  30  29                                                                                      12  11  10  9   8   7    6  5            0

10           256 KB  Flash ROM byte-address          1 1          x x  000000

00 : Flash ROM 0
01 : Flash ROM 1
10 : Flash ROM 2
11 : Flash ROM 3
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Table 7-10 GRU Space - (Base Address = 87.8000.0000 Hex)

CPU Address Selected Region Mnemonic

87.8000.0000 
87.8000.0040 
87.8000.0080 
87.8000.00C0 
87.8000.0100

Interrupt Request register
Interrupt Mask register
Interrupt Level/edge select register
Interrupt High/Low IRQ select register
Interrupt Clear register

INT_REQ
INT_MASK
INT_EDGE
INT_HILO
INT_CLEAR

87.8000.0140
to
87.8000.01C0

reserved

87.8000.0200 Cache and memory configuration register CACHE_CNFG

87.8000.0240
to
87.8000.02C0

reserved

87.8000.0300 SET Configuration Register SCR

87.8000.0340
to
87.8000.07C0

reserved

87.8000.0800 LEDs (not used in current AlphaStation 600
systems)

LED

87.8000.0840
to
87.8000.08C0

reserved

87.8000.0900 Force System Reset RESET

87.8000.0940
to
87.8000.0BC0

reserved

87.8000.0Cxx
to
87.BFFF.FCxx 

Flash ROM bank 0
256 KB byte-addressed by CPU address<29:12>

87.8000.0Dxx
to
87.BFFF.FDxx 

Flash ROM bank 1
256 KB byte-addressed by CPU address<29:12>

87.8000.0Exx
to
87.BFFF.FExx 

Flash ROM bank 2
256 KB byte-addressed by CPU address<29:12>

87.8000.0Fxx
to
87.BFFF.FFxx 

Flash ROM bank 3
256 KB byte-addressed by CPU address<29:12>

87.C000.00xx
to
87.FFFF.FFxx

reserved
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EV5 Configuration Registers

EV5 Registers
Detailed descriptions of the EV5 registers are available in the EV5 specification1. The reg-
isters specific to the The AlphaStation 600 system implementation are described in Table
7-11.

Table 7-11 EV5 System Specific Registers 

Name Mnemonic

Scache Control Register SC_CTL

BCache Control Register BC_CONTROL

BCache Configuration Register BC_CONFIG

1 DECchip 21164-AA (EV5 CPU) Functional Specification
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General CIA Registers - Description

CIA Revison Register  (CIA_REV)
Access :
                    Read only, 87.4000.0080  
Format :

Description:

The CIA revision Register (CIA_REV) contains the CIA revision.

Table 7-12 CIA Revision Register (CIA_REV)

CIA_REV

31                                                                                       8  7                               0

0

Name Extent Access Init State

<7:0> RO ASIC revCIA_REV

CIA_REV specifies the revision of the CIA ASIC
• 0000.0000 is pass 1 CIA.  Intetnded for early debug and initial software debug
• 0000.0001 is pass 2 CIA.  Works at speed, fixed bugs found in first pass

reserved <31:8> RO  0
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PCI Latency Register  (PCI_LAT)
Access :
                  Read/Write, 87.4000.00C0 
Format :

Description:

The PCI Latency Register (PCI_LAT) contains the PCI master latency timeout value.

Table 7-13 CIA Configuration Register (CIA_CNFG)

LATENCY

31                                                             16  15                        8  7                       0

0                                                0 0

Name Extent Access Init State

reserved <7:0> RO 0 

<15:8> RW 0LATENCY

PCI master Latency Timer in PCI clock cycles

reserved <31:16> RO  0
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CIA Control Register (CIA_CTRL)
Access:

Read/Write, 87.4000.0100
Format:

Description:

The CIA_CTRL register is a general control register for the CIA.

31 0

see Table 7-14.
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Table 7-14 CIA Control Register (CIA_CTRL)

Name Extent Access Init State

<0> RW 0 PCI_EN

0: CIA asserts reset to the PCI
1: CIA does not assert reset to the PCI

<1> RW 0PCI_LOCK_EN

0: CIA will not lock when the PCI tries to lock it
1: CIA will lock when the PCI tries to lock it

<2> RW 0PCI_LOOP_EN

0: CIA will not respond as a target when it is the master
1: CIA will respond as a target when it is the master

<3> RW 0 FST_BB_EN

0: CIA will not initiate fast back-to-back PCI transactions
1: CIA will initiate fast back-to-back PCI transactions

<4> RW 0PCI_MST_EN

0: CIA will not initiate PCI transactions
1: CIA will initiate PCI transactions

<5> RW 0PCI_MEM_EN

0: CIA will not respond to PCI transactions
1: CIA will respond to PCI transactions

<6> RW 0PCI_REQ64_EN

0: CIA will not request 64-bit PCI data transactions 
1: CIA will request 64-bit PCI data transactions

<7> RW 0PCI_ACK64_EN

0: CIA will not accept 64-bit PCI data transactions 
1: CIA will accept 64-bit PCI data transactions

<8> RW 0ADDR_PE_EN

0: CIA will not check PCI address parity errors
1: CIA will check PCI address parity errors

<9> RW 0PERR_EN

0: CIA will not check PCI data parity errors
1: CIA will check PCI data parity errors

<10> RW 0FILL_ERR_EN

0: CIA will not assert FILL_ERROR 
1: CIA will assert FILL_ERROR, if an error occurs during a EV5 read miss

<11> RW 0MCHK_ERR_EN

0: CIA will not assert the ERROR Pin 
1: CIA will assert the ERROR pin to report system machine check
conditions

<12> RW 0ECC_CHK_EN

0: CIA will not check IOD Data
1: CIA will check the IOD Data

<13> RW 0ASSERT_IDLE_BC

0: CIA will not assert IDLE_BC pin when asserting ADDR_BUS_REQ pin
1: CIA will assert IDLE_BC pin when asserting ADDR_BUS_REQ pin

<14> RW 0CON_IDLE_BC

0: CIA may generate a non-contiguous IDLE_BC
1: CIA will guanantee that IDLE_BC is contiguous
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Table 7-14  CIA Control Register (CIA_CTRL) (continued)

<15> RW 0CSR_IOA_BYPASS

0: CIA will not bypass the I/O address queue
1: CIA will bypass the I/O address queue

IO_FLUSHREQ_EN <16> RW 0

Used in combination with CPU_FLUSHREQ_EN.  The two bits control the CIA’s
response to a PCI master asserting FLUSH_REQ.

IO_FLUSH_REQ CPU_FLUSH_REQ Response

0 0 Assert MEM_ACK immediately.

0 1 Assert MEM_ACK immediately.  And
do not allow new CPU commads to
proceed. 

1 0 Illegal.

1 1 Wait until IOA queue is empty, then
assert MEM_ACK.  And don’t allow
new CPU commads to proceed. 

<17> RW 0CPU_FLUSHREQ_EN

See IO_FLUSHREQ_EN above.

<18> RW 0ARB_EV5_EN

0: Disable the bypass path from the EV5 into the Memory and IOA queue.
1: Enable the  bypass path from the EV5 into the Memory and IOA queue.

<19> RW 0EN_ARB_LINK

0: Disable CPU Memory Reads from linking (sharing a common RAS strobe)
1: Enable CPU Memory Reads to link (sharing a common RAS strobe)

<21:20> RW 0RD_TYPE

This field controls the prefech algorithm used for PCI memory read command.
See Table 7-15, PCI Read Prefetch Algorithm

reserved <23:22> RO 0

<25:24> RW 0RL_TYPE

This field controls the prefech algorithm used for PCI memory read line
command. See Table 7-15, PCI Read Prefetch Algorithm

reserved <27:26> RO 0

<29:28> RW 0RM_TYPE

This field controls the prefech algorithm used for PCI memory read multiple
command. See Table 7-15, PCI Read Prefetch Algorithm

reserved <30> RO 0

<31> RW 1EN_DMA_RD_PERF

0: Disable the DMA Read performance logic.  
1: Enable the DMA Read performance logic.
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Table 7-15 PCI READ Prefetch Algorithm

Hardware Address Extension Register (HAE_MEM)
Access:

Read/Write, 87.4000.0400 
Format:

Description:  
This HAE_MEM Hardware Address Extension Register is used to extend a PCI Sparse-
space memory address up to the full 32-bit PCI address. In Sparse Addressing mode, the
CPU address provides the low-order PCI addresses bits, while the HAE_MEM provides
the higher order bits. 

The high-order PCI address bits <31:26> are obtained from either the Hardware Exten-
sion Register (HAE_MEM) or the CPU address depending on sparse space regions, as
shown in Table 7-16. See Chapter 3, AlphaStation 600 Addressing for more details.

Initializing HAE_MEM to 0000.2028hex will make all 3 regions contiguous starting at PCI
address 0.

Table 7-16 High-order Sparse Space Bits

Table 7-17 Hardware Address Extension Register (HAE_MEM)

 Value    Prefetch algorithm

  0 0
  0 1
  1 0
  1 1

Short
Medium
Long
reserved

Fetch requested LW/QW and remainder of cache block
Prefetch next block and no more. Will not cross 8 KB page boundary
Keep prefetching until PCI transaction completes. Will not cross 8 KB
page.

31          29 28                          16 15        11        7           2       0

Region 1 Region 2 Region 3 

0                       0                         0           0         0           0

                                         PCI_ Address   CPU address  Region

     31      30      29      28     27      26 

80.0000.0000 to
83.FFFF.FFFF

 1  HAE_ME
M<31>

HAE_ME
M<30>

HAE_ME
M<29>

CPU<33
>

CPU<32
>

CPU<31
>

84.0000.0000 to
84.FFFF.FFFF

 2 HAE_ME
M<15>

HAE_ME
M<14>

HAE_ME
M<13>

HAE_ME
M<12>

HAE_ME
M<11>

CPU<31
>

85.0000.0000 to
85.7FFF.FFFF

 3  HAE_ME
M<7>

HAE_ME
M<6>

HAE_ME
M<5>

HAE_ME
M<4>

HAE_ME
M<3>

HAE_ME
M<2>

Name Extent Access Init State

Region 1 <31:29> RW 0 

reserved <28:16> RO 0

Region 2 <15:11> RW 0 

reserved <10:8> RO 0

Region 3 <7:2> RW 0 

reserved <1:0> RO 0
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Hardware Address Extension Register (HAE_IO)
Access:

Read/Write, 87.4000.0440 
Format:

Description:
 
This HAE_IO Hardware Address Extension Register is used to extend a PCI Sparse-
space IO address up to the full 32-bit PCI address. In Sparse Addressing mode, the CPU
address provides the PCI addresses up to bit<24> and HAE_IO provides bits<31:25>. 

On power-up this register is set to zero.  In this case, Sparse I/O region A and region B
both map to the lower 32 MB of sparse I/O space. Setting HAE_IO to 200.000 (hex) will
make region A and region B consecutive in the lower 64 MB of PCI I/O space.

Table 7-18 Hardware Address Extension Register (HAE_IO)

0

HAE_IO 

31          25 24

0 0 0

Name Extent Access Init State

 reserved <24:0> RO 0

HAE_IO <31:25> RW 0 
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Configuration Type Register  (CFG)
Access:

Read/Write, 87.4000.0480 
Format:

Description:
 
The CFG bits are used as the low two address bits during an access to PCI Configuration
space.

Table 7-19 CFG Register

031  

0 0 

                   2  1

CFG

0

Name Extent Access Init State

 <1:0> RW 0 CFG

Bits <1:0>   Meaning

      0 0
      0 1
      1 x

 Type 0 configuration cycle
 Type 1 configuration cycle
 Reserved

reserved  <31:2> RO 0
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CIA Acknowledgement Control Register  (CACK_EN)
Access:

Read/Write, 87.40000.0600

Format:

Description:

This register has the bits that enable the CIA’s response to EV5 commands. If a bit is set,
this enables the CIA to send a CACK to the EV5.  If a bit is left cleared ("0"), then the
corresponding EV5 command will be ignored by the CIA. 

Table 7-20 CIA Acknowledgement Control Register (CACK_EN)

CACK_EN

           31                                                                                       4   3                                     0 

0                                                                       F

Name Extent Access Init State

<3:0> RW FCACK_EN

Bits <3:0> Meaning

      xxx1
      xx1x
      x1xx
      1xxx

controls LOCK enable
controls MB enable
controls SET_DIRTY enable
controls BC_VICTIM enanble

reserved <31:4> RO 0



        Control and Status Registers   7-17

Diagnostic Registers - description

CIA Diagnostic Control Register (CIA_DIAG)
Access:

Read/Write, 87.4000.2000 
Format:

Description:

The CIA force error register is a diagnostic/debug register to allow various errors to be
tested.

Table 7-21 CIA Diagnostic Control Register (CIA_DIAG)

 3130 29

 

           0

 1   0

FROM_WRT_EN
USE_CHECK

0  0     0 0   0

FPE_PCI

2827                                                                2 

Name Extent, Access, Init State

<0> RW 0FROM_WRT_EN

The FROM can only be programmed when this bit set.  A write to the Flash
ROM when this bit isn’t set, results in a System Machine Check.

<1> RW 0USE_CHECK

When set, DMA Write cycles use the value in the DIA_CHECK for ECC sent
on the IOD bus.

reserved <27:2> RO 0

<29:28> RW 0FPE_PCI

00: Normal parity is output to the PCI
01: Bad parity is forced onto the low 32 bits of the PCI during data cycles
10: Bad parity is forced onto the high 32 bits of the PCI during data cycles
11: Bad parity is forced onto the high and low 32 bits of the PCI during
address and data cycles

reserved <30> RO 0

<31> RW 0FPE_TO_EV5               

When FPE_CPU_EV5 is set, a parity error is forced on the CPU
address/CMD bus when the CIA is the bus master.
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Diagnostic Check Register (DIAG_CHECK)
Access:

Read/Write, 87.4000.3000 
Format :

Description:

The DIAG_CHECK is used for diagnostic DMA writes to write a known ECC pattern into
memory. This register provides the ECC that gets written to memory if the USE_CHECK
bit is set in the CIA_DIAG CSR.

Table 7-22 Diagnostic Check Register (DIAG_CHECK)

031

DIAG_CHECK

0 X

8  7   

0

Name Extent Access Init State

<7:0> RW  UndefinedDIAG_
CHECK For diagnostic DMA writes, the DIAG_CHECK register provides the

quadword ECC.

 reserved  <31:8> RO  0
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CIA Performance Monitor Register (PERF_MONITOR)
Access:

Read Only, 87.4000.4000
Format:

Description:

The PERF_MONITOR CSR is really two 16-bit counters that can be programmed to count
a variety of events.  Setting up the counters is done via the PERF_CONTROL CSR.  Each
counter can be programmed to count events such as EV5 Read Misses revceived by CIA
or DMA Writes.  The PERF_MONITOR can also be set-up as a single 32-bit counter (by
telling the high_count to count the low_counter overflow).

Table 7-23 CIA Performance Monitor Register (PERF_MONITOR)

0 0

high_count low_count

31                                    16 15                                             0

Name Extent           Access            Init State

<15:0>           RO  0low_count

This is the value of the low counter.

<31:16>         RO  0high_count

This is the value of the high counter.

FPE_TO_EV5
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CIA Performance Control Register (PERF_CONTROL)
Access:

Read/Write, 87.4000.4040  
Format:

Description:

Performance Monitor Control register

Table 7-24   CIA Performance Control Register (PERF_CONTROL)

0    0                 0                       0               0    0                0                         0

31   30  29                 24 23                   16  15  14   13                  8 7                        0

high_select
low_count_start

     low_err_stop

low_select

high_count_clr
high_err_stop
high_count_start

0 0

low_count_clr

Name Extent           Access           Init State

<7:0> RW 0low_select

See Table 7-25 for decoding of these bits

reserved <12:8>            RO 0

<13> WO 0low_count_clr

write a 1 to clear the low counter

<14>               RW  0low_err_stop

If CIA detects an error and this bit is set, then stop counting.

<15>               RW  0low_count_start

0: don’t count, keep current values
1: start counting

<23:16>          RW 0high_select

See Table 7-25 for decoding of these bits

reserved <28:24            RO 0

<29> WO 0high_count_clr

write a 1 to clear the high counter

<30>               RW  0high_err_stop

If CIA detects an error and this bit is set, then stop counting.

<31>               RW                 0high_count_start

0: don’t count, keep current values
1: start counting
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Table 7-25   PERF_CONTROL Register low/high_selects Encoding

low_select<7:0>
and
high_select<23:16> Description

0000 0000 for low_select: The value of is reserved
for high_select: make 32-bit counter, The high 

0000 0001 counting clock cycles, always increment

0000 0010 counting refresh cycles

0001 0000 counting # of EV5 cmd’s acknowledged

0001 0001 counting # of EV5 Reads (modify or not)

0001 0010 counting # of EV5 Read miss (not modify)

0001 0011 counting # of EV5 Read Miss Modify

0001 0100 counting # of EV5 BCACHE_VICTIM cmd’s that are acknowledged by CIA

0001 0101 counting # of EV5 Locks that are acknowledged by CIA

0001 0110 counting # of EV5 Memory Barrier that are acknowledged by CIA

0001 0111 counting # of EV5 FETCH or FETCH_M

0001 1000 counting # of EV5 Write Blocks (lock or not)

0010 0000 counting # of EV5 memory cmd’s

0010 0001 counting # of EV5 I/O cmd’s

0010 0010 counting # of EV5 I/O read cmd’s

0010 0011 counting # of EV5 I/O write cmd’s

0010 0100 counting # of CIA system commands issued  (read/flush)

0010 0101 counting # of EV5 system Read  commands issued

0010 0110 counting # of EV5 system Flush commands issued

0010 0111 counting # of times CIA received NOACK as a response

0010 1000 counting # of times CIA received Scache ACK as a response

0010 1001 counting # of times CIA received Bcache ACK as a response

0011 0000 counting # of DMA Reads (total)

0011 0001 counting # of DMA Reads (read command)

0011 0010 counting # of DMA Reads (read line command)

0011 0011 counting # of DMA Reads (read multiple command)

0011 0100 counting # of DMA Writes (total)

0011 0101 counting # of DMA Writes (write command)

0011 0110 counting # of DMA Writes (write and invalidate command)

0011 0111 counting # of DMA Dual Address cycle

0011 1000 counting # of DMA cycles that CIA issued a retry to

0011 1001 counting # of I/O cycles that CIA got a retry on

0100 0000 counting # of times PCI bus LOCK was established

0100 0001 counting # of times EV5 tried to access block that was locked

0100 0010 counting # of times DMA (that caused a flush) hit on the victim address

0101 0000 counting # of times CIA had to refill the TLB

0110 0000 counting # of single bit ECC error detected

all others Reserved/unused, not counting
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CPU Error Information Register 0  (CPU_ERR0)
Access:
                   Read Only, 87.4000.8000

Format:

Description:

The low-order address bits of the CPU Address/CMD bus are locked into this register
when the CIA detects an error event.  Clearing all the error bits in the CIA_ERR register
unlocks this register.  When the register is not locked the contents of this register are not
defined.

The information in the CPU_ERR0 and CPU_ERR1 registers is only related to EV5 bus
parity  errors detected by the CIA ASIC (CIA_ERR<2>).

Table 7-26 CPU Error Information Register 0 (CPU_ERR0)

 31                                                                               4 3    0

ADDR<31:4>

X 0

Name Extent Access Init State 

reserved <3:0>             RO 0

<31:4> RO UndefinedADDR<31:4>

Contains address bits <31:4> of the current address on the CPU
address/CMD bus upon an EV5 Interface error.
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CPU Error Information Register 1  (CPU_ERR1)
Access:
                   Read Only, 87.4000.8040 
Format:

Description:

The mask and command field and the remaining address field on the CPU Address/CMD
bus are locked into the ERR1 register upon the CIA detecting an error event.  Clearing all
the error bits in the CIA_ERR register unlocks this register.  When the register is not
locked, the contents of this register are not defined.

The information in the CPU_ERR0 and CPU_ERR1 registers is only related to EV5 bus
parity errors detected by the CIA ASIC (CIA_ERR<2>).

Table 7-27    CPU Error Information Register 1 (CPU_ERR1)

CPU_PE

FPE_2_EV5

ADDR<34:32>ADDR_CMD_PAR

INT_4_VALID

CMD

ADDR<39>

 X   X          0           X            0                  X                 X          X              0                     X

31    30 29          22  21 20             16  15          12 11            8  7   6                      3 2              0

X

Name Extent Access Init State 

<2:0> RO UndefinedADDR<34:32>

Contains address bits <34:32> from the CPU address/CMD bus.

reserved <6:3> RO 0

<7> RO UndefinedADDR<39>

Contains address bit <39> from the CPU address/CMD bus.

<11:8> RO UndefinedCMD

Contains the command from the CPU address/CMD bus.

<15:12> RO UndefinedINT_4_VALID

Contains the INT_4_VALID bits from the CPU address/CMD bus.

reserved <20:16> RO 0

<21> RO UndefinedADDR_CMD_PAR

Contains the Parity bit from the CPU address/CMD bus.

reserved <29:22> RO 0

<30> RO UndefinedFPE_2_EV5

Copy of the csr bit to force bad parity to the EV5.

<31> RO UndefinedCPU_PE

If set, indicates that the CPU interface detected a parity error.
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CIA Error Register (CIA_ERR)
Access :

Read/Write to Clear, 87.4000.8200

Format:

Description:

The CIA_ERR is used by the CIA to log information pertaining to an error condition de-
tected in the CIA ASIC. All bits of the CIA_ERR, except the LOST bits will be locked until
the CIA_ERR register is cleared by a software write. The LOST bits will be set whenever
the CIA_ERR is already locked and another error is detected. The CIA_ERR register will
remain locked until  the CIA_ERR is written to and all the individual error bits are cleared
(write 1 to clear). 

 31 30  28 27        21 20 19      16 15    12 11                           0

0

Error Bits (see table)

ERR_VALID

0

Lost Error Bits (see table)

00 0 0 0 0

Lost Error Bits (see table)
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Table 7-28   CIA_Error Register (CIA_ERR)

Name Extent Access Init State

<0> RW1C 0COR_ERR

Correctable (single bit) ECC error detected. This error cannot occur
for a CPU to memory read/write (CPU/mem read ECC errors are
detected by the EV5; CPU/mem writes are not checked). This error is
applicable to a DMA, S/G TLB miss, or an I/O Write from the EV5..

<1> RW1C 0UN_COR_ERR

Uncorrectable ECC error detected. This error cannot occur for a CPU
to memory read/write (CPU/mem read ECC errors are detected by the
EV5. CPU/mem writes are not checked). This error is applicable to a
DMA, a S/G TLB miss, or an I/O write from the EV5.

<2> RW1C 0CPU_PE

EV5 bus parity error detected

<3> RW1C 0MEM_NEM

Access to non-existent memory detected.

<4> RW1C 0PCI_SERR

PCI bus SERR detected.

<5> RW1C 0PERR

PCI bus Data Parity error detected.

<6> RW1C 0PCI_ADDR_PE

PCI bus Address Parity error detected.

<7> RW1C 0RCVD_MAS_ABT

PCI master state machine generated master abort.

<8> RW1C 0RCVD_TAR_ABT

PCI master state machine rcvd targert abort.

<9> RW1C 0PA_PTE_INV

Invalid Page Table entry on Scatter/Gather access.

<10> RW1C 0FROM_WRT_ERR

Write to Flash ROM attempted without setting FROM_WRT_EN

<11> RW1C 0IOA_TIMEOUT

I/O timeout occurred.  I/O read/write failed to get executed in 1
second.

reserved <15:12> RO 0
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Table 7-28  CIA_Error Register (CIA_ERR) (continued)  

Name Extent Access Init State

<16> RO 0lost_COR_ERR

While CIA_ERR CSR was locked, a correctable ECC error was
detected.

<17> RO 0lost_UN_COR_ERR

While CIA_ERR CSR was locked, an uncorrectable ECC error was
detected.

<18> RO 0lost_CPU_PE

While CIA_ERR CSR was locked, a CPU parity error was detected.

<19> RO 0lost_MEM_NEM

While CIA_ERR CSR was locked, an access to non-existent memory
was detected.

reserved <20> RO 0

<21> RO 0lost_PERR

While CIA_ERR CSR was locked, a PCI Data Parity error was
detected.

<22> RO 0lost_PCI_ADDR_PE

While CIA_ERR CSR was locked, a PCI Address Parity error was
detected.

<23> RO 0lost_RCVD_MAS_ABT

While CIA_ERR CSR was locked, the PCI master state machine
generated a Master Abort.

<24> RO 0lost_RCVD_TAR_ABT

While CIA_ERR CSR was locked, the PCI master state machine
recveived a target abort.

<25> RO 0lost_PA_PTE_INV

While CIA_ERR CSR was locked, an Invalid Page Table entry on
Scatter/Gather access occurred.

<26> RO 0lost_FROM_WRT_ERR

While CIA_ERR CSR was locked, a write to Flash ROM with out
setting FROM_WRT_EN was attempted.

<27> RO 0lost_IOA_TIMEOUT

While CIA_ERR CSR was locked, an I/O timeout occurred.  An I/O
read/write failed to get executed in 1 second. 

reserved <30:28> RO 0

<31> RO 0ERR_VALID

An error has been detected and the CIA error registers are all locked.
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CIA Status Register (CIA_STAT)
Access:

Read Only, 87.4000.8240
Format:

Description:

This register contains status information related to the error stored in the CIA_ERR regis-
ter.  The intent is to provide a snapshot of the status (state) of the CIA when the error was
detected.

CPU_QUEUE<2:0>

TLB_MISS

DM_ST<3:0>

IOA_VALID<3:0>
MEM_SOURCE

PA_CPU_RES<1:0>

PCI_STATUS <1:0>

0 X X 0 0 0 0 0 0

31   18 17 16  15               12  11  10           8  7                  4    3     2   1    0
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Table 7-29 CIA Status Register  (CIA_STAT)

Name Extent Access Init State

<0> RO 0PCI_STATUS<0>

If set, then the PCI target state machine is active.

<1> RO 0PCI_STATUS<1>

If set, then the PCI master state machine is active.

reserved <2> RO 0

<3> RO 0MEM_SOURCE

0: source of the memory cycle is the EV5
1: source of the memory cycle is the PCI

<7:4> RO 0IOA_VALID<3:0>

valid bits for the IO command/address queue

<10:8> RO 0CPU_QUEUE<2:0>

valid bits for the CPU command/address queue

<11> RO 0TLB_MISS

If set, then a TLB MISS refill was in progress when the error occurred.

<15:12> RO UndefinedDM_ST<3:0>

These bits represent the state of the logic that moves data between the
CIA and the DSW ASICs. 

DM_ST<3:0> Definition

0000 idle

0001 restarting DSW IOW buffers

0010 I/O Write 

0110 DMA Read or TLB miss

0111 DMA Write

1000 I/O Write to the GRU ASIC

1001 I/O Read to the GRU ASIC

1010 I/O Read to an internal CIA CSR

1011 I/O Read to the PCI bus (32-bit/64-bit) 

others reserved

<17:16> RO 0PA_CPU_RES<1:0>

EV5 response for the DMA.  00 = no response, 01 = no ack, 10 = SCache
hit, 11 = BCache hit

reserved <31:18> RO 0
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CIA Error Mask Register (ERR_MASK)
Access :

Read/Write, 87.4000.8280 

Format:

Description:

The ERR_MASK is used to disable the logging and reporting of errors. On power-up the
default is for error logging to be disabled (ERR_MASK = 0).  For each bit a zero (0) dis-
ables the logging/reporting of that error, a one (1) enables the corresponding error logging
and reporting.

Table 7-30 CIA Error Mask Register  (ERR_MASK)

 31                                                       12 11                              0

Error Mask (see table)

0                                                0

Name Extent Access Init State

<0> RW 0COR_ERR

Disable/enable error logging/reporting for correctable ECC errors.

<1> RW 0UN_COR_ERR

Disable/enable error logging/reporting for un-correctable ECC errors.

<2> RW 0CPU_PE

Disable/enable error logging/reporting for CPU Parity errors.

<3> RW 0MEM_NEM

Disable/enable error logging/reporting for Non-Existant Memory
access errors.

<4> RW 0PCI_SERR

Disable/enable error logging/reporting for PCI SERR errors.

<5> RW 0PERR

Disable/enable error logging/reporting for PCI Data Parity errors.

<6> RW 0PCI_ADDR_PE

Disable/enable error logging/reporting for PCI Address Parity errors.

<7> RW 0RCVD_MAS_ABT

Disable/enable error logging/reporting for PCI Master Abort Errors.

<8> RW 0RCVD_TAR_ABT

Disable/enable error logging/reporting for PCI Target Abort errors.

<9> RW 0PA_PTE_INV

Disable/enable error logging/reporting for invald PTE errors.

<10> RW 0FROM_WRT_ERR

Disable/enable error logging/reporting for FROM write errors.

<11> RW 0WIOA_TIMEOUT

Disable/enable error logging/reporting for I/O Timeout errors.
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CIA Error Syndrome Register (CIA_SYN)
Access:

Read Only, 87.4000.8300
Format:

Description:

The CIA_SYN register is used by the CIA to log information pertaining to an error de-
tected by the ECC checker. The syndrome is locked into the CIA_SYN register upon a
CIA error.  Clearing all the error bits in the CIA_ERR register unlocks this register.  When
the register is not locked the contents of this register are not defined.

Table 7-31 CIA Error Syndrome Register (CIA_SYN)

0  31 8  7

ECC_SYNDROME

0 0                                                X

Name Extent Access Init State

ECC_SYNDROME <7:0> RO Undefined 

reserved <31:8> RO 0
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CIA Memory Port Status Register 0 (MEM_ERR0)
Access:
                   Read Only, 87.4000.8400 

Format:

Description:

The low-order address bits of the Memory Port Address bus are locked into this register
upon a CIA detected error.  The contents are read only.  Clearing all the error bits in the
CIA_ERR register unlocks this register.  When the register is not locked the contents of
this register are not defined.

Table 7-32 CIA Memory Port Status Register 0 (MEM_ERR0)

 31          3 04

0

MEM_PORT_ADDR<31:4>

         X                                               0

Name Extent, Access, Init State

reserved <3:0> RO undefined

<31:4> RO undefinedMEM_PORT_ADDR<31:4>

Contains address bits <31:4> of the current address in the
Memory port when the CIA detects an error.
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CIA Memory Port Status Register 1 (MEM_ERR1)
Access:
                   Read Only, 87.4000.8440 
Format:

Description:

The command, memory mask (INT4_VALID from CPU), Memory sequencer state, the
source of the command, an encoded Set Select field, and the remaining address field are
locked into the MEM_ERR1 register upon a CIA error.  Clearing all the error bits in the
CIA_ERR register unlocks this register.  When the register is not locked, the contents of
this register are not defined.

Table 7-33 CIA Memory Port Status Register 1 (MEM_ERR1)

         

 

   31 29 28     24 23 21 20 19  16 15   12 11    8   7  6          2 1   0

MEM_PORT_ADDR<39>

MEM_PORT_ADDR<33:32>

0          x        0      x     x        x         x      x        0         x

SET_SEL_ENC
MEM_PORT_SOURCE

SEQ_ST
MEM_PORT_MASK

MEM_PORT_CMD

Name Extent, Access, Init State 

<1:0> RO UndefinedMEM_PORT_ADDR<33:32>

Contains address bits <33:32> of the current address in the
Memory port when the CIA detects an error.

reserved <6:2> RO 0

<7> RW UndefinedMEM_PORT_ADDR<39>

Address bit <39>

<11:8> RO UndefinedMEM_PORT_CMD

The memory command when the error occurred.

<15:12> RW UndefinedMEM_PORT_MASK

The mask bits when the error occurred.

<19:16> RW UndefinedSEQ_ST

The memory sequencer state when the error occurred.

<20> RW UndefinedMEM_PORT_SOURCE

Source of the memory command, 0= CPU , 1= DMA.

reserved <23:21> RO 0

<28:24> RW UndefinedSET_SEL_ENC

Encoded set select, indicates which memory set was active
when the error occurred.

reserved <31:29> RO 0
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Table 7-34 MEM_PORT_CMD Encodings

Table 7-35 SEQ_ST Encodings

MEM_PORT_SOURCE MEM_PORT_CMD Desription 

0 011X EV5 Write Block or Write Block Lock

0 10XX EV5 Read Miss, Read Miss Modify

0 1100 EV5 BC_Victim 

0 111X EV5 Read Miss Modify

1 10XX DMA Read, DMA Read Modify

1 001X DMA Write

all others are reserved

SEQ_ST Desription 

0000 Idle

0001 DMA Read or Write

0010, 0011 EV5 Read Miss (or Read Miss Modify) with
Victim 

0100, 0101, 0110 EV5 Read Miss (or Read Miss Modify) no Victim

0111, 1000, 1001 Refresh

1100 Idle, waiting for DMA Pending Read

1110, 1111 Idle, RAS Precharge

all others are reserved



7-34    Control and Status Registers

Table 7-36 SET_SEL_ENC Encodings

SET_SEL_ENC Desription 

00000 Set 0 Selected

00001 Set 1 Selected

00010 Set 2 Selected

00011 Set 3 Selected

00100 Set 4 Selected

00101 Set 5 Selected

00110 Set 6 Selected

00111 Set 7 Selected

01000 Set 8 Selected

01001 Set 9 Selected

01010 Set A Selected

01011 Set B Selected

01100 Set C Selected

01101 Set D Selected

01110 Set E Selected

01111 Set F Selected

10000 No Set selected

11111 Refresh Cycle

all others are reserved
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PCI Error Register 0 (PCI_ERR0)
Access:

Read Only, 87.4000.8800 

Format:

Description:

The PCI_ERR0 register is used by the CIA to log information pertaining to the state of the
PCI interface when an error condition is detected by CIA. The CSR is locked, as are all
CIA error registers, when the CIA detects an error.  And, the CSR is unlocked when the
CIA_ERR CSR is cleared.  When the register is not locked, the contents are unpredict-
able.

