
TSS/8
TIME-SHARING SYSTEM
USER'S GUIDE

For additional copies, order No. DEC-TS-MRFB-D from Program Library, Digital

Equipment Corporation, Maynard, Massachusetts 01754. Price $3.00

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

1st Printing September 1968
2nd Printing March 1969
3rd Printing (Rev) February 1970

Your attention is invited to the last two pages of this manual. The
Reader's Comments page, when filled in and returned, is beneficial
to both you and DEC. All comments received are considered when
documenting subsequent manuals, and when assistance is required, a
knowledgeable DEC representative will contact you. The Software
Information page offers you a means of keeping up to date with DEC's
software.

Copyright © 1968, 1969, 1970 by Digital Equipment Corporation

The 'l"aterial in th,s manual,s for informa­
tion purposes and is subject to change with­
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

CONTENTS

CHAPTER 1 INTRODUCTION

1.1 General Description

1.2 User Programs

1.3 User Files

1.4 TSS/8 User Console

1.4. 1 Power Control Knob

1.4.2 Printer

1.4.3 Keyboard

1.4.4 Paper-Tape Reader and Punch

1.4.5 Positioning Tape in the Tape Reader

1.5 Use of This Manual

CHAPTER 2 ELEMENTARY MONITOR COMMANDS

2.1 Calling Monitor

2.2 Logging In on TSS/8

2.3 Logging Out of TSS/8

2.4 System Library Program Control

2.5 Communication with other Users

2.6 System Status Reports

2.7 Resource Sharing

2.8 Error Messages

Page

1-1

1-1

1-2

1-2

1-3

1-3

1-4

1-4

1-5

1-5

2-1

2-2

2-4

2-4

2-5

2-6

2-6

2-9

CHAPTER 3 DESCRIPTION OF TSS/8 SYSTEM LIBRARY PROGRAMS AND THE INTERACTIVE LANGUAGES

3.1 Introduction

3.2 General Characteristics of System Library Programs

3.2. 1 Controll ing the Execution of System Library Programs

3.2.2 Returning to Monitor

3.2.3 Additional Manuals

3.3 BASIC-8

3.3.1 Example of a BASIC-8 Program

3.3. 2 Summary of BASIC -8 Statements

3.3.3 Functions

3.3.4 Complex Functions

3.3.5 Summary of Edit and Control Commands

iii

3-1

3-1

3-3

3-4

3-4

3-5

3-6

3-7

3-8

3-9

3-9

CONTENTS (Cont)

3.3.6 Error Messages

3.3.7 Implementation Notes

3.4 FOCAL

3.4. 1 FOCAL Command and Operation Summary

3.4.2 FOCAL Operations

3.4.3 Mathematical Functions

3.4.4 Control Characters

3.4.5 Reading FOCAL Paper Tapes

3.4.6 FOCAL Error Messages

CHAPTER 4 FORTRAN-D COMPILER

Introduction to TSS/8 FORTRAN

Calling and Using FORTRAN-D

FORTRAN I/O

Examples of FORTRAN Programs

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Summary of FORTRAN-D Statements

FORTRAN-D Compiler Systems Diagnostics

FORTRAN-D Compiler Compilation Diagnostics

FORTRAN-D Operating System Diagnostics

CHAPTER 5 PAL-D ASSEMBLER

5.1

5.2

5.3

5.4

5.5

Introduction to PAL-D

TSS/8 PAL-D

Example of a PAL-D Program

Symbol List for TSS/8

Error Diagnostics

CHAPTER 6 UTILITY PROGRAMS

6.1 EDIT

6.1.1 Summary of Symbolic Editor Operations

6. 1 .2 EDIT Command Summary

6.2 LOADER

6.3 ODT (Octal Debugging Technique)

6.3.1 Programming Notes

iv

Page

3-10

3-12

3-13

3-13

3-15

3-16

3-16

3-17

3-17

4-1

4-1

4-2

4-3

4-5

4-6

4-7

4-8

5-1

5-1

5-2

5-3

5-6

6-1

6-2

6-3

6-4

6-5

6-6

CONTENTS (Cont)

6.3.2 ODT Command Summary

6.4 CAT

6.4.1 Example of CAT Usage

6.5 SYSTAT (System Status)

6.5.1 Example of SYSTAT Usage

CHAPTER 7 PROGRAMS FOR PAPER TAPE AND DECTAPE CONTROL

7.1 PIP (Peripheral Interchange Program)

7. 1. 1 PIP Conventions

7.1.2 Using PIP to Load a Paper Tape to a Disk File

7.1.3 Using PIP to Punch Out a Disk File

7.1.4 Using PIP with the High-Speed Reader and Punch

7.1.5 Using PIP to Transfer BIN Format Files

7.1.6 Moving Disk Files

7.1.7 Deleting Disk Files

7.1.8 Transferring BASIC-8 Files

7.1.9 Transferring SAVE Format Fi les

7.1.10 Summary of PIP Options

7.2 COpy

7.2.1 Using and Calling COPY

7.2.2 Loading Files from DECtape

7.2.3 Saving Disk Files on DECtape

7.2.4 Listing Directories

7.2.5 Deleting Files

7.2.6 Deleting All Files on a Device

7.2.7 Summary of COPY Options

7.2.8 Example of COPY Usage

CHAPTER 8 ADVANCED MONITOR COMMANDS

8. 1 Introduction

8. 2 Control of User Programs

8.3 Defining Disk Files

8.3.1 Creating a Disk File

8.3.2 Opening and Closing a File

v

Page

6-6

6-7

6-7

6-8

6-8

7-1

7-1

7-1

7-2

7-2

7-3

7-3

7-3

7-4

7-4

7-5

7-5

7-5

7-6

7-7

7-7

7-7

7-8

7-8

7-9

8-1

8-2

8-3

8-3

8-3

CONTENTS (Cont)

8.3.3 Extending, Reducing, and Renaming a Disk File

8.3.4 Protection Codes

8.3.5 Error Conditions

8.4 Saving and Restoring User Programs

8.5 Utility Commands

CHAPTER 9 WRITING ASSEMBLY LANGUAGE PROGRAMS FOR TSS/8

9.1 Introduction

9.2 Console I/O

9.3 Fi les and Disk I/O

9.4 Assignable Devices

9.5 Program Control

9.6 Program and System Status

9.7 PDP-8 Compatibility

APPENDIX A TSS/8 CHARACTER SET

APPENDIX B SUMMARY OF MONITOR COMMANDS

APPENDIX C SUMMARY OF lOT INSTRUCTIONS

APPENDIX D OFF-LINE TAPE PREPARATION AND EDITING

APPENDIX E SYSTEM CONFIGURATION AND OPTIONAL HARDWARE

APPENDIX F STORAGE ALLOCATION

APPENDIX G GLOSSARY OF ABBREVIATIONS AND TERMS

2-1

3-1

3-2

3-3

Monitor Error Messages

Summary of BASIC-8 Statements

TABLES

Summary of BASIC Edit and Control Commands

FOCAL Command and Operation Summary

vi

Page

8-4

8-4

8-6

8-6

8-8

9-1

9-2

9-4

9-9

9-12

9-13

9-16

2-10

3-7

3-10

3-13

TABLES (Cont)

Page

4-1 Summary of FORTRAN-D Statements 4-5

4-2 FORTRAN-D Compiler Systems Diagnostics 4-6

4-3 FORTRAN-D Compiler Compilation Diagnostics 4-7

4-4 FORTRAN-D Operati'1g System Diagnostics 4-8

5-1 Symbol List for TSS/8 5-3

5-2 PAL-D Error Diagnostics 5-6

6-1 Summary of Symboli c Editor Operations 6-2

6-2 EDIT Command Summary 6-3

6-3 ODT Command Summary 6-6

ILLUSTRATIONS

1-1 User Console 1-3

1-2 Console Keyboard 1-4

E-1 Reader /punch E-2

E-2 Transport E-3

vii

PREFACE

The TSS/8 User's Guide is a console-oriented manual, written especially for the student, technician, engineer,

or scientist. This manual presents a functional overview of the operation of TSS/8 (sometimes called

Time Shared-8) from the user's viewpoint, with precise instructions on how to make efficient use of the TSS/8

system.

In particular, the first section is intended to introduce the new user to TSS/8 and provide some insights on how

TSS/8 enables a single computer to efficiently service the differing needs of many users simultaneously. In

later sections, Monitor commands are explained in detail, and illustrated by actual examples. Full descriptions

of a number of System Library Programs are also presented.

The user of this Guide can be certain that the system operates exactly as explained because each operation has

been verified on TSS/8, with the actual printout included herein.

Documents referenced (available from DEC's Program Library):

TSS/8 System Manoger's Guide, DEC-T8-MBZA-D
Introduction to Programming, C-18
Paper Tape System User's Guide, DEC-08-NGCC-D
FOCAL-8 Programming Manual, DEC-08-AJAD-D
BASIC-8 Programming Manual, DEC-T8-KJZA-D
Symbol i c Editor, Programmer's Reference Manual, DEC-08-ESAB-D
PAL-D Assembler, Programmer's Reference Manual, DEC-D8-ASAB-D
4K FORTRAN, Programmer's Reference Manua I, DEC-08-AFCO-D
KT08/I Time-Sharing Option, DEC-8I-H-8NA-D

ix

1.1 GENERAL DESCRIPTION

CHAPTER 1

INTRODUCTION

TSS/8 (Time-Sharing System for the PDP-8/1 and -8 Computers) is a general-purpose, time-sharing system

offering up to 16 users (24 in certain applications) a comprehensive library of System Programs. These programs

provide facilities for editing, assembling, compiling, debugging, loading, saving, calling, and executing user

programs on-line. Two conversational, interactive systems, FOCAL-8 and BASIC-8t are also included.

By separating the central processing operations from time-consuming interactions with human users, the computer

can, in effect, work on a number of programs simultaneously. Cycling between programs and giving only a

fraction of a second at a time to each program or task, the computer can deal with many users seemingly at

once. The appearance is created that each user has the computer to himself. The execution of various programs

is done without their interfering with each other and without lengthy delays in the respanse to individual users.

The heart of TSS/8 is a complex of subprograms called the Monitor. Monitor coordinates the operations of the

various programs and user consoles, ensuring that the user is in contact at all times with his program. Monitor

allocates the time and services of the computer to the various users; it grants a slice of processing (computing)

time to each job, and schedules jobs in sequential order to make most efficient use of the system device (disk).

Monitor handles user requests for hardware operations (reader, punch, etc.), swaps (moves) programs between

memory and disk, and manages the user's private files.

1.2 USER PROGRAMS

When the user is working on a program with TSS/8, his work exists in the computer as though he had his own

4K (4096 word) PDP-8. Several users can run programs at virtually the same time, because TSS/8 Monitor con­

trols the scheduling of execution times. Monitor brings a program into core from the disk, allows it to execute

for a short time, and takes note of the state at which execution is stopped. Monitor then brings the next user

program into core, and repeats the process. The user is allotted a 4K block of storage that contains his particular

tFOCAL-8 (FOrmula CALculator) is an on-line conversational program developed by DEC. BASIC-8 is a
slightly modified version of the algebraic language originally developed at Dartmouth College.

1-1

program; this 4K block will be swapped from core onto a 4K area of disk storage when it is necessary for Monitor

to bring in another program to run.

After the user's program has been executed, for a period of time it is placed at the end of the queue (line) of

user programs waiting to run. If only one program is ready to run, it is allowed to do so withaut interruption

until another program is ready.

If a user wishes to maintain a permanent copy of his program, it is necessary to save a copy within the file area

of the disk (an area separate from the swapping area). Later sections of this manual describe the procedures to

create and update such fi les •

1 .3 USER FILES

A TSS/8 user is any person logged in on TSS/8. Each user has an account number and password assigned to him

by the installation manager or the person responsible for his particular TSS/8; the account number and password

allows the user access to the computer. His account number is also used to identify whatever fi les the user may

own within the TSS/8 file system.

The disk (a large external memory device used for storage of programs and data) is divided into logical areas

called files. A user can create files and store them in the file storage area of disk. The user can also specify

which groups of users may access his files and for what purpose (read, write, or both).

Parts of the disk are used to store System Files; those programs which are accessible to anyone using the computer.

A major portion of this manual deals with haw to use System Files, generally referred to as System Library

Programs.

With the appropriate Monitor commands, the user can create new files and manipulate old files (extend, reduce

or delete them). These commands are explained in Chapter 8. Most individual System Library Programs are

able to handle user files as input or output with commands issued at the user's consale.

1.4 TSS/8 USER CONSOLE

The user's console is a model 33 ASR Teletype® (Figure 1-1). The consale keyboard (Figure 1-2) allows the

user to communicate with his programs and Monitor. The paper-tape reader and punch are for paper-tape input

and output, while the teleprinter provides a typed copy of user input as well as program and Monitor output.

The Teletype controls are described here as they apply to the operation of the computer. Off-line operations

are explained in Appendix D.

® Teletype is a registered trademark of the Teletype Corporation.

1-2

- --- - --- ----- - --,

..
"d
I

OFF

REL.

B. SP.

ON

START -
STOP - --!Ii ...

FREE -

OFF

LINE 0 LOCAL

Figure 1-1 User Console

1.4.1 Power Control Knob

The following is a description of settings on the power control knob.

1.4.2 Printer

LINE

OFF

LOCAL

Function

The Teletype is energized and connected to the computer
as an input/output device, under computer control.

The Teletype is deactivated.

The Teletype is activated for off-I ine operation.

The printer provides a typed copy of input and output at a maximum rate of 10 characters per second.

1-3

1 .4.3 Keyboard

The console keyboard is similar to a typewriter keyboard. However, certain operational functions are shown

on the upper part of some of the key tops. These functions are activated by holding down the CTRL key while

depressing the desired key. For example, when using the Symbolic Editor, CTRL/FORM causes Editor to enter

command mode.

Although the left and right square brackets are not visible on the keyboard key tops, they are shown in Figure 1-2

and are generated by typing SHIFT/K and SHIFT/M, respectively. Also, the ALT MODE key is identified as

ESC (ESCape) on some keyboards.

C)C)C)C)G)C)OG)G)G)C)O®
@G)G)tV~®OG)CV~®@@
8G)~@G)evQQCD~c)@88
8G)G)G)G)G)CDCDC)Oo8

SPACE

Figure 1-2 Console Keyboard

1.4.4 Paper-Tape Reader and Punch

The paper-tape reader is used to input (to a user program) data punched on eight-channel perforated paper tape

at a rate of 10 choracters per second (maximum). The reader control settings are shown in Figure 1-1 and

described below:

Control

START

STOP

FREE

Function

Activates the reader; reader sprocket wheel is engaged and operative.

Deactivates the reader; reader sprocket wheel is engaged but not
operative.

Deactivates the reader; reader sprocket wheel is disengaged.

NOTE

The high-speed reader and punch are described in
Append;x E.

1-4

1.4.5 Positioning Tape in the Tape Reader

The following procedure describes how to properly position paper tape in the low-speed reader.

a. Raise the tape retainer cover.

b. Set reader control to FREE.

c. Position tape to fit in the carrier and over sprocket wheels.

d. Close the tape retainer cover.

e. Tape should be able to be drawn through low-speed reader in either direction while the control is
set to FREE.

1.5 USE OF THIS MANUAL

At this paint, the user has a general understanding of time-sharing and how it is done. The following chapters

describe haw to use the system, and include summaries of the various System Library Programs available and haw

to use them. Chapter 2 describes the elementary Monitor commands every user will require. Chapter 3, Sec­

tion 3.1 describes the System Library. Section 3.1 assists the user in learning to gain access to (in computer

jargon "to access") files and control execution, and includes a list of more detailed manuals on each of the

TSS/8 System library Programs. A glossary of terms and an Index appears at the end of this manual.

1-5

CHAPTER 2

ELEMENTARY MONITOR COMMANDS

TSS/8 offers the user a variety of hardware and software resources. The TSS/8 Monitor controls the allocation

and use of these resources. Many of the functions of the Monitor are invisible, and of no concern to the user,

for example, the way it allows many users to run prograrras on a single computer. In other instances the user

explicitly tells Monitor what he would like to do and the resources he wishes to utilize. He does so by typing

one or more of the commands described in this chapter or Chapter 8 (Advanced Monitor Commands).

The Monitor commands described in the first half of this chapter are those the user needs to log into the system,

to uti lize the TSS/8 System Library Programs, and to logout of the system. All TSSAl users must be fami I iar with

these commands. The commands described in sections 2.5, 2.6, and 2.7 are not needed to run TSS/8 System

Library Programs such as BASIC and FOCAL, but are frequently useful. The Monitor commands described in

Chapter 8 are primarily useful for creating assembly language programs and files.

2.1 CALLING MONITOR

NOTE

All Monitor commands must be terminated by typing the
RETURN key. All words within a Monitor command
line are separated by one or more spaces.

The user enters commands to System Programs, such as BASIC and FOCAL, in exactly the same way that he

enters commands to Monitor (i .e., by typing them in at the keyboard); therefore, the system must have some

way of distinguishing between the two cases. It does so by defining two modes of console operation: Monitor

mode and program mode. When a user's console is in Monitor mode, all input is interpreted as being commands

to Monitor. Otherwise, all input is assumed to be to the user program.

A special character, CTRL/B, (obtained by striking B with the CTRL key held down; and echoed on the Teletype

as tB) is used to unconditionally place the user's console in Monitor mode. Typing CTRL/B tells the system that

the command to follow is to be interpreted as a command to Monitor, regardless of the mode that the Teletype is

in. Generally, the command which follows the CTRL/B will be the S command.

2-1

fBS

fBfBS

Return to Monitor mode.

Return to Monitor mode from a program which is typing
out. (The two CTRL/B's stop the typeout, allowing the
S command to be typed.)

It is not necessary to precede each Monitor command with CTRL/B. Once in Monitor mode, a cOl1sole stays in

that made unti I a command is typed which starts a user program. To signify that it ;s in Monitor mode, the

system types a dot (.) on the left margin of the console printer paper. This dot indicates that the characters

typed in next will be treated as a Monitor command. Thus, the CTRL/B capability is important when a user is

runni ng a program and wishes to type a Monitor command. He may, for example, be using one language

(or System Program) and want to change to another, as shown below •

• R FOCAL

CCNGRATULATIO~S! !
YOU HAVE SUCCESSFULLY LOADED 'FOCAL~1969' O~ A TSS-8/1 COMPUTER.

SEALL I RETAIN LOC~ EX~~ ATN ?:NO

SHALL I RETAIN SINE~ COSINE ?:NO

PROCEED.

*

fBS
.R BASIC

NEv.' OR OLD--

Monitor always responds to tBS by typing a dot at the left-hand margin.

2.2 LOGGING IN ON TSS/8

To prevent unauthorized usage and to allow Monitor to maintain a record of system usage, TSS/8 requires that

each user identify himself to the system before using it. Before attempting to log in, the user should ensure that

the console LINE/OFF/LOCAL knob is turned to the LINE pasition (see section 1.4.1) before striking the

RETURN key. If the console is connected to TSS/8 and is not already in use, Monitor rolls the console paper

up two lines and prints a dot at the left margin of the paper.

The dot indicates that TSS/8 is in Monitor mode and that Monitor is waiting for the user to issue a command.

LCGIN Request access to TSS/8.

2-2

The LOGIN command allows the user to access the TSS/8 system.

The user types LOGIN followed by a valid account number and password. Providing the console is free (not

already logged in), the command, account number, and password will not be pnnted on the console paper as

the keys are typed. If the command name letters are being printed, stop typing the command; instead, strike

the RETURN key, log out using the LOGOUT command (see section 2.3), at this point a successful LOGIN can

be accorr.plished. The LOGIN command is formatted as shown below:

.LOGI"J 1234 ABCD (only the dot is printed)

where. is printed by Monitor, LOGIN is the command name, 1234 represents the account number, and ABCD

represents the password.

NOTE

A command name and each parameter (except the last)
is always followed by a space, and the command line
is always terminated with the RETURN key.

When a user types something other than a valid LOGIN command on a console, Monitor respands in one of the

following ways.

Response

HELLO?

LC'GI:'-J PLEASE?

ILLEGAL RE.QUEST

.LOGIN' 4771 DEt'iC
ALREADY LeGGED I:'-J

UNAUTHORIZED ACCOU~T

Explanation

(user typed HELLO)

(user typed ASSIGN D 3)

(user typed LOGIN ABCD ABeD)

(user typed va I id LOGl N on an already logged in
console)

(user typed an incorrect account number or password)

In the first example, HELLO is not a command, so it is repeated with a question mark by Monitor. In the

second example, ASSIGN D 3 is a valid command but it is not appropriate until after the user logs in; therefore,

Monitor asks the user to log in. In the third example, Monitor finds that the LOGIN command is improperly

formatted (the first parameter must be from one to four numbers). The console printout tells the user that he has

made an ILLEGAL REQUEST. When the console is already logged in and the user types the LOGIN command,

the characters typed echo at the console, and Monitor informs the user that the console is occupied with the

message ALREADY LOGGED IN? If the user attempts to use an incorrect account number or password, Monitor

2-3

replies UNAUTHORIZED ACCOUNT. Thus, Monitor can distinguish an invalid command from a valid command;

it can also distinguish whether the valid command is appropriate when issued, whether the command is properly

formatted, and whether the account number and password are acceptable. In all the examples above, Monitor

ignores the command and prints another dot.

When Monitor finds the LOGIN command properly formatted and the account number and passwords acceptable,

it responds by identifying the version of the system being used, the job number it has assigned to the user, the

number of the console being used, and the time-of-day in hours, minutes, and seconds. For example:

TSS/8.19 JOB 03 K01 08:45:21

A~D USUALLY THE SYSTEM MA~AGER WILL ENTER
HERE A COMME~T OR NOTE TO THE USER CONCER~ING
THE SYSTEM

Monitor then prints another dot and waits for the user to issue the next command. The job number assigned is an

internal number by which the system identifies each on-line user.

2.3 LOGGING OUT OF TSS/8

The LOGIN command tells Monitor that the user is ready to begin an on-line session. The LOGOUT command

indicates that the user is finished and ready to leave his Teletype.

LGGOUT DiscoMect the user from the system and record the
amount of time he has used.

Monitor responds to LOGOUT by typing the amount of computer time used in the session and the total real time

of the session. For example:

.LOGOUT
RUN TIME 00:00:34 ELAPSED TIME 00:35:41
PLEASE TUR~ OFF YOUR TTY

Computer time used in this example was thirty four seconds, while the elapsed time between LOGIN and

LOGOUT was thirty five minutes and forty one seconds.

2.4 SYSTEM LIBRARY PROGRAM CONTROL

Once logged in, the user can call any of the TSS/8 Library Programs described in Chapters 3 through 7. To

call such a program, the user types the command R {meaning run} followed by one or more spaces and the pro-

2-4

For example:

R

.R BASIC
NE\!: OR OLD

Call in and start a Tss/8 System Library Program.

Monitor fetches the BASIC language processor from the System Library and starts it. BASIC begins its dialogue

by asking if the user wishes to work on a new program or retrieve an old one from disk storage. Notice that

once BASIC begins, the console is no longer in Monitor mode. Dots are no longer printed at the margin. All

input is considered to be commands to BASIC.

If the user types a program name which cannot be found in the System Library, Monitor responds with an error

message and returns the console to Monitor mode •

• R BASICK
FILE NOT FOUND?

The exact contents of a Tss/8 System Library may vary from installation to installation.

2.5 COMMUNICATION WITH OTHER USERS

Although Tss/8 gives each system user the impression that he is the only user of the system, it is actually

supporting many users at a time. Often, it is useful to communicate with another user, or with the system

operator; this is done through use of the TALK command.

TALK Type out a message on another Tss/8 Teletype.

For example, to teIl the systenl operator (Teletype O) to tum on the high-speed punch, a user types the following

(where the initial dot was typed by Monitor):

.TALK 13 PLEASE TUR:.J ON THE HIGH SPEED PUNCH

This command causes the following to be typed on console 0:

** K137** PLEASE TURN ON THE HIGH SPEED Pu~CE

where K07 is the number of the physical console which sent the message. Any Teletype can initiate a message

to any other Teletype. However, if the destination Teletype is printing at that time, the message will not be

sent. The initiating Teletype will, in this case, get the message BUSY as a response.

2-5

2.6 SYSTEM STATUS REPORTS

The command SYSTAT initiates a typeout of the full status of TSS/8; how many users are on-line, what they are

doing, etc.

SYSTAT Report system status.

The command SYST AT is equivalent to typing R SYST AT. The format of the status report is described in the

section on SYSTAT in Chapter 6.

To learn the amount of computer time used since logging in, the user issues the TIME command:

For example:

TIME

TIME 0

TIME C 1

.TIME
00:00:09

.TIME 0
09:29:32

.TI~E 02
00:00:10

2.7 RESOURCE SHARING

The elapsed processor time of the user since he logged in
is printed.

The time of day is printed.

The amount of processor time used by job C 1 since login
is printed.

All TSS/8 users, when logged in, have free access to the System Library, the disk storage capobi I ity, and the

TSS/8 computer. Monitor automatically handles resource requests on a rotating basis. Monitor also maintains

a pool of available devices which must be assigned to be used. These are devices, such as the high-speed

paper-tape reader, which by their very nature cannot be assigned to several programs simultaneously. Therefore,

Monitor grants individual users exclusive access to these devices when needed. Thus, users still share the

device, although not simultaneously.

2-6

All Tss/8 systems include a high-speed, paper-tape reader in the pool of available devices. Many systems also

include a high-speed, paper-tape punch, and one or more DECtapes. These assignable devices are normally

used with System Library Programs PIP and COpy to store programs or data on paper tape or DECtape.

When a device is assignable (present on the system) and available (not being used), the ASSIGN command may

be used to assign the desired unit or units to the console issuing the command. The valid ASSIGN commands are

formatted as shown below:

ASSIGN R

ASSIGN P

ASSIGN D

Assign the high-speed paper-tape reader.

