Proposals for enhancement of
UNIX* on the VAX

July 21, 1981
Revised August 31, 1981

Filliam Joy and Robert Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(415) 842-7780

ABSTRACT

This report describes several proposals for enhancements to
the UNIX system on the VAX to meet the needs of the users in the
ARPA research community.

The areas covered in this report include inter-process com-
munication and networking facilities, segmentation and shared-file
access, file system facilities and performance improvements, sys-
tem support for large software projects and software distribution,
standardization of system facilities, operational support, and ongo-
ing software efforts.

An appendix provides a index to the document in a summary
of proposed system facilities.

We welcome comments on these proposals, either by U.S. Mail to
the address given above, or electronically. Our ARPANET addresses
are wnj@berkeley and fabry®berkeley. Our uucp addresses are
ucbvaxiwnj and ucbvaxifabry. Electronic mail is preferred.

¢ UNIX is a trademark of Bell Laboratories.

Proposals for UNIX =i- Contents

TABLE OF CONTENTS

1. Introduction

2 lnterprowss communications and networking
Goals

Assumptions

Addresses and sockets

Datagram facilities

Circuit facilities

Muitiplexing facilities

Portals

.7 1. Portal protocols

.7.2. Portal activation

.7.3. Portal examples

.B. Providing network accessible services
.8. More details about circuits

.8.1. Record mode

.8.2. Urgent data

.8.3. Failure of circuits

.8.4. Circuits simulating pipes

.8.5. Closing

.9. Non-blocking and interrupt-driven i/o
.10. Watermarks, options and status inquiries
.11. Extensions being considered

.11. Status of the implementation

.12. Alternatives and comparison

hbb}bbv

3. Hemory management facilities
Standard UNIX facilities

Previous VAX enhancements

Goals

Motivations for segments

Allocating segments

Segment sizes and rounding

Segment protections

Freeing segments

Giving the system advice

.10. Special segments

.11. How exec can be written

.12. Simulating copy-on-write

.13. Special requirements: growing stacks
.14. Huge processes and page table sizes
.15. Page replacement algorithms for VAX
.16. Status and related changes

.17. Alternatives and comparison

PpNBhrNE

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -ii-

4. File system performance enhancements

LobNpbk Rk

Standard UNIX flle system

Previous VAX enhancements

Goals

Major problems

Description of approach

Policies for new file system
Measurements of program speeds
Estimates of file systern performance
Buffering and page caching

.10 Fragmentation in the new organization
.11, Status
.12. Alternatives and comparison

5. New file syst.em facilities

@@L

Symbolic links
Narmng directories

- Locking primitives

Append access and no-delay opens
Truncate

Rename

Per-file cache flushing

Status

8. Software projects and distribution support

BopapmpppE

Current UNIX facilities

Goals

Components of the proposal

CMU project notion

Strong naming support for projects
Makefile standards

Reviving the UNIX group facility
Source revision control
Notification/update facilities

.10 Role of unique-identifiers for files
.11. Towards site-independent programs
.12. Status

7. Xandards

R X F Y P

.

CSRG TR/4

Manuel format

Libraries

Mail

Signals

Terminal driver interface
Control; cleaned up ioctls
Debugging information format
Screen environment support
Other areas

- August 31, 1981 -

Contents

Joy/Fabry

Proposals for UNIX - iii - Contents

B. Operauonal support
Standard UNIX facilities
Current VAX facilities
Overview of needs

Operator notion

Clean localization of system
Error logging
Dump/restore needs
Archive/retrieve design

R Rl T

9. Miscellaneous topics

Software census and contribution to standard system
Electronic forum for system users

Hardware support; new and dual processors
Debuggers

Fortran 77

Detaching jobs

UNIX and VMS: performance and facilities

NepuRrNE

1 Index and summary of proposed system facilities

CSRG TR/4 - August 31, 1981 - Joy/Fabry

Proposals for UNIX -1- Introduction

1. Introduction

This report presents our proposals for enhancements to UNIX on the VAX.
Succeeding sections describe proposals for various parts of the system. The
rest of this section outlines these proposals.

Section 2 describes a proposal for interprocess communication on UNIX and
an interface using these IPC facilities to networks, both local and long haul. We
expect that there will be many different networks interfaced to UNIX and that
the facilities described here can be used to easily interface to these different
networks.

Section 3 describes the proposed extensions to UNIX memory management.
Current large scale Al and image processing programs are generally limited by
architectural or system constraints to a few Megabytes of address space; by the
end of the decade we expect that similar large programs may routinely use
address spaces as large as a Gigabyte. VLSI design programs for large designs
may likewise use enormous amounts of both space and time. The proposals in
this section address the management of extremely large address spaces and
propose a segment based view of virtual memory. Facilities to provide segment
reference control and copy-on-write like facilities are also described. Special
needs of programs that do involved stack manipulations are also addressed.

Section 4 describes proposed changes to the UNIX file system organization
to provide greater throughput. The file system design focuses on information
organization for maximum locality of access and high data throughput across a
range of mass storage technologies.

Section 5 describes file system facilities that are needed for various appli-
cations but not provided by the current file system. Examples include locking of
files to control concurrent access and symbolic links.

Section 8 describes system support for software projects and software dis-
tributions. It builds on the CMU project implementation, combining it with other
facilities: source revision control, strong naming of projects, enhanced UNIX
groups, standards for Makefiles, and automated distribution facilities. The pro-
posed facilities provide for convenient distribution of large bodies of software.

Section 7 describes areas of the system where standardization on a single
set of facilities will benefit the user community. New standards are suggested to
cover the format of the system documentation, contents of system libraries,
mail processing protocols and formats, the primitives for handling software sig-
nals, the interface of the terminal driver, the format of information used by
debuggers, and the environment for screen management support.

Section 8 describes issues in operational support of the system. Several
new facilities to be integrated or provided in the standard system are described:
the notion of an operator, clean localization of the system (making more of the
binaries cpu site independent), error logging, enbhancements to dump and
restore procedures, and provision of new archival and retrieval facilities.

Section 9 covers miscellaneous topics including the construction of a
software availability database, hardware support, and the status of various sys-
temn programs that are being worked on including debuggers and the FORTRAN
77 system.

We conclude in section 10 with a table of the proposed kernel facilities.

CSRG TR/4 — August 31, 1981 ~ Joy/Fabry

Proposals for UNIX -2- .IPC and networking

-

2 Interprocess communications and networldng

This section describes our proposed inter-process communications facilities
for UNIX. Our proposal constructs an IPC framework that can be used to build a
number of different protocols for communication, and to support different dis-
tributed operating systems and applications.

Initially we intend to add the facilities described here to UNIX. We will then
begin to implement portions of UNIX itself using the IPC as an implementation
tool. This will involve layering structure on top of the IPC facilities. The even-
tual result will be a distributed UNIX kernel based on the IPC framework.

The IPC mechanism is based on an abstraction of a space of communicating
entities communicating through one or more sockets. Each socket has a type
and an gddress. Information is transmitted between sockets by send and
receive operations. Sockets of specific type may provide other control opera-
tions related to the particular protocol of the socket.

In providing access to the communcations space, we will initially support
only three socket types, but have specifically designed the facilities so that new
socket types may be easily added. The initially proposed socket types provide
virtual circuits and datagrams. Circuits are two-way reliable data streams, and
datagrams are unreliable one-way messages that are sent without explicit ack-
nowledgment and often with limitations on length. These facilities admit simple
and eflficient implementations both in the single machine case and when inter-
facing to network protocols, and this is why they were chosen initially.

The first version of the IPC facilities for UNIX will support an IPC address
.space that is an extension of the TCP/IP address space, a comparitively flat 32
bit address space with additional addressing available at each node. We expect
to add generic addressing, broadcasting and multiplexing as needed and to
experiment with the amount of late binding in the *‘addressing'* scheme. The
flexibility to allow this is explicitly provided by our basic model. We expect that
in constructing a distributed UNIX system on top of the basic model we will pro-
vide services such as migration of processes, but we do not insist that the
address space underlying the IPC have the ability to directly and transparently
support migration; we will layer it on while implementing UNIX if necessary.

When we use the facilities described here to implement networked versions
of the UNIX system we will build on the IPC address space to derive resource
identifiers (larger objects that contain addresses, rights and authentication) and
use encryption and other well-known techniques to create protection domains
and do authentication. The reader is assumed to be familar with such tech-
niques.

To support multiplexing of communications in UNIX both a synchronous
facility based on the ADA select statement and an asynchronous software-
interrupt (signal) based facility are provided. These facilities are not part of the
basic IPC model, but of its embedding in the UNIX system.

The IPC facilities are integrated into the current UNIX name space by por-
tals, entries in the flle system that invoke server processes when accessed.
These entries are designed to be used by naive processes that are unaware of
the use of communication. The basic IPC comrnunications facilities and portals
may be used to provide services on a single machine and in a networked environ-
ment.

A more complete description of the motivation of the IPC architecture
described here, measurements of a prototype implementation, comparisons
with other work and a complete biblicgraphy are given in CSRG TR/3: “An IPC
Architecture for UNIX''.

CSRG TR/4 — August 31, 1881 — Joy/Fabry

Proposals for UNIX) -3- IPC and networking

2.1. Goals
We see at least four distinct areas where UNIX IPC will be important:
. In supporting inter-process communication within a single machine.

* In supporting access to the facilities of the available local and long-haul net-
works.

* In constructing services on a tightly coupled set of machines to make the
facilities of all machines available to users.

* In constructing servers for autonomous machines, which allow access to
resources while retaining local administrative control.
* To provide uniform access to IPC objects and current UNIX objects.

In meeting these needs we wish to keep, as at present, the UNIX kernel
largely as an i/o multiplexor. We wish to place facilities unrelated to the basic
IPC mechanisms (such as name servers and authenticators) outside the kernel.

2.2. Assumptions

Our design is based on the layered models for distributed systems, such as
the ISO Open Systems Architecture. We assume that the system facilities are
built on services provided by network layers in that model and make assump-
tions in our design about the internetwork:

* The internetwork provides datagram services and perhaps virtual circuits.
* The-internetwork provides origin and destination addresses in all messages.

* Al entities with which we wish to communicate can be given internetwork
addresses. ’

The facilities to be provided by the kernel to the users processes include:
+ Datagram and virtual circuit access to the network.
+ Buffering and multiplexing of communications.

+ Creation of servers when they are referred to, so that they need not pre-
exist.

+ Translation of access to names in the UNIX name space into accesses to
server processes.

+ Translations of systemn calls into protocol when communicating with servers
that simulate UNIX objects such as file and directory hierarchies.

Facilities not to be provided by the kernel are:
= A network name server.
— Control of information access and protection in the network.

— Transmission of structured information and data representation conver-
sion.

Such facilities are desirable, but will be implemented outside the kernel so that
application-specific and site-specific facilities can be created.

2.3. Addresses and sockets

We assume that the transport layer of the system provides us with an inter-
network wide address space. Each message to be sent includes source and des-
tination addresses. The {ype in_agddr will be used to refer to an internetwork
address. We expect, but do not require, that such addresses be of fixed length.

For definiteness the reader may assume that an in_gddr has the following
form:

CSRG TR/4 -~ August 31, 1981 - Joy/Fabry

-

Proposals for UNIX -4 IPC and networking

tyﬁedef struct in _addr {

int ipaddr; /® internet address */
int moreprecise; /* sub-addressing at destination */
{ in_addr;

We expect that some internetwork addresses will be generic and some will be
location independent. The resources available in this way will vary from network
to network.

Our proposal uses a socke? abstraction in both the circuit and datagram
implementations. Sockets are the destination of all internetwork communica-
tion. If a socket is not active (no process is servicing it) when communication is
attempted to the socket then the information may be discarded or a server may
be created to service the socket.

The types of sockets available are represented by the type in_proto:
typedef enum in_proto { SOCK_DG, SOCK_CALL, SOCK_VC { in_proto;

Each socket has some buffering associated with it. SOCK_DG datagram sockets
bufler incoming datagrams; SOCK_CALL call director sockets buffer incoming
and outgoing calls; SOCK_VC virtual circuit sockets have a queue for incoming
data on their circuit and logically reference a matching SOCK_VC socket where
transmitted data is stored.

Active sockets are referenced by small integer *‘file descriptors”. A set of

file descriptors is represented by the type fd_set that is represented by a bit
string and is used in the select primitive for synchronous i/o multiplexing.

2.4. Datagram facilities

A datagram is a short piece of data sent to a specific socket address. No
guarantee of reliable delivery is made for datagrams, and they are typically lim-
ited in length to just over 512 characters per datagram.

A socket for receipt of datagrams may be created by using the socket sys-
tem call:

in_addr addr;
in_addr pref;
int s;

8 = socket(SOCK_DG, &addr, &pref);

The returned s is a descriptor for a socket, and the returned addr is the address
of the created socket. If the third argument to the socket call is a 0, then the
systemn chooses an address for the created socket. You can specify pref if you
wish to set up a specific, well-known socket, e.g. for a server. If an error occurs
then a —1 value is returned for s as is normal in UNIX. ‘

To send a datagram from a socket the system provides a send primitive,
which is invoked

in_addr dest;
char *msg; int len;

... tnitialize values of s, dest, msg, len...
send(s, &dest, msg, len);

to send msg of len bytes to dest. The value of dest must be initialized before this
call from well known data (e.g. the network equivalent of *411" and *555-1212"
or *15.000Mhz2"") or by obtaining it from another process.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -5- IPC'and networking

A datagram can be received by a receive system call:
int d;
in_addr source;
char msg[MAXMSG]; int len;

... tnitialize socket d with addr dest as above...
len = receive(d, &source, msg, MAXMSG);

that returns, in the supplied message buffer msg, len bytes from the source
address returned in source. If the datagram would not fit in the supplied buffer,
then the remainer is discarded and the len gives the length of the datagram
before truncation. Each receive call removes a single datagram from the buffer
space associated with the socket.

The following example shows a time server program that creates an inter-
network datagram socket to which a message can be sent causing a message
with the time to be returned. It could be used by a small computer on a net-
work to obtain the time of day from a central server.

#include <inet.h> /* defines in_addr, SOCK_DG, etc. */
#include <types.h>
#include <wellknown.h> /* defines WWV_ADDR and others */

/* tsaddr is the well-known-address of the time server */
in_addr tsaddr = WWV_ADDR;

main()

char buf{1]; int len;
in_addr addr;

int s;

char *ctime(), timestr;
time_t t;

= socket(SOCK_DG, 0, &tsaddr);

if (s < 0) { printf("can't get socket\n"); exit(1); }

for (i:) ¢
-
* We receive a datagram and discard its contents,
® to get the address of the sender. A more sophisticated
* time server might handle several requests based
* on the contents of the received datagram.