The data in the WINDOW, DMA_DAC, and DMA_CMD fields is associated with the ad-
dress stored in the PCI_ERR1 register.  This group and PCI_ERR1 hold information re-
lated to the following errors:

• Errors associated with the memory while the CIA is handling a DMA

— Correctable ECC error (CIA_ERR<0>)

— Uncorrectable ECC error (CIA_ERR<1>)

— Access to non-existent memory (CIA_ERR<3>)

— Invalid Page Table entry (CIA_ERR<9>) 

The data in the PCI_DAC, PCI_CMD, TARGET_STATE, and MASTER_STATE fields is
associated with the address stored in the PCI_ERR2 register.  This group and the
PCI_ERR2 register hold information related to the following error conditions:

• Errors associated with the PCI bus

— PCI Data Parity error (CIA_ERR<5>)

— PCI Address Parity Error (CIA_ERR<6>)

— PCI Master Abort (CIA_ERR<7>)

— PCI Target Abort (CIA_ERR<8>)

— IOA Timeout (CIA_ERR<11>)

The LOCK_STATE field provides general information about the current state of CIA not
specifically associated with either PCI_ERR1 or PCI_ERR2. 

 31    29 28 27    24  23  22  21 19    16 15    12 11      8 7  6  5   4  3     0 

TARGET_STATE

MASTER_STATE
WINDOW

DMA_DAC
LOCK_STATE

DMA_CMD

     0       X      X                  0          0           0           X        0   X   X     X            

PCI_CMD

PCI_DAC

0
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Table 7-37 PCI Error Register 0  (PCI_ERR0)

Name Extent Access Init State

<3:0> RO xDMA_CMD

The PCI command of the current DMA.

<4> RO xLOCK_STATE

If set then the CIA was locked when the error was detected.

<5> RO xDMA_DAC

If set then the current DMA is a dual address cycle command.

 reserved <7:6> RO 0

<11:8> RO xWINDOW

Indicates which window (if any) was selected by the PCI address.
• 0000 No window active
• 0001 Window 0 hit
• 0010 Window 1 hit
• 0100 Window 2 hit
• 1000 Window 3 hit

 reserved <15:12> RO 0

<19:16> RO 0MASTER_STATE

0: Idle
1: Drive Bus
2: Address Step Cycle
3: Address Cycle
4: Data Cycle
5: Last Read Data Cycle
6: Last Write Data Cycle
7: Read Stop Cycle
8: Write Stop Cycle
9: Read Turnaround Cycle
A: Write Turnaround Cycle
B: Reserved
C: Reserved
D: Reserved
E: Reserved
F: Unknown State

<22:20> RO 0TARGET_STATE

0: Idle
1: Busy
2: Read Data Cycle
3: Write Data Cycle
4: Read Stop Cycle
5: Write Stop Cycle
6: Read Turnaround Cycle
7: Write Turnaround Cycle

 reserved <23> RO 0

<27:24> RO xPCI_CMD

The current PCI command.

<28> RO xPCI_DAC

If set then the current PCI command is a dual address cycle command.

 reserved <31:29> RO 0



        Control and Status Registers   7-37

PCI Error Register 1  (PCI_ERR1)
Access:

Read Only, 87.4000.8840 
Format :

Description:

The PCI_ERR1 register is used by the CIA to log PCI address <31:0> for the current DMA
pertaining to an error condition logged in PCI_ERR0. This register is locked whenever the
CIA detects an error.  This register always captures DMA address<31:0>, even for a DMA
DAC cycle. The most significant DMA address<39:32> can be obtained from the W_DAC
register; DMA address<63:40> had to be zero for the CIA to hit on the DAC cycle.  The
register is unlocked when the error bits in the CIA_ERR CSR have all been cleared.  Con-
tents of this register are unpredictable when not locked.

The PCI_ERR1 register and some fields in PCI_ERR0 (WINDOW, DMA_DAC, and
DMA_CMD) is associated hold information related to the following errors:

• Errors associated with the memory while the CIA is handling a DMA

— Correctable ECC error (CIA_ERR<0>)

— Uncorrectable ECC error (CIA_ERR<1>)

— Access to non-existent memory (CIA_ERR<3>)

— Invalid Page Table entry (CIA_ERR<9>) 

Table 7-38 PCI Error Register 1   (PCI_ERR1)

       031
X X

DMA_ADDRESS<3:0>

Name Extent Access Init State

<31:0> RO xDMA_ADDRESS<31:0>

Contains the DMA address <31:0>.
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PCI Error Register 2  (PCI_ERR2)
Access:

Read Only, 87.4000.8880 
Format :

Description:

The PCI_ERR2 register is used by the CIA to log PCI address <31:0> pertaining to an
error condition logged in PCI_ERR0. This register is locked whenever the CIA detects an
error.  This register always captures PCI address<31:0>, even for a DMA DAC cycle. The
most significant PCI address<39:32> can be obtained from the W_DAC register; PCI ad-
dress<63:40> had to be zero for the CIA to hit on the DAC cycle.  The register is unlocked
when the error bits in the CIA_ERR CSR have all been cleared.  Contents of this register
are unpredictable when not locked.

The PCI_ERR2 register and some fields in PCI_ERR0 (PCI_DAC, PCI_CMD, TAR-
GET_STATE, and MASTER_STATE) hold information related to the following error condi-
tions:

• Errors associated with the PCI bus

— PCI Data Parity error (CIA_ERR<5>)

— PCI Address Parity Error (CIA_ERR<6>)

— PCI Master Abort (CIA_ERR<7>)

— PCI Target Abort (CIA_ERR<8>)

— IOA Timeout (CIA_ERR<11>)

Table 7-39 PCI Error Register 2   (PCI_ERR2)

       031
X X

PCI_ADDRESS<31:0>

Name Extent Access Init State

<31:0> RO xPCI_ADDRESS<31:0>

Contains the PCI address <31:0>.
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Memory Control Registers - description

Memory Configuration Register (MCR)
Access:
                Read/Write, 87.5000.000 

Format:

Description:

The MCR register defines the AlphaStation 600 system and memory configuration. The
bits within this register are used to configure the CIA memory controller.

    

CACHE_SIZE
REF_RATE

MEM_SIZE

31        30  29   28   27  26 25      23  22   21  20 19 18 17                 8  7    6       4  3    1   0 

REF_BURST
TMG_R0
LONG_CBR_CAS

DLY_IDLE_BC

EARLY_IDLE_BC

 0          0     0       0           0          0       0          0                0             0       0        0       0
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Table 7-40 Memory Configuration Register (MCR)

Name Extent Access Init State 

<0> RW 0MEM_SIZE

When MEM_SIZE is set (value=1), the memory port is configured to a 256-bit
data path and  MMB0 and MMB1 must be populated identically. If not, an
illegal configuration is flagged.  When MEM_SIZE is clear (value=0), the
memory port is configured to a 128-bit data path. 
Note: This bit is to be set by firmware and must be 1 for AlphaStation 600.

reserved <3:1> RO 0

<6:4> RW 0CACHE_SIZE

CACHE_SIZE is determined by firmware using the CACHE_CNFG register
and written before any memory cycles are started. For encodings see Table
7-62.

reserved <7> RO 0

<17:8> RW 0REF_RATE

The REF_RATE controls the memory refresh rate. An 10-bit free-running
counter, starting at 0, counts upto the REF_RATE and resets to zero once the
REF_RATE value is reached. Memory is refreshed everytime the REF_RATE
value is reached. 
Setting the REF_RATE to be 0, will disable refreshes.                                

<19:18> RW 0REF_BURST

The refresh state machine can set up to do all or half of the SIMMs at once and
to do one or two refreshes when the REF_RATE counter rolls over.
• 0 0, ras all SIMMs at once, single refresh.
• 0 1, ras all SIMMs at once, double refresh (burst).
• 1 0, ras half of SIMMs at once, single refresh.
• 1 1, ras half of SIMMs at once, double refresh (burst).

<21:20> RW 0TMG_R0

Controls the row address set-up.

TMG_R0 Nominal Row Address
Set-up

00 15 ns

01 30 ns

10 45 ns

11 60 ns

<22> RW 1LONG_CBR_CAS

0: The refresh (CAS-before-RAS) CAS pulse width = 60 ns
1: The refresh (CAS-before-RAS) CAS pulse width = 90 ns

reserved <25:23> RO 0

<27:26> RW 0DLY_IDLE_BC

must be 0

reserved <28> RO 0

<29> RW 0EARLY_IDLE_BC

muat be 1

reserved <31:30> RO 0
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Memory Base Address Registers 0-E (MBA0-E)
Access:
R/W, address =  87.5000.0600, 87.5000.0680, 87.5000.0700, ... 87.5000.980
Format:

Description:

There are 8 MBA registers (MBA0,2,4,6,8,A,C,E).  Each controls two of the 16 (8 in the
current AlphaStation 600 system) possible banks of memory which the CIA can support.
The bits within the MBA register provide a PATTERN  which is compared with the incom-
ing address to determine the bank being accessed. The minimum bank size for an MBA
register is 16 Mbytes. 

31     29  28 27  26 25                                   16 15  14              9 8              4   3   2  1  0

TMG_SEL
PATTERN

S1_VALID

MASK
ROW_TYPE

S0_VALID

  0       0      0                        0                            0           0                  0            0     0   00



7-42    Control and Status Registers

Table 7-41 Memory Base Address Registers 2,4,6,8,A,C,E (MBA0,2,4,6,8,A,C,E)

Name Extent Access Init State 

<0> RW 0S0_VALID

If set, then side 0 for the bank is valid.

<2:1> RW 0ROW_TYPE

ROW_TYPE specifies the row and column configuration of the physical bank
being referenced. The ROW_TYPE is used in generating the memory address
map.

ROW_type Row / Column

      00 10 row 10 column

      01 12 row 10 column or 11x11

      10 13 row 11 column or 12x12

      11 Reserved

reserved  <3> RO 0

<8:4> RW 0MASK

The MASK indicates which bits are used in comparing the MBA[PATTERN]
with the physical address (memory address).  The mask field essentially
indicates the size of the memory SIMMs in the bank corresponding to the MBA
register.  For a 256-bit memory data bus, the valid MASK fields are: 

Size of SIMM MASK
(Hex)

Comment

4 or 8 Mbytes 00001 ADDR[24] is not used in the address comparrison

16 or 32 Mbytes 00111 ADDR[26:24] are not used in the address
comparrison

64 or 128
Mbytes

11111 ADDR[28:24] are not used in the address
comparrison

reserved <14:9> RO 0

<15> RW 0S1_VALID

If set, then side 1 for the bank is valid.  Side 1 can’t be valid unless side 0 is also
valid.

<25:16> RW 0PATTERN

The PATTERN field  is compared with the incoming CPU ADDR[33:24] and then
ORed with the MASK field to determine if the bank corresponding to this MBA
is being accessed.  The PATTERN basically indicates the base address of the
memory bank, while the MASK indicates the size of the bank.

reserved <27:26> RO 0

<29:28> RW 0TMG_SEL

<29:28
>

  Use TMG
CSR 

Description

00
01
10
11

      TMG0
      TMG1
      TMG2
      reserved

Used to control memory timing of 50,60 ns
SIMMs 
Used to control memory timing of 70 ns SIMMs
Used to control memory timing of 80 ns SIMMs
reserved

reserved <31:30> RO 0



        Control and Status Registers   7-43

Memory Timing Registers (TMG0-TMG2)
Access:
               R/W, 87.5000.0B00, 87.5000.0B40, 87.5000.0B80 
Format:

Description:

The TMG CSRs contain the AlphaStation 600 memory timing parameters which control
the memory sequencer.   

Table 7-42 Memory Timing Parameters, Encoding Values

    

31                                                                                           0

see table below

Encoded ValueParameter Short Description

000 001 010 011 100 101 110 111

TMG_R1 Read Starting Data Delay 30 - 60 - - - - -

TMG_R2 Row Address Hold 30 45 60 75 - - - -

TMG_R3 Read, cycle time 60 - 90 - - - - -

TMG_R4 Read, CAS assertion delay 30 45 60 75 - - - -

TMG_R5 Read CAS pulse width 30 45 60 75 - - - -

TMG_R6 Read, Column address hold 30 45 60 75 - - - -

TMG_W1 Write, data delay 30 - 60 - - - - -

TMG_W4 Write CAS assertion delay 60 75 90 105 120 135 - -

TMG_PRE RAS Pre-charge 0 30 - - - - - -

TMG_V3 Wrie/Victim, cycle time 60 - 90 - - - - -

TMG_V4 Linked Victim, CAS Assertion delay 60 75 90 105 120 135 - -

TMG_V5 Write/Victim, CAS pulse width 30 45 60 75 - - - -

TMG_V6 Write/Victim Column address hold 30 45 60 75 - - - -

Delay between a Read and linked Victim 0 0 30 30 - - - -TMG_RV

Delay to MEM_EN assertion after the
read

15 30 45 60

TMG_RD_DLY Read data delay info 0 15 30 45 - - - -

a ’-’ indicates the value is illegal
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Table 7-43 Memory Timing Registers (TMG0-TMG2)

Name Extent Access Init Stat

<1:0> RW 0TMG_R1

read starting, data delay

<3:2> RW 0TMG_R2

row address hold

<5:4> RW 0TMG_R3

read, cycle time

<7:6> RW 0TMG_R4

read, CAS assertion delay

<9:8> RW 0TMG_R5

read, CAS pulse width

<11:10> RW 0TMG_R6

read, column address hold

<13:12> RW 0TMG_W1

write, data delay

<16:14> RW 0TMG_W4

write, CAS assertion delay

<17> RW 0TMG_PRE

RAS, pre-charge delay

<19:18> RW 0TMG_V3

write, cycle time

<22:20> RW 0TMG_V4

linked victim, CAS assertion delay

reserved <23> RO 0

<25:24> RW 0TMG_V5

victim/write, CAS pulse width

<27:26> RW 0TMG_V6

victim/write, column address hold

<29:28> RW 0TMG_RV

read-to-victim start delay

<31:30> RW 0TMG_RD_DLY

read, data delay (effects DSW)
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PCI Address-related Registers - Description

Scatter/Gather Translation Buffer Invalidate Register (TBIA)
Access:

Write, 87.6000.0100 
Format:

Description:

A write to the TBIA register will result in the specified group of scatter gather TLB TAGs to
be marked invalid and unlocked.

Table 7-44 Scatter/Gather Translation Buffer Invalidate Register  (TBIA)

1  031

TBIA<1:0>

00

Name Extent Access Init State

<1:0> WO     0TBIA<1:0>

A write to  this register will invalidate the scatter/gather Translation
Buffers.

Bits <1:0>   Meaning

      0 0
      0 1
      1 0
      1 1

 no operation
 Invalidate and unlock the TLB TAGs that are
currently locked
 Invalidate the TLB TAGs that are currently unlocked
 Invalidate and unlock all of the TLB TAGs entries

reserved <31:2>     RO     0
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Window Base Registers (Wx_BASE, x=0-3)
Access:
              Read/Write, 87.6000.0400, 87.6000.0500, 87.6000.0600, 87.6000.0700  
              
Format :

Description:
 
The Window Base register provides the base address for a particular target window.
There are 4 Window Base registers: W_BASE[0], W_BASE[1], W_BASE[2], and
W_BASE[3]. The W_BASE[x] registers should not be modified unless the software en-
sures that the no PCI traffic is targetted for the window being modified. 

Determining a Hit in the Target Window:

The incoming PCI address bits <31:20> are compared with the each of the four Window
Base registers, where the W_MASK register determines which bits are involved in the
comparison.   

The Target Window is ’Hit’ when the masked addresses match a valid Window  Base reg-
ister.

If MEMCS_enable is set then the "Hit" is further qualified by the MEMCS input signal --
this is used if PC compatibility holes are required in the CIA (see Chapter 10, AlphaSta-
tion 600 PCI-EISA Bridge).

When DAC_enable is set in Window 3 then W_DAC base register is used to compare PCI
address<39:32> of a DAC cycle.

31 20  19

W_BASE

W_EN
Wx_BASE_SG

4  3   2   1   0

0X 0 X  X   X  X

MEMCS_enable1 

DAC_enable2

Note: (1) W_BASE[0] only
           (2) W_BASE(3) only
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Table 7-45 Window Base Registers (Wx_BASE, x=0-3)

Name Extent Access Init State

<0> RW XW_EN

 When W_EN is cleared, the PCI Target Window is disabled and will not be used
to respond to PCI initiated transfers. When W_EN is set, the PCI Target Window
is enabled and will be used to  respond to PCI initiated transfers that hit in the
address range of the Target Window.

<1> RW XWx_BASE_SG

When the SG bit is cleared, the PCI Target Window uses direct mapping to
translate a PCI address to a CPU address (Table 7-48)
When the SG bit is set, the PCI Target Window uses scatter gather mapping to
translate a PCI address to a physical memory address. (See Table 7-49)

<2> RW XMEMCS_enable
Only in
W0_BASE

When the MEMCS_enable bit is set then the MEMCS signal from the PCEB
(PCI-EISA bridge) is ANDed with the normal window hit. 

<3> RW XDAC_enable
Only in
W3_BASE

When the DAC_enable bit is set then the W_DAC  register is compared against
PCI address<39:32> for a PCI DAC cycle. If this compare hit, and the 32-bit
portion of the PCI address hit, then a DAC cycle hit occurs.

reserved <19:4> RO 0

<31:20> RW XW_BASE

 W_BASE specifies the PCI base address of the PCI Target Window and is used to
determine a hit in the target window. See MEMCS_enable and DAC_enable also.
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Window Mask Registers (Wx_MASK, x=0-3)
Access:

Read/Write, 87.6000.0440, 87.6000.0540, 87.6000.0640, 87.6000.0740 
Format:

Description:  

The Window Mask register provides a mask corresponding to bits <31:20> of an incoming
PCI address. The size of each window can be programmed to be from 1 Mbyte to 4
Gbytes in powers of two by masking bits of the incoming PCI address via the Window
Mask register as shown in Table 7-46

There are 4 Window Mask registers: W_MASK[0], W_MASK[1], W_MASK[2], and
W_MASK[3]. The W_MASK[x] registers should not be modified unless software insures
that the no PCI traffic is targetted for the window being modified. 

Determining a Hit in the Target Window:

The incoming PCI address bits <31:20> are compared with the each of the four Window
Base registers; where the W_MASK register determines which bits are involved in the
comparison. The Target Window is ’Hit’ when the masked addresses match a valid Win-
dow  Base register.

031                               20 19

W_MASK<31:20> 

X 00
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Table 7-46 Window Mask Registers (Wx_MASK, x=0-3)

Translated Base Registers (Tx_BASE, x=0-3)
Access:

Read/Write, , 87.6000.0480, 87.6000.0580, 87.6000.0680, 87.6000.0780 
Format:

Description:
 
The Translated Base register is used to map PCI addresses into memory. There are 4
Translated Base registers: TBR0, TBR1, TBR2, and TBR3,  one for each window. If the
Scatter/Gather bit  of the Window Base Register is set, then the Translated Base register
provides the base address of the Scatter/Gather map for this window. If the Scat-
ter/Gather bit is clear, the Translated Base register provides the base physical address of
this window.  

The TBR registers should not be modified unless the software ensures that no PCI traffic
is targetted for the window being modified. 

Name Extent, Access, Init State,

reserved <19:0> RO 0 

<31:20> RW XW_MASK<31:20>

W_MASK specifies the size of the PCI Target Window (see table below)
and it is also used to mask out address bits not used when determining
a PCI Target Window "hit".

W_MASK<31:20> Size of Window

0000 0000 0000   1 Megabyte

0000 0000 0001   2 Megabytes

0000 0000 0011   4 Megabytes

0000 0000 0111   8 Megabytes

0000 0000 1111  16  Megabytes 

0000 0001 1111  32 Megabytes

0000 0011 1111  64 Megabytes

0000 0111 1111 128 Megabytes

0000 1111 1111 256 Megabytes

0001 1111 1111 512 Megabytes

0011 1111 1111    1 Gigabyte

0111 1111 1111    2 Gigabytes

1111 1111 1111    4 Gigabytes

otherwise Not supported

   0

 T_BASE<33:10> 

31

0 X 

   8 7

0
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Table 7-47 Translated Base Registers (Tx_BASE, x=0-3)

The field W_MASK<31:20> sets the size of the PCI Target window and the number of 8K
pages that fall into the window.  Every 8K page requires one 8 byte scatter/gather map
entry.  Table 7-49 shows the relationship of W_MASK to the size of the scatter gather
map in memory. 

(size of the window in bytes) / (8Kbytes) =   number of entries required 

(number of entries) * (8 bytes)                 =   size of the scatter/gather table

The quadword address used to index into the table is formed from concatenating the ap-
propriate T_BASE and PCI address bits based on the size of the scatter/gather map.   
The PCI address forms the index into the table while the T_BASE forms the naturally
aligned base of the table.  

For example, for a mask of 0000 0000 0000, there are 128 entries in the scatter/gather
table and the table size is 1 Kbyte.  Entries are quadwords so the lower three bits <2:0> of 
the address are always zero.  Now, mask off PCI bits <31:20> (because of the W_MASK). 
Then use PCI address<19:13> (7 bits, 2 to the power 7 = 128 entries in the table) as the
table index. Use the T_BASE<33:10> to get the other bits of the 34 bit address.

Name Extent Access Init State

reserved <7:0> RO     0

<31:8> RW     XT_BASE<33:10>

If Scatter/Gather Mapping is disabled, T_BASE<33:10> specifies the
base CPU address of the translated PCI address for the PCI Target
Window (refer to Table 7-48). 

If Scatter/Gather Mapping is enabled, T_BASE<33:10> specifies the
base CPU address for the Scatter/Gather Map Table for the PCI
Target Window (refer to Table 7-49).
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Table 7-48 PCI Address Translation - Scatter/Gather Mapping Disabled

Table 7-49 PCI Address Translation - Scatter/Gather Mapping Enabled

 W_MASK<31:20>
 
Translated Address<33:0>

Unused Translated Base
Register Bits

0000 0000 0000 T_BASE<33:20>:PCI_AD_H<19:0> T_BASE<19:10>

0000 0000 0001 T_BASE<33:21>:PCI_AD_H<20:0> T_BASE<20:10>

0000 0000 0011 T_BASE<33:22>:PCI_AD_H<21:0> T_BASE<21:10>

0000 0000 0111 T_BASE<33:23>:PCI_AD_H<22:0> T_BASE<22:10>

0000 0000 1111 T_BASE<33:24>:PCI_AD_H<23:0> T_BASE<23:10>

0000 0001 1111 T_BASE<33:25>:PCI_AD_H<24:0> T_BASE<24:10>

0000 0011 1111 T_BASE<33:26>:PCI_AD_H<25:0> T_BASE<25:10>

0000 0111 1111 T_BASE<33:27>:PCI_AD_H<26:0> T_BASE<26:10>

0000 1111 1111 T_BASE<33:28>:PCI_AD_H<27:0> T_BASE<27:10>

0001 1111 1111 T_BASE<33:29>:PCI_AD_H<28:0> T_BASE<28:10>

0011 1111 1111 T_BASE<33:30>:PCI_AD_H<29:0> T_BASE<29:10>

0111 1111 1111 T_BASE<33:31>:PCI_AD_H<30:0> T_BASE<30:10>

1111 1111 1111 T_BASE<33:32>:PCI_AD_H<31:0> T_BASE<31:10>

Note: (1) unused Translation Base must be zero for correct operation.
          (2) The AlphaStation 600 system is restricted to 6 GB and thus T_BASE<33> = 0.

W_MASK<31:20
SG Map Table
Size

Scatter Gather Map Address<33:0>
 (used to index S/G Table in memory)

0000 0000 0000    1 Kbytes T_BASE<33:10>:PCI_AD_H<19:13>:000

0000 0000 0001    2 Kbyte T_BASE<33:11>:PCI_AD_H<20:13>:000

0000 0000 0011    4 Kbytes T_BASE<33:12>:PCI_AD_H<21:13>:000

0000 0000 0111    8 Kbytes T_BASE<33:13>:PCI_AD_H<22:13>:000

0000 0000 1111   16 Kbytes T_BASE<33:14>:PCI_AD_H<23:13>:000

0000 0001 1111   32 Kbytes T_BASE<33:15>:PCI_AD_H<24:13>:000

0000 0011 1111   64 Kbytes T_BASE<33:16>:PCI_AD_H<25:13>:000

0000 0111 1111  128 Kbytes T_BASE<33:17>:PCI_AD_H<26:13>:000

0000 1111 1111  256 Kbytes T_BASE<33:18>:PCI_AD_H<27:13>:000

0001 1111 1111  512 Kbytes T_BASE<33:19>:PCI_AD_H<28:13>:000

0011 1111 1111     1 Mbyte T_BASE<33:20>:PCI_AD_H<29:13>:000

0111 1111 1111     2 Mbyte T_BASE<33:21>:PCI_AD_H<30:13>:000

1111 1111 1111     4 Mbyte T_BASE<33:22>:PCI_AD_H<31:13>:000
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Window DAC Base Register (W_DAC)
Access:

Read/Write, 87.6000.07C0 
              

Format :

Description:  

The Window DAC  Base register provides the <7:0> address bits for comparison against
PCI address <39:32> during a DAC cycle. PCI address <63:40> has to be zero for a PCI
window hit. The DAC BASE register is used in conjunction with the W_BASE register. For
more details refer to Chapter 3, AlphaStation 600 Addressing .

The DAC BASE register is only applicable to window 3 and only if enabled by the
DAC_enable bit in W_BASE[3]. 

Determining a Hit in the Target Window:

The Target Window is a ’Hit’ when the following is satisfied:

• The incoming PCI address bits <31:20> matches one of the four Window Base regis-
ters; the W_MASK register determines which bits are involved in the comparison.   

• PCI address <63:40> is zero.

• PCI address<39:32> match the DAC_BASE<7:0>.

Table 7-50 Window DAC Base Register (W_DAC)

31

DAC_BASE<7:0>

7                     0

X0

Name Extent Access Init State

<7:0> RW XDAC_BASE<7:0>

DAC_BASE specifies bits <39:32> of the PCI base address used to
determine a hit in the target window for a DAC cycle.

reserved <31:8> RO 0



        Control and Status Registers   7-53

Scatter/Gather Address Translation Registers 

Lockable Translation Buffer Tag Registers (LTB_TAG0 - LTB_TAG3)

Access:
Read/Write, 87.6000.0800, 87.6000.0840, 87.6000.0880, 87.6000.08C0 

Format:

Description:

There are four lockable translation buffer tag registers. Software can write to these
LTB_TAG entries. Furthermore, they can be locked such that the hardware will not evict
the entry on a SG_TLB miss.

Determining a Hit in the Translation Buffer:  

After a PCI address hits one of the window registers with SG true, the incoming PCI ad-
dress bits <31:15> are compared with the each of the eight Translation Buffer Tag Regis-
ters. If there is a match, the corresponding Translation Buffer Page register group is in-
dexed by  PCI address bits <14:13>. If the page entry is valid then there is a Translation
Buffer hit.

Operation on a SG_TLB miss:

A scatter/gather TLB miss is handled by hardware using a round-robin algorithm. An entry
is overwritten if it is not locked. The hardware will write all four PTEs on a miss.

Table 7-51 Lockable Translation Buffer Tag Registers (LTB_TAG0 - LTB_TAG3)

2  1  0

0

TB_TAG LOCKED
VALID

0

DAC

31                                            15 14                              3

X                                           0                   0  0  0

Name Extent Access Init State

<0> RW 0 VALID

If VALID and CIA_CTLR[SG_TLB_EN] are set, then this entry will be used for
address translation.

<1> RW 0LOCKED

If LOCKED is set the hardware will never evict this entry.

<2> RW 0DAC

If set then this TAG entry corresponds to a 64-bit PCI address (DAC cycle);
otherwise it belongs to a 32-bit PCI address (SAC cycle)

reserved <14:3> RO 0

<31:15> RW XTB_TAG

TB_TAG<31:15> is the TAG for each translation buffer entry
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Translation Buffer Tag Registers (TB_TAG0 - TB_TAG3)
Access:

Read/Write, 87.6000.0900, 87.6000.09040, 87.6000.0980, 87.6000.09C0 
Format:

Description:

There are four Translation Buffer Tag registers which cannot be locked down by the soft-
ware.  Software can write to the TB TAG entries, but they cannot be locked down (and
hence may be evicted by the hardware on a SG TLB miss).

Determining a Hit in the Translation Buffer:

The incoming PCI address bits <31:15> are compared with the each of the eight Transla-
tion Buffer Tag registers. If there is a match, the corresponding Translation Buffer Page
register group is indexed by PCI address bits <14:13>, and if it is valid then there is a
Translation Buffer Hit.

Operation on a SG_TLB miss:

A scatter/gather TLB miss is handled by hardware using a round-robin algorithm. An entry
is overwritten if it is not locked. The hardware will write all four PTEs on a miss.

Table 7-52 Translation Buffer TAG Registers (TB_TAG0 - TB_TAG3)

2  1  031

0

TB_TAG

15 14 

VALID
0

DAC

X                                                                       0  0  0

Name Extent Access Init State

<0> RW 0 VALID

If VALID  and CIA_CTLR[SG_TLB_EN] are set, then  this entry will be used
for address translation.

reserved <1> RW 0

<2> RW 0 DAC

If set then this TAG entry corresponds to a 64-bit PCI address (DAC cycle);
otherwise it belongs to a 32-bit PCI address (SAC cycle)

reserved <14:3> RO 0

<31:15> RW XTB_TAG

TB_TAG<31:15> is the TAG for each translation buffer entry
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 Translation Buffer Page Register (TBx_PAGEn)
Access:

Read/Write, 87.6000.1000 thru 87.6000.17C0 

Format :

Description:

There are thirty two Translation Buffer Data registers, a group of four for each of the eight 
translation buffer entries. The TBx_PAGEn registers are automatically updated on a TLB
miss (a group of four at a time) by the CIA hardware.

Table 7-53 Translation Buffer Data Register (TBx_PAGEn)

Determining a Hit in the Translation Buffer:

The incoming PCI address bits <31:15> are compared with the each of the eight Transla-
tion Buffer Tag Registers. If there is a match, the corresponding Translation Buffer Page
register group is index by  PCI address bits <14:13> and if it is valid then there is a Trans-
lation Buffer Hit.

If the Address bits do not match the TAG, or the page entry is invalid then a TLB miss
occurs. If the PTE fetched by the hardware TLB-miss handler is still invalid then the
CIA_ERROR interrupt is asserted for a DMA write -- see Chapter 8, Hardware Exceptions
and Interrupts.

031 22 21   1

0 X X

PAGE_ADDRESS
VALID

0

Name Extent Access Init State

VALID <0> RW X  

<21:1> RW X PAGE_ADDRESS

The PAGE_ADDRESS<21:1> forms Physical address<33:13>.
PCI_AD_H<12:0> forms physical address<12:0>. For AlphaStation 600
address<33> must be zero.

reserved <31:22> RO 0  
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GRU ASIC - related Registers
Interrupt Request Register (INT_REQ)

Access:
Read only, 87.8000.0000 

Format:

Description:  

This register is used to read the interrupt request lines from the main interrupt logic (in the
GRU ASIC). If a bit is set, then it signifies that an interrupt is active.

Table 7-54 INT_REQ Register

Table 7-55 Main Interrupt Logic IRQ Assignment

031  

INT_REQ

x

Name Extent Access Init State

 <31:0> RO Undefined INT_REQ

0: no Interrupt asserted 
1: Interrupt asserted

Output IRQ Interrupt Usage
(reference
designator)

0
1
2
3

int A
int B
int C
int D

PCI Slot 2 -- 64-bit
(J11)

4
5
6
7

int A
int B
int C
int D

PCI Slot 1 -- 64 bit
(J10)

8
9
10
11

int A
int B
int C
int D

PCI Slot 0 -- 64 bit
(J9)

12
13
14
15

int A
int B
int C
int D

PCI Slot 4 -- 32 bit
(J8)

16
17
18
19

int A
int B
int C
int D

PCI Slot 3 -- 32 bit
(shared PCI/EISA
slot)
(J7)

20-30 reserved

EV5
IRQ<1>

31 EISA_INT 8259 INT output

All unmasked IRQ inputs have equal priority
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Interrupt Mask Register (INT_MASK)
Access:

Read/Write 87.8000.0040 
Format:

Description:  

This register is used to access the interrupt mask register which is physically located in
the main interrupt logic (in the GRU ASIC). The main interrupt logic has 32 inputs which
are all individually maskable.

Table 7-56 INT_MASK Register

Figure 7-1 GRU Interrupt Logic

031  

INT_MASK

0

Name Extent Access Init State

<31:0> RW 0INT_MASK

0: Interrupt IRQ input disabled
1: Interrupt IRQ input enabled

PRE_ IRQ<1>

Register
<31:0>

INT_MASK

Register
<31:0>

INT_EDGE

INT_CLR
Register
<31:0>INT_HILO

Register
<31:0>

    INT<31:0>

Pulse logic used for Edge 
interrupts (less prone to false
triggering)

3
2
1
0

3
2
1
0

1

0

       CIA_ERROR

NMI

     TOY
PRE_IRQ<1>

     CIA_INT

     CLK_DIV<3:0>

RESET_L

IRQ<3:0>

 SYNCH

INT_REQ

INT_REQ

<31:0>
Register

SYS_MCH_CHK_IRQ

RESERVED
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Interrupt Level/Edge Select Register (INT_EDGE)
Access:

Read/write, 87.8000.0080 
Format:

Description:  

This register is used to control the main interrupt logic (in the GRU asic). If a bit is set,
then it signifies that the IRQ line is an edge-type (actually a pulse); otherwise it is a level-
type (that is, standard PCI).

