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Introduction 
The PDP-11, VAX-11 (usually just VAX), and 

Alpha have been the strategic computer hardware 
architectures of Digital Equipment Corporation 
(DEC) from the early 1970’s to the present. 
Although it would be a stretch to consider them 
variants of a single computer architecture, there 
are enough common properties in the architectures 
themselves and in the major software systems sup- 
porting the architectures to consider them mem- 
bers of an architecture family. 

Our paper “Computer Structures: What Have 
We Learned from the PDP-11” [l] was written at 
the time the VAX architecture was being devel- 
oped, and the learning reported in that paper 
would strongly influence the design of the VAX 
architecture. 

In this retrospective, we will review how the 
PDP-11 learning influenced VAX. Next we will dis- 
cuss what we learned from the VAX architecture. 
Finally we will discuss the design of the Alpha 
architecture and how its design and entry into the 
market resulted not only from VAX learning, but 
also from environmental factors inside DEC. 

PDP-II 

The PDP-11 is a CISC architecture with a 16-bit 
virtual address. The first PDF’-11 implementation - 
the PDP-11/20 - was introduced in 1969. In [2] 
there is a detailed discussion of the goals and con- 
straints for the design of the PDP-11. Deliberately 
oversimplifying, these include: (1) provide the 
ability to build processors with a wide range of 
performance and function, (2) provide efficient (8- 
bit) byte processing, (3) provide a flexible, compiler 
friendly programming model, and (4) provide a 
flexible I/O structure. 

The PDP-11 architecture is a general register 
design (8 16-bit registers) with the program 
counter and stack pointer located in the general 
registers. An elegant set of register-based memory 
addressing modes combined with the general reg- 

ister structure to produce an architecture that can 
be programmed as a stack machine, a general reg- 
ister machine, or a memory-to-memory machine. 
Memory is addressable to the (&bit) byte and the 
conditional branch mechanism is based on condi- 
tion codes. I/O is handled by providing I/O 
device registers with memory addresses: the regis- 
ters can then be manipulated by ordinary instruc- 
tions. 

The PDP-11 was a major commercial success, 
providing the majority of DEC’s growth, revenues 
and profits from the early 1970’s to the early 1980’s. 
Also, the PDP-11 significantly influenced computer 
architecture with its elegant addressing modes and 
its I/O structure. 

The PDF’-11 architecture proved to have two 
real limitations. The first was the 16-bit virtual 
address space. This will be discussed in the next 
section. The second was the instruction set and the 
instruction set encoding. The original PDP-11 had 
operations to move, add, subtract, compare, and 
conditional branch on 8- and 16-bit integers. These 
operations together with the addressing modes 
were encoded in such a way to effectively exhaust 
the code space of the PDP-11 instruction format. 

This situation made it impossible to compati- 
bly extend the PDP-11 with any consistency or effi- 
ciency. The addressing modes could not 
reasonably be extended or redefined to support a 
greater than 16-bit virtual address. It was impossi- 
ble to efficiently add additional instructions in a 
manner architecturally consistent with the basic 
instruction set. When certain additional instruc- 
tions and other capabilities were needed to meet 
market requirements (e.g. extended integer arith- 
metic, floating point, and memory management) 
they were added as implementation specific 
options and often weren’t compatible across imple- 
mentations. The result of all this was that the PDP- 
11 was not compiler friendly (given the state of 
DEC and industry compiler technology in the 
1970’s). Most PDP-11 language processors were 
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either (1) interpreters or (2) compilers that com- 
piled to an intermediate form that was interpreted 
at run time. 

Far surpassing the lack of architectural control 
and consistency in PDP-11 hardware implementa- 
tions was the state of PDP-11 software. Depending 
on how one counts, there were about 4 operating 
system families with about 10 named variants. 
These operating systems supported an arbitrary 
variety of sometimes incompatible language pro- 
cessor, data management, and transaction process- 
ing software. It was understood that this situation 
would be completely unmanageable and could not 
be afforded for the future. 

