
Unearthing The PDP-15’s Operating Systems
Bob Supnik, Revised 14-May-2016

Summary

On 13-May-2001, the PDP-15’s Advanced Monitor operating system was
successfully booted on the SIMH (history simulator) emulation system. On 31-
Jan-2003, DOS-15 was recovered as well. In July 2003, the sources to
XVM/DOS were found. In 2006, a DECtape image of DECsys was recovered
from a working PDP-7. In the spring of 2016, the sources to UNIX “v0” for the
PDP-7 were found and an operational environment recreated. The discoveries
and events leading up to these milestones illustrate the vital role that the Internet
plays in enabling computer history enthusiasts world-wide to work together for
computing preservation.

Background

DEC’s 18b computing family (the PDP-1, PDP-4, PDP-7, PDP-9, and PDP-15)
was of significant historic interest. The PDP-1 was DEC’s first computer, and the
base for the first “video game” (SpaceWar). The PDP-7 ran DEC’s first mass
storage operating system (DECsys), and the first version of UNIX. Despite their
historic importance, the 18b family was a limited financial success and was the
first of DEC’s computing families to go out of production. Development ceased in
the mid 1970’s, and the last 18b computer was produced in 1979. As a result,
functioning 18b systems are rare, and many of the key software systems
(MUMPS, UNIX “v0”) have been lost. At the beginning of 2000, none of the later
18b software systems was available.

SimH is an Internet-based collection of computer history enthusiasts. Its goal is
to recreate historic systems via emulation and to collect and transcribe software
that ran on those historic systems.

Initial Documentation

The first step in preservation and recreation is to collect documentation about the
target systems. For the 18b family, this was very challenging. The User
Manuals for the early systems (PDP-1, PDP-4, PDP-7) are inaccurate,
misleading, and sometimes just plain wrong. Peripheral and option
documentation is sketchy or non-existent. The Maintenance Manuals and logic
prints are really the only authoritative sources. For all these systems,
documentation is rare, as fewer than 200 were produced in total.

Documentation for the later systems (PDP-9, PDP-15) is more plentiful but not
necessarily better. The PDP-15’s User Manual, in particular the First Edition, is
notorious for its inaccuracies. Again, the Maintenance Manuals, logic prints, and
where available, diagnostics are the best source of accurate information.

The starting point for the documentation search was the DEC Archive, while it
still existed. The Archive contained these documents:

- PDP-1 Handbook (second edition)
- PDP-1 I/O Manual
- PDP-1 Maintenance Manual
- PDP-4 Handbook
- PDP-7 User Manual (preliminary)
- PDP-7 Maintenance Manual (including logic prints)
- PDP-9 User Manual
- PDP-15 User Manual (first edition)

This sufficed to write a pair of preliminary 18b simulators, one for the PDP-1, the
other for the rest.

Initial Software

With first pass simulators available, the next step was to collect software for
testing and demonstration purposes. This proved to be as difficult as finding the
documentation. For the PDP-1, the sources to Lisp and SpaceWar had been
published. For the later 18b systems, no software was available on public
sources. The restoration of Lisp illustrates the importance of the Internet in
historic computer salvage. The source came from the Internet (transcribed by
Gordon Greene); the PDP-1 macro assembler was derived from a PDP-8 cross-
assembler (by Gary Messenbrink) found on the Internet; and the final debug was
done remotely (by Paul McJones).

The initial PDP-7 software came from an old PDP-10 backup tape found by Dave
Waks. Again, the Internet played a vital role in salvaging the code. The tape
was transcribed on a 7-track tape drive by Paul Pierce. He shipped the raw bits
over the Internet to Tim Litt, who decoded the PDP-10 backup formats. Tim in
turn sent the transcribed bits to the author for debugging.

From 1998 to 2000, nothing was found for the PDP-9 or PDP-15. In 2000, Al
Kossow found and transcribed a set of paper tapes from the McMaster physics
lab. Among these tapes were some diagnostics and several copies of FOCAL
for the PDP-15. The diagnostics sufficed to debug the PDP-15 simulator and get
FOCAL running. At the same time, David Gesswein found a set of DECtapes for
the Advanced Software System.