Assign the high-speed paper-tape punch.

Assign a DECtape unit.

where R, P, and D are device designators for reader, punch, and DECtape, respectively. If other devices are

assignable, the system manager will inform the user of the appropriate device designators. The following is an

example of using an invalid device designator .

• ASSIGN X
ILLEGAL REQUEST

Monitor ignores the request, responds with the appropriate message, and prints another dot.

When a valid ASSIGN command is issued, Monitor checks for the availability of the device and respands

accordingly. For example:

.ASSIGN R
R ASSIGNED

.ASSIGN P
JOB 02 HAS P

(reader is assignable, available, and assigned)

(punch is unavailable because job number is using
it, and thus not assigned)

When the system contains multiple units of a device, the user simply specifies the device; Monitor assigns an

available unit and responds with the unit number. For example:

.ASSIGN D
D 2 ASSIGNED

If all DECtape units are busy, Monitor prints the message shown below:

.ASSIGN D
DEVICE NOT AVAILABLE

2-7

A specific unit can be requested, leaving a space between the device designator and the device number .

• ASSIGN D 4
D 4 ASSIG;\;ED

{assignment was accomplished}

NOTE

If the user assigns a device with a nonexistent device
number, that device will not be assigned; an error
message does not result because that device is not busy.
An error message only results when the device is already
assigned •

The ASSIGN cornn'lOnd can assign only one device at a time. Therefore, when multiple devices are to be

assigned, each must be assigned separately. The following will not accomplish the desired assignments, either

with or without the illegal commas .

• ASSIG~ R~ D 2~ D 1
R ASSIGNED

Monitor accepted the first device designator {and unit number if any} and ignored the rest of the command. If

device R is unavailable, Monitor prints the appropriate message. The following completes the desired assign­

ments {assuming available devices} .

• ASSIGX D 2
D 2 ASSIG:\ED

• ASS I Gr\ D 1
D 1 ASSIG:.\'ED

When the user has finished working with an assigned device, the RELEASE command must be used to terminate

the assignment and allow other users access to the device. (When a user logs out of TSS/8 any devices he still

has assigned to him are automatically released.)

RELEASE Terminate a previous device assignment and make the
device available to other users.

An assigned device is released when the user types the RELEASE command, a space, the device designator {and

unit number if required}, and the RETURN key as shown below •

• RELEASE R
.RELEASE D 3

2-8

In the previous example, the reader and OECtape unit number 3 are released. Monitor prints a dot on the next

line if the release is accomplished; otherwise, it prints a message. If, for example, a request is made to release

a device which has not been assigned to the issuing console, the following happens:

.RELEASE P
ILLEGP.L REQUEST

Monitor printed ILLEGAL REQUEST after it checked and found that the specified device was not assigned to the

console issuing the command.

NOTE

All commands must be formatted properly; ILLEGAL
REQUEST is printed if the user fails to separate the
device designator and unit number with a space.

When multiple device units exist on the system, each must be individually released. For example:

.RELEASE D 1

.RELEASE D 2

.RELEASE R

Monitor does not check when releasing a device as it does when checking to assign an available device. The

user could have two device units (for example, two DECtape units) assigned and Monitor would not know which

to release; therefore, device numbers are necessary with a RELEASE command. However, where only one unit

of a specific device (one reader, one punch, etc.) is on the system, the device designator alone is sufficient.

Examples follow.

.RELEASE D
ILLEGAL REQUEST
.RE.LEASE R

.RFLEASE D

2.8 ERROR MESSAGES

(due to multiple OECtope units)

(accompl ished)

(0 1 is released)

An appropriate error message is printed whenever: a Monitor command cannot be performed at the time it was

requested, a typing error was made, or the command is illegal (nonexistent). Following each error message,

Monitor ignores the request and prints another dot, after which the user can issue another command.

2-9

Command

Sl ?

LOGIN PLEASE?

Table 2-1
Monitor Error Messages

Explanation

The Systell1 Interpreter does not understand the command.
Sl = command

The user attempted to use a console which is not logged
in.

UNAUTHORIZED ACCOUNT The user attempted to log into the system with an invalid
account number or name.

ALREADY LOGGED IN?

FULL

TYPE tBS FIRST

ILLEGAL REQUEST

BUSY

The user tried to log in on a console which is already in
use.

The TSS/8 system is full. Another user cannot log in
until one of the present on-line users logs out.

The user attempted to use a system command whi ch
cannot presently be honored due to the status of the
user's prograll1. The message may appear even after the
user has typed tBS, since his program may continue until
the I/O in progress at the time of the halt is completed.
The user should wait a few seconds and then type his
command a second time.

The user requested an illegal command. This error
usually results when some parameter has been given an
incorrect value or the request refers to a facil ity nat
owned by the user.

The user attempted to talk to a console which is
currently typing out or is being typed on.

2-10

3.1 INTRODUCTION

CHAPTER 3

DESCRIPTION OF TSS/8 SYSTEM LIBRARY PROGRAMS
AND THE INTERACTIVE LANGUAGES

The TSS/8 System Library contains a comprehensive set of user programs for a wide range of applications.

Language processors, such as BASIC-8, FOCAL, and FORTRAN, allow the user to code and run programs

in interactive languages. A complete assembly language system allows programs to be written in PAL-D.

Various utility programs perform special functions. The System Library consists of the following programs:

a. BASIC-8 - an easily learned algebraic language originally developed at Dartmouth College.

b. FOCAL - DEC's own conversational language for on-line problem solving.

c. FORTRAN-D - a modified version of FORTRAN.

d. EDIT - a keyboard oriented Symbolic Editor, used to create and modify source programs and data
files.

e. PAL-D - a two-pass Symbolic Assembler.

f. LOADER - a Binary Loader used to load assembled programs for execution.

g. ODT - Octal Debugging Technique for testing and modifying assembly language programs.

h. PIP - Peripheral Interchange Program for transferring files between the TSS/8 disk and paper tape.

i. COpy - a utility program used to transfer files between the TSS/8 disk and DECtape.

i. CAT - used to list all the files which a user has stored in his library.

k. SYSTAT - (System Status) a util ity program that prints the status of the whole TSS/8 system.

A more detailed description of each of the above System Programs is presented in the following chapters.

3.2 GENERAL CHARACTERISTICS OF SYSTEM LIBRARY PROGRAMS

A fundamental feature of the TSS/8 Monitor is its ability to save programs or other data for each user in his own

private library. These individual user libraries are maintained on the system disk. Individual entries in the

library are called files, whether they contain programs or data. Within the library itself, there is no distinction

between types of files by their conte"ts. Each file is identified with a file name by which it is known, and

called into use.

3-1

The user does not directly create and update the files in his library. He uses the System Library Programs for

this purpose. For example, he can use the SAVE command in BASIC. The SAVE command takes the BASIC

program named and saves it as a file in the user's library for future use. Similarly, EDIT can be used to modify

an existing file, resulting in the creation of a new file. Therefore, although TSS/8 Monitor provides the actual

file storage capability, most file manipulation is done while System Library Programs are being run.

The System Library Programs which operate on these files, must know which file to use, when to create a new

file, and what to call it. Each Library Program has its own method of determining whether a user wishes to use

an old file or create a new one; this is explained in the sections on individual programs.

Example 1:

Example 2:

.R BASIC
NEW OR OLD--OLD
OLD PROGRAM NAME--PRIME
READY

.R FORT
INPUT:TYPE
OUTPUT: BTYPE

For most of his work, the user requires access to only his own library. However, it is often a useful feature to

be able to obtain a program from another user's library; allowing a single file to be shared by several users. To

access a program from another user's library, the user must tell the system in which individual I ibrary the fi Ie is

stored. The user tells the system by entering the account number of the library's owner. (In the absence of an

account number, the user's own I ibrary is the assumed source.) To get a fi Ie from the System Library, type an

asterisk immediately after the file name.

Example 1:

Example 2:

.R BASIC
NEI,: OR OLD--OLD
OLD PRCGRAM NAME--HOSSR*
READY

.R PALD
INPUT:NOTPIP 5440

OUTPUT:BINI

3-2

NOTE

Most examples in the discussions of individual System
Library Programs use file names within the user's own
library. The user is free (file protect permitting) to
use files from other users' libraries.

Access to another user's files is gained only with his permission. A user may "protect" his files against other

users (see Appendix F), i.e., prevent them from gaining access to his files, even though they know his program

name and account number. Library Programs never permit a user to write in another user's files. Specifying a

file which is protected, or specifying a nonexistent file, is an error that is detected immediately. An error

message is typed and the same request made again.

The user places his output in a single file; however, it is often useful to input several files together. (For

example, the user may wish to assemble two parts of a PAL-D program together.) To specify more than one

input file, separate the file names by commas. No Library Program allows more than three input files.

FORTRAN is limited to two; BASIC allows only one.

BASIC is a self-contained programming system, with an editor, compiler, and run-time system. It also has a

distinctive disk file format. Files created by BASIC are not compatible with files created by other Library

Programs. All other Library Programs depend on each other; therefore, all Library Programs use the same format

for their disk files. Consequently, files created by the Editor can be used as input to PAL-D or FORTRAN-D,

and numerical files created with the use of the Editor can be read by FORTRAN programs as data files.

Up to this point, only files that exist within the Time-Sharing System, i.e., on the Tss/8 disk, have been

described; however, Tss/8 provides two other means of file storage: paper tape and DECtape. The Library

Program PIP can be used to transfer files between paper tape and disk. The Library Program COpy allows files

to be transferred between disk and DECtape.

3.2.1 Controlling the Execution of System Library Programs

Tss/8 provides the user with two options for stopping the system. CTRL/c (C with the CONTROL key held

down) allows the user to stop his BASIC program and return to the beginning of that program without returning to

the Tss/8 Monitor. For example, if the user begins to run a BASIC program that has an endless loop, he can

type CTRVC to stop it. BASIC responds to tC with READY. All other Library Programs respond in a similar

manner.

CTRL/B is used to stop the Library Program most recently called. CTRL/B followed by S and carriage return

(RETURN key) unconditionally returns the user to the Monitor level; the user can now call another Library

Program. If the system is typing out, two CTRL/Bs and the S (tBtBS) are required to stop the system.

3-3

RUBOUT is another useful character that deletes the last typed character. Some Library Programs respond bv

printing \ or" while others print the rubbed out character. If the RUBOUT key is typed while entering file

names for input or output to a library Program, RUBOUT deletes the whole line. The request for input or output

is then repeated.

3.2.2 Returning to Monitor

The user can stop the execution of a System Library Program at any time by typing CTRL/B followed by S and the

RETURN key. The System Library Programs can also initiate a return to the Monitor. When the System Library

Programs initate a return, tBS is printed just as though the user had terminated the program. For example,

BASIC-8 returns to Monitor when the user types the BYE command:

READY

BYE
tBS

FORTRAN returns to Monitor after completing execution of a program. CAT and SYSTAT return after typing

their particular data output. PAL-D returns after completion of an assembly, LOADER at the end of a normal

load, and EDIT after completion of an EDIT. FOCAL, BASIC, ODT, PIP, and COPY never return to Monitor;

these programs must be terminated by the user.

NOTE

Some System library Programs return to the Monitor when
a fatal error condition is detected.

3.2.3 Additional Manuals

Many of the System Library Programs are documented in their own individual manuals. Those programs for

which manuals exist, are:

BASIC-8

FOCAL

EDIT

FORTRAN-D

PAL-D

ODT

DEC-T8-KJZA-D

DEC -08-AJAD-D

DEC -08-ESAB-D

DEC-Q8-AFC 0-D

DEC-D8-ASAB-D

DEC-Q8-COCO-D

Only a brief description of these programs is given here. Tables of commands are included for reference; how­

ever, for detailed instructions on the usage of these programs, the user is referred to the individual manual.

3-4

3.3 BASIC-S

BASIC-S is the TSS/S version of the time-sharing language BASIC. It allows even the beginning computer user

to write and run meaningful programs. BASIC-S is described at greater length in the BASIC-S Manual (Order

No. DEC-TS-KJZA-D). To call BASIC, type:

.R BASIC

After the user logs into TSS/S, and calls the BASIC program, BASIC then prints NEW OR OLD--. The user then

types the appropriate adjective: NEW (if the user is about to type a new program), or OLD (if the user wants

to access a program that was previously fi led).

BASIC asks NEW PROGRAM NAME-- (or OLD PROGRAM NAME--) and the user types any combination of six

letters or less. If the user is recalling an old program file from memory, he must use exactly the same name as

when he originally instructed BASIC to save it.

BASIC prints READY to signal the start of the editing phase; the user then begins to type the new program. If

the user types a line consisting of only a line number followed by the RETURN key, that line is deleted. Make

certain that each line begins with a line number greater than 0 and less than 2047 and contains no non-digit

characters. To enter the line to the computer be sure to strike the RETURN key at the completion of each

line.

If, while typing a statement, the user makes a typing error and notices it immediately; he can correct it by

striking the RUBOUT key (right-hand side of the keyboard), or the back arrow key (SHIFT/O). Striking either

key deletes the character in the preceding space and prints a left arrow (+} for each rubout. The user can then

type in the correct character. Striking the RUBOUT key a number of times erases one character from the

current line, (spaces are characters) to the left for each RUBOUT typed.

NOTE

BASIC sometimes takes several seconds to accomplish
a rubout.

While BASIC is in the editing phase, certain additional commands (which must not have line numbers) are avail­

able and are described below:

a. If the user types SAVE followed by one or more spaces, followed by a name, and strikes the
RETURN key, the current program is saved for future use under that name.

b. If the user types UNSAVE, followed by a name, and strikes the RETURN key, the program with the
name given is deleted from the user's permanent file.

c. If the user types CATALOG, and strikes the RETURN key, a listing of all the program names in
his permanent file is typed.

3-5

NOTE

Names of temporary files are also shown. These are of
the form, BASnn, and can be ignored.

d. If the user types LIST followed by two line numbers separated by a comma, a listing of the particular
part of his current program that lies between those line numbers is typed. If the comma and second line
number are omitted, only the sil1gle line indicated is listed. If no line numbers follow the word LIST
(but only the RETURN key), the whole program is listed.

e. If the user types DELETE followed by two line numbers separated by a comma, all lines between and
including the two indicated are deleted. If the comma and second line number are omitted, only the
single line specified is omitted.

f. When the user is ready to leave the Teletype, he signs off by typing BYE. BYE concludes
operations and TTS/8 Monitor deletes any tempory files assigned to the user.

g. After BASIC is called, the user can load a BASIC program from paper tape by placing the tape in
the console tape reader and typing TAPE. The tape is read in without printing on the console paper.
All RUBOUT characters are ignored.

h. After loading a tape, type KEY to return to normal keyboard mode. (Characters typed while in
TAPE mode do not echo on the console paper.)

If information (other than the RETURN key) is to follow the control word, at least one blank must precede the

additional information.

3.3.1 Example of a BASIC-8 Program

LIST
10 REM - PROGRAM TO COMPUTE I~TEREST OX A LCA~
20 PRINT "INTEREST DJ PERCENT";
30 INPUT J
40 LE.T J=J/100
50 PBI~T "Ar-:'OCNT OF LOAN";
60 I~Pl·T A
70 PRI~T "~Ul"BER OF YEARS";
80 I~PUT N
90 PRINT ":\JUl".BER OF PAYME~TS PER YEAR";

100 I~PUT M
110 LET ~=N*K
120 LET I=J/M
130 LET B=1+I
140 LET R=A*I/(1-1/BT~)
150 PR DJT ·'l",ONTJiL't PI>YME.:--JT ="Fi.
1 60 PRDJT "TOTAL I~TEREST ="R*N-A
1 70 END

3-6

READY

RUN

INTEREST IN PERCENT? 8
AMOUNT OF LOAN? 25000
NUMBER OF YEARS? 20
NUMBER OF PAYMENTS PER YEAR? 12
MONTHLY PAYMENT = 209.1103
TOTAL INTEREST = 25186.46

READY

3.3.2 Summary of BASIC-8 Statements

Tabl e 3-1 is a summary of BASIC-8 statements.

The following is a list of symbols used in Table 3-1.

v = variable
f = formula
r = relationship
a = arguments

n = Ii ne number
s = integer subscript value
d = data, either real or integer

Table 3-1
Summary of BASIC-8 Statements

Statement Explanation

LET v = f Assign the value of the formula to the specified
variable.

DATA d, ••• , d DATA statements are used to supply one or more
numbers to be accessed by READ statements.

READ v, ..• , v READ statements, in turn, assign the next available
number in the DATA string to the variables listed.

PlUNTa, ••. ,a Type the values of the specified arguments, which
may be variables, text, or format control characters.

GOTOn Transfer control to the line number specified and
continue execution from that point.

~F (f rf) THEN n } If the stated relationship is true, then transfer control
IF (f r f) GO TO n to the I ine number specified; if not, continue in

sequence.

FOR v = f1 TO f2 STEP f3 Used for looping repetitively through a series of steps.
The FOR statement initializes the variable to the value
of formula 1. If the increment is positive and the
variable ~formula 2, the instructions following are
executed unti I the NEX T statement is encountered.

3-7

Statement

NEXT v

DIM v (s)

END

RANDOMIZE

GOSUB n

RETURN

INPUT v, ••• , v

STOP

REM

RESTORE

3.3.3 Functions

Table 3-1 (Cont)
Summary of BASIC -8 Statements

Explanation

The NEXT statement increments the variable by the
value of formula 3 (if omitted, the increment value is
+ 1). The variable is again tested as described above,
and this process continues until the loop is repeated the
specified number of times. When the variable becomes
larger than formu la 2, control goes to the statement fol­
lowing the NEXT. If the increment (formula 3) is neg­
ative, then the instructions between the FOR and NEXT
statements are executed until the variable becomes less
than the value of formula 2.

Enables the user to enter a table or array with the
specified number of elements.

Last statement to be executed in the program. This
statement must be present.

When placed at the start of a program, causes a
different set of random numbers to be generated each
time that program, using RND (X), is run.

Transfers control to the subroutine beginning at the
line number indicated.

RETURN simplifies the execution of a subroutine by
providing an automatic return from the subroutine to
the next sequential statement following the appropriate
GOSUB (the GOSUB which sent control to the sub­
routine).

Causes typeout of a ? to the user and waits for user to
respond by typing the value of the variable(s).

Equivalent to GO TO [line number of END statement] •

Permits typing of remarks within the program.

Sets pointer back to beginning of string of DATA values.

BASIC performs several mathematical calculations for the programmer eliminating the need for tables of

trigonometric functions, square roots and logarithms. These functions have a three-letter call name, (the

argument (X) can be a number, variable or formula) and are written as follows:

3-8

Functions Meaning

SIN (x) sine of x in radians

COS (x) cosine of x in radians

TAN (x) tangent of x in radians

ATN (x) arctangent of x in radians

EXP (x)
x

where e=2.712S1S e

LOG (x) natural logarithm ofx, log x
e

ABS (x) absolute value of x, Ixl

SQR (x) square root of x, ..rx-

3.3.4 Complex Functions

a. SG N (x) - the SG N or sign function returns the value + 1 if x is a positive number, 0 if x is 0,
and -1 if x is negative. For example: SGN (3.42) =1, SGN (-42) =-1.

b. I NT (x) - the I NT or integer functi on returns the va lue of the greatest integer not greater than x.
For example: INT (34.67) =34, INT (-34.42) =-35.

c. RND (x) - the RND or random number function produces a random number between 0 and 1. The
numbers are reproducible in the same order for later checking of a program. The value of x is ignored.
If a truly random number generator (causing different random numbers every time the program runs) is
desired, place the RANDOMIZE statement at the beginning of the program, before the initial use of
RND (x).

d. User defined functions - The user may create his own functions by using the DEF statement. The
statement defining the function must appear before any reference to that function, its form is:
DEF F NA (x) = (some formula) where the function name must be a three-letter sequence beginning
with F.

3.3.5 Summary of Edit and Control Commoods

Several commands for editing BASIC programs and controlling their execution enable the user to: delete lines,

list his program, save programs on a file-structured storoge device (disk), delete or replace old programs on

the storage device with new programs, call in programs from the storage device, etc. These commoods are

summarized below.

3-9

Command

BYE

DELETE n

DELETE m, n

LIST

LIST n

LIST m, n

NEW

OLD

RUN

SAVE name

UNSAVE name

tC (CTRL/C)

Table 3-2
Summary of BASIC Edit and Control Commands

Action

Exit to TSS/8 Monitor to conclude operations

Delete line number n (or simply type the line number and RETURN key).

Delete line numbers m through n.

List program.

list line number n.

List program from line number m through n.

BASIC will ask for a new program name.

BASIC wi II ask for the 01 d program name and wi II rep lace current contents of
user core with the program of the given name from the storage device.

Compile and run program currently in core.

Save the BASIC program currently being worked on under the name given. t

Delete the named program from the storage device.

To stop a running program, type CTRL/C (C with the CONTROL key held
down). BASIC will return to editing mode and type READY.

t SAVE commands overwrite an existing file of the Same name.

3.3.6 Error Messages

There are four types of BASIC error messages. The messages and their various interpretations are shown below.

3.3.6.1 Editing Phase Diagnostics - Retype the line to correct it.

Error Message

SYSTEM 1-0 ERROR

//ERROR ft1

//ERROR ft2

//ERROR ft3

//ERROR ft4
//ERROR 11

WHAT?

//ERROR 2ft

Explanation

BASIC was unable to perform the desired disk I/O.

The user did not type in OLD or NEW when the in­
formation was requested.

The new or old name is not a valid name.

The neW name given is currently an active program.

The old program name requested cannot be found.

The SAVE or UNSAVE name given is not a valid name.

The editor cannot understand the command given.

Invalid line number format or outside the range
0< line number < 2047.

3-10

3.3.6.2 Compilation and Execution Diagnostics - Most messages are followed by the notation ON LINE nnnn,

where nnnn is the line number on which the error was detected. (BASIC prints READY and the user is back in

the editing phase.)

Error Message

PROGRAM TOO LARGE

MISSING END STATEMENT

DATA POOL OVERFLOW

ILLEGAL STATEMENT

ILLEGAL LINE FORMAT

NOT CONSTANT IN DATA

DEF STATEMENT MISSING

FOR WITHOUT NEXT

NEXT WITHOUT FOR

ILLEGAL CHARACTER

ILLEGAL CONSTANT

INVALID NAME

INVALID LINE NUMBER

ARRAY USED BEFORE DEFINED

EXPRESSION SYNTAX

STACK OVERFLOW

OUT OF DATA

ILLEGAL INPUT FORMAT

DIMENSION TOO LARGE

UNDEFINED LINE NUMBER

Explanation

The program is too large to be executed. Make it
smaller.

All programs must have an END statement.

The user used too many constants and/or variables in the
program.

A statement was used which is not one of the legitimate
BASIC statements.

The structure of the statement does not agree with the
BASIC syntax.

The user attempted to use something other than a con­
stant in a DATA statement.

A function needing a DEF statement exists in the
program.

There is an unmatched FOR statement in the program.

The NEXT statement indicated has no preceding FOR
statement.

The user attempted to use an illegal character in the
statement being processed.

The format of a constant in the statement being processed
is not valid.

A name is being used which does not agree with the
BASIC requirements.

The format of the line number, being used in a GO TO
or IF statement, is not acceptab Ie.

The user attempted to use an array prior to its appearance
ina DI M statement.

The expression being processed does not agree with the
BASIC rules (this will probably be due to unmatched
parentheses) •

The user programmed a situation in which either DO
statements, subroutines, or functions are nested too
deeply; or the user has a function which calls itself.

An attempt was made to READ more data than was
supplied by the user.

The form of a constant, which the user is attempting to
INPUT, is not valid.

Too large an array to fit in the core available.

The line number appearing in a GO TO or an IF-THEN
statement does not appear in the program.

3-11

3.3.6.3 Non-Fatal Execution Errors - Non-fatal errors are for notification purposes and indicate that the user

performed a computational range error. The errors all cause the message XX IN nnnn to be printed, where nnnn

is the line number and XX is as described below:

Error Code

/'1

OV

UN

LN

sa

PW

Explanation

ZERO DIVIDE - An attempt was made to divide a number
by zero. The largest possible number is used for the
result.

OVERFLOW - The result of a calculation was too large
for the computer to handle. The largest possible number
is used for the result.

UNDERFLOW - The result of a calculation was too
small for the computer to handle. Zero is used for the
result.

An attempt was made to compute the logarithm of zero
or a negative number. Zero is used for the result.

An attempt was made to compute the square root of a
negative number. The square root of the absolute value
is used for the result.

An attempt was made to raise a negative number to a
fractional power. The absolute value of that number
raised to the fractional power is used.

3.3.6.4 System Error - If a failure occurs in the disk I/O portion of the BASIC system, the message SYSTEM

I/o ERROR is printed and control returns to the editing phase.

3.3.7 Implementation Notes

The TSS/8 BASIC language is compotible with Dartmouth BASIC except as noted below:

a. There are no matrix operations.

b. There are no character string instructions.

c. The ON statement has not been implemented.

d. The TAB function is not available in PRINT statements.

e. BASIC-8 has no features which allow reading or writing data on the disk. (Although programs may
be saved on the disk for future use.)

f. All array (subscripted) variables must appear in a DIM statement.

g. The function INT (X) gives the greatest integer in X. Therefore, INT (-2.3) gives the value -3;
INT (2.3) gives the value +2

h. Negative numbers can t.vt be raised to integer powers. The absolute value is used and an error
message printed. The reason for this is the unary minus has a lower priority during execution than
exponentiation. For example, -23 = +8 with an error message given.

3-12

i. User defined functions are restricted to one line.

i. Maximum size of a BASIC-8 program is about 300 lines, depending on the number of variables,
number and size of arrays, and number of nested subroutines and FOR-NEXT loops.

