
EK-KDJ1A-UG-001

KDJ11-A

CPU Module

User's Guide

| Prepared by Educational Services
of

Digital Equipment Corporation

Preliminary Edition, January 1984

1st Edition, May 1984

© Digital Equipment Corporation 1984.

All Rights Reserved.

Printed in U.S.A.

The material in this manual is for informational purposes and is subject to change without notice. Digital

Equipment Corporation assumes no responsibility for any errors which may appear in this manual.

The manuscript for this book was created using a DIGITAL Word Processing System and, via a translation

program, was automatically typeset on DIGITAL’s DECset Integrated Publishing System. Book production

was done by Educational Services Development and Publishing in Marlboro and Bedford, MA.

The following are trademarks of Digital Equipment Corporation.

dlijgfi[t[a]1] MASSBUS RSTS
DEC MicroPower/PASCAL RSX

DECmate MINC-11 RT-11

DEChnet OMNIBUS TOPS-10

DECUS 0S/8 TOPS-20

DECsystem-10 PDP UNIBUS

DECSYSTEM-20 PDT VAX

DECwriter P/OS VMS

DIBOL Professional VT

EduSystem QBus Work Processor

IAS Rainbow

CHAPTER 1

w

N

—

N
—

~
I
O
N

D

G
0

R

—

o

—

W

b

—

e
t
t
t

i
t

e
t

e
k

e
k

e
t

e
t

e
t

i

p
d

e
t

e
t

R
d

b
t

e
t

b

e

e
k

b
k

b
t

e
k

e
t

e
k

e
k

b

e
k

e
k

e
k

e
t

e
k

e
k

e
k

e
k

W

b

=

V
R
V
 E
V
E
V
E
V
E
V
 R
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V
E
V

V
R
V

 E
VE
V
R
V

S
E
R
E
I
E
I
E
N
E
 R

 Y
 S

SN

 S

-

N

R
e

e
R

I
B

I
I

B
B

B
-

N
=

Y

N
T

R

CONTENTS

Page

ARCHITECTURE

DESCRIPTION L.e e, 1-1

GENERAL PURPOSE REGISTERS ..o oo 1-2

REZISTETS ..ot [-2

StACK POINLET ..ot 1-3

Program COUNTET ..ot 1-3

SYSTEM CONTROL REGISTERS ..o, 1-3

Processor Status Word (Address: 17 777 T76) ..coueoeeeeoeeee oo, 1-3

CPU Error Register (Address: 17 777 T66) c..ueeoeeeeoeee oo, 1-5

Program Interrupt Request Register (Address: 17 777 772)..cccvcivceeieeian 1-6

Line Time Clock Register (Address: 17 777 546)ccovoomioeeoieeeeeeeeeea 1-7

Maintenance Register (Address: 17 777 750) ...ccoomiomoieieeeeeeeeeeeeeeeeeee 1-7

INTERRUPTS e e, 1-8

MEMORY MANAGEMENT ... e, 1-10

MeEMOTY MappPing.......c.ooooiiiiiiii oo 1-10

16-Bit MapPINg ...coooviiiiiiiii e 1-11

T8-BIt MaAPPING ..oiivieiiiiiiie et 1-11

22-BIt MAPPING ..ot 1-12

COmMPAtIDIILY ..ot e 1-12

Virtual Addressingccooooveiiiiiiiiio e 1-13

Interrupt Conditions Under Memory Management Control..................o........ -13

Construction of a Physical Address...........ccooooevoeovooiioeeeeeeeoe 1-14

Memory Management RegiStersooooviiiiiiiii i I-16

Page Address RegISters......co.ooviiiiiiioiiiii e 1-18

Page Descriptor RegISteroooviiiiiiiieeee oo [-18
Fault Recovery RegISterSoooiiiiiiiii oo, 1-18

Memory Management Register O (Address: 17 777 572)cocvvvvviveeni... 1-20
Memory Management Register | (Address: 17 777 574).c.cooovviveeei.. 1-21

Memory Management Register 2 (Address: 17 777 576).cccccveveeveni.... [-21

Memory Management Register 3 (Address: 17 772 516)....ccccoeeveniii... 1-21

Instruction Back-Up/Restart Recovery..........cooovoviomiiiiiiioo. 1-22

Clearing Status Registers Following Abortooovvovvoiiioo. 1-22

Multiple Faults. ..o e 1-22

Typical Usage EXamples........ooooooiiiiii oo 1-22

Typical Memory Pagecocooovioiiii e, 1-23

Nonconsecutive Memory Pages...........o..oooovoveeiiioeeoeeeee, 1-25

Stack Memory Pages......c.ocooiiiioiiiiioi e 1-26
TIANSPATENCY ..ottt e 1-27

iii

DO
 B
B

B9

—

—

—

L
t

—
W

b

—

P
t

e
t

.

e
t

e

pm
am

d
e
t

e
t

e

e
t

e

e
t

b

e
t

e
t

e

—

—

e
k

e
k

e
k

W
P
D

e

—

—

CHAPTER 2

19

1
9

19

1
9

D9

1

1

D
o

N
N

—

CONTENTS (Cont)

Page

CACHE MEMORY Lottte e 1-27

PaTItY Lo e e et e e e 1-29

Parity EITOTS ..ottt 1-29

Multiple Cache Parity Errors........ccccococoiiiiiiiiiiiiiieeeeeee 1-30

Memory System REgISLETSvviveiiiiiiiiiiiie e 1-30

Cache Control Register (Address: 17 777 746)....cccccccevvvvinvieevininnnenn.. 1-30

Hit/Miss Register (Address: 17 777 752).ccciiiiiiiieiiiieieeiireeene 1-32

Memory System Error Register (Address: 17 777 744)....ccccovvveicnnnnnn. 1-32

FLOATING-POINT ...t 1-33

Floating-Point Data Formats..............ooiiiiiiiiiiiiic e 1-33

Nonvavishing Floating-Point Numberscccccociiiiniiicicnis 1-33

Floating-Point Zero.........ooooiiiiiiiiiiii e, 1-33

The Undefined Variablecccoooiiiiiii e 1-33

Floating-Point Data..............ooiiiiii e 1-34

Floating-Point REGISTETSuuviriiiiiiiiiieeeiiae e 1-35

Floating-Point Accumulatorccccieviiiiieniii e 1-35

Floating-Point Status Register (FPS)cccooooiiiiiiiie, 1-35

Floating-Point Exception Registers (FEC, FEA).........ccccconiiiniee, 1-38

Floating-Point Instruction Addressing..........oooeiiiiiiiiiiiiiiiiiieeeeee 1-38

AALCCUTACY 1ttt eeeeee e e et e e et e e e e e e ettt e e e e e e e e e e e e e e et e e et etereaeeranbennennnans 1-39

SOFTWARE SYSTEMS ... oo 1-40

INSTALLATION

INTRODUCGCTION ..ottt et 2-1

CONFIGURATION L.tttet e 2-1

POWET-UDP OPLIONS ...oiveiiiieeee ettt 2-2

Power-Up Option ..o 2-2

Power-Up OPHON L. ..o 2-2

Power-Up OPHON 2. 2-2

Power-Up Opion 3. . 2-2

HALT OPUON...coiiiiiiiiit et 2-2

BOOU AQAIESS oot 2-3

Wakeup Disableooooiiiiiiii e 2-3

BEVNT Recognition.......cccooiveeviviieeiieeeeiieeeeiee, e 2-3

Factory Configurationcccvvviiiiiiiiiiiieien e 2-3

DIAGNOSTIC LEDS .. .o 2-4

MAINTENANCE REGISTER (ADDRESS 17 777 750) ...cccciiiiiiiiieieecee 2-6

POWER-UP SEQUENCE ..ottt 2-7

POWER-DOWN SEQUENCE ... 2-8

EXIT MICRO-ODT SEQUENCE ...ttt e 2-8

MODULE CONTACT FINGER IDENTIFICATIONcccooiiiiiii e 2-9

HARDWARE OPTIONS ...e 2-10

LSI-TT OPHONS ..otttet ettt e anas 2-10

Restricted LSI-TT OPtONS ..oooviiie it 2-12

B TICLOSUTIES ..ottte ettt e e e e et e e e 2-14

SYSTEM DIFFERENCES.o 2-15

KDJ11-A SYSTEM Lo et 2-16

MODULE INSTALLATION PROCEDURE.........ccccccciii 2-16

SPE C I A T ION S ettte 2-18

iv

CHAPTER 3

W

2

W

W

=

W

-

b

—

N
I

EN
E

e
 N

EV
 I

R
Ve
I

L
o

L
o

L
0

L
o

o

L
o

W
)

L
o

L
o

L
o

L

W

L
o

L
o

L
o

L
o

L
o

W

D
o
—

-

NE
-

NE
=
-

-

AV
 R
V
RV

 R
V
RV

 R
V

V
R
V
 R
V
R
V

NN
 N

CHAPTER 4

4.1

4.2

4.2.1

4.2.2

4.2.2.1

4.22.2

4.2.2.3

4.22.4

4.2.2.5

4.2.2.6

4.2.2.7

4.2.2.8

4.2.3

4.2.3.1

4.2.3.2

4.2.3.3

4234

4.2.3.5

4.2.3.6

4.2.3.7

4.2.3.8

4239

CONTENTS (Cont)

Page

CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

INTRODUCTION ...t 3-1

TERMINAL INTERFACE ... e 3-1

CONSOLE ODT ENTRY CONDITIONS ..o, 3-1

ODT OPERATION OF THE CONSOLE

SERIAL-LINE INTERFACEccooiiiiiiieeeeee e 3-2

Console ODT Input SEqUENCE........c..coviiiiieiiiiieieeeeeee e, 3-3

Console ODT Output SEQUENCE........ccveiiiiiiiiiiiiieceece e, 3-3

CONSOLE ODT COMMAND SET ..o, 3-3

J(ASCIL 057) = Slash .ooviiieeeeeeeeeee e, 3-4

<CR> (ASCII 15) — Carriage Returncc..oooviiiioiiiieeeeeeeeeeee, 3-5

<LF> (ASCII 12) = Line Feedcooooiiiiii e 3-5

$ (ASCII 044) or R (ASCII 122) - Internal Register Designator.................... 3-6

S (ASCII 123) - Processor Status Word Designatorcoooevvevveivvnenn.. 3-6

G (ASCIT TO7) = GO e 3-6

P (ASCII 120) = ProCeedcoooeiiiiiiiieeeeeeeeeeeeee el 3-7

Control-Shift-S (ASCII 23) — Binary Dumpcc..ccoooeviiiiiieee 3-7

Reserved Commandooooiiiiiiii e 3-7

KDJ11-A ADDRESS SPECIFICATION ... 3-8

Processor I/O AdAresses.......covvviiiiiviiiiiiie e 3-8

Stack Pointer SeleCtioncooviiiiiiiiiiiiiii e 3-8

Entering of Octal Digits.......cccoooiiiiiiiiiii e, 3-8

ODT TIMEOULeitiieee ittt ettt 3-9

INVALID CHARACTERS ... 3-9

FUNCTIONAL THEORY

INTRODUCTION L. 4-1

DCJ11 MICROPROCESSOR.....ovoiiiiie e, 4-3

Initialization (MINIT L) ..ol 4-3

OULPUL SIZNAIS...eiiiiiiiii e 4-3

Address Input/Output (AIO<03:00> H).....oooooooiiiiiiiiiiieee 4-3

Bank Select, (BS1 H, BSO H) ..coooiiiiii e 4-4

Address Latch Enable (ALE L)oooooioiiiii e 4-5

Stretch Control (SCTL L) ..o 4-5

Strobe (STRB L) .ooviiiiie e 4-5

Buffer Control (BUFCTL L) ... 4-5

Predecode Strobe (PRDC L).......ooooiiiiiiiiii e 4-5

CIOCK (CLK H) ooveiiiiiieceeeeeeeeee e 4-5

INPUL SIGNAIS....oiiiie e 4-5

MISS L e 4-5

Data Valid (DV L)oo 4-5

Continue (CONT L) oo, 4-5

DMA Request (DMR L) ..o, 4-5

IRQ <07:04> H .oe, 4-5

HALT H oo, 4-5

EVINT H oo, 4-6

PWR FAIL L .o 4-6

PARITY Lo e e, 4-6

CONTENTS (Cont)

Page

4.2.3.10 ABORT L oo e, 4-6

42.3.11 FPA FPE L oo, [PR PR 4-6

4.2.4 MDAL <21:00> oo, 4-6
4.2.5 DCITT TIMINZ ittt e, 4-6
4.2.5.1 INOP e e 4-6
4.2.5.2 Bus Readooooiii e, 4-7

4.2.5.3 BUS WIIE ..., 4-8

4254 General-Purpose Read ... 4-9

4255 General-Purpose WIIteooviioii oo 4-10

42.5.6 LA CK e, 4-10

4.3 STATE SEQUENCERooiiiiiiii e, 4-10

4.3.1 DCTT Le, 4-12

4.3.2 LSI-T1 BUS SIZNALS ..o, 4-12

4.3.3 LSI-T1 BUS RECEIVEIS ..o, 4-12

4.3.4 LSI-TT Bus TransmitterSecviioiiriee oo 4-12

4.3.5 Maintenance ReZIStEr......c.ooviiiiiiiii e, 4-12

4.3.6 T U DMA REEISTET ..o, e, 4-12

4.3.7 Cache Data Path.......ocoooiiiiiiiii e, 4-12

4.3.8 CaChe MEMOTY ..ot e 4-13

4.3.9 Floating-Point AcCeleratoroooiviuiiiiiiiicie e 4-13

4.3.10 TBUS Traffic oo 4-13

4.3.10.1 Address BUSING......oooiiiiiiiiiii e 4-13

4.3.10.2 Read Data ..o 4-13

4.3.10.3 WL Data ...oooiiiiiii e 4-13

4.4 CACHE DATA PATH ..o e, 4-17

4.4.1 DCITT Input SIgNalsoooviiiiiiiiii e 4-17

4.4.2 State Sequencer INPULS........ocoiiiiiiiiiiiee e 4-17

4.4.3 System Memory Parity ... 4-19

4.4.4 Cache Memory Parity.....cooccooiiiiiiiiiie e 4-19

4.4.5 TIMEOUL ..t 4-19

4.4.6 Cache Control RegISTEroooviiiiieiie e 4-19

4.4.7 Memory System Error Register.....cooooviviiiiiiiiieiiii e 4-19

4.4.8 LTC REGISEI.cciiiiiiiiiiieee e 4-20

449 FIush Counter......coooiiiii e 4-20

4.4.10 AdAress REGISLET ...ooviiiiiiiiiiiiecceeee e 4-20

4.4.11 CDP OULIPULS .o e 4-20

4.5 CACHE MEMORY ..o, 4-21

4.5.1 Cache Data. ..o 4-22

4.5.2 Data Parity LOZIC......coiiiiiiiiiiiiie et 4-22

4.5.3 Parity Data ..oe 4-23

4.5.4 TAG RAM e, 4-23

4.5.5 Hit /MISS LLOZIC ..o e e, 4-23

4.6 BUS RECEIVERS ... e, 4-24

4.7 BUS TRANSMITTERS 4-25

4.8 OUTPUT CONTROL ...ttt 4-26

4.9 INPUT CONTROL ..o e 4-26

4.10 DMA MONITOR REGISTERoooviiii e 4-27

4.11 INITIALIZATION/MAINTENANCE REGISTERc.oooooiiiiiiiiiiieiee 4-27

4.12 STATUS LEDS ...tttev e 4-29

Vi

CONTENTS (Cont)

Page

CHAPTER 5§ EXTENDED LSI-11 BUS

f

5.1 INTRODUCGCTION ...ttt 5-1

5.2 BUS SIGNAL NOMENCLATURE ... 5-3

5.3 DATA TRANSFER BUS CYCLES ... 5-3

5.3.1 Bus Cycle Protocol.. ... 5-4

5.3.1.1 Device AdAresSIng......uuiuiiiieiiiiiiieeee e 5-4

53.1.2 DAT e 5-5

53.1.3 DATO(B) ..o e 5-7

5.3.1.4 DATIO(B) ..ot 5-10

5.4 DIRECT MEMORY ACCESS (DMA).....oooiiiiiiiiie e 5-12

5.5 INTERRUPTS ..o 5-15

5.5.1 DEVICE PrIOTILY ..o 5-15

5.5.2 Interrupt ProtoCol.........evviiiiiiiiiee e 5-16

5.5.3 4-Level Interrupt Configurationsoooeviieiiiiiii e, 5-19

5.6 CONTROL FUNCTIONS ..o, 5-20

5.6.1 Memory Refresh ... 5-20

5.6.2 Halt oo e e 5-20

5.6.3 INItIAlZATION ..uviiiee e 5-20

5.6.4 POWET StATUS....ooiiiiiiiiiiei e 5-20

5.6.4.1 BDCOK H oo 5-20

5.6.4.2 BPOK H.oooooee e 5-20

5.6.4.3 POWET-UD oo 5-21

5.6.4.4 POWEr-DOWN ..ot 5-22

5.6.5 BEVENT L.e e, 5-22

5.7 BUS ELECTRICAL CHARACTERISTICS........cooiii e, 5-22

5.7.1 Signal-Level Specification ...l 5-22

5.7.2 AC Bus Load Definitionc.ccociiiiiii e, 5-22

5.7.3 DC Bus Load Definitionccccoooiiiiiiiiiiciiee e 5-23

5.7.4 120 Ohm LSI-TT BUS..oviiiiiiiiiie e 5-23

5.7.5 BUS DIIVETS ..o 5-23

5.7.6 BUS RECEIVETS ..iiiiiiiiiieiic e 5-24

5.7.7 KDJI1-A Bus Terminationcooooiiiiiiiiiiiiiiiicee e 5-24

5.7.8 Bus Interconnection WITINEccvvviiiiiiiiiii e 5-25

5.7.8.1 Backplane WITINg.......ccoooooiiiiiii e 5-25

5.7.8.2 Intrabackplane Bus WIring..........coccoioeiiiiii e 5-25

5.7.8.3 Power and Ground..........c.cooiiiiiiiiii 5-25

5.7.8.4 Maintenance and Spare Pinsccooooeeivieiiiiiiie 5-26

5.8 SYSTEM CONFIGURATIONSo 5-26

5.8.1 Rules for Configuring Single-Backplane Systems...........ocooovvviiiiiiainiiniiel 5-27

5.8.2 Rules for Configuring Multiple-Backplane Systems...........c.....ooooeiiiioiiiienn. 5-27

5.8.3 Power Supply Loading......... ete ettt e e e e et be e e e e et tae e e e et ane s 5-29

CHAPTER 6 ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION L.t 6-1

6.2 ADDRESSING MODES ... e 6-1
6.2.1 Single-Operand AddreSSINgGvooueeeoe oo 6-3
6.2.2 Double-Operand Addressing............ocoooviiieeioonoieeeeeeeoe e 6-3

vii

6.2.3

6.2.3.1

6.2.3.2

6.2.3.3

6.2.34

6.2.4

6.2.5

6.2.5.1

6.2.5.2

6.2.5.3

6.2.5.4

>
N
 O
OO

O

W

L
o

L
o

L
o

L
o

o
o

—

6.3.4.1

6.3.4.2

6.3.4.3

6.3.4.4

6.3.5

6.3.5.1

6.3.5.2

6.3.6

6.3.6.1

6.3.6.2

6.3.6.3

6.3.6.4

6.3.6.5

6.3.6.6

6.3.6.7

6.3.6.8

6.3.7

6.3.8

CHAPTER 7

CONTENTS (Cont)

Page

DIreCt AdAreSSINE......viiiiiiiiieiiiii e 6-4

RegISter Mode......cocuviiiiiiiccc e 6-6

Autoincrement Mode [OPR (Rn)+] ...oooooiiiiiiiee 6-7

Autodecrement Mode [OPR-(RN)]coooiiiiiiiiiiiee 6-9

Index Mode [OPR X(RN)]...oovvviiiiiiiiiiii e 6-11

Deferred (Indirect) AdAressingccoccvveiiiiiiiiiiieiiiiieii e, 6-13

Use Of The PC as a General-Purpose Registercoovvvivvevieiiicniiiieeeennn. 6-17

Immediate Mode [OPR #1,DD] ...ooooviiiiiiee e 6-18

Absolute Addressing Mode [OPR @#A]........ooovviiveiiiciiiiecieeceee 6-18

Relative Addressing Mode [OPR A or OPR X(PO)].....cocooovvvvvvennnnnl. 6-20

Relative-Deferred Addressing Mode

[OPR @A or OPR @X(PO)].....cooiiiiiiieeceeeeeeee e 6-20

Use Of The Stack Pointer as a

General-Purpose RegISTer.........oooiiviiiiiiiiiiiiii e 6-21

INSTRUCTION SET ..otttettt e eaivae e 6-21

InStruction FOrmats.......cc.ooveeoiiiiiiie e 6-22

Byte INStruCtiONS.......oooiiiiiiiiee e 6-26

List OFf INSTIUCHIONS ..viiiviiiiiiiiiccit ettt e etae e 6-27

Single-Operand INStrUCIONSooiiiiiiiiiiiiiiiieeeee e 6-30

GENETAL..o.iiiiiitic eta e 6-31

Shifts And ROtAtESooovviiiiiiiiiic e 6-36

MUltIPle-PreCiSIONooooiiiiiiiieee e 6-42

PS Word Operatorsoooooiiiiiiiiieee e 6-45

Double-Operand InStructions...........cccoovviiiiioiiiiiii e 6-46

GENETAL... et 6-47

LOZICAL..ciiiiiiiei e 6-53

Program Control INStruUCtIONS.........covviiiiiiiiiiiiiiiiieee ee e e e ee e 6-56

Branches ... 6-56

Signed Conditional Branchesccooooiiiii e, 6-61

Unsigned Conditional Branches.................ccccooviiiiiiee 6-63

Jump and Subroutine InStructions..............ccoooiiiiiiiiiieiie 6-65

B 21 oS SOOI 6-69

Miscellaneous Program Control...........occiiiiiiiiiiii e 6-73

Reserved Instruction Traps.....ccccooeoieeiiiiiiie e 6-76

TTACE TTaAD oo e e e e 6-76

Miscellaneous INStruCtiONS......ccoviiiiiviiiiiiiiiee e 6-77

Condition €Code OPerators........coceiieiieieiiiiiiiiiieee e 6-80

FLOATING-POINT ARITHMETIC

INTRODUCTION ..ottte e ar e e e ee e 7-1

FLOATING-POINT DATA FORMATS................ e 7-1

Nonvanishing Floating-Point Numbers...............cccccooiiiiiiiiiiiiiiiieeeeeee 7-1

F1oating-PoINt ZEeTOooooiiiiiiiiiii e 7-1

Undefined Variables..........coooiiiiiii e 7-2

Floating-Point Dataccooiiiiiiiiec e 7-2

FLOATING-POINT STATUS REGISTER (FPS)...ccooiii, 7-3

FLOATING EXCEPTION CODE AND ADDRESS REGISTERS...................... 7-6

FLOATING-POINT INSTRUCTION ADDRESSING.....ccc.ccccoiviiiiiiiiieieie, 7-7

viii

7.6

1.7

CHAPTER 8

—
—
—
—
—

b
b
b

I
T
I
T

D
U

B

W
i

—

O

CHAPTER 9

CONTENTS (Cont)

Page

ACCURACQCY et 7-7

FLOATING-POINT INSTRUCTIONS ... 7-8

PROGRAMMING TECHNIQUES

INTRODUCTION ..ot et 8-1

POSITION-INDEPENDENT CODEcccooiiiiioiiieceeeee e, 8-1

Use of Addressing Modes in the Construction of

Position-Independent Code...........cccvvieeiiiiiiiiiiiiiiieiee e, 8-1

Comparison of Position-Dependent and

Position-Independent Code...........ocooooiiiiiiiiiiic e 8-3

STA K S ee 8-5

Pushing onto @ Stackcoooiiiiiiii e, 8-6

Popping from a Stackcc.cooooviiiiiii e 8-6

Deleting Items from a Stack.........ccooooiiiiiiiiiiiiii e 8-7

SEACK USES oo, 8-7

Stack Use EXaMPIES......ccoovviiiiiiiiiieice e 8-8

Subroutine LINKAZEoooovvieiiiiiiiii e 8-10

Return from a Subroutineooccooooiiiiiii 8-10

Subroutine Advantages..........ccoovvviiiiiiiiiii e 8-10

TLEITUPES 1ottt 8-11

Interrupt Service ROULINGS.........cooiviiiiiiiiiiiii e 8-11

INESTIME ettt 8-11

REENITANCY ..ot 8-12

Reentrant Code.......oooiiiiiiiiiiiiiiii e, 8-13

Writing Reentrant Codeoccooiiiiiiiiiiie e 8-14

COTOULINES ..ottt ettt et et 8-14

Coroutine Callsooiiiiiii i 8-15

Coroutines Versus SUDTOULINESoooooviiiiiviiiiiiiioiiie e 8-16

USING COTOULINESeiieniiiieeeeiie et 8-17

RECUISION ..o 8-19

ProCesSOr TTaPS coooeiii e 8-20

Trap INStrUCTIONS.eiiiiiiii e 8-21

Use of Macro CallS.......c.oooiiiiiiiii e 8-22

Conversion ROULINES.......c....ooiiiiiiieicec e, 8-22

PROGRAMMING THE PROCESSOR STATUS WORDcccccooviiii. 8-26

PROGRAMMING PERIPHERALS ... 8-27

PDP-11 PROGRAMMING EXAMPLES ... 8-27

LOOPING TECHNIQUESo 8-34

BOOT ROMS AND DIAGNOSTICS

INTRODUCTION ..., 9-1

MXVII-B2Z ROM SET ..o e -1

POWET-UD .o, 9-1

AUtomatic BOOUNGZoiiiiiiiiiiiic e, 9-2

Manual BOOUNG ...c..eeiiiiiiii e 9-2

Error and Help Messages..........ccooovoiiioiiiiiiiiio oo 9-3

DIAGNOSTICS L e 9-6

DIAGNOSTIC EXAMPLE. ..., 9-7

X

APPENDIX A

APPENDIX B

Figure No.

1
]

]
]

1
1

1
1

1
1

1
1

3
1

1
]

1
]

1
]

]
1

]
1

1
S

N
V
 I

R

S
R
R

R
SR

SR

 S
N
 S

N
SN
 S

N
S

S

U
L

U
L

U
L

S

N
Y

S
TR

S
R

P
O

O
O

A
R

N

—

O

O
W
T
A
N

N

D

W

—

D

CONTENTS (Cont)

Page

INSTRUCTION TIMING

GENERAL ..ot A-1

BASE INSTRUCTION SET TIMINGocoooiiiiiiiiii e, A-1

FLOATING-POINT INSTRUCTION SET TIMINGccoooiiiiiiiieeee., A-6

PROGRAMMING DIFFERENCES

FIGURES

Title Page

Programming Model..........ooooiiiiiiiii e 1-2

Processor Status RegISterooooiveiiiiiiiiieieie e s 1-3

CPU Error REZISTET.....oeeviiiiiiiiiieecteee e, 1-5

Program Interrupt Request Register (PIRQ).......ccccccooiiiiiiiiii, 1-6

Line Time Clock Register (BEVINT) ..ot 1-7

Maintenance REGISTETooiiiiiiiiiiii e 1-7

[B-BIt MaPDINEieiieeiiiiie e 1-11

22-Bit MaPPINg....ooiiiiiieiiie e e 1-12

Virtual Address Mapping into Physical Address..............ccccooviiiiiiiiiiini 1-13

Interpretation of a Virtual Address...........ccooooiiiiiii e 1-14

Displacement Field of a Virtual Address...........oocoooiiiiiiii oo, 1-14

Construction of a Physical Addressccccoviiieiiiiiiiiici e, 1-15

ACtIVE Page REeZISLETS...ccoiiiiiiiii e, 1-16

Page Address Register (PAR).....cccooviiiiiiii e, 1-18

Page Descriptor Register (PDR)cccooiiiiiiiiii e 1-18

Memory Management Register O (MMRO).............ciiiiii 1-20

Memory Management Register 1 (MMRI1) ..o, 1-21

Memory Management Register 3 (MMR3).......oooooiiiiiiiiiee 1-21

Typical Memory Pagec..ooooiiiiiiiiii e 1-23

Nonconsecutive Memory Pages...........cooiviiiiiiiiiiiiiie et 1-25

Typical Stack Memory Page..........ooooiiiiiiiii e 1-26

Cache Physical AdAressooooieiiiioiiiec e, 1-27

Cache Data FOrmatoooeiiiiiiii e 1-27

Cache Control Register (CCR)coooviiiiiiiiieeeee e, 1-30

Hit/Miss Register (HMR)......cccoooiiiiiiiii e, 1-32

Memory System Error Register (MSER) ... 1-32

Single-Precision FOrmat.........occooiviiiiiiiiiiicc e 1-34

Double-Precision Format............................. ete et e et ta e e e e e et raeeeae s 1-34

2’s Complement FOrmat........cccooviiiiiiiiiiiice e 1-35

Floating-Point Status RegISter.........ooiiiiiiiiiiiii e 1-36

KDJIT-A Jumper LOCAtIONS........coveiuiiiiieiiiiiieciiee e 2-4

Maintenance REGISTETuviiiiiiiiiiiii e 2-6

KDJ11-A Power-Up SEQUENCEccviiiiiiiiiiiieieeeeceeee e 2-7

KDJI1-A Power-Down SEqUENCE..........ccooiiiiiiiiiiiiiiit e 2-8

MicCro-ODT EXit SEQUENCEc..uiiiiiiiiiiiei ettt 2-8

KDJ11-A Module COontacts.........coeeeiiiiiiiieiiiiieiceie et 2-9

Functional Block Diagram..........ccccooiiiiiiiiiiiiii e 4-2

A

R
A

U

V
A
N

Q
R

N

o

—

D

N
N

A
N
t

o

o

t
n

n

L

L

L
h

n

FIGURES (Cont)

Title Page

DCITT-A MICTOPTOCESSOT ...ttt ee ettt ee ettt ee e et ee e e e s et ae e e e baraeee e e eeees 4-3

INOP TransaCtion.......coovviiiieiiiee ettt 4-6

Stretched NOP Transactionoooooiiiiiiiiiiiiiieee el 4-7

Bus Read TransaCtion..........oooouiiiiiiiiiiiice e, 4-7

Stretched Bus Read Transactionccocooooiiiiiiii e 4-8

Bus Write TransaCtion........ccciiiiiiiiiiiiii et 4-9

General-Purpose Read Transactioncccccooiiiiiiiiiiiiiiec e 4-9

General-Purpose Write TransaCtionccocceeiiiiiiiiiiiiiii e 4-10

Interrupt Acknowledge TransacCtion.............coccoiiiiiiiiiii i 4-11

ST SCYUEIICET .ot e 4-11

Address Traffic Pattern. ... 4-14

Read Data BUSING.....ccoooiiiiiiiiiiiiciccece e 4-15

Write Data BUSINGoooiiiiiiiiiiii e, 4-16

Cache Control LOgIC.......c..oviiiii e 4-18

CaAChE MEMOTY ..o e 4-21

Cache Memory Physical Address........cccoooiiiiiiiiiiiieee 4-22

Cache Data ... 4-22

Cache Data Parity LOZIC.......cooviiiiiiiiiiiiei e, 4-23

Cache HIT/MISS LOZIC.....oiiiiiiiiiiiie ittt 4-24

KDJTT-A BUS RECEIVETS ...uiiieiiiiieiiiii e e 4-24

KDJTT-A Bus TranSmItters........oooiiiiiiiiiiiiiiiie ee e 4-25

DCJIT-A Output Control......c...ooeiiiiiiiiii e 4-26

DCJTT-A Input Control......coooiuiiiiiiiiiiiiiee e 4-26

DMA Monitor REgISIETcovvviiiiiii e 4-27

Initialization/Maintenance Register LOZIC...........ccooooiiiiii i 4-28

Status LEDS LOZIC ..viiiiiiiiiieiiie e e 4-29

DATI BUS CYClE .ttt 5-5

DATI Bus Cycle TIMING ...covviiiieieeeice e, 5-6

DATO or DATO(B) BUS CYCle..uuiiiiiiiiii e el 5-8

DATO or DATO(B) Bus Cycle TImMing.......ccoooooiiiiiiiiiiiii e, 5-9

DATIO or DATIO(B) Bus Cycle....ooovviiiiiiiii e 5-10

DATIO or DATIO(B) Bus Cycle TIMINGcccoeoiiiiiieiioe e 5-11

DMA Request/Grant SEQUENCEocoeueiiiiiiiieieeceie e 5-13

DMA Request/Grant Bus Cycle TImINg...........coooeviiiiiiiiiiiiiioi oot 5-14

Interrupt Request/Acknowledge Sequence..........cccooovviiiiiiiii e 5-16

Interrupt Protocol TIMINGcocviiiiiiiiiiiiiie e 5-17

Position-Independent Configurationccccooooiiiiiiiiii e 5-19

Position-Dependent Configuration..............ccooooviiiiiiiiiiiii e 5-19

Power-Up/Power-Down Timingcc.ooooiiiiiiiiiiiiiiece e 5-21

Bus Line Termination...........oocoiiiiiiiiiiiiiic e 5-24

Single-Backplane Configurationcocoiiiiiiiiii e 5-27

Multiple-Backplane Configuration...............coocuveiiieiiiiiiiiiie e, 5-28

Single-Operand AddresSing.........cooviiiiiiiiiiiiiii e 6-3

Double-Operand Addressing........ccooviveiiiiiieeiiie i, 6-3

MOAE O REZISTET ..ottte e, 0-4

Mode 2 AULOINCTEMENTc..iiiiiieiceieeee e, 6-5

Mode 4 AUtOAECTEMENL......coiiiiiiiiiieiiitee ettt 6-5

MOAE 6 INAEX ..ooeiiieiiiiiiciieee e, 6-5

INC R3 INCTEMENT Lottt 6-6

ADD R2ZRA Add .o e 6-7

Xi

Figure No.

]
]

1
1

1
1

1
1

1
]

[}

S
h
b
b
—
b
i
a
b
o
=
-
b
b
b
r
b
b
b
i
d
b
b
b
o
d
b
i
b
b
d
d
b
b
L
L
b
L
L
L
L
b
L
L

L

L

L

L

L
S

S
O

R
L
U
N

O
O
0

A
R

N

E
L
R
L

L

O

A
T

E
R
I
D

=
D

O
C
®

A
N

A

e

—

O

C
o
O
x
x

o
I
~
~
~
y

O
V
O
n
o
n
o
n
o
n
o
v
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
o
n
a
o
s
o
c
o
o
n
o
n
o
n
o
o
o
o
o
n
o
n

o
o

o
o

o

FIGURES (Cont)

Title Page

COMB R4 Complement Byte..........oooviiiiiiioiiii e, 6-7

CLR (RS ClRAT oo, 6-8

CLRB (R5)4 Clear DY ..oouiiuiiiieeiiieie i, 6-8

ADD (R2)+H,R4 Add ..o, 6-9

INC —(RO) INCIEMENT ..ot e 6-9

INCB —(RO) Increment BYyteoocooiiiiiiiiiiiiieeee e 6-10

ADD —(R3),RO Add ..ooeiiiiiii e 6-10

CLR 200(R4) Clear....oveviiiiiieeeee e 6-11

COMB 200(R1) Complement Byte.........oooiiiiiieeie oo 6-12

ADD 30(R2),20(R5) Add ..coovvioiiiiiii e 6-12

Mode 1 Register-Deferred..........ocoiiiiiiiiii oo, 6-13

Mode 3 Autoincrement-Deferredcoccoooiiiiiiiiiii e, 6-13

Mode 5 Autodecrement-Deferred ..o 6-14

Mode 7 Index-Deferredooouiiiiiiiiiii e, 6-14

CLR @RS CleAT et e 6-15

INC @(R2)4 INCreMENT ..oiiiiiiiiiie e, 6-15

COM @—(RO) COMPIEMENT ... e, 6-16

ADD @1000(R2),RT Add....c.ooiiiiiiiic e, 6-16

ADD #10,RO A ..o e 6-18

CLR @ #1100 ClEAT ooe e 6-19

ADD @ #2000 Add ...ooviiiiiiieee e 6-19

INC A TNCIEMENT ittt 6-20

CLR @A ClRATiiiiiiiiiii e 6-21

Single-Operand GIrOUPoiiieiiieie ee 6-22

Double-Operand Group 1 ...t 6-22

Double-Operand Group 2ooociiiiiiiiiic e, 6-22

Program Control Group Branch................coooooi e, 6-23

Program Control Group JSR ... 6-23

Program Control Group RTS. ... e, 6-23

Program Control Group Traps.........coccviiiiiiiiie oo 6-23

Program Control Group Subtractoooeiiiiiiii e 6-24

MaarK e 6-24

Call to SUPErvisOr MOAC.......ooeiiiieei e e, 6-24

Set Priority Level ..o 6-24

OPEIAte GIOUP ..cuviiiiieiie e e, 6-25

CONAItION GIOUP ...viiiiiiiiie et et 6-25

Move To And From Previous Instruction/Data Space Group..........cccccoceoevveenn... 6-25

Byte INSEIUCHIONS ...ooiiiiiiiiiiiiii et 6-26

Single-Precision FOrmat..........oocoooiiiii e, . 7-2

Double-Precision FOrmat ..o 7-2

2’s Complement FOrmat........c.cooooiiiiiiiiiii e, 7-3

Floating-Point Status RegiSter.........ooooiiiiiiiii e, 7-3

Floating-Point Addressing Modes.............ccooooiiiiiiiiie e, 7-9

Word and Byte Stacks.........ooiiiiiiiioii e 8-5

Push and Pop Operationsc..ocuiiviiiuiioieiiceie e, 8-6

Byte Stack Used as a Character Buffer...............c...oooo e, 8-9

JSR Stack Condition EXample.........ocooviiiiiiiiiiiii e, 8-10

Nested Interrupt Service Routines and Subroutines...............ccccoooiieioiiiieeeeen. 8-12

Reentrant ROULINESoociiiiii e, 8-13

Xii

N

S
B

B
o

R
V
l

N
V

R

B
O

O

O

O

N
R

R
T

)

N

O
O

~
I
O
N

D
N

k
W
i—

O

FIGURES (Cont)

Title Page

Sharing Control of @ ROULINEcooiviiiii e 8-13

Corouting EXampleooooiiiiiiiiiii e 8-15

Coroutings Versus SUBTOULINESc...iiiiuiiiiiiii e, 8-16

Corouting Path......ccooooiiii e 8-17

COoroUtiNg INEEIACHIONcoioviieiit i, 8-18

Recursive Routine FIOW ..., 8-19

TABLES

Title Page

General-Purpose REZISIEIS . ..cooiviiiiiiiii i 1-2

Stack Pointer (PSW 15, 14 0r 13, 12) e 1-3

Processor Status Bit DeSCriptionoocivvviiiiiioiiiic e 1-4

CPU Error Register Bit DesCriptioncccovviiiiiiiiiiiiccecece e 1-5

PIRQ Bit DESCIIPLIONSeiiiiiiiiiiiieie ettt ettte, 1-6

Line Time Clock (LTC) Register Bit Descriptions...........ccccocvieiimmemiiiieeieeeecienaan 1-7

Maintenance Register Bit DeSCription........c..ueveeviiiiioiiiiiiiiiii el 1-8

ASYNChronous INTEITUPLES.coiiiiiiiiiiie e 1-9

SyNchronous INTErTUPLS.......cooviiiiiiiiiie e, 1-10

KDJT1-A Compatibility ...oooooiiiieiiieees e 1-12

Memory Management Register Addresses............c.ccoooeiiiiiiiiiiie 1-17

Page Descriptor Bit Descriptionccooovuiiiiiiiiiiiiiieceeeee e, 1-19

MMRO Bit DESCIIPLIONS ...viviiieiiiiiiiieie ettt 1-20

MMR3 Bit DeSCription.......ccccviiiiiiiiiiiieiiiee e 1-22

Cache ReSponse MatriXoooiiiiiiiiiiiiiii e 1-28

Cache Parity BEITOrS. ..ot e, 1-29

Cache Control Register DesCription.........cooviiiieiiiiiii e [-31

Memory System Error RegiSter ..., [-32

Floating-Point Status Bit Description............ccccciiiiiiiiiioiiic e 1-36

KDJI1-A Jumper Identification..............ooooiiiieiiii e 2-1

POWET-UpP OPUIONSeiiiiiiiiii e 2-2

Factory Configurationocoviiiiiiii e 2-3

LED FUNCHONS.oiiiiiii et 2-5

Probable System Failure...........ccccooiiiiiiiiii e 2-5

Maintenance Register Bit DesCription......ccc.uvuiviiiiiiiiiiii e 2-6

KDJ11-A Module Signals..........ccoueiiiiiiiiiiieieie e, 2-10

LSI-11 Compatible OPtions..........cc.ooiiiiiiiiiiiiie e 2-11

Restricted or Noncompatible LSI-11 Optionsccccoeviiiiiiiiooee e, 2-12

UPErade ChOICES....cooiviiiiiiiieiiic e et 2-17

Console ODT Commandsociiuiiiiiiiiiiiiiece et 3-3

Console ODT States and Valid Input Characters............ooooveiieoeiiieeeeeeeeeeeee 3-9

ATO COAING it 4-4

Bank Select Address Codes..........oooviiiiiiiiiiie e 4-4

General-Purpose Read Codesc..oooiiiiiiiiii e, 4-9

General-Purpose Write COdesoooooiiiiiiiiiiie e, 4-10

SELECT COUBS.....eeuiiieii ittt 4-13

Xiii

N
o
R
N
o
I
N
o
R
E
N

R
V
,
 I
R
V
,
 I
R
V
,
 I
R
,
 R

S
N

S

A

£N

W

—

—

W
i

—

D
0

3
O

1
1

1
1

1
1

1
1

]
1

T

=

—

O
O
0

N
N

B

W

—

>

>

>

>

>

>

B

1 o
—

O

e

TABLES (Cont)

Title Page

Output Select COdes.......vvveiiiiiiieie e, 4-17

TAG Parity ooe e st e e a ettt a e e ab e et aea e 4-17

Parity Error ACLIONcoooiiiiieee e 4-19

Abort and Parity Responsecoooiiiiiiiiiiii e 4-20

Summary of Signal Line FUunctions...........cccccooiviiiiiiiiiiiie e, 5-1

Data Transfer Bus CyCles.....ocooiiiiiiiiiiiie e 5-3

Data Transfer Bus Signals.........coooooiiiiiiiii e 5-4

Position-Independent, Multilevel Device Requirements..........ccocccvvvvvieeiieiinnnnnninn.. 5-18

FPS Re@ister Bits ... 7-4

MXV11-B2 Boot Commandscociviiiiiiiiiieeeeiiniiiiiierettt eeesiieer e ee e sanranees 9-2

MXVI1-B2 Error MeESSAZES ...ccovvviiiiiiiiiiiiiieei ier e et e et e e e e e 9-3

KDJTT-A DIQZNOSTICS ..eceeieiieiieiiiiiiieititettt eeetaeeeeeeae e s e sictaesrtaarbraeaaesaaeaaeseaesanssanns 9-7

Source Address Time: All Double Operandooooiiiiiiiini e, A-1

Destination Address Time: Read-Only Single Operand..............ccooooiiiniiiie A-2

Destination Address Time: Read-Only Double Operand............ccoocviiiiiiiiiininnennn, A-2

Destination Address Time: Write-Only ... A-2

Destination Address Time: Read-Modify-Writeccoooeiiiiiiiiiiiieeeee A-3

Execution, FetCh TIme ..o A-3

Instruction Execution Times (In Microseconds)ccooovviiiiiiiiiieiievieeieeeeeee A-6

Floating Source Modes 1=7.......coooii e A-7

Floating Destination Modes 1=7..........coiviiiiiiiiiiiiiiiieee e A-7

Floating Read-Modify-Write Modes 1=7coooviiiiiiiiiiiiiiiieieesier e A-8

Integer Source Modes 1=7 ... e A-8

Integer Destination Modes 1=7c.ooiiiiiiiiii et A-9

KDJ11-A Programming Differences..........ccoovvviiiiiiiiiiiiiiieeeieeciieeeee B-2

Xiv

PREFACE

This user’s guide is intended to support the users of the KDJ11-A CPU module by providing them with
architecture, programming, diagnostic and configuration information. The architecture is described in
Chapter 1 and is supported by the functional theory description in Chapter 4. The diagnostics and booting
procedures are described in Chapter 9, and Chapter 3 provides the techniques used for on-line debugging

(ODT). The configuration requirements for both the module and system applications are described in
Chapter 2. Chapter 5 provides the information on the LSI-11 bus used in most system applications.

The KDJ11-A module uses the standard instruction set described in Chapter 6 and the floating-point
instruction set described in Chapter 7. Also described in Chapter 6 are the addressing modes which are

supported by the programming techniques described in Chapter 8. The detailed timing information is
provided in Appendix A and the differences between other LSI-11 and PDP-11 microprocessors are listed
in Appendix B.

XV

CHAPTER 1

ARCHITECTURE

1.1 DESCRIPTION

The KDJ11-A is a dual-height processor module for LSI-11 type bus systems. It is designed for use in

high-speed, real-time applications and for multiuser, multitasking environments.

The KDJ11-A module executes the complete PDP-11 integer and FP-11 floating-point instruction sets.

Full 22-bit memory management is provided for both instruction references and data references in three

protection modes — kernel, supervisor, and user. The KDJ11-A module is fully downward compatible with

older PDP-11 models which have 18-bit memory management or no memory management.

The three protection modes provide the ability to implement layered software protection. Memory

management separately manages each mode, allowing each mode to access different sections of main

memory. Furthermore, each section can have different access protection rights. Each mode uses a separate

system stack pointer that offers an additional degree of isolation. The protection modes are organized so

that a higher protection mode can always enter a lower protection mode, while a lower protection mode

can never accidentally enter a higher protection mode. Kernel mode has full privileges and can execute all

instructions. Supervisor mode and user mode, the two lower privileged modes, cannot execute certain

instructions.

The module interfaces to the extended LSI-11 bus and can address up to 4 megabytes of main memory.

Block mode DMA transfers, which are allowed on the extended bus, are supported by the KDJ11-A. The

22-bit extended LSI-11 bus is fully downward compatible with the standard 18-bit LSI-11 bus.

The KDJ11-A module supports console emulation (micro octal debugging tool or ODT). This allows users

to interrogate and write main memory and CPU registers as if a console switch panel and display lights

were available.

The module contains an 8 Kbyte write-through direct map cache (set size one, block size one). The cache

is transparent to all programs and acts as a high-speed buffer between the processor and main memory.

The data stored in the cache represents the most active portion of the main memory being used. The

processor accesses main memory only when data is not available in the cache.

The user-visible registers are shown in Figure 1-1 and are classified as general purpose, system control,

memory system, floating point and memory management registers.

Self-diagnostic LEDs are provided on the KDJ11-A module and indicate the status of the module and

system when the module is powered-up. The LEDs aid in troubleshooting module failures.

The KDJ11-A module can run RT-11 V5.1, RSX-11M, RSX-11M PLUS, RSTS/E, UNIX, and micro-

power PASCAL operating systems.

1-1

GENERAL PURPOSE SYSTEM CONTROL MEMORY SYSTEM

RO RO’ KSP | PSW | [LTC | {CACHE CTRL|

R1 R1’ SSP

R2 R2' UsP | _pra | | wmanT | [MEMSYsERR]

R3 R3’

R4 R4’ | rc | | cPUERROR] LHIT/MISS |

R5 R5’

FLOATING POINT MEMORY MANAGEMENT

L res | [rec] [Fea] [mvro | [wmr1] [mmR2 | [Mmr3 |

ACCUMULATORS (64 BIT)

PAGE REGISTERS (32 BIT)

KERNEL (00) SUPERVISOR (01) USER (11)

PAR PDR PAR PDR PAR PDR

R

8 | SPACE AND 8 D SPACE

MR-11041

Figure 1-1 Programming Model

1.2 GENERAL PURPOSE REGISTERS

There are 16 general purpose registers (GPR), as listed in Table 1-1, but only 8 are visible to the user at

any given time. All these registers can be used as accumulators, deferred addresses, index references,

autoincrement, autodecrement, and stack pointers.

1.2.1 Registers

There are two groups of six registers designated RO-R5 and R0’-R5’. The group currently being used is

selected by bit 11 in the processor status word (PSW). When bit 11 is set (1), the RO’-R5’ group is

selected, and when bit 11 is cleared (0), the RO-RS5 group is selected.

Table 1-1 General-Purpose Registers

Register

Number Designation

0 RO RO’

1 R1 R’

2 R2 R2

3 R3 R3’

4 R4 R4’

5 RS RS’

6 KSP SSp

7 PC USP

1-2

1.2.2 Stack Pointer

Register six (R6) is designated as the system stack pointer. There are three stack pointers available, one for

each corresponding protection mode. However, only one is visible to the user at a given time. The

processor status bits 14 and 15 select the active stack pointer used for all instructions except MFPI,

MFPD, MTPI, and MTPD. When these instructions select R6 as the destination register, bits 12 and 13 of

the processor status word select the active stack pointer. In both cases, the 2-bit selection code is encoded

as described in Table 1-2 to select the active register.

Table 1-2 Stack Pointer (PSW 15, 14 or 13, 12)

Code Selected R6

00 Kernel stack pointer (KSP)

01 Supervisor stack pointer (SSP)

11 User stack pointer (USP)

10 Illegal — User stack pointer selected

1.2.3 Program Counter

The program counter (PC) contains the 16-bit address of the next instruction stream word to be accessed.

It is designated as R7 and controls the sequencing of instructions. The PC is directly addressable by single-

and double-operand instructions and is a general purpose register, although it is normally not used as an

accumulator.

1.3 SYSTEM CONTROL REGISTERS

The processor status word (PSW), program interrupt request (PIRQ), CPU error register, line clock

register, and the maintenance register are designated as the system control registers. These registers are

used by the module to control system-oriented functions.

1.3.1 Processor Status Word (Address: 17 777 776)

The processor status word (PSW) provides the current and previous operational modes, the general

purpose register group being used, the current priority level, the condition code status, and the trace trap

bit used for program debugging. The PSW is initialized at power-up and is cleared with a console start.

The PSW register is defined in Figure 1-2 and is described in Table 1-3.

8 07 06 05 04 03 02 01 00

1 |Zo | o // PRIORITY T | Nz | Vv]ec
7] 1

\ T I\ Y J 4 T) T \ r

CURRENT PREVIOUS PRIORITY TRACE BIT CONDITION

MODE MODE LEVEL CODES

GENERAL PURPOSE SUSPENDED

REGISTER GROUP INFORMATION

&
2

- H —
_

W — 3
%

- — (
]

Q © o

MBR-11042

Figure 1-2 Processor Status Register

1-3

Table 1-3 Processor Status Bit Description

Bit Name Status Description

15, 14 Current mode R/W Indicates the current operating mode and is coded as follows.

Bits

15 14 Mode

0 0 Kernel

0 1 Supervisor

1 0 Illegal

1 | User

13, 12 Previous mode R/W Indicates the previous operating mode and is coded the same as

bits 15, 14.

11 Register set R/W Selects the group of general purpose registers being used. When
the bit is set, the RO’-R3" group is selected and when cleared, the

RO-RS group is selected.

10, 09 N/A R Not used.

08 Suspended R/W Reserved.

information

07:05 Priority R/W Indicates the current priority level of the processor and is coded
as follows.

Bits

7 6 5 Priority Level

| l 1 7

1 0 0 6

1 0 1 5

1 0 0 4

0 1 1 3

0 1 0 2

0 0 1 1

0 0 0 0

04 Trap* R/W The trap bit is inactive when it is cleared. When set, the proces-
sor traps to location 14 at the end of the current instruction. It is

useful for debugging programs and setting breakpoints.

03 Negative R/W Condition code N is set when the previous operation result was
negative.

02 Zero R/W Condition code Z is set when the previous operation result is
Zero.

01 Overflow R/W Condition code V is set when the previous operation resulted in
an arithmetic overflow.

00 Carry R/W Condition code C is set when the previous operation caused a
carry out.

* The T-bit cannot be set by explicitly writing to the PSW. It can only be changed by the RTI/RTT instructions.

1-4

1.3.2 CPU Error Register (Address: 17 777 766)

The CPU error register identifies the source of any trap or abort condition that caused a trap through

location 4. Six separate error conditions are identified in Figure 1-3 and are described in Table 1-4. The

register is cleared by any write reference, power-up, or by console start. It is not changed by the RESET

instruction.

ILLEGAL HALT

ADDRESS ERROR

NON-EXISTENT MEMORY

1/0 BUS TIMEOUT

YELLOW STACK VIOLATION

RED STACK VIOLATION

MR-9326

Figure 1-3 CPU Error Register

Table 1-4 CPU Error Register Bit Description

Bit Name Status Function

15:08 Not used - -

07 lllegal HALT Read only Set when execution of a HALT instruction is attempted in

user or supervisor mode.

06 Address error Read only Set when word access to an odd byte address or an instruc-

tion fetch from an internal register is attempted.

05 Noncxistent Read only Set when a reference to main memory times out

memory

04 /O bus timeout Read only Set when a reference to the 1/0 page times out.

03 Yellow stack Read only Set on a yellow zone stack overflow trap. (Kernel mode

violation stack reference less than 400 octal).

02 Red stack Read only Set on a red stack trap — a kernel stack push abort during

violation an interrupt, abort, or trap sequence.

01, 00 Not used - -

1-5

1.3.3 Program Interrupt Request Register (Address: 17 777 772)

The program interrupt request register (PIRQ) implements a software interrupt facility. A request is

initiated by setting one of the bits <15:09>, which corresponds to a program interrupt request for priority

levels 7-1. Bits <07:05> and <03:01> are set by hardware to the encoded value of the highest pending

request set. When the interrupt is acknowledged, the processor vectors to address 240 for a service routine.

It is the responsibility of the service routine to clear the interrupt request. The PIRQ register is defined in

Figure 1-4 and is described in Table 1-5. The PIRQ register is cleared at power-up, by a console start, or

by the RESET instruction.

PIR7|(PIRG6|PIR5|PIR4|[PIR3|[PIR2]|PIR1 0 0 0

W J 4 J L J

REQUEST LEVELS J
PRIORITY ENCODED VALUE OF BITS 9-15

MR-9013

Figure 1-4 Program Interrupt Request Register (PIRQ)

Table 1-5 PIRQ Bit Descriptions

Bit Name Status Function

15 Level 7 Read/write Requests an interrupt priority of level 7

14 Level 6 Read/write Requests an interrupt priority of level 6

13 Level 5 Read/write Requests an interrupt priority of level 5

12 Level 4 Read/write Requests an interrupt priority of level 4

11 Level 3 Read/write Requests an interrupt priority of level 3

10 Level 2 Read/write Requests an interrupt priority of level 2

09 Level 1 Read/write Requests an interrupt priority of level 1

07:05 Encoded value Read only Bits <07:05> represent the encoded value of highest priori-
ty level set in bits <15:09>

03:01 Encoded value Read only Bits <03:01> represent the encoded value of the highest
priority level set in bits <15:09>. Same as bits <07:05>.

1-6

1.3.4 Line Time Clock Register (Address: 17 777 546)

The line time clock register (LTC) controls the recognition of the LSI-11 bus BEVNTL signal. When bit

06 of the register is set (1), the BEVNTL signal can be recognized and will generate the highest possible

level 6 interrupt request through address location 100. The BEVINTL input is disabled when bit 06 of the

register is cleared (0). The BEVNTL input can be permanently disabled by installing the W9 jumper. The

register is defined in Figure 1-5 and is described by Table 1-6. The register is cleared at power-up, by a

console start, or by the RESET instruction.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

0] 0 0 0 0 0 0 0] 0 0 0 0 0 0 0

BEVNTL ENABLE

MR-11043

Figure 1-5 Line Time Clock Register (BEVNT)

Table 1-6 Line Time Clock (LTC) Register Bit Descriptions

Bit Name Status Function

15:07 Not used - -

06 BEVNT ENABLE Read/write When this bit is set (1), the LSI-11 BEVNT L signal can

be recognized (unless WO is installed).

05:00 Not used - -

1.3.5 Maintenance Register (Address: 17 777 750)

The maintenance register provides a way for software to determine the power-up options selected by the

user. It also indicates if a floating-point accelerator (FPA) is available. The register is defined in Figure 1-6

and is described by Table 1-7.

15 14 13 12 1" 10 09 08 07 06 05 04 03 02 01 00

0 0 4] 0 0 0 1

I

L J T T — T
7 FPA HALT POWER

BOOT AVAILABLE OPTION OK

ADDRESS POWER UP (POK)

OPTION

Figure 1-6 Maintenance Register

MR-11044

Table 1-7 Maintenance Register Bit Description

Bit Name Status Function

15:12 Boot address Read only These bits read the user’s selected boot address. The

address is selected by jumpers, W1 (bit 15), W2 (bit 14),

W4 (bit 13)and W6 (bit 12). A “1” indicates the jumper is

inserted and a ““0” indicates the jumper is removed.

11:09 Not used - -

08 FPA available Read only The bit is set (1) if a floating-point accelerator (FPA) is

installed on the module.

07:04 Module ID - The “0001” code identifies this module as a KDJ11-A

MICroprocessor.

03 HALT option Read only The option determines how the HALT instruction is used

in the kernel mode. If W5 is removed, the bit is set (1) and

the processor will set up an emergency stack at location 4

and then trap through vector address 4. If W5 is installed,

the bit is cleared (0) and the processor will enter console

ODT mode.

02, 01 Power-up Read only These bits read the power-up mode for the processor. Bit 2

is set (1) by removing jumper W3 and bit 01 is set (1) by

removing jumper W7. The following power-up options are

available.

Bit 02 Bit 01 Option

0 0 PC at 24, PS at 26

0 | Micro-ODT, PS = 0

] 0 PC = 173000, PS = 340

| 1 User Bootstrap, PS = 340

00 BPOK H Read only The bit is sct (1) when the LSI-11 bus signal BPOK H is

asserted, indicating that the ac power is okay.

1.4 INTERRUPTS

The KDJ11-A module uses a variety of trap, hardware, and software interrupts, described in Tables 1-8

and 1-9. Four interrupt request lines allow external hardware to interrupt the processor on four interrupt

levels using an externally supplied vector. Seven levels of software interrupt requests are supported

through use of the PIRQ register. Finally, a variety of internally vectored traps are provided to flag error

conditions.

1-8

Table 1-8 Asynchronous Interrupts

Internal

or Vector Priority

Interrupt External Address Level*

Red stack trap Internal 4 NM

(CPU error register, bit 02)

Address error Internal 4 NM

(CPU ecrror register, bit 06)

Memory management violation Internal 250 NM

(MMRO, bits <13:15>)

Timeout/nonexistent memory Internal 4 NM

(CPU ecrror register, bits <04:05>)

Parity error (PARITY, ABORT) External 114 NM

Trace (T-bit) Trap (PSW, bit 04) Internal 14 NM

Yellow stack trap Internal 4 NM

(CPU error register, bit 03)

Power fail (PWRF) External 24 NM

FP exception (FPE) External 244 NM

PIR 7 (PIRQ, bit 15) Internal 240 7

IRQ 7 External User-defined 7

PIR 6 (PIRQ, bit 14) Internal 240 7

BEVNT External 100 6

IRQ 6 External Usecr-defined 6

PIR 5 (PIRQ, bit 13) Internal 240 5

IRQ 5 External User-defined 5

PIR 4 (PIRQ, bit 12) Internal 240 4

IRQ 4 External User-defined 4

PIR 3 (PIRQ, bit 11) Internal 240 3

PIR 2 (PIRQ, bit 10) Internal 240 2

PIR 1 (PIRQ, bit 09) Internal 240 1

Halt linc (HALT)+ External None - places system

in console mode.

* NM = Non-maskable

+ The halt line usually has the lowest priority, however, it has highest priority during vector reads. This allows the user to break

out of potential infinite loops. An infinite loop could occur if a vector has not been properly mapped during memory

management operations.

1-9

Table 1-9 Synchronous Interrupts

Vector

Interrupt Address

FP instruction ¢xception 244

TRAP (trap instruction) 34

EMT (emulator trap instruction) 30

IOT (I/0 trap instruction) 20

BPT (breakpoint trap instruction) 14

CSM (call to supervisor mode instruction) 10

HALT instruction* 4

WAIT (wait-for-interrupt instruction)

* Exccution of the HALT instruction performs different operations, depending on jumper W5 and the protection mode. Jumper

W5 determines the operation of a HALT instruction in the kernel mode. If it is installed, the processor enters the ODT mode,

and, if it is removed, the processor sets up an emergency stack at location 4 and traps to location 4. The HALT instruction in

the supervisor or user mode is an illegal instruction and the processor traps to location 4. This condition also sets bit 07 of the

CPU error register.

1.5 MEMORY MANAGEMENT

KDJ11-A memory management provides the hardware for complete memory management and protec-

tion. It is designed to be a memory management facility for accessing all of physical memory and for

multiuser, multiprogramming systems where memory protection and relocation facilities are necessary.

In multiprogramming environments, several user programs are resident in memory at any given time. The

tasks of the supervisory program include the following.

1. Control the execution of the various user programs

2. Manage the allocation of memory and peripheral device resources

3. Safeguard the integrity of the system as a whole by control of each user program

In a multiprogramming system, memory management provides the means for assigning memory pages to a

user program and preventing that user from making any unauthorized access to pages outside his assigned

area. Thus, a user can effectively be prevented from accidental or willful destruction of any other user

program or the system executive program.

The following are the basic characteristics of KDJ11-A memory management.

16 user mode memory pages

16 supervisor mode memory pages

16 kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 64 to 8192 bytes

Each page provided with full protection and relocation

Transparent operation

3 modes of memory access control

Memory access to 4 megabytes.

1.5.1 Memory Mapping

The processor can perform 16-bit, 18-bit or 22-bit address mapping. The 1/0 page, which is the uppermost

4 K words of memory, always uses the physical addresss locations 17 760 000 to 17 777 777.

1-10

1.5.1.1 16-Bit Mapping - There is a direct mapping relocation from virtual to physical addresses. The

lowest 28 K virtual addresses are the same corresponding physical addresses. The 1/O page physical

addresses are located in the upper 4 K block as shown in Figure 1-7.

1.5.1.2 18-Bit Mapping - Each of the three modes; kernel, supervisor, and user, are allocated 32 K

words that are mapped into 128 K words of physical address space. The lowest 124 K words of physical

memory or the 1/0O page can be referenced as shown in Figure 1-8.

17777777

4 K

17760000

[

177777

160000 N

00157777

VIRTUAL

(16 BITS) 28K

000000 00000000

INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)

MR-11045

Figure 1-7 16-Bit Mapping

17777777

4K

17760000

| 00757777

177777

124 K

VIRTUAL [5 MEM
(16 BITS) MGMT

000000 00000000

INCOMING PHYSICAL ADDRESS

ADDRESS SPACE (22 BITS)

MR-11046

Figure 1-8 18-Bit Mapping

1.5.1.3 22-Bit Mapping - This mode uses the full 22-bit addresses to access all of the physical memory.

The upper 4 K block is still the [/O page as shown in Figure 1-9.

1.5.2 Compatibility

The operation of 16-, 18-, and 22-bit mapping can be used to provide compatibility among other PDP-11

computers. This means that software written and developed for any PDP-11 computer can be run on the

KDJI11-A without modification. Refer to Table 1-10.

