
r

M E M O R A N D U M N U M B E R S I X - E

PROGRAMMING S O F T W A R E S T A T U S R E P O R T

Submitted by Bolt Bercmek and Newman Inc Cambridge, Massachusetts 1 May, 1966

HOSPITAL COMPUTER PROJECT*

M E M O R A N D U M S I X E

Status Report on Programming Software

Submitted by

BOLT BERANEK AND NEWMAN INC

Medical Information Technology Department

Jordan J. Barueh, Principal Investigator, ±962-1966
Paul A. Castleman^ Principal Investigator^ 1966-
Richard H. Bolt, Supervisor^ ±966-

Nancy Adams
John Barnaby
Sheldon Boilen
Richard A. Bolt
Michael Cappelletti
Jonathan Cole
Bernard Cosell
Edward Gilbert
Edith Grossman
Nancy Haggerty
Alice Hartley
Gray Hodges

Toby Jensen
Charles Jones
Larry Kershaw
Philip LaPollette
Nancy Lambert
Maureen Letu
Sanford Libman
Barbara Lieb
William Lucci
Richard Mahoney
Ernest McKinley
Charles Morgan
Andrew Munster

Nicholas Pappas
Robert Payson
Lawrence Polimeno
Sylvia Sarafian
William Slack
Sandra Sommers
Lee Stein
Peter Storkerson
Sally Teitelbaum
Frederick Webb
Walter Weiner
Steven Weiss

* This joint research project Is supported by Grant PR 00263 and
Contract PH 43-62-850 from the National Institutes of Health and
the American Hospital Association. Efforts contributed by the
Laboratory of Computer Science3 Massachusetts General Hospital^
are directed by Principal Investigator G. Octo Barnett, M.D.
The report, Memorandum Six E, gives a technical description of
programming software developed by BBN for the computer system
•being used on this project.

Report No. 1422 Bolt Beranek and Newman Inc

TABLE OP CONTENTS

INTRODUCTION . i

*~ I. The Midas Assembly System : ±'

A. Introduction to Assembly 2

._ 1. The Midas Source Language 5

a. The Character Set 6

b. Legal Strings 7

1. Basic Strings 7

2. Complex Strings 9

(i) Language Units 9

(ii) Combining Operators 9

*" 2. The Assembly Program 11

a. The Current-Location Counter 11

«. b. The Symbol Table „ . „ 14

c. The Radix Indicator 14

^ 3. Defining Symbols 15

a. Address Tags 15

b. Variable Names 16

c. Assigned Parameters 17

4. The Use of Expressions 17

a. Storage Words . 17

b. Constants . 18

.— c. Location Assignments 19

5. Source Program Format 19

_ B. Pseudo-Instructions 22

1. OCTAL and DECIMAL 22

2. CHARACTER, PLEXO, and TEXT 22

3o CONSTANTS 24

4. VARIABLES 26

5. DIMENSION 27

Report No. 1422 Bolt Beranek and Newman Inc

TABLE OP CONTENTS cont

6. EQUALS and OPSYN „ . „ 27

7. NULL . 28

8. OFFSET 29

9. REPEAT . 31

10. START . 32

11. EXPUNGE 33

12. WORD . 33

13. 0IF and IIP 34

14. PRINT and PRINTX B 36

15- STOP . 37

C. Macro-Instructions 39

1. Macro-Definitions 39

a. Basic Format 40

b. Dummy Arguments 4l

2. Macro Calls 43

3. Storage of Macro-Instructions . . „ 44

4. Nested Macros . . „ . 45

5. The Pseudo-Instructions IRP and IRPC . 0 . . . 49

D. Operation of the Midas Assembly System 53

1. Preparation of a Source-Language Program . . „ 53

2. Performing an Assembly 53

a. Initial Procedure 0 53

b. The Control Language 5̂

3. Order of Operations . . o 5&

4. Binary Output Format 58

E. Error Checking; . . . „ „ . „ „ . „ „ „ „ . „ . . .60

Report No. 1422 Bolt Beranek and Newman Inc

TABLE OF CONTENTS cont.

II. Editor 65

A. Control Characters . . . 66

B. Paper Tape Commands 6"7

C. Filing Operations &8

D. Special Characters 6'9

III. DDT 71

A. Register Examination 9 73

B. Special Registers in DDT 76

C. DDT-Output Control 78

D. Special Input Symbols . . . 80

E. Symbol Definition . Q±

F. Searching Operations 82

G. Filing Operations . . 83

H. Loading the Program 85

I. Running the Program 87

J. Punching Operations . . 89

K. Error Comments 90

L. Miscellaneous Functions e 91

IV. Handle t 92

A. Programming System Files 93

B. Handle Commands 9 97

1. The Control Language for Files 98

2. The Control Language for Tape Manipulation, .101

Appendix A Midas Character Set * .A-l

Appendix B Symbols In Permanent Midas Vocabulary 0 t m .B-l

Appendix C Teletype Code Conversion C-l

Report No. ±422 Bolt Beranek and Newman Inc

HOSPITAL COMPUTER PROJECT

STATUS REPORT MEMORANDUM SIX E

. : PROGRAMMING SOFTWARE

INTRODUCTION

This is the fifth volume of Memorandum Six,, a series of reports
describing the Hospital Computer System developed by Bolt
Beranek and Newman in collaboration with Massachusetts General
Hospital3 under sponsorship of the National Institutes of
Health and the American Hospital Association. Other volumes
in the series describe the system hardware^ the time-sharing
Executive and Common Routines,, the hospital user programs,
and the information storage and retrieval programs.

This volume describes the on-line Programming System that is
used to compose., edit., assemble., and debug software for the

PDP-lb-45^ the central processor designed for use in the
collaborative project.

The current Programming System,, with its full range of pro-
gramming aids., is the realization of goals first approached
at Bolt Beranek and Newman by the Simbug System. Simbug5 one
of the first operating time-shared systems in the general-
purpose category,, enabled several users to perform debugging
operations simultaneously. The on-line Programming System
described here accommodates a full staff of programmers and
offers each of them,, in effect, sole access to a general-
purpose computer.

Report No. ±422 Bolt Beranek and Newman Inc.

The system consists of four programs: Midas., a macro-
assembler; Editor, a symbolic text editor; the DDT debugging
program; and Handles a program that provides for the manipu-
lation of files generated by the three other programs in the
system.

Chapter I contains a detailed description of the Midas
assembly language, Midas offers the programmer a wide range
of expression, permitting him to deal with individual computer
words or to manipulate large blocks of computation.

Chapter II describes Editor, the on-line text editor used for
preparing symbolic programs to be assembled by Midas.

Chapter III provides a description of DDT, the system's de-
bugging and control program. DDT serves two purposes within

the Programming System. First, it is used to check out and
correct new programs that, for this purpose, run under its
control. Second, DDT controls the running of Midas, Editor,
and Handle, providing inter-program communication within the
Programming System. ,

The final chapter, Chapter IV, describes Handle. The dis-
cussion of Handle includes, in addition to its actual functions
and commands, a description of the file organization for the
entire Programming System.

11

Report No9 1422 Bolt Beranek and Newman Inc.

I. THE MIDAS ASSEMBLY SYSTEM

The Midas Assembly System described in this volume was adapted

by Bolt Beranek and Newman from the Midas Assembler originally

written for the PDP-1 at Massachusetts Institute of Technology.

Some features of the Massachusetts Institute of Technology's

system have been eliminated. Other features have been added

to take advantage of the file structure of the Bolt Beranek

and Newman system and to provide on-line assembly via Teletype

terminal.

Like the Massachusetts Institutes of Technology's version of

Midas,, the Bolt Beranek and Newman system incorporates the

basic features of the Macro Assembly Program. Macro was also

developed at the Massachusetts Institute of Technology^ first

for the TX-j# computer, and then for the PDP-1. The major de-

parture that Midas makes from Macro lies in the handling of

macro-instructions. A macro-definition in a Macro source

program is partially assembled when first encountered] that

is, everything except dummy symbols is translated into machine

language and stored in the macro table. In Midas the actual

source language text of the definition is stored in the macro

table3 and a complete assembly is performed each time the macro

is used. This method significantly extends the system's macro-

instruction capabilities^ permitting recursive and conditional

definitions. The advantage gained by the Midas method for :

storing macro-definitions will become clear when macro-

instructions are discussed in detail later in this section.

The following pages assume that the reader has a working

knowledge of basic PDP-1 mnemonic codes and their octal

—1—

Report No. 1422 Bolt Beranek and Newman Inc

representations. The reader who does not is referred to

Volume Six A of this Memorandum., Chapter II, Section B^

page l6.

A. INTRODUCTION TO ASSEMBLY

A problem that can be expressed quite briefly in words or

mathematical notation will often^ when put in the form of a

computer program written in machine language, require

hundreds of computer instructions. Since the value and loca-

tion of each of these must be fully specified^ the clerical

effort involved in writing a long program may exceed that

expended in analyzing the problem in terms of individual

computer operations. Further inconveniences that arise from

handling large amounts of information in the form of numerical

code are the introduction of clerical errors into a correctly

formulated program and the need for detailed documentation so

that others may understand the coding.

Report No. ±422 Bolt Beranek and Newman Inc.

Such difficulties led to the development of translating pro-
grams that make a computer available as an aid in the prepa-
ration and documentation of the programs that will be run on
it. These translators permit the programmer to express a
computation in terms of a convenient mnemonic language (the
source language),, which the translating program is able to
translate into machine code (the object language).