3.4 FOCAL

FOCAL (Formulating On-line Calculations in Algebraic Language) is an on-line, conversational, service pro­

gram for the PDP-8 family of computers, designed to help scientists, engineers, and students solve numerical

problems. The language consists of short imperative English statements which are relatively easy to learn. It

is used for simulating mathematical models, for curve plotting, for handling sets of simultaneous equations, and

many other kinds of problems.

For a detailed introduction to the FOCAL programming language, consult the FOCAL Programming Manual

(Order No. DEC-08-AJAD-D).

To call FOCAL, type:

.R FOCAL

FOCAL enters its initial dialogue, and asks if its extended functions are to be retained. The extended functions

are exponential, sine, cosine, arctangent, and logarithm. If the FOCAL program to be run uses any of these

functions, the user responds YES. If not, the user responds NO to free more space for the user program. Without

the extended functions, there is room for approximately 1800 characters of program. If the extended functions

are retained, there is room for approximately 1100 characters.

3.4.1 FOCAL Command and Operation Summary

Table 3-3
FOCAL Command and Operation Summary

Command Abbreviation Example of Form Explanation

ASK A ASK X, Y, Z FOCAL types a colon for each
variable; the user types a value
to define each variable.

COMMENT C COMMENT If a line begins with the letter C,
the remainder of the line will be
ignored •

CONTINUE C C Dummy lines.

3-13

Table 3-3 (Cont)
FOCAL Command and Operation Summary

Command Abbreviation Example of Form Explanation

DO 0 DO 4.1 Execute line 4.1; return to com-
mand following DO command.

DO 4.0 Execute all group 4 lines; retum
DO All to command following DO com-

mand, or when a RETURN is en-
countered •

ERASE E ERASE Erases the symbol table.

ERASE 2.0 Erases all group 2 lines.

ERASE 2.1 Deletes line 2. 1 .

ERASE All Deletes all user input.

FOR F FOR i=x,y,z;(commands) Where the command following is
executed at each new value.

x=initial value of i

y=value added to i until i is
greater than z.

GO G GO Starts indirect program at lowest
numbered line number.

GO? G? GO? Starts at lowest numbered line
number and traces entire indirect
program unti I another ? is en-
countered, until an error is en-
countered, or until completion of
program.

GOTO G GOT03.4 Starts indirect program (transfers
control to line 3.4). Must have
argument.

IF I IF (X)ln, ln, ln Where X is a defined identifier,

IF (X)ln, In; (commands) a value, or an expression,
followed by three line numbers.

IF (X)ln; (commands)
If X is less than zero, control is
transferred to the first line num-
ber.

If X is equal to zero, control is
to the second Ii ne number.

If X is greater than zero, control
is to the thi rd Ii ne number.

MODIFY M MODIFY 1.15 Enables editing of any character
on line 1.15 (see below).

QUIT Q QUIT Returns control to the user.

RETURN R RETURN Terminates DO subroutines, re-
turning to the original sequence.

3-14

Table 3-3 (Cont)
FOCAL Command and Operation Summary

Command Abbreviation Example of Form Explanation

SET S SET A=5/B*C; Defines identifiers in the symbol
table.

TYPE T TYPE A+B-C; Evaluates expression and types out
= and result in current output
format.

TYPE A-B, c/E; Computes and types each ex-
pression separated by commas.

TYPE "TEXT STRING" Types text. May be foil owed by
I to generate a carriage return
and line feed, or 11 to generate
a carriage return.

WRITE W WRITE FOCAL types out the entire in-
WRITE ALL direct program.

WRITE 1.0 FOCAL types out all group 1
lines.

WRITE 1.1 FOCAL types out line 1.1.

3.4.2 FOCAL Operations

The following is a description of symbols used in FOCAL operation.

To set output format,

To type symbol table,

TYPE %x.y

TYPE %6.3, 123.456

TYPE %

TYPE $

Explanation

Where x is the total number of
digits, and y is the number of
digits to the right of the decimal
point.

FOCAL types: =+123.456

Resets output format to floating
point.

Other statements may not follow
on this line.

After a MODIFY command, the user types a search character, and FOCAL types out the contents of that line

until the search character is typed. The user may then perform any of the following operations.

a. Type in new characters. FOCAL will add these to the line at the point of insertion.

b. Type a CTRL/L. FOCAL will proceed to the next occurrence of the search character.

c. Type a CTRL/BELL. After this, the user may change the search character.

d. Type RUBOUT. This deletes characters to the left, one character for each time the user
strikes the RUBOUT key.

3-15

e. Type", Deletes the line over to the left margin, but not the line number.

f. Type RETURN. Terminates the line, deleting characters over to the right margin.

g. Type LINE FEED. Saves the remainder ci the line fran the point at which LINE FEED
is typed over to the right margin.

3.4.3 Mathematical Functions

A listing of mathematical functions follows:

Function Symbol

Square Root FSQT(x)

Absolute Value FABS(x)

Sign Part FSGN(x)

Integer Part FITR(x)

Random Number FRAN(x)
Generator

tExponential FEXP(x)
Function (eX)

tS' me FSIN(x)

tc . oslne FCOS(x)

tAre Tangent FATN(x)

tlogarithm FlOG(x)

3.4.4 Control Characters

Control characters and their explanation follows:

%
! ,
$
()
[]
<>
II II

? ?
*

Output format delimiter
Carriage return and line feed
Carriage return
Type symbol table contents
Parentheses }
Square brackets
Angle brackets
Quotation marks
Question marks
Asterisk

tThese are known as extended functions.

Interpretation

where X is a positive number or expression greater than
zero.

FOCAL ignores the sign of x.

FOCAL evaluates the sign part only I with 1.0000 as
integer.

FOCAL operates on the integer part of x, ignoring
any fractional port.

FOCAL generates a randan number. The value of x is
ignored.

FOCAL generates e to the power x. (2.7182a><)

FOCAL generates the sine of X in radians.

FOCAL generates the cosine of x in radians.

FOCAL generates the arc tangent of x in radians.

FOCAL generates log (x).
e

(mathematics)

(text string)
(trace feature)
(high-speed reader input)

3-16

SPACE key (names) }
RETURN key (lines)
ALT MODE key (with ASK statement)
Comma (expressions)
Semicolon (commands and statements)

(nonprinting)

3.4.5 Reading FOCAL Paper Tapes

To ensure that FOCAL paper tapes are read without error, they should be read silently. To do this, type tB

(CTRL/B) followed by UNDUPLEX just prior to reading the tape in. This Monitor command suppresses the print­

ing of the program as it is read. As each line is read, a line feed and FOCAL's asterisk are typed, indicating

that the line is properly stored. After the tape has been completely read, type tB DUPLEX to restore FOCAL to

its normal mode. An example is shown below:

*ERPSE ALL
*tBlJ~DUPLEX

*
*
*
*
*
*
* *tBDCPLEX

*WRITE ALL
C-FOCt:.L,1969

01.05 C PROGRAV- TO CALCULATE THE HYPOTENUSE OF A
01.06 C RIGHT TRIANGLE GIVEN THE TWO SIDES
01.10 ASK "SIDES OF TRIANGLE ARE" A,B
01.20 SET C=FSQT(At2+Bt2)
01.30 TYPE "hYPCTENUSE IS" C .. !
01 .40 GOTO 1.1

*

3.4.6 FOCAL Error Messages

Code

?oo.oo
?OO.OO
?01.4O
?01.78
?01.96
?01.:5
?01.;4
?02.32
?02.52

Explanation

Manual start given from console.
Interrupt from keyboard via CTRL/C.
Illegal step or line number used.
Group number is too large.
Double periods found in a line number.
Line number is too large.
Group zero is an illegal line number.
Nonexistent group referenced by DO.
Nonexistent line referenced by DO.

3-17

Code

?02.79
?03.05
?03.28
?04.39
?04.52
?04.6O
?04.:3
?05.48
?06.06
?06.54
?07.22
?07.38
?07.:9
?07.;6
?08.47
?09.11
?10.:5
?11.35
?20.34
?23.36
?26.99
?28.73
?30.05
?31.<7

Explanation

Storage waS fi II ed by push -down list.
Nonexistent line used after GOTO or IF.
Illegal command used.
Left of = in error in F OR or SET.
Excess right terminators encountered.
Illegal terminator in FOR command.
Missing argument in display command.
Bad argument to MODIFY.
Illegal use of function or number.
Storage is filled by variables.
Operator missing in expression or double E.
No operator used before parenthesis.
No argument given after function call.
Illegal function name or double operators.
Parentheses do not match.
Bad argument in ERASE.
Storage was fi lied by text.
Input buffer has overflowed.
Logarithm of zero requested.
Literal number is too large.
Exponent is too large or negative.
Division by zero requested.
Imaginary square roots required.
Illegal character I unavai lable command I or unavai lable function used.

3-18

4.1 INTRODUCTION TO TSS/8 FORTRAN

CHAPTER 4

FORTRAN-D COMPILER

FORTRAN-D compi les and runs programs written in the PDP-8 version of FORTRAN. Programs {usually created

and stored with the Symbolic Editor} are compiled in a single pass and executed {automatically} immediately

following compilation. The PDP-8 FORTRAN Manual {Order No. DEC-08-AFCO-D} provides exact instructions

for writing programs in FORTRAN.

4.2 CALLING AND USING FORTRAN-D

To use FORTRAN-D, type:

• R FORT

FORTRAN requests the name of the input file, i.e., the file containing the FORTRAN program to be compiled

and run. The user responds with the fi Ie name, then strikes the RETURN key. FORTRAN then requests the

name of an output file in which to store the compiled version of the program. For normal usage, just the

RETURN key need by typed. FORTRAN places the compiled code in a fi Ie of its own, then proceeds to run the

program.

If a file name is entered for output, FORTRAN creates a permanent file in which the compiled binary program

is saved. It is then possible to rerun this program without recompiling it. To run an already compiled program,

call the FORTRAN operating system directly by typing:

.R FOSL

FOSL requests the name of an input file. Enter the name of the file containing the compiled binary.

Examples:

.R FORT

INPUT:MTRIX
OUTPUT:

4-1

FORTRAN compiles and executes the program MTRIX but does not save the compiled binary •

• R FORT

I:-.JPUT:MTRIX
OUTPl'T:BlYTRIX

FORTRAN compiles and executes the program MTRIX and then leaves the compiled binary in the file named

BMTRIX.

.R FOSL

INPUT:Btl:TRIX

The FORTRAN binary program BMTRIX is executed without first being compiled.

4.3 FORTRAN I/O

NOTE

All FORTRAN programs return to the Monitor when
they hove completed execution.

Differing versions of PDP-8 FORTRAN offer slightly different features. TSS/8 FORTRAN-D differs in the way it

is called into use (described above), and in its more powerful I/o capability (described below). FORTRAN-D

allows three data formats:

Integer format

E Exponential format

A Alpha format, the ASCII value of a choracter is stored as an integer value.

The standard device for READ and WRITE statements is the Teletype, which is assigned device code 1. Because

the Teletype is so frequently used, FORTRAN-D includes two special input/output instructions, ACCEPT and

TYPE. These instructions imply use of the Teletype; therefore, the device code need not be specified. ACCEPT

is especially convenient if data is to be entered at the keyboard because this instruction automatically supplies

a line feed when the RETURN key is typed. Also, the user can correct an erroneously typed value by striking

the RUBOUT key.

A FORTRAN-D program can also utilize the high-speed reader and punch for I/O. These devices are assigned

code 2. Because the high-speed reader and punch are shared by all TSS/8 users, it is necessary to assign them

if they are to be used. Assign the appropriate devi ces and mount tapes in the reader before runni ng

FORTRAN-D. When running several FORTRAN-D programs, reassigl1 the devices before each run.

4-2

TSS/8 FORTRAN also allows programs to read and write data files on the disk. These data files are completely

separate from the program files. Data files are read and written by standard READ and WRITE statements withi n

the FORTRAN-D program. The device code for the disk is 3. Because programs using the disk are treated

differently by FORT (the FORTRAN-D compiler), it is necessary to identify programs which use the disk. These

programs are identified by a DEFINE DISK statement as the first statement in any such FORTRAN-D program in­

cluding a READ or WRITE statement with device code 3.

Just as FORT itself must ask for the name of its input and output files, so must a FORTRAN program ask for the

names of its disk files. FORTRAN-D programs do this by typing INPUT: and OUTPUT: a second time. The user

responds by typing the name of the files to be read or written by the program. FORTRAN-D asks for both input

and output for all programs which include a DEFINE DISK statement. If only input (or output) is to be used, the

user responds to the other by striking the RETURN key.

The following program is an example of a FORTRAN-D program whi ch utilizes the disk for data storage. The

program reads an already existing file (DATAl) of 10 values from the disk and writes their square roots into a

new file (DATA2).

4.4 EXAMPLES OF FORTRAN PROGRAMS

Example 1:

C FOP.TRA~ PBOGRA~ TO READ 10 VALUES FBOM A DISK FILE.
C COKPUTE THEIR SQUARES. A~D WRITE THE SQUARES OUT TO
C A SECCND DISK FILE.
C

C

DEFI:-JE DISK
DIMENSIO:.\l A(10)

DO 20 1=1.10
READ 3.10.A(I)

10 FOR~AT (E)
20 CO:-JTINUE
C

DO 30 1=1.10
A(l)=A(U**2

30 CONTI:-JUE
C

DO 40 1=1 J 10
WRITE 3.10.A(I)

40 CONTINUE
C

.R FORT

STOP
END

INPCT : SQCARE
OUTPCT:

4-3

Example 2:

INPUT: DATAl
OUTPUT: DATA2

tBS

.R ED IT

INPeT:MTRIX*
OUTPUT:
R

L

C MATRIX MULTIPLIER
DIMENSI00.: A(36),
TYPE 200
TYPE 201
READ 1 , 1 , I
FORMAT (I)
TYPE 202
DO 10 M=l,I
DO 10 N=l,I
INDX=M+I*(N-1)
READ 1 , 2 , A (I :-.JDX)

2 FORt'AT (E)
10 COJTINUE

TYPE 15
15 FORMAT C/)

TYPE 202
DO 20 M=l,I
DO 20 N=l,I
INDX=r-'+I*(N-1)
REAr; 1 ,2, B (I NDX)
C (INDX)=0

20 CCNT1NUE
DO 30 M=l,1
DO 30 :-.J=l,1
DO 30 K=l,1
1C=N+I*(M-1)
1A=M+1HK-1)
1B=K+I*OJ-1)

B(36),

C (I C) =C (I C) +A (IA HB (IB)
30 C00.:T1:-.JUE

TYPE 15
DO 40 M=l,I
TYPE 21
DO 40 :\1=1,1
I:\1DX=:\1+1*(M-1)
TYPE. 2, C (INDX)

40 CO:\1TI:\1UE
21 FORMAT C/)

TYPE 15

4-4

C(36)

200 FORlVIAT (/,"MATRIX MULTIPLIER",/)
201 FORMAT ("IJIME:JSIO:J IS:")
202 FORMAT (I,"ENTER Ml>TRIX",1)

END

rBS

.R FORT

I:JPUT:MTRIX*
OUTPCT:

MATRIX MULTIPLIER
DIMENSIO:\T IS:3
E:JTER MATRIX
12 23 34
11 21 13
10 20 30

E:\TTER MATRIX
1.21.23.1
.01 121 12.
111 1.2 343

0.378863E+4
0.145641E+4
0.33LJ219E+LJ

rBS

0.283820E+4
0.256979E+4
0.2LJ6800E+LJ

0.119751E+5
0.474510E+4
0.105610E+5

4.5 SUMMARY OF FORTRAN-D STATEMENTS

Table 4-1
Summary of FORTRAN-D Statements

Statement and Form Explanation

Arithmetic Statements

v=e v is a variable (possibly subscripted); e is an expression.

Control Statements

GOTOn n is a statement number.

GO TO (n 1 ,n2,··· ,nn),i n
1

, .. . ,nn are statement numbers; i is a nonsubscripted

integer variable.

IF (e) n
1

,n
2

,n
3

e is an expression; n 1 ,n
2

,n
3

are statement numbers.

DO n i=k
1

,k
2

,k
3

n is the statement number ofa CONTINUE; is is an in-
teger variable; k1 ,k

2
,k

3
are integers or nonsubscripted

interger variables.

CONTINUE Proceed

PAUSE Temporarily suspend execution.

4-5

Table 4-1 (Cont)
Summary of FORTRAN-D Statements

Statement and Form Explanation

STOP Terminate execution.

END Terminate compilation; last statement in program.

Specification statements

DIME NSION v 1(n
1
) ,v2(n

2
},· .. , v n (nn) v 1 ' ... , v n are variab Ie names; n 1 ' ... , n n are integers.

DEFI NE device Device is DISK or TAPE, system I/O device.

FORMAT (5
1

,5
2

, ..• ,sn) s is a data field specification.

COMMENT Designated by C as first character on line.

Input/Output Statements

ACCEPT f,list f is a FORMAT statement number; list is a list of
variables.

TYPE f, list f is a FORMAT statement number; list is a list of
variables.

READ u , f , list u is an integer, representing device from which data
is to be read.

f is a FORMAT statement number; list is a list of
variables.

WRITE u,f, list u is an integer, representing device onto which data
will be written.

f is a FORMAT statement number; list is a list of
variables.

4.6 FORTRAN-D COMPILER SYSTEMS DIAGNOSTICS

Table 4-2
FORTRAN-D Compiler Systems Diagnostics

Error
Code Explanation

0240 System fi I e error. One of the FORTRAN components cannot be found or the
disk is full, preventing FORTRAN from proceeding. Try recalling FORT.

3100 Illegal operator on compiler stack t
3417 Pre-precedence error t
6145 Could not find FOSL on system device; if the error occurs, it may be necessary

to reload FORT and FOSL.

6223 Error while loading .FT.

t Error may be due to a compiler error or a machine malfunction.

4-6

Table 4-2 (Cont)
F ORTRAN-D Compi ler Systems Diagnostics

Error
Code Exp I anat ion

6226 Same as above

6257 Same as above

6724 No END statement on source device

6746 Same as above

7114 Same as above

tError may be due to a compiler error or a machine malfunction.

4.7 FORTRAN-D COMPILER COMPILATION DIAGNOSTICS

Table 4-3
FORTRAN-D Compiler Compilation Diagnostics

Error Explanation
Code

00 Mixed mode arithmetic expression

01 Missing variable or constant in arithmetic expression

03 Comma was found in an arithmetic expression

04 Too many operators in this expression

05 Function argument is in fixed-point mode

06 Floating-point variable used as a subscript

07 Too many variable names in this program

10 Program too large, core storage exceeded

11 Unba lanced right and left parentheses

12 Illegal character found in this statement

13 Compiler could not identify this statement

14 More than one statement with same statement number

15 Subscripted variable did not appear in a DIMENSION statement

16 Statement too long to process

17 Floating-point operand should hove been fixed-point

20 Undefi ned statement number

21 Too many numbered statements in this program

22 Too many parentheses in this statement

23 Too many statements have been referenced before they appear in the program

25 DEFINE statement was preceded by some executable statement

26 Statement does not begin with a space, tab, C, or number

4-7

4.8 FORTRAN-D OPERATING SYSTEM DIAGNOSTICS

Table 4-4
FORTRAN-D Operating System Diagnostics

Error Explanation
Code

01 Checksum error on FORTRAN binary input

02 Illegal origin or data address on FORTRAN binary input

04 Disk input-output error t

05 High-speed reader error

06 Illegal FORTRAN binary input device

11 Attempt to divide by zero

12 Floating-point input data conversion error

13 Illegal op code

14 Disk input-output error t

15 Non-FORMAT statement used as a fORMAT

16 Illegal FORMAl specification

17 Floating-point number larger than 2047

20 Square root of a negative number

21 Exponential negative number

22 Logarithm of a number less thon or equal to zero

40 Illegal device code used in READ or WRITE statement

41 System device full, could not complete a WRITE statement

76 Stack underflow error tt

n Stack overflow error tt

tMay be caused by machine malfunction or operating system error.

tt May be caused by source program or loacting error; to correct, do the followi ng in descendi ng
order.

Q. Use Diagnose to determine where the error occurred.

b. Recompile the source program.

c. Examine source program {in particular the arithmetic statements and subscripted
variables} •

4-8

5.1 INTRODUCTION TO PAL-D

CHAPTER 5

PAL -0 ASSEMBLER

The Tss/8 Assembly System is composed of the PAL-D Symbolic Assembler, LOADER, and ODT. The PAL-D

Assembler is used to translate the user's source program into an object program {binary or machine code}.

LOADER is used to transfer the user's object program from the disk into core for debugging or execution. ODT

(Octal Debugging Technique) is used to dynamically debug the object program which has been loaded into core

using LOADER.

The PAL-D Assembler is fully documented in the PDP-8 PAL-D Assembler, Programmer's Reference Manual

(Order No. DEC-D8-ASAB-D), and its operation under Tss/8 is covered in an appendix in that document.

PAL-D source programs ore usually written on-line using the EDIT program, which stores them in disk files. The

Assembler checks for assembly languoge syntax errors and for undefined user symbols but does not check for

logic errors. To call the PAL-D Assembler, type:

.R PALD

PAL-D responds by requesting INPUT: Type and enter the nome of the source program or programs to be

assembled. A maximum of three files con be assembled together. PAL-D then requests OUTPUT; Type in the

name of the new file in which PAL-D will store the assembled program in executable binary form. PAl-D then

requests OPTION: For a normal assembly, strike the RETURN key.. If on assembly listing is not desired, respond

to OPTION: with N.

PAL-D then proceeds to ossemble the program: any errors in the program are indicated; the program symbol

table is printed; and finally, an assembly listing of the source program is printed. When the listing is completed

and the assembly finished, control is returned to Tss/8 Monitor.

5.2 TSS/8 PAL-D

Because of the necessary hardware changes made for the Time-Shared System, PAL-D has been revised in the

following ways:

5-1

a. PAL-O, under TSS/8, allows 245 (decimal) user symbols in addition to the permanent symbols (listed
in section 5.4). All symbols reside in locations 5200 through 7777. The permanent symbol table has
been revised to include a \I instructions peculiar to the Time-Sharing System.

b. A CTRL/C (tC) from the Teletype terminates the assembly, and halts PAL-O, sending the user bock
to the TSS/8 Monitor.

5.3 EXAMPLE OF A PAL-O PROGRAM

.R PALL

I :--JPUT: TYFE2
OUTPUT: B 10J2
OPTIOK:

COL':JT 0415
CRLF 0417
LCCP 0406
OUT 0425
REG 0416
START 0400

0400 7200
0401 4217
0402 1377
0403 3215
0404 1376
0405 3216
0406 1216
0407 4225
0410 2216
0411 2215
0412 5206
0413 4217
0414 7402
0415 0000
0416 0000

0417 0000
0420 1375
0421 4225
0422 1374
0423 4225
0424 5617

0425 0000
0426 6046
0427 6041
0430 5227
0431 7200
0432 5625
0574 0212
0575 0215
0576 0260
0577 7766
rBS

/PROGRAM TO TYPE OUT "0123456789"
"'0400
START~

LOOP~

COU~T~

REG~

CRLF~

OUT~

CLA
JMS
TAD
DCA
TAD
DCA
TAD
JMS
ISZ
ISZ
JMP
JfVS
HLT
0
0

0
TAD
JMS
TAD
J~S

JMP

0
TLS
TSF
JMP
CLA
JMP

CRLF
(-12)
COL'0JT
(260) /ASCII CODE FOR ZERO (0)
REG
REG
OUT
REG
COUNT
LOOP
CRLF

(215) /ASCII FOR CARRIAGE RETUR:--J
OUT
(212) /LINE FEED
OUT
I CRLF

• -1

I OUT

5-2

5.4 SYMBOL LIST FOR TSS/a

Table 5-1
Symbol List for TSS/a

Mnemonic Code Operation Event Time

MEMORY REFERENCE INSTRUCTIONS

AND 0000 Logical AND
TAD 1000 Twos complement add
ISZ 2000 Increment & skip if zero
DCA 3000 Deposit & clear AC
JMS 4000 Jump to subroutine
JMP 5000 Jump

I GROUP 1 OPERATE MICROINSTRUCTIONS

NOP 7000 No operation 1
lAC 7001 Increment AC 3
RAL 7004 Rotate AC & link left one 3
RTL 7006 Rotate AC & link left two 3
RAR 7010 Rotate AC & link right one 3
RTR 7012 Rotate AC & link right two 3
CML 7020 Complement link 2
CMA 7040 Complement AC 2
CLL 7100 Clear link 1
CLA 7200 Clear AC 1

I GROUP 2 OPERATE MICROINSTRUCTIONS

HLT 7402 Halts the computer 4
OST 7404 Inclusive OR switch register with AC 3
SKP 7410 Skip unconditionally 1
SNL 7420 Skip on nonzero link 1
SZL 7430 Skip on zero link 1
SZA 7440 Skip on zero AC 1
SNA 7450 Skip on nonzero AC
SMA 7500 Skip on minus AC
SPA 7510 Skip on plus AC (zero is positive)

I COMBINED OPERATE MICROINSTRUCTIONS I
CIA 7041 Complement & increment AC
STL 7120 Set link to 1
GLK 7204- Get link (put link in AC, bit 11)
STA 7240 SetAC~-l

LAS 7604 Load AC with switch register

5-3

Mnemonic

Program Interrupt

lOT

Keyboard Reader

KSF
KCC
KRS
KRB

KSB
SBC
KSR

Tel epri nter/punch

TSF
TCF
TPC

TLS

SAS

Code

6000

6031
6032
6034
6036

6400
6401
6030

6041
6042
6044

6046

6040

High-Speed Reader (Type PC02)

RSF 6011
RRB 6012
RFC 6014
RRS 6010

High-Speed Punch (Type PC03)

PSF 6021
PCF 6022
PPC 6024
PLS 6026
PST 6020

DECIMAL
EXPUNGE
FIELD
FIXTAB
I

Table 5-1 (Cont)
Symbol List for TSS/8

PSEUDO-OPERA TORS

Operation

OCTAL
PAGE
PAUSE
TEXT
XLIST
Z

I lOT MICROINSTRUCTIONS

(See Time-Sharing System User's Guide
DEC-T8-MRFB-D)

Skip if keyboard/reader flag = 1
Clear AC & keyboard/reader flag
Read keyboard/reader buffer
Clear AC & read keyboard buffer,
& clear keyboard flag
Set keyboard break
Set buffer control flags
Read keyboard string

Skip if teleprinter/punch flag = 1
Clear teleprinter/punch flag
Load teleprinter/punch buffer,
Select & print
Load teleprinter/punch buffer,
Select & print, and clear
Teleprinter/punch flag
Send a stri ng

Skip if reader flag = 1
Read reader buffer & clear flag
Clear flag & buffer & fetch character
Read reader stri ng

Skip if punch flag ::= 1
Clear flag & buffer
Load buffer & punch character
Clear flag & buffer, load & punch
Punch string

5-4

Event Time

1
2
3

2,3

1
2
3

2,3

1
2
3

1
2
3

2,3

Mnemonic Code

Table 5-1 (Cont)
Symbol List for TSS/a

Operation

DECtape Transport (Type TU55) and Control (Type TC01)

DTXA 6764 Load status register A
DTSF 6771 Skip on flags
DTRB 6772 Read status register B

Program Control

URT
TOO
RCR
DATE
STM
TSS
USE
SSW
CKS
ASD
REL
DUP
CON

File Control

WHO
SIZE
RFILE
WFILE
ACT
REN
OPEN
CLOS
PROT
CRF
EXT
RED
FINF

6411
6412
6413
6414
6415
6420
6421
6430
6200
6440
6442
6402
6422

6616
6614
6603
6605
6617
6600
6601
6602
6604
6610
6611
6612
6613

User run time
Time of day
Return clock rate
Date
Quantum synchronization
Skip on TSS/a
User
Set switch register
Check status
Assign device
Release device
Duplex
Console

Who
Segment size
Read file
Write file
Account number
Rename file
Open file
Close file
Protect file
Create file
Extend file
Reduce file
File information

5-5

Event Time

3
1
2

5.5 ERROR DIAGNOSTICS

Error
Code

BE

DE

OF

IC

10

IE

II

NO

PE

PH

SE

US

ZE

Table 5-2
PAL-D Error Diagnostics

Explanation

Two PAL-D internal tables have overlapped - This situation can usually be
corrected by decreasing the level of literal nesting or number of current
page literals used prior to this point on the page.