The AlphaStation 600 system requires that all irq lines be set to the level-sensitive mode.
The edge-mode is not used.

Table 7-57 INT_EDGE Register

Interrupt High/Low select Register (INT_HILO)

Access:
Read/write, 87.8000.00C0

Format:

Description:  

This register is used to control the main interrupt logic (in the GRU ASIC). If a bit is set,
then it signifies that the IRQ line is active high; otherwise it is active low (that is, standard
PCI).

The AlphaStation 600 system requires that all IRQ lines be set to active low, except for bit
<31> (PCI_EISA bridge interrupt) which is active high.

Table 7-58 INT_HILO Register

031  

LEVEL_EDGE

X

Name Extent Access Init State

 <31:0> R/W undefinedLEVEL_EDGE

0: level-sensitive IRQ (PCI type)
1: edge-sensitive IRQ (ISA type)

031  

HIGH_LOW

X

Name Extent Access Init State

<31:0> RW Undefined
HIGH_LOW 0: Active low interrupt (PCI type)

1: Active High interrupt (that is, PCI-EISA bridge interrupt) 
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Interrupt Clear Register (INT_CLEAR)
Access:

Read/Write, 87.8000.0100  
Format:

Description:  

This register is used to access the interrupt mask register which is physically located in
the main interrupt logic (in the GRU ASIC). The main interrupt logic has 32 inputs which
are all individually cleared. 

NOTE: If INT_CLEAR = 1 and an interrupt occurrs, the interrupt will be masked.

Table 7-59 INT_CLEAR Register

0

31                                                                                         0

INT_CLEAR<31:0>

Name Extent Access Init State

<31:0> RW 0
INT_CLEAR 0: do not clear interrupt

1: clear interrupt
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Cache & Memory Configuration Register  (CACHE_CNFG)
Access:     

RO, 87.8000.0200 

Format :

Description:

The Cache Configuration Register (CACHE_CNFG) contains the size and speed informa-
tion for each individual cache SIMM.  The information for each SIMM  is derived by hard-
ware interrogating presence detect pins. Information from this register is used by firmware
to configure the BCACHE

31       28 27          24 23         20 19        16 15       13 12   11 10      8  7          4  3        0

CLOCK_DIVISOR
CACHE_SPEED
CACHE_SIZE
MMB0_CONFIG

MMB1_CONFIG

0                 0               0                 0              0            0          0             0             0               
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Table 7-60 MMB and Cache Configuration Register (CACHE_CNFG)

Table 7-61 Cache Speed

Table 7-62 Cache Size

Name Extent Access Init State 

reserved <3:0> RO  0

<7:4> RO  0CLOCK_DIVISOR

The clock divisor is driven onto the IRQ lines during reset to program the
EV5 system clock ratio.

reserved <10:8> RO  0

<12:11> RO  0CACHE_SPEED

CACHE_SPEED specifies the access time for the SRAMs on the lowest-order
Cache SIMM. See Table 7-61.

<15:13> RO  0CACHE_SIZE

CACHE_SIZE specifies the size of the SRAMs on the Cache SIMM. See Table
7-62.

<19:16> RO  0MMB0_CNFG

MMB0_CNFG indicates if MMB0 is present and what type of MMB it is. 
See Table 7-63.

reserved <23:20> RO 0

<27:24> RO 0MMB1_CNFG

MMB1_CNFG indicates if MMB0 is present and what type of MMB it is.
See Table 7-63.

reserved <31:28> RO 0

Sx_Speed <1:0> Cache RAM speed

          00           8ns

          01           10ns

          10           12ns

          11           15ns

Sx_SIZE <2:0> Cache RAM Size

          000           No cache present

          001           reserved

          010           128KxX -  2 MByte complete cache  

          011           256KxX -  4 MByte complete cache  

          100-111           reserved
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Table 7-63 MMB Configuration

SET Configuration Register (SCR)
Access:

RO, 87.8000.0300 

Format:

Description:

The SCR register contains all the access rate (speed) information for each individual
SIMM.  The information for each set  is derived by hardware interrogating individual
SIMM’s PD3 and PD4 pins. SSx_MMB0/1, as defined in the following tables, specifies the
speed of the SIMM.  These bits are mapped from the PD3 and PD4 bits coming from this
particular SIMM.  Information from this register is used by the system designer or the firm-
ware to configure the MCIx and MCR registers.

NOTES: Sets 4, 5, 6 and 7 are not populated on the AlphaStation 600 system.
               100ns SIMMs are not supported on the AlphaStation 600 system.

Table 7-64 SIMM PD Speed Select Pins       

MMBx_CNFG <3:0>  Description

          0000  MMB NOT present

          0001  MMB  is present and contains upto 24 SIMMs (12 sets)

          0010  MMB  is present and contains upto 8 SIMMs (4 sets)

          0011 - 1111  reserved

31 30    28    26      24     22     20    18      16     14     12     10        8       6      4        2        0

 

10  10 10   10  10  10  10   10  10  10   10  10    10  10  10  10

MMB1                                         MMB0      
sim selects                                  sim selects

   PD <1:0> SIMM Speed

          00  not defined

          01 80 ns

          10 70 ns

          11 60 ns
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Table 7-65 SET Configuration Register  (SCR)

LED Register (LED)
Access:

Write only, 87.8000.0800 
Format:

Description:  

This register is used to write to the front panel LEDs.  This is not used by current Al-
phaStation 600 systems.  The contents of the LEDs CSR is driven onto the GRU_DAT
bus when the Flash ROMs are tri-stated off the bus.

Table 7-66 LED Register

Name Extent Access Init State 

SS7_MMB0  <1:0> RO 10

SS6_MMB0 <3:2> RO 10

SS5_MMB0 <5:4> RO 10

SS4_MMB0 <7:6> RO 10

SS3_MMB0 <9:8> RO 10

SS2_MMB0 <11:10> RO 10

SS1_MMB0 <13:12> RO 10

SS0_MMB0 <15:14> RO 10

SS7_MMB1 <17:16> RO 10

SS6_MMB1 <19:18> RO 10

SS5_MMB1 <19:18> RO 10

SS4_MMB1 <23:22> RO 10

SS3_MMB1 <25:24> RO 10

SS2_MMB1 <27:26> RO 10

SS1_MMB1 <29:28> RO 10

SS0_MMB1 <31:30> RO 10

031      8  7

LEDs

  X0

Name Extent Access Init State

LEDs <7:0> WO X

reserved <31:0> RO 0
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Reset Register (RESET)
Access:

Write only, 87.8000.0900 
Format:

Description:  

This register is used to reset the AlphaStation 600 system under software control. Writing
the value 0000DEADhex will cause a complete system reset.

Table 7-67 RESET Register

031  

RESET

           X

Name Extent Access Init State

 <31:0> Write only X RESET

Writing "0000DEAD" to this register will induce a system reset.
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EV5 Configuration Registers - description

Scache Control Register, SC_CTL
SC_CTL is a read/write register which controls the behavior of the Scache. The only bit of
interest for the AlphaStation 600 system initialization is SC_BLK_SIZE. The Scache and
Bcache must use the same block size --  the AlphaStation 600 system uses a 64-byte
block for the Bcache.

Table 7-68 SC_CTL Field Descriptions

SC_FHIT
SC_FLUSH
SC_TAG_STAT<5:0>
SC_FP_DP<3:0>
SC_BLK_SIZE
SC_SET_EN<2:0>

63                    16 15        13 12 11                08 07    02 01  0

RAZ S2  S1 S0 L3  L2  L1   L0

Name Extent Type Init State

SC_FHIT <0> RW 0

SC_FLUSH <1> RW 0

SC_TAG_STAT<5:0> <2> RW ---

SC_FP_DP<3:0> <3> RW ---

 <12> RW 1   SC_BLK_SIZE

AlphaStation 600 and its family of systems will have a 64 Byte
block size so this bit must remain set

SC_SET_EN<2:0> <15:13> RW 1

reserved <63:16>
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Bcache Control Register, BC_CONTROL
BC_CONTROL is a write only register which controls the behavior of the Bcache. 

Format:

Table 7-69 BC_CONTROL Field Descriptions

63      17   18  17  16  15 14  13 12                        8   7   6   5   4 3   2      1   0

  MBZ     0   0   1     0 TP TCP TV TS TD   0   1   1   1           0          0  0

WAVE_PIPING

TL_PIPE_LATCH
EI_DIS_ERR

BC_BAD_DAT

BC_TAG_STAT<4:0>
BC_FHIT

EI_ECC_OR_PARITY
VTM_FIRST
CORR_FILL_DAT
EI_OPT_CMD<1:0>
BC_ENABLED

Name Extent, Type, Init State

BC_ENABLED <0> W 0

When set, the external Bcache is enabled. When clear, the  Bcache is disabled.
When the Bcache is disabled, the BIU  will neither do external cache reads nor
writes. This bit  will be cleared on reset. 

The AlphaStation 600 system will all have a Bcache so this bit must be
set before the DECchip 21164-AA does the first cacheable read or write
from Bcache or system. 

The AlphaStation 600 system will partially function with the Bcache disabled.
The AlphaStation 600 system does not check DMA addresses against Write
Block commands in the CIA’s CPU queue.  So, if the Bcache is disabled, there is
a potential for a DMA to get stale data from memory if the block being
addressed is in the CIA’s queue.  

reserved <1> W 0 Must be zero.

EI_OPT_CMD0 <2> W 0  

When set, the optional commands, LOCK, and SET DIRTY, will be driven to the
DECchip 21164-AA external interface command pins to be acknowledged by the
system interface. When clear, these commands will be internally acknowledged
by DECchip 21164-AA and will not be driven off-chip to the system interface.
This bit will be cleared on reset. 

The AlphaStation 600 system does not use Lock, or SET DIRTY so this
bit must be clear before the DECchip 21164-AA does the first cacheable
read or write from Bcache or system.

EI_OPT_CMD1 <3>  W 0  

When set, the optional command, MEMORY BARRIER will be driven to the
DECchip 21164-AA external interface command pins to be acknowledged by the
system interface. When clear, this command will be internally acknowledged by
DECchip 21164-AA and will not be driven off-chip to the system interface. This
bit will be cleared on reset. 

MBs to the system appear not to be required so this bit can remain
cleared.
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 Table  7-69  BC_CONTROL Field Descriptions (continued)

Name Extent Type Init State

CORR_FILL_DAT <4> W 1

Correct fill data from Bcache or memory, in ECC mode. When this bit is set,
fill data from Bcache or memory will first go through error correction logic
before being driven to the Scache or Dcache. If the error is correctable, it
will be transparent to the machine. When this bit is clear, fill data from
Bcache or memory will be directly driven to the Dcache before ECC error is
detected. If the error is correctable, corrected data will be returned again,
Dcache will be invalidated, and error trap will be taken. This bit will be set
on reset. 

This is a performance issue (one saves some fill latency). The
conservative strategy would be to leave this bit set (especially since
the AlphaStation 600 system does not correct fill data). 

VTM_FIRST <5> W 1

Set for systems without a victim buffer. On a Bcache miss, DECchip
21164-AA will first drive out the victimized block’s address on the system
address bus, followed by the read miss address and command. CIeared for
systems with a victim buffer. If clear, on a Bcache miss with victim,
DECchip 21164-AA will first drive out the read miss followed by the victim
address and command. This bit will be set on reset. 

The AlphaStation 600 system does use a Victim buffer so this bit
must be clear for maximum performance benefit.

EI_ECC_OR_PARITY <6> W 1 

This bit determines whether to operate the external interface in QW ECC
or Byte parity mode. When set, DECchip 21164-AA generates/expects QW
ECC on the data check pins. When clear, DECchip 21164-AA
generates/expects even byte parity on the data check pins. This bit will be
set on reset.

The AlphaStation 600 system provides ECC only so this bit must be
set before the DECchip 21164-AA does the first cacheable read or
write from Bcache or system.

BC_FHIT <7> W 0

Bcache force hit. When this bit is set and the Bcache is enabled, all external
references in cached space are forced to hit in the Bcache, irrespective of the
tag status bits.  BC_FHIT bit will be cleared on reset. Software should turn
off BC_CONTROL<2> to allow clean to dirty transitions without going to
the System
This is a diagnostic/self-test feature that is used the same on all systems.

BC_TAG_STAT <12:8> W ?

This bit field can be only used in BC-FHIT mode to write any combination
of tag status and parity bits in the Bcache. The parity bit can be used to
write bad tag parity. These bits will be undefined on reset. See Table 7-70
for the encodings. This is a diagnostic/self-test feature that is used the same
on all systems.
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Table 7-69  BC_CONTROL Field Descriptions  (continued) 

Table 7-70 BC_TAG_STAT FIeld Descrlptions

Name Extent Type Init State

BC_BAD_DAT <14:13> W 0   

When set, this field can be used to write bad data with  correctable or
uncorrectable error in ECC mode. When bit <13> is set, data bit <0> and <64>
are inverted. When bit <14> is set, data bit <1> and <65> are inverted. When
the same QW is read from the Bcache, DECchip 21164-AA will detect
correctable/ uncorrectable ECC error on both the QWs based on the value of bits
<14:13> used when writing. This field will be cleared on reset. This is a
diagnostic/self-test feature that is used the same on all systems.

EI_DIS_ERR <15> W 1

When set, this bit causes the DECchip 21164-AA to ignore  any ECC or parity
error on a fill data received from the Bcache or memory and no machine check is
taken. It will also ignore any Bcache tag or control parity error. This bit will be
set on reset.

The AlphaStation 600 system requires that Bcache and Memory be
intialized with good ECC before checking is enabled. So, this bit should
not be cleared until after the Bcache and Memory are intialized

TL_PIPE_LATCH <16> W 0

When set, this bit causes DECchip 21164-AA to pipe the  system control pins
(ADDR_BUS_REQ_H, CACK_H, and DACK_H) for one cpu cycle.  This bit will
be cleared on reset.

The AlphaStation 600 system does not take advantage of this feature so
this bit should remain cleared before the DECchip 21164-AA does the
first cacheable read or write from Bcache or system.

WAVE_PIPING <18:17> W 0  

This field is used to indicate to the BIU the number of cycles of wave pipelining
that should be used during private reads of the Bcache. Wave piping can be up
to  four CPU cycles. On  power-up, this field will be initialized to a value of zero 
CPU cycles.

The AlphaStation 600 system takes advantage of this feature and will
allow up to M nanoseconds of Wave Piping. This must be converted to
cpu cycles. Thus for the AlphaStation 600 system, the following
algorithm should be used:-

WAVE_PIPING = M/(CPU cycle time)         --- (truncate to integer)

M = minimun cache looptime. 

Bcache Tag Status<12:8> Description

BC_TAG_STAT<12> Parity for Bcache tag

BC_TAG_STAT<11> Parity for Bcache tag status bits 

BC_TAG_STAT<10> Bcache tag valid bit 

BC_TAG_STAT<9> Bcache tag shared bit 

BC_TAG_STAT<8> Bcache tag dirty bit
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Bcache Configuration Register, (BC_CONFIG)
(The Bcache configuration register is write only.)

Table 7-71  BC_CONFIG FIeld Descrlptions

Name Extent, Type, Init State

BC_SIZE <2:0> W 1  

This field is used to indicate the size of the Bcache. On power-up, this field will be initialized to a
value of 1 MByte Bcache. See table 7-72 for the encodings.

The AlphaStation 600 system can have any allowable Bcache size. This is determined by
firmware analyzing the Bcache presence detect register. This field should be set up
before the Bcache and Memory are intialized

reserved <3>   W 0  Must be zero

BC_RD_SPD <7:4> W 4 

This field is used to indicate to the BIU the read access time of the Bcache, measured in CPU cy-
cles, from the start of a read until data is valid at the input pins. The Bcache read speed must be
within four to ten CPU cycles. On power-up, this field will be initialized to a value of four  CPU
cycles. For systems without a Bcache, the read speed must be  equal to SYS clock to CPU clock ra-
tio.

Teh AlphaStation 600 system can have Bcache RAM speeds of 8ns, 10ns, 12ns or 15ns.
This is also determined by examining the Bcache presence detect register. See the Firm-
ware chapter. BC_RD_SPD should be set to:-

           BC_RD_SPEED = (10 + SRAM Speed)/(CPU Cycle time)

(Calculate with real numbers and round-up result to integer value. Instead of "real" num-
bers can scale -- for example, instead of 22/3.3ns use 220/33).

 This field should be set up before the Bcache and Memory are intialized.

BC_WR_SPD <11:8> W 4

This field is used to indicate to the BIU the write time of the Bcache, measured in CPU cycles. The
Bcache write  speed must be within four to ten CPU cycles. On power up, this field will be
initialized to a value of four CPU  cycles.  For systems without a Bcache, the write speed must be 
equal to SYS clock to CPU clock ratio.

The AlphaStation 600 system can have Bcaches RAM speeds of 8ns, 10ns, 12ns or 15ns.
This is also determined by examining the Bcache presence detect register. See the Firm-
ware chapter. BC_WR_SPD should be set to:-

           BC_WR_SPEED = (10 + SRAM Speed)/(CPU Cycle time)

(Calculate with real numbers and round-up result to integer value)

 This field should be set up before the Bcache and Memory are intialized
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Table 7-71  BC_CONFIG Field Descriptions  (continued) 

Name Extent Type Init State 

BC_RD_WR_SPC <14:12>  W 1

This field is used to indicate to the BIU the number of  CPU cycles to wait
when switching from a private read to a private write Bcache transaction. For
other data movement commands, such as Read Dirty or Fill from memory,  it
is up to the system to direct system wide data movement in a way that is safe.
On power- up, this field will be initialized to a read/write spacing of one CPU
cycle.

The AlphaStation 600 system needs a minimum of 8 ns to turn off the
SRAM data before it can be driven by the CPU for a write. Thus
BC_RD_WR_SPD should be set to:-

BC_RD_WR_SPEED = 8/(CPU Cycle time)

(Calculate with real numbers and round-up result to integer value)

 This field should be set up the DECchip 21164-AA does the first ca-
cheable write to Bcache or system.

 reserved <15>   W 0  Must be zero

FILL_WE_OFFSET <18:16> W 1 

Bcache write enable pulse offset, from the Sysclock edge,  for fills from the
system. This field does not affect private  writes to Bcache. It is used during
fills from the system, when writing the Bcache to determine the number of
CPU  cycles to wait before driving out the write pulse value as  programmed
in the BC_WE-CTL field.  This field is programmed with a value in the range
of one  to seven CPU cycles. It must never exceed the sysclock  ratio. (for
example, if the sysclock ratio is 3, this field must not  be larger than 3.) On
power-up, this field is initialized to a write offset value of one CPU cycle.

The AlphaStation 600 system needs a minimum of 9 ns to ensure the
address is at the Bcache SRAMs before the write enable can be
driven by the CPU for a write. Thus FILL_WE_OFFSET should be set
to:

FILL_WE_OFFSET = 9/(CPU Cycle time+1)

(Calculate with real numbers and round-up result to integer value)

 This field should be set up the DECchip 21164-AA does the first ca-
cheable read from the system.

reserved <19>   W 0  Must be zero
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Table 7-71  BC_CONFIG Field Descriptions  (continued) 

Table 7-72 BC_SIZE FIeld Descrlptions

1
 Preferred Bcache size for DECchip 21164-AA verification

Name Extent, Type Init State 

BC_WE_CTL  <28:20> W 0

Bcache write enable control. This field is used to control the timing of the write enable
during write or fill. If the  bit is set the write pulse is asserted. If the bit is clear  the
write pulse is not asserted. Each bit corresponds to  a CPU cycle. At the start of a Bcache
write cycle, the write  pulse will always be de -asserted for one CPU cycle. After  the first
cycle, bit <20> of the register is used to assert the write pulse. Each cycle, the next bit
will be used to assert the write pulse. On power-up, all bits in this field will be  cleared.

The AlphaStation 600 system can have Bcaches RAMS of 8ns, 10ns, 12ns or
15ns.. This is also determined by examining the Bcache presence detect regis-
ter. See Firmware chapter. The SRAM speed determines the width of the write
enable. So this field can be determined as follows:- 

     First asserted bit of BC_WE_CTL = 20 + 7/(CPU Cycle time)

  For 8ns SRAMs

     Final asserted bit of BC_WE_CTL = First + 4/(CPU Cycle time)

 For 10ns SRAMs

    Final asserted bit of BC_WE_CTL = First + 5/(CPU Cycle time)

 For 12ns SRAMs

    Final asserted bit of BC_WE_CTL = First + 6/(CPU Cycle time)

 For 15ns SRAMs

    Final asserted bit of BC_WE_CTL = First + 8/(CPU Cycle time)

 This field should be set up before the Bcache and Memory are intialized

 reserved <33:29>   W 0  Must be zero

Bcache
Size<2:0> Cache Size

000 Invalid Bcache size

00l l MByte

010 2 MByte

011 4 MByte1

100 8 MByte1

101 16 MByte

110 32 MByte

111 64 MByte
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8

Hardware Exceptions and Interrupts

Introduction
This chapter focuses on the:

• The AlphaStation 600 system interrupt logic

• The AlphaStation 600 system errors

• The AlphaStation 600 system machine check logout frame.

 EV5 detected errors are not discussed in detail -- (See the EV5 specification)

System Interrupts
The PCI-EISA bridge chip (ESC) set provides two cascaded 8259s and 14 interrupt lines.
The PCI interrupt-acknowledge command is used to read the interrupt request vector out
of the 8259s,  and to flush the EISA-to_PCI write buffers in the (E)ISA bridge chip (used to
ensure coherency between data written to memory, and the ensuing interrupt which sig-
nals the completion of the write).

The ESC chip provides four pins which can be used for routing PCI interrupts to the cas-
caded 8259’s. However, this is insufficient to efficiently support the 6 EISA slots (11 inter-
rupts) and the 20 interrupts from the 5 PCI slots1. Consequently, the 8259s in the ESC
chip are used for the (E)ISA interrupts, and separate interrupt logic is provided (called the
Main interrupt logic) for the PCI interrupts. This is shown in Figure 8-1. Note that the EISA
interrupt signal passes through the Main interrupt logic block.

At the completion of an (E)ISA interrupt, the software must reset the interrupt latch, wait at
least 500ns2 before issuing the EOI command to the 8259s. Table 8-3 defines the EISA
interrupt assignment.

The Main interrupt logic is located in the GRU ASIC. Software has visibility into the inter-
rupt logic via the INT_MASK and INT_REQ registers. Table 8-2 defines the interrupt as-
signment for the Main Interrupt logic.

Table 8-1 gives the system interrupt assignment for the EV5 interrupt pins. An interrupt is
enabled if the current IPL is less than the target IPL of the device. All interrupts are dis-
abled when the processor is executing in PALmode.

1 Software prefers that the PCI interrupts not be wire-ORed
2 This is an EISA spec. requirement and a consequence of the weak pull-ups on the IRQ lines.
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Figure 8-1 The AlphaStation 600 System Interrupt Scheme

Table 8-1 EV5 Interrupt Assignment

RESET changes the meaning of the seven  EV5 *IRQ inputs, and is described in the EV5
specification and the AlphaStation 600 Reset specification.

EV5

PCI Slots
64-bit PCI

32-bit PCI

Main
Interrupt
logic

IRQ<2>

IRQ<0>

IRQ<3>

IRQ<1>

SYS_MCH_CHK_IRQ

MCH_HLT_IRQHalt
Switch

IntA’s

IntB’s

IntC’s

IntD’s
SYS_INT

Reserved

CIA_Error 

8

PCI/EISA

(E)ISA Slots

Device
interrupts

irq
3-7,
9-12,

INT

NMI

Xbus

TOY

bridge

2
5
9 8

2
5
9

CIA_INT

keyboard

CIA

14,15
(GRU 
ASIC)

NMI

EV5 interrupt pin IPL EV5 suggested
Usage

 AlphaStation 600 Usage

IRQ<0> 20 Corrected system
error 

Corrected ECC errors detected by CIA

IRQ<1> 21 Medium priority
external
interrupt

PCI and (E)ISA interrupts

IRQ<2> 22 Timer,
interprocessor
interrupt.

TOY  DALLAS 1287 IRQ pin

IRQ<3> 23 High Priority,
Real time devices

Reserved

SYS_MCH_CHK_IRQ 31 Serious System
error

PCI/EISA NMI, Most CIA detected errors
(CIA_ERROR signal)

MCH_HLT_IRQ -- Halt button 
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Table 8-2 Main Interrupt Logic IRQ Pin Assignment

output irq interrupt Usage
(reference
designator)

0
1
2
3

int A
int B
int C
int D

PCI Slot 2 -- 64-bit
(J9)

4
5
6
7

int A
int B
int C
int D

PCI Slot 1 -- 64 bit
(J10)

8
9
10
11

int A
int B
int C
int D

PCI Slot 0 -- 64 bit
(J11)

12
13
14
15

int A
int B
int C
int D

PCI Slot 4 -- 32 bit
(shared PCI/EISA
slot)
(J7)

16
17
18
19

int A
int B
int C
int D

PCI Slot 3 -- 32 bit
(J8)

23-20 Jumpers

27-24 Module REV

30-28 Reserved

EV5
IRQ<1>

31 EISA_INT 8259 INT output

All unmasked irq inputs have equal priority

The above schematic is simplified; for more information refer to the
interrupt section in the CSR chapter.

Each of the irq lines are individually masked by the
Mask register. The interrupt output is the OR of the
masked interrupts.

The Mask is accessed via the INT_MASK register. The
incoming IRQs are sampled before the mask logic
and are visible by a read of the INT_REQ register (a
synchronizer is provided to ensure no metastability
problems when reading the asynchronous PCI
interrupts).

Jumpers

Module Revision
Systemboard revision:
• Revisions A and B are encoded as 0000
• Revisions C and D are encoded as 0001

Main Interrupt logic schematic

irq<31:0> EV5 IRQ<1>

request
<31:0>

Mask
Register
<31:0>

Interrupt

Irq Jumper

20
21
22
23

Alternate console
Secure console
Reserved
Reserved
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Table 8-3 EISA Interrupt Assignment

SYS_MCH_CHK_IRQ
The AlphaStation 600 system logically-ORs two signals to generate the
SYS_MCH_CHK_IRQ interrupt: the NMI signal from the PCI_EISA bridge chip (ESC) and
the CIA_ERROR from the CIA.  Hence, all the "serious" system errors (EISA bus time-out,
DMA parity error) generate an IPL 31 interrupt.

Table 8-4 defines the hardware and software events which generate the ESC NMI signal1.
All the NMI sources can be separately enabled/disabled in the ESC chip; and the NMI it-
self can be enabled/disabled. SERR# and PERR# must be disabled. 

Priority Label Controll
er

Int/external  Interrupt Source

1 IRQ 0 Internal  Internal Timer 1 counter 0 out.

2 IRQ 1 External  Keyboard

3 - 10 IRQ 2

1

Internal  Interrupt from controller 2

3 IRQ 8#  Reserved (normally Real Time Clock)

4 IRQ 9  EISA bus pin B04

5 IRQ 10  EISA bus pin D03

6 IRQ 11  EISA bus pin D04

7 IRQ 12  EISA bus pin D05, Mouse interrupt (ABFULL)

8 IRQ 13  Reserved (normally 487 coprocessor error)

9 IRQ 14  EISA bus pin D07 

10 IRQ 15

2

 EISA bus pin D06

11 IRQ 3  EISA bus pin B25

12 IRQ 4  EISA bus pin B24

13 IRQ 5  EISA bus pin B23

14 IRQ 6  EISA bus pin B22

15 IRQ 7

1

External

W EISA bus pin B21

1 This is the standard EISA NMI signal.



       Hardware Exceptions and Interrupts   8-5

Table 8-4 ESC NMI Generation

The conditions which generate the CIA_Error are the majority of the error conditions de-
tected by the CIA, and are covered later in this chapter. 

The PAL code handler for SYS_MCH_CHK_IRQ requires some care. The PCI specifica-
tion insists that PERR# is always signaled back to the master of the transaction, allowing
the originator of the request, at the hardware or software level, the prerogative of recov-
ery. Thus, when the CIA interrupts the EV5 because of a PERR#, it is possible that the
originating PCI master has also set its own interrupt or flag, signaling to its device driver to
handle the parity error gracefully.

Halt/Reset Switches
Depressing the Reset button will induce a complete hardware reset of the system (just like
a power cycle).

The halt button is debounced and presented to the EV5 MCH_HLT_IRQ. This interrupt is
not masked by an IPL level, but is masked if the EV5 is in PAL mode. How the 
MCH_HLT_IRQ is handled depends on the operating system and is handled uniquely by
the O/S specific PALcode. If a "halt" is required then the handler will save information on
the stack, and then start running console code. If a "reset" is required1, then the handler
should simply write the value "xxxxDEADh" to the RESET CSR; this will have the same
effect as a depressing the reset button. 

NMI source I/O port to
Enable/disable

 AlphaStation
600 Usage

PCI PERR#
PCI data parity error

Port 0061h,
bit<2>

DISABLE

PCI SERR#
PCI address parity error and other system errors.

Port 0040h,
bit<3>

DISABLE

IOCHK#
EISA add-in board parity error or some other catastrophic error.

Port 0061h,
bit<3>

Allowed

Fail-safe timer time-out.
This timer generates an NMI at regular intervals, preventing the
system from being tied up in a tight loop. The operating system
should reset timer 2 counter 0 at regular intervals to prevent it
from causing an NMI under normal operating conditions.

Port 0461h,
bit<2>

Allowed

EISA BUS time-out.
Set when a bus master uses the bus longer than 8 microseconds.

Port 0461h,
bit<3>

Allowed

Software generated NMI
Write to  I/O port 0462h.

Port 0461h,
bit<1>

Allowed

1 this "reset" functionality is provided in case some future AlphaStation 600 system packaging variant does
not provide a Reset button.
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EV5 Error Handling
Please refer to the Error Handling chapter of the EV5 specification for more details. Table
8-5 summarizes the EV5 features. 

Table 8-5 EV5 Error Detection Features

PCI Error Handling
The PCI specification allows for parity error detection on both the address and data cy-
cles. The parity check encompasses the complete AD<31:0> field, the byte enables as
well as the 64-bit PCI extension. All PCI options must generate parity, and nearly all PCI
options check parity (the exceptions are devices, such as video frame buffers, which can-
not create system integrity problems in the event of undetected errors).

Two PCI signals are provided for error notification:

• PERR# -- used to report DATA parity errors (except for the Special cycle since these
are broadcast writes and PCI devices are not required to listen to special cycles). The
master reports read parity errors; and the targets reports write parity errors.

• SERR# -- typically used to report ADDRESS parity errors and Special cycle DATA
parity errors. However, SERR# is also used to report catastrophic system errors (such
as certain master1 or target aborts). SERR# is asynchronous with respect to a PCI
transaction. SERR# is a one clock cycle pulse; but it may linger for a few cycles be-
cause of the modest pull-up.

A selected agent that detects an address parity error will do one of the following: 

     (1)  claim the cycle and terminate cleanly as though the address was correct; 
     (2)  claim the cycle and terminate with a target abort; or 
     (3)  not claim the cycle and let it terminate with a master abort.

For both PERR# and SERR#, the PCI specification suggests that the transaction
should complete gracefully, preserving normal PCI operation. 

Region/fault Description

Memory/Bcache/uncache
d  access

ECC checked. A maskable, corrected ECC error interrupt is provided at
IPL 31

Bcache Tags Parity checked. 

Ibox -- No progress
time-out

This is intended to prevent a hang. For the AlphaStation 600 system
this should be programmed to the largest time-out period.
One possible cause for this trap is a (bad) PCI device that has held a
memory lock for a long, long time, and the lock has stalled the EV5.

Outgoing Bcache data EV5 does not check outgoing Bcache data. Neither does the Data
Switch check this data (for example, no ECC checking on Bcache
victims)

Address/cmd from system Odd Parity checked.

1 Not all Master Aborts are catastrophic -- for instance a special cycle always enjoys a master abort.
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PERR# Implications 
A PCI device detecting a PERR# is expected to gracefully complete the transaction and to
inform the device driver by posting an interrupt (or setting a flag). Any PCI-PCI bridge will
transparently, propagate bad parity to the target/master, allowing the receiving device to
act accordingly by posting interrupts, etc.

Problems arise with the Intel PCI-EISA bridge which does not propagate bad parity; it sim-
ply asserts PERR# and expects the system hardware (that is, the CIA) to notify the driver.
Consequently, the CIA is compelled to always sample the PERR# line1 and assert
CIA_ERROR anytime PERR# is asserted. The ramification of this is that occasionally two
interrupts may be generated; table 8-6 shows this could occur if two PCI devices are com-
municating on the PCI bus and a data parity error is observed (in this case the CIA will
post a SYS_MCH_CHK_IRQ and the PCI device will probably assert an interrupt).

Table 8-6 AlphaStation 600 Handling of PCI Data Parity Errors

SERR# implications 
CIA Target Abort:  

Should the CIA receive a target abort for its own PCI transaction then  it will assert
SERR#, and  it will assert CIA_ERROR which in turn will assert the SYS_MCH_CHK_IRQ
input.

