
6.8

6.9

6.7.1 Invoking the Kernel Debugger at Boot Time _..-—sr—s—‘ 6-233

6.7.2 Invoking the Kernel Debugger on a Running System . 6-24

ADA TASKING AND REMOTE DEBUGGING 6-24

6.8.1 Stack Storage 6-25

6.8.2 Monitoring Tasking Performance 6-25

SAMPLE REMOTE DEBUGGING SESSION 6-27

PART Ill RUN-TIME RELATED TOPICS

CHAPTER 7

7.1

7.2

7.3

7.4

INPUT-OUTPUT 7-1

FILES AND FILE ACCESS 7-2

7.1.1 Disk Files 7-2

7.1.2 Tape Files 7-3

7.1.3 Terminals and Printers 7-4

7.1.4 Network Files 7-4

7.1.5 VAXELN Circuits 7-5

7.1.6 Other Devices 7-6

NAMING EXTERNAL FILES 7-6

7.2.1 Node Names 7-6

7.2.2 Device Names 7-7

7.2.3 Directory Name - 7-8

7.2.4 File Type 7-8

STANDARD INPUT-OUTPUT FILES 7-8

SPECIFYING EXTERNAL FILE ATTRIBUTES WITH THE FILE

DEFINITION LANGUAGE (FDL) 7-9

7.4.1 FDL Primary and Secondary Attributes 7-10

7.4.2 VAXELN_CIRCUIT Attribute 7-12

 7.4.3 Commonly Used FDL Attributes 7-13

vii

CHAPTER 8 TASKING

8.1 INTRODUCTION TO USING TASKS ON VAXELN 8-1

8.2 TASK STORAGE ALLOCATION 8-3

8.2.1 Storage Created for a Task Object—the Task Control
Block 8-4

8.2.2 Storage Created for a Task Activation—the Task
Stack 8-5
8.2.2.1 Controlling the Size of a Main Task Stack © 8-6
8.2.2.2 Controlling the Size of Other Task Stacks ® 8-7

8.2.3 Stack Overflow and Non-Ada Code 8-8

8.3 TASK SWITCHING 8-8

8.4 SPECIAL TASKING CONSIDERATIONS 8-10

8.5 CALLING VAXELN KERNEL SERVICES FROM TASKS 8-10

8.6 MEASURING AND TUNING TASKING PERFORMANCE 8-10

CHAPTER 9 CALLING VAXELN SERVICES 9-1

9.1 OBJECTS IN VAXELN SERVICES 9-1

9.1.1 AREA Object 9-2

9.1.2 DEVICE Object 9-3

9.1.3 EVENT Object 9-3

9.1.4 MESSAGE Object 9-4

9.1.5 MUTEX Object 9-5

9.1.6 NAME Object 9-6

9.1.7 PORT Object 9-6

9.1.8 PROCESS Object 9-7

9.1.9 SEMAPHORE Object 9-8

9.2 VAXELN TYPES 9-9

vill

9.3

9.4

9.5

USING STRINGS WITH VAXELN SERVICES

9.3.1 Fixed-Length Strings

9.3.2 Varying-Length Strings
9.3.2.1 Uses of Varying Strings ® 9-11
9.3.2.2. Varying String Descriptors ® 9-12

VAXELN SERVICES

9.4.1 Authorization Utility Procedures

9.4.2 Authorization Service Utility Procedures

 9.4.3 Device Driver Utility Procedures
9.4.3.1 Analog-to-Digital Converter Procedures ® 9-14
9.4.3.2 Real-Time Clock Procedures ® 9-14
9.4.3.3. Asynchronous Serial Line Controller

Procedures ® 9-14
9.4.3.4 Parallel Line Interface Procedures ® 9-15

9.4.4 DMA Device Handling Procedures

9.4.5 Exception Handling Procedures

9.4.6 Exit Utility Procedures

9.4.7 File Service Procedures
9.4.7.1 Disk Utility Procedures ® 9-17
9.4.7.2 File Utility Procedures © 9-17
9.4.7.3. Tape Utility Procedures © 9-18

