MicroVAX 3100 Platform CPU Reference Information

Order Number: EK-A0574-HR.001

November 1991

٩.

•

This manual gives reference information for maintaining systems that use the KA45 or the KA47 CPU module.

Revision Information:

This is a new manual.

Digital Equipment Corporation Maynard, Massachusetts

November 1991

The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991.

All Rights Reserved.

The postpaid Reader's Comments forms at the end of this document request your critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: DEC, Digital, MicroVAX, ThinWire, VAX DOCUMENT, VMS, VT330, and the DIGITAL logo.

This document was prepared using VAX DOCUMENT, Version 2.0.

Contents

Pi	reface .		ix
1	Consol	e Commands	
	1.1	воот	1–1
	1.2	CONTINUE	1-2
	1.3	DEPOSIT	1-2
	1.4	EXAMINE	1–5
	1.5	FIND	16
	1.6	HALT	1–7
	1.7	HELP	1–7
	1.8	INITIALIZE	18
	1.9	LOGIN	19
	1.10	REPEAT	1–10
	1.11	SET	1-10
	1.11.1	SET BFLG	1–10
	1.11.2	SET BOOT	1-12
	1.11.3	SET DIAGENV	1-12
	1.11.4	SET FBOOT	1-13
	1.11.5	SET HALT	1-14
	1.11.6	SET KBD	1-14
	1.11.7	SET MOP	1–14
	1.11.8	SET PSE	1–15
	1.11.9	SET PSWD	1-16
	1.11.10) SET RADIX	1–17
	1.11.11	SET SCSI	1-18
	1.11.12	2 SET TRIG	1–18
	1.12	SHOW	1-19
	1.12.1	SHOW BFLG	1-19
	1.12.2	SHOW BOOT	1-19
	1.12.3	SHOW CONFIG	1-19
	1.12.4	SHOW DEVICE	1-20
	1.12.5	SHOW DIAGENV	1-21

1.12.6	SHOW ERROR	
1.12.7	SHOW ESTAT	
1.12.8	SHOW ETHERNET	
1.12.9	SHOW FBOOT	
1.12.10	0 SHOW HALT	
1.12.11	1 SHOW KBD	
1.12.12	2 SHOW MEM	
1.12.13	3 SHOW MOP	
1.12.14	4 SHOW PSE	
1.12.15	5 SHOW RADIX	••••
1.12.16	6 SHOW SCSI	
1.12.17	7 SHOW TRIG	
1.13	START	
1.14	TEST	
1.15	UNJAM	
1.16	X (transfer)	
1.17	! (comment)	

2 Console Codes and Messages

3 Power-Up Test and Self-Test Error Codes and Messages

3.1	NVR Test (Test 1) Error Codes and Messages	3-1
3.2	DZ Test (Test 3) Error Codes and Messages	3-2
3.2.1	DZ Test (Test 3) Additional Error Information	3-2
3.3	CACHE Test (Test 4) Error Codes and Messages	3-4
3.3.1	CACHE Test (Test 4) Additional Error Information	3-5
3.4	MEM Test (Test 5) Error Codes and Messages	3–6
3.4.1	MEM Test (Test 5) Additional Error Information	36
3.5	FPU Test (Test 6) Error Codes and Messages	3-7
3.5.1	FPU Test (Test 6) Additional Error Information	3-9
3.6	IT Test (Test 7) Error Codes and Messages	3–10
3.7	SYS Test (Test 8) Error Codes and Messages	3–10
3.7.1	SYS Test (Test 8) Additional Error Information	3-10
3.8	NI Test (Test 9) Error Codes and Messages	3-11
3.8.1	NI Test (Test 9) Additional Error Information	3-15
3.9	SCSI Test (Test 10) Error Codes and Messages	3-18
3.9.1	SCSI Test (Test 10) Additional Error Information	3–20
3.10	COMM Test (Test 12) Error Codes and Messages	3-30
3.10.1	COMM Test Sequence Numbers	3–35
3.10.2	COMM Test (Test 12) Additional Error Information	3–37
3.11	ASYNC Test (Test 14) Error Codes and Messages	3-44
	•	

	3.11.1	ASYNC Test (Test 14) Additional Error Information	3–44
4	Utilitie	s Error Codes and Messages	
	4.1	SCSI Utility Grror Messages	4-1
	4.2	COMM Utility Error Codes	4–3
5	Syster	n Exerciser Error Codes and Messages	
	5.1	DZ System Exerciser Error Messages	5-1
	5.2	NI System Exerciser Error Messages	5-2
	5.3	SCSI System Exerciser Error Messages	5-4
	5.4	COMM System Exerciser Error Messages	5–6
	5.5	ASYNC System Exerciser Error Messages	5-6

6 LED Display Codes

Glossary

Index

Figures

1–1	Help Display	18
1–2	SHOW CONFIG Display	1–20
1–3	SHOW DEVICE Display	1–21
1-4	SHOW ERROR Display	1-22
15	SHOW MEM Display	1-23
6-1	Location of LED Display on KA45 CPU Module	6–1
6-2	Location of LED Display on KA47 CPU Module	6-2

Tables

1–1	DEPOSIT Command Qualifiers	1–3
12	Memory Address Mnemonics	1–3
13	Memory Addressing Mnemonics	1–5
14	Examples of Memory Addressing	1–5
15	Initial Values of Processor Registers	1–9
16	Boot Flags Used by VMS	1–11

1–7	Diagnostic Environment Values	1-13
18	FBOOT Values	1–13
1-9	Halt Action Values	1-14
1–10	Network Listener Values	1-15
1–11	Console Security Feature Values	1–15
1-12	Radix Values	1-17
1-13	Remote Trigger Values	1–18
2-1	Console Codes and Messages	2-1
3-1	NVR Test (Test 1) Error Codes and Messages	3–1
3-2	DZ Test (Test 3) Error Codes and Messages	3-2
33	DZ Test (Test 3) Error Subcodes	3-3
3-4	CACHE Test (Test 4) Error Codes and Messages	35
3-5	MEM Test (Test 5) Error Codes and Messages	3–6
3-6	FRU Values for Faulty Memory Modules	37
37	FPU Test (Test 6) Error Codes and Messages	3-7
38	FPU Test (Test 6) Exception Vectors	3–10
3-9	IT Test (Test 7) Error Code and Message	3-10
3-10	SYS Test (Test 8) Error Codes and Messages	3–10
3-11	NI Test (Test 9) Error Codes and Messages	3-11
3-12	SCSI Test (Test 10) Error Codes and Messages	3–18
3-13	Error Information Codes	3-27
3-14	Mode Values	330
3-15	COMM Test (Test 12) Error Codes and Messages	330
3-16	COMM Test	3-35
3-17	ASYNC Test Error Codes and Messages	3-44
3-18	ASYNC Test (Test 14) Error Subcodes	3-45
4-1	SCSI Utility Error Messages	4-1
4-2	Additional SCSI Information Values for Utilities	42
4-3	SCSI Utility Error Messages	43
5-1	DZ System Test Error Codes	5-2
5-2	Error Source Indicators	53
53	NI System Exerciser Error Codes	53
5-4	SCSI System Exerciser Error Codes	5~5
5-5	ASYNC System Exerciser Error Codes	5-7
5-6	Data Rate Indication in BPS Register	5-14
6-1	Power-Up Test and Initialization Codes	63
6-2	NVR Test (Test 1) Error Codes	6-3

6-3	DZ Test (Test 3) Error Codes	64
6-4	CACHE Test (Test 4) Error Codes	65
65	MEM Test (Test 5) Error Codes	66
6-6	SYS Test (Test 8) Error Codes	6–6
6-7	NI Test (Test 9) Error Codes	6–7
6-8	SCSI Test (Test 10) Error Codes	6–8
6-9	COMM Test (Test 12) Error Codes	6-8
610	ASYNC Test (Test 14) Error Codes	69

۰.

-

•

and the second second

-

Page viii is a blank page

Preface

This manual provides reference information for systems that use the KA45 or the KA47 CPU module.

Audience

This manual is for DigitalTM Services personnel who provide support and maintenance for systems that use the KA45 or the KA47 CPU module. It is also for customers who have a self-maintenance agreement with Digital Equipment Corporation.

Structure of This Manual

This manual is divided into six chapters, a glossary, and an index:

- Chapter 1 describes the console commands that you can enter at the console prompt.
- Chapter 2 describes the console codes and message that the console program generates.
- Chapter 3 describes the power-up test and self-test error codes that the firmware generates.
- Chapter 4 describes the error codes and messages that the utilities generate.
- Chapter 5 describes the error codes and messages that the system exerciser test generates.
- Chapter 6 describes the meaning of the codes shown on the LED display.

Associated Documents

The following documents contain more information about the MicroVAX 3100 platform systems:

L

- MicroVAX 3100 Model 30 Cover Letter, EK-A0515-CL
- MicroVAX 3100 Model 30 Installation Information, EK-A0520-IN
- MicroVAX 3100 Model 30 Operator Information, EK-A0521-UG
- MicroVAX 3100 Model 30 Customer Technical Information, EK-A0522-TD
- MicroVAX 3100 Model 30 Troubleshooting and Diagnostic Information, EK-A0516-TM
- MicroVAX 3100 Model 40 and Model 80 Cover Letter, EK-A0517-CL
- MicroVAX 3100 Model 40 and Model 80 Installation Information, EK-A0523-IN
- MicroVAX 3100 Model 40 and Model 80 Operator Information, EK-A0524-UG
- MicroVAX 3100 Model 40 and Model 80 Customer Technical Information, EK-A0525-TD
- MicroVAX 3100 Model 40 and Model 80 Troubleshooting and Diagnostic Information, EK-A0518-TM
- VMS™ Factory Installed Software User Guide, EK-A0377-UG

Related Documents

The following documents contain additional maintenance information about the KA45 and KA47 CPU systems:

- KA45 CPU System Maintenance, EK-A0513-MG
- KA47 CPU System Maintenance, EK-A0514-MG
- Guide to MicroVAX 3100 Platform Maintenance Information Kit, EK-A0512-MG
- BA42-A Enclosure Maintenance, EK-A0510-MG
- BA42-B Enclosure Maintenance, EK-A0511-MG

- IPB, EK-MV310-IP
- Options, EK-A0519-MG
- TZ30 Cartridge Tape Drive Service Manual, EK-OTZ30-SV

Conventions

The following conventions are used in this manual:

Convention	Description
Ctrl/x	Ctrl/x indicates that you hold down the Ctrl key while you press another key or mouse button (indicated here by x).
x	A lowercase italic x indicates the generic use of a letter. For example, xxx indicates any combination of three alphabetic characters.
n	A lowercase italic <i>n</i> indicates the generic use of a number. For example, 19 <i>nn</i> indicates a 4-digit number in which the last 2 digits are unknown.
0	In format descriptions, braces indicate required elements. You must choose one of the elements.
[]	In format descriptions, brackets indicate optional elements. You can choose none, one, or all of the options.
()	In format descriptions, parentheses delimit the parameter or argument list.
	In format descriptions, horizontal ellipsis points indicate one of the following:
	An item that is repeated
	An omission such as additional optional arguments
	• Additional parameters, values, or other information that you can enter
I	In format descriptions, a vertical bar separates similar options, one of which you can choose.
italic type	Italic type emphasizes important information, indicates variables, and indicates the complete titles of manuals.
boldface type	Boldface type in examples indicates user input. Boldface type in text indicates the first instance of terms defined either in the text, in the glossary, or both.

Convention	Description
nn nnn.nnn nn	A space character separates groups of 3 digits in numerals with 5 or more digits. For example, 10 000 equals ten thousand.
n.nn	A period in numerals signals the decimal point indicator. For example, 1.75 equals one and three-fourths.
MONOSPACE	Text displayed on the screen is shown in monospace type.
Radix indicators	The radix of a number is written as a word enclosed in parentheses, for example, 23(decimal) or 34(hexadecimal).
>>>	Three right angle brackets indicate the console prompt.
UPPERCASE	A word in uppercase indicates a command.
Note	A note contains information that is of special importance to the user.
Caution	A caution contains information to prevent damage to the equipment.

This chapter describes the console commands that you can enter when the system is in console mode.

1.1 BOOT

Passes control to the VMB program, which resides on the system ROM. The format of this command is as follows:

B[OOT] {/[R5:]<bflg>] <ddau>[:]

where:

- R5: represents a register, through which the hexadecimal value represented by <bflg> is passed to the VMB.
- <bflg> is the boot flag value.
- <ddau> is the name of the boot device. It passes to the VMB in register R0.

The Ethernet network boot device name is ESA0; SCSI boot device names have the following format:

ddcull

where:

- dd is the device mnemonic
- c is the controller destination (always A)
- u is the SCSI ID value of the boot device
- Il is the logical unit number

The console program accepts device names in lowercase characters, but it is recommended that you use uppercase characters. You can specify more than one boot device, and you can type a colon at the end of the device names as shown in the command format. You can specify up to two devices

on the command line. You must separate device names by typing either a space or a comma.

If the NVR contains a default boot device name, the console program passes the descriptor for this device to the VMB. The VMB then boots the system from the specified device.

If you do not specify a device name or qualifiers or both in the command, the system attempts to boot from the default boot device specified in the NVR. If the default boot device is not defined ({NULL}), the console program passes a descriptor for device ESA0 to the VMB program. This triggers the VMB program to boot the system over the network.

1.2 CONTINUE

Allows you to exit from console mode and enter (or reenter) program mode (the operating system). The format of this command is as follows:

C[ONTINUE]

The address to which control passes is one of the following:

- The address stored in the program counter when the system went into console mode.
- The address that the user specifies using the DEPOSIT command.

1.3 DEPOSIT

Transfers the specified data to the specified address. The format of this command is as follows:

D[EPOSIT] [[/B | /W | /L | /Q | /A]] [[/P | /V | /I]] [/G] [/U] [/N:<n>] $[{<addr> | <sym> | + | - | * | @] [<datum>]]$

where:

 /B /W /L /Q /A /P /V /I /G /U /N:<n> are deposit command qualifiers (see Table 1-1).

If you do not specify a size or address qualifier, the console program uses the size and address qualifier of the previous memory-specific command. If you specify conflicting qualifiers, the console program ignores the command and generates an error message. The effects of the miscellaneous qualifiers are not valid outside the command in which they are specified.

Note ____

The /U (unprotect) qualifier allows access to almost any address. If you do not use the /U qualifier, you can access address locations in the range 2000.0000 to 3FFF.FFFF (excluding the TOY clock). The /U qualifier is intended for use only by firmware developers.

- < addr > is the hexadecimal address into which you want to deposit the data.
- <sym> is a mnemonic that represents the address into which you want to deposit data (see Table 1-2).
- + * @ are operators that you can use for relative memory addressing (see Table 1-3).
- <*datum*> is the value you want to deposit in the address location you specify.

Table 1–1 DEPOSIT Command Qualifiers

	Qualifier Type	
Size	Address	Miscellaneous
/B (byte)	/V (virtual memory)	/N: <n> (repeat count)</n>
/W (word)	/P (physical memory)	/U (unprotect)
/L (longword)	/l (internal register)	
/Q (quadword)	/G (general purpose register)	
/A (ASCII)		

Table 1-2 memory Address minemonics

Mnemonic	IPR Number	Туре1	Description
KSP	0	RW	Kernel stack pointer (SP)
ESP	1	RW	Executive stack pointer
SSP	2	RW	Supervisor stack pointer

¹R indicates read; W indicates write.