*/

receive(s, &addr, buf, sizeof (buf));

time(&t): /* get binary time */
timestr = ctime{&t); /* convert to string form */

send(s, &addr, timestr, strlen(timestr));
}

Here the socket call associates this process with the time server socket
whose address is specified, returning —1 if there is sornething wrong with ¢s_addr
(ie. not providable on this machine) or if the socket is already in use (e.g. by
another instance of the time server). If the socket is openable the server loops
reading a packet from the socket for the sole purpose of obtaining the address it
came from and sending back the time without further ado.

CSRG TR/4 = August 31, 1981 — Joy/Fabry

Proposals for UNIX -8- IPC and networking

2.5. Circuit facilities

To use a virtual circuit one first obtains a SOCK_CALL call director socket
that is associated with a specific network address. Calls may be placed from and
answered at this socket. Each call placed or answered yields a distinct new
SOCK_VC virtual circuit socket that allows for the reliable, flow-controlled
transmission of arbitrary.amounts of data to and from the party at the other
end of the circuit. Circuits allow specially marked urgent information to be
sent, give out-of-band notification of the presence of urgent data, and allow
record boundaries to be marked in the stream. These circuit options are
described in section 2.8.

Processes can send and receive data on a circuit with the normal UNIX read
and write calls. Conversations are flow controlled by the underlying mechan-
isms; if the sender writes data faster than the receiver can accept it, the sender
will block. If the receiver reads data when none is available, it will block pending
receipt of more data.

In the default streamn mode, a read returns as soon as data is available and
the system does not preserve any boundaries within the information stream. A
record oriented mode for data transmission will be describe in section 2.8.

So that incoming and outgoing calls may be queued, a process must h&ve
access to a call director socket to place or receive a call. A SOCK_CALL socket is
created with a socket call:

int s;
in_addr addr, pref;

s = socket(SOCK_CALL, &addr, &pref);

The returned s is a **file" descriptor for a socket for establishing virtual circuits,
by calling and receiving calls. When calls are placed or answered additional
descriptors are obtained for the SOCK_VC virtual circuit socksts corresponding
to the calls.

A call is received by doing:

int t;
in_addr caller;

t = answer(s, &caller);

This returns a descriptor for the new SOCK_VC socket for the conversation with
caller. Several answer calls may be done on a single call director socket; each
yields a SOCK_CALL virtual circuit socket representing a single conversation.

To place a call establishing a circuit one must first have access to a
SOCK_CALL call director socket at some address. Assuming the SOCK_CALL
socket exists as s created as above, a call could be placed by:

int t;
in_addr callee;

... tnitialize callee ...
t = call(s, &callee);

After placing a call, a new descriptor is obtained corresponding to the new
SOCK_VC virtual circuit socket. If the call fails then a value of —1 is returned.
When the conversation with callee is complete, the virtual circuit socket ¢ can be
closed.

.

CSRG TR/4 = August 31, 1981 - Joy/Fabry

Proposals for UNIX -7- IPC and networking

Both call and answer may be done at a single SOCK_CALL socket.

The following example uses the circuit facilities build a teinet server creat-
ing server processes (login commands) each time someone connects to the tel-
net socket:

#include <inet.h>
#include <signal.h>
#include <wellknown.h>

in_addr teladdr = TELNET_ADDR;
main()

void reaper();
int s = socket(SOCK_CALL, 0, &teladdr); -

if (s < 0) { printf("can't get socket\n"); exit(1); J
sigset(SIGCHLD, reaper);
for (i:) §
int t = answer(s, 0);
if (fork() == 0) §
dup2(t, 0); dup2(0, 1); dup2(0, 2):
close(s); close(t); close(p):;
execl(”/etc/tellogin”, 0);
exit(1);

close(t);

!

#include <wait.h>
/* reaper() allows all children which have died to exit, ./
void reaper() { while (wait3(0, WNOHANG, 0) >= 0) continue;]

Here the basic server enswers to the telnet socket it created. Each time a
connection is made to the virtual circuit socket a new instance of a special login
server /etc/tellogin is created. When a login is complete, the child exits and the
reaper routine is called with a signal; it collects the terminated children.

2.8. Multiplexing facilities

In writing communications oriented programs it is often desirable to pro-
cess information arriving from more than one source. The proposed IPC facili-
ties provide three mechanisms for use in bandling communication with more
than one party: a synchronous facility based on the select statement, a facility
for preventing i/o operations from blocking, and an asynchronous facility based
on software interrupts. The latter two facilities will be described in section 2.9.
We here describe multiplexing with selec?, Multiplexing facilities are generally
useful for UNIX and we expect they will be gradually made available for more
system services and devices. We expect to provide them for terminals with the
first release of the IPC. ‘

To support synchronous processing of information from more than one
source we provide a select call, of the form:

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX _ -8- » IPC and networking

int nfds, nready;
fd_set reads, writes;

nready = select(nfds, &reads, &writes, timeout);

The select call is provided with a structure describing flle descriptors that are
interesting; reads for descriptors where readability is interesting and writes for
descriptors writability is interesting. The system examines each specified
descriptor to see if there is an input or output operation possible on it, and
returns in reads and wrifes sets of all such descriptors. Nfds gives the count of
descriptors representabie by type Jd_set so that the size of the second and third
arguments to select need not be fixed in the system, but may vary from pro-
gram to program.

Either regds or writes may be specified as 0 to denote that no descriptors
are interesting to read or write. If no descriptor comes ready within timeout
milliseconds, the select returns, returning a value of 0. Timeout may be 0 for
immediate return or -1 to not return prematurely.

The name select is chosen from the name of the statement in the ADA
language whose semantics are similar. The select statement is also similar to
the gwaif mechanism provided in extensions to UNIX at BEN. The difference is
the way that the interesting sockets are described and returned. With eweit the
system keeps a list of interesting file descriptors internally, instead of having it
specified at each call, and the return value is an array of integers instead of a
bit mask. Await does not provide the timeout facility. Library routines to simu-
late await could easily be implemented using the facilities of selec?.

An important point in the semantics of select is that it imposes no bias. The
mechanism for selecting among sockets that can be processed is left to the
user.

The previous example program made use of an asynchronous facility for
bandling process termination. A reasonable extension to UNIX would be to pro-
vide a record on a special circuit when child processes terminate. This program
could then be written using select to service the two circuits synchronousty.

Assume that a call waitsocket yields a socket on which messages of type

child_status are placed when child processes terminate. A revised version of the
previous example is shown below.

Here we have used standard library routines setfd that adds an element to a
bit-set of type fd_set and a routine getfd that destructively removes an element
from one of these sets returning the value —1 when the set is empty.

2.7. Portals

The mechanism whereby services may be created in the UNIX file system
name space involves creating a bridge between the flle system name space and
an IPC socket called a portal. Portals are client/server links and as such are
asymmetric. The client accessing the portal may well be unaware that the
object referenced is not a traditional UNIX object; in all but the most trivial
cases, the server of the portal is interpreting a protocol and is cognizant of the
existence of the portal.

A portal is created by the call

CSRG TR/4 = August 31, 1981 ~ Joy/Fabry

Proposals for UNIX -9- IPC and networking

#include <inet.h>
#include <signal.h>
#include <wellknown.h>

#define FOREVER -1

in_addr teladdr = TELNET ADDR;
fd_set sandp, choose;

main()

int s = socket(SOCK_CALL, 0, &teladdr);
int p = waitsocket();
int t;

if (s <Ol p <0) { printf("can't get socket\n"); exit(1);
setfd(&sandp, s); setfd(&sandp, p);
for (i;) §
choose = sandp;
select(NOFILE, &choose, 0, FOREVER);
while ((i = getfd(&choose)) >= 0) §
if (i==p)
child_status chstatus;
read(p, &chstatus, sizeof (chstatus));
continue;

t = answer(s, 0);

if (fork() == 0) {
dup2(t, 0); dup2(0, 1); dup2(0, 2);
close(s); close(t);
execl("/etc/tellogin”, 0);
exit(1);

t,:lose(t):
!

typedef enum portal_kind
¢ PORTAL_CALL, PORTAL FILE, PORTAL DEV, PORTAL DIR; }
portal_kind;

portal_kind kind;
char *name;

int mode;

char *server;

int s;

= portal(kind, name, mode, server);

where name is the pathname for the portal, mode is the UNIX protection mode
for name, and server is a string specifying for the server to be invoked when the
portal is accessed. The kind specifies the type of portal, and thereby specifies
the protocol generated by the kernel for operations by client processes on it.
The s returned is a descriptor for a SOCK_CALL call director socket to which the
kernel will place calls when opens are done on name.

CSRG TR/4 : - August 31, 19681 — Joy/Fabry

Proposals for UNIX -10- IPC and networking

UNIX protection modes are used to control access to the sockets associated
with a portal. The call director socket for a portal is not accessible using inter-
network addresses. It is therefore accessible only using a reference through the
file system name space.

2.7.1. Portal protocols

The portal types are implemented by the kernel by transiating system calls
applied to the flle descriptors returned from opens on a portal into protocol
records on the SOCK_VC sockets the server receives when it answers cails. The
exact specification of these protocols is beyond the scope of this paper, but we
outline the basic nature of the protocols here.

A PORTAL_CALL portal acts like a virtual circuit socket, and sunply passes
calls onto the underlying SOCK_CALL socket.

A PORTAL_FILE translates reads and writes on the underlying SOCK_VC
resulting from an open into a record-oriented request packet to the server. The
kernel expects an appropriate reply to complete the operation for the client.
Operations fstat and lseek are also possible on descriptors obtained by clients
by opening a PORTAL_FILE.

A PORTAL_DEV is like a PORTAL_FILE, but also allows control operations, a
generalization of ioctl to be described in section 7.8. A PORTAL _DEV thus can be
used to simulate a general UNIX device, such as a terminal.

A PORTAL_DIR can be used to sirmulate a UNIX directory, as calls such as
open, unlink and creat are translated into appropriate protocol. A result of

such a call is often another connection to a service process to provide a file
interface via the PORTAL_FILE or PORTAL_DEV protocol.

The system call chdir to remote directories can be supported by allowing
the current directory to be a connection to a server implementing the
PORTAL_DIR protocol.

2.7.2. Portal activation

The service process need not exist when a portal is first referenced. If it
does not, a socket is created and associated with the in-core information about
the flle system entry for the portal. The server string is taken as a path name of
the server program and that server is created in the environment of the process
referencing it, receiving as descriptor O the socket associated with the portal,
inheriting the current directory and user-id of the accessing process. The
server process may be set-user-id to allow it to run in a different protection
domain. The server process created has as parent the process that created it
but is marked to not notify the parent when it finishes execution, since the
accessing process is not aware of its presence.

The portal process may service more than one request on the descriptor or
exit at any time. Processes accessing a portal may wait for the server to service
thern much as callers wait for an gnswer to occur on a virtual circuit.

When a portal is created the portal call returns a descriptor for the portal
Portals thus are created live. If the pointer to the server in a portal call is 0,
this portal is accessible only while it is live; the portal will be closed if the server
dies. A process may thus establish a portal that it will serve and bypass the
server creation mechanism.

CSRG TR/4 — August 31, 1881 — Joy/Fabry

Proposais for UNIX -11- IPC and networking

2.7.3. Portal examples

The example given below shows a mail server utility that looks up forward-
ing addresses:

main()

int p;
char *lookup();

unlink("forwarding");
p = portal(PORTAL_CAll, "forwarding", 06686, 0);
for (i;) ¢

int s, len;

char name[128]; char *addr;

s = answer(p, 0);
recordmode(s, 1);
len = read(s, name, sizeof (name));
addr = loockup(name);
write(s, addr, strien{addr));
close(s);
{
i

The server creates a portal named forwarding of virtual circuit type. If you
want to look up a forwarding address you can do:

FILE *f = fopen("forwarding"”, "rw");

recordmode(fileno(f), 1):

fprintf(f, "jones\n");

fgets(f, buf);

We could also write a server to be created automatically instead of manu-
ally. We would create the portal using a call:
portal(PORTAL_CALL, "/etc/forwarding”, 0666, "/etc/forwarder"”);

Then when the file /etc/forwarding is first referenced, a /etc/forwarder will be
created to service it. This portal would normally be created by a shell com-
mand:

$ portal call /etc/forwarding /etc/forwarder

The server /etc/forwarder would be created with descriptor O referring to the
portal /etc/forwarding, and would be written:

CSRG TR/4 -~ August 31, 1981 — Joy/Fabry

Proposals for UNIX ' -12- IPC and networking

main()
char ®*lookup();

for (;;) §
int s, len;
char name[128]; char *addr:

s = answer(0, 0);

recordmode(s, 1);

len = read(s, name, sizeof (name));
addr = lookup(name);

write(s, addr, strien(addr));
close(s);

J

A server could be created in internetwork space by using a socke? instead of
a portal, or automatically created on reference in internetwork address space
using a association. These facilities are discussed in the next section.

2.8. Providing network accessible services

Recall that portals are not accessible using the internetwork addressing
mechanisms, so that UNIX protection applies to them. It is thus necessary to
provide a separate facility to allow servers to be dynamically created as a result
of internetwork address space references. :

The call

in_addr addr;
in_proto kind;
char *server:;

associate(&addr, kind, server);

specifies that a server of type kind is to be provided for internetwork address
addr, the address must be on the current machine. A reference to the address
addr causes the specified server to be created and given access to the newly
created socket of type kind, either SOCX DG or SOCK_CALL. The created pro-
cess will be run with user-id and group-id of the user who supplied the associa-
tion, from the root directory of the file system, and with the system initialization
process as parent. The power to create associations may be limited administra-
tively on a particular machine. It is likely that certain internetwork addresses
will be reserved to privileged user-id's, and that normal users would not be
allowed to specify these addresses for associations.

An association may be removed by a
disassociate(&addr);

As an example of the use of associations, assume that an internetwork
registry exists on the local network and we wish to create a service program
that will be known to the registry. The program given below creates an associa-
tion for the server and registers it with the registry. This program could be
invoked as

$ register servicename program
to register servicename to access program. We assume that the registry

CSRG TR/4 ' = August 31, 1881 — Joy/Fabry

Proposals for UNIX -13- : IPC and networking

operates by accepting a call from the program followed by three records on the
connection: the operation type as the first record, consisting of the word regis-
ter for registration requests. For registrations the second record is the name to
be registered, and the third record is the internetwork address.

Note: in this example we use printf to print error messages; in a production
program we would use the C library routine perror that looks up an error mes-
sage, and can yield more precise system characterizations of the error. We use
printf here since the error messages in the source can help understand the pro-
gram while calls to perror would all have the form

perror(x);
where z would be s or ¢£. This is not enlightening to the code reader.