System device error - An error was detected when trying to read or write onto
the system device; after three failures, control is returned to the Monitor.

Systems device full - The capocity of the systems device has been ex­
ceeded; assembly is terminated and control is returned to the Monitor.

Illegal character - An illegal character was encountered other than in
a comment or TEXT field; the character is ignored and the assembly
continued •

Illegal redefinition of a symbol - An attempt was made to give a pre­
viously defined symbol a new value by means other than the equal sign;
the symbol was not redefined.

Illegal equals - An equal sign was used in the wrong context.

Examples:

TAD A +=B the expression to the left of the equal sign is not
a single symbol or, the expression to the right of

A +B=C the equal sign was not previously defined

Illegal indirect - An off-page reference was made; a link could not be
generated because the indirect bit was already set.

The program terminator, $, is missing.

Current nonzero page exceeded - An attempt was made to

a. override a literal with an instruction, or

b. override an instruction with a literal; this can be corrected by

(1) decreasing the number of literals on the poge or

(2) decreasing the number of instructions on the poge.

Phase error - PAL-D has received input files in an incorrect order;
assembly is terminoted and control is returned to the Monitor.

Symbol table exceeded - Assembly is terminated and control is returned
to the Monitor; the symbol table may be expanded to contain up to 1184-
user symbols by saving a file named .SYM on the system device.

Undefined symbol - A symbol has been processed during poss 2 that was
not defi ned before the end of poss 1.

Page 0 exceeded - Same as PE except with reference to poge O.

5-6

6.1 EDIT

CHAPTER 6

UTILITY PROGRAMS

TSS/8 Editor provides the user with a powerful tool for creating and modifying source files on-line. Its precise

capabilities and commands are detailed in the PDP-8 Symbolic Editor Programming Manual (Order No.

DEC-oB-ESAB-D). EDIT allows the user to delete, insert, change, and append lines of text; and then obtain

a clean listing cI the updated file. EDIT also contains commands for searching the file for a given character.

EDIT considers a file to be divided into logical units, called pages. A page of text is generally 50-60 lines

long, and hence corresponds to a physical page of program listing. A FORTRAN-D program is generally 1-3

pages in length; a program prepared for PAL-D may be several pages in length. EDIT operates on one page of

text at a time, allowing the user to relate his editing to the physical pages of his listing. EDIT reads a page

of text from the input fi Ie into its internal buffer where the page becomes available for editing. When a

page has been completely updated, it is written onto the output file and the next page of the input file is made

available. EDIT provides several powerful commands for "paging" through the source file quickly and con­

veniently.

To ca II the Edi tor, type:

.R EDIT

NOTE

The end of a page of text is marked by a fonn feed (CTRL/L)
character. Form feed is ignored by all TSS/8 language
processors.

EDIT responds by requesting INPUT: Type and enter the name of the source file to be edited. If a new file

is to be created using EDIT, there is no input file. In this case, strike the RETURN key. EDIT then requests

OUTPUT: Type in the name of the new, edited, file to be created. The name of the output file must be different

from the name of the input file. If EDIT is being called to list the input file, there is no need to create an

output file; strike the RETURN key. When EDIT sets up its internal files and is ready for a command, it rings

the bell on the Teletype.

6-1

For example:

.R EDIT
INPUT: vlXZOLD

OuTPUT: XYZNEW
(Bell rings at this point.)

6. 1. 1 Summary of Symbolic Editor Operations

Table 6-1
Summary of Symbol ic Editor Operations

Special Characters

Carriage Return
(RETURN Key)

Back Arrow (-)

Rubout (\)

Form Feed
(CTRL/FORM Combination)

Period (.)

Slash (/)

Line Feed (l)

Right Angle Bracket (»

Left Angle Bracket «)

Equal Sign (+)

Tabulation
(CTRL/TAB Key Combination)

Function

Text Mode - Enter the line in the text buffer.

Command Mode - Execute the command.

Text Mode - Cancel the entire line of text, continue typing on
same line.

Command Mode - Cancel command. Editor issues a ? and
carriage return/line feed.

Text Mode - Delete from right to left one character for each rubout
typed. Does not derete past the beginning of the line. Is not in
effect during a READ command.

Command Mode - Same as back arrow.

Text Mode - End of inputs return to command mode.

Command Mode - Current line counter used as argument alone or in
combination with + or - and a number (., .+5L).

Command Mode - Value equal to number of last line in buffer. Used
as argument (/-5,IL).

Text Mode - Used in SEARCH command to insert a CR/LF combination
into the line being searched.

Command Mode - List the next line (equivalent to .+lL).

Command Mode - List the previous I ine (equivalent to . -1 L).

Command Mode - Used in conjunction with. and / to obtain their
value (.=27).

Text Mode - Produces a tabulation which, on output, is interpreted as
spaces if bit 1 of the switch register is set to 0, or as a tab character/
rubout combination if bit 1 is set to 1.

6-2

6. 1.2 EDIT Command Summary

Command Format(s}

READ R

APPEND A

LIST L

nL

m,nL

PROCEED P

nP

m,nP

TERMINATE T

NEXT N

nN

KILL K

DELETE nD

m,nD

INSERT

nI

CHANGE nC

m,nC

MOVE m,n$kM

GET G

SEARCH S

Table 6-2
EDIT Command Summary

Meaning

Read text from the input file and append to buffer until a form
feed is encountered.

Append incoming text from keyboard to any already in buffer until
a form feed is encountered.

list the entire buffer.

list line n.

list lines m through n inclusive.

Output the contents of the buffer to the output file, followed by
a form feed.

Output line n, followed by a form feed.

Output lines m through n inclusive followed by a form feed.

Close out the output fi Ie and return to TSS/a Mon itor.

Output the entire buffer and a form feed, kill the buffer and
read the next page.

Repeat the above sequence n times.

Ki II the buffer (i.e., delete all text lines).

Delete line n of the text.

Delete lines m through n inclusive.

Insert before line 1 all the text from the keyboard until a form
feed is entered.

Insert before line n until a form feed is entered.

Delete line n, replace it with any number of lines from the key­
board until a form feed is entered.

Delete lines m through n, replace from keyboard as above until
form feed is entered.

Move lines m through n inclusive to before line k.

Get and list the next line beginning with a tag.

Search the entire buffer for the character specified (but not echoed)
after the carriage return. Allow modification when found. TSS/a
Editor outputs a slash (/) before beginning a SEARCH.

6-3

Command Format(s)

SEARCH nS
(Cont)

m,nS

END E

tC CTRL/C

6.2 LOADER

Table 6-2 (Cont)
EDIT Command Summary

Meaning

Search line n, as above, allow modification.

Search lines m through n inclusive, allow modification.

Output the contents of the buffer. Read in any pages remaining in
the input file, outputting them to the output file. When everything
in the input file has been moved to the output file, close it out and
return to the TSS/8 Monitor. E is equivalent to a sufficient number
of N's followed by a T command.

Stop listing and return to Command Mode.

TSSi8 LOADER is used to load programs in BIN format from a disk file into the user's core area for execution.

These files in BIN format can be created by PAL-D in the course of an assembly or they can be loaded from

paper tape using PIP (see the PIP writeup for special instructions on loading BIN format tapes).

To call LOADER, type:

.R LOADER

LOADER responds by asking for INPUT: Respond by entering the name of the file or files to be loaded. Although

many System Library Programs allow multiple input files, the LOADER uses this feature to special advantage.

Because it loads the files in the order they are typed, LOADER can be used to load patches and overlays. After

it has requested INPUT, LOADER requests OPTION: For normal operation strike the RETURN key; LOADER is

able to load into any part of core below nso. If the program to be loaded is to be debugged, respond to

OPTION: with D. This will cause ODT to be loaded along with the input files and started. ODT indicates

that it is ready by printing a second line feed. ODT uses locations 7000 through 7577; and if loaded along

with a program which uses any of these locations, the result of the load is unpredictable.

Example 1: Normal Operation

.R LOADER

INPUT: MAIN~ PATCHl~ PATCH2
OPTION:
rES

6-4

Example 2: Load ODT with Input File

.R LOADER

INPUT:PROG1
OPTION: 0

As seen in the first example, LOADER returns control to Monitor when it is finished. The user can then start

the program by using the Monitor command START. For example, LOADER can be used to load and run the

short program given as an example in the section on PAL-D (see Chapter 5, Section 5.3) .

. R LOADER

INPUT: BIN2
OPTION:
rBS
.START 400

0123456789
rBS

NOTE

The BIN format files loaded by LOADER include a checksum.
If LOADER detects a checksum error while loading, it types
"LOAD ERROR" and terminates the load.

6.3 ODT (Octal Debugging Technique)

ODT is a powerful octal debugging tool for testing and modifying PDP-8 programs in actual machine language.

It allows the user to control the execution of his program and, where necessary, make immediate corrections to

the program without the need to reassemble.

The complete command repertoire of ODT is documented in the ODT Manual (Order No. DEC-OB-COCO-D).

OOT (on TSS/B) is the high-core version which resides in locations 7000 through 7577. The paper-tape output

commands of regular ODT are not available in TSS/8 OOT. To call ODT, type:

.LOAD 2 ODTHI 0 7000

.START 7000

If ODT is to be used to debug a program being loaded with LOADER, ODT can be loaded and started directly

by specifying the Debug (D) option to LOADER.

6-5

6.3.1 Programming Notes

aOT executes an SRA (Set Restart Address) as part of its initialization process. As a result, typing CTRL/C

always returns control to aOT. If the program being debugged sets up its own restart address, typing CTRL/C

transfers control to the new restart address. It is necessary to type tBS followed by START 7000 to force control

back to aOT.

Every time aOT regains control, it puts the Teletype in duplex mode. Users debugging programs which do not

operate in duplex mode, should be aware of this fact.

aOT saves the state of the delimiter mask, when it regains control via a breakpoint. The state of this mask

is restored on a Continue (C) command, but not on a Ga (G) command.

6.3.2 aOT Command Summary

Command

nnnn/

/
RETlRN

LINE FEED (ll

Up Arrow (t)
(SHIFT/N)

Back Arrow (-)
(SHIFT/a)

Illegal Character

nnnnG

nnnnB

B

A

C

nnnnC

M

l (line feed)

Table 6-3
aOT Command Summary

Meaning

Open register designated by the octal number noon.

Reopen latest opened register.

Close previously opened register.

Close register and open the next sequential one for modification.

Close register, take contents of that register as a memory reference
and open it.

Close register open indirectly.

Current line typed by user is ignored, aOT types ?CR/LF.

Transfer program control to location nnnn.

Establish a breakpoint at location noon.

Remove the breakpoint.

Open for modification, the register in which the contents of AC were
stored when the breakpoint wos encountered.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past the breakpoint nnnn times
before interrupting the user's program at the breakpoint location.

Open the search mask register, initially set to 7777. It may be changed
by opening the search mask register and typing the desired value after the
value typed by aOT, then closing the register.

Close search mask register and open next register immediately following,
containing the location at which the search begins. It may be changed by
typing the lower limit after the one typed by aOT, then closing the register.

6-6

Command

l (line feed)

nnnnW

6.4 CAT

Table 6-3 (Cont)
OOT Command Summary

Meaning

Close lower search register, open next register containing the upper
search limit initially set to 7000 or 1000 (location of OOT). It may
be changed by typing the desired upper limit after the one typed by
OOT and closing the register wi th a carriage return.

Search the portion of core as defined by the upper and lower limits
for the octal value nnnn.

TSS/8 Monitor maintains a library of disk files for each user. The System Library Program CAT is used to obtain

a catalog of the contents of this library. For each file, CAT types the size of the file in units of disk segments.

The size of a disk segment may vary among installations. Generally, it is 256 (decimal) words of disk storage.

The protection code for the file is also given. (See the section on the PROTECT Monitor command (Chapter 9)

for a precise explanation of protection codes.) If the program was created by any of the System Library Programs,

it has a protection code of 12, meaning that other users can read the file, but only the owner can change it.

To call CAT, type:

.R CAT

6.4.1 Example of CAT Usage

.R CAT

DISC FILES FOR USER 312 14 NOV 69

NAME SIZE PROT DATE

BAS016 12 14 NOV 69
BAS 116 1 12 14 NOV 69
PRIME 8 12 14 :-JOV 69
MATRIX 3 12 14 NOV 69
SOLVE 12 14 NOV 69
PROG 11 12 14 NOV 69
TYPE2 2 12 14 NOV 69
BIN2 12 14 :-JOV 69
TEMP27 15 12 14 NOV 69

TOTAL DISC SEGMENTS: 43

rBS

6-7

6.5 SY ST AT (System Status)

It is frequently useful to know the status of the system as a whole; how many users are on-line, where they are,

what they are doing, etc. The SYSTAT program provides this capability. To call SYSTAT, type:

.SYSTAT

.R SY5TAT

SYSTAT responds by printing on the first line: the version of the TSS/8 Monitor being run, the time, and the

date. SYSTAT reports the uptime which is the length of time in hours, minutes, and seconds since the system

was last put on-line.

SYSTAT lists all on-line users. Each user is identified by his account number. The job number assigned to him

and the number of the console he is using are indicated, as is the particular System Program he is running. The

exact running state of each user, whether he is actually running (RUN), typing in (KEY) or out (TTY), doing

input/output on another system device (10 or FIP), or not running (t8), is indicated. The amount of computer

time used by each user since he logged in is given.

If more users are on-line than the system has core fields to hold them, the fact that the system is swapping is

reported. The number of free core blocks used internally by TSS/8 Monitor for Teletype buffering and various

other purposes is typed out. Then SYSTAT reports any unavailable devices, i.e., devices which are assigned

to individual users. The job to which they are attached and their status (AS if they are assigned but not active,

AS+INIT if they are assigned and active) is also indicated. Finally, the number of available segments of disk

storage is reported.

6.5.1 Example of SYSTAT Usage

.R SYSTAT

STATUS OF TSS/8.19 DEC PDP-8 III AT 10:27:33 O~ 13 OCT 69
UPTIME 84:12:33

JOB WHO WHERE WHAT STATE RU~TIME

1 5440 K00 SYSTAT RUN 01:00:12
2 10 K14 COpy KEY 00:00:21
3 3141 K15 EDIT KEY 00:00:03
4 4771 K16 FORT RUN 00:09:42
5 4772 K17 PALD TTY 00:00:13
7 333 K04 BASIC 10 01:37:12
1 1 7 K21 FOCAL RUN 00:00:57
12 1221 K06 BASIC 1B 00:03:51
14 2000 K03 PIP RUN 00:16:23
15 222 K12 FOCAL KEY 00:22:17
17 5440 K11 FORT TTY 00:22:19

SWAPPING 28K FREE CORE=238

6-8

BUSY DEVICES

DEVICE JOB v.'HY

R 1 AS+I:'-JIT
p 3 AS
D0 3 AS
D5 2 AS+I:'-JIT

412 FREE DISC SEGMENTS

rBS

6-9

7. 1 PIP (Peripheral Interchange Program)

CHAPTER 7

PROGRAMS FOR PAPER TAPE AND DECTAPE CONTROL

All TSS/8 System Library programs discussed in previous sections operate only on files which are on the disk.

Disk is a convenient storage medium for many files; however, it may be more useful to keep some programs on

paper tape. PIP provides a convenient means of transferring files between disk and paper tape, for those users

who wish to preserve copies of their files off-line.

7.1.1 PIP Conventions

PIP may be considered a link between disk file storage and paper-tape devices. To punch out a desired file,

PIP obtains that file from the disk and punches it on paper tape. Similarly, to load a paper tape, PIP inputs

the tape from the reader, then outputs it to a disk file.

The way files are named is important to PIP. Files on disk are always narned. Paper tapes, on the other hand,

have no names as far as the system is concerned (although the user can label the physical tape in any manner

he chooses). Paper tapes never have file names; therefore, PIP uses the absence of a file name to indicate a

paper tape (absence of a file name is indicated by striking the RETURN key).

The way in which INPUT: and OUTPUT: is indicated provides the means for determining the direction of file

transfer. If PIP is to get its input from the disk, the input is a file name; if the input is from a paper tape no

fi Ie name is given. Similarly, if PIP is to output to the disk, the file name is indicated; if output is to paper

tape, no name is given. To call PIP, type:

.R PIP

7. 1. 2 Using PIP to Load a Paper Tape to a Disk Fi Ie

To move a paper tape to disk, strike the RETURN key when PIP requests INPUT: Since PIP must output to the

disk, respond to OUTPUT: by typing a file name. When PIP requests OPTION: type T to indicate that the

7-1

paper tape is being loaded from the Teletype reader. For example:

.R PIP

INPUT:
OUTPUT: FILEl
OPTION:T

The paper tape, in the low-speed reader, is read in and stored in the system as ALE1.

7.1.3 Using PIP to Punch Out a Disk File

To move a disk fi Ie onto paper tape, the use of file names is reversed since PIP must input a disk file and output

it to paper tape. The option remains the same. For example:

.R PIP

INPUT:FILEl
OUTPUT:
OPTION:T

The contents of FILE1 are then punched out at the Teletype.

7.1.4 Using PIP with the High-Speed Reader and Punch

PIP can also be used with high-speed paper-tape devices. The format of the INPUT: and OUTPUT: responses

is the same. However, for the high-speed reader, the option is R and for the punch it is P.

Since the reader and punch are assignable devices, they are not always available (other users may have one or

both assigned). Therefore, whenever PIP is given a command which utilizes one of these devices, it checks to

make sure that the device is available. If it is, PIP automatically assigns it (thus, it is not necessary to assign

the device before running PIP). If the device is unavailable, PIP so informs the user. For example:

INPUT:
OUTPUT: ABCD
OPTION:R

PIP reads the paper tape in the high-speed reader and stores it in the system as ABeD.

INPUT:ABCD
OUTPUT:
OPTION:P

7-2

PIP punches out file ABCD on the high-speed punch.

I0JPUT:ABCD
OUTPUT:
OPTION:P
DEVICE NOT AVAILABLE

The punch is assigned to another user, or there is no punch on the TSS/8 system, or there is one but it is turned

off.

7.1.5 Using PIP to Transfer BIN Format Files

The examples above work for all ASCII fi Ie transfers (except BASIC programs, explained below.) They are also

valid for punching out BIN format files with either high- or low-speed devices. Loading BIN format tapes,

however, is a specia I case.

BI N format tapes must end with trai ler codes. The easiest way to ensure that they do is to cut off the tape near

the end of the trailer code. Failure to do this (or cutting it off very unevenly) does not prevent PIP from loading

tape into the disk file. However, later attempts to load the file with LOADER will result in load errors.

NOTE

Sorne TSS/8 installations will not allow any BIN format tapes
to be loaded from the low-speed reader.

7.1.6 Moving Disk Files

PIP can be used to move the contents of one fi Ie into another. This is often useful in copying a fi Ie from another

user's library (providing the file is not protected) into your own library. To copy from disk file to disk file,

specify a file name for both input and output. Reply to OPTION: by striking the RETURN key. For example:

INPUT:FOCAL 2
OUTPUT:FOCALX
OPTION:

PIP gets FOCAL from account number 2's library and moves it into the file FOCALX.

7.1.7 Deleting Disk Files

One of the principal reasons for punching out files on paper tape is to free disk space. Once punched out, the

disk file is no longer needed. PIP offers a convenient means of deleting files, the Delete option:

7-3

INPUT:ABCD
OUTPUT:
OPTION:D

PIP deletes file ABCD, provided that the file is not protected against being changed.

7.1.8 Transferring BASIC-8 Files

BASIC-8 stores its programs in a unique file format. Therefore, it is not possible to load or punch BASIC-8

files in the usual way. To provide a convenient means of handling BASIC-8 programs, the B option is available

in PIP.

The B option is used for both reading and punching BASIC-8 programs. The responses to INPUT: and OUTPUT:

indicate the direction of the transfer; the high-speed reader or punch is always assumed for the B option. (To

read or punch tapes at low-speed, use BASIC-8 itself.)

PIP assumes that any BASIC-8 tapes it loads are clean and error-free. Only tapes actually created by BASIC

should be loaded with PIP. Tapes created off-line, and thus liable to contain errors, should be loaded low­

speed by BASIC-8 itself with the TAPE command.

7.1.9 Transferring SAVE Format Files

Another special TSS/8 file format is that of the SAVE files, those programs directly executed by TSS/8. (The

System library Programs are examples of SAVE format files.) PIP provides the S option, to allow these files

to be punched on paper tape. SAVE format tapes make sense only to TSS/8 PIP. They cannot be input to any

other System Program.

The responses to INPUT: and OUTPUT: indicate the direction of the transfer; the high-speed reader or punch is

always assumed for the S option.

NOTE

SAVE format tapes include a checksum. If PIP detects an incorrect
read, it prints LOAD ERROR, and terminates the load, repeating
the request for input.

7-4

7. 1. 10 Summary of PIP Options

T

R

P

D

B

S

7.2 COPY

Explanation

Transfer a file between the disk and the Teletype reader or punch. The response to
INPUT: and OUTPUT: indicates the direction of the transfer.

Read a tape from the high-speed reader and store it as a disk file.

Punch out the contents of a disk file on the high-speed punch.

Delete the file specified for input.

Transfer a BASIC-8 program file between the disk and the high-speed reader or punch.
The response to input and output indicates the direction of the transfer.

Transfer a SAVE format file between the disk and the high-speed reader or punch.
The response to INPUT: and OUTPUT: indicates the direction of the transfer.

Many TSS/8 installations include one or more DECtapes. For these installations, DEC tape provides a convenient

and inexpensive means of fi Ie storage. The COPY program is used to transfer files between disk and DECtape.

7.2.1 Using and Calling COpy

COPY is the intermediary between disk and DECtape. To write a disk file out to DECtape, COPY inputs the

file from the disk, then outputs it to the DECtape. To bring a DECtape file onto the disk, COPY inputs from

the DECtape, then outputs to the di sk.

Files kept on DECtape have file names just as they do on the disk. To avoid confusion, the user must tell COpy

where t~e fi Ie is to be found. If it is on DECtape, the DECtape designation and the number of the DECtape

unit must preface the file name. The DECtape number is always separated from the file name by a colon. Thus

D1 :FILEl means the file name ALEl on the DECtape which is currently mounted on DECtape unit number olle.

The number of available tape units varies among installations. The maximum is eight, (numbered 0 - 7). If

a file name is not prefaced by a DECtape number, then this file is assumed to be on the system disk.

Files stored on DECtape do not have protection codes in the sense that disk files do. They are, however, pro­

tected against unauthorized access. When a DECtape is not mounted, it is not available to any user. When it

is mounted, it is available only to the user who has assigned the DECtape unit on which it is mounted. Even

then it can not be altered unless the DECtape unit is set to WRITE ENABLE.

Users should be sure to assign a DECtape unit before mounting their tape, and dismount the tape before releasing

the device. Normally, the DECtape unit to be used should be assigned before calling COpy.

7-5

.ASSIG:J D 4
D 4 ASSIG:JED
.R COpy

To call COPY, type:

.R COpy

COpy responds by asking which option the user wishes to employ. The COpy options are discussed below.