DECtapes

To revive the Advanced Monitor System, the SIMH team would have to find a
way of dealing with DECtapes. In the 60’s, DECtapes were the principal form of

mass storage on DEC minicomputers; the only affordable alternative was fixed-
head disk, which was non-removable. DECtapes posed multiple challenges:

- DECtapes must be simulated with great precision. DECtape software was

timing-dependent; in addition, it relied on the ability to examine individual
words as they were read into or written from memory.

- DECtapes are difficult to transcribe. The only way to transcribe a DECtape is
on a real DECtape drive, which is a complex mechanical device and difficult
to maintain. In addition, the DECtape format for the PDP-9/15 requires
special handling on the PDP-8 and PDP-11, the systems most likely to have
survived and to have working drives.

As a prerequisite to implementing DECtapes, the unresolved issues in the 18b
simulators needed to be cleared up. Via the Internet, Al Kossow, Max Burnet,
and David Gesswein provided additional critical documents:

- PDP-1 Handbook (third edition)
- PDP-4 Maintenance Manual
- PDP-9 Maintenance Manual
- PDP-9 Schematics
- PDP-15 User Manual (sixth edition)
- KE09A (EAE) Reference Manual
- KF09A (API) Reference Manual
- TC02 (DECtape) Instruction Manual
- RF15 (DECdisk) Maintenance Manual
- PDP-9 Advanced Software Systems Monitors Manual
- PDP-15 Foreground/Background Reference Manual

These sufficed to answer the outstanding questions.

To cope with the expectations of DECtape software, the SIMH DECtape emulator
implemented a word-by-word, time-based model that provided full simulation of
acceleration, deceleration, and tape turn-around. By source code count, it was
the most complicated peripheral simulator in SIMH up to that point. The
simulator successfully ran the DECtape exercisers for the PDP-9 before any
attempt was made to run DECtape-based software.

David Gesswein was able to transcribe PDP-9/15 DECtapes, including both the
Keyboard Monitor System and the Foreground/Background System, using a
PDP-8/E with TD8-E controller. The TD8-E was a highly simplified version of a
traditional DECtape controller. It read every frame off the tape and left the
decoding of the format to software. Thus, it was the ideal device for reading
PDP-9/15 DECtapes; it disregarded the format differences and delivered raw bits
from the tape for software to decode.

The Keyboard Monitor System

All the prerequisites for reviving the PDP-15’s DECtape operating systems –
documentation, simulator, transcribed DECtapes – seemed to be at hand. There
was one last problem. Unlike contemporary systems on the PDP-8 and PDP-11,
the Advanced Software System did not bootstrap by reading DECtape block 0
into memory and jumping to it. Instead, it required a bootstrap paper tape that
was loaded by the hardware read-in facility. For more than a year, all attempts to
find this paper tape failed. Appeals on the Internet brought no response. The
various private collectors on the Internet, and the Computer History Center, drew
a blank.

In May 2001, an email exchange with Hans Pufal in Grenoble France about the
PDP-10 revealed that Hans had a paper-tape bootstrap for the PDP-9. He had
no direct way to transcribe it. Ingeniously, he scanned the paper tape in sections
on a standard optical scanner, wrote a program to decode the pattern of holes,
and verified the results by hand. He sent the results to me on May 10, 2001, and
I immediately tried it with David Gesswein’s DECtape images.

Unfortunately, it didn’t work. One issue was a lingering bug in the DECtape
simulator. A second was that the Foreground/Background System required the
Automatic Priority Interrupt option (API), which hadn’t been implemented. But
the major hurdles were undocumented software changes that occurred between
the PDP-9 and PDP-15. As I wrote on May 11:

I tried bootstrapping the ADSS [Keyboard Monitor] as well as the F/B monitors. For the
former, the starting address is a SKP HLT. For the later, it's all 0's. The very next set of
instruction picks up the starting address, masks the address with 070000, and performs
other manipulations - clearly reconstructing the bootstrap address, provided that the
BOOTSTRAP EXITS WITH A JMS RATHER THAN A JMP. So I changed the exit
instruction (at 17745) to be JMS I 17755, and suddenly I am a lot further - not running
mind you, but further. ADSS, in particular, prints out a nice error message IOPS03
021400, which indicates that the basic I/O system is alive if not well. (Somewhere I have
documentation on its error messages.) I think F/B requires the API option, which isn't
implemented.

