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computing systems; transferring hardware technology 
within DEC (and elsewhere) to minicomputer design 
and manufacturing; supporting minicomputer 
hardware and software development; and serving as a 
model for single user and timeshared interactive 
minicomputer/microcomputer systems. 

Key Words and Phrases: computer structures, 
architecture, operating system, timesharing 

CR Categories: 4.32, 6.21, 6.3 

1 .  Introduction 

The project originating the PDP-6, DECsystem 10,  
and DECsystem 20 series of scientific, timeshared 
computers began in the spring of 1963, and continued 
with the delivery of a PDP-6 in the summer of 1964. 
Initially, the PDP-6 was designed to extend DEC's 
line of 18-bit computers by providing more perform- 
ance at increased price. Although the PDP-6 was not 
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constrained to be a member in a family of compatible 
computers, the series evolved into five basic designs 
(PDP-6, KA-10, KI-10, KL10, and KL20) with over 
700 systems installed. The notions and need for com- 
patibility were neither understood at the initial design 
time nor did we have adequate technology to undertake 
such a task. Each successive implementation in the 
series has generally offered increased performance for 
only slightly increased cost. Currently, the KLlO and 
KL20 systems span a 5 to 1 price range. 

TOPS-10, the major user software interface, devel- 
oped from a 6 Kword monitor for the PDP-6. A 
second user interface, TOPS-20, introduced in 1976 
with upgraded facilities is based on multiprocess oper- 
ating systems advances. 

The paper is divided into seven sections. Section 2 
provides a brief historical setting followed by a discus- 
sion of the initial project's goals, constraints, and basic 
design decisions. The instruction set and system orga- 
nization are given in Sections 4 and 5 respectively. 
Section 6 discusses the operating system while Section 
7 presents the technological influences on the designs. 
Sections 4 to 7 begin with a presentation of the goals 
and constraints, proceed to the basic PDP-6 design, 
and conclude with the evolution (and current state). 
We try to answer the often asked questions "Why did 
you do  . . .?", by giving the contextual environment. 
Figure 1 helps summarize this context in the form of a 
time line that depicts the various hardwarelsoftware 
technologies (above line) and when they were applied 
(below line) to the DECsystem 10. 

2. Historical Setting 

The PDP-6 was designed for both a timeshared 
computational environment and real-time laboratory 
use with straightforward interfacing capability. At the 
initiation of the project, three timeshared computers 
were operational: A PDP-1 at Bolt, Beranek and 
Newman (BBN) which used a high-speed drum that 
could swap a 4 Kword core image in one 34-millisecond 
revolution; an IBM 7090 system at MIT, called CTSS, 
which provided each of 32 users a 32 Kword environ- 
ment; and an AN/FSQ-32V at SDC which could serve 
40 simultaneous users. 

The Bell Laboratory's IBM 7094 Operating System 
was a model operating system for batch users. Bur- 
roughs had implemented a multiprogrammed system 
on the B5000. Dartmouth was considering the design 
of a single language, timesharing system which subse- 
quently became Basic. The MIT Multics System, the 
Berkeley SDS 940, the Stanford PDP-1 based time- 
shared system for computer aided instruction, and the 
BBN Tenex System all contributed concepts to the 
DECsystem 1 0  evolution in the 1960's. 

In architecture, the Manchester Atlas [3,  ch. 231 
was exemplary, not because it was a large machine 
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Fig. 1. Time line diagram of DECsystem 10 evolution. 
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that we would build, but because it illustrated a number 
of good design principles. Atlas was multiprogrammed 
with a well-defined interface between the user and 
operating system, had a very large address space, and 
introduced the notion of extra codes to extend the 
functionality of its instruction-set. Paging was a concept 
we just could not afford to implement without a fast, 
small memory. The IBM Channel concept was in use, 
on their 7094, and was one we wanted to avoid since 
our minicomputers (e.g. PDP-1) were generally smaller 
than a single channel and could outperform the 7094 
in terms of i/o concurrency and i/o programmability by 
a clean, simple interrupt mechanism. 

The DEC product line in 1964 is summarized in 
Table I .  Corporation wide sales totaled $1 1 million at 
that time and it was felt that computers had to be 
offered in the $20,000 to $300,000 range. We were 
sensitive to the problems encountered by not having 
enough address bits, having watched DEC and IBM 
machines exceed their addressing capacities. 

On the software side, most programmers at DEC 
had been large machine (16 to 32 Kwords) users 
although they had most recently programmed mini- 
computers where program size of 4 to 8 Kwords was 
the main constraint. There was not a good understand- 
ing of operating systems structure and design in either 
academia or industry. For example, MIT's Multics 
Project was being formed and IBM's 360lTSS Project 
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Table I. DEC's 1964 computer products. 

Year In- 
Name troduced 

PDP- 1 1960 
PDP-2 1960 

Word 
Size 

(Bits) 

18 
24 

36 
18 
12 
36 

Price 
6 K )  Status 

Marketed 
Resewed for future 

implementation 
Paper machine 
Marketed 
Introduced 
Introduced 

didn't start until 1965. Generally there were no people 
who directly represented the users within the company, 
although all the designers were computer users. A 
number of users in the Cambridge (Mass.) community 
advised on the design (especially John McCarthy, 
Marvin Minsky, and Peter Sampson at the MIT Artifi- 
cial Intelligence Laboratory). 

Although there was little consensus that Fortran 
would be so important, it was clear our machine would 
be used extensively to execute Fortran. The macroas- 
semblers, basically unchanged even today, were used 
in various laboratories and our first one for PDP-1 was 
done by MIT in 1961. We also felt the list languages, 
especially LISP for symbolic processing were important. 
There was virtually no interest in business data process- 
ing although we had all looked at Cobol. 

We did not understand the concept of technology 

Communications 
of 
the ACM 

January 1978 
Volume 21 
Number 1 



evolution very well, even though integrated circuits 
were both forecast and under development. Germa- 
nium transistors were available, and silicon transistors 
were just on the market. IBM was using machine 
wirewrap technology, while DEC back panels were 
handwired and soldered. The basic DEC logic circuits 
were saturating transistor as distinct from the more 
expensive current mode used by IBM in the 7094 and 
Stretch computers. Production core memories of 2 
microseconds were beginning to appear, and their 
speed was improving. Our PDP-1 used a 5 microsecond 
core. Hence, it was unclear what memory speed a 
processor should support. 

The notions of compatibility and family range were 
not appreciated even though SDS (eventually XDS 
and now nonexistent) had built a range of 24-bit 
computers. We adhered to the then imposed conven- 
tion of the word length being a multiple of six bits (the 
number of bits in the standard character code), but 
designed the machine to handle arbitrary length char- 
acters. 

3. Overall Goals, Constraints, and Basic Design 
Decisions 

Table I1 lists the initial goals, constraints, and some 
basic design decisions. Presentation of this list sepa- 
rately from the design is difficult because the goals and 
constraints were not formally recorded as such and 
have to be extracted from design descriptions and our 
unreliable, and self justifying memories. Table I1 will 
be used in discussing the design. 

The initial design theme was to provide a powerful, 
timeshared machine oriented to scientific use, although 
it subsequently evolved to commercial use. John Mc- 
Carthy's definition [9] of timesharing, which we sub- 
scribed to, included providing each user with the 
illusion of having his own large computer. Thus our 
base design provided protection between the users and 
a mechanism for the common resources to be allocated 
and controlled. The machine had to also support a 
variety of compiled and interpreted languages. The 
construction was to be modular so that it could evolve 
and users could build large systems including multipro- 
cessors. It should add to the top of DEC's existing line 
of 12- and 18-bit computers. It should be simple, 
buildable, and supportable by a small organization. 
Thus, it should use as much DEC hardware technology 
as possible. 

4. The Instruction-Set Processor 

Our goals for an ISP were: To  efficiently encode 
the various programs using both compiled and inter- 
preted languages; to be understandable and able to be 
remembered by its users; to be buildable in current 
technology at a competitive price; and to permit a 
compiler to provide efficient program production. 

Data Types and Operators 

Earlier DEC designs and the then current 6-bit 
character standard forced a word length which was a 
multiple of 6,  12, and 18 bits. Thus a 36-bit word was 
selected. 

The language goals and constraints forced the inclu- 
sion of integer and real (floating point) variables. We 
chose two's complement integer representation rather 
than the sign-magnitude representation used on the 
7090, or the one's complement representation on PDP- 
1 .  The floating point format was chosen to be the 
same as the 7090, but with a format that permitted 
comparison to be made on the number as an integer in 
order to speed up comparisons and only require a 
single set of compare instructions. Special (common) 
case operators (e.g., V = 0, V = V + 1, V = V - 1) 
were included to support compiled code. Our desire to 
execute LISP directly resulted in good address arithme- 
tic. As a result, both LISP and Fortran on DECsystem 
10 are encoded efficiently. 

Since the computer spends a significant portion of 
its time executing the operating system, the efficient 
support of operating system data types is essential. A 
number of instructions should be provided for manip- 
ulating and testing the following data types: Boolean 
variables (bits); Boolean vectors; arbitrary length field 
access (loadlstore only); addresses; programs (loops, 
branching and subprograms); ordinary integers; and 
the control of i/o. A significant number of control 
instructions were included to test addresses and other 
data types. These tests either controlled flow by a 
jump or skip of the next instruction (which is usually a 
jump). Loop control was a most important design 
consideration. 