7.2.2 Loading Files from OECtape

To load a file onto the disk from OECtape, use the COPY option. When COPY requests OPTION- respond with

COPY, or C, or strike the RETURN key (the COPY option is assumed). When COPY requests INPUT-type the

number of the OECtape unit on which the file can be found {OO, 01, 02, 03, 04, 05, D6, or 07}followedby

a colon and the name of the file on the OECtape. When COPY requests OUTPUT- type and enter the name to

be given to the output file on the disk. COPY then moves the OECtape file onto the disk. {When using COPY,

it is not mandatory to insert a space between the device designator and the device number.} For example:

OPTIO:J- COPY
INPUT - D4:PQR
OUTPUT - PQR

If for any reason, COPY cannot find the OECtape file specified for input (tl,e specified OECtape is unavailable

or nonexistent, or the file name does not exist on that OECtape), COpy prints a ? and repeats the request for

input. If the disk file specified for output already exists, COpy prints a ? and repeats the request for output.

COpy does not overwrite an existing file. For example:

OPTION - C
INPUT - D9:PQR
?INPUT - D4:PQRS
?INPUT - D4:PQR
OUTPUT - FILEl
?OUTPUT- PQR

7-6

7.2.3 Saving Disk Files on DECtape

Saving a disk file on DECtape is very similar to loading one. The option is still COPY. For input, respond with

the name of the file on the disk. For output, type the DECtape unit number, colon, and the name to be given

to this file. For example:

OPTIO)] - C
npUT - ABCD
OUTPUT - D4:ABCD

If COpy cannot find the file on the disk, or if it is protected, COpy prints a ? and repeats the request for in­

put. If COpy cannot set up the desired DECtape file (the specified DECtape does not exist or is unavailable,

or it is not WRITE ENABLED, or a file by that name already exists on the tape) COP'(types a ? and repeats the

request for output.

7.2.4 Listing Directories

COpy ca" be used to list the directory of a device. To list a directory, respond to OPTION-by typing LIST, or

just L. COpy then asks which device it is to list. To list a DECtape's directory, respond with the device name

(DO, .•. ,D7). Do not follow it by a colon. For example:

OPTIO)] - LI ST
DEVICE - D(l

1298. FREE BLOCKS

"JAt><E
XCOPY
XBASIC
FOO

SIZE DATE
32 6-)]OV-69
66 6-)]OV-69
66 6-)]OV-69

The unit of DECtape storage is the block, which is 128 (decimal) words. Because the unit of disk storage, the seg­

ment, is generally 256 words, a file occupies twice as many blocks of DECtape storage as it did segments on the disk.

COpy can also be used to list the user's disk directory. Use the LIST option, but respond to DEVICE- by

simply striking the RETURN key. The directory listing is similar to the listing obtained by running the CAT

program.

7.2.5 Deleting Files

COpy can be used to delete files, either on the disk or on a selected DECtape. To delete a file, respond to

OPTION- by typing DELETE, or just D. Respond to INPUT - by typing the name of the file to be deleted.

7-7

If the file is on a DECtape, preface the file name with the DECtape unit number and a colon. For example:

OPTION - DELETE
I:-vPUT - D4:ABCD

If COpy cannot find the file to be deleted, or having found it, cannot delete it (it is a protected disk file or

a DECtape file on a unit which is not WRITE ENABLED), COPY prints a ? and repeats the request for INPUT-.

7.2.6 Deleting All Files on a Device

COpy can be used to delete all existing files on a device. To do so, respond to OPTION- by typing ZERO,

or just Z. When COpy requests INPUT- respond with the name of the device. To delete all files on the disk,

strike the RETURN key. The ZERO option should also be used to format a blank DECtape before attempting to

copy any files onto it. For example:

or

OPTION - ZERO
INPUT - D4

OPTION - Z
INPUT -

COpy cannot delete files from a DECtape unless it is WRITE ENABLED. It cannot delete disk files which are

write protected.

7.2.7 Summary of COpy Options

Option Explanation

COpy Transfer a file between disk and DECtape.

LIST list a directory.

DElETE Delete a file.

ZERO Delete all files.

7-8

7.2.8 Example of COpy Usage

.ASSIG:'-J D 5
D 5 ASSIGNED
.R COPY

OPTIO:'-J - ZERO
DEVICE - D5

OPTI00J - LIST
DEVICE - D5

1462. FREE BLOCKS

0JAME SIZE

OPTIO:'-J - LIST
DEVICE -

DATE

DISK FILES FOR USER 5440 ON 13-0CT-69.

:'-JAME
SOLVE

SIZE
1

PROT
12

TOTAL DISK SEGME:'-JTS:

OPTIO:'-J - COpy
I:-JPUT - SOLVE
OUTPUT - D5: SOLVE

OPTIO:'-J - DELETE
INPUT - SOLVE

OPTION - LIST
DEVICE - D5

1460. FREE BLOCKS

DATE
13-0CT-69

NAME
SOLVE

SIZE
2

DATE
13-0CT-69

7-9

OPTION - LIST
DEVICE -

DISK FILES FOR USER 5440 O:J 13-0CT-69.

:JAME SIZE PROT

TOTAL DISK SEGME:JTS: 0

OPTIO~- COPY
INPUT- D5:S0LVE
OUTPUT- ABCD

OPTIO:J- LIST
DEVICE-

DATE

DISK FILES FOR USER 5440 O~ 13-0CT-69.

:JAME
ABCD

SIZE
1

PROT
12

TOTAL DISK SEGME~TS:

OPTION- tBS
.RELEASE D 5

DATE
13-0CT-69

7-10

8.1 INTRODUCTION

CHAPTER 8

ADVANCED MONITOR COMMANDS

Chapter 2 described the fundamental Monitor commands, i.e., those needed to utilize existing TSS/8 System

Library Programs. The TSS/8 Monitor also provides powerful commands for users who wish to create their own

Library Programs.

To use the System Library Programs described in Chapters 3 through 7, it was not necessary to be fami! iar with

the actual machine that runs them, the PDP-8/I. To create new Library Programs for TSS/8, this is necessary

because they are written in the PDP-8 assembly language. The user codes his programs for a 4K PDP-8, subject

to the time-sharing conventions discussed in the following chapter. The programs are created with TSS/8 EDIT,

then assembled by PAL-D a d loaded by LOADER. Only at this point are they able to be run by TSS/8. In the

course of this program development, the same program exists in many formats. The source program is a disk file

containing ASCII characters in an Editor format. PAL-D reads the file and translates it into a seco d file, the

assembled program in BIN format. Neither of these files is capable of being executed directly by TSS/8. The

BIN format tape must be loaded into core by LOADER before it can actually be executed.

At this point it is possible to save the program in a file format that is directly executable by TSS/8. Such a file,

referred to as a SAVE format file, contains an image of the user's core area after the program has been loaded

by LOADER. These SAVE format files differ from all the files which are created by System Library Programs and

cannot be executed directly by TSS/8. Thus, it is not possible to save a BASIC program, (for example FILE1,

while run"ing BASIC) then return to Monitor, type R FILE1, and get meaningful results. The program in FILE1

must be executed under control of the BASIC language processor. Only SAVE format files can be called into

execution directly by the R command. All TSS/8 System Library Programs are stored in SAVE format.

NOTE

In the following examples, Sn, Cn, and Dn are used to
stand for alphanumeric strings (such as file names), oc­
ta I numbers, and dec ima I numbers, respective Iy.

8-1

A number of Monitor command conventions are available to make the commands easier to use. First, more

than one command may be typed on a line. Individual commands are separated by a semi-colon (i). Second,

only enough characters of a command to uniquely specify it need be typed. Thus, DEPOSIT can be abbreviated

DE or DEP.

.LOAD FILEl; DEP 20 7000; ST 200

/

is exactly equivalent to:

.LOAD FILEI

.DEPOSIT 20 7000

.START 200

These conventions are avai lable for the elementary Monitor commands as well. They are, however, especially

convenient for the advanced commands.

8.2 CONTROL OF USER PROGRAMS

Once a PAL-D program has been loaded by LOADER, several Monitor commands are available for controlling

its execution.

Command

START Cl

START

DEPOSIT Cl C2 .•. Cn

EXAMINE Cl

EXAMINE Cl Dl

WHERE

Explanation

Start execution of a user program at location C 1. When a program is started,
keyboard input is no longer interpreted as commands to Monitor. Input char­
acters are passed to the running program. START Cl clears the user's AC and
link.

Restart execution of a user program where it was interrupted (either by execution
of an HLT or by tBS typed at the keyboord). When the START command is given,
the program's state is restored.

Deposit the octal values C2 to Cn in the locations starting at C 1. DEPOSIT is
used to make small octal modifications to a user program. No more than 10
deci'Tlal locations can be modified by a single DEPOSIT instruction.

Print the octal contents of location C 1.

Print the contents of Dl locations starting at C 1.

Print the present status of the user program. The user's AC, PC, and LINK are
printed. If the TSS/8 processor includes the extended arithmetic element, two
additional registers, the SC and MQ are printed.

It is possible to give these uti lity commands whi Ie a user program is running. The CTRL/B character (tB) gets

the attention of the Monitor without stopping program execution. (tB followed by the S command stops the

program.) tB can be used together with the WHERE command to follow program execution. After executing

these commands, Monitor does not put the Teletype bock into Monitor mode.

8-2

•

8.3 DEFINING DISK FILES

TSS/8 Monitor allows the user to save core images of his program on the disk for future use. However, before

saving such a core image, the user must define a disk file in which to save it.

Disk files, like the user's core, are made up of 12-bit words. Unlike the user's core, which is always 4K in size,

a file can be any size. The unit of disk file storage is the segment; in most installations a segment is 256 (deci­

mal) words but can be from 128 to 1024 words long. Files are at least one segment long when created and grow

by appending additional segments to the end of the file. In defining a file, the user first creates it, then ex­

tends it to whatever length he needs. To save a whole 4K image on a system with a segment size of 256 (decimal)

words, a 16 segment file is required. If only part of the contents of the user's core is to be saved, a correspond­

ingly smaller file can be used.

A file can be created at any time. However, to modify or redefine it in any way, the file must be open. Up to

four files can be open for a user simultaneously. Opening a file connects it to an internal open file number (0,

1,2, or 3). Once a file is open, it is referenced by this internal file number rather than by its file name.

8.3.1 Creating a Disk File

CREATE S1 Define a one segment area of disk space and associate with
it the name given in the command line.

The fi Ie name can be one to six alphanumeric characters of which the first must be a letter. Creating a file

deletes any existing file of the same name, unless that file is write protected. When created, files are always

one segment in size. A new file is arbitrarily assigned a protection code of 12, meaning that other users may

access it but only the owner may change it. Until it has been written in, the contents of a newly defined file

are undefined.

8.3.2 Opening and Closing a File

To use a file, it must first be opened. A file can be opened on any of four internal file numbers: 0, 1, 2, or 3.

OPEN Cl S1 Associate the file S1 with the internal file number C1.

A user can have up to four files open at a time. If a file is open on an internal file number for which a file is

already open, that file is first closed. For example:

.CREATE AB

.OPE)J 1 AB

AB is now an open file and can be referenced as file 1.

8-3

An open file can be closed at any time by means of the CL05E comrmnd.

CL05EC1 Close the file presently open on internal file number C1.

Once closed, a file cannot be accessed in any way until it ;s reopened. It is poss;ble to close more than one

file with a single command .

• CLOSE 0 1 2 3

8.3.3 Extending, Reducing, and Renaming a Disk File

When created, a file is one segment long. If a larger file is needed, the original file can be extended.

EXTEND C1 D1 Extend the file presently open on internal file C1 by D1
segments.

Extending a file adds one or more segments to the end of that file. The contents of the old part of the file are

not changed. Until written in, the contents of the newly added segments are unspecified.

An existing file may be reduced in size by means of the REDUCE command:

REDUCE C1 D1 Reduce the file presently open on internal file C1 by D1
segments.

Reducing a file deletes the number of segments indicated from the end of the file. The contents of remaining

segments of the fi Ie are unchanged. If a file is reduced to zero segments, or if D1 is greater than the number

of segments in the file, it is deleted entirely. An example of the creation and deletion of a 4K file:

.CREATE FOURK

.OPE:-J 3 FOURK

.EXTEND 3 15

.REDUCE 3 16

Existing opened files can be renamed. Renaming a file does not change its contents in any way.

RENAME C1 51

8.3.4 Protection Codes

The fi Ie open on internal file number C 1 is given the
new name 51.

The user can protect his files against unauthorized access. He can also specify the extent of access certain

other users can have to his files. For example, a user's associates can be permitted to look at the data of

certain files but not permitted to alter that data.

8-4

When it is created, a file is assigned a protection code of 12. This protection code is defined below and can be

changed (see Appendix F), but on Iy by the owner of that fi Ie.

PROTECT C1 C2 The fi Ie open on interna I fj Ie number C 1 is given the
protection code C2.

The protection code is actually a 5-bit mask. Each bit specifies a unique level of protection. (See the

PROTECT lOT in Chapter 9 for the meaning of each bit.)

File protection masks (C2) are assigned as follows:

Read protect against users whose project number differs from owner's.

2 Write protect against users whose project number differs from owner's.

4 Read protect against users whose project number is same as owner's.

10 Write protect against users whose project number is same as owner's.

20 Write protect against owner • To change the program the owner must change
the protect code.

Protection codes are determined as the unique sum of any of the above codes.

Some of the more common protection codes are as follows:

• PROTECT 1 12

· PROTECT 1 17

• PROTECT 1 37

• PROTECT 10

Allow other users to access the fi Ie but not change it.

Allow only the file owner to read the file. He can also
change it.

Allow on Iy the fi Ie owner to read the fi Ie • He cannot,
however, change it. (T 0 change it, he must first change
the protection.)

Allow other users to access the fi Ie and change it.

Finally, the user can ask what file is open on a given internal fi Ie number by means of the F (Fi Ie information)

command.

For example:

F C1

• F 1

Type out the following information about the file presently
open on internal file C1:

a. Account number of file owner.
b. Name of file.
c. Protection code.
d. Size of file in segments (decimal).

0010 TYPE 0012 2

8-5

8.3.5 Error Conditions

There are a number of error conditions which prevent the execution of the file definition commands (as previously

described). One of the following error messages is typed by Monitor in the event that an error condition is

detected:

FILE NOT OPEN

FILE IN USE

An EXTEND, REDUCE, PROTECT, or RENAME command
has been issued for an internal file number for which no file
is open.

An EXTEND, REDUCE, PROTECT, or RENAME command has
been issued for a file which is in use elsewhere by another
user. Because changing a file which is being used (i.e., has
been opened) could disrupt another user's work, under these
conditions such a change is prohibited.

NOTE

Changing a file which the user himself has opened on another
internal file results in this error message.

DIRECTORY FULL

PROTECTION
VIOLATION

FILE NOT FOUND

FAILED BY n
SEGMENTS

A CREATE command has been issued, but the user's directory
is full. He can delete any of his files to make room for the
new file.

An attempt has been made to change a file which is write
protected against the user.

The user has attempted to OPEN a nonexistent file.

The user has attempted to extend a fi Ie, but the system has run
out of disk segments. The number of segments requested, but
not ava i lab Ie, is typed out.

8.4 SAVING AND RESTORING USER PROGRAMS

Ol1ce a file !'as been defined, the user can save all or any part of his user core in the file. Files and user core

are addressed in the same way, by 12-bit words. The user can transfer his file into any part of core.

The SAVE command requires one to five parameters. The name of the file to be written into must always be

given. If the file is not in the user's own library, the appropriate account number is entered before the file

name. (Writing into a file owned by another user is subject to file protection.) In either case, the parameters

are separated by spaces.

SAVE Write the indicated section of core out into the indicated file.

If no parameters follow the file name, Monitor starts at location zero of the user's core and saves it in location

zero of the disk file. It continues to write core locations into the disk file until: (a) it has written out the

whole 4K or (b) it has filled the file. Either condition completes the SAVE.

8-6

The user can further define his SAVE command by indicating specific ports of core to be saved in specific parts

of the disk file. He does this by typing one to three parameters foUowing the file name. The first parameter

following the file name indicates a specific disk file address at which to begin writing. The second parameter

following the file name indicates a specific core address at which to terminate the transfer. If only the first

two parameters are typed, the transfer terminates when either the end of -:ore or the end of file is reached.

SAVE S1
SAVE C1 S1

SAVE S1 C2 C3 C4

Assuming that a disk file S1 exists, and that it is not write
protected, the contents of core is saved in 51. In the first
case, S1 is assumed to be in the library of the user giving the
command. In the second case, it is assumed to be in the
library of the user whose account number is C 1.

Locations C3 to C4 (inclusive) are saved in file S 1 starting at
disk file location C2. S1 is assumed to be in the user's own
library. If S1 is preceded by the parameter C 1, it is assumed
to be in the I ibrary of the user whose account number is C 1.

Once a core image has been saved in a disk fi Ie, it can be restored to core by means of the LOAO command.

It should be noted that the Monitor command LOAD is very different from the System library Program LOADER.

LOADER loads a BIN format file (created by PAl-O) into the user's core. LOAD loads a SAVE format file

(created by a previous SAVE command) into core.

The LOAD command requires from one to five parameters. The name of the file to be loaded must always be

given. If the file is in the user's ONn library, this file name is typed after the SAVE command itself. If it is in

another user's library, his account number is entered before the file name. {Reading another user's file is sub­

ject to fi Ie protection.} In either case, the parameters are separated by spaces.

LOAD

LOAD S1
LOAD C1 S1

Read the indicated section of a disk file into the indicated
section of core.

Assuming that a disk file S1 exists, and that it is not read protected,
the contents of the file S1 is loaded into core. In the first case S1
is assumed to be in the library of the user giving the command. In
the second case, it is assumed to be in the library of the user whose
account number is 01.

The user can further define his LOAD command by using the same optional parameters discussed in the section

on the SAVE command.

Example:

LOA 0 S 1 C2 C3 C4 Locations C3 to C4 {inclusive} are loaded from fi Ie S 1 starting at
file location C2.

.LOAD NEWF 5 10 17 Words 5 to 14 (inclusive) of the file named NEWF are loaded into
locations 10 to 17 of the user's core.

8-7

It is not necessary to open a file before using it in a LOAD or SAVE command. Both commands automatically

open the specified file on internal file number 3 before performing the transfer. After completion of the com­

mand, the file remains open on file number 3.

A special macro-command, RUN, exists to allow a program to be loaded and started all in one command.

RUN 51
RUN C1 51

Load file 51 into core from the disk and start execution at location O.
In the first example, file 51 is assumed to be in the user's own library.
In the second, it is assumed to be in the library of the user whose
account number is C 1.

RUN 51 is exactly equivalent to LOAD 51; START O. RUN C1 51 is
exactly equivalent to LOAD C1 51; START O.

The R command (see Chapter 2, Section 2.4) is a special case of the RUN command.

R 51

8.5 UTILITY COMMANDS

Load file 51 from the System library (account number 2) and start
at location O. R 51 is exactly equivalent to RUN 251.

TSS/8 Monitor provides a number of special purpose commands to aid in program development and use.

Command

USER

USER C1

SWITCH C1

BREAK

BREAK Cl

DUPLEX

UN DUPLEX

RESTART Cl

VERSION

Explal1ation

Print the number of the job connected with this user and the console
number of the job.

Pri nt the consol e numbers of job C 1 •

Set the user's switch register to C1. Monitor maintains a switch
register for each user. When h is program executes an OSR (OR
tl,e switch register into the AC) this value is the one which is loaded.

Type the current value of the user's delimiter mask.

Set the user's delimiter mask to C1. (The use of the delimiter mask
is discussed in the chapter on assembly language programming.)

Place the user's Teletype in duplex mode. All characters typed at
the keyboard are automatically printed as tl,ey are entered.

Take the user's Teletype out of duplex mode. Input characters are
received by the Monitor and by the user program without their being
printed at the console.

Set the user program restart address to C 1. If CTRL/C is typed at
the keyboard, Monitor forces a jump to location C1 in the user's program.

Type out the version of TSS/8 Monitor being used.

8-8

9. 1 INTRODUCTION

CHAPTER 9

WRITING ASSEMBLY LANGUAGE PROGRAMS FOR TSS/8

In addition to the higher-level programming languages available in the TSS/8 library, the user can also code

and run programs written in the PDP-8 assembly language, PAL-D (Program Assembly Language). These programs

are prepared with EDIT, assembled with PAL-D, then loaded with LOADER. For those users unfamiliar with as­

sembly language programming, the DEC Introduction to Programming is a useful guide.

A user can program TSS/8 iust as he would any other 4K PDP-8. (Assembly language programs must fit in 4K of

core.) All memory reference instructions (AND, TAD, ISZ, DCA, JMS, and JMP) function as on a stand-alone

PDP-8. All operate instructions (instruction code 7) also function as on a regular PDP-8 (Exception: micro­

coding HLT or OSR with any other operate instruction but CLA gives unpredictable results).

The major difference between TSS/8 programming and regular PDP-8 programming is in the lOT (Input/Output

Transfer) instructions. Some instructions which are valid on stand-alone PDP-8s, such as CDF, CIF, ION, IOF

are considered illegal instructions under time-sharing. There are a great many new lOTs within TSS/8 that are

not valid on a regular PDP-8. Finally, there are lOTs which operate on TSS/8 in the same manner as on stand­

alone PDP-8s.

The way TSS/8 actually executes an lOT instruction is also different. Non-lOT instructions (except HLT and

OSR) are executed by the TSS/8 hardware, while lOTs (and HLT and OSR) are not. As explained in Appendix C

lOTs are privileged instructions, executed by the TSS/8 Monitor rather than by hardware.

In general, TSS/8 provides the programming capabilities of a 4K PDP-8, and allows programs of considerably

greater complexity to be run within the constraints of each user's 4K of core. The TSS/8 Library Programs, all

of which were written in assembly language and make use of the TSS/8 lOT's dealt with below, are examples

of programs which can be run on TSS/8.

9-1

9.2 CONSOLE I/O

User programs handle console (Teletype) I/o in almost the same way as stand-alone POP-8 programs. The KRB

instruction is used to input a character, the TLS instruction to output a character. The KSF and TSF (followed by

JMP .-1) can be used but are not needed. TSS/8 Monitor handles all timing problems whether these skip lOTs

are present or not.

TSS/8 differs from the stand-alone POP-8 in that under TSS/8 the user program interacts with multi-character

input and output buffers (maintained by TSS/8 Monitor) rather than with single character registers. Depending on

the state of the system, these buffers may have one, many, or no characters in them. During normal program

execution, this fact is of no ccnsequence. User programs still send and receive characters one at a time. There

are times, however, when it is useful to clear out any and all characters in the buffers; a special lOT exists for

this purpose (SBC).

On a stand-alone system, characters are input as soon as they are typed, whether they are of immediate interest

or not. Usually, these characters are stored away by the program until a terminating (or delimiting) character is

found. At this time, the whole line of characters is processed. On a swapping, time-sharing system such as TSS/8,

this mode of operation is wasteful. It is far more efficient to allow input characters to accumulate in the Monitor

input buffer until a delimiter is found. There is an lOT to specify which characters are to be considered de­

limiters (KSB).

TSS/8 also allows programs to input and output strings of characters. The read string (KSR) and send string (SAS)

instructions provide a convenient and efficient means of doing lengthy transfers.

All keyboard input uses full-duplexed hardware, (there is no wired connection between the keyboard and printer,

i.e., characters are not printed on the console as typed). Input characters are echoed to the console under pro­

gram control rather than by hardware. Because input charac ters are a lIowed to accumul ate in buffers before

being passed to the user program, it is important to have Monitor perform the echoing rather than user programs.

There is an lOT (OUP) to set up this automatic echoing as well as an lOT (UNO) to inhibit echoing for such

operations as reading tapes.

Read Keyboard Buffer (KRB) Octal Code: 6036

Operation: Read the next input character into bits 4-11 of the AC.

Load Teleprinter Sequence (TLS) Octal Code: 6046

Operation: The ASCII character in AC bits 4-11 is typed out on the user's console.

Skie on Kelboard FlaS (KSF) Octal Code: 6031

Operation: The next instruction is skipped if there is a delimiter character in the user's input buffer.

9-2

Read Keyboard String (KSR) Octal Code: 6040

Operation: Execution of this instruction initiates a transfer of one or more characters from the user's keyboard

to a designated core area. Before executing KSR, load the AC with the address of a two-word block, where:

Word 1: negative of the number of characters to be transferred.

Word 2: address of the core area into which characters are to be placed minus one.

The transfer is terminated when either:

a. the indi cated number of characters have been input or

b. a del imiter is seen. At the end of the transfer, the word count and core address are updated
and the AC is cleared.

Send A String (SAS) Octal Code: 6040

Operation: Before executing an SAS, load the AC with the address of a two-word block, where

Word 1:

Word 2:

contains the negative of the number of characters to be sent.

contains the add-ess -1 of the first word of the string.

The characters are stared one per word right justified starting at the add-ess specified by word 2. Upon execution

of SAS, the system takes only as many characters as will fit in the output buffer. It then makes the appropriate

adjustment to word 2 to indicate a new starting address and to word 1 to indicate the reduced character count;

it returns to the instruction following the SAS. If the character count is reduced to zero, the instruction follow­

ing SAS is skipped. The instruction following the SAS should contain a JMP .-2 to continue the block transfer

of Teletype characters. The AC is cleared by SAS.

Set Keyboard Break (KSB) Octa I Code: 6400

Operation: Rather than activate a user's program to receive each character as it is typed, TSSj8 accumulates

input characters until a certain character or characters is seen. To tell TSSj8 Monitor which characters to look

for (these characters are referred to as delimiters,) load the AC with a 12-bit mask before executing a KSB. For

each bit in the mask which is set, Monitor considers the corresponding character or characters to be delimiters.