17777777

4 K

17760000

17757777

2044K

177777

VIRTUAL » MEM »

(16 BITS) MGMT

000000 00000000

INCOMING PHYSICAL ADDRESS

ADDRESS SPACE (22 BITS)

MR-11047

Figure 1-9 22-Bit Mapping

Table 1-10 KDJ11-A Compatibility

Memory

Mapping Management System

16-bit Off PDP-11/05, 11/10, 11/15, 11/20, 11/03

18-bit On PDP-11/35, 11/40, 11/45, 11/50, 11/23

22-bit On PDP-11/70, 11/44, 11/24, 11/23 plus

1.5.3 Virtual Addressing

When memory management is operating, the normal 16-bit address is no longer interpreted as a direct

physical address but as a virtual address containing information to be used in constructing a new 22-bit

physical address. The information contained in the virtual address is combined with relocation information
contained in the page address register to yield a 22-bit physical address as shown in Figure 1-10. Using
memory management, memory can be dynamically allocated in pages, each composed of from 1 to 128

integral blocks of 64 bytes.

The starting physical address for each page is an integral multiple of 64 bytes, and each page has a

maximum size of 8192 bytes. Pages may be located anywhere within the physical address space. The

determination of which set of 16 pages registers is used to form a physical address is made by the current
mode of operation (i.e., kernel, supervisor, or user mode), and if the reference is for instructions or data.

PHYSICAL

ADDRESS SPACE

PAGE 5

VIRTUAL

INSTRUCTION/DATA

ADDRESS SPACE PAGE 6

32K PAR 7
PAR 6

PAR S PAGE 7

PAR 4

PAR 3 \
PAR 2 PAGE 4

PAR 1

0 PAR O 0

VIRTUAL ADDRESS PAGE ADDRESS REGISTERS PHYSICAL ADDRESS

(16 BITS) (22 BITS)

PAR = PAGE ADDRESS REGISTER

MR-11048

Figure 1-10 Virtual Address Mapping into Physical Address

1.5.4 Interrupt Conditions Under Memory Management Control

Memory management relocates all addresses. When it is enabled, all traps, aborts, and interrupt vectors
are mapped using the kernel mode data space mapping registers. Therefore, when a vectored transfer
occurs, the new program counter (PC) and processor status word (PS) are obtained from two consecutive
words physically located at the trap vector and are mapped using kernel mode data space registers.

The stack used for the “push” of the current PC and PSW is specified by bits 14 and 15 of the new PSW.
The PSW mode bits also determine the new mapping register set. This allows the kernel mode program to
have complete control over servicing all traps, aborts or interrupts. The kernel program may assign the
service of some of these conditions to a supervisor or user mode program by simply setting the mode bits of
the new PSW in the vector to return control to the appropriate mode.

1.5.5 Construction of a Physical Address

All addresses with memory relocation enabled either reference information in instruction (I) space or data

(D) space. I space is used for all instruction fetches, index words, absolute addresses, and immediate

operands; D space is used for all other references. I space and D space each have cight page address
registers (PARs) in each mode of CPU operation (kernel, supervisor, and user). Memory management

register 3, can disable D space and map all references (instructions and data) through I space, or can

enable D space and map all references through both I and D space.

The basic information needed for the construction of a physical address comes from the virtual address,

which is illustrated in Figure 1-11, and the appropriate PAR set.

15 14 13 12 00

I I 1 I | I I 1 I I | I | I

APF DF

| 1 | |) L 1 1 } i 1 L] 1

\ J o J

Y Y

ACTIVE PAGE DISPLACEMENT FIELD

FIELD

MR-11049

Figure 1-11 Interpretation of a Virtual Address

The virtual address consists of:

. The active page field. This 3-bit field determines which of 8 page address registers from the

PAR set (PARO-PAR7) will be used to form the physical address.

2. The displacement field. This 13-bit field contains an address relative to the beginning of a page.

The longest page length is 8 Kbytes (213 = 8 Kbytes). The DF is further subdivided into two

fields as shown in Figure 1-12.

The displacement field consists of:

1. The block number. This 7-bit field is interpreted as the block number within the current page.

2. The displacement in block. This 6-bit field contains the displacement within the block referred

to by the block number.

12 00

i I | |} I | I 1 1 I I

BN DiB

) L 1] i] 1 1 L] |

| ~ — J

BLOCK NUMBER DISPLACEMENT IN BLOCK

MR-11050

Figure 1-12 Displacement Field of a Virtual Address

1-14

The remainder of the information needed to construct the physical address comes from the contents of the

PAR referenced by the page address field. This 16-bit register specifies the starting address of the memory
page. The PAF is actually a block number in the physical memory. For instance, PAF = 3 indicates a
starting address of 96 (3 X 32) words in physical memory.

The construction of the physical address is illustrated in Figure 1-13.

The logical sequence involved in constructing a physical address (PA) is as follows.

1. Select a set of page address registers. This depends on the space being referenced and the
protection mode being used.

The active page field of the virtual address selects one of eight page address registers
(PARO-PAR?7) from the appropriate set.

The page address field of the selected page address register contains the starting address of the

currently active page as a block number in physical memory.

The block number from the virtual address is added to the page address field to yield the

number of the block in physical memory. This is bits <21:06> of the physical address being

constructed.

The displacement in block from the displacement field of the virtual address is joined to the

physical block number to yield a true 22-bit physical address.

15 00

T T T T T T T T T T T T T T T

VIRTUAL ADDRESS

| | |] I I] | | | |]] [|

15 13

I i

SELECT PAR

| |

12 00
I I 1§ i I 1} | 1) | 1 I

OFFSET INTO

PAGE (VA)]] |) | | \ I I |) |

15 14 13 05 04 03 02 01 00

T ! 1 | T T T I T

+ PAF | | L 5 | i] I | |

21 00

I i I | I I |} i I ! I I I | I

PHYSICAL ADDRESS f
] |)] 1 1 1 Il 1 1 1]] 1

MR-11051

Figure 1-13 Construction of a Physical Address

1.5.6 Memory Management Registers

Memory management implements 3 sets of 32 16-bit registers as shown in Figure 1-14. One set of registers

is used in kernel mode, another in supervisor mode, and the other in user mode. The protection mode in

use determines which set is to be used. Each set is subdivided into two groups of 16 registers. One group is

used for references to instruction (I) space, and one to data (D) space. The I space group is used for all

instruction fetches, index words, absolute addresses, and immediate operands. The D space group is used

for all other references, providing it has not been disabled by memory management register 3. Each group

is further subdivided into two parts of eight registers One part is the page address register (PAR) whose

function was described prev10usly The other part is the page descriptor register (PDR). PARs and PDRs

ire always selectedin pairs by the top three bits of the virtual address. A PAR/PDR pair contains all the
information needed to describe and locate a currently active memory page.

The memory management registers are located in the uppermost 8 Kbytes of physical address space,

which is designated as the I/O page. The addresses allocated to the memory management registers are

listed in Table 1-11.

PROCESS STATUS WORD }

15 14

KERNEL {00) SUPERVISOR (01) USER (11)

PAR PDR PAR PDR : PAR PDR

| SPACE

v v v v v v

PAR PDR PAR PDR PAR PDR

D SPACE

v v 1 v v v

MR-11052

Figure 1-14 Active Page Registers

1-16

Table 1-11 Memory Management Register Addresses

Register Address Register Address

Memory management register 0(MMRO) 17 777 572 Supervisor | space address register (SISARO) 17 772 240

Mecmory management register [(MMR1) 17 777 574 . .

Memory management register 2(MMR2) 17 777 576

Memory management register 3(MMR3) 17 772 516 . .

Supervisor | space address register (SISAR7) 17 772 256

User | space descriptor register (UISDROQ) 17 777 600

i Supervisor D space address register (SDSAROQ) 17 772 260

User | space descriptor register (UISDR7) 17 777 616 . .

Supervisor D space address register (SDSDR7) 17 772 276

User D space descriptor register (UDSDRO) 17 777 620

i Kernel 1 space descriptor register (KISDRO) 17 772 300

User D space descriptor register (UDSDR7) 17 777 636 : }

Kernel | space descriptor register (KIDSR7) 17 772 316

User I space address register (UISARO) 17 777 640

: . Kernel D space descriptor register (KDSDRO) 17 772 320

User | space address register (UISAR7) 17 777 656 i)

Kernel D space descriptor register (KDSDR7) 17 772 336

User D space address register (UDSARO) 17 777 660

. Kernel | space address register (KISARO) 17 772 340

User D space address register (UDSAR7) 17777 676 || .
Kernel | space address register (KISAR7) 17 772 356

Supervisor | space descriptor register (SISDRO) 17 772 200

. . Kernel D space address register (KDSARO) 17 772 360

Supervisor | space descriptor register (SISDR7) 17772 216 . :

Kernel D space address register (KDSAR?7) 17 772 376

Supervisor D space descriptor register (SDSDRO) 17 772 220

Supcrvisor D space descriptor register (SDSDR7) 17 772 236

1-17

1.5.6.1 Page Address Registers — The page address register (PAR) contains the page address field

(PAF), a 16-bit field that specifies the starting address of the page as a block number in physical memory.

The page address register (see Figure 1-15) contains the page address field that may be alternatively

thought of as a relocation register containing a relocation constant, or as a base register containing a base

address. These registers are not changed by either console starts or the reset instruction. They are

undefined at power-up.

15 00

MR-11063

Figure 1-15 Page Address Register (PAR)

1.5.6.2 Page Descriptor Register — The page descriptor register contains information relative to page

expansion, page length, and access control. The register is shown in Figure 1-16 and is described in Table

1-12.

15 14 08 07 06 05 04 03 02 o1 00

PAGE LENGTH FIELD (PLF) 0 W 0 0 ED ACF 0

) | | 1 i |]

BYPASS PAGE LENGTH PAGE EXPANSION

CACHE FIELD WRITTEN DIRECTION

ACCESS

CONTROL FIELD

MR-8920

Figure 1-16 Page Descriptor Register (PDR)

1.5.7 Fault Recovery Registers

Aborts generated by the memory management hardware are vectored through kernel virtual location 250.

Memory management.registers 0, 1, 2, and 3 are used to determine why the abort occurred and to allow

for program restarting.

NOTE

An abort to a location which is itself an invalid

address will cause another abort. Thus, the kernel

program must ensure that kernel virtual address 250

is mapped into a valid address; otherwise, a loop will

occur that will require console intervention.

1-18

Table 1-12 Page Descriptor Bit Description

Bit Name Status Function

15 Bypass cache Read/write This bit implements a conditional cache bypass mechanism. If the

PDR accessed during a relocation operation has this bit set, the

reference will go directly to main memory. Read or write hits will

result in invalidation of the accessed cache location.

14:08 Page length Read/write This field specifies the block number which defines the page

field boundary. The block number of the virtual address is compared

against the page length field to detect length errors. An error

occurs when expanding upwards if the block number is greater

than the page length field, and when expanding downwards if the

block number is less than the page length field.

07 Not used - -

06 Page written Read only The written into (W) bit indicates whether the page has been

written into since it was loaded in memory. When this bit is set, it

indicates a modificd page. The W-bit is automatically cleared

when the PAR or PDR of that page is written.

05, 04 Not used - -

03 Expansion Read/write This bit specifies in which direction the page expands. If ED = 0,
direction the page expands upward from block number O to include blocks

with higher addresses; if ED = 1, the page expands downward

from block number 127 to include blocks with lower addresses.

02, 01l Access control Read/write This field contains the access code for this particular page. The

field access code specifies the manner in which a page may be accessed

and whether or not a given access should result in an abort of the

current operation. Implemented codes are:

00 Nonresident — abort all accesses

01 Read only - abort on write

10 Not used — abort all accesses

11 Read/write access

00 Not used - -

1.5.7.1 Memory Management Register 0 (Address: 17 777 572) - Memory management register 0
(MMRO) provides MMU control and records MMU status. The register contains abort and status flags as
shown in Figure 1-17 and described in Table 1-13.

ABORT PAGE

ABORT READ-ONLY - J

ACCESS VIOLATION

LENGTH ERROR

ABORT

NON-RESIDENT

PAGE MODE PAGE NUMBER

PAGE ADDRESS

SPACE I/0 ENABLE RELOCATION

MR-8926

Figure 1-17 Memory Management Register 0 (MMRO)

Table 1-13 MMRO Bit Descriptions

Bit Name Status Function

15* Nonresident Read/write Bit 15 is set by attempting to access a page with an access control

abort ficld key equal to 0 or 2. It is also set by attempting to use memory

relocation with a processor mode (PS<15:14>) of 2.

14* Page length Read/write Bit 14 is set by attempting to access a location in a page with a

abort block number (virtual address bits <12:06>) that is outside the

area authorized by the page length field of the page descriptor

register for that page.

13* Read only Read/write Bit 13 is set by attempting to write in a read-only page. Read-only

abort pages have access keys of 1.

12:07 Not used - -

06. 05 Processor Read only Bits <06:05> indicate the processor mode (kernel, supervisor,

mode user, illegal) associated with the page causing the abort (kernel =

00, supervisor = 01, user = 11, illegal = 10). If the illegal mode is

specified, an abort is generated and bit 15 is set.

04 Page space Read only Bit 04 indicates the address space (I or D) associated with the page

causing the abort (0 = I space, 1 = D space).

03:01 Page number Read only Bits <03:01> contain the page number of the page causing the

abort.

00 Enable Read/write Bit 00 enables relocation. When it is set to 1, all addresses are

relocation relocated. When bit 00 is set to 0, memory management is inoper-

ative and addresses are not relocated.

* Bits <15:13> can be set by an explicit write; however such an action does not cause an abort. Whether set explicitly or by an

abort, setting any bit in bits <15:13> causes memory management to freeze the contents of MMRO <06:01>, MMRI1, and

MMR?2. The status registers remain frozen until MMRO <15:13> is cleared by an explicit write.

1-20

1.5.7.2 Memory Management Register 1 (Address: 17 777 574) - Memory management register 1

(MMR1) records any autoincrement or autodecrement of a general purpose register, including explicit

references through the PC. The increment or decrement amount by which the register was modified is

stored in 2’s complement notation. The lower byte is used for all source operand instructions and the

destination operand may be stored in either byte, depending on the mode and instruction type. The register

is cleared at the beginning of each instruction fetch. The register is defined in Figure 1-18.

15 11 10 08 07 03 02 00

L 1 i 1 n L L | 1 1 | |

— ~ A - A ~ A ~— J

AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER

(2'S COMPLEMENT) NUMBER (2'S COMPLEMENT) NUMBER

MR-8924

Figure 1-18 Memory Management Register | (MMRI1)

1.5.7.3 Memory Management Register 2 (Address: 17 777 576) - Memory management register 2

(MMR?2) is loaded with the program counter of the current instruction and is frozen when any abort

condition is posted in MMRO.

1.5.7.4 Memory Management Register 3 (Address: 17 772 516) - Memory management register 3

(MMR3) enables the data space for the kernel, supervisor, and user operating modes. It also selects either

18-bit or 22-bit mapping and enables the request for the supervisor macroinstruction (CSM). The register

is shown in Figure 1-19 and is defined in Table 1-14. MMR3 is cleared during power-up, by a console

start, or by a RESET instruction.

0 0 0 0 0 0 0 0 o 0 MODE

UNINTERPRETED

ENABLE 22-BIT MAPPING

ENABLE CSM INSTRUCTION

KERNEL

SUPERVISOR

USER

MR-8925

Figure 1-19 Memory Management Register 3 (MMR23)

1-21

Table 1-14 MMR3 Bit Description

Bit Name Status Function

15:06 Not used - -

05 Uninterpreted Read/write This bit can be set or cleared under program control, but it is not

interpreted by the KDJ11-A.

04 Enable 22-bit Read/write This bit enables 22-bit memory addressing (the default is 18-bit

mapping addressing).

03 Enable CSM Read/write This bit enables recognition of the call supervisor mode instruction.

instruction

02 Kernel data Read/write This bit enables the data space mapping for the kernel operating mode.

space

01 Supervisor data Read/write This bit enables the data space n;apping for the supervisor operating
space mode.

00 User data space Read/write This bit enables the data space mapping for the user operating mode.

1.5.7.5 Instruction Back-Up/Restart Recovery — The process of “backing up’ and restarting a partially

completed instruction involves the following.

1. Performing the appropriate memory management tasks to alleviate the cause of the abort (e.g.,

loading a missing page).

2. Restoring the general purpose registers indicated in MMR1 to their original contents at the start

of the instruction by subtracting the “modify value” specified in MMRI.

3. Restoring the PC to the “abort-time” PC by loading R7 with the contents of MMR2, which

contains the value of the virtual PC at the time the “abort-generating” instruction was fetched.

Note that this back-up/restart procedure assumes that the general purpose register used in the program

segment will not be used by the abort recovery routine. This is automatically the case if the recovery

program uses a different general purpose register set.

1.5.7.6 Clearing Status Registers Following Abort - At the end of a fault service routine, bits <15:13>

of MMRO must be cleared (set to 0) to resume error checking. On the next memory reference following

the clearing of these bits, the various registers will resume monitoring the status of the addressing

operations. MMR2 will be loaded with the next instruction address, MMR1 will store register change

information, and MMRO will log memory management status information.

1.5.7.7 Multiple Faults - Once an abort has occurred, any subsequent errors that occur while the

memory management registers are frozen will not change MMRO, MMR1 or MMR2. The information

saved in MMRO through MMR?2 will always refer to the first abort that it detected.

1.5.8 Typical Usage Examples

The memory management unit provides a general purpose memory management tool. It can be used in a

manner as simple or complex as desired. It can be anything from a simple memory expansion device to a

complete memory management facility.

1-22

The variety of possible and meaningful ways to use the facilities offered by the memory management unit

means that both single-user and multiprogramming systems have complete freedom to make whatever

memory management decisions best suit their individual needs. Although a knowledge of what most types

of computer systems seek to achieve may indicate that certain methods of using the memory management

unit will be more common than others, there is no limit to the ways to use these facilities.

In most typical applications, the control over the actual memory page assignments and their protection

resides in a supervisory type program which operates in kernel mode. This program sets access keys in such

a way as to protect itself from willful or accidental destruction by other supervisor or user mode programs.

The facilities are also provided such that the kernel mode program can dynamically assign memory pages

of varying sizes in response to system needs.

1.5.8.1 Typical Memory Page - When the memory management unit is enabled, the kernel mode

program, a supervisor mode program, and a user mode program each have eight active pages described by

the appropriate page address registers and page descriptor registers for data and eight pages for instruc-

tions. Each segment is made up of from 1 to 128 blocks and is pointed to by the page address field of the

corresponding page address register as illustrated in Figure 1-20.

///4 (océ’f?’%’fiz/fl/&y

o
-

.

-
.
-

VA 144777 PA 316777
BLOCK 47g (391¢)

BLOCK 1

BLOCK O
PA 312000

(PAR 6 3120

PAF
VA 140000 3910

| PDR6 7AV/A 4787 0@01
PLF W ED ACF

Figure 1-20 Typical Memory Page

1-23

The memory segment illustrated in Figure 1-20 has the following attributes.
S
N

— Page length: 40 blocks

Virtual address range: 140000-144777

Physical address range: 312000-316777

Nothing has been modified (i.e., written) in this page

Read-only protection

Upward expansion

These attributes were determined according to the following scheme.

1. Page address register (PAR6) and page descriptor register (PDR6) were selected by the active

page field (APF) of the virtual address. (Bits <15:13> of the VA = 63.)

The initial address of the page was determined from the page address field of PAR6 (312000 =

3120g blocks X40g (3210) words per block X 2 bytes per word).

NOTE

The PAR that contains the PAF constitutes what is

often referred to as a base register containing a base

address or a relocation register containing a reloca-

tion constant.

The page length (473 + 1 = 40 blocks) was determined from the page length field (PLF)

contained in page descriptor register PDR6. Any attempts to reference beyond these 40;q

blocks in this page will cause a “page length error,” which will result in an abort, vectored

through kernel virtual address 250.

The physical addresses were constructed according to the scheme illustrated in Figure 1-13.

The written (W) bit indicates that no locations in this page have been modified (i.e., written). If

an attempt is made to modify any location in this particular page, an access control violation

abort will occur. If this page were involved in a disk swapping or memory overlay scheme, the

W-bit wou.d be used to determine whether it had been modified and, thus, required saving

before overlay.

This page is read-only protected; i.e., no locations in this page may be modified. The mode of

protection was specified by the access control field of PDRG6.

The direction of expansion is upward (ED = 0). If more blocks are required in this segment,

they will be added by assigning blocks with higher relative addresses.

The attributes which describe this page can be determined under software control. The parameters

describing the page are loaded into the appropriate page address register (PAR) and page descriptor

register under program control. In a normal application, the particular page, which itself contains these

registers, would be assigned to the control of a kernel mode program.

1-24

1.5.8.2 Nonconsecutive Memory Pages — Higher virtual addresses do not necessarily map to higher

physical addresses. It is possible to set up the page address fields of the PARs so that higher virtual address

blocks may be located in lower physical address blocks as illustrated in Figure 1-21.

Although a single memory page must consist of a block of contiguous locations, consecutive virtual

memory pages do not have to be located in consecutive physical address locations. The assignment of

memory pages is not limited to consecutive nonoverlapping physical address locations.

VA 037777 PA 467777

1

1

1

1

VA 020000 PA 460000
PAR 7 AF

VA 017777 PA 560777

T

I

|

;
PAR 1 PAF

PAF
PAR O VA 000000 PA 541000

MR-11055

Figure 1-21 Nonconsecutive Memory Pages

1-25

1.5.8.3 Stack Memory Pages - When constructing programs, it is often desirable to isolate all program

variables from pure code (i.e., program instructions) by placing them on a register indexed stack. These

variables can then be “pushed” or “popped” from the stack area as needed. (See Chapter 6.) Since stacks

expand by adding locations with lower addresses, when a memory page which contains “stacked” variables

needs more room, it must “expand down,” i.e., add blocks with lower relative addresses to the current

page. This mode of expansion is specified by setting the expansion direction bit of the appropriate page

descriptor register to a 1. Figure 1-22 illustrates a typical stack memory page. This page will have the

following parameters.

PAR6: PAF = 3120

PDR6: PLF = 175g or 125;¢(12819—3)

ED =1

W=0or1l

ACF = nnn (to be determined by programmer as necessary)

NOTE

The W-bit will be set by hardware.

In this case the stack begins 128 blocks above the relative origin of this memory page and extends

downward for a length of three blocks. A page length error abort will be generated by the hardware when

an attempt is made to reference any location below the assigned area, i.e., when the block number from

the virtual address is less than the page length field of the appropriate page descriptor register.

VA 157777 PA 331777

BLOCK 177g (12710

BLOCK 176g (12610)

BLOCK 175g (12510)
VA 157500 / PA 331500

//BLOCK
VA 140000 pizziiact PA 312000

PAR 6 PAF

v NPDR 6 SLF/ ED/% AN

ACF

MR-11056

Figure 1-22 Typical Stack Memory Page

1-26

1.5.9 Transparency

In a multiprogramming application, it is possible for memory pages to be allocated such that a program

appears to have a complete 64 Kbyte memory configuration. Using relocation, a kernel mode supervisory-

type program can perform all memory management tasks entirely transparent to a supervisor or user mode

program. In effect, a system can use its resources to provide maximum throughput and response to a

number of users, each of whom seems to have a powerful system “all to himself.”

1.6 CACHE MEMORY

The statistics from executing programs clearly indicate that at any given moment, a program spends most

of its time within a relatively small section of code. The KDJ11-A cache memory exploits this phenome-

non by using a small amount of high-speed memory to store the most recently accessed memory locations.

Cached code will execute much faster than noncached code because of the large difference between the

access times of the cache memory and the LSI-11 bus main memory.

The following illustrates how the KDJ11-A cache is constructed. It is a direct map (set size one; block size

one), 8 Kbyte cache. Each physical address is logically subdivided into a 9-bit label, 12-bit index, and 1-bit

byte select field as shown in Figure 1-23.

21 13 12 01 00

LABEL INDEX

BYTE SELECT

MR-11057

Figure 1-23 Cache Physical Address

The index field is used to select the cache entry. The index is 12 bits long, selecting one of 4096 separate

cache entries. Each cache entry contains a 9-bit tag field (TAG), tag parity bit (P), tag valid bit (V), two

bytes of cache data (BO and B1) and two corresponding byte parity bits (PO and P1). (See Figure 1-24.)

08 00

P \Y TAG

15 08 07 00

P1 B1 PO BO

MR-11058

Figure 1-24 Cache Data Format

1-27

A physical address is considered cached when the tag field of the cache entry specified by the index field

equals the label field, the valid bit is set, and no parity errors are seen. When a cache read hit occurs, i.e.,
the address is cached during a read operation, Bl and BO are used as the source of the data. When a cache
read miss occurs, i.e., the address is not cached, main memory is accessed to obtain the data.

A physical address is stored in the cache whenever the cache is allocated. To allocate the cache, the tag

field of a cache entry specified by the index field is set equal to the label field, the V-bit is set, Bl and BO

are loaded with the fresh data, and the parity bits are correctly calculated. This guarantees that the next

access to this address will report a cache hit. It should be noted that allocating the cache typically destroys

a previously allocated valid cache entry. The cache is allocated whenever a read miss or word write miss

oCCurs.

Write cycles are separated into word write and byte write operations. Main memory is always updated

during writes. A cache hit will cause the proper byte(s) to be written in both the cache and in main

memory. This is called writing through the cache. A cache miss during a word write will allocate the

cache; however, since two bytes are allocated together, a byte write only updates main memory. The cache

response matrix is summarized in Table 1-15.

The 1/0 page (top 8 Kb) is never cached and therefore always reports misses. This is because the 1/0 page

contains dynamic status registers which, when read, must always convey the latest information.

When the system is powered up, the cache must be cleared and correct parity written into each entry. This

is called flushing the cache.

Table 1-15 Cache Response Matrix

DMA CPU

Operation Hit Miss Hit Miss

Read Read memory— Read memory- Read cached data Read memory-

no cache change no cache change allocate cache

Write word Invalidate cache- Update memory- Write through Write memory-

update memory no cache change cache to memory allocate cache

Write byte Invalidate cache- Update memory- Write through Write memory-

Read bypass

Write bypass

update memory no cache change cache to memory

Read memory-

invalidate cache

Write memory-

invalidate cache

no cache change

Read memory-

no cache change

Write memory-

no cache change

Read force — - Read memory- Read memory-

miss no cache change no cache change

Write force - - Write memory- Write memory—

miss no cache change no cache change

1-28

A potential stale data problem can occur when a DMA device writes to a cached location. The overwritten

cache entry must be invalidated. To avoid this problem, the cache system monitors each DMA transaction

to determine when the DMA transaction invalidates the cache. This also includes block mode DMA which

is possible on the 22-bit LSI-11 bus.

For both diagnostic and availability reasons, it is important to be able to turn off the cache via software.

The cache is disabled by setting either of the force cache miss bits, 02 and 03, in the cache control register.

When disabled, all references are forced to miss the cache. That is, main memory is always accessed,

cache parity errors are ignored, and no cache allocation is performed. The cache is essentially removed

from the system. This is different than bypassing the cache. Bypass references access the main memory,

check cache parity, and invalidate the cache entry if previously allocated. Read references that bypass the

cache check for parity errors and will invalidate any address hits.

1.6.1 Parity

The KDJ11-A module has a main memory parity error detection mechanism. The BDAL<16> and <17>

data lines are sampled when BDIN L is negated and the microprocessor initiates a memory read. The

BDAL<16> bit is the parity error signal and the BDAL<17> bit is the parity abort error signal. When

both are asserted (1), an abort occurs through the vector at virtual address 114 in kernel D space.

The cache memory also has a parity error detection mechanism. A parity error in the cache is not

considered fatal because the main memory system has a backup copy of the data. The cache uses even

parity for the even data bytes stored in the cache memory and odd parity for the odd data bytes stored in

the cache memory. It also uses even parity for the tag field stored in the cache memory.

1.6.1.1 Parity Errors — A parity error indicates that a single bit error has occurred. Parity errors can

occur in either the main memory or the cache memory. A main memory parity error is always fatal since

the data stored in this memory is wrong and it cannot be restored. This type of parity error will always

cause an abort through virtual address 114 in the kernel D space. Cache parity errors are not considered to

be fatal since the data in the cache memory can be updated with the correct data from the main memory.

When they occur, the KDJ11-A module will either abort, interrupt, or continue without an abort or

interrupt. The action is determined by the state of bits 07 and 00 in the cache control register as defined in

Table 1-16.

Table 1-16 Cache Parity Errors

CCR <07> CCR <00> Action

0 0 Update cache, interrupt through 114

0 1 Update cache only

1 X Update cache, abort through 114 should only be used for diagnostics

1-29

1.6.1.2 Multiple Cache Parity Errors - If a cache parity error occurs while the error status from a

previous cache parity error is not cleared from the memory system error register, then no abort or

interrupt occurs. The main memory is accessed again to retrieve the correct data and the corrupted cache

entry data is updated with the correct data. This prevents a cache hardware failure from generating an

infinite series of interrupt or abort service loops.

1.6.2 Memory System Registers

The memory system registers consist of the cache control register, the memory system error register, and

the hit/miss register. These registers are used by modules to control the memory system and report any

errors that occur.

1.6.2.1 Cache Control Register (Address: 17 777 746) — The cache control register (CCR) controls the

operation of the cache memory. The cache bypass, abort, and force miss functions can be controlled by

software via this register. The cache control register is shown in Figure 1-25 and is described in Table 1-17.

The register is cleared by either power-up or a console start. It is unaffected by the RESET instruction.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

T 1 1} [I

0 0 0 0 0 0 //
| 1 | 1 |

flf I SWRITE WRONG

TAG PARITY

UNCONDITIONAL

CACHE BYPASS

FLUSH CACHE

PARITY ERROR ABORT

WRITE WRONG DATA PARITY

UNINTERPRETED

FORCE CACHE MISS

DIAGNOSTIC MODE

DISABLE CACHE PARITY INTERRUPT

MR-11059

Figure 1-25 Cache Control Register (CCR)

1-30

Table 1-17 Cache Control Register Description

Bit Name Status Function

15:11 Not used - -

10 Write wrong Read/write When set (1), this bit causes the cache tags to be written with wrong parity
tag parity on all update cycles. This will cause a cache tag parity error to occur on the

next access to that location.

09 Bypass cache Read/write When set (1), this bit forces all CPU memory references to go directly to

main memory. Read hits will result in invalidation of accessed locations in

the cache.

08 Flush cache* Write only When set (1), this bit causes the entire contents of the cache to be declared

invalid. Writing a 0 into this bit will have no effect.

07 Enable parity Read/write This bit is used with bit 0 to define the action taken as a result of a parity

error abort error. This bit is reserved for diagnostic purposes only.

06 Write wrong Read/write When set (1), this bit causes high and low parity bytes to be written with

data parity wrong parity on all update cycles. This will cause a cache parity crror to

occur on the next access to that location.

05:04 Uninterpreted - These bits can be set or cleared under program control, but are not inter-

preted by the KDJ11-A.

03:02 Force miss Read/write When either is set, they force all CPU memory references to go directly to

main memory. The cache tag and data stores are not changed. The parity is

not checked. When set (1) these bits remove the cache memory from the

system.

01 Diagnostic mode Read/write When set (1), all non-bypass and non-forced miss word writes will allocate

the cache, irrespective of nonexistent memory (NXM) errors. In addition,

NXM writes will not trap.

00 Disable cache Read/write Bits <07:00> specify the action to take following a cache parity error. If

parity interrupt both bits are cleared (0) and a parity error occurs, an interrupt through

vector 114 is generated. If bit 07 is cleared and bit 00 is set, a cache parity

error neither aborts the reference nor generates an interrupt. In any case, all

cache parity errors force a memory reference and update the cache with the

fresh data.

* It takes approximately 1 millisecond to flush the cache. During this time DMA and interrupt requests are not serviced and no

data processing occurs.

1-31

1.6.2.2 Hit/Miss Register (Address: 17 777 752) - The hit/miss register (HMR) records the status of

the most recent cache accesses. The HMR is a shift register that records a hit as a 1 and a miss as a 0 for

the most recent memory reads. A hit represents data located in the cache memory and a miss means the

data is located in the main memory. Bit 00 represents the most recent memory access and is shifted to the

left on successive memory access. The HMR is a read-only register and is shown in Figure 1-26.

1.6.2.3 Memory System Error Register (Address: 17 777 744) — The memory system error register

(MSER) is a read-only register that is cleared by any write reference. The register monitors parity error

aborts and records the type of parity error. The register is shown in Figure 1-27 and is described in Table

1-18. The memory system register is cleared by any write reference, during power-up, and by a console

start. It i1s unaffected by the RESET instruction.

MR-8899

Figure 1-26 Hit/Miss Register (HMR)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

| I J I { [T T | I

NOT USED NOT USED

| 1 1]]] 1] |]

PARITY PARITY TAG

ERROR ERROR PARITY

ABORT HIGH ERROR

PARITY

ERROR

LOW
MR-11060

Figure 1-27 Memory System Error Register (MSER)

Table 1-18 Memory System Error Register

Bit Name Status Description

15 Parity error abort Read only This bit is set (1) when cache or memory parity error aborts on instruc-

tion. Parity aborts occur on all main memory parity errors and when bit

07 of the CCR is set. A cache parity error occurs on a non-prefetch bus

cycle.

14:08 Not used - - -

07* Parity error high Read only This bit is set (1) when the parity error was causcd by the high byte data.

06* Parity error low Read only This bit is set (1) when the parity error was caused by the low byte data.

05* Tag parity error Read only This bit is set (1) when the parity error was caused by the tag field.

04:00 Not used - -

* Bits <07:05> are individually set when a cache parity error occurs and CCR bit 07 is set. All three bits are set when the CCR

bit 07 is cleared and a cache parity error occurs irrespective of where the error occurred.

1-32

1.7 FLOATING-POINT

The KDJ11-A uses the floating-point instruction set to perform all floating-point arithmetic operations and

converts data between integer and floating-point formats. It uses similar address modes and the same

memory management facilities of the processor. The floating-point instructions can reference the floating-

point accumulators, the general registers, or any location in memory.

1.7.1 Floating-Point Data Formats

Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an

integer and f is a fraction. For a nonvanishing number, K and { are uniquely determined by imposing the

condition 1/2 < f < 1. The fractional part (f) of the number is then said to be normalized. For the

number O, f must be assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point

numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is

32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used.

1.7.1.1 Nonvanishing Floating-Point Numbers - The fractional part (f) is assumed normalized, so that

its most significant bit must be 1. This 1 is the hidden bit. 1t is not stored explicitly in the data word, but

the processor restores it before carrying out arithmetic operations. The floating and double modes reserve

23 and 55 bits, respectively, for f. These bits, with the hidden bit, imply effective fractions of 24 bits and

56 bits.

Eight bits are reserved for storage of the exponent K in excess 128 (200g) notation (i.e., as K + 200g),

giving a biased exponent. Thus, exponents from —128 to +127 could be represented by Q to 377g, or O to

25510. For reasons given below, a biased exponent of O (the true exponent of —200g), is reserved for

floating-point 0. Therefore, exponents are restricted to the range —127 to +127 inclusive (—177g to +177g)

or, in excess 200g notation, 1 to 377g.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a 1.

1.7.1.2 Floating-Point Zero — Because of the hidden bit, the fractional part is not available to distinguish

between 0 and nonvanishing numbers whose fractional part is exactly 1/2. Therefore, the floating-point

processor (FPP) reserves a biased exponent of O for this purpose, and any floating-point number with a

biased exponent of O either traps or is treated as if it were an exact 0 in arithmetic operations. An exact or

“clean” 0O is represented by a word whose bits are all 0s. A “dirty” O is a floating-point number with a

biased exponent of 0 and a nonzero fractional part. An arithmetic operation for which the resulting true

exponent exceeds 277g is regarded as producing a “floating overflow;” if the true exponent is less than

—177g, the operation is regarded as producing a “floating underflow.” A biased exponent of 0 can thus

arise from arithmetic operations as a special case of overflow (true exponent = —200g). (Recall that only

eight bits are reserved for the biased exponent.) The fractional part of results obtained from such overflow

and underflow is correct.

1.7.1.3 The Undefined Variable - An undefined variable is any bit pattern with a sign bit of 1 and a

biased exponent of 0. The term undefined variable is used, for historical reasons, to indicate that these bit

patterns are not assigned a corresponding floating-point arithmetic value. Note that the undefined variable

is frequently referred to as —0 elsewhere in this chapter.

A design objective of the FPP was to ensure that the undefined variable would not be stored as the result

of any floating-point operation in a program run with the overflow and underflow interrupts disabled. This

is achieved by storing an exact 0 on overflow and underflow, if the corresponding interrupt is disabled.

This feature, together with an ability to detect reference to the undefined variable (implemented by the

FIUV bit discussed later), is intended to provide the user with a debugging aid: if —0 occurs, it did not

result from a previous floating-point arithmetic instruction.

1-33

1.7.1.4 Floating-Point Data — Floating-point data is stored in words of memory as illustrated in Figures

1-28 and 1-29.

The FPP provides for conversion of floating-point to integer format and vice-versa. The processor

recognizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in

standard 2’s complement form. (See Figure 1-30.)

F FORMAT, FLOATING POINT SINGLE PRECISION

15
LY

2 FRACTION <15:0>

| 1 1 | | | | | i 1 | 1 | |]

5 14 07 06 00

MEMORY +0| s EXP FRACT <22:16>

] Il |] |] L L 1] 1 | L

MR-3604

Figure 1-28 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00

+6 FRACTION <15:0>

1 i 1 1 1 I 1 1 L L d 1 1 1 1

15
00

+4 FRACTION <31:16>

1 1 | I 1 1 1 1 | { 1 1 1 i 1

15 00

+2 FRACTION <47:32>

1 L 1 1 1 i] 1 | i i 1 I 1 1

15 07 06 00

MEMOQRY +0 S EXP FRACT <54:48>

L 1 1 1 1 1 1 L i 1 1 I} 1

S = SIGN OF FRACTION

EXP = EXPONENT {N EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NON-VANISHING NUMBERS.

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN

BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

MR-3605

Figure 1-29 Double-Precision Format

1-34

| FORMAT, INTEGER SINGLE PRECISION

15 14 00

S NUMBER <15:0>

1 1 1 1 1 1 1 i 1 1l 1 1 1 1

L FORMAT, DOUBLE PRECISION INTEGER LONG

15 14 00

MEMORY +0 S NUMBER <30:16>

1 1 1 I L 1 1 L I] I i 1]

15 00

+2 NUMBER <15:0>

i 1 1]] ! L 1 1 1] 1] i]

WHERE S = SIGN OF NUMBER

NUMBER =15 BITS IN { FORMAT, 31 BITS IN L FORMAT.

MR-3606

Figure 1-30 2’s Complement Format

1.7.2 Floating-Point Registers

The floating-point registers are defined as six accumulators, the floating-point status register, the floating-

point exception address register, and the floating-point exception code register, as shown in Figure 1-1.

1.7.2.1 Floating-Point Accumulator - Six 64-bit accumulators (AC0-AC5) are implemented for the

temporary storage and manipulation of 32-bit and 64-bit floating-point data types.

1.7.2.2 Floating-Point Status Register (FPS) — This register provides mode and interrupt control for the

floating-point unit and conditions resulting from the execution of the previous instruction.

For the purposes of discussion, a set bit = 1 and a reset bit = 0. Three bits of the FPS register control the
modes of operation as follows.

* Single/Double: floating-point numbers can be either single- or double-precision.

e Short/Long: integer numbers can be 16 bits or 32 bits.

¢ Chop/Round: the result of a floating-point operation can be either chopped or rounded. The

term chop is used instead of truncate to avoid confusion with truncation of series used in

approximations for function subroutines.

The FPS register contains an error flag and four conditions codes (five bits): carry, overflow, zero, and
negative, which are equivalent to the CPU condition codes.

1-35

The floating-point operation recognizes six floating-point exceptions.

Detection of the presence of the undefined variable in memory

Floating overflow

Floating underflow

Failure of floating-to-integer conversion

Attempt to divide by zero

Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to enable or disable interrupt

individually. An interrupt on the occurrence of either of the last two exceptions can be disabled only by

setting a bit which disables interrupts of all six of the exceptions as a group.

Of the 13 FPS bits described above, the error flag and condition codes are set by the FPP as part of the

output of a floating-point instruction. Any of the mode and interrupt control bits may be set by the user;

the LDFS instruction is available for this purpose. The FPS register is shown in Figure 1-31 and described

in Table 1-19.

15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00

FER | FID 0 0 FIUV]| FIU FIV | FIC FD FL FT 0 FN Fz FVv FC

1 [§ J\ J 1% S |

FLOATING ‘f T }
ERROR . INTERRUPTS MODES FLOATING

INTERRUPT COND CODES

DISABLE
MR-9377

Figure 1-31 Floating-Point Status Register

Table 1-19 Floating-Point Status Bit Description

Bit Name Function

15 Floating crror (FER) This bit is set by a floating-point instruction if:

® Division by zero occurs

e lllegal op code occurs

e Any of the remaining errors occur and the corresponding interrupt is enabled.

This action is independent of the FID bit status.

Also note that the FPP never resets the FER bit. Once the FER bit is set by the FPP, it

can be cleared only by an LDFPS instruction (the RESET instruction does not clear the

FER bit). This means that the FER bit is up-to-date only if the most recent floating-

point instruction produced a floating-point exception.

14 Interrupt disable If this bit is set, all floating-point interrupts are disabled.

(FID)

The FID bit is primarily a maintenance feature. It should normally be clear. In particu-

lar, it must be clear if one wishes to assure that storage of —0 by a FPP is always

accompanied by an interrupt.

Throughout the rest of this chapter, it is assumed that the FID bit is clear in all

discussions involving overflow, underflow, occurrence of —0, and integer conversion

CITors.

13,12 Not used -

1-36

Table 1-19 Floating-Point Status Bit Description (Cont)

Bit Name Function

11 Interrupt on An interrupt occurs when this bit is set and a —0 is obtained from memory as an

undefined operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, TST, or any LOAD

variable (FIUV) instruction. The interrupt occurs before execution. When FIUV is reset, —0 can be

loaded and used in any FPP operation. Note that the interrupt is not activated by the

presence of —0 in any AC operand of an arithmetic instruction; in particular, trap on —0

never occurs in mode 0.

The FPP will not store a result of —0 without a simultaneous interrupt.

10 Interrupt on When this bit is set, floating underflow will cause an interrupt. The fractional part of

underflow (F1U) the result of the operation causing the interrupt will be correct. The biased exponent will

be too large by 400 (octal) except for the special case of O, which is correct. An

exception is discussed later in the detailed description of the LDEXP instruction.

If the FIU bit is reset and if underflow occurs, no interrupt occurs and the result is set to

exact 0.

09 Interrupt on When this bit is set, floating overflow will cause an interrupt. The fractional part of the

overflow (F1V) result of the operation causing the overflow will be correct. The biased exponent will be

too small by 400 (octal).

If the FIV is reset and overflow occurs, there is no interrupt. The FPP returns to exact

0.

Special cases of overflow are dis- cussed in the dctailed descriptions of the MOD and

LDEXP instructions.

08 Interrupt on integer When this bit is set and conversion to integer instruction fails, an interrupt will occur. If

conversion (FIC) the interrupt occurs, the destination is set to 0, and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as detailed above, but

no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits than can fit in

the short or long integer word specified by the FL bit (bit 06)

07 Floating double- This bit determines the precision that is used for floating-point calculations. When set,

precision mode (FD) double-precision is assumed; when reset, single-precision is used.

06 Floating long This bit is used in conversion between integer and floating-point format. When set, the

integer mode (FL) integer format assumed is double-precision 2’s complement (i.e., 32 bits). When reset,

the integer format is assumed to be single-precision 2's complement (i.e., 16 bits).

05 Floating chop When this bit is set, the result of any arithmetic operation i1s chopped (or truncated).

mode (FT) When reset, the result is rounded.

04 Not used -

03 Floating negative (FN) This bit is set if the result of the last floating-point operation was negative; otherwise, it

is reset.

02 Floating zcro (FZ) This bit is set if the result of the last floating-point operation was 0; otherwise. it is reset.

01 Floating overflow (FV) This bit is set if the last floating-point operation resulted in an exponent overflow;

otherwise, it is reset.

00 Floating carry (FC) This bit is set if the last operation resulted in a carry of the most significant bit. This can

only occur in a floating or double-to-integer conversion.

1-37

1.7.2.3 Floating-Point Exception Registers (FEC, FEA) — One interrupt vector is assigned to take care

of all floating-point exceptions (location 244). The six possible errors are coded in the 4-bit floating

exception code (FEC) register as follows.

Floating op code error

Floating divide by zero error

Floating or double-to-integer conversion error

Floating overflow error

Floating underflow error

Floating undefined variable errorO
O

R
N

1

1

The address of the instruction producing the exception is stored in the floating exception address (FEA)

register.

The FEC and FEA registers are updated when one of the following occurs.

Divide by zero

[llegal op code

® Any of the other four exceptions with the corresponding interrupt enabled

If one of the four exceptions occurs with the corresponding interrupt disabled, the FEC and FEA are not

updated. Inhibition of interrupts by the FID bit does not inhibit updating of the FEC and FEA, if an

exception occurs. The FEC and FEA are not updated if no exception occurs. This means that the store

status (STST) instruction will return current information only if the most recent floating-point instruction

produced an exception. Unlike the FPS register, no instructions are provided for storage into the FEC and

FEA registers.

1.7.3 Floating-Point Instruction Addressing

Floating-point instructions use the same type of addressing as the central processor instructions. A source

or destination operand is specified by designating one of eight addressing modes and one of eight central

processor general registers to be used in the specified mode. The modes of addressing are the same as those

of the central processor, except in mode 0. In mode O the operand is located in the designated floating-

point processor accumulator rather than in a central processor general register. The modes of addressing

are as follows.

0 = FPP accumulator

| = Deferred

2 = Autoincrement

3 = Autoincrement-deferred

4 = Autodecrement

5 = Autodecrement-deferred

6 = Indexed

7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and decrements of 4g for F format and 10g for

D format.

In mode 0, users can make use of all six FPP accumulators (ACO-ACS5) as their source or destination.

Specifying FPP accumulators AC6 or AC7 will result in an illegal op code trap. In all other modes which

involve transfer of data to or from memory or the general registers, users are restricted to the first four

FPP accumulators (AC0-AC3). When reading or writing a floating-point number from or to memory, the

low memory word contains the most significant word of the floating-point number, and the high memory

word the least significant word.

1-38

1.7.4 Accuracy

General comments on the accuracy of the floating-point are presented here. The descriptions of the

individual instructions, including the accuracy at which they operate, are listed in Chapter 7. An instruc-

tion or operation is regarded as “exact” if the result is identical to an infinite precision calculation

involving the same operands. The prior accuracy of the operands is thus ignored. All arithmetic instruc-

tions treat an operand whose biased exponent is O as an exact 0 (unless FIUV is enabled and the operand is

—0, in which case an interrupt occurs). For all arithmetic operations, except DIV, a 0 operand implies that

the instruction is exact. The same statement holds for DIV if the 0 operand is the dividend. But if it is the

divisor, division 1s undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or 56

bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are

necessary and sufficient for the general case to guarantee return of a chopped or rounded result identical to

the corresponding infinite precision operation chopped or rounded to the specified word length. Thus, with

two guard bits, a chopped result has an error bound of one least significant bit (LSB); a rounded result has

an error bound of 1/2 LSB. These error bounds are realized by the FPP for all instructions.

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by

chopping. The first bit lost in chopping is referred to as the “rounding” bit. The value of a rounded result is

related to the chopped result as follows.

1. If the rounding bit is I, the rounded result is the chopped result incremented by an LSB.

2. If the rounding bit is O, the rounded and chopped results are identical.

It follows that:

1. If the result is exact, rounded value = chopped value = exact value.

2. If the result is not exact, its magnitude is:

always decreased by chopping.a

b. decreased by rounding if the rounding bit is 0.

increased by rounding if the rounding bit is 1.o

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation

cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.

However, the internal hardware has produced the correct answer. For the case of underflow, replacement

of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is done by

the FPP if the underflow interrupt is disabled. The error incurred by this action is an absolute rather than a

relative error; it is bounded (in absolute value) by 2 ** (—128). There is no such simple resolution for the

case of overflow. The action taken, if the overflow interrupt is disabled, is described under FIV (bit 09) of

the status register.

1-39

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to implement

their own correction of an overflow or underflow condition. If such a condition occurs and the correspond-

ing interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased

exponent. The interrupt will take place and users can identify the cause by examination of the floating

overflow (FV) bit of the floating exception (FEC) register. You can readily verify that (for the standard

arithmetic operations ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction bears

the following relation to the correct exponent generated by the microcode.

1. On overflow, it is too small by 400g.

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too

large by 400g.

Thus, with the interrupt enabled, enough information is available to determine the correct answer. Users

may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that

the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

1.8 SOFTWARE SYSTEMS

The KDJ11-A module can run the RT-11, RSX-11 V5.1, RSX-11 PLUS, RSTS/E, UNIX, and micro-

power PASCAL operating systems. These systems are described in the PDP-11 Software Handbook (EB

18687-20/80).

1-40

CHAPTER 2

INSTALLATION

2.1 INTRODUCTION ‘

This chapter discusses the considerations and requirements to configure and install a KDJ11-A modulein

an LSI-11 system. The module can be installedin systems using the extended LSI-11 bus backplane as well
as existing systems that use one of the standard LSI-11 backplanes. The items that must be consideréd

before installing the module are as follows. &

. Configuration of the user selectable features.

2. Selection of an LSI-11 compatible backplane and mounting box.

3. Selection of LSI-11 options compatible with the KDJ11-A.

4. Knowledge of system differences when replacing an LSI-11 processor with the KDJ11-A

module.

2.2 CONFIGURATION

The KDJ11-A has nine jumpers for the user selectable features. The locations of these jumpers are shown

in Figure 2-1 and their functions are described in Table 2-1. A jumper is installed by pushing an insulated
jumper wire (P/N 12-18783-00) onto the two wirewrap pins provided on the module.

Table 2-1 KDJ11-A Jumper Identification

" Jumper Function

Wi Bootstrap address bit 15

W2 Bootstrap address bit 14

W3 Power-up option selection bit 02

W4 Bootstrap address bit 13

W35 HALT trap option bit 03

W6 Bootstrap address bit 12

W7 Power-up option selection bit 01

W§ Wakeup disable

W9 BEVNT recognition

2-1

2.2.1 Power-Up Options

There are four power-up options available for the user to select. These options are selected by jumpers W7
and W3. The bits are set (1) when the jumpers are removed. A power-up option is selected by configuring
W3 and W7, as described in Table 2-2. A description of each option is provided below.

Table 2-2 Power-Up Options

Option W3 W7 Power-Up Mode

0 Installed Installed PC at 24, PS = 26

] Installed Removed Micro-ODT, PS = 0

2 Removed Installed PC at 173000, PS = 340

3 Removed Removed Users bootstrap, PS at 340

2.2.1.1 Power-Up Option 0 - The processor reads physical memory locations 24 and 26 and loads the
data into the PC and PS, respectively. The processor either services pending interrupts or starts program
execution, beginning at the memory location pointed at by the PC.

2.2.1.2 Power-Up Option 1 - The processor unconditionally enters micro-ODT with the PS cleared.
Pending service conditions are ignored.

2.2.1.3 Power-Up Option 2 - The processor sets the PC to 173000 and the PS to 340. The processor

then either services pending interrupts or starts program execution, beginning at the memory location

pointed at by the PC. This option is used for the standard bootstrap.

2.2.1.4 Power-Up Option 3 — The processor reads the four bootstrap address jumpers and loads the

result into PC<15:12>. PC<11:00> are set to zero, and the PS is set to 340. The processor then either

services pending interrupts, or starts program execution, beginning at the memory location pointed at by

the PC.

2.2.2 HALT Option

The HALT option determines the action taken after a HALT instruction is executed in the kernel mode.
At the end of a HALT instruction, the processor checks the BPOK bit 00 before checking the HALT

option bit 03. If BPOK is set, the processor will recognize the HALT option, which is controlled by the W5

jumper. When the jumper is removed, bit 03 is set (1) and the processor will trap to location 4 in the

kernel data space and set bit 07 of the CPU error register. When the jumper is installed, bit 03 reads as a

zero and the processor enters the micro-ODT mode. If BPOK bit 00 is not set when the processor checks,

the option is not recognized and the processor loops until BPOK is asserted and the power-up sequence is

initiated.

2.2.3 Boot Address

The boot address jumpers selects the starting address for the user’s bootstrap program when power-up

option 3 is selected. The state of the highest four bits, <15:12>, is determined by jumpers W1, W2, W4,

and W6, respectively. A bit will be set (1) when the respective jumper for that bit is installed and the bit

will be read as a zero when the jumper is removed. During the power-up sequence, the processor reads the

address determined by bits <15:12> and forces the remaining bits to read as zeros. Therefore, the user’s

bootstrap program can reside on any 2048 word boundary.

2.2.4 Wakeup Disable

The KDJ11-AA module has an onboard wakeup circuit to properly sequence the BDCOK signal. When

jumper W8 is removed, the wakeup circuit is enabled and the module will properly sequence the BDCOK

signal. The wakeup circuit will be disabled when W8is installed and external logic must be used to

properly sequence the BDCOK signal.

2.2.5 BEVNT Recognition

The LSI-11 bus signal BEVNT provides an external event interrupt request to the processor. This feature

is disabled when the W9 jumper is installed and disables the line time clock register. When the jumper is

removed, the BEVNT input is recognized and is under control of the line time clock register. Specifically,

the signal is recognized by the module when bit 06 of the line time clock register is set (1) and is disabled

when bit 06 is not set (0). The line time clock register address is 17 777 546 and is a read/write register.

2.2.6 Factory Configuration

The factory or shipped configuration is described in Table 2-3. The user should review these features and

change them accordingly to match the requirements of the system using the module.

Table 2-3 Factory Configuration

Jumper Status Function

Wi Installed Bit 15 set (1)

w2 Installed Bit 14 set (1)

W3 Removed Selects power-up option 2

w4 Installed Bit 13 set (1)

W5 Removed HALT instruction traps to location 4

W6 Instalied Bit 12 set (1)

W7 Installed Selects power-up option 2

W§ Removed Wakeup circuit is enabled

W9 Removed BEVNT register is enabled

2.3 DIAGNOSTIC LEDS

The module has four LEDs that monitor the status of the module. The LEDs are designated as D1 through
D4 and are located on the edge of the module, as shown in Figure 2-1. The D1 LED is turned on only when
the module is operating in the micro-ODT mode. LEDS D2-D4 are used with the diagnostics and run

during the power-up sequence. These LEDs are turned on at the beginning of the sequence and are turned
off upon the successful pass of the diagnostic. Each LED monitors a primary function of the module
operation, as described in Table 2-4. When troubleshooting the system, the LEDs indicate the most

probable failure, as described in Table 2-5.

Table 2-4 LED Functions

LED On Test Conditions

DI Micro-ODT is entered.

D2 Mod}lle could not do a write and read transaction to the CPU error register. Indicates the microcode is not

running.

D3 Module attempted to read location 17 777 560 and timed out. Indicates SLU is not responding.

D4 Module attempted to read location 0 and timed out or attempted to read location 17 777 700 and did not time

out. Indicates the memory system is not responding.

Table 2-5 Probable System Failure

LEDs

D1 D2 D3 D4 Probable Failure

X On On On CPU module

X Off On On LSI-11 bus

X On Off On CPU module

X Off Off On LSI-11 bus or memory

X On On Off CPU module

X Off On Off SLU module

X On Off Off CPU module

X Off Off Off Console terminal

2-4

M
E
M

D
2
C
p

C
P
U

D
1
C
=
P

o
D
T

D
4
 C
—
p

D
3
C
—
p

S
L
U

E36

MICROPROCESSOR

E34 E13

CACHE STATE

CONTROL SEQUENCER

MR-11061

Figure 2-1 KDJI11-A Jumper Locations

2-5

2.4 MAINTENANCE REGISTER (ADDRESS 17 777 750)

The contents of the maintenance register is primarily determined by the user’s selection of jumpers W1
through W7. In addition to these, the register bit 00 monitors the status of the LSI-11 bus signal BPOK,
and bit 08 monitors the availability of a floating-point accelerator. The register is defined in Figure 2-2 and
its contents are described in Table 2-6. It is a read-only register.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

T T T T

0 0 0 0 0 0 1

|]] |

- ' T t — T7 FPA HALT POWER
BOOT AVAILABLE OPTION oK

ADDRESS POWER UP (POK)

OPTION

MR-11044

Figure 2-2 Maintenance Register

Table 2-6 Maintenance Register Bit Description

Bit Name Status Function

15:12 Boot address Read only These bits read the user’s boot address selected by

Jumpers W1, W2, W4, and W6. A 1 indicates the jump-

er is installed and a O indicates the jumper is removed.

11:09 Not used Read only Read as zeros

08 FPA available Read only A 1 indicates the presence of a floating-point accelerator

and a O indicates that an accelerator is not installed.

07:04 Module ID Read only The 0001 code identifies to the microprocessor that this

1s a2 KDJI1-A module.

03 HALT Read only This bit reads the status of the W5 jumper. A 1 indicates

the jumper is removed and a O indicates the jumper is

installed.

02:01 Power-up Read only These bits read the user’s power-up mode sclected by

jumpers W3 and W7. A | indicates the jumper is

removed and a O indicates the jumper is installed.

0l POK Read only Reads as a | when BPOK H is asserted and the power

supply is okay.

g

2-6

2.5 POWER-UP SEQUENCE

The power-up sequence for the module is shown in Figure 2-3.

TURN OFF D1 EXPLICITLY SET EXPLICITLY READ
| CCR<8> TO FLUSH MEMORY LOCATION

THE CACHE AND CLEAR 177700

ASSERT BINIT L CCR<15:9, 7:0>

WAIT 10 S EXPLICITLY CLEAR

MSER

: 1
NEGATE BINIT L

NXM ABORT

NO
CLEAR PS

|] TURN OFF D2

CLEAR MMRO SET CPU ERROR REG -
I TO 177766

EXPLICITLY READ

CLEAR MMR3 | MEMORY LOCATION
I EXPLICITLY READ CPU 177560

ERROR REGISTER

WAIT 90 S J

| CLEAR CPU ERROR REG NXM ABORT
EXPLICITLY CLEAR

PIRQ

NO
READ:
EQUAL

CLEAR FPS WRTTEN TURN OFF D4

READ JUMPERS
TURN OFF D

3 POWER UP PC@24
: OPTION 0 PS@26

CLEAR CPU ERROR REG
BEGIN

EXPLICITLY READ EXECUTING
MEMORY LOCATION 0 CODE

BPOK H POWER UP eoD T
ASSERTED OPTION 1 AN

NXM ABORT

POWER UP PC= 173000

OPTION 2 PS = 340

BEGIN

EXECUTING

CODE

PC<15:12> = USER BOOT

PC<11:0> =0

PS = 340

BEGIN EXECUTING CODE
MR-11062

Figure 2-3 KDJ11-A Power-Up Sequence

2-7

2.6 POWER-DOWN SEQUENCE

The power-down sequence for the module is shown in Figure 2-4.

2.7 EXIT MICRO-ODT SEQUENCE

The micro-ODT mode is exited by the G command and the module sequence is shown in Figure 2-5.

‘ POWER DOWN ,

CLEAR POWER FAIL

FLIP-FLOP

'
TRAP THROUGH

VECTOR 24

T

CONTINUE EXECUTING CODE

le—

HALT

INSTRUCTION

READ JUMPER QOPTIONS

BPOK H

ASSERTED

HALT

OPTION JUMPER

REMOVED

ENTER MICRO-ODT

EXECUTE

INSTRUCTION

SET CPU ERROR

REG<7>: TRAP

VECTOR 4

INITIATE POWER UP

SEQUENCE

SET CPU ERROR

REG<7>: TRAP

VECTOR 4

MR-11063

Figure 2-4 KDJ11-A Power-Down Sequence

‘ MICRO-ODT "G’)

TURN OFF D4 CLEAR FPS

‘
ASSERT BINIT L

:
READ JUMPERS

WAIT 10 uS
:

:
CLEAR CPU ERROR REG

NEGATE BINIT L

:
CLEAR MMRO

!
CLEAR MMR3

BPOK H

ASSERTED

NO

:
WAIT 90uS

EXPLICITLY SET

CCR<8>TO FLUSH

THE CACHE

:
:

EXPLICITLY CLEAR

PIRQ

EXPLICITLY CLEAR

MSER

L CLEARPS

BEGIN EXECUTING CODE

MR-11064

Figure 2-5 Micro-ODT Exit Sequence

2-8

2.8 MODULE CONTACT FINGER IDENTIFICATION

The LSI-11 type modules, including the KDJ11-A, all use the same contact (pin) identification system.

Figure 2-6 identifies the contacts used on a dual-height module. The LSI-11 bus signals are carried on rows

A and B, each with 18 contacts on the component side and the solder side. The KDJ11-A signals are

identified along with the LSI-11 bus signals in Table 2-7. The pins are identified as follows.

AE2 Module Side Identifier Side (solder side)

Pin Identifier (Pin E)

Row ldentifier (Row A)

The positioning notch between the two rows of pins mates with a protrusion on the connector block for the

correct module positioning. A complete description of the backplane and bus operation is provided in

Chapter 5.

COMPONENT SIDE

PIN BV1
PIN BV2

MR-7177

Figure 2-6 KDJI1-A Module Contacts

Table 2-7 KDJ11-A Module Signals

Component Side Solder Side

Pin LSI-11 Bus KDJ11-A Pin LSI-11 Bus KDJ11-A

AA BIRQ 5 L BIRQ 5 L AA2 +5 +5

ABI BIRQ 6 L BIRQ 6 L AB2 —12 Not used

ACl BDAL 16 L BDAL 16 L AC2 GND GND

ADI BDAL 17 L BDAL 17 L AD?2 +12 Not used

AEI SSPARE | Not used AE2 BDOUT L BDOUT L

AF1 SSPARE 2 SRUN L* AF2 BRPLY L BRPLY L

AHI SSPARE 3 Not used AH2 BDIN L BDIN L

All GND GND AJ2 BSYNC L BSYNC L

AK]1 MSPARE A Not used AK2 BWTBT L BWTBT L

ALl MSPARE A Not used AL2 BIRQ L BIRQ 4 L

AMI GND GND AM?2 BIAKI L Not used

AN BDMR L BDMR L AN2 BAILO L BIAK L

API] BHALT L BHALT L AP2 BBS 7 L BBS 7L

ARI1 BREF L Not used AR2 BDMGI L Not used

ASI +12 B Not used AS2 BDMGO L BDMG L

ATI BND GND AT2 BINIT L BINIT L

AUl PSPARE 1 Not used AU2 BDAL 0 L BDAL O L

AV +5 B +5 B AV2 BDAL 1 L BDAL 1 L

BA1 BDCOK H BDCOK H BA2 +5 +5

BBI BPOK H BPOK H BB2 —12 Not used

BC1 SSPARE 4 BDAL 18 L BC2 GND GND

BDI1 SSPARE 5 BDAL 19 L BD?2 +12 Not used

BEI SSPARE 6 BDAL 20 L BE2 BDAL 2 L BDAL 2 L

BF1 SSPARE 7 BDAL 21 L BF2 BDAL 3 L BDAL 3 L

BH1 SSPARE 8 Not used BH2 BDAL 4 L BDAL 4 L

BJ1 GND GND BJ2 BDAL 5 L BDAL 5 L

BK1 MSPARE B Not used BK2 BDAL 6 L BDAL 6 L

BL1 MSPARE B Not used BL2 BDAL 7 L BDAL 7 L

BM1 GND GND BM?2 BDAL 8 L BDAL 8 L

BNI1 BSACK L BSACK L BN2 BDAL 9 L BDAL 9 L

BP1 BIRQ 7 L BIRQ 7 L BP2 BDAL 10 L BDAL 10 L

BR 1 BEVNT L BEVENT L BR2 BDAL 11 L BDAL 11 L

BSI PSPARE 4 Not used BS2 BDAL 12 L BDAL 12 L

BT1 GND GND BT2 BDAL 13 L BDAL 13 L

BUI PSPARE 2 Not used BU2 BDAL 14 L BDAL 14 L

BV1 +5 +5 BV2 BDAL 15 L BDAL 5L

* The SRUN L signal is primarily used to drive a panel run light indicator. It is used for BA11-N and later systems. It indicates

the processor is executing instructions.