#include <inet.h>
#include <wellimown.h>

in_addr registry = REGISTRY_ADDR; /* well-known */
in_addr serviceaddr;
char response{128];

/a
* register servicename program
=/
main(arge, argv)
int argc;
char *argv(];

ints, t;
char ®*servicename, *prograrm;

if (arge !'= 3) §
printf("'usage: register servicename program\n");
exit(1);
}
‘servicename = argv[1];
program = argv{2];
.

s Get a socket to call the registry with.

* Since both this and the socket to be registered

* are assumed to be call director sockets we simplify

* the program by just registering the socket we are talking on.
L

s = socket(SOCK_CALL, &serviceaddr, 0);
if (s < 0) { printf("no sockets available\n"); exit(1);
t = call(s, ®istry);
if (t < 0) { printf("registry doesn't answer\n"); exit(1); |
if (associate(&serviceaddr, SOCK_CALL, program) < 0) §
printf("can’t associate service\n");
exit(1);

!

recordmode(t, 1);

write(t, "register”, 8);

write(t, servicename, strien(servicename));
write(t, &serviceaddr, sizeof (serviceaddr));
closesend(t);

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -14 - IPC and networking

if (read(t, &response, sizeof (response)) < 0) §
printf("no response from registry\n");
exit(1);

if (stremp(t, “ok”) != 0) §
printf("error registering: %s\n", response);
disassociate(&serviceaddr);
exit(1);

]

We note in passing that the placement of the service name in the registry
and the placement of the association of the name in the local association table
would ideally be done as a single distributed atomic operation.

2.9. More details about circuits

We now describe the rest of the facilities and attributes of virtual circuits
that were not yet described. The calls described in the following sub-sections
are written as library routines, and will use the ioctl-like system control inter-
face (see also section 7.8).

2.9.1. Record mode

Circuits support a record mode, where each piece of data written on the
circuit is considered a single record, and reads return complete records. This
allows records to be read and written conveniently. The call

recordmode(s, 1);

sets a virtual circuit socket to be in record mode. A newly created virtual cir-
cuit socket is not in record mode. Record mode may be disabled by doing

recordmode(s, 0);

If you read only part of a record while in record mode because the buffer
supplied to read or the read buflering of the socket is insufficiently large to con-
tain the entire record, then the remainder of the record made available on suc-
cessive reads. The call

recordbetween(s);

returns 1 if the specified stream is at a boundary between records, or 0 if it is
not.

If only the writer is in record mode, then reads will never return data
across record boundaries. If only the reader is in record mode then data will
normally be aggregated to requested lengths before being presented to the
reader.

A record may be created from data presented in multiple write calls by
turning record mode of!, writing data as required, and turning record mode on
just before the last write in the record.

2.9.2. Urgent data

Circuits support a notion of urgent data. A circuit can be set into urgent
mode by doing

urgentmode(s, 1);
or disabled by specifying a second argument 0. Data transmitted while in urgent

CSRG TR/4 — August 31, 1981 ~ Joy/Fabry

Proposals for UNIX -15- IPC and networking

mode is marked, and causes the recipient of the data to process it specially. By
default, urgent data arriving on a circuit causes generation of a signal SIGURG.
This signal may be ignored if urgent data is to be processed synchronously.

The set of channels with urgent data may be determined by doing
fd_set whichareurg;

... initialize whichareury to interesting sockets ...
urgentsockets{NOFILE, &whichareurg);

This selects out of the sockets in the bit-mask whichareurg those with pending
urgent data; all other bits are cleared.

While a socket has pending urgent data the
urgentpending(s);

call will return true. When the next byte to be read is part of urgent data the
predicate

urgentnext(s);
will return true.

The normal way of processing urgent data is to read out records frorn the
input until the urgentpending flag drops. Then the last piece of urgent data will
remain in the input buffer.

A single read call never returns both urgent and non-urgent data; it there-

fore suffices to check urgentnezt before each call to read to determine the type
of the data to be read.

2.9.3. Failure of circuits

If a permanent failure occurs in a circuit the circuit will be marked invalid.
A process that attempts to read from or write to a failed circuit will be given an
error indication and then sent a signal indicating a broken connection if further
reads or writes are attempted. When processing circuits asynchronously a
notification is sent immediately when a circuit fails; see section 3.5.3.

2.9.4. Circuits simulating pipes

A circuit can be used to simulate a pipe directly as the semantics are
upward compatible; the reverse direction of the circuit will not be used, and can
be severed to prevent accidental use. If the circuit fails, the signal sent on the
next access to the circuit performs the same function as the SIGPIPE signal for
pipes.

2.9.5. Closing
The call

closesend(t);

reports to the other party in a call that the call is no longer needed by sending
an end-of-file on the connection. The call will continue while the other party is
sending, and more data can be received on £, but no more data may be sent.

When all copies of the descriptor ¢ created in fork or by dup have been des-
troyed, the circuit will be shut down after allowing the write buflers to drain.

Calls pending when a call director socket closes cause a new server to be
created to service it if the socket has a server via a portal or a association;

CSRG TR/4 — August 31, 1981 - Joy/Fabry

Proposals for UNIX -16- ' IPC and networking

2.10. Non-blocking and interrupt-driven i/o

To support servers and other processes that wish to not block in doing com-
munications processing, a call to set a socket or other UNIX file descriptor into a
non-blocking mode is provided:

nonblocking(s, 1);

After setting a socket non-blocking, operations that would block because of
insufficient buffering on output or lack of available data on input will return a
new error ENBLOCK. This is normally returned to a caller in C as a =1 return
from a system call, with the global variable errno set to ENBLOCK.

The operation can be retried later, as select will report the socket ready
when it becomes unconstipated.

A call placed on a non-blocking call director socket will immediately return
a SOCK_VC virtual circuit socket descriptor, even though the call is not com-
plete. The returned flle descriptor will selact as ready for writing when the call
completes or fails to connect. At that point a sockefstatus operation can be
done on the circuit socket to determine the status of the call. A timeout may be
used with the select to limit the length of time spent waiting for a call to com-
plete.

Certain applications may require that they be notified immediately when-
ever input/output is possible. If such asynchronous operations are required,
this can be enabled by doing:

asynchronous(s, 1);

Then when input is available or output becomes possible after a blockage the
process that is doing asynchronous processing on the socket is notified with a
SIGIO signal. A select with a timeout of 0 can be used to identify the subset of
the asynchronous sockets that need service.

Asynchronous can also be used in addition to nonblocking when placing and
receiving calls. The sequence:

in_addr addr, dest;
int s, c;

... tnitialize dest in some manner ...
s = socket(SOCK_CALL, &addr, 0);
nonblocking(s, 1); asynchronous(s, 1);
¢ = call(s, &dest);

places a call on the socket s and immediately returns a descriptor ¢ because the
socket s is marked non-blocking. Because s is marked asynchronous, a SIGIO is
posted when the call to dest succeeds or fails and the call socket ¢ will appear in
a select as ready for writing. A sockefstatus call, described below, can be used
to determine whether the call succeeded or failed.

A similar technique can be used with answer; if a call were placed to socket
& in the example above then a SIGIO would also be generated, and the socket s
would show as being readable, the data being the incoming call. A answer could
be used establish connection.

SOCK_VC virtual circuit sockets marked asynchronous cause SIGIO to be
sent immediately when the circuit fails.

. Because of the specialized nature of asynchronous i/o and to avoid difficult
semantic and implementation difficulties only one process may mark a socket
asynchronous at a time.

CSRG TR/4 = August 31, 1981 — Joy/Fabry

Proposals for UNIX -17- IPC and networking

2.11. Status inquiries, watermarks, and options
A socketstatus operation can be used to get information about a socket:+

in_status state;

socketstatus(s, &state);
in the following structure:
typedef struct in_status {

in_proto protocol; /* SOCK_DG, SOCK_CALL or SOCK_VC */
in_addr source; /*® socket address */
in_addr dest; /* destination address, for circuits */
in_state state; /* state of the connection s/
fd_waterm srcwm; . /* watermarks for sending */
fd_waterm rcvwm; /* watermarks for receiving */

{ in_status;

The protocol fleld tells the protocol the socket supports; the currently defined
protocols are SOCK_DG for datagram protocols, SOCK_CALL for call director
sockets where call and answer are possible, and SOCK_VC for the virtual circuit
sockets resulting from call and answer. The fleld addr is the address of this
socket. The fleld dest is used only for SOCK_VC sockets, where sockets obtained
by call or answer report peer addresses.

The fleid state shows the state of a call in a SOCK_VC, and has the values:

IN_CALLING Call is pending

IN_CALLFAILED Call failed

IN_OPEN Call has succeeded and circuit is open
IN_CLOSING Call is closing

IN_CLOSED Call has closed

IN_BROKEN Call broke due to some failure

The watermark flelds specify the amount of transmit and receive buffering
in this file descriptor. Each has the following structure: .

typedef struct fd_waterm |
int lowat;
int hiwat;
int timeout;

{ fd_waterm;

The hiwat watermark reflects the total amount of buffering available. The lowat
and fimeout are used in non-blocking input/output. On output, a non-blocking
sender will receive an error when the high water mark is reached and the data is
not transmissible within timeout milliseconds. The sender will be notified when
the amount of output pending drops to the lowat watermark.

A receiver will be notified if lowat data accumulates, or if any data has
accurnulated and timeout time has elapsed.

The lowaf and hiwat are in bytes, and the timeouf is measured in mil-
liseconds. Reasonable defaults for the various flelds are set by the system. The
watermarks may be set by the user by

t This call is implemented as a iocil.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -18- IPC and networking

fd_waterm rdwm, wtwm;

watermarks(s, &rdwm, &wtwm);

where either the second or third argument may be specified as 0 to specify that
the read or write watermarks are not to be changed.$

The interpretation of options for data transmissions such as priority and
security classifications varies from network to network and tends to be inter-
preted in ways that are hard to generalize to different networks. This is akin to
device control, where different devices will allow different operations. Instead of
specifying all possible options with each message to be sent, which would involve
complicated processing for each message, we will use per-socket state to iocal-
ize most of the option setting to the socket setup phase.

UNKX currently provides an ioctl operation to deal with device specific con-
trol operations. and we wish to use a similar mechanism for socket option
specification. See section 7.7 for a discussion of some problems with ioctl, and a
description of the confrol operation to be used here. We define control opera-
tions on sockets to set options. For example:

control(f, "precedence”, “high", —1, 0, 0);
could set the precedence of the circuit fto be high and
char security[32]; int slen;

slen = control(f, "security”, 0, 0, security, sizeof (security));

might return the current security of f as a character string to security.

The watermarks primitive of the previous section might be implemented
by:
watermarks(s, rdwm, wtwm)
int s;
fd_waterm ®*rdwmmn, *wtwm;

if (rdwm)
control(s, “readwm", (char *)rdwm, sizeof(*rdwm), 0, 0);
if (wtwm)
. control(s, "writewm", (char *)wtwm, sizeof(*wtwm), 0, 0);
§
We intend to study the appropriate standard set of control operations for
sockets and provide suggestions for such a set at a later date.

2.12. Extensions being considered

The facilities described here provide basic access to the communications
mode! described at the beginning of section 2. They can be used to provide
higher-level facilities such as location-independent resources and resource
access with different naming, protection and error-recovery strategies.

The facilities can also be extended in two ways: by extending the communi-
cations facilities (more sophisticated addressing; more protocols), or by extend-
ing the interface provided by the UNIX kernel to application processes (building
higher level facilities than provided by the communications facilities).

$ The watermarks call is implemented as an ioctl.

CSRG TR/4 . — August 31, 1981 — Joy/Fabry

Proposals for UNIX -19- IPC and networking

We expect that additional socket types corresponding to different communi-
cation models will be desirable. For example a reliably-delivered-message
abstraction seems useful, independent of the connection implied by a virtual cir-
cuit. This abstraction could be provided by a SOCK_RDM socket type given a
definition of the semantics of failure to deliver.

At the UNIX level we expect to provide additional facilities for controlling
and debugging communcations. We expect that it will be desirable to be able to
control all aspects of selected processes input/output behavior to debug them
or simulate any desired environment. We expect to provide hooks for a control-
ling process to monitor the requests made by a process and to be able to inter-
pose itself in communcations to take traces or redirect data.

The ability for processes to exchange access to existing sockets seems
desirable to many systems builders. This can be provided by allowing processes
to yield sockets to other processes wish to take them. We believe that this facil-
ity is properly part of UNIX, not part of the underlying communcations mechan-
ism. We intend to provide such facilities in the network operating system ver-
sion of UNIX. Similarly, we believe that the migration of processes can be pro-
vided without the aid of special mechanisms in the communications media.

2.13. Status of the implementation

We have implemented a prototype of the mechanism described here that
supports single-machine pipes and datagrams, and have been using it on our
development machine for a several months. It is significantly faster than the
older IPC mechanisms of UNIX (mpx and pipes) and simple to implement.’

We are working a full implementation of this IPC that we will interface to
TCP/IP running on the ARPANET and also to our local area networking hardware
(3M ETHERNET). We expect that this implementation will be in a form suitable
for testing at other sites in the fall of 1981.

2.14. Alternatives and comparison

We are considering alternatives to the urgent data handling mechanism
here. A reader of an earlier version of this proposal pointed out that a more
convenient mechanism might be a non-blocking readurgent call.

Rashid at CMU has implemented a message-based IPC for UNIX that aiso
serves as the basis for the SPICE machine operating system on the PERQ. The
CMU IPC differs from our proposal in several ways:

* It provides reliably delivered messages rather than datagrams and circuits.
The messages have attributes as being either reliable or unreliable and
have headers that contain many of the flelds found in the TCP protocol.
VWith the mechanisms proposed here messages can be constructed by appli-
cations either based on datagrams or on top of circuits. A new socket type
could be added to implement reliable messages in the primitives layer.

* The targets of message transmission are not fixed in location, but may be
moved from machine to machine in a way transparent to user processes. In
our proposal, such migrations are the responsibility of the application pro-
grams, that communicate about such movements using the internetwork
address space for reference.

* The CMU IPC will do data representation conversions and scatter and gather
data to and from the process address space when messages are sent or
received. In our proposal such facilities are the function of application
libraries, not of the UNIX kernel.

CSRG TR/4 — August 31, 1981 - Joy/Fabry

Proposals for UNIX ' -20- IPC and networking

* Selection facilities are built into several IPC calls. In our proposal they are
available as a separate select facility that can be used with other UNIX file
descriptors.

We expect to compare the facilities, performance, and usage of the CMU and

Berkeley IPC proposals more in the near future.

CSRG TR/4 — August 31, 1981 - Joy/Fabry

Proposals for UNIX -21- Memory management

8. Memory management facilities

In this section we describe proposed enhancements to the memory manage-
ment facilities of UNIX to allow UNIX applications programs to take advantage of
the large address space available in the VAX architecture.