From the PDP-11 to VAX 

The Bell and Strecker paper [l] has often been 
quoted because of this statement: 

“There is only one mistake that can be made in a 
computer design that is difficult to recover from - not 
providing enough address bits for memoy addressing 
and memory management. The PDP-11 followed the 
unbroken tradition of nearly every known computer. Of 
course, there is a fundamental rule of computer (and 
perhaps other) designs that helps to alleviate this prob- 
lem: any well-designed machine can be evolved through 
at least one major change. It is extremely embarrassing 
that the PDF’-11 had to be evolved with memory man- 
agemen t only two years after the paper was writ ten out- 
lining the goal of providing increased address space. All 
predecessor DEC designs have sufiered the same prob- 
lem and only the PDP-10 evolved over a ten year period 
before a change was made to increase its address space.” 

By 1975, the PDP-11’s 16-bit virtual address 
had become a real limit for applications. (Various 
approaches had been used in the PDP-11 imple- 
mentations to extend the physical address space to 
beyond 216 bytes, but they did not solve the appli- 
cation problem.) 

Moore’s Law [3] predicts that DRAM chip 
capacity increases 4 times every 3 years. Thus, if 
memory chip prices are constant, and if users pay a 
constant amount for computers, then the number 
of address bits needed to address a constant price 
memory will grow by one address bit every 18 
months. 

If a 16-bit address was reaching its limit in 
1975, then one could determine the likely lifetime 
of any address size expansion. We defined the 
PDP-11’s successor - VAX - to have a virtual 
address of 32 bits. Thus we concluded that the VAX 
architecture -based upon the above model that the 
only fundamental limitation on architecture life- 
time is addressing - should comfortably last about 
24 years: until 1999. It would turn out that the limit 
on the VAX architecture lifetime wasn’t the size of 
the virtual address. 

VAX 

The VAX is a CISC architecture with a 32-bit 
virtual address. The first VAX implementation - 
the VAX-11/780 - was introduced in 1978 [4]. The 
design of VAX was started in 1975. The overarch- 
ing goal was to produce a ‘compatible’ extension of 
the PDP-11 that would solve the virtual address 
space limitation of the PDP-11 (the name VAX-11 is 
derived from ‘Virtual Address extension of the 
PDP-11). The principal constraint on the design of 
VAX was that - despite the doubled virtual 
address size - VAX code would be no bigger than 
equivalent PDP-11 code. 

A strong goal was to eliminate the chaos of the 
PDP-11 software. This was approached in three 
ways. (1) VAX was to have a single strategic oper- 
ating system - VMS - with real-time, time-shar- 
ing, and transaction processing capabilities. (2) To 
make the VAX compiler friendly (again in the con- 
text of DEC’s mid-1970’s compiler technology), an 
extreme focus was placed on instruction set com- 
pleteness and regularity. (3) The VAX software 
environment was to be based on the model that 
any software can ‘call’ any other software. To 
strongly motivate software developers to follow 
this model, VAX defined a number of ‘software’ 
data types (i.e. subroutine stack frames, queues, 
variable length bit fields, character strings, and 
decimal strings) and provided instruction support 
for these data types. ‘Software’ is used in the sense 
that most applications would see little perfor- 
mance degradation if the data types were imple- 
mented in software. 

Given the code size constraint and the limita- 
tions discussed above on extending the PDF’-11 
instruction set, the VAX instruction format is not a 
superset of the PDP-11 instruction format. Instead 
a new instruction format was designed for VAX 
and formal PDP-11 compatibility was provided by 
a tightly integrated PDP-11 compatibility mode 
that allowed execution of PDP-11 instructions in 
the VAX virtual address space. 

The VAX architecture has the same general 
structure as the PDF’-11 - general registers 
(extended to 16 32-bit registers), with the program 
counter and stack pointer located in the register 
set, a rich set of register-based addressing modes 
(extended to include scaled indexing and an effi- 
cient encoding of literals). VAX also has the same 
data types, condition codes, and byte addressing 
as the PDP-11. 