9.4.8 Interrupt Priority Level Procedures

9.4.9 Memory Allocation Procedures

9.4.10 Message Transmission Procedures

 9.4.11 Program Argument Procedures

9.4.12 Program Loader Procedures

9.4.13 Time-Representation Procedure

 9.4.14 Virtual-to-Physical Address Procedure

9.4.15 Other Services

VAX/VMS SERVICES AVAILABLE WITH VAXELN ADA

9-10
9-10
9-10

9-12

9-12

9-13

9-13

9-15

9-16

9-17

9-17

9-18
9-19
9-19
9-20
9-20
9-21
9-21
9-21

9-22

APPENDIX A PACKAGE VAXELN_SERVICES

A.1

A.2

TYPE DEFINITIONS

VAXELN SERVICE PROCEDURE DESCRIPTIONS
ACCEPT_CIRCUIT
ALLOCATE_MAP
ALLOCATE_MEMORY
ALLOCATE_PATH
AUTH_ADD_USER
AUTH_MODIFY_USER
AUTH_REMOVE_USER
AUTH_SHOW_USER
AXV_INITIALIZE
AXV_READ
AXV_WRITE
CANCEL _EXIT_HANDLER
CLEAR_EVENT
CONNECT_CIRCUIT
COPY_FILE
CREATE_AREA
CREATE_DEVICE
CREATE_DIRECTORY
CREATE_EVENT
CREATE_JOB
CREATE_MESSAGE
CREATE_MUTEX
CREATE_NAME
CREATE_PORT
CREATE_PROCESS
CREATE_SEMAPHORE
CURRENT_PROCESS

A-22

A-24

A-26

A-28

A-30

A-33

A-36

A-38

A-40

A-42

A-45

A-46

A-47

A-48

A-51

A-53

A-55

A-59

A-61

A-62

A-64

A-66

A-67

A-69

A-71

A-73

A-75

A-1

A-21

DECLARE_EXIT_HANDLER

DELETE_AREA

DELETE_DEVICE

DELETE_EVENT

DELETE_FILE

DELETE_MESSAGE

DELETE_MUTEX

DELETE_NAME

DELETE_PORT

DELETE_PROCESS

DELETE_SEMAPHORE

DIRECTORY_CLOSE

DIRECTORY_LIST

DIRECTORY_OPEN

DISABLE_ASYNCH_EXCEPTION

DISABLE_INTERRUPT

DISABLE_SWITCH

DISCONNECT_CIRCUIT

DISMOUNT_TAPE_VOLUME

DISMOUNT_VOLUME

DLV_INITIALIZE

DLV_READ_BLOCK

DLV_READ_STRING

DLV_WRITE_STRING

DRV_INITIALIZE

DRV_READ

DRV_WRITE

ENABLE_ASYNCH_EXCEPTION

ENABLE_INTERRUPT

ENABLE_SWITCH

ENTER_KERNEL_CONTEXT

EXIT_PROCESS

FREE_MAP

A-76

A-77

A-78

A-79

A-80

A-81

A-82

A-83

A-84

A-85

A-86

A-87

A-88

A-90

A-92

A-93

A-94

A-95

A-96

A-37

A-98

A-100

A-101

A-102

A-103

A-105

- A-106

A-107

A-108

A-109

A-111

A-112

A-113

FREE_MEMORY
FREE_PATH
GET_TIME
GET_USER
INITIALIZATIGN_DONE
INIT_TAPE_VOLUME
INIT_VOLUME
JOB_PORT
KWV_INITIALIZE
KWV_READ
KWV_WRITE
LOAD_PROGRAM
LOAD_UNIBUS_MAP
LOCK_MUTEX
MEMORY_SIZE
MOUNT_TAPE_VOLUME
MOUNT_VOLUME
PHYSICAL_ADDRESS
PROGRAM_ARGUMENT
PROGRAM_ARGUMENT_COUNT
PROTECT_FILE
RAISE_PROCESS_EXCEPTION
RECEIVE |
RENAME_FILE
RESUME
SEND
SET_JOB_PRIORITY
SET_PROCESS_PRIORITY
SET_PROTECTION
SET_TIME
SET_USER
SIGNAL_AREA
SIGNAL _DEVICE