PCI Address Parity Error -- CIA Master:

As a master device, the CIA will become aware of an address parity error either via a
master abort, target abort or SERR#. In all three cases CIA_ERROR will result.

However, since the PCI-EISA bridge subtractively decodes the PCI  address space, and
thus absorbs all unclaimed addresses, it is clearly the most-likely target for a bad PCI ad-
dress. Unfortunately, the PCI-EISA Bridge chip does not  report address parity errors; and
consequently, the majority of PCI memory address parity errors will not be detected (and
instead will access/corrupt some EISA/ISA device).

PCI Address Parity Error -- CIA Target:  

There are three possible options:

• If the (erroneous) address hits in one of the four PCI Windows in the CIA then the CIA
will claim the cycle. This is because the CIA hardware is optimized to accept a  PCI
transfer (that is, DEVSEL) as soon as possible, and requiring DEVSEL to be qualified
by an address parity check would delay the acceptance by one cycle. 

Data Parity error scenario Device
detecting
parity error

Interrupt by
PCI-device?

 SYS_MCH_CHK_IRQ

PCI-device Write to PCI-EISA
bridge

PCI-EISA No Yes

PCI-device Write to CIA CIA No Yes

CIA Read of any PCI-device CIA No Yes

PCI-EISA bridge Read of any PCI
device

PCI-EISA No Yes

PCI-device Read of PCI-device 
(excluding PCI-EISA bridge) 

PCI device &
CIA

Probable Yes

1 and not just when the CIA is the target/master of a transaction.
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There are two scenarios to consider:

— DMA Read case:  The CIA will have already set the wheels in motion to fetch the
read data before the address parity error is detected. In this case the fetched data
is discarded; but note that this error can quite easily spawn off numerous other er-
rors, including: invalid-TLB-entry error; ECC error on the fetched data (or TLB
miss); or a non-existent memory access. For these secondary errors, the
CIA_ERR register will already be locked by the address parity error, and thus the
CIA_ERR<LOST> bit will be set.

The CIA is now left with two means of  terminating this PCI transaction: either it
could disconnect, or it could Target Abort. A disconnect is not really a viable option
- it will result in the PCI master resuming the transaction after a few cycles1, and
causing perhaps another address parity error; and thus hogging the PCI-bus ad
infinitum. The CIA will Target Abort the offending PCI transfer, and assert SERR#
and CIA_ERROR.

— DMA Write case:  By the time that the CIA had detected the address parity error it
could have already accepted a Dword of data, and the PCI master may no longer
be on the bus (for example, a one word DMA). If the DMA is still active, the CIA
will continue accepting the data (and discarding it) until the DMA write completes.
No  data will be written to memory. As before, numerous secondary errors are
possible (invalid TLB entry, non-existent memory, ECC error, etc.), which would
result in the CIA_ERR<LOST> flag being set. The CIA will assert CIA_ERROR.

— DMA Write/Read complication:  The PCI specification states that any agent can
check and signal address parity errors on SERR#, regardless of intended master
and target. Consequently, it is possible (but probably, very unlikely) that while the
CIA has detected the address parity error, some other PCI agent will signal
SERR# for this same address parity error. Unfortunately, the assertion of SERR#
has no timing relation to any PCI transaction, and thus this PCI agent can assert
SERR# at some indeterminate, future time, which may or may not coincide with
the CIA’s detection of the address parity error. If the PCI agent is very late is send-
ing the SERR# then a second CIA_ERROR is possible.

• The address does not hit in any of the four PCI windows in the CIA, but it does hit in
some other PCI devices window. In this case, the other PCI device will claim the cycle
and generate a SERR#. The CIA will induce SYS_MCH_CHK_IRQ on detecting
SERR#.

• The address does not hit in any of the four PCI windows in the CIA, and nor does any
other PCI device claim the cycle2. In this case the originator will Master Abort and
again a SERR# will be generated, and CIA will induce SYS_MCH_CHK_IRQ.

Address Parity Error and LOCK Bit Set.

This scenario can only occur if the master which holds the lock has an address parity er-
ror which fortuitously hits in one of the CIA PCI-address windows. It has to be the lock-
master since all other PCI transactions will be retried (that is, the PCI lock protocol). In
this case the PCI lock will be cleared (or not set if this is the start of a lock sequence) and
the CIA lock-register will be invalidated. Otherwise the behavior is as for a standard ad-
dress parity error as described above.

1 Assuming that the device does not listen to SERR# (which is true of the PCI-EISA bridge for example).
2 Only possible for addresses which are not subtractively-decode by the PCI-EISA bridge (that is PCI I/O-

address exceeding 64-KBytes).
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DAC Cycle Address Parity Error:  

The handling for this case is the same as for a standard (SAC) PCI address parity error,
as described above. The main difference is that the PCI_ERRx registers will contain a
DAC indication, the least-significant 32 address bits, and the command field for the subse-
quent command (of the DAC pair). The MS bits of the address can be inferred by reading
the PCI DAC BASE register in the CIA.

Special Cycle Data Parity Error:  

The CIA will not detect this error. The handling of this error is as follows: 

When a special cycle is issued there are two situations to consider. First, all the PCI de-
vices are deaf to the special cycle, in which case a parity error is immaterial; and second,
if  a  device is listening for the special cycle then it will almost certainly report the data
parity error as a SERR#. The CIA will intercept the SERR# and report it to the EV5 via the
CIA_ERROR.
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AlphaStation 600 Error Handling
The CIA ASIC together with the EV5 processor detect the vast majority of AlphaStation
600 system errors; the remaining few errors are detected by the PCI-EISA bridge chip-set
and by the PCI option devices (SERR# and PERR#). 

When an error is detected, information about the failure is latched and the failing com-
mand is completed or terminated as gracefully as possible. The error condition is signaled
to the EV5 via an interrupt which wakes the AlphaStation 600 system-specific PAL code
handler. This handler reads the error information and initiates the appropriate action.

Figure 8-2 AlphaStation 600 Error Logic

Figure 8-2 shows the AlphaStation 600 system block diagram with the major error detec-
tion/generation logic.

• Memory:  ECC protected.

• Bcache: data is ECC protected; tag is parity protected.

• Data Switch ASICs: no ECC or parity logic. Data from memory is passed un-modified
to the EV5/Bcache or the CIA ASIC.

• IOD bus: ECC checked/generated. Data from either the EV5/Bcache or memory is
ECC protected, and is checked/corrected by the CIA; data from the CIA to the Data
Switch (for example, PCI DMA write data or an internal CIA CSR) has ECC generated
for it by the CIA.

• Address/command bus:  parity checked at both the EV5 and the CIA. 
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ROM
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• PCI bus: parity protected. PERR# (Data parity error) and SERR# (address parity and
system error) are detected by the CIA.

• (E)ISA bus: Parity for I/O board memory and other  catastrophic errors via the ISA
IOCHK signal.

• Scatter/gather TLB in the CIA:  No checking.

• Flash ROM:  No parity/ECC checking. Checksum if implemented by software.

• Lemmon Bus: no checking.

Figure 8-3 shows the three classes of transactions (CPU memory, CPU I/O and DMA)
and their possible errors  -- for example a DMA read can suffer either a memory or     
Bcache ECC error. 

Figure 8-3 Possible Errors

MEMORY

Single-bit ECC
Double-bit ECC
Non-exist. mem.

Bcache-data

Single-bit ECC
Double-bit ECC

Bcache-Tag

Tag Addr. Parity

DMA write/read

Scatter/Gather TLB

PCI

Addr. Parity Err
Data Parity Err.

CPU-mem write

PCI

No Device,
Target- abort,

CIA

Retry timeout

Software

Invalid entry

EV5 

Single-bit ECC
Double-bit ECC

SERR#

CPU-memory read

Non-existant
memory
only

EV5 interface
error

CIA

EV5 interface
error

- with and without lock

CPU I/O write/read
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CIA ASIC Error Registers 
Table 8-7 describes the CIA error registers. More details are to be found in the CSR chap-
ter. Most of the error registers preserve the address and command of the offending trans-
action. 

Table 8-7 CIA Error Registers

All the error registers are frozen (locked) on the first detection of an error condition, thus
preserving the error state until the error handler clears the CIA_ERR register. If subse-
quent error conditions occur (for example, a PCI address parity error can induce a non-
existent memory error) then the "lost" fields in the error registers are set. 

Not all the error registers contain valid information for all errors: for instance, the PCI error
registers are irrelevant for a CPU memory fill error. To help determine the valid error reg-
isters the error-analyzing code should first direct its attention to the CIA_ERR register.

Table 8-8 summarizes the CIA_ERR definitions. Bits <11:0> define the error condition
when bit 31 is set; the remaining bits indicate what other errors occurred in the shadow of
this first error condition. The fourth column of this table indicates which operation could
have suffered the error condition. For example, bit 6 is set when a PCI agent attempts a
DMA read/write of memory and the CIA detects an address parity error; this is the only
way that this bit can be set. However, most of the bits are set for a number of reasons.

Description CIA error register Details 

Error indication CIA Error register CIA_ERR This registers is the most useful in that it
indicates which error occurred: 
• Bcache/memory ECC error
• S/G map invalid entry
• etc.

CIA status CIA status register CIA_STAT What the CIA was doing at the time of the error.
However, since the CIA can do numerous
concurrent operations then the status may have
nothing to do with the error condition.

EV5 Interface-error Register 0 CPU_ERR0EV5 Interface
error  EV5 Interface-error Register 1 CPU_ERR1

Address and Command field for:
• Interface parity error
• EV5 read/write to non-existent memory

ECC syndrome ECC error syndrome Register CIA_SYN  ECC syndrome 

Memory Port Status reg 0 MEM_ERR0

Memory Port Status reg 1 MEM_ERR1

Memory Port
errors

Memory Port Status reg 2 MEM_ERR2

Address, command and memory timing
parameters when error occurred for following
reasons:
• EV5 read/write to non-existent memory

PCI Error Register 0 PCI_ERR0

PCI Error Register 1 PCI_ERR1

PCI detected
errors

PCI Error Register 2 PCI_ERR2

PCI Address and Command pertaining to error.
Also indicates if the CIA was the master or
target of the PCI transaction.

Error Mask CIA Error Mask Register ERR_MASK Mask the detection and reporting of CIA errors
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Table 8-8 CIA_ERR Register 

Extent Mnemonic Description Possible Cause Valid Registers

<0> COR_ERR Corrected single bit
ECC error. 

<1> UN_COR_ERR Uncorrectable ECC
error 

This error cannot occur for a
CPU-to-memory read/write (CPU-mem
reads are checked by the EV5 and
CPU-mem writes are not checked by
AlphaStation 600 system). This error is
applicable to:

• DMA read/write data ECC error
• S/G TLB miss PTE ECC error
• ECC error on CPU-IO write data

from EV5

CIA_SYN

(PCI_ERR0,1,2)

<2> CPU_PE EV5 to CIA
addr/command bus 
parity error

• CPU-IO read/write
• CPU-mem read/write

CPU_ERR0,1

<3> MEM_NEM Non-existent 
memory 

• DMA read/write -- bad address
mapping from PCI to memory; bad
PTE

• CPU-MEM read/write to bad
address.

MEM_ERR0,1

(PCI_ERR0,1,2)

<4> PCI_SERR PCI SERR line
asserted 

• CPU-IO write address parity error
• PCI device detected internal

problem

<5> PCI_PERR PCI PERR line
asserted 

• DMA read/write data parity error
• CPU-IO write/read data parity error

<6> PCI_ADDR_PE PCI address parity
error.

• DMA read/write address parity error

<7> RCVD_MAS_ABT CIA received a PCI
Master abort error 

• CPU-IO read/write address parity
error  (special cycle master abort is
not an error)

<8> RCVD_TAR_ABT CIA received a PCI
Target abort error 

• CPU-IO read/write address parity
error

<9> PA_PTE_INV Scatter/gather TLB
invalid entry

• DMA read/write

PCI_ERR0,1,2

<10> FROM_WRT_ERR Flash ROM write
error 

• CPU write attempted while Flash
ROM write is disabled
(FROM_WR_EN is not enabled)

None

<11> IOA_TIMEOUT PCI IO timeout
occurred

• CPU-IO read/write (PCI_ERR0,1,2)

<15:12> Reserved

<16>
<17>
<18>
<19>

Lost_COR_ERR
Lost_UN_COR_ERR
Lost_CPU_PE
Lost_MEM_NEM

These lost errors occur in the shadow of a prior error, and
correspond to errors normally logged in  bits <3:0> of this
register

<20> Reserved

<21>
<22>
<23>
<24>
<25>
<26>
<27>

Lost_PCI_PERR
Lost_PCI_ADDR_PE
Lost_RCVD_MAS_ABT
Lost_RCVD_TAR_ABT
Lost_PA_PTE_INV
Lost_FROM_WRT_ERR
Lost_IOA_TIMEOUT

These lost errors occur in the shadow of a prior error, and
correspond to errors normally logged in  bits <11:5> of this
register

<30:28> Reserved

<31> ERR_VALID Error occurred 
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The last column of table 8-8 shows which error registers are applicable to the various er-
ror condition. When a register is enclosed in parentheses (for example-- (PCI_ERR0,1,2)),
then this register may have valid information; to determine if it does contain valid data
then the CIA_STAT register must be analyzed in conjunction with the status information in
PCI_ERR0,1.

The CIA_STAT register is frozen at the time of an error, and provides information on what
the CIA was fetching from the DSW asic at the time of the error. Whenever, this register
indicates (via the DM_ST field) that a DMA or I/O operation was in effect, and the
PCI_ERR0 register (command field)  indicates the same operation, then the PCI_ERR0
and PCI_ERR1 registers are valid. The "MEM_SOURCE" bit of CIA_STAT is also useful
to differentiate between a CPU and a DMA operation (for example, to help determine if  a 
DMA or CPU operation suffered an ECC error when CIA_ERR<0> is set).

Note that the CIA can perform multiple transactions (for example, a CPU fill concurrently
with a CPU-I/O write). Thus it is possible for the CIA_STAT to reflect the status of an op-
eration which has no relevance to the error condition (for example, the CIA_STAT could
reflect a DMA which was ongoing while an EV5-CIA interface error occurred). Conse-
quently, the CIA_STAT is not an infallible indicator of the error condition. 

Table 8-9 is an extension of table 8-8 and shows the most likely cause of a hardware er-
ror. Once the systemboard is suspected of causing the error then the AlphaStation 600
system is effectively useless and recovery is impossible. If the memory or PCI option card
are suspected, then diagnostics should be run to help further isolate the problem.

Table 8-9 CIA_ERR Register Fault Indication

Extent Mnemonic Possible Cause Possible Faulty hardware
(in order of likelihood)

DMA Read/write data ECC error

S/G TLB miss PTE ECC error

(1) Memory    
(2) Systemboard (IOD-bus,                         
     Memory-buses, DSW, CIA)  

<0>
<1>

COR_ERR
UN_COR_ERR

ECC error on CPU-IO write data from
EV5

(1) Systemboard (EV5-data bus, IOD-bus,
     DSW, CIA)

CPU-IO read/write<2> CPU_PE

CPU-mem read/write

(1) Systemboard (EV5-addr/command       
     bus, CIA)

DMA read/write -- bad address mapping
from PCI to memory; bad PTE

<3> MEM_NEM

CPU-MEM read/write to bad address.

(1) Software problem (for example, bad
PTE)
(2) Systemboard (CIA, address bus to       
     memory)

CPU-IO write address parity error (1) PCI option failure
(2) Systemboard (PCI bus, CIA)

<4> PCI_SERR

PCI device detected internal problem (1) PCI option failure

DMA read/write data parity error<5> PCI_PERR

CPU-IO write/read data parity error

<6> PCI_ADDR_PE DMA read/write address parity error

<7> RCVD_MAS_ABT CPU-IO read/write address parity error

<8> RCVD_TAR_ABT CPU-IO read/write address parity error

(1) Systemboard (PCI bus, CIA)
(2) PCI option failure

<9> PA_PTE_INV DMA read/write

<10> FROM_WRT_ERR CPU write attempted while Flash ROM
write is disabled (FROM_WR_EN is not
enabled)

(1) Software problem with PCI window     
     CSRs or PTEs
(2) Systemboard (CIA) 

<11> IOA_TIMEOUT CPU-IO read/write (1) PCI option failure
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CIA Error Mask Register
This register is used to disable the detection and reporting of certain errors. Most of the
CIA detected errors can be disabled (see Table 8-10). This is mainly a debug feature to
help isolate faulty error detection logic. The default on power-up is for error logging and
reporting to be off.

Table 8-10   CIA Error Mask Register

The error logic is disabled when the mask bit is cleared -- in which case it is as if the error
never existed (no logging or reporting of the error).

Extent Error Mnemonic Enabled error 

<0> COR_ERR Corrected single bit ECC error. 

<1> UN_COR_ERR Un-corrected ECC error 

<2> CPU_PE EV5 to CIA address/command bus  parity error

<3> MEM_NEM Non-existent memory 

<4> PCI_SERR PCI SERR line asserted 

<5> PCI_PERR PCI PERR line asserted 

<6> PCI_ADDR_PE PCI address parity error.

<7> RCVD_MAS_ABT Master abort error 

<8> RCVD_TAR_ABT Target abort error

<9> PA_PTE_INV Scatter/gather TLB invalid entry

<10> FROM_WRT_ERR Flash ROM write error

<11> IOA_TIMEOUT CPU-IO operation timeout on the PCI.

<32:12> Reserved
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CIA Error Reporting 
Table 8-11 lists the three ways the AlphaStation 600 system reports errors to the EV5.
Most of the errors detected by the CIA fall into the Class 2 category. 

Table 8-11 Error Reporting to EV5

CIA Detected Errors
The following tables tabulate the error conditions associated with an operation. These ta-
bles assume a single error occurred. This is consistent with the error registers which only
log the information for the first error detected. There is a small possibility that multiple un-
related errors (for example, DMA read and CPU read errors) occur concurrently; this situ-
ation is not covered.

The following tables are to a large extent the same as  table 8-8 just re-arranged in a dif-
ferent format with more detail. Tables 8-8 and 8-9 are better suited for the software error-
handler, whereas the following tables are better suited for the hardware group (to help en-
sure that the hardware has covered all the possible error cases, and secondly to help iso-
late which functional verification tests are needed). Finally, note that Tables 8-8 and 8-9
do not include class 3 errors.

Error EV5 input signal Comments

Low Priority. Class 1  IRQ<0>

Examples: Correctable ECC Errors.

High priority, fatal errors.
Can be masked at IPL 31, in PALmode, and by CIA_MASK
CSR.

Class 2  SYS_MCH_CHK_IRQ

Examples: Uncorrectable ECC errors, Invalid S/G map,
time-out, Target and Master abort, PCI parity error,
Invalid address, Parity error on the address/command bus
from the EV5 to the CIA. 

The EV5 takes a PALcode trap to the MCHK entry point.Class 3 FILL_ERROR_H

Examples: Any error associated with a CPU read must be
reported this way in order to un-stall the CPU. Examples
are: reads to non-existent memory (physical or PCI) or to
non-existent CSRs.
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Table 8-12  DMA Read Associated Errors

Error type CIA_ERR bit set Relevant CIA
Error Registers

What
Detected
The Error

Action
(see table 8-11)

Corrected ECC errors:

• DMA data from memory
• DMA data from cache
• S/G TLB miss from memory
• S/G TLB miss from cache

COR_ERR Class 1

Uncorrectable ECC errors:

• DMA data from memory
• DMA data from cache
• S/G TLB miss from memory
• S/G TLB miss from cache

UN_COR_ERR

CIA_SYN

PCI_ERR0,1
if status bits
indicate that
DMA Read
operation in
progress.

S/G TLB invalid entry 
(Note 1)

PA_PTE_INV PCI_ERR0,1

Non-existent memory access:

• DMA tries to access NEM
• PTE access to NEM

MEM_NEM MEM_ERR0,1

PCI_ERR0,1 if
doing DMA

CIA

Class 2

The PCI agent which instigated
the DMA read has the transaction
Target aborted by the CIA.

PCI address bad parity

(PCI parity encompasses the
address and command fields)

PCI_ADDR_PE CIA and
possibly a 
PCI device

Class 2

The PCI agent which instigated
the DMA read has the transaction
Target aborted by the CIA.

It is possible for some PCI agent to
concurrently detect the address
parity error and then assert
SERR#. The CIA does not capture
this as a lost bit. 

PCI data bad parity PERR

PCI_ERR0,1,2

PCI device Class 2

The PCI agent which instigated
the DMA read will detect the data
parity error, and will assert
PERR# and possibly post an
interrupt.

Address/cmd bad parity 
-- used for READ/FLUSH

Bcache tag bad parity

Not applicable. See EV5 spec. EV5 Machine check trap

Notes:  

1 The scatter/gather TLB is assumed to be coherent with memory -- whenever software change a PTE they
must flush the S/G TLB. The hardware reports an invalid entry when it is servicing a TLB miss and fetches
an invalid entry from memory. 
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Table 8-13 DMA Write Associated Errors

Error type CIA_ERR bit set Relevant CIA
Error
Registers

What
Detected
The Error

Action
(see table 8-11)

Corrected ECC errors:
• DMA data to memory
• DMA data to cache
• S/G TLB miss from memory
• S/G TLB miss from cache

COR_ERR Class 1

Uncorrectable ECC errors:
• DMA data to memory
• DMA data to cache
• S/G TLB miss from memory
• S/G TLB miss from cache

UN_COR_ERR

CIA_SYN

PCI_ERR0,1
if status bits
indicate that
DMA write
operation in
progress.

Non-existent memory access:
• DMA tries to access NEM
• PTE access to NEM

MEM_NEM MEM_ERR0,
1

PCI_ERR0,1
if doing DMA

Class 2

The PCI agent which instigated the
DMA write is allowed to complete
normally, except that the write data
is not written to memory. The CIA
does NOT issue a Target abort.

S/G TLB invalid entry 
(Note 1)

PA_PTE_INV

CIA

As above, but note following:

For a long DMA write (many
blocks), the CIA will take the first
block of data and disconnect the
DMA write (because of a TLB miss
-- invalid TLB entries always start
with a TLB miss). The CIA will
discard the data in its write buffer,
and the CIA will accept the next
PCI transaction. The retried (bad)
DMA write may get in again the
whole procedure repeats, on a
block-by-block basis. Thus, the
interrupt handler should be aware
that a bad DMA device may still be
active when servicing the error
condition.

PCI address bad parity
(PCI parity encompasses the
address and command fields)

PCI_ADDR_PE CIA and
possibly a 
PCI device

Class 2

The PCI agent which instigated the
DMA write is allowed to complete
normally, except that the write data
is not written to memory. The CIA
does NOT issue a Target abort.

PCI data bad parity PERR

PCI_ERR0,1

CIA Class 2

The PCI agent which instigated the
DMA write is allowed to complete
normally, but the write data is
discarded by the CIA.

Address/cmd bad parity 
-- used for READ/FLUSH

Bcache tag bad parity

Not applicable. See EV5 spec. EV5 Machine check trap

Notes:  

1 The scatter/gather TLB is assumed to be coherent with memory -- whenever software change a PTE they must flush
the S/G TLB. The hardware reports an invalid entry when it is servicing a TLB miss and fetches an invalid entry from
memory. 
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Table 8-14 I/O Write and Special Cycle Errors

Error detected CIA_ERR bit set Relevant CIA
Error
Registers

What
Detected
The  Error

Action
(see table 8-11)

Corrected ECC errors:
EV5 I/O write data had ECC
error

COR_ERR CIA Class 1 

Uncorrectable ECC errors:
EV5 I/O write data had ECC
error

UN_COR_ERR

CIA_SYN

PCI_ERR0,2
if status bits
indicate that
IO operation
in progress.

CIA Class 2

The CIA cleanly terminates the PCI
transaction when it detects bad
CPU-IO write data. The PCI agent
does not receive any bad data.

Bad PCI address
No PCI device responds (see
Note 1)

RCVD_MAS_ABT PCI_ERR0,2 CIA Class 2

This is a No-DEVSEL error - 
software has somehow generated a
bad address. 

EV5 System Interface bad
parity

CPU_PE CPU_ERR0,1 CIA Class 2

No PCI transaction will occur.

PCI address bad parity -- 1

CIA received a PCI target
abort 

RCVD_TAR_ABT CIA and  
PCI
device
possibly 

Class 2

The PCI agent detected the address
PE and terminated the transaction
with a target abort. 

PCI address bad parity --2

PCI device asserted SERR# 

PCI_SERR PCI
device
and CIA
(via the
SERR#)

Class 2

The PCI agent allowed the CPU-IO
write to complete cleanly, and
asserted SERR.

PCI address bad parity -- 3

CIA received a PCI master
abort (see note 1)

RCVD_MAS_ABT CIA Class 2

No PCI agent responded. 

PCI data bad parity PERR 

PCI_ERR0,2 

PCI
device

Class 2

PCI device will detect the data PE
and assert PERR#, and also the PCI
device may set iots own interrupt. 

IO timeout IOA_TIMEOUT PCI_ERR0,2 
if this reg
status
indicates 
CPU-IO
operation

CIA Class 2

The CIA has an I/O timeout register
to detect fatal PCI bus hangs.

Notes:  

1 This will only occur for a PCI I/O address which accesses beyond 64 KB. The PCI-EISA bridge will claim all
other unclaimed addresses (that is, subtractive decode). Any problems on the EISA bus will result in a PCI-
EISA NMI (for example, bus timeout). Note that the PCI-EISA Bridge chip does not detect address parity
errors.



8-20   Hardware Exceptions and Interrupts

Table 8-15 CPU I/O Read and PCI Interrupt-ACK Errors

Error detected CIA_ERR bit set Relevant CIA
Error
Registers

What
Detected
The Error

Action
(see table 8-11)

Invalid PCI address
No PCI device responds

RCVD_MAS_ABT PCI_ERR0,2 CIA Class 2

This is a No-DEVSEL error - 
software has somehow generated
a bad address. 

EV5 System Interface bad
parity

CPU_PE CPU_ERR0,1 CIA Class 2

No PCI transaction will occur.

PCI address bad parity -- 1

CIA received a PCI target
abort 

RCVD_TAR_ABT CIA and  
PCI
device
possibly 

Class 2

The PCI agent detected the
address PE and terminated the
transaction with a target abort. 

PCI address bad parity -- 2

CIA received a PCI master
abort (see note 1)

RCVD_MAS_ABT CIA Class 2

No PCI agent responded.

PCI data parity error PERR

PCI_ERR0,2 

CIA Class 2

CIA detects data PE and asserts
PERR# line

IO read timeout IOA_TIMEOUT PCI_ERR0,2 
if this reg
status
indicates 
CPU-IO
operation

CIA Class 2

The CIA has an I/O timeout
register to detect fatal PCI bus
hangs. 

EV5 detects ECC data error                         Not applicable EV5 Machine Check

Notes:  

1 This will only occur for a PCI I/O address which accesses beyond 64 KB -- the PCI-EISA bridge will claim all other
unclaimed addresses (that is, subtractive decode). Any problems on the EISA bus will result in a PCI-EISA NMI (for
example, bus timeout). Note that the PCI-EISA Bridge chip does not detect address parity errors.
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Table 8-16 CPU/Memory Read Associated Errors

Table 8-17 CPU/Memory Victim/Write Associated Errors

Error Insertion
In general there will be two mechanisms for inserting errors:

Force Error Registers
The CIA contains a CSR that contains force error bits. If the bit in the register is asserted
then a parity error will be forced on the next transaction, the bit will be cleared and a
forced error bit will be set in a status register. 

The CIA will contain force error bits for:

• The EV5 to CIA  address/command interface

• CIA to PCI (drive bad parity -- check the PCI-EISA bridge parity detect logic)

Accessing Main Memory Via CPU Uncached Space
The AlphaStation 600 system can be configured to do a "bounce around" path which con-
verts a CPU IO read/write to a pseudo-DMA read/write into memory.

The trick here is to configure the PCI window to a certain address space, and then to per-
form CPU uncached IO read/writes to the same address space. The CPU IO read/write
will be sent out on the PCI bus by the CIA ASIC, and will also be accepted by the CIA
since the transaction will hit in the PCI window. The CPU IO read/write will thus be trans-
ferred to a PCI memory space read/write (that is, a DMA read/write).

Writing Bad ECC Into Memory
The CIA_DIAG CSR can be used instead of the ECC generation logic in the CIA to load
bad ECC into memory. Thus diagnostics can load bad ECC into memory using the
"bounce-around" path described above. This bad ECC can be accessed via a CPU fill or
via a pseudo-DMA using the "bounce-around" path.

Error detected CIA_ERR bit set Relevant CIA
Error Registers

What
Detected
The Error

Action
(see table 8-11)

ECC corrected fill error System MCHK interrupt
(maskable)

ECC uncorrected fill error

                       Not applicable. EV5 

Machine check

Non-existent memory
address

NEM MEM_ERR0,1 CIA

EV5 Address/cmd bad parity CPU_PE CPU_ERR0,1 CIA

Class 3
Garbage data with good ECC is
returned to the EV5

Error detected CIA_ERR bit set Relevant CIA
error registers

Who
detected
error

Action
(see table 8-11)

Non-existent memory
address

NEM MEM_ERR0,1 CIA

EV5 Address/cmd bad parity CPU_PE CPU_ERR0,1 CIA

Class 2

Data is not written to memory
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With the "bounce-around" path, the complete DMA path inside the CIA and DSW is
tested.  Moreover, Read and Flush operations to the EV5/Bcache are always performed
(since the width of a CPU uncached operation is less than a cache block in size); and the
scatter/gather or direct addressing scheme can be used.

Machine Check Logout Data Structure
The Machine check logout data structure consists of :

• A Correctable Error (small) logout frame 

— This is used to log correctable errors such as Single bit ECC errors.

— These errors can be detected by either the processor or the system (the CIA ASIC
in the case of AlphaStation 600 system ).

• An Uncorrectable Error  (large) logout frame

— This is used to log uncorrectable errors such a double bit ECC errors

— These errors can also be detected by either the processor or the system

The PALcode will fill in these data structures when it handles the interrupt generated by
either a correctable or uncorrectable error. The system software will have a handler that 
will read the information in these logs and save the data into their appropriate error log
area.

EV5 generated machine checks, such as single bit or double bit ECC errors, will be vec-
tored to the machine check entry point (0x400 off of the current PAL_Base) in the current
PALcode. 

System generated machine checks will assert the SYS_MCH_CHK_IRQ line on the EV5.
These interrupts will occur at IPL level 31, thus they can be masked out when running at
EV5 internal IPL = 31.
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Correctable Error Logout Frame
The figure below shows the format of a correctable Error Logout Frame on the AlphaSta-
tion 600 system.

Figure 8-4 Correctable Error Machine Check Logout Frame  

The description of the fields in the correctable machine check logout frame are as follows:

• FLAGS

— This quadword is broken up into two longword fields. The low longword will contain
the size of the frame in bytes, while the high longword is used for flags where:

 * bit 64 = 1 for retryable error

 * bit 63 = 1 for second error occurred

• OFFSETS

— This quadword is broken up into two longword fields:

 * longword 0 contains the byte offset to the EV5 specific information.

 * longword 1 contains the byte offset to the System (AlphaStation 600) Specific
information. The offset to the AlphaStation 600 system specific information
begins at offset 38h.

• MACHINE CHECK CODE

— This is the type of machine check that has caused the interrupt to occur. These fall
into two classes, processor detected and system detected. The following table lists
all possible correctable machine check codes on the AlphaStation 600 system.

Table 8-18 Correctable Machine Check Error Codes

63 0

 0000FLAGS

0008OFFSETS

MACHINE CHECK CODE 0010
EI_ADDR 0018
FILL_SYN 0020
EI_STAT 0028
ISR

CIA_SYN

MEM_ERR0

MEM_ERR1

CIA_ERR_STAT

CIA_ERR

0030

0038

0040

0048

0050

0058

Description  Code

EV5 detected Correctable ECC Error 0x86

CIA detected Correctable ECC Error 0x201
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• EI_ADDR

— This is the contents of the EV5 EI_ADDR register at the time of the failure. The
contents of this field is meaningful for processor detected correctable errors

• FILL_SYN

— This is the contents of the EV5 FILL_SYN register at the time of the failure.  The
contents of this field is meaningful when the error is a processor detected single bit
ECC error. The value in this register will isolate the failure to a data bit or check bit
within the failing quadword. 
NOTE:
This is the register that will contain the failing syndrome for processor de-
tected single bit ECC errors. The data located in the CIA CIA_SYN register
should NOT be used to isolate the failing bit.

• EI_STAT

— This is the contents of the EV5 EI_STAT register at the time of the failure. Where,

 * bit 31 = 1 on a processor detected single bit error

 * bit 30 = 0 if the source of the error came from the B-Cache
= 1 if the source of the error came from the memory

 * bit 34 = 0 if the error occurred during a D-stream fill
= 1 if the error occurred during an I-stream fill

• ISR

— This is the contents of the EV5 ISR register at the time of the failure. This register
will tell you what interrupts were pending. The bits of interest for correctable errors
are the MCK bit (bit 21) and the CRD bit (bit 30). If you see the CRD bit set then,
the machine check was probably caused by a processor detected correctable er-
ror. If the CRD bit is clear and the MCK bit is set then , the machine check was
probably caused by a system detected correctable error. If it was a system correct-
able error then, the CIA CSR’s that follow will be of interest.

• CIA_SYN

— This is the contents of the CIA  Error syndrome register. This will isolate the failing
bit in a quadword for system detected correctable errors. 
NOTE:
This register will contain the failing ECC syndrome for system detected ECC
errors. The data located in the EV5 FILL_SYN register should NOT be used
to isolate the single bit error.