Table I11 gives the data types and instructions pres- 
ent in the various implementations. The KAlO and 
PDP-6 processor instruction sets were essentially the 
same, but differed in the implementation. The PDP-6 
had 365 instructions. A double precision negate in- 
struction in the KAlO improved the subroutine per- 
formance for double precision reals. The instruction, 
find first one in a bit vector, was also added to assist 
operating system resource allocation and to help in a 
specific application sale (that fell through). Finally, 
double precision real arithmetic instructions were 
added to the KIlO using the original PDP-6 pro- 
grammed scheme. A few minor incompatibilities were 
introduced in the KI to improve performance. 

With the decision to offer Cobol in 1970, better 
character and decimal string processing support was 
required from the instruction set. The initial Cobol 
performance was poor for character and decimal arith- 
metic because each operation required software char- 
acter by character conversion to an integer, the opera- 
tion (in binary or double precision binary), and soft- 
ware reconversion to a character or a decimal number. 
The KLlO provided much higher performance for 
Cobol by having the basic instructions for comparing 
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Table 11. Initial goals, constraints, and basic design decisions. 

User/Language/Operating System 
Cheaper coduser via timesharing without inconvenience of batch processing - 
Timeshared use via terminals with protection between users 
Independent user machines to execute from any location in physical memory 
unrestricted use of devices e.g. full duplex use of terminals - 
Support for wide range of compiled and interpreted languages 
No special batch mode, batch must appear like terminal via a command file 
Device independent i/o so that programs would run on different configurations 

and i/o could be shared among the user community 
Direct i/o for real time users 
Primitive command language to avoid need for large internal state 
Minimum usable system <16 Kwords 
Modular software to correspond to modular hardware configurations 

Instruction-Set Processor (ISP) 
Support user languages by data types and special operations 

scientific (i.e., Fortran) 3 integers, reals, Boolean 
list processing (i.e., LISP) 3 addresses, characters 
support recursive and reentrant programming 3 stack mechanism 

Support operating systems 
effective as machine language 3 Booleans, addresses, characters, i/o 
operating system is an extension of hardware via defined operating codes 

Word length would be 36-bits (compatible with DEC's computers) 
Large ('14 million 36-bit words = 1 million 9-bit bytes) address 
Require minimal hardware 3 simple 
General-register based (design decision) with completely general use 
Easy to use and remember machine language 

orthogonality of addressing (accessing) and operators 
completeness of operators 
direct (not base + displacement) addressing 
few exceptional instructions 

2's complement arithmetic (multiple precision arithmetic) 
PMS Structure 

Maximum modularity so that users could easily configure any system 
Easy to interface 
Asynchronous operation -system must handle evolving technology 
Multiprocessors for incremental and increased performance (2-4 in design) 
No Pio's (IBM Channels), use simple programmed i/o with interrupts and 

direct memory access for high speed data transmission 
Implementation 

Simple; reliable 
Asynchronous logic and busses for speed in light of uncertain logic and memory 

speed 
All state accessible to field service personnel via lights 
Use DEC (10 mHz vs 5 mHz) circuit/logic technology (manpower constraint) 
Buildable without microprogramming (no fast, read-only, memories in 1963) 

Organizational/Marketplace 
Add to high end of DEC's computers 
Use minimal resources. while sumorting DEC's minicomputer efforts 

character and decimal strings - where a character can 
be a variable size. For arithmetic operations, instruc- 
tions were added to convert between string and double 
precision binary. The actual operations are still carried 
out in binary. For add and subtract, the time is slightly 
longer than a pure string based instruction, but for 
multiplying and dividing, the conversion approach is 
faster. 

Stack vs General Registers Organization 
A stack machine was considered based on the 

B5000 and George Interpreter (which later became 
the English Electric KDF9). A stack with index register 
machine was proposed, but rejected on the basis of 
high cost and fear of poor performance, for executing 
the operating system, LISP, and Fortran. The compro- 
mise we made was to provide a number of instructions 
to operate on a stack, yet use the general registers as 
stack pointers. 

An interesting outcome of our experience was that 
one of us (Bell) discovered a more general structure 
whereby either a stack or general register machine 
could be implemented by extending addressing modes 
and using the general registers for stack pointers. This 
scheme was the basis of the PDP-11 ISP [I].  

We currently believe that stack and general register 
structures are quite similar and tend to be a tradeoff 
between control (either in a program or in the interpre- 
tation of the ISP) and performance. Compilers for 
general register machines often allocate registers as 
though they are a stack. Table IV compares the stack 
and general register approaches. 

A general register architecture was selected with 
the registers in the memory address space. The general 
registers (multiple accumulators) should permit a wide 
(general) range of use. Both eight and sixteen were 
considered. By the time the uses were ennumerated, 
especially to store inner loops, we believed sixteen 
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Table 111. Data-types of DECsystem 10120. 

Length 
Data type (bits) Machine Operators and [#instructions] Operator Location 

Boolean 1 all 0,1,- , test by skip [64] AC +f(AC) 
Boolean-vector 3 6 all all 16 [64] AC and/or mem +f(AC,mem) 
characters 0-36 = v all load, store [5] AC ~ ( m e m )  
character-string v x n  KL compare [8]; move [4] f(mem)=g(mem); mem 

f(mem) 
digit-string v x n  KL convert to double integer f(AC) -f(men) 
half word, 2's comp. in- 18 all load, store [64]; index loop con- AC ~ f m e m ;  AC +f(AC) 

tegers = addresses trol 
full word, 2's comp. in- 36 all load, store, abs., - (negate)[l6] AC and/or mem+f(AC,mem) 

tegers (and fractions) +,-,x,/,+l,-1,Xrotate test 
(by skip & jumps) 

double word, 2's comp. 72 KL load, store, -(negate)[4]; + ,- , AC ~ f ( m e m ) ;  AC +-f(AC,mem) 
integers (and frac- X A41 
tions) 

real 9 (exponent) all load, store, abs., -(negate), AC and/or mem +f(AC,mem) 
+27(man- +,-,x ,/,x [35]; test (by skip, immediate mode was added in 
tissa) jump) [I61 K A 

double real 9 + 54 KI,KL load, store, abs, negate, + ,- , X  ,/ KA provided negate instruction 
9 + 63 KI,KL 

word stack 36 all load, store, call, return[4] Stack H Memory 
(81 

word vector 36 x k all move [I]  mem[a:a+k]+mem[b:b+k] 
i/o program 36 all short call/return; UUO AC, mem 

were needed. They could be used as: base and index, 
set of Booleans (flags), ordinary accumulator and 
multiplier-quotient (from 7090), subroutine linkage, 
fast access for temporary and common subexpressions, 
top of stack when accessed explicitly, pointer to control 
stacks, and fast registers to hold small programs. 

Since the AC's were in the address space, ordinary 
memory could be used in lieu of fast registers to 
reduce the minimal machine price. In reality, nearly 
all users bought fast registers. Eight registers may 
have been enough. A smaller number would have 
provided more rapid context switching and assisted the 
assembly language programmer who tried to optimize 
(and keep track of) their use. In fact, Lunde [7] has 
shown that eight working registers would be fine to 
support the higher level language usage. Multiple reg- 
ister sets were introduced in the KIlO to reduce 
context-switching time. 

Instruction-Set Encoding and Layout 
The ease of implementation goal forced an instruc- 

tion-set design style that later turned out to be easy to 
fabricate with the KLlO microprogram implementa- 
tion. This also simplified the fabrication of compilers. 
In fact, of the 2 2 2  instructions useful for Fortran data- 
types, the earliest compiler used 180 of them and the 
current compiler uses 2  12. We used three principles, 
we now understand, for the ISP design: 

Orthogonality -an address (with index and indi- 
rect control fields) is always computed in the 
same way, independent of the data-type it refer- 
ences. Indirect addressing occurs as long as the 
instruction addressed has an indirect bit on an 
indefinite basis. 
Completeness and symmetry - where possible 

Table IV. Comparison of stack and general register architectures. 

Stack General Register 

Number of regis- approximately the same 
ters 

Register use fixed to stack o p  can be arbitrary 
eration 

Control built in hardward simple, explicit in pro- 
(implicit) gram when used as a 

stack 
Access to local 1 or 2 elements at full set in general regis- 

variables top of stack ters 
Compiler easy (no choice) an assignment (use) 

problem 
Program encoding fewer bits more bits give access to 

registers for interme- 
diate and index val- 
ues 

Performance high if element on high if in general regis- 
stack top ters (performs rela- 

tively better than 
stack) 

each arithmetic data type should have a complete 
and identical set of operations. 

c. Mapping among data types-instructions should 
exist to convert among all data types. Several 
data types were incomplete (characters, half- 
words) and these should be converted to data 
types with a complete operator set. 