Two general categories of translating programs, compilers and
assemblers, have been developed to accept symbolic input and
produce binary output. Compilers are translators that are

"problem-oriented"; that is,.the various compiling programs
are designed to interpret a symbolic language similar to the
language in which the problem would originally be stated.
Thus, a compiler designed for mathematical applications would
accept mathematical expressions, and in addition to translat-
ing the numbers and symbols into appropriate quantities,
would translate the entire expression into an appropriate
sequence of computer instructions. A PDP-1 compiler3 for
example, might translate the expression Z=X+Y into the series
—LAC X, ADD Yj DAC Z. In the same way, compilers designed
for business applications are designed to accept a language
in which it is convenient to state business problems.

Because they accommodate various users in terms with which
they are familiar, compilers permit a person with a limited
knowledge of computers to write his own programs. Assemblers,
on the other hand, are "computer-oriented," consisting prin-
cipally of instructions which correspond to internal computer
instructions. The simplest assemblers also include a minimal
number of rudimentary control operations that direct the
translation process.

-3-

Report No« ±422 Bolt Beranek and Newman Inc.

The Midas Assembly Program , while offering all the basic as-

sembly features j belongs to a class of extended assembly pro-

grams referred to as macro-assemblers. Macro-assemblers such

as Midas provide an extensive set of control operations (Midas

pseudo-instructions) which ̂ in principle,, make it possible for

the assembly program to perform computations analogous to

those of any object program it can produce.

Most notable in this respect are the Midas macro-instruction

features^ which permit the programmer to define a special pur-

pose abbreviative language to suit his own needs. Using

pseudo-instructions provided for that purpose , a user can

name a complex coding sequence and provide for varying parameters .

The name is then, in effect, an abbreviation of the sequence that

will be substituted for it at assembly time^ with desired param-

eters inserted in their proper contexts . A programmer might,,

for example.? take a sequence such as LAC ADD Y, DAC

assign it the name ADDXY^ specify that Xj Y, and Z are dummy

symbols for which program symbols will be substituted as de-

sired and then use merely the macro name ADDXY followed by

appropriate symbols throughout the rest of the source program.

The assembler will generate the predefined coding just as the

compiler generates coding appropriate to the expression it is

interpreting6 Other pseudo-instructions available in Midas

are ones that provide means for performing assembly-time list

processing,, symbol manipulation^ and loop termination as well

as for changing the course of assembly in response to certain

conditions.

Report No. ±422 Bolt Beranek and Newman Inc

Formal constraints on the construction and manipulation of

symbols are few,, so the programmer may,, within the range of

processor capabilities^ vary formats to suit particular

programs. The programmer is free to ignore any of the special

features and use Midas as a simple mnemonic code translator.

The formal rules of the Midas source language and basic pro-

cessor references are described in Section I-A.

Section I-B describes the functions and formats of all system

pseudo-instructions.,

Section I-C explains the use of macro-instructions' for per-

forming an assembly.

Section I-D provides instructions for performing an assembly.

Error conditions that are detected during an assembly and as-

sociated error messages are listed in Section I-E.

The notation used in this volume includes some special symbols

\ represents carriage return. -»| represents a tab.

Quotation marks indicate the pressing of the Control key on

the Teletype keyboard. The symbols < > are used to enclose

text that would normally be set off by quotation marks. Un-

less otherwise noted,, all integers appearing in the text are

octal integers.

1. The Midas Source Language

A Midas source program is a string of alphanumeric and opera-

tional characters. Prom this string the Midas assembly pro-

gram produces the words that make up the object program and

Report No. ±422 Bolt Beranek and Newman Inc

places these words in their proper locations in memory. In

order to accomplish this,, the assembler must interpret the

source program as a series of meaningful strings. In most

cases9 a string that is meaningful to the assembler represents

a word in the object program. In other cases^ the string may

direct the assembler to produce several or no words in the

object program.

This section describes the mechanics of creating legal Midas

character strings,, the references that the assembly program

uses in associating character strings with binary values,, the

conventions that instruct Midas as to the type of value or

actual value a string is to represent^ and the overall source

program format requirements.

The source program, described above as a single string of

characters is3 more precisely, a system of arbitrary strings^

each of which consists of individual characters Juxtaposed ac-

cording to formal conventions. The construction of legal

strings is hierarchical in nature. The lowest level constitu-

ent strings are formed from the alphabetic members of the char-

acter set. Higher level constituent strings are'constructed

from previously defined constituent strings using those members

of the character set which function as combining operators. The

type of object a constituent string represents is indicated by

punctuation characters.

a. The Character Set

The complete character set from which the source language is

constructed is included in Appendix A, It consists of all

characters on the Teletype keyboard net specified as illegal.

Report No. ±422 Bolt Beranek and. Newman Inc

The character set is generally divided into the following

categories:

alphanumeric characters:

combining operators:

punctuation characters

The letters A-Z and the
character,, <„>(period)*,,
which may "be constituents
of symbols; and the digits
$-9 3 which may be constitu-
ents of symbols or integers„

Single characters represent-
ing fixed arithmetical or
logical operations to be
performed by Midas.

These serve as string de-
limiters. A string-
delimiting character may
serve a variety of purposes
depending on its use.
String delimiters in gen-
eral identify individual
strings and often indicate
the manner in which a string
is to be interpreted. See
Appendix A for complete
listing. Most generally used
delimiters are space,,
and carriage return.

b. Legal Strings

(l) Basic Strings

The minimum character strings required to represent values in

the source program are symbols or integers, formed as follows

*The character <.> also denotes a decimal number (as in
and may also be used to represent the value of the current loca-
tion.

-7-

Report No. ±422 Bolt Beranek and Newman Inc.

Integers

An integer is a string of digits (03±3...9)
that is evaluated as octal or decimal ac-
cording to the radix prevailing at its ap-
pearance. The integer value is its repre-
sentation as an l8.-bit binary number which
restricts integer values to 777777 if the
radix is set for octal and to 262143 for
decimal. An integer above these limits
will be evaluated modulo

Symbols

A symbol is defined as a string of characters,,
the first six of which must distinguish it
from all other symbols .

Letters s numbers 3 and periods may be used as
symbol constituents^ but at least one of the
identifying six must be a letter.

Longer symbols^ useful for mnemonic or docu-
mentary purposes,, may be used^ since the Midas
processor ignores any character except a ter-
minator in excess of six.

Symbols for macro names and pseudo-instructions are subject to

the same restrictions as symbols for numerical values.

Note that the symbols <READIN> and <READINTAPE> are both legal

symbolsj if used in the same source program^ they both will ap-

pear to the assembler as <READIN> and will be used interchange-

ably. If distinct symbols are desired^ care must be taken to

differentiate symbols within their first six characters.

-8-

Report No. ±422 Bolt Beranek and Newman Inc.

(2) Complex Strings

(i) Language Units

Complex strings may be formed from basic strings by use of

characters that are provided as combining operators. Although

integers and symbols are the only basic strings in the Midas

language that are formed by purely alphanumeric concatenations^

a complex string may be bracketed and function in the same way

as a basic string in a new combination. In discussing the con-

struction of complex strings^ language units will be called

either syllables or expressions as defined below.

Syllable

A syllable is any component string of an
expression whose value is independent of
its use in the expression. An expression
enclosed in brackets may be used as a syl-
lable to form other expressions. In ad-
dition., the character <.>^ used to repre-
sent the current value of the location
counter modulo (212»), functions as a
syllable.

Expression

An expression is a string consisting of
one or more syllables separated by com-
bining operators.

(ii) Combining Operators

The characters listed below according to function^ are the

Midas combining operators. Quotation marks denote that the

Control key must be pressed while typing the character.

-9-

Report No. ±422 Bolt Beranek and Newman Inc.

Product Operators
M m M

X

"U"

"A"

"Q"

"R"

Function
Folded integer multi-
plication
Logical disjunction
(exclusive OR)
Logical union
(inclusive OR)
Logical intersection
(AND)
Quotient
Remainder

Additive Operators

+ or space
Function

Addition^ mod 21^«-1
Addition of the one's
complement

Note that <A"TMB> results in an l8.-bit quantity equal to the

sum of the unsigned magnitudes of the high and' low order
halves of the 36.-bit product produced by regular multiplica-
tion of the two ±8.-bit quantities A and B. If both A and B
are small enough, this function produces the ordinary product

When evaluating expressions,, Midas performs operations from
left to right,, all product operations preceding additive ones
If a string of consecutive additive operators occurs^ Midas
will perform only the last. A string of consecutive product
operators, however, cannot be processed.

Examples. In the following examples, various equivalent ex-
pressions are shown, and their component syllables listed.

-10-

Report No. 1422 Bolt Beranek and Newman Inc.

LIO

LIO ADD

<LIO>,<ADD>

7-2"U"3

±00 LIO

<LIO>f<±00>

JSP

<JSP>

6-2

220±00

50

<b20000>

4

+A A 2"T"A-A

A+BMTM M A+[B"T"C]

a) Expressions:

Syllables:

b)* Expressions:

Syllables:

c) Expressions:

Syllables :

d) Expressions:

Syllables:

e) Expressions:

Syllables :

Note that the expression [A+B]"T"C is not equivalent to those

of (e).

2. The Assembly Program

In order to interpret symbols and integers and to assign them

to memory locationss Midas must make references to the Current-

Location Counter, the Symbol Table,, and the Radix Indicator,,

which are described below.

a. The Current Location Counter

The Midas Assembler assign assembled words to sequential loca-

tions,, starting from any given location. A register in the as-

sembly program^ referred to as the Current-Location Counter,, is

indexed whenever a location is assigned^ indicating the loca-

tion which will be assigned to the next word assembled. It is

*Assume that LIQ&220000, ADD=^000003 and JSP=

-11-

Report No. 1422 Bolt Beranek and Newman Inc.

±6
initially set at 110 and counts upward modulo (2 "). Conven-

tions are provided in the source language so that the program-

mer may assign a numerical value to the current-location counter^

thus specifying the first location in any sequence. Using

other conventions, the programmer may direct the assembler to

increment the current location a specified number of times

although no words are assembled.