So this is tremendous progress! I am fairly sure that the boot process is:

1. read 36(8) DECtape blocks, starting at block 0, into memory, starting at location 100
2. use location 105 of the loaded image as the starting vector
3. if booting pdp-9 software, jump to it; for the -15, jms to it

The next day, the error message was traced to a customization in the interrupt
skip chain:

With Hans' bootstrap tape, modified (as I think) for the PDP-15 (exit instruction is JMS
rather than JMP), I was getting an IOPS03 error - invalid interrupt. Tracing through the
interrupt skip chain, I got to:

IOT 1041

JMP* handler

I have no idea what IOT 1041 does; it's not any standard DEC device, and it is
backwards from normal I/O tests, which are always:

PSF
SKP
JMP* handler

So it must have been a custom device SYSGEN'd into this version of the monitor for the
installation. I nop'd the tests out, and the tape got to the keyboard monitor prompt! I
don't know how the keyboard monitor works, so I typed in PIP, that resulted in

.SYSLD 1
IOPS03 ...

so there's still more debug to do, but this is the first sign of life out of an 18b operating
system!

The next day, this bug was traced to another undocumented change between the
PDP-9 and PDP-15 bootstraps:

Second difference in bootstrap for the 15 vs the 9: the load image is one block longer.
The 9 bootstrap loads 17000(8) words from 100 to 17100. The -15 monitor is 17400(8)
words long, from 100 to 17500. The failure to load the last 400 words accounts for all the
crashes on keyboard monitor commands. I can now take a directory, print the
information message, print the SCOM region, etc.

I <still> can't load or run a system program, so there's more work to be done. One
possibility is that the system is gen'd for more memory than I am allowing.

And that indeed proved to be the case. Loading the bootstrap in upper memory
allowed the Keyboard Monitor System to run correctly. By running SYSGEN,
references to custom devices were eliminated, creating a clean DECtape image.

From Keyboard Monitor To Foreground/Background

With the Keyboard Monitor System running, the next challenge was to bring up
the Foreground/Background System. This required additional hardware: memory
protection, automatic priority interrupts (API), and (although I didn’t realize it) a
second terminal. All of these had their issues:

- Memory protection, though implemented, had never been tested and

contained serious bugs.
- API required intrusive changes throughout the CPU simulator.
- SIMH had no capability for multiple terminals.

Fortunately, the PDP-9/15’s API closely resembled the PDP-10’s, allowing the
latter to be used as a model for the implementation. The second terminal
problem was solved by a kludge that allowed multiple terminals to access the
controlling window and keyboard on a sequential, rather than a simultaneous,

basis. With these changes, the Foreground/Background System was
successfully run on 28-May-2001.

DOS-15

Once again, there was a long interval with no apparent progress. However,
Hans Pufal and a team in Grenoble France had been restoring a real PDP-9 (part
of the collection of La Cite des Sciences et d'Industrie in Paris). On 30-Aug-
2002, they succeeded in booting the Advanced Monitor System on real
hardware, for the first time in two decades. The availability of a working system
enabled Hans to go, as he put it, “DECtape fishing.” One of the first discoveries
was a complete source set for ADSS. But on 30-Jan-2003, he reported an even
more significant find:

I've been doing some more DECtape fishing and have recovered three tapes which
appear to be DOS-15 V2A. I have another set of restore tapes which I have so far not
been able to dump successfully.

Having read the manuals and checked out the tapes all appeared to be in agreement and
I wrote a C program to perform the same functions as the DOSSAVE program would do
to reload the tapes onto the disk.

I've looked at the disk structures and all appears to be coherent, I see the MFD at disk
block 1777 and the UIC's appear at their proper places also. So I THINK I have an image
if an RF single platter disk containing DOS-15.

How to boot it? I have no bootstrap!

Looking through the DOS-15 System Manual (which Al Kossow had scanned and
made available on the Internet), I noticed that the calling sequence for the
resident bootstrap looked very similar to the DECtape bootstrap for ADSS. Hans
had the sources for the ADSS bootstrap and tried it on the DOS image, but it
didn’t work. He wrote:

Actually, I've just been reading RFSBT source and it seems to be "converting" DT units
numbers to platter addresses - I don't think we want that. Can you take a look around
label PLAT3.