• MEM_ERR0

— This is the contents of the CIA Memory Port Status Register 0. This will tell you
low order address bits for the location in memory that contained the single bit er-
ror.

• MEM_ERR1

— This is the contents of the CIA Memory Port Status Register 1.  This will contain
the high order address bits,  the current command, and the current INT4_VALID
mask. 

• CIA_ERR_STAT

— This is the contents of the CIA Error status register. This will contain status infor-
mation such as the transaction type, current state of the CIA queues, etc
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• CIA_ERR

— This is the contents of the CIA Error register. This register will have bit 0 set to a 1
on a system detected correctable error. The PALcode will dismiss the error by writ-
ing a 1 to bit0 of  this register after it has logged all the appropriate information.
This will unlock the CIA error registers so they can be updated on a future error.

Deciphering a Correctable Error Machine Check Logout Frame
If you want to decipher the cause of a correctable single bit ECC error, You should per-
form the following steps.

• Check the machine check code type

• IF the machine check code == 0x86 THEN  (processor detected)

— FILL_SYN register contains the failing syndrome

— EI_ADDR register contains the physical address where failure occurred

— EI_STAT register contains the following information

 * bit 31 = 1 for correctable ECC error

 * bit 30 = 0 if data came from the BCache
bit 30 = 1 if data came from Memory

 * bit 34 = 1 if error occurred during ICache fill
bit 34 = 0 if error occurred during DCache fill

• ELSE IF the machine check code = 0x201 THEN (System detected)

— CIA_SYN register contains the failing syndrome.

— CIA_ERR register bit <0> = 1 for correctable ECC error.

— MEM_ST0,1 contains NO applicable information.

— To determine if the cause of the error was a DMA, Scatter/gather TLB miss or a
CPU IO write then CIA_STAT must be analyzed as follows:

 * For a DMA read/write (no TLB miss), the PCI address is saved in PCI_ERR1. 
PCI_ERR0 should indicate an active target state (that is,  MAS-
TER_STATE=0 and TARGET_STATE <> 0). PCI_ERR0<WINDOW> will in-
dicate which PCI window hit the PCI address, allowing software to access the
appropriate T_BASE CSR, and thus determine the physical memory address
which suffered the ECC error.  The PCI_ERR0<CMD> will indicate if the PCI
command was a  READ or a WRITE. The CIA_STAT<PA_CPU_RES> will in-
dicate if the DMA data originated from memory or the EV5 caches.

 * For a Scatter/Gather TLB miss, the PCI address is saved in PCI_ERR1. 
PCI_ERR0 should indicate an active target state (that is,  MAS-
TER_STATE=0 and TARGET_STATE <> 0). PCI_ERR0<WINDOW> will in-

 DMA Read DMA WriteCIA STATUS register
CIA_STAT TLB miss No TLB miss TLB miss No TLB miss

IO write

PCI_STATUS<1:0> 1 1 1 1 X

TLB_MISS 1 0 1 0 0

DM_ST<3:0> 6 6 6 7 2, 3, 8

PA_CPU_RES<1:0>      01: Memory data
     10: Scache  data
     11: BCache data

Not relevant

MEM_SOURCE
IOA_VALID<3:0>
CPU_QUEUE<2:0>

Not relevant
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dicate which PCI window hit the PCI address, allowing software to access the
appropriate T_BASE CSR, and thus determine the physical memory address
which suffered the ECC error. The selected PCI window must be a scat-
ter/gather window. The PCI_ERR0<CMD> will indicate if the PCI command
was a  READ or a WRITE. The CIA_STAT<PA_CPU_RES> will indicate if
the DMA data originated from memory or the EV5 caches.

 * If the error was a CPU-IO write then the offending address is NOT saved in
any register. However, this bug is a serious systemboard problem indicating a
failure of either: (1) the EV5-DSW data bus; (2) the IOD bus; (3)  or the CIA
or the DSW ASIC.

• Once the physical address is obtained, using a show memory command from the con-
sole with a MAP of the SIMMS you can isolate the failing FRU. If the bad data came
from cache you will have to use a different map to isolate to the Cache SIMM. These
maps will be available at a later date.

• An uncorrectable ECC error is deciphered in a similar manner.
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ECC Syndromes for Single-Bit Errors
The following table lists the Syndromes for any single bit error whether it is detected by
the CIA or the EV5. This data was taken from the DECchip 21164-AA (EV5 CPU) Specifi-
cation, Revision 1.9. 

Table 8-19 EV5 Single Bit Error Syndromes

Data Bit Syndrome Data Bit Syndrome Check Bit Syndrome

00 0xCE 32 0x4F 00 0x01

01 0xCB 33 0x4A 01 0x02

02 0xD3 34 0x52 02 0x04

03 0xD5 35 0x54 03 0x08

04 0xD6 36 0x57 04 0x10

05 0xD9 37 0x58 05 0x20

06 0xDA 38 0x5B 06 0x40

07 0xDC 39 0x5D 07 0x80

08 0x23 40 0xA2

09 0x25 41 0xA4

10 0x26 42 0xA7

11 0x29 43 0xA8

12 0x2A 44 0xAB

13 0x2C 45 0xAD

14 0x31 46 0xB0

15 0x34 47 0xB5

16 0x0E 48 0x8F

17 0x0B 49 0x8A

18 0x13 50 0x92

19 0x15 51 0x94

20 0x16 52 0x97

21 0x19 53 0x98

22 0x1A 54 0x9B

23 0x1C 55 0x9D

24 0xE3 56 0x62

25 0xE5 57 0x64

26 0xE6 58 0x67

27 0xE9 59 0x68

28 0xEA 60 0x6B

29 0xEC 61 0x6D

30 0xF1 62 0x70

31 0xF4 63 0x75
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Uncorrectable Error Logout Frame
The figure below shows the format of a uncorrectable Error Logout Frame

 

0008

0010

0018

0118

0120

0128

0130

0138

0140

0148

0150

0158

0160

0168

0170

0178

0180

0188

0190

0198

01A0

0000

0058

OFFSETS

MACHINE CHECK CODE

 

PALTEMP REGISTERS 0-23

EXC_ADDR

EXC_SUM

EXC_MASK

PAL_BASE

ISR

ICSR

IC_PERR_STAT

DC_PERR_STAT

VA

MM_STAT

SC_ADDR

SC_STAT

BC_TAG_ADDR

EI_ADDR

FILL_SYN

EI_STAT

LD_LOCK

AL AA AAFor spcific  error information, refer to Table 8-20

FLAGS

SHADOW REGISTERS 8-14, 25



       Hardware Exceptions and Interrupts   8-29

The figure below shows the AlphaStation 600 system’s specific error information in the
Uncorrectable Error Log frame.

Figure 8-5 AlphaStation 600 Specific Error Information

CPU_ERR0

CPU_ERR1

CIA_ERR

CIA_ERR_STAT

CIA_ERR_MASK

CIA_SYN

MEM_ERR0

MEM_ERR1

PCI_ERR0

PCI_ERR1

PCI_ERR2

1A0

1A8

1B0

1B8

1C0

1C8

1D0

1D8

1E0

1E8

1F0NMI_INFO

1F8
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The description of the fields in the uncorrectable error machine check log are as follows:

• FLAGS

— This quadword consists of two longword fields where:

 * Longword 0 is the size of the logout frame in bytes

 * Longword 1 contains the following flags

 x bit 63 = 1 means the error is retryable

 x bit 62 = 1 means a second error has occurred

• OFFSETS

— This quadword consists of two longword fields where:

 * Longword 0 is the offset in bytes to the EV5 specific information

 * Longword 1 is the offset in bytes to the System (AlphaStation 600 system )
specific information

• MACHINE CHECK CODE

— This will tell you the type of error that has caused the uncorrectable error.

Table 8-20 Uncorrectable Machine Check Error Codes

Description Error Code

* Tag Parity Error 0x80

* Tag Control Parity Error 0x82

* Generic Hard Error 0x84

* Processor Detected Uncorrectable ECC error 0x88

* Bugcheck generated by OS specific PALcode 0x8A

* Bugcheck generated by PALcode 0x90

* I-Cache Read retryable Error 0x96

* Processor Detected Hard error 0x98

 System Detected Uncorrectable ECC error 0x203

Parity error detected by CIA 0x205

Non-existent Memory Error 0x207

PCI SERR detected 0x209

PCI Data Parity Error detected 0x20b 

PCI Address Parity Error detected 0x20d

PCI Master Abort error 0x20f

PCI Target Abort error 0x211

Scatter/Gather PTE invalid error 0x213

Flash ROM Write Error 0x215

IOA Timeout detected 0x217

IOCHK#, EISA add-in board parity error or other catastrophic 0x219

EISA Fail-safe timer time-out 0x21b

EISA Bus time-out 0x21d

EISA Software generated NMI 0x21f

Unexpected EV5 IRQ[3] interrupt 0x221
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NOTE:

This table is subject to change as new PALcode is released.  All the errors 
marked by a ’*’ are included in the current generic EV5 PALcode. 

You should also note that all errors that enter PALcode as an 
interrupt have the low bit set while errors that enter that PALcode 
as a hardware machine check have the low bit clear. This is done to 
comply with the standard set by the EV5 PALcode released by 
Hudson

• Shadow Registers 8-14, 25

— This area in the logout frame contains the state of the Shadow registers at the time
of error. The EV5 has 8 shadow registers that are available only when in PAL-
mode. These will be used rather than the user’s registers to reduce the amount of
registers that the PALcode needs to save before handling a PALcode entry.

• PALTemp 0 - 23

— This area in the logout frame contains the contents of PT0 -PT23 at the time of the
error.

• EXC_ADDR

— This has the contents of the EV5 EXC_ADDR register at the time of the error. This
will tell you where you were executing from at the time of the error. Refer to the
DEC Chip 21164-AA specification for details.

• EXC_SUM

— This has the contents of the EV5 EXC_SUM register at the time of error. This will
tell you the type of arithmetic trap occurred. This will be valid on a machine check
due to a arithmetic Trap. Refer to the DEC Chip 21164-AA specification for details.

• EXC_MASK

— This has the contents of the EV5 EXC_MASK register at the time of error. This
register will log the destination register of an operation that has caused a arithme-
tic trap. This will be valid on a machine check due to a arithmetic Trap. Refer to
the DEC Chip 21164-AA specification for details.

• PAL_BASE

— This has the contents of the EV5 PAL_BASE register at the time of error. Refer to
the DEC Chip 21164-AA specification for details.

• ISR

— This has the contents of the EV5 ISR register at the time of error. This register will
give you a summary of all pending interrupts at the time of error. Refer to the DEC
Chip 21164-AA specification for details. In the case of a uncorrectable machine
check, bit 31 will equal a 1 when it is a system detected uncorrectable error. This
bit contains the state of the SYS_MCH_CHK_IRQ_H at the time of the error. In the
AlphaStation 600 system, the CIA ASIC will drive this signal on system detected
uncorrectable errors.

• ICSR

— This has the contents of the EV5 ICSR register at the time of error. This register
will give you the current setup of the EV5’s IBOX. Refer to the DEC Chip 21164-
AA specification for details.
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• IC_PERR_STAT

— This has the contents of the EV5 IC_PERR_STAT register at the time of error. 
This register will have:

 * bit 11 set to a 1 on a I-cache data parity error

 * bit 12 set to a 1 on a I-cache tag parity error

 * bit 13 set to a 1 on a Timeout reset error or CFAIL_H/no CACK_H error oc-
curred 

• DC_PERR_STAT

— This has the contents of the EV5 DC_PERR_STAT register at the time of error.
This register will have:

 * bit 0 set to a 1 if a second error has occurred in a cycle after the register was
locked

 * bit 1 set to a 1 once the error bits 2:5 are locked into this register. If this bit is
clear then the state of bits 2:5 are meaningless.

 * bit 2 set to a 1 on a data parity error in D-cache bank 0

 * bit 3 set to a 1 on a data parity error in D-cache bank 1

 * bit 4 set to a 1 on a tag parity error in D-cache bank 0

 * bit 5 set to a 1 on a tag parity error in D-cache bank 1

• VA

— This has the contents of the EV5 VA register at the time of error. This will contain
the effective virtual address associated with D-stream faults, DTB misses, or D-
cache parity errors. 

• MM_STAT

— This has the contents of the EV5 MM_STAT register at the time of error.  This reg-
ister will help determine the reason for a D-stream Fault or D-Cache parity error.
This register will have:

 * bit 0 set to a 1 if the failing reference was a write

 * bit 1 set to a 1 if the reference caused an Access violation

 * bit 2 set to a 1 if the reference was a  read and the PTE’s Fault on Read bit
was set

 * bit 3 set to a 1 if the reference was a write and the PTE’s Fault of Write bit
was set

 * bit 4 set to a 1 if the reference resulted in a DTB Miss

 * bit 5 set to a 1 if the reference had a bad virtual address

 * bits 10:6 contain the Ra field of the faulting instruction

 * bits 16:11 contain the Opcode field of the failing instruction

• SC_ADDR

— This has the Address that was being accessed when a failure was detected in the
EV5’s Secondary cache. 
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• SC_STAT

— This has the contents of the EV5 SC_STAT register at the time of error. This regis-
ter will help determine whether the error was caused by a tag or data parity error in
the secondary cache. This register contains the following:

 * bits 2:0 will contain a 1 in the bit corresponding to the set that was being
probed when a Scache Tag parity error occurred

 * bits 10:3 will tell which longword within the two octawords in a SCache block
has an error ... bit 3 denotes Longword 0, bit 4 denotes Longword 1 and so
on.

 * bits 15:11 indicates the SCache transaction which caused the error, where:

 x 1x110 means Set Shared from system

 x 1x101 means Read Dirty from system

 x 1x100 means Invalidate from system

 x 1x001 means SCache victim

 x 00001 means SCache I-Read

 x 01001 means SCache D-Read

 x 01011 means SCache D-Write

 * bit 16 will be set to a 1 if another error occurs after this register is locked.

• BC_TAG_ADDR

— This has the contents of the EV5 BC_TAG_ADDR register at the time of error. 
This register contains the following:

 * bit 12 is set to a 1 on a BCache hit

 * bit 13 contains the Tag Control parity

 * bit 14 contains the Tag Control dirty bit

 * bit 15 contains the Tag Control shared bit

 * bit 16 contains the Tag Control valid bit

 * bit 17 contains the Tag parity 

 * bits 38:20 contain the BCache Tag  

• EI_ADDR

— This has the contents of the EV5 EI_ADDR register at the time of error.  This will
contain the physical address of any transfer that is logged in the EV5 EI_STAT
register. This register contains the following data:

 * bits 3:0 are always read as a one

 * bits 39:4 contain bits 39:4 of the failing address

• FILL_SYN

— This has the contents of the EV5 FILL_SYN register at the time of error. This reg-
ister should not contain a syndrome for a single bit error in a large frame, due to
the fact that only double bit errors should be logged in a uncorrectable error logout
frame.
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• EI_STAT

— This has the contents of the EV5 EI_STAT register at the time of error.  This will
help identify the reason for any type of processor detected uncorrectable errors at
its external interface. This register will contain the following:

 * bits 27:0 are always read as a one

 * bit 28 is set to a 1 on a BCache Tag parity error

 * bit 29 is set to a 1 on a BCache Tag control parity error

 * bit 30 = 1 means the error source is the memory subsystem
= 0 means the error source is the BCache subsystem

 * bit 31 is set to a 1 on a Correctable ECC error. This should not be set in a
uncorrectable machine check logout frame unless a single bit error is
detected at the same time as a uncorrectable error occurs

 * bit 32 is set to a 1 on a Uncorrectable ECC error.

 * bit 33 is set to a 1 when an address or command received by the EV5 has a
parity error.

 * bit 34 = 1 when the error occurred during an ICache fill
= 0 when the error occurred during a DCache fill

 * bit 35 is set to a 1 if an second error occurs after this register has been
locked because of a previous error. 

• LD_LOCK

— This has the contents of the EV5 LD_LOCK register at the time of error. 

• CPU_ERR0

— This has the contents of the CIA ASIC’s CPU_ERR0 register at the time of error.
This will contain the low order address bits (EV5 ADDR_H <31:4>) at the time of
error.

• CPU_ERR1

— This has the contents of the CIA ASIC’s CPU_ERR1 register at the time of error.
This will contain the high address bits (EV5 ADDR_H <39:32>) at the time of error
as well as other information. Refer to the chapter on Control Registers for details.

• CIA_ERR

— This has the contents of the CIA ASIC’s CIA_ERR register at the time of error. Re-
fer to the chapter on Control Registers for details.

• CIA_ERR_STAT

— This has the contents of the CIA ASIC’s CIA_ERR_STAT register at the time of
error. Refer to the chapter on Control Registers for details.

• CIA_ERR_MASK

— This has the contents of the CIA ASIC’s CIA_ERR_MASK register at the time of
error. Refer to the chapter on Control Registers for details. 

• CIA_SYN

— This has the contents of the CIA ASIC’s CIA_SYN register at the time of error. Re-
fer to the chapter on Control Registers for details.
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• MEM_ERR0

— This has the contents of the CIA ASIC’s CIA_MEM0 register at the time of error.
This will contain the low address bits (MEM_ADDR_H<31:4>) at the time of error. 
Refer to the chapter on Control Registers for details.

• MEM_ERR1

— This has the contents of the CIA ASIC’s CIA_MEM1 register at the time of error.
Refer to the chapter on Control Registers for details.

• PCI_ERR0

— This has the contents of the CIA ASIC’s PCI_ERR0 register at the time of error.
Refer to the chapter on Control Registers for details.

• PCI_ERR1

— This has the contents of the CIA ASIC’s PCI_ERR1 register at the time of error.
Refer to the chapter on Control Registers for details.

• NMI INFO 

— This has the contents of the EISA bridge NMI status and control register (61h) in
the low longword and the contents of the EISA bridge NMI Extended status and
control register (461h) in the high longword.

Deciphering an Uncorrectable Error Logout Frame
If you want to determine the cause of an uncorrectable error logout frame , you should
use the following flow.

• Get the Machine Check Error Code

• IF the Error code > 0x201 THEN (system detected uncorrectable error)

— Use the Section called "CIA detected errors" in this chapter to help isolate the
failure. It contains the information needed to help isolate the error such as:

 * Which bits should be set in the CIA_ERR register for the particular error

 * What the relevant CIA error registers corresponding the the error

 * Who Detected the Error?

 * How the error is reported to the CPU?

• ELSE IF the Error code < 0x200 THEN (Processor detected uncorrectable error)

— Use the machine check code to determine the type of error that has occurred.

— The following are the internal registers that are used to determine the type of error.

 * The EI_STAT register contains bits for:

 x B-Cache Tag Parity Error

 x B-Cache Tag Control Parity Error

 x External interface source , used to isolate ECC errors between B-cache
and memory

 x Uncorrectable ECC error

 x External Interface parity error

 x FILL IRD bit that is used to determine whether the ECC error was de-
tected on an I-stream or D-stream fill

 x Second Error Occurred bit 

 * The EI_ADDR register contains the physical address associated with errors
reported in the EI_STAT register 
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 * The SC_STAT register contains bits that will allow you to:

 x isolate the set on a S-cache Tag parity error

 x isolate the failing longword on a S-Cache Data Parity Error

 x log the S-Cache transaction at the time of error

 * The SC_ADDR will contain the physical address associated with errors re-
ported in the SC_STAT register.

 * The IC_PERR_STAT contains information about an I-Cache parity error

 * The DC_PERR_STAT contains information about a D-cache parity error.

Please Refer to the PALcode/IPR and Error Handling chapters in the DEC chip 21164-AA
Specification for more details on the using the EV5 registers that are logged in the ma-
chine check logout frame.
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9

AlphaStation 600 System Initialization

Introduction
This chapter will describe the initialization performed by the system firmware at power-up.
The firmware will be split between two types of ROMS. A serial ROM that interfaces di-
rectly with the EV5 CPU and One Megabyte of Flash ROM  that resides in the GRU
ASIC’s CSR space.  The One Megabyte of flash ROM is split up so 512 Kbytes are used
for the SRM Console and 512 Kbytes are used for the ARC console. This chapter dis-
cusses the initialization performed by the Serial ROM and the SRM console.

This chapter is broken up into two sections:

• Serial ROM performed initialization

• System ROM (Flash ROM) performed initialization

Serial ROM Performed Initialization

The Serial ROM firmware is responsible for the following initialization steps:

• Initialize the EV5 CPU

• Test the interface to the EISA Bridge chipset

— The Serial ROM code will test the interface to the EISA Bridge chipset by first de-
termining that the device has been found. Then, a datapath test will be performed
by longword writes and reads using PCI Configuration address space.

• Test  and Initialize to the OCP device

• Size and Configure the Third Level Cache

— The Serial ROM code will handle any supported third level cache size. This will
provide a single Serial ROM image that supports many different system vari-
ations..

— The Serial ROM code will configure a third level cache size equal to 0, if it finds
Cache SIMMS of different sizes.

• Size and Configure the MMB types

— The Serial ROM code will handle any supported MMB type. The MMB type is
needed so the SROM code can determine the data path width to memory
(128/256 bit). This flexibility will allow the AlphaStation 600 system to work with
either:

 * One 128 bit MMB  (128 bit data path)

 * Two 128 bit MMB  (256 bit data path)



9-2   AlphaStation 600 System Initialization

 * Two   64 bit MMB    (128 bit data path)

• Size and Configure the Main Memory

— The Serial ROM code will handle any combination of memory sizes and speeds as
long as a SIMM is present in all slots within a bank. 

— The Serial ROM code will use the smallest SIMM size and the slowest speed to
determine memory size and the speed of the memory for the bank. 

— A normally configured bank should have all SIMMS of equal size and speed, but 
we are building this flexibility in to allow for a better chance of having a fail-safe
power-up.

• Test and Initialize Cache and Memory

— The Serial ROM code will initialize and test 32 megabytes of memory.

— The Serial ROM code will initialize the memory tested with 0’s

• Determine which console has to be loaded by reading the console type variable from
the TOY/NVR chip.

• Test the interface to the system Flash ROMS

— The Serial ROM code will test the interface to the System Flash ROMS by trying to
read the manufacturing header data from the ROMs. 

• Load the Desired Console firmware from Flash ROM to RAM

— The code will be loaded to address 0x100000

— The Serial ROM will then program the CIA_CTRL register to disable the capability
to write to the Flash ROM.  This will be done to protect the flash ROM from any
inadvertent writes to its address space that may corrupt its contents.

The Serial ROM code will not initialize any hardware that resides off the PCI interface on
the CIA ASIC other than the PCI/EISA bridge chipset and the datapath to the OCP device.
PCI initialization will be performed by the Console firmware.  The following table is a sum-
mary of the EV5 registers and the AlphaStation 600 system CSR’s that are initialized by
the Serial ROM code.
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Table 9-1 Summary of SROM Initialization

System Firmware Performed Initialization
The code that resides in the Flash ROMS consist of :

• PALcode

• SRM console code, which consists of:

— a Kernel

— Console Terminal drivers

— Console Boot drivers

— Various Port drivers

— ALPHA SRM compliant console functionality

— Minimal Power-up Self Test

• X86 Emulator

Name Value Description

IBOX_CSR
(EV5)

EV5 IBOX CSR ...SROM code will disable
floating point, enable PAL shadow registers,
and allow PALRES instructions to be issued
from kernel mode 

HWINT_CLR
(EV5)

0x0 clear the edge sensitive interrupts for
performance counters,serial line, and CRD’s

DC_MODE
(EV5)

0x1  Enable the D-Cache with parity checking
enabled.

SC_CTL (EV5) 0xF000 Set the secondary cache block size to 64 bytes
and enable all three sets in the second level
cache.

BC_CONTROL
(EV5)

0x61 The Third level cache will be enabled (if
found), ECC mode selected, no Victim buffer
enabled, and machine checks enabled

BC_CONFIG
(EV5)

Config Specific  The state of this register is totally dependent
on the size and speed of the cache found.

MBA Registers
0-15 (CIA)

Config Specific  The Serial ROM code will program in the
base address of the equivalent bank. The
banks with larger SIMM sizes will be placed
in low memory. If no memory is found in that
bank a value of 0 will be written to the
register to make that bank invalid.

Timing
Registers 0-2
(CIA)

Config Specific  The Serial ROM code will program these
register so they correspond with the slow,
medium and fast timing.

MCR Register
(CIA)

Config Specific  The Serial ROM code will program this
register to the appropriate data path size,
third level cache size, and refresh state. The
Serial ROM code will set the INVALID MEM
bits if it finds any mismatched SIMMS within
a set. 
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This code will perform most of the initialization and device configuration for devices that sit
off the PCI bus on the AlphaStation 600 system. The initialization is broken up into the
following tasks:

• Sizing the PCI bus

• Configuring the PCI bus

• Initialization of the following devices ...

— PCI / EISA Bridge Chipset

— 87312 devices

 * COM1 port (ISA)

 * COM2 port (ISA)

 * Centronix Parallel Port (ISA)

 * Floppy controller (ISA)

— 8242 Keyboard/Mouse chip (ISA)

— 1225 Battery Backed-up SRAM chip (ISA)

— 1287 TOY clock chip (ISA)

— Any NCR 53C810 SCSI chips (PCI)

— Any QLOGIC ISP1020 SCSI Chips (PCI)

— Any Tulip Ethernet chips (PCI)

— Graphics device used for Console (PCI)

— Any other Device that has a dynamically linked-in driver present 

— Initialization of any option with X86 code, if it is being used as a console device or
a boot device. 

Overview of Sizing the PCI Bus
The PCI bus will be sized by the PCI bus driver’s initialize function. This driver will be one
of the first driver’s started up on console entry. This has to be done before we start any of
the port driver’s on the PCI or EISA bus. The most important results of the  configuration
are :

• a PCI-EISA bridge chip at ID 0

— It is a Fatal error, if we don’t find this chip. Our console input device lives on the
other side of this chip on an ISA controller. 

• at least one I/O Subsystem board in one of the remaining PCI  ID’s

— It is a Fatal error, if we don’t find one of these modules. We can still attempt to
bring up the console program, but we will not be able to perform any boots through
the embedded NCR 53C810, QLOGIC ISP1020  or TULIP device drivers.

• Display device(s), Base Class 03, in one or more PCI slots

— A base class 3 device is a display device, the lack of a display device on the PCI,
as well as the EISA, will cause the console to use the COM1 port as the console
device. 
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Sizing/Configuring the PCI Bus
The following  work will be performed by the PCI bus driver initialization code:

• Size the primary bus 

— This is done by performing Type 0 configuration cycles to ID 0-5 on the primary
bus. 

— If a PCI to PCI bridge chip is found, its appropriate secondary bus is sized-down
before proceeding to the next ID on the primary bus.

 * This will be done by performing Type 1 configuration cycles with the bus
equal to the secondary bus number corresponding to the bridge.

 * If a subsequent bridge chip is found on the secondary bus, it  its secondary
bus is sized-down before we proceed down the initial secondary bus. The
PCI-PCI bridge chip that is being used on the AlphaStation 600 system will
support, at most, two levels of bridging. 

— The following activities must be performed on all devices that have been found:

 * Read and save vendor ID

 * Read  and save device ID

 * Read and save version ID

 * Set up any associated I/O mapped Base addresses with current Free I/O 
mapped address

 * Update current free I/O mapped address to allow for enough address space
for this device

 * Set up any associated Memory mapped Base addresses with current Free
Memory mapped address

 * Update current free Memory mapped Base address with current Free Mem-
ory mapped address 

Accessing PCI Bus Configuration
The result of this PCI sizing will be a configured PCI bus.

The current configuration can be determined by reading the current setup of the configu-
ration registers for each device on the bus. This is similar to the mechanism used on other
platforms.

PCI-PCI Bridge Configuration
The PCI bus driver will configure any PCI-PCI bridge found in the following way:
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Table 9-2 PCI-PCI Bridge Initialization

Driver Initiated PCI Configuration
Once the PCI bus sizing and configuration is complete, the device drivers for the known
PCI, EISA and ISA devices,as well as the EISA bus driver, can be started.   It will be up to
each driver to determine if one or more applicable device(s) exist in the current system
configuration. 

NOTE:

This will allow us to support up to 5 PCI I/O boards in the system at the same time using
the same set of drivers.

The console will support this driver based sizing by providing routines to scan the system
configuration table for specific device  and vendor ids .

 The device drivers will have the ability to fill in the  non-Base Address portion of the PCI
configuration space.  The system firmware will contain at least the following PCI drivers
that will configure their respective controllers.

• TULIP DRIVER

— This will not need to do any initialization above what is done by the PCI bus driver.

Name Value Description

cache_line_size  4  number of 32 bit cache entities in a cache line

latency_timer  Controls time-out of P_FRAME_L signal

Primary Bus  0  Used to allow TYPE 1 configuration cycles
initiated by the secondary bus

Secondary bus  x  The bus number of the secondary bus on this
bridge

Subordinate bus y  This is used in case there are PCI-bridge chips
behind this bridge chip where y is the highest
bus number that resides behind this bridge 

Secondary MLT   Master Latency value for the secondary bus

Memory Base
Address

  Low address in memory space that this bridge
will decode. Value must be 1 MB aligned,. This
value is totally dependent on what devices are
in the system.

Memory Limit 
Address

  High Address in Memory space that this bridge
will decode. Value must be 1 MB aligned. This
value is totally dependent on what devices are
in the system.

I/O base Address   Low address in I/O space that this bridge will
decode. This value is totally dependent on what
devices are in the system. 

I/O Limit
Address

  High Address in I/O space that this bridge will
decode. This value is totally dependent on the
devices that are in the system.
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• NCR 53C810 DRIVER

— This will initialize any non-standard field in the NCR810 configuration register
space 

• QLOGIC ISP1020 DRIVER

— This will initialize any non-standard field in the ISP1020’s configuration register
space

• VGA DRIVER

— This will initialize any non-standard field in a VGA type device’s configuration
space.

• Dynamically linked-in PCI drivers

— These drivers need to initialize their respective configuration registers with the ap-
propriate data. 

PCI-EISA Bridge Configuration
The PCI-EISA Bridge chip will be configured by the AlphaStation 600 system initialization
code. It will be initialized as shown in Table 9-3.

Table 9-3 PCI-EISA Bridge Chip Initialization

Name Value Description

Mode Select 0x40 SERR enabled, 8 EISA masters,
Configuration RAM access enabled 

BIOS Chip
Select

0x0000 Disable Access to motherboard BIOS

Peripheral Chip
Select A

0x07 Enable RTC decode, Keyboard Controller
decode, and Floppy Disk decode

Peripheral Chip
Select B

0xc4 CRAM decode, Port 92 enabled, COM1 at
3f8-F, COM2 at 2f8-f, LPT at 3bc-f

EISA
Motherboard ID

The AlphaStation 600 system value for
EISA motherboard ID

General Purpose
Chip Select 0

0x530 Set up IIC controllers to live at address
530h

General Purpose
Chip Select
Mask0

0x1 Select address 530-1h as legal addresses for
the IIC controller

General Purpose
X-bus Control 

0x1 General Purpose Chip select 0 is enabled,
GPCS 1-2 are disabled

NMI status and
control register 

0x4 Clear any system board NMI errors

PCEB Master
LAntency Timer

0xf8 Sets up MLT to be a its maximium count
value. This corresponds to 248 PCI clocks

PCEB EISA to
Mem attributes 

0x1 Sets memory region 1 to be buffered

EISA-PCI
MEMORY
region 1

0xffff0000 Setup memory region 1 to map to full 4
Gigabyte PCI memory space

Internal 8259’s Setup up to enable IRQ  0, 1, 2, 5, 9 and 14.
The two controllers are cascaded together 
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COM1 (87312) Device Initialization
The device driver will put the COM1 port in the following state:

• 9600 baud

• 8 bit character,1 stop bit, No parity

• Initialize the modem bits

COM2 (87312) Device Initialization
The device driver will put the COM1 port in the following state:

• 9600 baud

• 8 bit character,1 stop bit, No parity

• Initialize the modem bits

Parallel Port (87312) Device Initialization
The device driver will put this port in the following state:

• Line printer will be reset

• Printer will be put on-line with line feed at end of line enabled

Floppy Controller (87312)  Device Initialization
The device driver will perform the following initialization, if the device is opened for ac-
cess:

• Initializes the Floppy controller

• Sets up the data rate

• Spins up the floppy device

• Recalibrate the drive to track 0

• Attempts to read sector 0

• IF a successful read is performed THEN

— a unit block for this device is initialized and put onto the queue

• ELSE

— The floppy is spun down

If the floppy device is not opened, then No initialization is performed.

Keyboard/Mouse Device Initialization
The Device driver will perform the following initialization:

• Flush the input buffer

• Select PS/2 mode

• Enable and test the keyboard interface chip

• Determine whether a 84 key or 101 key keyboard is present

Battery Backed SRAM Device Initialization
The Device driver will perform the following initialization. 

• Update any changes that are necessary to ARC configuration tree. This will only need
to be done if the configuration has changed since the last power-up. 
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The battery backed up SRAM will be used for:

• Environment variables (2Kbyte)

— The AlphaStation 600 system will use the same utilization as the MORGAN con-
sole 

• the ARC configuration tree (6Kbyte) 

TOY Driver Device Initialization
The Device Driver will perform the following initialization:

• Initialize CSRA to:

— Time Divisor base = 32.768Khz 

—  Rate Select = 976.562 us

• Initialize CSRB to:

— 24 hour mode enabled

— Periodic Interrupts enabled

— DM bit enabled

NCR810 Driver Device Initialization
The Device Driver will perform the following initialization:

• TBD.