As introduced above, VAX extended the PDP- 
11 by defining new data types - queues, variable 
length bit fields, subroutine stack frames, character 
strings, and decimal strings - and a complete set of 
instructions to operate on these data types. 
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To achieve the code size constraint, VAX PDP-11 (and other DEC architectures) to the 
defined an extremely space efficient method of hugely successful VAX and VMS business. How- 
encoding instructions. Instructions are provided in ever, once that success was achieved, the VAX 
multiple forms with implicit and explicit operands. 
For example, the 32-bit integer ADD instruction is 

architecture carried a complexity burden that 
would make it particularly vulnerable to the RISC 

provided in the following forms: concept. 

increment A 
add A B 
add A B, C 

; add 1 to A 
; add A to 0 
; add A to B and 
store the sum in C 

From VAX to Alpha 

Every explicit instruction operand (A, B, and C 
in the previous example) is specified in a general 
way using any of the VAX addressing modes. This 
leads to the VAX instruction format of 

[opcode, operand-l-specifier, . . . , operand-n-specifier] 

where n is the number of explicit operands. 

In 1980, Patterson [9] discussed the modern 
RISC architecture concept. By the mid-1980’s, there 
was a general consensus in DEC that for a given 
amount of CPU logic in a given technology, a RISC 
processor could achieve (at least) twice the perfor- 
mance of a CISC processor. There was no consen- 
sus, however, on what to do about this. 

There were two rational strategic responses to 
the RISC challenge: 

VAX instructions were defined with O-6 explicit 
operands. 

VAX was a huge commercial success. VAX pro- 
vided the majority of DEC’s growth, revenues and 
profits from the early 1980’s to the early 1990’s. The 
success of VAX was clearly inseparable from the 
VMS operating system. VMS was a true 32-bit vir- 
tual memory operating system that performed 
well from its first release. VMS embedded DECnet 
such that it was transparent to applications 
whether any file or other I/O operation was local 
or over the network. On top of VMS was a highly 
integrated (and network-transparent) software set 
including multiple language compilers, a database 
(RDB), transaction processing (ACMS), and an 
‘integrated office’ environment (ALL-IN-l). VMS 
invented and first implemented the now-pervasive 
concept of clusters [5,6]. 

1. Since the RISC advantage would ‘only’ be a 
factor of 2, DEC could ‘tough it out’ until the limits 
of a 32-bit address space would force a new archi- 
tecture (predicted, as discussed above, to be about 
1999). To ‘tough it out’ would be (1) to focus on the 
most aggressive possible microprocessor imple- 
mentations of VAX, (2) to use multiprocessing and 
clustering to achieve performance, and (3) to 
accept limited success in some market segments 
where (1) and (2) would be marginal (e.g. UNIX 
workstations). Effectively, this was the type of 
strategy successfully employed by IBM for the 
‘360’ architecture and Intel for the ‘x86’ architec- 
ture - the other two important CISC architectures 
with a large customer base. 

When it was clear that the market was 
responding to VAX and VMS, DEC moved to VAX 
and VMS as its sole computer system strategy [7]. 
All other DEC systems were put in niche roles or 
moved to what was essentially a maintenance 
mode. 

It is notable that the VAX architecture 
remained essentially unchanged over the last 20 
years. The only material addition was the early 
adding of 2 floating-point data types. The only 
other material change was to define permissible 
subsets [8] of the architecture. (The MicroVAX 
architecture was such a subset.) Processors imple- 
menting VAX subsets generate sufficient state on 
encountering an instruction not in the subset to 
enable transparent, efficient software interpreta- 
tion of the missing instruction. 

2. Since CISC was going to ‘lose’ by at least a 
factor of 2 to RISC, it was essential to embrace 
RISC ASAP, define a new or use an already defined 
RISC architecture, and get products to the market 
in a timely manner. Especially important, it was 
necessary to get DEC’s then strategic software sys- 
tem - VMS - ported to the RISC architecture (or 
perhaps, even better, made processor independent, 
and sold industry-wide). Effectively, this was the 
type of strategy successfully employed by Sun in 
moving from the ‘68000’ to SPARC. 