(continued on next page)

Mnemonic	IPR Number	Type ¹	Description	
USP	3	RW	User stack pointer	
ISP	4	RW	Interrupt stack pointer	
POBR	8	RW	P0 base register	
POLR	9	RW	P0 length register	
P1BR	10	RW	P1 base register	
P1LR	11	RW	P1 length register	
SBR	12	RW	System base register	
SLR	13	RW	System length register	
PCBB	16	RW	Process control block base	
SCBB	17	RW	System control block base	
IPL	18	RW	Interrupt priority level	
ASTLVL	19	RW	AST level	
SIRR	20	W	Software interrupt request	
SISR	21	RW	Software interrupt summary	
ICCS	24	RW	Interval clock control	
NICR	25	W	Next interval count (not implemented	
ICR	26	R	Interval count (not implemented)	
TODR	27	RW	Time of year (not implemented)	
CCR	37	RW	Cache control	
MSER	3 9	RW	Memory system error register	
SAVPC	42	R	Console saved PC	
SAVPSL	43	R	Console saved PSL	
MAPEN	56	RW	Memory management enable	
TBIA	57	W	Translation buffer invalidate all	
TBIS	58	W	Translation buffer invalidate single	
SID	62	R	System identification	
ТВСНК	63	W	Translation buffer check	
	64 to 127		Reserved	

Table 1-2 (Cont.)	Memory	Address	Mnemonics
	vonuj	monitory	Mag. 040	In tottlating a

;

Table 1-3	Memory	Addressing	Mnemonics
-----------	--------	------------	-----------

Symbol	Addressing Method Description
*	The memory address specified by the most recent DEPOSIT or EXAMINE command.
+	The memory address immediately following the address specified by the most recent DEPOSIT or EXAMINE command. For physical or virtual memory address, the address specified is the address of the most recent DEPOSIT or EXAMINE command plus the size that the most recently specified size qualifier indicates (1 for byte, 2 for word, 4 for longword.)
	The memory address immediately before the address specified by the most recent DEPOSIT or EXAMINE command. For physical or virtual memory address, the address specified is the address of the most recent DEPOSIT or EXAMINE command minus the size that the most recently specified size qualifier indicates (1 for byte, 2 for word, 4 for longword).
0	Indirect addressing. The format is @ <address>, where <address> is a hexadecimal address used as a pointer to another address. If you do not specify an address, the address that the command uses is the address used by the most recent memory referencing command.</address></address>

Table 1-4 shows some examples of memory addressing.

Table 1-4 E	Examples of	Memory	Addressing
-------------	-------------	--------	------------

Example	Description
DEPOSIT R0 200	Stores the value 200 in the register R0.
DEPOSIT/P @R0 200	Stores the value 200 in the address pointed to by the register R0. The /P qualifier specifies that the value in the R0 register is a physical address reference.
DEPOSIT/V @R0 200	Stores the value 200 in the address pointed to by the register R0. The /V qualifier specifies that the value in the R0 register is a virtual address reference.
DEPOSIT @ 200	Stores the value 200 in the address specified by the most recent memory referencing command.

1.4 EXAMINE

Displays, in hexadecimal format, the contents of the specified address. The format of this command is as follows:

where:

- /B /W /L /Q /A /P /V /I /G /U /N:<n> are qualifiers. The EXAMINE command uses the same set of qualifiers as the DEPOSIT command (see Table 1-1).
- <*addr*> is the hexadecimal address into which you want to deposit the data.
- <sym> is a mnemonic that represents the address that you want to examine. The EXAMINE command uses the same mnemonics as the DEPOSIT command (see Table 1-2).
- + * @ are operators that you can use for relative memory addressing. The EXAMINE command uses the same operators for memory addressing as the DEPOSIT command (see Table 1-3).
- <*datum*> is the value you want to deposit in the address location you specify.

1.5 FIND

Forces the console program to search the main RAM memory (starting at physical address zero) for the following:

- A page-aligned 128K-byte segment of main memory
- A restart parameter block (RPB)

If the console program finds a 128K-byte memory segment or an RPB, the console program places the starting address of the segment or RPB, plus 512, in the stack pointer (SP) register. If the console program does not find a memory segment or RPB, the console program issues an error message. The format of this command is as follows:

F[IND] [{/MEMORY | /RPB}]

where:

- *(MEMORY* is a qualifier that specifies a search for a 128K-byte, pagealigned segment of memory.
- /RPB is a qualifier that specifies a search for an RPB.

The FIND command searches for an RPB if you do not enter a qualifier.

1.6 HALT

.

Displays a halt message followed by the console prompt. The format of this command is as follows:

H[ALT]

1.7 HELP

Displays a list of the console commands that the system supports. The format of this command is as follows:

HE[LP] or ?

Figure 1-1 shows the help display.

Figure 1-1 Help Display

```
BOOT [/[R5:]<bflg>] <ddau>
CONTINUE
DEPOSIT [{/B|/W|/L|/Q|/A}] [{/P|/V|/I}] [/G] [/U] [/N:<n>]
    [{<addr>|<sym>|+|-|*|@} [<datum>]]
EXAMINE [{/B|/W|/L|/Q|/A}] [{/P|/V|/I}] [/G] [/U] [/N:<n>]
    [{<addr>|<sym>|+|-|*|@}]
FIND [{/MEMORY|/RPB}]
HALT
HELP
INITIALIZE
LOGIN
REPEAT <cmd>
SET BOOT <ddau>
SET BFLG <bflq>
SET DIAGENV <1-3>
SET FBOOT <0-1>
SET HALT <1-3>
SET KBD <0-15>
SET MOP <0-1>
SET PSE <0-1>
SET PSWD
SET SCSI <0-7>
SET TRIG <0-1>
SHOW { BOOT | BFLG | CONFIG | DEV | DIAGENV | FBOOT | ETHER | ERROR |
       ESTAT | HALT | KBD | MEM | MOP | PSE | SCSI | TRIG }
START <addr>
TEST [/UTIL] <devnam|devnbr>
UNJAM
X <addr> <cnt> ...
2
```

1.8 INITIALIZE

Performs a processor initialization sequence. The format of this command is as follows:

I[NITIALIZE]

Table 1-5 gives the values of the registers that the processor initialization sequence sets.

Value	
041F.0000	
4	
0	
0	
0	
	Value 041F.0000 4 0 0 0 0

Table 1–5 Initial Values of Processor Registers

The processor initialization sequence also sets registers R0 to R13 to 0, the interrupt stack pointer (ISP) to 200, and the program counter (PC) to 200.

1.9 LOGIN

Allows you to put the system in privileged console mode. When the console security feature is enabled (see Section 1.11.8), and you put the system in console mode, the system operates in unprivileged console mode. You can access only a subset of the console commands. To access the full range of console commands, you must use this command. The format of this command is as follows:

LO[GIN]

When you enter the command, the system prompts you for a password as follows:

PSWD0 >>

You must enter the current console security password. If you do not enter the correct password, the system displays the error message, ILL PSWD. When you enter the console security password, the system operates in privileged console mode. In this mode, you can use all the console commands. The system exits from privileged console mode when you enter one of the following console commands:

- BOOT
- CONTINUE
- HALT
- START

1.10 REPEAT

Allows you to specify a command that you want to repeat continuously. The format of this command is as follows:

R[EPEAT] <cmd>

where:

- <cmd> is the command that you want to repeat. You can repeat only the following commands:
 - DEPOSIT
 - EXAMINE
 - TEST

To stop a REPEAT command, press Ctrl/C.

1.11 SET

Sets the console NVR parameter to the specified value. The format of this command is as follows:

SE[T]<parameter-name><value>[<value>]

The following subsections describe the SET commands.

1.11.1 SET BFLG

Sets the default boot flags. The format of this command is as follows:

SE[T] BF[LG] <bflg>

where:

•

bflg> is a hexadecimal number up to eight characters long. The boot flag is placed in register R5. The console program does not check the validity of the hexadecimal number you enter. Table 1-6 shows the valid boot flags for virtual memory system (VMS) systems.

Table 1-6 Boot Flags Used by VMS

.

RPB\$V_CONV—Conversational boot. At various points in the system boot procedure, the bootstrap code requests parameters and other input from the console terminal. If the DIAG is also on, the
diagnostic supervisor then goes into MENU mode and prompts the user for devices to test.
RPB\$V_DEBUGDebug. If this flag is set, VMS maps the code for the XDELTA debugger into the system page tables of the operating system.
RPB\$V_INIBPT—Initial breakpoint. If RPB\$V_DEBUG is set, VMS executes a BPT instruction immediately after enabling mapping.
RPB\$V_BBLOCKThis skips the files-11 boot and performs only the boot block type boot.
RPB\$V_DIAGDiagnostic boot. The secondary bootstrap is an image called [SYSMAINT]DIAGBOOT.EXE.
RPB\$V_BOOBPTBootstrap breakpoint. Stops the primary and secondary bootstraps with a breakpoint instruction before testing the memory.
RFB\$V_HEADERImage header. Takes the transfer address of the secondary bootstrap image from that file's image header. If RPB\$V_HEADER is not set, transfers control to the first byte of the secondary boot file.
RPB\$V_NOTEST—Memory test inhibit. Sets a bit in the PFN bit map for each page of memory present. Does not test the memory.
RPB\$V_SOLICTFile name. Prompts for the name of a secondary bootstrap file.
RPB\$V_HALT—Halt before transfer. Executes a halt instruction before transferring control to the secondary bootstrap.
RPB\$V_NOPFNDNo PFN deletion (not implemented); intended to inform the VMB not to read a file from the boot device that identifies bad or reserved memory pages, so that the VMB does not mark these pages as valid in the PFN bitmap.
RPB\$V_MPM—Specifies that multiport memory is to be used for the total executive memory requirement. No local memory is to be used. This is for tightly-coupled multiprocessing. If the DIAG is also on, then the diagnostic supervisor goes into AUTOTEST mode.

(continued on next page)

Flag	Definition		
00001000	RPB\$V_PFILE (overlays RPB\$V_USEMPM)—File name. Prompts for the name of the parameters file on a network bootstrap operation.		
00002000	RPB\$V_MEMTEST—3pecifies that a more extensive algorithm mus be used when testing main memory for hardware nonrecoverable (RDS) errors.		
00004000	RPB\$V_FINDTEST—Requests use of MA780 memory if the MS780 is insufficient for booting. Used for 11/782 installations.		
00008000	RPB\$V_AUTOTESTUsed by the diagnostic supervisor.		
00010000	RPB\$V_CRDTEST —Requests pages with CRD errors to be removed from the bitmap.		
X0000000	RPB\$V_TOPSYSThe X position specifies the top-level directory number for system disks with multiple systems.		

Table 1-6 (Cont.) Boot Flags Used by VMS

1.11.2 SET BOOT

Sets the default boot device. The format of this command is as follows:

SE[T] BO[OT] <ddau>

• <ddau> is the boot device name. This parameter must be a valid boot device name that the BOOT command accepts (see Section 1.1).

When you enter a period (.) as a value, the console program resets the boot device to the default boot device. If you enter the SHOW BOOT command, the system responds with the following display:

```
BOOT = {NULL}
```

If you enter a BOOT command when the default boot device is reset, the system attempts to boot from the network (boot device ESA0).

1.11.3 SET DIAGENV

Sets the diagnostic environment. The format of this command is as follows:

```
SE[T] DI[AGENV] <1-3>
```

where:

• <1-3> represents a number in the range 1 to 3 that you enter to set the diagnostic environment (see Table 1-7).

Note

The SET DIAGENV command is not effective unless there is a loopback connector installed on asynchronous modem control port 2 on the back of the system unit.

lable	1-7	Diagnostic	Environment	Values
-------	-----	------------	-------------	--------

<1-3>	Description		
1	Customer environment. This is the default test environment.		
2	Digital Services environment. In this environment, the console program sets up the diagnostic conditions that enable Digital Services personnel to test the system. Special loopback connectors are required to perform certain tests and utilities.		
3	Manufacturing environment. In this environment, the console pro- gram sets up the diagnostic conditions that enable Manufacturing personnel to test the system. Special loopback connectors and writeable media are required to perform certain tests and utilities.		

1.11.4 SET FBOOT

Sets the diagnostic startup mode. The format of this command is as follows:

SE[T] F[BOOT] <0-1>

The parameter <0-1> is a number in the range 0 to 1 that determines the type of diagnostic startup (see Table 1-8).

Table 1	8 F	FBOC)t Val	lues
---------	-----	------	--------	------

<0-1>	Description
0	Normal diagnostic startup tests
1	Fast diagnostic startup tests

__ Note _____

Minimal diagnostic testing is performed during a fast diagnostic startup operation.

1.11.5 SET HALT

Sets the default recovery action, that is, the action that the console program takes when you turn on the system or following an error. The format of this command is as follows:

SE[T] H[ALT] <1-3>

where:

• <1-3> represents a number in the range 1 to 3 that you enter to set the default halt action (see Table 1-9).

Value	Halt Action	Meaning		
1	Restart	The system tries to restart the operating system. If it fails to restart the operating system, it tries to boot. If the system fails to boot, it halts.		
2	Boot	The system tries to boot. If it fails to boot, it halts.		
3	Halt	The system halts and displays the console prompt. This is the default value.		

Table 1–9 Halt Action Values

1.11.6 SET KBD

This command is not applicable to MicroVAX 3100 systems.

1.11.7 SET MOP

Enables or disables the network listener. The format of this command is as follows:

SE[T] MO[P] <0-1>

where:

• <0-1> represents a number in the range 0 to 1 that you enter to set the network listener condition (see Table 1–10).

Vaiue	Description
0	Disabled
1	Enabled (default)

Note

Table 1–10 Network Listener Values

For remote triggering and remote console connection, you must set the MOP and TRIG values to 1, console security must be enabled (PSE = 1), and you must have a valid password set up.

1.11.8 SET PSE

Allows you to enable or disable the console security feature of the system. The format of this command is as follows:

SE[T] PSE <0.1>

where:

 <0-1> represents a number in the range 0 to 1 that you enter to enable or disable the console security feature (see Table 1-11).

Value	Description	
0	Disabled	
1	Enabled	

Table 1–11 Console Security Feature Values

____ Note __

For remote triggering and remote console connection, you must set the MOP and TRIG values to 1, console security must be enabled (PSE = 1), and you must have a valid password set up.

When the console security feature is enabled, only a subset of the console commands are available to the user. To enable the complete set of console commands once the console security feature is enabled, you must use the LOGIN command (see Section 1.9).

1.11.9 SET PSWD

Allows you to set or change the console security password. The console security password is used for:

- Remote trigger verification—When the password is set, the network listener must verify the password before processing a remote trigger request to boot the system.
- Putting the system in privileged console mode—When the password is set, you must use the LOGIN command and enter the correct password to access the full range of console commands.

Note .

For remote triggering and remote console connection, you must set the MOP and TRIG values to 1, console security must be enabled (PSE = 1), and you must have a valid password set up.

The format of this command is as follows:

SE[T] PSW[D]

When you are entering the console security password for the first time, the system prompts you for the password, then asks you for confirmation of the password as follows:

PSWD1 >>> PSWD2 >>>

The password you enter must be exactly sixteen hexadecimal characters.

_ Note __

The password is not displayed on the screen.

When you want to change the console security password, you must put the system in privileged console mode, using the LOGIN command (see Section 1.9).

When the system is in privileged console mode, you can use the SET PSWD command to change the password. The system prompts you for the current password, a new password, and confirmation of the new password as follows:

PSWD0 >>> PSWD1 >>> PSWD2 >>>

Caution _____

If the owner of the system forgets the password, you must short-circuit two contacts on the CPU module to clear the password (see KA45 CPU System Maintenance, Section 3.2.4 or KA47 CPU System Maintenance, Section 3.2.4).

1.11.10 SET RADIX

Sets the default input radix. The format of this command is as follows:

SE[T] R[ADIX] <value>

The parameter <value> determines the radix type (see Table 1-12).

Table 1-12	Radix	Values
------------	-------	--------

Value	Description
0	Default RADIX for the associated command
10	Decimal
16	Hexadecimal

Note

You can use the introducers %X and %D on the command line at any time to change the default radix. These introducers inform the console program that the next value is of the radix that the introducer specifies. The introducer %X specifies hexadecimal; %D specifies decimal.

Note _

If the radix is set to hexadecimal (radix 16) and you want to change it to decimal (radix 10), use the command, SET RADIX A.

1.11.11 SET SCSI

Sets the SCSI ID of the SCSI controller. The format of this command is as follows:

SE[T] S[CSI] <0-7>

where:

 <0-7> is a number in the range 0 to 7, that is, the ID you want to assign to the SCSI controller. The SCSI ID of the SCSI controller is set to 6 before the system is shipped.

1.11.12 SET TRIG

Enables or disables the remote trigger utility. When the remote trigger utility is enabled, a remote system can force the local system to boot from the local system's default boot device. The format of this command is as follows:

SE[T] T[RIG] <0-1>

where:

 <0-1> is a number in the range 0 to 1 that determines the remote trigger condition (see Table 1-13).

Table	1-13	Remote	Trigger	Values
-------	------	--------	---------	--------

Value	Description
0	Disabled
1	Enabled
-	

Note _

For remote triggering and remote console connection, you must set the MOP and TRIG values to 1, console security must be enabled (PSE = 1), and you must have a valid password set up.

1.12 SHOW

Displays the value of the console NVR parameter you specify. The format of this command is as follows:

SH[OW]<parameter-name>

where:

• cparameter-name> is the NVR parameter that you want to view. See the
following subsections for more information.

