
Computer
Systems

G . Bell, S . H. Fuller, and
D . Siewiorek, Editors

The Evolution of the
DECsystem 10
C. G. Bell,
Digital Equipment Corporation, Maynard,
Mass. and Carnegie-Mellon University,
Pittsburgh, Pa.

A. Kotok, T. N. Hastings, and R. Hill
Digital Equipment Corporation, Maynard,
Mass.

The DECsystem 10, also known as the PDP-10,
evolved from the PDP-6 (circa 1963) over five
generations of implementations to presently include
systems covering a price range of five to one. The
origin and evolution of the hardware, operating
system, and languages are described in terms of
technological change, user requirements, and user
developments. The PDP-lo's contributions to
computing technology include: accelerating the
transition from batch oriented to time sharing
computing systems; transferring hardware technology
within DEC (and elsewhere) to minicomputer design
and manufacturing; supporting minicomputer
hardware and software development; and serving as a
model for single user and timeshared interactive
minicomputer/microcomputer systems.

Key Words and Phrases: computer structures,
architecture, operating system, timesharing

CR Categories: 4.32, 6.21, 6.3

1 . Introduction

The project originating the PDP-6, DECsystem 10,
and DECsystem 20 series of scientific, timeshared
computers began in the spring of 1963, and continued
with the delivery of a PDP-6 in the summer of 1964.
Initially, the PDP-6 was designed to extend DEC's
line of 18-bit computers by providing more perform-
ance at increased price. Although the PDP-6 was not

Copyright 0 1977, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part of
this material is granted provided that ACM's copyright notice is
given and that reference is made to the publication, to its date of
issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery.

Author's address: Digital Equipment Corporation, 146 Main
Street, Maynard, M A 01754.

constrained to be a member in a family of compatible
computers, the series evolved into five basic designs
(PDP-6, KA-10, KI-10, KL10, and KL20) with over
700 systems installed. The notions and need for com-
patibility were neither understood at the initial design
time nor did we have adequate technology to undertake
such a task. Each successive implementation in the
series has generally offered increased performance for
only slightly increased cost. Currently, the KLlO and
KL20 systems span a 5 to 1 price range.

TOPS-10, the major user software interface, devel-
oped from a 6 Kword monitor for the PDP-6. A
second user interface, TOPS-20, introduced in 1976
with upgraded facilities is based on multiprocess oper-
ating systems advances.

The paper is divided into seven sections. Section 2
provides a brief historical setting followed by a discus-
sion of the initial project's goals, constraints, and basic
design decisions. The instruction set and system orga-
nization are given in Sections 4 and 5 respectively.
Section 6 discusses the operating system while Section
7 presents the technological influences on the designs.
Sections 4 to 7 begin with a presentation of the goals
and constraints, proceed to the basic PDP-6 design,
and conclude with the evolution (and current state).
We try to answer the often asked questions "Why did
you do . . .?", by giving the contextual environment.
Figure 1 helps summarize this context in the form of a
time line that depicts the various hardwarelsoftware
technologies (above line) and when they were applied
(below line) to the DECsystem 10.

2. Historical Setting

The PDP-6 was designed for both a timeshared
computational environment and real-time laboratory
use with straightforward interfacing capability. At the
initiation of the project, three timeshared computers
were operational: A PDP-1 at Bolt, Beranek and
Newman (BBN) which used a high-speed drum that
could swap a 4 Kword core image in one 34-millisecond
revolution; an IBM 7090 system at MIT, called CTSS,
which provided each of 32 users a 32 Kword environ-
ment; and an AN/FSQ-32V at SDC which could serve
40 simultaneous users.

The Bell Laboratory's IBM 7094 Operating System
was a model operating system for batch users. Bur-
roughs had implemented a multiprogrammed system
on the B5000. Dartmouth was considering the design
of a single language, timesharing system which subse-
quently became Basic. The MIT Multics System, the
Berkeley SDS 940, the Stanford PDP-1 based time-
shared system for computer aided instruction, and the
BBN Tenex System all contributed concepts to the
DECsystem 1 0 evolution in the 1960's.

In architecture, the Manchester Atlas [3, ch. 231
was exemplary, not because it was a large machine

Communications January 1978
of Volume 21
the ACM Number 1

Fig. 1. Time line diagram of DECsystem 10 evolution.

I
158 160 162 164 166 168 170 , 172 174 176 I

2nd Generation 3rd ene era ti on 4th 2 Proc. inRn A ..- ." . ---
Earlyllate - I

3rd generation 1060
- 2 Proc.

DECsystem 10 - K l l O
family tree

2040
Earlyllate DECsystem-10 - 2 Proc.
2nd generation

KAlO
PDP-6 I A K
I

Semiconductors 1 Wirewrao (7090) 1 First IC's 1 TTL 1 TTLIH. ECL 1 0 K 1 TTLISchottky 1 ECL 1 0 0 K

tech./ I I
machines Germanium transistors Silicon translstors

J

Semiconductors

Macro
(Bell Labs) COBOL 60

FORTRAN standards PASCAL
(0" 704) LISP ALGOL 60 1 APL paper JOSS (RAND) SIMULA

Johniac 4 p:F.6 @L/360L

Languages & Utilities Macro, F O R T R A N I I , + t 4
Editor, FORT. IV ALGOL

piP.periphera1 t~~~~ (M I T) ~ ~ : . ~ : ~ $ I C COBOL MU)
Interchange Program

SOS Editor (StaAford)
(APL/SS-'DEC/APL)

Strachey SDC, Q32V
multiprog. MITCTSS BEN BASIC I erkeley 940 IBM 360167 T E N E X T E N E X

Begin

paper + paper paper tsystem TSS Multics Oper. + paper

Operating Systems t t 2
Core resident Swapping 2 Processor

PDP-6 (begin TOPS-10)

that we would build, but because it illustrated a number
of good design principles. Atlas was multiprogrammed
with a well-defined interface between the user and
operating system, had a very large address space, and
introduced the notion of extra codes to extend the
functionality of its instruction-set. Paging was a concept
we just could not afford to implement without a fast,
small memory. The IBM Channel concept was in use,
on their 7094, and was one we wanted to avoid since
our minicomputers (e.g. PDP-1) were generally smaller
than a single channel and could outperform the 7094
in terms of i/o concurrency and i/o programmability by
a clean, simple interrupt mechanism.

The DEC product line in 1964 is summarized in
Table I . Corporation wide sales totaled $1 1 million at
that time and it was felt that computers had to be
offered in the $20,000 to $300,000 range. We were
sensitive to the problems encountered by not having
enough address bits, having watched DEC and IBM
machines exceed their addressing capacities.

On the software side, most programmers at DEC
had been large machine (16 to 32 Kwords) users
although they had most recently programmed mini-
computers where program size of 4 to 8 Kwords was
the main constraint. There was not a good understand-
ing of operating systems structure and design in either
academia or industry. For example, MIT's Multics
Project was being formed and IBM's 360lTSS Project

45

t f
~-

Virtual Memory TOPS-20
Gseries) Introduction
op. sys. (TENEX base)

Table I. DEC's 1964 computer products.

Year In-
Name troduced

PDP- 1 1960
PDP-2 1960

Word
Size

(Bits)

18
24

36
18
12
36

Price
6 K) Status

Marketed
Resewed for future

implementation
Paper machine
Marketed
Introduced
Introduced

didn't start until 1965. Generally there were no people
who directly represented the users within the company,
although all the designers were computer users. A
number of users in the Cambridge (Mass.) community
advised on the design (especially John McCarthy,
Marvin Minsky, and Peter Sampson at the MIT Artifi-
cial Intelligence Laboratory).

Although there was little consensus that Fortran
would be so important, it was clear our machine would
be used extensively to execute Fortran. The macroas-
semblers, basically unchanged even today, were used
in various laboratories and our first one for PDP-1 was
done by MIT in 1961. We also felt the list languages,
especially LISP for symbolic processing were important.
There was virtually no interest in business data process-
ing although we had all looked at Cobol.

We did not understand the concept of technology

Communications
of
the ACM

January 1978
Volume 21
Number 1

evolution very well, even though integrated circuits
were both forecast and under development. Germa-
nium transistors were available, and silicon transistors
were just on the market. IBM was using machine
wirewrap technology, while DEC back panels were
handwired and soldered. The basic DEC logic circuits
were saturating transistor as distinct from the more
expensive current mode used by IBM in the 7094 and
Stretch computers. Production core memories of 2
microseconds were beginning to appear, and their
speed was improving. Our PDP-1 used a 5 microsecond
core. Hence, it was unclear what memory speed a
processor should support.

The notions of compatibility and family range were
not appreciated even though SDS (eventually XDS
and now nonexistent) had built a range of 24-bit
computers. We adhered to the then imposed conven-
tion of the word length being a multiple of six bits (the
number of bits in the standard character code), but
designed the machine to handle arbitrary length char-
acters.

3. Overall Goals, Constraints, and Basic Design
Decisions

Table I1 lists the initial goals, constraints, and some
basic design decisions. Presentation of this list sepa-
rately from the design is difficult because the goals and
constraints were not formally recorded as such and
have to be extracted from design descriptions and our
unreliable, and self justifying memories. Table I1 will
be used in discussing the design.