A source language string may be specified as a direct represen-

tation of the value of the location counter at any time during

the assembly and used in place of that value throughout the

source program. In addition,, a single character is provided

that may be used to represent its value in any word while it

is being assembled. Any value assumed by the current location

counter is an actual location of a storage word. Representa-

tions of its value^ however^ are equivalent to the sum of the

location plus a number referred to as the offset count.

Unless reset by the programmer^ the offset count will be $3

and representations will coincide with the locations at which

they are derived. The offset count may be set by the pro-

grammer^ however^ and an internally consistent set of values

derived relative to the locations being assigned. The

utility of offsetting the current location is discussed later

in connection with the pseudo-instruction OFFSET. It is men-

tioned here to emphasize the fact that a number is assigned

to a symbolic address tag in order to utilize a list position

rather than to represent it.

While the fact that program addresses and computer instruction

codes may be symbolically represented is sufficient knowledge

for writing source programs3 the fact that these represent

numbers to the assembler^ and locations and operations only

-12-

Report No. ±422 Bolt Beranek and Newman Inc.

in context of the source program^ will be useful to under-

standing the full range of symbolic manipulations that may be

performed. For example, if a computation to be performed re-

quires the number Ipj2̂ we might <LA¥> the number rather than

provide a register containing ±t, and if the number 1<#0 is

represented by the symbol <A>, we can <LA¥ A> whenever we

need 1$# in the accumulator whether <A> derived its value as

an address tag or as a parameter. As further illustration,,

one step in the computation might be to add the contents of

register 100̂ to the value in the accumulator^ requiring a

word in the executable sequence containing the number 401p>$#.

Given the symbol <ADD> representing the numerical operation

code <k$$$$$>3 the symbol 9 which has been set to equal

<l$0j#> as a symbol address tag., and the operator space3 which

signifies addition^ the source language expressions, <ADD B>

or <B ADD>^ would give the proper value. Storage of the

expression in an executable sequence is accomplished by set-

ting the expression in the proper context. If we need to perform

a computation using the number <4̂ 1pj2̂ >, we might think in terms

of creating a data word to contain it when we could just as

well use the instruction word and would particularly wish to

when computer space is limited. The source language takes

advantage of the fact that a computer word may be an instruc-

tion^ data^ or both according to its context in the program.,

in that strings^ while associated with a number in one pre-

scribed context^ may then be generally applied.

While the advantages of contextual as well as explicit inter-

pretation may be clear to programmers who are familiar with

the techniques of machine language coding and who will be look-

ing for these properties in the source language,, others might

well tend to think in terms of symbols for addresses and sym-

bols for words as quite different entities.

-13-

Report No0 ±422 Bolt Beranek and. Newman Inc.

b c TheTjymTbol_ Table

Symbols 3 when associated with a value,, are entered in the Midas

Symbol Tale^ which is used as a reference toy the assembler.

Mnemonic symbols for PDP-1 instruction codes are part of the

initial contents of the symbol table. (A list of these is in-

eluded in Appendix Be) These and programmer constructed sym-

bols 3 which stand for numerical values, are "substitutive"

symbols 0 Two other symbol types are included in the symbol

tables pseudo-instruction names and macro names. These are

referred to as "operational" symbols j there is no single ad-

dress or single l8.-toit number with which they are synonymous „

All pseudo-instruction names are included initially in the

symbol table, defined by a reference to an assembler routine.

A macro name is entered in the symbol table when a macro -

instruction is entered in the macro table 3 and a macro name is

defined as a reference to the macro table location of .the in-

struction to which it is assigned.

Midas assembles a source program in two passes j that is, two

complete scannings of the source program are necessary to pro-

duce an object program. Midas was constructed this way so

that symbols may be associated with values at any point in the

source program without restricting their use prior to defini-

tion, thus permitting the programmer freedom from rigid for-

mat constraints.

c • The Radix Indicator

Integers are interpreted as octal or decimal according to the

radix prevailing when they are encountered by Midas. A regis-

ter in Midas s called the current radix indicator, is initially

•14-

Report No. ±422 Bolt Beranek and Newman Inc.

set to 8 for accepting octal integers. Subsequent settings

of 8 or ±0 may be effected by source program specification.

3. Defining Symbols

The Midas symbol table, described earlier, functions as a dic-

tionary during the translation process. Each symbol introduced

by the programmer is inserted together with its value into the

symbol table during Pass 1. The value of a symbol is referred

to as its definition. Numerical definition of a symbol may be

accomplished by its appearance as an address tag, a variable

name, or in a parameter assignment. Symbols may also be de-

fined as macro-instruction names or in terms of other symbols.

Macro name symbols are discussed in the section on macro-

instructions. The establishment of symbol synonyms is dis-

cussed in Section II in connection with the pseudo-instructions,

EQUALS and OPSYN.

The three basic formats that Midas requires for assigning a

symbol to a numerical value are described below.

a. Address Tags

A symbol is identified as an address tag if it is terminated

by a comma or a colon. An address tag is equated with the

value obtained by adding the value of the location counter

when scanned to the offset count. The resulting value is
I P

entered into the symbol table modulo (2 *) if terminated by

a comma, and modulo (2 *) if by a colon. A symbolic address

tag identifies a line in the source program text and is re-

quired only for lines referenced within the text.

-15-

Report Noe ±422 Bolt Beranek and Newman Inc

An expression,, such as <A+3>^ terminated by a comma or colon

will be admitted for use as an address tag only if it coin-

cides with the value of the current location counter plus the

offset count. Since relative addressing using address arith-

metic is an intrinsic system capability^ an untagged word may

always3 in effect., be referenced by such an expression. If a

previously defined symbol occurs as an address tag,, the symbol

will not be redefined and will be admissible only if its value

agrees with that of the current location counter plus the off-

set count.

b. Variable Names

A programmer may direct the Midas assembler to reserve a se-

quence of storage words for variable quantities produced by a

computation. Symbols may be substituted for these locations

before they are known. The assembly program classifies such

symbols as "undefined variables" and assigns them provisional

relative values. A string is classified as an undefined vari-

able by the inclusion of the character, #3 in the identifying

string itself3 that is^ within the first six characters, in at

least one of its appearances. The symbol is stored in the

symbol table without the qualifying character and may be re-

ferred to with or without it. Actual values are entered for

all variables still undefined at the appearance of the pseudo-

instruction VARIABLES. The following are legal variable names

<ABC#>3<#ABC>^<AB#C>. For regularity of documentation the

second form listed, however^ is usually used.

-16-

Report No. ±422 Bolt Beranek and Newman Inc.

c. Assj-gned Parameters

A programmer may^ with an identity declaration^ assign a value

to a symbol that is to be used as a parameter.

The format is

SYMBOL==EXPRESSION

The symbol to the left of the equals sign is entered in the

symbol table3 and the value of the expression to the'right is

entered as its definition. If no value can be obtained for the

expression,, the symbol is not defined.

4. The Use ofExpressions

The rules for forming expressions were given earlier. The

evaluation of an expression depends on its context in the

source program as well as on the value of its component syl-

lables. Contexts in which Midas evaluates expressions are

described below.

a. Storage Words

An expression terminated by a tab or carriage return is a

storage word. A storage word^ when encountered by Midas,

is evaluated and assigned the memory location equal to the

value of the current location counter. The contents of a

storage word may ultimately be used as an instruction and/or

operated on by an instruction,, depending on the use of the

word in the object program.

-17-

Report No, ±422 Bolt Beranek and Newman Inc

b. Constants

Constant values required by a program need not be introduced

as storage words in the source program. The constant expres-

sion desired^ enclosed in parentheses^ may appear literally as

the operand of an instruction.

For example,, an instruction to subtract ±00. from the accumu-

lator could be written as <SUB(l$#.)>. Midas will generate a

word containing the value ±00. The string <(±00.)^- is called
a constant syllable^ and the address of the word containing

<±00.> is substituted for it. Note that (±00.), (50.+50.),

or (A+25.)* where A=75. are equivalent constant syllables and
will all refer to the same location.

Constants may appear within constants to any depth, as in

(1) LAC(LAW(FLEXO ABC))

The right parenthesis of a constant syllable may be omitted if

the constant is followed by a word terminator.

For example}

(2) LAC(LAW(FLEXO ABC *

is equivalent to (±) above.

Omission of the right parenthesis in

(3) LAC(LAW(ABC)-I .
'd

would, however, change the meaning.

-18-

Report No. ±422 Bolt Beranek and Newman Inc.

c. Location Assignments

A location assignment is an expression immediately followed by

a slash. When Midas encounters a location assignment,, the ex-

pression is evaluated^ and the location counter is set to this

value. If an expression that is used to assign a location con-

tains any undefined symbols when encountered by Midas on Pass ±,

the current location becomes indefinite. This means that the

definition of address tags is inhibited until a defined location

assignment occurst and at that time the counter again becomes

definite. On Pass 2S an undefined symbol in a location assign-

ment will cause an error message (USL). The undefined symbol

is taken as zero5 and the location remains definite. The

Midas command^ "E", discussed in Section I-D permits the pro-

grammer to arrange for Midas to type a message if the location

becomes indefinite on Pass 1.

5. Source Program Format

Midas begins processing a source program after it encounters a

title. A title may be any string of characters terminated by

a carriage return. Initial carriage returns are ignored. The

end of the source program is indicated by the appearance of

the START pseudo-instruction.

The portion of the source program which is to be assembled^

referred to as the body,, is composed of character strings.

These strings are processed by Midas sequentially.

-19-

Report No. ±422 Bolt Beranek and Newman Inc

Comments may be entered throughout the source program. Any

string of text characterized as a comment will be ignored by

the assemblerc A comment is introduced by a slash and must

be preceded and terminated by either a tab or carriage return.

-20-

Report No. 1422 Bolt Beranek and Newman Inc.