2.9 HARDWARE OPTIONS

The KDJ11-A module can be configured into an operating system using a variety of backplanes, power

supplies, enclosures, and LSI-11 type modules.

2.9.1 LSI-11 Options

The LSI-11 options that are compatible with the KDJ11-A module are listed in Table 2-8. These options

meet the following requirements and may be used in any KDJ11-A system configuration.

The backplanes, memory, and I/O devices must support 22-bit addressing.

These devices must use backplane pins BC1, BD1, BE1, BF1 and DC1, DD1, DE1, DF1, for the

BDAL bits <18:21> only.

Table 2-8 LSI-11 Compatible Options

Name Option Identification

Backplanes

H9275 4x9 LSI-11/LSI-11 backplane

H9276 4 %9 LSI-11/CD backplane

Micro/PDP-11 4 %8 LSI-11/CD and 4 x 5 LSI-11/LSI-11 backplane

Memory

MCVI11-D-D MS8631 CMOS nonvolatile memory
MSVI1I-D-L M8059 MOS memory

MSVI1I-P M8&067 MOS memory

MXVI11- M7915 Multifunction module

MRVI11-D M8578 PROM/ROM module

Options

AAVI11-C A6008 D/A converter

ADVII-C A8000 A/D converter

AXVI1I1-C A0028 D/A and A/D combination converter
DLVI1 M7940 Asynchronous serial line interface

DLVI1I-E M8017 Asynchronous serial line interface

DLVI1I-F M8028 Asynchronous serial line interface

DLVII-] M8043 Four asynchronous serial linc interfaces (CS Rev. E or later, ECO

M8043-MR002 installed)

DMVII-AC M38053-MA Synchronous communications interface

DMVI1I-AF M8064-MA Synchronous communications interface
DPVI11 M8020 Programmable synchronous EIA line

DRVI11 M7941 Parallel interface

DRVII-]J M8049 Parallel interface

DUVII1 M7951 Programmable synchronous EIA Line
DZV11 M7957 4-line asynchronous EIA multiple

[BVII-A M7954 IEEE instrument bus interface

KPVII-A M8O16 Power-fail and LTC generator (KPV11-B and -C are not compatible)

KWVI11-C A4002 Programmable real-time clock

LAVII M7949 LA180 line printer interface

LPVI1I M&027 LA180/LPOS printer interface
RLVI2 M806 1 RLO1/2 controller

RQDXI ME&639 MSCP controller for RX350 floppy disk and RD51 Winchester

RXVI11 M7946 RXO01 interface
TSVO0S M7196 Magnetic tape interface

Bus Cable Cards

M9404

M9404-YA

M9405

M9405-YA

Boot ROMs

MXV11-B2

Cable connector

Cable connector with 240 Q terminators

Cable connector

Connector with 120 Q terminators

Boot ROMs

2-11

2.9.2 Restricted LSI-11 Options

The LSI-11 options that are not compatible or restricted for use with the KDJ11-A module are listed in

Table 2-9. Backplanes, memories, or I/O devices that are not capable of 22-bit addressing may generate or

decode erroneous addresses if they are used in systems that implement 22-bit addressing. Memory and

memory-addressing devices which implement only 16- or 18-bit addressing may be used in a 22-bit

backplane, but the size of the system memory must be restricted to the address range of these devices (32

KW for systems with a 16-bit device, and 128 KW for systems with an 18-bit device).

Any device that uses backplane pins BC1, BD1, BE1, BF1 or DCI, DD1, DE1, DF1 for purposes other

than BDAL <18:21> is electrically incompatible with the 22-bit bus and may not be used without

modification to the hardware.

NOTE

Eighteen-bit DMA devices can potentially work in

Q22 systems by buffering 1/0 in the 18-bit address

space.

Table 2-9 Restricted or Noncompatible LSI-11 Options

Name Option Identification

Backplanes

DDVI11-B 6 X9 Backplane

, (18-bit addressing only)

H9270 4 x4 Backplane

(18-bit addressing only)

H9273-A 4X9 Backplane

(18-bit addressing only)

H9281-A, -B, -C 2Xn Dual-height backplane n = 4, 8, and 12

(18-bit addressing only)

VT103 B.P. 4Xx4 Backplane (54-14008)

(18-bit addressing only)

Memories

MMV11-A G653 Core memory

(16-bit addressing only, Q-Bus required on C/D backplane

connectors)

MRVI11-AA M7942 ROM

(16-bit addressing only)

MRVI1I1-BA M8021 UV PROM-RAM

(16-bit addressing only)

MRVI11-C M8048 PROM/ROM

(18-bit addressing only)

MSV11-B M7944 | MOS
(16-bit addressing only)

MSV11-C M7955 MOS

(18-addressing only)

2-12

Table 2-9 Restricted or Noncompatible LSI-11 Options (Cont)

Name Option Identification

MSVI11-D/E M8044,/M8045 MOS

(18-bit addressing only)

MXVI11-A MB047 Multifunction module

(18-bit addressing only on memory, the memory can be

disabled)

Options

AAVI1I A6001 D/A converter

(Use of BCI for purposes other than BDAL [8)

ADVI11 A012 A/D converter

(Use of BCI1 for purposes other than BDAL 18)

BDV11 M8012 Bootstrap/terminator

(CS Revision D or later for use with KDF11-A, or KDF11-B,

EDD M8012-ML0002. CS Revision E or later for use in 22-

bit systems, ECO M8012-ML005)

DLV11-J M8043 Serial line interface

(CS Revision E or later for use with KDF11-A, or KDF11-B,

ECO M8043-M8002)

DRVII-B M7950 DMA interface

(18-bit DMA only)

KPV11-B, -C MR016-YB, -YC Power-fail/line-time clock terminator

(Termination for 18 bits only)

KUVII M8018 WCS
(For use with KD11-B and KD11-BA processors only)

KWVI1I1-A M7952 Programmable real-time clock

(Use of BCI for purposes other than BDAL 18)

REVi1 M9400 Terminator, DMA refresh, bootstrap

(Bootstrap for use with KDI1-B and KL11-HA processors

only. Termination for 18 bits only. DMA refresh may be

used in any system.)

RKVII-D M72609 RKOS controller interface

(16-bit DMA only)

RLVII ME013 + M8&014 RLOI1, 2 controller

(18-bit DMA only, use of BC1 and BL1 for purposes other

than BDAL 18 AND BDAL 19, requires CD-interconnect

on backplane C/D connectors)

RXV2I M8029 RX02 interface

(18-bit DMA only)

TEVI1 M9400-YB Terminator

(Termination for 18 bits only)

VSV1| M7064 Graphics display

(18-bit DMA only)

2-13

Table 2-9 Restricted or Noncompatible LSI-11 Options (Cont)

Name Option Identification

Bus Cable Cards

M9400-YD Cable connector

(18-bit bus only)

M9400-YE Cable connector with 240 Q terminators

(18-bit bus only)

M9401 Cable connector

(18-bit bus only)

Boot ROMs

MXVII-A2 Boot ROMs

2.9.3 Enclosures

The KDJI1-A module may be installed in a variety of enclosures, including, but not limited to, the
following.

BA11-S Mounting Box - Contains the H9276 backplane and the H7861 power supply. It supports 22-bit
addressing for up to nine quad- or dual-height modules. The H7861 power supply provides 36 A at +5 V
and 5 A at +12 V.

BA11-N Mounting Box ~ Contains the H9273 backplane and the H786 power supply. It supports 18-bit

addressing for up to nine quad- or dual-height modules. The H786 power supply provides 22 A at +5 V
and 11 A at +12 V.

BA11-M Mounting Box - Contains H9270 backplane and the H780 power supply. It supports 18-bit

addressing for four slots, each of which may contain one quad- or two dual-height modules. The H780

power supply provides 18 A at +5 V and 3.5 A at +12 V.

Refer to the PDP-11/23B Mounting Box Technical Manual for a complete description of the BA11-S

mounting box and the Microcomputer Interfaces Handbook for a complete description of the BA11-N
and BA11-M mounting boxes.

2-14

2.10 SYSTEM DIFFERENCES

The KDJ11-A module does not have a bootstrap loader, serial line interface, 1/0 bus map, real-time clock,

or memory. A complete listing of the differences between the module and other LSI-11 type processor

modules are listed in Appendix B.

Several key system differences between the KDF11-A and KDJ11-A modules are highlighted below.

l. The KDJ11-A contains an on-board line time clock register (LTC). No LSI-11 bus cycle is

started when the LTC register is accessed at its bus address of 17 777 546. The access is

completely contained on board the KDJ11-A and does not use the LSI-11 bus. Therefore, an

LSI-11 bus option register addressable at 17 777 546 can never be accessed.

An example of a problem this causes with options can be found in the BDV11 option (M8012).

The BDVI11 contains an LTC register which disables recognition of the LSI-11 bus signal

BEVNT by continually asserting BEVNT. Since only the negative edge of BEVNT triggers the

interrupt through location 100, recognition of BEVNT is disabled by this action. The LTC

register on the BDV11 powers-up with BEVNT disable and will only release its grip when a

programmer writes to the register. When the BDV11 is used with a KDJ11-A, the BDVI11’s

copy of the LTC can never be written and, therefore, unless the BDV11 is configured with

switch BS in the off position, all BEVNT interrupts are forever blocked. Switch B5 disconnects

the BEVNT signal from the BDVI11.

In general, no option should contain a register at address 17 777 546.

Bit 11 in the processor status (PS) word selects the alternate register set in the KDJ11-A. This

bit is not implemented in the KDFI11-A. Interrupt vectors should not specify the alternate

register set.

Odd word addresses cause addressing error traps (through location 4) in the KDJ11-A. The

KDFI11-A does not generate any error condition when word references are addressed with odd

addresses. Any existing code which generates odd word addresses will not work on the KDJ11-

A. The existing BDV11 has code that generates odd word addresses.

The BDV 11 generates the error in the ROM diagnostics. The BDV 11 can bypass the error code

if the diagnostics are eliminated (switches A1 and A2 off).

BDAL <21:13> are driven as “110000111” during 1/O references (BBS7 asserted). The

KDF11-A drives these bits differently: “000000111” when memory management is turned off,

“000011111” when 18-bit memory management is selected, and “111111111” when 22-bit

memory management is selected.

2-15

2.11 KDJ11-A SYSTEM

A KDJ11-A module can be installed to upgrade an existing Digital system or a custom-built system using

LSI-11 components. The existing system must be either a KDF11-A or KDF11-B processor. There are

three considerations that must be addressed to upgrade a system.

1. The boot mechanism

2. 18- or 22-bit addressing system

3. Single or multiple box system

If the system processor is not a KDF11-A or KDJ11-A, such as the 11/03 and 11/03L, it should not be
considered for upgrade.

In the following upgrade descriptions, the systems have been labeled as being field serviceable or not. A

system which is field serviceable has a bootstrap which meets Field Service requirements. However, there
is no guarantee that the overall system will be field serviceable.

NOTE

It is recommended that the ac and dc loading for the

final configuration be checked for conformance with

the Q-bus loading rules. It is also recommended to

check for overloading on the +5 V and +12 V power

supplies.

For each system upgrade, Table 2-10 lists the parameters for both the old system and the upgraded

system.

2.12 MODULE INSTALLATION PROCEDURE

Certain guidelines should be followed when installing or replacing a KDJ11-A module.

. Verify dc power before inserting the module in a backplane.

2. Ensure that no dc power is applied to the backplane when removing or inserting the module.

3. Verify the configuration of option jumpers.

4. Insert the KDJI1-A module into the first slot or position in the backplane with the component

side facing up.

5. Ensure that either the module or the selected system components provide the power-up

protocol. '

6. Use a single switch to apply all power to the system.

2-16

Table 2-10 Upgrade Choices

KDJ11-A/MXV11-B KDJ11-A

or MRV11-D w/B2 KDJ11-A/MXV11-A BDV11 (1)

ROM Field Not Field Not Field

Current System Serviceable Serviceable Serviceable

18-Bit Systems

Component upgrades

KDF11-A/MXV11-A

1 box X X

Multibox X X

KDFI11-A/BDV11

1 box X X(8) X

Multibox X(2) X(2) X(6)

PDP-11/23S system upgrades

KDF11-BA (boot on CPU)

1 slot required

1 box X X X

Multibox (3) X(2) X(2) X(6)

PDP-11/23A system upgrades

KDF11-A

Same as component upgrades

22-Bit Systems

Component upgrades

KDFI1-A/MXVI1-A (4)

1 box X X

Multibox (10)

PDP-11/23 PLUS or MICRO/PDP-11 (7, 9)

KDF11-B/BE (boot on CPU)

1 slot required

1 box X X(4) X(5)

Multibox (3, 10)

NOTES:

l. Disable the Processor and Memory test and also the BEVNT register on the BDVI1.

b
2 Use BCVIA and BDV 1B expansion cables.

3. It is not currently possible to expand out of the PDP-11/23-S or MICRO/PDP-11 box while maintaining FCC

comphance.

4. Memory must be disabled.

5. Must have BDVI1 ECO M8012-MLO00S5 installed.

6. Use BCV2B cable set between the first and second box and BCVIA or BCV2B between second and third box. In a
3-box system, expansion cable set lengths must differ by 4 feet.

7. Neither the BDV LT nor the MXV11-A boot code support the RD51 (10 megabyte Winchester) or the RX50 5-1/4

inch diskettes.

8. Check ac loading, since termination was removed when the BDV 11 was removed from the system.

9. The PDP-11/23 PLUS and MICRO/PDP-11 system upgrades will require an extra backplane slot to accommodate
the additional boot module.

10. Not currently configurable with Digital equipment.

For further information regarding upgrade parts, contact your local Ficld Service Representative.

2-17

2.13 SPECIFICATIONS

Identification

Size

Dimensions

Power Consumption

AC Bus Loads

DC Bus Loads

Environmental

Storage

Operating

Instruction Timing

DMA Latency

M8192

Dual

13.2 cm X 22.8 cm (5.2 in X 8.9 in)

+5 V £5% at 4.5 A (maximum)

3.4 unit loads

1 unit load

—40°C to 65°C (—40°F to 150°F) 10% to 90% relative humidity,

noncondensing

For ambient temperatures above 55°C, sufficient air flow must be

provided to limit the module temperature to less than 65°C. For

inlet temperatures below 55° C, air flow must be provided to limit

temperature rise across the module to 10° C,.

Derate maximum temperature by 1°C (1.8°F) for each 305 m

(1000 ft) above 2440 m (8000 ft).

See Appendix A.

DMA latency is defined as the time between receiving a DMA

request (MDMRL) and granting the request (BDMGL). The

worst case DMA latency is 2.2 microseconds.

2-18

CHAPTER 3

CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

3.1 INTRODUCTION

A portion of the microcode in the KDJ11-A module emulates the capability normally found on a

programmer’s console. Since the KDJ11-A does not have a programmer’s console (one with lights and

switches) or a console switch register at bus address 17777570, the terminal at the standard bus address of

17777560 is used to perform console functions. Communication between the processor and the user is via

a stream of ASCII characters interpreted by the processor as console commands. The console terminal

addresses 17777560 through 17777566 are generated in microcode and cannot be changed.

This feature is called the microcode on-line debugging technique, or micro-ODT. The KDJ11-A micro-

ODT accepts 22-bit addresses, allowing it to access 4088 M bytes of memory, plus the 8 Kbyte I/0 page.

Micro-ODT provides a more sophisticated range of debugging techniques, including access of memory

locations by virtual address.

The differences in use of console ODT in the KDJ11-A as compared with that in the KD11-F (LSI-11) and

the KD11-HA (LSI-11/2) are listed in Appendix E.

3.2 TERMINAL INTERFACE

The KDJ11-A does not provide a serial line interface on the module. Therefore, the console must interface

with an LSI-11 serial line interface module connected into the backplane. This allows the console to

communicate with the KDJ11-A via the LSI-11 bus.

3.3 CONSOLE ODT ENTRY CONDITIONS

The ODT console mode can be entered by the following ways.

[. Execution of a HALT instruction in kernel mode, provided the HALT TRAP jumper (W5) is

installed.

2. Assertion of the BHALT signal on the bus. Note that the signal must be asserted long enough

that it is seen at the end of a macroinstruction by the service state in the processor. BHALT is

level-triggered, not edge-triggered. Typically, BHALT remains asserted until the processor

enters ODT.

3-1

3. If power-up mode option 1 has been selected, ODT is entered upon processor power-up.

NOTE

Unlike the KD11-F and KD11-HA, the KDJ11-A

does not enter console ODT upon occurrence of a

double bus error (for example, when R6 points to

nonexistent memory during a bus timeout trap). The

KDJ11-A creates a new stack at location 2 and

continues to trap to 4. If a bus timeout occurs while

getting an interrupt vector, the KDJ11-A ignores it

and continues execution of the program, whereas in

such case the KD11-F and KD11-HA enter console

ODT. Refer to Appendix E for a listing of the dif-

ferent ways certain processors interpret the same

console ODT commands.

ODT causes the following processor initialization upon entry.

1. Performs a DATI from RBUF (input data buffer at 17777562g) and then ignores the character

present in the buffer. This operation prevents the ODT from interpreting erroneous characters

or user program characters as a command.

2. Prints a carriage return <CR> and line feed <LLF> on the console terminal.

3. Prints the contents of the PC (program counter R7) in six digits.

4. Prints a <CR> énd <LF>.

5. Prints the prompt character @.

6. Enters a wait loop for the console terminal input. The DONE flag (bit 07) in the RCSR at

177775605 is constantly being tested via a DATI by the processor for a 1. If bit 07 is a O, the

processor keeps testing.

3.4 ODT OPERATION OF THE CONSOLE SERIAL-LINE INTERFACE

The processor’s microcode operates the serial-line interface in half-duplex mode by using program 1/0
techniques rather than interrupts. This means that when the ODT microcode is busy printing characters

using the output side of the interface, the microcode is not monitoring the input side for incoming
characters. Any characters coming in while the ODT microcode is printing characters are lost. Overrun

errors detected by the universal asynchronous receiver/transmitter (UART) will be ignored because the
microcode does not check any error bits in the serial-line interface registers.

Therefore, the user should not “type ahead” to ODT because those characters will not be recognized.

More importantly, if another processor is at the end of the serial line, it must obey half-duplex operation.
In other words, no input characters should be sent from the console terminal until the processor’s ODT
output has finished. This restriction does not pertain to echoed characters, however.

3-2

3.4.1 Console ODT Input Sequence

The input sequence for ODT follows. (Upon entry to ODT, the RBUF register at 17777562 is read, but

the character is ignored to prevent the character from being interpreted as a command by the console

ODT.)

1. Test RCSR bit 07 (DONE flag) of RCSR at 177775603 usinga DATI bus cycle; if it is a 0,

continue testing.

2. If RCSR bit 07 is a 1, read the low byte of RBUF at 17777562g using a DATI bus cycle.

3.4.2 Console ODT Output Sequence

The output sequence of ODT is as follows.

1. Test bit 07 (DONE flag) of the XCSR at 177775643 using a DATI bus cycle; if it is a 0,

continue testing.

2. If XCSR bit 07 is a 1, write to the XBUF at 17777566g using a DATO bus cycle. The desired

character is in the low byte. The data in the high byte is undefined and is ignored by the serial-

line interface.

If the interrupt enable (bit 06) in the XCSR is a 1, an interrupt will be created to the software when the

proceed (P) console ODT command is used. If a go (G) command is used, all interrupt enables in

peripherals are cleared and an interrupt will not occur.

3.5 CONSOLE ODT COMMAND SET

The ODT command set is listed in Table 3-1 and described in Paragraphs 3.5.1 through 3.5.9. The

commands are a subset of ODT-11 and use the same command characters. ODT has 10 internal states.

Each state recognizes certain characters as valid input and responds with a question mark (?) to all others.

Table 3-1 Console ODT Commands

Command Symbol Function

Slash / Prints the contents of a specified location.

Carriage return <CR> Closes an open location.

Line feed <LF> Closes an open location and then opens the next

contiguous location.

Internal register $orR Opens a specific processor register.

designator

Processor status S Opens the PS; must follow an $ or R command.

word designator

Go G Starts execution of a program.

Proceed P Resumes execution of a program.

Binary dump Control-shift-S Manufacturing use only.

(Reserved) H Reserved for DIGITAL use.

3-3

The parity bit (bit 07) on all input characters is ignored (i.e., not stripped) by console ODT and if the input

character is echoed, the state of the parity bit is copied to the output buffer (XBUF). Output characters

internally generated by ODT (e.g., <CR>) have the parity bit equal to 0. All commands are echoed except
for <LF>. '

In order to describe the use of a command, other commands are mentioned before they have been defined.
For the novice user, these paragraphs should be scanned first for familiarization and then reread for detail.

The word /ocation, as used in the following paragraphs, refers to a bus address, processor register, or

processor status word (PS).

The descriptions of the ODT commands include examples of the printouts that the processor will output to

the console terminal in response to the commands entered by the user. In the examples given, the processor

output is underlined.

3.5.1 / (ASCII 057) - Slash

This command is used to open a bus address, processor register, or processor status word and is normally

preceded by other characters that specify a location. In response to /, ODT will print the contents of the

location (six characters) and then a space (ASCII 40). After printing is complete, ODT will wait for either

new data for that location or a valid close command. The space character is issued so that the location’s

contents and possible new contents entered by the user are legible on the terminal.

Example: @00001000/012525 <SPACE>

where: @ = ODT prompt character.

00001000 = octal location in the Q-Bus address space desired by the user (leading

Os are not required).

/ = command to open and print contents of location.

012525 = contents of octal location 1000.

<SPACE> = space character generated by ODT.

The / command can be used without a location specifier to verify the data just entered into a previously

opened location. The / produces this result only if it is entered immediately after a prompt character. A /

issued immediately after the processor enters ODT mode will cause ? <CR>, <LF> to be printed because

a location has not yet been opened.

Example: @1000/012525 <SPACE> 1234 <CR> <CR> <LF>

@/001234 <SPACE>

where: first line = new data of 1234 entered into location 1000 and location closed

with <CR>.

second line = a / was entered without a location specifier and the previous

location was opened to reveal that the new contents was correct-

ly entered into memory.

3-4

3.5.2 <CR> (ASCII 15) - Carriage Return

This command is used to close an open location. If a location’s contents are to be changed, the user should

precede the <CR> with the new data. If no change is desired, <CR> will close the location without

altering its contents.

Example: @R1/004321 <SPACE> <CR> <CR> <LF>

@

Processor register R1 was opened and no change was desired, so the user issued <CR>. In response to the

<CR>, ODT printed <CR> <LF>, and @.

Example: @R1/004321 <SPACE> 1234 <CR> <CR> <LF>

@

In this case, the user desired to change R1. The new data, 1234, was entered before the <CR>. ODT
deposited the new data into the open location and then printed <CR>,<LF>, and @. ODT echoes the

<CR> entered by the user before it prints <CR>, <LF>, and @.

3.5.3 <LF> (ASCII 12) - Line Feed

This command is used to close an open location and then open the next contiguous location. Bus addresses

and processor registers will be incremented by two and one, respectively. If the PS is open when an <LF>

is issued, it will be closed and <CR>, <LF>, @ will be printed; no new location will be opened. If the open

location’s contents are to be changed, the new data should precede the <LF>. If no data is entered, the

location is closed without being altered.

Example: @R2/123456 <SPACE> <LF> <CR> <LF>

@R3/054321 <SPACE>

In this case, the user entered <LF> with no data preceding it. In response, ODT closed R2 and then

opened R3. When a user has the last register, R7, open, and issues <LF>, ODT will “roll over” to the first

register, RO. When the user has the last bus address of a 32 K word open segment and issues <LF>, ODT

will open the first location of that segment. If the user wishes to cross the 32 K word boundary, the user

must reenter the address for the desired 32 K word segment (i.e., ODT is modulo 32 K words).

Example: @R7/000000 <SPACE> <LF> <CR> <LF>

@R0/123456 <SPACE>

or

Example: @577776/000001 <SPACE> <LF> <CR> <LF>

@477776/125252 <SPACE>

Unlike other commands, ODT will not echo the <LF>. Instead, it will print <CR>, then <LF>, so that

teletype printers will operate properly. To make this easier to decode, ODT does not echo ASCII 0, 2, or

10, but responds to these three characters with ? <CR>, <LF>, @.

3-5

3.5.4 $ (ASCII 044) or R (ASCII 122) - Internal Register Designator

Either character, $ or R, when followed by a register number (0 to 7) or PS designator (S), will open the

processor register specified. The $ character is recognized to be compatible with ODT-11. The R character

was introduced for its being a one key stroke representation of its function.

Examples: @$0 /000123 <SPACE>

@R7/000123 <SPACE> <LF>

@R0/054321 <SPACE>

If more than one character (digit or S) follows the R or $, ODT will use the last -character as the register

designator. An exception: if the last three digits equal 077 or 477, ODT will open the PS rather than R7.

3.5.5 S (ASCII 123) - Processor Status Word Designator

This designator is for opening the processor status word and must be used after the user has entered an R

or $ register designator.

Example: @RS/100377 <SPACE> 0 <CR> <CR> <LF>
@/000010 <SPACE>

Note that the trace bit (bit 04) of the processor status word cannot be modified by the user. This is to

prevent the PDP-11 program debugging utilities (e.g., ODT-11), which use the T-bit for single-stepping,

from being accidentally harmed by the user. If the user issues an <LF> while the processor status word is

open, the word is closed and ODT will print a <CR>, <LF>, @. No new location is opened in this case.

3.5.6 G (ASCII 107) - Go

This command is used to start program execution at a location entered immediately before the G. This

function is equivalent to the LOAD ADDRESS and START switch sequence on other PDP-11 consoles.

Example: @200 G <NULL> <NULL>

The ODT sequence for a G, after echoing the command character, is as follows.

l. Print two nulls (ASCII 0) so the bus initialize that follows will not flush the G character from
the double buffered UART chip in the serial-line interface.

2. Load R7 (PC) with the entered data. If no data is entered, O is used. (In the above example, R7
will equal 200 and that is where program execution will begin.)

3. The floating-point status (FPS) register and the PS will be cleared to 0.

4. The LSI-11 bus is initialized by the processor asserting BINIT L for 12.6 microseconds,

negating BINIT L, and then waiting for 110 microseconds.

5. The service state is entered by the processor. Anything to be serviced is processed. If the

BHALT L bus signal is asserted, the processor reenters the console ODT state. This feature is

used to initialize a system without starting a program (R7 is altered). If the user wants to single-
step a program, he/she issues a G and then successive P commands, all done with the BHALT L

bus signal asserted.

3-6

3.5.7 P (ASCII 120) - Proceed

This command is used to resume execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No machine state visible to the programmer is altered using this command.

Example: @P

Program execution resumes at the place pointed to by R7. After the P is echoed, the ODT state is left and
the processor immediately enters the state to fetch the next instruction. If a HALT request is asserted, it is

recognized at the end of the instruction (during the service state) and the processor will enter the ODT

state. Upon entry, the contents of the PC (R7) will be printed. In this fashion, a user can single-step

through a program and get a PC “trace” displayed on his/her terminal.

3.5.8 Control-Shift-S (ASCII 23) - Binary Dump

This command is used for manufacturing test purposes and is not a normal user command. It is intended to

display a portion of memory more efficiently than the / and <LF> commands do. The protocol is as
follows.

1. After a prompt character, ODT receives a control-shift-S command and echoes it.

2. The host system at the other end of the serial line must send two 8-bit bytes which ODT will

interpret as a starting address. These two bytes are not echoed. The first byte specifies starting
address <15:08> and the second byte specifies starting address <07:00>. Bus address bits

<21:16> are always forced to 0; the DUMP command is restricted to the first 32 K words of

address space.

3. After the second address byte has been received, ODT outputs 10g bytes to the serial line,

starting at the address previously specified. When the output is finished, ODT will print <CR>,

<LF>, @.

If a user accidentally enters this command, it is recommended that, in order to exit from the

command, two @ characters (ASCII 100) be entered as a starting address. After the binary

dump, the user will get the prompt character @.

3.5.9 Reserved Command

An ASCII H (110) is reserved for future use by Digital. If it is accidentally typed, ODT will echo the H

and print a prompt character rather than a ?, which is the invalid character response. No other operation is

performed. ‘

3-7

3.6 KDIJ11-A ADDRESS SPECIFICATION

The KDJ11-A micro-ODT accepts 22-bit addresses, allowing it to access 4088 M bytes of memory, plus

the 8 Kbyte [/O page. All 1/O page addresses must be entered by users with a full 22 bits specified. For

example, if a user wishes to open the RCSR of the serial-line unit (SLU), he/she must enter 17777560, not

177560.

3.6.1 Processor /O Addresses

Certain processor and MMU registers have [/O addresses assigned to them for programming purposes. If

referenced in ODT, the PS will respond to its bus address, 17777776. Processor registers RO through R7

will not respond (i.e., timeout will occur) to bus addresses 17777700 through 17777707 if referenced in

ODT.

The MMU status registers and PAR /PDR pairs can be accessed from ODT by entering their bus address.

Example: @17777572/000001 <SPACE>

In this case, memory management status register O is opened to show the memory management enable bit

set.

The FP11 accumulators cannot be accessed from ODT. Only FP11 instructions can access these registers.

3.6.2 Stack Pointer Selection

Accessing kernel and user stack pointer registers is accomplished in the following way. Whenever R6 is

referenced in ODT, it accesses the stack pointer specified by the PS current mode bits (PS<15:14>). This

is done for convenience. If a program operating in kernel mode (PS<15:14> = 00) is halted, and R6 is

opened, the kernel stack pointer is accessed.

Similarly, if a program is operating in user mode (PS<15:14> = 11), the R6 command accesses the user

stack pointer. If a different stack pointer is desired, PS<15:14> must be set by the user to the appropriate

value, and then the R6 command can be used. If an operating program has been halted, the original value

of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000

@R6/123456 <SPACE>

The user mode stack pointer has been opened.

@RS/140000 <SPACE> 0 <CR> <CR> <LF>

@R6/123456 <SPACE> <CR> <CR> <LF>

@RS/000000 <SPACE> 140000 <CR> <CR> <LF>

@P

In this case, the kernel mode stack pointer was desired. The PS was opened and PS<15:14> was set to 00

(kernel mode). Then R6 was examined and closed. The original value of PS<15:14> was restored, and

then the program was continued using the P command.

3.6.3 Entering of Octal Digits

In general, when the user is specifying an address or data, ODT will use the last eight digits if more than

eight have been entered. The user need not enter leading Os for either address or data; ODT forces Os as

the default. If an odd address is entered, the low-order bit is ignored, and a full 16-bit word is displayed.

3-8

3.6.4 ODT Timeout

If the user specifies a nonexistent address, ODT will respond to the bus timeout by printing ?, <CR>,

<LF>, @.

3.7 INVALID CHARACTERS

In general, any character that ODT does not recognize during a particular sequence is echoed (with the

exception of ASCII codes 0, 2, 10, and 12 as noted earlier) and ODT will print ?, <CR>, <LF>, @. ODT

has 10 internal states, with each state having its own set of valid input characters. Some commands are

allowed only when in certain states or sequences; thus an attempt has been made to lower the probability

of a user’s unconsciously destroying data by pressing the wrong key. Table 3-2 defines the ODT states and

valid input characters.

Table 3-2 Console ODT States and Valid Input Characters

State

Example of

Terminal Output Valid Input

9*

10

@

R, S

G
P

Control-shift-S

@R or @$

S

@1000/123456

<CR>

<LF>

@R1/123456

<CR>

<LF>

@1000

/
G

@R1 or @RS

S

/

@1000/123456 1000

<CR>

<LF>

@R1/123456 1000
<CR>

<LF>

@

@ Control-shift-S

0-7

0-7

0-7

0-7

0-7

0-7

0-7

/

2 binary bytes

*Indicates previous location was opened.

CHAPTER 4

FUNCTIONAL THEORY

4.1 INTRODUCTION

The KDJI11-A is a dual-height microprocessor module on a multilayer printed circuit board for use in an

LSI-11 type system. Figure 4-1 shows the interconnecting data paths between the major functional blocks

of the module which include the following.

the DCJ11 microprocessor

the cache data path and memory

the state sequencer

the input/output control circuits

the bus interface input/output transceivers

The module uses a DCJ11 microprocessor CMOS chip to execute the PDP-11 instruction set described in

Chapter 6, control the memory management, support the console micro-ODT and the other architectural

features described in Chapter 1. The DCJ11 initiates all the KDJ11-A data transfers and operations. The

cache data path contains the line time clock register and the memory system error register (MSER). The

maintenance register is an on-board register that allows software to read the options selected by the user.

The KDJ11-A provides an interface between the DCJ11 and the LSI-11 bus via the A-bus and B-bus data

paths. The state sequencer is a 68-pin gate array that controls the module data transfers using the data

paths. These include the read and write transactions to the cache memory and the system memory by

sequencing the hand shake signals that control the LSI-11 bus.

An on-board 8 Kbyte direct map cache memory is provided. The cache data path chip is a 68-pin gate

array that contains the control logic to support the cache memory. The cache memory is transparent to all

programs and is designed with high-speed RAM memory. The memory locations currently being accessed

from the system memory are automatically stored in the cache memory. The next time these locations are
accessed, the data is retrieved from the cache memory and eliminates the time-consuming LSI-11 bus

transaction. Full parity protection is provided for the cache memory and much of the parity calculations

are done by the cache data path chip. The KDJ11-A monitors DMA writes into the system memory to

ensure that the cache data does not become stale. Each DMA write address is checked to see if the address

is cached, and if it is, the cached data is invalidated.

There are four LEDs on the module that provide a visual indication and monitor the status of the module.
Three of the indicators are set during the power-up sequence to indicate when a hardware failure occurs.

The fourth indicator is set when the module is in the micro-ODT mode. There is also a 40-pin socket
provided on the module for a future floating-point accelerator option.

4-1

1v
as

SHILLIWSNYHL

welgey]Yoo[g[ruonoun|
[~

2un31
]

H
3TY

snd

13074131vasg

*HdoHa

-TINoYI(vnoiLdo)|-JJI..N\%_Twoav|HOLvHIY30VvaiWILSAS
w3onanoas|,19N03IoniwvorsIT1H08Y

330vivd4O31ViS|SNLVLSvadl[IAd730934VINQL730sng
*S10ana1A

33079~—5T3HOSS3ID09dOUIIN[*TINATWJOY¥INODY0S5300Hd-
jYVLLPOQ[TOHINOD3HOVDA|_sNa1vaws-]-BRG]71408Y1NdNIW3ILSAS730sN9D

TAINAIW

LNdN|

AHOWIW

7dW0D

.«eT0HINOD|,13071Nd1No
H31V

e

730034VNG
-¥31s193y[+
M

73LIBM4DeHONASH503SNLVLSsnggsngv
4-2

4.2 DCJ11 MICROPROCESSOR

The DCJ11 is a microprocessor contained on a 60-pin VLSI chip. The input/output pins are shown in

Figure 4-2 and the signals are described below.

MAIQ<0>H AlO<O>H
l———»

MAIO<1>H AlO<1>H

MAIO<2>H AIQ<2>H

PARITY L o ’
> MAIO<3>H AIO<3>H

MISS L > >
> MALE L ALE L

BUFFER/
A FPE L ALE H

MINIT H EP—“'E—‘—" MSCTL L DRIVERS |———>
SCTLH

RIRQ4 H MSTRB L g_—r;gL—’

RIRQ5 H
A-ERAL LSS

CLR PWR FAIL L RIRQS H MABORT L | STRB H
—_— TM MPRDC L ABORT L

> ————

L]
RIRQZ HLilLi%e VAL B SRUN L
INIT L oA -— — 4SN

RPOK L PWR FAIL L | DCI1T-A ENB
s MICRO PROCESSOR [O[ENA

R HALT H -
UPA H ——

EVNT L

FPA STLH DV L

DMR L

RDMRA H
MBS <0>H

CONTLH MBS <1>H
CONT L ==T

RRPLY N o M BUF CTL L
J CLK H

XTAL1

T XTALO

MR-12090

Figure 4-2 DCJ11-A Microprocessor

4.2.1 Initialization (MINIT L)

The MINIT L input is asserted by the BDCOK bus signal which must be asserted for a minimum of 1.5

microsecond. BDCOK H is asserted by the KDJI11-A when jumper W8 is removed. If jumper W8 is

inserted, BDCOK H must be asserted externally in order to start the KDJ11-A. The DCJ11 starts the

power-up sequence (described in Chapter 2) after MINIT L is asserted. MINIT L also clears the PWR
FAIL circuit, initializes the state sequencer, asserts the LSI-11 bus initialization signal BINIT L, and turns
on the diagnostic LEDs.

4.2.2 Output Signals

The DCJ11 output signals control the various module functions and are described below.

4.2.2.1 Address Input/Output (AI0<03:00> H) — These four signals classify the current transaction as a

bus read, bus word write, bus byte write, GP read, GP write, interrupt acknowledge, or NOP as shown in

Table 4-1.

4-3

Table 4-1 AIO Coding

AlO SIGNAL

3 2 1 0 Type of Transaction*

] | | 1 Non /O (NOP)

1 1 1 0 General-purpose read

]] 0 1 Interrupt acknowledge (read vector)

] 1 0 0 Instruction stream request read

1 0 1 1 Read-modify-write, no bus lock

1 0 1 0 Read-modify-write, bus lock

1 0 0 1 Data strcam read

1 0 0 0 Instruction stream demand read

0 1 0 - General-purpose word write

0 0 | - Bus byte write

0 0 0 - Bus word write

*

The NOP, IACK, bus and general-purpose (GP) transactions arc defined as follows.

I A NOP transaction is an internal operation that does not require a bus transfer.

A bus transaction uses the DAL bus to access memory, 1/0 devices or explicit addressable registers.

A general-purpose transaction is used to access interface devices that are not directly addressable by the DAL bus.

Interrupt acknowledge (IACK) transactions are in response to the DCJ11 granting an interrupt request.

4.2.2.2 Bank Select, (BS1 H, BSO H) - These signals are time multiplexed during the transaction.
During the first portion of a bus transaction, they are used to define the type of address on the MDAL bus.
The addresses identified by the BSO H and BS1 H signals are defined in Table 4-2.

The memory types are all addresses below 17 600 000. The system register types are bus addressable
registers in the address range of 17 777 740 to 17 777 751. The internal register types are addressable
registers that reside within the DCJ11. The external I/O types are addresses greater than 17 577 777
which are neither internal registers nor system registers.

During the second half of the transaction, the BS1 H signal indicates the cache bypass status and the BSO
signal indicates the cache force miss status as described below.

BS1 H Asserted — Cache bypass

Negated — No cache bypass

BSO H Asserted — Cache force miss

Negated - No cache force miss

Table 4-2 Bank Select Address Codes

BS1 BS0 Address Type

0 0 Memory

0] System register

! 0 External 1/0

1 1 Internal register

4.2.2.3 Address Latch Enable (ALE L) - The ALE L output is asserted at the start of a transaction and

latches the physical address, the AIO code and the BS1 H, BSO H code. The negation of ALE L latches

the cache hit/miss calculated data.

4.2.2.4 Stretch Control (SCTL L) - The SCTL L is asserted for the stretched portion of a transaction

and negated when the DCJ11 receives CONT L input. When SCTL L is asserted, it generates the LSI-11

bus signal BSYNC L that is used for the LSI-11 bus read and write transactions. It also activates the

ABORT L input/output signal.

4.2.2.5 Strobe (STRB L) - This signal is asserted at the end of the second DCJ11 clock period and is

negated at the end of the transaction. The address is latched into the cache data path and the LSI-11 bus

drivers when STRB L is asserted. The negation of STRB L clears the parity error flip-flop that drives the

PARITY L input to the DCJI11.

4.2.2.6 Buffer Control (BUFCTL L) — The BUFCTL L is asserted to enable the input control logic for

the A-bus to drive the MDAL bus. It is negated to enable the output control logic for the MDAL bus to

drive the B-bus. The signal is asserted when the DCJ11 is reading data from the A-bus and negated when

the DCJ11 is writing address or data information onto the B-bus.

4.2.2.7 Predecode Strobe (PRDC L) - The signal is asserted for the first two DCJ11 clock periods of

any transaction that decodes a PDP-11 instruction. It also drives the SRUN L output of the module.

4.2.2.8 Clock (CLK H) - The CLK H output initiates and continuously clocks the timeout logic circuits

used to detect nonexistent memory and the no BSACK L error condition.

4.2.3 Input Signals

The DCJ11 receives status and control information from a variety of input signals. These signals and their

associated functions are described below.

4.2.3.1 MISS L - The MISS L input reports the cache memory hit and miss status during bus read and

write transactions.

4.2.3.2 Data Valid (DV L) - The DV L input is generated by the state sequencer and is used to latch in

read data from the MDAL bus.

4.2.3.3 Continue (CONT L) - The CONT L input is generated by the state sequencer and the LSI-11

bus signal BRPLY L to indicate that the current stretched transaction can end. It is only asserted when

both the state sequencer enables the continue output, and the bus signal BRPLY L is negated on the LSI-

11 bus.

4.2.3.4 DMA Request (DMR L) - The DMR L input is used to stall the DCJ11 by stretching the next

transaction. It is asserted by the FPA STL L signal from the floating-point accelerator socket or by the

LSI-11 bus signal BDMR L. The input is sampled at the beginning of the current transaction, and, when

present, it will stretch the next transaction until the DMA or FPA transfer is complete.

4.2.3.5 IRQ <07:04> H - These inputs are coded priority levels from external devices that drive the

LSI-11 bus signals BIRQ<07:04> L. The IRQ<07:04> H inputs are interrupt requests to the DCJ11 and

are coded to determine a priority level. The acknowledgement of these inputs is dependent on the current

priority level of the processor status word.

4.2.3.6 HALT H - The HALT H input is driven by the LSI-11 bus signal BHALT L and is the lowest
interrupt priority for an external device.

4-5

4.2.3.7 EVNT H - The EVNT H input is driven by the LSI-11 bus signal BEVNT L and has a level-6

priority. This signal can be disabled by installing the W9 jumper or by software clearing bit 6 of the line

time clock (LTC) register.

4.2.3.8 PWR FAIL L - This input is asserted by the power fail flip-flop which is set by the negation of

the LSI-11 bus signal BPOK H. The flip-flop is reset by either MINIT L or CLR PWR FAIL L signals.

This input is a nonmaskable interrupt to the DCJI1.

4.2.3.9 PARITY L - The PARITY L input is driven by the cache data path when a parity error is

detected. This input is a nonmaskable interrupt to the DCJ11.

4.2.3.10 ABORT L - The ABORT L signal is an input/output line that can be driven by the DCJ11 or

an external device such as the cache data path. The signal is used in conjunction with the PARITY L input

to determine when the DCJ11 aborts the current transaction.

4.2.3.11 FPA FPE L - The FPA FPE L input is driven by the floating-point accelerator socket and is a

nonmaskable interrupt request. '

4.2.4 MDAL<21:00>

The MDAL<21:00> bus is a time-multiplexed data/address bus. The basic bus consists of DAL bits
<15:00> and is bidirectional. DAL bits <21:16> are outputs only and used as the extended bus. The data

being transmitted or received is dependent on the type of transaction being performed by the DCJ11.

4.2.5 DCJ11 Timing

The DCJ11 controls the type of transaction being executed and indicates this to the module circuits by

coding the A10<03:00> signals. There are six basic transactions performed and these are described as
follows.

4.2.5.1 NOP - This transaction performs a DCJ11 internal operation and does not require the use of the

MDAL bus. The normal transaction is shown in Figure 4-3. The stretched transaction (Figure 4-4) occurs
when DMR is asserted early in the transaction and remains stretched until the CONT input is asserted to
end the transaction.

ALE A Wi/

SEE 7 W

A5 T AocobE L

o RN YRXRK_ K00

MR-12074

Figure 4-3 NOP Transaction

~
—

—
r

> = m AN aitf

STRB /;/// «5\\ ((
m)

({

ATG Jl o cooe A 31 (; M)

SR T\RECUESTTT 2 ;r /

BUFCTL AL (L i
IR B

- — CONTNUE/////

MR-12075

Figure 4-4 Stretched NOP Transaction

4.2.5.2 Bus Read - The bus read transaction uses the MDAL bus to read data from cache memory, main

memory, input/output devices or the addressable module registers. These transactions occur during

instruction stream reads, data stream reads and the read portion of read-modify-write. The transaction

reads complete words and if only a byte is required, the DCJ11 ignores the excess byte. A cache bus read

transaction (Figure 4-5) occurs when the physical address scores a hit in the cache memory. The DCJ11

will abort the transaction if any memory management or address errors assert the ABORT L signal. When

this happens, all current information is ignored and the transaction is immediately aborted.

SR CCCCCCKCU D)) IR TT Y ST (L cccccecccceedd
PHYSICAL ADDRESS

ALE AN v/l

OMR DMAe I//SNC S\ X ¢ XK

DMA REQUEST

BS N\ /0 BANK SELECT CACHE STATUS /////

CACHE HIT
TereY ' rrrlrr

MISS WA/ /74

“EoFT WX MMU ABORT STATUS WX

VS A Y/

MR-12076

Figure 4-5 Bus Read Transaction

The non-cache or stretched bus read transaction (Figure 4-6) is used when the data must be accessed via

the LSI-11 bus. This occurs when any of the following conditions exist.

Either BS1 H or BSO H is set to one indicating an I/0 address

Cache bypass is indicated

Cache force miss is indicated

DMR L is asserted

Cache MISS is reported

The BUFCTL L and SCTL L outputs are asserted during the stretched portion of the read transaction.

The data is read by the DCJ11 when data valid (DV L) is asserted. When the transaction is stretched only

because the DMR input was asserted, then DV L is not asserted because it will overwrite the valid data

received from the cache. The transaction will remain stretched until the CONT L input is asserted to end

the transaction.

PHYSICAL ADDRESS

A CCCCCCKCCCCCC o M) L1 BUS DATA (i

~
—
—

~
—

ALE AN 111/

DMA REQUEST— o

DR QOO v 0 Iy X0
Y

I/0 BANK SELECT G

BS WX v DA({ CACHE sTATUS ¥l

CACHE HIT Lo
MISS 1

CACHE MISS e

ABORT))X((MMU ABORT STATUS \\\\ MMU AND SYSTEM ABORT STATUS
))

BUFCTL \m 43227 WK\ ((/7777
) Y

((— CONTINUE

CONT) \\\S\ ¢ /////

bV —{ Vi AN\

MR-12077

Figure 4-6 Stretched Bus Read Transaction

4.2.5.3 Bus Write — The bus write transaction writes data to memory, /O devices, or other addressable

registers via the DAL bus. The transaction can write either bytes or words as determined by the AIO code.

The DCJ11 reports any memory management or address errors by enabling the ABORT L signal. This

causes the transaction to be terminated immediately and all data should be ignored.

The write transaction as shown in Figure 4-7 and all bus write transactions are stretched. The SCTL L

signal i1s asserted and the write data is on the bus during the stretched portion of the transaction. For byte

writes, an even address selects the low byte and an odd address selects the high byte. The data for the

remaining byte is not used.

4-8

/ fi

DAL “m mmmmg { ZZN!XZX!XXX!XXXXM(DATA OUT '(/)
PHYSICAL ADDRESS ' ’L

ALE AN il "
{ (

BS W : DX CACHE STATUS o
L 1/0 BANK SELECT L

ABORT Y MMU ABORT STATUS W . MMU AND SYSTEM ABORT STATUS
17

BUFCTL
)/ f

SCTL NN (L il
o CONTINUE

CONT)]

Figure 4-7 Bus Write Transaction

W+ g7
MR-12078

4.2.5.4 General-Purpose Read - The general-purpose read transaction accesses non-user-addressable

module hardware. The MDAL address used for general-purpose reads is in the form of 17 777 XXX,

where the “XXX bits represent the general-purpose read code described in Table 4-3. The codes use

MDAL bits <07:00> to access the hardware.

All general-purpose read transactions (Figure 4-8) are stretched. The DCJ11 reads the data when DV L is

asserted. The transaction is stretched until CONT L is asserted to end the transaction.

Table 4-3 General-Purpose Read Codes

Code Function

000 Reads the maintenance register during power up

and determines the options selected by the user.

001 Reserved

003 Reserved

DAL QL cpcoe WVWWINIIINDY 6P DATA J}, ()(, {({(c

ATE TM il '
BUFCTL AN\ /7R g Lh 7

5CTL AW 7
[(CONTINUE

CONT R\ 2/

DV (i/ AN\

Figurec 4-8 General-Purpose Read Transaction

4-9

MR-12079

4.2.5.5 General-Purpose Write — The general-purpose write transaction accesses non-user-addressable

module hardware. The MDAL address used for general-purpose writes is in the form 17 777 XXX, where

the “XXX" bits represent the general-purpose write code described in Table 4-4. The codes use MDAL

bits <07:00> to access the hardware.

All general-purpose write transactions (Figure 4-9) are stretched. The DCJ11 writes the data when SCTL

is asserted during the stretched portion of the transaction. The transaction is stretched until CONT L is

asserted to end the transaction.

Table 4-4 General-Purpose Write Codes

Code Function

003 Reserved

014 Asserts bus reset signal

034 Indicates exit from console (ODT) mode

040 Reserved for future use

100 Acknowledges EVENT interrupt

114 Negates bus reset signal

140 Acknowledges power fail

220 Microdiagnostic test 1 passed

224 Microdiagnostic test 2 passed

230 Microdiagnostic test 3 passed

234 Indicates entrance into console (ODT) mode

oat (T ap cooe TV TARARBRI{{{ P DATA OUT

ALE A [y

210

o --"
*~_

.(
—r

—
—
—

L

a
n
d

- m ., m——

itT
MR-12080

Figure 4-9 General-Purpose Write Transaction

4.2.5.6 [IACK - The read interrupt vector transaction acknowledges an interrupt request received on one

of the IRQ<03:00> inputs by reading a device interrupt vector. All interrupt vector transactions (Figure

4-10) are stretched. The device interrupt vector is latched by the DCJ11 when the DV L input is asserted.

4.3 STATE SEQUENCER

The state sequencer (Figure 4-11) controls the routing of address and data information on the KDJ11-A

module and the LSI-11 bus handshaking signals. The module data path buses consist of the A-bus, B-bus

and the MDAL bus. The MDAL bus is bidirectional; it interfaces with the A-bus by the input control logic

and the B-bus by the output control logic. These data paths allow the DCJ11 to transmit addressing and

data information on the B-bus to the LSI-11 bus, and receive read data on the A-bus from the LSI-11 bus.

The A-bus and B-bus are also connected to the DMA register, which allows DMA addresses to connect to

the B-bus.

DONDIINVINIY DEVICE VECTOR {({{{

—~
—
u
L

on U3

e Y/ oF
~EoRT T T J} ;)EYSTEM ABORT STATUS

oo O/ " 17

W4
DV M \\SS\

—
—
—

—

Figure 4-10 Interrupt Acknowledge Transaction

RDOUT H DC

TDMG H

RRPLY H

RSACK H

RRPLY H

E19

TIMEQOUT L

—_[va— +5.0v

T

=

Figure 4-11

STRB H I

M R-12081

State Sequencer

AIO<O>H

AID <1> H

AIO<2>H DRCP H -
AlO<3>H QBUS OE L -
MBS<O>H TWTBT H .
MBS<ISH TDIN H .

ABORT L TDOUT H -
ALE L TIAK H .

SCTL T TDMG H i

RX DOUT H .. TSYNC L -

FPA OF L GP DATA OE L N
FPA RDY H LOAD DMA LATCH H_
FPAFPE L DMAREG OEL
FDA STL L >

CONT FRM RPLY H.. SEL<O>H ~

SAsSH| STATE SEL<1>H -
FLOVFL H SEQUENCER IToNGEevCLER
AO H UPDATE L =

CHECK H ;

TAG CS L N

DATA CS BO L g

DATA CS B1 L g

RDMRZH RAM WE L _
MINIT L >

DV L N

CONT L ;

END DMA H ALE L R

UPA H RLOE L >
FPA ACK L g

CLK POH _ ILOE L L

CLK P1 H CLK IN o

TIME DELAY

MR-12091

The steady or quiescent state of the sequencer sets up the module data paths for high-speed cache memory
read operation. When a transaction is stretched, the state sequencer leaves the steady state to control the
module functions and the LSI-11 bus. This allows the module to perform memory read/write, interrupt
vector reads, board register read/write, floating-point accelerator memory 1/0, general purpose 1/0, or
DMA arbitration. A stretched transaction is initiated when SCTL L is asserted. This starts the state
sequencer’s clock and, if necessary, generates the LSI-11 bus signal BSYNC L. The CLK H output drives
the external delay line to generate two delayed clock inputs of 40 ns and 60 ns. These are used to
determine the cycle time of the sequencer and provide short periods of 80 ns or long periods of 120 ns. The
state sequencer decodes the AIO inputs to identify the type of transaction and the BS1 H, BSO H inputs to

classify the address. The state sequencer provides control signals to the functional areas of the module to
support the transaction being performed.

4.3.1 DCJ11

The state sequencer informs the DCJ11 when valid data is on the MDAL bus by asserting DV L. It also

asserts the CONT L input to the DCJ11 when the transaction is completed. It receives the ABORT L and
ALE L inputs from the DCJI1.

4.3.2 LSI-11 Bus Signals

The state sequencer provides the handshaking control signals when the module is transmitting or receiving

data via the LSI-11 bus. These signals are TWTBT H, TDIN H, TDOUT H, TIAK H, TDMG H and
TSYNC. The use of these signals and the LSI-11 bus protocol are described in Chapter 5.

4.3.3 LSI-11 Bus Receivers

The LSI-11 bus data is latched into the bus receivers when RLE L is asserted and this data is driven onto
the A-bus when RLOE L is asserted.

4.3.4 LSI-11 Bus Transmitters

The LSI-11 bus data is latched into the bus transmitters from the B-bus when the DRCP H signal is

asserted and driven onto the LSI-11 bus when the Q-BUS OE L signal is asserted.

4.3.5 Maintenance Register

The maintenance register data is placed on the A-bus when GP DATA OE L signal is asserted.

4.3.6 DMA Register

The DMA register receives an address from the LSI-11 bus via the A-bus and latches it into the register

when LOAD DMA LATCH H is asserted. The address is driven onto the B-bus to check it against the

addresses in the cache memory when DMA REG OE L is asserted.

4.3.7 Cache Data Path

The cache data path provides the SAS H, FLOVFL H and A<0> H inputs to the state sequencer and

receives the SEL <01:00> H, LONGCYCLE H, UPDATE L and CHECK H from the state sequencer.

The special address status (SAS H) is asserted whenever the maintenance or LTC registers are addressed.

The A<00> H input represents the status of address bit zero. The flush counter overflow status (FLOVFL

H) input is asserted when the cache memory is being flushed. The LONGCYCLE H output is asserted

each time a location is flushed and increments the address stored in the flush counter to the next location.

The SEL<01:00> H provide the select output code used to drive the contents of a register selected in the

cache data path onto the B-bus. The select codes are described in Table 4-5. The UPDATE L and

CHECK H signals are used by the cache data path to control the tag parity function.

4-12

Table 4-5 Select Codes

SEL

1 0 Selections

0 0 The cache data path DAL outputs are tristated.

0 I The contents of the address register is driven on the DAL outputs.

| 0 The status of the memory system error register is driven on the DAL outputs, except when the LTC

register is specifically addressed.

l 1 The current address/or contents of the flush counter is driven on the DAL outputs.

4.3.8 Cache Memory

The cache memory asserts the COMP L input when an address scores a cache memory miss. The memory

read/write functions are controlled by the TAG CS L, DATA CS B1-BO L and the RAM WE L outputs.

The tag chip select (TAG CS L) signal is asserted to select the 11-bit TAG memory. The high byte data

chip select (DATA CSBI H) and the low byte data chip select (DATA CSBO H) signals are asserted to

select words or bytes stored in the cache memory. The RAM write enable signal (RAMWE L) is asserted

to write data, or negated to read data into the selected memory.

4.3.9 Floating-Point Accelerator

The floating-point accelerator (FPA) socket provides the FPA RDY H, FPA STL L, FPA OP L and FPA

FPE L inputs and receives the FPA ACK L and DV L outputs. The FPA RDY H input is asserted when

the FPA is ready to proceed. The FPA STL L input is asserted when the FPA wishes to stall the DCJ11.

The FPA FPE L is asserted to exit the stall condition. The FPA OP L is asserted when the FPA is writing

data on the A-bus. The state sequencer enables the FPA option by asserting the FPA ACK L output. The

FPA latches data from the DCJ11 when the state sequencer asserts DV L.

4.3.10 Bus Traffic

The on-board buses transfer the addresses and the read/write data to and from the DCJ11. They also

provide communications between the on-board functions and the system [/O. An overview of the bus

traffic flow is described below.

4.3.10.1 Address Busing — The DCJ11 uses the B-bus to address cache memory, main memory. and the

[/O devices. The address flow pattern is shown in Figure 4-12.

4.3.10.2 Read Data — The DCJ11 uses the A-bus to read data from the FPA, cache memory, mainte-

nance register, main memory, and the 1/O devices. The read pattern is shown in Figure 4-13.

4.3.10.3 Write Data — The DCJ11 uses the A-bus and B-bus to write data to the FPA, cache memory,

status LEDs, main memory, and the 1/O devices. The write data pattern is shown in Figure 4-14.

4-13

vYGiLZlWwIvas

sng -11NOD|I(wnoiLdo)T-
|

-¢_——————

7g4l1sT3LIHMdDAHOW3IWsnavJvas1dW0D

=

4-14

vasg

-

Hdouam-————

-TINODI(vnoiLdo)|—)._Jw\%_*T1doav|MOVI130vTdN0D
71luoav

WILSAS-1y3on3nD3s\ONUvOTdC.TAEPEY-

730934VIAQLP_————P—
730SNd

10408TAd
73079-]7137dHOSS3ID0H40HIIWTLNAJWTOHLINODJO0Hd.le————_IHOSSVY-LrOQfeeeTOYINODIHOVD

U-———————————-y130%n80TLINAIW--———l———————HLVdv1vaSnEvom)

IHIVDJOHLINODHvdndfp—LNdNI
AHOWINWSNv7

dWO0
D

p———————je-———

1OHLNODAE

H31V-

1Nd1no730O34VWA
SENETYD)oHDNASYSNLVLSsnggsngv

HILSIOTY
|

JONVYNILNIVW
H37V

/3ZNVILINI[*730VIva40SH3IAI
ZD3IY

sng

f-——
———

73074ptl
——

13dd——

4-15

9SITLHW

JONYNILNIVIAH3TV/3ZNVILINI[*935VIva95
—

“HdJ4d'7INODI(vnoiigol|G
A!.Iflwl\%!_*T1dg0o8v|zozxum,_u_wuTM7%oVvd4#p*—ooas

W3LSAS<1u30N3n03sdWoSTonivors111808V730vivado31vis|snivisvddl|AQ
*530030vWaL

<39DddVNG-__-—
HYWaavol784157INOD

Do
-S

«—1305n971048TAQ
73074

-—]
BH31Vl-——3mfi-YOSSID0HJOHOIW[*TINATW3

30044
-

OBLNODHOSS300VY-L1100eT0YINODJHIVDA_sNgTYawSTl«————-——78413—T3LI9MdO.SHILLIWSNVYHLni“Hd340-71408V1NdN{W3LSAS
SN8

*30snao
TLNAIW-———

f—o———
TALEVA|Lg—IRISEREQAHOWIW

«——
1

3HOVD
S8v

1
dW0

D55|Sne8—-e————TTHIwY

1NdLNo
730934YWQ

PTILIHM4OEhm%\wmHONASHSNLYLSsns8sngv
—

73
07

sna731yD

4-16

44 CACHE DATA PATH

The cache data path is a multifunction gate array (Figure 4-15) that controls the 8 Kbyte direct map cache

memory. It generates B-bus bits <21:13> as TAG data for the cache memory during cache write

transaction. Parity for the TAG data is generated, predicted, and checked by the gate array. The LTC,

memory system error, and address registers are contained within the array. It also contains the flush

address counter used to clear or flush the cache memory.

4.4.1 DCIJ11 Input Signals

The cache data path decodes the AIO input to identify the transaction and the BS<01:00> H inputs to

identify the type of address. The SEL<01:00> H inputs selects the contents of an internal register or

counter as described in Table 4-6.

The cache data path receives the ALE L, STRB L and SCTL L signals to synchronize and control the

cache operation. The assertion of ALE L latches the BS<01:00> H data and gates the GP WRITE L

output. The assertion of STRB L latches the address data into the address register. The negation of STRB

L clears the parity error latch and enables the GP WRITE L output. The assertion of SCTL L enables the

ABORT L output and latches the write data. The negation of SCTL L clears the flush counter and

disables the ABORT L output.

Table 4-6 Output Select Codes

SEL

1 0 Selections

0 0 The DAL output are tristated

0 1 The contents of the address register

1 0 Either memory system error or BEVNT register

1 1 Flush counter

4.4.2 State Sequencer Inputs

The cache data path receives CHECK H, UPDATE L and LONGCYCLE H signals to control the cache

memory. The CHECK H and UPDATE L inputs control the generation, checking and prediction of the

TAG parity as described in Table 4-7. The cache data path predicts the parity of address bits <21:13> in

the same way it calculates the TAG parity bit. The predicted parity is driven as the PREDICT PAR H

output signal and compared with the stored TAG parity bit by the data parity logic to determine a hit or

miss. The TAG parity bit is calculated for bits <21:13> and stored with the TAG data. The parity is

checked when the predicted parity and the stored parity bits are compared within the cache data path to

enable the PERR L output when an error is detected. The LONGCYCLE H input is asserted to increment

the address stored in the flush counter.

Table 4-7 TAG Parity

Update L Check H Function

Negated Negated Predict TAG parity

Negated Asserted Check TAG parity

Asserted Negated Generate TAG parity

Asserted Asserted Undefined

4-17

TINATW7T
ALY

V 21307[011U0D)YOBD)G-y2In31T
LINI

L
7

LNA351D

-0IHINA3Y
flAG+Hvdn

HN3INA
-

HSvS
<

Hsal«TILIOMd9TH43dW3INW
71408VHYvd121034d

])4

H4VvdDNOHMM<0
>v

14A074HdVdOVl

<
AVHYVHlvd
v1va

3IHOVD

_Ivdn

d

L
HHH3HvdL8H443Hvd08

A0S+7
443

d
W3
IW

H
Aldy

y

131vddnH113S1841S73
VH<L>13SH<0>13SH<L>0IVH<Z>0IVH<E>
OIV

H<1>S8H<0
>S8

H
1Nnod

.l

HNIdLHLLLI>Y

4-18

4.4.3 System Memory Parity

The system memory parity data is transmitted to the module via A-bus bits <17,16>. These inputs are

monitored and when asserted, a parity error is detected. The MEM PERR H input is asserted and enable

either on ABORT L or PERR L output.

4.4.4 Cache Memory Parity

The cache memory parity error inputs BO PAR ERR H and Bl PAR ERR H are asserted when a parity

error is detected in the cache data memory. The low byte is monitored by BO PAR ERR H and sets bit 06

of the MSER. The high byte is monitored by BI PAR ERR H and sets bit 07 of the MSER. Either input

can enable the PERR L or ABORT L output.

4.4.5 Timeout

The TIMEOUT H input is enabled when the LSI-11 bus fails to assert the RRPLY H input within 10

microseconds after the TDIN H or TDOUT H signal was asserted by the module. When TIMEOUT is

asserted, it causes the ABORT L output to be asserted and aborts the transaction.