The initial design theme was to provide a powerful,
timeshared machine oriented to scientific use, although
it subsequently evolved to commercial use. John Mc-
Carthy's definition [9] of timesharing, which we sub-
scribed to, included providing each user with the
illusion of having his own large computer. Thus our
base design provided protection between the users and
a mechanism for the common resources to be allocated
and controlled. The machine had to also support a
variety of compiled and interpreted languages. The
construction was to be modular so that it could evolve
and users could build large systems including multipro-
cessors. It should add to the top of DEC's existing line
of 12- and 18-bit computers. It should be simple,
buildable, and supportable by a small organization.
Thus, it should use as much DEC hardware technology
as possible.

4. The Instruction-Set Processor

Our goals for an ISP were: To efficiently encode
the various programs using both compiled and inter-
preted languages; to be understandable and able to be
remembered by its users; to be buildable in current
technology at a competitive price; and to permit a
compiler to provide efficient program production.

Data Types and Operators

Earlier DEC designs and the then current 6-bit
character standard forced a word length which was a
multiple of 6, 12, and 18 bits. Thus a 36-bit word was
selected.

The language goals and constraints forced the inclu-
sion of integer and real (floating point) variables. We
chose two's complement integer representation rather
than the sign-magnitude representation used on the
7090, or the one's complement representation on PDP-
1 . The floating point format was chosen to be the
same as the 7090, but with a format that permitted
comparison to be made on the number as an integer in
order to speed up comparisons and only require a
single set of compare instructions. Special (common)
case operators (e.g., V = 0, V = V + 1, V = V - 1)
were included to support compiled code. Our desire to
execute LISP directly resulted in good address arithme-
tic. As a result, both LISP and Fortran on DECsystem
10 are encoded efficiently.

Since the computer spends a significant portion of
its time executing the operating system, the efficient
support of operating system data types is essential. A
number of instructions should be provided for manip-
ulating and testing the following data types: Boolean
variables (bits); Boolean vectors; arbitrary length field
access (loadlstore only); addresses; programs (loops,
branching and subprograms); ordinary integers; and
the control of i/o. A significant number of control
instructions were included to test addresses and other
data types. These tests either controlled flow by a
jump or skip of the next instruction (which is usually a
jump). Loop control was a most important design
consideration.

Table I11 gives the data types and instructions pres-
ent in the various implementations. The KAlO and
PDP-6 processor instruction sets were essentially the
same, but differed in the implementation. The PDP-6
had 365 instructions. A double precision negate in-
struction in the KAlO improved the subroutine per-
formance for double precision reals. The instruction,
find first one in a bit vector, was also added to assist
operating system resource allocation and to help in a
specific application sale (that fell through). Finally,
double precision real arithmetic instructions were
added to the KIlO using the original PDP-6 pro-
grammed scheme. A few minor incompatibilities were
introduced in the KI to improve performance.

With the decision to offer Cobol in 1970, better
character and decimal string processing support was
required from the instruction set. The initial Cobol
performance was poor for character and decimal arith-
metic because each operation required software char-
acter by character conversion to an integer, the opera-
tion (in binary or double precision binary), and soft-
ware reconversion to a character or a decimal number.
The KLlO provided much higher performance for
Cobol by having the basic instructions for comparing

Communications January 1978
of Volume 21
the ACM Number 1

Table 11. Initial goals, constraints, and basic design decisions.

User/Language/Operating System
Cheaper coduser via timesharing without inconvenience of batch processing -
Timeshared use via terminals with protection between users
Independent user machines to execute from any location in physical memory
unrestricted use of devices e.g. full duplex use of terminals -
Support for wide range of compiled and interpreted languages
No special batch mode, batch must appear like terminal via a command file
Device independent i/o so that programs would run on different configurations

and i/o could be shared among the user community
Direct i/o for real time users
Primitive command language to avoid need for large internal state
Minimum usable system <16 Kwords
Modular software to correspond to modular hardware configurations

Instruction-Set Processor (ISP)
Support user languages by data types and special operations

scientific (i.e., Fortran) 3 integers, reals, Boolean
list processing (i.e., LISP) 3 addresses, characters
support recursive and reentrant programming 3 stack mechanism

Support operating systems
effective as machine language 3 Booleans, addresses, characters, i/o
operating system is an extension of hardware via defined operating codes

Word length would be 36-bits (compatible with DEC's computers)
Large ('14 million 36-bit words = 1 million 9-bit bytes) address
Require minimal hardware 3 simple
General-register based (design decision) with completely general use
Easy to use and remember machine language

orthogonality of addressing (accessing) and operators
completeness of operators
direct (not base + displacement) addressing
few exceptional instructions

2's complement arithmetic (multiple precision arithmetic)
PMS Structure

Maximum modularity so that users could easily configure any system
Easy to interface
Asynchronous operation -system must handle evolving technology
Multiprocessors for incremental and increased performance (2-4 in design)
No Pio's (IBM Channels), use simple programmed i/o with interrupts and

direct memory access for high speed data transmission
Implementation

Simple; reliable
Asynchronous logic and busses for speed in light of uncertain logic and memory

speed
All state accessible to field service personnel via lights
Use DEC (10 mHz vs 5 mHz) circuit/logic technology (manpower constraint)
Buildable without microprogramming (no fast, read-only, memories in 1963)

Organizational/Marketplace
Add to high end of DEC's computers
Use minimal resources. while sumorting DEC's minicomputer efforts

character and decimal strings - where a character can
be a variable size. For arithmetic operations, instruc-
tions were added to convert between string and double
precision binary. The actual operations are still carried
out in binary. For add and subtract, the time is slightly
longer than a pure string based instruction, but for
multiplying and dividing, the conversion approach is
faster.

Stack vs General Registers Organization
A stack machine was considered based on the

B5000 and George Interpreter (which later became
the English Electric KDF9). A stack with index register
machine was proposed, but rejected on the basis of
high cost and fear of poor performance, for executing
the operating system, LISP, and Fortran. The compro-
mise we made was to provide a number of instructions
to operate on a stack, yet use the general registers as
stack pointers.

An interesting outcome of our experience was that
one of us (Bell) discovered a more general structure
whereby either a stack or general register machine
could be implemented by extending addressing modes
and using the general registers for stack pointers. This
scheme was the basis of the PDP-11 ISP [I].

We currently believe that stack and general register
structures are quite similar and tend to be a tradeoff
between control (either in a program or in the interpre-
tation of the ISP) and performance. Compilers for
general register machines often allocate registers as
though they are a stack. Table IV compares the stack
and general register approaches.

A general register architecture was selected with
the registers in the memory address space. The general
registers (multiple accumulators) should permit a wide
(general) range of use. Both eight and sixteen were
considered. By the time the uses were ennumerated,
especially to store inner loops, we believed sixteen

Communications
of
the ACM

January 1978
Volume 21
Number 1

Table 111. Data-types of DECsystem 10120.

Length
Data type (bits) Machine Operators and [#instructions] Operator Location

Boolean 1 all 0,1,- , test by skip [64] AC +f(AC)
Boolean-vector 3 6 all all 16 [64] AC and/or mem +f(AC,mem)
characters 0-36 = v all load, store [5] AC ~ (m e m)
character-string v x n KL compare [8]; move [4] f(mem)=g(mem); mem

f(mem)
digit-string v x n KL convert to double integer f(AC) -f(men)
half word, 2's comp. in- 18 all load, store [64]; index loop con- AC ~ f m e m ; AC +f(AC)

tegers = addresses trol
full word, 2's comp. in- 36 all load, store, abs., - (negate)[l6] AC and/or mem+f(AC,mem)

tegers (and fractions) +,-,x,/,+l,-1,Xrotate test
(by skip & jumps)

double word, 2's comp. 72 KL load, store, -(negate)[4]; + ,- , AC ~ f (m e m) ; AC +-f(AC,mem)
integers (and frac- X A41
tions)

real 9 (exponent) all load, store, abs., -(negate), AC and/or mem +f(AC,mem)
+27(man- +,-,x ,/,x [35]; test (by skip, immediate mode was added in
tissa) jump) [I61 K A

double real 9 + 54 KI,KL load, store, abs, negate, + ,- , X ,/ KA provided negate instruction
9 + 63 KI,KL

word stack 36 all load, store, call, return[4] Stack H Memory
(81

word vector 36 x k all move [I] mem[a:a+k]+mem[b:b+k]
i/o program 36 all short call/return; UUO AC, mem

were needed. They could be used as: base and index,
set of Booleans (flags), ordinary accumulator and
multiplier-quotient (from 7090), subroutine linkage,
fast access for temporary and common subexpressions,
top of stack when accessed explicitly, pointer to control
stacks, and fast registers to hold small programs.

Since the AC's were in the address space, ordinary
memory could be used in lieu of fast registers to
reduce the minimal machine price. In reality, nearly
all users bought fast registers. Eight registers may
have been enough. A smaller number would have
provided more rapid context switching and assisted the
assembly language programmer who tried to optimize
(and keep track of) their use. In fact, Lunde [7] has
shown that eight working registers would be fine to
support the higher level language usage. Multiple reg-
ister sets were introduced in the KIlO to reduce
context-switching time.