3.1. Standard UNIX facilities

The standard version 7 UNIX system has simple memory management facili-
ties. Each process has four areas of memory: a pure code area known as the
“text'’ segment, a private area filled with initialized data values known as the
“data’” segment, a private area filled with zero known as the "'bss’’ segment, and
a stack in its own '‘stack’’ segment. Most UNIX implementations provide these
four areas using only two base-bounds memory management regions: the text
segment is placed-before the data and then the bss segment in one region, and
the stack in the other.

The only use of shared memory in standard UNIX is the pure code “‘text"
area shared by default among all users. Processes may grow by expanding their
stack region when making calls and by allocating stack-local variables, or by
ellocating more memory beyond the end of the *‘bss" segment.

3.2 Previous VAX enhancements

The current VAX system pages the regions described in the previous section
in a way transparent to application programs. It also demand-loads the initial
contents of the pure code ‘‘text’ and initialized “data" segments, making copies
of the pages of the files from which these segments are initialized on first refer-
ence.

Facilities are provided in the current system for users to read from files in
the copy-on-reference fashion used by the system to set up newly executing pro-
grams. This vread facility has not, however, proved useful or popular, and it and
the vwrite and vadvise facility will be deleted in the new systemn and their func-
tion replaced by mechanisms described here.

3.3. Goals

A strong motivation for use of the VAX is the large address space available.
Each process can have up to 2~30 bytes of data in each of two regions available
to it, giving a maximum per-process address space of 2 Gigabytes. To use such a
large address space it is necessary to avoid making copies of the data in the
space. lt is necessary that the system obtain the data from and share it with file
data whenever appropriate. Good performance from the system algorithms is
necessary if extremely large address space programs are to be run.

The major goals of our memory management facility design are:

* To support the extremely large address spaces possible with the VAX
hardware. We would like to be able to run a 2 Gigabyte process address
space on machines with as little as 2 Megabytes of physical memory.

* To support shared access to data and the special requirements of the large
VAX applications such as image processing and LISP systems. Such pro-
grams often need special treatment from the paging algorithms in the sys-
tern and want to gain control and recover after otherwise fatal errors such
as stack overflows and protection violations.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -22- Memory management

* To have reasonable performance on huge virtual jobs. This will require sup-
port from the flle system, which must provide high bandwidth access to file
data, and support from the user, who can help by organizing his process to
bave as well-behaved virtual memory behavior as possible, and by giving the
system advice about the behavior of his program.

* To develop facilities that are portable to different machines with possibly
different memory management architectures. We expect that the demand-
ing nature of research applications will cause them to be run a wide variety
of processors, some of which can run this version of UNIX if its primitives
are portable.

3.4. Motivations for segments

To achieve the goals described above and manage an extremely large
address space, we are basing our memory management design on segment level
primitives, not on page level primitives. Segment based facilities seem desirable
for at least two major reasons:

+ Programs written using segments can be ported easily to machines that
have only page level memory-management control. The VAX is an exarnple;
it does not have segmentation, so this will be simulated. Programs written
using extensive page-level controls tend to be less portable. Our design
thus attempts to encourage a portable programrming style.

+ Segments provide a clean structuring of the address space with useful
granularity, and offer useful places for placement of instrumentation to
gather page-reference information. Memory usage is likely to break down
naturally and somewhat independently into usage in different segments.

3.5. Allocating segments

Segments are represented by their base virtual addresses. On a machine
with a uniform address space this will just be some number in the address-
space-range of the machine. On a machine with segmentation hardware the
address will be a (segment,offset) pair.

The basic segment allocation primitive takes as argument a file descriptor
and a range of locations in that “file”” and returns a virtual address that is the
base of the mapped range. The primitive segalloc is invoked:

int fd; off_t offset; int len;

enumn seg_share { SEG_PRIVATE, SEG_SHARED;] share;
caddr_t pref;

caddr_t va;

va = segalloc(fd, offset, len, share, &pref);

The argument fd specifies the file or special device to be mapped into. the
address space of the calling process. The arguments offset and len give the -
offset into fd and count of bytes to be mapped. If fd describes a file then its
length is made to be at least offset+len bytes by extending it with 0 data if
necessary.

If share is SEG_SHARED addresses to bytes starting at the returned address
refer to the contents of the flle or device represented by Jd starting at offset.
For shared segments, writing to these bytes is permitted if the file Jd is available
for writing, end is equivalent to writing on the associated file or device.

It share is SEG_PRIVATE the returned space refers to private data storage
that is initialized from the corresponding file or device data. The virtual

CSRG TR/4 - August 31, 1981 - Joy/Fabry

Proposals for UNIX -23- Memory managernent

memory returned from a segalloc of SEG_PRIVATE space is, by default, readable
and writable.

The final argument pref may be used to give the address of a variable con-
taining a preferred address for the segment. If the argument is 0 then the sys-
tem chooses a location for the segment in a way not specified externally. The
use of pref arguments is machine specific, and is regularly used only by system
specific routines and special applications.

3.8. Segment sizes and rounding

Memory management hardware on most machines does not permit exact,
bit-length control over how much address space is available to processes. Thus
the system does not promise that exactly and only the range [va,va+len) will be
accessible after a call to segalloc returns a value va. There may be some extra -
locations accessible outside this range, but accessing them should be con-
sidered an error. In our proposed VAX implementation, memory will be available
to a 1024 byte boundary on both ends of the mapped region for SEG_PRIVATE
data, and to a 85536 byte boundary for SEG_SHARED data.

To take advantage of the memory management hardware on a particular
machine, the system may have to align the mapped data, e.g. on page boun-
daries. Because the VAX has no indirect page table entries, and to simplify the
system, reduce the amount of work involved in running large programs, and to
make sharing of page-table-pages possible, the VAX implementation will align all
mapped regions on 85536 byte boundaries so that:

(va & OxfIfT) == (offset & OxfIfT)

That is, the low 18 bits of the returned address from segalloc will agree with the
low 18 bits of the offset mapped. This allows the '‘second-level" page tables of
the VAX to be used to achieve page-table-page sharing. As we will see below,
page table size for large processes can be substantial, so making page-table-
page sharing possible is a desirable goal.

3.7. Segment protections

The default protection mode for a shared segment is inherited from that of
the file descriptor fd. On the VAX, this must either be read or read-write since
the VAX does not support write-only memory, and users cannot be permitted to
map files to be readable simply because they have write access to them.

The protection assigned to a segment may be changed with a segchmod call
segchmod(va, mode)
where rmode is chosen from:

SEG_NA no access

SEG_R read access

SEG_W write access

SEG_X execute access '

The last three accesses may be combined, as in SEG_R|SEG_¥ to give read-write
access. All machines are expected to support SEG_NA, SEG_R, and SEG_R|SEG_W.
On machines that do not support execute-only access, SEG_X will be folded to
SEG_R access. The VAX has a restriction that SEG_W access is not permitted
without SEG_R, since the hardware does not support write-only access.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -24 - Memory management

3.8. Freeing segments

To free the address space occupied by a segment a program can issue the
segfree call:

segfree(va)

passing the address returned by segalloc. The address space previously allo-

cated to the segment is then returned and made availabie for allocation by
future segalloc calls.

3.8. Giving the system advice
Large virtual memory programs often have repetitive or predictable

behavior. Authors of such programs are often aware of this behavior. We pro-
vide a segadvise call, of the form:

segadvise(va, advice)

The advice to be given to the system about the segment at va is required to have
no semantic effect on the result of the program.*

Typical calls to segadvise might instruct the system that pre-fetching of a
set of pages seem desirable, that the program is finished using a particular sec-
tion of virtual memory and that it can be reasonably swapped out, or that the
program will be referencing many pages quickly with little rereferencing (e.g.
LISP garbage collection.) A facility similar to segadvise called vadvise has been
successfully used in the current system.

3.10. Special segments

Calls to allocate segments may access two special files. The first is nor-
mally available as /dev/text. which is a special device that indirects to yield a
handle on the file containing the program that is running. This makes it possible
to re-map pages of the running program conveniently.

The other special file is /dev/zero which is a special interface to swap
space, and that will give a distinct piece of swap space to be initialized with
zeros each time it is mapped in.

8.11. How exec can be written

Using the facilities above we can now give code showing how the exec sys-
temn call creates a new process image. First we should explain that process
images in the new systern will have a 85538 byte hole between the end of each
segment and the start of the next. The first 85536 bytes of process address
space are not mapped, and serve to catch indirect references through uninitial-
ized pointers.

After this 85536 byte gap comes the beginning of the process image file,
starting with the process header and continuing through the process pure
“text” space. There is then another 85536 byte gap before the ‘‘data’ space,
another 85536 byte rounding virtual hole, and then the ‘'bss’ uninitialized vari-
ables.t

The following C code could be used in the system to set up these segments,.

starting in an empty process virtual memory. The ezec code here is very VAX

* This excludes timing-dependent programs, whose output may differ from mm to nm, and
may notice the timing improvements obtained when good advice is interpreted properly.

t The virtual holes preserve alignment between the data file and the address space it is
mapped to.

CSRG TR/4 — August 31, 1981 - Joy/Fabry

Proposals for UNIX -25- Memory management

specific, and uses macros defined in the system header file <a.out.h>. The sym-
bol SEG_TEXTFD stands for an instance of the file /dev/text, and SEG_ZEROFD
stands for an instance of the file /dev/zero.

#define SEGRND 85536 /* rounding to segment boundary */
caddr_t pref;

/* allocate program data (text segment) starting at SEGRND */
pref = SEGRND; ‘
segalloc(SEG_TEXTFD, 0, N_TXTOFF(e)+e.a _text, SEG_SHARED, &pref);

/* allocate initialized (data) segment, after text and SEGRND hole */
pref += SEGRND + N_TXTOFF(e) + e.a_text;
. segalloc(SEG_TEXTFD, N_DATAOFF(e), N_SYMOFF(e)~N_DATAOFF(e),
SEG_PRIVATE, &pref)

/* allocate uninitialized (bss) segment. after another hole s/
pref += SEGRND + e.a_data;
segalloc(SEG_ZEROFD, 0, e.a_bss, SEG_PRIVATE, &pref);

The system would also have to set up the stack for the new process, but this
operation is not shown here.

3.12. Simulating copy-on-write

A user program can build a “copy-on-write' like facility at the segment
level if the hardware permits restartable instructions, or with more work if it
does not. The facility can be implemented by establishing a handler for the
“Memory fault”” and *'Bus error’’ signals. If a fault then occurs on a protection
violation, the signal handling routine will get control. It can modify the accessi-
bility of the referenced data by re-mapping the segment to be modified as
SEG_PRIVATE data, and return to the code that was interrupted.

This style of copy-on-write support makes it possible to build copy-on-write
like facilities even on machines where instructions are not restartable, provided
the code that can fault is writtenin a way that the user-supplied signal handling
routine can backup.

A user program may also monitor both references and modifications to seg-
ments by using access modes. For example, after a garbage collection, a LISP
system may mark its segments read-only, and make them writable only after a
writing is noted. Then, when the next garbage collection is to be done, the sys-
tem can know that certain sections of address space have not been referenced
or modifled respectively and avoid garbage collection overhead.

3.13. Special requirements for stacks

Some VAX applications will need to maintain complex stacks. For instance,
INTERLISP uses a spaghetti stack and wishes to regain control if the piece of
stack being used is exhausted. This requires that the system deliver a signal to
the process on a different stack when the first stack overflows,

A similar need arises in languages that support multiple tasks and that pro-
vide a fixed size stack per task. If the system were to deliver signals to such a
process on the per-task stack, then the size of stack needed would depend on
system parameters, an undesirable situation.

To support these applications, we are proposing to extend the systemn to
ellow specification of a stack for delivering signals. The call

CSRG TR/4 - August 31, 1981 - Joy/Fabry

Proposals for UNIX -28- Memory management

caddr_t asp;
int onsigstack;

sigstack(asp, onsigstack)

provides the system with a stack pointer to be used in delivering signals asp.
The call also informs the system whether the process wishes to consider itself
“on" the signal stack, using the integer parameter onsigstack.

When a signal is to be dispatched, the system first checks to see if the pro-
cess is on its signal stack. If not, then the current stack pointer value is saved
and the system arranges for it to be restored on return from the signal handling
routine. The stack pointer is set to the signal stack location and the kerne!
remembers that the user process is on the signal stack.

In normal usage, a process will take a signal on the signal stack, run a small
amount of code, and then return to the pre-signal frame. The return from the
signal handler resets the signal stack autornatically. If the process wishes to
take a non-local exit from the signal routine, then it must inform the system of
the restoration of the signal stack to be performed using a sigstack call.

If the process wishes to invoke code from the signal stack that uses a
different stack, then the process should provide the system with a new sigstack
so that signals can be delivered there during the nested invocation; this is
necessary because the system would otherwise have no way of finding the top of
the signal stack.®

3.14. Huge processes and page table sizes

In running huge processes on the VAX an important concern is the amount
of physical memory required for processes that use large amounts of virtual
memory. Whether the virtual memory is used or not, it is required to have a
certain amount of physical memory allocated to page tables for resident .
processes.

In the current UNIX system, the kernel keeps all the page tables for
resident processes in non-paged memory. Large VAX systems currently see as
much as 16 Megabytes of active virtual memory, and since 1 byte of page tables
is needed for every 128 bytes of resident virtual mermory, this means that as
much as 512k bytes of memory is occupied by user page tables. While this is
acceptable for running virtual loads of 16 Megabytes, it will certainly not be
acceptable when processes as large as a Gigabyte are run, since a Gigabyte pro-
cess will require 8 Megabytes of page tables.

The new UNIX system on the VAX will consider the address space to be com-
posed of 855368 byte virtual pieces. A single process address space will have
32768 of these pieces, that can be allocated to its various segments. The system
will control page table space at this granularity. Only the descriptive informa-
tion required to locate and manage the page table pages describing the 85538
byte pieces of virtual memory need be resident with a process. It is conserva-
tively estimated that each of these 85538 byte virtual pieces will require 18
bytes of physical memory when the associated process is resident. Thus a Giga-
byte process will require roughly a quarter Megabyte of resident information
describing these second level page table entries.

* Since, unlike tbehardvmintemxptnackpdnter.thcdgndltackpoinmhmtkcptma
Tegister separate from the normal stack pointer.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -27- Memory management

3.15. Page replacement algorithms for VAX

The VAX lacks the reference gathering hardware needed to gather the infor-
mation used by many page replacement algorithms. This forces the system to
use software to gather reference information and makes such information gath-
ering much more expensive. A variant of the clock global replacement algo-
rithm is being used in the current system to do replacement with minimal
amounts of reference information, and a good deal of experience with this algo-
rithm has been obtained.