4.4.6 Cache Control Register

The cache control register in the cache data path is shadow copied when the CCR register in the DCJ11 is

written and its contents are used to control the cache memory system. The cache data path logic only

interprets bits 10, 08, 07, 06, 01, and 00. The write wrong parity logic is enabled by bit 10 being set (1)

and it inverts the current TAG parity bit. This will force a TAG parity error the next time that location is
accessed. When bit 08 is set (1), the FLOVFL H output is asserted to flush the cache and the flush counter

is enabled. The bit is reset when the flush counter overflows and SCTL L is negated. The parity error

abort, bit 07, is used with the disable cache parity interrupt, bit 00 to determine the action taken in

response to parity errors. The conditions for bits 07 and 00 are summarized in Table 4-8. The write wrong

data parity logic is enabled when bit 06 is set (1) and it inverts both of the data parity bits. This changes

the high byte even parity to odd and the low byte odd parity to even. This causes a data parity error the

next time that location is accessed. The cache diagnostic mode is enabled when bit 01 is set (1) and the

cache is allocated on all write transactions, regardless of ABORT L, except when bypassing or forcing a
cache miss.

Table 4-8 Parity Error Action

Bit 7 Bit 0 ~ Action

0 Abort through vector 114, update cache

] Abort through vector 114, update cache

0 Interrupt through vector 114, update cache

1 Update cache onlyO

O

e

4.4.7 Memory System Error Register

The memory system error register is a read-only register that uses bits 15, 07, 06, and 05 to store parity

error data for the memory system. The register is cleared by any write into it. The parity abort, bit 135, is

set whenever a parity abort occurs. A parity abort is defined as any parity error or memory error occurring

during a demand read with the cache control register bit 07 set. When this occurs, bits 07, 06, and 05 are

individually set to identify the type of parity error. Bit 07 is set for a high byte data parity error, bit 06 is

set for a low byte parity error, and bit 05 is set for a tag parity error. However, if the cache control register

bit 07 is not set, then any type of parity error in the cache sets all three bits. The register is read when the

SEL <01, 00> bits are set to 1 and 0, respectively, and the LTC register address is not selected.

4.4.8 LTC Register

The LTC register is a read/write register that allows software to set bit 06 and enable the EVNT EN
output. The EVNT EN H signal allows the bus BEVNT L input to be routed to the microprocessor as an

external event interrupt. The BEVNT L input can be disabled by the user inserting the W9 jumper. When

enabled, the flip-flop is clocked by REVNT H and the output is gated with EVNT EN H to enable the
MEVNT L signal. The flip-flop is reset by either CLR EVNT L or TINIT L.

4.4.9 Flush Counter

The contents of the cache memory is flushed or cleared during power-up and whenever bit 08 of the cache
control register is set. This requires each address location in the cache to be addressed and cleared. The

process is initiated by the cache control chip asserting FLOVFL H to the state sequencer and zeroing the

flush counter. The contents of the flush counter is used to address the cache memory via the B-bus bits

<12:01>. Every time an address is cleared, the counter is incremented to the next address by the

LONGCYCLE H input from the state sequencer. Flushing the cache memory takes up to 1.3 microsec-

onds and during this time, no DMA or processor activity is performed. The counter contains 12 bits and

when the cache memory is completely flushed, the counter overflows. This causes the cache control chip to

negate the FLOVFL H signal to the state sequencer, indicating the cache flush operation is complete.

4.4.10 Address Register

The address register latches the address received via the B-bus during the early portion of the transaction.

The A<00> output is driven directly from address bit 00. During the later portion of the transaction, the

SEL <01, 00> H code enables the address to be driven via the B-bus to the main memory and the cache

memory. All 22 bits are used to address the main memory and bits <12:01> are used to address the cache

memory. Register bits <21:13> are placed on the TAG bus as data for storage in the cache memory when

the UPDATE L input is asserted.

4.4.11 CDP Outputs

The cache data path transmits and receives address and data information via the B-bus <21:00> and the

TAG bus <10:00> including the TAG V bit and TAG parity bit. The FLOVFL H output is asserted while

the cache memory is being flushed and negated when flushing cycle is completed. The A<00> H output is

asserted whenever the B-bus bit 00 is set (1). The WR WRONG PAR H output is asserted whenever bit

06 of the CCR is set and writes the wrong parity into the cache memory. The PREDICT PAR H output is

the predicted TAG parity of B-bus bits <21:13> and it is compared with the stored TAG parity to

determine the hit/miss results. The PERR L and ABORT L outputs are generated by the parity logic and

interpreted by the DCJ11 as described in Table 4-9. The GP WRITE L output is asserted when the AIO

coded input specifies a GP write transaction. The output is used to externally latch the GP data. The TBS7

H output 1s asserted when the BS <01, 00> H code specifies an external 1/0O address during the early

portion of the transaction and during the later portion of the transaction, or if the transaction is bypassing

the cache or forcing a cache miss. The SAS H output is asserted whenever the maintenance register or the

LTC register is being addressed. The EVNT EN H output is described in Paragraph 4.4.8.

Table 4-9 Abort and Parity Response

Abort Parity DCJ11 Action

Negated Negated No interrupt or abort

Negated Asserted Interrupt; vector to location 114

Asserted Asserted Abort; vector to location 114

Asserted Negated Abort; vector to location 4

4-20

4.5 CACHE MEMORY

The cache memory (Figure 4-16) consists of RAM memory for data, TAG and parity, the data parity

logic, and the hit/miss logic. The cache memory is used to temporarily store data received from the system

memory that the processor is currently using. This allows the DCJ11 to quickly access on-board data

without performing external bus transactions. The physical address is divided into three sections as shown

in Figure 4-17. The byte bit is used to access either high or low bytes of data. The index bits are used as the

address of the cache memory. The label bits are stored as TAG data for valid cache entries. Each cache

entry is organized as shown in Figure 4-18. The high and low bytes of data are stored as data. The low byte

parity (PO) is stored as even parity and the high byte parity (P1) is stored as odd parity. The label bits with

a tag valid bit (V) and the tag parity bit (P2), stored as even parity are stored as TAG data. The byte

parity is calculated by the data parity logic and the hit/miss logic interprets the physical address as a valid

cache address.

The cache memory is controlled by the state sequencer signals DATA CS BO, BIL, TAG CS L, UPDATE

L, and the write enable signal RAM WE L. The WR WRONG PAR H, PREDICT PAR H signals and

the TAG data are controlled by the cache data path chip. The physical addresses are received via the B-

bus, the data is read/written via the A-bus and the TAG data is read/written via the TAG bus.

CACHE

DATA ;<12:1> A BUS <15:0>B BUS<12:1 > AN >
- — = 4BO. 81 DATA CS L J ot o

RAM WE Lol \vr

A BUS<15:0>RAM WE Ltd — BO. B1 PAR ERR H

BO, B1 DATA CS L
: > ENO BO. B1 DATA_____ 0.81 DATACS L | M

PARPARITY W WRONG PAR H LOGIC
S_ B BUS<21:1> DATA UP DATE L _ BO, B1 PAR OK L

4KX1 BO, B1 PAR OUT H

r. BO, B1 PAR IN H _]

B BUS <21:13> > IT/MISS pvoneH COMPL
PREDICT PAR H_| LOGIC m—

TAG V BIT H
B BUS <12: 1> >

TAG PAR H _

TAG DATA

4KX12

< TAG BUS <8:0> >
TAGCS L o

RAM WE Lo ~l\vr

MR-12093

Figure 4-16 Cache Memory

4-21

21 13 12 01 00

BYTE SELECT —T
MR-11057

LABEL INDEX

Figure 4-17 Cache Memory Physical Address

08 00

P \% TAG

15 08 07 00

P1 B1 PO BO

MR-11068

Figure 4-18 Cache Data

4.5.1 Cache Data

The cache data RAM is 8 Kbytes of read/write memory that is addressed by the index field, B-bus bits

<12:01>. These bits will always access the data stored in an address location, but the data is not validated

until the label field of the address is verified as the TAG data.

The read/write operations are controlled by the state sequencer. The low byte of cache data is read when

the DATA CS BO L input is asserted and is written when both the DATA CS BO L and RAM WE L

inputs are asserted. The high byte of cache data is read when the DATA CS Bl L input is asserted and is

written when both the DATA CS BI L and RAM WE L inputs are asserted. The data is routed via the A-

bus to the DCJ11.

4.5.2 Data Parity Logic

The data parity logic generates parity bits for the high and low bytes of data. The same logic is used to

check the parity bits when data is read from the cache memory. The high byte stores odd parity and the

low byte stores even parity. The parity logic is shown in Figure 4-19.

The parity logic uses the selected byte data and the UPDATE L signal from the state sequencer to

generate data parity. The UPDATE L input enables the parity generator. The parity generator determines

the number of high inputs and generates a parity bit for the high and low bytes. The low byte stores the

status of the parity bit as BO PAR IN H, and the high byte stores the status of the parity bit as Bl PAR

IN H when the data is written into the cache memory. The cache data path can invalidate the data entry

by enabling the WR WRONG PAR H input. This signal uses the exclusive-OR gate to invert the

generated parity bit and store the error in the parity RAM.

The parity bit of the data is checked when the cache memory is accessed. The data is received by the

parity generator and the UPDATE L input is not asserted at this time. The parity data is accessed, the low

byte parity bit is received as BO PAR OUT H, and the high byte parity bit is received as Bl PAR OUT H.

The NAND gate is enabled and functions as an inverter for the BO, Bl PAR OUT H signals. The DATA

CS B0, B1 L inputs, check the even output for the low byte (B0) and the odd output for the high byte (B1)

to set the PAR OK L outputs low.

4-22

BO DATA CS L
ADO BO PAR OR L

A BUS <7:0> > EVEN
BO PAR ERR H

oDD

BO PAR OUT H
- LOW BYTE

PARITY

] GENERATOR BO PAR IN H

WR WRONG

PARITY H

UPDATE L

B1 DATA CS L
B1 PAR OK L

oDD

B1 PAROUTH | B1 PAR ERR H
EVEN

Bl PARIN H

HIGH BYTE WR WRONG

A BUS <15:8> PARITY PARITY H

GENERATOR

MR-10264

Figure 4-19 Cache Data Parity Logic

4.5.3 Parity Data

The parity RAM has 8 Kbytes of read/write RAM memory that stores the high and low byte data parity

bit. The low byte parity bit is read when DATA CS BO L input is asserted and is written when both the

DATA CS BO L and RAM WE L are asserted. The high byte parity bit is read when DATA CS BI L

input is asserted and is written when both the DATA CS BI L and RAM WE L are asserted. The data

parity bits are generated and used by the data parity logic.

4.5.4 TAG RAM

The TAG RAM is a 4 K X 12 read/write memory that stores 11 bits of data and one bit that is not used.

The data consists of the 9-bit label field (address bits <21:13>), the TAG valid bit (VBIT), and the TAG

parity bit (TAG PAR). The data is received from the cache data path. The data is read when TAG CS

input is asserted and is written when both TAG CS and RAM WE inputs are asserted. These signals are

controlled by the state sequencer.

4.5.5 Hit/Miss Logic

The hit/miss logic (Figure 4-20) compares the TAG stored data and bits <21:13> of the current address

on the B-bus for a match condition. The TAG valid bit is also checked. When a match occurs, the current

address is recognized as a valid cache entry and sets the comparator outputs low. If they do not match, the

comparator outputs are set high. The TAG PAR H bit is checked with the PREDICT PAR H bit by the

exclusive-OR gate and the output is low when a match occurs. The MISS L and COMP L gates are

identical and monitor the two comparator outputs, the two data PAR OK L bits, and the output of the

TAG PAR H gate. When all five inputs are low, the MISS L and COMP L outputs are high to indicate a

hit. The MISS L signal goes to the DCJ11 and the COMP L signal goes to the state sequencer to indicate

that the current address is stored in the cache memory. If MISS L and COMP L outputs are low,

indicating one of the inputs is invalid, then the current address is not a valid cache entry and the data is

retrieved from the system memory.

4-23

TAG BUS <8:0>

B BUS <21:13> N
/

TAG VBITH

UPA H

=

COMPARATORS

A AND B

A OUTPUT)

O-

MISS LBOPAROK L]

TAG PARH

PREDICT D
PAR H

B1 PAR OKL % COMP L

4.6 BUS RECEIVERS

8 OUTPUT 1

MR-102656

Figure 4-20 Cache HIT/MISS Logic

The module receives addresses and data from the LSI-11 bus via six 2908 bus transceivers as shown in

Figure 4-21. The state sequencer provides the control signals RLE L and RLOE L that transfer LSI-11

bus data to the module A-bus. The data is latched when RLE L is asserted. The output drivers are then

enabled by RLOE L and transmits the LSI bus data to the module A-bus.

The LSI-11 bus control signals are transmitted to the module by the input transceivers. These signals are

used by the module to control the LSI-11 bus interface.

BDAL <21:0>

RLE L -

RLOE L

BUS ABUS <21 :o>>
TRANSCEIVER

BIRQ<4>L|

BIRQ<H>L

BIRQ<6>L

BIRQ<7>L

BHALT L

BDCOK H

BPOK H

BSACKL

BEVNT L

BDMR L

BDOUTL|
BSYNC L

BUS INPUT

TRANSCEIVER | RSACK H
et

|RIRQ4H,

RIRQS5 H

RIRQ6 H

RIRQ7 H

RHALT H

MINIT H,

RPOK L

| REVNT H

RDMR H

RDOUT H

RSYNC H,

BRPLY L RRPLY H

UPAH o 1

_L—'G ENO

= MR-12094

Figure 4-21 KDJI1-A Bus Receivers

4-24

4.7 BUS TRANSMITTERS

The module transmits addresses and data to the LSI-11 bus via six 2908 bus transceivers as shown in

Figure 4-22. The address and data inputs are controlled by the LATCH H input. The address is clocked

into the transceiver when the STRB L input from the DCJ11 is asserted. Write data is checked into the

transceiver when DRCP L (normally low) is pulsed from high to low. The DRCP L input is generated by

the state sequencer. The state sequencer enables the QBUS OE L input to transmit the data over the LSI-

11 bus. When TBS7 H (Bank Select) signal is asserted to indicate the reference is to the 1/O page, bits

<19:16> are driven as zeros. This allows the KDJ11-A module to work in a 64 Kbyte system with the

older MSV11-D memories.

The LSI bus control signals are transmitted by the output transceivers. The state sequencer provides most

of the handshake protocol with the LSI bus. The WAKEUP H signal is enabled by removing the W9

jumper to generate the BDCOK H initialization pulse at power-up.

BUS

TRANSCEIVER

B BUS <21:0> BDAL <21:0>

TBS7 H BBS7 L
—_— ——————

TWTBT H BWTBT L
—_—» >

QBUSOEL _J =7 —— —TM77
DRCP H —(} EN

LATCH H .| TXCLK

STRB L

TBS7 H ‘-O BUS ENABLE

FOR BITS
QBUSOELD 16, 17,18, 18

Y

+5V

\ TOOUTHI gus ouTpuT | BROUTL
we 3 TDIN H TRANSCEIVER BDIN L

TIAK H | BIAK L_[___ M17 M18 Tomon BDMGO L
+5V

TINIT H BINIT L
————— L >

‘P

D5 $R3 WAKE UP H BODCOK H% L >
C4

e TSYNC L BSYNC L

e —— e —

Figure 4-22 KDJI1-A Bus Transmitters

MR-12095

4-25

4.8 OUTPUT CONTROL

The output control logic (Figure 4-23) has 22 D-type latch circuits with output drivers that transfer the

address or data on the MDAL bus to the B-bus. The ILOE L signal from the state sequencer enables the

drivers to the B-bus. A decoder circuit uses the DCJ11 outputs, BUFCTL L and ALE L, to control the

latches. When BUFCTL L and ALE L are negated, the output latches are opened. When either ALE L or

BUFCTL L are asserted, the latches are closed.

MDAL BUS <21:o;> B BUS <21:0> >
22

TRANSPARENT

D TYPE

LATCHES

MBUFCTL L wwTcHL |
| 24 EN

2B ILOEL
< o

DECODER

ALEH
———O| EN

MR-10268

Figure 4-23 DCJ11-A Output Control

4.9 INPUT CONTROL

The input control logic (Figure 4-24) uses 16 D-type latch circuits to transfer data from the A-bus to the

MDAL bus. The latches are used as buffers (latches are always opened) and are enabled when the

BUFCTL L input is asserted.

A BUS <15:0> X

16

TRANSPARENT

D TYPE

LATCHES

UPAH |-———————
———Q| LaTCH

BUFCTL L

MDAL BUS <15:0> >

MR-10269

Figure 4-24 DCIJ11-A Input Control

4-26

4.10 DMA MONITOR REGISTER

The KDJ11-A does not perform direct DMA transfers, but it does monitor DMA transfers when the

system memory is being updated via block DMA. This ensures that the data stored in the cache memory is

not being changed in the system memory. During a DMA transfer, the initial address of the DMA

transaction is transferred over the A-bus. It is clocked into the DMA monitor register when RSYNC H is

asserted. For DMA, DATO, DATIO and DATOB bus cycles, this register is used to address the cache

memory in order to determine if the referenced location is in the cache memory. If it is, the cache data is

invalidated. Successive block mode DMA write cycles (DATOB) are also monitored. Address bits

<04:01> of the initial DMA address are clocked into the DMA monitor register when RSYNC H is

asserted. These bits are incremented to the next address when RDOUT H is negated. Therefore, an entire

16-word aligned block mode transfer can be monitored. The four-bit incrementor with bits 00 and 05 are

designed into the FPLA shown in Figure 4-25. The remaining 16 bits are controlled by the D-type flip-

flops. The DMA REG OE L signal is controlled by the state sequencer and the INC/LOAD DMA ADR

H input is controlled by the DMA LSI-11 bus signals BSYNC L and BDOUT L.

4.11 INITIALIZATION/MAINTENANCE REGISTER

The initialization/maintenance register allows the user to select the options available as described in

Chapter 2. This register (Figure 4-26) is read by the DCJ11 during the power-up sequence and can be read

by software accessing location 17 777 750 to determine which options were selected. The register uses

Jumpers W1 to W7 to determine the input state. The W3, W5, and W7 jumpers read as “1”° when the
Jumper is removed; W1, W2, W4 and W6 jumpers read as “1” when the jumper is inserted. The UPA

input is pulled up to +5 Vdc representing a “1” for bit 04 and a “0” for bits <11:09>. The grounded

inputs represent a “0” for bits <07:05>. The FPA OP L input will be a “1”" if a FPA is mounted on the

module and the PWR OK H input is a “1”” when the LSI-11 bus signal is asserted. The BDCOK H signal

indicates the ac power is set to its proper value.

A BUS <21:1> A BUS <5:1> FPLA TYPE B BUS <5:1> B BUS <21 :1>‘>

RSYNC H

RDOUT H INC/LOAD

DMAADRH |-~ ——————— 1

——C ENO

16 D TYPE

FF

A BUS <21:6> B BUS <21:6>

RSYNC H

LOAD DMA)C
LATCH H

RSYNCH | |T————————7

DMA REG OE L cLK
Q| ENO

MR-10270

Figure 4-25 DMA Monitor Register

4-27

The low byte of the register is implemented by using eight D-type latches. The data is clocked by the
assertion of ALE L from the DCJ11. The high byte of the register is implemented by using eight buffer

drivers. The entire register is read onto the A-bus by GP DATA OE L input from the state sequencer.

RPOK L PWR OKH |

+5V A<O>H

DTYPE A<1> HM2 7 M1 \ PUJ<O> H TCH
——O— — —O— LA

Y <3> HA
M4 3 M3 PUJ<1> H —>

_—C \

+5v A<A> H

—AV\V

M14 ws M13 HLT OPT H APH
—_ _C P

4 UPA H A<6>H

> A<T>H

GP DATA OE L
EN

ALEH)

FPA OP L

UPA H A<8>H

DRIVER/

BUFFER A<S>H

A<10>H

+5V >

A<II> H

M6 we M5 I BAJ<12> H
—O— — —O > A<12> H

+5v o

A<13> H

M8 w4 M7 | BAJ<13>H
O — —O— A<14> H

+5V o
A<15> H

M10 o MS . BAJ<14>H
o0 — —O

+5v

MI12 \wyq M1 i BAJ<15>H
—]

GP DATA OE L

-l EN

MR-12071

Figure 4-26 Initialization/Maintenance Register Logic

4-28

4.12 STATUS LEDs

The status LEDs logic (Figure 4-27) uses an addressable latch circuit for the LED display and a decoder

circuit to reset either EVENT or PWR FAIL. The DCJ11 controls these functions by performing GP

writes on the B-bus.

The EVENT or PWR FAIL conditions are cleared by GP write codes 100 and 140. The decoder circuit

decodes B-bus bits 05 and 06 and is enabled by the GP WRITE L signal from the cache data path. When

both bits are set, the CLR PWR FAIL L output is enabled and when bit 06 is set and bit 05 negated, the

CLR EVENT L output is enabled.

The status LEDs are controlled by an addressable latch circuit. The circuit is reset by the MINIT L signal

generated at power-up. MINIT L latches all the outputs low, thereby turning on the three diagnostic LEDs

and turning off the ODT LED. It also enables the TINIT L output to initialize the module. During the

initialization period the DCJ11 performs diagnostics, and upon the successful completion, it issues GP

write codes to turn off the LEDs. GP code 220 turns off the SLU LED, GP code 224 turns off the

MEMORY OK LED and GP code 230 turns off the SEQUENCING LED. After the initialization

period, the DCJ11 enters its start up mode. If it enters ODT then GP write code 234 is issued and turns on

the ODT LED. The LED functions are described in Chapter 2.

DECODER

B<E6>H —»1 1
0

B<5>H —— 2 L
2 — CLR EVNT L

3 ——= CLR PWR FAIL L

GP WRITE L —» EN

ADDRESSABLE ol
LATCH [TINTH

1 +—

B<2>H —»{ 1)

B<3>H —» 2 3 ® TiINT L +5V

B<4>H ——{ 4 DZ/fi CPU
4 —He+-nN—y

5 DB[Tfi SLU

D46 @ MEM

7

B<7>H —» DATA

D1 ooT
——— s EN

MINITH‘ >
RESET

MR-12072

Figure 4-27 Status LEDs Logic

4-29

CHAPTER 5

EXTENDED LSI-11 BUS

5.1 INTRODUCTION

The processor, memory and 1/0 devices communicate via signal lines that constitute the extended LSI-11

bus. The extended LSI-11 bus contains 4 additional address lines (BDAL<21:18>) in addition to the 38

lines of the original LSI-11 bus. The four additional address lines extend the 256 Kbyte physical address

space of the LSI-11 bus to 4 megabytes. Addresses, 8-bit bytes or 16-bit data words, bus synchronization,

and control signals are sent along these 42 lines. Addresses may be either 16-, 18-, or 22-bits wide,

depending on the addressing capability of the processor installed in the system. The 16-bit data and the

first 16 address bits are time-multiplexed over the same 16 data/address lines. Two additional address bits

(<17:16>) and the memory parity bits are also time-multiplexed over two signal lines. The signal lines are

functionally divided as listed in Table 5-1. Refer to Chapter 2 for a list of the extended LSI-11 bus signals.

The LSI-11 bus lines may be considered transmission lines that are terminated in their characteristic

impedance (Zg) at both the near and far ends of the bus. The near end of the bus is defined as the first bus

interface slot in the backplane, the far end is the last bus interface slot.

Table 5-1 Summary of Signal Line Functions

Quantity Function Bus Signal Mnemonic

16 Data/address lines BDAL<15:00>

2 Memory parity/address lines BDAL<17;16>

4 Address lines BDAL<21:18>

6 Address and data transfer BSYNC, BDIN, BDOUT,

control lines BWTBT, BBS7, BRPLY

3 Direct memory access (DMA) BDMR, BDMG, BSACK

control lines

5 Interrupt control lines BIRQ4, BIRQS, BIRQS6,

BIRQ7, BIAK

6 System control lines BPOK, BDCOK, BINIT,

BHALT, BREF, BEVNT

5-1

Most LSI-11 bus signals are bidirectional and use a terminating resistor network connected between +5 V

and ground to provide a negated (high) signal level. Devices may be connected to any point along the bus

to receive signals from the near or far end of the bus via high-impedance bus receivers, or to transmit

signals to the near or far end through gated open-collector bus drivers. A bus driver asserts a signal by

causing the line to go from a high level (approximately 3.4 V) to a low level (approximately 0.5 V).

Although bidirectional lines are electrically bidirectional, certain lines carry signals that are functionally

unidirectional. The functionally unidirectional lines carry signals that are required to travel in only one

direction. For example, when a device asserts a bus request signal (BIRQ), the signal always travels from

the requesting device to the processor and never in the reverse direction.

The interrupt acknowledge (BIAK) and direct memory access grant (BDMG) signals are physically

unidirectional signals that are wired to each LSI-11 bus slot in a daisy-chain scheme. These signals are

generated by the processor in response to interrupt and direct memory access requests and are transmitted

to the bus via output signal pins. Each of the output signals (BIAKO or BDMGO) is received on a device

input pin (BIAKI or BDMGI) and conditionally retransmitted via a device output pin (BIAKO or

BDMGO). These signals are received from higher-priority devices and retransmitted to lower-priority

devices on the bus. DMA and I/0 interrupt priorities are discussed in Pargaraphs 5.4 and 5.5.1.

Bus Master/Slave Relationship

Communication between devices on the bus is asynchronous. A master/slave relationship exists through-

out each bus transaction. At any time, there is one device that has control of the bus. This controlling

device is termed the bus master. The master device controls the bus when communicating with another

device on the bus, termed the s/ave. The bus master (typically the KDJ11-A processor or a DMA device)

initiates a bus transaction. The slave device responds by acknowledging the transaction in progress and by

receiving data from, or transmitting data to, the bus master. The extended LSI-11 bus control signals

transmitted or received by the bus master or bus slave device must complete the sequence according to the

protocol established for transferring address and data information. The processor controls bus arbitration

(i.e., it “*decides” which device is to be bus master at any given time).

A typical example of a master/slave relationship has the processor, as master, fetching an instruction from

memory which is always a slave). Another example is a disk drive, as master, transferring data to memory,

again, as the slave. Any device except the processor can be master or slave depending on the circum-

stances. Communication on the extended LSI-11 bus is interlocked; therefore, for each control signal

issued by the master device, there must be a response from the slave in order to complete the transfer. It is

the master/slave signal protocol that makes the extended LSI-11 bus asynchronous. The asynchronous

operation allows both fast and slow devices to use the bus and eliminates the need for synchronizing clock

pulses between the bus master and slave device.

Since bus cycle completion by the bus master requires response from the slave device, each bus master

must include a timeout error circuit that will abort the bus cycle if the slave device does not respond to the

bus transaction within 10 us. The KDJ11-A has a bus timer that restarts the clock when no device

responds to BDIN L or BDOUT L within 10 us. An immediate trap to location 4g occurs. The slowest

peripheral or memory device must respond in less than 10 us to prevent a bus timeout error.

5-2

5.2 BUS SIGNAL NOMENCLATURE

Throughout the following protocol specifications, bus signals are referred to in several different ways.

1. In general discussions where timing, polarity, and physical location are unimportant, the base

signal name without any prefixes or suffixes is used. For example:

SYNC, WTBT, BS7, DAL<21:00> or the DAL lines

2. Most signals on the backplane etch are asserted low and referred to with a prefix character B,

and a suffix (space) L. For example:

BSYNC L, BWTBT L, BBS7 L, BDAL<21:00> L

BPOK H and BDCOK H are asserted high.

3. Receivers and drivers are considered part of the bus. Signal inputs to drivers are referred to with

a prefix character T for transmit. For example:

TSYNC, TWTBT, TBS7, TDAL<21:00>

4. Signal outputs of receivers are referred to with the prefix character R for received. For

example:

RSYNC, RWTBT, RBS7, RDAL<21:00>

Whenever timing is important, the designations in items 3 and 4 above are used to reference timing to a

receiver output or driver input. For example, after receipt of the negation of RDIN, the slave negates its

TRPLY (0 ns minimum, 8000 ns maximum). It must maintain data valid on its TDAL lines until O ns

(minimum) after the negation of RDIN, and must negate its TDAL lines 100 ns (maximum) after the

negation of its TRPLY.

5.3 DATA TRANSFER BUS CYCLES

Data is transferred between a bus master and slave device to accomplish various functions. The data

transfer bus cycles and their functions are described in Table 5-2.

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave
devices. The data to be written in the destination byte during byte output operations is valid on the
appropriate BDAL lines. For example, BDAL<15:08> contains the high byte, and BDAL<07:00> con-
tains the low byte. Table 5-3 describes the bus signals used in a data transfer operation.

Table 5-2 Data Transfer Bus Cycles

Bus Cycle Function (with respect

Mnemonic Description to the bus master)

DATI Data word input Read

DATO Data word output Write

DATOB Data byte output Write byte

DATIO Data word input/output Read-modify-write

DATIOB Data word input/byte output Read-modify-write byte

5-3

Table 5-3 Data Transfer Bus Signals

Mnemonic Description Function

BDAL<21:00> L 22 data/address lines BDAL<21:18> L are used for 22-bit extended

addressing; BDAL<17:16> L are used for 18-bit

extended addressing, memory parity error, and mem-

ory parity error enable functions; BDAL<15:00> L

are used for 16-bit addressing, word and byte

transfers.

BSYNC L Synchronize Strobe signals

BDIN L Data input strobe

BDOUT L Data output strobe

BRPLY L Reply

BWTBT L Write/byte control Control signals

BBS7 L Bank 7 select

Data transfer bus cycles can be reduced to three basic types: DATI, DATO(B) and DATIO(B). These

transactions occur between the bus master and one slave device selected during the addressing portion of

the bus cycle.

5.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must have been completed (BSYNC L negated)

and the device must become bus master. The bus cycle is divided into two parts: an addressing portion, and

a data transfer portion. During the addressing portion, the bus master outputs the address for the desired

slave device (memory location or device register). The selected slave device responds by latching the

address bits and holding this condition for the duration of the bus cycle (until BSYNC L becomes

negated). During the data transfer portion of the bus cycle, the operations performed will vary slightly,

depending on the type of data transfer desired. Paragraphs 5.3.1.2 through 5.3.1.4 describe the data

transfer portion of the various bus cycles.

5.3.1.1 Device Addressing — The device addressing portion of a data transfer bus cycle comprises an

address setup/deskew time and an address hold/deskew time. During the address setup/deskew time, the

bus master does the following.

I. It asserts TDAL<21:00> with the desired slave device address bits.

2. It asserts TBS7 if a device in the 1/O page is being addressed.

3. Tt asserts TWTBT if the cycle is a DATO(B) bus cycle.

4. It asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the bus.

During this time the address, RBS7, and RWTBT signals are asserted at the slave bus receiver for at least

75 ns before RSYNC becomes active. Devices in the 1/O page ignore the 9 high-order address bits

RDAL<21:13> and, instead, decode RBS7 along with the 13 low-order address bits. An active RWTBT

signal indicates that a DATO(B) operation follows, while an inactive RWTBT indicates a DATI or

DATIO(B) operation.

The address hold/deskew time begins after RSYNC is asserted. The slave device uses the active RSYNC

to clock RDAL address bits, RBS7 and RWTBT, into its internal logic. RDAL<21:00>, RBS7, and

RWTBT will remain active for 25 ns (minimum) after the RSYNC becomes active. RSYNC remains

active for the duration of the bus cycle.

Memory and peripheral devices are addressed similarly, except for the way they respond to RBS7.

Addressed peripheral devices must not decode address bits on RDAL<17:13>. Addressed peripheral

devices may respond to a bus cycle only when RBS7 is asserted during the addressing portion of the cycle.

When asserted, RBS7 indicates that the device address resides in the 1/O page (the upper 8 Kbyte address

space). Memory devices generally do not respond to addresses in the I/O page; however, some system

applications may permit memory to reside in the I/O page for use as DMA buffers, read-only memory

bootstraps, or diagnostics, etc.

5.3.1.2 DATI - The DATI bus cycle is a read operation that inputs data from the slave device to the bus

master. The operations performed by the bus master and slave device during a DATI are shown in Figure

5-1. The DATI bus cycle timing is shown in Figure 5-2. Data consists of 16-bit word transfers over the bus.

During the data transfer portion of the DATI bus cycle, the bus master asserts TDIN 100 ns (minimum)

after it asserts TSYNC. The slave device responds to RDIN active by asserting:

I. TRPLY after receiving RDIN and 125 ns (maximum) before TDAL bus driver data bits are
valid;

2. TDAL<17:00> L with the addressed data and error information.

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE MEMORY

* ASSERT BDAL <21:00> L WITH

ADDRESS AND

¢ ASSERT BBS7 IF THE ADDRESS

[SIN THE 1/0 PAGE

* ASSERT BSYNC L
\

—~—

—_—

—_—

T
DECODE ADDRESS

e STORE”DEVICE SELECTED"

OPERATION

/ /
—

- -
REQUEST DATA

¢ REMOVE THE ADDRESS FROM

BDAL <21:00> L AND NEGATE BBS7
§ v

+ ASSERT BDIN L —_—

\
—

T

INPUT DATA

e« P{LACE DATAON BDAL < 15:00> L

- /-v ASSERT BRPLY L

/ /

TERMINATE INPUT TRANSFER

o ACCEPT DATA AND RESPOND

BY NEGATING BDIN L —_

\
—

—~—

TTe—a-—

TERMINATE BUS CYCLE OPERATION COMPLETED

s NEGATE BSYNC L -— o NEGATE BRPLY L

MR-6028

Figure 5-1 DATI Bus Cycle

5-5

T/R DAL

TSYNC

TDIN

R RPLY

T BS7

TWTBT

R/T DAL

R SYNC

R DIN

T RPLY

R BS7

RWTBT

T ADDR X R DATA X (4)

150NS_’1
MINIMU

100 NS

MINIMUM

200 NS A_j
*— MAXIMUM

!
100 NS MINIMUM —

8 uS MAXIMUM

200 NS MINIMUM

200 NS

CLOCK DATA

r- e 200 NS MlNIMUM‘or/
MINIMUM —

300 NS MINIMUM————

150 NS

%__/

l—

"1M|N|Mum-u ‘-meNsztMUM

{4) X (4)

(4) /Q ()

TIMING AT MASTER DEVICE

(4) X R ADDR X (4) X T DATA)L (4)
l. 25 NS 100 NS MAXIMUM* MINIMUM > +—125 NS MAXIMUM - —+ FONSMINIMUM

// ONS |o \ /
MINIMUM

MINIMUM
*x MIMIMUM

\ 300 NS MINIMUM ——»]

—.’ e— 75 NS MINIMUM

(4) X (4)

| 25 NS MINIMUM

(4) K (4)

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B” PREFIX.

2.SIGNAL NAME PREFIXES ARE DEFINED BE LOW: 4. DON'T CARE CONDITION.

T =BUS DRIVER INPUT

R = BUS RECEIVER OUTPUT

MR-6037

Figure 5-2 DATI Bus Cycle Timing

When the bus master receives RRPLY, it does the following.

1. It waits at least 200 ns deskew time and then accepts input data at RDAL<15:00> bus

receivers. RDAL<17:16> are monitored for a possible parity error indication.

2. It negates TDIN 150 ns (minimum) after RRPLY becomes active.

The slave device responds to RDIN negation by negating TRPLY and removing read data from TDAL

bus drivers. TRPLY must be negated 100 ns (maximum) prior to removal of read data. The bus master

responds to the negated RRPLY by negating TSYNC.

Conditions for the next TSYNC assertion are as follows.

1. TSYNC must remain negated for 200 ns (minimum).

2. TSYNC must not become asserted within 300 ns of the previous RRPLY negation.

5.3.1.3 DATO(B) - DATO(B) is a write operation. Data is transferred in 16-bit words (DATO) or 8-bit

bytes (DATOB) from the bus master to the slave device. The data transfer output can occur after the

addressing portion of a bus cycle when TWTBT has been asserted by the bus master, or immediately

following an input transfer part of a DATIO(B) bus cycle. The operations performed by the bus master

and slave device during a DATO(B) bus cycle are shown in Figure 5-3. The DATO(B) bus cycle timing is

shown 1n Figure 5-4.

The data transfer portion of a DATO(B) bus cycle comprises a data setup/deskew time and a data

hold/deskew time. During the data setup/deskew time, the bus master outputs the data on

TDAL<15:00> 100 ns (minimum) after TSYNC is asserted. If it is a word transfer, the bus master

negates TWTBT while gating data onto the bus. If the transfer is a byte transfer, the bus master asserts

TWTBT while gating data onto the bus. During a byte transfer, the condition of BDAL 00 L during the

address cycle selects the high or low byte. If asserted, the high byte (BDAL<I15:08> L) is selected;

otherwise, the low byte (BDAL<07:00> L) is selected. An asserted BDAL 16 L at data transfer time will

force a parity error to be written into memory if the memory is a parity-type memory. BDAL 17 L is not

used for write operations. The bus master asserts TDOUT L 100 ns (minimum) after the TDAL and

TWTBT bus driver inputs are stable. The slave device responds to RDOUT by accepting the input data

and asserting TRPLY (8 us maximum to avoid bus timeout). This completes the data setup/deskew time.

During the data hold/deskew time the bus master negates TDOUT 150 ns (minimum) after the assertion

of RRPLY. TDAL<21:00> bus drivers remain stable for at least 100 ns after TDOUT negation. The bus

master then negates TDAL inputs.

During this time, the slave device senses RDOUT negation and negates TRPLY. The bus master responds

by negating TSYNC. However, the processor will not negate TSYNC for at least 175 ns after negating

TDOUT. This completes the DATO(B) bus cycle. Before the next cycle, TSYNC must remain unasserted

for at least 200 ns. Also, TSYNC may not assert until 300 ns (minimum) after RRPLY negates.

BUS MASTER SLAVE

(PROCESSCR OR DEVICE) (MEMGORY OR DEVICE)

ADDRESS DEVICE/MEMORY

* ASSERT BDAL <21:00> L WITH

ADDRESS AND

» ASSERT BBS7 L IF ADDRESS IS

IN THE 1/0 PAGE

e ASSERT BWTBT L (WRITE

CYCLE)

¢ ASSERT BSYNC L — —_

—_—

—_—

T~ -
DECODE ADDRESS

/° STORE "DEVICE SELECTED

- OPERATION

/
/

- -~
OUTPUT DATA

* REMOVE THE ADDRESS FROM

BDAL <21:00> L AND NEGATE BBS7 L

* NEGATE BWTBT L UNLESS DATOB

e PLACE DATA ON BDAL < 15:00> L

ASSERT 8D TL

\

T~ -
TAKE DATA

* RECEIVE DATA FROM BDAL

LINES

——— * ASSERT BRPLY L

/ -
/

- -
TERMINATE OUTPUT TRANSFER

* NEGATE BDOUT L (AND BWTBT L

iF ADATOB BUS CYCLE)

e« REMOVE DATA FROM BDAL <15:00> L\
— —_—

T e
OPERATION COMPLETED

L - __—-* NEGATEBRPLY L

/

TERMINATE BUS CYCLE

¢ NEGATE BSYNC L

MR-6029

Figure 5-3 DATO or DATO(B) Bus Cycle

5-8

TDAL

T SYNC

T DOUT

R RPLY

T BS7

TWTBT

R DAL

R SYNC

R DOUT

T RPLY

R BS7

RWTBT

IQ—O NS MINIMUM

T DATA(4) X T ADDR

‘4—100 NS MINIMUM

.

S“_150 NS
MlN:MUl\fi’]

(4)

100 NS
| MINIMUM /——

175 NS f¢—200 NS MINIMUM—3
MINIMUM

le— 84S

MAXIMUM
s

150 NS MINIMUM
300 NS MINIMUM ———

100 NS MINIMUM

///\L
3C

fa——150 NS MINIMUM

(4)

(4) \ ASSERTION =BYTE (4)

150 NS L_ I 100 NS
MINIMUM 100 NS MINIMUM MINIMUM

TIMING AT MASTER DEVICE

(4) X R ADDR X R DATA (4)

L—'ZS NS MINIMUM

\ /
100 NS M|N|MUM4J‘15O NS MINTMUM-o»

— 25 NS MINIMUM

/
le—25 NS MINIMUM

75 NS

TM miNivMum [

/
150 NS

{25 NS e
MINIMUM

75 NS

MINIMUM

MINIMUM X r—300 NS MINITMUM ——9

(4):.1X (4)

l4—25 NS MINIMUM

(4)

3
R:

25 NS MINIMUM —

(4) ASSERTION = BYTE

75 NS 25 NS MINIMUM

MINIMUM

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3.

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS.

2. SIGNAL NAME PREFIXESARE DEFINED BELLOW: 4.

T =BUS DRIVER INPUT

R =BUS RECEIVER QUTPUT

BUS DRIVER QUTPUT AND BUS RECEIVER INPUT

SIGNAL NAMES INCLUDE A “B” PREFIX.

DON'T CARE CONDITION.

MR-1179

Figure 5-4 DATO or DATO(B) Bus Cycle Timing

5-9

5.3.1.4 DATIO(B) - The protocol for a DATIO(B) bus cycle is identical to the addressing and data
transfer portions of the DATI and DATO(B) bus cycles. After addressing the device, a DATI cycle is
performed as explained in Paragraph 5.3.1.2: however, TSYNC is not negated. TSYNC remains active
for an output word or byte transfer [DATO(B)]. The bus master maintains at least 200 ns between
RRPLY negation during the DATI cycle and TDOUT assertion. The cycle is terminated when the bus
master negates TSYNC, which follows the same protocol as described for DATO(B). The operations
performed by the bus master and slave device during a DATIO or DATIO(B) bus cycle are shown in
Figure 5-5. The DATIO and DATIO(B) bus cycle timing is shown in Figure 5-6.

BUS MASTER SLAVE

(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY

® ASSERT BDAL <21:00> L WITH

ADDRESS

® ASSERT BBS7 L IF THE

ADDRESS IS IN THE I/O PAGE
® ASSERT BSYNC L

- DECODE ADDRESS
® STORE “DEVICE SELECTED"

OPERATION

-k —_—— -
REQUEST DATA

® REMOVE THE ADDRESS FROM

BDAL <21:00> L

e ASSERT BDINL —_

TM INPUT DATA
e PLACE DATA ON BDAL <15:00> L

e ASSERT BRPLY L

- -
TERMINATE INPUT TRANSFER

® ACCEPT DATA AND RESPOND BY

TERMINATING BDIN L
—~—

COMPLETE INPUT TRANSFER

e REMOVE DATA

® NEGATE BRPLY L

—

.‘//
OUTPUT DATA

e PLACE OQUTPUT DATA ON BDAL <15:00> L

® (ASSERT BWTBT L iF AN QUTPUT

BYTE TRANSFER})

® ASSERT BDOUT L
\\\\~

TAKE DATA

e RECEIVE DATA FROM BDAL LINES

® ASSERT BRPLY L

- -
-

TERMINATE OUTPUT TRANSFER

e REMOVE DATA FROM BDAL LINES

e NEGATEBDOUT L
e— — —_— —_

OPERATION COMPLETED

® NEGATE BRPLY L
—

TERMINATE BUS CYCLE

e NEGATEBSYNCL

(AND BWTBT L IFIN

A DATIOB BUS CYCLE)

MR-6030

Figure 5-5 DATIO or DATIO(B) Bus Cycle

5-10

a‘ '4-—150 NS MINIMUM ~.| IQ—ONS MINIMUM

R/T DAL (4) X TADDR ’L (4) x R DATA X {(4) ‘X T DATA X (4)
100 NS]MINIMUM_‘ [— ¥ 200 NS MAXIMUM — L—1OONSM!NIMUM

TSYNC

100 NS MINIMUM 150 NS _ 1 175 NS
MINIMUMTTMINIMUMle— 200 NS ’I._

T DOUT MINIW L\
lee 200 NS

MlN:MUM_’l

TDIN /

/ 300 NS |
MINIMUM

R RPLY / \\ /

200 NS

MINIMUM —

150 NS .

MINIMUM l
—

T BS7 X (

—»{ |e— 100 NS MINIMUM 100 NS MINIMUM— '._

T WTBT (4 (4) X ASSERTION = BYTE X (4)

TIMING AT MASTER DEVICE

RT/DAL (4 AR ADDRX (4) X T DATA X (4) X R DATA X (4)

>
~

jt— 150 NS MINIMUM

25 NS L
—» MINIMUM ' J — 25 NS MINIMUM

R SYNC 4 o l._ 100 NS
MAXIMUM

100 NS

e—75 NS MINIMUM 25 NS MINIMUM "’ TM MINIMUM

—»| 125NS \ 150 NS |q

R DOUT MAXIMUM m MINIMUM

e 150 NS MINIMUM-

R DIN N
O\

150 NS 300NS)l&/l‘_ MINIMUM ") / < MINMUM
T RPLY Q\ N

r— 75 NS MINIMUM

R BS7 >< ><

l
-' e— 75 NS MINIMUM 0‘ le—25 NS MINIMUM — l.~25NSMINIMUM

R WTBT (4>\ (4) X ASSERTION = BYTE X (4)

—» 25 NS MINIMUM
TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS SIGNAL NAMES INCLUDE A “B” PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T =BUS DRIVER INPUT

R =BUS RECEIVER OQUTPUT

MR-6036

Figure 5-6 DATIO or DATIO(B) Bus Cycle Timing

5-11

5.4 DIRECT MEMORY ACCESS (DMA)

The direct memory access (DMA) capability allows direct data transfers between I/O devices and
memory. This is useful when using mass storage devices (e.g., disk drives) that move large blocks of data
to and from memory. A DMA device only needs to know the starting address in memory, the starting
address in mass storage, the length of the transfer, and whether the operation is read or write. When this
information is available, the DMA device can transfer data directly to or from memory. Since most DMA

devices must perform data transfers in rapid succession or lose data, DMA requests are assigned the
highest priority level.

DMA is accomplished after the processor (normally bus master) has passed bus mastership to the highest-

priority DMA device that is requesting the bus. The processor arbitrates all requests and grants the bus to
the DMA device located electrically closest to the processor. A DMA device remains bus master until it
relinquishes its mastership. The following control signals are used during bus arbitration.

Signal Name

BDMGI L DMA Grant Input

BDMGO L DMA Grant Output

BDMR L DMA Request Line

BSACK L Bus Grant Acknowledge

A DMA transaction is divided into three phases: the bus mastership acquisition phase, the data transfer

phase, and the bus mastership relinquish phase. The operations performed by the processor and bus master

during the DMA request/grant sequence are shown in Figure 5-7. The DMA request/grant bus cycle

timing is shown in Figure 5-8.

During the bus mastership acquisition phase, a DMA device requests the bus by asserting TDMR. The

processor arbitrates the request and initiates the transfer of bus mastership by asserting TDMG. The

maximum time between BDMR L assertion by the DMA device and BDMGO L assertion by the processor

1s DMA latency. This time is processor-dependent. The KDJ11-A asserts TDMG 1.4 us (maximum) after

the assertion of RDMR.

BDMGO L/BDMGI L is one of two signals that are daisy-chained through each module in the backplane.

The signal is driven out of the processor on the BDMGO L pin, enters each module on the BDMGI L pin

and exits on the BDMGO L pin. This signal passes through the modules in descending order of priority

until it is stopped by the requesting device. The requesting device blocks the output of BDMGO L and

asserts TSACK. If no device responds to the DMA grant, the processor will clear the grant and rearbitrate

the bus.

NOTE

The KDJ11-A uses a “NO-SACK” timer, which

clears BDMGO L if BSACK L is not received from

the DMA device within 10 us.

During the data transfer phase, the DMA device continues asserting BSACK L. If multiple-data transfers

are performed during this phase, consideration must be given to the use of the bus for other system

functions, such as memory refresh (if required). The actual data transfer is performed in the same manner

as the data transfer portion of DATI, DATO(B) and DATIO(B) bus cycles described in Paragraphs 5.3.1.2

through 5.3.1.4.

The DMA device can assert TSYNC L for a data transfer 0 ns (minimum) after it receives RDMGI L,

250 ns (minimum) after RSYNC is negated, and 300 ns (minimum) after RRPLY is negated.

During the bus mastership relinquish phase, the DMA device relinquishes the bus by negating TSACK.

This occurs after the last data transfer cycle (RRPLY negated) is completed (or aborted). TSACK may be

negated up to 300 ns (maximum) before negating TSYNC.

5-12

KDJ11-A PROCESSOR

(MEMORY IS SLAVE)

GRANT BUS CONTROL

® NEAR THE END OF THE

CURRENT BUS CYCLE

(BRPLY L IS NEGATED),

ASSERT BDMGO L AND

INHIBIT NEW PROCESSOR

GENERATED BYSNC L FOR

THE DURATION OF THE

DMA OPERATION.

TERMINATE GRANT

SEQUENCE

® NEGATE BDMGO L AND

WAIT FOR DMA OPERATION

TO BE COMPLETED

RESUME PROCESSOR

OPERATION -

® ENABLE PROCESSOR-

GENERATED BSYNC L

(PROCESSOR IS BUS

MASTER) OR ISSUE

ANOQOTHER GRANT IF BDMR

L IS ASSERTED.

Figure 5-7

—

e

—

BUS MASTER

(CONTROLLER)

REQUEST BUS

—— — ® ASSERT BOMR L

ACKNOWLEDGE BUS

—a MASTERSHIP

e RECEIVE BDMG

® WAIT FOR NEGATION OF

BSYNC L AND BRPLY L

e ASSERT BSACK L

¢ NEGATE BDMR L

EXECUTE A DMA DATA

TRANSFER

® ADDRESS MEMORY AND

TRANSFER UP TO 4 WORDS

OF DATA AS DESCRIBED

FOR DATI, OR DATO BUS

CYCLES

® RELEASE THE BUS BY

TERMINATING BSACK L

(NO SOONER THAN

NEGATION OF LAST BRPLY

L) AND BSYNC L.

WAIT4 uS OR UNTIL

ANOTHER FIFOTRANSFER

ISPENDING BEFORE

REQUESTING BUS AGAIN.

MR 6031

DMA Request/Grant Sequence

5-13

SECOND

REQUEST
«»I le— DMA LATENCY

7T T T T
T DMR A A A .

/ L ya L ya y /

— 0 NS MINIMUM

—_——— ——

R DMG

/

T SACK \\\

250 NS MIN IV UM — ,-— —> l-—300NSMAX|MUM

T SN NN N
l<— 250 NS MINIMUM ONSMINIMUM—-I —

300 NS MINIMUM

Y

wreesy N\ / AN
—> ONS MS MINIMUM —» 100 NS MAXIMUM—» 0 NS MINIMUM

T DAL /Q ADDR >< DATA \(ALSO BS7,

WTBT, REF)

NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS

AND BUS RECEIVER QUTPUTS.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T=BUS DRIVER INPUT

R =BUS RECEIVER QUTPUT

3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES

INCLUDE A "B PREFIX.

MR-3690

Figure 5-8 DMA Request/Grant Bus Cycle Timing

5-14

5.5 INTERRUPTS

The interrupt capability of the LSI-11 bus allows any I/O device to suspend temporarily (interrupt)

current program execution and divert processor operation for service of the requesting device. The

processor inputs a vector from the device to start the service routine (handler). As with a device register

address, the hardware fixes the device vector at locations within a designated range of addresses between

000 and 777g. The vector indicates the first of a pair of addresses. The content of the first address is read

by the processor; it is the starting address of the interrupt handler. The content of the second address is a

new processor status word (PS). The PS bits <07:05> can be programmed to a priority level from 0 to 7g.

Only interrupts on a level higher than the number in the priority level field of the PS are serviced by the

processor. If the interrupt priority level of the new PS is higher than that of the original PS, the new PS

raises the interrupt priority level and thus prevents lower-level interrupts from breaking into the current

interrupt service routine. Control is returned to the interrupted program when the interrupt service routine

is completed. The original (interrupted) program’s address (PC) and its associated PS are stored on a

“stack.” The original PC and PS are restored by a return from interrupt instruction (RTI or RTT) at the

end of the service routine. The use of the stack and the LSI-11 bus interrupt scheme can allow interrupts

to occur within interrupts (nested interrupts) if the requesting interrupt has a higher priority level than the

interrupt currently being serviced.

Interrupts can be caused by LSI-11 bus options and can also originate in the processor. Interrupts

originating in the processor are called traps and are caused by programming errors, hardware errors,

special instructions, and maintenance features. The following are the LSI-11 bus signals used in interrupt

transactions.

Signal Name

BIRQ4 L Interrupt request priority level 4

BIRQS L Interrupt request priority level 5

BIRQ6 L Interrupt request priority level 6

BIRQ7 L Interrupt request priority level 7

BIAKI L Interrupt acknowledge input

BIAKO L Interrupt acknowledge output

BDAL<15:00> L Data/address lines

BDIN L Data input strobe

BRPLY L Reply

5.5.1 Device Priority

The LSI-11 bus supports the following two methods of determining device priority.

1. Distributed arbitration - Priority levels are implemented on the hardware. When devices of

equal priority level request an interrupt, priority is given to the device electrically closest to the

processor. '

2. Position-defined arbitration - Priority is determined solely by electrical position on the bus. The

device closest to the processor has the highest priority, while the device at the far end of the bus

has the lowest priority.

The KDJ11-A uses both methods — distributed arbitration, with four levels of priority, and position-
defined arbitration within each level. Interrupts on these priority levels are enabled/disabled by bits in the

processor status word (PS<07:05>). Single-level interrupt (position-defined) devices that interrupt on

BIRQ4 can also be used in KDJ11-A systems but must be placed in a bus slot following the last bus slot in

which a position-independent device is installed.

5-15

5.5.2 Interrupt Protocol

Interrupt protocol has three phases: the interrupt request phase, the interrupt acknowledge and priority

arbitration phase, and the interrupt vector transfer phase. The operations performed by the processor and

interrupting device are shown in Figure 5-9. Interrupt protocol timing is shown in Figure 5-10.

PROCESSOR DEVICE

INITIATE REQUEST

— ® ASSERT BIRQ L

//
//

STROBE INTERRUPTS -
® ASSERT BDIN L —

\

—_

-

\ RECEIVE BDIN L
® STORE “INTERRUPT SENDING”

* IN DEVICE

GRANT REQUEST

e PAUSE AND ASSERT BIAKO L—

—_—

T T
RECEIVE BIAKI L

e RECEIVE BIAKI L AND INHIBIT

BIAKOL

e PLACE VECTORON BDAL < 15:00> L

e ASSERT BRPLY L

__ ® NEGATEBIRQ L

/

el /

RECEIVE VECTOR & TERMINATE

REQUEST

e INPUT VECTOR ADDRESS

e NEGATE BDIN L AND BIAKO L

—_—

T

COMPLETEVECTOR TRANSFER

® REMOVE VECTOR FROM BDAL BUS

”’/_’/’,_. NEGATE BRPLY L

/ /
-

PROCESS THE INTERRUPT

® SAVE INTERRUPTED PROGRAM

PC AND PS ON STACK

® LOAD NEW PC AND PS FROM

VECTOR ADDRESSED LOCATION

® EXECUTE INTERRUPT SERVICE

ROUTINE FOR THE DEVICE

MR-1182

Figure 5-9 Interrupt Request/Acknowledge Sequence

5-16

| INTERRUPT LATENCY

MINUS SERVICE TIME

TIRQ /
15ONSMIN|MUM—>‘ r-—

R DIN /

R IAKI /‘“\

T RPLY \

125 NS MAXIMUM —] e— =100 NS MAXIMUM
T DAL

(4) X VECTOR X (4)

RSYNC (UNASSERTED)

R BS7 (UNASSERTED)

NOTES:

1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER INPUTS

AND BUS RECEIVER QUTPUTS.

2.SIGNAL NAME PREFIXES ARE DEFINED BELOW:

T =BUS DRIVER INPUT

R =BUS RECEIVER QUTPUT

3. BUS DRIVER OQUTPUT AND BUS RECEIVER INPUT SIGNAL NAMES

INCLUDE A “B"” PREFIX.

4. DON'T CARE CONDITION.

MR-1183

Figure 5-10 Interrupt Protocol Timing

The interrupt request phase begins when a device meets its specific conditions for interrupt requests (for
example, when the device is “ready,” “done,”” or when an error has occurred). The interrupt enable bit in a
device status register must be set. The device then initiates the interrupt by asserting the interrupt request
line(s). BIRQ4 L is the lowest hardware priority level and is asserted for all interrupt requests for
compatibility with previous LSI-11 processors. The level at which a device is configured must also be
asserted. (A special case exists for level 7 devices that must also assert level 6.) The interrupt request line
remains asserted until the request is acknowledged.

Interrupt Level Lines Asserted by Device

4 BIRQ4 L

5 BIRQ4 L, BIRQS5 L

6 BIRQ4 L, BIRQ6 L

7 BIRQ4 L, BIRQ6 L, BIRQ7 L

5-17

During the interrupt acknowledge and priority arbitration phase, the KDJ11-A will acknowledge inter-

rupts under the following conditions.

. The device interrupt priority is higher than the current priority level stored in PS<07:05>.

2. The processor has completed instruction execution and no additional bus cycles are pending.

The processor acknowledges the interrupt request by asserting TDIN and, 225 ns (minimum) later, by

asserting TIAKO. The device electrically closest to the processor receives the acknowledge on its RIAKI

bus receiver.

On the leading edge of RDIN, each bus option capable of requesting interrupts decides whether to accept

or to pass on the RIAKI signal. A device that does not support position-independent, multilevel interrupts

accepts RIAKI if it is requesting an interrupt when RDIN asserts. A device that does support position-

independent, multilevel interrupts accepts RIAKI if it is requesting an interrupt and if there is no higher-
priority request pending when RDIN asserts. This decision must be clocked into a flip-flop, which settles
within 150 ns of TDIN.

Devices that support position-independent, multilevel interrupts assert from one to three IRQ lines when

requesting an interrupt. Table 5-4 presents the IRQ lines a device at each level must assert in order to
request an interrupt and lists the lines it must monitor to determine whether a higher-priority device is
requesting an interrupt.

During the interrupt vector transfer phase, the responding interrupt device receives RIAKI and then

asserts TRPLY. The vector address must be stable at TDAL<08:02> 125 ns (maximum) after TRPLY is
asserted. The processor receives the assertion of RRPLY, and 200 ns (minimum) later it inputs the vector
address and negates both TDIN and TIAKI. The interrupting device negates TRPLY after the negation of
RIAKI and removes the vector address from TDAL<08:02> 100 ns (maximum) after TRPLY negates.

Since vector addresses are constrained to be between 000 and 774g, none of the remaining TDAL lines are
used.

Tabfe 5-4 Position-Independent, Multilevel Device Requirements

Interrupt

Level IRQ Lines Asserted IRQ Lines Monitored

4 TIRQ4 .RIRQS, RIRQ6

5 TIRQ4, TIRQS RIRQ6

6 TIRQ4, TIRQ6 RIRQ7

7 TIRQ4, TIRQ6, TIRQ7

5-18

5.5.3 4-Level Interrupt Configurations

Users having high-speed peripherals and desiring better software performance can use the 4-level interrupt

scheme. Both position-independent and position-dependent configurations can be used with the 4-level

interrupt scheme.

The position-independent configuration is shown in Figure 5-11. This configuration allows peripheral

devices that use the 4-level interrupt scheme to be placed in the backplane in any order. These devices

must send out interrupt requests and monitor higher-level request lines, as described in Paragraph 5.5.2.

The level-4 request is always asserted by a requesting device, regardless of priority, to allow compatibility

if an LSI-11 or LSI-11/2 processor is in the same system. If two or more devices of equally high priority

request an interrupt, the device physically closest to the processor will win arbitration. Devices that use the

single-level interrupt scheme must be modified or placed at the end of the bus for arbitration to function

properly.

The position-dependent configuration is shown in Figure 5-12. This configuration is simpler to implement,

with the following constraint, however. Peripheral devices must be ordered so that the highest-priority

device is located closest to the processor with the remaining devices placed in the backplane in decreasing

order of priority. With this configuration each device must only assert its own level and level 4 (for

compatibility with an LSI-11 or LSI-11/2). Monitoring higher-level request lines is unnecessary. Arbitra-

tion is achieved through the physical positioning of each device on the bus. Single-level interrupt devices on

level 4 should be positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 |Bjak | LEVEL6 |gjaK LEVELS | BIAK LEVEL7
KDJ11 *| DEVICE DEVICE DEVICE DEVICEA

) A [

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) 1 \

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ6 (LEVEL 6 INTERRUPT REQUEST) 1 2

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) y

MRA-2888

Figure 5-11 Position-Independent Configuration

1 BIAK (INTERRUPT ACKNOWLEDGE) | LEVEL7 |[BIAK| LEVEL®6 |[BiAK | LEVEL5 | BIAK | LEVEL4

KDJ1 DEVICE DEVICE DEVICE DEVICE

BIRQ 4 (LEVEL4 INTERRUPT REQUEST)]

BIRQ5 (LEVEL5 INTERRUPT REQUEST) y

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) y

BIRQ 7 (LEVEL 7 INTERRUPT REQUEST)

MR-2889

Figure 5-12 Position-Dependent Configuration

5-19

5.6 CONTROL FUNCTIONS

The following LSI-11 bus signals provide system control functions.

Signal Name

BREF L Memory refresh

BHALT L Processor halt

BINIT L Initialize

BPOK H Power OK

BDCOK H DC power OK

BEVENT L External event interrupt request

5.6.1 Memory Refresh

If BREF is asserted during the address portion of a bus data transfer cycle, it causes all dynamic MOS
memories to be addressed simultaneously. The sequence of addresses required for refreshing the memories
is determined by the specific requirements of each memory. The complete memory refresh cycle consists
of a series of refresh bus transactions. (A new address is used for each transaction.) The entire cycle must
be completed within 2 ms. Multiple-data transfers by DMA devices must be avoided since they could
delay memory refresh cycles. The KDJ11-A does not perform memory refresh.

5.6.2 Halt

Assertion of BHALT L stops program execution and forces the processor unconditionally into console
ODT mode. The processor does not assert the BHALT L bus line when it comes to a programmed HALT.

5.6.3 Initialization

Devices along the bus are initialized when BINIT L is asserted. The processor asserts the BINIT L signal
under the following conditions.

1. During a power-down sequence

2. During a power-up sequence

3. During the execution of a RESET instruction

4. After detection of a G character in ODT mode (if the processor features an ODT mode and a G

command within it), and before execution of the code starting at the address that preceded the

G command

5.6.4 Power Status .

Power status protocol is controlled by two signals, BDCOK H and BPOK H. These signals are driven by an
external device (usually the power supply) and are defined as follows.

5.6.4.1 BDCOK H - The assertion of this line indicates that dc power has been stable for at least 3 ms.

Once asserted this line remains asserted until the power fails.

5.6.4.2 BPOK H - The assertion of this line indicates that there is at least an 8 ms reserve of dc power
and that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it must remain
asserted for at least 3 ms.

The negation of this line indicates that power is failing and that only 4 ms of dc power reserve remains.
The negation of this line during processor operation initiates a power-fail trap sequence.

5-20

5.6.4.3 Power-Up - The following events occur during a power-up sequence.

1. Logic associated with the power supply negates BDCOK H during power-up and asserts

BDCOK H 3 ms (minimum) after dc power is restored to voltages within specification.

The processor asserts BINIT L after receiving nominal power and negates BINIT L O ns
(minimum) after the assertion of BDCOK H.

Logic associated with the power supply negates BPOK H during power-up and asserts BPOK H

70 ms (minimum) after the assertion of BDCOK H. If power does not remain stable for 70 ms,

BDCOK H will be negated; therefore, devices should suspend critical actions until BPOK H is

asserted.