Instruction-Set Encoding and Layout
The ease of implementation goal forced an instruc-

tion-set design style that later turned out to be easy to
fabricate with the KLlO microprogram implementa-
tion. This also simplified the fabrication of compilers.
In fact, of the 2 2 2 instructions useful for Fortran data-
types, the earliest compiler used 180 of them and the
current compiler uses 2 12. We used three principles,
we now understand, for the ISP design:

Orthogonality -an address (with index and indi-
rect control fields) is always computed in the
same way, independent of the data-type it refer-
ences. Indirect addressing occurs as long as the
instruction addressed has an indirect bit on an
indefinite basis.
Completeness and symmetry - where possible

Table IV. Comparison of stack and general register architectures.

Stack General Register

Number of regis- approximately the same
ters

Register use fixed to stack o p can be arbitrary
eration

Control built in hardward simple, explicit in pro-
(implicit) gram when used as a

stack
Access to local 1 or 2 elements at full set in general regis-

variables top of stack ters
Compiler easy (no choice) an assignment (use)

problem
Program encoding fewer bits more bits give access to

registers for interme-
diate and index val-
ues

Performance high if element on high if in general regis-
stack top ters (performs rela-

tively better than
stack)

each arithmetic data type should have a complete
and identical set of operations.

c. Mapping among data types-instructions should
exist to convert among all data types. Several
data types were incomplete (characters, half-
words) and these should be converted to data
types with a complete operator set.

The instruction is mapped into the 36 bit word as
follows:

ACCUMULATOR I INDEX REG1STF.K
ADUKESS \ 1 ADDRESS

1 INSTRUCTION CODE 1 \ 1 ' 1 ' I MEMORY A1)DKESS I

BASIC INSTRUCTION bOKMAI

ACCUMULATOR ADDRESS is 1 of 16 Accumulators (General Registers)
INDEX REGISTER ADDRESS is mdex designator to 1 of 15 AC's
L is indirect bit
MEMORY ADDRESS is address or literal

Communications January 1978
of Volume 21
the ACM Number 1

Fig. 2. Instruction set.

MOV c Nqat~ve
(Word, halfword)

e kgnitude 1 :swaWd 1-1 1 :Adlate to AC

no effect to Memory

Half word 1 to 1::' 1 1 lo
. -

(Extend sign I
BLock Tnnsier

EXCHangc AC and memory
(Vector)

uu present plntcr LnaD Byte Into .A<

Increment pinter 1 and I M o s i t Byte In memory

Increment Byte Polnler
-Just Byte Pointer (Var. Character)

EXTEM,

CnMke String and Skip if

never
Less
Equal
Lessor Equal
Greater or Equal
Not equal
Greater

CnnVerT { Dednal to Binary by
Binary to Dedrnal by 11 I

Left Justif~cation
R a t Justification I

down 1 (z d Jump UP (Stack
ADJlst Stadc Pointer

Complement of A r
Complement of Memory .A<'

-to[AC Immediate
Memory
Botll

Add One to I memory and Sk~p I LA or "ual
Subtract One from AC and Jump Always 1
Add One to h t l i halves ot A < and Jump IT PoS1tlVe 1 Negatwe

(Control)

(Integer, fraction, real)

ADD
SUBtract

Integer MULt~ply
D l V~dc Immediate
Integer DlVide to Memory

Floatma AdD 1 I I -
Floating MultiPly
Floating IhVide

Floating Scale

Double Roating Negate (KA)
Unnormaliud Floating Add

F I X
F IX and Round KI
FLDaTand Round

Double intege

Double Rating

l ADD

MOv {F Negative } { Memory

(I/O)

CONdit ions
in and Skip i f I all masked bits Zero

some masked bit One

Jump<

wlth D~rect mdsk No mod~l~cdt~o~i never
w11h Swdpped mdsk set masked b~ t r to Zero, lf a l l masked bits Equal 0 (Bit)

Test
~ ~ g h t w~th r I Left I I set masked bits to One, lf Not d l l masked bits equal 0

Complement mdsked bits

1 0 - 19

to SubRoutine (Jump
and Save PC
and Save A r
and Restore Ac
if Find First One
on Flag and CLear i t

on OVerflow (JFCL 10,)
on CaRrY 0 (JFCL 4.)
on CaRrY I (JFCL 2,)
on G R r Y (JFCL 6.)
on Floating Overflow (JFCL I .)
and ReSTore
and ReSTore Flags (JRST 2.)

,and ENable PI channel (JRST 12,)

The entire instruction-set fits easily within a single are generally deducible by the instruction names: o p
figure (see Figure 2). The boldface letters denote erator names (e.g. ADD) for word (or integer); D-
instruction mnemonics. The data types and operations double integers; H-half world; BL-vector; 16-operator

HALT (JRST 4,)

PORTAL (J RST I ,) (KI)
e XeCuTe - (KI)

Communications
o f
the A C M

January 1978
Volume 21
Number 1

names (e.g. AND) for Boolean vectors, Test-Boolean
(bits); J-jumplskip for program control; F-floating;
DF-double floating. The i/o and interrupt instructions
are described in the PMS section.

Multiprogramming/Monitor Facilities
The initial constraint (circa 1963) of a timeshared

computer with a common operating system led to
several hardware facilities:

1 . two basic machine modes: user and executive
(each with different privileges);

2 . protection against operations to halt the com-
puter or affect the common i/o when in user
mode;

3. communication between the user and operating
system for calling ilo and other shared functions;
and

4. memory mapping - separation of user programs
into different parts of physical memory with pro-
tection among the parts and program relocation
beyond the control of user.

An executiveluser mode was necessary for protec-
tion facilities in a shared operating system while provid-
ing each user with his own environment. Although
there was a temptation (due to having a single opera-
ting system) to eliminate or make optional the execu-
tive mode and the general registers be, we persevered
in the design and now believe this to be an essential
part of virtually every computer! (The only other
necessary ingredient in every computer is adequate
error detection, such as parity.) Separation into at
least two separate operating regions (user and execu-
tive) also permits the more difficult, time constrained
ilo programs to be written once and to have a more
formal interface between system utilities and user.

The UUO (Unimplemented User Operation) is an
instruction like the Atlas Extracode and IBM 360
SVC to call operating system functions and common
user-defined functions. It also calls functions not pres-
ent in earlier machines. Thus a single operating system
could be used (by selecting the appropriate options)
over several models. This use appears to be more
extensive than in the IBM System 3601370.

The goals of low cost hardware and minimal per-
formance degradation constrained the protection facil-
ities to a single pair of registers to relocate programs
in increments of 1 Kwords. Two 8-bit registers (base
and limit registers) with two 8-bit adders were required
for this solution. Thus each user area was protected
while running and a program could be moved within
primary or secondary memory (and saved) because

' user programs were written beginning at location 0.
This is identical to the CDC 6600-7600 protection1
relocation scheme.

In the KAlO a second pair of registers was added
so that the common read-only segment of a user's
space could be shared. For example, this enabled one
copy of an editor, compiler, or runtime system to be
shared among multiple users. Programs were divided

into a 128 Kword read-write segment and a 128 Kword
read only segment. Since each user's shared segment
had to occupy contiguous memory, holes would de-
velop as users with different shared segment require-
ments were swapped. This led to "core shuffling" and
in a busy system up to 2% of the time might be spent
in this activity. The operating system was modified in
the early 70's at the Stanford Artificial Intelligence
Laboratory so that the high, read-only segment could
share common, global data. In this way a number of
separate user programs could communicate, to effec-
tively extend the program size beyond the 256 Kword
limit. In retrospect, instructions to move data more
easily between a particular user region and the opera-
ting system would have been useful; this was corrected
in KIlO and is described below.

With the availability of medium scale integrated
circuits, small (32 word) associative memories could
be built. This enabled the introduction of a paging
scheme in the KI10. Each 512 word page could be
declared sharable or private with read-only or read-
write access. The basic two mode protection facility
was expanded to four modes: Supervisor, Kernel,
Public, and Concealed. There were two monitor
modes: Kernel mode provides protection for ilo and
system functions common to all users; and Supervisor
mode is specialized for a single user. The two user
modes are: Concealed for proprietary programs, and
Public for shared programs. For protection purposes,
the modes are only changed at selected entry portals.
The page table was more elaborate than that of the
Atlas (circa 1960) whose main goal was to provide a
one level store whereby large programs could run on
small physical memories. In fact the first use of KIlO
paging required all programs to be resident rather
than having pages being demand driven. A gain over
the KAlO was realized by not requiring programs to
be in a single contiguous address space. The KIlO
design provided more sharing, and increased efficiency
over the KA10. The KLlO extended KIlO paging for
use in the TOPS 20 operating system to be described
later.

5. PMS1 Structure

Table I1 gives the major goals and constraints in
the PMS structure design. This section describes system
configurations, the i/o system, the memory system,
and computer-computer communication structures.