We are experimenting with a special low-level coding of the reference gath-
ering code in the system, which may make the cost of reference gathering
several times cheaper. If this works out, then it may be possibie to experiment
with some other page replacement algorithms.

We have taken traces of programs typical of image processing and other
scientific work Many of the programs that run on large data sets exhibit regu-
lar patterns in their virtual memory behavior. The segadvise call can be used to
inform the system of the presence of such behavior. We hope to experiment
with algorithms in the system to detect patterns of behavior and to adapt the
page replacement and pre-fetching algorithms accordingly.

In particular, we have already experimented with giving the system advice
that a program is sequential, and with advice that a program is likely to have lit-
tle re-reference to its pages. The former is true of multi-dimensional FFT's run-

-ning on large data sets, and the latter is true of a LISP system running a large,
non-compacting garbage collection. In both cases we observe substantial
improvements in running times and reduced overheads in the system because of
the advice from the user programs. We expect to experiment with such advice
for other large programs.

In the 4.1bsd release of the system we fixed a problem with the placement
of pre-paged pages. In the new release, pre-paged pages are placed at the bot-
tom of the "free list”, not in the clock loop. This allows us to pre-page more
pages, and to use the pre-paged pages more eflectively. We have measured the
4.1bsd system on the benchmarks that Dave Kashtan ran of UNIX and VMS pag-
ing. The 4.1 system and the VMS measurements are nearly identical for all
benchmarks, with the 4.1 systemn faster on benchmarks that are inherently
sequential if the system is told to expect sequential behavior.

3.18. Status and related changes

Implementation of these proposals will proceed in parallel with the higher-
performance file system effort (described in section 4), which is currently
. underway. We expect that we will have a prototype system with a higher-
performance flle system and the new memory management facilities sometime
in late 1981.

There are some related changes that will have to be made to support the
new memory management facilities:

+ A new load format will have to be created that allows for the segment place-
ment implied by the new primitives.

+ The debuggers will have to be changed to understand the mappings and the
new segmentation.

+ The core flle images will have to be changed to include segment data.

CSRG TR/4 — August 31, 1881 — Joy/Tabry

Proposals for UNIX -28 - Memory management

+ The file system performance enhancements will need to be in place to take
full advantage of the new memory management facilities.

We will use instrumentation facilities already in place in the 4.1bsd system
to measure and analyze system performance using the new facilities. We have
sample programs that are large VAX applications that will be measured under
the new facilities to tune and debug them.

3.17. Alternatives and comperison

We considered using a TENEX ‘‘prnap’™ like facility for controlling virtual
memory. Such a facility has been implemented for UNIX on VAX by John Reiser
of Bell Laboratories. We decided that the needs of programs could be met
without the additional internal complexity of pmap, that was felt to be a hin-
drance when such enormous address spaces are to be supported.

If individual mapping of 512 byte pages were permitted in a 2 Gigabyte
address space, then the systern would bhave 4 million pages to deal with for a sin-
gle process. Thus we went to the 85536 byte granularity in memory manage-
ment, as this will allow us to handle these gigantic programs even on small
machines.

We have considered providing different page-replacement algorithms for
the system, including a working-set dispatcher, but feel that the data consump-
tive nature of the most demanding applications will be satisfied only by algo-
rithms that can be told of or adapt to trends in memory referencing. We feel
that the current global replacement algorithm will work adequately in the large
process environment and admits the hooks that are needed for exploitation of
patterns of reference. '

CSRG TR/4 - August 31, 1981 — Joy/Fabry

Proposals for UNIX -29- File system performance

4. File system performance enhancements

This section describes the proposed changes to the file system organization
and aigorithms to increase performance. We defer discussion of changes to the
user interface to the file system to the next section.

4.1. Standard UNIX file systemn

The traditional UNIX system, that runs on the PDP-11, has simple and
elegant flle system facilities. File system input/output is buffered by the kernel
so that there are no alignment constraints on data transfers and all operations
are made to appear synchronous. All transfers to the disk are in 512 byte
blocks, which may be placed arbitrarily within the data area of the flle system.
No constraints other than available space are placed on file growth.

4.2. Previous VAX enhancements

The current VAX system bhas immproved the standard UNIX file system in two
notable ways:

¢ The file systemn has been made crash-recoverable by changing it so that all
modifications of critical information are staged so that they can either be
completed or abandoned cleanly by a repair program after a crash.

® The flle system performance has been improved by nearly a factor of 2 by
changing the basic block size from 512 to 1024 bytes.

4.3. Goals

We expect that large virtual memories will be constructed by mapping files
from the file system, using the mechanisms described in the previous section.
Paging of data in and out of the flle system is likely to occur frequently. We
therefore need a file system that provides higher bandwidth than the current
one which provides only about 40k bytes per second per arm. The primary
means for improving flle system performance are to improve the locality of
reference to minimize seek latency and to improve the layout of data to make
larger data transfers possible.

4.4. Major problems

A typical 150 Megabyte UNIX flie system consists of 4 Megabytes of file sys-
tem indexing information and 148 Megabytes of file system data. A major prob-
lem with this organization is that the indexing *‘inode” information is segregated
from the data by being at one end of the disk space allocated to the file system.
Thus accessing a flle almost certainly involves long seeks. Files in a single direc-
tory are not typically allocated slots in consecutive locations in the 4 Megabytes
of indexing information, causing many non-consecutive blocks to be accessed in
executing common hierarchical operations, such as gathering information about
or data from a flles in a single directory.

The allocation of data block to flles is also a major problem. The current
flle system never transfers more than 1024 bytes per disk read or write, and
often finds that the next sequential data is not on the same cylinder, causing
seeks between these 1024 byte transfers. The combination of the small block
size, limited read-ahead in the systemn, and many seeks severly limits flle system
throughput.

CSRG TR/4 — August 31, 1881 - Joy/Fabry

Proposals for UNIX -30- File system performance

4.5. Description of approach

We propose to reorganize the file system by dividing the space for a file sys-
tem into areas called cylinder groups each of which contains a few cylinders.
Each cylinder group will have some inode slots for files and a bit map and other
summary information describing the usage of data blocks within that group of
cylinders.

Performance will be increased by laying out the hierarchical file system
data so that related information is in the same cylinder group, minimizing seek
distance. Data will be laid out so that larger blocks can be read in single reads,
greatly increasing file system throughput.

As an example a file system of 300000 sectors (150 Megabytes) could be
divided into 100 cylinder groups of 1.5 Megabytes each. Each cylinder group
would have about 258 inode slots and a bit-map describing availability of its
blocks and inodes. The file system data storage would be divided into 4098 byte
data blocks. Small files will receive only a fraction of one of these blocks. In
large files several 4096 byte blocks could be allocated consecutively so that
large data transfers are possible.

4.6. Policies for new file system

The system will provide on-line layout policies that try to limit seeks. Direc-
tories, which can be allocated in any of the inode slots, will normally be allo-
cated in the cylinder group that has the most free space, extrapolating a mean
size for each of the directories currently in the cylinder groups. File indexing
“inode’" slots will normally be allocated in the cylinder group where their direc-
tories are located; if there is no room there, then they will be allocated using an
overflow policy similar to that used in a hash table with internal rehash.

Blocks will be allocated in a device-dependent way. On most devices we
prefer to place newly allocated blocks adjacent to the previous block in the
same flle. If this adjacent block is not available, then the new block will be
located rotationally well-positioned on the same cylinder as the previous block.
If no blocks are found on the same cylinder as the previous block, then the sys-
temn will look somewhere else in the same cylinder group. If this aiso fails to find
an allocatable block then the system will look in another cylinder group that has
& reasonable amount of space to locate another free set of blocks.

4.7. Measurements of program speeds

To formulate performance goals for the file system it is important to under-
stand the speed of various programs consuming data, and the limiting perfor-
mance of the current flle system organization using differing block sizes. Basic
times for operations on the VAX 11/780 with a single memory controller and
currently available disk hardware are given in the following table:

Procedure call 20 usec
Examine 512 bytes 110 usec
Trivial system call 140 usec
Copy 512 bytes 220 usec
Context switch 220 usec
Write system call 1 msec
Disk rotation time 18 msec
Seek time 10-50 msec

The lmutmg overhead in data intensive operations is often the memory
bandwidth. When no input /output is taking place data can be fetched from

CSRC TR/4 = August 31, 1981 — ' Joy/Fabry

Proposals for UNIX -31- File system performance

memory at 4.5 Mb/second, using the VAX string instructions. If any processing
is to take place on the data, or if any input/output is taking place on the
machine, then the available bandwidth is reduced. Measurements of basic
operations and common programs are given in the following table:

Operation Data rate
Fetch data 4.5 Mb/cpu sec
Fetch with mba active 3.5 Mb/cpu sec
Fetch with 2 mbas active 2.6 Mb/cpu sec

CRC 300 Kb/cpu sec
Loader id 100 Kb/cpu sec
Cat program 42 Kb/cpu sec

egrep program 38 Kb/cpu sec
ed read/write 23 Kb/cpu sec
make of system 22 Kb/cpu sec
Jogrep /grep programs 20 Kb/cpu sec
Assembler as 15 Kb/cpu sec
Compiler cc 10 Kb/cpu sec
Peephole optimizer c2 8 Kb/cpu sec
Lisp compiler liszt 8 Kb/cpu sec

Troff running —me macros 3 Kb/cpu sec

The measurements of fetching of data from memory in blocks show the
effect of running high bandwidth devices during memory-intensive cpu opera-
tions, where each active i/o device reduces the available bandwidth by about 1
Mb/sec.

The CRC instruction timing shows the speed of a data intensive microcode
loop that involves a fair amount of calculation. This program runs at 1/3 the
speed of most currently available disks.

The fastest standard UNIX program we could find, aside from the file copy-
ing programs, was the UNIX loader. When loading large programs the loader
does not process. each byte of data individually. This leads to much higher
bandwidth than the cat program, that is the simplest possible program that uses
the character at a time primitives of the standard i/o library. The cat program
is a loop:

int c;
while ((c = getchar()) = NULL)
putchar(c);

The egrep program is the fastest example we could find of a program that
non-trivially processes all its input data. It is a program for scanning a file for
any of a set of patterns, written using a powerful algorithm.

More typical of UNIX utility speeds are the programs ed, make remaking a
large program (the system), the more simple pattern searching programs fgrep
and grep, and the assemblers and compilers es, ¢c, c2, and Hszt. These pro-
grams range in speed from about 8 to 25 Kb/cpu second on a 11/780. Slowest of
all are programs that do substantial processing on each input character, such as
the typesetting program froff. Troff is further slowed by extensive macro
interpretation.

- CSRG TR/4 = August 31, 1981 —~ Joy/Fabry

Proposals for UNIX -32- File system performance

4.8. Estimates of file system performance

The observed performance of the constant block size file systems is given in
the next table, and extrapolated form the 2048 and 4096 byte block sizes:

Block size Throughput

512 bytes 20 Kb/sec/arm
1024 bytes 40 Kb/sec/arm
2048 bytes 80 Kb/sec/arm
4096 bytes 180 Kb/sec/arm

We can estimate the performance of our new file system using a basic block
size of 4096 bytes and with some pessimistic assumptions about data layout. We
assume that the flle system will be unable to allocate consecutive 4096 byte
blocks, but will be able to place an average of 4 consecutive blocks in a cylinder
before a seek is required. We assume that the seek to be required is a long seek.
Under these assumptions and in the sequential access case we expect that the
new file system will provide 35-40% disk utilization and about 300-350
Kb/sec/arm.

The degree to which this file system organization will improve on the 4096
byte block version of the current file system organization will depend on
whether the patterns of file access allow the locality of layout under the new
organization to be beneficial. Large applications are expected to benefit greatly
if their data requirements have locality. There is little we can do for uncorre-
lated requests under any organization.

4.9. Buffering and page caching

The current version of UNIX transfers data from the disk into buffers in the
kernel address space and then copies these buffers to user address space. If the
buffers in both address spaces are properly aligned, then this transfer can be
eflected without copying using the memory management hardware. This is
especially desirable when large amounts of data are to be transferred.

If the buffers in the process address space are properly aligned (on 1024
byte boundaries) we intend to transfer the data to the user programs without
copying. Further, even in the absence of copy-on-write, we can remember that
pages in user address space are copies of pages from a file and, if the pages are
still in core and not modified when we need that file pege again, can reuse the
pege. If the user issues another read request specifying the same buffer we can
reclaim unmodified pages from the user and place them in a kernel file system
cache. :

4.10. Fragmentation in the new organization

In this section, for definiteness, we assume that the desired file system
block size is 4096 bytes and that the disk sector size is 512 bytes; these are vari-
ables in the file system design, but it is easier to use the numbers for reference.

In UNIX, each flle has an array of indices of file system blocks. For the pur-
poses of this section, assume that the first 8 blocks of the flle are described to
by the basic file indexing (inode) structure.* The inode structure also contains
other pointers to indirect blocks containing further block indices. In a file sys-
tem with a 512 byte basic block size, a singly indirect block contains 128 further
block addresses of four bytes each, a double indirect block contains 128

"nnactudmmbermquuyfmmqstemtoqﬁzm.butisumﬂyhthsrmes-m

f CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -33- File system performance

addresses of further single indirect blocks, etc.

The following table shows the effect of increasing the file system block size
on the amount of wasted space in the file system. The machine measured to
obtain these figures was our largest time sharing system, and had roughly 1
Gigabyte of on-line storage. The active user file systems containing roughly 500
Megabytes of formatted space were measured.

Space used % waste Organization

421.3 Mb 0.0 Raw data
435.0 Mb 4.2 512 byte rounding of data
450.4 Mb 8.9 512 byte block UNIX file system

470.9 Mb 11.8 1024 byte block UNIX file system
515.5 Mb 22.4 2048 byte block UNIX flle system
813.2 Mb 45.8 4096 byte block UNIX file system

Here we measure the space wasted as the percentage of space on the disk not
containing file system data, ignoring the fixed amount of space for the inodes.
As the block size on the disk is increased, the fragmentation rises quickly, to an
intolerable 45.8% waste with 4096 byte flle system blocks, since there are so

many small flles.

To avoid the fragmentation in storing smnall files, we allow the file system
space allocator to divide a single flle system block into a few fragments. Our file
systemn block size is 4098 bytes composed of 4 1024 byte fragments, the size of
the blocks in the current file system. We allow the space allocator to break up a
file system block and allocate these smaller pieces to files.

It suffices to allocate fragments only to file that are less than 8 file system
block long (the files that require no indirect blocks). On the system measured
above, fully 87% of all files were in this category, and they used about 1/2 of the
space in the flle systems. Such a small file is represented by up to 7 full file sys-
tem blocks of data and then possibly some additional data. The full file system
blocks are represented in the normal way. If there remains data that will it in 3
or fewer 1024 byte pieces, we find a unallocated fragment of a file system block
and store the data there. If we have to fragment a file system block to obtain
the space for this small amount of data, another file may yet use the remaining
fragments.