BPOK H must remain asserted for a mimimum of 3 ms. BDCOK H must remain asserted 4 ms
(minimum) after the negation of BPOK H.

The timing diagram for the power-up/power-down sequence is shown in Figure 5-13.

BINIT L

B POKH

BDCOK H

DC POWER

NOTE:

. 8-20 uSel Jro NS MINIMUM r' K

“—MI?VIMAASUM 3 MS —> TS L_
MAXIMUM MAXIMUM

i |
70 MS 4 MS 70 MS .

1 minimum [* MINIMUM "] MINIMUM

1 _ /
5 uS

MINIMUM"I —3Ms Ml TM MiNMUM I"

POWER-UP NORMAL_)| POWE R-DOWN POWER-UP NORMAL
SEQUENCE POWER SEQUENCE SEQUENCE POWER

ONCE A POWER-DOWN SEQUENCE IS STARTED,

IT MUST BE COMPLETED BEFORE A POWER-UP

SEQUENCE {S STARTED.

Figure 5-13 Power-Up/Power-Down Timing

5-21

MR-6032

5.6.4.4 Power-Down — The following events occur during a power-down sequence.

1. If the ac voltage to a power supply drops below 75% of the nominal voltage for one full line

cycle (15-24 ms), BPOK H is negated by the power supply. Once BPOK H is negated, the

entire power-down sequence must be completed.

A device that requested bus mastership before the power failure that has not become bus master

should maintain the request until BINIT L is asserted or the request is acknowledged (in which

case regular bus protocol is followed).

2. Processor software should execute a RESET instruction 3 ms (minimum) after the negation of

BPOK H. This asserts BINIT L for from 8 to 20 us. Processor software executes a HALT

instruction immediately following the RESET instruction.

3. BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 4 ms

allows mass storage and similar devices to protect themselves against erasures and erroneous

writes during a power failure.

4. The processor asserts BINIT L 1 us (minimum) after the negation of BDCOK H.

5. DC power must remain stable for a minimum of 5 us after the negation of BDCOK H.

6. BDCOK H must remain negated for a minimum of 3 ms.

5.6.5 BEVENT L

The BEVENT L signal is an external line clock interrupt request to the processor. When BEVENT L is

asserted, the processor internally assigns location 100g as the vector address for the BEVENT service

routine. Because the vector is internally assigned, the processor does not execute the protocol for reading-in

the interrupt vector address as is the case for other external interrupt requests.

5.7 BUS ELECTRICAL CHARACTERISTICS

This paragraph contains information about the electrical characteristics of the LSI-11 bus.

5.7.1 Signal-Level Specification

Input Logic Levels

TTL logical low: 0.8 Vdc (maximum)

TTL logical high: 2.0 Vdc¢ (minimum)

Output Logic Levels

TTL logical low: 0.4 Vdc (maximum)

TTL logical high: 2.4 Vdc (minimum)

5.7.2 AC Bus Load Definition

AC bus loading is the amount of capacitance a module presents to a bus signal line. This capacitance is

measured between each module signal line and ground. AC bus loading is expressed in ac unit loads where

each unit load is defined as 9.35 pF.

5-22

5.7.3 DC Bus Load Definition

DC bus loading is the amount of leakage current a module presents to a bus signal line. A dc unit load is

defined as 105 uA flowing into a module device when the signal line is in the unasserted (high) state.

5.74 120 Q LSI-11 Bus

The electrical conductors interconnecting the bus device slots are treated as transmission lines. A uniform

transmission line, terminated in its characteristic impedance, will propagate an electrical signal without

reflections. Insofar as bus drivers, receivers, and wiring connected to the bus have finite resistance and

nonzero reactance, the transmission line impedance becomes nonuniform, and thus introduces distortions

into pulses propagated along it. Passive components of the LSI-11 bus (such as wiring, cabling, and etched

signal conductors) are designed to have a nominal characteristic impedance of 120 .

The maximum length of the interconnecting cable in multiple-backplane systems (excluding wiring within

the backplane) is limited to 4.88 m (16 ft).

NOTES

1. The KDJ11-A processor (as well as all stan-

dard DIGITAL-supplied LSI-11 interfaces)

connects to the bus via special drivers and

receivers, described in Paragraphs 5.7.5 and

5.7.6.

2. The KDJ11-A processor provides resistive (250

Q) pull-up (on all bused lines) to 3.4 Vdc for

this wired-OR interconnecting scheme.

5.7.5 Bus Drivers

Devices driving the 120 Q@ LSI-11 bus must have open collector outputs and meet the specifications that

follow.

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and input

signal levels.)

Vce can vary from 4.75 V to 5.25 V.

Output low voltage when sinking 70 mA of current: 0.7 V (maximum).

Output high leakage current when connected to 3.8 Vdc: 25 uA (even if no power is applied to them,

except for BDCOK H and BPOK H).

AC Specifications

Bus driver output pin capacitance load: Not to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Driver skew (difference in propagation time between slowest and fastest bus driver): Not to exceed

25 ns.

Rise/fall times: Transition time from 10% to 90% for positive transition, and from 90% to 10% for

negative transition, must be no faster then 5 ns.

5-23

5.7.6 Bus Receivers

Devices that receive signals from the 120 Q@ LSI-11 bus must meet the following requirements.

DC Specifications (These conditions must be met at worst-case supply voltage, temperature, and output

signal conditions.)

Vcc can vary from 4.75 V to 5.25 V.

Input low voltage: 1.3 V (maximum).

Input high voltage: 1.7 V (minimum).

Maximum input leakage current when connected to 3.8 Vdc: 80 uA with Ve between 0.0 V and

525 V.

AC Specifications

Bus receiver input pin capacitance load: Not to exceed 10 pF.

Propagation delay: Not to exceed 35 ns.

Receiver skew (difference in propagation time between slowest and fastest receiver): Not to exceed

25 ns.

5.7.7 KDJ11-A Bus Termination

The 120 Q LSI-11 bus must be terminated at each end by an appropriate resistive termination. A pair of

resistors in series from +5.0 V to ground is used to establish a voltage for each bidirectional line when that

line is not being driven (negated). The parallel impedance of this pair of resistors is 250 Q. The terminating

resistors are shown in Figure 5-14. The KDJ11-A contains terminating resistor networks in 18-pin single-

in-line packages to provide the 250 Q terminations for the data/address, synchronization, and control lines

at the processor end of the bus.

5V

3300

250 2

BUS LINE

TERMINATION

680&2

Figure 5-14 Bus Line Termination

Some system configurations do not require terminating resistors at the far end of the bus. If the system

configuration does require such termination, it is typically provided by a M9404-YA cable connector

module. Rules for configuring single- and multiple-backplane systems are described in Paragraphs 5.8.1

and 5.8.2.

5-24

5.7.8 Bus Interconnection Wiring

This paragraph contains the electrical characteristics of the bus interface. The bus interface for the module

connectors 1s provided by one, two, or three backplanes, depending on the system configuration. Since

each backplane contains 9 slots, a system may have a maximum of 27 module interfaces to the bus.

5.7.8.1 Backplane Wiring — The wiring that interconnects all device interface slots on the LSI-11 bus

must meet the following specifications.

1. The conductors must be arranged so that each line exhibits a characteristic impedance of 120 Q

(measured with respect to the bus common return).

2. Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is applied must be

less than 5% of the 5 V. Note that worst-case crosstalk is manifested by simultaneously driving

all but one signal line and measuring the effect on the undriven line.

3. DC resistance of a bus segment signal path, as measured between the near-end terminator and

far-end terminator modules (including all intervening connectors, cables, backplane wiring,

connector-module etch, etc.) must not exceed 2 Q.

4. DC resistance of a bus segment common return path, as measured between the near-end

terminator and far-end terminator modules (including all intervening connectors, cables, back-

plane wiring, connector-module etch, etc.) must not exceed an equivalent of 2 Q per signal path.

Thus, the composite signal return path dc resistance must not exceed 2 @ divided by 40 bus

lines, or 50 m{Q. Note that although this common return path is nominally at ground potential,

the conductance must be part of the bus wiring; the specified low-impedance return path must

be provided by the bus wiring as distinguished from common system or power ground path.

5.7.8.2 Intrabackplane Bus Wiring — The wiring that interconnects the bus connector slots within one

contiguous backplane is part of the overall bus transmission line. Due to implementation constraints, the

nominal characteristic impedance of 120 @ may not be achievable. Distributed wiring capacitance in

excess of the amount required to achieve the nominal 120 Q impedance may not exceed 60 pF per signal

line per backplane.

3.7.8.3 Power and Ground - Each bus interface slot has connector pins assigned for the following dc

voltages.

Voltage Number of Pins

+5 Vdc Three pins, 4.5 A (maximum) per bus device slot

+12 Vdc Two pins, 3.0 A (maximum) per bus device slot)

Ground Eight pins, shared by power return and signal return

The maximum allowable current per pin is 1.5 A. The +5 Vdc must be regulated to +5% and the

maximum ripple should not exceed 100 mV peak-to-peak. The +12 Vdc must be regulated to +3% and the

maximum ripple should not exceed 200 mV peak-to-peak.

NOTE

Power is not bused between backplanes on any inter-

connecting LSI-11 bus cables.

5-25

5.7.8.4 Maintenance and Spare Pins

Maintenance Pins - There are four M SPARE pins per bus device slot assigned to maintenance (AKI1,

AL1, BK1, BL1). The maintenance pins on the basic LSI-11 system are not bused from module to module.

Instead, at each bus device slot, the maintenance pins are shorted together as pairs. These pins must be

shorted together for some modules to operate. This allows a module to use these pins during initial testing

as two separate points. This feature is used by DIGITAL for manufacturing tests only.

Spare Pins — Spare pins are allocated on the backplane as follows.

S SPARES - These four pins, AE1, AHI, BHI, AF1 (with the exception of AF1 in slot 1), are

reserved for the particular use of a module or set of modules. They may be used as test points or for

intermodule connection. Appropriate wires must be added for intermodule communication since

these pins are not connected in any way. The processor uses AF1 in slot 1 as an output pin for the

SRUN signal. S SPARE lines cannot be used as bus connections.

P SPARES - These two pins, AUl and BU1 are similar to the S SPARE pins except that they are

located in a manner that causes dc voltages to appear on them if a module is inserted backwards. Use

of these pins is not recommended.

5.8 SYSTEM CONFIGURATIONS

LSI-11 bus systems can be divided into two types. The first type comprises those systems that use only one

backplane, the second type comprising those systems that use multiple backplanes. Two sets of rules must

be followed when configuring a system to accommodate the different electrical characteristics of the two

types of systems. These rules are listed in Paragraphs 5.8.1 and 5.8.2.

Three characteristics of each component in an LSI-11 bus system must be known before configuring any

system:

1. Power consumption — The total amount of current drawn from the +5 Vdc and +12 Vdc power

supplies by all modules in the system.

2. AC bus loading — The amount of capacitance a module presents to a bus signal line. AC loading

is expressed in ac unit loads, where one ac unit load equals 9.35 pF of capacitance.

3. DC bus loading — The amount of dc leakage current a module presents to a bus signal when the

line is high (undriven). DC loading is expressed in terms of dc unit loads, where one dc unit load

equals 105 A (nominal).

Power consumption, ac loading, and dc¢ loading specifications for each module are included in the

Microcomputer Interfaces Handbook.

NOTE

The ac and dc loads and the power consumption of

the processor module, terminator module, and back-

plane must be included in determining the total bus

loading of a backplane.

5-26

5.8.1 Rules for Configuring Single-Backplane Systems

The following rules apply only to single-backplane systems. Any extension of the bus off the backplane is

considered a multiple-backplane system and must be configured accordingly. A single-backplane configur-
ation diagram is shown in Figure 5-15.

I. The bus can accommodate modules that have up to 20 ac loads (total) before an additional

termination is required. The processor has on-board termination for one end of the bus. If more

than 20 ac loads are included, the other end of the bus must be terminated with 120 Q.

2. A terminated bus can accommodate modules comprising up to 35 ac loads (total).

3. The bus can accommodate modules up to 20 dc loads (total).

4. The bus signal lines on the backplane can be up to 35.6 cm (14 in) long.

[BACKPLANE WIRE . |

i 35.6 CM (14 IN) MAXIMUM

{
) T | I

ONE ONE ONE OPTIONAL

LOAD LOAD LOAD

+ +

34V . v — 3.4V

- 35 AC LOADS i
= 20 DC LOADS =

PROCESSOR TERM

MR-6034

Figure 5-15 Single-Backplane Configuration

5.8.2 Rules for Configuring Multiple-Backplane Systems

Multiple-backplane systems can contain a maximum of three backplanes. A configuration diagram for a

multiple-backplane system is shown in Figure 5-16.

1. The signal lines on each backplane can be up to 25.4 cm (10 in) long.

2. Each backplane can accommodate modules that have up to 20 ac loads (total). Unused ac loads

from one backplane may not be added to another backplane if the second backplane loading

will exceed 20 ac loads. It is desirable to load backplanes equally or with the highest ac loads in

the first and second backplanes.

3. DC loading of all modules in all backplanes cannot exceed 15 loads (total).

4. The first backplane must have an impedance of 120 € (obtained via the processor module). The

second backplane is terminated by 120 Q resistor networks contained on the cable connector

inserted in the third backplane.

5-27

le BACKPLANE WIRE
| 356 CM (14 IN} MAX 'l

—4 — I CABLE

ONE ONE

250 UNIT UNIT

LOAD LOAD

+

—3.4 \Y) — v 5

20 AC LOADS MAX

PROCESSOR

BACKPLANE WIRE

" 25.4 CM (10 IN) MAX '|

]
ONE ONE

UNIT UNIT

LOAD LOAD

CABLE N ~) CABLE

ADDITIONAL 20 AC LOADS MAX
CABLES AND

BACKPLANE BACKPLANE WIRE

|‘ 25.4 CM (10 IN) MAX —’!
((

L
ONE ONE

1208 UNIT UNIT
3.4V LOAD LOAD

CABLE/)
TERM Y

20 AC LOADS MAX

NOTES:

1. TWO CABLES (MAX) 4.88 M (16 FT) (MAX)

TOTAL LENGTH.

2.20DC LOADS TOTAL (MAX).

MR- 6035

Figure 5-16 Multiple-Backplane Configuration

5-28

5. The cables connecting the backplanes must observe the following rules.

a. The cable(s) connecting the first two backplanes must be 61 cm (2 ft) or greater in length.

b. The cable(s) connecting the second backplane to the third backplane must be 22 cm (4 ft)

longer or shorter than the cable(s) connecting the first and second backplanes.

c. The combined length of both cables must not exceed 4.88 m (16 ft).

d. The cables used must have a characteristic impedance of 120 Q.

5.8.3 Power Supply Loading

Total power requirements for each backplane can be determined by obtaining the total power require-

ments for each module in the backplane. Obtain separate totals for +5 V and +12 V power. Power

requirements for each module are specified in the Microcomputer Interfaces Handbook.

Do not attempt to distribute power via the LSI-11 bus cables in multiple-backplane systems. Provide

separate, appropriate power wiring from each power supply to each backplane. Each power supply should

be capable of asserting BPOK H and BDCOK H signals according to bus protocol. This is required if

automatic power-fail/restart programs are implemented or if specific peripherals require an orderly power-

down halt sequence. The proper use of the BPOK H and BDCOK H signals is strongly recommended.

5-29

CHAPTER 6

ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION

The first part of this chapter is divided into six major sections as follows.

e Single-Operand Addressing — One part of the instruction word specifies the registers; the other

part provides information for locating the operand.

e Double-Operand Addressing — One part of the instruction word specifies the registers; the

remaining parts provide information for locating two operands.

e Direct Addressing — The operand is the content of the selected register.

e Deferred (Indirect) Addressing — The contents of the selected register is the address of the

operand.

e Use of the PC as a General-Purpose Register — The PC is different from other general-purpose

registers in one important respect. Whenever the processor retrieves an instruction, it automati-

cally advances the PC by 2. By combining this automatic advancement of the PC with four of

the basic addressing modes, we produce the four special PC modes — immediate, absolute,

relative, and relative-deferred.

e Use of the Stack Pointer as a General-Purpose Register — General-purpose registers can be used

for stack operations.

The second part of this chapter describes each of the instructions in the KDJ11-A instruction set.

6.2 ADDRESSING MODES

Data stored in memory must be accessed and manipulated. Data handling is specified by a KDJ11-A

instruction (MOV, ADD, etc.), which usually specifies the following.

e The function to be performed (operation code)

e The general-purpose register to be used when locating the source operand, and/or destination
operand (where required)

e The addressing mode, which specifies how the selected registers are to be used

A large portion of the data handled by a computer is structured (in character strings, arrays, lists, etc.).

The KDJ11-A addressing modes provide for efficient and flexible handling of structured data.

6-1

A general-purpose register may be used with an instruction in any of the following ways.

. As an accumulator - The data to be manipulated resides in the register.

2. Asapointer - The contents of the register is the address of an operand, rather than the operand

itself.

3. As a pointer that automatically steps through memory locations - Automatically stepping

forward through consecutive locations is known as autoincrement addressing; automatically

stepping backwards is known as autodecrement addressing. These modes are particularly useful

for processing tabular or array data.

4. As an index register — In this instance, the contents of the register and the word following the

instruction are summed to produce the address of the operand. This allows easy access to

variable entries in a list.

An important KDJ11-A feature, which should be considered with the addressing modes, is the register

arrangement.

¢ Two sets of six general-purpose registers (R0-R5 and R0’-R5’)

® A hardware stack pointer (SP) register (R6) for each processor mode (kernel, supervisor, user)

® A program counter (PC) register (R7)

Registers RO-R5 and RO’-R5’ are not dedicated to any specific function; their use is determined by the

instruction that is decoded.

® They can be used for operand storage. For example, the contents of two registers can be added

and stored in another register.

® They can contain the address of an operand or serve as pointers to the address of an operand.

e They can be used for the autoincrement or autodecrement features.

® They can be used as index registers for convenient data and program access.

The KDJ11-A also has instruction addressing mode combinations that facilitate temporary data storage

structures. These can be used for convenient handling of data that must be accessed frequently. This is

known as stack manipulation. The register that keeps track of stack manipulation is known as the stack

pointer (SP). Any register can be used as a stack pointer under program control; however, certain

instructions associated with subroutine linkage and interrupt service automatically use register R6 as a

“hardware stack pointer.” For this reason, R6 is frequently referred to as the SP.

® The stack pointer (SP) keeps track of the latest entry on the stack.

® The stack pointer moves down as items are added to the stack and moves up as items are

removed. Therefore, the stack pointer always points to the top of the stack.

® The hardware stack is used during trap or interrupt handling to store information, allowing an

orderly return to the interrupted program.

Register R7 is used by the processor as its program counter (PC). It is recommended that R7 not be used

as a stack pointer or accumulator. Whenever an instruction is fetched from memory, the program counter

is automatically incremented by two to point to the next instruction word.

6-2

6.2.1 Single-Operand Addressing

The instruction format for all single-operand instructions (such as CLR, INC, TST) is shown in Figure 6-1.

Bits <15:06> specify the operation code that defines the type of instruction to be executed.

Bits <05:00> form a 6-bit field called the destination address field. The destination address field consists

of two subfields:

e Bits <05:03> specify the destination mode. Bit 03 is set to indicate deferred (indirect)

addressing.

® Bits <02:00> specify which of the 8 general-purpose registers is to be referenced by this

instruction word.

15 06 05 04 03 02 00
T T L) L T T 1 T T T T T I

MODE Rn

| | } I |] L A 1 1 4 i

\ A J

OP CODE DESTINATION ADDRESS

MR-54568

Figure 6-1 Single-Operand Addressing

6.2.2 Double-Operand Addressing

Operations that imply two operands (such as ADD, SUB, MOV, and CMP) are handled by instructions

that specify two addresses. The first operand is called the source operand; the second is called the

destination operand. Bit assignments in the source and destination address fields may specify different

modes and different registers. The instruction format for the double operand instruction is shown in Figure

6-2.

The source address field is used to select the source operand (the first operand). The destination is used

similarly, and locates the second operand and the result. For example, the instruction ADD A, B adds the

contents (source operand) of location A to the contents (destination operand) of location B. After

execution, B will contain the result of the addition and the contents of A will be unchanged.

15 12 11 10 09 08 06 05 04 03 02 00
T T T ¥ 1 T L 1 L 1 I

OP CODE MODE Rn MODE Rn

4 | | | L fn 1 1 I n

AN A J

SOURCE ADDRESS DESTINATION ADDRESS

MR-5459

Figure 6-2 Double-Operand Addressing

6-3

Examples in this paragraph and the rest of the chapter use the following sample KDJ11-A instructions. (A

complete listing of the KDJ11-A instructions appears in Paragraph 6.3.)

Mnemonic

CLR

CLRB

INC

INCB

COM

COMB

ADD

Description

Clear. (Zero the specified destination.)

Clear byte. (Zero the byte in the specified

destination.)

Increment. (Add one to contents of the

destination.)

Increment byte. (Add one to the contents of

the destination byte.)

Complement. (Replace the contents of the

destination by its logical complement;

each O bit is set and each 1 bit is

cleared.)

Complement byte. (Replace the contents of

the destination byte by its logical

complement; each O bit is set and each

1 bit is cleared.)

Add. (Add the source operand to the

destination operand and store the result

at the destination address.)

*DD = destination field (six bits)

SS = source field (six bits)

() = contents of

6.2.3 Direct Addressing

The following summarizes the four basic modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Mode Name

0 Register

Octal Code*

0050DD

1050DD

0052DD

1052DD

0051DD

1051DD

06SSDD

Assembler

Syntax Function

Rn Register contains operand.

INSTRUCTION »{ OPERAND

MR-5460

Figure 6-3 Mode O Register

6-4

Mode

Mode

Mode

Assembler

Name Syntax Function

Autoincrement (Rn)+ Register is used as a pointer to sequential data

and then incremented.

INSTRUCTION ADDRESS > OPERAND

3

+2 FOR WORD,

+1 FOR BYTE

MR-5461

Figure 6-4 Mode 2 Autoincrement

Assembler

Name Syntax Function

Autodecrement —(Rn) Register is decremented and then used as a
pointer.

INSTRUCTION ADDRESS » -2 FOR WORD, OPERAND
-1 FORBYTE

MR-5462

Figure 6-5 Mode 4 Autodecrement

Assembler

Name Syntax Function

Index X(Rn) Value X is added to (Rn) to produce address

of operand. Neither X nor (Rn) is modified.

INSTRUCTION > ADDRESS

OPERAND

X

MR-5463

Figure 6-6 Mode 6 Index

6-5

6.2.3.1 Register Mode - With register mode any of the general registers may be used as simple

accumulators, with the operand contained in the selected register. Since they are hardware registers

(within the processor), the general registers operate at high speeds and provide speed advantages when

used for operating on frequently accessed variables. The assembler interprets and assembles instructions of

the form OPR Rn as register mode operations. Rn represents a general register name or number and OPR

is used to represent a general instruction mnemonic. Assembler syntax requires that a general register be

defined as follows.

RO = %0 (% sign indicates register definition)

R1 = %1

R2 = %2, etc.

Registers are typically referred to by name as R0, R1, R2, R3, R4, RS, R6, and R7. However, R6 and R7

are also referred to as SP and PC, respectively.

Register Mode Examples (Figures 6-7 to 6-9)

l. Symbolic Octal Code Instruction Name

INC R3 005203 Increment

Operation: Add one to the contents of general-purpose register R3.

15 06 05 04 03 02 00

T 1] 1 T I ¥ T T T T } T 1

o o0 o 0 1 0 1 0 1 o | o 01 0 0 1 1 b o seceer

. N \ - . . 1 \ . A | REGISTER

\ A A

! |

OP CODE (INC(0052)) DESTINATION FIELD |
]

|

RO |
|

R1 |

|
R2 '

R3 e -

R4

R5

R6 (SP)

R7 (PC)

MR-5467

Figure 6-7 INC R3 Increment

6-6

2. Symbolic Octal Code Instruction Name

ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

BEFORE AFTER

R2 000002 R2 000002

R4 000004 R4 000006

MR-5468

Figure 6-8 ADD R2,R4 Add

3. Symbolic Octal Code Instruction Name

COMB R4 105104 Complement byte

Operation: 1’s complement bits <07:00> (byte) in R4. (When general registers are used, byte instructions

operate only on bits <07:00>; i.e., byte O of the register.)

BEFORE AFTER

R4 022222 R4 022155

MR-5469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2) provides for automatic stepping of a

pointer through sequential elements of a table of operands. It assumes the contents of the selected general-

purpose register to be the address of the operand. Contents of registers are stepped (by one for byte

instructions, by two for word instructions, always by two for R6 and R7) to address the next sequential

location. The autoincrement mode is especially useful for array processing and stack processing. It will

access an element of a table and then step the pointer to address the next operand in the table. Although

most useful for table handling, this mode is completely general and may be used for a variety of purposes.

6-7

Autoincrement Mode Examples (Figures 6-10 to 6-12)

1. Symbolic Octal Code Instruction Name

CLR (R5)+ 005025 Clear

Operation: Use contents of RS as the address of the operand. Clear selected operand and then increment
the contents of R5 by two.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 005025 RS 030000 20000 005025 RS 030002

J

30000 1111116 30000 000000

MR-5464

Figure 6-10 CLR (RS5)+ Clear

2. Symbolic Octal Code Instruction Name

CLRB (R5)+ 105025 Clear byte

Operation: Use contents of R5 as the address of the operand. Clear selected byte operand and then

increment the contents of RS by one.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20000 105025 R5 030000 20000 105025 R5 030001

T ‘ i
30000 111 | 116 30000 111 | 000

30002 | 30002 !
. L

MR-5465

Figure 6-11 CLRB (R5)+ Clear Byte

3. Symbolic - Octal Code Instruction Name

ADD (R2)+,R4 062204 Add

Operation: The contents of R2 are used as the address of the operand, which is added to the contents of

R4. R2 is then incremented by two.

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS

10000 062204 R2 100002 10000 062204 R2 100004

R4 010000 R4 020000

100002 010000 100002 010000

MR-5470

Figure 6-12 ADD (R2)+,R4 Add

6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) is useful for processing data in a list in

reverse direction. The contents of the selected general-purpose register are decremented (by one for byte

instructions, by two for word instructions) and then used as the address of the operand. The choice of

postincrement, predecrement features for the KDJ11-A were not arbitrary decisions, but were intended to

facilitate hardware/software stack operations.

Autodecrement Mode Examples (Figures 6-13 to 6-15)

1. Symbolic Octal Code Instruction Name

INC —(RO) 005240 Increment

Operation: The contents of RO are decremented by two and used as the address of the operand. The

operand is incremented by one.

BEFORE AFTER

ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER

1000 005240 RO | 017776 1000 005240 RO 017774

17774 000000 17774 000001

MR-5466

Figure 6-13 INC —(RO) Increment

6-9

2. Symbolic Octal Code Instruction Name

INCB —(RO0) 105240 Increment byte

Operation: The contents of RO are decremented by one and then used as the address of the operand. The

operand byte is increased by one.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1000 105240 RO 017776 1000 105240 RO 017775

|

T F 1
17774 | 000 | 000 17774 | 001 | 000

: :
17776 | 17776 |

1]

MR-5471

Figure 6-14 INCB —(RO) Increment Byte

3. Symbolic Octal Code Instruction Name

ADD —(R3),R0 064300 Add

Operation: The contents of R3 are decremented by two and then used as a pointer to an operand (source),

which is added to the contents of RO (destination operand).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10020 064300 RO 000020 10020 064300 RO 0000070

R3 077776 R3 077774

77774 000050 77774 000050

77776 77776

MR-5472

Figure 6-15 ADD —(R3),R0 Add

6.2.3.4 Index Mode [OPR X(Rn)] - In this mode (mode 6) the contents of the selected general-purpose

register, and an index word following the instruction word, are summed to form the address of the

operand. The contents of the selected register may be used as a base for calculating a series of addresses,

thus allowing random access to elements of data structures. The selected register can then be modified by

program to access data in the table. Index addressing instructions are of the form OPR X(Rn), where X is

the indexed word located in the memory location following the instruction word and Rn is the selected

general-purpose register.

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic Octal Code Instruction Name

CLR 200(R4) 005064 Clear

000200

Operation: The address of the operand is determined by adding 200 to the contents of R4. The operand

location is then cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 005064 R4 001000 1020 005064 R4 001000

1022 000200 1022 000200

1024 1000 1024

+200

F 1200

1200 177777 1200 000000

1202

MR-5473

Figure 6-16 CLR 200(R4) Clear

6-11

2. Symbolic Octal Code Instruction Name

COMB 200(R1) 105161 Complement byte

000200

Operation: The contents of a location, which are determined by adding 200 to the contents of R1, are 1’s
complemented (i.e., logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 105161 R1 017777 1020 105161 R1 017777

1022 000200 1022 000200

017777

+200

§ 020177

T
I

20176 | 011 | 000 20176 166 | 000

% 1
20200 | 20200 I

l i

MR-5474

Figure 6-17 COMB 200(R1) Complement Byte

3. Symbolic Octal Code Instruction Name

ADD 30(R2),20(R5) 066265 Add

000030

000020

Operation: The contents of a location, which are determined by adding 30 to the contents of R2, are added

to the contents of a location that is determined by adding 20 to the contents of R5. The result is stored at

the destination address, that is, 20(R5).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 066265 R2 001100 1020 066265 R2 001100

1022 000030 1022 000030

1024 000020 R5 002000 1024 000020 R5 002000

1130 000001 1130 000001

2020 000001 2020 000002

1100 2000

+30 +20

1130 2020

MR-5475

Figure 6-18 ADD 30(R2),20(RS) Add

6-12

6.2.4 Deferred (Indirect) Addressing

The four basic modes may also be used with deferred addressing. Whereas in register mode the operand is

the contents of the selected register, in register-deferred mode the contents of the selected register is the

address of the operand.

In the three other deferred modes, the contents of the register select the address of the operand rather than

the operand itself. These modes are therefore used when a table consists of addresses rather than operands.

The assembler syntax for indicating deferred addressing is @ [or () when this is not ambiguous]. The

following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Mode

1

Mode

Assembler

Name Syntax Function

Register-

deferred @Rn or (Rn) Register contains the address of the operand.

INSTRUCTION ADDRESS OPERAND

Figure 6-19 Mode | Register-Deferred

Assembler

Name Syntax Function

Autoincrement-

deferred @(Rn)+ Register is first used as a pointer to a word

containing the address of the operand and then

incremented (always by two, even for byte

instructions).

INSTRUCTION > ADDRESS > ADDRESS OPERAND I

—]
MR-5477

Figure 6-20 Mode 3 Autoincrement-Deferred

6-13

Mode

Mode

Assembler

Name Syntax Function

Autodecrement-

deferred @—(Rn) Register is decremented (always by two, even
for byte instructions) and then used as a point-

er to a word containing the address of the

operand.

INSTRUCTION ADDRESS -2 > ADDRESS > OPERAND

t

Figure 6-21 Mode 5 Autodecrement-Deferred

Assembler

Name Syntax Function

Index-deferred @X(Rn) Value X (stored in a word following the

instruction) and (Rn) are added; the sum is

used as a pointer to a word containing the

address of the operand. Neither X nor (Rn) is

modified.

INSTRUCTION ADDRESS
_
\
,
:
@
_
‘

ADDRESS

OPERAND

X

MR-5479

Figure 6-22 Mode 7 Index-Deferred

The following examples illustrate the deferred modes.

Register-Deferred Mode Example (Figure 6-23)

Symbolic Octal Code Instruction Name

CLR @RS 005015 Clear

Operation: The contents of location specified in R5 are cleared.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1677 R5 001700 1677 R5 001700

1700 000100 1700 000000

MR-5480

Figure 6-23 CLR @RS Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)

Symbolic Octal Code Instruction Name

INC @(R2)+ 005232 Increment

Operation: The contents of R2 are used as the address of the address of the operand. The operand is

increased by one; the contents of R2 are incremented by two.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

R2 010300 R2 010302

1010 000025 1010 000026

1012 1012

10300 001010 10300 001010

MR-5481

Figure 6-24 INC @(R2)+ Increment

6-15

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)

Symbolic Octal Code

COM @—(R0) 005150

Operation: The contents of RO are decremented by two and then used as the address of the address of the
operand. The operand is 1’s complemented (i.e., logically complemented).

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

10100 012345 RO 010776 10100 165432 RO 010774

10102 10102

10774 010100 10774 010100

10776 10776

MR-5482

Figure 6-25 COM @—(R0) Complement

Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name

ADD @1000(R2),R1 067201 Add

001000

Operation: 1000 and the contents of R2 are summed to produce the address of the address of the source

operand, the contents of which are added to the contents of R1; the result is stored in R1.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 067201 R1 001234 1020 067201 R1 001236

1022 001000 1022 001000

R2 000100 R2 000100

1024 1024

1050 000002 1050 000002

1100 001050 1100 001050

1000

+100

! 1100

MR-5483

Figure 6-26 ADD @1000(R2),R1 Add

6-16

6.2.5 Use of the PC as a General-Purpose Register

Although register 7 is a general-purpose register, it doubles in function as the program counter for the

KDJ11-A. Whenever the processor uses the program counter to acquire a word from memory, the

program counter is automatically incremented by two to contain the address of the next word of the

instruction being executed or the address of the next instruction to be executed. (When the program uses

the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard KDJ11-A addressing modes. However, with four of these modes the

PC can provide advantages for handling position-independent code and unstructured data. When utilizing

the PC, these modes are termed immediate, absolute (or immediate-deferred), relative, and relative-

deferred. The modes are summarized below.

Assembler

Mode Name Syntax Function

2 Immediate #n Operand follows instruction.

3 Absolute @#A Absolute address of operand follows

instruction.

6 Relative A Relative address (index value) follows the

instruction.

7 Relative-

deferred @A Index value (stored in the word after the

instruction) is the relative address for the

address of the operand.

When a standard program is available for different users, it is often helpful to be able to load it into

different areas of memory and run it in those areas. The KDJ11-A can accomplish the relocation of a

program very efficiently through the use of position-independent code (PIC), which is written by using the

PC addressing modes. If an instruction and its operands are moved in such a way that the relative distance

between them is not altered,

the same offset relative to the PC can be used in all positions in memory. Thus, PIC usually references

locations relative to the current location.

The PC also greatly facilitates the handling of unstructured data. This is particularly true of the immediate

and relative modes.

6-17

6.2.5.1 Immediate Mode [OPR #n,DD] - Immediate mode (mode 2) is equivalent in use to the autoincre-

ment mode with the PC. It provides time improvements for accessing constant operands by including the

constant in the memory location immediately following the instruction word.

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name

ADD #10,R0 062700 ‘Add

000010

Operation: The value 10 is located in the second word of the instruction and is added to the contents of RO.

Just before this instruction is fetched and executed, the PC points to the first word of the instruction. The

processor fetches the first word and increments the PC by two. The source operand mode is 27 (autoincre-

ment the PC). Thus, the PC is used as a pointer to fetch the operand (the second word of the instruction)

before it is incremented by two to point to the next instruction.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1020 062700 \RO 000020 1020 062700 RO 000030

1022 000010 PC 1022 000010 PC

1024 1024

MR-5484

Figure 6-27 ADD #10,R0 Add

6.2.5.2 Absolute Addressing Mode [OPR @#A]- This mode (mode 3) is the equivalent of immediate-

deferred or autoincrement-deferred using the PC. The contents of the location following the instruction are

taken as the address of the operand. Immediate data is interpreted as an absolute address (i.e., an address

that remains constant no matter where in memory the assembled instruction is executed).

6-18

Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name

CLR @#1100 005037 Clear

001100

Operation: Clear the contents of location 1100.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

20 005037 h\\\\ 20 005037

22 001100 PC 22 001100 PC

) e
—

1100 177777 1100 000000

1102 1102

MR-5485

Figure 6-28 CLR @ #1100 Clear

2. Symbolic Octal Code Instruction Name

ADD @#2000,R3 063703 Add

002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER

ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20 063703 \\\\R3 000500 20 063703 R3 001000

22 002000 PC 22 002000 PC

—

2000 000300 2000 000300

MR-5486

Figure 6-29 ADD @ #2000 Add

6.2.5.3 Relative Addressing Mode [OPR A or OPR X(PC)] - This mode (mode 6) is assembled as index
mode using R7. The base of the address calculation, which is stored in the second or third word of the
instruction, is not the address of the operand, but the number which, when added to the (PC), becomes the
address of the operand. This mode is useful for writing position-independent code since the location
referenced is always fixed relative to the PC. When instructions are to be relocated, the operand is moved

by the same amount. The instruction OPR X(PC) is interpreted as “X is the location of A relative to the

PC.”

Relative Addressing Mode Example (Figure 6-30)

Symbolic Octal Code Instruction Name

INC A 005267 Increment

000054

Operation: To increment location A, contents of memory location immediately following instruction word

are added to (PC) to produce address A. Contents of A are increased by one.

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

1020 005267 1020 0005267

1022 000054 PC 1022 000054

1024 1024 le——PC

1026 1026

1100 000000 1024 1100 000001

¢ _+54
1100

MR-5487

Figure 6-30 INC A Increment

6.2.5.4 Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] - This mode (mode 7) is

similar to relative mode, except that the second word of the instruction, when added to the PC, contains

the address of the address of the operand, rather than the address of the operand. The instruction OPR

@X(PC) is interpreted as “X is the location containing the address of A, relative to the PC.”

Relative-Deferred Mode Example (Figure 6-31)

Symbolic Octal Code Instruction Name

CLR @A 005077 Clear

000020

Operation: Add second word of instruction to updated PC to produce address of address of operand. Clear

operand.

6-20

BEFORE AFTER

ADDRESS SPACE ADDRESS SPACE

(PC = 1020) 1020 005077 1020 005077

1022 060620 PC 1022 000020 PC

(PC = 1022) 1024 1024 1024

+20

‘ 1044

1044 010100 1044 010100

10100 100001 10100 000000

MR.-5488

Figure 6-31 CLR @A Clear

6.2.6 Use of the Stack Pointer as a General-Purpose Register

The processor stack pointer (SP, register 6) is, in most cases, the general register used for the stack

operations related to program nesting. Autodecrement with register 6 “pushes” data onto the stack, and

autoincrement with register 6 “pops” data off the stack. Since the SP is used by the processor for interrupt

handling, it has a special attribute: autoincrements and autodecrements are always done in steps of two.

Byte operations using the SP in this way leave odd addresses unmodified.

6.3 INSTRUCTION SET

The rest of this chapter describes the KDJ11-A instruction set. The explanation of each instruction

includes the instruction’s mnemonic, octal code, binary code, a diagram showing the format of the

instruction, a symbolic notation describing its execution and effect on the condition codes, a description,

special comments, and examples. Each explanation is headed by its mnemonic. When the word instruction

has a byte equivalent, the byte mnemonic also appears.

The diagram that accompanies each instruction shows the octal op code, binary op code, and bit assign-

ments. [Note that in byte instructions, the most significant bit (bit 15) is always a one.]

Symbols:

-() = contents of V = Boolean OR

SS or src = source address ¥ = exclusive OR

DD or dst = destination address ~ = Boolean not

loc = location REG or R = register

— = becomes B = byte

T = “is popped from stack” B = 0 for word, 1 for byte

| = “is pushed onto stack” , = concatenated

A = Boolean AND

6-21

6.3.1 Instruction Formats

The following formats include all instructions used in the KDJ11-A. Refer to individual instructions for
more detailed information.

1. Single-Operand Group:

(Figure 6-32)

CLR, CLRB, COM, COMB, INC, INCB,

DEC, DECB, NEG, NEGB, ADC, ADCB,

SBC, SBCB, TST, TSTB, ROR, RORB,

ROL, ROLB, ASR, ASRB, ASL, ASLB,

JMP, SWAB, MFPS, MTPS, SXT,

TSTSET, WRTLCK, XOR

06 05 00
T L T I T T T L 1 T

OP CODE DD(SS)

i 1 L I Il 1] 1

2. Double-Operand Group:

a. Group I:

(Figure 6-33)

MR-5191

Figure 6-32 Single-Operand Group

BIT, BITB, BIC, BICB, BIS, BISB,

ADD, SUB, MOV, MOVB, CMP, CMPB

15 12 11 06 05 00
I L 1 I 1 T T T ¥ 4 1 i T

OP CODE sS DD

f | n 1 L 1 1 |

MR-5192

Figure 6-33 Double-Operand Group |

b. Group 2: ASH, ASHC, DIV, MUL

(Figure 6-34)

09 08 06 05 00

{ | | I | | I 1 ¥

| |] L |] | 1]

MR-11554

Figure 6-34 Double-Operand Group 2

6-22

3. Program Control Group:

a.

b.

C.

Branch (all branch instructions) (Figure 6-35)

15 08 07 00
T 1 I T T 1 T T ¥ T T 1 1

OP CODE OFFSET

, | 4 { i L I d 1 1 A A

MR-5193

Figure 6-35 Program Control Group Branch

Jump to Subroutine (JSR) (Figure 6-36)

15 09 08 06 05 00
1 1 T T 1 1 i I T | I T

0 0 4 R DD

L \)) 1 1 | I § 1 L 1

MR-5194

Figure 6-36 Program Control Group JSR

Subroutine Return (RTS) (Figure 6-37)

15 03 02 00
1 T T T 1 b T 1 T T L) T

0 0 0 2 0 R

L) 1 g 1 i § J 5 4 i 1 A

MR-5195

Figure 6-37 Program Control Group RTS

Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 6-38)

15 00

Figure 6-38 Program Control Group Traps

6-23

MR-5196

Subtract 1 and Branch (if = 0) (SOB) (Figure 6-39)

15 09 08 06 05 00
T T T L T I T 1 T T T 1

0 0 7 R NN

L I 1 | 1 1 Il L 1 1 L 1

MR-5197

Figure 6-39 Program Control Group Subtract

Mark (Figure 6-40)

15 06 05 00

T T T T T T T T ! T T T T

0 0 6 4 NN

L Il |] | 1 1) 1 i i L]

MR-11548

Figure 6-40 Mark

Call to Supervisor Mode (CSM) (Figure 6-41)

15 06 05 00

T T T T T T T T T T T T T

0 0 7 0 DD

] | 1] 1 } L 1 1 1 1 | I L

MR-11549

Figure 6-41 Call to Supervisor Mode

Set Priority Level (SPL) (Figure 6-42)

15 03 02 00

J T [I 1 1 | I I I I L) T

0 0 0 2 3

|-] - | 1] L 1 [l] 1 | Il

MR-11550

Figure 6-42 Set Priority Level

6-24

Operate Group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT

(Figure 6-43)

MA-5198

Figure 6-43 Operate Group

Condition Code Operators (all condition code instructions)

(Figure 6-44)

15 06 05 04 03 02 01 00

MR-5199

Figure 6-44 Condition Group

Move To/From

Previous

Instruction/Data

Space Group: MTPD, MTPI, MFPD, MFPI

(Figure 6-45)

15 06 05 00

OP CODE DD(SS)

1

MR-11651

Figure 6-45 Move To And From

Previous Instruction/Data Space Group

6-25

6.3.2 Byte Instructions

The KDJ11-A includes a full complement of instructions that manipulate byte operands. Since all KDJ11-

A addressing is byte-oriented, byte manipulation addressing is straightforward. Byte instructions with

autoincrement or autodecrement direct addressing cause the specified register to be modified by one to

point to the next byte of data. Byte operations in register mode access the low-order byte of the specified

register. These provisions enable the KDJ11-A to perform as either a word or byte processor. The

numbering scheme for word and byte addresses in memory is shown in Figure 6-46.

HIGH BYTE WORD OR BYTE

ADDRESS ADDRESS

002001 BYTE 1 BYTEO 002000

002003 BYTE 3 BYTE 2 002002

MR-5201

Figure 6-46 Byte Instructions

The most significant bit (bit 15) of the instruction word is set to indicate a byte instruction.

Example:

Symbolic Octal Code Instruction Name

CLR 0050DD Clear word

CLRB 1050DD Clear byte

6-26

6.3.3 List of Instructions

The following is a list of the KDJ11-A instruction set.

SINGLE-OPERAND

General

Mnemonic Instruction

CLR(B) Clear destination

COM(B) Complement destination

INC(B) Increment destination

DEC(B) Decrement destination

NEG(B) Negate destination

TST(B) Test destination

WRTLCK Read/lock destination,

write/unlock RO into

destination

TSTSET Test destination, set low bit

Shift and Rotate

Mnemonic Instruction

ASR(B) Arithmetic shift right

ASL(B) Arithmetic shift left

ROR(B) Rotate right

ROL(B) Rotate left

SWAB Swap bytes

Multiple-Precision

Mnemonic Instruction

ADC(B) Add carry

SBC(B) Subtract carry

SXT Sign extend

PS Word Operators

Mnemonic Instruction

MFPS Move byte from PS

MTPS Move byte to PS

6-27

Op Code

WO050DD

WO51DD

W052DD

B053DD

W054DD

W057DD

0073DD

0072DD

Op Code

HW062DD

W063DD

B060DD

W061DD

0003DD

Op Code

W055DD

W056DD

0067DD

Op Code

1067DD

1064SS

DOUBLE-OPERAND

General

Mnemonic

MOV(B)

CMP(B)

ADD

SUB

ASH

ASHC

MUL

DIV

Logical

Mnemonic

BIT(B)

BIC(B)

BIS(B)

XOR

Instruction

Move source to destination

Compare source to destination

Add source to destination

Subtract source from destination

Arithmetic shift

Arithmetic shift combined

Multiply

Divide

Instruction

Bit test

Bit clear

Bit set

Exclusive OR

PROGRAM CONTROL

Mnemonic

Branch

BR

BNE

BEQ

BPL

BMI

BVC

BVS

BCC

BCS

Instruction

Branch (unconditional)

Branch if not equal (to zero)

Branch if equal (to zero)

Branch if plus

Branch if minus

Branch if overflow is clear

Branch if overflow is set

Branch if carry is clear

Branch if carry is set

Signed Conditional Branch

Mnemonic

BGE

BLT

BGT

BLE

Instruction

Branch if greater than or equal

(to zero)

Branch if less than (zero)

Branch if greater than (zero)

Branch if less than or equal

(to zero)

6-28

Op Code

W1SSDD

W2SSDD

06SSDD

16SSDD

072RSS

073RSS

070RSS

071RSS

Op Code

W3SSDD

W4SSDD

W5SSDD

074RDD

Op Code

or

Base Code

000400

001000

001400

100000

100400

102000

102400

103000

103400

Op Code

or

Base Code

002000

002400

003000

003400

Unsigned Conditional Branch

Mnemonic

BHI

BLOS

BHIS

BLO

Instruction

Branch if higher

Branch if lower or same

Branch if higher or same

Branch if lower

Jump and Subroutine

Mnemonic

JMP

JSR

RTS

SOB

Instruction

Jump

Jump to subroutine

Return from subroutine

Subtract one and branch (if # 0)

Trap and Interrupt

Mnemonic

EMT

TRAP

BPT

10T

RTI

RTT

Instruction

Emulator trap

Trap

Breakpoint trap

Input/output trap

Return from interrupt

Return from interrupt

Miscellaneous Program Control

Mnemonic

CSM

MARK

SPL

Instruction

Call to supervisor mode

Mark

Set Priority Level

6-29

Op Code

or

Base Code

101000

101400

103000

103400

Op Code

or

Base Code

0001DD

004RDD

00020R

077R00

Op Code

or

Base Code

104000-104377

104400-104777

000003

000004

000002

000006

Op Code

or

Base Code

0070DD

0064NN

00023N

MISCELLANEOUS

Op Code

or

Mnemonic Instruction Base Code

HALT Halt 000000
WAIT Wait for interrupt 000001

RESET Reset external bus 000005

MFPT Move_processor type 000007

MTPD Move to previous data space 1066SS

MTPI Move to previous instruction space 0066SS

MFPD Move from previous data space 0065SS

MFPI Move from previous instruction space 1065SS

CONDITION CODE OPERATORS

Op Code

or

Mnemonic Instruction Base Code

CLC Clear C 000241

CLV Clear V 000242

CLZ Clear Z 000244

CLN Clear N 000250

CCC Clear all CC bits 000257

SEC Set C 000261

SEV Set V 000262

SEZ Set Z 000264

SEN Set N 000270

SCC Set all CC bits 000277

NOP No operation 000240

6.3.4 Single-Operand Instructions

The KDJ11-A instructions that involve only one operand are described in the paragraphs that follow.

6-30

6.3.4.1 General -

CLR

CLRB

CLEAR DESTINATION s050DD

15 06 05 00

01 0 00 10 1 0o 0 0 DD

Operation: (dst) — O

Condition Codes: N: cleared

Z: set

V: cleared

C: cleared

Description: Word: The contents of the specified destination are replaced with Os.

Byte: Same.

Example: CLR R1

Before After ’

(R1) = 177777 (R1) = 000000

NZVC NZVC

1111 0100

6-31

COM

COMB

COMPLEMENT DST u051DD

15 06 05 00
T T I 1 1 T T T T T 1

01 0 0 0 1 0 1 0 0 1 DD

" 1] 1 1 S— 4

MR-11508

Operation: (dst) «— ~ (dst)

Condition Codes: N: set if most significant bit of result is set; cleared otherwise

Z: set if result is O; cleared otherwise

V: cleared

C: set

Description: Word: Replaces the contents of the destination address by their logical
complement. (Each bit equal to O is set and each bit equal to 1 is cleared.)

Byte: Same.

Example: COM RO

Before After

(RO) = 013333 (RO) = 164444

NZVC NZVC

0110 1001

INC

INCB

INCREMENT DST a052DD

15 06 05 00

0/1 0 0 0 1 0 1 1 0 DD

1

Operation:

Condition Codes:

(dst) — (dst) + 1

not affected

6-32

set if result is < 0; cleared otherwise

set if result is 0; cleared otherwise

set if (dst) held 077777; cleared otherwise

MR-11506

Description: Word: Add 1 to the contents of the destination.

Byte: Same.

Example: INC R2

Before After

(R2) = 000333 (R2) = 000334

NZVC NZVC

0000 0000

DEC

DECB

DECREMENT DST m053DD

15 06 05 00

0/1 0 0 0 1 0 1 1 DD

Operation:

Condition Codes:

Description:

Example:

(dst) — (dst) — 1

N: set if result is < 0; cleared otherwise

Z: set if result is O; cleared otherwise

V: set if (dst) was 100000; cleared otherwise

C: not affected

Word: Subtract 1 from the contents of the destination.

Byte: Same.

DEC RS

Before

(RS5) = 000001

NZVC

1000

After

(R5) = 000000

NZVC

0100

MR-11507

NEG

=054DD

06 05 00
T T T T T T T T T T T

0 1 0 1 1 0 0 DD

NEGB

NEGATE DST

15
T

01 0

Operation:

Condition Codes:

Description:

Example:

MR-11503

(dst) — — (dst)

N: set if result is < O; cleared otherwise

Z: set if result 1s O; cleared otherwise

V: set if result is 100000; cleared otherwise

C: cleared if result is 0; set otherwise

Word: Replaces the contents of the destination address by its 2’s comple-

ment. Note that 100000 is replaced by itself. (In 2’s complement notation the

most negative number has no positive counterpart.)

Byte: Same.

NEG RO

Before After

(RO) = 000010 (RO) = 177770

NZVC | NZVC
0000 1001

6-34

TST

TSTB

TEST DST m(057DD

15 06 05 00

0/1 0 0 0 1 0 1 1 1 1 DD

Operation: (dst) — (dst)

Condition Codes: N: set if result is < 0; cleared otherwise

Z: set if result is O; cleared otherwise

V: cleared

C: cleared

Description: Word: Sets the condition codes N and Z according to the contents of the

destination address; the contents of dst remain unmodified.

Byte: Same.

Example: TST R1

Before After

(R1) = 012340 (R1) = 012340

NZVC NZVC

0011 0000

WRTLCK

READ/LOCK DESTINATION

WRITE/UNLOCK RO INTO DESTINATION 0073DD

15 06 05 00

I I I 1 I I | I I I R I

0 0 0 0 1 1 1 1 1 0 DD

N |] 1) |- L] 1 |-)

Operation: (dst) — (RO)

Condition Codes: N: setif RO <0

Z: setif RO=0

V: cleared

C: unchanged

Description: Writes contents of RO into destination using bus lock. If mode is 0, traps to

10.

6-35

TSTSET

TEST DESTINATION AND SET LOW BIT 0072DD

15 06 05 00

1 | [| H [I I I 1 I | 1 1

0 0 0 0 1 1 1 0] 1 0 DD
L })] { | l 1 1 1 } L]]

Operation: (RO) — (dst), (dst) — (dst) Vv 000001 (octal)

Condition Codes: N: setif RO <0

Z: setif RO=0

V: cleared

C: gets contents of destination bit 0.

Description: Reads/locks destination word and stores it in RO. Writes/unlocks (R0) v 1

into destination. If mode is 0, traps to 10.

6.3.4.2 Shifts and Rotates — Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order bit is filled with Os in
shifts to the left. Bits shifted out of the C-bit, as shown in the following instructions, are lost.

The rotate instructions operate on the destination word and the C-bit as though they formed a 17-bit

“circular buffer.” These instructions facilitate sequential bit testing and detailed bit manipulation.

6-36

ASR

ASRB

ARITHMETIC SHIFT RIGHT u062DD

15 06 05 00
i T T T T T T L) L § ¥ 1 T 1

0/1 0 1 1 0 0 1 0 DD

5 A 1 1 " A } I 1 I i

MR-11502

Operation: (dst) < (dst) shifted one place to the right

Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise

Z: set if result = 0; cleared otherwise

V: loaded from exclusive OR of N-bit and C-bit (as set by the completion

of the shift operation)

C: loaded from low-order bit of destination

Description: Word: Shifts all bits of the destination right one place. Bit 15 is reproduced.

The C-bit is loaded from bit 0 of the destination. ASR performs signed

division of the destination by 2.

Byte: Same.

Example:

l 1'5 00
T 1 T H 1 T T T T 1 L 1 1

— —s c |—»

A " o 1 1 i A l] 1 A A I

BYTE:

15 ODD ADDRESS 08 ‘ 07 EVEN ADDRESS 00

, : | C - C
L I) | 1 L i | 1 i L g)

MR-5209

6-37

ASL

ASLB

ARITHMETIC SHIFT LEFT 1063DD

15 06 05 00

0/1 0 0 0 1 1 0 0 1 1 DD

[I . 4 | L L I L 1 1 L L L

Operation: (dst) — (dst) shifted one place to the left

Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise

Z: set if result = 0; cleared otherwise

V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of

the shift operation)

C: loaded with high-order bit of destination

Description: Word: Shifts all bits of the destination left one place. Bit 0 is loaded with a 0.

The C-bit of the status word is loaded from the most significant bit of the

destination. ASL performs a signed multiplication of the destination by 2

with overflow indication.

Byte: Same.

Example:

WORD:

15
90T T T T T] 1 T T LD Ll T T T 1

C jo—
<+—0

" 1 1) b b J) 1 [I 1

BYTE:

15 ODD ADDRESS 08 07 EVEN ADDRESS 00

T T T T 1 L 1 T T L T Li i Li

C e of C -+

L L 1 | i [i L ol {] i i |

MR-5211

6-38

ROR

RORB

ROTATE RIGHT 060DD

15 06 05 00

| I | I I 1 I 1 T 1 | |

01 0 0 1 1 o 0 0 0 DD
1 { 1 1 1] | | 1]) N

MR-11500

Operation: (dst) — (dst) rotate right one place

Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise

Z: set if all bits of result = 0; cleared otherwise

V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of

the rotate operation)

C: loaded with low-order bit of destination

Description: Word: Rotates all bits of the destination right one place. Bit 0 is loaded into

the C-bit and the previous contents of the C-bit are loaded into bit 15 of the

destination.

Byte: Same.

Example:

WORD:

|

15 . . , 00

cC >

BYTE:

! . -
15 08 07 00

oDD EVEN

MR-5213

6-39

ROL

ROLB

ROTATE LEFT u0610D

15 06 05 00
T 1 N T 1 I 1 T T T L 1 T

01 0 0 1 1 0 0 0 1 DD

A d L 1 | ! I 1 | 1 1 Y

MR-11509

Operation: (dst) — (dst) rotate left one place

Condition Codes: N: set if high-order bit of result word is set (result < 0); cleared otherwise

Z. set if all bits of result word = 0; cleared otherwise

V: loaded with exclusive OR of the N-bit and C-bit (as set by the comple-

tion of the rotate operation)

C: loaded with high-order bit of destination

Description: Word: Rotates all bits of the destination left one place. Bit 15 is loaded into

the C-bit of the status word and the previous contents of the C-bit are loaded

into bit 0 of the destination.

Byte: Same.

Example:

WORD:

'
15 DST 00

C ja—

BYTE:

= | : l
15 08 07 o

oDD EVEN

MR-5215

6-40

SWAB

SWAP BYTES

15

0003DD

06 05 00

0 0

Operation:

Condition Codes:

Description:

Example:

MR-11508

byte 1/byte 0 < byte 0/byte 1

N:

Z:

V:

C:

set if high-order bit of low-order byte (bit 7) of result is set; cleared

otherwise

set if low-order byte of result = 0; cleared otherwise

cleared

cleared

Exchanges high-order byte and low-order byte of the destination word. (The

destination must be a word address.)

SWAB R1

Before After

(R1) = 077777 (R1) = 177577

NZVC NZVC

1111 0000

6-41

6.3.4.3 Multiple-Precision - It is sometimes necessary to do arithmetic operations on operands consid-

ered as multiple words or bytes. The KDJ11-A makes special provision for such operations with the

instructions ADC (add carry) and SBC (subtract carry) and their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit double-precision word and added or

subtracted as shown below.

32-BIT WORD
N

(1
31 16 15 0

OPERAND Al A0

g

[)
31 16 15 0

OPERAND B1 BO

31 16 15 0

RESULT

MR-5217

Example:

The addition of —1 and —1 could be performed as follows.

—1 = 37777777777

(R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777

ADD R1,R2

ADC R3

ADD R4,R3

1. After (R1) and (R2) are added, 1 is loaded into the C-bit.

2. The ADC instruction adds the C-bit to (R3); (R3) = 0.

3. The (R3) and (R4) are added.

4. The result is 37777777776, or —2.

6-42

ADC

ADCB

ADD CARRY m055D0

06 05 00

| | 1 L | 4 { | 1 | L

T T T I 1 T T 1 v T T

Operation:

Condition Codes:

Description:

Example:

MR-115675

(dst) — (dst) + (C-bit)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if (dst) was 077777 and (C) was 1; cleared otherwise

C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Word: Adds the contents of the C-bit to the destination. This permits the

carry from the addition of the low-order words to be carried to the high-order

result.

Byte: Same.

Double-precision addition may be done with the following instruction

sequence.

ADD A0,BO ;add low-order parts

ADC B1 ;add carry into high-order

ADD Al,Bl ;add high-order parts

6-43

SBC

SBCB

SUBTRACT CARRY ®0560D

15 06 05 00

0/1 0 0 0 1 0 1 1 1 0 DD

1] 1 1 L n § 1 1 L I 1

Operation: (dst) — (dst) — (C)

Condition Codes: N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if (dst) was 100000; cleared otherwise

C. set if (dst) was 0 and C was 1; cleared otherwise

Description: Word: Subtracts the contents of the C-bit from the destination. This permits

the carry from the subtraction of two low-order words to be subtracted from

the high-order part of the result.

Byte: Same.

Example: Double-precision subtraction is done by:

SUB A0,BO

SBC Bl

SUB Al,Bl

SXT

SIGN EXTEND 0067DD

15 06 05 00

0 0 0 0 1 1 0 1 1 1 DD

Sv— A A 1 5 A " i 1 L _ y

Operation: (dst) — O if N-bit is clear

Condition Codes:

(dst) — 1 if N-bit is set

N: not affected

Z: set if N-bit is clear

V: cleared

C: not affected

6-44

Description: If the condition code bit N is set, a —1 is placed in the destination operand; if

the N-bit is clear, a 0 is placed in the destination operand. This instruction is

particularly useful in multiple-precision arithmetic because it permits the sign

to be extended through multiple words.

Example: SXT A

Before After

(A) = 012345 (A) = 177777

NZVC NZVC

1000 1000

6.3.4.4 PS Word Operators -

MFPS

MOVE BYTE FROM PROCESSOR STATUS WORD 10670D

15 08 07 00

1 0 1 1 4] 1 1 1 DD

Operation: (dst) — PS

Condition Codes:

Description:

Example:

dst lower 8 bits

N: set if PS <07> = 1; cleared otherwise

Z: set if PS <07:00> = 0; cleared otherwise

V: cleared

C: not affected

The 8-bit contents of the PS are moved to the effective destination. If the

destination is mode 0, PS bit 07 is sign-extended through the upper byte of

the register. The destination operand address is treated as a byte address.

MFPS RO

Before After

RO [0] RO [000014]
PS [000014] PS [000000]

6-45

MTPS

MOVE BYTE TO PROCESSOR STATUS WORD 1064SS

15 08 07 . 00

1 0 0 0 1 1 0 1 0 0 sS

1 i 1 1 4 }] 1 1 L { 1

Operation: PS — (src)

Condition Codes: Set according to effective SRC operand bits <03:00>

Description: The eight bits of the effective operand replace the current contents of the

lower byte of the PS. The source operand address is treated as a byte address.

Note: The T-bit (PS bit 04) cannot be set with this instruction. The SRC

operand remains unchanged. This instruction can be used to change the

priority bits (PS bits <07:05>) in the PS only in kernel mode. If not in kernel

mode, PS bits <07:05> cannot be changed.

Example: MTPS R1

Before After

(R1) = 000777 (R1) = 000777

(PS) = XXX000 (PS) = XXX357

NZVC NZVC

0000 1111

6.3.5 Double-Operand Instructions

Double-operand instructions save instructions (and time) since they eliminate the need for “load” and

“save” sequences such as those used in accumulator-oriented machines.

6-46

6.3.5.1 General -

MOV

MOVB

MOVE SOURCE TO DESTINATION m1SSDD

15 12 11 06 05 00

0/1 0 0 1 SS DD

1 1 1 L e L 1 __q 1

Operation: (dst) «— (src)

Condition Codes: N: set if (src) < 0; cleared otherwise

Z: set if (src) = 0; cleared otherwise

V: cleared

C: not affected

Description: Word: Moves the source operand to the destination location. The previous

contents of the destination are lost. Contents of the source address are not

affected.

Byte: Same as MOV. The MOVB to a register (unique among byte instruc-

tions) extends the most significant bit of the low-order byte (sign extension).

Otherwise, MOVB operates on bytes exactly as MOV operates on words.

Example: MOV XXX,R1 ;loads register 1 with the con-

MOV #20,R0

MOV @#20,—(R6)

MOV (R6)+,@#177566

MOV R1,R3

MOVB @#177562,@#177566

6-47

tents of memory location;

XXX represents a program-

mer-defined mnemonic used

to represent a memory

location

;loads the number 20 into reg-

ister 0; # indicates that the

value 20 is the operand

;pushes the operand contained

in location 20 onto the stack

;pops the operand off a stack

and moves it into memory

location 177566 (terminal

print buffer)

;performs an inter-register

transfer

;moves a character from the

terminal keyboard buffer to

the terminal printer buffer

CMP

CMPB

COMPARE SRC TO DST ®25SDD

11 06 05 00

1 T 1 T I 1 T I T T

| | L | | 1 1 L L I

Operation:

Condition Codes:

Description:

MR-11562

(src) — (dst)

N:

Z:

C:

set if result < O; cleared otherwise

set if result = O; cleared otherwise

set if there was arithmetic overflow; that is, operands were of opposite

signs and the sign of the destination was the same as the sign of the

result; cleared otherwise

cleared if there was a carry from the result’s most significant bit; set

otherwise

Compares the source and destination operands and sets the condition codes,

which may then be used for arithmetic and logical conditional branches. Both

operands are not affected. The only action is to set the condition codes. The

compare is customarily followed by a conditional branch instruction. Note:

Unlike the subtract instruction, the order of operation is (src) — (dst), not

(dst) — (src).