System Configurations
We wanted to give the user considerable freedom

Processor-Memory-Switch. The PMS notation is a scheme for
concisely representing the "block-diagram" level of computer orga-
nization. Common abbreviations in PMS are P for processor, M for
memory, S for Switch, K for control unit, C for computer. Abbrevi-
ations may be quantified by lower case letters such as c for central
(i.e. PC :=central processor), p for primary (i.e. Mp := primary
memory), and s for secondary (i.e. Ms := secondary memory). For
a complete description of the PMS notation see [3].

Communications January 1978
of Volume 21
the ACM Number 1

in specifying a system configuration with the ability to
increase (or decrease) memory size, processing power,
and external interfaces to people, other computers,
and real time equipment. Overall, the PMS structure
has remained essentially the same as the PDP-6 design,
with periodic enhancements to provide more perform-
ance and better real time capability. (A PDP-6 memory
or i/o device could be used on a KIlO processor, and a
PDP-6 i/o device can be used on today's KLlO sys-
tems.) A radical change occurred with the KL20 to a
more integrated, less costly, design for the processor,
memory, and minicomputer i/o preprocessors.

The PMS block diagram of a two processor PDP-6
is given in Figure 3. But, for simple uniprocessor
systems, the PMS structure was quite like our small
computers with up to 16 modules on both the ilo and
memory buses:

Mp ... Mp Kio- ... KMs ...
I I I I

(Memory Bus) (110 Bus)

Interestingly, a unified i/o-memory bus like the
PDP-11 Unibus was considered. The concept was
rejected since a unified bus designed to operate at
memory speed would have been more costly.

The goal to provide arbitrary, modular computing
resources led to a multiprocessor structure with shared
memory. The interconnection between processors and
memory modules was chosen to be a cross-point switch
with each processor broadcasting to all memory mod-
ules.

An alternative interconnection scheme could have
been a more complex, synchronous, message-oriented

Fig. 3 . PMS diagram for PDP-6 system.
Memory Bus 200K wordslsec
/ / 10 Bus

words; 2p sec)

16 Kc* -

protocol on a single bus. More efficient cable utilization
and higher bandwidth would have resulted but physical
partitioning into multiple processor/memory subsys-
tems for on-line maintenance would have been pre-
cluded. All in all, the crosspoint switch decision was
basically sound although more expensive.

Figure 4 shows a PMS block diagram for the KAlO
and KIlO. There can be up to 16, 65 Kword, 4-port
memory modules, giving a total of one megaword of
memory. (Each processor addressed four Mwords .)
With high-speed disk and tape units (e.g. 250 Kwordsl
sec.) a program controlled i/o scheme would place too
much burden on the central processor. Therefore a
direct port to memory was provided as in the PDP-6.
In the KAlO/KIlO systems, a switch (called a multi-
plexor) was introduced to expand the number of ports
into memory to four for each Memory Bus used. The
communications controllers were also expanded to
handle more asynchronous and synchronous lines.

The KLlO was, by comparison, a radical departure
from previous PMS structures (see Figure 5). In order
to gain more performance, four words from four low
order interleaved memory modules were accessed each
cycle. The effective processor-memory bandwidth was
thus over four Mwords/sec. The processor also con-
nects to as many as four PDP-11 minicomputers
(shown as C(11) in the figure). Most of the i/o is
handled by these front-end computers.

Each PDP-11 can access the KLlO memory via
indirect address pointers and transfers data in much
the same manner as the peripheral processing units of
a CDC 6600. Notice also that the KLlO's console is
tied to a PDP-11. This PDP-11 can load the KLlO

Notes:
C: =computer
K: = controller
Kc: = called ilo processor,

actually a double buffer
Mp: = primary (~rogram) memory
Ms: = secondary memory
T: =transducer or terminal
PC: = central processor

K T (paper tape reader) t Other
Controllers for:
cards, line printer,

KT(paper tape punch) teletype, aldla

K(communication) -n: 1) Serial telegraph terminal lines
64

I I

1 T(monitor1 4 T(monitor1 ... --
1 Mdmagtape) - 8 Ms(magtape) - ...

I I

K(data control)

Device Controllers

Communications
of
the ACM

January 1978
Volume 21
Number 1

Fig. 4 . PMS diagram for KAlO and KIlO processor-based system.

Memory Bus

UD t o 4 m words /
I n K I
(65K words)

/
Switch t o
multiolex

Fig. 5 .

4 w
access

several
channels

I10 Bus

222K wordslsec on K A10
370K wordslsec on K I10

Controllers for:
cards, printer, teletype.
plotter, aldla

K(communication) ri iZ7} t o terminals

"Channels," i.e. data buffers

PMS diagram for KLlO processor-based systems.

1 m wordslseclbus
110 bus. 370K wordlsec

K 4 - -

1

up t o 16 modules
or 4m words PC 16x8 distributed
(1.8 mips; 2K (via memory bus)
word cache; 8x16 cross-point switch
general registers)

Communications
of
the ACM

January 1978
Volume 21
Number 1

microprogram memory, run microdiagnostics, and pro-
vides a potential remotely operated console. Each of
the PDP-11's can achieve a word rate of 70 Kcharlsec.

Up to eight DEC Massbus controllers are integrated
into the processor. The Massbus is an 18-bit data
width bus for block transfer oriented mass storage
devices such as disks and magnetic tapes. Each Mass-
bus can transfer 1.6 Mwords/sec. yielding a maximum
12.8 Mwords/sec. transfer rate for all channels. How-
ever, contemporary disks need about 250 Kwords/sec.
so that all eight channels only require 2.0 Mwords/sec.
of the 4 Mwordlsec. memory bandwidth of 4 modules.
Individual disks and tapes can be connected to a
second port for increased concurrency. For larger
memory configurations, a memory bandwidth of 16
Mwords/sec. is not uncommon. A 2 Kword processor
cache provides roughly a 90% hit rate and reduces
memory bandwidth demand by nearly a factor of ten.

The cost-reduced KL20 evolved by integrating the
Massbus controllers and PDP-11 interfaces onto a
single high-speed, synchronous bus. The model 2040
and 2050 computers are based on the KLlO processor
and integrate 256 Kwords of memory in a single
cabinet with the processor (thereby eliminating the
external Memory Bus). The 110 Bus is also eliminated
and all i/o transfers are either via the Massbusses or
the PDP-11 i/o computers. (It must be noted that the
2040 structure is only possible because of the drastic
increase in logic and memory density!)

110 System
Relatively low-speed i/o (200 Kwordslsec.) in the

PDP-6 was designed to be under central processor
programmed control rather than via specialized ilo
processors (IBM System 3601370 Channels). This
method had proven effective in our minicomputers
and was extended to handle higher data rates with
lower overhead than specialized i/o processors.

The decision not to use the IBM-type channel
structure was based both on high overhead (cost) in
programming and hardware. Since i/o record transmis-
sion usually caused a central processor action, we felt
the processor might as well transfer the data while it
had access to it. This merely required a good interrupt
and context switching mechanism, not another special-
ized processing entity. However, when an inordinately
high fraction of the processor's time went to i/o proc-
essing, a second, fully general processor was added-
not a processor that was fundamentally only capable
of data transmission.

The PDP-6 interrupt scheme was based on our
previous experience with a 16-level and 256-level
interrupt mechanism for PDP-1. The PDP-1 scheme
was an extension of the Lincoln Laboratory TX-2 [6].
The PDP-6 had a 7-channel interrupt system and each
device on the 110 Bus could be programmed to a
particular level. Hence a programmer could change
the priority of a particular device that caused interrupts

on the basis of need or urgency. The PDP-6 also had
an i/o instruction (Block Input or Block Output) to
transfer a single data item, between a block (vector) in
primary memory and an i/o device. Thus as each word
was assembled by a controller, an interrupt occurred
and the block transfer was executed for one word,
taking only three memory references (to the instruc-
tion, to increment the address pointer and block
counter, and to transfer data). Most of the hardware
to control the count and address pointer was already
part of the processor logic.

In applications requiring higher data transmission
(e.g. swapping drums, disks, TV cameras) a controller
with a data buffer (erroneously called an i/o processor)
and link to memory was provided. These controllers
only required a single memory reference per data
transfer with the address pointer and block counter in
hardware. In the KAlO the name was changed to
channel, and parameters for transferring contiguous
records into various parts of memory were part of the
channel's control. The device control was via the 110
Bus, and hence we ended up with a structure for high
speed device control not unlike the IBM channels we
originally wanted to avoid.

Competitive pressure from the Xerox Sigma series
caused a change in the way interrupts were handled
beginning with the KI10. Although the Xerox scheme
had many priority levels, its main utility was derived
from rapid dispatch to attend to a particular interrupt
signal. We kept compatibility with the 7-channel inter-
rupt by using a spare wire in the bus and adding the
ability to directly dispatch to a particular program
when a request occurred. At the interruption, the
processor sent a signal to requesting devices and the
highest priority device responded with a 33-bit com-
mand (3-bit function, l&bit address, 12-bit data). The
functions were: 1 . Execute the instruction found at
addressed location; 2. transfer a word tolfrom ad-
dressed location; 3 . trap to addressed location; and 4.
add data to addressed location. Little use was made of
these functions (especially number four), since only a
small number of devices were typically connected to a
large system thus relaxing the requirement of rapid
dispatch. Anyway, the competitive problem was solved
(or went away as Xerox left the competitive scene). In
systems that did have a large number of devices, a
front end i/o processing minicomputer was more cost-
effective than central processor controlled i/o.