The fragmentation in this organization is less than that the current 1024
byte file system organization, and only slightly more than the 512 byte block
UNIX file system: 8.2%. A 512/4096 byte hybrid file system keeps more indexing
information, but uses even less space than the 512 byte block traditional UNIX
file system: 5.4%. The new organization is efficient because it uses little space
for small files and also uses little indexing information.

4.11. Status

We have done a good deal of measurement of the static characteristics of
current flle systems and examined the dynamic characteristics of applications
programs. We have constructed utilities to build file systems in the new format
and are working on a user-level implementation of the new file system format.
After our development 11/750 arrives in late July 1981, we intend to convert it
to the new file system format and to debug the new system algorithms on this
machine. Integration of the new memory management facilities desceribed in
section 3 will then take place in a system supporting the new flle system organi-
zation.

CSRG TR/4 = August 31, 1881 - Joy/Fabry

Proposals for UNIX -34 - Tile system performance

4.12. Alternatives and comparison

We considered converting UNIX to an extent based file system much like the
DEMOS file systemn. This approach was rejected because it did not seem neces-
sary to get the perforrnance we needed, and because we expected that some
sites might wish to experiment with file organizations that allowed data pages to
be shared between files. This is much more easily handled under a bliock level
organization than a extent based organization. Similarly if a copy-on-write facil-
ity were ever to be impiemented for UNIX it would benefit greatly from a block
at a time indexing scheme.

We are planning to compare the performance of this flle system with the
VMS flie system and other flle systems for similar machines. The current com-
parison shows that the UNIX file system is slower than the VMS file system, but
we expect that the new version of the UNIX file systemn will be faster.

CSRG TR/4 - August 31, 1981 — Joy/Fabry.

Proposals for UNIX ~35- Flle system facilities

5. New file system facilities

This section describes new facilities to be provided by the flle system in
support of the other facilities proposed in this report and to solve other minor
problems.

5.1. Symbeolic links
The current UNIX system supports multiple “links’" to files in the same file
system. This link concept is fundamental; files do not live in directorieg, but

exist separately and are referenced by links. When all the links are removed,
the flle is deallocated.

This style of links does not support references across physical file systems,
nor does it support inter-machine linkage. We propose to include symbolic links
to support such usage.

A special file type, the “symbolic link” file will contain a pathname. When
the system encounters this file while interpreting a name, the contents of the
symbolic link file will be prepended to the rest of the pathname, and this name
will be interpreted to yield the resulting full pathname. If the symbolic link file
contains an absolute pathname, then this absolute pathname will be used. The
symbolic link will otherwise be taken starting at the location of the link in the
file hierarchy.*

We are currently investigating the best way to implement symbolics in
UNIX, looking especially at systems for other machines which implement links
(notably MULTICS). Symbolic links have previously been implemented for UNIX
by Jim Kulp at IASA in Austria. To incorporate them he also provided a way for
system utilities to refer to the links themselves as well as the object referenced
by the links. Incorporating them also involves some changes to utilities such as
du, is, and find, so that they can treat such links in a desirable way. To gain
access to the link itself, not the file object referenced by the link, a special quot-
ing convention can be provided. We could say that a flle name that ends with the
character ‘#' refer to the symbolic link itself.

It also might be useful to provide a mode in which the system does not
interpret symbolic links. Thus a program that wishes to transverse a hierarchy
without taking indirections can disable symbolic links.

One set of possible calls for symbolic link routines would be:

symlink(namel, name2)
char *namel, *name2;

that creates a symbolic link name2 whose contents are the string name!

symunlink(name?2)
char *name?2;

that removes the symbolic link name2 and not the name] specified when the
link was created. This can also be used with non-symbolic links in a program
that wishes to remove the links themselves, not the linked to files.

symfollow{wanted)

int wanted;
that can be called with 0 or to disable following of symbolic links

¢ Naming directary references, described in the next section, are canzidered to be absolhute
pathmames. .

CSRG TR/4 - August 31, 1981 —~ Joy/Tabry

Proposals for UNIX - 36 - ’ File system facilities

5.2. Naming directories

To support the project notion (to be described in section 6), and as a base
for communication between processes in a single session we propose to add a
per-process “naming directory’”. This will be a normal UNIX directory with a
very short name "®", a prefix-character to pathnames much like the character
“/" which refers to the root directory. It represents a third point in the file file
system from which names spring, augmenting the current “current directory”
and “‘root directory’’ notions. The naming directory concept is derived from the
similar one in the Apollo DOMAIN operating system and from the uses of logical
name tables in VMS and device translations in various PDP-10 based operating
systems.

The naming directory will support the project notion described in section 8.
A project is a hierarchy of source and binary programs, library routines and
docurnentation. The proposed normal way of accessing such a hierarchy is to
place a symbolic link from your narning directory to the root of the project.
Thus the project “visi' might have its root directory '/h2/visi" in which case
one would place a symbolic link named *‘visj" in ones naming directory and hen-
ceforth reference the project files as “@®visi/...".

The neming directory will support screen-oriented command interpreters
and front ends through conventions on communication. For instance, the write
command can be changed to look in the target users naming directory for a file
named "‘writeportal” and to open that file to communicate if it exists. In this
way a write command can communicate with a screen manager process (such
as, say, the CMU emacs editor) to obtain window space. This is greatly prefer-
able to the current state where such writes greatly disrupt the state of the
screen.

The naming directory implementation is simple: If a path name begins with
the character “®" the search begins not at the current directory but at the
naming directory. A new system call chnamdir changes the current naming
directory.

For backwards compatibility, the use of naming directories in support of
projects can be simulated by a set of library routines that interpret the UNIX
system calls that take flle names. Other uses of naming directories to support
screen-oriented programming environments are possible only on the newer ver-
sion of UNIX supporting IPC facilities. .

5.3. Locking primitives

Many sites have expressed the desire for some flle locking primitives. It is
desirable that it be possible to lock flles so that other concurrent access can be
prohibited to maintain consistency.

The new UNIX 3.0 system from Bell Labs implemnents a flag to the open call
that causes a file creation to fail if the file already exists. This allows testing for
locks by attempting to create them to work. In the current system, the lock
setting has bugs when used by the super-user unless the link primitive is used.*

Mike Accetta at CMU has implemented a set of ioctl calls that provide file
level locking. There are ioctls to return a structure giving the count of
processes reading and writing the file, to set the file in exclusive write mode,
prohibiting further attempts at access to write, to set the flle in exclusive
update mode, prohibiting further access to read or to write, and to clear the

————
® Le. a flle iz created whose name is unique to the current process and the cwrrent process
tries to link it to the lock flle. The iink operation is atomic.

‘

CSRG TR /4 = August 31, 1981 — Joy/Fabry

Proposals for UNIX -37- File systemn facilities

exclusive locks.

John Bass at ONYX Systems has implemented granular file locking. This
allows sequences of bytes within files to be locked, and detects deadlock condi-
tions. The deadlock detection in Bass's scheme cannot work in a distributed
system, and thus we feel that this aspect of the scheme should be avoided. This
scheme could yet be implemented by timing out requests.

We are continuing to investigate the form of locking which should be
integrated into the kernel of a distributed system. We have so far found no lock-
ing primitives which seem suitable.

5.4. Append access and no-delay opens

To atomically append to flles, the append mode of access supported by
most operating systems has been added to UNIX 3.0. A further open option to
allow opening of communications lines without waiting for carrier has also been
provided. We feel that these facilities are, indeed, useful, and propose to adopt
the UNIX 3.0 open mode (as extended by the open locking options described
above) into the standard VAX system.

5.5. Truncate

The current UNIX system lacks a primitive to truncate the logical length of
a file. This makes implementation of certain FORTRAN 77 facilities expensive.
Also, a convenient way of modifying files with mapping is to allocate a segment
for themn and then write data into the segment, and unmap and truncate the file.
This is possible only if there is a system call |

truncate(name, length);
char *name;

that removes portions of the file after the specified length. This can be simu-
lated (albeit slowly) on older UNIX systems as it is currently in the FORTRAN 77
i/o library. . '

5.6. Rename
Programs that create new versions of data files typically create the new
version-in another file and then do
unlink("cur”);
link("'new”, "cur");
unlink("new’);
This sequence of operations leaves a window where there is no instance of the

file cur, causing occasional mysterious anomalies. This can be solved by provid-
ing a system primitive:

rename(newname, oldname);
char *newname, *oldname;

that does what the preceding sequence does, but atomically, so that there is
always an instance of newname. We propose to add this to the standard version
of UNIX.

5.7. Perfille cache flushing

The current system makes no provisions for flushing the flle system cache
of blocks from a file. This makes it difficult to write application programs that
attempt to be certain to leave data bases in a consistent state. We feel that an
operation to flush all the buffers associated with a particular flle would be

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -38- File system facilities

valuable. This will involve remembering, in the buffer cache, which file each
buffered block belongs to and also identifying such blocks in the virtual memory
of processes. This operation can either be an ioctl or a new system call of the
form:

int fd;

syncfd(fd)

5.8. Status

Symbolic links have been implemented for UNIX before and are also imple-
mented in a other operating systems. They require changes to a few programs
that are concerned with traversing the file system hierarchy and other than that
aflect only one routine in the kernel: nami.

Naming directories are extremely simple to implement. They will affect a
few user programs that use file names beginning with '@ (e.g. Rand’'s MH pro-
gram that names a file just that *‘@"'), and a few programs that do detailed mani-
pulation of path names (e.g. “‘csh’* which attempts to figure out what directory
you are in after a ‘‘chdir” will have to understand the effect of '®").

The fruncate system call implementation is tricky, since the operation has
to be carefully staged so that no duplicate blocks appear if the system crashes
during a truncate. The operation is a superset of a creat system call, and the
code can be combined.

Per-file cache flushing can be added easily when the system is changed over
to the new file system organization described in the preceding section.

" CSRG TR/4 — August 31, 1981 - Joy/Fabry

Proposals for UNIX -39 - Software projects

8. Software projects and distribution support

This section describes a set of changes that extend the conventions for use
of UNIX to simplify software interchange. The underlying structure for the pro-
posal was proposed and implemented by Steve Shafer at CMU: the project
notion. The_ proposal defined here integrates the ideas proposed by CMU with
some changes based on experience with the project notion at Berkeley. It also
include other facilities and standards useful in software support and distribu-
tion.

8.1. Current UNIX facilities

Developing large software projects on the current UNIX system requires
establishment of conventions for locating parts of the project within the file sys-
tem hierarchy. Special conventions are often developed per-project, and much
“bailing-wire' is needed to hold the project files together. Cries of anguish are
often heard if file system hierarchies are moved from disk to disk to alleviate
space shortages, as users scurry to convert absolute, and now invalid, path
names into new and no more robust names.

¥With the current system, large software modules to be distributed to other
sites often require local customization. Header files have to be edited to reflect
true path names where software is or will be stored. It is difficult to install
software that is finicky about the locations of commands.

While it is possible for each software eflort to develop their own set of con-
ventions and procedures for dealing with this environment, it seems extremely
desirable to develop system support and tools for a more robust and portable
notion. We will call organized groups of related programs to be managed and
ported "projects”, following the work done at CMU by Steve Shafer.

8.2. Goals
The goals of this proposal are:

* To support the development of large packages of software by providing a
framework for development, based on the framework used by the develop-
ers of UNIX.

* To support maintenance of software by adopting conventions for building
executable versions of software and for storing the source code and docu-
mentation that make this accessible to standard utilities.

* To support distribution of software by making it easy to install software
modules in different parts of the file system hierarchy while retaining short
and significant names for the various files. Support for co-existence of
several versions of a single package (old, current, new, experimental, etc.)
for use by different users or at different times is important.

6.3. Components of the proposal

The basis for this proposal is a hierarchy of directories and files called a
“project’’. Projects will be supported by conventional use of the naming direc-
tory and symbolic link facilities described in the previous section, which give
them mnemonic names, and allow different versions to co-exist with different
instances selected by different users. Conventions for makefile's and the use of
source revision control facilities will allow reconstruction of the programs in a
project to be done automatically and allow information to be obtained that
describes the current state or history of any file in a project. Facilities for dis-
tribution of notification of changes to projects and automatic update of remote
copies of software over networks can be developed based on standard

CSRG TR/4 - August 31, 1981 - - Joy/Fabry

Proposals for UNIX (-40- Software projects

descriptions of project structure.

6.4. CMU project notion

Following Shafer, we create a UNIX hierarchy for each group of related pro-
grams or project. This hierarchy mimics the normal /usr file system subdirec-
tories in function and includes directories

bin containing binaries of project programs.

exp containing directories for users in the project.
include containing header file for use in the project.

ib containing subroutines and shared data files.

man containing manual entries for project components.
src containing source code for project commands

Each project also has a normal UNIX group and a bulletin board associated
with it. The addition of commands and system facilities to help maintain such
hierarchies and the large efforts associated with them is the topic of the rest of
this section.

6.5. Strong naming support for projects
There are several important naming requirements for projects:

* It should be easy for users to choose the projects to include in their work-
ing environments, and to name files in these hierarchies.

* References from files and libraries in a multi-project environment should
clearly denote the projects they are referencing. Thus if a script needs a
special version of a standard program, this should be clearly marked in the
script.

* Projects should be located in a way that is independent of their absolute
placement in the UNIX hierarchy, so that they can be easily transported
from machine to machine.

The current CMU project implementation uses search paths, which are part
of the UNIX ‘‘environment’’ and interpreted by special library routines, to
located commands in projects. This has the probiem that the components refer-
enced in source code, scripts and makefiles are not explicit even when exactly
one component is desired, and that there are no non-absolute names for project
components. :

We propose to use the naming directory facility and symbolic 1links,
described in the previous section, to support strong naming for projects. Users
would place symbolic links in their naming directories to projects that they
wished to use. Thus a entry ‘‘visi” in my directory on the "‘ucbarpa’ VAX mmight
be a symbolic link to */ra/visi"*, while someone who was developing a new ver-
sion of this project might have **visi"’ linked to “/ra/visinew”. If each of us ran
& program “mkpla” written by a individual that referenced *@visi/bin/plot",
then we would get the versions of the Plot routine that we desired:] wouid get
the current version, while the developer could get the newest experimental ver-
sion.

This facility is similar in usage to the name table translations on other sys-
tems, but since the naming directory is accessible in the UNIX file system it
requires much less systern mechanism. It is advantageous to put naming sup-
port for these directories into the operating system so that it will work in all
programs. This provides much stronger support for the project notion.