6-48

ADD

ADD SRC TO DST 06SSDD

12 11 06 05 00
T L) ¥ I T T T T T |

1 i | | 4 1 1 L | "

Operation:

Condition Codes:

Description:

Example:

MR-11563

(dst) — (src) + (dst)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow as a result of the operation; that is,

both operands were of the same sign and the result was of the opposite

sign; cleared otherwise

C: set if there was a carry from the result’s most significant bit; cleared

otherwise

Adds the source operand to the destination operand and stores the result at

the destination address. The original contents of the destination are lost. The

contents of the source are not affected. Two’s complement addition is per-

formed. Note: There is no equivalent byte mode.

Add to register: ADD 20,R0

Add to memory: ADD R1,XXX

Add register to register: ADD R1,R2

Add memory to memory: ADD @#17750,XXX

XXX is a programmer-defined mnemonic for a memory location.

6-49

SUB

SUBTRACT SRC FROM DST 16SSDD

15 12 11 06 05 00
T T T 1 1 T | T I 1 T

1 0 SS DD

A 1 n A 4) 1 L i 3

Operation:

Condition Codes:

Description:

Example:

(dst) — (dst) — (src)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: setif there was arithmetic overflow as a result of the operation; that is, if

operands were of opposite signs and the sign of the source was the same

as the sign of the result; cleared otherwise

C: cleared if there was a carry from the result’s most significant bit; set

otherwise

Subtracts the source operand from the destination operand and leaves the

result at the destination address. The original contents of the destination are

lost. The contents of the source are not affected. In double-precision arithme-

tic the C-bit, when set, indicates a “borrow.” Note: There is no equivalent

byte mode.

SUB R1,R2

Before

(R1) = 011111

(R2) = 012345

NZVC

1111

After

(R1) =011111

(R2) = 001234

NZVC

0000

ASH

ARITHMETIC SHIFT 072RSS

09 08 06 05 00

Operation:

Condition Codes:

MR-11560

R — R shifted arithmetically NN places to the right or left where NN =

(src)

N: set if result < 0

Z: setif result =0

V: set if sign of register changed during shift

C: loaded from last bit shifted out of register

Description: The contents of the register are shifted right or left the number of times
specified by the source operand. The shift count is taken as the low-order six

bits of the source operand. This number ranges from —32 to +31. Negative is

a right shift and positive is a left shift.

ASHC

ARITHMETIC SHIFT COMBINED m073RSS

15 09 08 06 05 00

0 10 1 1 R sS

L | 1 A 4

Operation: R,RV1—R R VI

Condition Codes:

Description:

The double word is shifted NN places to the right or left where NN = (src)

set if result < 0

set if result = 0

set if sign bit changes during shift

loaded with high-order bit when left shift; loaded with low-order bit

when right shift (loaded with the last bit shifted out of the 32-bit

operand)

The contents of the register and the register ORed with 1 are treated as one

32-bit word. R Vv 1 (bits <15:00>) and R (bits <31:16>) are shifted right or

left the number of times specified by the shift count. The shift count is taken

as the low-order six bits of the source operand. This number ranges from —32
to +31. Negative is a right shift and positive is a left shift.

When the register chosen is an odd number, the register and the register

ORed with 1 are the same. In this case, the right shift becomes a rotate. The
16-bit word is rotated right the number of times specified by the shift count.

6-51

MUL

. Operation:

MULTIPLY

15

070RSS

09 08 06 05 00
I [| l | | I { i |

| 1 i ; i 1 { L | |

Condition Codes:

Description:

DIV

Operation:

MR-11572

R,R vV 1 — R X (src)

N: set if product < 0

Z: set if product = 0

V: cleared C: set if the result is less than —2 ** 15 or greater than or equal

to 2 **15 —1.

The contents of the destination register and source taken as 2’s complement

integers are multiplied and stored in the destination register and the suc-

ceeding register, if R is even. If R is odd, only the low-order product is stored.

Assembler syntax is: MUL S,R. (Note that the actual destination is R, R V

1, which reduces to just R when R is odd.

DIVIDE 071RSS

15 09 08 06 05 00
| [| | 1 T I I | [I

0 1 1 0 0 1 R SS

L | 1 1 | | | [| | |

R, RV 1—R,R V 1/(src)

Condition Codes:

Description:

N: set if quotient < 0

Z: set if quotient = 0

V: setif source = 0 or if the absolute value of the register is larger than the

absolute value of the instruction in the source. (In this case the instruc-

tion is aborted because the quotient would exceed 15 bits.)

C: set if divide by zero is attempted.

The 32-bit 2’s complement integer in R and R V 1 is divided by the source

operand. The quotient is left in R; the remainder is of the same sign as the

dividend. R must be even.

6-52

6.3.5.2 Logical - These instructions have the same format as those in the double-operand arithmetic

group. They permit operations on data at the bit level.

BIT

BITB

BIT TEST u3SSDD

15 12 11 06 05 00

0/1 0 1 1 SS DD

Operation: (src) A (dst)

Condition Codes: N: set if high-order bit of result set; cleared otherwise

Z: set if result = O; cleared otherwise

V: cleared

C: not affected

Description: Performs logical AND comparison of the source and destination operands

and modifies condition codes accordingly. Neither the source nor the destina-

tion is affected. The BIT instruction may be used to test whether any of the

corresponding bits set in the destination are also set in the source, or whether

all corresponding bits set in the destination are clear in the source.

Example: BIT #30,R3 ;test bits three and four of R3 to see if

both are off.

R3 =0 000 000 000 011 000

Before After

NZVC NZVC

1111 0001

6-53

BIC

BICB

BIT CLEAR
#4SSDD

15 12 11 . 06 05 00

0/1 1 0 0 SS DD

Operation: (dst) — ~(src) A (dst)

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared

C: not affected

Description: Clears each bit in the destination that corresponds to a set bit in the source.
The original contents of the destination are lost. The contents of the source
are not affected.

Example: BIC R3,R4

Before After

(R3) = 001234 (R3) = 001234
(R4) =001111 (R4) = 000101

NZVC | NZVC
1111 0001

Before: (R3) = 0 000 001 010 011 100

(R4) = 0 000 001 001 001 001

After: (R4) = 0 000 000 001 000 001

6-54

BIS

BISB

BIT SET 85SSDD

15 12 11 06 05 00

o 1 0 1 SS DD

Operation: (dst) — (src) Vv (dst)

Condition Codes: N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise

V: cleared

C: not affected

Description: Performs an inclusive OR operation between the source and destination

operands and leaves the result at the destination address; that is, correspond-

ing bits set in the source are set in the destination. The contents of the

destination are lost.

Example: BIS RO,R1

Before After

(RO) = 001234 (RO) = 001234

(R1) =001111 (R1)= 001335

NZVC NZVC

0000 0000

Before: (R0O) = 0 000 001 010 011 100

(R1) = 0 000 001 001 001 001

After: (R1) =0 000 001 011 011 101

6-55

XOR

EXCLUSIVE OR
074RDD

15 09 08 06 05 00

0 1 1 1 1 0 0 R DD
A 1 1 1 i | 1 I

Operation: (dst) — (reg) ¥ (dst)

Condition Codes: N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: cleared

C: not affected

Description: The exclusive OR of the register and destination operand is stored in the
destination address. The contents of the register are not affected. The assem-
bler format is XOR R,D.

Example: XOR RO,R2

Before After

(R0O) = 001234 (RO) = 001234

(R2) = 001111 (R2) = 000325

NZVC NZVC

1111 0001

Before: (RO) = 0 000 001 010 011 100

(R2) = 0 000 001 001 001 001

After: (R2) = 0 000 000 011 010 101

6.3.6 Program Control Instructions

The following paragraphs describe the KDJ11-A instructions that affect program control.

6.3.6.1 Branches — These instructions cause a branch to a location defined by the sum of the offset
(multiplied by 2) and the current contents of the program counter if:

1. The branch instruction is unconditional.

2. It is conditional and the conditions are met after testing the condition codes (NZVQ).

The offset is the number of words from the current contents of the PC, forward or backward. Note that
the current contents of the PC point to the word following the branch instruction.

6-56

Although the offset expresses a byte address, the PC is expressed in words. The offset is automatically
multiplied by 2 and sign-extended to express words before it is added to the PC. Bit 7 is the sign of the
offset. If it is set, the offset is negative and the branch is done in the backward direction. If it is not set, the
offset is positive and the branch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200 (octal) words (400 octal bytes) from
the current PC, and in the forward direction by 177 (octal) words (376 octal bytes) from the current PC.

The KDJ11-A assembler typically handles address arithmetic for the user and computes and assembles the
proper offset field for branch instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the branch is to be made. The assembler gives
an error indication in the instruction if the permissible branch range is exceeded. Branch instructions have
no effect on condition codes. Conditional branch instructions where the branch condition is not met are
treated as NOPs.

BR

BRANCH (UNCONDITIONAL) 000400 PLUS OFFSET

15 08 07 00

0] 0 0 0 0 0 0 1 OFFSET

Operation: PC — PC + (2 X offset)

Condition Codes: Not affected

Description: Provides a way of transferring program control within a range of —128 to
+127 words with a one word instruction.

New PC address = updated PC + (2 X offset)

Updated PC = address of branch instruction +2

Example: With the branch instruction at location 500, the following offsets apply.

New PC Address Offset Code Offset (decimal)

474 375 -3
476 376 -2

500 377 —1

502 000 0

504 001 +1

506 002 +2

6-57

BNE

BRANCH IF NOT EQUAL (TO ZERO) 001000 PLUS OFFSET

08 07 00

T 1 T T 1 1 1 1 1 I T

0 0 0 1 0 OFFSET

y 1 I t 1 j [1 L i N

Operation:

Condition Codes:

MR-5232

PC — PC + (2 X offset) ifZ =0

Not affected

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is clear. BNE is

the complementary operation of BEQ. It is used to test: (1) inequality follow-

ing a CMP, (2) that some bits set in the destination were also in the source

following a BIT operation, and (3) generally, that the result of the previous

operation was not 0.

Example: Branchto Cif A # B

CMP AB ;compare A and B

BNE C ;branch if they are not equal

BranchtoCif A+ B # 0

ADD A,B ;add A to B

BNE C :branch if the result is not

equal to O

BEQ

BRANCH IF EQUAL (TO ZERO) 001400 PLUS OFFSET

15 08 07 00

0 o 0 0 1 1 OFFSET

Operation: PC — PC + (2 X offset) if Z = 1

Condition Codes:

Description:

Not affected

Tests the state of the Z-bit and causes a branch if Z is set. It is used to test:

(1) equality following a CMP operation, (2) that no bits set in the destination

were also set in the source following a BIT operation, and (3) generally, that

the result of the previous operation was 0.

6-58

Example: BranchtoCif A=B(A -~ B=0)

CMP A.B

BEQ C

;compare A and B

;branch if they are equal

BranchtoCifA+ B=0

ADD A.B ;add A to B

BEQ C ;branch if the result = 0

BPL

BRANCH IF PLUS 100000 PLUS OFFSET

15 08 07 00

1 0 o o 0o 0o o0 OFFSET

1] | I | 1 | L { 1

Operation: PC — PC + (2 X offset) if N =0

Condition Codes:

Description:

BMI

BRANCH IF MINUS

Not affected

Tests the state of the N-bit and causes a branch if N is clear (positive result).
BPL is the complementary operation of BMI.

100400 PLUS OFFSET

00

OFFSET

1

i i

Operation:

Condition Codes:

Description:

MR-5235

PC — PC + (2 X offset) if N = 1

Not affected

Tests the state of the N-bit and causes a branch if N is set. It is used to test
the sign (most significant bit) of the result of the previous operation), branch-
ing if negative. BMI is the complementary function of BPL.

6-59

BVC

BRANCH {F OVERFLOW IS CLEAR

15

102000 PLUS OFFSET

00
T T T T

OFFSET

L § 1 {

Operation:

Condition Codes:

Description:

BVS

PC — PC + (2 X offset) if V=10

Not affected

MR-b236

Tests the state of the V-bit and causes a branch if the V-bit is clear. BVC is

complementary operation to BVS.

BRANCH IF OVERFLOW IS SET

15

102400 PLUS OFFSET

00

Operation:

Condition Codes:

Description:

BCC

PC — PC + (2 X offset) ifV =1

Not affected

MR-5237

Tests the state of the V-bit (overflow) and causes a branch if V is set. BVS is

used to detect arithmetic overflow in the previous operation.

BRANCH IF CARRY IS CLEAR 103000 PLUS OFFSET

00

Operation:

Condition Codes:

Description:

PC — PC + (2 X offset) if C= 0

Not affected

MR-5238

Tests the state of the C-bit and causes a branch if C is clear. BCC is the

complementary operation of BCS.

6-60

BCS

BRANCH IF CARRY IS SET 103400 PLUS OF FSET

15 08 07 00

1 o 0 0 0 1 1 1 OFFSET

L q 1 1 L L] AN 1 L { Il

Operation: PC — PC + (2 X offset) if C =1

Condition Codes: Not affected

Description: Tests the state of the C-bit and causes a branch if C is set. It is used to test for

a carry in the result of a previous operation.

6.3.6.2 Signed Conditional Branches - Particular combinations of the condition code bits are tested with

the signed conditional branches. These instructions are used to test the results of instructions in which the

operands were considered as signed (2’s complement) values.

Note that the sense of signed comparisons differs from that of unsigned comparisons in that in signed, 16-

bit, 2’s complement arithmetic the sequence of values is as follows.

largest 077777

positive 077776

000001
000000

177777

177776

smallest 100001
negative 100000

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be:

highest 177777

000002
000001

lowest 000000

6-61

BGE

BRANCH IF GREATER THAN OR EQUAL

(TO ZERO)

15

002600 PLUS OFFSET

08 07 00

T I T 1 ! I T T T T i

A i I 3 !] 1 § L n I

Operation:

Condition Codes:

Description:

BLT

BRANCH IF LESS THAN (ZERO)

MR-6240

PC — PC + (2 X offset) if N v V=0

Not affected

Causes a branch if N and V are either both clear or both set. BGE is the

complementary operation of BLT. Thus, BGE will always cause a branch

when it follows an operation that caused addition of two positive numbers.

BGE will also cause a branch on a 0 result.

002400 PLUS OFFSET

08 07 00

Operation:

Condition Codes:

Description:

MR-5241

PC — PC + (2 X offset) if N ¥ V=1

Not affected

Causes a branch if the exclusive OR of the N- and V-bits is one. Thus, BLT

will always branch following an operation that added two negative numbers,

even if overflow occurred. In particular, BLT will always cause a branch if it

follows a CMP instruction operating on a negative source and a positive

destination (even if overflow occurred). Further, BLT will never cause a

branch when it follows a CMP instruction operating on a positive source and

negative destination. BLT will not cause a branch if the result of the previous

operation was 0 (without overflow).

6-62

BGT

BRANCH |F GREATER THAN (ZERO) 003000 PLUS OFFSET

08 07 00
T T T T L Y T T T T T

0 0 1 1 0 OFFSET

1 1 I & |]] L { n

Operation:

Condition Codes:

Description:

BLE

BRANCH IF LESS THAN OR EQUAL (TO ZERO)

MR-5242

PC — PC + (2 Xoffset)ifZ V (N ¥ V)=0

Not affected

Operation of BGT is similar to BGE, except that BGT will not cause a branch

on a 0 result.

003400 PLUS OFFSET

08 07 00

Operation:

Condition Codes:

Description:

MR-5243

PC — PC+ (2 Xoffset)ifZ v (N ¥ V) =1

Not affected

Operation is similar to BLT, but in addition will cause a branch if the result

of the previous operation was O.

6.3.6.3 Unsigned Conditional Branches — The unsigned conditional branches provide a means for testing

the result of comparison operations in which the operands are considered as unsigned values.

BHI

BRANCH IF HIGHER 101000 PLUS OFFSET

15 08 07 00
I | 1 T T T T T T | T i

1 o 0o 0 1 0 OFFSET

A d L 1) L I | i L ¢ 3

MR-5244

Operation: PC — PC + (2 X offset) if C=0and Z =10

Condition Codes:

Description:

Not affected

Causes a branch if the previous operation caused neither a carry nor a 0

result. This will happen in comparison (CMP) operations as long as the source

has a higher unsigned value than the destination.

6-63

BLOS

BRANCH IF LOWER OR SAME 101400 PLUS OFFSET

08 07 00
T T T ¥ L 1 T T 1 ¥ I

| 1 | 1 J 1 1 L { 1

Operation:

Condition Codes:

Description:

BHIS

BRANCH IF HIGHER OR SAME

MR-5245

PC — PC + (2 X offset) if C V Z =1

Not affected

Causes a branch if the previous operation caused either a carry or a 0 result.

BLOS is the complementary operation of BHI. The branch will occur in

comparison operations as long as the source is equal to or has a lower

unsigned value than the destination.

103000 PLUS OFFSET

08 07 00

Operation:

Condition Codes:

Description:

BLO

BRANCH IF LOWER

MR-56246

PC — PC + (2 X offset) if C = 0

Not affected

BHIS is the same instruction as BCC. This mnemonic is included for conve-

nience only.

103400 PLUS OFFSET

00
T

OFFSET

] 1

Operation:

Condition Codes:

Description:

PC — PC + (2 X offset) ifC =1

Not affected

MR-5247

BLO is the same instruction as BCS. This mnemonic is included for conve-

nience only.

6-64

6.3.6.4 Jump and Subroutine Instructions — The subroutine call in the KDJ11-A provides for automatic

nesting of subroutines, reentrancy, and multiple entry points. Subroutines may call other subroutines (or

indeed themselves) to any level of nesting without making special provision for storage of return addresses

at each level of subroutine call. The subroutine calling mechanism does not modify any fixed location in

memory, and thus provides for reentrancy. This allows one copy of a subroutine to be shared among

several interrupting processes.

JMP

0001DD

06 05 00
T I T T 1 J 4 T T T T

{ 1 L I L 1 1] L I

Operation:

Condition Codes:

Description:

Example:

MR-11555

PC — (dst)

Not affected

JMP provides more flexible program branching than the branch instructions

do. Control may be transferred to any location in memory (no range limita-

tion) and can be accomplished with the full flexibility of the addressing

modes, with the exception of register mode 0. Execution of a jump with mode

0 will cause an “illegal instruction” condition, and will cause the CPU to trap

to vector address ten. (Program control cannot be transferred to a register.)

Register-deferred mode is legal and will cause program control to be trans-

ferred to the address held in the specified register. Note that instructions are

word data and must therefore be fetched from an even-numbered address.

Deferred-index mode JMP instructions permit transfer of control to the

address contained in a selectable element of a table of dispatch vectors.

First:

JMP FIRST stransfers to FIRST

JMP @LIST ;transfers to location
pointed to at LIST

List:

FIRST ;pointer to FIRST

JMP @(SP)+ stransfer to location

pointed to by the top of

the stack, and remove the

pointer from the stack

6-65

JSR

JUMP TO SUBROUTINE 004RDD

09 08 06 05 00
T 1 T I i T 1 L] 1 ¥

1 i | L 1 1 L | |

Operation:

Description:

MR-11556

(tmp) < (dst) (tmp is an internal processor register)

| (SP) — reg (Push register contents onto processor stack)

reg — PC (PC holds location following JSR; this address now put in register)

PC — (dst) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified register (the /inkage

pointer) are automatically pushed onto the processor stack and new linkage

information is placed in the register. Thus, subroutines nested within subrou-

tines to any depth may all be called with the same linkage register. There is

no need either to plan the maximum depth at which any particular subroutine

will be called or to include instructions in each routine to save and restore the

linkage pointer. Further, since all linkages are saved in a reentrant manner on

the processor stack, execution of a subroutine may be interrupted. The same

subroutine may be reentered and executed by an interrupt service routine.

Execution of the initial subroutine can then be resumed when other requests

are satisfied. This process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access the arguments

following the call with either autoincrement addressing, (reg) +, if arguments

are accessed sequentially, or by indexed addressing, X(reg), if accessed in

random order. These addressing modes may also be deferred, @(reg)+ and

@X(reg), if the parameters are operand addresses rather than the operands

themselves.

JSR PC, dst is a special case of the KDJI1-A subroutine call suitable for

subroutine calls that transmit parameters through the general registers. The

SP and the PC are the only registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,@(SP) +, which

exchanges the top element of the processor stack with the contents of the

program counter. This instruction allows two routines to swap program con-

trol and resume operation from where they left off when they are recalled.

Such routines are called coroutines.

Return from a subroutine is done by the RTS instruction. RTS reg loads the

contents of reg into the PC and pops the top element of the processor stack

into the specified register. ’

6-66

Example:

SBCALL:

SBCALL+4:

SBCALL+24+2M:

CONT:

SBR:

EXIT:

JSR R5,SBR

ARG 1

ARG 2

ARG M
Next Instruction

MOV (R5)+.dst 1
MOV (R5)+.dst 2

MOV (RS)+.dst M
Other Instructions

RS

#1

#1

SBCALL~+4

SBCALL+2+2M

CONT

CONT

STACK

DATAO

DATAO

STACK

DATAO

RTS RS

JSR R5, SBR

BEFORE: (PC) R7 PC I

(SP) R6 n

RE #1

AFTER: R7 SBR

R6 n—2

R5 PC+2

JSR PC, SBR

BEFORE: (PC) R7 PC

{SP) R6 n

AFTER: R7 SBR

R6 n—2

DATAO

6-67

PC+2

MR.5250

R6

n—2

n—2

R7

SBCALL

CONT

SBR

EXIT

RTS

RETURN FROM SUBROUTINE 00020R

15 03 02 00
T T 1 T H T 1 1 T L ¥] 1 T

o o o0 0 0 0 0 0 1 O 0 0 0 R

A i i i L J 1 1 f .

MR-11553

Operation: PC — (reg)

(reg) — (SP) 1

Description: Loads the contents of the register into PC and pops the top element of the

processor stack into the specified register.

Return from a nonreentrant subroutine is typically made through the same

register that was used in its call. Thus, a subroutine called with a JSR PC, dst

exits with a RTS PC and a subroutine called with a JSR R5, dst, may pick up

parameters with addressing modes (RS) +, X(R5), or @X(RS5) and finally

exits, with an RTS RS.

Example: RTS RS

BEFORE: (PC) R7 SBR

DATAO

(SP) R6 n #1

R5 PC

AFTER: R7 PC

R6 n+2 DATAO

R5 #1

MR-5252

6-68

SOB

SUBTRACT ONE AND BRANCH (IF+ 0) 077RNN

15 09 08 06 05 00
T ¥ T L ¥ I T L} v | ¥ 4 1

0 1 1 1 1 1 1 R OFFSET

|W ¢ H | 1 1 L I 1 1 | S L I

Operation: (R) — (R) — I; if this result # 0, then PC —PC — (2 X offset); if (R) =0

then PC — PC

Condition Codes: Not affected

Description: The register is decremented. If the contents does not equal 0, twice the offset

is subtracted from the PC (now pointing to the following word). The offset is

interpreted as a 6-bit positive number. This instruction provides a fast, effi-

cient method of loop control. The assembler syntax is SOB R,A where A is

the address to which transfer is to be made if the decremented R is not equal

to 0. Note: the SOB instruction cannot be used to transfer control in the

forward direction.

6.3.6.5 Traps ~ Trap instructions provide for calls to emulators, 1/O monitors, debugging packages, and

user-defined interpreters. A trap is effectively an interrupt generated by software. When a trap occurs, the

contents of the current program counter (PC) and processor status word (PS) are pushed onto the

processor stack and replaced by the contents of a 2-word trap vector containing a new PC and new PS.

The return sequence from a trap involves executing an RTI or RTT instruction, which restores the old PC

and old PS by popping them from the stack. Trap instruction vectors are located at permanently assigned

fixed addresses.

6-69

EMT

EMULATOR TRAP 104000-104377

15 08 07 00

1 o o0 o0 i o o0 o

Operation: | (SP) — PS

| (SP) — PC

PC — (30)

PS — (32)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: All operation codes from 104000 to 104377 are EMT instructions and may
be used to transmit information to the emulating routine (e.g., function to be

performed). The trap vector for EMT is at address 30. The new PC is taken

from the word at address 30; the new processor status (PS) is taken from the

word at address 32.

NOTE

EMT is used frequently by DIGITAL system

software and is therefore not recommended for gen-

eral use.

PS PS 1

PC PC 1 STACK

BEFORE:

SP n DATA 1

AFTER: PS (32)

PC (30) DATA1

PS 1

sp n—4 PC1

MR-5255

6-70

TRAP

TRAP 104400—-104777

15 08 07 00

1 0 0 0 1 o 0 1

Operation: | (SP) — PS

| (SP) — PC

PC — (34)

PS — (36)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and

EMTs are identical in operation, except that the trap vector for TRAP is at

address 34.

NOTE

Since DIGITAL software makes frequent use of

EMT, the TRAP instruction is recommended for

general use.

BPT

BREAKPOINT TRAP 000003

15 00

0 0 0] 0] 0 0 0 0] 0 0 0 0 0 0 1 1

MR-5257

Operation: | (SP) — PS

| (SP) — PC

PC — (14)

PS — (16)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14. Used to call

debugging aids. The user is cautioned against employing code 000003 in

programs run under these debugging aids. (No information is transmitted in

the low byte.)

6-71

10T

INPUT/OUTPUT TRAP 000004

15 00

o o o o 0o 0 0 0 0O O 0 0 0 1 0 o0

Operation: | (SP) — PS

| (SP) — PC

PC — (20)

PS — (22)

Condition Codes: N: loaded from trap vector

Z: loaded from trap vector

V: loaded from trap vector

C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20. (No information is

transmitted in the low byte.)

RTI

RETURN FROM INTERRUPT 000002

15 00
T T T T T 1 1 I L T T T I T I

o o o o0 O0 ©O0O ©O0 0 0 o 0 0 0 0 1 0

n 1 | | 1 L n 4) 1 1 L { 1

Operation: PC — (SP) 1

PS — (SP) 1

Condition Codes: N: loaded from processor stack

Z: loaded from processor stack

V: loaded from processor stack

C: loaded from processor stack

Description: Used to exit from an interrupt or TRAP service routine. The PC and PS are

restored (popped) from the processor stack. If the RTI sets the T-bit in the

PS, a trace trap will occur prior to executing the next instruction. When

executed in supervisor mode, the current and previous mode bits in the

restored PS cannot be kernel. When executed in user mode, the current and

previous mode bits in the restored PS can only be user. RTI cannot clear PS

bit 11 if it was already set.

6-72

RTT

RETURN FROM TRAP

15

000006

00

Operation:

Condition Codes:

Description:

PC — (SP)1
PS — (SP)]

N: loaded from processor stack

Z: loaded from processor stack

V: loaded from processor stack

C: loaded from processor stack

MR-5260

Operation is the same as RTI except that it inhibits a trace trap, whereas RTI

permits a trace trap. If the new PS has the T-bit set, a trap will occur after

execution of the first instruction after RTT. When executed in supervisor

mode, the current and previous mode bits in the restored PS cannot be

kernel. When executed in user mode, the current and previous mode bits in

the restored PS can only be user. RTT cannot clear PS bit 11 if it was already

set.

6.3.6.6 Miscellaneous Program Control -

MARK

0064NN

00
T

Il

Operation:

Condition Codes:

Description:

SP — PC + 2 X NN

PC — RS

R5 — (SP)+

NN = number of parameters

N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Used as part of the standard subroutine return convention.

MR-115666

MARK facilitates

the stack clean-up procedures involved in subroutine exit. Assembler format

is: MARK N.

6-73

Example: | MOV R5,—(SP) ;place old RS on stack

MOV P1,—(SP) ;place N parameters on

MOV P2,—(SP) ;the stack to be used

;there by the subroutine

MOV PN,—(SP)

MOV =MARKN,—(SP) ;place the instruction

;MARK N on the stack

MOV SP,R5 ;set up address at MARK N

;instruction

JSR PC,SUB ;jump to subroutine

At this point the stack is as follows

OLD R5

P1

PN

MARKN

OLD PC

MR-11569

The program is at the address SUB which is the beginning of the subroutine.

SUB: ;execution of the

;subroutine itself

RTS RS ;the return begins:

;this causes the contents

;0f RS to be placed in the

;PC which then results in

;the execution of the

;instruction MARK N. The

;contents of the old PC

;are placed in R5.

MARK N causes: (1) the stack pointer to be adjusted to point to the old RS

value; (2) the value now in RS (the old PC) to be placed in the PC; and (3)

the contents of the old R5 to be popped into R5, thus completing the return

from the subroutine.

NOTE

If memory management is in use, the stack must be

mapped through both I and D space to execute the

MARK instruction.

6-74

SPL

SET PRIORITY LEVEL

15

00023N

02 00

Operation:

MR-11567

PS bits <07:05> — priority

(priority = N)

Condition Codes: N: unaffected

Z: unaffected

V: unaffected

C: unaffected

Description: In kernel mode, the least significant three bits of the instruction are loaded

into the processor status word (PS) bits <07:05>, thus causing a changed

priority. The old priority is lost. In user or supervisor modes, SPL executes as

a NOP.

Assembler syntax is: SPL N

CSM

CALL TO SUPERVISOR MODE 0070DD

15 06 05 00

| [1 I | | I 1 T T | f | I

o o o 0o 1 1 1 o 0 o0 DD

1] | | | 1]]]] | 1) |

Operation:

Condition Codes:

MR-11568

If MMR3 bit 3 = 1 and current

mode = kernel then

supervisor SP «— current mode SP

temp<l15:04> — PS<15:04>

temp<03:00> — 0

PS<13:12> — PS<15:14>

PS<15:14> — 01

PS4 —0

—(SP) — temp

—(SP) — PC

—(SP) — (dst) -

PC — (10)

otherwise, traps to 10 in kernel mode.

unaffected

unaffected

unaffected

unaffected

6-75

Description: CSM may be executed in user or supervisor mode, but is an illegal instruction
in kernel mode. CSM copies the current stack pointer (SP) to the supervisor

mode, switches to supervisor mode, stacks three words on the supervisor stack
(the PS with the condition codes cleared, the PC, and the argument word
addressed by the operand), and sets the PC to the contents of location 10 (in
supervisor space). The called program in supervisor space may return to the
calling program by popping the argument word from the stack and executing
RTI On return, the condition codes are determined by the PS word on the
stack. Hence, the called program in supervisor space may control the condi-
tion code values following return.

6.3.6.7 Reserved Instruction Traps — These are caused by attempts to execute instruction codes reserved
for future processor expansion (reserved instructions) or instructions with illegal addressing modes (illegal
instructions). Order codes not corresponding to any of the instructions described are considered to be
reserved instructions. JMP and JSR with register mode destinations are illegal instructions; they trap to
virtual address 4 in kernel data space. Reserved instructions trap to vector address 10 in kernel data space.

6.3.6.8 Trace Trap - Trace trap is enabled by bit 4 of the PS and causes processor traps at the end of
instruction execution. The instruction that is executed after the instruction that set the T-bit will proceed
to completion and then trap through the trap vector at address 14. Note that the trace trap is a system
debugging aid and is transparent to the general programmer.

NOTE

Bit 4 of the PS can only be set indirectly by execut-

ing a RTI or RTT instruction with the desired PS on

the stack.

The following are special cases of the T-bit.

NOTE

The traced instruction is the instruction after the

one that set the T-bit.

1. An instruction that cleared the T-bit - Upon fetching the traced instruction, an internal flag,

the trace flag, was set. The trap will still occur at the end of this instruction’s execution. The
status word on the stack, however, will have a clear T-bit.

2. Aninstruction that set the T-bit — Since the T-bit was already set, setting it again has no effect.
The trap will occur.

3. Aninstruction that caused an instruction trap — The instruction trap is performed and the entire

routine for the service trap is executed. If the service routine exits with an RTI, or in any other
way restores the stacked status word, the T-bit is set again, the instruction following the traced

instruction is executed, and, unless it is one of the special cases noted previously, a trace trap
occurs.

4. Aninstruction that caused a stack overflow — The instruction completes execution as usual. The

stack overflow does not cause a trap. The trace trap vector is loaded into the PC and PS and the
old PC and PS are pushed onto the stack. Stack overflow occurs again, and this time the trap is

made.

6-76

5. An interrupt between setting of the T-bit and fetch of the traced instruction — The entire

interrupt service routine is executed and then the T-bit is set again by the exiting RTI. The

traced instruction is executed (if there have been no other interrupts) and, unless it is a special

case noted above, causes a trace trap.

6. Interrupt trap priorities — See Table 1-8.

6.3.7 Miscellaneous Instructions

HALT

HALT 000000

15 00

MR-5281

Operation: | (SP) — PS

| (SP) — PC

PC — restart address

PS — 340

Condition Codes: Not affected

Description: The effect of HALT depends upon the CPU operating mode and the halt

option currently selected. See Chapter 8 for more details on halt options. In

kernel mode, a halt option of 1 (external logic driving a 1 on DAL3 in

response to a GP Read with a GP code of 000) causes a trap through location

4 and sets bit 7 of the CPU error register when HALT is executed. If the halt

option is O in kernel mode, execution of the HALT instruction causes the

KDJ11-A into console ODT. Execution of the HALT instruction in user or

supervisor mode causes a trap through location 4 and sets bit 7 of the CPU

error register.

WAIT

WAIT FOR INTERRUPT 000001

MR-5262

Condition Codes: Not affected

Description: In WAIT, as in all instructions, the PC points to the next instruction follow-

ing the WAIT instruction. Thus, when an interrupt causes the PC and PS to

be pushed onto the processor stack, the address of the next instruction

following the WAIT is saved. The exit from the interrupt routine (i.e.,

execution of an RTI instruction) will cause resumption of the interrupted

process at the instruction following the WAIT. If not in kernel mode, WAIT

executes as a NOP.

6-77

RESET

RESET EXTERNAL BUS
000005

15
00I | 1 T T v T i L T J T T 1 T

o o o o o0 o0 ©0 0 ©0 0 0 0 o0 1 o 1

o 1 1 - L 1) {

MR-5263

Condition Codes: Not affected

Description: The following sequence of events occurs: (1) a GP Write cycle is performed

and a GP code of 014 is generated; (2) operation is delayed for 69 micro-

cycles; (3) a GP Write is performed and a GP code of 214 is generated; (4)

operation is delayed for 600 microcycles delay. If not in kernel mode,

RESET operates as a NOP.

MFPT

MOVE FROM PROCESSOR TYPE WORD 000007

15 00
1 T T T T ¥ T T i T T) T T T

0 0 0 0 0 0 0 4] 0 0 0 0 0 1 1 1

) ol 1 1 1 1 A I

MR-7198

Operation: RO — 5§

Condition Codes: Not affected

Description: The number 5 is placed in RO, indicating to the system software that the

processor type is KDJ11-A.

6-78

MTPD/MTPI

MOVE TO PREVIOUS DATA SPACE

MOVE TO PREVIOUS INSTRUCTION SPACE

15 06

0/1 0 0 0 1 1 4] 1 1 o

MR-11571

Operation: (temp) — (SP)+

(dst) — (temp)

Condition Codes: N: set if the source < 0

Z: set if the source =0

V: cleared

Z: unaffected

Description: The instruction pops a word off the current stack determined by PS bits

<15:14> and stores that word into an address in the previous space (PS bits

<13:12>). The destination address is computed using the current registers

and memory map.

MFPD/MFPI

MOVE FROM PREVIOUS DATA SPACE

MOVE FROM PREVIOUS INSTRUCTION SPACE 06555

15 06 05 00

o1 0o 0 0 1 1 0o 1 0o 1 sS

L

Operation: (temp) — (src)

—(SP) — (temp)

Condition Codes: N: set if the source < 0

Z: set if the source = 0

V: cleared

Z: unaffected

Description:

MR-11570

Pushes a word onto the current stack from an address in the previous space

determined by PS<13:12>. The source address is computed using the current

registers and memory map. When MFPI is executed and both previous mode

and current mode are user, the instruction functions as though it were

MFPD.

6-79

6.3.8 Condition Code Operators

CLN SEN

CLZ SEZ

CLV SEV

CLC SEC

CCC SCC

15 05 04 03 02 01 00

0] 0 0 0 0 0 0 0 1 0 1 0/1 N z Vv C

Description: Set and clear condition code bits. Selectable combinations of these bits may

be cleared or set together. Condition code bits corresponding to bits in the

condition code operator (bits <03:00>) are modified according to the sense of

bit 4, the set/clear bit of the operator; i.e., set the bit specified by bit 0, 1, 2,

or 3, if bit 4 = 1. Clear corresponding bits if bit 4 = 0.

Mnemonic Operation Op Code

CLC Clear C 000241

CLV Clear V 000242

CLZ Clear Z 000244

CLN Clear N 000250

SEC Set C 000261

SEV Set V 000262

SEZ Set Z 000264

SEN Set N 000270

SCC Set all CCs 000277

CCC Clear all CCs 000257

Clear V and C 000243

NOP No operation 000240

Combinations of the above set or clear operations may be ORed together to

form combined instructions.

6-80

CHAPTER 7

FLOATING-POINT ARITHMETIC

7.1 INTRODUCTION

The KDJ11-A executes 46 floating-point instructions. The floating-point instruction set is compatible with

the FP11 instruction set for PDP-11 computers. Both single- and double-precision floating-point capabili-

ties are available with other features, including floating-to-integer and integer-to-floating conversion.

7.2 FLOATING-POINT DATA FORMATS

Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an

integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing the
condition 1/2 < f < 1. The fractional part (f) of the number is then said to be normalized. For the number

0, f is assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point

numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is

32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used.

7.2.1 Nonvanishing Floating-Point Numbers

The fractional part (f) is assumed normalized, so that its most significant bit must be 1. This 1 is the

hidden bit. It is not stored explicitly in the data word, but the microcode restores it before carrying out

arithmetic operations. The floating and double modes reserve 23 and 55 bits, respectively, for f. These bits,

with the hidden bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 200 notation [i.e., as K + 200 (octal)],

giving a biased exponent. Thus, exponents from —128 to +127 could be represented by 0 to 377 (base 8),

or 0 to 255 (base 10). For reasons given below, a biased exponent of 0 [the true exponent of —200 (octal)],

is reserved for floating-point 0. Therefore, exponents are restricted to the range —127 to +127 inclusive

(—177 to +177 octal) or, in excess 200 notation, 1 to 377.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a 1.

7.2.2 Floating-Point Zero

Because of the hidden bit, the fractional part is not available to distinguish between 0 and nonvanishing

numbers whose fractional part is exactly 1/2. Therefore, the KDJ11-A reserves a biased exponent of 0 for

this purpose, and any floating-point number with a biased exponent of O either traps or is treated as if it

were an exact 0 in arithmetic operations. An exact or “clean” 0 is represented by a word whose bits are all

0s. A “dirty” O is a floating-point number with a biased exponent of 0 and a nonzero fractional part. An

arithmetic operation for which the resulting true exponent exceeds 277 (octal) is regarded as producing a

floating overflow; if the true exponent is less than —177 (octal), the operation is regarded as producing a

floating underflow. A biased exponent of O can thus arise from arithmetic operations as a special case of

overflow (true exponent = —200 octal). (Recall that only eight bits are reserved for the biased exponent.)

The fractional part of results obtained from such overflow and underflow is correct.

7-1

7.2.3 Undefined Variables

An undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of 0. The term
undefined variable is used, for historical reasons, to indicate that these bit patterns are not assigned a
corresponding floating-point arithmetic value. Note that the undefined variable is frequently referred to as
—0 elsewhere in this chapter.

A design objective was to ensure that the undefined variable would not be stored as the result of any
floating-point operation in a program run with the overflow and underflow interrupts disabled. This is
achieved by storing an exact 0 on overflow and underflow if the corresponding interrupt is disabled. This
feature, together with an ability to detect reference to the undefined variable (implemented by the FIUV
bit discussed later), is intended to provide the user with a debugging aid: if —0 occurs, it did not result from
a previous floating-point arithmetic instruction.

7.2.4 Floating-Point Data

Floating-point data is stored in words of memory as illustrated in Figures 7-1 and 7-2.

F FORMAT, FLOATING POINT SINGLE PRECISION

15
00

+2 FRACTION <15:0>

i | j | l] 1 J] 1 1 |]]]

15 14 07 06 00

MEMORY +0 S EXP FRACT <22:16>
I ! ! | !] J I ! i j] l

MR-3604

Figure 7-1 Single-Precision Format

D FORMAT, FLOATING POINT DOUBLE PRECISION

15

00

+6 FRACTION <15:0>

1 L | 1 1 ! 1 L i 1 . L 1 l 1

15
00

+4 FRACTION <31:16>

1 L 1 1 I 1 1 1 L i 1 1 1 1 1

15
00

+2 FRACTION <47:32>

] 1 1 . 1 i 1 L I 1 i 1 L 1]

15 07 06 00

MEMORY +0 S EXP FRACT <54:48>
1 i 1 1 1 1 1 1 1 1 1 1 L

S =SIGN OF FRACTION

EXP=EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL

FOR NON-VANISHING NUMBERS.

FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT + ONE HIDDEN

BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.

MR-3605

Figure 7-2 Double-Precision Format

7-2

The KDJ11-A provides for conversion of floating-point to integer format and vice-versa. The processor

recognizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in

standard 2’s complement form. (See Figure 7-3.)

| FORMAT, INTEGER SINGLE PRECISION

15 14 00

S NUMBER <15:0>

1 I 1 1] !] i] i i 1

L FORMAT, DOUBLE PRECISION INTEGER LONG

15 14 00

MEMORY +0 S NUMBER <30:16>

1 1 1 1 1 i] 1 ! I I L

15 00

+2 NUMBER <15:0>

i 1 I i L L I] i 1 | L i

WHERE S = SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.

Figure 7-3 2’s Complement Format

7.3 FLOATING-POINT STATUS REGISTER (FPS)

MR-3606

This register provides mode and interrupt control for the currently executing floating-point instruction and

also reflects conditions resulting from the execution of the previous instruction. (See Figure 7-4.) In this

discussion a set bit = 1 and a reset bit = 0. Three bits of the FPS register control the modes of operation as

follows.

1. Single/Double — Floating-point numbers can be either single- or double-precision.

2. Long/Short - Integer numbers can be 16 bits or 32 bits.

3. Chop/Round - The result of a floating-point operation can be either “chopped” or “rounded.”

The term “chop” is used instead of “truncate” to avoid confusion with truncation of series used

in approximations for function subroutines.

15 14 13 12 1M 10 09 08 07 06 05 04 03 02 o1 00

FER | FID ////FIUV Flul FIiv] Fic | Fo | FL | FT / FN | Fz | Fv | FC
g, 7

—_— |
RESERVED RESERVED

Figure 7-4 Floating-Point Status Register

7-3

MR-3607

The FPS register contains an error flag and four condition codes (5 bits): carry, overflow, zero, and
negative, which are analogous to the CPU condition codes.

The KDJ11-A recognizes six floating-point exceptions:

Detection of the presence of the undefined variable in memory
Floating overflow

Floating underflow

Failure of floating-to-integer conversion

Attempt to divide by O

Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to individually enable and
disable interrupts. An interrupt on the occurrence of either of the last two exceptions can be disabled only
by setting a bit that disables interrupts on all six of the exceptions, as a group.

Of the 13 FPS bits, 5 are set as part of the output of a floating-point instruction: the error flag and
condition codes. Any of the mode and interrupt control bits may be set by the user; the LDFPS instruction
is available for this purpose. These 13 bits are stored in the FPS register as shown in Figure 7-4. The FPS
register bits are described in Table 7-1.

Table 7-1 FPS Register Bits

Bit Name : Description

15 Floating Error (FER) The FER bit is set by the KDJI1-A if:

1. Duvision by zero occurs

2. Anillegal op code occurs

3. Any one of the remaining floating-point exceptions occurs and

the corresponding interrupt is enabled

Note that the above action is independent of whether the FID bit is set

or clear.

Note also that the KDJ11-A never resets the FER bit. Once the FER

bit is set by the KDJI1-A, it can be cleared only by an LDFPS

instruction (note the RESET instruction does not clear the FER bit).

This means that the FER bit is up-to-date only if the most recent

floating-point instruction produced a floating-point exception.

14 Interrupt Disable (FID) If the FID bit is set, all floating-point interrupts are disabled.

NOTES

1. The FID bit is primarily a maintenance feature. It should nor-

mally be clear. In particular, it must be clear is one wishes to

assure that storage of —0 by the KDJ11-A is always accompa-

nied by an interrupt.

2. Throughout the rest of the chapter, assume that the FID bit is

clear in all discussions involving overflow, underflow, occurrence

of —0, and integer conversion errors.

Table 7-1 FPS Register Bits (Cont)

Name Description

09

08

07

06

05

04

03

Interrupt on Undefined

Variable (FIUV)

Interrupt on Underflow (FIU)

Interrupt on Overflow (FIV)

Interrupt on Integer

Conversion Error (FIC)

Floating Double-Precision Mode (FD)

Floating Long-Integer Mode (FL)

Floating Chop Mode (FT)

Floating Negative (FN)

Reserved for future DIGITAL use.

Reserved for future DIGITAL use.

An interrupt occurs if FIUV is set and a —0 is obtained from memory

as an operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS,

TST, or any LOAD instruction. The interrupt occurs before execution

on all instructions. When FIUV is reset, —0 can be loaded and used in

any floating-point operation. Note that the interupt is not activated by

the presence of —0 in an AC operand of an arithmetic instruction; in

particular, trap on —0 never occurs in mode 0.

A result of —0 will not be stored without the simultaneous occurrence

of an interrupt.

When the FIU bit is set, floating underflow will cause an interrupt. The

fractional part of the result of the operation causing the interrupt will

be correct. The biased exponent will be too large by 400, except for the

special case of 0, which is correct. An exception is discussed later in the

detailed description of the LDEXP instruction.

When the FIV bit is set, floating overflow will cause an interrupt. The

fractional part of the result of the operation causing the overflow will

be correct. The biased exponent will be too small by 400.

If the FIV bit is reset and overflow occurs, there is no interrupt. The

KDJ11-A returns exact 0.

Special cases of overflow are discussed in the detailed descriptions of

the MOD and LDEXP instructions.

When the FIC bit is set and a conversion to integer instruction fails, an

interrupt will occur. If the interrupt occurs, the destination is set to 0,

and all other registers are left untouched.

If the FIC bit is reset, the result of the operation will be the same as

detailed above, but no interrupt will occur.

The conversion instruction fails if it generates an integer with more bits

than can fit in the short or long integer word specified by the FL bit.

The FD bit determines the precision that is used for floating-point

calculations. When set, double-precision is assumed; when reset, single-

precision is used.

The FL bit is active in conversion between integer and floating-point

formats. When set, the integer format assumed is double-precision 2’s

complement (i.e., 32 bits). When reset, the integer format is assumed

to be single-precision 2’s complement (i.e., 16 bits).

When the FT bit is set, the result of any arithmetic operation is

chopped (truncated). When reset, the result is rounded.

Reserved for future DIGITAL use.

FN is set if the result of the last floating-point operation was negative;

otherwise it is reset.

7-5

Table 7-1 FPS Register Bits (Cont)

Bit Name Description

02 Floating Zero (FZ) FZ is set if the result of the last floating-point operation was 0; other-

wise it is reset.

0l Floating Overflow (FV) FV is set if the last floating-point operation resulted in an exponent
overflow; otherwise it is reset.

00 Floating Carry (FC) FC is set if the last floating-point operation resulted in a carry of the

most significant bit. This can only occur in floating double-to-integer

conversions.

7.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating-point exceptions (location 244). The six possible
errors are coded in the 4-bit floating exception code (FEC) register as follows.

Floating op code error

Floating divide by zero error

Floating-to-integer or double-to-integer conversion error
Floating overflow error

Floating underflow error

Floating undefined variable errorO
O
N

B

|

1

The address of the instruction producing the exception is stored in the floating exception address (FEA)
register.

The FEC and FEA registers are updated only when one of the following occurs.

1. Division by zero

2. lllegal op code

3. Any of the other four exceptions with the corresponding interrupt enabled

This implies that only when the FER bit is set, the FEC and FEA registers are updated.

NOTES

1. If one of the last four exceptions occurs with

the corresponding interrupt disabled, the FEC

and FEA are not updated.

2. If an exception occurs, inhibition of interrupts

by the FID bit does not inhibit updating of the

FEC and FEA.

3. The FEC and FEA are not updated if no excep-

tion occurs. This means that the STST (store

status) instruction will return current informa-

tion only if the most recent floating-point

instruction produced an exception.

4. Unlike the FPS, no instructions are provided

for storage into the FEC and FEA registers.

7-6

7.5 FLOATING-POINT INSTRUCTION ADDRESSING

Floating-point instructions use the same type of addressing as the central processor instructions. A source
or destination operand is specified by designating one of eight addressing modes and one of eight central

processor general registers to be used in the specified mode. The modes of addressing are the same as those

of the central processor, except in mode 0. In mode O the operand is located in the designated floating-

point processor accumulator rather than in a central processor general register. The modes of addressing

are as follows.

0 = Floating-point accumulator

1 = Deferred

2 = Autoincrement

3 = Autoincrement-deferred

4 = Autodecrement

5 = Autodecrement-deferred

6 = Indexed

7 = Indexed-deferred

Autoincrement and autodecrement operate on increments and decrements of 4 for F format, and 10

(octal) for D format.

In mode O users can make use of all six floating-point accumulators (ACO-ACS) as their source or

destination. Specifying floating-point accumulators AC6 or AC7 will result in an illegal op code trap. In all

other modes, which involve transfer of data to or from memory or the general registers, users are restricted

to the first four floating-point accumulators (ACO-AC3). When reading or writing a floating-point

number from or to memory, the low memory word contains the most significant word of the floating-point

number, and the high memory word the least significant word.

7.6 ACCURACY

General comments on the accuracy of the KDJ11-A floating-point instructions are presented here. The
descriptions of the individual instructions include the accuracy at which they operate. An instruction or

operation is regarded as “exact” if the result is identical to an infinite precision calculation involving the

same operands. The a priori accuracy of the operands is thus ignored. All arithmetic instructions treat an

operand whose biased exponent is 0 as an exact 0 (unless FIUV is enabled and the operand is —0, in which
case an interrupt occurs). For all arithmetic operations, except DIV, a 0 operand implies that the
instruction is exact. The same statement holds for DIV if the 0 operand is the dividend. But if it is the
divisor, division is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or 56

bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case to guarantee return of a chopped or rounded result identical to
the corresponding infinite precision operation chopped or rounded to the specified word length. Thus, with
two guard bits, a chopped result has an error bound of one least significant bit (LSB); a rounded result has

an error bound of 1/2 LSB. These error bounds are realized by the KDJ11-A for all instructions.

7-7

In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by
chopping. The first bit lost in chopping is referred to as the “rounding” bit. The value of a rounded result is
related to the chopped result as follows.

1. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are identical.

It follows that:

1. If the result is exact: rounded value = chopped value = exact value.

2. If the result is not exact, its magnitude is:

® always decreased by chopping.

® decreased by rounding if the rounding bit is 0.

® increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow is an error condition: the result of the calculation
cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.
However, the internal hardware has produced the correct answer. For the case of underflow, replacement
of the correct answer by 0 is a reasonable resolution of the problem for many applications. This is done by
the KDJ11-A if the underflow interrupt is disabled. The error incurred by this action is an absolute rather
than a relative error; it is bounded (in absolute value) by 2 ** —128. There is no such simple resolution for
the case of overflow. The action taken, if the overflow interrupt is disabled, is described under FIV (bit 09)
in Table 7-1.

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to implement
their own correction of an overflow or underflow condition. If such a condition occurs and the correspond-
ing interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased
exponent. The interrupt will take place and users can identify the cause by examination of the floating
overflow (FV) bit or the floating exception register (FEC). The reader can readily verify that (for the
standard arithmetic operations ADD, SUB, MUL, and DIV) the biased exponent returned by the instruc-
tion bears the following relation to the correct exponent.

. On overflow, it is too small by 400 (octal)

2. On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too
large by 400 (octal).

Thus, with the interrupt enable, enough information is available to determine the correct answer. Users
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

7.7 FLOATING-POINT INSTRUCTIONS

Each instruction that references a floating-point number can operate on either single- or double-precision
numbers, depending on the state of the FD mode bit. Similarly, there is a mode bit FL that determines
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) is used in conversion between integer and
floating-point representations. FSRC and FDST operands use floating-point addressing modes (see Figure
7-5); SRC and DST operands use CPU addressing modes.

7-8

DOUBLE OPERAND ADDRESSING

15 12 11 08 07 06 05 00

oc FOC AC FSRC,FDST,SRC,DST

1 | L 1 1 L It | |

SINGLE OPERAND ADDRESSING

15 12 11 06 05 00

oc FoC FSRC, FDST, SRC, DST

| 1 1 1 |] i I i |

OC = OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR {ACO-AC3)

FSRC AND FDST USE FPP ADDRESSING MODES

SRC AND DST USE CPU ADDRESSING MODES

MR-3608

Figure 7-5 Floating-Point Addressing Modes

Terms Used in Instruction Definitions

OoC = opcode =17

FOC = floating op code

AC = contents of accumulator, as specified by AC field of instruction

fsrc = address of floating-point source operand

fdst = address of floating-point destination operand

f = fraction

XL = largest fraction that can be represented:

1 — 2 ** (=24), FD = 0; single-precision

1 — 2 ** (=56), FD = 1, double-precision

XLL = smallest number that is not identically zero =

2 ¥* (—128)

XUL = largest number that can be represented =

2 % (127) * XL

JL = largest integer that can be represented:

2 ** (15) — 1; FL = 0; short integer

2 ** (31) — I; FL = 1; long integer

ABS (address) = absolute value of (address)

EXP (address) = biased exponent of (address)

7-9

LT = “less than”

.LE. = “less than or equal to”

.GT. = ‘“‘greater than”

.GE. = ‘‘greater than or equal to”

LSB = least significant bit

Boolean Symbols

A = AND

\Y = inclusive OR

4 = exclusive OR

~ = NOT

ABSF/ABSD

MAKE ABSOLUTE FLOATING/DOUBLE 1706 FDST

15 12 11 06 05 00
[[I | T | 1 I I I i [I

1 1 1 1 0 0 0 1 1 0 FDST
[{ L { | b A 1 1 -

Format: ABSF FDST

Operation: If (FDST) < 0, (FDST) — — (FDST).

If EXP(FDST) = 0, (FDST) — exact 0.

For all other cases, (FDST) — (FDST).

Condition Codes: FC — 0

FV —0

FZ — 1 if (FDST) =0, else FZ — 0

FN —0

Description: Set the contents of FDST to its absolute value.

Interrupts: If FIUV is enabled, trap on —0 occurs before execution. Overflow and
underflow cannot occur.

Accuracy: These instructions are exact.

7-10

ADDF/ADDD

ADD FLOATING/DOUBLE 172(AC)FSRC

15 12 1 08 07 06 05 00
| I I 1 I [| i I 1

1 1 0 1 0 0 AC FSRC

| — I\ L Der— | 1 { i n .

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11468

ADDF FSRC,AC

Let SUM = (AC) + (FSRCO)

If underflow occurs and FIU is not enabled, AC — exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — SUM.

FC — 0

FV — 1 if overflow occurs, else FV — 0

FZ — 1 if (AC)=0, else FZ — 0

FN — 1if (AC) <0, else FN — 0

Add the contents of FSRC to the contents of AC. The addition is carried out

in single- or double-precision and is rounded or chopped in accordance with

the values of the FD and FT bits in the FPS register. The result is stored in

AC except for:

1. Overflow with interrupt disabled.

2. Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow

or underflow occurs, and if the corresponding interrupt is enabled, the trap

occurs with the faulty result in AC. The fractional parts are correctly stored.

The exponent part is too small by 400 for overflow. It is too large by 400 for

underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,

then: for oppositely signed operands with exponent difference of 0 or 1, the

answer returned is exact if a loss of significance of one or more bits can

occur. Note that these are the only cases for which loss of significance of

more than one bit can occur. For all other cases the result is inexact with

error bounds of:

1. LSB in chopping mode with either single- or double-precision.

2. 1/2 LSB in rounding mode with either single- or double-precision.

The undefined variable —0 can occur only in conjunction with overflow or

underflow. It will be stored in AC only if the corresponding interrupt is

enabled.

7-11

CFCC

COPY FLOATING CONDITION CODES 170000

15 12 11 00

I T T ! | [T [T | 1 | T 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 | | | 1 L I 3§ | 1 { i } 1

Format: CFCC

Operation: C — FC

V —FV

Z — FZ

N — FN

Description: Copy the floating-point condition codes into the CPU’s condition codes.

CLRF/CLRD

CLEAR FLOATING/DOUBLE 1704 FDST

15 121 06 05 00
1 [I I i [i T | 1 [| 1

1 1 1 1 o o0 0 1 0o 0 FDST
i 1 | 1 | | 1 I 1] L 1 L

Format: CLRF FDST

Operation: (FDST) «— exact 0

Condition Codes: FC — 0

FV —0

FZ — 1

FN — 0

Description: Set FDST to 0. Set FZ condition code and clear other condition code bits.

Interrupts: No interrupts will occur. Overflow and underflow cannot occur.

Accuracy: These instructions are exact.

7-12

CMPF/CMPD

COMPARE FLOATING/DOUBLE 173(AC+4)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11471

CMPF FSRC,AC

(FSRC) — (AC)

FC — 0

FV — 0

FZ — 1 if (FSRC) =0, else FZ — 0

FN — 1 if (FSRC) < 0, else FN — 0

Compare the contents of FSRC with the accumulator. Set the appropriate

floating-point condition codes. FSRC and the accumulator are left unchanged

except as noted below.

If FIUV is enabled, trap on —0 occurs before execution.

These instructions are exact.

An operand that has a biased exponent of 0 is treated as if it were an exact 0.

In this case, where both operands are 0, the KDJ11-A will store an exact O in

AC.

DIVF/DIVD

DIVIDE FLOATING/DOUBLE 174{AC+4)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11472

DIVF FSRC,AC

If EXP(FSRC) = 0, (AC) — (AC) and the instruction is aborted.

If EXP(AC) = 0, (AC) « exact 0.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occurs and FIU is not enabled, AC — exact O.

If overflow occurs and FIV is not enabled, AC — exact O.

For all others cases, AC — QUOT.

FC — 0

FV — 1 if overflow occurs, else FV — 0

FZ — 1 if (AC) =0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If either operand has a biased exponent of 0, it is treated as an exact 0. For

FSRC this would imply division by 0; in this case the instruction is aborted,

the FEC register is set to 4, and an interrupt occurs. Otherwise, the quotient

is developed to single- or double-precision with two guard bits for correct

rounding. The quotient is rounded or chopped in accordance with the values

of the FD and FT bits in the FPS register. The result is stored in the AC

except for:

1. Overflow with interrupt disabled.

2. Underflow with interrupt disabled.

For these exceptional cases, an exact O is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If (FSRC)

= (, interrupt traps on an attempt to divide by 0. If overflow or underflow

occurs, and if the corresponding interrupt is enabled, the trap occurs with the

faulty result in AC. The fractional parts are correctly stored. The exponent

part is too small by 400 for overflow. It is too large by 400 for underflow,

except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If none of these

occurs, the error in the quotient will be bounded by 1 LSB in chopping mode

and by 1/2 LSB in rounding mode.

The undefined variable —0 can occur only in conjunction with overflow or

underflow. It will be stored in AC only if the corresponding interrupt is

enabled.

7-14

LDCDF/LDCFD

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING

AND FROM FLOATING-TO-DOUBLE 177{AC+4)FSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11473

LDCDF FSRC,AC

If EXP(FSRC) = 0, AC — exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, AC — exact 0.

In all other cases, AC « Cxy(FSRC), where Cxy specifies conversion from

floating mode x to floating mode vy.

x = D, y = F if FD = 0 (single) LDCDF

y=F,y=Dif FD = 1 (double) LDCFD

FC —~ 0

FV — 1 if conversion produces overflow, else

FV — 0

FZ — 1 if (AC) =0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If the current mode is floating mode (FD = 0), the source is assumed to be a

double-precision number and is converted to single-precision. If the floating
chop bit (FT) is set, the number is chopped; otherwise, the number is

rounded.

If the current mode is double mode (FD = 1), the source is assumed to be a

single-precision number and is loaded left-justified in AC. The lower half of

AC is cleared.

If FIUV is enabled, trap on —0 occurs before execution. Overflow cannot

occur for LDCFD.

A trap occurs if FIV is enabled, and if rounding with LDCDF causes over-

flow. AC — overflowed result. This result must be +0 or —0. Underflow
cannot occur.

LDCFD is an exact instruction. Except for overflow, described above,

LDCDF incurs an error bounded by 1 LSB in chopping mode and by 1/2

LSB in rounding mode.

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER

TO FLOATING OR DOUBLE-PRECISION 177{AC)SRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11474

LDCIF SRC,AC

AC — Cjx(SRC), where Cjx specifies conversion from integer mode j to

floating mode y.

Jj=1fFL=0,j=LifFL=1

x=FifFD=0,x=DifFD=1

FC— 0

FV —0

FZ — 1 if (AC) =0, else FZ — 0

FN — 1 if (Ac) <0, else FN— 0

Conversion is performed on the contents of SRC from a 2’s complement

integer with precision j to a floating-point number of precision x. Note that j

and x are determined by the state of the mode bits FL and FD.

If a 32-bit integer is specified (L mode) and (SRC) has an addressing mode of

0 or immediate addressing mode is specified, the 16 bits of the source register

are left-justified and the remaining 16 bits loaded with Os before conversion.

In the case of LDCLF, the fractional part of the floating-point representation

is chopped or rounded to 24 bits for FT = 1 or 0, respectively.

None; SRC is not floating-point, so trap on —0 cannot occur.

LDCIF, LDCID, and LDCLD are exact instructions. The error incurred by

LDCLF is bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding

mode.

7-16

LDEXP

LOAD EXPONENT 176(AC+4)SRC

12 11 08 07 06 05 00

{ ! | 1 I [| I [

1 1 1 0 1 AC SRC

1 | ! i 1 | . |

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11475

LDEXP SRC,AR

NOTE: 177 and 200, appearing below, are octal numbers.

If =200 < SRC < 200, EXP(AC) — SRC + 200 and the rest of AC is

unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) — [(SRC) + 200]<07:00>.

If (SRC) > 177 and FIV is disabled, AC — exact 0.

If (SRC) < —177 and FIU is enabled, EXP(AC) — [(SRC) + 200]<07:00>.

If (SRC) < —177 and FIU is disabled, AC — exact O.

FC — 0

FV — 1 if (SRC) > 177, else FV — 0

FZ — 1if (AC) =0, else FZ — 0

FN — 1 if (AC) < 0, else FN — 0

Change AC so that its unbiased exponent = (SRC). That is, convert (SRC)

from 2’s complement to excess 200 notation and insert it into the EXP field

of AC. This is a meaningful operation only if ABS(SRC) LE 177.

If SRC > 177, the result is treated as overflow. If SRC < —177, the result is

treated as underflow.

No trap on —0 in AC occurs, even if FIUV is enabled. If SRC > 177 and FIV

is enabled, trap on overflow will occur. If SRC < —177 and FIU is enabled,

trap on underflow will occur.

Errors due to overflow and underflow are described above. If EXP(AC) =0

and (SRC) = —200, AC changes from a floating-point number treated as 0

by all floating arithmetic operations to a non-0 number. This happens because

the insertion of the “hidden” bit in the microcode implementation of arithme-

tic instructions is triggered by a nonvanishing value of EXP.

For all other cases, LDEXP implements exactly the transformation of a

floating-point number (2 ** K) * f into (2 ** (SRC)) * f where 1/2 .LE.