Memory System
Because it was unclear how memory technology

would affect memory speed, a completely asynchro-
nous, interlocked memory bus was designed. Thus the
16 fast, general registers, the initial five microsecond
memory, and the next generation two microsecond
memory could all operate on a single system. (Most
memories are now less than one microsecond cycle
time.) The asynchronous bus avoided the problem of

Communications January 1978
of Volume 21
the ACM Number 1

Table V. Computer interconnection structures

Scheme Data Rate Structure Models Examples

Standard communica-
tion link

Special parallel, block
transfer via hard-
ware or software

Multiprocessors

Access into mini ad-
dress space with in-
terruption

The mini can transfer
data into large ma-
chine via special
control

110, 300
1200, 4800,

9600, 50K
bitslsec.

100K-1M
wordslsec.

at mem. ac-
cess rate

at mem. ac-
cess rate

at mem. ac-
cess rate

network all

tightly coupled all

multiprocessor all 2 PC
16 PC, proposed

multiprocessor PDP-6 The large computer
shared memory accesses data in the

small computer
tightly coupled KA10- Scheme used to inter-

KLlO connect minis to do
ilo.

Multiple logical chan-
nels are provided

distributing a single high-speed clock and allowed
interleaved memory operation.

Modularity was also introduced to clarify organiza-
tional boundaries within the company and to make
possible low cost, special purpose, production and
engineering testers for the memory and i/o equipment.
We believe the concept of well-defined modules was
relatively unique, especially for memory, and was the
basis for the formation of third party add-on memory
vendors. MIT and Stanford University purchased
memories from Fabritek and AMPEX respectively in
the mid 1960's to start this trend. (Note, this design
style differed from the IBM System1360 design with its
relatively bounded configurations and integrated
memory. Add-on memory did not appear until the
early 70's for the IBM machines because, we believe,
of the difficulty of the interface definition.)

The KIlO memory system was improved by assign-
ing signals to request multiple, overlapped memory
accesses and to increase the address size from 18 to 24
bits. The additional physical memory addresses are
mapped into a program's l&bit addresses via the core-
held page table.

The KLlO processor-memory organization was a
significant departure from the KIlO as previously dis-
cussed. The KL20 eliminated the original Memory
Bus to provide an integrated system. It should be
noted that this evolution was based on the drastic size
reduction (a factor of about 300) from a single cabinet
(6' X 1 9 x 25" or about 34,000 cu. inches) for 16
Kwords to a single logic module for 16Kwords (15" x
8" X 1" or about 120 cu. inches).

PMS Structures for Computer-Computer Intercom-
munication

Throughout the evolution a number of schemes
have been used to interconnect with other (usually
smaller) computers. The schemes are given in Table
V. Note that the first four schemes were conventional,
while the last scheme was used in the KL10120 struc-
ture so that an attached PDP-11 minicomputer could
transmit data directly into the memory of the KL. This

scheme was first used in the early 1970's for handling
multiple communication lines.

6. Operating System

PDP-6 Monitor Design Goals and Philosophy
The initial goals and constraints for the user envi-

ronment are summarized in Table 11. The most impor-
tant goal was to provide a general-purpose timesharing
system. The monitor was to allow the user to run in
the mode most suited to his requirements, including
interactive timesharing, real time, and batch. In time-
sharing there was no requirement for a human operator
per se. Instead, the operator's console was a user
terminal with special privileges. Real time programs
had to be able to operate ilo directly, locked in core,
and batch was to be provided as a special case of a
terminal job.

Because of the modular expandability of the hard-
ware structure, the software system had to be equally
modular to facilitate varying system configurations and
growth. The core resident timesharing monitor was
only fixed at system generation (i.e. IBM's SYSGEN)
time when software modules could be added to meet
the system requirements. The core space required for
monitor overhead had to be minimized. Thus job-
specific functions were placed in the user area instead
of in the monitor. The first 96 locations of each user
job contained pertinent information concerning that
job. A temporary area (stack) for monitor operations
was also included. In this way, the monitor was not
burdened with information for the inactive jobs. This
structure permitted the entire job state to be moved
easily.

Adequate protection was to be given each user
from other nonmalicious users. However the user was
not protected against himself because various user
status information in the job area could be changed to
affect his own job. Since common system resources
were allocated upon demand and deadlocks could
occur, the term "Gentlemen's Timesharing" was
coined for the first monitor.

Communications January 1978
of Volume 21
the ACM Number 1

Table VI. Monitor functions evolution.

Facility PDP-6 (1964) KAlO (1967) KIlO (1972) KLlO (1975)

Protection one segment per user two segments with shared
program segment (re-
quired reentrant p r e
grams)

core shuffling; with swap
ping (via drum disk)

four modes for shared seg-
ments

virtual machine with shared
segments

Program swapping

Facilities allocator

core shuffling paging used for core man-
agement

demand paging (job need
not be wholly resident to
run)

devices assigned to users
upon request (deadlocks
possible + gentlemen's
timesharing)

round robin scheduler

spooling of line printer &
card reader

spooling of all devices

scheduler to favor interac-
tive jobs using multiple
queues

fairness and swapping effi-
ciency considerations

parameters for scheduling
set by system mgr.;
priority job classes and
"pie-slice" schedule

disk head movement opti-
mization:

Scheduler

User files user files on DECtape,
Cards, and Magnetic
tape

significant enhancement of
file function; on-line,
random access disk-based
files

evolution to more power-
ful, easier to use com-
mand language

remote & local single-
stream batch

synchronous communica-
tions for remote job and
concentrator stations;
"birth" of networks with
simple topologies; ARPA
network

dual processor support
(master/slave)

improved file structure re-
liability, error recovery,
protection and sharing;
mountable structures

Common Command Lan-
guage (CCL)

Command control
program

simple (to implement) re-
quiring little state

extensions to CCL

Batch no real batch multiprogramming batch improved multiprogram-
ming batch

DECnet* communications Terminal handling
& communica-
tions

asynchronous task-to-task
communications (for in-
teractive terminals) as
monitor module

synchronous communica-
tions in complex topole
gies; new protocol; IBM
BISYNC for 2780 emu-
lationltermination

Multiprocessing high availability through
bus switching hardware

symmetric multiprocessing

* DECnet is DEC's computer network protocols and functions.

The UUO (Unimplemented User Operation), or
system call instruction, provided both monitor-user
communication and upward hardware compatibility.
In the latter case, the instruction would use the hard-
ware if available, otherwise the instruction would trap
to the monitor for execution. For example, double
precision hardware was available on later CPU models.
The number of UUOs implemented in the monitor for
monitor-user communication has been significant. The
initial use of UUO's included requests for: core, i/o
assignment, ilo transmission, file control, data and
time, etc.

Fig. 6. Monitor and main utilities program size versus time.

PDP-6 Monitor
The Monitor was the name given to a collection of

programs that were initially core resident and provided
overall coordination and control of the operating envi-
ronment. A nonresident part was later added with the
advent of secondary program swapping and file mem-
ories (i.e. drum and disk). The Monitor did not include
utilities, languages, and their run time support.

The PDP-6 Monitor was constrained to run in a 16
Kword (minimum) machine with console printer, paper
tape reader (for maintenance) and two DECtape units.
DECtape was a 128 word/block, block addressable
medium of 450 Kcharacters for which a file system
was developed. Memory minimizing led to very sparing
use of shared tables. The key global variable data was

o r : : : : : : : : : : : :
1965 67 69 71 73 75 77

time (year1

restricted to: core allocation table, clock queue, job
table, linked buffers for Teletype and other buffered i/
o devices (e.g. DECtape directory), and a directory of
system programs and monitor facilities.

The original PDP-6 Monitor was less than six
Kwords. The monitor has increased at about 25%/

Communications January 1978
of Volume 21
the ACM Number 1

year with the KAlO at 30 Kwords, KIlO and 50
Kwords, and KLlO at 90 Kwords (see Figure 6). This
increase provided increased functionality (e.g. better
files, batch, automatic spooling), larger system config-
uration size, more ilo options, increased number of
jobs, easier system generation, and increased reliability
(e.g. checking, retries, file backup).

Note that with a 16 Kword memory, a nine Kword
Fortran compiler with five Kword runtime package,
and one Kword utility programs, two users could
simultaneously reside in PDP-6 memory and use the
machine for program creation and checkout. By keep-
ing the monitor program size small, subsequent func-
tionality increases kept the monitor module sizes in
bounds such that program swapping was reduced. This
provided high performance for a given configuration
with little monitor overhead.

Monitor Structure
Table VI summarizes the development of the mon-

itor with the various systems. The facilities are ar-
ranged beginning with basics. The following sections
will deal with the various facilities, in turn. Memory
Protection Swapping -the basic environment was dis-
cussed above in the ISP section on Multiprogramming1
Monitor Facilities. Facilities Allocator -The Facilities
Allocator was a module called from a console or
program for an ilo device or memory space request.
This module would attach (or assign) a given peripheral
or contiguous physical memory area to a given job.
Although this module was relatively trivial initially, it
evolved to a more complex module since improper
resources allocation caused deadlocks.