The instruction is mapped into the 36 bit word as 
follows: 

ACCUMULATOR I INDEX REG1STF.K 
ADUKESS \ 1 ADDRESS 

1 INSTRUCTION CODE 1 \ 1 ' 1  ' I MEMORY A1)DKESS I 

BASIC INSTRUCTION bOKMAI 

ACCUMULATOR ADDRESS is 1 of 16 Accumulators (General Registers) 
INDEX REGISTER ADDRESS is mdex designator to 1 of 15 AC's 
L is indirect bit 
MEMORY ADDRESS is address or literal 
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Fig. 2. Instruction set. 
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Left Justif~cation 
R a t  Justification I 

down 1 ( z d  Jump UP (Stack 
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Memory 
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Subtract One from AC and Jump Always 1 
Add One to h t l i  halves ot A <  and Jump IT PoS1tlVe 1 Negatwe 

(Control ) 

(Integer, fraction, real ) 

ADD 
SUBtract 

Integer MULt~ply 
D l  V~dc Immediate 
Integer DlVide to Memory 

Floatma AdD 1 I I - 
Floating MultiPly 
Floating IhVide 

Floating Scale 

Double Roating Negate (KA ) 
Unnormaliud Floating Add 

F I X  
F IX  and Round KI 
FLDaTand Round 

Double intege 

Double Rating 

l ADD 

MOv {F Negative } { Memory 

(I/O ) 

CONdit ions 
in and Skip i f  I all masked bits Zero 

some masked bit One 

Jump< 

wlth D~rect mdsk No mod~l~cdt~o~i  never 
w11h Swdpped mdsk set masked b~ t r  to Zero, lf a l l  masked bits Equal 0 (Bit) 

Test 
~ ~ g h t  w~th r I Left I I set masked bits to One, lf Not d l l  masked bits equal 0 

Complement mdsked bits 

1 0 -  19 

to SubRoutine (Jump 
and Save PC 
and Save A r  
and Restore Ac 
if  Find First One 
on Flag and CLear i t  

on OVerflow (JFCL 10,) 
on CaRrY 0 (JFCL 4.) 
on CaRrY I (JFCL 2,) 
on G R r Y  (JFCL 6.) 
on Floating Overflow (JFCL I .) 
and ReSTore 
and ReSTore Flags (JRST 2.) 

,and ENable PI channel (JRST 12,) 

The entire instruction-set fits easily within a single are generally deducible by the instruction names: o p  
figure (see Figure 2).  The boldface letters denote erator names (e.g. ADD) for word (or integer); D- 
instruction mnemonics. The data types and operations double integers; H-half world; BL-vector; 16-operator 

HALT  (JRST 4,) 

PORTAL ( J  RST I ,) (KI ) 
e XeCuTe - (KI) 
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names (e.g. AND) for Boolean vectors, Test-Boolean 
(bits); J-jumplskip for program control; F-floating; 
DF-double floating. The i/o and interrupt instructions 
are described in the PMS section. 

Multiprogramming/Monitor Facilities 
The initial constraint (circa 1963) of a timeshared 

computer with a common operating system led to 
several hardware facilities: 

1 .  two basic machine modes: user and executive 
(each with different privileges); 

2 .  protection against operations to halt the com- 
puter or affect the common i/o when in user 
mode; 

3. communication between the user and operating 
system for calling ilo and other shared functions; 
and 

4. memory mapping - separation of user programs 
into different parts of physical memory with pro- 
tection among the parts and program relocation 
beyond the control of user. 

An executiveluser mode was necessary for protec- 
tion facilities in a shared operating system while provid- 
ing each user with his own environment. Although 
there was a temptation (due to having a single opera- 
ting system) to eliminate or make optional the execu- 
tive mode and the general registers be, we persevered 
in the design and now believe this to be an essential 
part of virtually every computer! (The only other 
necessary ingredient in every computer is adequate 
error detection, such as parity.) Separation into at 
least two separate operating regions (user and execu- 
tive) also permits the more difficult, time constrained 
ilo programs to be written once and to have a more 
formal interface between system utilities and user. 

The UUO (Unimplemented User Operation) is an 
instruction like the Atlas Extracode and IBM 360 
SVC to call operating system functions and common 
user-defined functions. It also calls functions not pres- 
ent in earlier machines. Thus a single operating system 
could be used (by selecting the appropriate options) 
over several models. This use appears to be more 
extensive than in the IBM System 3601370. 

The goals of low cost hardware and minimal per- 
formance degradation constrained the protection facil- 
ities to a single pair of registers to relocate programs 
in increments of 1 Kwords. Two 8-bit registers (base 
and limit registers) with two 8-bit adders were required 
for this solution. Thus each user area was protected 
while running and a program could be moved within 
primary or secondary memory (and saved) because 

' user programs were written beginning at location 0. 
This is identical to the CDC 6600-7600 protection1 
relocation scheme. 

In the KAlO a second pair of registers was added 
so that the common read-only segment of a user's 
space could be shared. For example, this enabled one 
copy of an editor, compiler, or runtime system to be 
shared among multiple users. Programs were divided 

into a 128 Kword read-write segment and a 128 Kword 
read only segment. Since each user's shared segment 
had to occupy contiguous memory, holes would de- 
velop as users with different shared segment require- 
ments were swapped. This led to "core shuffling" and 
in a busy system up to 2% of the time might be spent 
in this activity. The operating system was modified in 
the early 70's at the Stanford Artificial Intelligence 
Laboratory so that the high, read-only segment could 
share common, global data. In this way a number of 
separate user programs could communicate, to effec- 
tively extend the program size beyond the 256 Kword 
limit. In retrospect, instructions to move data more 
easily between a particular user region and the opera- 
ting system would have been useful; this was corrected 
in KIlO and is described below. 

With the availability of medium scale integrated 
circuits, small (32 word) associative memories could 
be built. This enabled the introduction of a paging 
scheme in the KI10. Each 512 word page could be 
declared sharable or private with read-only or read- 
write access. The basic two mode protection facility 
was expanded to four modes: Supervisor, Kernel, 
Public, and Concealed. There were two monitor 
modes: Kernel mode provides protection for ilo and 
system functions common to all users; and Supervisor 
mode is specialized for a single user. The two user 
modes are: Concealed for proprietary programs, and 
Public for shared programs. For protection purposes, 
the modes are only changed at selected entry portals. 
The page table was more elaborate than that of the 
Atlas (circa 1960) whose main goal was to provide a 
one level store whereby large programs could run on 
small physical memories. In fact the first use of KIlO 
paging required all programs to be resident rather 
than having pages being demand driven. A gain over 
the KAlO was realized by not requiring programs to 
be in a single contiguous address space. The KIlO 
design provided more sharing, and increased efficiency 
over the KA10. The KLlO extended KIlO paging for 
use in the TOPS 20 operating system to be described 
later. 

5. PMS1 Structure 

Table I1 gives the major goals and constraints in 
the PMS structure design. This section describes system 
configurations, the i/o system, the memory system, 
and computer-computer communication structures. 

System Configurations 
We wanted to give the user considerable freedom 

Processor-Memory-Switch. The PMS notation is a scheme for 
concisely representing the "block-diagram" level of computer orga- 
nization. Common abbreviations in PMS are P for processor, M for 
memory, S for Switch, K for control unit, C for computer. Abbrevi- 
ations may be quantified by lower case letters such as c for central 
(i.e. PC :=central processor), p for primary (i.e. Mp := primary 
memory), and s for secondary (i.e. Ms := secondary memory). For 
a complete description of the PMS notation see [3]. 
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in specifying a system configuration with the ability to 
increase (or decrease) memory size, processing power, 
and external interfaces to people, other computers, 
and real time equipment. Overall, the PMS structure 
has remained essentially the same as the PDP-6 design, 
with periodic enhancements to provide more perform- 
ance and better real time capability. (A PDP-6 memory 
or i/o device could be used on a KIlO processor, and a 
PDP-6 i/o device can be used on today's KLlO sys- 
tems.) A radical change occurred with the KL20 to a 
more integrated, less costly, design for the processor, 
memory, and minicomputer i/o preprocessors. 

The PMS block diagram of a two processor PDP-6 
is given in Figure 3. But, for simple uniprocessor 
systems, the PMS structure was quite like our small 
computers with up to 16 modules on both the ilo and 
memory buses: 

Mp ... Mp Kio- ... KMs ... 
I I I I 

(Memory Bus) (110 Bus) 

Interestingly, a unified i/o-memory bus like the 
PDP-11 Unibus was considered. The concept was 
rejected since a unified bus designed to operate at 
memory speed would have been more costly. 

The goal to provide arbitrary, modular computing 
resources led to a multiprocessor structure with shared 
memory. The interconnection between processors and 
memory modules was chosen to be a cross-point switch 
with each processor broadcasting to all memory mod- 
ules. 

An alternative interconnection scheme could have 
been a more complex, synchronous, message-oriented 

Fig. 3 .  PMS diagram for PDP-6 system. 
Memory Bus 200K wordslsec 
/ / 10 Bus 

words; 2p sec) 

16 Kc* - 

protocol on a single bus. More efficient cable utilization 
and higher bandwidth would have resulted but physical 
partitioning into multiple processor/memory subsys- 
tems for on-line maintenance would have been pre- 
cluded. All in all, the crosspoint switch decision was 
basically sound although more expensive. 