TULIP Driver Device Initialization
The Device Driver will perform the following initialization:

• Read and check the station address ROM

• Initialize Transmit Descriptors

• Initialize Receive Descriptors

• Initialize Setup,which consists of:

— Building a perfect filter

— Starting up a Transmit process

— Send out the startup frame

• Start up a Receive Process (packets can now be received off the wire)

TGA Driver Device Initialization
The Device Driver will perform the following initialization:

• TBD.

VGA Driver Device Initialization

The Device Driver will perform the following initialization:

• TBD.
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Memory Initialization
The Console program will start up a task that runs in the background process to initialize
the system memory. This process will be stopped once control is passed to the loaded
code or the initialization is complete  (If you are auto-booting, you cannot depend on all of
memory to be initialized).

• All memory will be initialized to 0.
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Figure 9-1 is a memory map after the console is started up.

Figure 9-1 AlphaStation 600 Memory Map After Initialization

Miscellaneous CIA Related Initialization
The console program will initialize miscellaneous CSR’s in the CIA during the initial entry
into console that were not initialized by the serial ROM. The serial ROM will mainly initial-
ize the Memory controller registers while the console code is initializing the rest of the
CIA’s CSR’s. The following table lists the CSR’s that are initialized by the Flash ROM-
based code as a result of a powerup or a "init" command.

0x0000

0x1C00

0x2000

0x5000

0x6000

0xC000

0x2000000

Top of Memory

Unused

SROM Mailbox

HWRPB

PAL Impure Area

Machine Check Logout Frame(s)

Flash ROM based code

Rest of Tested memory

Initialized /Untested Memory
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Table 9-4 CIA Main CSR Register Initialization

Table 9-5 CIA Memory CSR initialization

Table 9-6 CIA Physical Address Translation CSR Initialization

 Name  Value  Description

 SG_TBI  0x3  Invalidate the Scatter Gather Translation buffers

PCI_CNFG  0x0  Force next PCI configuration access to be a type 0 access

HAE_MEM  0x2028  All three PCI memory regions will be contiguous to each
other

HAE_IO  0x2000000  The two PCI I/O regions will be contiguous to each
other, so that the 1st address of region b follows the last
address of region a

Name Value Description

MCR Not written  Relies on value written by the SROM

MBA 0-15 Not written  Relies on value written by the SROM

MEM_TMG 0-2 Not written  Relies on value written by the SROM

Name Value Description

Window Base Register 0 0x800000 Window 0 enabled with a base address of 0x800000
and scatter/gather enabled. This window will be
used by an ISA device so it can access all of
configured memory.

Window Base Register 1 0x40000000 Window 1 enabled with a base address 0f 
0x40000000 (1 gigabyte) scatter/gather disabled.
This window can be used by EISA and PCI devices to
DMA into memory 

Window Base Register 2-3 0x0 The windows will be disabled

Window Mask Register 0 0x700000 This will set up a 8 Mbyte DMA window that can
be used for ISA devices

Window Mask Register 1 0x3ff00000 This will setup a window size of 1 Gigabyte

Window Mask Register 2-3 0x0 These registers will not be used since they are
disabled

Translation Base register 0 0xa000 This will map window 0’s Scatter/Gather table into
address 0xA000. This is in console space ... This
might need to be moved if this is an issue

Translation Base register 1 0x0 This will map PCI Window 1 to start at address 0
in memory and it will continue up to address 1
gigabyte.

Translation Base register 2-3 0x0 These registers will not be used since they are
disabled
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Table 9-7 CIA Error CSR initialization

Address Map
Beyond any ISA devices that reside on the EISA bus, there are no fixed addresses that
are assigned on a per ID basis. The console configuration must be used to determine:

• The type of devices in the system

• The location of devices in the system

Certain addresses could possibly be assigned for each ID, but this is not recommended. It
could become unsupportable, with the possibility of bridges and devices that take an un-
specified amount of I/O and memory space behind the bridge.

The location of a device in the CPU’s address space is also a function of the type of ac-
cess that you want to make to that device. Please refer to Chapter 3,  AlphaStation 600
Addressing, for a complete description.

ISA Devices Address Map
Table 9-8 describes where some of the I/O devices will reside in PCI  Sparse I/O Space
region A. These are the address that you would use to do byte accesses to these regis-
ters. 

Table 9-8 ISA device Address Map (Sparse IO Space)

Name Value Description

CIA_ERR 0xffff This will dismiss any pending Error as well as
unlock all the error registers in the CIA

ERR_MASK 0xffff All Error logic will be ENABLED

Name  ISA Address PCI Address Description

PRI  0x3f0-0x3f7 0x85.80007e00-
0x85.80007ee0

Primary Floppy Device

COM1  0x3f8-0x3ff 0x85.80007f00-
0x85.80007fe0

Serial Port #1

COM2  0x2f8-0x2ff 0x85.80005f00-
0x85.80005fe0

Serial Port #2

LPT1  0x3bc-0x3b8 0x85.80007780-
0x85.800077e0

Parallel Port

KBD_DATA
KBD_CMD/STAT

 0x60
 0x64

0x85.80000c00
0x85.80000c80

Keyboard/Mouse controller

RTC_OFFSET,
RTC_DATA

0x70
0x71

0x85.80000e00
0x85.80000e20

Real Time Clock Chip
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The following algorithm was used to convert the ISA address into the correct EV5 gener-
ated address for byte accesses to PCI sparse IO space.

#define pci_sparse_io_rega_byte(x) (0x8580000000 | (x<<5))

The address is basically shifted left by 5 bits and OR’d with the base address of PCI
sparse memory space. See the Chapter 3,  AlphaStation 600 Addressing, for a complete
description on address mapping.

Software Considerations
The following conditions need to be considered due to the flexibility of the placement of
PCI addresses

• If software modifies any of the configuration base addresses set up by the console,
this will cause the console callbacks as well as the console program itself to have un-
predictable results. This is due to the fact that the console software expects to find the
particular controllers where they were last left.

• The powerup initialization code is used to give the hardware to the operating systems
in a known/friendly state. This does not mean that the Operating System Driver’s don’t
need to initialize the hardware. It means that you can expect to get the hardware in a
controlled state. The Operating system code should not be written in such a way
where it assumes:

— specifics on how the controller is initialized after leaving console, that is, If a par-
ticular bug exists in the hardware ,we may have to run the controller in a special
way on early hardware. This will be changed once the hardware works as ex-
pected.

— memory is initialized to a particular value.
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10

AlphaStation 600 PCI-EISA Bridge

Introduction
The PCI-EISA chip bridge set consists of the PCI to EISA bridge chip, the PCEB
(82375EB); and the EISA system controller, the ESC (82374EB). These chips are essen-
tially a collection of peripheral chip designs (such as interrupt logic, timers, DMA control,
arbiters, etc.) coerced into two packages. The objective of this chapter is to define which
of these component parts the AlphaStation 600 system design uses, and to provide sug-
gestions and requirements in the programming of the internal registers.

Figure 10-1 shows the AlphaStation 600 system standard I/O busses and devices, and in-
dicates how the PCI-EISA bridge is used and what devices are attached to the X-bus. Ta-
bles 10-2 and 10-3 tabulate the functional components of the two chips and define
whether this logic is used in the AlphaStation 600 system. 

Related Documentation
For more detailed information on the PCI-EISA bridge chips, the following specifications
are mandatory.

Table 10-1  Documentation

Documentation

82420/82430 PCI set ISA and EISA Bridges Intel 1993

82375EB(PCEB) A-2  and 82374EB (ESC) A-2 Stepping Info. Rev 2.0
This document describes changes and bug fixes.

Intel Jan 31,
1994
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Figure 10-1 AlphaStation 600 Standard I/O Busses

 

Config
RAM

Real Time

X-bus

 PCI bus

EISA-bus

buffer

EISA
Clock

Keyboard
& mouse
8242

Speaker

CIA

 Lemmon Bus

 COMBO

87312

Serial Port

Serial Port

Parallel Port

Floppy Drive

 Chip

Data
Switch

 IOD
 bus

DS1287

RAM

756 KB
FLASHInterrupt

Logic

PCI Memory

buffer

Presence
Detect
Logic

GRU asic

Operator
Ctrl Panel
PCD8584

PCI-EISA
Bridge

PCI
arb.

EISA
Interrupts

EISA slots



       AlphaStation 600 PCI-EISA Bridge   10-3

Table 10-2 ESC chip -- AlphaStation 600 System Requirements 

   PCEB functionality Associated signal pins  AlphaStation 600 usage

PCICLK PCI clock Yes

PERR#

SERR#

PCI parity
and system
error

No. 
See Chapter 8, AlphaStation 600 Hardware
Exceptions and Interrupts, for more
information

PCI Bus interface

RESET# PCI reset Yes

ESC-PCEB  interface EISAHOLD
EISAHLDA
PEREQ#
NMFLUSH
SDCPYEN
SDCPYUP
SDOE#
SDLE#
INTCHPIO

Private
interface

Yes

Timers SPKR
SLOWH#

Speaker
Slow CPU

Yes
No  -- 486 signal

Interrupt Controller IRQ’s
INT
NMI

EISA IRQ’s
Interrupt out
NMI

Yes. 
See Chapter 8, AlphaStation 600 Hardware
Exceptions and Interrupts, for more
information

EISA bus interface BCLKOUT,
BCLK
LA[31:2]
BE[3:0]#
M/IO#
W/R
EX32#
EX16#
START#
CMD#
EXRDY
SLBURST#
MSBURST#
MASTER16#
SD[7:0]

Standard
EISA bus
signals

Yes

ISA bus interface BALE
SA[1:0]
SBHE#
M16#
IO16#
MRDC#
MWTC#
SMRDC#
SMWTC#
IORC#
IOWC#
CHRDY
IOCHK#
NOWS#
OSC
RFRESH#
RSTDRV
AEN#

Standard ISA
bus signals

Yes
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 Table 10-2  ESC chip -- AlphaStation 600  Requirements (continued)

   PCEB functionality Associated signal pins  AlphaStation 600 usage

EISA arbiter MREQ[7:0]
MACK[3:0]
EMACK[3:0]

Master Req.
Master Ack
Encoded  Ack

Yes
The AlphaStation 600 system supports 4
EISA slots

DMA controller DREQ[7:5,3:0]
DACK[7:5,3:0]
EOP

DMA request
DMA ack
End of Process

Yes
This is standard EISA

EISA address buffer
control

SALE#
LASAOE#
SALAOE#

SA latch en.
LA to SA en.
SA to LA en.

Yes
This is standard EISA

Coprocessor interface FERR#
IGNNE#

Coproc. err
Ignore err

No
This is for the x86 CPU.

BIOS interface LBIOSCS# Latched BIOS
Chip select

No
The AlphaStation 600 system does not
support a Flash RAM on the X-bus. Instead, it
is on the Lemmon bus.

KYBDCS# Kybd chip sel. Yes
The AlphaStation 600 keyboard controller
(8242) is on the system board.

ALTRST# 
ALTA20

Alternate reset
Alternate A20

No
This is for the x86 CPU.

Keyboard Controller

ABFULL Aux Buffer full No 
This signal indicates that the 8242 Mouse
buffer is full. In the AlphaStation 600 system,
the mouse interrupt is connected to  IRQ<12>
externally 
(software must clear reg. 4Dh bit 4).

Real Time Clock RTCALE
RTCRD#
RTCWR#

RTC addr EN.
RTC read
RTC write

Yes
The AlphaStation 600 TOY (Dallas DS1287)
is on the system board.

Floppy Disk
controller

FDCCS#
DSKCHG
DLIGHT

Floppy chip sel
Disk change
Disk act. light

No
The AlphaStation 600 floppy disk controller is
on the SIO chip

Configuration RAM CRAMRD#
CRAMWR#

Conf. RAM read
and write

Yes
AlphaStation 600 system supports the EISA
non-volatile configuration RAM on the X-bus.

Xbus control XBUSTR#
XBUSOE#

transmit/receive
Data output en.

Yes
The AlphaStation 600 system uses the X-bus

General purpose chip
select

GPCS[2:0]# Gen. Purpose
chip select

Yes (GPCS[0} only).
The Operator Control panel chip is selected by
GPCS[0].

Test TEST Chip test No
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Table 10-3 PCEB chip - AlphaStation 600 Requirements

   PCEB functionality Associated signal pins  AlphaStation 600 usage

PCI bus Interface PCICLK
PCIRST#
AD[31:0]
C/BE[3:0]#
FRAME#
TRDY#
IRDY#
STOP#
PLOCK#
IDSEL
DEVSEL#
PAR
PERR#

Standard
PCI bus
signals

Yes

ESC-PCEB  interface EISAHOLD
EISAHLDA
PEREQ#
NMFLUSH
SDCPYEN
SDCPYUP
SDOE#
SDLE#
INTCHPIO

Private
interface

Yes

PCI Address Decode MEMCS#
PIODEC#

Mem chip sel
PCI IO space

Yes Used by the CIA for PC hole decode
No

CPUREQ#
CPUGNT#
REQ[3:0]#
GNT[3:0]#

CPU req
CPU ack
Slot request
Slot ack

Yes
The PCEB does NOT support an external
PCI arbiter. Since the AlphaStation 600
sytem has one more PCI slot than the
PCEB can handle, a sub-arbiter is provided
on the systemboard.

FLSHREQ#
MEMACK#

Flush req
Mem ackn

PCI Arbiter

MEMREQ# Mem request

Yes            See the Coherency section of 
Yes            this chapter for more details.
 No            

(E)ISA interface BCLK
START
CMD#
M/IO#
W/R
EX32#
EX16#
SLBURST#
MSBURST#
LOCK#
BE[3:0]#
LA[31:2]
REFRESH#
SD[7:0]
IO16#

Standard
EISA bus
signals

Yes

Test TEST No
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ESC  Functionality
The stepping (revision) of the chip which the AlphaStation 600 system will use at power-
up is A-2. The AlphaStation 600 system’s use of the ESC chip is almost a standard imple-
mentation. Some of the AlphaStation 600 system’s specific details/features are:

• Keyboard controller:  This is based on the standard 8242. The mouse interrupt (the
so called ABFULL# signal) is not wired to the ABFULL# input. Software should dis-
able its path to IRQ<12> via the ESC register CLKDIV bit<4>.

• SERR and PERR:  Software must NOT enable these inputs to the NMI logic in the
ESC.

• Interrupt logic: This logic is used for the EISA interrupts. The ESC should disable the
connection of ABFULL to IRQ<12>. The Real Time Clock is not  wired to this interrupt
logic; instead it is wired directly to an EV5 interrupt pin. See Chapter 8, Hardware Ex-
ceptions and Interrupts, for more details.

• TOY - Real time clock:   This is based on the Dallas 1287 and is wired to the X-bus in
the conventional manner. 

• Configuration RAM:   8 KB of non-volatile RAM is provided on the X-bus for the EISA
configuration space.

• BIOS:   There is NO BIOS ROM on the X-bus. Instead, the AlphaStation 600 system
provides Flash ROM on the Lemmon bus. The Lemmon bus is "closer" to the CPU
and thus a preferred location for this RAM (that is, serial-ROM code need check less
of the system before accessing the Flash RAM code).

• Speaker:  This is provided in addition to the Audio card for two reasons: first, some
O/S may not support the Audio card; and second, the user may have headphones
connected to the audio card, which are not currently being worn.

• General Purpose device . The Operator Control Panel interface chip (PCD8584) is
wired to GPCS[0] -- the GPCS[0] signal is gated with CMD_L  to allow consecutive
access of the PCD8584 -- that is, software does not need to do anything special.

ESC Registers
Table 10-4 lists the ESC registers and, where applicable, describes the AlphaStation 600
system programming requirement.
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Table 10-4 ESC Registers

 Category ESC register  AlphaStation 600 requirements 

ESCID ESC Identity

RID Revision ID

No special AlphaStation 600 system requirement

MS Mode select Bit Value AlphaStation 600 requirement

1:0 11 8 EISA masters (AEN encoded)
(AEN unencoded does not work --
undocumented bug in ESC chip)

2 1 PIRQ mapped to MREQ (new
encoding)

3 0 SERR# disabled

4 0 GPCS pins enabled

5 1 Config. RAM enabled

6 1 MREQ enabled (new encoding)

7 Reserved

BIOSCSA

BIOSCSB

BIOS chip sel
registers

Set both registers = 0
AlphaStation 600 does not support BIOS. 

CLKDIV Clk divisor Bit Value AlphaStation 600 requirement

2:0 0 Clock Divisor = 4 (33.3 MHz)

3 0 KBFULL

4 0 ABFULL 

5 0 Coprocessor Error disabled

7:6 Reserved

PCSA Bit Value AlphaStation 600 requirement

0 1 RTC enabled

1 1 Keyboard enabled

5:2 0 Floppy and IDE disabled (Floppy is
on the SIO chip) 

6 0 Keyboard on X-bus (new encoding)

7 Reserved

PCSB

Peripheral Chip
select

Bit Value AlphaStation 600 requirement

6:0 0 Serial and Parallel Port disabled 
(this logic is on the SIO chip)

7 1 Configuration RAM enabled

EISAID EISA  ID

SGRBA Scatter/gather
base address

No special AlphaStation 600 requirement

PIRQ[3:0] PCI irq route Bit <7> = 0 (disable). The PIRQ bits are not used by
AlphaStation 600

ESC
Configuration
Registers

GPCSLA[2:0]
GPCSHA[2:0]
GPCSM[2:0]

Gen Purp chip
select Low High
Address & Mask

 GPCS[0] is used in the AlphaStation 600 system for the
Operator Control Panel interface chip. GPSCS[2:1] are
not used.

The correct procedure for changing a configuration register value is to first read the register, change only the
required bits (do not modify the reserved bits) and write the new value out to the register.
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Table 10-4  ESC Registers (continued)

PCEB Functionality
The AlphaStation 600 system’s use of the PCEB is fairly standard. The following sections
highlight specific AlphaStation 600 system requirements.

 Category ESC register  AlphaStation 600 requirements 

ESC DMA
Registers

See ESC spec for details No special AlphaStation 600 hardware requirements

ESC
TIMER
registers

No special AlphaStation 600 hardware requirements

Interrupt
Controller
Registers

The AlphaStation 600 system uses this ESC interrupt
logic. See the Hardware Exceptions and Interrupt
chapter for the irq assignment. 
The standard cascaded scheme is used.

NMI status
and
Control

Bit Value AlphaStation 600 requirement

0 Software can use as they choose

1 1 Speaker enabled 

2 0 PERR# disabled 

7:3 Software can use as they choose

NMI Cntrl and
RTC address

NMI ext Status
& cntrl reg

NMI
status &
control
registers

Software NMI

No special AlphaStation 600 hardware requirements

Configuration
RAM register

The AlphaStation 600 system provides the
Configuration RAM. All Page address bits are used.

Digital output
Register

Since there is no floppy on the AlphaStation 600 X-bus
then bit<3> should be 0.

EISA
Config.
Floppy,
and Port
92

Port 92 Reg Bit Value AlphaStation 600 requirement

0 0 ALTRST# not used by AlphaStation
600

1 0 ALT20 not used by AlphaStation
600

2 Reserved

3 RTL Password protection
Software can use as they choose

4 0 Not used 

5 Reserved

7:6 0 Fixed Disk activity Light not used
by AlphaStation 600
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PCI-to-EISA Address Decode
This section is concerned with PCI-to-EISA transactions. Subtractive decode must be
used for the PCEB (negative decode does not work).

PC Compatibility Addressing and Holes
This section is concerned with EISA-to-PCI transactions.

Software note: Although PC compatibility holes are required in the PCI-EISA bridge to
support certain memory-mapped ISA devices; it is hard to imagine of any useful scenario
where this memory-mapped ISA device is directly accessed by a PCI device. Conse-
quently, the CIA will probably never need to support any PC compatibility holes (that is,
the MEMCS# logic will not be enabled in the CIA). Since the "cost" of this logic to the CIA
is only one pin and a few gates, the functionality is provided "just in case".

The PC architecture allows certain (E)ISA devices to respond to hardwired memory ad-
dresses: an example is a VGA  graphics devices which has its frame buffer located in
memory address region A0000-BFFFF. Main memory must be made inaccessible for
such memory-mapped regions, and this inaccessible region is called a PC compatibility
hole (or "hole" for short).

The EISA-PCI bridge provides access for (E)ISA devices to main memory (which is nor-
mally behind a HOST-PCI bridge) via positive address decode. The lower 512 MB of EISA
address range is partitioned into many sub-segments which can be enabled by the MCS-
TOM, MCSTOH, MCSBOH, EADC1, EADC2 registers. These registers allow main mem-
ory "holes" to be created. The right-hand-side of figure 10-2 shows an access path from
an EISA device through to main memory.

Figure 10-2 EISA Access to PCI and Memory

With this address-hole logic,  a PCI-EISA bridge chip can be configured to allow EISA-to-
EISA operations as well as EISA-to-memory transfers. For example, if a VGA graphics
device resides on the EISA bus, then other EISA device can access the VGA frame-buffer
directly (eg a multimedia video device) without having the access go incorrectly to main
memory.

A hole is not a bi-directional blockage: for example, a PCI-EISA bridge can have a hole
preventing access by EISA devices to main memory; but a PCI device can happily reach
through the "hole"  to the memory-mapped EISA device.
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The PCI-EISA bridge chip can also direct EISA addresses to a PCI device using the
MEMREGN registers. This path is shown on the left-hand-side of Figure 10-2. This path is
not intended for access to main memory via a Host-bridge device (that is, the CIA) on the
PCI bus; but with care1 main memory access is possible.  

Note that accesses to the PCI devices and access to main memory must be mutually ex-
clusive2 -- thus access to a PCI device occurs either above the main-memory window or in
a main-memory hole (See A in Figure  2). 

Figure 10-3 shows the relationship between the PCEB registers and the EISA access to
main memory or to a PCI device.

Figure 10-3 PCI-EISA Bridge: EISA Address Decode

Once EISA-to PCI or PCI-to-EISA access is allowed then "holes" are required in the CIA
to block the PCI transfer from incorrectly accessing main memory. Although, the PCI win-
dow  BASE and MASK registers in the CIA provide a means for controlling access to main
memory; their granularity and resolution is poor. EISA access to the PCI devices is
through Base and Limit registers with a 64 KB resolution; the CIA’s BASE and MASK reg-
isters only provide a 1 MB resolution.

Now, a typical PCI device has no better resolution than the CIA. Thus transfers from a
EISA device  to a "typical" PCI device are easily controlled with the CIAs and the PCI de-
vices window logic. However, the transfer in the opposite direction (PCI to EISA) requires
much finer 64 KB resolution (ie EISA devices are memory-mapped on 64 KB segments).
This is depicted in  Figure 10-4. 
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1 In this path, the MEMCS# is not asserted. Hence PCI window 0 in the CIA will not accept the transaction
if the MEMCS path is enabled. However, other windows can be configured to accept this command.

2 that is, EISA transactions can only go to one place. This is also the PCI requirement of non-overlapping
windows (note that main memory is behind a PCI device (the host bridge).).
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Figure 10-4 PCI-EISA and CIA Hole Example

The example in Figure 10-4 is as follows: An ISA VGA graphics device resides on the
(E)ISA bus, and a multi-media device resides on the PCI bus.  The frame-buffer is
mapped in the ISA memory space. If other (E)ISA devices require access to the ISA
frame buffer, then a "hole" is required in the PCI-EISA bridge’s window to main memory
(but at this point, no corresponding hole is required in the CIA’s PCI-address window --
the need for this is explained next). Note that for the EISA devices to access main mem-
ory, a PCI window is required in the CIA to allow the EISA devices a path through to
memory. 

Suppose the PCI device wishes to write to the VGA frame-buffer. Without a "hole" in the
CIA, the PCI access to the ISA frame buffer would instead go to main memory (that is, the
access would "hit" in the CIA window --- and  the PCI-EISA bridge would ignore the trans-
action for it subtractively decodes the PCI addresses). Hence, a "hole" is required in the
CIA’s PCI window, and this hole is located in the same address region as the hole in the
PCI-EISA bridge.

The PCEB chip  provides an address decoder which takes into account memory holes
and asserts a signal, MEMCS#, whenever a PCI or EISA device wishes to access main
memory. The CIA qualifies its PCI window hit logic with MEMCS#, thus preventing the
CIA from accepting any transactions which fall into a hole.

The CIA is NOT always required to match every hole in  the PCI-EISA bridge (although
there is no harm in doing so). The CIA must have "holes" punched into its PCI window
only if PCI traffic is directed to an EISA memory-mapped device which is within the ad-
dress space of a PCI window.

MEMCS# Details
The PCEB chip of the PCI-EISA bridge  provides address decode logic with considerable
attributes and features  (eg read only, write only, VGA frame buffer, memory holes, BIOS
shadowing)  to help manage the EISA memory map and PC compatibility holes. This is
known as main memory decoding in the PCEB chip, and results in the generation of the
MEMCS# (MEMory Chip Select) signal. The CIA uses MEMCS# if it is enabled in the PCI
BASE register for window 0.
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Figure 10-5 MEMCS# Decode Area

In Figure 10-5, the MEMCS# range is shown shaded lightly; the two main holes are
shown shaded darkly. This range is subdivided into numerous portions (for example,
BIOS areas) which are individually enabled/disabled using various registers: 

• MCSTOM (top of memory) register. This has a 2 MB granularity and can be pro-
grammed to select the regions from 1 MB up to 512 MBs.

• MCSTOH (top of hole) and MCSBOH (bottom of hole) registers define a memory hole
region where MEMCS# is not selected. The granularity of the hole is 64 KB.

• MAR1,2,3 registers. These enable various BIOS regions. 

• MCSCON (control) register. This register enables the MEMCS# decode logic, and in
addition selects a number of regions (eg 0-512 KB). 

• The VGA memory hole region never asserts MEMCS#.

For more detail, please refer to the Intel 82375EB specification. 

PCI window 0 in the CIA can be enabled to accept the MEMCS# signal as the PCI mem-
ory decode signal. With this path enabled, the PCI window hit logic simply uses the
MEMCS# signal (ie if MEMCS# is asserted then a PCI window 0 hit occurs and the PCI
DEVSEL signal is asserted).

Figure 10-6 MEMCS# Logic

Consequently, the PCI BASE address must be large enough to encompass the MEMCS
region programmed into the PCI-EISA bridge. The remaining window attributes are still
applicable/required: 

• The SG bit in the PCI BASE determines if scatter/gather or direct-mapping is applica-
ble
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• The MASK register size information must match the MEMCS# size (in order for the
S/G and direct mapping algorithms to correctly use the Translated Base register).

• The MEMCS_Enable bit in the W_BASE 0 CSR takes precedence over the PCI win-
dow enable bit (i,e., W_BASE<W_EN>).

Note:  The CIAs does "typical" DEVSEL except when the MEMCS# path is enabled, in
which case it runs in "slow mode". This is done automatically by the hardware. However,
software must configure the PCI-EISA bridge chips to "slow-mode" by writing to the ap-
propriate CSRs. 

PCI Arbitration
The PCEB does not allow the use of an external arbiter; the internal PCI arbiter must be
used. The AlphaStation 600 system has one PCI slot more than the PCEB can handle.
This problem is solved by providing a sub-arbiter on the system module for the 32  bit
sllots in conjunction with the PCEBs arbiter. 

PCI Arbitration - Power-up
The PCEB arbiter is itiialized to provide round-robin arbitration but parks the host bridge
(CIA) on the PCI. This means that the CIA is driving AD[31:0], C/BE[3:0] and PAR. The
remaining 64-bit PCI signals are pulled-up by resistors and need not be driven.

Figure 10-7 AlphaStation 600 PCI Arbiter Scheme

Table 10-5  Round-Robin PCI Arbitration

If a bank or slot is not requesting, the priority is passed on to the next slot or bank that is
requesting.

Potential for PCI-EISA Bridge Starvation
Extract from the PCEB stepping information: If two or more PCI masters have higher pri-
ority than the PCEB in a fixed arbitration mode (modes 4,5,6,7,8,9,A,B) then there is the
possibility that the PCEB will never grant itself the bus due to heavy PCI traffic by two or
more PCI masters, and the PCEB may starve itself.

The current recommended arbitration scheme is mode 2. 

PCEB chip

Bank 0

Bank 3

Bank 1

Bank 2

Sub-arb

PCEB req

Slot 3 req
Slot 4 req

Slot 1 req

Slot 2 req

Slot 0 req

CPU   req

PCI slots
REQ0#

REQ1#

REQ2#

CPUREQ#

REQ3#

64-bit

64-bit

64-bit

32-bit

32-bit

CIA

Current Least Recently Used State Next Least Recently Used State

Bank 2 Bank 0 Bank 3 Bank 1 Sub-arb

Highest
Priority Bank 2 Bank 0 Bank 3 Bank 1 Sub-arb

Bank 0 X Slot 1 X X Slot 2 Bank 3 same Slot 2 same same

Bank 0 X Slot 2 X X Slot 1 Bank 3 same Slot 2 same same

Bank 3 X X Sub-arb X CPU Bank 1 same same CPU same

Bank 3 X X CPU Slot 3 Slot 4 Bank 1 same same Sub-arb Slot 4

Bank 3 X X CPU Slot 4 Slot 3 Bank 1 same same Sub-arb Slot 3

Bank 1 PCEB X X X Slot 0 Bank 0 Slot 0 same same same

Bank 1 Slot 0 X X X PCEB Bank 0 PCEB same same same
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Coherency Implications
Once an EISA Bus owner begins a cycle on the EISA bus, the cycle cannot be backed-off.
It can only be held in wait states via EXRDY. In order to know the destination of an EISA
bus request, the request must be granted and the cycle needs to begin. Once a cycle is
started, no other device can intervene and gain ownership of the EISA bus until the com-
mitted cycle completes.

The above EISA constraint, coupled with the write buffering and the need for strict
read/write ordering can lead to a deadlock. Consider Figure 10-8 and the following sce-
nario: 

The EISA device wakes-up the PCI device by a write to its start_flag; this induces the PCI
to dump data over to the EISA device. The EISA device polls the finish_flag within the PCI
device to determine when the data dump has completed1,2. 

Figure 10-8 EISA Deadlock Example

The problem arises when the PCI to EISA data is stored temporarily in a Posted Write
Buffer inside the PCI-EISA bridge chip (see Figure 10-8). Once the EISA device samples
the Finish_flag set in the PCI device, then, in accordance with strict write-ordering, it be-
lieves that the PCI device has completed the data dump, and that the data is in the EISA
device (that is, it does not expect any of the data to be in the Posted Write Buffer in the
Bridge chip). 

To ensure this strict-ordering constraint, the Bridge chip must flush the Posted Write Buff-
ers when it detects an EISA master wishing to read a PCI device. However, this would
lead to a deadlock: the flush cannot proceed because the bus is now committed to an-
other EISA master, (which cannot back-off); and yet, the bridge cannot proceed with the
EISA transaction as this would violate the strict-ordering rules. 

The solution adopted by Intel is drastic -- the PCI-to-EISA write buffer must be perma-
nently disabled.

PCI-EISA Bridge

EISA-bus

EISA device
PCI device

PCI-bus

PCI --> EISA
Posted Write
Buffer

PCI <-- EISA
Posted Write
Buffer

Start_flag

Finish_flag

1 This is effectively Litmus test 7 of the Alpha SRM (section 5.6.2.7), except now there are no explicit MB
instructions; they are implicit in the Intel architecture. This is important because the Intel architecture is
the implicit model behind the PCI specification, and is the one most PCI drivers will be based on.

2 The flags could be in either PCI memory or PCI I/O-space.
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Coherency: Posted Write Buffer in the PCI Device
The above deadlock scenario is still applicable if a PCI device contains a posted write
buffer. In this case, the PCI write buffer must be flushed before the EISA device is granted
the bus. The PCEB chip provides a signal called FLSHREQ# to achieve this objective.

How all this is achieved1 in the PCI-EISA bridge chip is somewhat more convoluted: 

• When the ESC chip detects an EISA request, it  first makes the PCEB perform the
following tasks:

1:  Check to see if it itself is locked as a PCI resource. If so, wait until the lock is
cleared.
2:  Stop accepting PCI requests (that is, all PCI requests to the PCEB are retried).
3:  Hand the EISA bus to the ESC (but note that the EISA bus is still owned by the
PCI-EISA bridge).

Note that no PCI  write buffers have yet been flushed since the FLSHREQ# signal has
not yet been asserted. 

• EISA arbitration is "frozen" -- that is, no more EISA requests are accepted and the
highest priority request is determined (BUT not granted - the PCI-EISA bridge  still
owns the EISA bus).

• If the EISA request is either an EISA-master, ISA-master or DMA, then FLSHREQ# is
asserted. All PCI write buffers pointing towards the PCI-bus (and thus possibly des-
tined for the EISA bus) are flushed and disabled. 

The PCEB directs any PCI flushed-writes requests which it receives to the EISA bus
-- remember, the PCI-EISA bridge is still master of the EISA bus. Note, that since the
PCI-to-EISA write buffers are (always) disconnected, and the PCI bandwidth exceeds
the EISA bandwidth, then the PCEB will disconnect after every Dword.

• Once all the system write buffers have been flushed, then the system asserts ME-
MACK#.

• Only now does the PCI-EISA bridge relinquish the EISA-bus and pass control over to
the requesting (E)ISA-master or DMA.