The KAlO generation software introduced queued
operation. A line printer (output), paper tape (input1
output) and a card reader (input) spooler were imple-
mented. These spoolers ran as timeshared jobs, ac-
cepted requests from other user jobs and managed the
inputloutput operation.

Program Scheduler - the scheduler was invoked by
line frequency (50 or 60 Hz) interrupts to examine run
queues and to determine the next action. The first
monitor employed a round-robin scheduling algorithm.
At the end of a given time quantum of 500 millisec-
onds, the next runnable job was run. A job was
runnable if not stopped by the console and when not
waiting for i/o.

Because terminal response time is the user's mea-
sure of system effectiveness, subsequent scheduler im-
provements have favored interactive jobs. With the
KA10, separate priority queues were added so that
jobs with substantial computation were placed in the
lowest priority and then run the longest without inter-
ruption. This, in effect, approximated batched opera-
tion; for example, jobs from a card reader would
operate as a batch stream. Later, batch operation was
added for interactive users.

The introduction of diskldrum swapping caused
additional complexities since runnable jobs might be

located in secondary memory. The concept of "look
ahead" scheduling was required and a more complex
queueing mechanism was implemented. As the monitor
selected the next job to be run, it would "look ahead"
to determine future queues, and invoke the swapping
module if required to move a runnable job into core.
Because of the higher swapping overhead it was essen-
tial to run large jobs longer and less often. A "fairness"
consideration also assured that each job, whatever its
size, received enough run time to maintain responsive-
ness.

Recent enhancements permitted a Systems Man-
ager to set scheduling parameters including established
priorities of job classes. A "pie-slice" where classes of
users are guaranteed fixed parts of the machine time
and resources.

User Files and 110 Device Independence-in the
initial PDP-6 design, resources such as magnetic tapes,
unit record devices (e.g. card readers, line printer,
paper tape readerlpunch) and DECtapes (which were
file structured) were requested by each user as they
were required. The monitor allpcated the device to a
requesting given job until released.

110 calls were evoked by the UUO call instructions.
A particular device program call could specify the
number of i/o buffers to provide so that arbitrary
amounts of overlapped ilo and computing could be
realized.

In order to realize the goal of modularity, each i/o
device handler was implemented as a separate module.
These modules used a common set of subroutines. The
device tables were made as identical as possible to
help achieve the device independent goal. Thus, a user
specified an i/o channel, not a specific i/o device. The
channel to name assignment could take place at various
times from log-on to program run-time.

In the original monitor, a user was allowed to
assign file devices to his job and read and write named
files with the devices. Permanent, one-line user files
with automatic backup were not implemented until the
KAlO generation monitors. The concept of Project1
Programmer Number was adopted (after MIT's c ~ s s)
in order to provide increased file security and sharing.
A user was required to enter a projectlprogrammer
number with his associated password. This not only
established a job, but identified the user to the moni-
tor. In addition to having resource privileges associated
with better ID numbers, the user received a logical
disk area for files. File access can be allowed (by the
creator of the file) to any of the following levels with
decreasing protection (increasing privileges): no access;
execute only; plus read; plus append; plus update;
plus write; plus rename; plus alter protection.

Significant evolution occurred in the user file facil-
ity. Improved file structure reliability and error recov-
ery (such as writing pointer blocks twice) were
achieved. With moving head disk availability, disk
head movement optimization for file transfers on single
or multiple drives was added. The concept of "mount-

Communications January 1978
of Volume 21
the ACM Number 1

able" structures was implemented to allow disk packs
to be mounted and dismounted during timesharing
operation as well as allowing a user to have a "private"
pack mounted. As the number of users supported on
the system and the diversity of their applications grew
to include "business data processing" both hardware
and software allowed expansion of the number and
capacity of on-line disks.

Command Control Program -this program proc-
esses all commands addressed to the system from user
terminals. Thus terminals served to communicate mon-
itor commands to the system, to communicate to the
user programs, and to serve as an i/o device for user
programs. Terminal handling routines were an integral
part of the PDP-6 Monitor. The original commands
were designed to minimize the amount of state in the
Monitor. As a result, users had to type several com-
mands to control programs. A much more powerful
command language evolved.

Batch Processing
Batch processing has evolved from the original,

fully interactive PDP-6, where a user was expected to
interactively provide commands for each step in the
generationlexecution of a program. The first batch on
the KAlO was based on a user-built command file that
mimicked his terminal actions. The user invoked this
command file to execute his programs. Later, a multi-
programmed batch system was added and the job
control syntax evolved to provide more functions per
command. However, batchlinteractive command com-
monality has been preserved through the current mon-
itor versions. Still, batch control ran as a timeshared
job using queued batch control files. Thus, the ability
to log in a job, run to completion, and log off, is
accomplished from a card reader, or any other storage
or file device. Symbiant (queued) operation allowed
control of card readers, line printers, etc., by the
batch control program so that the machine could be
scheduled more effectively. During this batch evolu-
tion, little monitor enhancement was necessary to
specifically address the batch environment. Modules
to improve efficiency (by multiple strands and better
scheduling) and increase functionality were imple-
mented as "user7' jobs and interprocess queueing al-
lowed communication between the "user" modules.

A line printer spooler, for example, was run as one
of many jobs by the operator-a notion that evolved
beginning with the KA10. If a special form was re-
quired for a print job, the operator would be notified
and act accordingly. The user was relieved of this
responsibility. Operator allocation, control, and media
loading of the card reader, magnetic tape, private disk
pack, DECtape, and plotter were provided in the
KI10.

Terminal Handling and Communications -we be-
lieve the users' perception of system effectiveness
related directly to his feeling that he was interacting
and was in control. The requirement to communicate

effectively with the user via the terminal was one of
the most difficult design constraints. The very first
version of the Monitor used half duplex communication
for simplicity. But finally we decided to pay the addi-
tional price to gain the benefit of full duplex commu-
nication, i.e. being able to continuously input and
output independent of system load. These philosophies
have guided subsequent monitor generations.

A hardware module was constructed to facilitate
terminal communication. This hardware was called the
scanner because it looked at all the interface lines
connected to Teletypes and interrupted the software
when a character was received or needed to be trans-
mitted. These line units, which we built on a single
card, formed the basis of the UART (Universal Asyn-
chronous Receiver Transmitter) LSI chip. A software
monitor, called SCNSER (Scanner Service) handled in-
terrupts from the hardware. SCNSER provided the im-
portant function of logically coupling a physical termi-
nal with a job running under timesharing. The user
was never burdened with attempting to relate his
terminal with his job. This software module, by far the
most logical complex part of the monitor has been
rewritten two times to increase terminal functionality.

Later the KAlO terminal interface was imple-
mented via a "front end" concentrator PDP-8 com-
puter for large numbers of terminals-particularly
where variable line speeds were involved (up to 300
baud). This implementation allowed some off-loading
of the processor. Characters were assembled (serial
parallel conversion) in the front-end PDP-8 and com-
municated with the KAlO via the 110 Bus on an
interrupt basis.

In 1971 a front-end PDP-11 was provided direct
memory access over the 110 Bus. This connection
provided high speed, full-duplex, synchronous com-
munications and was the prototype for the current
KLlOIPDP-11 front-end computer. Software modules
were added to the Monitor to allow these synchronous
lines to terminate remote PDP-8 and communication
concentrator stations in simple point-to-point topolo-
gies. A remote station (e.g. line printer) is viewed by
the user in the same manner as is a local printer.

With the KI10, a second front-end was produced
which allowed BYSINC protocol of the IBM 2780 ter-
minal to be used. However, most of our users were
laboratory oriented and wanted greater performance
and functionality. Thus, concentrator/remote station
capability including route-through (i.e. communication
via multiple concentrators) and multiple hosts was
added. These formed the basis of some of our under-
standing for subsequent DECnet protocol standards
and functions. The use of DECsystem 10 in the Ad-
vanced Research Projects Agency (ARPA) funded
projects formed another key base for our DECnet
protocols and functions [12].

DECnet 10 now provides the capability to have
processes in different computers (including PDP-8's
and PDP-11's) communicate with each other. These

Communications January 1978
of Volume 21
the ACM Number 1

jobs appear to each other as i/o devices in the simplest
applications.

Throughout all of this communications functionality
evolution, the goal has been to free the user from
concern with the link, communications mode, hard-
ware location, and protocol.

Multiprocessing
Although we predicated the original PDP-6 hard-

ware on multiprocessing, the monitor was not designed
explicitly for it. Lawrence Livermore Laboratory did
build a two processor system with their own operating
system and special segmentation hardware. To meet
the needs of the predominately scientific/computation
marketplace in achieving higher processor throughput,
a dual-processor KAlO was implemented using a mas-
terlslave scheme with wholly shared memory and one
monitor. The slave CPU scanned the queue of runnable
jobs, selected one and ran it., If a monitor call was
encountered, the job was placed in the appropriate
queue and the monitor located another runnable job.
The "master" handled all i/o and privileged operations.
In a CPU-bound environment, the dual processor
provided approximately a 70% increase in system
throughput.