1.12.1 SHOW BFLG

Displays the default boot flags. The format of this command is as follows:

SH[OW] BF[LG]

The following is an example of the display that this command produces when no default boot flags are set:

BFLG = 00000000

1.12.2 SHOW BOOT

Displays the default boot device. The format of this command is as follows:

SH[OW] BO[OT]

The following is an example of the display that this command produces: BOOT = DKA200

1.12.3 SHOW CONFIG

Displays the system configuration. The format of this command is as follows:

SH[OW] CONF[IG]

The command displays information about devices that the firmware has tested. It also displays the device errors that the most recent device test detected. Figure 1-2 is an example of the display that the SHOW CONFIG command produces.

Figure 1-2 SHOW CONFIG Display

```
KA45-A V1.0
08-00-2B-16-44-48
8MB
DEVNBR DEVNAM
                  INFO
-----
        -----
                 NVR
1
                  OK
3
            DZ
                  OK
4
         CACHE
                  OK
5
                                   0
           MEM
                  OK
                          0
                                              6
                                                           A
                  8MB = SY=8MB, S0/1=0MB, S2/3=0MB, S4/5=0MB
6
           FPU
                  OK
7
            IT
                  OK
8
           SYS
                  OK
9
                  OK
            NI
10
          SCSI
                  OK
                  3-RZ23L 6-INITR
12
          COMM
                  OK
                  DSW41/42 1 CHANNEL V3.11-47
14
                  DHW41/42 V1.5
         ASYNC
```

- Basic CPU Module Memory
- Memory Expansion Increment 1 (Connectors 1H and 1L)
- **1** Memory Expansion Increment 2 (Connectors 2H and 2L)
- Memory Expansion Increment 3 (Connectors 3H and 3L)

1.12.4 SHOW DEVICE

Displays the current status of the Ethernet and SCSI devices in the system. The format of this command is as follows:

SH[OW] DE[VICE]

The display includes the Ethernet address and information about the SCSI devices connected to the SCSI bus. Figure 1-3 is an example of the display that the SHOW DEVICE command produces.

Figure 1-3 SHOW DEVICE Display

1	0	6	0	6	6	Ø	8
VMS/VMB	ADDR	DEVTYPE	NUMBYTES	RX/FX	WP	DEVNAM	REV
ESA0	08-00-	-2B-16-44-	48				
DKA300	A/3/0	DISK		FX		RZ23L	1F25
HostID.	. A/6	INITR					

VMS/VMB Device Name

2 Ethernet or SCSI Address of the Device

③ Device Type— For example disk drive (DISK) or tape drive (TAPE)

O Number of Megabytes

Media Type—Removable (RX) or fixed (FX)

- **6** Write Protected
- Option Name
- 8 Revision Number

1.12.5 SHOW DIAGENV

Displays the current diagnostic environment. The format of this command is as follows:

SH[OW] DI[AGENV]

Table 1-7 gives the values and the meaning of each value. The following is an example of the display that this command produces:

DIAGENV = 2

1.12.6 SHOW ERROR

Displays the errors that the most recent self-test or system exerciser test detected. The format of this command is as follows:

SH[OW] ER[ROR]

Figure 1-4 is an example of the display that the SHOW ERROR command produces for a system exerciser test.

Figure 1-4 SHOW ERROR Display

• A question mark (?) indicates a soft error, that is, an error that you do not have to correct before you boot the system. Two question marks (??) indicate a hard error, that is, an error that you must correct before you boot the system.

2 The FRU number of the failing device.

1 The device number.

• The device mnemonic.

- 6 A device specific error code.
- Additional error information about the preceding error. See Section 3.9.1, error format 000E, for an explanation of the elements in this error format example.

Section 3.9 gives the self-test error codes.

1.12.7 SHOW ESTAT

Displays a set of summary screens (see KA45 CPU System Maintenance, Section 3.5.2 or KA47 CPU System Maintenance, Section 3.5.2) associated with the most recent system exerciser test. The format of this command is as follows:

SH[OW] ES[TAT]

If the system exerciser test hangs or halts, you can use this command to determine the status of the system before it hangs or halts.

1.12.8 SHOW ETHERNET

Displays the hardware Ethernet address. The format of this command is as follows:

SH[OW] ET[HERNET]

The following is an example of the display that this command produces:

ETHERNET = 08-00-2B-26-45-AD

When the Ethernet address is not valid, the console program displays the following line on the console terminal:

ETHERNET = XX - XX - XX - XX - XX - XX

Displays the current diagnostic startup type. The format of this command is as follows:

SHIOW FIBOOT

Table 1-8 gives the values and the description of each value.

1.12.10 SHOW HALT

Displays the current status of the halt action flag. The format of this command is as follows:

SH[OW] H[ALT]

Table 1–9 gives the values and the corresponding halt action. The following is an example of the display that this command produces:

HALT = 00000002

1.12.11 SHOW KBD

This command is not applicable to MicroVAX 3100 systems.

1.12.12 SHOW MEM

Displays information about the memory in the system. The format of this command is as follows:

SH[OW] ME[M]

Figure 1-5 is an example of the display that the SHOW MEM command produces.

Figure 1–5 SHOW MEM Display

```
MENT TOP = 00800000 (1)
MEM BOT = 0000000
   MEM NOT AVAIL
007C3600:007fffff 3
```


The total amount of memory in the system, including the console data structures

• The first address of a 256K-byte block of contiguous memory, generally used by the VMB.

This line and subsequent lines show the address ranges of the memory areas that are not available to the operating system. These memory areas include the memory area that is reserved for the console program.

1.12.13 SHOW MOP

Displays the status of the network listener flag. The format of this command is as follows:

SH[OW] MO[P]

Table 1-10 gives the values and the meaning of each MOP value. The following is an example of the display that this command produces:

UTC	#	00000000E0D8BAE0
AccurTDF	=	1000000000186A0
BytesRx	Ξ	000000000000000000000000000000000000000
BytesTx	=	000000000000078
FramesRx	=	00000000000000000000
FramesTx	Ξ	00000000000000000
McBytsRx	=	000000000000000000000000000000000000000
McFrmsRx	=	000000000000000000000000000000000000000
FrmDefer	=	000000000000000000000000000000000000000
Frm1Coll	æ	0000000000000000000
FrmMColl	=	000000000000000000000000000000000000000
TerXsCol	=	000000000000000000000000000000000000000
TerCarCk	2	00000000000000000000
TerShCkt	=	000000000000000000000000000000000000000
TerOpCkt	=	000000000000000000000000000000000000000
TerFrLng	=	000000000000000000000000000000000000000
TerNoDef	=	000000000000000000000000000000000000000
RerFCSEr	=	000000000000000000000000000000000000000
RerFrmEr	а	000000000000000000000000000000000000000
RerFrLng	2	000000000000000000000000000000000000000
UnknDest	=	000000000000000000000000000000000000000
DataOvrn	=	000000000000000000000000000000000000000
SyBuffUn	=	000000000000000000000000000000000000000
UsBuffUn	=	000000000000000000000000000000000000000
HrtBtErr	Ŧ	0000000000000000

MOP = 0000001
Console Commands

1.12.14 SHOW PSE

Displays the condition of the console security feature of the system. The format of the command is as follows:

SH[OW] PSE

Table 1–11 gives the values and a description of each value.

1.12.15 SHOW RADIX

Displays the current default radix value. The format of this command is as follows:

SH[OW] R[ADIX]

Table 1–12 shows the values and the meaning of each value.

1.12.16 SHOW SCSI

Displays the current SCSI ID that the firmware assigns to the system's SCSI controller. The format of this command is as follows:

SH[OW] S[CSI]

The normal SCSI ID of the system's SCSI controller is 6 when the system is shipped. The following is an example of the display that this command produces:

SCSI = 00000006

1.12.17 SHOW TRIG

Displays the status of the remote trigger flag. The format of this command is as follows:

SH[OW] TR[IG]

Table 1–13 gives the values and a description of each value. The following is an example of the display that this command produces:

TRIGGER = 00000000

1.13 START

Allows you to specify the address from which program execution starts. The format of this command is as follows:

S[TART] <addr>

Console Commands

where:

• <addr> is the address from which program execution starts.

You must specify the <addr> parameter.

1.14 TEST

- Allows you to invoke the diagnostic tests, extended tests, and utilities. The format of this command is as follows:

T[EST] [/UTIL] <devnam | devnbr>

where:

- /UT[IL] is a qualifier that invokes a utility
- <devnam> is the device name
- <devnbr> is the device number

1.15 UNJAM

Provides a system reset. The format of this command is as follows:

U[NJAM]

The firmware returns all the devices to known, initial states. All registers and logic states are set to 0.

1.16 X (transfer)

Note .

This command is intended for use by host software that communicates with the system through a console device connected to MMJ port 0 or MMJ port 3. Do not enter this command at the console prompt.

Transfers binary data to and from physical memory. The format of this command is as follows:

X<address><count><CR><checksum><data_stream><checksum> where:

• <*address*> is the physical address (in hexadecimal format), to which or from which the data is transferred.

Console Commands

- <count> is the number of bytes to transfer. It is an 8-bit hexadecimal number. When the high order bit of this parameter is 1, the data is transferred from physical memory to the console device. When the high order bit of this parameter is 0, the data is transferred from the console device to physical memory.
- <*CR*> is a carriage return.
- < < checksum> is the two's complement of the command string.
- <data_stream> is the returned data.
- <checksum> is the two's complement of the data stream.

1.17 ! (comment)

Note ___

You use this command when writing host software that communicates with the system through a console device connected to MMJ port 0 or MMJ port 3.

Prefixes a comment. The format of this command is as follows:

! <comment>

where:

• <*comment*> is the comment text.

You can place the exclamation point (!) anywhere on a command line. The console program ignores all text after an exclamation point (!).

2

Console Codes and Messages

This chapter describes the codes and messages that the console program generates. Table 2-1 gives the codes and the corresponding description.

Code	Message Text	Description
(Hexadecimal)	medduge foxt	
02	?02 EXT HLT	The halt button on the system or the Break key on the special console terminal has been pressed.
04	?04 ISP ERR	Interrupt stack inaccessible or invalid during an interrupt or an exception.
05	205 DBL ERR1	A machine check occurred while the processor was reporting on a machine check.
06	206 HLT INST	A kernel mode HALT instruction was executed.
07	207 SCB ERR3	SCB interrupt vector bits 1 to 0 are equal to 3.
08	?08 SCB ERR2	SCB interrupt vector bits 1 to 0 are equal to 2.
0A	?0A CHM FR ISTK	A change mode instruction was executed when PSL(IS) was set.
0B	?0B CHM TO ISTK	The exception vector for the change mode had bit 0 set.
0C	20C SCB RD ERR	A hard memory error occurred while the processor was trying to read an exception or interrupt vector.

Table 2–1 Console Codes and Messages

Console Codes and Messages

Code (Hexadecimal)	Message Text	Description
10	?10 MCHK AV	An access violation or invalid translation occurred during the processing of a machine check.
11	?11 KSP AV	An access violation or invalid translation occurred during the processing of an invalid kernel stack pointer exception.
12	?12 DBL ERR2	A machine check occurred while the processor was trying to report a machine check.
13	?13 DBL ERR3	A machine check occurred while the processor was trying to report a machine check.
19	?19 PSL EXC5	PLS bits 26 to 24 indicate a value of 5 for an interrupt or exception.
1A	?1A PSL EXC6	PLS bits 26 to 24 indicate a value of 6 for an interrupt or exception.
1 B	?1B PSL EXC7	PLS bits 26 to 24 indicate a value of 7 for an interrupt or exception.
1D	?1D PSL REI5	PLS bits 26 to 24 indicate a value of 5 on an REI.
1E	?1E PSL REI6	PLS bits 26 to 24 indicate a value of 6 on an REI.
1F	?1F PSL REI7	PLS bits 26 to 24 indicate a value of 7 on an REI.
20	20 TOY ERR	TOY clock failure.
21	?21 CORRPTN	Console memory corrupted.
22	?22 ILL REF	The requested reference violates virtual memory protection, the address is not mapped, the reference is invalid in the specified address space, or the value is invalid in the specified destination.
23	?23 ILL CMD	The command string cannot be parsed. This message is also displayed when the system is in unprivileged console mode, and you enter an illegal command (see KA45 CPU System Maintenance, Section 3.2.4 or KA47 CPU System Maintenance, Section 3.2.4.)
		(continued on next page

Table 2-1 (Cont.) Console Codes and Messages

Console Codes and Messages

Code (Hexadecimal)	Message Text	Description
24	?24 INV DGT	The number has an invalid digit.
25	?25 LTL	The command was too large for the console to put it in the buffer. The message is issued only when a carriage return is received.
26	?26 ILL ADR	The address specified falls outside the limits of the addressing space.
27	?27 LEN VIO	Virtual address length violation. The specified virtual address was not within the virtual address range specified.
28	28 VAL TOO LRG	The value specified does not fit in the destination.
29	29 ILL SW	The qualifier is not known in the specified syntax.
2A	2A SW CONF	Conflicting qualifiers.
2B	2B UNK SW	The qualifier is not known to the parser.
2C	?2C UNK SYM	The symbolic address in the EXAMINE or DEPOSIT command is not recognized.
2D	2D AMB SYM	Ambiguous symbol. The symbol was not unique enough to be identified.
2E	?2E CHKSM	The command or data checksum in the X command is invalid.
2F	?2F HLTED	The operator entered a HALT command.
30	?30 FND ERR	The FIND command failed to find the RPB or 128K bytes of page-aligned contiguous memory.
31	?31 TMOUT	During the X command, data failed to arrive in the time expected.
32	?32 MEM ERR	Parity error or other memory error.
33	?33 UNXINT	Unexpected interrupt or exception. For some interrupts, this message is followed by the PC, PLS, and interrupt vector.
34	?34 ILL PSWD	Illegal trigger password specified.
35	235 PSWD NOTEN	Password system not enabled.

Table 2–1 (Cont.) Console Codes and Messages

.

Console Codes and Messages

Code	Message Text	Description
(Hexadecimal)	المحالة معروبة مترورة فرعونة أملين والمرعونة أملين الأمرورة أمريوه أمرين والبري	
36	?36 NO PSWD DEF	No password defined.
37	?37 NOT IMPL	The requested function has not been implemented. The requested command is no longer available. Some of the commands that were available for backward compatibility have been removed and replaced with new commands. An example of this is SET DTE, which has been replaced with the DTE console command.
38	?38 IPR NOT IMPL	The request internal processor register is not implemented.
39	?39 IPR NOWRT	The request internal processor register write operation is not allowed. The internal processor register is read only.
3 A	'3A IPR NORD	The requested internal processor register read operation is not allowed. The internal processor register is write only.
3B	?3B NVR RDERR	An internal read error occurred while attempting to read the NVR, or there was an internal software request that tried to access an NVR location that is not within the range of the NVR.
3C	?3C NVR WRTERR	An internal write error occurred during the data verification phase of the NVR write operation, or there was an internal software request to write to an NVR location, which was not within the range of the NVR.
83	83 BOOT SYS	Bootstrap message.
84	?84 FAIL	General failure message.
85	?85 RESTART SYS	Restarting system software message.
86	?86 RMT TRGGR	Remote trigger request.

Table 2-1 (Cont.) Console Codes and Messages

3

Power-Up Test and Self-Test Error Codes and Messages

This chapter describes the error codes and messages that the power-up test and the self-tests generate.

3.1 NVR Test (Test 1) Error Codes and Messages

Table 3-1 lists the error codes and messages that the NVR test produces.

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0004	4	Battery fault
0008	8	NVR register test failure
0012	С	Battery low, VRT failure, and NVR test failure
0016	10	TOY register test failure
0032	20	Failure to set valid RAM and time bit
0036	24	VRT bit failure and battery fault
0044	2C	Battery low, VRT failure, and NVR test failure
0048	30	TOY register test failure and VRT failure
0064	40	Battery check test failure; hard error
0065	41	Battery check test failure; soft error
0072	48	Battery check test failure and NVR register test failure
0096	60	VRT bit failure and battery check test failure
		(continued on next page)

Table 3-1	NVR Test	(Test 1)	Error Codes	and Messages
	111111000			una meougeo

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0104	68	Battery check, VRT, and NVR register test failures
0128	80	Update in progress fails to clear; hard error
0129	81	Update in progress fails to clear; soft error
0160	A0	Update in progress failure and VRT bit failure

Table 3-1 (Cont.) NVR Test (Test 1) Error Codes and Messages

3.2 DZ Test (Test 3) Error Codes and Messages

Section 3.2 lists the error codes and messages that the DZ test produces.