CSRG TR/4 -~ August 31, 1981 — Joy/Fabry

Proposals for UNIX -41- Software projects

8.6. Makefile standards

Maintenance and distribution is made substantially easier when all project
programs and data bases can be reconstructed by standard makejfile descrip-
tions. The current system distribution makefile descriptions support:

make install Build a new version of the components in this directory and
install them.

make ciean Remove unnecessary binaries from this directory, to minim-
ize space usage.

make Just make the new components, don’'t install them.

We propose that all distributed commands should be controlled by makefiles
that accept these standard entry points. These constitute a minimum accept-
able set of controls for all components. We find the use of these standard
makefile entry points preferable to manual operation of commands and manual
installation.

8.7. Reviving the UNIX group facility

The UNIX group mechanism is designed to support work among groups of
users. Thus all the developers in a project could belong to the same project
group. Currently, however, a user may only be in one group at a time and must
lose command context when changing groups.

Steve Zimmerman at CCA has implemented a version of the group mechan-
ism that allows users to be in all their groups at the same time. Files created
are then placed in the group of the containing directory, not the group of the
current user (which is no longer uniquely defined!).

This change enhances the group facility and makes groups much more use-
ful with projects. We propose that in the next version of the system users be
allowed to be in multiple groups at a time.

8.8. Source revision control

It is important to have facilities to retain records of old versions of pro-
grams and changes made to them. The current CMU project implementation
uses a whist command to annotate source code with commentary about
changes. This is useful, but the inclusion of SCCS-like facilities for control of
versions is also needed. Walter Tichy at Purdue is completing a new **Revision
Control System' (RCS) which has facilities like SCCS.

We propose that both SCCS and RCS should be integrated into the project
mechanism. It should be possible to distribute RCS to all users of UNIX on the
VAX; SCCS is less widely available because of licensing constraints. Both SCCS
and RCS should be modified to include facilities like the current whist.

8.9. Notification/update facilities

A standard method of providing notification of changes to project software
is desirable. CMU uses a post command that puts messages on bulletin boards,
and has software for distribution changes on a local network.

We propose that methods for automatic distribution in large and local nets
be developed and be standardized. Methods of notification should be supported
by databases associated with mailers and should allow different ways of storing
news associated with projects to be used, including: .

CSRG TR/4 — August 31, 1981 - Joy/Fabry

Proposals for UNIX ~42 - Software projects

news a derivative of the standard msgs program, developed at LBL

netnews a program developed for the USENET, a phone network of UNIX sys-
temns

post as used at CMU

mhnews a news system based on the Rand MK program

It is important that projects be able to retain information about software
that has been distributed, and be provided some support for taking bug reports
and suggestions (e.g. standard mail boxes for projects at sites where they are
installed that can be set up to forward suggestions.)

6.10. Role of unique-identifiers for files

A difficult problem in distributing large software systems is identifying files
" and making sure that the correct pieces are available for construction of a sys-
tem. The system can aid this by providing unique identifiers for files that can be
preserved when the flles are copied from machine to machine. It is also useful
for the source code to be stamped with revision numbers to be retrieved by pro-
grams such as the what program of the current system.

- So that systems that maintain software versions can be constructed for a
distributed environment we propose that all incarnations of UNIX flles be
assigned identifiers unique in space and time that can be retained when the files
are copied and restored by the source code management utilities when older
versions of flles are reconstructed. This is not used by any current programs,
but current research in automatic construction of distributed software by Eric
Schmidt at PARC suggests that such identifiers are valuable. We also propose
that a systern call be provided to return such a unique identifler.

6.11. Towards site-independent programs

One difficulty with current programs is that they tend to build in site
dependencies. A particularly bad example is mail programs that deal with mul-
tiple networks, which tend to have a good deal of local knowledge built into
them, and hence must be modified and recompiled each time they are moved
from cpu to cpu.

It is extremely valuable for programs to be site-independent, and to make
system databases available for program inspection at each site to allow site-
specific program actions. We propose (in the section on operations below) to
make the standard programs in the system more machine independent by mak-
ing information such as the current system name and network connections,
information about users and information about locally available resources avail-
able in standard flles accessed by library routines. We propose that projects
should develop similar site-specific data bases so project binaries and libraries
are as cpu-independent as possible.

8.12. Status

A version of projects is running at CMU and on the PDP-11 UNIX systems at
Berkeley. We expect to consult with the staff at CMU about the proposal in this
section, and to work with both the people at CMU, Walter Tichy at Purdue and
the people at CCA to integrate and evaluate the new project proposal.

We propose to provide naming directories and symbolic links soon so that
these can be tested with the new project implementation at CMU, CCA and Pur-
due. We propose to provide the unique-id facility for files with the first release of
the new flle system organization

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -43- Software projects

We also propose to work with CMU to develop a new document describing
the enhanced notion of projects described here and develop notification and
update standards and procedures based on those used at CMU.

CSRG TR/4 = August 31, 1981 — Joy/Fabry

Proposals for UNIX -44 - Standards

7. Standards

This section describes areas of the systermn where there are nagging prob-
lems that will get worse if some attempt at standardization is not made. The
problems are not unique to the VAX system — all versions of UNIX could benefit
from standardizing on solutions to problems such as those discussed here.

The typical alternative here is to continue with the status quo. This has the
advantage of backwards compatibility but will tend to create more problems
than it solves in this way. We prefer to adopt clear improvements on the current
approaches, getting a simpler and cleaner system in the long run in exchange
for some short term revisions.

7.1. Manual format

There are several goals in proposing a new standard for the manuals. There
is the obvious desire to keep the manual stable, as the costs of printing the
manuals are prohibitively expensive for some. On the other hand, we desire to
keep manuals up to date, and quickly include new facilities in the manual.

Our proposal is to define a base system that is represented in the manual
and to set up facilities for the additions of sections of project documentation to
the manual. The commands key and toc that CMU implemented as part of their
project implementation provide some needed facilities.

CMU also printed abridged manuals by default, treating maintenance com-
mands such as the games as projects. This seems reasonable. A useful form of
an abridged manual would include a table of contents for all available documen-
tation, so omitted pages could be run off on line and later obtained separately.

We propose that a new format be adopted with a release of the system in
early 1982, with advance notification of the format change. This will allow docu-
mentation to be prepared for projects to be distributed with this version of the
system. We expect that a preliminary version of the project system can be
made available to sites in late 1981 to allow shared software projects and their
documentation can be put in a suitable format.

7.2. Libraries

It is important that the contents of the standard libraries contain only a
prescribed set of functions so that programs do not have hidden dependencies
on locally modified routines. We propose to develop a list of what is in the stan-
‘dard C library and to put new facilities to be added to the ARPA standard system
in an ARPA standard library so that the dependencies of newly developed pro-
grams on facilities of the ARPA standard system will be explicit.

We feel that it is important to support convenient naming of project specific
libraries, and propose that the loader support the project general library notion
by taking the form *“-18X'' to be the library "“@®X/lib/libX.a"”, and the form
“=1@X/Y" to be the library “©X/lib/libY.a".

7.3. Mail

UNIX mail is confusing because of the presence of many mailers, mail sys-
tems, and network interfaces. Several important new standards need to be han-
dled, such as the new Internet Mail formats, the new Mail transfer protocol,
interface of the mail system to UUCP, and to CSNET, etc.

Currently, there are 4 low-level mail handling systems in general use on
UNIX:

CSRG TR/4 - August 31, 1981 ~ Joy/Fabry

Proposals for UNIX ~45- Standards

MMDF Developed at Delaware and that is the basis for Phonenet. This
system has a good architecture for mail services. We don't have
any experience with using this program but intend to learn more
about it soon. It currently does not handle uucp traffic.

delivermail Developed at Berkeley, this is a mail routing program that
manages mail going to different networks. It can handle the
ARPANET, uucp and local network mail simultaneously.

BBN MAIL The new mail system at BBN handles the new MTP protocol, as well
as local net mail forwarding.

RAND MH The low level facilities underiying Rands MH system provide
groups, aliases and mail transmission facilities.

Each of these programs currently provides facilities provided by none of the oth-
ers. On the other hand, the programs all provide similar facilities and it is
clearly disadvantageous for all four of these systems (and perhaps others) to be
developed independently to meet the same needs.

We hope that the persons responsible for these systems will investigate the
facilities of the other systems. It would be valuable to standardize on a single
mail delivery system, a single format for storing incoming mail, and a single
data base format for mail forwarding and mail groups. The many existing mail
readers interfaces should be changed to work with the new standard delivery
programns. Many of them inadequately process the header information. Fixes
for many of these are available in the community (e.g. from CMU and CCA for the
Mail program), and should be incorporated as part of the changeover to a new
standard mail system. i

We intend to pursue the selection of a single standard low-level mail system
for the VAX.

7.4. Signals

The signal handling mechanisms of UNIX version 7 are inadequate for safe
processing of asynchronous events, having race conditions in them that make
them unsafe. Newer mechanisms were provided in the 4bsd release of the VAX
system that give clean and safe semantics to signals, treating them as software
interrupts that are blocked while they are being processed.

We propose that the newer implementation of the signal handling mechan-
ism be incorporated as the standard one in the VAX system. There are some
minor incompatibilities in the way in which interrupted system calls are res-
tarted, but these incompatibilities are felt to be less bothersome than continu-
ing to use a standard implementation of signals that is neither safe to use nor
clean.

7.5. Terminal driver interface

The current system supports two different terminal drivers, one that is
standard from version 7 UNIX and one a more fully functional terminal driver
typical of PDP-10 systems. The new UNIX to be released by Bell Laboratories,
UNIX 3.0, has yet another termineal driver interface.

The UNIX 3.0 terminal driver interface is clean, and could be adopted as a
standard interface. Programs that wish to use the older version 7 terminal
driver interface can use a compatibility interface package.

We propose to provide the facilities of the current new terminal driver and
the needs of the INTERLISP implementors for special hooks in the terminal
driver with extensions to the UNIX 3.0 driver.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX - 46 - Standards

7.6. Control; cleaned up ioctls

The current UNIX ioctl system call suffers from a lack of specification of the
lengths of the control information being exchanged. We propose to define a new
operation that has ioctl’s semantics but with full parameter specification. This
control operation will have the form

int f;

char *request;

char *idata; int ilen;
char *odata; int olen;
int reslen;

reslen = control(f, request, idata, ilen, odata, olen);

Here f is a UNIX file descriptor, request is a null-terminated string specifying the
request, idata is a string containing input for the request of length ilen, and
odatg provides a place for storing the corresponding resuit value of maximum
length olen. The returned resien is the length of the result, which may be
shorter than olen.

To allow for the easy use of null-terminated strings in idata, a ien of —1 will
be interpreted by the C library as indicating that idata is a null-terminated
string.

We believe that this control primitive, with its much cleaner interface, will
provide a much more stable base for definition of device-specific controls than
toctl.

7.7. Debugging information format

The information present in the current symbol table in the UNIX executable
files is inadequate for construction of symbolic debuggers. It does not contain
enough information about variable types. A new debugger is being written by a
student at Berkeley, and is suffering from the lack of this information. We feel it
is desirable to bave a symbol table format for UNIX that includes adequate infor-
mation.

We propose to work with other interested parties to define a new symbol
table format that permits the representation of all information about the stan-
dard languages C, Pascal and FORTRAN 77. It is expected that the ADA imple-
mentations for the VAX will require significantly greater complexity in the sym-
bol table information, and we do not propose to handle ADA, although input from
ADA implementors would be valuable in defining the new format. The new format
should be portable to machines other than the VAX, and should work, for exam-
ple, also on PDP-11, C/70 and 88000 based UNIX systems. The new debugger will
not be constrained by VAX licensing and should be easy to port to work on these
machines as well.

7.8. Screen environment support

Programs that wish to build screen oriented command environments are
rudely interrupted by current UNIX commands for inter-user comrnunication
such as write, wall and the mail arrival notification daemon. Programs that are
to run in windows also need a cormnmunications path to a screen manager.

The naming directory can be used by programs such as wrife and wall to
locate a hook for sending information through a screen manager to the termi-
nal. Conventional hooks could be placed there for processes that wish to com-
municate to the user " @writeportal’’, "“@mailportal’’, etec.

CSRG TR/4 — August 31, 1881 — Joy/Fabry

Propo'sals for UNIX -47 - Standards

We propose to investigate an appropriate set of conventions for these pro-
grams to use and to develop these conventions in cooperation with other sites
that are working on screen oriented programs. We also propose to investigate
providing a facility whereby the messages that the kernel sends to user
processes are sent to a place other than the current *‘/dev/tty"’. Such mes-
sages include messages that tape devices are offline and that file systems are
full, and also corrupt the screen of screen managers.

7.9. Other areas

There are undoubtedly other areas where development of new standards
and interfaces can benefit the users of UNIX, and we welcome input about and
proposals for such standards.

CSRG TR/4 - August 31, 1981 - Joy/Fabry

Proposals for UNIX -48 - Operational support

8. Operational support

This sections discusses needs for operation support of the system. including
file systemn backup and retrieval procedures and error logging.

8.1. Standard UNIX facilities

The standard UNIX/32V system provides dump and restore procedures for
file system backup and accounting gathering for login time and process
resource usage. The system must be manually rebooted after a crash and
manual procedures instituted to reconstructed any file systems that are dam-
aged. The standard systemn does not handle bad media and does not record
error messages that are printed on the console.

8.2. Current VAX facilities

The VAX system has been enhanced substantially from the standard version
7 UNIX system. A new installation and setup guide exists for the VAX system
that clearly explains the operational procedures. The dump program has access
to a table describing how often file systems should be backed up, and it is thus
much easier to tell when the flle systems need to be backed up.

The system automatically restarts after a crash, and runs an automatic
repair program. The system performs critical disk operations in a careful way,
doing some disk operations synchronously so that the post-crash repair pro-
gram can either finish or back out each incomplete operation.

A simple description flle describes each VAX CPU and can be used to load a
system containing exactly those drivers required. The systemn supports multiple
instances of all standard devices and placement of devices on multiple MASSBUS
or UNIBUS adapters. Full ECC recovery and DEC standard bad block handling on
disks are supported. Systemn sizing is simplified by automatic extrapolation of
needed table size from a constant ‘‘maximum active users’ in the description
file.

Error messages printed on the system console are in a more readable for-
mat than those printed by standard version 7. They are saved in a buffer in
memory that is retrieved after a system crash and stored in a disk file for later
examination. Device error bits are decoded symbolically in the error messages.

8.3. Overview of needs

Most operational needs are addressed in the current version of the system.
Remaining needs include support for an “operator’’, who can execute mainte-
nance functions but with less privilege than the "super-user”, clean localization
of site-specific information to make the system binaries more portable, stan-
dard error logging for quicker repair, improvements to the dump/restore pro-
gram and provisions for user archival and retrieval of flles to relieve pressure on
disk space.