An off-shoot (and evolved design goal) of the dual
processor implementation was higher availability.
Monitor reconfigurability and bus switching hardware
allowed redundant components to be fully utilized
during normal operation and, in the case of a hardware
malfunction, separated into an operating configuration
(with all available ilo) and a maintenance configuration
(consisting of CPU, memory, and the faulty compo-
nent).

At Carnegie-Mellon University (CMU) we pro-
posed to build a 16 to 32 PDP-10 structure [2]. It
would have 16 Mwords of primary memory available
via 16 ports at a bandwidth of 2.1 to 8.6 gigabitslsec.
Using larger than KLlO processors, performance
would have been over 50 mips (million instructions
per second). The 16 processor, C.mmp [13] based on
PDP-11's at CMU is a prototype of such a system.

Languages and Utilities
Monitor commands called the utilities and lan-

guages. The utilities, we called CUSP (for Common
User System Program), and languages included: EDIT,
an editor for creating and editing a file from a user
console; PIP, the peripheral interchange program to
convert information among the i/o media and files;
LOADER to load object modules; DESK, an interactive
calculator; MACRO, an assembler; and Fortran 11. Fig-
ure 1 shows these programs at various times, together
with their origins.

Utilities and languages have taken advantage of
the interactive, terminal-oriented environment. Thus
highly interactive editingldebugging facilities have
evolved in terms of the program's own symbols. The
fileldata transfer utility, PIP, for Peripheral Interchange

Program, is still in existence today, although in a much
enhanced form. It has since been expanded to support
the peripheral devices and the data formats encoun-
tered in the DECsystem-10 memory and ilo devices.
Such a utility eliminated the need for a "library" of
utilities and conversion programs to transfer data be-
tween devices. Such tasks as card-to-disk, card-to-tape,
tape-to-disk, etc., conversion are controlled by a ter-
minal using common PIP commands. PIP evolved in a
somewhat ad hoc fashion from one or two Kword size
in 1965 to ten Kwords with substantial generality.

A powerful and sophisticated text editor, TECO

(Text Editor and Corrector) was initially implemented
at MIT using a graphics display. TECO is character-
string oriented and requires a minimal number of
keystrokes to execute commands. It included the ability
to define programs to do general string substitution.
As the sophistication of users was later perceived to
decline, the powerful editor created training and use
problems. Thus a family of line- and character-oriented
editors evolved which were easier to learn and remem-
ber. These were based on other line-oriented editors,
but especially Stanford's sos, which replaced the initial
DEC line editor in 1970.

Many of the higher level languages were initially
produced by non-DEC groups and made available
through the DEC User Society (DECUS). For example,
APL, Basic, DBMS and IQL (an interactive query lan-
guage) were purchased from outside sources and are
now standard, supported products.

BLISS, Basic Language for Implementing System
Software, developed at Carnegie-Mellon University,
became DEC's systems programming language [14].
A cross-compiler was subsequently developed for the
PDP-11. Its' use as a systems program language has
been due to the close coupling it provides to the
machine, its general syntactic and block structures,
and its high quality code generator. BLISS has been
used for various diagnostic programs, the BLISS Com-
pilers, the PDP-10 APL Interpreter, recent Fortran
IV compilers for both PDP-10 and PDP-11, and the
Basic + 2 system. BLISS has also been used extensively
within DEC for Computer Aided Design Programs.

Tenex and the TOPS 20 Operating System
Bolt, Beranek and Newman started a project in

1969 to build an advanced operating system called
Tenex based on a modified KAlO (including rather
elaborate paging hardware). This work was influenced
by both the Berkley SDS 940 and MIT Multics Sys-
tems. Subsequently Tenex influenced and improved
the KIlO design and became the base of TOPS 20. The
system was described by Bobrow et a1 [4], and the
three major goals stated in the reference were:

I . State of the Art Virtual Machine

a . Paged virtual address space equal to or greater

Communications January 1978
of Volume 21
the A C M Number 1

than the addressing capability of the processor
with full provision for protection and sharing.

b. Multiple process capability in virtual machine
with appropriate communication facilities.

c. File system integrated into virtual address
space, built on multilevel symbolic directory
structure with protection, and providing con-
sistent access to all external i/o devices and
data streams.

d . Extended instruction repertoire making availa-
ble many common operations as single instruc-
tions.

Good Human Engineering Throughout Systems

An executive command language interpreter
which provides direct access to a large variety
of small, commonly used system functions, and
access to and control over all other subsystems
and user programs. Command language forms
should be extremely versatile, adapting to the
skill and experience of the user.

Terminal interface design should facilitate inti-
mate interaction between program and user,
provide extensive interrupt capability, and full
ASCII character set.

Virtual machine functions should provide all
necessary options, with reasonable default val-
ues simplifying common cases, and require no
system-created objects to be placed in the user
address space.
The system should encourage and facilitate
cooperation among users as well as provide
protection against undesired interaction.

111. The System must be Implementable, Maintaina-
ble, and Modifiable

a . Software must be modular with well defined
interfaces and with provision for adding or
changing modules clearly considered.

b. Software must be debuggable and reliable,
allowing use of available debugging aids and
including internal redundancy checks.

c. System should run efficiently, allow dynamic
manual adjustment of service if desired, and
allow extensive reconfiguration without reas-
sembly.

d . System should contain instrumentation to
clearly indicate performance ."

Dan Murphy (one of Tenex's designers/implemen-
ters) came to DEC and led the architecture and devel-
opment effort that produced TOPS 20. The effort at
DEC has been to increase the performance of TOPS 20

to be competitive with the highly tuned Monitor while
not losing its generality. The TOPS 20 structure does
provide increased reliability and modifiability.

7. Hardware Implementation

While logic and memory technology are often the
prime determinant of the performance and cost of a
computer system, fabrication and packaging technol-
ogy are equally important. This section surveys logic,
fabrication, and packaging technology as it affected
the various DECsystem 10 models. Table VII summa-
rizes the various technologies.

Logic
The PDP-6 used a set of logic modules that evolved

from the earlier PDP-1, which in turn were derived
from the Lincoln Laboratory circuits developed for the
TX-0 181 and TX-2 [6, 111 computers as part of the air
defense -program. These circuits were direct coupled
transistor logic and included both series and parallel
transistor circuits to give great flexibility in designs.
The PDP-1 circuits operated at a 5 mHz clock, and
new transistors enabled the PDP-6 circuits to operate
at 10 mhz. The computer's clock was derived from a
delay line which carried pulses generated by a pulse
amplifier using pulse transformers (this too came from
Lincoln Laboratory via the early work at MIT on
radar and pulse transformers). The pulses were used
for register transfer operations (i .e. moving data among
the registers) and some logic gating.

Instead of using a small number of lines in a fixed,
synchronous clock, many delay lines were used. The
route through the control path determined the state of
the machine. At each decision point, the next line or
chain (set of lines) was selected. Hardware subroutines
were also unique with this implementation. A control
sequence consisting of a set of delay lines was defined
as a subroutine and a calling module marked the
calling site (e.g. add, subtract, and complement are at
the lowest level). The basic multiply subroutine used
add or subtract, and finally floating multiply used the
normalize, and multiply subroutines. In this way, the
implementation was kept structured and turned out to
be quite straightforward. The flowcharts for the PDP-
6 were only 11 pages, where each page has about 25
unique statements (actions), yielding a total of only
250 microsteps (each step causes 1 to 6 operations and
corresponds roughly to current microprogram state-
ments). The asynchronous adder was designed so that
on completion of all the carries, the sequence would
restart. Thus we took advantage of the observation
made by von Neumann, et a1 in 1946, [3, ch. 41 that
the average number of carries is log, 36 or slightly
over 5 , versus the worst case of 36. And since the
average delay time was about 20nsec per carry, this
reduced the average add time to only lOOnsec versus
720nsec, yielding a very simple and fast circuit.

The KAlO used essentially the same circuitry but
with significantly better packaging so that automatic
wire wrap backpanels could be used. Note that in
Table VII, the existence of certain semiconductors was
the basis of new machines. The TTL/H series logic

Communications January 1978
of Volume 21
the ACM Number 1

appeared about 1969 and formed the basis of a ma-
chine (the KI10) with roughly the same power dissipa-
tion and physical size as a KA10, but with a factor of
2.2 more performance. In scientific applications requir-
ing double precision computation, this performance
differential is much greater. Ironically, the TTLI
Schottky (TTLIS) series was first available in produc-
tion quantities about the time of the delivery of the
KI10. The KIlO design was started earlier and design
options chosen so as to preclude the subsequent ad-
vances in speed, power, and density that the TTLIS
gave.

The other important logic advances employed in
the KIlO were the MSI register file and associative
memory packages. The register file provided four sets
of accumulators and thus decreased the context switch-
ing time. (This probably had a higher psychological
than real value but was useful where special devices
were operated on a high speed, real time basis.) The

Table VII. Implementations for DECsystem 10 hardware.

associative memory package permitted the construction
of a 32 word associative memory to support a paged
environment.