Figure 4 shows a PMS block diagram for the KAlO 
and KIlO. There can be up to 16, 65 Kword, 4-port 
memory modules, giving a total of one megaword of 
memory. (Each processor addressed four Mwords .) 
With high-speed disk and tape units (e.g. 250 Kwordsl 
sec.) a program controlled i/o scheme would place too 
much burden on the central processor. Therefore a 
direct port to memory was provided as in the PDP-6. 
In the KAlO/KIlO systems, a switch (called a multi- 
plexor) was introduced to expand the number of ports 
into memory to four for each Memory Bus used. The 
communications controllers were also expanded to 
handle more asynchronous and synchronous lines. 

The KLlO was, by comparison, a radical departure 
from previous PMS structures (see Figure 5).  In order 
to gain more performance, four words from four low 
order interleaved memory modules were accessed each 
cycle. The effective processor-memory bandwidth was 
thus over four Mwords/sec. The processor also con- 
nects to as many as four PDP-11 minicomputers 
(shown as C(11) in the figure). Most of the i/o is 
handled by these front-end computers. 

Each PDP-11 can access the KLlO memory via 
indirect address pointers and transfers data in much 
the same manner as the peripheral processing units of 
a CDC 6600. Notice also that the KLlO's console is 
tied to a PDP-11. This PDP-11 can load the KLlO 

Notes: 
C: =computer 
K: = controller 
Kc: = called ilo processor, 

actually a double buffer 
Mp: = primary (~rogram) memory 
Ms: = secondary memory 
T:  =transducer or terminal 
PC: = central processor 

K T  (paper tape reader) t Other 
Controllers for: 
cards, line printer, 

KT(paper tape punch) teletype, aldla 

K(communication) -n: 1 ) Serial telegraph terminal lines 
64  

I I 

1 T(monitor1 4 T(monitor1 ... -- 
1 Mdmagtape) - 8 Ms(magtape) - ... 

I I 

K(data control) 

Device Controllers 
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Fig. 4 .  PMS diagram for KAlO and KIlO processor-based system. 

Memory Bus 

UD t o  4 m  words / 
I n  K I  
(65K words) 

/ 
Switch t o  
multiolex 

Fig. 5 .  

4 w  
access 

several 
channels 

I10 Bus 

222K wordslsec on K A10 
370K wordslsec on  K I10 

Controllers for: 
cards, printer, teletype. 
plotter, aldla 

K(communication) ri iZ7} t o  terminals 

"Channels," i.e. data buffers 

PMS diagram for KLlO processor-based systems. 

1 m wordslseclbus 
110 bus. 370K wordlsec 

K 4 -  - 

1 

up t o  16 modules 
or 4m words PC 16x8 distributed 
(1.8 mips; 2K (via memory bus) 
word cache; 8x16 cross-point switch 
general registers) 

Communications 
of 
the ACM 

January 1978 
Volume 21 
Number 1 



microprogram memory, run microdiagnostics, and pro- 
vides a potential remotely operated console. Each of 
the PDP-11's can achieve a word rate of 70 Kcharlsec. 

Up to eight DEC Massbus controllers are integrated 
into the processor. The Massbus is an 18-bit data 
width bus for block transfer oriented mass storage 
devices such as disks and magnetic tapes. Each Mass- 
bus can transfer 1.6 Mwords/sec. yielding a maximum 
12.8 Mwords/sec. transfer rate for all channels. How- 
ever, contemporary disks need about 250 Kwords/sec. 
so that all eight channels only require 2.0 Mwords/sec. 
of the 4 Mwordlsec. memory bandwidth of 4 modules. 
Individual disks and tapes can be connected to a 
second port for increased concurrency. For larger 
memory configurations, a memory bandwidth of 16 
Mwords/sec. is not uncommon. A 2 Kword processor 
cache provides roughly a 90% hit rate and reduces 
memory bandwidth demand by nearly a factor of ten. 

The cost-reduced KL20 evolved by integrating the 
Massbus controllers and PDP-11 interfaces onto a 
single high-speed, synchronous bus. The model 2040 
and 2050 computers are based on the KLlO processor 
and integrate 256 Kwords of memory in a single 
cabinet with the processor (thereby eliminating the 
external Memory Bus). The 110 Bus is also eliminated 
and all i/o transfers are either via the Massbusses or 
the PDP-11 i/o computers. (It must be noted that the 
2040 structure is only possible because of the drastic 
increase in logic and memory density!) 

110 System 
Relatively low-speed i/o (200 Kwordslsec.) in the 

PDP-6 was designed to be under central processor 
programmed control rather than via specialized ilo 
processors (IBM System 3601370 Channels). This 
method had proven effective in our minicomputers 
and was extended to handle higher data rates with 
lower overhead than specialized i/o processors. 

The decision not to use the IBM-type channel 
structure was based both on high overhead (cost) in 
programming and hardware. Since i/o record transmis- 
sion usually caused a central processor action, we felt 
the processor might as well transfer the data while it 
had access to it. This merely required a good interrupt 
and context switching mechanism, not another special- 
ized processing entity. However, when an inordinately 
high fraction of the processor's time went to i/o proc- 
essing, a second, fully general processor was added- 
not a processor that was fundamentally only capable 
of data transmission. 

The PDP-6 interrupt scheme was based on our 
previous experience with a 16-level and 256-level 
interrupt mechanism for PDP-1. The PDP-1 scheme 
was an extension of the Lincoln Laboratory TX-2 [6]. 
The PDP-6 had a 7-channel interrupt system and each 
device on the 110 Bus could be programmed to a 
particular level. Hence a programmer could change 
the priority of a particular device that caused interrupts 

on the basis of need or urgency. The PDP-6 also had 
an i/o instruction (Block Input or Block Output) to 
transfer a single data item, between a block (vector) in 
primary memory and an i/o device. Thus as each word 
was assembled by a controller, an interrupt occurred 
and the block transfer was executed for one word, 
taking only three memory references (to the instruc- 
tion, to increment the address pointer and block 
counter, and to transfer data). Most of the hardware 
to control the count and address pointer was already 
part of the processor logic. 

In applications requiring higher data transmission 
(e.g. swapping drums, disks, TV cameras) a controller 
with a data buffer (erroneously called an i/o processor) 
and link to memory was provided. These controllers 
only required a single memory reference per data 
transfer with the address pointer and block counter in 
hardware. In the KAlO the name was changed to 
channel, and parameters for transferring contiguous 
records into various parts of memory were part of the 
channel's control. The device control was via the 110 
Bus, and hence we ended up with a structure for high 
speed device control not unlike the IBM channels we 
originally wanted to avoid. 

Competitive pressure from the Xerox Sigma series 
caused a change in the way interrupts were handled 
beginning with the KI10. Although the Xerox scheme 
had many priority levels, its main utility was derived 
from rapid dispatch to attend to a particular interrupt 
signal. We kept compatibility with the 7-channel inter- 
rupt by using a spare wire in the bus and adding the 
ability to directly dispatch to a particular program 
when a request occurred. At the interruption, the 
processor sent a signal to requesting devices and the 
highest priority device responded with a 33-bit com- 
mand (3-bit function, l&bit address, 12-bit data). The 
functions were: 1 .  Execute the instruction found at 
addressed location; 2. transfer a word tolfrom ad- 
dressed location; 3 .  trap to addressed location; and 4. 
add data to addressed location. Little use was made of 
these functions (especially number four), since only a 
small number of devices were typically connected to a 
large system thus relaxing the requirement of rapid 
dispatch. Anyway, the competitive problem was solved 
(or went away as Xerox left the competitive scene). In 
systems that did have a large number of devices, a 
front end i/o processing minicomputer was more cost- 
effective than central processor controlled i/o. 

Memory System 
Because it was unclear how memory technology 

would affect memory speed, a completely asynchro- 
nous, interlocked memory bus was designed. Thus the 
16 fast, general registers, the initial five microsecond 
memory, and the next generation two microsecond 
memory could all operate on a single system. (Most 
memories are now less than one microsecond cycle 
time.) The asynchronous bus avoided the problem of 
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Table V. Computer interconnection structures 

Scheme Data Rate Structure Models Examples 

Standard communica- 
tion link 

Special parallel, block 
transfer via hard- 
ware or software 

Multiprocessors 

Access into mini ad- 
dress space with in- 
terruption 

The mini can transfer 
data into large ma- 
chine via special 
control 

110, 300 
1200, 4800, 

9600, 50K 
bitslsec. 

100K-1M 
wordslsec. 

at mem. ac- 
cess rate 

at mem. ac- 
cess rate 

at mem. ac- 
cess rate 

network all 

tightly coupled all 

multiprocessor all 2 PC 
16 PC, proposed 

multiprocessor PDP-6 The large computer 
shared memory accesses data in the 

small computer 
tightly coupled KA10- Scheme used to inter- 

KLlO connect minis to do 
ilo. 

Multiple logical chan- 
nels are provided 

distributing a single high-speed clock and allowed 
interleaved memory operation. 