8.4. Operator notion

In the current standard system, a person who is to do such maintenance
operations as flle system dumps and restores is required to have super-user
privileges, allowing unrestricted access to all system facilities. This is undesir-
able on many systems, and several sites have implemented a notion of an
“operator’ with maintenance privileges but not all privileges.

We feel that this notion is a useful one. We propose to integrate the changes
made at CMU for the support of an operator into the standard system.

CSRG TR/4 - August 31, 1881 — Joy/Fabry

Proposals for UNIX -49- Operational support

8.5. Clean localization of system

The standard system has commands that have to be recompiled per-site
because they contain site-dependent information. There should be a standard
provision and use of the information needed by these programs so that they
could be site-independent. The programs are typically part of the mail system
or have compiled machine names into them.

The information about users on the system is also not cleanly parameter-
ized Some systems put information about users into the GECOS fleld of the
password file, but this seems less than desirable. We propose to develop a stan-
dard form for a user information file. Any such data base should be extensible,
and contain, at minimurmn, the information accessed by the current finger com-
mand.

Other system information such as the terminal type databases currently
exists in several flles because of the evolutionary path by which these files were
developed. We propose to compress this information into single data bases
where appropriate to make maintenance of this information simpler.

Finally, we propose to add a new standard directory /local, which on each
system will contain all the local files and databases. Databases that currently
exist in other directories with long-term associations, such as /etc/passwd will
be replaced by symbolic links to their counterparts in /local.

8.6. Error logging

The current UNIX system does not produce error log information in a for-
mat that DEC fleld service is used to. More seriously, the system does not log
recovered soft errors, so that impending problems can go undiscovered when
evidence of their onset would otherwise be available. At least one site (UCLA)
bhad many problems with their VAX that might have been avoided or alleviated if
full error logging were available.

Don Markuson at CMU is working on an implementation of error logging in
UNIX. He is cooperating with the UNIX group at DEC, which previously produced
a system written by Fred Cantor called "v8m'’, which was a modified version 8
UNIX that supported error logging.

8.7. Dump/restore needs

The dump and restore programs have been modified by CMU and Wisconsin
to do multiple dumps per tape and to restore hierarchies respectively. We feel
that these modifications should be combined and incorporated back into the
standard system.

8.8. Archive/retrieve design
UNIKX sorely needs a system whereby users can request portions of the file
system hierarchy be safely archived on tape, so that they can later request

themn be restored. Our group at Berkeley is working on two programs, archive
and refrieve that will meet this need.

The archive command will take a list of flle names and queue them for
archival. When the files are archived, an entry will be made in a data base asso-
ciated with the user noting information that can later be used to retrieve the
file, and the user will receive mail notification that the archival has taken place.

A refrisve command will queue a request for file retrieval from an archive
tape. The flle will later be retrieved when a extraction program is run by an
operator.

CSRG TR/4 - August 31, 1981 — Joy/Fabry

Proposals for UNIX -850 - Operational support

So that users may have confidence in the archive/retrieve procedure, we
intend that an option be available to make muitiple copies (normally 2) of each
archive tape, and that this procedure result in tapes which are stored in
separate locations. Provision of manpower to make the turnaround time on
archive and retrieve requests sufficiently low to encourage use should be paid
back in lowered disk space usage.

We intend that archive and retrieve will store files on magnetic tape in tar
format and maintain an on-line database of the files that have been stored.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -581- Miscellaneous topics

9. Miscellaneous topics

This concluding section contains discussion of several topics of general
interest that didn't fit naturally in any of the other sections.

9.1. Software census and contribution to standard system

We are currently preparing to mail questionnaires to all users of the VAX
systemn asking them to tell us the software they have brought up on the VAX that
they are willing to share with the general VAX community. We hope to take the
information gathered by this “VAX software census’’ and place it in an on-line
data base. We hope that this information will eventually be available through
CSNET for general examination and update by authorized users.

We are also interested in finding out what software efforts are going on. Qur
questionnaire will ask both what kinds of software are being developed and what
software the different sites are interested in porting to UNIX. We hope that this
procedure will make us aware of the software that is available, and help us to tell
what software should be made available in a standard system.

8.2. Eectronic forum for system users

We are interested in creating an electronic forum for users of the VAX UNIX
system. The forum “unix-wizards@sri-unix’’ has proven a useful information
exchange for a limitied set of VAX users. We plan to establish a forum for ARPA
users of the VAX UNIX system as soon as our NCP C/70 is firmly on the ARPANET.

An electronic mailbox “esvax.4bsd-bugs@berkeley”’, available via uucp as
“ucbvax!4bsd-bugs’, has been available for about § months, although only a few
sites have been submitting trouble reports.* We hope to advertise this more
widely, mentioning it in the questionnaires. ‘Another mail box “csvax 4bsd-
ideas®berkeley” collects ideas for improvements to the system. Some of the
proposals discussed in this report benefited from suggestions mailed to *'4bsd-
ideas."

9.3. Hardware support; new and dual processors .
The VAX UNIX system supports all released DEC hardware for the VAX

except the TU78 tape transport. We are working with the UNIX group within DEC

to provide support for new DEC devices and VAX processors as they are released.

Bob Kridle, of the Systems Support Group at U.C. Berkeley and Bill Joy have
prepared a document giving hints to UNIX users on Configuration of VAX sys-
temns. This document-has helped many sites bring up economical VAX installa-
tions.

Recently, George Goble and Mike Marsh of the Electrical Engineering
department at Purdue University have created a dual processor 11/780 UNIX
system, by cabling an additional VAX processor to an 11/780 SBl. While some
minor problems remain with running compatibility mode on the slave processor,
the system is functional.

Since current VAX 11/780 systems are limited in growth largely by the
available CPU power, this appears to be an attractive way to get nearly twice the
CPU bhorsepower of a single processor system for much less additional cost.
Addition of a CPU and a second memory controller to a single CPU VAX 11/780
system, and provision of 4 Megabytes for the second CPU should be possible for

® Official nquemfmmARPAcmtmrehudtotheVAXUN’D(mumabmﬂd be mailed
to “carg@berkeley”.

- CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -52 - Miscellaneous topics

under $100,000. With some help from DEC it would be possible to run this
configuration in shops where more processor power is needed at a lower cost
than replication of entire systems.

We have been working with George Goble and Mike Marsh to develop reason-
able processor scheduling algorithms for the dual 11/780. We intend to
encourage DEC to provide support for this option and assist us in fixing minor
problems with this configuration.

9.4. Debuggers

The VAX UNIX system currently comes with two debuggers: adb and sdb.
The adb debugger is oriented towards examination of memory and object code,
and currently bas no knowledge of source text. The sdb debugger knows about
source code, but suffers from several minor bugs and lack of information in the
symbol table needed to do proper handling of displayed variable values. Sdb
aiso does not contain an expression parser powerful enough to accept source
language expressions.

Robert Elz of the University of Melbourne has extended adb to provide some
programmability. We have worked with Rob Gurwitz at BEN to provide adb with
knowledge to interpret the VAX page tables and to make it more useful for
debugging the UNIX kernel. We have recently made some minor modifications to
adb so that it records the source line information used by sdb when present in
the object file, and hence can show source as well as object code. We intend to
fix the display of local variables in add and make this improved debugger avail-
able to other sites in the next release.

A source language symbolic debugger was written for the Pascal interpreter
px on the PDP-11 by Mark Linton at Berkeley. This debugger is currently being
moved to the VAX and made to work for C,.Pascal and FORTRAN 77 code. We
hope that this debugger will be part of a future release of the system.

9.5. Fortran 77

There are many sites that would like to use UNIX on their VAX systems but
have need of a fast FORTRAN implementation. While the f77 compiler is a com-
plete impiementation of the language, the speed of compiled code produced by
the compiler is noticeably less than that produced by the VMS FORTRAN com-
piler. This is not surprising. The f77 compiler is not an optimizing compiler,
while the VMS FORTRAN compiler is.

Stuart Feldman, one of the authors of f77, visited Berkeley last academic
year and formed a group to work on optimizations in f77. This group is now in
the process of impiementing the designed optimization pass of the compiler,
and hopes to have a prototype of the new compiler running by the end of the
year. We have funding to hire a programmer to work on f77 next year to finish
this project.

We also hope to incorporate the improvements made to FORTRAN by Jim
Kulp at IIASA in Austria. Kulp's group produced documentation designed to help
users of FORTRAN on other machines learn to use f77. We hope to work with the
Computer Center at Berkeley to make the documentation produced in Austria
more widely available.

A group of students at Berkeley under the direction of Prof. Kahan are pro-
ducing basic math library routines such as sin and sqrt to conform to the new
IEEE standards. These routines will be integrated into the standard VAX UNIX
math library as they become available.

" CSRG TR/4 - August 31, 1881 — Joy/Fabry

Proposals for UNIX -53- Miscellaneous topics

9.8. Detaching jobs

We realize the desirability of detaching jobs from one terminal and reat-
taching them to another terminal. This facility was considered for inclusion
when the job control facilities were added to UNIX but rejected because of the
difficulty of communicating the change of environment to the newly attached
jobs. If conventions for use of the naming directory as a communications area
are adequate, this problem can be solved. Jobs that are reattached could look
in their naming directory to see the terminal type they are now attached to and
discover other aspects of their environment. We plan to investigate the provi-
sion of attach and detach facilities in future releases of the system.

9.7. UNIX and YMS: performance and facilities

There has been a good deal of discussion of the relative performance of
UNIX and VMS. Much of the available information is now out of date, and more
will be outdated as the facilities described here are incorporated into UNIX and
new versions of VMS become available.

Our recent measurements show that the differences in paging performance
of UNIX and VMS reported by Kashtan at SRI are no longer significant. We meas-
ured the behavior of the 4.1bsd system running his benchmarks and got times
not significantly different from the times he reported for VMS. When we used
vadvise to tell the system that the sequential access jobs were, indeed, sequen-
tial, then the system outperformed VMS substantially.

In our experience the largest reason for research sites to use VMS is the
quality of the FORTRAN on VMS. We hope that a future release of a better f77
compiler will make the FORTRAN issue moot, so that the choice need not be
made for FORTRAN alone.

We expect to run a new set of UNIX and VMS benchmarks after the facilities
described here are in place in the system, probably sometime early in 1982,
The results of these benchmarks should prove valuable for further refinements
to the systems.

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -54 - Appendix: summary

1. Index and summary of proposed system facilities

The following table summarizes the new system facilities proposed in this
paper. The entries in the table are systern calls (whose names are all in lower
case), constants related to system calls (whose names are all upper case), and
new types associated with the new facilities (which are given in italics). Each
item is classified as relating to memory management facilities mman, IPC and
networking ipc, the file system filsys, or general needs general. Other
categories include changed for system calls whose interface is changed, or
deleted for system calls to be deleted.

Name Kind See Description

answer ipc 2.5 Receive a call establishing virtual circuit
associate ipc 2.8 . Provides a server for a network address
asynchronous general 2.10 Request interrupt notification about i/o

call ipe 25 Place a call establishing virtual circuit
chnamdir general 5.2 Change naming directory

closesend ipe 2.7.5 Close transmit half of a circuit

control general 7.8 Replacement for ioctl with cleaner interface
disassociate ipc 2.8 Remove an association from associate
ENBLOCK general 2.10 Error returned instead of blocking with nonbdlocking
Jd_set general 2.3 Type representing set of file descriptors

Jd waterm general 211 Type representing watermarks for i/o

n.addr ipc 2.3 Internetwaork address type

tn_proto ipc 23 Socket type, from SOCK DG, SOCKYC, SOCK.CALL
ioctl deleted 7.8 To be replaced by control with cleaner interface
nonblocking general 2.10 I/0 requests return ENBLOCK instead of blocking
open changed 5.3 New fiags from UNIX 3.0 and for locking

portal ipc 2.7 Create a server gateway in UNIX file system
portal_kind ipc 2.7 Portal types defining protocols

PORTAL_CALL ipc 2.7 Portal type for simple circuit connecticns
PORTAL_FILE ipc 2.7 Portal type for file emulation ,
PORTAL.DEV ipc 2.7 Portal type for device emulation

PORTAL.DIR ipc 2.7 Portal type for directory emulation

receive ipe 24 Receive a datagram

recordbetween ipc 2.9.1 Is a circuit between records?

recordmode ipc 2.9.1 Place circuit in record mode

rename generel 8.6 Atomic rename primitive for file system
segadvise mmen 3.9 Give system advice about a segment

segalloc mman 3.5 Allocate a segment in virtual memory
segchmod mman 3.7 Change access protection of a segment

segfree mman 3.8 Free a segment in virtual memory

SEG_SHARED mman 35 Segment is to be shared (in segalloc)
SEG_PRIVATE mman 35 Segment is private (in segalloc)

SEG.NA mman 3.5 No access allowed in segment (in segchmod)
SEG.R mmean 3.7 Read access allowed in segment (in segchmod)
SEGY mman a7 Write access allowed in segment (in segchmod)
SEG.X mman 3.7 Execute access allowed in segment (in segchmod)
select general 2.8 Provides a synchronous i/o multiplexing facility
send ipe 2.4 Send a dategram

signal changed 7.4 New signal facility to become standard

sigstack general 3.13 - Provide special stack for signal processing

SIGIO general 2.10 Input /output possible signal (with asynchronous)
SIGURG ipc 29.2 Urgent data arrival signal

socket ipc 2.4 Create a socket for [PC communications

CSRG TR/4 — August 31, 1981 — Joy/Fabry

Proposals for UNIX -55- Index and summary
Name Kind See Description

socketstatus ipc 2.11 Return internal state of a socket

SOCK.CALL ipc 2.3 Call director socket for establishing circuits
SOCK.DG ipc 2.3 Datagram socket type

SOCKYC ipc 23 Virtual circuit socket type

symlink flisys 5.1 Create a symbolic link

symunlink flisys S.1 Remove a symbolic link

symfollow filsys 5.1 Enable/disable symbolic links

syncfd general 8.7 Flush buffering associated with file or device
truncate filsys 8.5 Shorten the length of a file

urgentmode ipc 2.9.2 Place circuit in urgent data mode

urgentnext ipc 2.8.2 Is next data in circuit urgent?

urgentpending ipc 29.2 Is there any upcoming urgent data?
urgentsockets ipc 2.9.2 Return set of sockets with urgent data pending
vadvise deleted 3.1 Replaced by segadvise facilities

vread deleted 3.1 Replaced by segalloc facilities

vwrite deleted 3.1 Replaced by segalloc facilities

watermarks general 2.12 Set buffering watermarks for stream descriptor
- general §2 Naming directory filename prefix character
CSRG TR/4 — August 31, 1981 — Joy/Fabry