The KLlO provides almost a factor of five perform-
ance improvement over the KAlO for programs using
the basic instruction set. An even larger perfor~flance
improvement is realized for Cobol or extended preci-
sion scientific programs. The organization and much
of the base work for the KLlO was done by Dave
Poole, Phil Petit, John Holloway, and Jack Wright at
the Stanford Artificial Intelligence Laboratory.

The KLlO is microprogrammed using a memory
based on the one Kbit bipolar RAM. A cache memory
is also constructed from the one Kbit chips. The KLlO
is implemented in the Emitter Coupled Logic (ECL)
10K series rather than the TTLISchottky of the original
Stanford design. It was felt that the ECL speed advan-
tage with 3 nsec. gate delay vs 7 nsec. for Schottky
was worth the extra design effort especially since the

Processor PDP-6 KAlO KIlO KLlO

Design start 3/63
First ship 6/64
Logic Germanium, Silicon

transistors
MIPS(avg .) 0.25
Packaging (slice 1-bit of AR, MB, MQ,

of PC) AD:88 transistors, 2-
sided PC etch; 2, 18-
pin & 2-22-pin conn.
(11" x 9" boards)

PC. size 2 bay

1/66
9/67
Discrete Silicon transis-

tors and diode
0.38
implemented in R, S,

W-series flip chip (dis-
crete) modules (5'12
x 5l/4 boards)

2 bavs

12/69
5/72
TTL/H (MSI) Registers;

assoc. memory
0.72
implemented in R, S,

W, M-series flip chip
(discrete + MSI)
modules S1/2 x 5l/4
boards

2+ bavs

1/72
6/75
ECL 10K; Fast, 1 Kbit memories

1.8
6-bits of AR, ARX, MQ, BR, BRX,

AD, ADX:70 MSI ECL per mod-
ule; 216 pin connector; (8" x 16"
boards)

' 1 2 bay (including, internal channels)

PC. price $120K $150K $200K
Control Design async. & subroutine same as PDP-6 clocked sync.

logic

$250K
KL20 is clocked sync.; micropro-

grammed

Module Size large modules small modules wire wrap same

Registers 16 16 4 x 16

large modules (16 Kword core mem-
ory module)

8 x 16

110 calls prog. interrupts UUO
traps;

110 transmission I/O & Memory Bus

Memory Manage- 18-bit phys. addr. pro-
ment tection & relocation

regs.
ISP see Table I11 (integers,

floating)
Parallelism

same

added channels

2 protection & reloca-
tion regs. for shared
program segments

conversion to assist d .p.
float

simpler (faster) data

vectored interrupts

integrated controller for MASSBUS;
110 via PDP-11 computers

22-bit phys. addr; paged 22-bit phys addr. paged, using asso-
using 32 word associ- ciative memory via cache
ative memory

hardware d.p. float string & conversion for d.p. integers

instruction look-ahead instruction look ahead; 2 Kword
~ a t h (4-word) fetch cache memorv

- -

Fabrication (too) large modules Gardner-Denver auto- semiautomatic wirewrap large (hex) mod- (KL20) integrat-
matic wire wrap for for twisted pair ules with many ing PC and Mp
backpanel intercon- pins; low cost together -
nection minis front end eliminating

Memory Bus*
high density
core memory
modules

Consequences served as PDP-10 pro- buildable in production more performance (sci- more perform- lower cost
duction prototype entific & real time); ance via cache;

and paging for opera- micropro-
ting systems gramming for

better COBOL
ISP; i/o com-
Duters

Communications January 1978
of Volume 21
the ACM Number 1

ECL needed more power and care to layout the board
and backplane.

Fabrication
The Gardner-Denver automatic wirewrap machine

was significant in the fabrication of machines. Auto-
matic wirewrap economically provided accurately
wired backpanels. As a more important side effect, it
made the high volume, low cost fabrication of mini-
computers possible! Some backpanel wiring on the
KIlO and KLlO processors using twisted pairs cannot
be done using the Gardner-Denver machinery. For
this, DEC developed a semiautomatic wirewrap ma-
chine which locates the pins, and selects the wire
length for an operator.

Computer design aids have evolved to support
computer implementations on an "as needed" basis,
barely keeping ahead of the implementations. These
have included printed circuit board layout/routing,
backplane layoutlrouting, circuit/logic simulation, wire
length/logic delay checking, and various manufacturing
aids. One notable exception to this trend has been the
Stanford University Drawing System (SUDS) developed
by the Stanford Artificial Intelligence Laboratory. SUDS

was used for drawing the entire KLlO design. The
design time and cost would have been significantly
greater if SUDS had not been available.

Packaging
Semiconductor density is a major determinant of

the system size, and size in turn is a major determinant
of speed (e.g. shorter interconnection paths). Seymour
Cray has stated in a lecture at Lawrence Livermore
Laboratory (Dec., 1974) that for each generation of
his large computers, the density has improved by a
factor of five.

The packaging for the PDP-6 was identical to that
of the PDP-1,4, and 5 and used a board area of about
40 sq. in. with a 22 pin connector. A logic density
improvement of two was achieved over the previous
designs by using six special function modules. However
this density turned out to be too high for the number
of pins. A natural extension was a board twice as large
with 44 pins. The most interesting module was the bit
slice of the working registers: accumulators, multiplier-
quotient, and memory buffer. This module required
more than 44 pins, so the extra signals were bused
across the back of the module. This busing increased
module swap time and the mechanical coupling in-
creased the probability that fixing one fault would
cause another. Because of this, the designers of the
KAlO and KIlO became fearful of large boards. Only
with the KLlO in 1972 were large boards reintroduced
into the DECsystem 10. On the other hand, large
boards had been used in DEC minicomputers since
1969. Multilayered boards were required for the KLlO
ECL logic. These boards were adapted from the mul-
tilayered boards developed for the TTL/S PDP-11/45
(1972).

PriceIPerformance
Surprisingly, over time the various models of the

DECsystem 10 have been implemented at an essen-
tially constant cost. The option to apply technology at
constant performance with reduced price was never
examined as an alternative strategy. In the minicom-
puter part of the company, both alternatives were
vigorously pursued in order to provide a growing
business and stimulate design alternatives. The rela-
tively static DECsystem 10 strategy with constant
price, no doubt, stems from the highly coupled inter-
action of: builders (wanting to go on to provide the
next highest level of performance which was the found-
ing principle of the group); the salespeople (many of
whom came from other companies and are only used
to working with a particular user class); users (who
want more performance so as to reduce their overall
cost/performance ratio); and marketing (which inte-
grates needs and alternatives). This is illustrated in
Figure 7. Here we give the performance in terms of
the number of general purpose users versus the system
price.

Figure 8 gives a single price of the system for each
generation, together with the percentages going of
each for the system components. The best costlper-
formance systems are shown (except, in the case of the
minimal PDP-6). Figure 9 gives the price of the various
processors versus time for the family; note the proces-
sor price has been increasing roughly at the inflation
rate, suggesting a manpower intensive (or service-type)
market structure. Note that since the performance
(Table VII) has improved at roughly a factor of 10 in
10 years, the increase in performance/cost is nearly

Fig. 7. Performance (in general purpose users) versus price for
each generation.

Price (K$l

Communications January 1978
of Volume 21
the ACM Number 1

20% per year. In contrast, a minicomputer line (con-
stant performance) is plotted which shows the price
decreasing at 21% per year, with a factor of 10 price
decline in 10 years. We should ask: could a PDP-6
level processor be built in 1975 to sell for $10K?
Clearly it could, and such a system has been built as
an advanced development project. This small 10 has a
unified bus structure like the PDP-11 with a connection
to use the Unibus family i/o devices. A system with
512 Kwords and the performance of greater than a
KAlO occupies a cabinet somewhat smaller than an
11/70 minicomputer.

Figure 10 shows how the price of memory has
decreased with time. Note that even though there was
growth in the memory size of the monitor of 25%/
year, there was a positive improvement in the memory
price performance. In reality, many functions which
the user was explicitly responsible for were moved to

Fig. 8 . System component prices versus generation

KLlO

Generation

Fig. 9. DECsystem 10 processor price versus time.

the monitor as basic operations. A similar plot for
secondary memory prices is given in Figure 11.

Conclusions

We believe the existence of the DECsystem 10 has
been beneficial to the many environments for which it
has provided real time and interactive computation,
including the computer science and computer engineer-
ing communities. In turn, we have tried to respond to
the needs of these users. Its existence has also been a
positive force in encouraging alternative, competitive
products in what otherwise might have been a dull,
batch environment. The system has also been used by
and influenced minicomputer, and now microcomputer
development including: hardware technology (e.g.
wirewrap); support for machine development (includ-
ing simulation); and examplary design leading to time-
sharing systems (e.g. DEC's TSS/8, RSTS) and user
environments (e .g. RT-11 and microcomputer sys-
tems).

Fig. 10. DECsystem 10 primary memory price per word versus
time.

=4 0.7'-1969
/ (30% price decrease

10

1969 70 72 74 76 78
time (year)

Fig. 11. DECsystem 10 secondary memory price per Mwords versus
time.

8,000 x 0.81-1969
(20% price decline

1968 70 72 74 76 78
time (year)

Communications January 1978
of Volume 21
the ACM Number 1