Based on the DOS-15 Manual, I suggested a patch to the boot program:

You're right, the code is wrong. The DOS15 System Manual says that the unit number
should be ignored for the RF15; instead the disk is numbered sequentially from block
00000 to 17777.

Assuming that the "4 word parameter block" for TRAN ends up in .dtblk through dkword,
the address calculation needs to do something like this:

<code snippet excised>

This would at least be consistent with the DOS15 documentation, and would
function identically to the current code for bootstrapping the system.

That sufficed to get to the DOS-15 $ prompt, as Hans reported on 31-Jan-2003:

Progress:

sim> load rfsboot.rim 77637
sim> at rf dosv2a.rfa
RF: buffering file in memory
sim> go

DOS-15 V2A
 ENTER DATE (MM/DD/YY) -

But none of the system programs seemed to work; they all aborted with an
IOPS21 message. Hans traced the problem to the device driver for the RF15,
which was sitting in a strange loop:

I'm having difficulties figuring out the following code:

75072: CLA
75073: IOT 7045
75074: IOT 0
75075: IOT 0
75076: IOT 0
75077: IOT 7065
75100: IOT 0
75101: IOT 0
75102: DSSF
75103: JMP 75106
75104: DSCD
75105: JMP 75113
75106: DSCD
75107: TAD 75401
75110: SAD 75722
75111: JMP 75231
75112: JMP 75077
75113: DAC 75072
75114: SNA CLL

In particular the disk IOT's, also the IOT 0s seem somewhat strange I assume they are
time delays or does IOT 0 do something?

The code is executed right before the IOPS error is declared, my tentative assumption is
that the code does something different on the emulator than on the real hardware
causing failure.

I found a similar piece of code in the ADSS RF15 driver. Based on the source, I
concluded that the code was attempting to size the number of platters and failing
due to an emulator bug. Hans verified this assumption by patching the code and
was able to get further, but he still hit the IOPS21 error (because there were
multiple copies of the code, as it turned out). Even though the extant
documentation did not mention this sizing capability, it clearly worked. I revised

the RF15 emulator accordingly, and on 02-Feb-2003 Hans was able to get into
and out of the system programs. By 03-Feb-2003 he had run the DOS checkout
package. A few days later he was able to generate systems on larger disks.
Shortly thereafter, he demonstrated that DOS-15 contained a bug that prevented
maximum-sized RF15’s from running correctly and generated the first DOS-15
“patch” in more than 30 years! But that’s another story.

From image discovery to complete recovery had taken less than two weeks,
thanks to tapes from France, documentation from California, simulation from
Massachusetts, and Internet-based collaboration and debugging.

XVM/DOS

The recovery of XVM/DOS involves a new Internet-based element, namely, the
worldwide trading market created by EBay. Over the last few years, a small but
growing market has emerged for historic computer artifacts. Almost all of the
buying and selling occurs on Ebay. While the number of items offered for sale on
any given day is small, over time a variety of interesting items have appeared.

Through Ebay, Al Kossow was able to purchase a set of “PDP-15 DECtapes.” Al
used a functioning PDP-11 with a TC11/TU56 (and a modified version of John
Wilson’s program for reading PDP-8 DECtapes) to recover the contents. The
tapes contained an intact set of sources for V1A of XVM/DOS. Using these
sources, it proved possible to build XVM/DOS. After suitable extensions to the
PDP-15 simulator (and debugging of those extensions using XVM/DOS itself),
XVM/DOS was run successfully in early January, 2004.

XVM/RSX

The same batch of DECtapes contained sources for XVM/RSX, but restoration
took far longer, because installation instructions were lacking. Eventually,
Andrew Warkentin in Canada found the required documentation and used the
XVM/RSX sources and create a system image. This uncovered new bugs in the
PDP-15/XVM simulator, but a working system image was released at the end of
2006.