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0016	10	Reset test failure
0032	20	Read LPR test failure
0048	30	Modem test failure
0064	40	Polled test failure
0080	50	Interrupt driver transfer test failure
0096	60	Unexpected LK401 device detected
0112	70	Unexpected mouse device detected
0128	80	INIT driver failure
0144	90	No memory to use as data area

Table 3–2 DZ Test (Test 3) Error Codes and Messages

3.2.1 DZ Test (Test 3) Additional Error Information

You can get additional error information by using the SHOW ERROR command. The format of the additional error information for this command is as follows:

001 000a sssssss ccccccc lprlprlp llllill xxxxxxx ttttttt

- 001 is the FRU number
- 000A is the format number

- ssssssss is an error subcode (see Table 3-3)
- cccccccc is the value of the DZ control status register (CSR)
- *lprlprlp* is the contents of the line parameter register
- *Illlllll* is the serial line number
- xxxxxxxx is the returned data
- tttttttt is the expected data

If a data transfer times out, the polled test and the interrupt test return the additional error information in the following format:

001 000B sssssss ccccccc lprlprlp llllill rrrrrrr eeeeeee

where:

- 001 is the FRU number
- 000B is the format number
- sssssss is an error subcode (see Table 3-3)
- cccccccc is the value of the DZ CSR
- *lprlprlp* is the contents of the line parameter register
- *llllllll* is the serial line number
- *rrrrrrr* is the number of characters transmitted
- eeeeeeee is the value of the DZ transmit control register

Table 3–3 DZ Test (Test 3) Error Subcodes

Error Subcode	Description
(Hexadecimai)	
READ LPR Failures	
0021	Baud rate is incorrectly set
0022	Character width is incorrectly set
0023	Parity bit is incorrectly set
0024	Receiver on bit is incorrectly set

Error Subcode (Hexadecimal)	Description	
Modern Test Fallur	08	
0031	RTS to CTS loopback failure	
0032	DSRS t. DSR and CD loopback failure	
0033	LLKB to SPDMI loopback failure	
0034	DTR to RI loopback failure	
Polled Test Failure	18	
0041	Transfer timeout	
0042	Data is not valid	
0043	Parity error	
0044	Framing error	
0045	Overrun error	
0046	Character received is not the same as the character transmitted	
Interrupt Test Fail	LITES	
0051	Transfer timeout	
0052	Data is not valid	
0053	Parity error	
0054	Framing error	
0055	Overrun error	
0056	Character received is not the same as the character transmitted	

Table 3-3 (Cont.) DZ Test (Test 3) Error Subcodes

3.3 CACHE Test (Test 4) Error Codes and Messages

Table 3-4 lists the error codes and messages that the CACHE test produces.

(Hexadecimal)		
200	Data store read/write error	
300	Tag store read/write error	
400	Valid bit is not set	
500	Tag store does not contain an entry for the diagnostic memory space	
600	Unexpected tag parity error	
700	Cache does not provide expected data during cache hit tests	
800	Cache data parity error	
900	Tag not valid during cache hit tests	
A00	Data not valid during cache hit tests	
B00	Cache data write-through test fails because of invalid data in the cache data store	
C00	Cache data write-through test fails because of invalid data in memory	
	(Hexadecimal) 200 300 400 500 600 700 800 900 A00 B00 C00	

Table 3–4 CACHE Test (Test 4) Error Codes and Messages

3.3.1 CACHE Test (Test 4) Additional Error Information

To get more error information, enter the SHOW ERROR command. The format of the additional error information that this command provides is as follows:

001 000A aaaaaaaa eeeeeeee rrrrrrr

- 001 is the FRU number
- 000A is the device number
- aaaaaaaa is the address within the data or tag store that failed the test
- eeeeeeee is the expected data
- rrrrrrr is the returned data

3.4 MEM Test (Test 5) Error Codes and Messages

Table 3-5 lists the error codes and messages that the MEM test produces.

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0064	40	Memory modules MS44-CA and MS44-AA or MS44L-AA mixed as a pair
0066	42	Memory option connectors not filled in ascending order
0068	44	MS44-CA (16M byte) memory module found; not allowed in a Model 30 or Model 40 system
0070	46	MS44-AA or MS44L-AA memory modules inserted in a higher connector number than the MS44-CA memory modules
0072	48	MS44-AA or MS44L-AA memory modules or MS44-CA memory modules (Model 80 only) are not in pairs
0256	100	Byte mask test failure
0514	202	Data compare error during forward pass
0516	204	Parity error during forward pass
0770	302	Data compare error during reverse pass
0772	304	Parity error during reverse pass
1028	404	Parity test 1 error
1288	504	Parity test 2 error

Table 3-5 MEM Test (Test 5) Error Codes and Messages

3.4.1 MEM Test (Test 5) Additional Error Information

You can get more error information by using the SHOW ERROR command. The format of the additional error information that this command provides is as follows:

xxx 5 MEM yyyy xxx 00A bbbbbbbb cccccccc dddddddd eeeeeee

where the codes on the first line are as follows:

- xxx is the FRU number (see Table 3-6)
- 5 is the device number
- MEM is the device mnemonic

• yyyy is the hexadecimal error code

The codes on the second line are as follows:

- xxx is the FRU number
- 00A is the format type of extended error information
- bbbbbbbb is the contents of the Memory System Error Register (MSER)
- cccccccc is the address of the failing memory location
- ddddddd is the expected data
- eeeeeeee is the received data

FRU (Decimal)	Memory Module Connector ¹	
040	1L	
041	1 H	
042	2L	
043	2H	
044	3L	
045	3H	

Table 3-6 FRU Values for Faulty Memory Modules

¹See KA45 CPU System Maintenance, Section 1.2 or KA47 CPU System Maintenance, Section 1.2 for connector location.

3.5 FPU Test (Test 6) Error Codes and Messages

Table 3-7 lists the error codes and messages that the **floating-point unit** (FPU) test produces.

Table 3–7	FPU Test	(Test 6)	Error Codes	and Messages
-----------	-----------------	----------	--------------------	--------------

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0258	102	MOVF instruction test failure
		(continued on next page)

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	_
0260	104	Unexpected exception during MOVF instruction test
0514	202	MNEGF instruction test failure
0516	204	Unexpected exception during MNEGF instruction test
0770	302	ACBF instruction test failure
0772	304	Unexpected exception during ABCF instruction test
1026	402	ADDF2/ADDF3 instruction test failure
1028	404	Unexpected exception during ADDFx instruction test failure
1282	502	CMPF instruction test failure
1284	504	Unexpected exception during CMPF instruction test
1538	602	CVTFD/CVTFG instruction test failure
1540	604	Unexpected exception during CVTFD/CVTFG instruction test
1794	702	CVTFx instruction test failure
1796	704	Unexpected exception during CVTFx instruction test
2050	802	CVTxF instruction test failure
2054	804	Unexpected exception during CVTxF instruction test
2306	902	DIVF2/DIVF3 instruction test failure
2308	904	Unexpected exception during DIVFx instruction test
2562	A02	EMODF instruction test failure
2564	A04	Unexpected exception during EMODF instruction test
2818	B02	MULF2/MULF3 instruction test failure
		(continued on next page)

Table 3-7 ((Cont.)	FPU Test	(Test 6)	Error	Codes	and Messa	des
			······				

Error Code (Decimal)	Error Code (Hexadecimal)	Description
2820	B04	Unexpected exception during MULFx instruction test
3074	C02	POLYF instruction test failure
3076	C04	Unexpected exception during POLYF instruction test
3330	D02	SUBF2/SUBF3 instruction test failure
3332	D04	Unexpected exception during SUBFx instruction test
3586	E02	TSTF instruction test failure
3588	E04	Unexpected exception during TSTF instruction test

Table 3–7 (Cont.) FPU Test (Test 6) Error Codes and Messages

3.5.1 FPU Test (Test 6) Additional Error Information

You can get more error information by using the SHOW ERROR command. The format of the additional error information that this command provides is as follows:

where:

- 001 is the FRU number.
- 0000 is the format number.
- *vvvvvvvv* is the vector of the unexpected interrupt (see Table 3-8)
- *eeeeeeee* is the exception data. The system displays this data only for machine checks and arithmetic traps.

Table 3-8 gives the vectors for the different types of exceptions.

Vector Number	Exception Type	
0004	Machine check	
0010	Privileged instruction	
0014	Customer reserved instruction	
0018	Reserved operand	
001c	Reserved addressing mode	
0034	Arithmetic trap	

Table 3-8 FPU Test (Test 6) Exception Vectors

3.6 IT Test (Test 7) Error Codes and Messages

Table 3–9 lists the error codes and messages that the interval timer (IT) test produces.

Table 3-5 IT Test (Test /) ETTOL Coue and messa	Table 3–9 IT Test (Test 7) Error (Code and Message
---	------------------------------------	------------------

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0002	2	Interval timer is not interrupting at the correct rate

3.7 SYS Test (Test 8) Error Codes and Messages

Table 3-10 lists the error codes and messages that the SYS test produces.

	•	
Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0002	2	System ROM test failure
0128	80	Invalidate filter RAM error

Table 3–10 SYS Test (Test 8) Error Codes and Messages

3.7.1 SYS Test (Test 8) Additional Error Information

You can get additional error information when an invalidate filter RAM error occurs using the SHOW ERROR command. The format of the additional error information is as follows:

001 0010 aaaaaaaa rrrrrrr eeeeeee

where:

- 001 is the FRU number
- 0010 is the format number
- aaaacaaa is the address of the failing invalidate filter
- *rrrrrrr* is the returned data
- eeeeeeee is the expected data

3.8 NI Test (Test 9) Error Codes and Messages

Table 3-11 lists the error codes and messages that the NI test produces.

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
Network Addre	ss ROM Failures	
0016	10	Read access failure
0018	12	Null address
0020	14	Incorrect group address
0022	16	Incorrect checksum
0024	18	Incorrect group 2
0026	1A	Incorrect group 3
0028	1C	Incorrect test patterns
LANCE Regist	er Test Failures	
0032	20	Address port read/write error
0034	22	CSR0 read/write error
0036	24	CSR1 read/write error
0038	26	CSR2 read/write error
0040	28	CSR3 read/write error
		(continued on next page

Table 3–11 NI Test (Test 9) Error Codes and Messages

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
LANCE Initializ	ation Fallures	
0048	30	Initialization failure
0050	32	Receiver disabled
0052	34	Transmitter disabled
0054	36	Receiver enabled
0056	38	Transmitter enabled
LANCE Interna	al Loopback/DMA ¹ Fa	ilures
0064	40	Initialization failure
0066	42	Failure during transmit operation
0068	44	Failure during receive operation
0070	46	Packet comparison failure
0072	48	DMA initialization failure
0074	4A	DMA transmit failure
0076	4C	DMA receive failure
0078	4E	Unknown transmit or receive failure
	ipt Failures	
0080	50	Initialization failure
0082	52	Transmit failure
0084	54	Receive failure
0086	56	Packet comparison failure
0088	58	NI bit in INT_REQ register is not set
0090	5A	NI bit in INT_REQ register is not clear
0092	5C	NI ISR not entered
0094	5E	NI ISR entered many times

Table 3-11 (Cont.) NI Test (Test 9) Error Codes and Messages

¹Direct memory access (DMA)

|--|

Error Code	Error Code	Description
(Decimai)	(Hexadecimal)	
LANCE CRC ² F	ailures	
0096	60	Initialization failure
0098	62	Transmit failure
0100	64	Receive failure
0102	66	Packet comparison failure
0104	68	LANCE generated incorrect CRC
0106	6A	LANCE rejected correct CRC
0108	6C	LANCE accepted incorrect CRC
0110	6E	Other LANCE CRC error
LANCE RX MIS	SS/BUFF Failures	
0112	70	Initialization failure
0114	72	Transmit failure
0116	74	Unknown receive failure
0118	76	MISS error not flagged
0120	78	BUFF error not flagged
LANCE Collisi	on Failures	,
0128	80	Initialization failure
0130	82	Unknown transmit error
0132	84	RETRY not flagged
0134	86	Transmitter disabled
LANCE Addre	ss Filtering Fallures	
144	0090	Initialization failure
146	0092	Transmit failure
148	0094	Receive failure

²Character recognition code (CRC)

Error Code (Decimal)	Error Code (Hexadecimal)	Description
	as Filtering Failures	
150	0096	Packet comparison failure
152	0098	Broadcast filtering failure
154	009A	Promiscuous mode failure
156	009C	Null destination accepted
158	009E	Correct logical address rejected
LANCE Extern	al Loopback Failures	\$
0160	A0	Initialization failure
0162	A2	Transmit failure
0164	A4	Receive failure
0166	A6	Packet comparison failure
0168	A 8	Unknown transmit error
0170	AA	Unknown receive error
0172	AC	No loopback connector
LANCE TX BU	FF Fallures	
0176	B0	Initialization failure
0178	B2	BUFF error not flagged
0180	B4	Transmitter enabled
0182	B6	Unknown transmit error
DMA Register	Failures	
0208	D0	MAP_BASE register error
0210	D2	I/O write access to map registers failure
0212	D4	I/O read access to map registers failure
0214	D6	Parity error not flagged
		(continued on next page)

Table 3–11 (Cont.) NI Test (Test 9) Error Codes and Messages

Invalid DMA not flagged

DMA failure during initialization

DMA failure during transmit operation

DMA failure during receive operation

Valid DMA failure

Error Code	Error Code	Description	
(Decimal) (Hexadecimal)			
LANCE DMA F	ailures		
0224	EO	Nonexistent DMA not flagged	

E2

E4

E6

E8

EA

To get more error information, enter the SHOW ERROR command. The format of the additional error information depends on the type of test that fails. The second element of the SHOW ERROR display gives the format number of the SHOW ERROR display. The elements in each format type are as follows:

Error Format: 0001 Error Type: Register error.

001 0001 aaaaaaaa bbbbbbbbb ccccccc

where:

0226

0228

0230

0232

0234

- 001 is the FRU number
- 0001 is the error format number
- aaaaaaaa is the address of the register
- bbbbbbbb is the expected data or data written
- ccccccc is the returned data or data read

Error Format: 0002 Error Type: DMA error.

001 0002 0000aaaa bbbbbbbb cccccccc dddddddd eeeeeee

- 001 is the FRU number
- 0002 is the error format number
- aaaa is the actual value of LANCE register CSR0

- bbbbbbbb is the contents of the parity control register, PAR_CTL
- cccccccc is the DMA address of the device (24 bits)
- ddddddd is the physical address of the MAP register
- eeeeeeee is the contents of the MAP register

Error Format: 000B

Error Type: Network address ROM, address group error.

001 000B aaaaaaa bbbbbbbb ccccccc 0000dddd

where:

- 001 is the FRU number
- 000B is the error format number
- agaaaaaa is the first address of the network address ROM
- bbbbbbbb is the contents of the first 4 bytes of the network address
- cccccccc is the next 2 bytes of the network address and the 2-byte checksum of the network address ROM
- *dddd* is the calculated checksum

Error Format: 000C Error Type: Network address ROM, test pattern error.

001 000C aaaaaaaa bbbbbbbbb cccccccc

where:

- 001 is the FRU number
- 000C is the error format number
- aaaaaaaa is the first address of the network address ROM test patterns
- bbbbbbbb is the first 4 bytes of the test patterns
- cccccccc is the last 4 bytes of the test patterns

Error Format: 000D

Error Type: Initialization error

001 000D 0000aaaa bbbbbbbb 0000cccc dddddddd eeeeeee

- 001 is the FRU number
- 000D is the error format number

- 0000aaaa is the actual value of LANCE register CSR0
- bbbbbbbb is the physical address of the initialization block
- 0000cccc is the mode of the initialization block
- dddddddd is the most significant longword of the logical address filter
- eeeeeeee is the least significant longword of the logical address filter

Error Format: 000E Error Type: Transmit error.

001 000E 0000aaaa bbbbbbbb ceceecee dddddddd

where:

- 001 is the FRU number
- 000E is the error format number
- 0000aaaa is the actual value of LANCE register CSR0
- bbbbbbbb is the physical address of the current transmit descriptor
- cccccccc is the most significant longword of the transmit descriptor
- dddddddd is the least significant longword of the transmit descriptor

Error Format: 000F Error Type: Receive error.