Figure 1. Two sample Midas programs for solving the equation:
Y = 7A+B/2, for A = 40, B = 60. The symbolic pro-
grams in columns (l) and (2) will produce the ma-
chine language program in column (3).

CD
SAMPLE PROGRAM 1

LAC A
MUL SEVEN
RIR IS
DIG SEVENA
LAC B
SAR IS
ADD SEVENA
DAC Y
HLT
40
7

6<2f

A,
SEVEN,
B,
SEVENA,

(2)

SAMPLE PROGRAM 2

CONSTANTS
VARIABLES
START

LAC (40
MUL (7
RIR IS
DIG SEVENA
LAC (60
SAR IS
ADD #SEVENA
DAC #Y
HLT

11

103
104
105
106
107
110
111
112
113
114
115

(3)

200111
540112

32(2114
200113
675001
400114
240115
7604<2f0

JM

START 100

PRINTOUT FROM ASSEMBLY:

(1)

DEFINED SYMBOLS ALPHABETIC

A

B

Y

SEVEN

SEVENA

111

113

115
112
114

(2)

CONSTANTS AREA, INCLUSIVE

FROM TO

111 113

DEFINED SYMBOLS ALPHABETIC

Y 115

SEVENA 114

The strings <CONSTANTS>^ <VARIABLES>, and <START> in the sample

programs are pseudo-instructions, which will be discussed in

the following section.

-21-

Report No, ±422 Bolt Beranek and Newman Inc.

B. PSEUDO-INSTRUCTIONS

Pseudo-instructions are source-language expressions that serve

to direct the assembly process. A pseudo-instruction statement

consists of a pseudo-instruction symbol terminated by a de-

limiter and followed by arguments as required. Unless other-

wise notedj a pseudo-instruction statement is terminated by a

tab or a carriage return. Pseudo-instruction symbols,, like all

other symbols^ are identified by no more than six characters.

Thus^ pseudo-instruction symbols composed of more than six

characters may always be abbreviated. For example,, DIMENSION

may be shortened in use to DIMENS. The pseudo-instruction

repertoire is described below with regard to format and function

1. OCTAL and DECIMAL

When integers are encountered^ they are interpreted as octal

or decimal according to the value of the prevailing radix indi-

cator. The pseudo-instructions OCTAL and DECIMAL reset the

radix indicator, which is set by Midas to OCTAL at the begin-

ning of each pass. An integer syllable followed directly by

a period will be Interpreted as a decimal number regardless of

the current radix and will not change the radix value.

2. CHARACTER, FLEX03 and TEXT

These three pseudo-Instructions were originally devised for

storing 6-bit Friden code characters. The translation of

7~blt Teletype code to Internal Code may result in 6 or 12. bits

It has been left to the programmer to introduce 12.-bit code

only where two 6-bit characters are permitted. A table of

characters and their Internal Code is included as Appendix C.

-22-

Report No. 1422 Bolt Beranek and Newman Inc.

The pseudo-instruction CHARACTER is used to place a character

code in the left, middle^ or right 6-bit portion of an l8.-bit

word. The symbol, CHARACTER, is followed by L, M, or R accord-

ing to desired bit position, immediately followed by the char-

acter to be coded. Characters with 12.-bit codes cannot be

stored this way.

The format is Stored as ;;

CHARACTER RA 000041

CHARACTER MB

CHARACTER LC

The character strings shown above are pseudo-instruction syl-

lables and may be used in the same manner as symbols or inte-

gers. For example,

LAC (CHARACTER LA + DTB) is equivalent to

LAC (410000 + DTB.

The pseudo-instruction FLEXO is used to specify an entire

computer word filled with character code, either three 6-bit

characters or one 12.-bit and one 6-bit.

The format is Stored as

PLEXO ABC 414243

or
PLEXO A*- 417776

The pseudo-instruction TEXT is used to assemble a string of.

characters by groups of two or three, as appropriate, into

successive words in the object program.

-23-

Report No. ±422 Bolt Beranek and Newman Inc.

A TEXT statement consists of the symbol <TEXT> terminated "by a

delimiter and followed by a string of characters. The first

character in the string is used as a delimiter of the text

string itself; it is not stored as part of the text string,,

and its reappearance terminates code storage. Thus,, if given

the string <TEXT /MESSAGE/̂ Midas will store character code

for the word^ MESSAGE. A 12.-"bit code. character is not a good

choice for a text delimiter. Only six-bits at either end of a

string are interpreted as delimiters^ so the remaining six

bits of a 12.-bit character would be included in the stored

text.

If the character <#> is used in the argument of CHARACTER,,

FLEXO., or TEXT.? it is handled in an exceptional way; it is

stored as end-of-mess age (internal Code 74) rather than as

its own Internal Code configuration,, 03. Consequently^ there

is no provision for entering <#> as actual text. Most hospi-

tal user programs use the code^ 7̂ as a text terminator; it

may appear in no other context.

Three pseudo-instructions--CONSTANTSA VARIABLES, and DIMENSION-

are provided to direct automatic storage assignment of words

for constant and variable data. Variable data words may be

generated Individually by reference or as fixed length arrays

obtained with the DIMENSION pseudo-instruction. Constant data

words are generated to accommodate literal references.

3. CONSTANTS

The pseudo-instruction CONSTANTS effects the allocation of

constant syllables to storage words containing constant values,,

-24-

Report No. ±422 Bolt Beranek and Newman Inc

beginning at a location whose value is equal to that of the

current location counter at the appearance of CONSTANTS. When

a constant syllable is allocated,, its address is substituted

for it at all references. If different expressions enclosed

within parentheses have the same value^ they are considered to

be the same constant syllable and are associated with only one

location. The pseudo-instruction CONSTANTS may be used no more

than ten times in the same program.

Since storage space for constants is allocated on Pass 1 when

some expressions may not be definite3 the number of registers

reserved in the constants area may exceed the number Midas

needs when all references have been consolidated; thus,, a gap

of unused registers may arise between a constants area and any

subsequent portion of the object program.

The following examples show symbol prints following Pass 1

and Pass 2 for the same program.

CONSTANT AREA RESERVED, INCLUSIVE

PROM TO

325 337

indicates registers reserved during Pass 1.

At the completion of Pass 2, the printout

CONSTANTS AREA, INCLUSIVE

PROM TO

325 332

indicates those registers actually containing constants.

-25-

Report No» ±422 Bolt Beranek and Newman Inc.

4. VARIABLES

The value of the current location counter at the appearance of

the pseudo-instruction VARIABLES on Pass 1 marks the beginning

of the storage area allocated to variables. All variable names

still classified as undefined are assigned locations at this

time. The relative value assigned to an undefined variable is

added to the value of the first location in the sequence and

the result obtained entered as its absolute address. Each

defined variable represents an address at which Midas assigns

a storage word whose contents are unspecified.

When a variables area has been completely allocated^ the value

of the current-location counter is that of the next location

at which a storage word will be assembled. If VARIABLES ap-

pears when the location counter is indefinite,, it is inadmis-

sible. Thus it is wise for a programmer to use Midas command

"E" (described in Section I-D) to arrange a printout if the

location becomes indefinite on Pass 1 so that he can correct

the condition before the processing of VARIABLES.

In the current version of Midas the pseudo-instruction VARIABLES

may be used no more than ten times. If the maximum is exceeded^

the error comment TMV (too many variables) is typed. The num-

ber of defined variables, however^ is limited only by the

capacity of the symbol table.

At the occurrence of VARIABLES on Pass 2, Midas compares the

value of the current location counter with the value which was

associated with that variables area on Pass 1. A disagreement

is noted by the error message VLB (variables location disagrees)^

which indicates that subsequent symbol definitions or macro-

expansions have altered the sequence of assembled words.

-26-

Report No. ±422 Bolt Beranek and Newman Inc.

5. DIMENSION

The pseudo-instruction DIMENSION reserves in the variables

storage area "blocks of registers, which may be referenced

relative to a single symbolic address. DIMENSION is used to

set up fixed-length arrays. The pseudo-instruction symbol and

the name and extent of any number of arrays constitute a

DIMENSION statement according to the following format:

DIMENSION NAME1(LGTH1),NAME2(LGTH2)

where the entire statement is terminated by a tab or carriage

return and requested blocks are separated from one another by

commas. The array name must be a legal symbol that has not

been previously defined. The extent must be stated as an ex-

pression whose syllable values are known when the DIMENSION

statement is encountered on Pass 1.

6. EQUALSand OPSYN

The pseudo-instructions EQUALS and OPSYN permit a user to,estab-

lish symbol synonyms, representing the same value. The format

is

EQUALS SYNONYM,SYMBOL

or

OPSYN SYNONYM, SYMBOL

where <SYNONYM> must be a legal symbol string and the <SYMBOL>

with which it is identified must be previously defined.

<SYNONYM> is assigned the same numerical or operational value

-27-

Report Noa ±422 Bolt Beranek and Newman Inc.

as <SYMBOL>, and the two are thereafter synonymous. OPSYN

effects this on Pass 1 only; EQUALS, on "both passes. The

following example illustrates the difference between the two.

Let us say, for example, that a programmer wanted to use the

macro-instruction facilities to redefine a pseudo-instruction

such that the new instruction was a function of the old. The

original pseudo-instruction would have to be represented "by a

different symbol] otherwise, its appearance in the definition

would act as a macro call, resulting in a closed loop.

For example, if one writes

EQUALS CHAR, CHARACTER

and then defines a macro-instruction, CHARACTER, in terms of

CHAR, which now calls the pseudo-instruction, on Pass 2 CHAR

will again be made equivalent to CHARACTER, which has been re-

defined. CHAR then no longer references the pseudo-instruction,

and the loop avoided on Pass 1 will occur anyway on Pass 2.