Modularity was also introduced to clarify organiza- 
tional boundaries within the company and to make 
possible low cost, special purpose, production and 
engineering testers for the memory and i/o equipment. 
We believe the concept of well-defined modules was 
relatively unique, especially for memory, and was the 
basis for the formation of third party add-on memory 
vendors. MIT and Stanford University purchased 
memories from Fabritek and AMPEX respectively in 
the mid 1960's to start this trend. (Note, this design 
style differed from the IBM System1360 design with its 
relatively bounded configurations and integrated 
memory. Add-on memory did not appear until the 
early 70's for the IBM machines because, we believe, 
of the difficulty of the interface definition.) 

The KIlO memory system was improved by assign- 
ing signals to request multiple, overlapped memory 
accesses and to increase the address size from 18 to 24 
bits. The additional physical memory addresses are 
mapped into a program's l&bit addresses via the core- 
held page table. 

The KLlO processor-memory organization was a 
significant departure from the KIlO as previously dis- 
cussed. The KL20 eliminated the original Memory 
Bus to provide an integrated system. It should be 
noted that this evolution was based on the drastic size 
reduction (a factor of about 300) from a single cabinet 
(6' X 1 9  x 25" or about 34,000 cu. inches) for 16 
Kwords to a single logic module for 16Kwords (15" x 
8" X 1" or about 120 cu. inches). 

PMS Structures for Computer-Computer Intercom- 
munication 

Throughout the evolution a number of schemes 
have been used to interconnect with other (usually 
smaller) computers. The schemes are given in Table 
V. Note that the first four schemes were conventional, 
while the last scheme was used in the KL10120 struc- 
ture so that an attached PDP-11 minicomputer could 
transmit data directly into the memory of the KL. This 

scheme was first used in the early 1970's for handling 
multiple communication lines. 

6.  Operating System 

PDP-6 Monitor Design Goals and Philosophy 
The initial goals and constraints for the user envi- 

ronment are summarized in Table 11. The most impor- 
tant goal was to provide a general-purpose timesharing 
system. The monitor was to allow the user to run in 
the mode most suited to his requirements, including 
interactive timesharing, real time, and batch. In time- 
sharing there was no requirement for a human operator 
per se. Instead, the operator's console was a user 
terminal with special privileges. Real time programs 
had to be able to operate ilo directly, locked in core, 
and batch was to be provided as a special case of a 
terminal job. 

Because of the modular expandability of the hard- 
ware structure, the software system had to be equally 
modular to facilitate varying system configurations and 
growth. The core resident timesharing monitor was 
only fixed at system generation (i.e. IBM's SYSGEN) 
time when software modules could be added to meet 
the system requirements. The core space required for 
monitor overhead had to be minimized. Thus job- 
specific functions were placed in the user area instead 
of in the monitor. The first 96 locations of each user 
job contained pertinent information concerning that 
job. A temporary area (stack) for monitor operations 
was also included. In this way, the monitor was not 
burdened with information for the inactive jobs. This 
structure permitted the entire job state to be moved 
easily. 

Adequate protection was to be given each user 
from other nonmalicious users. However the user was 
not protected against himself because various user 
status information in the job area could be changed to 
affect his own job. Since common system resources 
were allocated upon demand and deadlocks could 
occur, the term "Gentlemen's Timesharing" was 
coined for the first monitor. 
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Table VI. Monitor functions evolution. 

Facility PDP-6 (1964) KAlO (1967) KIlO (1972) KLlO (1975) 

Protection one segment per user two segments with shared 
program segment (re- 
quired reentrant p r e  
grams) 

core shuffling; with swap 
ping (via drum disk) 

four modes for shared seg- 
ments 

virtual machine with shared 
segments 

Program swapping 

Facilities allocator 

core shuffling paging used for core man- 
agement 

demand paging (job need 
not be wholly resident to 
run) 

devices assigned to users 
upon request (deadlocks 
possible + gentlemen's 
timesharing) 

round robin scheduler 

spooling of line printer & 
card reader 

spooling of all devices 

scheduler to favor interac- 
tive jobs using multiple 
queues 

fairness and swapping effi- 
ciency considerations 

parameters for scheduling 
set by system mgr.; 
priority job classes and 
"pie-slice" schedule 

disk head movement opti- 
mization: 

Scheduler 

User files user files on DECtape, 
Cards, and Magnetic 
tape 

significant enhancement of 
file function; on-line, 
random access disk-based 
files 

evolution to more power- 
ful, easier to use com- 
mand language 

remote & local single- 
stream batch 

synchronous communica- 
tions for remote job and 
concentrator stations; 
"birth" of networks with 
simple topologies; ARPA 
network 

dual processor support 
(master/slave) 

improved file structure re- 
liability, error recovery, 
protection and sharing; 
mountable structures 

Common Command Lan- 
guage (CCL) 

Command control 
program 

simple (to implement) re- 
quiring little state 

extensions to CCL 

Batch no real batch multiprogramming batch improved multiprogram- 
ming batch 

DECnet* communications Terminal handling 
& communica- 
tions 

asynchronous task-to-task 
communications (for in- 
teractive terminals) as 
monitor module 

synchronous communica- 
tions in complex topole  
gies; new protocol; IBM 
BISYNC for 2780 emu- 
lationltermination 

Multiprocessing high availability through 
bus switching hardware 

symmetric multiprocessing 

* DECnet is DEC's computer network protocols and functions. 

The UUO (Unimplemented User Operation), or 
system call instruction, provided both monitor-user 
communication and upward hardware compatibility. 
In the latter case, the instruction would use the hard- 
ware if available, otherwise the instruction would trap 
to the monitor for execution. For example, double 
precision hardware was available on later CPU models. 
The number of UUOs implemented in the monitor for 
monitor-user communication has been significant. The 
initial use of UUO's included requests for: core, i/o 
assignment, ilo transmission, file control, data and 
time, etc. 

Fig. 6. Monitor and main utilities program size versus time. 

PDP-6 Monitor 
The Monitor was the name given to a collection of 

programs that were initially core resident and provided 
overall coordination and control of the operating envi- 
ronment. A nonresident part was later added with the 
advent of secondary program swapping and file mem- 
ories (i.e. drum and disk). The Monitor did not include 
utilities, languages, and their run time support. 

The PDP-6 Monitor was constrained to run in a 16 
Kword (minimum) machine with console printer, paper 
tape reader (for maintenance) and two DECtape units. 
DECtape was a 128 word/block, block addressable 
medium of 450 Kcharacters for which a file system 
was developed. Memory minimizing led to very sparing 
use of shared tables. The key global variable data was 

o r : : : : : : : : : : : :  
1965 67 69 71 73 75 77 

time (year1 

restricted to: core allocation table, clock queue, job 
table, linked buffers for Teletype and other buffered i/ 
o devices (e.g. DECtape directory), and a directory of 
system programs and monitor facilities. 

The original PDP-6 Monitor was less than six 
Kwords. The monitor has increased at about 25%/ 
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year with the KAlO at 30 Kwords, KIlO and 50 
Kwords, and KLlO at 90 Kwords (see Figure 6). This 
increase provided increased functionality (e.g. better 
files, batch, automatic spooling), larger system config- 
uration size, more ilo options, increased number of 
jobs, easier system generation, and increased reliability 
(e.g. checking, retries, file backup). 

Note that with a 16 Kword memory, a nine Kword 
Fortran compiler with five Kword runtime package, 
and one Kword utility programs, two users could 
simultaneously reside in PDP-6 memory and use the 
machine for program creation and checkout. By keep- 
ing the monitor program size small, subsequent func- 
tionality increases kept the monitor module sizes in 
bounds such that program swapping was reduced. This 
provided high performance for a given configuration 
with little monitor overhead. 

Monitor Structure 
Table VI summarizes the development of the mon- 

itor with the various systems. The facilities are ar- 
ranged beginning with basics. The following sections 
will deal with the various facilities, in turn. Memory 
Protection Swapping -the basic environment was dis- 
cussed above in the ISP section on Multiprogramming1 
Monitor Facilities. Facilities Allocator -The Facilities 
Allocator was a module called from a console or 
program for an ilo device or memory space request. 
This module would attach (or assign) a given peripheral 
or contiguous physical memory area to a given job. 
Although this module was relatively trivial initially, it 
evolved to a more complex module since improper 
resources allocation caused deadlocks. 

The KAlO generation software introduced queued 
operation. A line printer (output), paper tape (input1 
output) and a card reader (input) spooler were imple- 
mented. These spoolers ran as timeshared jobs, ac- 
cepted requests from other user jobs and managed the 
inputloutput operation. 

Program Scheduler - the scheduler was invoked by 
line frequency (50 or 60 Hz) interrupts to examine run 
queues and to determine the next action. The first 
monitor employed a round-robin scheduling algorithm. 
At the end of a given time quantum of 500 millisec- 
onds, the next runnable job was run. A job was 
runnable if not stopped by the console and when not 
waiting for i/o. 

Because terminal response time is the user's mea- 
sure of system effectiveness, subsequent scheduler im- 
provements have favored interactive jobs. With the 
KA10, separate priority queues were added so that 
jobs with substantial computation were placed in the 
lowest priority and then run the longest without inter- 
ruption. This, in effect, approximated batched opera- 
tion; for example, jobs from a card reader would 
operate as a batch stream. Later, batch operation was 
added for interactive users. 