The problem with FLSHREQ# is that it is not a PCI signal -- it is a sideband signal. This
means that the signal is not available on a PCI slot-connector. Consequently, there is no
way of informing the PCI options to flush their buffers. Most, if not all PCI posted write-
buffers adhere to strict-ordering rules and would force a flush of their write buffer for a
read transaction. Since software cannot rely on the hardware FLSHREQ# signal then it
must handle deadlock avoidance itself.  Here are a number of options: 

• Disable all Posted Write Buffers on the PCI option card. If the option card has a PCI-
PCI bridge then the write buffers in this bridge  will need to be disabled. This is a poor
solution as it will seriously impact performance.

• After the PCI device dumps its data to the EISA bus,  it must read back the last item
written before asserting the finish_flag2.

• Instead of going directly from the PCI device to the EISA device, send the data via
memory: viz, the PCI device writes the data to system memory, and the EISA then
copies from memory. The start_flag and finish_flag can still be on the PCI device. The
reason this works is because the EISA-devices read of the finish_flag will cause the
PCI device to flush its write buffers; and since this flush is directed towards main

1 Actually, no Intel documentation is fully explicit on this. But, based on Intel’s track record with the PCI-
EISA bridge it is quite likely that there are bugs yet to be found in their implementation of FLUSHREQ#.

2 In general, this works because most PCI write buffers preserve write order (at least for Dwords)



10-16   AlphaStation 600 PCI-EISA Bridge

memory, and not the EISA device, then deadlock cannot occur (that is, there is no re-
source on the path to memory which cannot be backed-off).

• Place the finish_flag in main memory: the PCI device will write to a location in main
memory when it has completed the transfer, and the EISA device reads this memory
location. This works for all PCI write-buffers which maintain write-ordering (that is, if
the write of the flag to main memory occurred, then all prior writes from the PCI device
to the EISA device must also have completed).

• Locate the finish_flag in the EISA device.

• etc.

PCI  Deadlock Avoidance Rule
If a PCI option device can write directly to any EISA device, and the PCI device has a
posted write buffer, then no EISA device must ever read directly (or indirectly -- see next
paragraph) from that same PCI device. Otherwise, a deadlock is possible. 

Figure 10-9 Interacting Deadlock Example

Note that interacting events could yield a deadlock. For instance, two PCI devices labeled
A and B both have write buffers. If PCI device A contains write data destined for device B, 
and device B has write data destined for EISA, then a read from an EISA device to device
A will create a deadlock.

Coherency: CIA and FLSHREQ#
The issue is what to do with the FLSHREQ signal and the one-and-only posted-write
buffer (the I/O write buffer) inside the CIA. If one observes that the CPU-CIA entity is re-
ally a PCI device, then the example discussed earlier is applicable; and since the CIA is
on the system module then it can access the FLSHREQ# signal. The obvious answer is to
flush and disable the CIA posted write buffer on the assertion of FLSHREQ#; especially
since EISA-to-CIA and CIA-to-EISA transactions are common. Unfortunately, it is not
quite that "obvious".

What makes the solution less "obvious" is that the data-coherency that is being preserved
is really an uncommon, almost trite case -- and it has to do with preserving ordering be-
tween CPU I/O writes and DMA memory accesses. 

The only posted write buffer in the CIA is for I/O writes. Furthermore, the AlphaStation 600
system uses a posted write and run approach for I/O writes: that is,  the CIA does not pre-
serve ordering between CPU memory writes and I/O writes. Applying this information to
the afore-described deadlock example results in the following scenario between the CPU
and the EISA device:

• The EISA device "wakes-up" the CPU by an interrupt (this is equivalent to setting a
start_flag in main memory).

• The CPU copies memory data to the EISA device. Notice that this is done via unca-
ched (viz CPU I/O space) writes. When completed the CPU sets the finish_flag in
main memory (and this is why this example is so artificial and unlikely1 -- in "real" life
the finish_flag would be an I/O write and there would be no ordering problems).

PCI-EISA 

EISA-bus

EISA device
PCI 

PCI-bus
Bridge

device A
PCI 
device B

1 It transpires that graphics devices use programmed I/O for frame-buffer writes and could use memory
flags for flow-control. This is not quite the same situation, but who knows what tricks are being planned
by bizarre minds.
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• The EISA device polls the finish_flag in main memory. Once it has successfully read
the flag, then it believes that the data transferred by the CPU is in the EISA device
(and not in any write buffers in the CIA, PCI-EISA bridge, etc).

As before, the FLSHREQ# signal can be used to make this scenario work; however, this
will entail flushing the I/O write buffers (and stalling the CPU from writing to these buffers)
for every  (non-refresh) EISA transaction -- that is, including EISA transactions which are
not destined for main memory -- and furthermore, the CPU will be stalled for the duration
of the EISA transfer.

Consequently, the default AlphaStation 600 system approach is to not bother flushing the
Posted write buffer (the I/O write buffer) for a FLSHREQ#; although we do allow the op-
tion of software enabling the  flushing via the CIA_CTRL CSR.

Software requirement:  The AlphaStation 600 system I/O write buffers are intended to be
used in a post-and-run manner1. Software must ensure data coherency with respect to a
PCI or EISA device by software techniques, such as:

• The I/O write buffer is  flushed by performing an IO read ( reading a CIA CSR is suffi-
cient and fast).

• Completing the I/O write sequence by a I/O write to a finish_flag on the PCI/EISA de-
vice.

• etc.

Guaranteed Access Time Mode 
EISA and ISA cycles can be extended (that is, wait states) with the EXRDY and CHRDY
signals. However, the wait states are not indefinite, and 2.1 uS is the longest delay possi-
ble which will satisfy both bus constraints.

The PCI-EISA bridge set can be configured into a mode called Guaranteed Access Time
(GAT) mode, where the bridge issues MEMREQ# when it wishes an unimpeded path to
system memory; and the system responds with MEMACK# once it has completed the
preparation to guarantee a 2.1 uS  maximum latency. The AlphaStation 600 system is de-
signed to run with GAT mode enabled.

The simplest approach for the system is to "crow-bar" the path to memory -- that is, stall
the CPU and keep the CPU stalled until the EISA device has completed its transaction
(note that the CPU is not just stalled for EISA-to-PCI transactions, but also for EISA-to-
EISA transfers since the PCEB asserts MEMREQ# for any non-Refresh EISA cycle). Ta-
ble 10-6 itemizes the total delay for an ISA memory read.

1 Intel architecture (and thus PCI architecture) also assumes a post-and-run IO write design.
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Table 10-6  AlphaStation 600 GAT  Latency Delay 

Table 10-6 tabulates two variants. The first delay column represents the "crow-bar" ap-
proach where the CPU has been stalled. There is sufficient time in this case to allow scat-
ter/gather to be enabled for the PCI-EISA transactions. The last column, represents the
case where scatter/gather is disabled (that is, direct mapping), or the TLB entry has been
locked. Now there is sufficient time to allow the CPU to perform memory transactions: in
this case the EISA transaction may have to wait as long as  400ns for a CPU memory fill
with victim to complete.

Gat-Mode Software Notes
Table 10-6 assumes only one scatter/gather miss. There is not enough time to support
two misses and provide a reasonable margin of error in the calculation. Hence, if it is pos-
sible for an EISA transfer to cross a 32 KB-aligned PCI address boundary (each scat-
ter/gather TLB entry is 4 consecutive 8 KB PTEs), then scatter/gather mapping should not
be used if GAT mode is required, unless the appropriate TLB entries are locked. 

Software can  enable or disable the stalling of the CPU during EISA transactions via the
CIA_CTRL CSR. If the CPU is in the non-stalled mode then the AlphaStation 600 system
will allow CPU to memory operations to proceed (but not I/O transactions) while in GAT
mode. Clearly, for performance reasons it is preferable to avoid stalling the CPU. How-
ever, this will mean that scatter/gather must be disabled for the EISA transfers; or that the
TLB entry has been locked. Otherwise, the CPU will be stalled for the duration of most
EISA transactions. 

The AlphaStation 600 hardware is designed to run in GAT mode. In this mode FL-
SHREQ# and MEMREQ# are synonyms. Hence, the AlphaStation 600 system will only
use one of these signals (probably FLSHREQ#). Software needs to consider the implica-
tions of this if they choose to run with GAT-mode disabled.

Data Buffering in the PCEB
The AlphaStation 600 system expects that  the Line Buffer is enabled in the PCEB chip. 

Operation Delay 
With Scatter/Gather
& CPU stalled

Delay 
No Scatter/Gather
CPU not stalled

MEMREQ received:
        -- Flush I/O write buffers (optional)
        -- schedule memory refresh
MEMACK# sent

200ns 
(refresh occurs in parallel
with issuing MEMACK) 

200ns 
(refresh occurs in parallel
with issuing MEMACK) 

ISA bus delay - 1 cycle
PCI_EISA bridge - 2 PCI cycles
PCI transaction - 4 cycles
CIA pipe delay - 2 cycles
CPU memory read with victim
Scatter/Gather miss (+ PCI retry)
Memory read for EISA data + CIA pipe delay
PCI transfer
PCI-EISA bridge - 2 PCI cycles
Align to ISA clock
ISA bus - 1 cycle

   120 nS  
    60 nS
  240 nS
    60 nS
  ----
  400 nS
  270 nS
    30 nS
    60 nS
    90 nS
  120 nS

   120 nS  
    60 nS
  240 nS
    60 nS
  400 nS
     --
  270 nS
    30 nS
    60 nS
    90 nS
  120 nS

Total GAT delay 1.650 uS 1.650 uS

Note: the figures in this table are only a quick estimate. This table remains to be refined
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The latest errata from Intel requires that the PCEB Posted Write Buffer is disabled. This
means that a PCI master requesting a PCI-to-EISA transfer is retried until the PCEB owns
the EISA bus. Each PCI-to-EISA transfer must complete all the way to the EISA destina-
tion before the next transfer may begin. In other words, performance through to EISA will
be abysmal (and the fewer EISA options installed the better). 
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11

System Coherency

Introduction
This chapter defines the rules that will insure that data coherency is maintained across the
AlphaStation 600 system.  All types of data movement are considered, including I/O reads
and writes, DMA transfers and peer to peer transfers and their relationships to interrupts.
This chapter also describes how the AlphaStation 600 system maintains coherency if the
rules are followed.

Referenced Documents

Alpha System Reference Manual
Software must observe all requirements of  the latest version of the Alpha System Refer-
ence Manual , and the AlphaStation 600 system conforms to it. Chapter 5 is of particular
interest. In regard to Chapter 8, all of the I/O system built into the AlphaStation 600 sys-
tem is "Local I/O Space." The AlphaStation 600 system contains no "Remote I/O Space".

PCI Local Bus Specification
The I/O bus system in the AlphaStation 600 system begins with a 64 bit PCI emerging
from the CIA chip. Software must comply with requirements in the latest version (Rev 2.0
or later) of the PCI Local Bus Specification, Production Version , as published by the
PCI Special Interest Group, 5200 N.E. Elam Young Parkway, Hillsboro, Oregon 97124.

NCR 53C820
At least initially, the internal Fast Wide SCSI bus and the external Fast Wide SCSI bus will
both be generated with NCR 53C820 chips. These parts appear on a PCI option module
that will be standard in AlphaStation 600 systems. This does, however, make it easy, from
a hardware prospective, to change this to a different chip type if and when that becomes
desirable. In operations with the SCSI busses and devices on the SCSI busses, software
must observe the requirements of the NCR 53C820 data book.

Other Devices
See data books or specifications for requirements for operating other devices.

Coherency Summary
The AlphaStation 600 chip set treats an MB as a NOP, and the AlphaStation 600 system
should be configured so that MBs do not leave the EV5 chip. A recent ECO to the Alpha
SRM allows "posted" or "buffered" writes to I/O devices. This ECO allows designs to
buffer writes from the CPU to a PCI device, and allows reads from the same PCI-devices
to main memory to complete while writes to this same device are buffered. The ECO
states that the usual way for a programmer to be sure the write data has reached the de-
vice is to read a register on the same device. This is explained in more detail in this chap-
ter.
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The following AlphaStation 600 hardware features are required for the ECO:

• Before a read of an I/O location is processed, all preceding writes by the EV5 to de-
vices are flushed out of the buffers.

• Before a read by a PCI-device to main memory is processed, all preceding writes by
the device to main memory are flushed out of their write buffers.

Classification of Coherency Situations

Generic Event Types in the AlphaStation 600 System
The possible generic events in the AlphaStation 600 system are:

1. A Read

2. A Write

3. An Interrupt

4. I/O Page Table Modification

1. The possible things that can go wrong with a read are:

 A. Fails to return the latest written data

 B. Data changed before read
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2. The possible things that can go wrong with a write are:

 A. Data fails to make it to a later read  (same as 1 A)

 B. Data overwrites some later write

 C. Data is overwritten by some earlier write (same as 2B)

 D. Data is overwritten before readers are finished with it (same as 1B)

 E. Data fails to make it to destination when needed to  cause some side effect

 F. Side Effects Happen out of order

3. The possible things that can go wrong with an interrupt are:

 A. Preceding reads or writes are not completed when interrupt  is recognized         
(these failures should all show up under 1 or  2 above)

4. The possible things that can go wrong with the I/O page table  modification are:

 A. Failure to use the latest Page Table State

 B. Page Table changed before use of it is completed

I conclude from above that all failures can be accounted for under items 2 or 4, that is all
failures may be considered to be either Write failures or I/O page table modification fail-
ures. Further It can be seen that 2B and 2C are the same thing.

The complete list of possible failures may be restated:

1. The possible things that can go wrong with a write are:

 A. Data fails to make it to a later read

 B. Data overwrites some later write

 C. Data is overwritten before readers are finished with it 

 D. Data fails to make it to destination when needed to  cause some side effect

 E. Side Effects Happen out of order

2. The possible things that can go wrong with the I/O page table modification are:

 A. Failure to use the latest Page Table State

 B. Page Table changed before use of it is completed
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Possible Write - Read and Write - Write interactions
To aid in this study we construct exhaustive decompositions:

* A Read is either:

 EV5 initiated

  device initiated

* An EV5 initiated read is either:

 A memory read

  An I/O read

* An EV5 initiated I/O read is either:

 An AlphaStation 600 system CSR read

  A device read

* A device initiated read is either:

 A memory read

  A peer device read

* A Write is either:

 EV5 initiated

  device initiated

* An EV5 initiated write is either:

 A memory write

  An I/O write

* An EV5 initiated I/O write is either:

 An AlphaStation 600 system CSR write

  A device write

* A device initiated write is either:

 A memory write

  A peer device write

It will be noted that a complete decomposition of reads above yields an exhaustive list of 5
different types of reads. An exhaustive decomposition of writes above yields an exhaus-
tive list of 5 different writes. The two lists are the same.

If one considers the data interactions under item 1, then either for write-read interactions
or for write-write interactions, the cartesian product yields 25 different cases, in principle.
However, in most of the 25 cases there can be no data interaction. You cannot have a
problem with a read to one place not returning data that was written to a different device.
Nor can you have data written to one device overwrite data written to another device. The
following table gives all significant cases:
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TRANSACTION 1 TRANSACTION 2

EV5 to memory EV5 to memory

EV5 to memory device to memory

EV5 I/O to AlphaStation 600 CSR EV5 I/O to AlphaStation 600 CSR

EV5 I/O to device EV5 I/O to device

EV5 I/O to device device peer

device to memory EV5 to memory

device to memory device to memory

device peer EV5 I/O to device

device peer device peer

There are therefore 9 different significant cases of interaction of Writes with Reads or
Writes with Writes.

The issue now is to describe the software rules for each situation and then to demonstrate
that if the rules are followed, there can be no failure in an AlphaStation 600 system.

Basic Properties of the AlphaStation 600 System

We will use a few facts about the AlphaStation 600 system design:

1. The DRAM memory does only one thing at a time.

2. A read or a write to memory is atomic. I am particularly interested  here in writes that
actually require read modify write cycles in the  DRAM. No other use of the DRAM can get
between the read and write of  the read modify write. This being so, we can ignore the fact
that some  writes require read modify write. All other accesses to DRAM occurred  either
completely before a write (whether or not it was a read modify  write), or completely after
the write.

3. The memory sequence for an EV5 cache miss with victim is atomic in the memory. A
cache miss with victim first does a read in memory for the block required for the cache
miss, and then it writes the victim data to memory. No other access to memory can come
between the read and the write.

4. When a transaction has won arbitration for the memory it is said to "own memory."
Once a transaction owns memory, there will be no memory access for any other transac-
tion until this transaction has completed all of its memory activity.

5. In the event of an I/O TLB miss, a Read command is given to the EV5 for the data for
the TLB entry and a memory access is also made for this data. The Read command is not
issued to EV5 until memory is owned for this access.

6. When a device read to memory is processed, a Read Command is issued to EV5 for
the required data and also a memory access is made for the required data. The Read
command is not issued to EV5 until memory is owned for the memory cycle.

7. When a device write to memory is processed, a Flush Command is issued to EV5 for
the required data. A memory access is also made. This memory access serves to write
data obtained from EV5 in response to the Flush Command to memory and also serves to
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write the data from the device to memory. The Flush Command is not issued to EV5 until
memory is owned for the memory write.

8. We can conclude that the two-step sequences described in Basic Properties 5, 6, and 7
above are all mutually atomic. In each case the two-step sequence is a probe of EV5 and
a memory cycle. For any pair of sequences of the types described in 5, 6, and 7, both
steps of one of the sequences happened entirely before either of the two steps of the
other sequence.

 

Analysis of Interactions with Writes

Data fails to make it to a later read
 The possible decomposed cases are:

 1. Write, EV5 to memory; Read, EV5 to memory

SOFTWARE RULES

For an EV5 memory read to a location that was previously modified with an EV5 memory
write to work correctly the following sequence must be used:

STORE

LOAD

WHY IT WORKS IN the AlphaStation 600 system

We assume EV5 internally does the right thing. The only time the AlphaStation 600 sys-
tem is involved is if the written location became a victim and was written to memory, or
was evicted from cache with a Flush Command and then it was read back in a miss.

First consider the case in which the data was a victim. EV5 will issue the cash miss with
victim command first and then the cache miss to the victim address. The AlphaStation 600
system processes EV5 commands in order. The cache miss with victim will own the mem-
ory first and do both the read and the write of the victim. The read write sequence for a
miss with victim is atomic in the memory (Basic Property 3). The memory access for the
cache miss will be after the victim write.

Next consider evicting data with a Flush and then an EV5 cache miss hits that data. If the
miss is on the EV5 pins after the Flush Command went to EV5, then the memory is al-
ready owned to write the Flush Data to memory (Basic Property 7) before the miss com-
mand is issued by EV5. The memory cycle for the miss is after the flushed data goes to
memory.

 2. Write, EV5 to memory; Read, device to memory

SOFTWARE RULES

In order to insure that a device will correctly access data written to memory by EV5, soft-
ware must use the following sequence:

EV5 STORE TO MEMORY

WEAK MEMORY BARRIER OR MEMORY BARRIER

EV5 SIGNALS DEVICE

DEVICE RECEIVES SIGNAL

DEVICE READS MEMORY
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The EV5 can signal the device only by writing something to memory or by writing some-
thing to a device or by reading a device. In the case of signaling by reading a device,
Memory Barrier must be used, Weak Memory Barrier is not enough.

WHY IT WORKS IN the AlphaStation 600 system

Under these conditions, by the time the SIGNAL leaves the EV5 chip, a condition will
have been established in which either EV5 will supply the data in response to a Read or a
Flush, or the data has been sent to memory in a miss with victim or in response to a previ-
ous flush.

Data from EV5 in a flush buffer or en route to a flush buffer is as good as in memory,
relative to a device read by Basic Property 8. If the device read sequence is before the
flush sequence then it will get the data from the Read command to  EV5 on its behalf. If
the device read sequence is after the flush sequence, then it will get the data from mem-
ory.

Data in the victim buffer is as good as in memory. A device read to memory could be for
the block that is in the victim buffer or is en route to the victim buffer and that such a de-
vice read must get the value that is in the victim buffer or en route to the victim buffer. The
details are as follows: the EV5 retains (and still owns) the victim data, even though a copy
may currently reside in the victim buffer, until the EV5 memory read is completed. Hence
a device read will obtain the correct data from the EV5 if the EV5 read has not yet com-
pleted; and if the read has completed, then the data is in memory since the AlphaStation
600 system ensures that the victim write is atomic with the associated EV5 read fill.

 3. Write, EV5 I/O to the AlphaStation 600 CSR; Read, EV5 I/O to the AlphaStation
600 CSR

SOFTWARE RULES

To insure that a read from a location, a CSR in this case, will return the result of a previ-
ous write to that location, software must use the following sequence:

EV5 STORE TO the AlphaStation 600 CSR

EV5 READ TO the AlphaStation 600 CSR

WHY IT WORKS IN the AlphaStation 600 system

Due to fact that the read and write addresses match, and the read and write are to non
cached space, EV5 will emit the write first before the read. The AlphaStation 600 system
will do only one operation on any given CSR at a time and in the order in which the EV5
emitted them.

 4. Write, EV5 I/O to device; Read, EV5 I/O to device

SOFTWARE RULES

To insure that a read from a location, a device register in this case, will return the result of
a previous write to that location, software must use the following sequence:

EV5 STORE I/O TO DEVICE

EV5 LOAD I/O TO DEVICE
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WHY IT WORKS IN the AlphaStation 600 system

Due to the fact that addresses for the store and load match and the store and load are to
noncached space, EV5 will emit the write first before the read. I/O commands from EV5
go to the PCI strictly in the order in which they are emitted by the EV5. PCI transactions
from EV5 to any given target stay strictly in order through bridges and what have you.

 5. Write, EV5 I/O to device; Read, device peer

SOFTWARE RULES

To insure that device B, doing a peer to peer read of device A will get the result of an EV5
write to device A, software must use the following sequence:

EV5 STORE I/O TO DEVICE A

MEMORY BARRIER1

EV5 LOAD I/O TO DEVICE A

MEMORY BARRIER

EV5 SIGNALS DEVICE B

DEVICE B RECEIVES SIGNAL

DEVICE B READ PEER DEVICE A

The only possibilities for the signal are EV5 writes memory, EV5 writes to device B, or
EV5 reads to device B.

EV5 Load I/O to device A need not be to any particular register or location. It can be to
anything in device A. The general principle is that the one and only mechanism that EV5
has to determine that an I/O write has arrived at a device is to read something (anything)
from that same device. EV5 cannot signal device B that the data is at device A until it
knows itself that the data is at device A.

WHY IT WORKS IN the AlphaStation 600 system

Due to the first Memory Barrier2, the EV5 write and read to device A will be emitted in 
order.  They will go to the PCI in order and arrive at device A in order. Hence we do not
get past the second memory barrier until the EV5 write to device A has actually reached
the device. Hence device B could not receive the signal, no matter what it is, until after the
EV5 write to device A has reached device A. The device B read to device A then certainly
reaches device A after the EV5 write to device A does. After that it is up to device A to do
the right thing.

SPECIAL CASE:

In the special case that the signal is either EV5 writes to device B, or EV5 reads to device
B, but specifically excluding the use of memory to signal, the following sequence works:

1 this MB is not required if the EV5 store to the Device A and the EV5 load to device A are to the same
address -- see 4 above.

2 this MB is not required if the EV5 store to the Device A and the EV5 load to device A are to the same
address -- see 4 above.
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EV5 STORE I/O TO DEVICE A

MEMORY BARRIER OR WEAK MEMORY BARRIER

EV5 SIGNALS DEVICE B

DEVICE B RECEIVES SIGNAL

DEVICE B READ PEER DEVICE A

The signal must be EV5 writes to device B, or EV5 reads to device B. If the signal is EV5
reads to device B then Memory Barrier must be used; Weak Memory Barrier is not
enough.

WHY IT WORKS IN the AlphaStation 600 system

Because of the Memory Barrier (or Weak Memory Barrier in the case of two I/O writes)
EV5 emits the write to device A before the I/O reference that constitutes the signal. The
AlphaStation 600 system processes the two EV5 I/O references in order so the write to
device A goes on the PCI before the signal.

By the Triangle Inequality for I/O busses, the write to device A arrives at device A before
the read command from device B arrives at device A, that read command being in re-
sponse to the signal arriving at device B.

 6. Write, device to memory; Read, EV5 to memory

SOFTWARE RULES

To insure that an EV5 read to memory will obtain the data written to memory by a device,
software must use the following sequence:

DEVICE WRITES TO MEMORY

DEVICE SIGNALS EV5

EV5 RECEIVES SIGNAL

MEMORY BARRIER

EV5 LOADS FROM MEMORY

The device may signal EV5 by interrupting, writing a location in memory, or by EV5 read-
ing to the device.

In the case that the device signals EV5 by interrupting, WE REQUIRE THAT EV5 READS
A REGISTER IN THE DEVICE to "receive the signal". This device register read can be a
read to verify the source of an interrupt or to determine the cause of the interrupt or the
device status. If none of these things are necessary, then EV5 must read any register in
the device anyway.

The device read will most likely be performed by the low-level interrupt handler: (1) for an
EISA interrupt, the PCI Int-Ack command will be issued to read the EISA interrupt vector
out of the PCI-EISA bridge chip. This Int-Ack cycle implicitly flushes the the EISA-to-PCI
line buffers in the bridge chip; (2) For a PCI interrupt then the device must be read if it
contains posted write buffers (or if it is located behind a PCI-to-PCI bridge). The interrupt
handler may do this read when determining the source of the interrupt (in case the inter-
rupts are wire-ORed).
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For the purposes of this analysis, this makes the case of the device signaling by means of
interrupting the same as the case of signaling by means of EV5 reading a register. That
is, for purposes of analysis, it makes no difference if EV5 read a register because of an
interrupt or for any other reason.

WHY IT WORKS IN the AlphaStation 600 system

First consider signaling by EV5 reading a register in the device, including the case of sig-
naling with an interrupt. 

The device will not signal until the device memory write has finished on the Bus segment
connected to the device. This means that the write data is at least buffered in the first
bridge, if it is not any further. Here a bridge could be the EISA to PCI bridge or the PCI to
PCI bridge. With either type of bridge, the write data from the device and the read return
data following it stay in order. Either bridge will retry a read if the write buffers are not
empty, thereby keeping the order without causing a deadlock.

We can therefore be sure that the device write to memory will arrive at the CIA in an ear-
lier PCI cycle than the returning data to complete the signal to the EV5.

Since the device write to memory has arrived at the CIA before the read return data, the
device write to memory will be processed first. This means that the device write to mem-
ory will cause an EV5 flush command and it will own memory before the read return data
is returned to EV5 (Basic Properties 7). This means it is also before EV5 can complete the
Memory Barrier Instruction and hence before EV5 can probe its cache for the following
memory read, or issue a miss for that memory read.

Any EV5 miss after the Flush will get the result of this device write since memory was
owned for the device write before the Flush command was issued to EV5.

Next consider the device signaling EV5 by writing a location in memory. In this case the
device does two writes to memory. These two writes will stay in order through PCI’s and
bridges and the AlphaStation 600 logic, all the way to memory. EV5 flushes will be in or-
der. In fact EV5 will get the first Flush, then the first memory write will happen atomically,
then EV5 will get the second flush, then the second memory write will happen atomically
(Basic Properties 7).

 7. Write, device to memory; Read, device to memory

FROM SAME DEVICE

The write and the read from the same device to memory stay in order through the whole
system. So this works for any single device.

FROM DIFFERENT DEVICES

SOFTWARE RULES

For one device to correctly read data from memory that was written to memory by another
device, software must use the following sequence:

DEVICE A WRITES TO MEMORY

DEVICE A SIGNALS DEVICE B

DEVICE B RECEIVES SIGNAL

DEVICE B READS MEMORY

We consider here only the case in which the signal is device A writing memory, or device
A doing a peer to peer read or write to device B through the AlphaStation 600 I/O system.
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The case that is NOT considered is that there might be some private interconnect, not
part of the AlphaStation 600 design, between  the devices. If there is such a thing, then
coherency is the responsibility of the provider of such private interconnect.

Of course there is also the case in which device A signals a 3rd party, and the 3rd party
signals device B. The case where the 3rd party is EV5 is the most important such case
but not the only possible case. This works provided EV5 (or other device) receives the
signal in a manner that would allow it itself to read the data from device A, and then sig-
nals device B in a manner that would work if it itself had written the data.

WHY IT WORKS IN the AlphaStation 600 system

In the case of signaling through memory, this works because two writes to memory from
the same device stay in order.

Signaling via peer reads or peer writes works because of the Triangle Inequality for I/O
busses (see Appendix A).

Suppose device A writes memory, then device A writes device B to signal it and then de-
vice B reads memory. By the triangle inequality device A write to memory arrives at the
CIA before the read command from B induced by the message from A can get to the CIA.
The memory commands at the CIA are processed in order, so the read gets the right
data.

Now suppose device A writes memory, then device B reads device A and determines that
the write was done, then device B reads memory. By the triangle inequality, the device A’s
write to memory arrives at the CIA before the read command from B where that read was
a result of read return data from A to B. Memory commands arriving at the CIA are proc-
essed in order so you get the right result.

 8. Write, device peer; Read, EV5 I/O to device

SOFTWARE RULES

For EV5 to read data from device B that was written to device B by device A, the following
sequence must be used:

DEVICE A WRITES TO DEVICE B

DEVICE A SIGNALS EV5

EV5 RECEIVES SIGNAL

MEMORY BARRIER1

EV5 READS DEVICE B

Device A may signal EV5 with an interrupt, by writing a location in memory, or by EV5
reading device A. In the event that an interrupt is the signal WE REQUIRE THAT EV5
READS A REGISTER IN DEVICE A for EV5 to "receive the signal". This read may be to
determine the source of the interrupt or the reason for the interrupt or to get status. If none
of these things are necessary then EV5 must read some register in device A anyway. This
makes signaling via interrupt and signaling via EV5 reading device A essentially the
same.

1 MB is required to keep the EV5 read for the "EV5 receives signal" and the "EV5 reads Device B" ordered.
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WHY IT WORKS IN the AlphaStation 600 system

This works because of the Triangle Inequality for I/O busses.

Assume the signal is EV5 reading device A (this includes interrupt). By the triangle in-
equality device A’s write to B arrives at B before the EV5 read command arrives at B, the
EV5 read command being in response to read return data from A to EV5. 

Assume the signal is writing a location in memory. By the triangle inequality, device A’s
write arrives at B before EV5’s read, that read being in response to write data arriving at
CIA from device A.

 9. Write, device peer; Read, device peer

SAME DEVICE

If device A writes device B and then device A reads back from B, this works because only
one command goes on the bus at a time and the bus system maintains ordering.

DIFFERENT DEVICES

SOFTWARE RULES

To insure that device C correctly reads data from device B that was written to device B by
device A, the following sequence must be used:

DEVICE A WRITES TO DEVICE B

DEVICE A SIGNALS DEVICE C

DEVICE C RECEIVES SIGNAL

DEVICE C READS DEVICE B

 We consider the case of signaling by writing a location in memory or through reads or
writes on the AlphaStation 600 I/O system.

The case that we do not deal with is that there could be a private interconnect, not part of
the AlphaStation 600 I/O system, between devices A and C. The signal could go on this
private interconnect. If this is the case then coherency is the responsibility of the provider
of such interconnect.

WHY IT WORKS IN the AlphaStation 600 system

This can be shown to work by using the Triangle Inequality for I/O busses. Examples of
this appear above.

Data overwrites some later write.
 The possible decomposed cases are:

 1. Write, EV5 to memory; Write, EV5 to memory (same location)

SOFTWARE RULES

In order to insure that writes to memory stay in order, the following sequence must be
used:

EV5 STORE TO MEMORY

EV5 STORE TO MEMORY
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WHY IT WORKS IN the AlphaStation 600 system

We assume internally EV5 does the right thing. The AlphaStation 600 system gets in-
volved only if the block goes to memory as a victim, or is extracted with a Flush Com-
mand. the only interesting case is where that happens between the two stores. In this
case EV5 must get the block back again with a miss in order to update it for the second
write. The issue becomes simply, can the AlphaStation 600 system correctly process a
miss with victim and a following miss requesting that victim data. This was dealt with un-
der 1. in the write - read interactions.

 2. Write, EV5 to memory; Write, device to memory (same location)

SOFTWARE RULES

In order to insure that a device will correctly overwrite data written to memory by EV5,
software must use the following sequence:

EV5 STORE TO MEMORY

WEAK MEMORY BARRIER OR MEMORY BARRIER

EV5 SIGNALS DEVICE

DEVICE RECEIVES SIGNAL

DEVICE WRITES MEMORY

The EV5 can signal the device only by writing something to memory or by writing some-
thing to a device or by reading a device. In the case of signaling by reading a device,
Memory Barrier must be used, Weak Memory Barrier is not enough.

WHY IT WORKS IN the AlphaStation 600 system 

Under these conditions, by the time the signal leaves the EV5 chip, the write is completed.
The result of the write is either in the cache and will be extracted by a Flush command, or
the data has been sent to memory in a miss with victim or in response to a previous flush.

Data from EV5 in a flush buffer or en route to a flush buffer is as good as in memory,
relative to another device write. Two device write sequences are mutually atomic (Basic
Properties 8). If the device write in question is before another device write sequence, then
its Flush command will extract the result of the EV5 write from EV5 and the device data
will merge on top of it. If it is after another device write sequence, the result of the EV5
write will be obtained from memory and the device data will be merged on top of it.

Data in the victim buffer is as good as in memory. A device write to memory could be for
the block that is in the victim buffer or is en route to the victim buffer and that such a de-
vice write must merge on top of the value that is in the victim buffer or en route to the
victim buffer. The details are as follows: the EV5 retains (and still owns) the victim data,
even though a copy may currently reside in the victim buffer, until the EV5 memory read is
completed. Hence a device write will FLUSH the data out of the EV5 if the EV5 read has
not yet completed, and the data in the victim buffer will be invalidated; and if the EV5 read
has completed, then the victim data is in memory since the AlphaStation 600 system en-
sures that the victim write is atomic with the associated EV5 read fill.