If one uses OPSYN, however, CHAR will be associated with

CHARACTER as desired on Pass 1 only and retain its identity

with the original pseudo-instruction on Pass 2.

7. NULL

The NULL pseudo-instruction performs no action, but it is used

as a substitute for symbols no longer needed in a program.

Some programs are required to be compatible with various en-

vironments (different machines, data bases, etc.), and a func-

tion performed frequently in one usage may not be performed at

-28-

Report No. ±422 Bolt Beranek and Newman Inc.

all in another. For example^ a symbolic program may contain

complex macro-definitions that need not be assembled in one

instance but must be available for other processings. In

this case^ the macro names may simply be equated with NULL5

as in

EQUALS MACRO,NULL

Another case in which NULL is useful arises in connection with

macro-table storage space and the "garbage collector."* When

the amount of space available for the storage of macro-

definitions is exhausted^ the garbage collector will search the

table for definitions which no longer have a reference in the

symbol table and will recover such space by consolidating the

remaining table entries.

The symbol-table reference to a macro that has been redefined

is automatically transferred to the latest definition. In the

case of macros that have not been redefined but are simply no

longer needed,, the reference must be suppressed in order to

notify the garbage collector of the available space.

8. OFFSET

The pseudo-instruction OFFSET is used to set the value of the.

offset count^ whose relation to the current location counter

was described in connection with symbol definition.

*The garbage collector will soon be available for this system.
Available macro storage space is 6l̂ 44̂ 10 computer words (ap-
proximately l8j2T,$0̂ characters).

-29-

Report No. ±422 Bolt Beranek and Newman Inc

The psuedo-instruction format is

OFFSET EXPRESSION

where the value of the expression (positive or negative) is

stored as the offset count. When the offset count is any

value other than zero., a symbol value derived as an address

tag will not equal the core location of the storage word with

which it is associated. For example^ the coding:

OFFSET 5

ABC, LAW ±00

JMP ABC

occurring when the current location counter contains ±00 will

be assembled as :

±00, LAW

JMP ±05

A portion of the object program that was assembled under these

conditions is not executable at the location it occupies if

storage word expressions use these symbols as referents. The

offset capability is^ however^ useful in creating a body of data

independent of its core location^ yet internally consistent.

The effect of one OFFSET declaration is terminated by the ap-

pearance of another. If a return to the normal sequence is

desired^ the programmer must set the offset count to zero.

OFFSET is used in connection with memory "renaming" and in

constructing item maps.

-30-

Report No, ±422 Bolt Beranek and Newman Inc

9. REPEAT

REPEAT instructs Midas to assemble a specified portion of the

source program a specified number of times and thus relieves

the programmer of the necessity for source language repetition

of a repetitive object program sequence.

The format is

REPEAT EXPRESSION,TEXT

where EXPRESSION is the count of the REPEAT, specifying the

number if iterations desired, and the TEXT is the source pro-

gram section to be iterated, called the range of the REPEAT.

The count must be defined when Midas encounters the REPEAT on

Pass I; otherwise, the range is ignored and the error print

<USR> occurs.

A carriage return is used to terminate the entire instruction;

tabs are used within the range to denote storage words. Tabs

may also appear within a macro-definition or as an argument.

Brackets may be used to enclose portions of the range or the

entire range so that carriage returns may be included.

Since a REPEAT merely serves to reproduce a string, the range

may include any elements of the source language, including

other REPEATS and macro calls. An internal REPEAT, unless it

is at the end of the range, must be bracketed] otherwise its

terminating carriage return would also terminate the first

REPEAT.

-31-

Report No. ±422 Bolt Beranek and Newman Inc.

In the following example^ the statement

REPEAT 2, LAC A -| ADD B -»| DAC C

will generate for assembly the coding

LAC A

ADD B

DAC C

LAC A

ADD B

DAC C

If the count of a REPEAT is zero or negative the range is not

processed.

10. START

The START pseudo-instruction directs Midas to stop reading char-

acters. START must appear at the end of every source-language

file and may take as an argument an expression denoting the

starting address of the object program.

The format is

START EXPRESSION
e

At the end of Pass 2 in response to command "J", (Section I-D),

Midas appends to the binary output a word containing

<JMP EXPRESSIONS where EXPRESSION is the argument of the last

START processed.

-32-

Report No. ±422 Bolt Beranek and Newman Inc.

11. EXPUNGE

The pseudo-instruction EXPUNGE removes symbols from the symbol

table.

The format is

EXPUNGE SYMlj,SYM2,SYMN

where the argument is a list of symbols3 separated by commas

and terminated by a tab or carriage return. Any type of symbol

may be expunged, Midas ignores undefined symbols in the list,.

If any member of the list is not a legal symbol^ Midas ignores

the rest of the list., An expunged variable will not be defined

unless it appears again with <#> after the EXPUNGE; <#> itself

may not appear in the argument list.

12. WORD

The pseudo-instruction WORD appends l8.-bit computer words,,

specified by the argument(s) of the pseudo-instruction^ to a

block of binary output.

The format is

WORD EXPRESSION

or

WORD EXPR1.EXPR2,...EXPRN

The appended words are not necessarily part of the object
program; their values are selected to produce special binary
formats when needed. For example^ words might be appended in

-33-

Report No. ±422 Bolt Beranek and Newman Inc

order to accommodate a particular loader or to insert jump

"blocks before the end of assembly. Normal binary output format

is discussed in Section I-D.

13. 0IF and IIP

A programmer may find it useful,, particularly when handling

comples macro-instructions, to be able to test the value of an

expression and to condition part of the assembly on the result.

Such testing is effected by the pseudo-instructions $TP and

IIP, in conjunction with symbols called qualifiers,, which

represent tests available. The tests are as follows:

Qualifier

VP

VZ

P_

D

N

Condition is true if:

the evaluated expression

is greater than or equal

to ±0

the evaluated expression

is equal to ±$

Pass 2 is being performed

the expression tested is

a defined symbol

the argument contains no

characters (usually a dummy

symbol of a macro or IRP)

Report No. ±422 Bolt Beranek and Newman Inc

The format of conditional statements is

VP EXPRESSION

IIP VZ EXPRESSION

0IF D SYMBOL

1IF N SYMBOL

where the test requires an argument^ and otherwise^

The value of 1IF is 1 if the condition is true^ 0 if false;

the value of 0IF is $ if the condition is true^ 1 if false.

A conditional statement may be terminated by tab^ carriage

return or comma. A conditional value may be used as a syl-

lable; in this case the conditional must be terminated by a

slash.

For example:

LAC (0IF VP X/+3

is equivalent to

LAC (3) or LAC (4)

while

LAC (0IF VP X+3

is equivalent to

LAC (0) or LAC (l)

-35-

Report No. ±422 Bolt Beranek and Newman Inc.

/IF and IIP are often used to obtain a zero or one as the

count of a REPEAT.

For example:

(1) END: /

REPEAT /IP VP 7777-END, PRINTX /OVERFLOWED CORE/

A Ci

The address assigned to END (colon indicating address modulo 2 ')

is subtracted from 7777. If 7777 is greater, the test is true,

and the value of /IP will be /j thus, the count of the REPEAT

will be /, and the message will not be printed.

(2) REPEAT IIP P, EXPUNGE TYO,TYI,ONE

Example (2) will on Pass 2 direct Midas to expunge the listed

symbols.

14. PRINT and PRINTX

The pseudo-instructions PRINT and PRINTX effect an on-line

printout by Midas during assembly. These instructions are

particularly useful for obtaining information during the

processing of complex macro-instructions.

The format is

PRINT or PRINTX TEXT

where the argument may be text of the form used with the pseudo-

instruction TEXT or, if used in a macro-instruction, dummy

symbols.

-36-

Report No. ±422 Bolt Beranek and Newman Inc.

PRINT will cause Midas to type a line in the same format as the

first three columns of an error listing (described in the section

on error checking). The code PNT is substituted for an error

code in the first column and is followed by the argument and

a terminal line feed.

PRINTX causes Midas to type only the argument. Since both

pseudo-instructions are effective on both passes., a repetitive

printout can be avoided only if conditioned,, using $TF or IIP,

with the qualifier P. For example, in response to

REPEAT 0IF P, PRINT /TEXT/,

Midas will print only on Pass 1.

15. STOP

The pseudo-instruction STOP is used when the programmer wishes

to arrest the expansion of a macro-instruction, an IRP, or the

range of a REPEAT. In any other context, STOP is ignored by

Midas.

Within the range of a REPEAT, STOP will halt the expansion of

all subsequent text unless the REPEAT occurs within the body

of a macro-instruction or an IRP. In that case STOP, whether

in a REPEAT range or not, will suppress subsequent coding

until the occurrence of the next TERMINATE or ENDIRP.

STOP may be used conditionally as in the following:

REPEAT 3. [REPEAT 1IF VZ A-B,STOP
A=A-B]

-37*

Report No. 1422 Bolt Beranek and Newman Inc

The text A=A-B will appear for processing up to three times.

However, if A=2 and B=l at the start, the count of the inner

REPEAT,, which generates the STOP,, will have the value one be-

fore the second appearance3 and the expansion of the first

REPEAT will be arrested. STOP may also be supplied as an

argument for an IRP or a macro call.

The remaining pseudo-instructions—DEFINE, TERMINATE, IRP,

IRPC and ENDIRP--are described in the section on macro-

instructions .

-38-

Reprot No, 1422 Bolt Beranek and Newman Inc.

C. MACRO-INSTRUCTIONS

A macro-instruction is any legitimate source-language text

that a programmer names and sets up so that when the name

appears in the subsequent source program,, Midas will assemble

the text. The text and macro name are established by a macro-

definition^ whose format is described below. Where the text

includes parameters that may differ with each occurrence of the

macro-instruction^ these parameters may be represented by dummy

symbols.