The introduction of diskldrum swapping caused 
additional complexities since runnable jobs might be 

located in secondary memory. The concept of "look 
ahead" scheduling was required and a more complex 
queueing mechanism was implemented. As the monitor 
selected the next job to be run, it would "look ahead" 
to determine future queues, and invoke the swapping 
module if required to move a runnable job into core. 
Because of the higher swapping overhead it was essen- 
tial to run large jobs longer and less often. A "fairness" 
consideration also assured that each job, whatever its 
size, received enough run time to maintain responsive- 
ness. 

Recent enhancements permitted a Systems Man- 
ager to set scheduling parameters including established 
priorities of job classes. A "pie-slice" where classes of 
users are guaranteed fixed parts of the machine time 
and resources. 

User Files and 110 Device Independence-in the 
initial PDP-6 design, resources such as magnetic tapes, 
unit record devices (e.g. card readers, line printer, 
paper tape readerlpunch) and DECtapes (which were 
file structured) were requested by each user as they 
were required. The monitor allpcated the device to a 
requesting given job until released. 

110 calls were evoked by the UUO call instructions. 
A particular device program call could specify the 
number of i/o buffers to provide so that arbitrary 
amounts of overlapped ilo and computing could be 
realized. 

In order to realize the goal of modularity, each i/o 
device handler was implemented as a separate module. 
These modules used a common set of subroutines. The 
device tables were made as identical as possible to 
help achieve the device independent goal. Thus, a user 
specified an i/o channel, not a specific i/o device. The 
channel to name assignment could take place at various 
times from log-on to program run-time. 

In the original monitor, a user was allowed to 
assign file devices to his job and read and write named 
files with the devices. Permanent, one-line user files 
with automatic backup were not implemented until the 
KAlO generation monitors. The concept of Project1 
Programmer Number was adopted (after MIT's c ~ s s )  
in order to provide increased file security and sharing. 
A user was required to enter a projectlprogrammer 
number with his associated password. This not only 
established a job, but identified the user to the moni- 
tor. In addition to having resource privileges associated 
with better ID numbers, the user received a logical 
disk area for files. File access can be allowed (by the 
creator of the file) to any of the following levels with 
decreasing protection (increasing privileges): no access; 
execute only; plus read; plus append; plus update; 
plus write; plus rename; plus alter protection. 

Significant evolution occurred in the user file facil- 
ity. Improved file structure reliability and error recov- 
ery (such as writing pointer blocks twice) were 
achieved. With moving head disk availability, disk 
head movement optimization for file transfers on single 
or multiple drives was added. The concept of "mount- 
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able" structures was implemented to allow disk packs 
to be mounted and dismounted during timesharing 
operation as well as allowing a user to have a "private" 
pack mounted. As the number of users supported on 
the system and the diversity of their applications grew 
to include "business data processing" both hardware 
and software allowed expansion of the number and 
capacity of on-line disks. 

Command Control Program -this program proc- 
esses all commands addressed to the system from user 
terminals. Thus terminals served to communicate mon- 
itor commands to the system, to communicate to the 
user programs, and to serve as an i/o device for user 
programs. Terminal handling routines were an integral 
part of the PDP-6 Monitor. The original commands 
were designed to minimize the amount of state in the 
Monitor. As a result, users had to type several com- 
mands to control programs. A much more powerful 
command language evolved. 

Batch Processing 
Batch processing has evolved from the original, 

fully interactive PDP-6, where a user was expected to 
interactively provide commands for each step in the 
generationlexecution of a program. The first batch on 
the KAlO was based on a user-built command file that 
mimicked his terminal actions. The user invoked this 
command file to execute his programs. Later, a multi- 
programmed batch system was added and the job 
control syntax evolved to provide more functions per 
command. However, batchlinteractive command com- 
monality has been preserved through the current mon- 
itor versions. Still, batch control ran as a timeshared 
job using queued batch control files. Thus, the ability 
to log in a job, run to completion, and log off, is 
accomplished from a card reader, or any other storage 
or file device. Symbiant (queued) operation allowed 
control of card readers, line printers, etc., by the 
batch control program so that the machine could be 
scheduled more effectively. During this batch evolu- 
tion, little monitor enhancement was necessary to 
specifically address the batch environment. Modules 
to improve efficiency (by multiple strands and better 
scheduling) and increase functionality were imple- 
mented as "user7' jobs and interprocess queueing al- 
lowed communication between the "user" modules. 

A line printer spooler, for example, was run as one 
of many jobs by the operator-a notion that evolved 
beginning with the KA10. If a special form was re- 
quired for a print job, the operator would be notified 
and act accordingly. The user was relieved of this 
responsibility. Operator allocation, control, and media 
loading of the card reader, magnetic tape, private disk 
pack, DECtape, and plotter were provided in the 
KI10. 

Terminal Handling and Communications -we be- 
lieve the users' perception of system effectiveness 
related directly to his feeling that he was interacting 
and was in control. The requirement to communicate 

effectively with the user via the terminal was one of 
the most difficult design constraints. The very first 
version of the Monitor used half duplex communication 
for simplicity. But finally we decided to pay the addi- 
tional price to gain the benefit of full duplex commu- 
nication, i.e. being able to continuously input and 
output independent of system load. These philosophies 
have guided subsequent monitor generations. 

A hardware module was constructed to facilitate 
terminal communication. This hardware was called the 
scanner because it looked at all the interface lines 
connected to Teletypes and interrupted the software 
when a character was received or needed to be trans- 
mitted. These line units, which we built on a single 
card, formed the basis of the UART (Universal Asyn- 
chronous Receiver Transmitter) LSI chip. A software 
monitor, called SCNSER (Scanner Service) handled in- 
terrupts from the hardware. SCNSER provided the im- 
portant function of logically coupling a physical termi- 
nal with a job running under timesharing. The user 
was never burdened with attempting to relate his 
terminal with his job. This software module, by far the 
most logical complex part of the monitor has been 
rewritten two times to increase terminal functionality. 

Later the KAlO terminal interface was imple- 
mented via a "front end" concentrator PDP-8 com- 
puter for large numbers of terminals-particularly 
where variable line speeds were involved (up to 300 
baud). This implementation allowed some off-loading 
of the processor. Characters were assembled (serial 
parallel conversion) in the front-end PDP-8 and com- 
municated with the KAlO via the 110 Bus on an 
interrupt basis. 

In 1971 a front-end PDP-11 was provided direct 
memory access over the 110 Bus. This connection 
provided high speed, full-duplex, synchronous com- 
munications and was the prototype for the current 
KLlOIPDP-11 front-end computer. Software modules 
were added to the Monitor to allow these synchronous 
lines to terminate remote PDP-8 and communication 
concentrator stations in simple point-to-point topolo- 
gies. A remote station (e.g. line printer) is viewed by 
the user in the same manner as is a local printer. 

With the KI10, a second front-end was produced 
which allowed BYSINC protocol of the IBM 2780 ter- 
minal to be used. However, most of our users were 
laboratory oriented and wanted greater performance 
and functionality. Thus, concentrator/remote station 
capability including route-through (i.e. communication 
via multiple concentrators) and multiple hosts was 
added. These formed the basis of some of our under- 
standing for subsequent DECnet protocol standards 
and functions. The use of DECsystem 10 in the Ad- 
vanced Research Projects Agency (ARPA) funded 
projects formed another key base for our DECnet 
protocols and functions [12]. 

DECnet 10 now provides the capability to have 
processes in different computers (including PDP-8's 
and PDP-11's) communicate with each other. These 
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jobs appear to each other as i/o devices in the simplest 
applications. 

Throughout all of this communications functionality 
evolution, the goal has been to free the user from 
concern with the link, communications mode, hard- 
ware location, and protocol. 

Multiprocessing 
Although we predicated the original PDP-6 hard- 

ware on multiprocessing, the monitor was not designed 
explicitly for it. Lawrence Livermore Laboratory did 
build a two processor system with their own operating 
system and special segmentation hardware. To meet 
the needs of the predominately scientific/computation 
marketplace in achieving higher processor throughput, 
a dual-processor KAlO was implemented using a mas- 
terlslave scheme with wholly shared memory and one 
monitor. The slave CPU scanned the queue of runnable 
jobs, selected one and ran it., If a monitor call was 
encountered, the job was placed in the appropriate 
queue and the monitor located another runnable job. 
The "master" handled all i/o and privileged operations. 
In a CPU-bound environment, the dual processor 
provided approximately a 70% increase in system 
throughput. 

An off-shoot (and evolved design goal) of the dual 
processor implementation was higher availability. 
Monitor reconfigurability and bus switching hardware 
allowed redundant components to be fully utilized 
during normal operation and, in the case of a hardware 
malfunction, separated into an operating configuration 
(with all available ilo) and a maintenance configuration 
(consisting of CPU, memory, and the faulty compo- 
nent). 

At Carnegie-Mellon University (CMU) we pro- 
posed to build a 16 to 32 PDP-10 structure [2]. It 
would have 16 Mwords of primary memory available 
via 16 ports at a bandwidth of 2.1 to 8.6 gigabitslsec. 
Using larger than KLlO processors, performance 
would have been over 50 mips (million instructions 
per second). The 16 processor, C.mmp [13] based on 
PDP-11's at CMU is a prototype of such a system. 