ABS(f) .LT. I.

7-17

LDF/LDD

LOAD FLOATING/DOUBLE 172(AC+4)FSRC

15 12 1 08 07 06 05 00
| T T T T T T T T

1 1 1 0 1 0 1 AC FSRC

- | L | — I { 1 | |

Format: LDF FSRC,AC

Operation: AC — (FSRQO)

Condition Codes: FC — 0

FV — 0

Description:

Interrupts:

Accuracy:

Special Comment:

FZ— 1 if (AC) =0, else FZ— 0

FN — 1 if (AC) <0, else FN«— 0

Load single- or double-precision number into AC.

If FIUV is enabled, trap on —0 occurs before AC is loaded. Overflow and
underflow cannot occur.

These instructions are exact.

These instructions permit use of —0 in a subsequent floating-point instruction

if FIUV is not enabled and (FSRC) = —0.

LDFPS

LOAD FLOATING-POINT PROGRAM STATUS 1701 SRC

15 12 11 06 05 00
i I [| I | { |

1 1 1 o 0o 0o 0 0 1 SRC
[L | 4 | 1 1 -

Format: LDFPS SRC

Operation: FPS — (SRC)

Description: Load floating-point status register from SRC.

Special Comment: Users are cautioned not to use bits 13, 12, and 04 for their own purposes,

since these bits are not recoverable by the STFPS instruction.

7-18

MODF/MODD

MULTIPLY AND SEPARATE INTEGER

AND FRACTION FLOATING/DOUBLE 171(AC+4)FSRC

15 12 11 08 07 06 05 00

T [T T [i 1 1 1 [7 |

1 1 1 1 0 0 1 1 AC FSRC

|) | | | I " 1 L A

MR-11478

Format: MODF FSRC,AC

Description This instruction generates the product of its two floating-point operands,

and Operation: separates the product into integer and fractional parts, and then stores one or

both parts as floating-point numbers.

Let PROD = (AC) * (FSRC) so that in

Floating-point: ABS(PROD) = (2 ** K) * f, where

1/2 .LE. f .LT. 1, and EXP(PROD) = (200 + K)

Fixed-point binary: PROD = N + g, where

N = INT(PROD) = integer part of PROD, and

g = PROD — INT(PROD) = fractional part of PROD with 0 .LE. g

LT. 1.

Both N and g have the same sign as PROD. They are returned as follows:

If AC is an even-numbered accumulator (0 or 2), N is stored in AC+1

(1 or 3), and g is stored in AC.

If AC is an odd-numbered accumulator, N is not stored and g is stored

in AC.

The two statements above can be combined as follows:

N is returned to AC V 1 and g is returned to AC.

7-19

Five special cases occur, as indicated in the following formal description with

L = 24 for floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, AC vV 1 «— N, chopped to L

bits, AC — exact 0.

Note that EXP(N) is too small by 400 and that —0 can be stored in AC

VvV 1.

If FIV is not enabled, AC VvV | — exact 0, AC — exact 0, and —0 will

never be stored.

If 2 ** L .LE. ABS(PROD) and no overflow, AC V 1 — N, chopped to

L bits, AC — exact 0.

The sign and EXP of N are correct, but low-order bit information is lost.

If 1 .LE. ABS(PROD) .LT. 2 ** L, AC V 1 — N, AC — g.

The integer part N is exact. The fractional part g is normalized, and

chopped or rounded in accordance with FT. Rounding may cause a

return of + unity for the fractional part. For L = 24, the error in g is

bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding mode.

For L = 56, the error in g increases from the above limits as ABS(N)

increases above 8 because only 59 bits of PROD are generated.

If 2**p LE. ABS(N).LT. 2 ** (p + 1), with p > 2, the low order p — 2

bits of g may be in error.

If ABS(PROD) .LT. 1 and no underflow, AC V 1 — exact 0 and AC —

g.

There is no error in the integer part. The error in the fractional part is

bounded by 1 LSB in chopping mode and 1/2 LSB in rounding mode.

Rounding may cause a return of + unity for the fractional part.

If PROD underflows and FIU is enabled, AC V 1 — exact 0 and AC —

g.

Errors are as in case 4, except that EXP(AC) will be too large by 4008

(if EXP = 0, it is correct). Interrupt will occur and —0 can be stored in

AC.

If FIU is not enabled, AC VvV 1 — exact 0 and AC — exact 0.

For this case the error in the fractional part is less than 2 ** (—128).

7-20

Condition Codes:

Interrupts:

Accuracy:

Applications:

FC — 0

FV — 1 if PROD overflows, else FV —0

FZ — 1 if (AC) =0, else FZ —0

FN — 1 if (AC) <0, else FN — 0

If FIUV is enabled, trap on —0 in FSRC occurs before execution. Overflow

and underflow are discussed above.

Discussed above.

1. Binary-to-decimal conversion of a proper fraction. The following

algorithm, using MOD, will generate decimal digits D(1), D(2) - - - from

left to right.

Initialize: I — 0

X < number to be converted;

ABS(X) < 1;

While X # 0 do

Begin PROD — X * 10;

I —T1+1;

D(I) — INT(PROD);

X — PROD — INT(PROD),

End;

This algorithm is exact. It is case 3 in the description because the

number of nonvanishing bits in the fractional part of PROD never

exceeds L, and hence neither chopping nor rounding can introduce error.

To reduce the argument of a trigonometric function.

ARG * 2/PI = N + g. The low two bits of N identify the quadrant, and

g is the argument reduced to the first quadrant. The accuracy of N + g

is limited to L bits because of the factor 2/Pl. The accuracy of the

reduced argument thus depends on the size of N.

To evaluate the exponential function e ** x, obtain x * (log ¢ base 2) =

N + g, thene ** x = (2 ** N) * (e ** (g * In 2)).

The reduced argument is g * In2 < 1 and the factor 2 ** N is an exact

power of 2, which may be scaled in at the end via STEXP, ADD N to

EXP and LDEXP. The accuracy of N + g is limited to L bits because of

the factor (log € base 2). The accuracy of the reduced argument thus

depends on the size of N.

7-21

MULF/MULD

MULTIPLY FLOATING/DOUBLE
171(AC)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11479

MULF FSRC,AC

Let PROD = (AC) * (FSRCQ)

If underflow occurs and FIU is not enabled, AC — exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — PROD.

FC — 0

FV — 1 if overflow occurs, else FV — 0
FZ — 1if (AC)=0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

If the biased exponent of either operand is 0, (AC) «— exact 0. For all other
cases PROD is generated to 48 bits for floating mode and 59 bits for double
mode. The product is rounded or chopped for FT = 0 or 1, respectively, and
is stored in AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,
the error incurred is bounded by 1 LSB in chopping mode and 1/2 LSB in
rounding mode.

The undefined variable —0 can occur only in conjunction with overflow or
underflow. It will be stored in AC only if the corresponding interrupt is
enabled.

7-22

NEGF/NEGD

NEGATE FLOATING/DOUBLE
1707 FDST

15 12 11 06 05 00
| I i ! | ! 1 [| [|

1 1 0o o0 0 1 1 1 FDST
[| | Lo | 1 1 [| |

Format: NEGF FDST

Operation: (FDST) — — (FDST) if (FDST) = 0, else (FDST) — exact 0

Condition Codes: FC — 0

FV <0

FZ — 1 if (FDST) = 0, else FZ — 0
FN — 1 if (FDST) < 0, else FN — 0

Description: Negate the single- or double-precision number; store result in same location
(FDST).

Interrupts: If FIUV is enabled, trap on —0 occurs before execution. Overflow and
underflow cannot occur.

Accuracy: These instructions are exact.

SETD

SET FLOATING DOUBLE MODE
170011

15 12 1M
00| [f | I | I [i 1 I 1

1 1 0 0 0 0 0 0 0 0 1 0 0 1
| T] | || L | 1 | L 1

MR-11481

Format: SETD

Operation: FD — 1

Description: Set the KDJ11-A in double-precision mode.

7-23

SETF

SET FLOATING MODE 170001

15 12 11 00
1 T 1 I [l) I I T I I T I

1 1 1 1 o o o o O 0 0 o0 0 0 0o 1
L L rl |] L ul L {] 1 | —] 1

MR-11482

Format: SETF

Operation: FD — 0

Description: Set the KDJ11-A in single-precision mode.

SETI

SET INTEGER MODE 177002

15 12 IR 00
I I RE [I I |] I BB 1 | | |

1 1 1 1 0 0 0 0] 0 0 0 0 0 0 1 0
| L 1 | | | { } J 11 SG T

MR-11483

Format: SETI

Operation: FL — 0

Description: Set the KDJ11-A for short-integer data.

SETL

SET LONG-INTEGER MODE 177012

15 12 1 00
T T T | 1 I i | I L { | |

1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0

L L) | t - | \ | § I L I\ 1

MR-11484

Format: SETL

Operation: FL — 1

Description: Set the KDJ11-A for long-integer data.

7-24

STCFD/STCDF

STORE AND CONVERT FROM FLOATING-TO-DOUBLE

AND FROM DOUBLE-TO-FLOATING T76(AC)FDST

15 12 11 08 07 06 05 00

| !] T 1 L T I) T

1 1 1 1 1 0 0 AC FDST

L |] L [i { [|

Format:

Operation: .

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11485

STCFD AC,FDST

If (AC) =0, (FDST) < exact 0.

If FD=1, FT = 0, FIV = 0 and rounding causes overflow, (FDST) «— exact

0.

In all other cases, (FDST) — Cxy(AC), where Cxy specifies conversion from

floating mode x to floating mode y.

x = F, y = D if FD = 0 (single) STCFD

x =D,y =Fif FD = 1 (double) STCDF

FC — 0

FV «— 1 if conversion produces overflow, else

FV —0

FZ — 1if (AC) =0, else FZ — 0

FN «— 1 if (AC) <0, else FN — 0

If the current mode is single-precision, the accumulator is stored left-justified

in FDST and the lower half is cleared.

If the current mode is double-precision, the contents of the accumulator are

converted to single-precision, chopped or rounded depending on the state of

FT, and stored in FDST.

Trap on —0 will not occur even if FIUV is enabled because FSRC is an

accumulator. Underflow cannot occur. Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled, and if rounding with STCDF causes over-

flow. (FDST) «— overflowed result. This must be +0 or —0.

STCFD is an exact instruction. Except for overflow, described above,

STCDF incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB
in rounding mode.

7-25

STCF1/STCFL/STCDI/STCDL

STORE AND CONVERT FROM FLOATING OR DOUBLE

TO INTEGER OR LONG INTEGER 175(AC+4)DST

15 12 11 08 07 06 05 00
I [[1 [[t Ll 1 I T T

1 1 1 1 1 0 1 1 AC DST

| { 1 L L | i 1 L | |

Format: STCFI AC,DST

Operation: (DST) — Cxj(AC) if —JL — 1 < Cxj(AC) < JL + 1, else (DST) — 0, where

Cjx specifies conversion from floating mode x to integer mode j.

j=1ifFL=0,j=LifFL = 1

x=FifFD=0,x=DifFD=1

JL is the largest integer.

2*¥ 15— 1for FL=0

2 ** 32 — 1 for FL=1

Condition Codes: C,FC — 0if =JL — 1 < Cxj(AC) < JL + 1, else

C,FC — 1

V,FV — 0

Z,FZ — 1if (DST)=0,e¢lse Z, FZ — 0

N, FN — 1 if (DST) < 0, else N, FN «— 0

Description: Conversion is performed from a floating-point representation of the data in

the accumulator to an integer representation.

If the conversion is to a 32-bit word (L mode), and an addressing mode of 0

or immediate addressing mode is specified, only the most significant 16 bits

are stored in the destination register.

If the operation is out of the integer range selected by FL, FC is set to 1 and

the contents of the DST are set to 0.

Numbers to be converted are always chopped (rather than rounded) before

they are converted. This is true even when the chop mode bit FT is cleared in

the FPS register.

Interrupts: These instructions do not interrupt if FIUV is enabled, because the —O0, if

present, is in AC, not in memory. If FIC is enabled, trap on conversion failure

will occur.

Accuracy: These instructions store the integer part of the floating-point operand, which

may not be the integer most closely approximating the operand. They are

exact if the integer part is within the range implied by FL.

7-26

STEXP

STORE EXPONENT
175(AC)DST

00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

STF/STD

STEXP AC,DST

(DST) — EXP(AC) — 200

C, FC—0

V,FV —0

Z,FZ — 1if (DST) =0, else Z, FZ — 0

N, FN «—~ 1 if (DST) < 0, else N, FN — 0

MR-11487

Convert AC’s exponent from excess 200 notation to 2’s complement and
store the result in DST.

This instruction will not trap on —0. Overflow and underflow cannot occur.

This instruction is exact.

STORE FLOATING/DOUBLE 174(ACYFDST

00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

STF AC,FDST

(FDST) — AC

FC— FC

FV— FV

FZ— FZ

FN— FN

Store single- or double-precision number from AC.

MR-11488

These instructions do not interrupt if FIUV is enabled, because the -0, if
present, is in AC, not in memory. Overflow and underflow cannot occur.

7-27

Accuracy:

Special Comment:

These instructions are exact.

These instructions permit storage of a —0 in memory from AC. There are two

conditions in which —0 can be stored in an AC of the KDJ11-A. One occurs

when underflow or overflow is present and the corresponding interrupt is

enabled. A second occurs when an LDF or LDD instruction is executed and

the FIUV bit is disabled.

STFPS

STORE FLOATING-POINT PROGRAM STATUS 1702 DST

15 12 11 06 05 00

] { ! ! [| | 1 | [T I T

1 1 1 o 0o 0 0 1 0 DST

[il { 1 i L | L 1 1 [) |

Format: STFPS DST

Operation: (DST) — FPS

Description: Store the floating-point status register in DST.

Special Comment: Bits 13, 12, and 04 are loaded with 0. All other bits are the corresponding bits

in the FPS.

STST

STORE FPP'S STATUS 1703 DST

15 12 1" 06 05 00
T T T T | f I 1 ! | I I i

1 1 1 0 0 0 0 1 1 DST

— 1 ! i 1 1 | " :

Format: STST DST

Operation: (DST) — FEC (DST + 2) — FEA

Description: Store the FEC and FEA in DST and DST+2. Note the following.

1. If the destination mode specifies a general register or immediate address-

ing, only the FEC is saved.

2. The information in these registers is current only if the most recently

executed floating-point instruction caused a floating-point exception.

7-28

SUBF/SUBD

SUBTRACT FLOATING/DOUBLE 173(AC)FSRC

15 12 1 08 07 06 05 00

| I I] 1] | | I |

1 1 0 1 1 0 AC FSRC

A — [h— | 1 | [{ |

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11491

SUBF FSRC,AC

Let DIFF = (AC) — (FSRC)

If underflow occurs and FIU is not enabled, AC — exact O.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — DIFF.

FC —0

FV — 1 if overflow occurs, else FV «— 0

FZ — 1if (AC) =0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

Subtract the contents of FSRC from the contents of AC. The subtraction is

carried out in single- or double-precision and is rounded or chopped in accor-

dance with the values of the FD and FT bits in the FPS register. The result is

stored in AC except for:

1. Overflow with interrupt disabled

2. Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow

or underflow occurs, and if the corresponding interrupt is enabled, the trap

occurs with the faulty result in AC. The fractional parts are correctly stored.

The exponent part is too small by 400 for overflow. It is too large by 400 for

underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs:

for like-signed operands with exponent difference of 0 or 1, the answer

returned is exact if a loss of significance of one or more bits can occur. Note

that these are the only cases for which loss of significance of more than one

bit can occur. For all other cases the result is inexact with error bounds of:

1. LSB in chopping mode with either single- or double-precision

2. 1/2 LSB in rounding mode with either single- or double-precision

The undefined variable —0 can occur only in conjunction with overflow or

underflow. It will be stored in AC only if the corresponding interrupt is

enabled.

7-29

TSTF/TSTD

TEST FLOATING/DOUBLE 1705 FDST

15 12 N 06 05 00
i [j T I { i I | 1 |

1 1 0 0 0 1 0 1 FDST

1 | | L L 1 | — A

MR-11492

Format: TSTF FDST

Operation: (FDST)

Condition Codes: FC — 0

FV—0

Description:

Interrupts:

Accuracy:

FZ — 1if (FDST) =0, else FZ — 0

FN «— 1 if (FDST) < 0, else FN — 0

Set the floating-point condition codes according to the contents of FDST.

If FIUYV is set, trap on —0 occurs before execution. Overflow and underflow

cannot occur.

These instructions are exact.

7-30

CHAPTER 8

PROGRAMMING TECHNIQUES

8.1 INTRODUCTION

The KDJ11-A offers a great deal of programming flexibility and power. Utilizing the combination of the
instruction set, the addressing modes, and the programming techniques, it is possible to develop new
software or to utilize old programs effectively. The programming techniques in this chapter show the
capabilities of the KDJ11-A. The techniques discussed involve position-independent coding (PIC), stacks,
subroutines, interrupts, reentrancy, coroutines, recursion, processor traps, programming peripherals, and
conversion.

8.2 POSITION-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module. The task builder or linker binds one
or more modules together to create an executable task image. Once built, a task can only be loaded and
executed at the virtual address specified at link time. This is so because the linker has had to modify some
instructions to reflect the memory locations in which the program is to run. Such a body of code is
considered position-dependent (i.e., dependent on the virtual addresses to which it was bound).

The KDJ11-A processor offers addressing modes that make it possible to write instructions that do not
depend on the virtual addresses to which they are bound. This type of code is termed position-independent
and can be loaded and executed at any virtual address. Position-independent code can improve system
efficiency, both in use of virtual address space and in conservation of physical memory.

In multiprogramming systems like RSX-11M, it is important that many tasks be able to share a single
physical copy of common code (a library routine, for example). To make the optimum use of a task’s
virtual address space, shared code should be position-independent. Code that is not position-independent
can also be shared, but it must appear in the same virtual locations in every task using it. This restricts the
placement of such code by the task builder and can result in the loss of virtual addressing space.

8.2.1 Use of Addressing Modes in the Construction of Position-Independent Code
The construction of position-independent code is closely linked to the proper use of addressing modes. The
remainder of this explanation assumes you are familiar with the addressing modes described in Chapter 6.

The following addressing modes, which involve only register references, are position-independent.

R Register mode

(R) Register-deferred mode

(R)+ Autoincrement mode

@*R)+ Autoincrement-deferred mode

—(R) Autodecrement mode

@—(R) Autodecrement-deferred mode

When employing these addressing modes, the user is guaranteed position independence, providing the
contents of the registers have been supplied independently of a particular virtual memory location.

8-1

The following two relative addressing modes are position-independent when a relocatable address is

referenced from a relocatable instruction.

A Relative mode

@A Relative-deferred mode

Relative modes are not position-independent when an absolute address (that is, a nonrelocatable address) is

referenced from a relocatable instruction. In such case, absolute addressing (i.e., @#A) may be employed

to make the reference position-independent.

Index modes can be either position-independent or position-dependent, according to their use in the

program:

X(R) Index mode

@X(R) Index-deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the reference is position-independent. The

following is an example.

MOV 2(SP),RO ;POSITION-INDEPENDENT

N=

MOV N(SP),RO ;POSITION-INDEPENDENT

If, however, X is a relocatable address, the reference is position-dependent, as the following example

shows.

CLR ADDR(R1) ;POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to its use. Immediate mode refer-

ences are formatted as follows.

#IN Immediate mode

When an absolute expression defines the value of N, the code is position-independent. When a relocatable

expression defines N, the code is position-dependent. That is, immediate mode references are position-

independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases where an absolute virtual location is
being referenced. Absolute mode addressing references are formatted as follows.

@#A Absolute mode

An example of a position-independent absolute reference is a reference to the processor status word (PS)
from a relocatable instruction, as in this example.

MOV @#PSW,RO ;RETRIEVE STATUS AND PLACE IN REGISTER

8-2

8.2.2 Comparison of Position-Dependent and Position-Independent Code

The RSX-11 library routine, PWRUP, is a FORTR AN-callable subroutine for establishing or removing a

user power failure asynchronous system trap (AST) entry point address. Imbedded within the routine is the

actual AST entry point that saves all registers, effects a call to the user-specified entry point, restores all

registers on return, and executes an AST exit directive. The following examples are excerpts from this

routine. The first example has been modified to illustrate position-dependent references. The second

example is the position-independent version.

Position-Dependent Code

PWRUP::

CLR —(SP) :ASSUME SUCCESS

CALL X.PAA ;PUSH (SAVE)

;ARGUMENT ADDRESSES

:ONTO STACK

WORD 1..$PSW :CLEAR PSW, AND

:SET R1=R2SP

MOV $OTSV R4 :GET OTS IMPURE

:AREA POINTER

MOV (SP)+,R2 :GET AST ENTRY

:POINT ADDRESS

BNE 10% ;IF NONE SPECIFIED,

:SPECIFY NO POWER

CLR —(SP) :RECOVERY AST SERVICE

BR 20% ;

108: ;

MOV R2,F.PF(R4) :SET AST ENTRY POINT

MOV #BA,—(SP) :PUSH AST SERVICE

:ADDRESS

208: ;

CALL X.EXT ISSUE DIRECTIVE, EXIT.

.BYTE 109.,2. :

BA: MOV RO,—(SP) ;PUSH (SAVE) RO

MOV R1,—(SP) ‘PUSH (SAVE) R1

MOV R2,—(SP) ;PUSH (SAVE) R2

8-3

Position-Independent Code

PWRUP::

CLR

CALL

WORD

MOV

MOV

BNE

CLR

BR

108:

MOV

MOV

ADD

208:

CALL

.BYTE

BA: MOV

MOV

MOV

—(SP)
X.PAA

1.,$PSW

@#30TSV,R4

(SP)+,R2

10$

~(SP)
20%

R2,F.PF(R4)

PC,—(SP)

#BA—.,(SP)

X.EXT

109.,2.

R0O,—(SP) |
R1,—(SP)

R2,—(SP)

;ASSUME SUCCESS

;PUSH ARGUMENT

;JADDRESSES ONTO

‘STACK

;:CLEAR PSW, AND

:SET R1=R2-SP.

:GET OTS IMPURE

:AREA POINTER

:GET AST ENTRY

;POINT ADDRESS

;JF NONE SPECIFIED,

:SPECIFY NO POWER

;'RECOVERY AST SERVICE

:SET AST ENTRY POINT

;PUSH CURRENT LOCATION

;COMPUTE ACTUAL LOCATION

:OF AST

;ISSUE DIRECTIVE, EXIT.

;ACTUAL AST SERVICE ROUTINE:

; 1) SAVE REGISTERS

5 2) EFFECT A CALL TO SPECIFIED

; SUBROUTINE

; 3) RESTORE REGISTERS

; 4) ISSUE AST EXIT DIRECTIVE

:-PUSH (SAVE) RO

:‘PUSH (SAVE) R1

-‘PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative reference to an absolute symbol

($OTSV) and a literal reference to a relocatable symbol (BA). Both references are bound by the task
builder to fixed memory locations. Therefore, the routine will not execute properly as part of a resident

library if its location in virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to SOTSV has been changed to an absolute reference. In

addition, the necessary code has been added to compute the virtual location of BA based upon the value of

the program counter. In this case, the value is obtained by adding the value of the program counter to the

fixed displacement between the current location and the specified symbol. Thus, execution of the modified

routine is not affected by its location in the image’s virtual address space.

8-4

8.3 STACKS

The stack is part of the basic design architecture of the KDJ11-A. It is an area of memory set aside by the
programmer or the operating system for temporary storage and linkage. It is handled on a LIFO (last-
in/first-out) basis, where items are retrieved in the reverse of the order in which they were stored. A stack
starts at the highest location reserved for it and expands linearly downward to lower addresses as items are
added.

It is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through a stack pointer. To keep track of the last item added to the stack, a general register
is used to store the memory address of the last item in the stack. Any register except register 7 (the PC)
may be used as a stack pointer under program control; however, instructions associated with subroutine
linkage and interrupt service automatically use register 6 as a hardware stack pointer. For this reason, R6
is frequently referred to as the system SP. Stacks may be maintained in either full-word or byte units. This
is true for a stack pointed to by any register except R6, which must be organized in full-word units only.
Byte stacks (see Figure 8-1) require instructions capable of operating on bytes rather than full words.

WORD STACK

007100 ITEM # 1

007076 ITEM # 2

007074 ITEM # 3

007072 ITEM # 4 «—sp | 007072]
007070

007066

007064

BYTE STACK

007100 ITEM # 1
007077 ITEM # 2

007076 ITEM # 3

007075 ITEM # 4 «—sp | 007075]

NOTE:

BYTES ARE

ARRANGEDIN

WORDS AS FOLLOWING:

BYTE3 | BYTE2

BYTE1 | BYTEO

— -
Y

WORD

MR-3662

Figure 8-1 Word and Byte Stacks

8-5

8.3.1 Pushing onto a Stack

Items are added to a stack using the autodecrement addressing mode. Adding items to the stack is called

pushing, and is accomplished by the following instructions.

MOV Source,—(SP) ;MOYV contents of source word

;onto the stack

or

MOVB Source,—(SP) ;MOVB source byte onto

:the stack

Data is thus pushed onto the stack.

8.3.2 Popping from a Stack

Removing data from the stack is called popping. This operation is accomplished using the autoincrement

mode.

MOV (SP)+,Destination ;MOV destination word

:off the stack

or

MOVB (SP)+,Destination ;MOVB destination byte

;off the stack

After an item has been popped, its stack location is considered free and available for other use. The stack

pointer points to the last-used location, implying that the next lower location is free. Thus, a stack may

represent a pool of sharable temporary storage locations. (See Figure 8-2.)

HIGH MEMORY

«<«+— SP

stack ¥ EO <«—SpP EO

AREA v E1 «—sP

LOW MEMORY

1 AN EMPTY STACK AREA 2 PUSHING A DATUM 3 PUSHING ANOTHER

ONTO THE STACK DATUM ONTO THE

STACKS

EQ EO A E2 EO

E1 E1 <SP E1

v E2 <SP ' E3 <—5P

4 ANOTHER PUSH 5 POP 6 PUSH

E3

EO

E1 «<+— SP

7 POP

MR-3663

Figure 8-2 Push and Pop Operations

8.3.3 Deleting Items from a Stack

The following techniques may be used to delete items from a stack. To delete one item use:

INC SP or TSTB(SP)+ for a byte stack

To delete two items use:

ADD#2,SP or TST(SP)+ for word stack

To delete 50 items from a word stack use:

ADD#100.,SP

8.3.4 Stack Uses

A stack is used in the following ways.

1. Often one of the general-purpose registers must be used in a subroutine or interrupt service

routine and then returned to its original value. The stack can be used to store the contents of the

registers involved.

The stack is used in storing linkage information between a subroutine and its calling program.

The JSR instruction, used in calling a subroutine, requires the specification of a linkage register

along with the entry address of the subroutine. The content of this linkage register is stored on

the stack, so as not to be lost, and the return address is moved from the PC to the linkage

register. This provides a pointer back to the calling program so that successive arguments may

be transmitted easily to the subroutine.

If no arguments need be passed by stacking them after the JSR instruction, the PC may be used

as the linkage register. In this case, the result of the JSR is to move the return address in the

calling program from the PC onto the stack and replace it with the entry address of the called

subroutine.

In many cases, the operations performed by the subroutine can be applied directly to the data

located on or pointed to by a stack without the need to move the data into the subroutine area.

Example:

;CALLING PROGRAM

MOV SP,R1 ;R1 IS USED AS THE STACK

JSR PC,SUBR :POINTER HERE.

;SUBROUTINE

ADD (RI1)+,(R1) ;ADD ITEM #1 TO #2, PLACE

;RESULT IN ITEM #2,

;R1 POINTS TO

;ITEM #2 NOW

Because the hardware already uses general-purpose register R6 to point to a stack for saving

and restoring PC and processor status word (PS) information, it is convenient to use the same

stack to save and restore immediate results and to transmit arguments to and from subroutines.

Using R6 in this manner permits extreme flexibility in nesting subroutines and interrupt service

routines.

Since arguments may be obtained from the stack by using some form of register-indexed

addressing, it is sometimes useful to save a temporary copy of R6 in some other register which

has been saved at the beginning of a subroutine. If R6 is saved in RS at the beginning of the

subroutine, R5 may be used to index the arguments. During this time, R6 is free to be

incremented and decremented while being used as a stack pointer. If R6 had been used directly

as the base for indexing and not “copied,” it might be difficult to keep track of the position in

the argument list, since the base of the stack would change with every autoincre-

ment/decrement that occurred.

However, if the contents of R6 (SP) are saved in RS before any arguments are pushed onto the

stack, the position relative to RS would remain constant.

Return from a subroutine also involves the stack, as the return instruction, RTS, must retrieve

information stored there by the JSR.

When a subroutine returns, it is necessary to “clean up” the stack by eliminating or skipping

over the subroutine arguments. One way this can be done is by insisting that the subroutine keep

the number of arguments as its first stack item. Returns from subroutines then involve calculat-

ing the amount by which to reset the stack pointer, resetting the stack pointer, then storing the

original contents of the register that were used as the copy of the stack pointer.

5. Stack storage is used in trap and interrupt linkage. The program counter and the processor

status word of the executing program are pushed on the stack.

6. When the system stack is being used, nesting of subroutines, interrupts, and traps to any level

can occur until the stack overflows its legal limits.

7. The stack method is also available for temporary storage of any kind of data. It may be used as

a LIFO list for storing inputs, intermediate results, etc.

8.3.5 Stack Use Examples

As an example of stack use, consider this situation. A subroutine (SUBR) wants to use registers 1 and 2,

but these registers must be returned to the calling program with their contents unchanged. The subroutine

could be written as follows.

Not Using the Stack

Assembler

Address Octal Code Syntax Comments

076322 010167 SUBR: MOV R1,TEMPI ;save R1

076324 000074 *

076326 010267 MOV R2,TEMP2 ;save R2

076330 000072 *

076410 016701 MOV TEMPI,R1 ;restore R1

076412 000006 *

076414 0167902 MOV TEMP2,R2 ;restore R2

076416 000004 *

076420 000297 RTS PC

076422 000000 TEMPI1:0

076424 000000 TEMP2:0

*Index constants

8-8

Using the Stack

R3 has been previously set to point to the end of an unused block of memory.

Assembler

Address Octal Code Syntax Comments

010020 010143 SUBR: MOV R1,—(R3) ;push R1

010022 010243 MOV R2,—(R3) ;push R2

010130 012302 MOV (R3)+.R2 .pop R2
010132 012301 MOV (R3)+,R1 ;pop R1

010134 000207 RTS PC

Note: In this case R3 was used as a stack pointer.

The second routine uses four fewer words of instruction code and two words of temporary “stack” storage.

Another routine could use the same stack space at some later point. Thus, the ability to share temporary

storage in the form of a stack is a way to save on memory usage.

As another example of stack use, consider the task of managing an input buffer from a terminal. As

characters come in, the user may wish to delete characters from the line; this is accomplished very easily

by maintaining a byte stack containing the input characters. Whenever a backspace is received, a

character is popped off the stack and eliminated from consideration. In this example, popping characters

to be eliminated can be done by using either the MOVB (MOVE BYTE) or INC (INCREMENT)

instructions.

Note that in this case the increment instruction (INC) is preferable to MOVB, since it accomplishes the

task of eliminating the unwanted character from the stack by readjusting the stack pointer without the

need for a destination location. Also, the stack pointer (SP) used in this example cannot be the system

stack pointer because R6 may point only to word (even) locations. (See Figure 8-3.)

go10Mm

0010170

001007

001006

001005

001004

001003

001002

001001

INC R3

D
I
M
Z
I
O
|
A
l
»
w
]
|
C
|
O

<R3[001002 |

N
|
z
|
m
|
z
|
o
|
-
]
|
w
|
c
|
o

<R3] 001001 |

MR-3664

Figure 8-3 Byte Stack Used as a Character Buffer

8.3.6 Subroutine Linkage

The contents of the linkage register are saved on the system stack when a JSR is executed. The effect is

the same as if a MOV reg,—(R6) had been performed. Following the JSR instruction, the same register is

loaded with the memory address (the contents of the current PC), and a jump is made to the entry location

specified.

Figure 8-4 shows the conditions before and after the subroutine instructions JSR RS, 1064 are executed.

Because hardware already uses general-purpose register R6 to point to a stack for saving and restoring PC

and PS (processor status word) information, it is convenient to use that stack to save and restore

intermediate results and to transmit arguments to and from subroutines. Using R6 this way permits

nesting subroutines and interrupt service routines.

BEFORE AFTER

{R5) = 000132 (R5) = 001004

(R6) = 001776 (R6) = 001774

(PC) = (R7) = 001000 {(PC) = (R7) = 001064

002000 nnnnnn 002000 nnnnnn

001776 mmmmmm -SSP [001776 1 001776 mmmmmm

001774 001774 000132 <«sp| 001774 |
001772 001772

MR-3665

Figure 8-4 JSR Stack Condition Example

8.3.6.1 Return from a Subroutine — An RTS instruction provides for a return from the subroutine to the

calling program. The RTS instruction must specify the same register as the one the JSR instruction used in

the subroutine call. When the RTS is executed, the register specified is moved to the PC, and the top of

the stack is placed in the register specified. Thus, an RTS PC has the effect of returning to the address

specified on the top of the stack.

8.3.6.2 Subroutine Advantages - There are several advantages to the subroutine calling procedure

affected by the JSR instruction.

I. Arguments can be passed quickly between the calling program and the subroutine.

2. If there are no arguments, or the arguments are in a general register or on the stack, the JSR

PC,DST mode can be used so that none of the general-purpose registers are used for linkage.

3. Many JSRs can be executed without the need to provide any saving procedure for the linkage

information, since all linkage informationis automatically pushed onto the stack in sequential

order. Returns can be made by automatically popping this information from the stack in the

order opposite to the JSRs.

Such linkage address bookkeeping is called automatic nesting of subroutine calls. This feature enables

construction of fast, efficient linkages in a simple, flexible manner. It also permits a routine to call itself.

8-10

8.3.7 Interrupts

An interrupt is similar to a subroutine call, except that it is initiated by the hardware rather than by the

software. An interrupt can occur after the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time. In direct program data transfer, the

CPU loops to check the state of the DONE/READY flag (bit 7) in the peripheral interface. Using
interrupts, the CPU can handle other functions until the peripheral initiates service by setting the DONE

bit in its control/status register. The CPU completes the instruction being executed, then acknowledges
the interrupt, and vectors to an interrupt service routine. The service routine will transfer the data and may
perform calculations with it. After the interrupt service routine has been completed, the computer resumes

the program that was interrupted by the peripheral’s high-priority request.

8.3.7.1 Interrupt Service Routines — With interrupt service routines, linkage information is passed so
that a return to the main program can be made. More information is necessary for an interrupt sequence

than for a subroutine call because of the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be preserved in order to return to the

program without any noticeable effects. This information is stored in the processor status word (PS). Upon

interrupt, the contents of the program counter (PC) (address of next instruction) and the PS are automati-

cally pushed onto the R6 system stack. The effect is the same as if:

MOV PS,—(SP) :Push PS

MOV PC,—(SP) ;:Push PC

had been executed. The new contents of the PC and PS are loaded from two preassigned consecutive

memory locations which are called vector addresses.

The first word contains the interrupt service routine entry address (the address of the service routine

program sequence). The second word contains the new PS that will determine the machine status,

including the operational mode and register set to be used by the interrupt service routine. The contents of

the vector address are set under program control.

After the interrupt service routine has been completed, an RTI (return from interrupt) is performed. The

top two words of the stack are automatically popped and placed in the PC and PS, respectively, thus

resuming the interrupted program. Interrupt service programming is intimately involved with the concept

of CPU and device priority levels.

8.3.7.2 Nesting — Interrupts can be nested in much the same manner that subroutines are nested. It is

possible to nest any arbitrary mixture of subroutines and interrupts without any confusion. When the

respective RTI and RTS instructions are used, the proper returns are automatic. (See Figure 8-5.)

8-11

1. PROCESS0 1S RUNNING: SP IS SP — PO 7. SUBROUTINE A RELEASES THE PO

POINTING TO LOCATION PO, TEMPORARY STORAGE HOLDING PSO

TA1 AND TA2. PCO

0 TEO

TE

2. INTERRUPT STOPS PROCESS O WITH PO PS1

PC = PCO, AND STATUS = PSO: STARTS PSO PC1

PROCESS 1. SP —w PCO SP —o pc2

s} 0

3. PROCESS 1 USES STACK FOR TEM- PO 8. SUBROUTINE A RETURNS CONTROL PO

PORARY STORAGE (TEO, TE1). PSO TO PROCESS 2 WITH AN RTS R7; PC PO

PCO IS RESET TO PC2. PCO

TEOC TEQ

SP— TE? TET

PS1

0 SP —» PC1

4. PROCESS 1 INTERRUPTED WITH PC PO 0

=PC1 AND STATUS = PS1; PROCESS PSO

2 1S STARTED. PCO 9. PROCESS 2 COMPLETESWITH AN PO

TEQ RT1 INSTRUCTIONS (DISMISSES PS0

TE1 INTERRUPT) PC IS RESET OT PC (1) PCO
PS1 AND STATUS IS RESET TO PS1; TEO

P — FC1 PROCESS1 RESUMES' P e TE1

0 o]

5. PROCESS 2 IS RUNNING AND DOES PO 10. PROCESS 1 RELEASES THE TEMPO-)
A JSR R7,A TO SUBROUTINE A WITH PSO RARY STORAGE HOLDING TEQ AND PSO
PC =PC2. PCO TE1. P —» PCO

TEQ

TE1 0

PS1

PCI 11. PROCESS 1 COMPLETES ITS SP— PO

SP— Pc2 OPERATION WITH AN RT1,PCIS
RESET TO PCO, AND STATUS IS 0

0 RESET TO PSO.

6. SUBROUTINE A IS RUNNING AND PO

USES STACK FOR TEMPORARY PSO

STORAGE. PCO
TEO

TE1

PS1

PC1

PC2

TA1

SP —p TA2

0

MR-3668

Figure 8-5 Nested Interrupt Service Routines and Subroutines

8.3.8 Reentrancy

Other advantages of the KDJ11-A stack organization occur in programming systems that handle several

tasks. Multitask program environments range from simple single-user applications that manage a mixture

of 1/O interrupt service and background data processing (as in RT-11), to large, complex, multiprogram-

ming systems that manage an intricate mixture of executive and multiuser programming situations (as in

RSX-11). In all these situations, using the stack as a programming technique provides flexibility and

time/memory economy by allowing many tasks to use a single copy of the same routine with a simple
straightforward way of keeping track of complex program linkages.

The ability to share a single copy of a program among users or among tasks is called reentrancy. Reentrant

program routines differ from ordinary subroutines in that it is not necessary for reentrant routines to finish

processing a given task before they can be used by another task. Multiple tasks can exist at any time in

varying stages of completion in the same routine. Thus, the situation as shown in Figure 8-6 may occur.

8-12

8.3.8.1

MEMORY

PROGRAM 1

PROGRAM 2 SUB

PROGRAM 3

ROUTINE A

KDJ11-A APPROACH

PROGRAMS 1, 2, AND 3 CAN SHARE

SUBROUTINE A.

MEMORY

DT 7,
PROGRAM 1 %SUBROUTlNE AQ

P95 g

PROGRAM 2 7/// 77777

SUBROUTINE A/////////// ZL //

7 OO P Ored 7

PROGRAM 3 SUBROUTINE A4// Z, //

CONVENTIONAL APPROACH

A SEPRATE COPY OF SUBROUTINE A

MUST BE PROVIDED FOR EACH PROGRAM.

MR-3667

Figure 8-6 Reentrant Routines

Reentrant Code — Reentrant routines must be written in pure code (that is, any code that consists

exclusively of instructions and constants). The value of using pure code whenever possible is that the

resulting code has the following characteristics.

l.

2.

It is generally considered easier to debug than standard code.

[t can be kept in read-only memory (is read-only protected).

Using reentrant code, control of a routine can be shared as follows. (See Figure 8-7.)

e
W

=

TASK A

Task A requests processing by reentrant routine Q.

Task A temporarily gives up control of reentrant routine Q before it completes processing.

Task B starts processing the same copy of reentrant routine Q.

Task B completes processing by reentrant routine Q.

Task A regains use of reentrant routine Q and resumes where it stopped.

1 REENTRANT

ROUTINE Q

F

Figure 8-7

\

MR-3668

Sharing Control of a Routine

8.3.8.2 Writing Reentrant Code - In an operating system environment, when one task is executing and is

interrupted to allow another task to run, a context switch occurs in which the processor status word and
current contents of the general-purpose registers (GPRs) are saved and replaced by the appropriate values

for the task being entered. Therefore, reentrant code should use the GPRs and the stack for any counters,
pointers, or data that must be modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute. It causes all of the GPRs, the PS,
and often other task-related information to be saved in an impure area. It then reloads these registers and
locations with the appropriate data for the task being entered. Notice that one consequence of this is that a
new stack pointer value is loaded into R6, thereby causing a new area to be used as the stack when the

second task is entered.

~The following should be observed when writing reentrant code.

. All data should be in or pointed to by one of the general-purpose registers.

2. A stack can be used for temporary storage of data or pointers to impure areas within the task

space. The pointer to such a stack would be stored in a GPR.

3. Parameter addresses should be used by indexing and indirect reference rather than by putting

them into instructions within the code.

4. When temporary storage is accessed within the program, it should be by indexed addresses,

which can be set by the calling task in order to handle any possible recursion.

8.3.9 Coroutines

In some programming situations it happens that several program segments or routines are highly interac-

tive. Control is passed back and forth between the routines, each going through a period of suspension

before being resumed. Since the routines maintain a symmetric relationship with each other, they are

called coroutines.

Coroutines are two program sections, either subordinate to the call of the other. The nature of the call is,

“I have processed all 1 can for now, so you can execute until you are ready to stop, then I will continue.”

The coroutine call and return are identical, each being a jump to subroutine instruction with the destina-

tion address being on top of the stack and the PC serving as the linkage register, as follows.

JSR PC,@(R6)+

3-14

8.3.9.1 Coroutine Calls — The coding of coroutine calls is made simple by the stack feature. Initially, the

entry address of the coroutine is placed on the stack, and from that point the

JSR PC,@*R6)+

instruction is used for both the call and the return statements. This JSR instruction results in an exchange

of the contents of the PC and the top element of the stack; this permits the two routines to swap control

and resume operation where each was terminated by the previous swap. An example is shown in Figure 8-

8. Notice that the coroutine linkage cleans up the stack with each control transfer.

ROUTINE A STACK ROUTINE B COMMENTS

LOC IS PUSHED

ONTO THE STACK

TO PREPARE FOR

MOV #LOC,-(SP} LOC «~SP THE COROUTINE

. CALL.

LOC:

JSR PC,@(SP)+ PCO <SP . WHEN THE CALL

(PCO) . IS EXECUTED,

THE PC FROM

ROUTINE A IS

PUSHED ON THE

STACK AND EXE-

CUTION CONTIN-

UES AT LOC.

JSR PC,@(SP)+ ROUTINE B CAN

PC1 SP (PC1) RETURN CONTROL

. TO ROUTINE A

BY ANOTHER

COROUTINE CALL.

PCO IS POPPED

FROM THE STACK

AND EXECUTION

RESUMES IN

ROUTINE A JUST

AFTER THE CALL

TO ROUTINE B,

I.E., AT PCO.

PC1 IS SAVED

ON THE STACK

FOR A LATER

RETURN TO

ROUTINE B.

MR-3669

Figure 8-8 Coroutine Example

8.3.9.2 Coroutines Versus Subroutines — Coroutines can be compared to subroutines in the following
ways.

1. A subroutine can be considered to be subordinate to the main or calling routine, but a coroutine
is considered to be on the same level, as each coroutine calls the other when it has completed

current processing.

When called, a subroutine executes to the end of its code. When called again, the same code will
execute before returning. A coroutine executes from the point after the last call of the other

coroutine. Therefore, the same code will not be executed each time the coroutine is called. An

example is shown in Figure 8-9.

The call and return instructions for coroutines are the same:

JSR PC,@(SP)+

This one instruction also cleans up the stack with each call. The last coroutine call will leave an

address on the stack that must be popped if no further calls are to be made. Refer to Paragraph

8.3.6.1 for information on the return from subroutine instruction.

Each coroutine call returns to the coroutine code at the point after the last exit with no need for

a specific entry point label, as would be required with subroutines.

COROQUTINES MAIN PROGRAMS SUBROUTINES

A B 18T LOC:

JSR PC,@ (SP)+ / JSR Rn, LOC

\j

JSR PC,@ (SP)+

RTS\
/

'
JSR PC,@ (SP}+

JSR Rn, LOC

v

JSR PC,@ (SP)+

/

MR-3670

Figure 8-9 Coroutines Versus Subroutines

3-16

8.3.9.3 Using Coroutines — Coroutines should be used in the following situations.

1. Whenever two tasks must be coordinated in their execution without obscuring the basic struc-

ture of the program. For example, in decoding a line of assembly language code, the results at

any one position might indicate the next process to be entered. A detected label must be

processed. If no label is present, the operator must be located, etc.

2. To add clarity to the process being performed, to ease-in the debugging phase, etc.

An assembler must perform a lexicographic scan of each assembly language statement during pass 1 of the

assembly process. The various steps in such a scan should be separated from the main program flow to add

to the program’s clarity and to aid in debugging by isolating many details. Subroutines would not be

satisfactory here, as too much information would have to be passed to the subroutine each time it was

called. Such a subroutine would be too isolated. Coroutines could be effectively used here with one routine

being the assembly pass 1 routine and the other extracting one item at a time from the current input line.

Figure 8-10 illustrates this example.

ROUTINE A

START AND SKIP

BLANKS

NONBLANK

4

ROUTINE B

PROCESS NAMEREAD NAME

PROCESS MNEMONICS }e

y

SKIP BLANKS

READ MNEMONICS

READ ADDRESSES

SEMICOLON

LINE

TERMINATOR

SKIP COMMENT #1 END

MR-3671

Figure 8-10 Coroutine Path

Coroutines can be utilized in [/O processing. The example above shows coroutines used in double-buffered

[/0 using 10X. The flow of events might be described as:

Write 01

Read 11 concurrently,

Process 12

then

Write 02

Read 12 concurrently,

Process 1

Figure 8-11 illustrates a coroutine swapping interaction.

When routine 1 is operating; it executes:

MOV #PC2,—(R6)

JSR PC,@(R6)+

with the following results.

1. PC2 is popped from the stack and the SP autoincremented.

2. SP is autodecremented and the old PC (i.e., PC1) is pushed.

3. Control is tranferred to the location PC2 (i.e., routine 2).

When routine 2 is operating; it executes:

JSR PC,@(R6)+

with the result that PC2 is exchanged for PCI on the stack and control is transferred back to routine 1.

ROUTINE #1 IS OPERATING, IT THEN

EXECUTES:

MOV #PC2,-(R6)

JSR PC,@(R6)+

WITH THE FOLLOWING RESULTS:

1. PC2ISPOPPED FROM THE STACK

AND THE SP AUTOINCREMENTED. SP—» PC2

2. SPISAUTODECREMENTED AND

THE OLD PC (I.E., PC1) IS PUSHED.

3. CONTROL IS TRANSFERRED TO THE SP—» PC2 PC2

LOCATION PC2 (I.E., ROUTINE #2).

ROUTINE #2 IS OPERATING, IT THEN

EXECUTES: v

JSR PC,@(R6)+

WITH THE RESULT THAT PC2 IS SP —o PC1 ¢

EXCHANGED FOR PC1 ON THE

STACK AND CONTROL IS

TRANSFERRED BACK TO ROUTINE #1. MR-3672

Figure 8-11 Coroutine Interaction

8-18

8.3.10 Recursion

An interesting aspect of a stack facility, other than its providing for automatic handling of nested

subroutines and interrupts, is that a program may call on itself as a subroutine just as it can call on any

other routine. Each new call causes the return linkage to be placed on the stack, which, as it is a last-

in/first-out queue, sets up a natural unraveling to each routine just after the point of departure. Typical

flow for a recursive routine might resemble that shown in Figure 8-12.

MAIN PROGRAM

SUB1

suB 2

sSuB 2

MR-3673

Figure 8-12 Recursive Routine Flow

The main program calls function 1, SUB 1, which calls function 2, SUB 2, which recurses once before
returning. '

Example:

DNCF: ,

BEQ 1% .TO EXIT RECURSIVE LOOP
JSR R5,DNCF 'RECURSE

S ,

RTS R5 .RETURN TO 1$ FOR
;EACH CALL, THEN TO

;MAIN PROGRAM

The routine DNCF calls itself until the variable tested becomes equal to 0, then it exits to 1$ where the

RTS instruction is executed, returning to the 1$ once for each recursive call and a final time to return to

the main program.

In general, recursion techniques will lead to slower programs than the corresponding interactive tech-

niques, but recursion will produce shorter programs, and thus save memory space. Both the brevity and

clarity produced by recursion are important in assembly language programs.

8-19

Uses of Recursion — Recursion can be used in any routine in which the same process is required several

times. For example, a function to be integrated may contain another function to be integrated, as in

solving for XM, where

SM =1 + F(X)

and

F(X) = G(X)

Another use for a recursive function could be in calculating a factorial function, because

FACT(N) = FACT(N — 1) * N

Recursion should terminate when N = [.

The macroprocessor within MACRO-11, for example, is itself recursive since it can process nested

macrodefinitions and calls. For example, within a macrodefinition, other macros can be called. When a

macro call is encountered within definition, the processor must work recursively; that is, it must process

one macro before it is finished with another, then continue with the previous one. The stack is used for a

separate storage area for the variables associated with each call to the procedure.

As long as nested definitions of macros are available, it is possible for a macro to call itself. However,

unless conditionals are used to terminate this expansion, an infinite loop could be generated.

8.3.11 Processor Traps

Certain errors and programming conditions cause the KDJ11-A processor to enter the service state and

trap to a fixed location. A trap is an interrupt generated by software. Pending conditions are arbitrated

according to a priority. The following list describes the priority from highest to lowest.

Condition Description

Memory Management Violation* A memory management violation causes an abort and

(MMUERR) traps to location 250g.

Timeout Error* (BUSERR) No response from a bus device during a bus transaction

causes an abort and traps to location 4g.

Parity Error* (PARERR) A parity error signal received by the processor during a

bus transaction causes an abort and traps to location 114sg.

Trace (T) Bit* If PS bit 4 is set at the end of instruction execution, the

processor traps to location 14g.

Stack Overflow* (STKOVF) If the kernel stack pointer was pushed below 400g during

an instruction execution, the processor traps to location 4g

at the end of the instruction.

Power Fail* (PFAIL) If bus signal power OK (BPOKH) became negated during

instruction execution, the processor traps to location 24g

at the end of the instruction.

* Nonmaskable software cannot inhibit the condition. CTLERR, MMUERR, BUSERR, PARERR are mutually exclusive

when the processor is executing a program.

8-20

Condition Description

Interrupt Level 7 (BIRQ7) If device interrupt requests are asserted and PS<07:05>

Interrupt Level 6 (BIRQ6) are properly set, the processor at the end of the present
Interrupt Level 5 (BIRQS) instruction execution will initiate an interrupt vector

Interrupt Level 4 (BIRQ4) sequenced on the bus. These inputs are maskable by

PS<07:05>.

PS<07:05> Levels Inhibited

7 All

6 6,5, 4

5 5, 4

4 4

0-3 None

Halt Line If the BHALT L bus signal is asserted during the service

state, the processor will enter ODT mode.

8.3.11.1 Trap Instructions - Trap instructions provide for calls to emulators, 1/O monitors, debugging
packages, and user-defined interpreters. When a trap occurs, the contents of the current program counter
(PC) and program status word (PS) are pushed onto the processor stack and replaced by the contents of a
2-word trap vector containing a new PC and new PS. The return sequence from a trap involves executing
an RTI or RTT instruction, which restores the old PC and old PS by popping them from the stack. Trap

vectors are located at permanently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the word in their
machine language representation. This allows user information to be transferred in the low-order byte. The
new value of the PC loaded from the vector address of the TRAP or EMT instructions is typically the
starting address of a routine to access and interpret this information. Such a routine is called a trap
handler.

A trap handler must accomplish several tasks. It must save and restore all necessary GPRs, interpret the
low byte of the trap instruction and call the indicated routine, serve as an interface between the calling
program and this routine by handling any data that needs to be passed between them, and, finally, cause
the return to the main routine.

A trap handler can be useful as a patching technique. Jumping out to a patch area is often difficult
because a 2-word jump must be performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching should first be reserved in the dispatch
table of the trap handler. The jump can then be accomplished by placing the address of the patch area into
the table and inserting the proper TRAP instruction where the patch is to be made.

8-21

8.3.11.2 Use of Macro Calls — The trap handler can be used in a program to dispatch execution to any
one of several routines. Macros may be defined to cause the proper expansion of a call to one of these

routines, as in the example below.

.MACRO SUB2 ARG

MOV ARG, RO

TRAP +1

.ENDM

When expanded, this macro sets up the one argument required by the routine in RO and then causes the

trap instruction with the number 1 in the lower byte. The trap handler should be wriiten so that it

recognizes a 1 as a call to SUB2. Notice that ARG here is being transmitted to SUB2 from the calling

program. It may be data required by the routine or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is used to call system or monitor

routines from a user program. The monitor of an operating system necessarily contains coding for many

functions, such as 1/0, file manipulation, etc. This coding is made accessible to the program through a

series of macro calls that expand into EMT instructions with low bytes, indicating the desired routine or

group of routines to which the desired routine belongs. Often a GPR is designated to be used to pass an

identification code to further indicate to the trap handler which routine is desired. For example, the macro

expansion for a resume execution command in RT-11 is as follows.

.MACRO .RSUM

CM3, 2.

.ENDM

CM3 is defined:

.MACRO CM3 CHAN, CODE

MOV #CODE *400,R0

JIF NB CHAN,BISB CHAN,RO0

EMT 374

.ENDM

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a group of

routines. Then the contents of RO (high byte) are tested by the handler to identify exactly which routine

within the group is being requested — in this case routine number 2. (The CM3 call of the .RSUM is set up

to pass the identification code.)

8.3.12 Conversion Routines

Almost all assembly language programs require the translation of data or results from one form to another.

Code that performs such a transformation is called a conversion routine in this guide. Several commonly

used conversion routines follow.

Almost all assembly language programs involve some type of conversion routine. Octal-to-ASCII, octal-to-

decimal, and decimal-to-ASCII are a few of the most widely used.

8-22

Arithmetic multiply and divide routines are fundamental to many conversion routines. Division is typically

approached in one of two ways.

l. The division can be accomplished through a combination of rotates and subtractions.

Example:

Assume the following code and register data; to make the example easier, also assume a 3-bit

word.

DIV:

1$

28

MOV #3,—(SP) ;SET UP DIGIT COUNTER

CLR —(SP) ;CLEAR RESULT

ASL (SP)

ASL R1

ROL RO

CMP RO,R3

BLT 2§

SUB R3,R0 ;RO CONTAINS REMAINDER

INC (SP) ; INCREMENT RESULT

DEC 2 (SP) ; DECREMENT COUNTER

BNE §$1

Therefore, to divide 7 by 2:

RO = 000 remainder

R1 =111 7 (multiplicand)

R3 =010 2 (multiplier)

Chbit=0

STACK

011 counter

000 quotient

Following through the coding, the quotient, remainder, and dividend all shift left, manipulating

the most significant digit first, etc.

At the conclusion of the routine:

RO = 001 remainder

R1 = 000

R3 =010

STACK

000 counter

011 quotient

8-23

2. The second method of division works by repeated subtraction of the powers of the divisor,
keeping a count of the number of subtractions at each level.

Example:

To divide 221¢ by 10, first try to subtract powers of 10 until a nonnegative value is obtained,
counting the number of subtractions of each power.

221

—1000

Negative, so go to the next lower power, and count for 103 = 0.

221

—100

121 count for 102 = |

—100

21 count = 2

—-100

Negative, so reduce power, and count for 102 = 2.

21

-10

11 count for 10 = 1.

11

—10

1 count = 2

-10

Negative, so count for 10! = 2.

No lower power, so remainder is 1.

Answer = 022, remainder 1.

8-24

Multiplication can be done with a combination of rotates and additions or with repetitive additions.

Example:

Assume the following code and a 3-bit word.

ADD

CLR RO

MOV #3,CNT

MOV R1,MULT;

MORE:

NOW;

MULT:

CNT:

The following conditions exist for 6 times 3:

RO= 000

R1 =110

R3 =011

high-order half of result

multiplicand

multiplier

After the routine is executed:

RO =010

R1 =010

R2 =100

CNT =0

MULT =110

Example:

high-order half of result

low-order half of result

Multiplication of RO by 50g(101000).

MULS50:

If RO contains 7:

RO=111

After execution:

MOV RO,—(SP)

ASL RO

ASL RO

ADD (SP)+,R0

ASL RO

ASL RO

ASL RO

RETURN

RO = 100011000

(78 * 508 = 4303).

8-25

;HIGH HALF OF ANSWER

SET UP COUNTER

;MULTIPLICAND

ROR R2

BCC NOW

ADD MULT,RO ;IF INDICATED,

;MULTIPLICAND

ROR RO

R04 R1

DEC CNT

BNE MORE

0

0

ASCII Conversions — The conversion of ASCII characters to the internal representation of a number, as

well as the conversion of an internal number to ASCII in I/O operations, presents a challenge. The

following routine takes the 16-bit word in R1 and stores the corresponding six ASCII characters in the

buffer addressed by R2.

OUT: MOV #5,R0 ;LOOP COUNT

LOOP: MOV R1,—(SP) ;COPY WORD INTO STACK

BIC #177770,@SP ;ONE OCTAL VALUE

ADD #0,@SP ;CONVERT TO ASCII

MOVB (SP)+,—(R2) ;TORE IN BUFFER

ASR R1 ;SHIFT

ASR R1 ;RIGHT

ASR R1 ;THREE

DEC RO ;TEST IF DONE

BNE LOOP ;NO, DO IT AGAIN

BIC #177776,R1 ;GET LAST BIT

ADD #0,R1 ;CONVERT TO ASCII

MOVB R5,—(R2) ;STORE IN BUFFER

RTS PC ;DONE,RETURN

8.4 PROGRAMMING THE PROCESSOR STATUS WORD

The current processor status can be read and written using several programming techniques on the PS. The

PS has an 1/O address of 17777776. The KDJ11-A and other PDP-11 processors implement this address,

whereas LSI-11 and LSI-11/2 processors do not. One technique is to use the I/O address as a source or

destination address with any instruction.

CLR @#17777776

MOV @#17777776, RO

The first instruction clears the PS and the second instruction moves the contents of the PS to general

register RO.

The PS explicit address (17777776) can be accessed on a word or byte basis. The KDJ11-A will recognize

the PS odd address (17777777) and the access result will be identical to an odd memory address reference.

Another technique is to use the two dedicated PS instructions, MTPS and MFPS. These instructions only

reference the even byte. If memory management is enabled certain PS bits are protected.

8-26

8.5 PROGRAMMING PERIPHERALS

Programming LSI-11 bus-compatible modules (devices) is simple. A special class of instructions that deals

with input/output operations is unnecessary. The bus structure permits a unified addressing structure in

which control, status, and data registers for devices are directly addressed as memory locations. Therefore,

all operations on these registers, such as tranferring information into or out of them or manipulating data

within them, are performed by normal memory reference instructions.

The use of all memory reference instructions on device registers greatly increases the flexibility of

input/output programming. For example, information in a device register can be compared directly with a

value and a branch made on the result.

CMP RBUF, #101

BEQ SERVICE

In this case, the program looks for 101 in the DLV11 receiver data buffer register (RBUF) and branches if

it finds it. There is no need to transfer the information into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can transfer the character into a user

buffer in memory or to another peripheral device. The instruction:

MOV DRINBUF LOC

transfers a character from the DRV11 data input buffer (DRINBUF) into a user-defined location.

All arithmetic operations can be performed on a peripheral device register. For example, the instruction

ADD #10, DROUT BUF will add 10 to the DRV 11’s output buffer. All read/write device registers can be

treated as accumulators. There is no need to funnel all data transfers, arithmetic operations, and compari-

sons through one or a small number of accumulator registers.

8.6 PDP-11 PROGRAMMING EXAMPLES

The programming examples on the following pages show how the instruction set, the addressing modes,

and the programming techniques can be used to solve some simple problems. The format used is either

PAL-11 or MACRO-11.

8-27

Program

Address

000500

000504

000510

000514

000520

000524

000526

000430

000532

000534

000536

000540

000542

000544

000546

000700

000702

000704

000706

000710

001000

001002

001004

001006

001010

Program

Contents

000000

000001

000002

000003

000004

000005

000006

000007

000500

012706

000500

012701

000700

012702

000712

012703

001000

012704

001012

005000

005005

062105

020102

001375

062300

020304

001375

160500

000000

000700

000001

000002

000003

000004

000005

001000

000004

000005

000006

000007

000010

000500

Label

START:

SUMI:

SUM2:

DIFF:

Op Code Operand

R0O=%0

R1-%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

=500

MOV #..SP

MOV #700,R1

MOV #712,R2

MOV #1000,R3

MOV #1012,R4

CLR RO

CLR R5

ADD (R1)+,R5

CMP R1,R2

BNE SUMI

ADD (R3)+,R0O

CMP R3,R4

BNE SUM?2

SUB R5,R0

HALT

=700

WORD 1,2,3.4,5

=1000

WORD 4,5,6,7,8

END

8-28

Comments

;PROGRAMMING EXAMPLE

;SUBTRACT CONTENTS OF LOCS 700-710

;FROM CONTENTS OF LOCS 1000-1010

;INIT STACK POINTER

;START ADDING

;FINISHED ADDING?

;IF NOT BRANCH BACK

;START ADDING

;FINISHED ADDING?

;JFE NOT BRANCH BACK

;SUBTRACT RESULTS

;THAT’S ALL FOLKS

Program

Address

Program

Contents Label Op Code Operand

R0=%0

R1=%1

R2=%2

SP=%6

PC=%7

=500

START: MOV#.SP

MOV #VALUE,R1

MOV #VALUES+40.,R2

CLR RO

CHECK: TST (R1)+

BPL NEXT

INC RO

NEXT: CMP R1,R2

BNE CHECK

HALT

VALUES: 0

.END

8-29

Comments

;PROGRAM TO COUNT NEGATIVE

NUMBERS

;IN'A TABLE

;20. SIGNED WORDS

;BEGINNING AT LOC VALUES

;COUNT HOW MANY ARE NEGATIVE IN RO

;SET UP STACK

;SET UP POINTER

SET UP COUNTER

:TEST NUMBER

;POSITIVE?

:NO, INCREMENT

;COUNTER

'YES, FINISHED?

:NO, GO BACK

.YES, STOP

Program

Address

Program

Contents Label

START:

CHECK:

NO:

AVERAGE:

SCORES*

Op Code Operand

R0=%0

R1=%1

R2=%2

R3=%3

SP=%6

PC=%7

=500

MOV #.,SP

MOV #16.,R1

MOV #SCORES,R2

MOV #AVERAGE,R3

CLR RO

CMP (R2)+,(R3)

BLE NO

INC RO

DEC R1

BNE CHECK

HALT

635.

25.,70.,100.,60.,80.,80.,40.

55.,75.,100.,65.,90.,70.,65.,70.

END

8-30

Comments

:PROGRAM TO COUNT ABOVE AVERAGE

QUIZ SCORES

:LIST OF 16. QUIZ SCORES

;BEGINNING AT LOC SCORES

:KNOWN AVERAGE IN LOC AVERAGE

.COUNT IN RO SCORES ABOVE AVERAGE

SET UP STACK

;SET UP COUNTER

;SET UP POINTER

;COMPARE SCORE AND AVERAGE

;LESS THAN OR EQUAL

;TO AVERAGE?