1. Macro-Defiiirtions

A macro-definition is initiated by the pseudo-instruction

DEFINED delimited by any terminator. DEFINE is followed by a

macro name. A macro name must be a legal symbol, which, if

previously defined, will be redefined. The macro name is fol-

lowed by a list of dummy symbols., if needed, and terminated by

a tab or carriage return. If dummy symbols that appear in the

text of the macro-instruction are not listed after the macro

name,, Midas will treat them as ordinary symbols. After a

macro name Midas interprets the first character other than

space as the first member of the argument list. The argument

list is discussed in greater detail later. Midas considers all

text following the name and argument line to be the body of the

macro-instruction. Midas stores this text until the appear-

ance of the pseudo-instruction TERMINATED which signals the

end of the definition. The body of the macro may include any

element of the source language9 including other macro-

definitions or calls. Any dummy symbol from the list may

appear as a syllable in the body of a macro-definition.

Report No. ±422 Bolt Beranek and Newman Inc.

The basic format of a macro-definition Is illustrated "by the

following examples,

(1) DEFINE\

ABSOLUTE - (MACRO NAME)

SPA)

CMA •*

TERMINATE

The macro name,, <ABSOLUTE>5 subsequently serves as a macro call

in the source program.„ Midas will assemble the body of the

macro (<SPA> and <CMA>) into the object program at every ap-

pearance of the macro call*

(2) DEFINE

SUM A,B,C

LAC A

ADD B

DAC #C

TERMINATE

(The character # must be the first character if it is used in

a dummy symbol string.)

The macro call <SUM XORG,XINC,,XMAX> will cause the following

sequence to be assembled.

LAC XORG

ADD XING

DAC #XMAX

-40-

Report No. ±422 Bolt Beranek and Newman Inc

b. Dummy Arguments

A programmer may use as many distinct symbols as desired as

dummy arguments in a macro-definition as long as each appears

in the dummy argument list. Members of the argument list are

usually separated from one another by commas.* The position

of an argument in the list is the model for the order of argu

ments supplied at a macro call.

Some syllables, although they are referenced only within the

body of the macro, will represent a different value at each

call. Such syllables may be represented by dummy symbols and

specified in the argument list as generated arguments,, for

which Midas will automatically provide a symbol. A list of

those dummy arguments for which Midas must generate symbols

is preceded by a slash and follows the list of arguments for

which the programmer must supply symbols as shown below.

DEFINE MACROSYM A,B/C,D,E

or

DEFINE MACROSYM /A,B,C

where all symbols are to be generated.

Symbols generated and inserted by Midas are of the form <...

<..A^2>, <...A$3>3 etc. If at a macro call the programmer

supplies a real argument in a list position corresponding to

that of a generated symbol,, Midas will accept the supplied

*The following delimiters are also acceptable- +, -3 space,
U, n, ~, tab, =,(,)•

-41-

Report No. ±422 Bolt Beranek and Newman Inc.

symbol rather than generate one. A generated symbol may be

used to define a variable in the text; Midas will generate a

symbol of the form <#...Aj#l>.

The following examples give an idea of the use of generated

arguments.

1) DEFINITION

DEFINE CLEAR A.N/B

LAW A

DAP B

B, DZM

IDX B

SAS (DZM A+N

JMP B

TERMINATE

2) DEFINITION

DEFINE SAVEAC /A

DAG #A

JSP SUBR

LAC A

TERMINATE

CALL: CLEAR TAB,

EXPANSION

LAW TAB

DAP,..A01

. ..A01, DZM

IDX . ..A01

SAS (DZM

JMP ...

CALL: SAVEAC

EXPANSION

DAC #...

JSP SUBR

LAC . ..A01

If an argument is supplied at the call., as in <SAVEAC TEMP>^

the expansion will be

DAC #TEMP

JSP SUBR

LAC TEMP

-42-

Report No. 1422 Bolt Beranek and Newman Inc.

Midasa when scanning the body of a macro-definition for dummy

arguments^ compares each legal symbol in the text with the

symbols in the dummy argument list. Those symbols that cor-

respond to any dummy symbol are stored in a special way., as

described in Section I-C-3* Storage of Macro-Instructions.

If the programmer wishes to represent only a part of a symbol

by a dummy arguemnt^ he may use an apostrophe to denote this

in the body of the macro definition.

In the pseudo-instruction <CHARACTER RA> the string <RA> satis-

fies the requirements for a legal symbol. Midass however^ under-

stands its special meaning within the context of the pseudo-

instruction. During the dummy symbol scan^ however^ Midas

would interpret RA as a single symbol unless an apostrophe is

used to indicate that <A> alone is a dummy symbol, as in

DEFINE MACRO A

LAC (CHARACTER R'A

The apostrophe is deleted when the macro-instruction is de-

fined. In the case of a nested macro-clefinition^ apostrophes

are also deleted at the time of definition; that is^ when the

higher level macro is called.

2. Macro Calls

A macro call consists of a macro name followed by a list of

arguments separated by commas. The call is terminated by a

tab or carriage return.

-43-

Report No. ±422 Bolt Beranek and Newman Inc.

The arguments of a macro call may include any character string

(including an empty string) with the following restrictions.

Since comma terminates an argument and tab or carriage return

terminates the list, these may be included only in arguments

enclosed by brackets. Brackets must be used in pairs and may

be used within other brackets. Midas will consider all but the

outermost pair to be part of the argument.

At the appearance of the macro call, Midas processes the body

of the macro (stored in the macro table) as though it had

appeared in sequence. At this time Midas substitutes for the

corresponding dummy arguments and creates the correct number

of generated arguments.

If the programmer supplies extra arguments at a macro call and

the definition specified generated arguments, the extra supplied

arguments will take the place of generated ones. If, however^

arguments are supplied in excess of the total number (supplied

and generated)9 the excess arugments are ignored. Note that

Midas will not generate a symbol when a programmer fails to

supply one that has been specified in the definition.

3. Storage of Macro-Instructions

After the occurrence of the DEFINE pseudo-instruction^ Midas

saves the name of the following macro-definition and scans the

list of dummy arguments^ keeping count both of the total number

of arguments and the number of these arguments that are-to be

generated. While stored in the body of the macro in the macro

table, Midas scans the text for dummy symbols. When Midas en-

counters a symbol that matches a symbol from the dummy argument

list, the list position of the corresponding dummy argument is

stored in place of the symbol in the text and is distinguished

by a code prefix.
-44-

Reoprot No. ±422 Bolt Beranek and Newman Inc.

Macro-definitions within the "body of the macro are stored

literally and defined only when the instruction containing them

is called.

When Midas encounters the final TERMINATED the number of words

that were required to store the definition is deposited in the

first macro-table register preceding the text. The macro name

and the table location of the definition are entered in the

symbol table.

4. Nested Macros

It is convenient when discussing nested macro-instructions to

think of DEFINES and TERMINATES as if they were parentheses,

the outermost pair constituting the highest level macro-

definition. When the programmer calls the highest level macro-

definitiorij Midas stores the second level definition in the

macro table,, and so on. Internal macro-definitions may contain

dummy arguments of higher level ones. These arguments will

be replaced by supplied arguments when the higher level defini-

tion is called. Pairs of DEFINES and TERMINATES must count

out. To ensure that they do,, the programmer may use macro

name as the argument of a TERMINATE instruction. Then if the

DEFINE associated with that TERMINATE refers to another macro

name^ the error print <MND> (macro name disagrees) will inform

the user of a "mispairing" of DEFINES and TERMINATES.

A series of examples of nested macros follows. Note in ex-

ample M-I the use of apostrophe and the insertion of a supplied

argument into a nested definition.

-45-

Report No. ±422 Bolt Beranek and Newman Inc.

M-I

DEFINE FLOAT INSTR

OLD'INSTR-INSTR

DEFINE INSTR X

LAW X

JDA F«INSTR

TERMINATE INSTR

TERMINATE FLOAT

For example^ if FLOAT MUL appears,, the expansion will be

OLDMUL-MUL

DEFINE MUL X

LAW X

JDA FMUL

TERMINATE MUL

This macro-instruction may be used to change PDP-1 instructions
to subroutine calls. Their original meanings could be restored

by

DEFINE UNFLOAT INSTR

INSTR=OLD»INSTR

TERMINATE

M-2

DEFINE MACRO X,Y

LAC X

DEFINE MAC2 Y

ADD Y

TERMIN

TERMIN

-46-

Report No* ±422 Bolt Beranek and Newman Inc

The call <MACRO ONE,T¥0> will generate

LAC ONE

DEFINE MAC2 TWO

ADD TWO

TERMIN

The argument supplied for <Y> at the call of MACRO must be a

symbol3 since it will be inserted as a dummy argument in the

definition of MAC2.

M-3 It is usually safer to use rather meaningless symbols as

dummy arguments to avoid duplication of real arguments.

For example,

DEFINE MACRO X

LAC X

DEFINE MAC2 COUNT

ADD (X+3

DAC COUNT

TERMIN

TERMIN

If COUNT is also a program symbol that the programmer inad-

vertently supplies at the call of MACRO., the result would be

LAC COUNT

DEFINE MAC2 COUNT

ADD (COUNT+3

DAC COUNT

TERMIN

-47-

Report No. ±422 Bolt Beranek and Newman Inc

Example M-4 "below illustrates a macro-instruction that re-

defines itself when first called.

M-4

DEFINE INCREM

DZM X

DEFINE INCREM

LAW 10

ADD X

DAC X

TERMIN

TERMIN

At the first call of INCREM the following text is generated

DZM X

DEFINE INCREM

LAM 10

ADD X

DAC X

TERMIN

Subsequent calls will generate

LAM 10

ADD X

DAC X

-48-

Report No, ±422 Bolt Beranek and Newman Inc.