Bit

o

1
2
3
4

5
6
7
8
9

10
11

Specifies

o = check rest of mask
1 = any character is break
301-332 (all letters)
260-271 (all numbers)
211 (Horizontal tab)
212-215 (line feed, vertical tab,

form feed, RETURN)
241-273 (!" I $ % & ' () * + , - . j : ;)
240 (space)
274-300 « = > ? @)
333-337 ([\J t +-)
377 (rubout)
375 (alt mode)
anything not in bits 1-10

9-3

Duplex (DUP) Octal Code: 6402

Operation: DUP infonns Monitor that the user wishes each character typed at the console to be echoed on that

console's printer as it is received by Monitor. The DUP instruction does not affect the user's registers.

Unduplex (UNO) Octal Code: 6403
-~-

Operation: UNO informs Monitor that the user wishes to suppress character echoing. This can be done for

reasons of privacy or because a program does its own character echoing. The user's registers are unaffected

by UNO.

Set Buffer Control (SBC) Octal Code: 6401

Operation: SBC permits the user program to clear its Teletype input and/or output buffer. Before executing SBC

set bits 0 and 1 of the AC as indicated below:

Bit 0

Bit 1

Clear output buffer

Clear input buffer

9.3 FILES AND DISK I/o

All user programs can gain access to the Tss/8 disk storoge. The time-sharing Monitor maintains a pool of

available disk space which is allocated in units referred to as segments. (The size of a disk segment varies

among Tss/8 installations. Segments may be 128,256, 512, or 1024 words each). These segments are used

to make up user files on the disk. Monitor also maintains, for each user, a directory of all files which he has

defined.

The lOTs which allow the user to access the disk are of two types: those which define files on the disk and

those which transfer data between a defined file and the user's core.

NOTE

CREATE and OPEN require that a user set up a file name
in core. FINF and WHO return file names to core. Each
must be specified in TSS;8 internal code (excess 40 code)
as shown in Appendix A. Characters are packed two to
a word.

The first step in defining a file is to create it. Creating a file reserves a single segment cl disk storage and

associates it with a name. This file can then be extended to any length desired. Extending a file appends more

segments to it. Similarly, a file can be rewced by any number of segments. Reducing a file removes the last

segment or segments from the file. Reducing a file to zero segments deletes it entirely. Once created, a file

can be protected, thereby restricting access to it. When created, a file can be read by any user, but only the

creator can write in it. This protection can be reset if desired. Finally, it is possible to rename an existing

file.

9-4

None of these actions affect the contents of the file -- they only reserve space on the disk. Until it has been

written in, the actual content of a file is unspecified. Extending a file does not alter the content of the file

as it previously existed. Once defined, files can be used to read and write data. ky number of words (1 to

4096) can be moved from any part of the user's core to any part of a file (subject to file protection). The user

program specifies a location in core and a word count. This indicates how many words are to be transferred

and from (or to) where in core they are to be moved. Also specified is a disk file address indicating what part

of the file is involved. This address is the address of a word in the file. Fi les are addressed in the same manner

as core: in 12-bit words. Unlike core, however, files can be longer than 4K. To address these files provision

is made fora 24-bit disk file address, containing the high-order and low-order file addresses.

File addresses are independent of any consideration of segments. The file address is meaningful only in defining

files. Files can be read and written across segment boundaries without restriction. (The user cannot read or

write beyond the last segment boundary.)

When it executes a fi Ie read or write lOT, the system updates the core add-ess and word count and places an

error code in the error word (see RFllE) if any error is detected. (The error word must be cleared before execut­

ing the lOT.) At the end of a successful transfer, the word count is set to zero and the core add-ess set to the

last word transferred. If the transfer cannot be completed for some reason, the word count and core address

indicate how much of the transfer was successful; the error word indicates the cause of the failure. All file

operations except CREATE (and OPEN) require that the file be open. Up to four files can be open at a time.

The process of opening a file associates it with one of four internal file numbers (0, 1, 2, or 3). All file lOTs

except CREAT and OPEN, are specified in terms of one of these internal file numbers, rather than a file name.

lOTs operate on the file which is indicated by that internal fik! number at the time. It is therefore possible to

write file handling programs which are independent of the actual file(s) they operate on.

File lOTs, that are successfully completed, return with the AC cleared. If an error was found which prohibited

execution of the lOT, one of the following error codes is returned:

4000 There was no file opened on the specified internal file number.

4400 Attempting to redefine a file which is open to another user.

5000

6000

6400

7000

7400

Create a Fi Ie (CRF)

Attempting to create a file for a user whose directory is full .

Fi Ie protection violation.

Invalid file name.

Attempting to open a nonexistent fi Ie.

Disk is full.

Octal Code: 6610

Operation: the user can request the system to create a new fi Ie of one segment. The user program provides the

new name for the file. load the AC with the beginning address of a 3-word block, where

9-5

Words 1 through 3: contain the 6-character name.

If there is some reason why the request cannot be granted, the system will return a non-zero error code in the AC.

The protection code of a newly created file is 12.

Extend A File (EXT) Octal Code: 6611

Operation: To extend the length of an existing file, that file must be currently open. Load the AC with the

beginning address of a 2-word block, where:

Word 1: contains the internat file number of the file to be extended.

Word 2: contains the number of segments the system should append to the fi Ie.

If for some reason the request to extend a file cannot be granted, the AC will contain 4000, 4400, 6000, or

the number of segments it failed to append.

Rewce A Fi Ie (RE D) Octal Code: 6612

Operation: To rewce the length of an existing file, that file must be currently open. Load the AC with the

beginning address of a 2-word block, where:

Word 1: contains the internal file number of the file to be reduced.

Word 2: contains the number of segments to be removed.

This request is granted unless the file to be rewced is currently opened to another user or if the file is write

protected against the user.

Rename A File (REN) Octal Code: 6600

Operation: REN is used to change the name of a file. Load the AC with the address of a 4-word block where:

Word 1: contains the internal file number associated with the file whose name
is to be changed.

Words 2-4:

Protect A File (PROT)

contains the new name. This name is in 6-bit characters packed two in
a word.

Octal Code: 6604

Operation: The owner of a file can protect his file from unauthorized attempts to access it by using this in­

struction. Before executing PROT, load the AC with:

Bits 5 and 6

Bit 7

Bit 8

Bit 9

Bit 10

Bit 11

Internal file number of the reserved file to be protected.

Write protect against owner.

Write protect against users whose project number is same as owner's.

Read protect against users whose project number is same as owner's.

Write protect against users whose project number differs from owner's.

Read protect against users whose project number differs from owner's.

9-6

A file must be opened before it can be protected. PROT is legal only when performed by the file owner, i.e.,

the user who created the file. All attempts to access the file which violate any of the protection flags are con­

sidered illegal. (For further information on project numbers, see Appendix F.)

Open A File (OPEN) Octal Code: 6601

Operation: OPEN is used to associate a file with an internal file number, which is necessary because all file

operations are in terms of the internal file numbers. Before executing the OPEN lOT, load the AC with the

beginning address of a 5-word block, where:

Word 1:

Word 2:

contains the internal file number.

contai ns the account number of the owner of the fi Ie. If 0, the
account number of the current user is specified.

Word 3-5: contain the name of the file to be opened. This name is in 6-bit
characters packed two to a word.

If there was another file associated with the internal file number before the execution of the OPEN lOT, it is

closed automatically before the new file is associated with the internal file number.

Close A File (ClOS) Octal Code: 6602

Operation: ClOS terminates the association between files and their internal file numbers. Before executing

ClOS, load the AC with a selection pattern for the interna' file numbers whose associated fi les are to be closed.

The file is closed if bit I is 1, where I = bit 0, 1,2, or 3.

Read Fi Ie (RFIlE) and Writit File (WFIlE) Octal Codes: 6603 &
6605

Operation: Once the association of a file with an internal file number has been made, these lOTs allow the

actual file reference to be made. They are illegal on a file that has not been opened (associated with an in­

terna I fi I e number).

To read or write a file, load the AC with the address of a 6-word block, then execute the lOT. The format

for the 6-word block is:

Word 1:

Word 2:

Word 3:

Word 4:

Word 5:

contains the high-order file word address.

contains the internal file number.

contains the negative of the number of words for the operation. This
number is either the number of words to be read or the number of words
to be written.

contains a pointer to the beginning address -1 of a buffer located in the
user program. On a read operation this buffer receives the information
from the file: on a write operation this buffer holds the information that
is to be sent to the fi Ie.

contains the least significcnt 12 bit!: of the initial fi Ie word address to
begin the operation.

9-7

Word 6: contains an error code:

o if no error
1 if parity error
2 if file shorter than word count
3 if fi Ie not open
4 if protection violated

The read or write begins at the word specified by words 1 and 5. For example:

x~

TAr; X
WFILE

• + 1
0
1
-200
6477
200

means: write 200 (octal) wads starting at word 200 of the file that is associated with internal file number one

from a core area starting at location 6500.

After completion of the transfer, the word count (word 3) and core address (wad 4) are updated. If an error

was detected the appropriate error code is placed in word 6.

File Information (FINF) Octal Code: 6613

Operation: FINF enables a user program to determine what file, if any, is associated with an internal file

number. Load the AC with the beginning address of a 7-word block, where:

Word 1:

Words 2
through 7

Word 2:

Words 3-5:

Word 6:

contains the internal file number for which the user program wishes information.

contain the information that the system returns after executing FI NF.

contains the account number of the owner or zero if no file is associated
with the internal fi Ie number, that is, the file is not open.

contains the name of the file in 6-bit code.

contains:

Bit-1

7

8

9

10

Means

write protected against owner

write protected against users whose project
number is same as owner's

read protected ogainst users whose project
number is same as owner's

write protected against users whose project
number differs from owner's

9-8

Word 6 (Cont)

Word 7:

9.4 ASSIGNABLE DEVICES

Bit-1

11

Means

read protected against users whose project number
differs from owner's

contains the number of segments which compose the file.

Users can access both their own Teletypes and the disk; with the remaining system devices (referred to as the

assignable devices) this is not true. One function of the TSS/8 Monitor is to ensure that device usage never

confl i cts. On Iy one user at a time can access the high-speed, paper-tape reader or punch, or anyone of the

DECtapes.

To ensure that only one user can access a device, TSS/8 requires that the device be assigned before it is used.

After a device is assigned, it is not available unti I it is released by its owner.

Once assigned, the device is programmed exactly as on a stand-alone PDP-8. The RRB instruction is used to

read a character from the high-speed reader; the PLS instruction is used to punch one on the high-speed punch.

The skip lOTs (RFS and PSF) can be used (followed by JMP . -1) but are not necessary. For block transfers,

there are two string transfer commands: RRS and PST.

The DECtape instructions have been simplified. A single instruction, DTXA, initiates the transfer of a block of

data. The DTRB instruction is then used to determine if the transfer was successful. The skip instruction, DTSF,

can be used (followed by JMP . -1) but is not necessary.

Executing any of the assignable device lOTs without first assigning the device gives the following results: (a) If

the device is assigned to another user, the instruction is considered illegal; program execution is now terminated

and an error message typed out; (b) If the device is available it is automatically assigned before execution of

the lOT. The device then belongs to this user until he releases it.

Because these devices are shared by all users, Monitor must ensure that they are operable at all times. In par­

ticular, Monitor must ensure that a user is not waiting (futilely) for a device which is not avai lable. This

situation can arise when trying to use the punch when it is turned off, or when the reader has read off the end

of a tape. All these conditions, referred to as "hung devices" are considered to be system errors. If the program

doing the transfer has been enabled for system errors, (by executing an SEA) control transfers to the error routine

indicated which must clear the error flag in the status word before continuing (see Section 9.4). If the user

program has not been enabled for system errors, a hung device causes the program to be terminated and an error

message is typed out.

9-9

Assign Device (ASD) Octal Code: 6440

Operation: If the device specified by the contents of the AC is available, it is assigned to the user program

and the AC is cleared. Otherwise, the number of the job owning the device is placed in the AC. If the de­

vice does not exist, 7777 is returned in the AC.

4000

4001

4005 + N

Paper-tape reader

Paper-tape punch

DECtape unit N

The assignment is in effect until a corresponding REL instruction or LOGOUT.

Release Device (REL) Octal Codes: 6442

Operation: The device specified by the contents of the AC is released (praviding it was owned by the user

executing the REL). The AC is cleared. Releasing a device makes it available to other users.

Skip on Reader Flag (RSF) Octal Code: 6011

Event Time: 1

Operation: The reader flag is sensed, and if it contains a binary 1, the contents of the PC are incremented by

one so that the next sequential instruction is skipped. The reader flag is bit 8 of status register 1, and has a

value of 1 if the reader buffer is not empty.

Read Reader Buffer (RRB)

Event Time: 2

Octal Codes: 6012 &
6016

Operation: The contents of the reader buffer are transferred into bits 4 through 11 of the AC and the reader flag

is cleared if the reader buffer is empty. This instruction does not clear the AC. If the reader buffer is empty,

the user program is dismissed until the reader flag is 1 or an end-of-tape condition is detected.

Reader Fetch Character (RFC) Octal Code: 60 14

Event Time: 3

Operation: The reader flag and the Monitor reader buffer are both cleared, the readeris started to fill the

Monitor reader buffer and the reader flag is set after the buffer is full or the end of tape is detected.

Read Reader String (RRS) Octal Code: 6010

Operation: This instruction initiates a transfer from the high-speed reader to a selected area in the user's core.

Before executing RRS, load the AC with the address of a 2-word block, where:

Word J:

Word 2:

minus the number of characters to be transferred.

the address of the user core area minus one.

The transfer is terminated by either of two conditions: (a) the word count is zero indicating that the required

number of characters have been read or (b) the reader has read off the end of the tape (a system error condition).

9-10

In either case, the word count and core address are updated. RRS clears the AC.

load Punch Buffer Sequence (PlS) Octal Code: 6026

Operation: The ASCII character is in AC bits 4 through 11 and is transmitted to the high-speed punch. PlS

does not clear the accumulator.

Skip on Punch Flag (PSF) Octal Code: 6021

Event Time: 1

Operation: The punch flag is sensed, and if it contains a binary 1, the contents of the PC is incremented by one so

that the next sequential instruction is skipped. The punch flag is bit 9 of status register 1, and has a value of 1

if the punch buffer is not full. If the punch flag is 0, the program is dismissed until the punch flag is 1.

Punch String (PST) Octal Code: 6020

Operation: PST allows a user program to punch a string of characters. Before executing PST, load the AC with

the beginning address of a 2-word block, where:

Word 1:

Word 2:

contains the negative of the number of characters to be punched.

contains the beginning address -1 of the string to be punched; the
characters should be right justified one per word.

After execution of PST, the system takes only as many characters as fit in the punch buffer; it then makes the

appropriate adjustment to word 2 to indicate a new starting address and to word 1 to indicate the reduced char­

acter count. It returns to the instruction following the PST which should be a JMP . -2 to continue the transfer.

If the character count is rewced to zero, the instruction following PST is skipped. The AC is cleared by PST.

load Status Register A (DTXA) Octal Code: 6764

Operation: DTXA allows a user program to read and write records (129-word blocks) on DECtape. load the AC

with the beginning address of a 3-word block, where:

Word 1:

Word 2:

contains:

Bit 1

0-2

3-5

6-8 = 2

4

9-11

Means

contains the transport unit select number,

0,

for read elata function,

for write data function,

o.
contains the DECtape block number.

Word 3: contains the beginning core address -1 of record buffer.

After DTXA is given, the DECtape request is placed in the DECtape request queue. After the completion of

any DECtape request, the DECtape flag in status register 2 is turned on. DTXA elaes not update word 3. The AC

is cleared by DTXA.

9-11

Skip on Flags (DTSF) Octal Code: 6771

Operation: The content of both the error flag and the DECtape flag is sampled, and if either flag contains a

binary 1, the content of the PC is incremented by one to skip the next sequential instruction. If both flags are

zero, the user program is dismissed until the skip is satisfied.

Read Status Register B (DTRB) Octal Code: 6772

Operation: The content of DECtape status register B is loaded into the AC by an OR transfer. The AC bit as­

signments are:

o
1
2
3
4
5
6-10
11

9.5 PROGRAM CONTROL

error flag
mark track error
end of tape
select error
parity error
timing error
unused
DECtape flag

There are a number of ways that the status of a running proqram can be changed. The program can be terminated

in one of three ways: by execution of a HLT, by the user typing tBS to force a program halt, or by a program

error which forces Monitor to terminate the pragram after typing out an error message.

It is also possible for the status of a running pragram to change without it being terminated. First, the user

program can request that it handle its own program error conditions. In this case, Monitor does not terminate

a job on an error; instead, it transfers control to a user error handler. This error handler then determines what

the error was, by a CKS instruction and takes appropriate action. Monitor also provides the pragram with an

interrupt key, tC.t If the user types a tC, Monitor unconditionally transfers control to a restart address. Thus,

the user program can handle its own restarts.

Halt (HLT) Octal Code: 7402

Operation: This instruction is used to stop the user program and return control to Monitor. Executing HLT is

equivalent to typing tBS followed by RETURN.

t tC is a control character obtained by depressing the CTRL key at the same time as depressing the C key. tBS
is obtained by depressing control key and B together followed by S.

9-12

Set Restart Address (SRA) Octal Code: 6417

Operation: This instruction allows the user to specify an address to which control is transferred when an fC is

typed on the user's console. Load the AC with the restart address and execute SRA. If fC is detected, the

program's input and output buffers are cleared, the AC and Link are cleared and control goes to the restart

address.

Set Error Address (SEA) Octal Code: 6431

Operation: This instruction allows the user to specify an address to which control is transferred in the event of

a system error. Load the AC with an address before executing SEA. If a system error is detected, Monitor

simulates a JMS to the error address. The program counter is stored in the error address and control transferred

to the error address + 1. AC, Link, and input/output buffers are not affected. The error code of the system error

is in STRO bits 9-11. Bit 10 of STR1 is set. The error routine must read these bits (by a CKS) to determine the

cause of the error, then clear them by means of a CLS.

The only error code that occurs in the course of normal system usage is we to a hung device. This error occurs

when the user attempts to use a punch not already turned on, access a DECtape not yet selected, or allows the

paper-tape reader to run off the end of a tape. The error routine must release the device to clear the error condi­

tion. The illegal lOT error probably means that an assignable device lOT was executed without the device first

being being assigned. Swap and file errors occur if a hardware error is detected while Monitor is swapping user pro­

grams or while reading or writing file directories. These are system malfunctions from which there is no recovery.

9.6 PROGRAM AND SYSTEM STATUS

Because TSS/8 programs run under control of a time-sharing Monitor, it is important for them to determine their

status within the system and the status of the system as a whole. Several lOTs, listed below, have been de­

fined for this purpose.

Check Status (CKS) Octal Code: 6200

TSS/8 Monitor maintains for each user a complete set of status information, his program's running status and the

state of his input/output devices. This status information, stored in three words, can be accessed by a running

program with the CKS instruction. Before executing a CKS, load the accumulator (AC) with the address of a

three-word block. Executing CKS stores the three status words (STRO, STRl, and STR2) in the three-word block

and clears the AC. Information about the status of individual devices can also be checked by the skip lOTs.

9-13

The formats of these registers are:

STRO Bits

o
1

2-4
5
6
7
8

9-11

STRI Bits

o
1
2
3
4
5
6
7
8
9

10

11

STR2 Bits

0-8
9

10
11

Run Bit
Error Enable

JSIOT
JSIOTC
JSEXON

Error Code

Timer
File 0
File 1
File 2
File 3
Delimiter

Teleprinter
Reader
Punch
Error

Wait

DECtape
Error
DECtape

User program is in the run state
Program handles its own errors
Unused
System use on Iy
System use only
System use on Iy
Unused
System detected error condition
1 Illegal lOT
2 Swap read error
3 Swap write error
5 Disk file error
6 Hung device

Time is up
Internal file 0 is not busy
Internal file I is not busy
Internal fi Ie 2 is not busy
Internal fi Ie 3 is not busy
There is a delimiter in the input buffer
Unused
Output buffer is not full
Character in reader buffer
Punch buffer is not full
System error detected, code in bits 7
through 11 of STRO
Job is not waiting

Unused
DECtape transfer requested
DECtape error
DECtape flag

Each user has available to him a 12-bit switch register just as he does on a stand-alone PDP-8. This switch

register can be manipulated by means of the Monitor command SWITCH or under program control.

OR With Switch Register (OSR) Octal Code: 7404

Operation: The content of the user's switch register is inclusively ORed into the AC.

Set Switch Register (SSW) Octal Code: 6430

Operation: The content of the AC is stored in the user's switch register. The AC is cleared.

Assembly language programs run under control of TSS/8 Monitor. The following lOTs are defined to allow a

program to determine the status of the system as a whole.

9-14

Segment Size (SIZE) Octal Code: 6614

Operation: The segment is the basic unit of on-line file storage. Different TSS"..a systems have differing segment

sizes. SIZE allows a program to determine the segment size. The segment size is returned in the AC.

Segment Count (SEGS) Octal Code: 6406

Operation: The number of available disk segments is returned in the AC.

Account (ACT) Octal Code: 6617

Operation: The account number (of the job number given) is returned in the AC. If AC is 0, the account

number for the current job is returned. If the requested job does not exist, zero is returned.

Who (WHO) Octal Code: 6616

Operation: The account number and password of the current job are returned to the 3-word block whose address

is in the AC and the AC is cleared.

User (USE) Octal Code: 6421

Operation: Return in the AC the number of the current job.

Console (CON) Octal Code: 6422

Operation: Return in the AC the console unit number assigned to the job whose number is in the AC, if that

console number does not exist, -1 is returned.

User Run Time (URT) Octal Code: 6411

Operation: load the AC with the address of a 3-word block, where word 1 contains the number of the job

for which the run time is sought. The run time is returned in the last two locations of the block. If job 0 is

specified, the run time of the current job is returned. The AC is cleared.

Time-oF-Day (TOO) Octal Code: 6412

Operation: Returns the value of the System Clock in military time (using a 24-hour cycle) in the two locations

starting at the location of the address in the AC. The AC is cleared.

Return Clock Rate (RCR) Octal Code: 6413

Operation: The number of clock ticks per second is returned in the AC.

Date (DATE) Octal Code: 6414

Operation: Returns the date in the AC. The format of this 12-bit number is:

DATE=«YEAR-1964)*12+(MO~TH-l))*31+DAY-l

9-15

Skip on T5S/8 (TSS) Octal Code: 6420

Operation: This instruction is used by programs which run under both TS5j8 and a standard PDP-8/I. Under

TSS/8, the instruction following T55 is skipped and the Monitor version number is returned in the AC. On a

standard PDP-8/I, the lOT has the effect of a NOP instructi on.

Quantum Synchronization (SYN) Octal Code: 6415

Operation: Upon execution of this instruction, the system dismisses the user program and sets it in the run state

so that it will be run again in turn. Ordinarily, this instruction is used to ensure a full time quantum to perform

some critical operation.

Set Time (STM) Octal Code: 6416

Operation: The system provides a clock time for each user program. By means of this lOT, the time can be set

to "fire" after a specified number of clock ticks have elapsed.

Load the AC with the time (in seconds) to prime the timer. Upon execution of the STM instruction, the system

sets the time to "fire" in the specified number of seconds and turns the time bit (bit 0) in status register 1 to 0,

clears the AC, and dismisses the job. After the specified time has elapsed, the system turns bit 0 back to 1,

and the job is restarted.

9.7 PDP-8 COMPATIBILITY

Programming TS5/8 in assembly language is very similar to programming a stand-alone PDP-8. All instructions

except the lOTs operate identically in either case. As discussed in the earlier sections of this chapter, program­

ming such devices as the Teletype and high-speed reader/punch for TS5/8 is somewhat simpler. T55/8 runs

programs which include timing loops. It also properly executes the lOTs not mentioned in this manual, e.g.,

TCF, PCF, RRB, RFC, etc. Thus, programs written for stand-alone PDP-8s with Teletype and high-speed reader

or punch will run on TSSj8, although generally not as efficiently as programs which are written specifically

for TSS/8.

The same is not true for disk and DECtape operations because T55/8 uses a simplified programming structure for

these devices. The actual differences in coding are very small. It is a simple task to adapt previously written

code for T5S/8 disk and DECtape.

There are a few standard changes which users generally make in adapting PDP-8 code to TS5j8. The T55j8

Monitor does the echoing rather than the user program. The TLS which does the echo can be deleted and a DUP

instruction added somewhere near the start of the program. Also, for efficiency, the T5Sj8 delimiter capability

can be used. A K5B in the program determines what the delimiters are.

9-16

Many PDP-8 programs execute a reader and punch lOT early in the program, to initialize the device, whether

they are actually to be used or not. If the devices are free, they can be assigned and thus made unavailable

to other users. If they are unavailable, the program terminates on an illegal lOT. Thus, it is important not to

execute these lOTs randomly. If disk or DECtape is involved the actual transfer code must be altered to con­

form to TSS/8. {The fact that core page 37, locations 7600 through 7777, is avai lable to TSS/8 programs is

useful in making these changes. New code can be placed in the area normally reserved for the Binary loader.}

The most difficult code to convert is that code which operates under interrupt. To be run under TSS/8, these

programs must be recoded so as not to use the interrupt.

lOTs for nonexistent devices are ignored as are CDFs and CIFs to field zero. {Other CDFs and CIFs are illegar.}

It must be remembered, that many lOTs have been redefined for use as special TSS/8 instructions. In all other

situations, TSS/8 remains compatible with stand-alone systems whenever possible.

9-17

APPENDIX A

TSS/8 CHARACTER SET

TSS/8 accepts 8-bit ASCII characters only. ASCII is an abbreviation for USA Standard Code for Information

Interchange. The acceptable characters and their 6- and 8-bit octal equivalents are I isted below.