As we discussed in the last section, DEC’s VAX 
business was a huge success, and it was very prof- 
itable. At this time, DEC’s senior leadership was 
operating under the philosophy best captured by 
the two phrases ‘if some strategy is good, less strat- 
egy is better,’ and ‘if some internal competition is 
good, more internal competition is better.’ 

A retrospective on VAX must reflect a strong 
sense of time. The VAX embodiment of the goals 
and constraints of PDP-11 compatibility, the code 
size constraint, instruction set completeness and 
regularity, and hardware support for ‘software’ 
data types was absolutely key to moving from the 

As a result, exploiting the considerable profits 
of the VAX business, an overwhelming array of 
internal projects in processor technology, VAX and 
RISC architectures, and operating systems were 
launched. During the second half of the 1980’s, 
major projects were undertaken in various combi- 
nations of 3 different ECL gate array technologies, 
high performance multichip packaging, advanced 

8 



custom CMOS, 3 internally developed and one 
externally developed (MIPS) 32-bit RISC architec- 
tures, a 64-bit RISC architecture (Alpha), multiple 
system and I/O busses, a new UNIX operating sys- 
tem, and two new proprietary operating systems! 
Knowing that all these projects could not possibly 
be successful, DEC’s product development organi- 
zation was locked in internecine warfare. 

By the end of the 1980’s DEC had essentially 
lost control of its system strategy. It wasn’t explain- 
able or affordable, and remarkably still hadn’t 
done everything necessary to successfully imple- 
ment either of the two strategic alternatives dis- 
cussed above. It wasn’t until 1992/1993 that DEC 
changed its senior leadership and regained control 
of its system strategy. 

Alpha 

Alpha is a RISC architecture with a 64-bit vir- 
tual address [lo]. The first Alpha implementation - 
the 21064 single chip microprocessor - was intro- 
duced in early 1992. Computer systems using the 
21064 were introduced at the end of 1992. 

The goals of the Alpha architecture design 
were high performance, longevity, support for run- 
ning the VMS and UNIX operating systems, and 
support for existing VMS and UNIX applications. 
The goals of high performance and longevity were 
met by a RISC approach with extreme attention to 
details that might interfere with high-speed imple- 
mentations, a 64-bit virtual address, and PALcode 
(to be discussed later). The goals of VMS/VAX and 
ULTR.IX/MIPS (DEC’s UNIX offering was called 
ULTIUX and ran on the MIPS architecture) applica- 
tion support were met with data type and address- 
ing compatibility with VAX and (little-endian) 
MIPS, PALcode, and binary translation (discussed 
later). 

Compared to VAX, the design of Alpha can be 
considered ‘classic’ RISC. There are 32 64-bit gen- 
eral-purpose registers and 32 64-bit floating point 
registers. All instructions are 32 bits in length. The 
programming model is load/store: the only mem- 
ory operations are load from memory to register 
and store to memory from register. All other opera- 
tions are between registers. The only data types are 
integer and floating point with VAX compatibility. 
The principal integer data type is 64 bits, and there 
is very limited instruction support for smaller inte- 
gers. Memory is addressable to the byte but there 
are strong size and alignment constraints on mem- 
ory accesses. There are no condition codes: condi- 
tional branches are based on testing the state of a 
register. 

In addition to ‘classic’ RISC techniques, Alpha 
has some novel approaches for enabling high- 
speed implementations. For example, there is a 
very flexible approach to specifying and handling 

arithmetic exceptions. A conditional move instruc- 
tion eliminates branches in certain instruction 
sequences. Certain instructions contain hints about 
branch targets and data prefetching. 

PALcode (Privileged Architecture Library) 
provides a means of implementing the privileged 
architecture seen by an operating systems. Privi- 
leged architecture includes context switching, 
interrupts, exceptions, and memory management. 
In Alpha, PALcode is implemented with ordinary 
instructions running in physical memory, with 
interrupts off, and access to all machine state. The 
PALcode is tailored to the needs of each operating 
system (e.g. VMS, UNIX, and Windows NT). 