5. The Pseudo-Instructions IRP and IRPC

The pseudo-instruction IRP (indefinite repeat) generates

sequential iterations of text a number of times determined "by

the analysis of its arguments. A different set of arguments is

substituted at each iteration.

An IRP statement consists of the <IRP> symbol followed by a

list of arguments3 each enclosed in brackets, terminated by a

tab or carriage return. Following the argument list is the

body of the IRP that^ like the body of a macro-definition5 may

include any source language elements^ including other IRP's

and macro calls or definitions. The body of an IRP is de-

limited by the pseudo-instruction ENDIRP.

Each argument of the IRP is itself a list of subarguments

separated by commas or carriage returns. The first two mem-

bers of a subargument list are dummy arguments,, and each may

represent a syllable jn the body of the IRP. The remaining

members of the list are the real arguments of the IRP. Upon

encountering an IRP^ Midas processes the body of the IRP re-

peatedly^ with different symbolic equivalents substituted for

the dummy arguments each time according to the following pro-

cedure. Midas begins by substituting the first member of the

real argument list for the first dummy symbol and the remainder

of the real argument list for the second dummy symbol. The

remainder of the real argument list is then treated as the

real argument list in subsequent processings until all lists

are exhausted.

IPRC operates exactly as does IRP but on a different type of

list. Elements of an IRP subargument list are separated by

Report No. ±422 Bolt Beranek and Newman Inc

commas and may include a text string or a "bracketed expression

Real arguments of an IRPC subargument list are not separated

by commas; each character in the string is treated as an in-

dividual member of the list.

The following examples illustrate the use of IRP and IRPC.

Notice that the second dummy symbol may be omitted if not

referenced in the body, although its position must be retained

by a comma.

1-1. IRP [NAME,,RPA,PPA,TYO,TYI],[VALUE,,1,5,3,4]

NAME=IOT VALUE

ENDIRP

This IRP will effect symbol table entries for the listed in-

struction symbols and their corresponding IOT commands.

1-2. DEFINE TYPE DIGIT

IRPC [NUM,,0123.. .9]

REPEAT IIP VZ DIGIT-NUM,PRINTX /NUM/

ENDIRP

TERMINATE

Example 1-2 shows use of an IRPC within a macro-definition.

The digit supplied at the macro call will, during the expan-

sion process, be compared with each digit in the subargument

list until its equal is found and printed.

Example 1-3 illustrates how to use the second dummy symbol^

which represents a list.

-50-

Report No. 1422 Bolt Beranek and Newman Inc

1-3 DEFINE MACRO LIST

IRP [X,Y,LIST]

REPEAT 0IF D X,MAC2[Y]

ENDIRP

TERMINATE

The list obtained for Y in the first IRP repetition is used as
a supplied list for another macro-instruction.

Example 1-4 shows a series of nested IRP's used to define a

macro-instruction that, given the list <X1,X2,..,XN>j, will set
up a matrix of the form:

XI,X2, XN

X2,X3,...XN,X1

XN

-51-

Report No. ±422 Bolt Beranek and Newman Inc

1-4. DEFINE MATRIX LIST

LGTH = $

IRP [,,LIST]

LGTH = LGTH-KL

ENDIRP

IRP [X0,LIST2,LIST]

COUNT = 1

IRP [XNJ,LIST2]

COUNT = COUNT+1

XN

ENDIRP

IRP [X02,,LIST]

REPEAT IIP VZ COUNT-LGTH.STOP

The first IRP gets the length of the list.

The second gets the next (initially first) member.

The third processes the remainder of the list.

The fourth goes back to the beginning of the list and takes

each element until COUNT = length of text.

-52-

Report No. ±422 Bolt Beranek and Newman Inc.

D. OPERATION OP THE MIDAS ASSEMBLY SYSTEM

1. Preparation of a Source-Language Program

The programmer prepares his source-language program on-line via

Teletype terminal^ using the symbolic editing program^ Editor^

to type in and edit text and to store the program in English-

file format on a programmer's quarter-tracks.* The file is

accessible to Midas by name and version number.

2. Performing an Assembly

a. Initial Procedure

English files to be processed must be on the drum for access

by Midas. Editor and Handle are used to place files on the

drum; Editor will enter files from the on-line Teletype or

from paper tape; Handle,, from magnetic tape, Midas runs

under DDT control and is called in the following way. First.,

the user types C"P!S which puts the Call program under DDT

control. Call requests the file name (Midas) then asks whether

or not to start the program. If "Y" is the response to this

question^ Call brings Midas into core and starts it running.

If "N" is the response^ Call simply brings Midas into core, and

to start it,, the programmer must type l^lnG"j to continue ±t3

*The programmer's quarter-tracks are described in Section IV-A

-53-

Report No. ±422 Bolt Beranek and Newman Inc

The condition of Midas when it is first brought into core is

as follows. The current location counter is set to 11̂ and

the radix indicator to 8. The macro table is empty. The

symbol table contains all pseudo-instructions and a minimal

list of PDP-i instructions (these are listed in Appendix B).

Additional instructions are available in an English file en-

titled, "System Midas Initial Symbols." Also available is a

p-tape that contains a complete set of map macros and system

lOT's. It is usually more convenient^ however} for a program-

mer to construct his own p-tape of symbols that he is likely .

to use.

b. The Control Language

Commands to Midas are specified by control characters, such as

1 for do Pass 1 and C for continue the present pass. Some of

the commands require arguments^ such as the name of the file to

be processed. Arguments3 when required^ are typed after the

control character. Midas performs a requested function after

line feed terminates the command string. Before the line feed

is entered^ an input string may be deleted by typing any 12.-bit

character other than a carriage return. Spaces and carriage

returns are ignored in a control string.

The control characters and argument requirements are listed on

the following pages.

-54-

Report No. ±422 Bolt Beranek and Newman Inc.

Control Characters Function

Initiate Pass 1

H

Initiate Pass 2

Continue present
pass on additional
file.

Initialize symbol
and macro tables.

The argument of E
represents a bit
setting. Certain
bit settings in-
form Midas to per-
form a special
function during
assembly. The bit
settings and their
associated func-
tions are listed
below.

l6--print all char-
acters processed

15--print an error
comment on Pass 1
if the location
goes indefinite

14--define unde-
fined symbols as
J2f on Pass 2

Add a jump block
to assembled bi-
nary program.
Selects address
following last
START encountered

Halt Midas

Required Arguments

Name of English file
followed by a.comma
and the version
number.

Same as for l.

Name and version num-
ber of additional file

None

An octal number

None

None

-55-

Report No. ±422 Bolt Beranek and Newman Inc

Control Character

B

S

T

Function

Set up an indexed
file of binary out-
put in programmer's
storage area.

Set up indexed file
of symbol table and
macro table.

Load symbol and
macro table into
Midas.

Required Arguments

Name and version
number as required
for file access.

Name and version
number as required
by general filing.

Name and version
number under which
the table is filed

A simple assembly of a symbolic program consisting of two files

would be accomplished by the following sequence of commands.

1 PROGRAMX,!

C PROGRAMX.2

2 PROGRAMX,!

C PROGRAMX.2

J

3. Order jpf Operations

The commands ±3 2^ Cy and J represent functions that must be

performed in a certain order. The other commands represent

functions that the programmer may select at various times

during an assembly. These commands are discussed below with

regard to the order in which they can be useful.

S--Set up File of Symbol Table and Macro Table

The "System Midas Initial Symbols" file and available p-tapes

are processed on Pass 1 as individual files in a multiple file

-56-

Report No. ±422 Bolt Beranek and Newman Inc

assembly. Before continuing Pass 1 on his own program, the

programmer may use <S>. Having set up these files in symbol-

table format3 the programmer need not perform Pass 2 on them.

The file produced by an <S> command may be retrieved by com-

mand <T>.

<S> is generally also used at the end of an assembly to pro-

duce a file containing all program symbols. This file is read

into DDT to permit symbolic debugging.

I--Initialize Symbol Table and Macro Table

When assembling a very long program whose symbols may exceed

the symbol™table limit or when appending a file whose symbols

may be defined in an earlier segment, a user may wish to file

the current symbols and use <I> to initialize the symbol table

before continuing. On Pass 2 the first table may be read in

and the table reinitialized as necessary.

The faculty for initializing the symbol and macro tables also

permits the programmer to assemble a new program without re-

starting Midas from DDT.

B--PileBinary Output

 is normally used once during an assembly, at the end of

Pass 2. However, if the programmer wants his binary output in

two or more sections, he may use to save a partial binary

file and thus initialize the binary output buffer. Note that

while filing and initializing are separate functions with re-

gard to the symbol table, they are one with regard to binary

output.

-57-

Report No. ±422 Bolt Beranek and Newman Inc

H—Halt

When an assembly is completed and the binary output filed^ the
user types <H> to halt Midas. Hitting the Break key returns
control to DDT at any time.

E. BINARY OUTPUT FORMAT

All blocks3 with the exception of the single-word jump block,,
begin with two words that indicate position and length and
end with a checksum word. The maximum block length is 1̂ 38
words. The number of data words in a block is derived by
subtracting the first word from the second. The checksum

l8word contains the sum modulo (2 "*-l) of all other words in
the block,, including the first two.

-58-

Report No. ±422 Bolt Beranek and Newman Inc.

The first two bits of the first and second word indicate the

type of block as follows:

Bits Type

Absolute

Relocatable

Library

The present manual will describe only Absolute Blocks.

The first word contains, in addition to the type-indicating

bits^ the address in core where the first data word is to be

stored; the second^ the address following storage of the last

word in a block.

The pseudo-instruction WORD may be used to fabricate special

formats or to insert jump blocks without stopping the assembly

When Midas encounters a WORD pseudo-instruction^ it terminates

the current block with a checksum. The arguments of WORD are

appended directly to the binary output.

-59-

Report Nos 1422 Bolt Beranek and Newman Inc.