6-Bitt 8-Bit 6-Bitt 8-Bit
Character Octal Octal Character Octal Octal

Space 00 240 @ 40 300
! 01 241 A 41 301
" 02 242 B 42 302
03 243 C 43 303
$ 04 244 D 44 304
% 05 245 E 45 305
& 06 246 F 46 306

07 247 G 47 307
(10 250 H 50 310
) 11 251 I 51 311
* 12 252 J 52 312
+ 13 253 K 53 313

14 254 L 54 314
15 255 M 55 315

. 16 256 N 56 316
/ 17 257 a 57 317
0 20 260 P 60 320
1 21 261 Q 61 321
2 22 262 R 62 322
3 23 263 S 63 323
4 24 264 T 64 324
5 25 265 U 65 325
6 26 266 V 66 326
7 27 267 W 67 327
8 30 270 X 70 330
9 31 271 Y 71 331

32 272 Z 72 332
33 273 [73 333

< 34 274 \ 74 334
35 275] 75 335

> 36 276 t 76 336
? 37 277 77 337

tUsed to store passwords and filenames only.

A-1

B.1 MONITOR COMMANDS

APPENDIX B

SUMMARY OF MONITOR COMMANDS

A Monitor command is a string of characters terminated by a semicolon (;), a colon (:), or a carriage return

(RETURN key). Parameters of commands can be octal numbers, decimal numbers, character strings, or single

letters. In the following summary, parameters are coded as follows:

C1, C2,

01, 02,

S 1, S2,

11, L2,

B. 1. 1 Logging In and Out

LOGIN C1 Sl;

LOGOUT;

TIME Cl;

B.l.2 Device Allocation

ASSIGN 11;

ASSIGN 0 Cl;

represent octal numbers

represent decimal numbers

represent character strings

represent single letters

Request to login;
Cl = user's account number
S 1 = user's password

Request to logout; processing
and console time is typed out

Request typeout of processing time;
Cl = job number

Without Cl, current job is assumed;
before logging in and without Cl,
time-of-day is typed out;
If C 1 = job 0, time-of-day is typed
out.

Access device;
L 1 = R for paper tape reader

P for paper tape punch
o for any DECtape unit

Access DECtape unit;
0= DECtape

Cl = device number

B-1

RELEASE Ll;

RELEASE 0 Cl;

8.1.3 File Handling

OPEN Cl Sl C2;

CLOSE Sl;

CREATE Sl;

RENAME Cl Sl;

REDUCE Cl 01;

EXTEND Cl 01;

PROTECT Cl C2;

F Cl;

Release device;
L 1 = R, P (see ASSIGN ll;)
o = OECtape unit
Cl = console or OECtape number

Establish association between
internal file number and file;

Cl = internal file number
Sl = file name
C2 = account number

Close files;
Sl = list of internal file numbers

Create new fil e;
Sl = name of new file

Rename a file;
Cl = internal file number
Sl = new name of file

Reduce length oHile;
Cl = internal file number
01 = number of segments to be re­

moved from end of fiI e

Extend length of file;
Cl = internal file number
01 = number of segments to be added

to end of file

Protect a file;
Cl = internal file number
C2 = new file protection mask

1 read protect against users
with different project number

2 write protect against users
with different project number

4 read protect against users
with same project number

10 write protect against users
with same project number

20 write protect against owner
or the sum of any cormination

Print out association between internal file
numbers and files

C 1 = i nterna I fil e number

8-2

B.l.4 Control of User Programs

START Cl;

START;

RESTART Cl;

DEPOSIT Cl C2
••• Cn;

EXAMINE Cl 01;

B.l.5 Utility Commands

SAVE Sl;
SAVE Cl Sl C2;
SAVE Cl Sl C2 C3;
SAVE Cl S 1 C2 C3 C4;

LOAD Cl Sl;
LOAD Cl S1 C2;
LOAD Cl Sl C2 C3;
LOAD Cl S 1 C2 C3 C4;

R S1;

Execute user program;
Cl = starting location

Restart user program;

Set program restart address

Store in core memory;
C 1 = location
C2 = contents to be stored

Cn = location Cl +n-l
n < 10 decimal

List specified contents;
Cl = first location
01 = number of location to be

listed 01 ~ 10 decimal

Save core image;
C 1 = owner's account number
Sl = name of file
C2 = file address of first word to

be saved; if not specified,
entire 4K is saved

C3 = core address of first word to
be saved; if not speci fi ed ,
entire core is saved

C4 = core address of last word to
be saved; if not speci fi ed ,
entire core is saved

Load core image;
C1 = owner's account number
Sl = name of file
C2 = file address of first word to

be loaded; if nof specified,
entire 4K is loaded

C3 = core address of first word to
be loaded, if not speci fi ed,
entire core is loaded

C4 = core address of last word to
be loaded; if not specified,
entire core is loaded

Run System file;
S1 = name of file

B-3

B.l.6 Utility Commands (Cont)

RUN Sl;

RUN Cl Sl;

S· ,

WHERE;

USER;

USER Cl;

SWITCH Cl;

BREAK Cl;

DUPLEX;

UNDUPLEX;

TALK Cl Sl;

Run user file;
Sl = name of file

Run user fit e;
C 1 = owner's account number
Sl = name of file

Stop execution

Type out contents of location counter,
accumulator, link, and switch register

Type out number of the job and devices
owned

Type out device numbers;
Cl = user's account number

Set switch register;
Cl = word to be set

Set keyboard break mask;
Cl = new mask

Echo typed characters on pri nter

Ignore previous DUPLEX command

Send a message to canso I e C 1;
Cl = destination console
Sl = message

8-4

C.l PROGRAM CO NTROL

Number Instruction

6200 CKS
6402 DUP
6403 UNO
6405 CLS
6411 URT
6412 TOO
6413 RCR
6414 DATE
6415 SYN
6416 STM
6417 SRA
6420 TSS
6421 USE
6422 CON
6430 SSW
6431 SEA
6440 ASD
6442 REL
7402 HLT
7404 OSR

C.2 FILE CONTROL

Number Instruction

6600 REN
6601 OPEN
6602 CLOS
6603 RALE
6604 PROT
6605 WFILE
6610 CRF
6611 EXT
6612 RED
6613 FINF
6614 SIZE
6406 SEGS
6617 ACT
6616 WHO

Function

Check Status
Duplex Console
Unduplex Console
Clear Status
User Run Time
Time of Day
Return Clock Rate
Date

APPENDIX C

SUMMARY OF lOT INSTRUCTIONS

Quartum Synchronization
Set Timer
Set Restart Address
Skip on TSS/8
User
Console
Set Switch Register
Set Error Address
Assign Device
Release Device
Halt
OR With Switch Register

Function

Rename File
Open File
Close File
Read File
Protect Fi I e
Write File
Create File
Extend File
Reduce File
File Information
Segment Size
Segment Count
Account Number
Who

C-l

C.3 INPUT BUFFER CONTROL

Number

6030
6031
6032
6034
6036
6400
6401

C.4 OUTPUT BUFFER CONTROL

Number

6040
6041
6042
6044
6046

Instruction

KSR
KSF
KCC
KRS
KRB
KSB
SBC

Instruction

SAS
TSF
TeF
TPC
TlS

Function

Read Keyboard String
Skip On Keyboard Rag
Clear Keyboard Flag
Read Keyboard Buffer Static
Read Keyboard Buffer Dynamic
Set Keyboard Break
Set Buffer Control Flags

Function

Send A String
Skip On Teleprinter Rag
Clear Teleprinter Rag
load Teleprinter and Print
load Teleprinter Sequence

C.5 HIGH-SPEED PAPER-TAPE READER AND CONTROL (TYPE PC02)

Number Instruction Function

6010 RRS Read Reader String
6011 RSF Skip On Reader Flag
6012 RRB Read Reader Buffer
6014 RFC Reader Fetch Character

C.6 HIGH-SPEED PAPER-TAPE PUNCH AND CONTROL (TYPE PC03)

Number

6020
6021
6022
6024
6026

Instruction

PST
PSF
PCF
PPC
PlS

C.7 DECTAPE CONTROL (TYPE TeOl)

Number

6764
6771
6772

Instruction

DTXA
DTSF
DTRB

Function

Punch String
Skip On Punch Flag
Clear Punch Flag
load Punch Buffer and Punch Character
load Punch Buffer Sequence

Function

load Status Register A
Skip On Rags
Read Status Register B

C-2

D.l INTRODUCTION

APPENDIX D

OFF-LINE TAPE PREPARATION AND EDITING

To run a program 01" the computer, instructions and data must be fed into the computer from the input device.

The program and data are usually typed into the computer on-line or prepared with the aid of the Symbolic

Editor. It is sometimes convenient to prepare the program and data off-line, that is, to punch the program and

data onto paper tape using a separate machine, one not actually connected to the computer.

The Model 33 ASR Teletype can be used off-line to prepare source program tapes, to duplicate tapes, and to

edit tapes previously punched in the ASCII format. (Tapes punched from the Teletype keyboard are in ASCII

format .)

When the Teletype power control switch is turned to LOCAL, the unit becomes an off-line tape preparation

facility. Procedures for using the Teletype off-line are listed below. The Teletype controls are described in

Section 1.4.

D.2 DUPLICATING TAPES

The following is a description of the procedure used in duplicating tapes.

2

3

4

5

6

7

8

Tum TIY to LOCAL.

Set LSR to FREE.

Procedure

Put original tape into LSR.

Depress LSP ON.

Depress HERE IS key to generate leader tape.

Set LSR to START. (New tape is punched and data is typed on printer.)

After the original tape is read in, depress HERE IS key to generate trailer
tape.

Remove tapes from LSR and LSP.

D-1

0.2.1 Preparing New Program Tapes

When preparing a program tape off-I ine, the user should observe the salT'e conventions of his programming

language as when preparing a program on-line using Editor. The following are the manual operating procedures

for off-I ine tape preparation.

Step

2

3

4

5

6

Procedure

Turn TTY to LOCAL.

Depress LSP ON.

Depress HERE IS key to generate leader tape.

Type the source program, observing the conventions of the programming language being
used.

NOTE

The RETURN and LINE FEED keys must be depressed at
the end of each line.

Depressing the CRTVTAB keys perforates the tab char­
acter onto the tape, and the typewheel moves only one
position to the right. When the computer reads the
punched tab character on output, the typewheel tabs
(a tab is usually equal to 10 spaces) to the next tabs top •

After the source program is punched, depress HERE IS to generate trailer tape.

Remove the source program tape from LSP.

0.2.2 Correcting Typing Errors

Typing errors can be corrected using the B. SP. button on the tape control and the RUBOUT key on the console

keyboard. The B. SP. button backspaces the tape one column for each depression of the button, and the

RUBOUT key perforates all eight channels of the tape (this perforation is ignored by the computer).

0.2.3 Editing

Punched tapes can be edited off-I ine. However, the user must be able to read the perforati ons on the tape,

otherwise, off-line editing is virtually impossible. The following is a description of the process used to edit

a paper tape off-line.

0-2

Step ProcecLre

Tum TTY to LOCAL.

2 SET LSR to FREE.

3 Put tape to be edited into LSR.

4 Depress LSP ON.

5 Depress HERE IS to generate leader tape.

6 Set LSR to START.

7 Observe the printer as the program is being typed, and

8 Set LSR to STOP a few characters ahead of the text to be edited.

9 Advance the tape one character at a time by toggling the LSR control from START to STOP.

Minor Edit: Advance tape past the character(s} to be edited and use the B. SP. and RUBOUT keys to erase

any incorrect characters, then type and punch corrected text.

Major Edit: Following Step 9:

a. Set LSR to STOP one character ahead of the text to be edited;

b. Type new text;

c. Set LSR to FREE;

d. Advance tape past edited area (reading the perforated tape);

e. Set LSR to START.

10 Repeat from step 6 until editing is completed.

11 Set LSR to START.

12 After new source program tape is punched, depress HERE IS to generate trailer tape.

13 Remove old tape from LSR and discard.t

14 Remove new tape from LSP and save.

0.2.4 listing of a Punched Paper Tape

The printer can also be used to obtain a listing of a punched paper tape; this can be done with a minimum of

tIt is good programming practice to list the new tape before discarding the old, ensuring that the new tape is
correct .

0-3

effort and no use of computer time. To do this, tum the LINE-OFF-LOCAL knob to LOCAL, depress the OFF

button, correctly position the paper tape, and fl ick the switch to START. This procedure causes the tape to be

printed at the consol e, independent of the computer.

0.3 PAPER TAPE FORMATS

Data are recorded (punched) on paper tape by groups of holes arranged in a definite

format along the length of the tape. The tape is divided into channels which run

the length of the tape, and into columns which extend across the width of the tape

as shown in the adjacent diagram. The paper-tape readers and punches used with

the POp-a/I computers accept 8-channel paper tape. The various formats are

briefly explained and identified below.

0.3.1 Leader/Trailer Format

1

r~--~A'--3-2---"'\
8 7 6 5 4

• • • • • • • •• ~ COLUMN

•
•

L sPROCKET
HOLE

Leader/trailer tape is used to introduce and conclude the object program when punched on

paper tape. Leader/trailer tape can be recognized by a consistent channel a punch only as

shown in the adjacent diogram.

1

• • • • • •
• •
• • • •

0.3.2 RIM Format

Paper tape punched in RIM format can be identified by the absence of a channel

a punch, and by a channel 7 punch in every fourth column. The channel 7 punch

indicates the start of a line of coding, and that (the first) column and the second

column contain the location and the third and fourth columns contain the con­

tents of the location.

0-4

1

r CHANNEL 7

• ••••••• • • • • • • • • • • • ••••••• • • • • • • • • • • • • •••••••
• • • • • • • •• • •

• •••••••
• • • • • • • ••••

• • • •

77
61

LOCATION

32

'2
CONTE"TS

17

52
LOCATION

13

"
CONTENTS

77

53
LOCATION

'3
'0

CONTE"TS

77

00
LOCATION

77

07 CO"TE"TS

07
00

LOCATION

0.3.3 USASCII Format

USASQI (USA Standard Code for Information Interchange) format uses all eight

channels to represent a single choracter (letter, number, or symbol) as shown in

the adjacent diagram.

D.3.4 Binary Format

Binary format can be recagnized by the absence of a channel 8 punch, an

occasional channel 7 punch, and frequent sections of blank tape. The

channel 7 punch denotes an origin of a program or subprogram or a chonge

in origin, and subsequent columns contain the instructions (two columns per

instruction) or data of succeeding locations.

D-5

.,
• • • • • • •

1

•• . -•
•• ••
• • • • • •
• •• • • • •
• •

•

1

• • • • • • • • • • • • • • • • • • •
•

•
• • •

• • • • • • • •
•

• • • • ••••
• • • •• •

• •

• ••••
• •• • • • •

• • • ••• • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •
• • • •

324 T

3'0 ..
311
32!0 S
240
31\

3H S
240

30' A

323 S
303
311
31 ,

240

30' F

317 0
322 R

315 II

30' A

324 T

00
ORIGIN

,7

32
INSTRUCTION

50
00

INS TRue T ION
00
00

INSTRUCTION
00
02
56

INSTRUCTION

77

0'
INSTRUCTION

76
tNSTRlJCTION

00
77

60
INSTRUCTION

0'
INSTRUCTION

77

45
INSTRUCTtON

77

E. 1 INTRODUCTION

APPENDIX E

SYSTEM CONFIGURATION AND OPTIONAL HARDWARE

Depending on the hardware configuration of a particular TSS/8, there can be as many as 24 users working on

the system simultaneously. The minimum hardware configuration is designed to service from four to eight users;

it requires a 12K core memory (three fields). The first 8K (fields 0 and 1) are shared by the various Monitor

subprograms. The other 4K (field 2) and any additional fields are shared by users of the system.

Each user has the following resources: 4K core memory for execution of programs and a corresponding 4K disk

track for temporary storage of his core image when it is swapped out by the Monitor. The disk is divided as

follows:

a. Monitor Area -- The first 20K of the disk is occupied by Monitor subprograms. These subprograms
are swapped into core memory as needed.

b. User Swapping hea -- This area consists of a 4K track for each user in the system. When a user
is temporarily swapped out of core, his program is stored on his 4K disk track.

c. File Storoge Area -- The remaining disk area is used for storing System library Programs and user
files.

The system can have a maximum of 32K of core memory. Additional fields of core permit overlapping the run

time of one user program with the swapping time of another, thus increasing operating speed.

A high-speed, paper-tape reader and punch unit is pictured in Figure E-1 and descriptions of the reader and

punch units follow.

E. 2 READER UNIT

The high-speed, paper-tape reader is used to photoelectrically input data into core memory from eight-channel

fan-folded (non-oiled) punched paper tape at 300 characters per second. Power is applied to the reader when

the computer POWER switch is turned on. The high-speed reader is under program control. However, tape can

be advanced past the photoelectric sensors without causing input by pressing the FEED button (the white rect­

angular button shown in Figure E-l).

E-l

Figure E-l High-Speed, Paper-Tape Reader and Punch Units

• ...-..I~
Ii ,

E.3 LOADING THE READER UNIT

The following is a description of the steps necessary to read a paper tape with the high-speed reader.

Step

2

3

4

5

6

Procedure

Raise tape retainer cover {located beneath the tape feed button}.

Put tape into right-hand bin with channel one (see Section D.2) of the tape toward the
rear of the bin.

Place several folds of leader tape through the reader and into the left-hand bin.

Place the tape over the reader head with feed holes engaged in the teeth of the sprocket
wheel.

Close the tape retainer cover.

Depress the tape feed button (white rectangular button shown in Figure E-1) unti I leader
tape is over the reader head.

CAUTION

Do not use oiled paper tape in the high-speed reader be­
cause oil collects dust and dirt which can cause reader
errors.

E-2

EA PUNCH UNIT

The high-speed, paper-tape punch is used to record computer output on eight-channel fan-fold tape at

50 characters per second. All characters are punched under program control from the computer. Blank tape

(feed holes only, no data) may be produced by pressing the FEED button (see Figure E-l). Power is appl ied

to the punch when the POWER button on the punch unit is depressed (the punch motor can be heard). The two

labeled buttons on the punch unit are described below.

POWER

FEED

This button is depressed to turn the punch ON and OFF.

While this button is depressed, the punch produces feed-hole-only punched tape
for leader/trailer purposes.

E.5 DECTAPE CONTROL AND TRANSPORT UNITS

DECtape is a fast, convenient, input/output and data storage facility. The standard DECtape Transport unit is

shown in Figure E-2.

Figure E-2 DECtape Transport Unit

E-3

E.6 CONTROL UNIT

The DECtape control unit (located internally) interprets and controls the transfer of data between the computer

and the transport unit. The DECtape control unit is located inside the rack containing the DECtape transport

and can control up to eight separate DECtape transports.

E.? TRANSPORT UNIT

The DECtape transport unit is a bidirectional magnetic tape transport utilizing a lO-track recording head to read

and write five duplexed channels . Tape movement can be controlled by commands from the computer program

or by the manual operation of switches located on the front panel of the transport; however, manual operation

does not transfer data to the computer.

NOTE

Only certified DECtapes (pre-recorded with timing and marking
tracks) should be used. Otherwise, the blank tape must be cer­
tified using the DECTOG Program (DEC-08-EUFA-D).

E.? 1 Transport Controls

The following is a description of the settings on the OECtape transport and their functions.

Settings

•
REMOTE

OFF

LOCAL

Unit Selector

WRITE
ENABLED

WRITE LOCK

•

Function

When depressed (must be in LOCAL mode), tape feeds onto
right spool.

Transport is energized and under program control.

Transport is de-energized.

Transport is energized and under user control from external
transport switches.

Identifies the transport to the control unit.

DECtape is available for search, and write activities.

DECtape is available for search and read activities only.

When depressed (must be in LOCAL mode), tape feeds
onto left spool.

E-4

NOTE

The REMOTE and WRITE ENABLED lamps light to indicate the
status of the transport.

E. 7. 2 Operat ing Procedure

The following is a description of how to mount a DECtape on a transport unit.

Step

2

3

4

5

6

7

Procedure

Set switch to OFF.

Place DECtape on left spindle with DECtape label out.

Wind four turns of tape on right spool.

Set switch to LOCAL.

Wind a few turns on right spindle with'" switch to make sure
tape is properly mounted.

Dial correct unit number on unit selector (number 8 is equivalent
to 0).

Set switch to REMOTE. Select either WRITE ENABLE or WRITE
LOCK setting.

E-5

F.l STORAGE MAP

The system's storage allocation is illustrated below.

CORE MEMORY

PHANTOMS
RESIDENT RESIDENT INIT USER
MONITOR MONITOR l'':ol:.k PROGRAM

PR·)·:.r'AM
4K 4K 4K 4K

01 SK STORAGE

SI FIP INIT
TS8 TS811

JOB #1 (RES 01 (RES 11

4K 4K 4K 4K 4K 4K

~

USER
PROGRAM)

4K
-

JOB #2

4K

APPENDIX F

STORAGE ALLOCA TIO N

USER
PROGRAM

4K

)

JOB #N FILES

4K 4K

o
k:J

1ooI1 .. t---------- MONITOR ---------,,_*1 .. _-- SWAPPING AREA ---.. .j t--- FILE AREA---I

08-0466

Figure F-l TSS/8 Storage Map

F.2 ALE DIRECTORIES

There are two directories on the disk: the Moster file Dir.ectory (MFD) referenced mainly by the system, and

the User Fi Ie Directory (UFD), referenced by the TSS/8 user. One of the functions of the MFD is to service

the UFO. A UFD is a particular user's file directory containing the names of programs he has created on the

disk.

The UFO is a file like any other file except that its filename is the project-programmer number and password.

(See Section F.3 for an explanation.) When a user is logged in under a specific number and references the disk,

he is actually referencing his own file area on the disl<: through the UFD which has his project-programmer num­

ber as its name. He can specifically code his routine to reference UFOs of other users or the MFD; whether he

is successful or not depends on the type of protection that has been specified for the area he is trying to reference.

F-l

MASTER FILE OIRECTORY USER FILE OIRECTORY

WO RD 1 PROJECT NO I PROG NO (I CHAR) FI LE (ICHAR)

(I CHAR) p~ISS (I CHAR)
(I CHAR) WO RO (I CHAR.)

(I CHAR) NAME (I CHAR)

(I CHAR) WO RD (I CHAR.)

LINK TO NEXT ENTRY LINK TO NEXT ENRTY

UNUSEO 1 PRe.TE. TED
RIT:::,_ UNUSEO IPROTECTED SITS

CONSOLE TIME SEGMENT COUNT

CPU TIME OATE OF CREATION

WO RD S POINTER TO RETRIEVAL POINTER TO RETRIEVAL

0 LINK TO NEXT RETRIEVAL BLOCK

SEGIoIE"IT *1 SEGMENT .. I

SEGMENT .2 SEGMENT .. 2

SEGMENT .3 SEGMENT *3

SEGMENT *4 SEGME NT .4

SEGMENT *5 SEGMENT .. 5

SEGMENT .6 SEGMENT "6

SEGMENT .. 7 SEGMENT .. 7

080352

Figure F-2 File Directories

F.3 PROJECT-PROGRAMMER NUMBERS

System account numbers are a combination of project number and programmer number. The account number

(always written in octal) has a binary equivalent. When expressed as a 12-bit binary number, the project

number is formed by the leftmost 7 bits and the programmer number is the rightmost 5 bits. For example, the

account number 623 (octal) equals 000 110010 011 (binary). The left 7 bits (leading zeros included if any)

are 0001100 (binary) and equal 14 {octal} which is the project number. The programmer number is 10011 (binary)

or 23 (octal). Therefore a user with "account number" 623 has:

project number 14

programmer number 23

F-2

APPENDIX G

GLOSSARY OF ABBREVIATIONS AND TERMS

G.1 COMMONLY USED ABBREVIATIONS

The abbreviations listed below are used throughout the guide.

Abb.

AC
ADDR
B. SP.
BIN
CLC

CONT
CR
CR/LF

CTRL/FORM

DEC

DEP
DF
EAE

EXAM

Meaning

Accumulator
Address
Back Space
Binary
Current Location

Counter
Continue
Carriage Return
Carriage Retum-

Line Feed
Control/Form (which repre-

sents holding down the
CTRL key while depressing
the Form key).

Digital Equipment
Corporation

Deposit
Data Field
Extended Arithmeti c

Element
Examine

Abb. Meaning

HSP High-Speed punch
HSR High-Speed Reader
IF Instruction Field
INST Instruction
KBRD Keyboard
L Link
LF Line Feed
LOAD ADD Load Address
LOC Location
LSP Low-Speed Punch
LSR Low- Speed Reader
MA Memory Address
MB Memory Buffer
MQ Multiplier Quotient
MRI Memory Reference Instruction
PC Program Counter
PROG Program
REL Release
RIM Read- In Mode
SING INST Single Instruction
SING STEP Single Step
SR Switch Register
TTY Teletype

G.2 GLOSSARY OF TERMS

The following list of computer/programming terms is by no means complete. However, it does include many of

the terms used in data processing.

Absolute
Address

(1) An address that is permanently assigned by the mochine designer to a storage loca­
tion.
(2) A pattern of characters that identifies a unique storage location without further
modi fi cation.

G-1

Accumulator

Acronym

Accuracy

Address

Address
Register

Algorithm

Alphabet

Alphanumeric

Arithmetic Unit

ASCII

Assemble

Assembler

Auto-Indexing

Auxiliary
Operation

Auxiliary
Storage

Binary

Binary Digit

Bit

Blank Character

Block

A register in which the result of an operation is formed; Abbreviation AC

A word formed from the first letter or letters cJ the successive words of a multiple
word term.

The degree of freedom from error, i.e., the degree of conformity to truth or to a rule.

A label, name, or number which designates a register or a location where information
is stored. That part of an instruction which specifies the location of an operand.

A register in which an address is stored.

A prescribed set of well-defined rules or processes for the solution of a problem in a
finite number of steps.

An ordered set of unique representations called characters, e.g., the 26 letters of
the Roman alphabet.

Pertaining to a character set that contains both letters and numerals, and usually
other characters.

The component of a computer where arithmetic and logical operations are performed.

An abbreviation for USA Standard Code for Information Interchange.