It is ,however, NOT true that data in the victim buffer is as good as in memory. A device
write to memory could be for the block that is in the victim buffer or is en route to the vic-
tim buffer and that such a device write must merge on top of the value that is in the victim
buffer or en route to the victim buffer.
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 3. Write, EV5 I/O to the AlphaStation 600 CSR; Write, EV5 I/O to AlphaStation 600
CSR

SOFTWARE RULES

To correctly sequence two writes to the same AlphaStation 600 CSR, software must use
the following sequence:

EV5 STORE I/O TO CSR

EV5 STORE I/O TO CSR

Due to the fact that the addresses of the two stores match, EV5 will either correctly merge
them into a single write block or else EV5 will emit the writes in order. The AlphaStation
600 system will do only 1 operation on any given CSR at a time and in the order in which
the EV5 emitted them.

 4. Write, EV5 I/O to device; Write, EV5 I/O to device

SOFTWARE RULES

In order to correctly sequence two writes to the same device register, software must use
the following sequence:

EV5 STORE I/O TO DEVICE

EV5 STORE I/O TO DEVICE

Due to the fact that the addresses of the two stores match, EV5 will either correctly merge
them into the same write block or else EV5 will emit the writes in order. I/O commands
from EV5 go to the PCI strictly in the order in which they are emitted by the EV5. PCI
transactions from EV5 to any given target stay strictly in order through bridges and what
have you.

5. Write, EV5 I/O to device; Write, device peer

SOFTWARE RULES

To insure that an EV5 write to a device is properly sequenced with a write to that device
by a peer, the following sequence must be used:

EV5 STORE I/O TO DEVICE A

MEMORY BARRIER1

EV5 LOAD I/O TO DEVICE A

MEMORY BARRIER

EV5 SIGNALS DEVICE B

DEVICE B RECEIVES SIGNAL

DEVICE B WRITES DEVICE A

The only possibilities for the signal are EV5 writes memory, EV5 writes to device B, or
EV5 reads to device B.

1 this MB is not required if the EV5 store to the Device A and the EV5 load to device A are to the same
address.
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EV5 Load I/O to device A need not be to any particular register or location. It can be to
anything in device A. The general principle is that the one and only mechanism that EV5
has to determine that an I/O write has arrived at a device is to read something (anything)
from that same device. EV5 cannot signal device B that the data is at device A until it
knows itself that the data is at device A.

WHY IT WORKS IN the AlphaStation 600 system

The EV5 write and read to device A will be emitted in the order shown by EV5 because of
the Memory Barrier between them. They will go to the PCI in order and arrive at device A
in order. Hence we do not get past the second memory barrier until the EV5 write to de-
vice A has actually reached the device. Hence device B could not receive the signal, no
matter what it is, until after the EV5 write to device A has reached device A. The device B
write to device A then certainly reaches device A after the EV5 write to device A does.
After that it is up to device A to do the right thing.

SPECIAL CASES:

SOFTWARE RULES

In the special case that the signal is either EV5 writes to device B, or EV5 reads to device
B, but specifically excluding the use of memory to signal, the following sequence works:

EV5 STORE I/O TO DEVICE A

MEMORY BARRIER OR WEAK MEMORY BARRIER

EV5 SIGNALS DEVICE B

DEVICE B RECEIVES SIGNAL

DEVICE B WRITES DEVICE A

The signal must be EV5 writes to device B, or EV5 reads to device B. If the signal is EV5
reads to device B then Memory Barrier must be used; Weak Memory Barrier is not
enough.

WHY IT WORKS IN the AlphaStation 600 system

Because of the Memory Barrier (or Weak Memory Barrier in the case of two I/O writes)
EV5 emits the write to device A before the I/O reference that constitutes the signal. The
AlphaStation 600 system processes the two EV5 I/O references in order so the write to
device A goes on the PCI before the signal.

By the Triangle Inequality for I/O busses, the write to device A arrives at device A before
the write command from device B arrives at device A, the write from B being in response
to the signal arriving at device B.
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6. Write, device to memory; Write, EV5 to memory

SOFTWARE RULES

To insure the correct sequencing of a device writing to memory and EV5 writing to the
same location the following sequence must be used:

DEVICE WRITES MEMORY

DEVICE SIGNALS EV5

EV5 RECEIVES SIGNAL

MEMORY BARRIER

EV5 WRITES MEMORY

The device may signal EV5 by interrupting, writing a location in memory, or by EV5 read-
ing to the device.

In the case that the signal is an interrupt WE REQUIRE THAT EV5 READS A REGISTER
IN THE DEVICE to "receive the signal". This device register read can be a read to verify
the source of an interrupt or to determine the cause of the interrupt or the device status. If
none of these things are necessary, then EV5 must read any register in the device any-
way.

For the purposes of this analysis, this means that the case of signaling with an interrupt is
the same as the as the case of signaling by EV5 reading the device. For this analysis it
makes no difference if EV5 read the device in response to an interrupt or for any other
reason.

WHY IT WORKS IN the AlphaStation 600 system

First, consider the case of signaling by EV5 reading the device, including the interrupt
case.

The device will not signal until the device memory write has finished on the Bus segment
connected to the device. This means that the write data is at least buffered in the first
bridge, if it is not any further. Here a bridge could be the EISA to PCI bridge or the PCI to
PCI bridge. The read return data from a device cannot get ahead of write data from the
device that started ahead of it, with either bridge. Either bridge will retry a read if the write
buffers are not empty, thereby keeping the order without causing a deadlock.

We can therefore be sure that the device write to memory will arrive at the CIA in an ear-
lier PCI cycle than the returning data to complete the signal to the EV5.

Since the device write to memory has arrived at the CIA before the read return data, the
device write to memory will be processed first. This means that the device write to mem-
ory will cause an EV5 flush command and it will own memory before the read return data
is returned to EV5. This means it is also before EV5 can complete the Memory Barrier
Instruction and hence before EV5 can execute its write to memory.

Next consider the device signaling EV5 by writing a location in memory.

In this case the device does two writes to memory. These two writes will stay in order
through PCI’s and bridges and the AlphaStation 600 system logic, all the way to memory.
EV5 flushes will be in order. In fact EV5 will get the first Flush, then the first memory write
will happen atomically, then EV5 will get the second flush, then the second memory write
will happen atomically.
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 7. Write, device to memory; Write, device to memory

SAME DEVICE

Two writes from the same device to memory stay in order through the whole system. So
this works for any single device.

DIFFERENT DEVICES

SOFTWARE RULES

To insure proper sequencing of  two devices writing to the same location in memory, the
following sequence must be used:

DEVICE A WRITES MEMORY

DEVICE A SIGNALS DEVICE B

DEVICE B RECEIVES SIGNAL

DEVICE B WRITES MEMORY

We will consider only the case where the signaling mechanism is another write to memory
or a peer read  or write through the AlphaStation 600 I/O system.

There is also the possibility that device A signals a 3rd party and then the 3rd party sig-
nals device B. The most important case of this is when the 3rd party is EV5, but this is not
the only such case. This works if EV5 (or other device) receives the signal in such a way
that it could itself properly write over the data, and then signals in such a way that device
B could correctly overwrite the data if it itself had written it.

The case we will NOT consider is that there might be some private interconnect, not part
of the AlphaStation 600 design, between the devices. If there is such a thing, then coher-
ency is the responsibility of the provider of such private interconnect.

WHY IT WORKS IN the AlphaStation 600 system 

In the case of signaling through memory, this works because two writes to memory from
the same device stay in order.

Signaling via peer reads or peer writes works because of the Triangle Inequality for I/O
busses.

Suppose device A writes memory, then device A writes device B to signal it and then de-
vice B writes memory. By the triangle inequality device A write to memory arrives at the
CIA before the write command from B induced by the message from A can get to the CIA.
The memory commands at the CIA are processed in order.

Now suppose device A writes memory, then device B reads device A and determines that
the write was done, then device B writes memory. By the triangle inequality, the device
A’s write to memory arrives at the CIA before the write from B where B’s write was a result
of read return data from A to B. Memory commands arriving at the CIA are processed in
order so you get the right result.
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8. Write, device peer; Write, EV5 I/O to device

SOFTWARE RULES

To insure correct sequencing of device A write to device B and EV5 write to device B, the
following sequence must be used:

DEVICE A WRITES TO DEVICE B

DEVICE A SIGNALS EV5

EV5 RECEIVES SIGNAL

MEMORY BARRIER

EV5 WRITES DEVICE B

Device A may signal EV5 with an interrupt, by writing a location in memory, or by EV5
reading device A. In the event that an interrupt is the signal WE REQUIRE THAT EV5
READS A REGISTER IN DEVICE A  for EV5 to "receive the signal". This read may be to
determine the source of the interrupt or the reason for the interrupt or to get status. If none
of these things are necessary then EV5 must read some register in device A anyway. This
makes signaling via interrupt and signaling via EV5 reading device A essentially the
same.

WHY IT WORKS IN the AlphaStation 600 system

This works because of the Triangle Inequality for I/O busses.

Assume the signal is EV5 reading device A (this includes interrupt). By the triangle in-
equality device A’s write to B arrives at B before the EV5 write arrives at B, the EV5 write
being in response to read return data from A to EV5.

Assume the signal is writing a location in memory. By the triangle inequality, device A’s
write arrives at B before EV5’s write, EV5’s write being in response to write data arriving
at CIA from device A.

 9. Write, device peer; Write, device peer

SAME DEVICE

If device A writes device B and then device A writes device B again, this works because
only one command goes on the bus at a time and the bus system maintains ordering.

DIFFERENT DEVICES

SOFTWARE RULES

To insure that writes from two different devices are sequenced properly at device B, the
following sequence must be used:

DEVICE A WRITES DEVICE B

DEVICE A SIGNALS DEVICE C

DEVICE C RECEIVES SIGNAL

DEVICE C WRITES DEVICE B
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We consider only cases where the signaling mechanism is writing a location in memory or
through reads or writes on the AlphaStation 600 I/O system.

There is also the possibility that device A signals a 3rd party and then the 3rd party sig-
nals device C. The most important case of this is when the 3rd party is EV5, but this is not
the only such case. This works if EV5 (or other device) receives the signal in such a way
that it could itself properly write over the data, and then signals in such a way that device
B could correctly overwrite the data if it itself had written it.

The case that we do not deal with is that there could be a private interconnect, not part of
the AlphaStation 600 I/O system, between devices A and C. The signal could go on this
private interconnect. If this is the case then coherency is the responsibility of the provider
of such interconnect.

WHY IT WORKS IN the AlphaStation 600 system

This can be shown to work by using the Triangle Inequality for I/O busses. Examples of
this appear above.

Data is overwritten before readers are finished with it
Here we have a situation in which a reader signals when he is done with some memory
data and then a writer gets the signal and then writes the location. Assuming the reader
does not signal until it actually has all the data it wants, it is pretty obvious that this will
work regardless of the design details. The only tiny detail is, if EV5 is the reader, to be
sure the EV5 actually has the data before signalling. A Memory Barrier between the last
load and the signal will always do it.  There may well be cases when the Memory Barrier
is not needed.

Data fails to make it to destination
SOFTWARE RULES

In the AlphaStation 600 System1, the only way for a program to determine that an  I/O
write has made it to a device, is for the program to read a register  in that device. The
following sequence may be used:

EV5 STORE I/O TO DEVICE ADDRESS A

EV5 LOAD I/O FROM DEVICE ADDRESS A

the program can now be certain the write has reached device A

Here the store and the load must be to the same address.

The following sequence may also be used:

EV5 STORE I/O TO DEVICE A

MEMORY BARRIER

EV5 LOAD I/O FROM DEVICE A

the program can now be certain the write has reached device A

1 and any PCI-based system for that matter
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It is NOT necessary to read the same register that was written but it is  required that a
register in the same DEVICE be read. This brings up the  issue of what is a device?

The AlphaStation 600 ASIC chipset is considered one device for these purposes. This 
chipset consists of 4 DSW chips and one CIA chip. These chips contain  certain CSRs. If
any CSR in the chipset is written, the only way to be  sure that the write is effective is to
do one of the above sequences. In particular, if you write a CSR  with a side effect of
interacting with following read or write I/O’s, ( the HAE register which affects addressing of
following I/O references is an example)  you can neither be sure that it will be effective nor
be sure that it won’t be  effective on an I/O reference until after a read is done to some
CSR in  the AlphaStation 600 chipset.

Normally, one need not follow every write by a read; the read can terminate a long se-
quence of CSR writes, since all write are kept in order by the AlphaStation 600 system,
and a read for the last write will ensure that all prior writes completed. For an example of
when an IO read is required see the section "Failure to use latest IO page table state" a
few pages forward.

Each PCI to PCI bridge is considered a device, for these purposes. This  includes any
bridges on the system board and also any bridges that are  on PCI option modules. Cur-
rently the plan is to have an SCSI-Ethernet  PCI option module that will appear on most
AlphaStation 600 units. This module has  a PCI to PCI bridge followed by SCSI adapters
and an Ethernet adapter.  The bridge on this PCI option is considered a device by itself.

The PCI to EISA/ISA bridge is considered a device, for these purposes.

Each load on a PCI or EISA bus is considered a device.

There is some flexibility in what is defined to be a device but you get what  you deserve.
An example is in order and the AlphaStation 600 SCSI-Ethernet PCI  module is ideal for
an example.

This module contains three independent PCI to SCSI adapters, each one  being a sepa-
rate chip, and one Tulip ethernet chip, behind a PCI to PCI  bridge. If you want to, you
may define that the entire module is one device.  According to the rules, you write a CSR
in one of the chips, for example,  in the Tulip chip. Then, after a Memory Barrier you read
any CSR  anywhere on the module to verify delivery of the write data. The result of  doing
this is that your read only insures that the write data was delivered  to what you defined as
the device, in this case the whole module. You can  be sure that your write data reached
the module, but you cannot be sure  it has reached the Tulip chip in particular. If you want
the write data to reach the Tulip chip specifically, you must read some register in the Tulip 
chip. This effectively means you are defining the Tulip chip to be the device.

To a large extent, for the purposes of this discussion, you may define what ever you want
to be devices. Then the rule that to insure delivery of  write data to the device, read any
register in the device will work exactly  as you define it. If you define something to be the
device then you cannot  distinguish features inside the device.

WHY IT WORKS IN the AlphaStation 600 system

In the first case, the store and the load are emitted in order by EV5 because their ad-
dresses match and they are in non cached space. In the second case, the store and the
load are emitted by EV5 because of the Memory Barrier between them. Commands go
through the I/O system in order. By the time the Read reaches a device, the Write has
already arrived first.
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Side Effects happen out of order
1. Read and write induced side effects

For Read and Write induced side effects, keeping side effects in order comes down to
making sure the reads and writes arrive at the device in order. This is the same problem
that was extensively treated by the preceding analysis of write - read and write - write in-
teractions.

2. EV5 Writes I/O to a device, then writes memory as a signal.

There is, however, the case of a write to a device that is signaled via a write to memory,
later examined by the device. This can be thought of as a strange case of two side effects
interacting, in that both events do not fit the memory model of only worrying that some-
thing that was written can be correctly retrieved. Had this fit the memory model this case
would have showed up among the previously presented memory model cases.

Signaling with reads or writes to the device is not interesting because this again simply
reduces to keeping reads and writes in order. Only signaling through memory is new.

SOFTWARE RULES

To insure that write data is at  a device when the signal that it is there arrives, when that
signal is through memory, one of the two  following sequence must be used. Sequence 1:

EV5 STORE I/O TO DEVICE ADDRESS A of DATA X

EV5 LOAD I/O FROM DEVICE ADDRESS A

MEMORY BARRIER

EV5 WRITES MEMORY

DEVICE READS MEMORY

DEVICE REQUIRES PRESENCE OF WRITTEN DATA X

In this case the store and load must be to the same address.

Sequence 2:

EV5 STORE I/O TO DEVICE of DATA X

MEMORY BARRIER

EV5 LOAD I/O FROM DEVICE

MEMORY BARRIER

EV5 WRITES MEMORY

DEVICE READS MEMORY

DEVICE REQUIRES PRESENCE OF WRITTEN DATA X.

This follows the general principle that the only way EV5 can be sure that write data has
reached the device is to read back a register in the same device. It is not necessary to
read the same register that was written. The read can be to any register in the same de-
vice. EV5 cannot signal the device that the data is present until it itself knows this.
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WHY THIS WORKS IN the AlphaStation 600 system

EV5 emits the store and the load in order, either because their addresses match and they
are in noncached space, or because of the Memory Barrier between them. By the time the
Memory Barrier after the load completes, the write data will be at the device. EV5 write to
memory is after this memory barrier.

Analysis of I/O Page Table Modification Interactions

Failure to use the latest I/O Page Table State
SOFTWARE RULES

The required sequence to ensure that new I/O page table state is  used is:

EV5 STORE TO I/O PAGE TABLE

WEAK MEMORY BARRIER

EV5 STORE TO I/O TBIA

MEMORY BARRIER

EV5 LOAD FROM ANY AlphaStation 600 CSR

MEMORY BARRIER

SIGNAL DEVICE

DEVICE RECEIVES SIGNAL

DEVICE DOES READ OR WRITE TO MEMORY USING NEW PAGE TABLE STATE

WHY IT WORKS IN the AlphaStation 600 system

By the time the write to TBIA has been emitted from EV5, a condition has been estab-
lished in which either the new page table data will be obtained in any Flush or READ com-
mand to EV5, or else the new page table  data has already moved out of EV5 in a miss
with victim  or in response to a previous Flush.

Any TB miss occurring after the Write to TBIA has been  emitted from EV5 will do a Read
to EV5 after the Write  to TBIA was emitted. Either the Read to EV5 will obtain  the new
page table data or that data is in memory or  that data is in a flush buffer or that data is in
the  victim buffer.

If the data is in memory the TB miss memory cycle will  get it.

Data in a Flush buffer is as good as in memory, relative to the TB miss. The two-step TB
miss sequence and the two-step Flush sequence are mutually atomic by Basic property 8.
Either the TB miss sequence will be entirely before the flush sequence, in which case the
data will come from the Read Command to EV5, or the TB miss sequence will be entirely
after the Flush sequence, in which case the data will come from memory.

As explained in earlier section, data in the victim buffer is as good  as in memory. A TLB
miss will obtain the correct value, even if the data is in the victim buffer. 

At this point we have shown that a TB miss occurring  after the write to TBIA was emitted
from EV5 will  retrieve the new page table state. There is still the  issue of will a TB miss
happen when appropriate?
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The write to TBIA invalidates the TB but a TB miss  can result in validating an entry again,
depending on  the page table state that was found. It must be shown that it is not possible
that a TB entry gets validated again after a TBIA without getting the new page table  state
written to it.

In a TB miss, I/O writes will not be processed from the  Read command going to EV5 for
the page table data until after the new state is put in the page table entry and  the page
table entry is marked valid. Hence any write to TBIA is processed before the TB miss is-
sues a Read  command to EV5 (so that new page table state will be  obtained), or else it
is after the TB entry has been set valid so that the TB entry will be left invalid.

There is then a Memory Barrier and a read to an AlphaStation 600 CSR, and a following
Memory Barrier. This sequence insures that by the  time the last Memory Barrier com-
pletes, the TB has been  invalidated. Hence, whatever the signal is, by the time the signal 
is emitted from EV5, the TB has been invalidated and any device  memory reference will
either hit an invalid TB entry or the new page table state in that entry.

SPECIAL CASES:

SOFTWARE RULES

In the special case that the signal to the device is an EV5 Read I/O to the device or an
EV5 Write I/O to the  device, but specifically excluding the use of memory to signal, the
following faster sequence can be used:

EV5 STORE TO I/O PAGE TABLE

WEAK MEMORY BARRIER

EV5 STORE TO I/O TBIA

MEMORY BARRIER OR WEAK MEMORY BARRIER

EV5 SIGNALS DEVICE

DEVICE RECEIVES SIGNAL

DEVICE DOES READ OR WRITE TO MEMORY USING NEW PAGE TABLE STATE

The signal must be EV5 reds or writes to the device. If the signal is a read to the device
then Memory Barrier must be used; Weak Memory Barrier is not  enough.

WHY IT WORKS IN the AlphaStation 600 system

The argument that the TB will get invalidated and conditions will be  such that if the TB
entry becomes valid again, then it will represent the new page table state is the same as
in the general case above. the difference here is that we must show that if the device ref-
erences memory in response to the signal, then it will effectively see the new page table
state.

The signal is an EV5 I/O read or write to the device. The AlphaStation 600 system proc-
esses EV5 I/O reads and writes in the order received from the EV5, which will be Write to
TBIA and then Signal Device because of the Weak (or full) Memory Barrier between them.
By the time the PCI transaction  to do the signal completes, the TB has been invalidated.
Since there is only one PCI transaction to the CIA at a time, the device read or write  to
memory follows the signal PCI transaction.
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I/O Page Table Changed While In Use
SOFTWARE RULES

To insure that an I/O  page table entry is no longer being used when its state is changed,
one of the following two sequences must be used. Sequence 1:

DEVICE SIGNALS COMPLETION OF USE OF A PAGE TABLE ENTRY

EV5 RECEIVES SIGNAL

MEMORY BARRIER

EV5 STORE TO I/O PAGE TABLE ENTRY

The signal may be an interrupt, a device write to memory, or EV5 reading the device. In
the event that the signal is an interrupt, WE REQUIRE THAT EV5 READS A REGISTER
IN THE DEVICE to "receive the signal". Hence the case of an interrupt and of signaling by
EV5 reading the device are the same.

WHY IT WORKS IN the AlphaStation 600 system

Assume the signal was EV5 reading the device (including interrupt). Then any PCI trans-
action using the page table entry would have gone on the PCI before the read data to
EV5. Hence it would have arrived at the CIA before any read data to EV5. The device
read or write to memory would be processed first because it arrived first. The device read
or write to memory would go through the TB before it does the Read or Flush to EV5. If
there is a TB miss this will be resolved before the Read or Flush to EV5. The read return
data to EV5 will be after the Read or Flush for the device read or write to memory. All TB
activity is therefore complete before the Memory Barrier can complete.

Assume the signal is that the device writes to memory. EV5 must read the signal from
memory to receive the signal. We now have two device memory references, the device
read or write using the page table entry, and the device write to memory constituting the
signal. Each of these memory references is a two-step sequence in which the EV5 is
probed and a memory cycle happens. They are atomic relative to each other (Basic Prop-
erty 8).

The device references are processed in order so the device memory reference sequence
will be entirely before the device write to memory for the signal sequence.

Therefore the preceding memory references will have gone through the TB and be in
memory before the signal reference either Flushes EV5 or writes memory. Hence before
EV5 could receive the signal and before the following Memory Barrier could finish, so be-
fore the page table is modified.

Note that the signal write itself might use the page table entry that is about to be changed.
The signal write will go through the TB and this will be resolved before the signal write
does a Flush to EV5 or writes memory. As above, this must be before the page table is
modified. 
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SOFTWARE RULES

Sequence 2:

EV5 STORE I/O TO DEVICE TO DISABLE USE OF PAGE TABLE ENTRY

MEMORY BARRIER

EV5 LOAD I/O FROM DEVICE

MEMORY BARRIER

EV5 STORE TO THE PAGE TABLE ENTRY

The device spec must say that the device will not do a PCI transaction referencing the
interesting virtual address following the PCI transaction that wrote a disabling state to it.

WHY IT WORKS IN the AlphaStation 600 system

As has already been argued above, by the time the second Memory Barrier completes,
the EV5 write to the device has been delivered. By the assumed device properties there
will be no following memory reference using the interesting page table entry. Any device
memory reference preceding delivery of the EV5 write to the device will arrive at the CIA
before the read return data to EV5. Hence it will be processed first. It will pass the TB and
any TB miss will be fully resolved before the read return data is given to EV5. This is be-
fore the second Memory Barrier could finish and so before the page table entry is modi-
fied.

Triangle Inequality for I/O Busses
We assume here that we have a set of PCI and EISA busses connected by two port
bridges. The net is acyclic; that is, there are no closed loops. This implies that there is a
single direct path from any device to any other device. A direct path is a path that does
not go on any single bus more than once, or through any given bridge more than once.

Define a message from X to Y to be any command, read or write, initiated by X with Y as
target, and in addition, if Y initiates a read from X as a target, the read return data from X
to Y is considered a message.

We assume each bridge has the property that messages flowing through it in a given di-
rection are kept strictly in order.  This is in fact true of the PCI to PCI bridge being devel-
oped in DEC. This is only partially true in the EISA/ISA bridge: for writes greater than a
Dword in size the writes are ordered; all smaller writes may get merged together (merging
will only occur if the Dword in which the data will merge is still in the buffer, and has not
been expelled by some other system/chip event). 

Let A, B and C be any three devices where each device connects to one and only one
bus. A, B, and C can connect to any busses in the net.

Suppose device A sends a message to device C, and after that device A sends a mes-
sage to device B. After device B receives the message from A it sends a message to de-
vice C. Then, exactly as you might expect, device C receives the message directly from A
before it receives the message from B from A.

Proof:

There is a single direct path from A to C. This is the path that the direct message from A
to C takes. This direct path starts with the bus A is on and goes through 0 or more bridges
and winds up with the bus C is on. Let the sequence of bridges be B1, B2, B3, ...
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Considering the combined path of the messages from A to B and then to C, on one leg or
the other, this path must go through the same bridges B1, B2, B3, ... This path might how-
ever contain a closed loop; That is, part of the path from A to B to C might start at a bridge
z and eventually get back to bridge z. If there are any such closed loops, remove them, so
no bridge appears more than once. The remaining sequence not only goes through B1,
B2, B3, ..., but in fact goes through these bridges in the same order as the direct path.

Observe that the path from A to B to C must be fully connected, of course. If a loop start-
ing at Bz and ending at Bz is removed, leaving just the single visitation of bridge Bz then
the path is still connected. Now however the path is a direct path because it doesn’t hit the
same bridge twice. And it goes from A to C. But there is only one unique direct path from
A to C, so this must be it.

Hence the message from A to B to C must follow the exact same path B1, B2, B3, ... that
the direct path from A to C followed, except that there may have been some circular side
trips inserted somewhere.

The direct message from A to C must get to bridge B1 before the indirect message does.
The reason is that it goes on the bus first so in fact gets to B1 before the indirect message
even gets on the bus to go anywhere.
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A

CIA - DSW Command Fields (CMC and IOC)

Introduction
The DSW is relatively simple and only reacts to commands from the CIA. This approach
helped keep the complexity in one chip. There are two independent command fields that
control DSW.

• IOC<6:0> - this bus mostly controls data movement on the IOD bus.

• CMC<8:0> - this bus mostly controls the data moving between EV5 and DSW and
Memory and DSW.

IOC<6:0> - IOD control bus.  The CIA uses IOC to control the data buffers in the DSW
and the direction of data flow between CIA and DSW.  The encoding of the IOC<6:0> bits
are as follows:

IOC[6] is used by the Data Switch to control the tri-state drivers on the IOD bus.  When
IOC[6] = 1, the CIA is driving the IOD bus (or the bus may be tri-state). When IOC[6] = 0,
the DSW is driving the IOD bus.  

When idle, the CIA drives the command Read IOW buffer n, onto the IOC bus.  

CMC<8:0> - The CMC is used to control data movement between EV5 DSW and Memory. 

Each of the CMC Commands is described below:

• Clear.  CMC[8:5] = 0000.  The Clear command is used to start, stop, or clear buffers
when no data movement is required.  The variable specifies the action to be taken.

IOC[6:4] IOC<3> IOC<2> IOC<1> IOC<0> EXPLANATION

000 Buffer n X X X Clear valid bits in PCI buffer n

001 X X X X NOP

010 Buffer n Addr m2 Addr m1 Addr m0 Write PCI buffer n, addr m

011 Mask3 Mask2 Mask1 Mask0 Write IOR (QW mask)

100 Buffer n Addr m2 Addr m1 Addr m0 Read DMA buffer n, addr m

101 Buffer n1 Buffer n0 Addr m1 Addr m0 Read IOW buffer n, addr m

110 X X X X Reserved

111 Mask3 Mask2 Mask1 Mask0 Start IOW (buffer mask)  
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— CMC[4:3] specify optional actions as follows:

— CMC[2:0] specify optional actions as follows:

• Fill from Memory .  CMC[8:5] = 0010.  The Fill from Memory command instructs the
DSW to latch data on the memory bus and drive it onto the CPU data bus.  

— CMC[3] is used to indicate which half of the 256-bit memory data bus onto the 128
bit CPU data bus.  It reflects the wrap order (address A4) of the Read Miss com-
mand from the CPU. 

— CMC[2] is used to indicate whether the memory data should be loaded in DSW on
the rising of the SYS CLK or delayed by 1/2 SYS CLK cycle.  If CMC[2] = 0, the
memory data is loaded on the rising edge of SYS CLK.  Otherwise, DSW delays
loading the data for 1/2 SYS CLK cycle.

— CMC[1:0] specify optional actions as follows:

CMC[4:3] Action

00 None

01 Start the victim buffer

10 Start flush buffer 0 and Clear PCI buffer 0

11 Start flush buffer 1 and Clear PCI buffer 1

Var<2:0> Action

000 None

001 Stop Victim

010 Stop Flush Buffer 0

011 Stop Flush Buffer 1

100 Stop IOW 0

101 Stop IOW 1

110 Stop IOW 2

111 Stop IOW 3

CMC[3] Action

0 drive MEM_DAT[127:0] followed by MEM_DAT[256:128] next cycle

1 drive MEM_DAT[256:128] followed by MEM_DAT[127:0] next cycle

CMC[1:0] Action

00 None

01 Stop Victim buffer

10 Stop Flush buffer 0 

11 Stop Flush buffer 1
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• Fill from IOR .  CMC[8:5] = 0011.  The Fill from IOR command instructs the DSW to
drive the CPU data bus with data from the I/O Read buffer.  

— CMC[3] is used to indicate whether to send quadwords 0,1 or 2,3 first.  It reflects
the wrap order (address A4) of the Read Miss command from the CPU. 

— CMC[2] is not used.

— CMC[1:0] specify optional actions as follows:

• DMA Read 0 .  CMC[8:5] = 0100.  The DMA Read 0 command is used to move mem-
ory data into memory buffer 0.  

— CMC[4:3] are used to specify which buffer location(s) to begin loading the memory
data into.

— CMC[2] is  used to indicate whether the memory data should be loaded in DSW on
the rising of the SYS CLK or delayed by 1/2 SYS CLK cycle.  If CMC[2] = 0, the
memory data is loaded on the rising edge of SYS CLK.  Otherwise, DSW delays
loading the data for 1/2 SYS CLK cycle.

— CMC[1:0] specify optional actions as follows:

• DMA Read 1 .  CMC[8:5] = 0101.  The DMA Read 1 command is used to  move mem-
ory data into memory buffer 1.  The variable field (CMC[4:0]) behave the same as the
DMA Read 0 command above.

• DMA Read 0 and Stop IOW .  CMC[8:5] = 0110.  This command is similar to the DMA
Read 0 command.  The difference being that CMC[1:0] specify which IOW buffer to
stop.

CMC[3] Action

0 drive quadwords 0,1 first, then quadwords 2,3  next cycle

1 drive quadwords 2,3 first, then quadwords 0,1  next cycle

CMC[1:0] Action

00 None

01 Stop Victim buffer

10 Stop Flush buffer 0 

11 Stop Flush buffer 1

CMC[1:0] Action

00 None

01 Stop Victim buffer

10 Stop Flush buffer 0 

11 Stop Flush buffer 1
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— CMC[1:0] specify which IOW buffer to stop:

• DMA Read 1 and Stop IOW .   CMC[8:5] = 0111.  This command is similar to the
DMA Read 0 and Stop IOW command.  The difference being that data is loaded into
memory buffer 1. 

• Write Victim .  CMC[8:5] = 1000.  This command is used to move the Victim buffer
contents to memory.  

— CMC[4:3] are used to specify which buffer location to begin loading the memory
from.  It reflects the wrap order (address[5:4]) of the Read Miss with Victim com-
mand from the CPU.  

— CMC[2:0] specify optional actions as follows:

• DMA Write 0 . CMC[8:5] = 1010.  DMA Write 0 instructs the DSW to drive the memory
data bus with data from buffer 0.  The DSW will pick the correct data from either the
Flush, PCI, or Memory buffer based on the valid bits set in those buffers.

— CMC[4:3]  specify the data to be written as follows:

— CMC[2:0] have the same encodings as the Write Victim command above.

• DMA Write 1 . CMC[8:5] = 1011.  DMA Write 1 instructs the DSW to drive the memory
data bus with data from buffer 1.  The DSW will pick the correct data from either the
Flush, PCI, or Memory buffer based on the valid bits set in those buffers.

— CMC[4:0] have the same encodings as the DMA Write  0 command.

CMC[1:0] Action

00 Stop IOW buffer 0

01 Stop IOW buffer 1

10 Stop IOW buffer 2

11 Stop IOW buffer 3

Var<2:0> Action

000 None

001 Stop Victim

010 Stop Flush Buffer 0

011 Stop Flush Buffer 1

100 Stop IOW 0

101 Stop IOW 1

110 Stop IOW 2

111 Stop IOW 3

CMC[4:3] Action

00 Write quadwords 0,1,2,3 to memory

01 reserved for 128-bit memory systems

10 Write quadwords 4,5,6,7 to memory

11 reserved for 128-bit memory systems