P. ERROR CHECKING

If Midas encounters an error in source-language coding^ the

assembly is interrupted and a descriptive error message printed

Depending on the severity of the errora assembly may or may not

continue. The format of an error message is exemplified as

follows:

(1) (2) (3) (4) (5)
USW 1000 ALPHA+1 REPEAT GAMMA

Column (l) contains a descriptive error code; (2), the octal

address at which the error occurred] (3)* the symbolic address
stated in terms of the last address tag seen. Column (4) con-

tains the last pseudo-instruction symbol or macro name Midas

encountered. Column (5)* used only in errors involving symbol

definition^ contains the offending symbol.

The error codes and the conditions with which they are associ-

ated are listed on the following pages, indicating action on

or impossibility of continuation of the assembly.

-60-

Bolt Beranek and Newman Inc.

Error Condition

Designation Causing Error

Undefined symbols

US a

C

D

F

I

L

M

0

P

R

S

T

¥

UWD

Undefined symbol (a in-
dicates where found):

in a constant

in size of dimension
array

in OFFSET count

in argument of 0TF or IIP

in a location assignment

in storage word gener-
ated by a macro call

in argument of EQUALS
or OPSYN

in a parameter assignment

in the count of a REPEAT

in the argument of a START

in a multi-syllabic address
tag

in a storage word

undefined symbol in argument
of a pseudo-instruction

Relocation Errors

IRa Illegal relocation; a
identifies where the error
was found with designations
as listed for undefined symbol

Action on

Continuation

All undefined
symbols are
evaluated as
zero.

Relocation

Report No. ±422 Bolt Beranek and Newman Inc.

Error
Designation

Condition
Causing Error

Multiple Definitions

MDT

MDV

MDD

Other Errors

MND

ICH

ILP

IPA

VLD

Multiply defined tag

Multiply defined vari-
able (a symbol previ-
ously defined as other
than a variable appears
with a #)

Multiply defined dimen-
sion (a previously de-
fined symbol used as an
array name)

Macro name disagrees
(the argument of a
terminate disagrees with
the name being defined)

Illegal character

Illegal format

Improper parameter as-
signment. (The expres-
sion to the right of
the equals sign is
inadmissible.)

Variables location disa-
grees. (The pseudo-
instruction VARIABLES
has appeared on Pass 2
at a different location
than on Pass 1.)

Action on
Continuation

Original def-
inition re-
tained

Original def-
inition re-
tained

Original def-
inition re-
tained

First name
used

The character
is ignored

Characters
are ignored
until the
next tab or
carriage re-
turn

The assignment
is ignored.

Condition
ignored

-62-

Report No. ±422 Bolt Beranek and Newman Inc.

Error
Designation

Condition
Causing Error

Other Errors cont.

LGI

r
IRX

PNT

Location gone indefi-
nite

Illegal operation with
relocatable symbols
(e.g., logical opera-
tions)

Not an error. Result
of PRINT pseudo-
instruction

Action on
Continuation

If the appro-
priate bit is
set (by Midas
control <E>)^
LGI is printed
on Pass 1.

In the event of the following error conditions,, assembly cannot

continue.

r
r

CLD

TMC

TMP

Constants location disa-
grees . The pseudo-
instruction CONSTANTS
has appeared on Pass 2
in a location different
from Pass 1. All con-
stants syllables have
been assigned incorrect
values

Too many constants (The
pseudo-instruction
CONSTANTS has been used
too many times in one
program)

Too many parameters (The
storage reserved for macro<
instruction arguments has
been exceeded)

-63-

Report No. ±422 Bolt Beranek and Newman Inc

Error Condition
Designation Causing Error

TMV Too many variables (The
pseudo-instruction
VARIABLES has been used
more than lj# times in
one program)

SCE Storage capacity exceeded
(symbol table and macro
table full, too many
constant words used)

IAE An error which cannot
be diagnosed—often due to
improper operation of Midas

-64-

Report No, ±422 Bolt Beranek and Newman Inc.

Appendix A. Midas Character Set

I, Alphabetic

Letters (A-Z)
Digits (jZf-9)

II. Punctuation

Character Function(s)

0

#

tab
and

carriage return

1 P
indicates address tag mod (2)
separates elements of a List
terminates count of a REPEAT-

16.indicates address tag mod (2)

equates symbol to the left with
expression to the right

a) terminates location assignment
b) introduces comment
c) introduces list of macro-instruction

arguments to be generated
d) terminates a conditional

enclose a literal

expression enclosed specified for
syllable function

denotes symbol as a variable

indicates global symbol*

a) word terminators
b) varying meanings according to
context.

•^Relocatable programming feature

A-l

Report No. ±422 Bolt Beranek and Newman Inc

III,, Combining Operators

Product Operators

l l m U

"X"

"U"

"A"

"Q"
M RU

folded integer multiplication. ' ; • ' . • :

logical disjunction (exclusive OR)

logical union (inclusive OR)

logical intersection (AND)

quotient

remainder

Additive Operators

+ or space
A O

Addition, mod 2 - 1

Addition of the one's complement

IV. Illegal

A. General

break

rubout

\e

A-2

Report No. ±422 Bolt Beranek and Newman Inc

B, (except within a macro-instruction or an IRP)

vert, tab
HT/-U

V. Ignored (except within a macro-instruction or an IRP)

EOT

formfeed

carriage return

t

A-3

Report No, ±422 Bolt Beranek and Newman Inc

Appendix B. Symbols in Permanent Midas Vocabulary

1. PDP-1 Instruction Symbols

The following list contains all instruction included on the

"MIDAS INITIAL SYMS FOR T.S." tape. Those included in the

initial vocabulary are starred.

MIDAS INITIAL SYMS FOR T.S

1S=1
2S=3
3S=7
4s=l7
5.3=37
6S=77
7S=177
8S=377
9S=777

,
CLC=65l6

* DA 0=24

HLT=7 64

B-l

Report No. ±422 Bolt Beranek and Newman Inc

0

*ISP=46
*JDA=17
*JMP=6
*JSP=6'2

LF 1=

*RCL=6630

1= 6770W
SFT=660000

500
m

SKP=640000
1=640400

B-2

Report No. ±422 Bolt Beranek and Newman Inc

SZM=
SZO=
*TAD=
XAI=
*XCT=

XX=HLT

2. Pseudo-Instructions

Symbol

CHARACTER

CONSTANTS

DECIMAL

DEFINE

DIMENSION

ENDIRP

EQUALS

EXPUNGE

IRP and IRPC

NULL

OCTAL

OFFSET

OPSYN

PRINT

PRINTX

REPEAT

Function

inserts Internal Code for one character

specifies storage areas for constant words

classifies integers as decimal numbers

initiates macro-definition

allocates storage area for arrays

ends an indefinite repeat

establishes symbol equivalence

erases symbols from symbol table

initiates indefinite repeat

no operation

classifies integers as octal numbers

assigns address tags as current location
counter and sets an expression whose value
is the offset count.

same as EQUALS; Pass 1 only

generates symbolic location printout and
prints comment during assembly

prints comment during assembly

generates iterative source-language text

B-3

Report No. ±422 Bolt Beranek and Newman Inc

START denotes end of source program and speci-
fies starting address

STOP ends expansion of IRP's, macro's^ and
REPEAT»s

ends macro-definition

inserts Internal Code for character string

reserves space for variables and arrays

appends word(s) to binary output block

tests an expression; if true^ value is
zero; if false^ one.

IIP if true,, value is one; if false^ zero.

B-4

Report No. 1422 Bolt Beranek and Newman Inc

Appendix C. Teletype Code Conversion
("X" means control-X)

INTERNAL ASCII CHARACTER

00
01
02
03
04
05
06
07.

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

040
04i
042
043
044
045
046
047

050
051
052
053
054
055
056
057

&06l
062
063
064
065
066
067

070
071
072
073
074
075
076
077

S]
J
11

#
%
&
I

()
*

+
3

•

/

0

1

2
3
4
5
6
7

8
9
»

j
<
=
>
9

C-l

Report No. 1422 Bolt Beranek and Newman Inc

INTERNAL

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

61
62
63
64
65
66
67

ASCII

71
72
73
74
75
76
77

103
104
105
106
107

110
111
112
113
114
115
116
117

120
121
122
123
124
125
126
127

130
131
132
133
175,176,033
135
015-012

CHARACTER

A
B
C
D
E
P
G

H
I
J
K
L
M
N
0 (OH)

p
Q
R
S
T
U
V
¥

X
Y
Z

EOM

CARRIAGE RETURN-LINE FEED
WARNING

C-2

Report No. ±422 Bolt Beranek and Newman Inc.

INTERNAL ASCII:

7700
7701
7702
7703
7704
7705
7706
7707

7710
7711
7712
7713
7714
7715
7716
7717

7720
7721
7722
7723
7724
7725
7726
7727

7730
7731
7732
7733
7734
7735
7736
7737

7740-7743
7744
7745
7746
7747

7750-7773
7774
7775-7777

000
001
002

0̂ 3p04
005
m6
007

010
011
012
013
014
015
016
017

020
021
022
023
024
025
026
027

030
031
032
033
034
035
036
037

UNUSED
134
UNUSED
136
137

UNUSED
177
UNUSED

CHARACTER

NULL or BREAK or "©"
"A"
"B"
"C"
EOT
"E" or WRU
"F" or RU
"G" or BELL

"H"
TAB
LINE PEED
"K" or VT
"L" or FORM PEED
CARRIAGE RETURN (OUTPUT ONLY)
"N"
"0"

"pn

"Q" :
"R" or TAPE ;

"S" or RDR OFF
Ilrj-iM

"U"

"V"
"w"
"X"
Mry U

Li
ii r t i

SHIFT
ii I i t
II A II

I I . I I

I l T II

BACKSLASH

RUBOUT

C-3