001 000F 0000aaaa bbbbbbbb cccccccc ddddddd

where:

- 001 is the FRU number
- 000F is the error format number
- 0000aaaa is the actual value of LANCE register CSR0
- bbbbbbbb is the physical address of the current receive descriptor
- ccccccc is the most significant longword of the receive descriptor
- *ddddddd* is the least significant longword of the receive descriptor

Error Format: 0010 Error Type: Packet error.

001 0010 0000aaaa bbbbbbbb cccccccc ddddddd

where:

• 001 is the FRU number

- 0010 is the error format number
- 0000aaaa is the actual value of the LANCE register CSR0
- bbbbbbbb is the length of the packet
- cccccccc is the packet pattern or packet index
- ddddddd is the CRC of the packet

Error Format: 0011 Error Type: Interrupt error.

001 0011 0000aaaa bbbbbbbb ccccccc

where:

- 001 is the FRU number
- 0011 is the error format number
- 0000aaaa is the actual value of the LANCE register CSR0
- bbbbbbbb is the contents of the interrupt mask register, INT_MSK
- cccccccc is the contents of the interrupt request register, INT_REQ

3.9 SCSI Test (Test 10) Error Codes and Messages

Table 3-12 lists the error codes and messages that the SCSI test produces.

Error Code	Error Code	Description	
(Decimal)	(Hexadecimal)		
SCSI Interrupt Test Fallures			
0002	2	SCSI reset register test failure	
0004	4	SCSI configuration registers test failure	
0006	6	SCSI FIFO ¹ register test failure	
0008	8	SCSI transfer count registers test failure	
0010	Α	SCSI interrupt/status registers test failure	
0020	14	No cause failure	

Table 3–12 SCSI Test (Test 10) Error Codes and Messages

¹First in/first out (FIFO)

Error Code (Decimal)	Error Code (Hexadecimal)	Description	
SCSI Interrupt Test Failures			
0022	16	High IPL, mask disabled failure	
0024	18	High IPL, mask enabled failure	
0026	1A	Low IPL, mask disabled failure	
0028	1C	Low IPL, mask enabled failure	
SCSI Data Trai	nsfer Test Failures	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
0030	1E	PROM ² function failure	
0032	20	DMA mapping failure	
0034	22	Non-DMA inquiry failure	
0036	24	Not enough data returned	
0038	26	DMA inquiry failure	
0040	28	Non-DMA/DMA comparison failure	
0042	2A	DMA inquiry nonalignment failure	
0044	2C	Non-DMA/DMA nonalignment comparison failure	
0046	2E	Synchronous inquiry failure	
0048	30	Non-DMA synchronous comparison failure	
SCSI Minimal	Device Test Failure		
0050	32	SCSI minimal device test failure	
SCSI Map Erro	or Test Failures		
0060	3C	DMA mapping failure	
0062	3E	DMA inquiry failure	

Table 3-12 (Cont.) SCSI Test (Test 10) Error Codes and Messages

²Programmable read only memory (PROM)

40

42

0064

0066

(continued on next page)

Map error does not clear

Map error does not set

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
SCSI Map Erro	r Test Failures	
0068	44	Parity error does not clear
0070	46	PROM function failure
Miscellaneous	SCSI Test Failures	
0080	50	SCSI PROM function failure
0082	52	SCSI INIT driver failure

Table 3–12 (Cont.) SCSI Test (Test 10) Error Codes and Messages

3.9.1 SCSI Test (Test 10) Additional Error Information

To get additional error information, enter the SHOW ERROR command. The format of the additional error information depends on the type of test that fails. The second element of the SHOW ERROR display gives the format number of the SHOW ERROR display. Each element in the format types is described as follows:

Error Format: 0001 Error Type: Register error.

001 0001 aaaaaaaa bbbbbbbb cccccccc ddddddd

where:

- 001 is the FRU number of the CPU module
- 0001 is the error format number
- aaaaaaaa is the error code
- bbbbbbbb is the address of the register or location under test
- ccccccc is the expected data or data written
- dddddddd is the returned data or data read

Error Format: 000B

Error Type: Register error

001 000B aaaaaaaa bbbbbbbbb ccccccc

where:

• 001 is the FRU number of the CPU module

- 000B is the error format number
- aaaaaaaa is the error code
- bbbbbbbb is the address of the register or location under test
- cccccccc is the information about the error (see Table 3-13)

Error Format: 000C Error Type: Interrupt error

001 000C aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeee ffffffff

where:

- 001 is the FRU number of the CPU module
- 000C is the error format number
- aaaaaaaa is the error code
- bbbbbbbb is the information about the error (see Table 3-13)
- cccccccc is the contents of the interrupt mask register
- *ddddddd* is the contents of the interrupt request register
- eeeeeeee is the contents of the controller status register
- *ffffffff* is the contents of the controller interrupt register

Error Format: 000D

Error Type: Interrupt data returned to the self-test following a SCSI command.

aaa 000D bbbbcccc ddddeeee ffffgggg hhhhhhh

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (the device ID multiplied by 10) plus the logical unit number
- 000D is the error format number
- *bbbb* is the logical unit number
- cccc is the device ID
- *dddd* is the actual command operation code
- eeee is the current command operation code
- *ffff* is the error code

- gggg is the mode of operation (see Table 3-14)
- hhhhhhh is the number of data bytes received

Error Format: 000E Error Type: SCSI command fails.

aaa 000E bbbbcccc ddddeeee ffffgggg hhhhiiii jjjjjjj kkkkllll mmmmmmm

where:

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (the device ID multiplied by 10) plus the logical unit number
- 000E is the error format number
- bbbb is the logical unit number
- cccc is the device ID
- dddd is the actual command operation code
- eeee is the current command operation code
- *ffff* is the error code
- gggg is the mode of operation (see Table 3-14)
- *hhhh* is byte 14 of the request sense packet (device FRU)
- *iiii* is information about the error (see Table 3-13)
- *jijjjj* is the SCSI bus phase at the time of the error
- kkkk is the contents of the controller status register at the time of the error
- *llll* is the contents of the controller interrupt register
- mmmmmmmm is the request sense key

Error Format: 000F

Error Type: The status phase returns an incorrect status. A bad sense key is detected after a request sense.

aaa 000F bbbbcccc ddddeeee ffffgggg hhhhiiii jjjjjjj kkkkkkk

- *aaa* is the FRU number as follows:
 - 001 for the CPU module

- 100 plus (the device ID multiplied by 10) plus the logical unit number
- 000F is the error format number
- bbbb is the logical unit number
- cccc is the device ID
- dddd is the actual command operation code
- eeee is the current command operation code
- *ffff* is the error code
- gggg is the mode of operation (see Table 3-14)
- *hhhh* is byte 14 of the request sense packet (device FRU)
- *iiii* is information about the error (see Table 3-13)
- *jjjjjjjj* is the status byte returned in status phase
- kkkkkkkk is the request sense key

Error Format: 0010

Error Type: Insufficient sense bytes received after request sense command execution

aaa 0010 bbbbcccc ddddeeee ffffgggg hhhhiiii jjjjjjj kkkkkkk

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (device ID multiplied by 10) plus the logical unit number
- 0010 is the error format number
- *bbbb* is the logical unit number
- cccc is the device ID
- *dddd* is the actual command operation code
- eeee is the current command operation code
- *ffff* is the error code
- gggg is the mode of operation (see Table 3-14)
- *hhhh* is byte 14 of the request sense packet (device FRU)
- *iiii* is information about the error (see Table 3-13)

- *jijjijj* is the number of bytes of sense data returned from the request sent
- kkkkkkk is the request sense key

Error Format: 0011 Error Type: Data out phase does not send enough bytes

aaa 0011 bbbbcccc ddddeeee ffffgggg hhhhiiii jjjjkkkk llllllll mmmmmmm

where:

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (the device ID multiplied by 10) plus the logical unit number
- 0011 is the error format number
- bbbb is the logical unit number
- cccc is the device ID
- dddd is the actual command operation code
- eeee is the current command operation code
- *ffff* is the error code
- gggg is the mode of operation (see Table 3-14)
- *hhhh* is byte 14 of the request sense packet (device FRU)
- *iiii* is information about the error (see Table 3-13)
- jijj is the contents of the controller status register at the time of the error
- *kkkk* is the contents of the controller interrupt register at the time of the error
- *lllllll* is the number of bytes sent in the data in or out phases
- mmmmmmmm is the number of bytes that should have been sent in the data in or out phases

Error Format: 0012

Erro. Type: Unsupported message detection.

aaa 0012 bbbbcccc ddddeeee ffffgggg hhhhiiii jjjjjjj kkkkllll mmmmmmm

where:

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (device ID multiplied by 10) plus the logical unit number
- 0012 is the error format number
- bbbb is the logical unit number
- cccc is the device ID
- *dddd* is the actual command operation code
- eeee is the current command operation code
- *ffff* is the error code
- gggg is the mode of operation (see Table 3-14)
- *hhhh* is byte 14 of the request sense packet (device FRU)
- *iiii* is information about the error (see Table 3-13)
- *jijjijj* is the first byte of the message in phase, in which the error occurred
- *kkkk* is the contents of the controller interrupt register at the time of the error
- *Illl* is the contents of the controller status register at the time of the error
- mmmmmmmm is the request sense key

Error Format: 0013 Error Type: Map test error

aaa 0013 bbbbcccc ddddddd eeeeeee fffffff gggggggg hhhhhhhh

iiiiiiii

- *aaa* is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (the device ID multiplied by 10) plus the logical unit number
- 0013 is the error format number
- bbbb is the logical unit number
- cccc is the device ID

- *ddddddd* is the DMA address of the location that contains the SCSI command
- eeeeeeee is the DMA address of the location that contains the SCSI data
- *ffffffff* is the contents of the parity control register
- gggggggg is the map register address
- *hhhhhhh* is the contents of the map register
 - *iiiiiiii* is the error code

Error Format: 0014

Error Type: Data transfer test error. The number of bytes received in two transfers is different.

aaa 0014 bbbbbbbb cccccccc dddddddd

where:

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (the device ID multiplied by 10) plus the logical unit number
- 0014 is the error format number
- bbbbbbbb is the first number of bytes
- cccccccc is the second number of bytes
- *ddddddd* is the error code

Error Format: 0015

Error Type: Data transfer test error. The data bytes received in two transfers are compared and are different.

aaa 0015 bbbbbbbb ceccecc

- aaa is the FRU number as follows:
 - 001 for the CPU module
 - 100 plus (the device ID multiplied by 10) plus the logical unit number
- 0015 is the error format number
- bbbbbbbb is the number of the byte that failed
- cccccccc is the error code

Some of the error formats give error information codes. Table 3-13 lists these information codes.

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0001	1	Valid group code bit in the controller status register is clear
0002	2	Valid group code bit in the controller status register is set
0003	3	Terminal count bit in the controller status register is clear
0004	4	Terminal count bit in the controller status register is set
0005	5	Parity error bit in the controller status register is clear
0006	6	Parity error bit in the controller status register is set
0007	7	Gross error bit in the controller status register is clear
0008	8	Gross error bit in the controller status register is set
0009	9	Interrupt bit in the controller status register is clear
0010	Α	Interrupt bit in the controller status register is set
0011	В	Selected bit in the controller status register is clear
0012	С	Selected bit in the controller status register is set
0013	D	Select with attention bit in the controller interrupt register is clear
0014	Е	Select with attention bit in the controller interrupt register is set
0015	F	Reselect bit in the controller interrupt register is clear
0016	10	Reselect bit in the controller interrupt register is set
0017	11	Function complete bit in the controller interrupt register is clear
0018	12	Function complete bit in the controller interrupt register is set
0019	13	Bus service bit in the controller interrupt register is clear

Table 3–13 Error information Codes

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0020	14	Bus service bit in the controller interrupt register is set
0021	15	Disconnect bit in the controller interrupt register is clear
0022	16	Disconnect bit in the controller interrupt register is set
0023	17	Illegal command bit in the controller interrupt register is clear
0024	18	Illegal command bit in the controller interrupt register is set
0025	19	SCSI reset bit in the controller interrupt register is clear
0026	1A	SCSI reset bit in the controller interrupt register is set
0027	1B	Arbitration not won
0028	1C	Selection timeout
0029	1D	Invalid sequence in sequence step register
0030	1E	FIFO flags are not clear
0031	1F	FIFO flags are clear
0032	20	Unexpected ISR hit
0033	21	SCSI interrupt request set in system interrupt request register
0034	22	SCSI bit in the controller status register is unexpect- edly set
0035	23	Interrupt service routine not entered
0036	24	SCSI interrupt not detected
0037	25	Interrupt bit in the controller status register does not clear
0038	26	SCSI bit in the system interrupt request register does not clear
0039	27	Incorrect request sense key
0040	28	Incorrect status returned from status phase
0041	29	Insufficient sense data returned from a request sense command

Table 3-13 (Cont.) Error Information Codes

Table 3-13 (Cont.) Error Information Codes

Error Code	Error Code	Description
(Decimal)	(Hexadecimai)	والمحافظ والمح
0042	2A	Phase did not go to command phase
0043	2B	Phase did not go to message out phase
0044	2C	Phase did not go to message in phase
0045	2D	Command phase changed too soon
0046	2E	Data out phase changed too soon
0047	2F	Message in phase changed too soon
0048	30	Message out phase changed too soon
0049	31	Stuck in command phase
0050	32	Stuck in message in phase
0051	33	Stuck in message out phase
0052	34	Stuck in data out phase
0053	35	Stuck in data in phase
0054	36	Should not be in message out phase
0055	37	No interrupt after sending the SCSI command
0056	38	No interrupt after sending command complete
0057	39	No interrupt after sending message accepted
0058	3A	No interrupt after sending the transfer information
0059	3B	All data out bytes were not sent
0060	3C	Command complete message was sent, but the device did not release the SCSI bus
0061	3D	Unexpected message reject from device
0062	3E	Incorrect FIFO flag count
0063	3F	Unsupported message
0064	40	Bus device reset was sent, but device did not release the bus
0065	41	Illegal phase
0066	42	Should not be in data phase
0067	43	Device trying to reconnect

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0068	44	Unexpected disconnect message received
0069	45	Unknown device is trying to reconnect
0070	46	Incorrect identity message received on reconnection
0071	47	Number of retries for this command exceeded
0072	48	Too many bytes sent in data out phase
0073	49	Too many bytes sent in data in phase
0074	4A	Reconnection timeout
0075	4B	SCSI parity error
0076	4C	SCSI map error

Table 3–13 (Cont.) Error Information Codes

Some of the error formats give mode values. Table 3-14 lists these mode values.

Mode	Description		
(Hexadecimal)			
0000	Asynchronous mode with programmed I/O		
0001	Asynchronous mode with DMA		
0002	Synchronous mode with DMA		

Table 3-14 Mode Values

3.10 COMM Test (Test 12) Error Codes and Messages

Table 3-15 lists the error codes and messages that the COMM test produces.

Error Code (Decimal)	Error Code (Hexadecimal)	Description	
0001	1	Self-test successful	

Table 3–15 COMM Test (Test 12) Error Codes and Messages

Error Code (Decimal)	Error Code (Hexadecimal)	Description
0002	2	Transmit underflow
0004	4	Transmitter busy
0006	6	Receiver busy
0008	8	Transmitter error
0010	Α	Loss of carrier detect
0012	С	Receiver overflow
0014	Е	Receive CRC error
0016	10	Receive abort
0018	12	Receive nonoctet aligned
0020	14	Receive parity error
0022	16	Receive frame error
0024	18	Receive length too long
0026	1C	Receive DLE follow
0030	1E	No external loopback connector
0032	20	Invalid test specified
0034	22	System timeout waiting for response
0036	24	COMM module timeout
0038	26	System invalid test
0040	28	Communications option self-test failure
0042	2A	Communications option copy to RAM failure
0044	2C	Communications option RAM test failure
0046	2E	Communications option dual RAM access test failure
0048	30	Communications option interrupt test failure
0050	32	Communications option reset test failure
0052	34	Communications option internal loopback failure
0054	36	Communications option external loopback failure (continued on next page)

Table 3-15 (Cont.) COMM Test (Test 12) Error Codes and Messages

.