DECsys

While these activities were going on, members of the SimH team were looking for
copies of DECsys, the first DECtape-based program development environment
for the 18b family, in vain. DECsys was introduced in 1966, supporting both the
PDP-4 and the PDP-7. PDP-4’s and PDP-7's were relatively rare (only 45/120
were built, respectively), and most didn't ship with DECsys. Then in 2006,
rumors of a functioning PDP-7 at the University of Oregon proved to be true.
Professor Harlan Lefevre had carefully preserved a working system for almost
forty years. Not only had he preserved the hardware, he had also kept the

original DEC software, including DECsys. The PDP-7 worked well enough not
only to make copies of the DECsys DECtape, but also to transcribe the tape to
an ASCII text stream that could be sent over the Internet. That DECtape proved
to be complete, and DECsys was made available in June, 2006, just about 50
years after its first appearance.

UNIX v0

The rarer a piece of software is, the harder it is to find and recover it from the
haze of history. No 18bit environment was rarer than UNIX v0, the first version of
UNIX, which existed on only one PDP-7 system at Bell Labs, and only for a short
period of time while the team waited for its first PDP-11. Prior to 2016, only a few
fragments had been found.

In February, 2016, Warren Toomey, the Australia-based leader of the The UNIX
Historical Society, obtained a much-copied set of listings for UNIX v0 from a Bell
Lab researcher who had happened to retain a copy. He immediately launched a
project to transcribe and reconstruct the system. Participants from around the
globe helped type in the sources. The first focus was on debugging the utilities,
using a user-mode simulation environment that had the kernel primitives built in.
Then the kernel itself was debugged on SimH.

The sources yielded a number of surprises. First, UNIX v0 ran in 8KW and did
not use the primitive memory protection available in larger PDP-7s. Second, it
had a disk, even though PDP-7 documentation doesn’t mention the availability of
a disk drive. Third, it has a unique, Bell Labs-designed display processor which
operated as the second development terminal.

Based on the source code, I figured out that the drive was an RB09, a fixed-head
disk for the PDP-9 that was replaced by the RF09. Tim Litt showed that the RB09
was a PDP-10 RC10 with a unique controller, and that a controller did exist for
the PDP-7. Adding the existing RB09 simulator to the PDP-7 was easy, and
kernel debug was able to proceed.

Unfortunately, the UNIX v0 listings only include some of the utilities (those
beginning with letters a through j). Thus, to get a working system, the UNIX v0
team has had to create new versions of utilities that were known to exist,
particularly the shell and roff.

Next Steps?

The Keyboard Monitor, Foreground/Background Monitor, DOS-15, XVM/DOS,
XVM/RSX, DECsys, and UNIX v0 do not exhaust the variety of environments
available for the PDP-15. The 18-bit systems hosted not only the first version of
UNIX, but the first version of MUMPS, the first medical information system. As of
2016, MUMPS has yet to be recovered. A partial source listing of XVM/MUMPS

turned up in the DEC Archives; no other copies have been found. DEC junked
its PDP-15 media archive at the end of the 80’s, when the last systems went off
contract. DECdisks and RP02’s were huge and have all ended up on the scrap
heap. Unless there is a complete save set on magnetic tape somewhere,
MUMPS is lost.

Acknowledgements

The revival of the PDP-15 operating systems demonstrates the critical role of the
Internet in creating a virtual community of computer history enthusiasts. The
project would not have succeeded without the help of individuals whom I know
mostly or exclusively through the Internet. In addition, the Internet allowed for
rapid interchange of documents, software images, and folklore.

I am particularly indebted to:

- Max Burnet (Australia), for hardware documentation on the 18b systems.
- Al Kossow (California), for hardware and software documentation on the 18b

systems, for paper tape images, and for the XVM/DOS and XVM/RSX
DECtapes.

- David Gesswein (Maryland), for hardware and software documentation on the
18b systems, as well as the ADSS DECtape images.

- Hans Pufal (France), for finding the critical missing ADSS bootstrap tape and
transcribing it without a paper tape reader; and for finding, transcribing, and
debugging DOS-15. Hans filled in an enormous number of missing pieces,
including reconstruction of DOSSAVE from a description of its functional
behavior.

- Professor Harlan Lefevre, for his careful oversight of the last running PDP-7
in the world, and his conservation of its original tapes, including DECsys.

- Andrew Warentin, for getting XVM/RSX up and running.
- Warren Toomey and TUHS, for reviving UNIX v0.