;NO, COUNT

;YES, DECREMENT COUNTER

;FINISHED? NO, CHECK

;YES, STOP

Program

Address

Program

Contents

OUT:

SAVE;:

Label

START:;

MOV

MOV

ECHO:

BPL

MOVB

MOVB

DEC

BNE

MOV

MOV

TSTB

BPL

MOVB

DEC

BNE

HALT

.BYTE

=.+20,

.END

Op Code Operand

R0=%0

R1=%]1

SP=%6

CR=15

LF=12

TKS=177560

TKB=TKS+2

TPS=TKB+2

TPB=TPS+2

TITLE ECHO

.=1000

MOV #..SP

#SAVE+2,R0

#20.,R1

TSTB @#TKS

BPL IN

TSTB @#TPS

ECHO

@#TKB,@#TPB

@#TKB,(R0O)+

R1

IN

#SAVE RO

#22.,R1

@#TPS

ouT

(RO)+,@#TPB

R1

OuT

CR,LF

8-31

Comments

;PROGRAMMING EXAMPLE

;ACCEPT (IMMEDIATE ECHO) AND

;STORE 20. CHARS

;FROM THE KEYBOARD, OUTPUT CR & LF

;ECHO ENTIRE STRING FROM STORAGE

;INITIALIZE STACK POINTER

;SA OF BUFFER

;:BEYOND CR & LF

;CHARACTER COUNT

;CHAR IN BUFFER?

;IF NOT BRANCH BACK

;AND WAIT

;CHECK TELEPRINTER

;READY STATUS

;ECHO CHARACTER

;STORE CHARACTER AWAY

;FINISHED INPUTTING?

;SA OF BUFFER INCLUDING

i CR & LF

;COUNTER OF BUFFER

;INCLUDING CR & LF

;CHECK TELEPRINTER

;READY STATUS

;OUTPUT CHARACTER

;FINISHED OUTPUTTING?

Program

Address

Program

Contents Label

INPUT:

IN:

OUT:

SORT:

NEXT:

LOOP:

LT:

GT:

INSERT:

COUNT:

LINE]:

LINE2:

BUFFER:

Op Code Operand

MOV #BUFFERRO

MOV #-10.,R1

TSTB @#TKS

BPL IN

TSTB @#TPS

BPL OUT

MOVB @#TKB,@#TPB

MOVB @#TKB,(R0)+

INC R1

BNE IN

RTS PC

MOV #-10.,R4

MOV COUNT,R3

MOV #BUFFER+9.,R0

ADD R3,R0

MOVB (RO)+,R1

CMPB (RO)+,R1

BGE GT

MOVB —(R0),R2

MOVB R1,(RO)+

MOV R2,R1

INC R3

BNE LOOP

MOVB R1,BUFFER+10.(R4)

INC R4

INC COUNT

BNE NEXT

MOV #-9.,COUNT

RTS PC

.WORD -9.

Comments

;PROGRAMMING EXAMPLE

;SUBROUTINE TO INPUT TEN VALUES

;SET UP SA OF

;STORAGE BUFFER

;SET UP COUNTER

;TEST KYBD READY STATUS

;TEST TTO READY STATUS

;ECHO CHARACTER

'STORE CHARACTER

JINC COUNTER

EXIT

;PROGRAMMING EXAMPLE

;SUBROUTINE TO SORT TEN VALUES

;RESTORE LOCATION COUNT

;EXIT

.ASCII/INPUT ANY TEN SINGLE-DIGIT VALUES (0-9); I'LL/

.ASCII/SORT AND OUTPUT THEM IN/

.ASCII/SMALLEST TO LARGEST ORDER./

=.+10.

.END INITSP

8-32

;FINISHED!!!

Program

Address

Program

Contents Label

INITSP:

Op Code

R0=%0

R1=%1

R2=%2

R3=%3

R4=%4

R5=%5

SP=%6

PC=%7

TKS=177560

Operand Comments

;PROGRAMMING EXAMPLE

:SUBROUTINE EXAMPLE

;INPUT TEN VALUES, SORT, AND

;OUTPUT THEM IN SMALLEST TO LARGEST

ORDER

(address of terminal control status register)

TKB=TKS+2 - (terminal data buffer register)

TPS=TKB+2

(terminal output control and status registers)

TPB=TPS+2 - (terminal output data buffer)

.=3000

MOV #.,SP

JSR PC,CRLF

JSR RS, OUTPUT

LINEI

69.

JSR PC,CRLF

JSR RS,OUTPUT

LINE2

26.

JSR PC,CRLF

JSR PC,INPUT

JSR PC,SORT

JSR PC,CRLF

JSR R5,0UTPUT

BUFFER

10.

JSR PC,CRLF

HALT

8-33

;INITIALIZE STACK POINTER

;GO TO CRLF SUBROUTINE

;GOT TO OUTPUT SUBROUTINE

;5A OF LINE 1 BUFFER

;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE

;GO TO OUTPUT SUBROUTINE

;SA OF LINE 2 BUFFER

;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE

;GO TO INPUT SUBROUTINE

;GO TO SORT SUBROUTINE

;GO TO CRLF SUBROUTINE

;GO TO OUTPUT SUBROUTINE

;INPUT BUFFER AREA

;NUMBER OF OUTPUTS

;THE END!!!

Program

Address

8.7 LOOPING TECHNIQUES

Program

Contents Label

CRLF:

LNFD:

OUTPUT:

AGAIN:

Op Code Operand

TSTB @#TPS

BPL. CRLF

MOVB #15,@#TPB

TSTB @#TPS

BPL LNFD

MOVB #12,@#TPB

RTS PC

MOV (R5)+,R0

MOV (R5)+R1

NEG R1

TSTB @#TPS

BPL AGAIN

MOVB (R0)+,@#TPB

INC R1

BNE AGAIN

RTS RS

Comments

;PROGRAMMING EXAMPLE

;SUBROUTINE TO OUTPUT A CR & LF

;TEST TTO READY STATUS

;OUTPUT CARRIAGE RETURN

;TEST TTO READY STATUS

;OUTPUT LINE FEED

;EXIT

;SUBROUTINE TO OUTPUT A

;VARIABLE LENGTH MESSAGE

;PICK UP SA OF DATA BLOCK

;PICK UP NUMBER OF OUTPUTS

;NEGATE IT

;TEST TTO READY STATUS

;OUTPUT CHARACTER

;BUMP COUNTER

Looping techniques are illustrated in the program segments below. The segments are used to clear a 50-

word table.

1.

2.

Autoincrement (pointer address in GPR)

LOOP:

RO = %0

MOV #TBL,R0

CLR (RO)+

CMP RO,#TBL+100.

BNE LOOP

Autodecrement (pointer and limit values in GPR)

LOOP:

R0=%0

R1=%1

MOV #TBL,RO

MOV #TBL+100.,R1

CLR - (R1)

CMP R1,R0O

BNE LOQOP

8-34

Counter (decrementing a GPR containing count)

LOOP:

R0=%0

R1=%1

MOV #TBL,R0O

MOV #50.,R1

CLR (RO)+

DEC R1

BNE LOOP

Index Register Modification (indexed mode; modifying index value)

LOOP:

R0=%0

CLR RO

CLR TBL (RO0)

ADD #2,R0

CMP RO,#100.

BNE LOOP

Faster Index Register Modification (storing values in GPR)

LOOP:

R0=%0

R1=%1

R2=%2

MOV #2,R1

MOV #100.,R2

CLR RO

CLR TBL (RO0)

ADD R1,R0

CMP RO,R2

BNE LOOP

Address Modification (indexed mode; modifying base address)

LOOP:

R0=%0

MOV #TBL,RO

CLR O(RO)

ADD #2,L00P+2

CMP LOOP+2,#100.

BNE LOOP

8-35

CHAPTER 9

BOOT ROMS AND DIAGNOSTICS

9.1 INTRODUCTION

The KDJ11-A module may be incorporated into some type of LSI-11 based system using a mass storage
device and a system console. The system should contain a multifunction option such as the MXV11-B with
a system device bootstrap program that is included in the MXV11-B2 ROM option. These ROMs are
required for on-site Field Service support.

The operation of the XXDP+ diagnostics for the KDJ11-A module are described in this section.

9.2 MXVI11-B2 ROM SET

The MXV11-B2 ROM set is a bootstrap/diagnostic option for the MXV11-B multifunction module and
the MRV1I1-D universal PROM module. The option performs bootstrap programs for mass storage
devices and diagnostic programs on the CPU, memory, and I/O devices during power-up or when
manually invoked.

The bootstrap function is automatic at power-up if the CPU is configured for this feature. The system
console can be used to boot devices at nonstandard /0 page addresses, select a secondary system device,
or run a diagnostic program.

CAUTION

In the event of a power failure, if a system uses
battery backup, the user should not power-up using
the automatic mode. During the power-up sequence,
this mode executes a memory diagnostic and could
destroy the data stored. An alternative power-up
mode should be selected.

The MXVI11-B2 supports turnkey operation so that the user does not have to initiate the bootstrap
function. It supports all the system devices currently available for the LSI-11 bus. These include the
RLOI1, RLO2, TVS05, TUS8, RX50/RDS5I.

9.2.1 Power-Up

The MXV11-B2 performs a memory diagnostic at power-up. On completion of the memory test, a search
is conducted for a bootable device. During the power-up sequence, the console port is monitored for a
CTRL C command and, if it occurs, the sequence is aborted and the BOOT?> prompt appears on the
console.

9-1

9.2.2 Automatic Booting

The KDJ11-A will power-up at 17 773 000 when power-up option 2 is selected. The MXV11-B2 option

will automatically perform the power-up diagnostics and then search for a bootable device as follows.

RLO1/RLO2 (units 0 through 3)

RX50/RDS1* (units O through 7)

RXO02 (units 0 and 1)

RXOI (units 0 and 1)

TSVOS (unit 0 only)

TUSS8

The MXV11-B2 boots a volume from unit 0 of the first mass storage device found. If unit O cannot be

booted, it searches through RX and RD units 1-7 in sequence of the same device for a bootable volume.

When a bootable volume cannot be located, it proceeds to the next device in sequence and exercises the

same routine. A message appears on the console approximately every 30 seconds until a volume is

bootstrap loaded. If no devices exist or respond to the booting sequence, then it will try to boot a TUSS.

When a bootable volume is found, the MXV11-B2 reads the boot code from the selected mass storage

device and unit (logical block 0) into successive memory locations, starting at address 0. It loads the unit

number and the device CSR address into registers 0 and 1, respectively.

9.2.3 Manual Booting

Pressing a CTRL C before a device is booted will abort the program and enter the manual mode by issuing

the BOOT?> program or ODT prompt “@”. The KDJ11-A module allows the user to select a bootstrap

address by using power-up option 3. A list of the MXV11-B2 boot commands are listed in Table 9-1.

Table 9-1 MXV11-B2 Boot Commands

Command Group Function

CLn Utility Clock on/off

mDDn Boot Boot TUS8

mDLn Boot Boot RLO1/RL02

mDUn Boot Boot MSCP devices (RX50/RD51)*

mDXn Boot Boot RX01

mDYn Boot Boot RX02

HE Utility Help

IN Utility Initialize bus

LD Utility Load from boot block

MP Utility Show memory map

mMSn Boot Boot TSVO0S5

n/ Utility Examine/deposit memory

mNEn Boot Boot DECnet via DLV11-E

mNFn Boot Boot DECnet via DLVI1I-F

mNPn Boot Boot DECnet via DPV11

mNUn Boot Boot DECnet via DUVI1

OD Utility Enter console ODT

mTCn Utility Clock test

TF Utility Floating-point test

mTMn Utility Test memory

mTSn Utility Serial line test

* The boot searches for removable (RX50) disk and then fixed disk (RD51).

* Sequences through MSCP (mass storage control protocol) removable units 0 through 7, then MSCP fixed units O through 7.

9-2

9.2.4 Error and Help Messages

The MXV11-B2 ROMs will printout on the system console a variety of error and help messages when the
system fails to be booted. In the automatic mode, a message is displayed every 30 seconds while it searches
for a bootable device, this does not represent a failure. The messages can occur for either the automatic or
manual mode. A fatal message is always preceded by BOOTROM-F-; other messages will provide helpful
information to the user. The messages are listed in Table 9-2 with suggestions to help the user.

Table 9-2 MXV11-B2 Error Messages

Message* Cause Suggested User Action

Automatic Boot Soft Error Message

No device ready after x tries.

Automatic Boot Fatal Error Messages

’BOOTROM-F Memory parity

error at Xxxxxx.

?BOOTROM-F Memory error at

XXXXXX.

7BOOTROM-F Unknown error -

call for help.

XXXXXX

@

Any partially printed message.

General Command Error Messages

?BOOTROM-F Syntax error in

command.

?BOOTROM-F No such com-

mand - type HE for help.

BOOTROM-F Too many

characters.

7BOOTROM-F Number not

octal.

No bootable device or volume available

to load. This message repeats at 30-

second intervals until 10th message,

then repeats at 15-minute intervals

(approximately).

Defective memory unit or MMU

detected.

Fatal hardware failure detected.

Fatal hardware failure or bad system

volume detected.

Fatal hardware failure detected, possi-

bly the console.

Illegal character or other general input

error occurred.

Invalid or misspelled command

entered.

More than 8 octal digits typed before

the 2-letter command, or more than 1

digit following command, or more than

17 letters in command.

An 8 or 9 was typed.

Close doors on floppy if system is on

RXO01 or RX02 media. Make sure that

RLO1/RL0O2 READY (white) indicator

is on, etc. If problem is not obvious and

the message repeats, press CTRL C and

try to boot desired device with a key-

board command. More specific messages

will appear.

Record the message and number. Turn

power off, then on. If problem remains,

service is required. If you wish to bypass

the memory test, use manual mode by

rebooting system, pressing CTRL C, and

then using the LOAD command.

Record all relevant information about

the system, including the LED indicators

on MXV11-B module (if installed). Ser-

vice is required.

Try a different system volume, if availa-

ble (one you know works, if possible). If

the problem remains, record information

as above. Service is required.

If possible, try a different console. If the

problem remains, record information.

Service is required.

Retype command correctly.

Refer to manual, or type HE to get a

list of all valid commands,

Retype command correctly.

Determine correct number and retype

command.

* XX = device mnemonic, x = octal number

9-3

Table 9-2 MXV11-B2 Error Messages (Cont)

Message* Cause Suggested User Action

Manual Boot Messages

You can produce these messages by using one of the commands in the boot group (Table 9-1). Some device-specific messages
are listed in the next section of this table.

Enter a device and unit Previous command was LD. If you wish to load a device boot block

into memory without executing it, enter

a valid command from the boot group.

Normal load-and-go operation is restored

after the command executes.

XX x boot block read. Normal termination for a boot group Examine or alter the boot block in loca-

command when the previous command tions 000000 to 000776 by using console

was LD. ODT.

No boot block on volume. The volume has a format that corre- Remove the volume and replace with

sponds to a Digital data-only volume. correct one, or (if it is not a Digital sys-

tem volume) boot it with the LD com-

mand. (Refer to LD command section.)

Unknown boot block on volume The volume has a format that does not Type N and retry with a different vol-
boot anyway? correspond to any Digital standard. ume. If it is not a Digital system vol-

ume, type Y; this transfers control to

secondary boot at location zero.

?BOOTROM-F No XX device If a CSR was explicitly typed in, it If CSR was incorrect, retype with cor-
at x. may be incorrect. If none was typed, rect CSR. If not, service is required.

the device is missing, defective, or con- (Hardware must be supported by Digital,

figured for a nonstandard 1/O page and device must be part of your system.)

address.

7BOOTROM-F XX x read error. Error detected in the device or volume. Try another volume you know is good.

If the problem remains, service is

required.

7BOOTROM-F XX x error. Device error detected. Service may be required, unless there is

an obvious solution.

’BOOTROM-F XX x not ready. Volume not ready to be read by device The solution depends on the device, and

(for example, not loaded). is usually obvious after inspection (for

example, volume not inserted into

device, floppy drive door open, or RL02

disk cover left out). If the device has a

panel of status indicators, they may give

a clue. If there is no obvious solution,

service may be required.

* XX = device mnemonic, x = octal number

9-4

Table 9-2 MXV11-B2 Error Messages (Cont)

Message* Cause Suggested User Action

BOOTROM-F Bad CSR

number,

"BOOTROM-F Bad Unit

number.

"BOOTROM-F Unknown error -

call for help.

7BOOTROM-F Fatal ROM

€rror.

XXXXXX

@

Any partially printed message.

7BOOTROM-F Memory cache

parity error.

CSR number typed in is greater than

177560, less than 160000, or odd, or

specified CSR is that of the console.

Specified unit does not exist in system,

or the number is greater than maxi-

mum number of units supported by

single controller for specified device

type.

Fatal hardware failure detected.

Fatal hardware failure or a bad system

volume detected.

Fatal hardware failure detected, possi-

bly the console.

Cache memory parity error or failure

detected.

Device-Specific Manual Boot Messages

RX02 unit with RX01 volume.

Boot anyway? (Occurs with

RX02 floppy disk systems.)

BOOTROM-F Comm error.

(Occurs only while booting

DECnet via a serial line from a

keyboard command, such as

NE.)

RX02 drive loaded with single-density

volume.

DECnet boot could not be executed

due to hardware or software problem

in host system, target system, or com-

munication link.

Retype the command, using correct

CSR address.

If device uses unit- number plugs, such

as RL disks, they may have been

changed or removed without operator

knowledge. Check device for plugs and

retype command. If not, there may be a

hardware fault.

Record all relevant information about

the system, including LED indicators on

the MXV11-B module (if installed). Ser-

vice is required.

Try a different system volume, if availa-

ble (one you know works, if possible). If

the problem remains, record all relevant

information, including the LED indica-

tors on the MXV11-B module (if

installed). Service may be required.

If possible, try a different console. If

problem remains, record all information.

Service may be required.

Replace processor module or continue to

use system without cache (cache turned

off). System simply runs slower.

If you know the volume contains a valid

RX02 boot-only block, type Y. If vol-

ume is unknown, it may be an RX01

disk.

Check the communication line. Service

may be required.

* XX = device mnemonic, x = octal number

9-5

If the option is installed in the MXV11-B module, the LEDs on the module can indicate errors.

The LEDs read as follows. The single red LED to one side of the green LED is bit 3; the three red LEDs to

the other side of the green LED are bits 2 to 0, with bit 2 being the red LED closest to the green LED.

3 2 1 0

Red Green Red Red Red (As seen looking at the edge of the board, with the

components up.)

In the following chart, a 1 indicates the LED is on, and 0 indicates the LED is off. The green LED

indicates +5 Vdc is applied to RAM memory.

The chart shows which part of the ROM program was executing when the system hung up.

LEDs

3 2 1 0

0 0 0 0 Successful boot

0 0 0 1 Comprehensive memory test

0 0 1 0 Waiting for console input

0 0 1 | Low memory test (below 2000 octal)

0 1 0 0 MSCP device (RX50/RD51)

0 | 0 1 Not assigned

0 1 1 0 Not assigned

0 1 1 1 RLO1/RLO02 boot

1 0 0 0 RX01/RX02 boot

| 0 0 | TSVO0S boot

1 0 1 0 Not assigned

1 0 1 | DPVI11 DECnet boot

1 1 0 0 DUVI11 DECnet boot

1 1 0 1 DLV11 DECnet boot

1 1 | 0 TUS8 boot

1 1 1 1 Power-up initialization

LED indicator codes that are not assigned should never appear when using the MXV11-B2.

NOTE ,

A 1111 indicator code appears after a successful

DEChnet boot.

9.3 DIAGNOSTICS

The XXDP+ diagnostic programs help to verify the system is functioning correctly or to isolate a faulty

component. These are used for maintenance purposes and not as part of the normal system operation. The

XXDP+ diagnostic software consists of a library of diagnostic programs designed to test individual system

components. These can be chained together, dependent on the system configuration, to provide an overall

system diagnostic. The diagnostics specifically used for the KDJ11-A module are listed in Table 9-3 and

are described below.

9-6

Table 9-3 KDJ11-A Diagnostics

Name Function

CZKDJAO CPU tests

CZKDKAO Memory management tests

CZKDLAO Floating-point tests

CZKDMAO Cache memory tests

The HALT trap option must be disabled by installing the W5 jumper when running these diagnostics. The
diagnostic program can be halted by asserting the HALT line. This is done by pressing the BREAK key on
the system console for systems configured to assert HALT when BREAK is keyed. They can be restarted
by addressing location 152 010 and pressing the G key on the system console. The system monitor . will
prompt and the diagnostic program can be selected by the run command R followed by the diagnostic
name. The name will be echoed and the program started. The name of the diagnostic is printed on the first
pass and completed tests are identified by the system console printing END PASS. When an error is
detected, the diagnostic will halt and print out the error condition as follows.

Error = Specific Function Being Tested

Error = (Unique Error Number)

Error PC = (PC at Time of Error)

9.4 DIAGNOSTIC EXAMPLE

An example of running the diagnostics is described below. The response of the user is underlined and the
system response is typed. The W5 jumper must be installed. Comments are listed on the right hand side to

further explain the example.

Diagnostic Comments

28

START? DL<CR> Booted DL device

CHMDLC1 XXDP+ DL MONITOR XXDP+ monitor
BOOTED VIA UNIT 0

28K UNIBUS SYSTEM May be LSIBUS or UNIBUS

28K=MEMORY SIZE OR STANDARD
ENTER DATE (DD-MMM-YY): 1-NOV-83 User enters date

RESTART ADDRESS: 152010 Identifies restart address
THIS IS XXDP+. TYPE “H” OR

“H/L” FOR HELP

R CZKDJO<CR> . = System monitor

R = RUN command
CZKDJO.BIC CZKDJO = Diagnostic

<CR> = RETURN key

9-7

CZKDJO KDJ11 CPU Diagnostic

END PASS # 1

END PASS # 2

END PASS # 3

027622

@152010G

R CZKDKO<CR>

CZKDKO.BIC

SET BIT 8 = 1 FOR 18 BIT SYSTEM

SWR = 000000 NEW = <CR>

CZKDKO KDJ11 Memory Management

END PASS # |

END PASS # 2

END PASS # 3

END PASS # 4

012404

@152010G

R CZKDLO<CR>

CZKDLO.BIC

CZKDLO KDJ11 Floating Point

END PASS # 1

END PASS # 2

END PASS # 3

END PASS # 4

END PASS # 5

022242

@152010G

R CZKDMO<CR>

CZKDMO.BIC

SET BIT 8 = | FOR 18 BIT SYSTEM

SET BIT 9 = | FOR CACHE RAM AND TAG

RELIABILITY TESTS

SWR = 000000 NEW = <CR>

9-8

Halt test by pressing break

Address at HALT

Key restart address and

G for GO

Run diagnostic and return

Set bit 8 by 000400

Press return

Halt test by pressing break

address at halt

Key restart address and

G for GO

Run diagnostic and return

Halt by pressing BREAK

address at HALT

Key restart address and

G for GO

Run diagnostic and return

Set bit 8 by 000400

Set bit 9 by 001000

Set bits 8 and 9 by 001400

Press RETURN

CZKDMO KDJ11 Cache Memory System

END PASS # 1

END PASS # 2

END PASS # 3

END PASS # 4

END PASS # 5

END PASS # 6 Halt test by pressing BREAK
010152 address at HALT

@152010G Key restart address and

G for GO
R System monitor and run

command

9-9

APPENDIX A

INSTRUCTION TIMING

A.1 GENERAL

The execution time required for the base instruction set and the floating-point instruction set used by the
KDJTI-A is described in this appendix. The execution time for an instruction is dependent upon the type
of instruction, the addressing mode used, and the type of memory accessed. In general, the total execution
time is the sum of the base instruction fetch/execute time and the operand(s) address calculation/fetch
time.

The execution time provided for all read instructions assumes that the data is accessed from the module
cache memory. When the data is accessed from the main memory, the execution time provided must be
degraded. Memory write instructions, indicated by the “+” notation, must have the memory write time

added to the listed time in order to determine the total time.

The floating-point instruction execution timing is provided as a range. The actual performance is data
dependent and will fall within the described range.

A.2 BASE INSTRUCTION SET TIMING

The execution times for the base instruction set are provided in Tables A-1 through A-6 and are subject to
the general notes listed at the end of Table A-6.

Table A-1 Source Address Time: All Double Operand

Read
Source Source Microcode Time Memory

Instruction Mode Register Cycles (ns) Cycles

ADD, SUB, 0 0-7 0 0 0
CMP, BIT, 1 0-7 2 534 1
BIC, BIS, 2 0-6 2 534 1
MOV 2 7 1 267 1

3 0-6 4 1068 2
3 7 3 801 2
4 0-6 3 801 |
4 7 6 1602 2 (Note 1)
5 0-6 b 1335 2
5 7 8 2136 3 (Note 1)
6 0-7 4 1068 2
7 0-7 6 1602 3

A-1

Table A-2 Destination Address Time: Read-Only Single Operand

Read

Destination Destination Microcode Time Memory

Instruction Mode Register Cycles (ns) Cycles

TST, MUL, DIV, 0 0-7 0 0 0

ASH, ASHC, MTPS, 1 0-7 2 534 1

MFPI, MFPD, CSM 2 0-6 2 534 1

2 7 1 267 |

3 0-6 4 1068 2

3 7 3 801 2

4 0-6 3 801 |

4 7 7 1869 2 (Note 2)

5 0-6 5 1335 2

5 7 9 2403 3 (Note 3)

6 0-7 4 1068 2

7 0-7 6 1602 3

Table A-3 Destination Address Time: Read-Only Double Operand

Read

Destination Destination Microcode Time Memory

Instruction Mode Register Cycles (ns) Cycles

CMP, BIT 0 0-7 0 0 0

1 0-7 3 801 1

2 0-6 3 801 1

2 7 2 534 1

3 0-6 5 1335 2

3 7 4 1068 2

4 0-6 4 1068 1

4 7 8 1236 2 (Note 2)

5 0-6 6 1602 2

5 7 10 2670 3 (Note 3)

6 0-7 5 1335 2

7 0-7 7 1869 3

Table A-4 Destination Address Time: Write-Only

Memory Cycles

Destination Destination Microcode Time

Instruction Mode Register Cycles (ns) Read Write

MOV, CLR, SXT, 0 0-6 0 0 0 0

MFPS, MTPI, MTPD 0 7 5 1335 1 0

1 0-6 2 534+ 0 1

1 7 6 1602+ 1 |

2 0-6 2 534+ 0 1

2 7 6 1602+ 1 1

3 0-6 4 1068+ 1 1

3 7 3 801+ 1 1

4 0-6 3 801+ 0 1

4 7 7 1869+ 1 1

5 0-6 5 1335+ 1 1

5 7 9 2403+ 2 1

6 0-7 4 1068+ 1 1

7 0-7 6 1602+ 2 1

A-2

Table A-5 Destination Address Time: Read-Modify-Write

Memory Cycles

Destination Destination Microcode Time

Instruction Mode Register Cycles (ns) Read Write

ADD, SUB, ADC, 0 0-6 0 0 0 0

SBC, BIC, BIS, 0 7 5 1335 1 0

SWAB, NEG, INC, 1 0-6 3 801+ 1 1

DEC, COM, XOR, 1 7 7 1869+ 2 1

ROR, ROL, ASR, 2 0-6 3 801+ 1 1

ASL 2 7 7 1869+ 2 1

3 0-6 5 1335+ 2 1

3 7 4 1068+ 2 1

4 0-6 4 1068+ 1 1

4 7 8 2136+ 2 1 (Note 2)

5 0-6 6 1602+ 2]

5 7 10 2670+ 3 1 (Note 3)

6 0-7 5 1335+ 2 1

7 0-7 7 1869+ 3 1

Table A-6 Execution, Fetch Time |

Memory Cycles

Microcode Time

Instruction Cycles (ns) Read Write

Double Operand

ADD, SUB, CMP, l 267 1 0

BIT, BIC, XOR,

MOV, BIS

Single Operand

SWAB, CLR, COM, 1 267 1 0

INC, DEC, NEG,

ADC, SBC, TST,

ROL, ROR, ASL,

ASR, SXT, MFPS,

XOR

MFPI, MFPD 5 1335+ 1 1

MTPS 8 2136 1 0

MTPI, MTPD 3 801 2 0

CSM 28 7476+ 3 3

Extended Instruction Set

MUL 22 5874 1 0 (Notes 5, 11)

DIV

By zero 5 1335 1 0 (Note 6)

Other 34 9078 1 0 (Notes 6, 7)

ASH 4 1068 1 0 (Notes 8, 11)

ASHC

No shift 5 1335 1 0

Left 6 1602 1 0 (Notes 8,9, 11)

Right 7 1869 1 0 (Notes 8, 10, 11)

Table A-6 Execution, Fetch Time (Cont)

Double Operand Memory Cycles

Microcode Time

Instruction Cycles (ns) Read Write

Program Control

BRANCH

Not Taken 2 534 1 0
Taken 4 1068 2 0

SOB

Not Taken 3 801 1 0
Taken 5 1335 2 0

IOT, TRAP, 20 5340+ 4 2
EMT, BPT

MARK 10 2670 3 0

Memory Cycles

Destination Destination Microcode Time
Instruction Mode Register Cycles (ns) Read Write

JMP | 0-7 4 1068 2 0

2 0-7 6 1602 2 0

3 0-7 5 1335 3 0

4 0-7 5 1335 2 0

5 0-7 6 1602 3 0

6 0-6 6 1602 3 0

6 7 5 1335 3 0
7 0-7 7 1869 4 0

JSR (Note 4) 1 0-7 9 2403+ 2 1
2 0-7 10 2670+ 2 1

3 0-6 10 2670+ 3 1

3 7 9 2403+ 3 1

4 0-7 10 2670+ 2 1

5 0-7 11 2937+ 3 |

6 0-6 10 2670+ 3 |

6 7 9 2403+ 3 1
7 0-7 12 3204+ 4 1

Memory Cycles

Microcode Time
Instruction Cycles (ns) Read Write

RTS 0-6 6 1602 3 0

RTS 7 5 1335 3 0

RTT, RTI 9 2403 4 0

Table A-6 Execution, Fetch Time (Cont)

Double Operand Memory Cycles
Microcode Time

Instruction Cycles (ns) Read Write

Miscellaneous Instructions

MFPT 2 534 1 0

NOP, 3 801 1 0
SET or CLEAR

C,V,N, Z

SPL 7 1869 1 0

HALT TBD

RESET TBD

WAIT TBD

General Notes to Tables A-1 through A-6

1. Subtract 534 ns and one read if both source and destination modes autodecrement PC, or if WRITE-ONLY or READ-
MODIFY-WRITE mode 07 or 17 is used.

READ-ONLY and READ-MODIFY-WRITE destination mode 47 references actually perform 3 read operations. For
bookkeeping purposes, one of the reads is accounted for in the EXECUTE, FETCH TIMING.

READ-ONLY and READ-MODIFY-WRITE destination mode 57 references actually perform 4 read operations. For
bookkeeping purposes one of the reads is accounted for in the EXECUTE, FETCH TIMING.

Subtract 267 ns if link register is PC.

Add 267 ns if the source operand is negative.

Subtract 267 ns if the source mode is not zero.

Add 267 ns if the quotient is even.

Add 534 ns if overflow occurs.

Add 1335 ns and | read if the PC is used as a destination register, but only if source mode 47 or 57 is not used.

Add 267 ns per shift.

Add 267 ns if source operand<15:6> is not zero.

Subtract 267 ns if one shift only.

Add 1068 ns and 1 read if the PC is used as a destination register, but only if source mode 47 or 57 is not used.

A-5

A.3 FLOATING-POINT INSTRUCTION SET TIMING

The execution time range for the floating-point instruction set is described in Tables A-7 through A-12.

Table A-7 Instruction Execution Times (In Microseconds)

Non-mode 0

Instruction Minimum Typical Maximum Section

ABSD 6.1 6.4 v

ABSF 5.1 5.3 v

ADDD 10.9 12.8 31.7 I

ADDF 8.3 9.3 31.7 I

CFCC 1.3 1.3 ~

CLRD 3.7 3.7 111

CLRF 3.2 3.2 i

CMPD 6.4 6.7 1

CMPF 4.8 5.1 I

DIVD 42.7 44.5 I

DIVF 15.7 16.8 I

LDCDF 6.4 6.9 11

LDCFD 5.3 5.6 11

LDCID 8.3 11.2 A%

LDCIF 6.9 9.6 \%

LDCLD 8.3 13.9 \%

LDCLF 6.9 11.7 A%

LDD 4.3 4.5 11

LDEXP 4.5 4.8 A%

LDF 3.2 3.5 11

LDFPS 1.6 1.6 A%

MODD 53.9 51.9 71.5 11

MODF 21.9 25.1 30.1 11

MULD 44.0 46.1 II

MULF 14.9 16.3 Il

NEGD 5.9 6.1 Iv

NEGF 4.8 5.1 IV

SETD 1.6 1.6 -

SETF 1.6 1.6 -

SETI 1.6 1.6 -

SETL 1.6 1.6 -

STCDF 4.5 53 II1

STCDI 6.9 10.1 VI

STCDL 6.9 14.4 VI

STCFD 5.1 5.3 II

STCFI 6.1 9.3 VI

STCFL 6.1 13.6 VI

STD 3.2 32 I

STEXP 4.3 4.3 ' VI

STF . 2.1 2.1 I

STFPS 24 24 VI

STST 1.9 1.9 VI

SUBD 12.5 14.7 - 325 II

SUBF 9.9 10.9 27.7 II

TSTD 2.9 3.2 II

TSTF 24 2.7 II

Table A-8 Floating Source Modes 1-7

Microcode Time Memory Memory
Instruction Mode Register Cycles (ns) Read Write

Single Precision

ADDF, CMPF, 1 0-7 3 801 2 0
DIVF, LDCDF, 2 0-6 3 801 2 0
LDF, MODF, 2 7 1 267 1 0
MULF, SUBEF, 3 0-6 4 1068 3 0
TSTF 3 7 3 801 3 0

4 0-7 4 1068 2 0

5 0-7 5 1335 3 0

6 0-7 4 1068 3 0

7 0-7 6 1602 4 0

Double Precision

ADDD, CMPD, | 0-7 5 1335 4 0
DIVD, LDCFD, 2 0-6 5 1335 4 0
LDD, MODD, 2 7 0 0 1 0*
MULD, SUBD, 3 0-6 6 1602 5 0

TSTD 3 7 5 1335 5 0
4 0-7 6 1602 4 0

5 0-7 7 1869 5 0

6 0-7 6 1602 5 0
7 0-7 8 2136 6 0

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately
compute the total execution time.

Table A-9 Floating Destination Modes 1-7

Microcode Time Memory Memory
Instruction Mode Register Cycles (ns) Read Write

Single Precision

CLRF, STCDF, STF 1 0-7 3 801+ 0 2
2 0-6 3 801+ 0 2
2 7 1 267+ 0 |

3 0-6 4 1068+ 1 2
3 7 3 801+ 1 2

4 0-7 4 1068+ 0 2

5 0-7 5 1335+ 1 2
6 0-7 4 1068+ 1 2
7 0-7 6 1602+ 2 2

Double Precision

CLRD, STCFD, STD 1 0-7 5 1335+ 0 4
2 0-6 5 1335+ 0 4
2 7 0 0 0 1*
3 0-6 6 1602+ 1 4
3 7 5 1335+ | 4
4 0-7 6 1602+ 0 4
5 0-7 7 1869+ 1 4
6 0-7 6 1602+ 1 4

7 0-7 8 2136+ 2 4

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately
compute the total execution time.

A-7

Table A-10 Floating Read-Modify-Write Modes 1-7

Microcode Time Memory Memory

Instruction Mode Register Cycles (ns) Read Write

Single Precision

ABSF, NEGF] 0-7 5 1335+ 2 2

2 0-6 5 1335+ 2 2
2 7 | 267+ 1 1*

3 0-6 6 1602+ 3 2

3 7 5 1335+ 3 2

4 0-7 6 1602+ 2 2

5 0-7 7 1869+ 3 2

6 0-7 6 1602+ 3 2

7 0-7 8 2136+ 4 2

Double Precision

ABSD, NEGD 1 0-7 9 2403+ 4 4

2 0-6 9 2403+ 4 4

2 7 0 0 1 1*

3 0-6 10 2670+ 5 4

3 7 9 2403+ 5 4

4 0-7 10 2670+ 4 4

5 0-7 11 2937+ 5 4

6 0-7 10 2670+ 5 4

7 0-7 12 3204+ 6 4

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately
compute the total execution time.

Table A-11 Integer Source Modes 1-7

Microcode Time Memory Memory

Instruction Mode Register Cycles (ns) Read Write

Integer

LDCID, LCDIF, | 0-7 2 534 1 0
LDEXP, LDFPS 2 0-6 2 534 1 0

2 7 0 0 | 0*

3 0-6 3 801 2 0

3 7 2 534 2 0

4 0-7 3 801 1 0

5 0-7 4 1068 2 0

6 0-7 3 801 2 0

7 0-7 5 1335 3 0

Long Integer

LDCLD, LCDLF 1 0-7 4 1068 2 0

2 0-6 4 1068 2 0

2 7 0 0 1 0*

3 0-6 5 1335 3 0

3 7 4 1068 3 0

4 0-7 5 1335 2 0

5 0-7 6 1602 3 0

6 0-7 5 1335 3 0

7 0-7 7 1869 4 0

* Mode 27 references only access single word operands. The execution time listed has been compensated in order to accurately

compute the total execution time.

Table A-12 Integer Destination Modes 1-7

~ Microcode Time Memory Memory
Instruction ‘ Mode Register Cycles (ns) Read Write

Integer

STCDI, STCFI,] 0-7 2 534+ 0 |
STEXP, STFPS 2 0-6 2 534+ 0 1

2 7 2 534+ 0 1

3 0-6 3 801+ 1 |

3 7 2 534+ 1 1

4 0-7 3 801+ 0]

5 0-7 4 1068+ 1 1

6 0-7 3 801+ 1 1

7 0-7 5 1335+ 2 1

Long Integer

STCDL, STCFL, STST 1 0-7 4 1068+ 0 2
2 0-6 4 1068+ 0 2

2 7 2 534+ 0 |

3 0-6 5 1335+ 1 2

3 7 4 1068+ 1 2

4 0-7 5 1335+ 0 2

5 0-7 6 1602+ 1 2

6 0-7 5 1335+ 1 2

7 0-7 7 1869+ 2 2

A-9

APPENDIX B

PROGRAMMING DIFFERENCES

The programming differences between the KDJ11-A processor and the other processors of the PDP-11

family are summarized in Table B-1.

XXXXX

XX
XX

XXXXX
XXXX

XXXX

XXXX

X ‘DdMUY]SepasnaleYJOSIudU0dfenut4()‘21YSr10+(A)dNF"$SaIppeDdMau9y)sepasnuay)‘zAQparudWAIdUL1BYJOSJUAU0d+(Y)‘T3YSr10+(Y)ANlb
T+AdOJoDd3y

ureuod
Mvuonedol'y®‘OdddO'V‘Od

AUdO‘(A)X@‘OdYdO(W)X‘OdddO'p+UdOJODd24}
UreIuod

Mvuonedo|v‘OdYdO'V®‘Od
O‘(M)X@Od¥dO‘()X'Od¥dO‘€‘puesado

9DIN0S9Y]SBPasnJIeYJOSJUNUOod[eniul:UOIBUIISIPPUB32INOSy1oqse19351321swesay)uisn(D)—®Y%AdO“+(F)D‘4%YdO‘puesado90In0S3y}epasnJuidq210§3q7Aq(pP21uswIaIo9p)PIIUSWIOUL.¥JOS1UUO0D[UONRUNSIPpUeIDINOSy1oqseJas1da1dwesay)Juisn(M)—®Y%d4dO+(M)®Y%Y4dOT‘puetado324n0sY}spasn3leYJOSIUIUOD[BrlIulUOIBUIISIPpueJ191s18a1joqse193s1391Jwes)3uisn()—4%YdO+(¥)“4%YdO‘puesado32In0s3Y)sepasn3uraq210J9q7Aq(PaIUsWAIIIP)pIjudW-310Ul318YJOSIUIIUOD:UOIIBUIISIPpue32IN0SY10qSeJ1SIFalJuwresIy}duisn(Y)—Y%AdO*+(A)‘Y%YdOI
V-IILAX090LSyoOp/s€0T/sl

01/S0II/IST€PObb¥T/€TS10SS3J30.14
amjedy

sadudIdy(qSwwwesdordV-1I-92I9EL

"suoneIudWIdWIJOYI0Uy}JUSISJJIPSTINQ(/]|UlS[QR[IBAESIUONONIISUL||¥,“JBULIOjBJEPJWESay3uruontesadoJJIHS‘Ald“INA
XXsopiaoddv-114uondo[eusaIxasyX

XXuononnsutJ44N"aurgorw

XXaseqursuonodnjsutjutod-3uneol.XXXXXXXXXAOX“1NW‘AIdDHSV‘HSVXXXXXXXXXssuononnsut1XS‘LLYNIV‘dOSYOOQPUDE]405S30044

XXXXXXXXXXXXI[-dddUlpajousuononnsutsiseqy°g"9]0su0dJ0NdD

AQ$S2JppeUESBpasnusymInoAWXXX(L1LLLT-00LLL1)SISSAIPpPEJ1SIFIY‘uonesadosjosuodIapun

passaippeaque)‘NdDYlAqssaippewerdoidesepasnusymnoswn
XXXXXXXX(L1LLLT-00LLL1)S3sS3Ippe1915130y'NdO4qpasn

usymsassalppewesdosdpieaaue
X

(LTLLLT-00LLLT)S3S3IppR1NSIToyL
XXXXXXXXXXX‘A1BgVMS

X‘Ad8ueyd10US0PGVMS9“(uononaysur[edafjt
XXXX¥01sdenY%21YS[104%dAST‘(uononnisut[e39[1)XXXXXXXX0101sdes}Y%‘321¥SF10Y%NlS
V-IIPAX090LSyov/st0T/ST01/S0TI/ISTvEv0¥vpT/€TSRLET|$10SS3)014(uo))seouasp(qsutwweldoldV-IIrdN1-9AqeL

XXXXXXXX

00€IN0QEMSPUODISI[jiwtZ7)Sy/11SeaulesayjS1Oe[iBjJomodH1d4d

V-1IPAM09OLSyOb/st
0Z/S101/S0II/IST%€p0¥bPT/€TS10SS3001
aImedy]

(Juo)))saoudIdyJi(]SutmwesdordvV-11rdX
I-4

9iqeL

B-4

X
X

X
1no douanbas jou [Im deny 1g-111d

X X X X
X

X X X X
X

st desy 31g-1 ‘NQ-L $195 LY JI
NX

denynq-1L“Nq-L$19s[LYJI11
X X X X

X
X X X X

X
HQ-L Y3 “NQ-1 9Y1 $19s LLY JI

X X
‘uononaIsul [1 ON 0l"$919[dwod

X
XX

XXXXXXXXX
X

XXXXXXXXXXX
XXXXX

X
XXXXXX

XXXXXXXXX
XX

X

‘pajuswddut19819351321ssodund-[essuad[eng‘paruswapdwt19181321ssodind-je1ousdo[Fuig"PIINdaX33q0)pasjuelendsIIALS1dnuaurueurydnasoyurysatyay|“Jdnuisur1811y9y3Aqpawunsseuey)[2a9]Ajuoud1aySiyeje$1n3501dniIsulJayjoueJ1paINdAXo3q10U|[ImdunnodjdnridurueuluonodNIISUIISI1§Y."Z/018pa1ealdYorlsmau‘921AJ9sdenyu1Jo11dsnquQy"den[eie]easnedtauiodyoelsayjJuisnSAOUISJ1JUIISIXIUOU/SSIIPPEPPO$z/1110

€2/11“11-ISTutparwswsdwtjouden
SSAIppeppQ101131811aY1JUIdIAIISdexyay)ur3ulINO20J0LIYPUOIIS3ylYy)mJOLIdSNQI[QNOPJO3SED®©SISIYL"LTVH©3sned¢SoySuisn$30UDI9J21JUIISIXIUOU/SSAIPPEPPO"J1q-IPeO|JouuERd3]0SU0))")1g-1peo|ued(sidnuidjulpuesdenNq-1peojos[e
ued3josuo))'11q-Peo|ued401(ss935®19011p)20UaI3J2IJOIdXT

91i

V-IIead090LSyOb/S€0T/SIO1/SOII/IST¥€¥0v¥T/€TSI0SS3I01]

3injed

(Juo))sdduarayjiqSununweidordv-11rad
I-9

3IqeL

XXXXX
X

JO3snedaq1i0qeuedSuUOdINIISUISI‘ownuonnodxdIy}031an(gJdnaIsul931A9p€JOIsnedaq
}10qEj0ouOpsuonodNIIsuliJoasnedaq1ioqeuedsSuoONIISUISId‘oWuonndaxXaIayl01an(g‘9asn

Aproydu
j0UOpsuondNNSulAld4PUBTN"A]3994309

dn3959q1snw9yaduay‘(dodpueysndauo)9yasnApwiduiSuononnsulAldd4pueJNNA

‘paruowdduntderyssaippeppO"‘pajuswsiduatjoudesyssaippeppO‘paruswdidun

MO[JJIAOYOBISJO1J0SWO"pAUsWI[dUIlJOUMO[JISA0YOR)S

“ISIX3S[9A9]JdnuIdUIINO.‘SISIX3‘paruswddunSdAWPueSd1NpuessaippeM\Sd‘parudwaiduatJouSJN
pueSILIN‘parudwaduurssasppeMSd(Sdwoljaaow)SdANpue(Sd012a0w)Sd.LSuuononisutasnjsnwi‘pajus-olduntJou92//L]‘SS2IPPEMSd

vt
C¢0¢81

V-1IrdM090LS¥oOv/s€0T/SI01/s0TI/IST¥€¥0vb¥T/€TS10SS3D0.1]

2injea

(Juo)y)sduIRYJI(swwwesdordv-1IrAM
I-931qelL

B-7

'09/1110pawnsse[144$T/11pue€7/1uopawnssejutoduneoj[eidouys"PAUSIWAID

-ul9q[[im19381321‘SIND20JOLIDSNqBPUB79pOWUlSsaJppeAJowowXXXXXJUDISIXUOUSUTRIUODJSITAIJI“6T‘padueyounoq[[ImDd‘SINd20I0LI3SNQBPUESSIIPpPE

XAlowauJuNSIXOUOUSUTRIU0DDdJ|"PIIUSUWIAIDUIUIIqIARYMDd‘sindd0JO1IIsSnq€pue

XXXXXXXAlowawJUSISIXIUOUSUIBIU0dDdJ8T"9[0A>Atowdw1se]9Y)JojsouanbassnqOLV(J

XXXpued1Lv(®se0puononnsutAQW“9[94A2Alowaw3ise|9Y)JOJ2duUanbassnq

XXXXXOLvdq®1snfsaopuononnsutAOWLT"puesado

201n0sFuIyd1a)uaymdouanbasXXXXsnq[LvQ€opsuononnsulSIq"puesado20inosSuiyoroyuoymsousnbossnqOLvA
XpueJ[LV(&opsuononnsut§[g‘97ydnuirojur231A9pBjJoIsnesaqXXJ10qej0UOpsuonodnasul|144.m..azto::901A%p®JO3snedaq110qeuedSUONINIISUI

X[1dd‘OwrnuonndaxaJidy)01anq‘Sv-11
rax

090LSYor/s€07/S101/S0IL/IST¥E€+v0v$T/€T3INJBd|S10§S90014

(3uoD)saouarayQSunuwesdordv-1irdM1-dd19BL

XXXXXXXXXXX
XXXXXXXXXXX
XXXXXX

"UOIIOMIISULSDUBUIIUIBWB

sepasnale/{7ydnoiylgzsepoddo"SUOTIONIISUIPIAIISAISB()]

01deny£1zy8noaysg1zsepoddO'$4Nd000101deJ)e‘ssoippeJualsIXdue

91®SJUDIU0DIIISIFALY]J|"SINDI0p01denye‘ssaippe1ud)ISIXUOUBdIBSIUUODJ1SIFaLaY)J]“adjulodeseS)Q¢J9pIoMOf3Y)Aqpatjidads

199813319Y)SuisnpeasAlowswBwuogsad€620Y3noyyQpOSLS9pod
do‘quasaudstuondo11-AdMJI'$9p0odopaAlasase0]01denA[jeuonipuodunLLLESLOY3nodyl0y0SL0s9poddO"9JBUILISISPpUL

a1epoqednuautSLI/SIg191jeP3101S9J9J€JRY]SIPODUOIIIPUO))'(0p/S¢€uo110qe10UsI0pS|d)Hoqe

dnirojurQI191jesanjea[euiduo01PaI0)salSAPOdUOIIPUO))"padueydun2q[[im191siFa1

‘sINJ2010113SNqBpue7dpowrulanjeAppoUESUIBIU0D19)SIFalj|"PIIUSWIAIOUI3q[[IMJI)SISaI

‘sI1N200I0LIdSnq€puegdpowulanjeAppoUESUIBIUOD19)sI3alJ|
teK43

V-IILAX090LSPOb/s€0T/S101/S0II/IST¥€+v0bvT/€T

umyeaj

(Juo))sddudIRYJI(]Swwwesdoldv-11rax
I-421qEL

B-9

X
X

XXXX
XX

XXXXXXXXXX
X

X
X

X

XXXX
XXX

XXX
XX

XXXXXXXXXXX "pajuswaidujoustg19O2powrsoueudurewJOWA‘pajudswaduwtst§31qOHWIAspowrsdueuurew|DNWHINL€"9[940snq1se]2Y)IO}oouonbosOLVA-dILVAOPLXSPU®Y1
"9]0A0snqIse]aY)10jdduanbasOLva®isnfopXSpueY1D"9¢
"dURUIIUIRWJOJPasn(0099.02poddO"SIN200[01deJ}e‘s)SIXD3pOOOJOIWJISNOUJ]"9p000JoIW19sn0sadedsdsepasnaqued//[LLL1YSNOJY)OOQOL]S3poddO"SuoIdNIISul

wuiod-3uneoyysepajuswapduSJBLLLLLTY3NOIY)0OOOL]$9poddO"SUOIIONIISUIPIAIISALSe()O}deny££LLL1y3nodyl0o00L1SopoddO“s¢"SIN
220

0101denl©‘S)SIX3SpOd0IdI1ISNOUJ[*3p0d20JoIwJasn0}sadeosssepasnaqued//6/Y3noiyygposLSOpoddo“yuasaids1suonido[1-A9JI.m=0503.5m=_mv0>.~ow0.~SeQ]0}denyL1261y3noiyyopsL$dpoddQb
V-1IrAX090LS¥Ov/S€0T/SI01/S0IL/IST¥€PObb$T/€C$10SSI01

amnyedy

(3uo))sadudsRyyi(qSutmwesdordv-f|rax
I-4

3lqeL

B-10

XXXX
X

X ssalppeSdIdYlaymjosso|paedasdenjouf[imspowsJasnulSdLN
"Passaddrik<()0:L0>Sd‘peddewj|"paddewjou97///[ssaippeSdJ!LOW
WH9snEd[imapowJasnulSd4W"IV‘paddewst9////1ssaippe

Sd12ylaymjossajpredal<00:€0>Sd103))eAjuojimpuedenyIOWINWasnedJoU|[ImSpoulJasnuouulSdLN"20UdI)asKtowdwAueuodn

denIOWWIWBasnes[[im]0}
198<p[:S[>SNqSdPOWULIND)1DOWWHI&asnedjoupue(0Q)apow[2UJ9)SBpateas)2q[|Im(]03198<p[:G[>SNqSd2pouwrJuaiin))"aouaiajalKtowswAueuodndenLOWWA©3sned[[i40]10[(0}

195<p[:G[>SNQSdPOWJUdLIND¢‘pangdyuodstIOWA

usymAjuoIS1xasuononsulXd.JpueX4LNpue‘1a1utod3oelS[oulay-UOU‘PO[SUIINUOU‘<T[:G[>Sd‘pain3yyuodj0ust[OWWANW

UaymUuaAd1s1XasuononnsulxdJwWpueXdLNpueJojuiodyoelS[ouldy-UOU‘OpowW[QUIINUOU‘<7[:G[>Sd'8¢
V-IItdX09OLSvOb/sE€0T/SI01/S0II/ISTvE¥0¥vb¥I/€TSI10§S300.14

amed

(yuo)y)sadudsdyyiqSurwwmerdoldv-1IraX
I-43Iq&L

B-11

X

‘parudwd(dwitJou<0:20>CYNW‘parwdswddwi-g|qeudsoeds(—<00:20>€AW
‘paruswdldwJou<z1>OYWINAowow-den-<z>04NN‘paawd
waidwt<0:11>JVdAJUO

paruswsdunl<0:§1>YvdInd‘paruawadunj0u($S2008Au®)</(>1qYdd‘paruswdjdun(ssoo0®Aue)</0>1qYAd‘parudwid[dwiJou<>1qYAd-1adnsJo1asnuruondnAIsul|IVHV‘¥UOIIBdO|10J3sntutuondnIsul[1IVHV"$1915139110s59001d[BUIDIULJOJROINIIXIUBDSWRIFOU{JON09INd9X3jouuedsweidold
R4LyoYBY%4%ty

vV-11faxo9
0LSv

S10SS3301]

amyed,|

(3u0)y)sadudIAjI(]SummmerdoldvV-11£aN
I-4

219
¢L

B-12

X=<{I'¢1>Sduaym9%XdLW9%XdL'sj|nsala[qeloipasdunsaalg(]

XXXXXXX=<TI'f1>SduaymXdI9%XddWTSREliIB
XXXXXXuotdnIIsut\A_:OSYOeI)TAWIN'$10109A1dnuioyulpue

XXS9YDIa}uondNIIsur.syoed]7NN1€XXXXXX‘parudwadwiyou<g0>YN‘payudwddwt

XX—2IqeusNSO-<t0>tdIWIN0¢
XXXX‘pajuswdidwiJou<p0:60>£YNN‘pardwdwi-pajqeus3uiddew

XXXXQ-7"dVINOI-<p0:50>CANIN"6t
V-IIrAX090LSOp/SE0T/S10L/S011/IST¥€v0vy¥T/€TaImed§(uo))saouaiapnqSutmweidosdV-11faN1-9dqel

B-13

Abort (ABORT), 4-6

Abort, function of, 4-17

Address Input/Output, (A1O) 4-4

Address Latch Enable, (ALE) 4-5

Addressing modes, 6-1

autodecrement, 6-9

autoincrement, 6-7

deferred, 6-13

direct, 6-4

double-operand, 6-3

index, 6-11

PC relative, 6-17

register, 6-6

single-operand, 6-3

Al/O coding, 4-4

Bank Select (BS), 4-4

BEVNT signal, 2-3

Boot address, 2-3

Boot ROM set, 9-1

Buffer Control (BUFCTL), 4-5

Bus cycles, 4-6

AlQO, codes for, 4-4

bus read, 4-7

bus write, 4-8

general-purpose read, 4-9

general-purpose write, 4-10

interrupt acknowledge, 4-10

non-1/0 (NOP), 4-6

Bus, 4-6

read transaction, 4-7

receivers, 4-12, 4-24

transmitters, 4-12, 4-25

write transaction, 4-8

INDEX

Cache control

data path, 4-12, 4-17

register, 4-19

Cache memory, 1-27, 4-13

control register, 1-30, 4-19

data, 1-27, 4-13, 4-22

description, 1-27, 4-21

error register, 1-32, 4-19

hit/miss register, 1-32, 4-23

operation, 4-21

parity, 1-29, 4-19, 4-21

timeout, 4-19

Cache miss, 4-5, 4-23

Clock (CLK1, CLK?2), 4-5

Code, 8-1

coroutine, 8-14

position dependent, 8-3

position independent, 8-1

reentrant, 8-13

Configuration, 2-1

factory, 2-3

jumpers, 2-1

Console ODT, 3-1

commands, 3-3

input sequence, 3-3

invalid characters, 3-9

output sequence, 3-3

serial line interface, 3-2

timeout, 3-9

Continue (CONT), 4-5

CPU error register, 1-5

D

Data Address Lines (DAL), 4-6

Data Valid (DV), 4-5

Diagnostics, 9-6

Diagnostic LEDs, 2-4, 4-29

Direct Memory Access (DMA), 4-27

INDEX-1

Error message, 9-3

Event (EVENT), 4-6

Floating point, 1-33

addressing, 1-38

data formats, 1-33, 1-34, 7-2

exception code register, 1-38, 7-6

exception (FPE), 1-38

nonvanishing numbers, [-33

status register, 1-35, 7-3

undefined variables, 1-33, 7-2

zero, 1-33, 7-1

Floating-point instructions, 7-8

ABSD, 7-10

ABSF, 7-10

ADDD, 7-11

ADDEF, 7-11

CFCC, 7-12

CLRD, 7-12

CLRF, 7-12

CMPD, 7-13

CMPEF, 7-13

DIVD, 7-14

DIVF, 7-14

LDCDF, 7-15

LDCFD, 7-15

LDCID, 7-16

LDCIF, 7-16

LDCLD, 7-16

LDCLF, 7-16

LDD, 7-18

LDEXP, 7-17

LDF, 7-18

LDFPS, 7-18

MODD, 7-19

MODF, 7-19

MULD, 7-22

MULF, 7-22

NEGD, 7-23

NEGF, 7-23

SETF, 7-24

SETI, 7-24

SETL, 7-24

STCDF, 7-25

STCDI, 7-26

STCDL, 7-26

STCED, 7-25

STCFI, 7-26

STCFL, 7-26

STEXP, 7-27

STD, 7-27

STF, 7-27

STFPS, 7-28

STST, 7-28

SUBD, 7-29

SUBF, 7-29

TSTD, 7-30

TSTEF, 7-30

Flush counter, 4-20

G

General-purpose codes, 4-9, 4-10

General-purpose read cycle, 4-9

General-purpose registers, 1-2

General-purpose write cycle, 4-10

H

Halt (HALT), 4-5

Halt option, 2-2

Help message, 9-3

Hit/miss logic, 4-23

I

I and D space, 1-16

Initialization, 4-27

Initialize (INIT), 4-3

Instruction, 6-21

byte, 6-26

formats, 6-22

list, 6-27

symbols, 6-21

Instruction set, 6-21

ADC, 6-43

ADCB, 6-43

ADD, 6-49

ASH, 6-51

ASHC, 6-51

ASL, 6-38

ASLB, 6-38

ASR, 6-37

ASRB, 6-37

BCC, 6-60

BCS, 6-61

BEQ, 6-58

BGE, 6-62

BGT, 6-63

BHI, 6-63

INDEX-2

BHIS, 6-64

BIC, 6-54

BICB, 6-54

BIS, 6-54

BISB, 6-54

BIT, 6-53

BITB, 6-53

BLE, 6-63

BLO, 6-64

BLOS, 6-64

BLT, 6-62

BMI, 6-59

BNE, 6-58

BPL, 6-59

BPT, 6-71

BR, 6-57

BVC, 6-60

BVS, 6-60

CCC, 6-80

CLC, 6-80

CLN, 6-80

CLV, 6-80

CLZ, 6-80

CLR, 6-31

CLRB, 6-31

COM, 6-32

COMB, 6-32

CMP, 6-48

CMPB, 6-48

CSM, 6-75

DEC, 6-33

DECB, 6-33

DIV, 6-52

EMT, 6-70

HALT, 6-77

INC, 6-32

INCB, 6-32

10T, 6-72

JMP, 6-65

JSR, 6-66

MARK, 6-73

MFPD, 6-79

MFPI, 6-79

MEFPS, 6-45

MFPT, 6-78

MOV, 6-47

MOVB, 6-47

MTPD, 6-79

MTPI, 6-79

MTPS, 6-46

MUL, 6-52

NEG, 6-34

NEGB, 6-34

NOP, 6-67

RESET, 6-78

ROL, 6-40

ROLB, 6-40

ROR, 6-39

RORB, 6-39

RTI, 6-72

RTS, 6-68

RTT, 6-73

SOB, 6-67

SBC, 6-44

SBCB, 6-44

SCC, 6-66

SEC, 6-66

SEN, 6-66

SEV, 6-66

SEZ, 6-66

SPL, 6-75

SUB, 6-50

SWAB, 6-41

SXT, 6-44

TRAP, 6-71

TST, 6-35

TSTB, 6-35

TSTSET, 6-36

WAIT, 6-77

WRTLCK, 6-35

XOR, 6-56

Installation, 2-16

Interrupt acknowledge cycle, 4-11

Interrupt and DMA control

direct memory access (DMR), 4-5

event (EVENT), 4-6

floating-point exception (FPE), 4-6

interrupt request (IRQ), 4-5

power fail (PWRF), 4-6

Interrupts and traps, 1-8, 1-9, 1-10

L

Line time clock register, 1-7, 4-20

LSI bus

characteristics, 5-22

configuration, 5-26

dati, 5-5

datio, 5-10

dato, 5-7

DMA, 5-12

interrupts, 5-15, 5-16

loading, 5-23, 5-29

priority, 5-15

INDEX-3

M

Maintenance register, 1-7, 2-6, 4-27

Memory management, 1-10

addressing, 1-13, 1-14

fault recovery, 1-18, 1-22

I and D space, 1-16

implementation, 1-10

mapping, 1-10

page address registers (PAR), 1-18

page descriptor registers (PDR), 1-18

physical address construction, 1-15

register 0 (MMRO), 1-20

register 1 (MMRI1), 1-21

register 2 (MMR2), 1-21

register 3 (MMR3), 1-21

registers, 1-16

MMRO, 1-20

enable relocation bits, 1-20

error flags, 1-20

page address space bits, 1-20

page number bits, 1-20

processor mode bits, 1-20

reserved bits, 1-20

MMRI, 1-21

MMR2, 1-21

MMR3, 1-21

enable 22-bit mapping bit, 1-22

enable CMS instruction bit, 1-22

enable /0O map bits, 1-22

kernel, supervisor and user bits, 1-22

reserved bits, 1-22

Module pinout, 2-9

Memory system registers, 1-30, 4-19

N

Non-1/0 (NOP) cycle, 4-6

O

Options, 2-10

P

Page address registers, 1-18

Page descriptor registers, 1-18

access control field, 1-19

bypass cache bit, 1-19

expansion direction bit, 1-19

page length field, 1-19

page written bit, 1-19

reserved bits, 1-19

Parity error (PARITY), 4-6

Power-down routine, 2-8

Power-up circuit, 2-7

Power-up routine, 2-7

Predecode (PRDC), 4-5

Processor status word, 1-3, 1-4, 8-26

Program counter, 1-3

Program interrupt request (PIRQ), 1-6

Programming model, 1-2

S

Software, 1-40

Specifications, 2-18

Stack pointer, 8-3, 8-6

Status signals

abort (ABORT), 4-6

cache miss (MISS), 4-5

parity error (PARITY), 4-6

predecode (PRDC), 4-5

Stretch control (SCTL), 4-5

Strobe (STRB), 4-5

System control

address 1/0, 4-4

bank select, 4-4

buffer control, 4-5

continue, 4-5

data valid, 4-5

TAG RAM, 4-23

Timeout, 4-19

Wakeup, 2-3

INDEX-4

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	06-50
	06-51
	06-52
	06-53
	06-54
	06-55
	06-56
	06-57
	06-58
	06-59
	06-60
	06-61
	06-62
	06-63
	06-64
	06-65
	06-66
	06-67
	06-68
	06-69
	06-70
	06-71
	06-72
	06-73
	06-74
	06-75
	06-76
	06-77
	06-78
	06-79
	06-80
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	08-31
	08-32
	08-33
	08-34
	08-35
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	b-13
	i-1
	i-2
	i-3
	i-4