Error Code	Error Code	Description
(Decimal)	(Hexadecimal)	
0056	38	Communications option modem signal test failure
0058	3A	Communications option H3199 loopback connector failure
0060	3C	Communications option H3248 loopback connector failure
0062	3E	Communications option H3250 loopback connector failure
0064	40	Communications option H3074 loopback connector failure
0066	42	Communications option host internal buffer test failure
0068	44	Communications option external buffer loopback failure
0070	46	Data comparison error
0128	80	IMP IDMA timeout
0130	82	IMP SCC transmit timeout
0132	84	IMP SCC receive timeout
0134	86	IMP command timeout
0136	88	IMP ERR timeout
0138	8A	IMP PB8 timeout
0140	8C	IMP SCM2 timeout
0142	8E	IMP SCM1 timeout
0144	90	IMP watchdog timeout
0146	92	IMP SCP timeout
0148	94	IMP timer 2 timeout
0150	96	IMP SCC3 timeout
0152	98	IMP PB9 timeout
0154	9A	IMP timer 1 timeout
0156	9C	IMP SCC2 timeout

Table 3-15 (Cont.)	COMM Test (Test 12) Error Co	des and Messages
ميريد مرميها والمربي الأندي والأفعينا أتكبر ومتاكف والتكوين		المستكالة سيتصلبهم والمتشارة فتتشيب البينية فتتهموا فالبين	ومتباعد ومحمدان والمحمول والم
Error Code 6	Surar Cada	Description	

Table 3-15 (Cont.) COMM Test (Test 12) Error Codes and Messages

Error Code		Description
0158	9E	IMP IDMA timeout
0160	A0	IMP SDMA timeout
0162	A2	IMP SCC1 timeout
0164	A4	IMP PB10 timeout
0166	A6	IMP PB11 timeout
0168	A8	IMP internal loopback system test failure
0170	AA	IMP external loopback system test failure
0172	AC	IMP timer 1 timeout
0174	AE	IMP timer 2 timeout
0176	В	IMP transmit ready timeout
0178	B2	IMP receive ready timeout
0180	B4	IMP invalid SCC channel
0182	B6	System data comparison error
0184	B8	IMP carrier detect assert timeout
0186	BA	IMP carrier detect deassert timeout
0188	BC	IMP CTS assert timeout
0190	BE	IMP CTS deassert timeout
0192	CO	IMP IDL assert timeout
0194	C2	IMP IDL deassert timeout
0196	C4	IMP incorrect cable connected
0198	C6	IMP no test indicator
0200	C8	IMP no data set ready
0202	CA	IMP no ring indicator
0204	CC	IMP no speed indicator
0206	CE	IMP no carrier detect
0208	D0	IMP no clear to send
0210	D2	IMP power-up block initialization error
0212	D4	IMP DSR assert timeout

Error Code (Decimal)	Etror Code (Hexadecimal)	Description
0214	D6	IMP DSR deassert timeout
0216	D8	IMP reset error
0218	DA	IMP mode initialization error
0220	DC	System memory allocation error
0222	DE	System memory error
0224	EO	UTIL invalid utility number
0226	E2	UTIL invalid cable code
0228	E4	Timeout communications option set response RA
0230	E6	Timeout communications option clear command CA
0232	E8	Timeout communications option set scheduler run SR
0234	EA	Timeout communications option set transmit ready TR
0236	EC	Timeout communications option set receive ready RR
0238	EE	Communications option exception occurred
0240	FO	Communications option command register timeout
0242	F2	Communications option clear to send lost
0244	F4	System test memory allocation error
0246	F6	System test memory free error
0248	F8	Communications option reports invalid configuration
0250	FA	System ROM test failure
0252	FC	System ROM checksum failure
0255	FF	Ctrl/C entered at the console terminal
0256	100	Communications option receive error; CRC follow error

Table 2-15 (Cont.)	COMM Toot	Toet 12)	Error	Codee and	Maceanae
	COMM lest	1031 12	EIIUI	Codes and	Messares

Error Code	Error Code	Description	
(Decimal)	(Hexadecimal)		
0258	102	Communications option MC68302 component not in REV B	
0260	104	Test request sequence error	
0262	106	IMP timeout waiting for host to clear RA	
0264	108	IMP timeout waiting for host to clear SR	
0266	10A	ROM test error	
0268	10C	Reserved operation: FBUG secure error	
0270	10E	Port PB3 signal remains high	
0272	110	Timer 3 not counting	
0274	112	Communications options diagnostic did not complete	
0276	114	Communications options SDMA bus error occurred	
0278	116	Timeout while waiting for IRQ assertion	
0280	118	Maximum number of transmit restart operations (10) exceeded	

Table 3-15 (Cont.) COMM Test (Test 12) Error Codes and Messages

3.10.1 COMM Test Sequence Numbers

The COMM test consists of a sequence of tests. Table 3-16 gives the number and a description of each test.

Table 3–16 COMM Test

Test Number	Test Number	Description	
(Decimal)	(Hexadecimal)		
1	1	Exception vector initialization	
2	2	User interrupt vector initialization	
3	3	Local register RDB initialization	
4	4	Up block initialization	
5	5	Option register initialization	
		(stinue i sentence)	

Test Number (Decimal)	Test Number (Hexadecimal)	Description
6	6	Base register initialization
7	7	Power-up switch initialization
8	8	Get hardware configuration
9	9	System control register initialization
10	А	MC68302 core confidence test
11	В	Clear watchdog timer counter
12	С	Port A initialization
13	D	Port B initialization
14	Е	ISDN configuration
15	F	Local scratch RAM SCR initialization
16	10	Interrupt data block initialization
17	11	Process control block initialization
18	12	Interrupt controller initialization
19	13	Read cable code
20	14	IDMA transfer test
21	15	Initialize rings
22	16	SCC1 ISR enable
23	17	SCC2 ISR enable
24	18	SCC3 ISR enable
25	19	Timer 1 test
26	1 A	Timer 2 test
27	1B	Initialize mode
28	1C	Initialize CP
29	1D	SCC internal loopback test
30	1E	Modem signal test
31	1F	SCC external loopback test
32	20	ISDN test
33	21	Run-time register RDB initialization
		(continued on next page

•

Table 3-16 (Cont.) COMM Test

Test Number (Decimal)	Test Number (Hexadecimal)	Description			
34	22	Run-time SCR RAM initialization			
35	23	Run-time read adapter cable code			
36	24	Run-time interrupt controller initialization			
37	25	Run-time IDB initialization			
38	26	Run-time PCB initialization			
39	27	Run-time communication			
40	28	Run-time initialize transmit and receive rings			
41	29	Run-time SCC1 ISR			
42	2A	Run-time SCC2 ISR			
43	2B	Run-time SCC3 ISR			
44	2C	Run-time timer 1 start			
45	2D	Run-time timer 2 start			
46	2E	Run-time timer 3 start			
47	2 F	Run-time RAM dual access initialization			
48	30	Run-time transfer vector initialization			

Table 3–16 (Cont.) COMM Test

3.10.2 COMM Test (Test 12) Additional Error Information

To get additional error information, enter the SHOW ERROR command. The format of the additional error information depends on the type of test that fails. The second element of the SHOW ERROR display gives the format number of the SHOW ERROR display. Each element in each format type is described as follows:

Error Format: 0001

Error Type: Communications option RAM test errors

020 001 aaaa0000 0000000 0000000 00000000 bbbb0000 ccccdddd eeeeffff

- 020 is the FRU number
- 001 is the error format number
- aaaa is the test status

- bbbb is the data size (1=byte access, 2=word access, 4=longword access)
- cccc is the least significant part of the address
- *dddd* is the most significant part of the address
- eeee is the returned data
- *ffff* is the expected data

Error Format: 0002

Error Type: Communications option self-test errors.

020 0002 aaaabbbb ccddeeff gghhiijj kkkkllll mmmmnnn oooopppp qqqqrrrr

- 020 is the FRU number
- 0002 is the error format number
- aaaa is the test status
- bbbb is the MC68302 diagnostic test number
- cc is the cable code SCC1
- *dd* is the cable code SCC2
- *ee* is the hardware revision
- *ff* is the software revision
- gg is the channel under test (1, 2, or 3)
- *hh* is the electrical interface
- *ii* is the loopback mode (00=internal loopback, 01=external loopback)
- *jj* is the external channel count
- kkkk is the SCC mode
- *IIII* is the communications protocol
- mmmm is the data size
- *nnnn* is the channel speed
- 0000 is the least significant part of the address
- pppp is the most significant part of the address
- qqqq is the expected data

rrrr is the received data

Error Format: 0003 Error Type: Communications option dual access test errors.

020 0003 aaaabbbb ccddeeff gghhiijj kkkkkkk mmmmnnnn oooopppp qqqqrrr

where:

- 020 is the FRU number
- 0003 is the error format number
- aaaa is the test status
- bbbb is the MC68302 diagnostic test number
- cc is the cable code SCC1
- dd is the cable code SCC2
- ee is the hardware revision
- *ff* is the software revision
- gg is the channel under test (1, 2, or 3)
- *hh* is the electrical interface
- *ii* is the loopback mode (00=internal loopback, 01=external loopback)
- *jj* is the external channel count
- kkkk is the SCC mode
- *Illl* is the communications protocol
- mmmm is the data size
- *nnnn* is the channel speed
- oooo is the least significant part of the address
- pppp is the most significant part of the address
- qqqq is the expected data
- *rrrr* is the returned data

Error Format: 0004

Error Type: Communications option interrupt test errors

```
020 0004 aaaabbbb ccddeeff gghhiijj kkkkllll mmmmnnnn oooopppp
qqqqrrr
```

where:

- 020 is the FRU number
- 0004 is the error format number
- aaaa is the test status
- bbbb is the MC68302 diagnostic test number
- cc is the cable code SCC1
- dd is the cable code SCC2
- ee is the hardware revision
- *ff* is the software revision
- gg is the channel under test (1, 2, or 3)
- *hh* is the electrical interface
- *ii* is the loopback mode (00=internal loopback, 01=external loopback)
- *jj* is the external channel count
- kkkk is the SCC mode
- *IIII* is the communications protocol
- mmmm is the data size
- nnnn is the channel speed
- 0000 is the least significant part of the address
- pppp is the most significant part of the address
- qqqq is the expected data
- *rrrr* is the returned data

Error Format: 0005

Error Type: Communications option modem signal test errors

020 0005 aaaabbbb ccddeeff gghhiijj kkkkllll mmmmnnnn oooopppp qqqqrrr

- 020 is the FRU number
- 0005 is the error format number
- aaaa is the test status

- bbbb is the MC68302 diagnostic test number
- cc is the cable code SCC1
- dd is the cable code SCC2
- ee is the hardware revision
- *ff* is the software revision
- gg is the channel under test (1, 2, or 3)
- hh is the electrical interface
- *ii* is the loopback mode (00=internal loopback, 01=external loopback)
- *jj* is the external channel count
- kkkk is the SCC mode
- *Illl* is the communications protocol
- mmmm is the data size
- nnnn is the channel speed
- oooo is the least significant part of the address
- pppp is the most significant part of the address
- qqqq is the expected data
- *rrrr* is the returned data

Error Format: 0006

Error Type: Communications option loopback test errors

020 0006 aaaabbbb ccddeeff gghhiijj kkkkkkk mmmmnnnn oooopppp qqqqrrrr

where:

- 020 is the FRU number
- 0006 is the error format number
- aaaa is the test status
- bbbb is the MC68302 diagnostic test number
- cc is the cable code SCC1
- dd is the cable code SCC2
- ee is the hardware revision

Power-Up Test and Self-Test Error Codes and Messages 3-41

- ff is the software revision
- gg is the channel under test (1, 2, or 3)
- *hh* is the electrical interface
- *ii* is the loopback mode (00=internal loopback, 01=external loopback)
- *jj* is the external channel count
- kkkk is the SCC mode
- *Illl* is the communications protocol
- mmmm is the data size
- nnnn is the channel speed
- 0000 is the least significant part of the address
- pppp is the most significant part of the address
- qqqq is the expected data
- rrrr is the returned data

Error Format: 0007

Error Type: Communications option reset test errors

020 0007 00070000

where:

- 020 is the FRU number
- 0007 is the error format number
- 00070000 indicates that the reset test is running

Error Format: 0008

Error Type: Communications option null request test errors

020 0008 0008

- 020 is the FRU number
- 0008 is the error format number
- 0008 indicates that the null request test is running

Error Format: 0009 Error Type: Used when an exception occurs

020 0009 0000aaaa bbbbcccc dddd0000 0000000 0000eeee ffffgggg 00000000

where:

- 020 is the FRU number
- 0009 is the error format number
- 0000aaaa is the contents of the command status register
- bbbb is the most significant part of the stack pointer
- cccc is the exception vector
- *dddd* is the least significant part of the stack pointer
- eeee is the contents of the status register
- *ffff* is the least significant part of the program counter
- gggg is the most significant part of the program counter
- 00000000 is not used

Error Format: 000A

Error Type: Communications option initialization.

020 000A 00040003 00060005 00080007 00100009 00120011 00140013 00160015

- 020 is the FRU number
- 000A is the error format number
- The remaining elements in the format indicate that the communications option is executing diagnostic instructions.

3.11 ASYNC Test (Test 14) Error Codes and Messages

Table 3-17 lists the error codes and messages that the ASYNC test produces.

Error Code	Error Code	Description		
(Decimal)	(Hexadecimal)			
0256	100	Master reset test failure		
0512	200	DHUID test failure		
0768	300	Write_Read_CSR test failure		
1024	400	Internal Self-test failure		
1280	500	Recv_Interr test failure		
1536	600	Selftest_Fail test failure		
1792	700	Result_Bytes test failure		
2048	800	FIFO_Size test failure		
2304	900	Trans_Interr test failure		
2560	A00	Polled_Wrapback test failure ¹		
2816	B00	Full_FIFO test failure ¹		
3072	C00	Interrupt test failure ¹		
3328	D00	Polled_Modem test failure ¹		
3584	E00	External_Interrupt_modem test failure ¹		
4096	1X00 ¹	Extended mode test failure ¹		

Table 3–17 ASYNC Test Error Codes and Messages

¹These tests also run in extended test mode.

X is in the range A to E for tests that run in extended mode as follows:

A for the polled_wrapback test B for the full_FIFO test

C for the interrupt test D for the polled_modem test

E for the interrupt_modem test

3.11.1 ASYNC Test (Test 14) Additional Error Information

To get additional error information, enter the SHOW ERROR command. The format of the additional error information is as follows:

021 0000 ssssssss cccccccc lprlprlp lllllll rrrrrrr eeeeeee

where:

- 021 is the FRU number
- 0000 is the format type; always zero
- ssssssss is an error subcode
- cccccccc is the value of the ASYNC CSR (3E000000)
- *lprlprlp* is the contents of the line parameter register
- *lllllll* is the serial line number
- rrrrrrrr is the returned data
- eeeeeeee is the expected data

The error subcode has the format:

etis

where:

- e is a mode indication; when set, extended test mode is selected
- t is the number of the test in which the error occurred
- *i* is an indication of where the error occurred; when set, the error occurred in the initial_port function
- s is the error subcode (see Table 3–18)

Table 3–18 ASYNC Test (Test 14) Error Subcodes

Error Subcode	Description			
(Hexadecimal)				
Master_reset Test				
101	Master reset bit in CSR remains set			
102	Internal self-test failure			

DHUID Test

201

Asynchronous option is configured in DHV11 mode

Error Subcode (Hexadecimal)	Description	
Write_Read CSR Tes		,
301	Cannot select line 15 in CSR	
302	Cannot select line 0 in CSR	
Internal_Selftest Test		
401	Master reset bit in CSR remains set	
Recv_Interr Test		
503	No receiver interrupt was generated	
Selftest_Fail Test		
602	Internal self-test failure	·····
		(continued on next page)

Table 3–18 (Cont.) ASYNC Test (Test 14) Error Subcodes

Error Subcode	Description			
(Hexadecimal)				
Result_Bytes Test				
701	Self-test result bytes not in the receiver FIFO			
702	No data available in the receiver FIFO			
703	Unexpected data in the receiver FIFO			
704	Data in receiver FIFO is not valid			
705	Receiver buffer does not contain diagnostic information			
706	Low OCART failure			
707	High OCART failure			
708	RAM failure			
709	RTS/CTS/DCD error on channels 0 to 7			
70A	RTS/CTS/DCD error on channels 8 to 15			
70B	DTR/RI-DSR error on channels 0 to 7			
70C	DTR/RI-DSR error on channels 8 to 15			
70D	Undefined error			
70E	Incorrect sequence code			
70F	Incorrect chip version			
FIFO_Size Test				
801	FIFO size not equal to 64 bytes			
Trans_Interr Test				
901	Illegal transmitter interrupt			

Table 3-18 (Cont.) ASYNC Test (Test 14) Error Subcodes

(continued on next page)

.