Rather than hardware compatibility modes, 
binary translation is used to run VMS/VAX-based 
and ULTRIX/MIPS-based applications on Alpha. 
The binary translator takes, say, VMS/VAX-based 
executable code and compiles it to the extent possi- 
ble to VMS/Alpha-based executable code. A runt- 
ime interpreter paired with an incremental 
compiler handles the portion of the code that can- 
not be initially compiled. During runtime interpre- 
tation, enough additional information and context 
is gathered to significantly extend the scope and 
optimization of the initial compilation. 

Binary translation was very successful in exe- 
cuting applications from VAX and MIPS on Alpha. 
Recently it has been used successfully to execute 
Windows NT/x86 applications on Windows 
NT/Alpha. 

Around Alpha a unified system strategy was 
developed. The strategy consisted of (1) an aggres- 
sive long-term road map for Alpha microproces- 
sors, (2) a family of systems from workstations to 
large-scale multiprocessor systems using the 
Alpha microprocessor. (3) PC1 bus-based I/O for 
all systems, and support by three operating sys- 
tems: VMS (evolved from 32-bit to 64-bit support), 
UNIX (called DIGITAL UNIX: a new pure 64-bit 
operating system based on OSF technology) and 
Windows NT (provided by Microsoft). All other 
DEC systems were put in niche roles or moved to 
what was essentially a maintenance mode. 

This strategy was well executed by DEC. The 
various Alpha microprocessors maintained a sig- 
nificant performance lead over competitive RISC 
and CISC microprocessors. The transition of 
VMS/VAX to VMS/Alpha and ULTRIX/MIPS to 
DIGITAL UNIX/Alpha went smoothly. In applica- 
tion areas - particularly databases - where 64-bit 
addressing could be exploited, Alpha performance 
and 64-bit DIGITAL UNIX functionality set the 
competitive benchmark. 

Unfortunately, the strategy was late. By 
1992/1993 defacto standards had been set by com- 
petitors for RISC and (32&t) UNIX. Despite the 
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simplicity of the strategy, and the technical excel- 
lence, DEC would struggle to get product volumes 
adequate for a profitable systems business. 

However, a new opportunity is emerging for 
Alpha. As the UNIX and the Windows NT market 
moves from 32 to 64 bits, Alpha is the only mature, 
high performance 64-bit RISC architecture with 
pure 64-bit UNIX and Windows NT support. A 
complete retrospective on Alpha awaits the indus- 
try 32- to 64-bit transition. 

Summary 

The PDP-11, VAX-11, and Alpha can be consid- 
ered members of an architecture family starting in 
the 1960’s and extending to the present. 

The PDP-11 was a huge commercial success for 
DEC. The PDP-11 was the de&to standard 16-bit 
minicomputer in the 1970’s. The basic PDF’-11’s 
design was extremely elegant and it significantly 
influenced future computer architecture. However, 
the PDP-11’s 16-bit virtual address space and the 
inability to efficiently and consistently extend the 
architecture, led to its successor - VAX - being 
designed only 6 years after its introduction. 

The VAX was similarly a huge commercial suc- 
cess for DEC. VAX and its closely related software 
system - VMS - became the defacto standard for 
32-bit virtual memory networked computing in the 
1980’s. However, VAX, driven by its initial design 
goals and constraints, was a complex architecture, 
and was particularly challenged (internally and 
externally) by the RISC concept that competitively 
emerged in the mid-1980’s. 

DEC’s internal situation in the second half of 
the 1980’s made it impossible to achieve a timely, 
rational response to the RISC challenge. By the 
time the Alpha strategy emerged in 1992/1993, 
DEC had lost momentum in the market and other 
vendors had established defacfo standards in RISC 
and UNIX. This situation would impact the com- 
mercial success of Alpha despite its superior tech- 

nical attributes. However, the Alpha story awaits 
completion of the industry transition from 32 to 64 
bits, starting - as we predicted in 1975 - in about 
1999. 
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