Languages and Utilities 
Monitor commands called the utilities and lan- 

guages. The utilities, we called CUSP (for Common 
User System Program), and languages included: EDIT, 
an editor for creating and editing a file from a user 
console; PIP, the peripheral interchange program to 
convert information among the i/o media and files; 
LOADER to load object modules; DESK, an interactive 
calculator; MACRO, an assembler; and Fortran 11. Fig- 
ure 1 shows these programs at various times, together 
with their origins. 

Utilities and languages have taken advantage of 
the interactive, terminal-oriented environment. Thus 
highly interactive editingldebugging facilities have 
evolved in terms of the program's own symbols. The 
fileldata transfer utility, PIP, for Peripheral Interchange 

Program, is still in existence today, although in a much 
enhanced form. It has since been expanded to support 
the peripheral devices and the data formats encoun- 
tered in the DECsystem-10 memory and ilo devices. 
Such a utility eliminated the need for a "library" of 
utilities and conversion programs to transfer data be- 
tween devices. Such tasks as card-to-disk, card-to-tape, 
tape-to-disk, etc., conversion are controlled by a ter- 
minal using common PIP commands. PIP evolved in a 
somewhat ad hoc fashion from one or two Kword size 
in 1965 to ten Kwords with substantial generality. 

A powerful and sophisticated text editor, TECO 

(Text Editor and Corrector) was initially implemented 
at MIT using a graphics display. TECO is character- 
string oriented and requires a minimal number of 
keystrokes to execute commands. It included the ability 
to define programs to do general string substitution. 
As the sophistication of users was later perceived to 
decline, the powerful editor created training and use 
problems. Thus a family of line- and character-oriented 
editors evolved which were easier to learn and remem- 
ber. These were based on other line-oriented editors, 
but especially Stanford's sos, which replaced the initial 
DEC line editor in 1970. 

Many of the higher level languages were initially 
produced by non-DEC groups and made available 
through the DEC User Society (DECUS). For example, 
APL, Basic, DBMS and IQL (an interactive query lan- 
guage) were purchased from outside sources and are 
now standard, supported products. 

BLISS, Basic Language for Implementing System 
Software, developed at Carnegie-Mellon University, 
became DEC's systems programming language [14]. 
A cross-compiler was subsequently developed for the 
PDP-11. Its' use as a systems program language has 
been due to the close coupling it provides to the 
machine, its general syntactic and block structures, 
and its high quality code generator. BLISS has been 
used for various diagnostic programs, the BLISS Com- 
pilers, the PDP-10 APL Interpreter, recent Fortran 
IV compilers for both PDP-10 and PDP-11, and the 
Basic + 2  system. BLISS has also been used extensively 
within DEC for Computer Aided Design Programs. 

Tenex and the TOPS 20 Operating System 
Bolt, Beranek and Newman started a project in 

1969 to build an advanced operating system called 
Tenex based on a modified KAlO (including rather 
elaborate paging hardware). This work was influenced 
by both the Berkley SDS 940 and MIT Multics Sys- 
tems. Subsequently Tenex influenced and improved 
the KIlO design and became the base of TOPS 20. The 
system was described by Bobrow et a1 [4], and the 
three major goals stated in the reference were: 

I .  State of the Art Virtual Machine 

a .  Paged virtual address space equal to or greater 
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than the addressing capability of the processor 
with full provision for protection and sharing. 

b. Multiple process capability in virtual machine 
with appropriate communication facilities. 

c. File system integrated into virtual address 
space, built on multilevel symbolic directory 
structure with protection, and providing con- 
sistent access to all external i/o devices and 
data streams. 

d .  Extended instruction repertoire making availa- 
ble many common operations as single instruc- 
tions. 

Good Human Engineering Throughout Systems 

An executive command language interpreter 
which provides direct access to a large variety 
of small, commonly used system functions, and 
access to and control over all other subsystems 
and user programs. Command language forms 
should be extremely versatile, adapting to the 
skill and experience of the user. 

Terminal interface design should facilitate inti- 
mate interaction between program and user, 
provide extensive interrupt capability, and full 
ASCII character set. 

Virtual machine functions should provide all 
necessary options, with reasonable default val- 
ues simplifying common cases, and require no 
system-created objects to be placed in the user 
address space. 
The system should encourage and facilitate 
cooperation among users as well as provide 
protection against undesired interaction. 

111. The System must be Implementable, Maintaina- 
ble, and Modifiable 

a .  Software must be modular with well defined 
interfaces and with provision for adding or 
changing modules clearly considered. 

b. Software must be debuggable and reliable, 
allowing use of available debugging aids and 
including internal redundancy checks. 

c. System should run efficiently, allow dynamic 
manual adjustment of service if desired, and 
allow extensive reconfiguration without reas- 
sembly. 

d .  System should contain instrumentation to 
clearly indicate performance ." 

Dan Murphy (one of Tenex's designers/implemen- 
ters) came to DEC and led the architecture and devel- 
opment effort that produced TOPS 20. The effort at 
DEC has been to increase the performance of TOPS 20 

to be competitive with the highly tuned Monitor while 
not losing its generality. The TOPS 20 structure does 
provide increased reliability and modifiability. 

7. Hardware Implementation 

While logic and memory technology are often the 
prime determinant of the performance and cost of a 
computer system, fabrication and packaging technol- 
ogy are equally important. This section surveys logic, 
fabrication, and packaging technology as it affected 
the various DECsystem 10 models. Table VII summa- 
rizes the various technologies. 

Logic 
The PDP-6 used a set of logic modules that evolved 

from the earlier PDP-1, which in turn were derived 
from the Lincoln Laboratory circuits developed for the 
TX-0 181 and TX-2 [6, 111 computers as part of the air 
defense -program. These circuits were direct coupled 
transistor logic and included both series and parallel 
transistor circuits to give great flexibility in designs. 
The PDP-1 circuits operated at a 5 mHz clock, and 
new transistors enabled the PDP-6 circuits to operate 
at 10 mhz. The computer's clock was derived from a 
delay line which carried pulses generated by a pulse 
amplifier using pulse transformers (this too came from 
Lincoln Laboratory via the early work at MIT on 
radar and pulse transformers). The pulses were used 
for register transfer operations (i .e. moving data among 
the registers) and some logic gating. 

Instead of using a small number of lines in a fixed, 
synchronous clock, many delay lines were used. The 
route through the control path determined the state of 
the machine. At each decision point, the next line or 
chain (set of lines) was selected. Hardware subroutines 
were also unique with this implementation. A control 
sequence consisting of a set of delay lines was defined 
as a subroutine and a calling module marked the 
calling site (e.g. add, subtract, and complement are at 
the lowest level). The basic multiply subroutine used 
add or subtract, and finally floating multiply used the 
normalize, and multiply subroutines. In this way, the 
implementation was kept structured and turned out to 
be quite straightforward. The flowcharts for the PDP- 
6 were only 11 pages, where each page has about 25 
unique statements (actions), yielding a total of only 
250 microsteps (each step causes 1 to 6 operations and 
corresponds roughly to current microprogram state- 
ments). The asynchronous adder was designed so that 
on completion of all the carries, the sequence would 
restart. Thus we took advantage of the observation 
made by von Neumann, et a1 in 1946, [3, ch. 41 that 
the average number of carries is log, 36 or slightly 
over 5 ,  versus the worst case of 36. And since the 
average delay time was about 20nsec per carry, this 
reduced the average add time to only lOOnsec versus 
720nsec, yielding a very simple and fast circuit. 

The KAlO used essentially the same circuitry but 
with significantly better packaging so that automatic 
wire wrap backpanels could be used. Note that in 
Table VII, the existence of certain semiconductors was 
the basis of new machines. The TTL/H series logic 
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appeared about 1969 and formed the basis of a ma- 
chine (the KI10) with roughly the same power dissipa- 
tion and physical size as a KA10, but with a factor of 
2.2 more performance. In scientific applications requir- 
ing double precision computation, this performance 
differential is much greater. Ironically, the TTLI 
Schottky (TTLIS) series was first available in produc- 
tion quantities about the time of the delivery of the 
KI10. The KIlO design was started earlier and design 
options chosen so as to preclude the subsequent ad- 
vances in speed, power, and density that the TTLIS 
gave. 

The other important logic advances employed in 
the KIlO were the MSI register file and associative 
memory packages. The register file provided four sets 
of accumulators and thus decreased the context switch- 
ing time. (This probably had a higher psychological 
than real value but was useful where special devices 
were operated on a high speed, real time basis.) The 

Table VII. Implementations for DECsystem 10 hardware. 

associative memory package permitted the construction 
of a 32 word associative memory to support a paged 
environment. 

The KLlO provides almost a factor of five perform- 
ance improvement over the KAlO for programs using 
the basic instruction set. An even larger perfor~flance 
improvement is realized for Cobol or extended preci- 
sion scientific programs. The organization and much 
of the base work for the KLlO was done by Dave 
Poole, Phil Petit, John Holloway, and Jack Wright at 
the Stanford Artificial Intelligence Laboratory. 