Error Subcode (Hexadecimal)	Description
Polled_Wrapback Test	
A01	TXACTION bit not set after data transmission
A02	No data available in receiver FIFO
A03	Unexpected data in receiver FIFO
A04	FIFO_Error Test: data in receiver FIFO is not valid
A05	FIFO_Error Test: receiver buffer contains diagnostic information
A06	FIFO_Error Test: no data available in receiver FIFO
A07	FIFO_Error Test: framing error
A08	FIFO_Error Test: overrun error
A09	FIFO_Error Test: undefined error
A0A	FIFO_Error Test: incorrect line number in received data
A0B	FIFO_Error Test: received character is not the same as transmitted character
A11	Initial_Port Test: transmit FIFO not empty
A12	Initial_Port Test: unexpected characters in receiver FIFO
	(continued on next page)

ŧ

Table 3-18 (Cont.) ASYNC Test (Test 14) Error Subcodes

Error Subcode	Description
(Hexadecimal)	
Full_FIFO Test	
B01	TXACTION bit not set after data transmission
B02	No data available in receiver FIFO
B03	Unexpected data in receiver FIFO
B04	FIFO_Error Test: data in receiver FIFO is not valid
B05	FIFO_Error Test: receiver buffer contains diagnostic information
B06	FIFO_Error Test: no data available in receiver FIFO
B07	FIFO_Error Test: framing error
B08	FIFO_Error Test: overrun error
B09	FIFO_Error Test: undefined error
B0A	FIFO_Error Test: incorrect line number in received data
B0B	FIFO_Error Test: received character is not the same as transmitted character
B11	Initial_Port Test: transmit FIFO not empty
B12	Initial_Port Test: unexpected characters in receiver FIFO
	(continued on next page)

Table 3–18 (Cont.) ASYNC Test (Test 14) Error Subcodes

Error Subcode (Hexadecimal)	Description			
Interrupt Test				
C01	An illegal transmitter interrupt has occurred			
C02	Transmit FIFO is not empty			
C03	Receiver interrupt not generated			
C04	An illegal receiver interrupt has occurred			
C05	Interrupt service routine: no data available in receiver FIFO			
C06	Interrupt service routine: invalid data in receiver FIFO			
C07	Interrupt service routine: received character is not the same as the transmitted character			
C08	Interrupt service routine: TXACTION bit is not set after data transmission			
C11	Initial_Port: transmitter FIFO not empty			
C12	Initial_Port: unexpected characters in receiver FIFO			
Polled_Modern Test				
D01	No modern support			
D02	RTS_DTR_CLEAR failure in low OCART			
D03	RTS_DTR_SET failure in low OCART			
D04	DSRS_CLEAR failure in high OCART			
D05	DSRS_SET failure in high OCART			
D09	RTS_CTS_DTD failure in low OCART			

RTS_CTS_DTD failure in high OCART

DTR_RI_DSR failure in low OCART

DTR_RI_DSR failure in high OCART

Initial_Port: transmitter FIFO not empty

Initial_Port: unexpected characters in receiver FIFO

(continued on next page)

Table 3-18 (Cont.) ASYNC Test (Test 14) Error Subcodes

350	Power-Up	Test and	Self-Test	Error	Codes	and	Messages
-----	----------	----------	-----------	-------	-------	-----	----------

D0A

DOB

D0C D11

D12

Error Subcode (Hexadecimal)	Description			
Interrupt_Modem Test				
E01	Receiver buffer does not contain modem information			
E02	No data available in receiver FIFO			
E03	Unexpected data in receiver FIFO			
E04	Data in receiver FIFO is invalid			
E05	Incorrect line number in received data			
EOF	Received status does not equal transmitted data			
E11	Initial_Port: transmitter FIFO not empty			
E12	Initial_Port: unexpected characters in receiver FIFO			
Extended Mode Test				
1001	Driver/receiver board not installed			
1002	Options register shows invalid configuration			

Table 3-18 (Cont.) ASYNC Test (Test 14) Error Subcodes

4

Utilities Error Codes and Messages

This chapter describes the error codes that the test utilities generate.

4.1 SCSI Utility Error Messages

Table 4-1 lists the error messages that the SCSI utilities produce.

Error Message	Description
SCSI_E_badparam	Illegal parameter entered
SCSI_E_err	Generic utility error
SCSI_E_devtyp	Incorrect device type for this utility
SCSI_E_media	Problem with the removable media
SCSI_E_lun	Logical unit number is not present
SCSI_E_inq_err	Inquiry command error
SCSI_E_modsns_err	Mode sense command error
SCSI_E_modsel_err	Mode select command error
SCSI_E_tur_err	Test unit ready command error
SCSI_E_rwnd_err	Rewind command error
SCSI_E_wrt_err	Write comma nd error
SCSI_E_rd_err	Read command error
SCSI_E_rdcap_err	Read capacity command error
SCSI_E_st_unt_err	Start unit command error
SCSI_E_ver_err	Verify command error
SCSI_E_fint_unt_err	Format unit command error

.

Table 4–1 SCSI Utility Error Messages

(continued on next page)

.

٩

Utilities Error Codes and Messages

Table	4-1	(Cont.	.) SCSI	Utility	Error	Message	\$
				CORRECT DAMAGE AND ADDRESS OF ADDRESS OF	Acres - Acres - Company	AND REAL PROPERTY AND ADDRESS OF ADDRES	-

Error	Message	Description
SCSI_	E_reass_err	Reassign command error
	والمتكافية المستجهين بالتنابي والتناوي والمتناوي والتناوي والتناوي والمتعور	

Description
Incorrect utility number supplied by the user
Incorrect device number supplied by the user
Incorrect logical unit number supplied by the user
Incorrect number of parameters supplied by the user
Device number specified is the same as the SCSI controller
Utility does not run in this mode of operation
A SCSI command did not return enough data
Device specified is not a disk
Device specified is not a tape
Media is not removable
Media is removable
Media is write-protected
Device is not ready
Data read back by SCS1 command is incorrect
Logical unit is not present
Driver initialization failure
Error in format page
Error in flex .e page
PROM function error
Insufficient disk capacity
Error receiving character from console
Illegal floppy drive
Illegal floppy media

Table 4-2 Additional SCSI Information Values for Utilities

5

4.2 COMM Utility Error Codes

Table 4-3 describes the error codes that the COMM utilities produce.

Code	Code	Description	
(Decimal)	(Hexadecimal)		
224	E0	Invalid utility request	<u></u>
226	E2	Invalid test request	
255	FF	Ctrl/C entered	

Table 4–3 SCSI Utility Error Messages

.

This chapter describes the error codes and messages that the system exerciser tests generate.

5.1 DZ System Exerciser Error Messages

The system exerciser generates error messages for failures detected during the DZ test. The format of these error messages is as follows:

?? 3 DZ X ABCD 0 00:00:00

- ?? indicates a hard error
- 3 is the test number
- DZ is the test name
- X is the error code (see Table 5–1)
- ABCD represent the four asynchronous communication lines as follows:
 - A is MMJ port 3
 - B is asynchronous modem control port 2
 - C is MMJ port 1
 - D is MMJ port 0
- 0 00:00.00 is the length of time that the test is running in days hours:minutes:seconds

Error Code	Meaning	
1	Not all characters are transmitted	
2	First character not received	
3	Timeout	
4	More characters received than expected	
5	Parity error	
6	Framing error	
7	Overrun error	
8	Data compare error	

Table 5–1 DZ System Test Error Codes

The system exerciser produces summary screens that show the progress or results of the most recent system exerciser test (see KA45 CPU System Maintenance, Section 3.5.2 or KA47 CPU System Maintenance, Section 3.5.2).

5.2 NI System Exerciser Error Messages

The system exerciser generates error messages for failures detected during the NI test. The format of these error messages is as follows:

?? 9 NI X 00YY 0 00:00:00

- ?? indicates a hard error
- 9 is the test number
- NI is the test mnemonic
- X is the source of the error (see Table 5-2)
- **OOYY** the error code (see Table 5–3)
- 0 00:00:00 is the length of time that the test is running in days hours:minutes:seconds

Value	Source	
1	Test	
2	System test monitor	
3	Device driver	
4	VAXELN	
5	System	
وبصوروه فيوجدنني بالكبي بالتبريه		

Table 5-2 Error Source Indicators

•

Table 5-3	NI System	Exerciser	Error	Codes
-----------	-----------	-----------	-------	-------

Source ¹	Code	Description
	(Hexadecimal)	
1	02	Initialization failure
1	04	LANCE underflow reported
1	06	DMA transmit failure
1	08	Unknown transmit error
1	0A	Receive failure
1	12	DMA receive failure
1	14	Unknown receive error
1	16	Data compare error
2	02	WST\$INIT failure
4	02	Incorrect memory allocation
4	04	Create device failure
4	06	Create area failure
5	02	Unknown transmit error
5	04	Incorrect transmit status
5	06	Own bit of transmit descriptor indicates LANCE
5	08	Incorrect receive status from LANCE
5	0A	Timeout while waiting for receiver interrupt

¹See Table 5-2.

Source ¹	Code	Description
	(Hexadecimal)	
5	0C	Memory error during initialization
5	0E	BABL error during initialization
5	10	MISS error during initialization
5	12	Parity error during initialization
5	14	MAP error during initialization
5	16	Memory error during receive operation
5	18	BABL error during receive operation
5	1A	MISS error during receive operation
5	1C	Parity error during receive operation
5	1E	MAP error during receive operation
5	20	Memory error during transmit operation
5	22	BABL error during transmit operation
5	24	MISS error during transmit operation
5	26	Parity error during transmit operation
5	28	MAP error during transmit operation

Table 5-3 (Cont.) NI System Exerciser Error Codes

The system exerciser produces summary screens that show the progress or results of the most recent system exerciser test (see KA45 CPU System Maintenance, Section 3.5.2 or KA47 CPU System Maintenance, Section 3.5.2).

5.3 SCSI System Exerciser Error Messages

Table 5-4 lists the error codes that the system exerciser produces for SCSI devices.

Code	Code	Description
(Decimai)	(Hexadecimal)	
90	5A	WST call failure
92	5C	ELN call failure
100	64	Inquiry failure during bus sizing
102	66	Not enough data returned during bus sizing
104	68	Start unit failure during bus sizing
106	6A	Test unit ready failure during bus sizing
108	6C	Mode select failure during bus sizing
110	6E	Read capacity failure during bus sizing
112	70	Mode sense failure during bus sizing
114	72	Media is write-protected in the Manufacturin environment
116	74	Not enough mode sense data returned during bus sizing
118	76	Read failure during bus sizing
120	78	Not enough read data during bus sizing
122	7A	Verify failure during bus sizing
130	82	Read failure when checking for key
132	84	Rewind failure when checking for key
134	86	Incorrect number of bytes read when checking for key
140	8C	Read failure when checking for boot block
142	8E	Incorrect number of bytes read when checking for boot block
150	96	NonDMA inquiry failure during data transfer test
152	98	Synchronous DMA inquiry failure during data transfer test
154	9A	Comparison failure on number of bytes in data transfer test

Table 5-4 SCSI System Exerciser Error Codes

(continued on next page)

.

.

Ŧ

•

	SUSI System Exerciser Entri Oudes		
Code (Decimal)	Code (Hexadecimal)	Description	
156	9C	Comparison failure on data in data transfer test	
160	A0	Device test failure	
162	A2	Incorrect number of bytes read during device test	
164	A4	Incorrect number of bytes written during device test	
166	A6	Comparison failure on data during device test	
168	A 8	Reselection timeout during device test	

Table 5-4 (Cont.) SCSI System Exerciser Error Codes

The system exerciser produces summary screens that show the progress or results of the most recent system exerciser test (see KA45 CPU System Maintenance, Section 3.5.2 or KA47 CPU System Maintenance, Section 3.5.2).

5.4 COMM System Exerciser Error Messages

The error codes and messages that the system exerciser reports for the COMM test are the same as the error codes and messages that the self-test reports (see Section 3.10).

The system exerciser produces summary screens that show the progress or results of the most recent system exerciser test (see KA45 CPU System Maintenance, Section 3.5.2 or KA47 CPU System Maintenance, Section 3.5.2).

5.5 ASYNC System Exerciser Error Messages

The system exerciser generates error messages for failures detected during the ASYNC test. The format of these error messages is as follows:

?? 14 ASYNC 21 ABCD 0 00:00:00

- ?? indicates a hard error
- 14 is the test number
- ASYNC is the test mnemonic
- 21 is the FRU number of the asynchronous communications option

- ABCD is an error code as follows:
 - A is not used
 - B is the number of the failing subtest (see Table 5–5)
 - CD is an error code associated with the failing subtest (see Table 5-5)
- 0 00:00:00 is the length of time that the test is running in days hours:minutes:seconds

Table 5–5 ASYNC System Exerciser Error Codes

Code	Description
(Hexadecimal)	
ASYNC Master	Reset Test Failure (B=0)
0001	Error calling ELN kernel
0002	ASYNC main initialization; success boolean set to false after the WST routine
0003	ASYNC main report; success boolean set to false after the WST routine
0004	ASYNC main summary; success boolean set to false after the WST routine
0005	ASYNC main progress; success boolean set to false after the WST routine
0006	Invalid value in configuration register
0007	External testing requested with no input/output panel attached
000E	ASYNC main check; success boolean set to false after the WST routine
001E	ASYNC main eop; success boolean set to false after the WST routine

(continued on next page)

.

4

Code	Description	
(Hexadecimal)		
ASYNC Master Res	et Test Failure (B=1)	
0101	No valid data in receiver FIFO	
0102	Internal hardware self-test failure	
0103	Receiver FIFO should be empty	
0104	Internal self-test did not complete	
0105	RBUF does not contain diagnostic information	
0106	Incorrect sequence of diagnostic information	
0107	Low OCART error during internal self-test	
0108	High OCART error during internal self-test	
0109	RAM error during internal self-test	
010A	RTS/CTS/DCD error on channels 0 to 7 during internal self-test	
010B	RTS/CTS/DCD error on channels 8 to 15 during internal self-test	
010C	DTR/RI-DSR error on channels 0 to 7 during internal self-test	
010D	DTR/RI-DSR error on channels 8 to 15 during internal self-test	
010E	Undefined status error during internal self-test	
010F	Invalid circuit version code detected during internal self-test	
0110	Receiver done bit not set	

Table 5–5 (Cont.) ASYNC System Exerciser Error Codes

ASYNC CSR Test Failure (B=2)

0201

CSR register read failure following a write test

Code	Description	
(Hexadecimal)		
ASYNC Fifo_Byte Test Failure (B=3)		
0301	No valid data in receiver FIFO	
0302	FIFO size register shows FIFO is not empty	
0303	Receiver FIFO is not empty	
0304	Transmitter action not set before timeout	
0305	Receiver data available bit not set before timeout	
0306	Transmit FIFO overrun error	
0307	Parity error	
0308	Frame error	
0309	Data received on an incorrect port	
030A	Received data not the same as the expected data	
030E	Success boolean set to false after the WST routine	
	(continued on next page)	

Table 5–5 (Cont.) ASYNC System Exerciser Error Codes

Code (Hexadecimal)	Description	
ASYNC Fifo_257 Test Failure (B=4)		
0401	No valid data in receiver FIFO	
0402	FIFO size register indicates receiver FIFO is not empty	
0403	Receiver FIFO is not empty	
0404	Transmitter action not set	
0405	Receiver data available bit not set	
0406	Transmitter FIFO overrun error	
0407	Parity error	
0408	Frame error	
0409	Data received on an incorrect port	
040A	Received data not the same as the expected data	
040B	Failure to force overrun error	
040C	Receiver data available bit not set before timeout	
040D	Background monitor error code in receiver FIFO	
040E	Success boolean set to false after the WST routine	
0410	Receiver done bit not set	
	(continued on next page)	

Table 5–5 (Cont.) ASYNC System Exerciser Error Codes

Code	Description	
(Hexadecimal)	
ASYNC Simultaneous_Transmission Test Failure (8=5)		
0501	No valid data	
0502	Incorrect value in FIFO size register	
0503	Receiver FIFO not empty	
0506	Overrun error	
0507	Parity error	
0508	Frame error	
0509	Transmitter action set when transmitter disabled	
050A	Timeout error while waiting for interrupts	
050B	Received data does not equal transmitted data	
050D	Background monitor error	
050E	Success boolean set to false after the WST routine	
0511	Too many characters in the receiver FIFO	
0516	Greater overrun than expected	
0517	Parity error; more characters than expected	
0518	Frame error; more characters than expected	
051B	Incorrect data; more characters than expected	
051D	Background monitor error; more characters than expected	
0521	Not enough characters in the receiver FIFO	
0526	Less overrun than expected	
0527	Parity error; less characters than expected	
0528	Frame error; less characters than expected	
052B	Incorrect data; less characters than expected	
052D	Background monitor error; less characters than expected	
	(continued on next page	

Table 5–5 (Cont.) ASYNC System Exerciser Error Codes

•

.