To translate from a symbolic (source) program to a machine language (object) program
by substituting binary operation codes for symbolic operation codes and absolute or
relocatable addresses for symbolic addresses.

A program that assembles.

When an absolute location 0010 through 0017 is addressed indirectly, the content of
that location is incremented by one, rewritten in that same location, and then read
as the effective address of the next instruction.

An operation performed by equipment not under direct control of the computer. Off­
line operation.

Storage that supplements the primary storage.

(1) Pertaining to a characteristic or property involving a selection, choice, or con­
dition in which there are two possibilities. (2) Pertaining to the numeration system
with a radix of two.

One of the symbols 1 or O. A digit in the binary scale of notation; called a bit.

A binary digit.

A character used to produce a space on an output device.

A set of things, such as words, characters, or digits, handled as a unit.

G-2

Bootstrap A technique or device designed to bring itself into a desired state by means of its
own action, e.g., a routine whose first few instructions are sufficient to bring the
rest of itself into the computer from an input device.

Branch A point in a routine where one of two or more choices is made under control of the
routine, i.e., a conditional transfer (jump).

Buffer Storoge A part of core memory where information is stored temporari Iy during transfer; it may
attempt to match the speeds of internal computation and the I/o device, thus permit­
ting simultaneous computation and input/output.

Byte A group of binary digits usually operated upon as a unit, e.g. , 8-bit or b-bit byte.

Call To transfer control to a specified routine.

Colling A specified set of instructions and data necessary to set up and call a given routine.
Sequence

Carriage Return The Teletype operation that causes the next character to be printed at the left margin.

Central Proces- The unit of a computing system that includes the circuits controlling the interpretation
sing Unit and execution of instruction; the computer proper, excluding I/o and other peripheral

devices.

Character A single letter, numeral, or space mark used to represent information.

Clear To erase the contents of a storage location by replacing the contents with blanks or
zeros.

Closed
Subroutine

Coding

Command

Compile

Compiler

Complement

Computer

Computer
Program

A subroutine not stored in the main part of a program. Such a subroutine is entered
by a jump operation and provision is made to return control to the main routine at
the end of the surbroutine.

To write instructions for a computer using symbols meaningful to t"e cOlTlputer.

A control signal, usually written as a character or group ci characters, to direct
action by a system program.

To produce a machine language routine from a routine written in source language by
selecting appropriate subroutines from a subroutine library, as directed by the instruc­
tions or other symbols of the original routine, supplying the linkage which combines
the subroutines into a workable routine and translating the subroutines and linkage
into machine language.

A program that compiles.

To form the negative of a binary word by replacing all 0 bits with 1 bits and vice versa.

A device capable of accepting information, processing it, and providing the results
in a usable form.

A plan or routine for solving a problem on a computer.

G-3

Computer Word

Console

Control
Character

Control Panel

Convert

Copy

Core Memory

Cycle

Cycle Time

Data

Data Break

Debug

Decision

Delay

Delimiter

Diagnostic

Digit

Digital
Computer

Direct Address

Display

Document

Double
Precision

Downtime

A sequence of 12 bits treated as a unit and capable of being stored in one computer
location.

Usually the external front side of a device where controls and indicators are available
fa- manual operation of the device.

A character whose occurrence in a particular context initiates, modifies, or stops a
control operation, e.g., a character to control carriage return.

The part of a device console that contains manual controls.

To change the representation of data from one form to another.

To reproduce data, leaving the original data unchanged.

The main storage device in the PDP-8 in which binary data is represented by the
direction of magnetization in each unit of an array of magnetic material.

To repeat a set of operations until a stated condition is met.

An interval of time in which one set of events is completed.

A general term used to denote any or all facts, numbers, letters, and symbols. It con­
notes basic elements of information which can be processed or produced by a computer.

A faci lity which permits I/o transfers to occur simultaneously with program executior'l
on a cycle-stealing basis.

To detect, locate, and correct mistakes in a program.

A determination of future action.

The amount of time by which an event is retarded.

A character that separates and organizes items of data.

Pertaining to the detection and isolation of a malfunction or mistake.

A character used to represent one of the non-negative integers smaller than the
radix, e.g., in binary notation, either 0 or 1.

A device that operates on discrete data, performing sequences of arithmetic and
logicClI operations on this data.

An address that specifies the location of an operand.

A visual presentation of data.

A medium on which information is recorded for human or machine use.

Pertain ing to the use of two computer words to represent a number.

The time interval during which a device is inoperative.

G-4

Dummy

Dump

Dynamic Dump

Edit

Effective
Address

End-Around
Carry

Execute

Executive
Routine

External
Storage

File

Fixed Point

Flip-Flop

Floating Point

Flowchart

Format

Function

Hardware

Head

Heuristic

I/O

Identifier

Indirect
Address

An artificial address, instruction, or record ci information inserted solely to fulfill
prescribed conditions.

To copy the contents of all or part of core memory, usually onto an external storage
medium.

A dump that is performed during the execution of a program.

To rearrange information for machine input or output.

The address actually used in a particular execution of a computer instruction.

The action of adding the most significant bit of a binary number to the least significant
bit.

To carry out an instruction or run a progran on the computer.

A routine that controls or monitors the execution of other routines.

A facility or device, not an integral part of the computer, on which data usable by
the computer is stored, such as paper tape, DECtape, or DECdisk.

A collection of related records treated as a unit, generally data or a program.

In a numeration system the position of the radix point is fixed with respect to one end
of the numerals, according to some convention.

A basic computer circuit or device capable of assuming either one of two stable
states at a given time.

A numeration system in which the position of the radix point is indicated by one part
(the exponent part), the other part represents the significant digits (the fractional partt.

A graphical representation of the sequence of instructions required to carry out a data
processing operation.

The arrangement of data.

A specific purpose of an entity or its characteristic action.

Physical equipment, e.g., mechanical, electrical, or electronic devices.

A device that reads, records, or erases data on a storage device.

Pertaining to exploratory methods of problem solving.

Input or output or both.

A symbol whose purpose is to identify, indicate, or name a body of data.

An address in a computer instruction which indicates a location where the address of
the referenced operand is to be found.

G-5

Initialize

Input

Instruction

Internal
Storage

Interrupt

Jump

label

language

leader

To set counters, switches, and addresses to zero or other starting values at the
beginning of, or at prescribed points in, a computer routine.

The transferring of data from auxiliary or external storage into the internal storage
of the computer.

A set of bits (in an object program) or characters (in a source program) which as a
unit cause the computer to perform an operation.

The storage facilities forming an integral physical part of the computer and directly
controlled by the computer. Also called main memory and core memory.

To stop a process in such a way that it can be resumed.

A departure from the normal sequence of executing instructions in a computer.

An identifier.

A set of representations, conventions, and rules used to convey information.

The bl ank section of tape at the beginning of the tape.

least Significant The rightmost digit of a binary number.
Digit

library

library
Routine

load

location

loop

Machine
Instruction

Machine
language

Macro
Instruction

Manua I Input

Manual
Operation

Memory

An organized collection of standard and proven routines and subroutines which can
be incorporated in larger routines.

A proven routine that is maintained in a program library.

To place data into internal storage.

A place in storage or memory where a unit of data or an instruction may be stored.

A sequence of instructions that is executed repeatedly until a terminal condition
prevails.

An instruction written in machine language.

A language designed for interpretation and use by the machine without translation.

An instruction in a source language that is equivalent to a specified sequence of
machine instructions.

The entry of data by hand into a device at the time of processing.

The processing of data in a system by direct manual techniques.

(1) The erasable storage in the computer. (2) Pertaining to a device in which
data can be stored and from which it can be retrieved.

G-6

No Op

o,ject Program

Octal

Off Line

On Line

Open
Subroutine

Operand

Origin

Output

Overflow

Poge

Patch

Predefined
Process

Procedure

Processor

Program

Program
Library

Programming
Languoge

Protected
Location

Punched
Paper Tape

Pushdown
List

An instruction that specifically instructs the computer to do nothing, except to
proceed to the next instruction in sequence.

The machine language program which is the output after translation from the source
language. The binary program wh ich runs on the computer.

(1) Pertaining to a characteristic or property involving a selection, choice, or con­
dition in which there are eight possibilities. (2) Pertaining to the numeration system
with a radix of eight.

Pertaining to equipment or devices not under direct control of the computer.

Pertaining to equipment or devices under direct control of the computer; also to pro­
grams operating directly and immediately to user commands, e.g., FOCAL and DDT.

A subroutine that must be relocated and inserted into a routine at each place it is
used.

That which is effected, manipulated, or operated upon.

The absolute address of the beginning of a program.

Information transferred from the internal storage of a computer to output devices or
extema I storage.

The generation of a quantity beyond the capacity of a register.

In the PDP-8/I, a unit of 200 (octal) locations which may be addressed directly.

To modify a routine in a rough or expedient way.

A named process consisting of one or more operations or program steps that are
specified elsewhere in a routine.

The course of action taken for the solution of a problem.

A computer program that includes the compiling, assembling, translating, and
related functions for a specific programming language.

The complete sequence of instructions and routines necessary to solve a problem.

A collection of available computer programs and routines.

A language used to prepare computer programs.

A storage location reserved for special purposes in which data cannot be stored with­
out undergoing a screening procedure to establish suitability for storage therein.

A paper tape on wh ich a pattern of holes is used to represent data.

A list that is constructed and maintained so that the next item to be retrieved is the
most recently stored item in the list, i.e., last in, first out.

G-7

Radix

Read

Real Time

Record

Register

Reset

Restart

Routine

Run

Scan

Search

Set

Single Step

Skip

Software

Source
language

Source Program

Statement

Step

Storage
Allocation

Storage
Capacity

Storage
Device

Store

The quantity of characters for use in each of the digital positions of a numbering system.

To transfer information from an input device to internal storage; also refers to the in­
ternal acquisition of data from memory.

Pertaining to computation performed while the related physical process is taking place
so that results of the computation can be used in guiding the physical process.

A collection of related items of data, treated as a unit.

A device capable of storing a specified amount of data, such as one word.

To restore a storage device to a prescribed state.

To re-establish the execution of a program.

A set of instructions arranged in proper sequence to cause the computer to perform
a desired task.

A single, continuous performance of a program.

To exam i ne sequentia II y part by part.

To examine a set of items for those that have a desired property.

To place a storage device into a specified state.

Operation of the computer in which each instruction is performed in response to a
sing Ie ma nua I operati on •

To ignore one or more instructions in a sequence of instructions.

The collection of programs and routines associated with the computer.

A symbolic language that is an input to a given translation process.

A program written in a symbolic (source) language.

A meaningful expression or generalized instruction in a source language.

One operation in a routine.

The assignment of blocks of data to specified blocks of storage.

The amount of data that can be contained in a storage device.

A device into which data can be entered, in which it can be held, and from which it
can be retri eved.

To enter data into a storage device.

G-8

String A connected sequence of entities such as characters in a command string.

Subroutine A routine that can be part of another routine.

Switch A device or programming technique for making selections.

Symbol ic Address An address expressed in symbols convenient to the programmer. A label.

Symbolic
Coding

System

Tape Drive

Temporary
Storage

Terminal

Time Sharing

Toggle

Translate

Underflow

Variable

Word

Word Length

Write

Writing instructions using symbolic notation instead of actual machine instruction
notation.

An assembly of software and hardware united to form an organized whole.

A device that moves tape past a head.

Storoge locations reserved for intermediate results.

A point in a system at which data can either enter or leave.

The interleaving of the time of a device.

Pertaining to the operation of a flip-flop or switch.

To convert from one languoge to another.

The condition that arises when a computation yields a result whose magnitude is
smaller than the system is capable of representing.

A quantity that can assume any of a given set of values.

A 12-bit unit of data in the PDP-8/I which may be stored in one addressable location.

The number of bits in a word.

To transfer information from internal storage to an output device or to auxiliary
storage.

G-9

Abbreviations, G-1

Access to Another User's Library, 3-2

Advanced Monitor Commands, 3-1

ALREADY LOGGED IN?, 2-10

ASOI Character Set, A-1

ASCII Format, D-5

Assembly Language Programs, 9-1

ASSIGN, 2-7

Assignable Devices, 9-9

Assigning Devices, 2-7

Available Device Units, 2-7

BASIC-8, 3-5

Command Summary, 3-7
Editing Phase, 3-5
Error Messages, 3-10
Example Program, 3-6
Functions, 3-8
Implementation Notes, 3-12

Binary Format, D-5

BREAK, 8-8

BUSY, 2-5, 2-10

Calling Monitor, 2-1

Calling System Library Programs, 2-4

CAT, 6-7

Calling, 6-7
Example Usage, 6-7

CATALOG, see CAT

Characters on Keyboard, 1-4

Character Set for TSS/8, A-1

CLOSE, 8-4

Closing a File, 8-4

INDEX

Command Summary, B-1, C-1

Communication with Other Users, 2-5

Compatibility with PDP-8, 9-16

Console, 1-3

Console lOT's, 9-3

Duplex (DUP), 9-4
Read Keyboard String (KSR), 9-3
Send a String (SAS), 9-3
Set Buffer Control (SBC), 9-4
Set Keyboard Break (KSB), 9-3
Unduplex (UND), 9-4

Control of System Library Programs, 3-3

Control of User Programs, 8-2

COPY, 7-5

Calling, 7-6
Deleting Files, 7-7, 7-8
Example of Usage, 7-9
Listing Directories, 7-7
Loading Files from DECtape, 7-6
Saving Disk Files on DECtape, 7-7
Summary of Options, 7-8

CREATE, 8-3

Creating a Disk File, 8-2

Creation of System Library Programs, 8-1

CTRL/B, 2-1, 3-3, 8-2

CTRL/BS, 2-2, 3-4

CTRL/C, 3-3

Debugging Program, 6-5

DECtape, E-3

Control and Transport Units, E-3
Transport Controls, E-4
Transport Operating Procedures, E-5
Usage, 7-5

Defining Disk Fi les, 8-3

Deleting Files, 7-7, 7-8

Delimiters, 9-16

DEPOSIT, 8-2

Devices, 2-6

Assignment, 2-8
Designators, 2-7
Handling, 2-6
Unit Numbers, 2-7

Device lOT's, 9-9

Assign Device (ASD), 9-10
load Punch Buffer Sequence (PlS), 9-11
load Status Register A (DTXA), 9-11
Punch Stri ng (PST), 9-11
Reader Fetch Character (RFC), 9-10
Read Reader Buffer (RRB), 9-10
Read Reader String (RRS), 9-10
Read Status Register B (DTRB), 9-12
Release Device (REl), 9-10
Skip on Flags (DTSF), 9-10
Skip on Punch Flag (PSF), 9-11
Skip on Reader Flag (RSF), 9-10

DUPLEX, 8-8

Duplicating Paper Tapes, D-1

Echoing, 9-16

EDIT, 6-1

Calling, 6-1
Command Summary, 6-3
Summary of Operations, 6-2

Elementary Monitor Commands, 2-1

Error Handler, 9-12

Error Messages, Monitor, 2-9

EXAMIN E, 8-2

EXTEND, 8-4

F, 8-5

Files, 3-1

Closing, 8-4
Defining Disk, 8-3
Error conditions, 8-6
Internal numbers, 8-3
Opening,
Protecting, 3-3, 9-6

INDEX (Cont)

File and Disk I/O (PAL-D), 9-4

Close File (ClOS), 9-7
Create File (CRF), 9-5
Extend File (EXT), 9-6
File Information (FINF), 9-8
Open File (OPEN), 9-7
Protect File (PROT), 9-6
Read File (RRlE), 9-7
Reduce File (RED), 9-6
Rename File (REN), 9-6
Write Fi Ie (WFllE), 9-7

File Deletion Error Conditions, 8-6

Fi Ie Directories, F-1

File Information Command, 8-5

File Protection Masks, 8-5

Fi Ie Protect, 3-3

FOCAL, 3-13

Calling, 3-13
Command Summary, 3-13
Control Characters, 3-16
Error Messages, 3-17
Example Program, 3-17
Math Functions, 3-16
MODIFY, 3-15
Output Format, 3-15
Reading FOCAL Paper Tapes, 3-17

Formats, Paper Tape, D-4

FORTRAN-D, 4-1

Calling, 4-1
Compiler Diagnostics, 4-6
Device Codes, 4-2
Disk Files, 4-3
Editing, 4-2
Example Programs, 4-4
FORT, 4-1
FOSl, 4-1
I/O, 4-2
Operating System Diagnosti cs, 4-8
Statement Summary, 4-5

Freeing Devices, 2-8

FUll, 2-10

Glossary, G-1

High Speed Reader, E-1

High Speed Punch, E-3

How to Use This Manual, 1-5

ILLEGAL REQUEST, 2-10

lOT's, see

Console
Device
File and Disk
Program and System Status
Program Control

Initialize Reader/Punch, 9-17

Internal File Numbers, 8-3

Interrupt Processing, 9-17

Keyboard, 1-4

Leader/frailer Format, 0-4

LINE-OFF-LOCAL Knob, 1-3

Listing a Paper Tape, 0-3

Listing Directories, 7-7

LOAD, 8-7

LOADER, 6-4

Calling, 6-4
Usage, 6-4
With ODT, 6-5

Loading Files from DECtape, 7-6

Loading High Speed Reader, E-2

LOGIN PLEASE?, 2-10

LOGIN Procedure, 2-2

Logout Procedure, 2-4

Low Speed Pr inter, 1-3

INDEX (Cont)

Manual, How to Use, 1-5

Master File Directory, F-1

Monitor, 1-1

Calling, 2-1
Commands, 2-1, 8-2
Command Abbreviations, 8-2
Echoing on Keyboard, 9-16
Elementary Commands, 2-1
Error Messages, 2-9, 8-6
Return to, 3-4

Mounting a DECtape, E-5

Multiple Device Assignments, 2-8

Multiple Device Units, 2-7

o

Octal Debugging Technique, see ODT

ODT,6-5

Calling, 6-5
Command Summary, 6-6
Programming Notes, 6-6

Off-Line Tape Preparation and Editing, 0-1

OPEN, 8-3

Opening a File, 8-3

Optional Hardware, E-1

PAL-D, 5-1

Buffers, 9-2
Calling, 5-1
Console I/O, 9-2
Control of Programs, 8-2
Error Diagnostics, 5-6
Example Program, 5-2
File and Disk I/O, 9-4
Fu II-Dup lex Hardware, 9-2
Strings, 9-2
Symbol List, 5-3
TSS/8 PAL-D, 5-1 9-1
Writing a Program, 5-2, 9-1

Paper Tape Control, 7-1

Paper Tape Formats, 0-4

Paper Tape Preparation, 0-1

Paper Tape Reader/punch, 1-4

PDP-8 Compatibility, 9-16

PIP, 7-1

BIN Format Files, 7-3
Call ing, 7-1
Deleting Disk Files, 7-3
Loading Paper Tape onto Disk, 7-1
Moving Disk Files, 7-3
Punching out a Disk File, 7-2
Summary of Options, 7-5
Transferring BASIC Files, 7-4
Transferring SAVE Format Files, 7-4
With High Speed Reader/punch, 7-2

Power Control Knob, 1-3

Processing Interrupts, 9-17

Program and System Status lOT's, 9-13

Account (ACT), 9-15
Check Status (CK S), 9-13
Console Number (CON), 9-15
Current JOB (WHO), 9-15
Current Job Number (USE), 9-15
Date (DATE), 9-15
OR with Switch Register (OSR), 9-14
Quantum Synchronization (SYN), 9-16
Return Clock Rate (RCR), 9-15
Segment Count (SEGS), 9-15
Segment Size (SIZE), 9-15
Set Switch Register (SSR), 9-14
Set Time (STM), 9-16
Skip on TSS/8 (TSS), 9-16
Time of Day (TOO), 9-15
User Run Time (URT), 9-15

Program Control lOT's, 9-12

Halt (HL T), 9-12
Set Error Address (SEA), 9- 13
Set Restart Address (SRA), 9-13

Project-Programmer Number, F-2

PROTECT, 8-5

Protection Codes, 8-4

Protection of Files, 3-3

INDEX (Cont)

Reader/punch Initialization, 9-17

REDUCE, 8-4

RELEASE, 2-8

RENAME, 8-4

Resources, 2-6

RESTART, 8-8

Return to Monitor Level, 3-4

RIM Format, 0-4

RUN, 8-8

SAVE, 8-6

SAVE Format Files, 8-6

Saving Disk Files on DECtape, 7-7

START, 8-2

Status Words, 9-13

Storage Allocation, F-l

Storage Mop, F-l

Summary of Monitor Commands, B-1

Logging In and Out, B-1
Device Allocation, B-1
File Handling, B-2
Control of User Programs, B-3
Uti I i ty Commands, B-3

Summary of TSS/8 lOT's, C-l

DECtape Control (TC01), C-2
File Control, C-l
High Speed Reader and Control (PC02), C-2
Input Buffer Control, C-2
Output Buffer Control, C-2
Program Control, C-l

SWITCH, 8-8

Switch Register, 9-14

Symbolic Editor, 6-1

SYSTAT, 2-6, 6-8

Calling, 6-8
Description of Output, 6-8
Example, 6-8

System Configurations, E-1

System Library Programs, 3-1

BASIC-8, 3-5
Calling, 2-4
CATALOG, 6-7
Controlling, 3-3
COPY, 7-5
Creation of, 8-1
EDIT, 6-1
FOCAL, 3-13
FORTRAN-D, 4-1
LOADER, C-4
ODT, 6-5
PAL-D, 5-1
PIP, 7-1

System Resources, 2-6

System Status Reports, 2-6

TALK, 2-5

Tape, How to Insert in Reader, 1-5

Tape Editing, 0-1

Tape Preparation, 0-1

T e lepri nter, 1-3

Teletype, 1-2

Keyboard, 1-4

TIME, 2-6

Time-Sharing, 1-1

Transport Controls, E-4

TSS/8 Character Set, A-1

TSS/8 Monitor, 1-1

TSS/8 versus Paper Tape Versions of PAL-O, 9-1

TYPE tBS ARST, 2-10

UASOI Format, 0-5

Unit Number, 2-7

UNAUTHORIZED ACCOUNT, 2-10

UNDUPLEX, 8-8

INDEX (Cont)

Use of th is Manua I, 1-5

USER, 8-8

User File Directory, F-1

User Program Status, 9-13

User Program, Control of, 8-2

User Switch Register, 9-14

Users, Communication with Other, 2-5

Utility Commands in Monitor, 8-8

VERSION, 8-8

WHERE, 8-2

Writing Assembly language Programs, 9-1

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements of new and revised software, as well as programming notes, software problems, and documentation
corrections are published by Software Information Service in the following newsletters:

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/l5 Family

These newsletters contain mformation to update the cumulative

Software Performance Summary for the PDP-8 Family
Software Performance Summary for the PDP-9/l5 Family

The appropriate edition of the Software Performance Summary IS included in each basic software kit for new customers.
Additional copies may be requested without charge.

Any questions or problems on the articles contained in these publications or concerning the use of Digital's software should
be reported to the Software Specialist or Sales Engineer at the nearest Digital office.

New and revised software and manuals, current issues of the Software Perfornlance Summary, and cumulative Software
Manual Updates are available from the Program Library. To place an order, please contact your local Digital office or
write to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the program or manual requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of available programs
as well as the DECUSCOPE magazine for its members and non-members who request it. For further information, please
write to:

DEC US
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

Please complete the return postcard below if you would like to receive Digital's newsletters

Send c:::J Digital Software News for the PDP-8 Family, or
c:::J Digital Software News for the PDP-9/l5 Family

To Name __ _

Company Name ______________________________________ _
Address __ __

(zip code)

My compu ter is a 0 PDP-8I o PDP-12 o PDP-9
o PDP-8L o LINC-8 o PDP-I 5
o PDP-8S o Other _____________ _

- - - - - - - - - - - - - - - - - - Fold Here - _.

- - - - - - - - - - - - - - Do Not Tear - Fold Here and Staple - - - - - - - - - - - - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage WIll be paId by:

mllmllllma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
U",vn .. r.l U"'"" hll~tt" n17.c::.d.

FIRST CLASS
PERMIT NO. 33

MAYNARD. MASS.

READER'S COMMENTS TSS/8 TIME-SHARI NG
SYSTEM USER'S GUIDE
DEC-T8-MRFB-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual? \'".s;

How (an this manual be Improved? ____________________________ _

DI:(' also strives to keep Its customers mformed of current DEC software and publtcattons. Thus, the followmg period·
u:ally dl~tflbuted publtcattons are available upon request. Please check the appropnate boxes for a current issue of the
publtl:Jtlon(s) destred.

o Sollware Manual Update, a quarterly collectIOn of reVIsions to current software manuals.

o User's Bookshelf, a blbltography of current software manuals

o ProgrJm LIbrary Pnce LIst, a Itst of currently avaIlable software programs and manuals.

Name ______________ _ Organization

Street ______________ _ Department __________________ _

City ___________ State ______________ Zip or Country ____ _

- - - - - - - - - - - - - - - - - - Fold Here -

--- - -- - - - --- -- Do Not Tear-Fold Here and Staple - -- - - - - - - - - --

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATFS

Postage will be paId by

mamaoma
Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
u .. ,,_AI Uft~ ... ft._.,. •• ro_ ro n1'7t:.A

FIRST CLASS
PERMIT NO. 33

MAYNARD. MASS

----"

	001
	002
	003
	004
	005
	006
	007
	009
	01-01
	01-02
	01-03
	01-04
	01-05
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	A-1
	B-1
	B-2
	B-3
	B-4
	C-1
	C-2
	D-1
	D-2
	D-3
	D-4
	D-5
	E-1
	E-2
	E-3
	E-4
	E-5
	F-1
	F-2
	G-1
	G-2
	G-3
	G-4
	G-5
	G-6
	G-7
	G-8
	G-9
	I-1
	I-2
	I-3
	I-4
	I-5
	X-1
	X-2
	X-3
	X-4