The KLlO is microprogrammed using a memory 
based on the one Kbit bipolar RAM. A cache memory 
is also constructed from the one Kbit chips. The KLlO 
is implemented in the Emitter Coupled Logic (ECL) 
10K series rather than the TTLISchottky of the original 
Stanford design. It was felt that the ECL speed advan- 
tage with 3 nsec. gate delay vs 7 nsec. for Schottky 
was worth the extra design effort especially since the 

Processor PDP-6 KAlO KIlO KLlO 

Design start 3/63 
First ship 6/64 
Logic Germanium, Silicon 

transistors 
MIPS(avg .) 0.25 
Packaging (slice 1-bit of AR, MB, MQ, 

of PC) AD:88 transistors, 2- 
sided PC etch; 2, 18- 
pin & 2-22-pin conn. 
(11" x 9" boards) 

PC. size 2 bay 

1/66 
9/67 
Discrete Silicon transis- 

tors and diode 
0.38 
implemented in R,  S, 

W-series flip chip (dis- 
crete) modules (5'12 
x 5l/4 boards) 

2 bavs 

12/69 
5/72 
TTL/H (MSI) Registers; 

assoc. memory 
0.72 
implemented in R, S, 

W, M-series flip chip 
(discrete + MSI) 
modules S1/2 x 5l/4 
boards 

2+ bavs 

1/72 
6/75 
ECL 10K; Fast, 1 Kbit memories 

1.8 
6-bits of AR, ARX, MQ, BR, BRX, 

AD, ADX:70 MSI ECL per mod- 
ule; 216 pin connector; (8" x 16" 
boards) 

' 1 2  bay (including, internal channels) 

PC. price $120K $150K $200K 
Control Design async. & subroutine same as PDP-6 clocked sync. 

logic 

$250K 
KL20 is clocked sync.; micropro- 

grammed 

Module Size large modules small modules wire wrap same 

Registers 16 16 4 x 16 

large modules (16 Kword core mem- 
ory module) 

8 x 16 

110 calls prog. interrupts UUO 
traps; 

110 transmission I/O & Memory Bus 

Memory Manage- 18-bit phys. addr. pro- 
ment tection & relocation 

regs. 
ISP see Table I11 (integers, 

floating) 
Parallelism 

same 

added channels 

2 protection & reloca- 
tion regs. for shared 
program segments 

conversion to assist d .p. 
float 

simpler (faster) data 

vectored interrupts 

integrated controller for MASSBUS; 
110 via PDP-11 computers 

22-bit phys. addr; paged 22-bit phys addr. paged, using asso- 
using 32 word associ- ciative memory via cache 
ative memory 

hardware d.p. float string & conversion for d.p. integers 

instruction look-ahead instruction look ahead; 2 Kword 
~ a t h  (4-word) fetch cache memorv 

- - 

Fabrication (too) large modules Gardner-Denver auto- semiautomatic wirewrap large (hex) mod- (KL20) integrat- 
matic wire wrap for for twisted pair ules with many ing PC and Mp 
backpanel intercon- pins; low cost together - 
nection minis front end eliminating 

Memory Bus* 
high density 
core memory 
modules 

Consequences served as PDP-10 pro- buildable in production more performance (sci- more perform- lower cost 
duction prototype entific & real time); ance via cache; 

and paging for opera- micropro- 
ting systems gramming for 

better COBOL 
ISP; i/o com- 
Duters 
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ECL needed more power and care to layout the board 
and backplane. 

Fabrication 
The Gardner-Denver automatic wirewrap machine 

was significant in the fabrication of machines. Auto- 
matic wirewrap economically provided accurately 
wired backpanels. As a more important side effect, it 
made the high volume, low cost fabrication of mini- 
computers possible! Some backpanel wiring on the 
KIlO and KLlO processors using twisted pairs cannot 
be done using the Gardner-Denver machinery. For 
this, DEC developed a semiautomatic wirewrap ma- 
chine which locates the pins, and selects the wire 
length for an operator. 

Computer design aids have evolved to support 
computer implementations on an "as needed" basis, 
barely keeping ahead of the implementations. These 
have included printed circuit board layout/routing, 
backplane layoutlrouting, circuit/logic simulation, wire 
length/logic delay checking, and various manufacturing 
aids. One notable exception to this trend has been the 
Stanford University Drawing System (SUDS) developed 
by the Stanford Artificial Intelligence Laboratory. SUDS 

was used for drawing the entire KLlO design. The 
design time and cost would have been significantly 
greater if SUDS had not been available. 

Packaging 
Semiconductor density is a major determinant of 

the system size, and size in turn is a major determinant 
of speed (e.g. shorter interconnection paths). Seymour 
Cray has stated in a lecture at Lawrence Livermore 
Laboratory (Dec., 1974) that for each generation of 
his large computers, the density has improved by a 
factor of five. 

The packaging for the PDP-6 was identical to that 
of the PDP-1,4, and 5 and used a board area of about 
40 sq. in. with a 22 pin connector. A logic density 
improvement of two was achieved over the previous 
designs by using six special function modules. However 
this density turned out to be too high for the number 
of pins. A natural extension was a board twice as large 
with 44 pins. The most interesting module was the bit 
slice of the working registers: accumulators, multiplier- 
quotient, and memory buffer. This module required 
more than 44 pins, so the extra signals were bused 
across the back of the module. This busing increased 
module swap time and the mechanical coupling in- 
creased the probability that fixing one fault would 
cause another. Because of this, the designers of the 
KAlO and KIlO became fearful of large boards. Only 
with the KLlO in 1972 were large boards reintroduced 
into the DECsystem 10. On the other hand, large 
boards had been used in DEC minicomputers since 
1969. Multilayered boards were required for the KLlO 
ECL logic. These boards were adapted from the mul- 
tilayered boards developed for the TTL/S PDP-11/45 
(1972). 

PriceIPerformance 
Surprisingly, over time the various models of the 

DECsystem 10 have been implemented at an essen- 
tially constant cost. The option to apply technology at 
constant performance with reduced price was never 
examined as an alternative strategy. In the minicom- 
puter part of the company, both alternatives were 
vigorously pursued in order to provide a growing 
business and stimulate design alternatives. The rela- 
tively static DECsystem 10 strategy with constant 
price, no doubt, stems from the highly coupled inter- 
action of: builders (wanting to go on to provide the 
next highest level of performance which was the found- 
ing principle of the group); the salespeople (many of 
whom came from other companies and are only used 
to working with a particular user class); users (who 
want more performance so as to reduce their overall 
cost/performance ratio); and marketing (which inte- 
grates needs and alternatives). This is illustrated in 
Figure 7. Here we give the performance in terms of 
the number of general purpose users versus the system 
price. 

Figure 8 gives a single price of the system for each 
generation, together with the percentages going of 
each for the system components. The best costlper- 
formance systems are shown (except, in the case of the 
minimal PDP-6). Figure 9 gives the price of the various 
processors versus time for the family; note the proces- 
sor price has been increasing roughly at the inflation 
rate, suggesting a manpower intensive (or service-type) 
market structure. Note that since the performance 
(Table VII) has improved at roughly a factor of 10 in 
10 years, the increase in performance/cost is nearly 

Fig. 7.  Performance (in general purpose users) versus price for 
each generation. 
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20% per year. In contrast, a minicomputer line (con- 
stant performance) is plotted which shows the price 
decreasing at 21% per year, with a factor of 10 price 
decline in 10 years. We should ask: could a PDP-6 
level processor be built in 1975 to sell for $10K? 
Clearly it could, and such a system has been built as 
an advanced development project. This small 10 has a 
unified bus structure like the PDP-11 with a connection 
to use the Unibus family i/o devices. A system with 
512 Kwords and the performance of greater than a 
KAlO occupies a cabinet somewhat smaller than an 
11/70 minicomputer. 

Figure 10 shows how the price of memory has 
decreased with time. Note that even though there was 
growth in the memory size of the monitor of 25%/ 
year, there was a positive improvement in the memory 
price performance. In reality, many functions which 
the user was explicitly responsible for were moved to 

Fig. 8 .  System component prices versus generation 

KLlO 

Generation 

Fig. 9. DECsystem 10 processor price versus time. 

the monitor as basic operations. A similar plot for 
secondary memory prices is given in Figure 11. 

Conclusions 

We believe the existence of the DECsystem 10 has 
been beneficial to the many environments for which it 
has provided real time and interactive computation, 
including the computer science and computer engineer- 
ing communities. In turn, we have tried to respond to 
the needs of these users. Its existence has also been a 
positive force in encouraging alternative, competitive 
products in what otherwise might have been a dull, 
batch environment. The system has also been used by 
and influenced minicomputer, and now microcomputer 
development including: hardware technology (e.g. 
wirewrap); support for machine development (includ- 
ing simulation); and examplary design leading to time- 
sharing systems (e.g. DEC's TSS/8, RSTS) and user 
environments (e .g. RT-11 and microcomputer sys- 
tems). 

Fig. 10. DECsystem 10 primary memory price per word versus 
time. 
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Fig. 11. DECsystem 10 secondary memory price per Mwords versus 
time. 
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