System Exerciser Error Codes and Messages

Code	Description		
Hexadecimai)			
ASYNC Trans	mit_Interrupt Test Failure (B=6)		
0602	Incorrect value in FIFO size register		
0603	Receiver FIFO not empty		
0609	Transmitter action set when transmitter disabled		
060A	Timeout error while waiting for interrupts		
060E	Success boolean set to false after the WST routine		
ASYNC Polled	d_Modem Test Failure (B=7)		
0701	Modem support bit in status register is set		
0702	Incorrect value in FIFO size register		
0703	Receiver FIFO not empty		
0705	RTS and DTR signals failed to clear within the timeout period		
0706	DSRS signal failed to clear within the timeout period		
0707	DSR and RI signals not set within the timeout period		
0708	DSR, RI, and CTS and DCD or both signals not set within the timeout period		
0709	CTS and DCD signals not set within the timeout period		
070A	SPDMI signal not set within the timeout period		
070B	Illegal response detected in high OCART when clearing the DTF signal		
070C	Illegal response detected in high OCART when setting the DTR signal		
070E	Success boolean set to false after the WST routine		
	(continued on next page)		

Table 5--5 (Cont.) ASYNC System Exerciser Error Codes

System Exerciser Error Codes and Messages

Code	Description	
(Hexadecimai)		
ASYNC Interru	upt_Modem Test Failure (B=8)	
0801	No valid data in receiver FIFO	
0802	Incorrect value in the FIFO size register	
0803	Receiver FIFO not empty	
0808	Not diagnostic information but an error returned	
0809	Data received on an incorrect port	
0810	Receiver done bit is not set	
0811	Receiver data available bit set when it should not be set	
080A	Received character is not the same as the transmitted character	
080C	Receiver data available bit not cleared when the last character is removed	
080E	Success boolean set to false after the WST routine	
ASYNC RX_IS	r Test Failure (B=A)	
0A01	Data transmitted on an unused line	

Table 5–5 (Cont.) ASYNC System Exerciser Error Codes

The system exerciser produces summary screens that show the progress or results of the most recent system exerciser test (see KA45 CPU System Maintenance, Section 3.5.2 or KA47 CPU System Maintenance, Section 3.5.2).

The contents of the BPS register indicates the data rate. Table 5-6 shows the BPS register values and the corresponding data rates.

System Exerciser Error Codes and Messages

Bits 3:0	Data Rate	
0000	50	
0001	75	
0010	110	
0011	134.5	
0100	150	
0101	300	
0110	600	
0111	1200	
1000	1800	
1001	2000	
1010	2400	
1011	4800	
1100 .	7200	
1101	9600	
1110	19200	
1111	38400	

Table 5-6 Data Rate Indication in BPS Register

This chapter describes the codes that the KA45 CPU module or the KA47 CPU module display on the LED display. Figure 6-1 shows the location of the LED display on the KA45 CPU module.

Figure 6-1 Location of LED Display on KA45 CPU Module

Figure 6-2 shows the location of the LED display on the KA47 CPU module.

Figure 6–2 Location of LED Display on KA47 CPU Module

In general, the LED display shows codes in two fields. The four LEDs on the left (when viewed from the back of the system unit) display the device number, whereas the four LEDs on the right display a subtest number. The console program generates codes in the range E0h to FFh.

When the console terminal does not display the console prompt, the code on the LED display shows a status that indicates the part of the test diagnostic firmware that the KA45 CPU module is executing.

When the console terminal displays the console prompt, the code on the LED display indicates the device that fails a test. Table 6-1 lists the power-up test and initialization codes.

LED Display ¹	Code	Description	
	(Hexadecimal)		
1111 1111	FF	Power applied, but no ROM instructions executed	
1111 1110	FE	Starting system initialization and self-test	
1111 1101	FD	Initializing the system memory	
1111 1100	FC	Sizing the system memory	
1111 1011	FB	Running the byte mask test on the system memory	
1111 1010	FA	Running the full data path test on the system memory	
1111 1001	F9	Initializing the console data structures	
1111 1000	F8	Running the auto configuration code on the system	
1111 0111	F7	Testing the NVR device	
1111 0110	F6	Testing the DZ device	
1111 0100	F4	Initializing the console device	
1111 0011	F3	Passing control to the console program	

Table 6-1 Power-Up Test and Initialization Codes

÷

¹The number 1 indicates that the LED is on; the number 0 indicates that the LED is off.

Table 6-2 lists the codes that the LED display shows during the NVR device test.

Table 6-2	NVR Test ((Test 1)	Error Codes
-----------	------------	----------	-------------

LED Display ¹	Code (Hexadecimal)	Description
0001 0000	10	TOY clock test failure
0001 0001	11	NVR test failure

¹The number 1 indicates that the LED is on; the number 0 indicates that the LED is off.

LED Display Codes 6-3

Table 6-3 lists the codes that the LED display shows during the DZ device test.

LED Display'	Code	Description
	(Hexadecimai)	
0011 0000	30	DZ test code executing
0011 0001	31	Reset test failure
0011 0010	32	Modem test failure
0011 0011	33	Polled test failure
0011 0100	34	Interrupt test failure
		د

Table 6–3 DZ Test (Test 3) Error Codes

Table 6-4 lists the codes that the LED display shows during the CACHE device test.

LED Display ¹	Code	Description
	(Hexadecimal)	
0100 0001	41	Data store read/write error
0100 0010	42	Tag store read/write error
0100 0011	43	Valid bit not set
0100 0100	44	Tag validation error
0100 0101	45	Unexpected tag parity error
0100 0110	46	Cache memory does not provide expected data during cache hit test
0100 0111	47	Parity error
0100 1000	48	Tag not valid during cache hit test
0100 1001	49	Data not expected during cache hit test
0100 1010	4A	Write through test failure; the information in the data store is incorrect
0100 1011	4B	Write through test failure; the information in the memory is incorrect
0100 1100	4C	Write error

Tab	le 6-4	CACHE	Test	(Test 4)	Error	Codes
-----	--------	-------	------	----------	-------	-------

.

¹The number 1 indicates that the LED is on; the number 0 indicates that the LED is off.

Table 6-5 lists the codes that the LED display shows during the MEM device test.

LED Display ¹	Code (Hexadecimal)	Description
0101 0000	50	Byte mask test failure
0101 0001	51	Error occurred in the forward pass
0101 0010	52	Error occurred in the reverse pass
0101 0011	53	Error in parity test 1
0101 0100	54	Error in parity test 2

Table 6-5 MEM Test (Test 5) Error Codes

¹The number 1 indicates that the LED is on; the number 0 indicates that the LED is off.

Table 6-6 lists the codes that the LED display shows during the SYS device test.

Table 6-6 SYS Test (Test 8) Error Codes

LED Display ¹	Code (Hexadecimal)	Description
1000 0000	80	ROM verification test failure
1000 0001	81	Interrupt controller test failure
1000 0010	82	Invalidate filter test failure
1m 1		

'The number 1 indicates that the LED is on; the number 0 indicates that the LED is off.

Table 6-7 lists the codes that the LED display shows during the NI device test.

LED Display ¹	Code (Hexadecimal)	Description
1001 0000	90	Executing NI device test code
1001 0001	91	Network address test failure
1001 0010	92	Register test failure
1001 0011	93	Initialization test failure
1001 0100	94	Internal loopback/DMA test failure
1001 0101	95	Interrupt test failure
1001 0110	96	CRC test failure
1001 0111	97	Receiver MISS/BUFFER test failure
1001 1000	98	Collision test failure
1001 1001	99	External loopback test failure
1001 1010	9A	Address filtering test failure
1001 1011	9B	Transmit buffer test failure

Table 6-7 NI Test (Test 9) Error Codes

.

Table 6-8 lists the codes that the LED display shows during the SCSI device test.

LED Display'	Code	Description				
	(Hexadecimal)					
1010 0000	A0	Executing SCSI device test code				
1010 0001	A1	Register test failure				
1010 0010	A2	Interrupt test failure				
1010 0011	A3	Data transfer test failure				
1010 0100	A4	Map error test failure				
1010 0101	A5 Minimal device test failure					
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

Table 6-8 SCSI Test (Test 10) Error Codes

¹The number 1 indicates that the LED is on; the number 0 indicates that the LED is off.

Table 6-9 lists the codes that the LED display shows during the COMM device test.

LED Display ¹	Code (Hexadecimal)	Description			
1100 0000	CO	Executing COMM device test code			
1100 0001	C1	Option ROM test failure			
1100 0010	C2	Option RAM test failure			
1100 0011	C3	Option self-test test failure			
1100 0100	C4	Option dual RAM access test failure			
1100 0101	C5	Option dual ROM/RAM access test failure			
1100 0110	C6	Option interrupt test failure			
1100 0111	C7	Option integrated loopback test failure			
1100 1000	C8	Option reset test failure			

Table 6–9 COMM Test (Test 12) Error Codes

Table 6-10 lists the codes that the LED display shows during the ASYNC device test.

LED Display ¹	Code	Description			
	(Hexadecimal)				
1110 0000	EO	Executing ASYNC device test code			
1110 0001	El	Master_reset test failure			
1110 0010	E2	DHUID test failure			
1110 0011	E3	Write_read_csr test failure			
1110 0100	E4	Internal self-test failure			
1110 0101	E5	Recv_interr test failure			
1110 0110	E6	Selftest_fail test failure			
1110 0111	E7	Result_bytes test failure			
1110 1000	E8	FIFO_size test failure			
1110 1001	E9	Trans_interr test failure			
1110 1010	EA	Polled_wrapback test failure			
1110 1011	EB	Full_FIFO test failure			
1110 1100	EC	Interrupt test failure			
1110 1101	ED	Polled modem test failure			
1110 1110	EE	Interrupt modem test failure			

Table 6-10	ASYNC	Test (	(Test 14)	Error	Codes
------------	-------	--------	-----------	-------	-------

.

.

## Glossary

The glossary defines some of the technical terms used in this manual.

#### ASCII

American standard code for information interchange.

#### Bootstrap

A link between console mode (the system firmware) and programming mode (the operating system).

#### CPU

Central processing unit. The main unit of a computer containing the circuits that control the interpretation and execution of instructions. The CPU holds the main storage, arithmetic unit, and special registers.

#### CRC

Character code recognition. The use of pattern recognition techniques to identify characters by automatic means.

#### CSR

Control status register. A register used to control the operation of a device and record the status of an operation or both.

#### DMA

Direct memory access. A method of accessing a device's memory without interacting with the device's CPU.

#### **FIFO**

First-in/first-out. A method used for processing or recovering data in which the oldest item is processed or recovered first.



#### FPU

Floating-point unit. A unit that handles the automatic positioning of the decimal point during arithmetic operations.

#### FRU

Field replaceable unit.

#### Π

Interval timer.

#### MMJ

Modified modular jack.

#### NVR

Nonvolatile random access memory. A memory device that retains information in the absence of power.

#### PROM

Programmable read-only memory. A read-only memory device that can be programmed.

#### RAM

Random access memory. A read/write memory device.

#### ROM

Read-only memory. A memory device that cannot be altered during the normal use of the computer.

#### RPB

Restart parameter block.

#### SCSI

Small computer system interface. An interface designed for connecting disks and other peripheral devices to computer systems. SCSI is defined by an American National Standards Institute (ANSI) standard.

#### SP

Stack pointer. An address location that contains the address of the processordefined stack. The processor-defined stack is an area of memory set aside for temporary storage or for procedure and interrupt service linkages.

#### TOY

Time of year.

#### VMB

Virtual machine bootstrap. The VMB program loads and runs the operating system.

#### VMS

Virtual memory system. The operating system for a VAX computer.

• •



## Index

## A

ASYNC test asynchronous modes, 3-30

## B

BOOT command, 1-1 Boot device setting, 1-12 viewing, 1-19 Boot flags setting, 1-10 viewing, 1-19

## C

! command, 1-27 Comment command, 1-27 Configuration viewing, 1-19 **Console** commands !, 1-27 BOOT, 1-1 CONTINUE, 1-2 DEPOSIT, 1-2 EXAMINE, 1-5 FIND, 1-6 HALT, 1-7 HELP, 1-7 INITIALIZE, 1-8 LOGIN, 1-9 REPEAT, 1-10 SET, 1-10

Console commands (cont'd) SET FBOOT, 1-13 SHOW, 1-19 SHOW BFLG, 1-19 START, 1-25 TEST, 1-26 UNJAM, 1-26 X, 1-26 Console program error codes, 2-1 error messages, 2-1 Console security setting, 1-15 Console security condition viewing, 1-25 Console security feature values, 1-15 CONTINUE command, 1-2

## D

DEPOSIT command, 1-2 Device descriptor, 1-2 Device status viewing, 1-20 Diagnostic test codes, 6-1 Diagnostic test environments, 1-13 setting, 1--12 viewing, 1-21





#### E

Error codes console program, 2-1 power-up test, 3-1 self-test, 3-1 Error information viewing, 1-21 Error messages console program, 2-1 power-up test, 3-1 self-test, 3-1 system exerciser, 5-1 utilities, 4-1 Ethernet address format of, 1-22 viewing, 1-22 EXAMINE command, 1-5

## F

Fast boot flag setting, 1-13 viewing, 1-23 FIND command, 1-6

## Η

Halt action flag setting, 1-14 values, 1-14 viewing, 1-23 HALT command, 1-7 HELP command, 1-7

## I

INITIALIZE command, 1-8

## L

LED display codes, 6-2 LOGIN command, 1-9

## M

Memory addressing mnemonics, 1--3 operators, 1--4 qualifiers for, 1--2 typical examples, 1--5 Memory configuration viewing, 1--23

## N

Network listener status setting, 1-14 values, 1-14 viewing, 1-24

## Ρ

Password changing, 1-16 entering, 1-16 Power-up test error codes, 3-1 error messages, 3-1 Primary bootstrap program function of, 1-1

## R

Radix setting, 1-17 values, 1-17 viewing, 1-25 Remote trigger utility setting, 1-18 values, 1-18 viewing, 1-25 REPEAT command, 1-10 Restart parameter block See RPB RPB finding, 1-6

## S

SCSI controller ID setting, 1-18 values, 1-18 viewing, 1-25 Self-test error codes, 3-1 error messages, 3-1 SET BOOT command, 1-12 SET BOOT FLAGS command, 1-10 SET DIAGENV command, 1-12 SET FBOOT command, 1-13 SET HALT command, 1-14 SET MOP command, 1-14 SET PSE command, 1-15 SET PSWD command, 1-16 SET RADIX command, 1-17 SET SCSI command, 1-18 SET TRIG command, 1-18 SHOW BFLG command, 1-19 SHOW BOOT command, 1-19 SHOW CONFIG command, 1-19 SHOW DEVICE command, 1-20 SHOW DIAGENV command, 1-21 SHOW ERROR command, 1–21 SHOW ESTAT command, 1-22 SHOW ETHERNET command, 1–22 SHOW FBOOT command, 1-23 SHOW HALT command, 1-23 SHOW KBD command, 1-23 SHOW MEM command, 1-23 SHOW MOP command, 1-24 SHOW PSE command, 1-25 SHOW RADIX command, 1-25 SHOW SCSI command, 1-25 SHOW TRIG command, 1-25 START command, 1-25 System configuration viewing, 1-19

System errors viewing, 1-21 System exerciser error codes, 5-1 error messages, 5-1 System initialization processor values, 1-8 System status viewing, 1-22

## T

Test codes, 6–1 TEST command, 1–26 Transfer command, 1–26

## U

UNJAM command, 1-26 Utilities error codes, 4-1 error messages, 4-1

#### ۷

Virtual machine boot See VMB VMB function of, 1–1

## X

X command, 1-26