A-115

A-116

A-118

A-119

A-121

A-122

A-124

A-129

A-130

A-133

A-135

A-137

A-140

A-142

A-143

A-144

A-146

A-148

A-149

A-150

A-151

A-153

A-154

A-157

A-159

A-160

A-163

A-164

A-166

A-168

A-169

A-170

A-171

SIGNAL_EVENT A-172

SIGNAL_PROCESS A-173

SIGNAL_SEMAPHORE A-174

SUSPEND A-176

TRANSLATE_NAME A-177

UNIBUS_MAP A-179

UNIBUS_UNMAP A-181

UNLOAD_PROGRAM A-182

UNLOCK_MUTEX A-183

WAIT_ALL OR WAIT_ANY A-184

APPENDIX B

B.1

B.2

DEBUGGER COMMAND SUMMARY

VAXELN REMOTE DEBUGGER COMMANDS

DEBUGGER COMMAND SUMMARY
B.2.1

B.2.2

B.2.3

B.2.4

B.2.5

B.2.6

B.2.7

B.2.8

B.2.9

B.2.10

B.2.11

B.2.12

B.2.13

Starting and Terminating a Debugging Session

Controlling and Monitoring Program Execution

Examining and Manipulating Data

Controlling Type Selection and Symbolization

Controlling Symbol Lookup

Displaying Source Code

Screen Mode

Source Editing

Defining Symbols

Keypad Mode

Command Procedures and Log Files

Control Structures

Debugging Special Cases

B-1

B-1

B-5

B-6

B-6

B-7

B-7

B-8

B-8

B-9

B-9

B-16

B-10

B-10

B-11

B-11

APPENDIX C VAXELN-RELATED FEATURES ADDED TO VAX ADA C-1

C.1 MAIN TASK STORAGE ALLOCATION C-1

C.2 THE PACKAGE SYSTEM C-2

C.3 VAX ADA ADDITIONS TO PACKAGE SYSTEM C-2

C.3.1 Register Operations C-2

C.3.2 Interlocked Instructions C-4

C.3.3 Queue Instructions C-5

INDEX

EXAMPLES

6-1 Debugging a VAXELN Ada Program 6-28

FIGURES

1—1 VAXELN Ada Development Environment 1-3

2-1 Square-Root Server Application 2-7

4—1 Sample System Builder Menu 4-5

6-1 Main System Menu 6-7

TABLES |

3-1 ACS Program Library Management Commands 3-13

3-2 Additional ACS Commands 3-16

3-3 Compilation Commands 3-19

3—4 ADA, COMPILE, and RECOMPILE Qualifiers 3-21

3-5 ACS LINK Command Qualifiers 3-24

4—1 EBUILD Command Qualifiers 4-2

4-2 Edit System Characteristics Menu 4-7

4-3 Edit Network Node Characteristics Menu 4-13

xiv

4—4
4-5
4-6
4-7

4-8
4-9
5-1
7-1
7-2
8-1

Add Program Description Menu

Add Device Description Menu

Common QBUS Device Names and Their SYSGEN Equivalents

Common UNIBUS Device Names and Their SYSGEN

Equivalents

Add Terminal Description Menu

Edit Console Characteristics Menu

Datalink Device Default Addresses

FDL Primary and Secondary Attribute Descriptions

Commonly Used FDL Attributes

Comparison of VAX/VMS and VAXELN Ada Task

implementations

4-16

4-19

4-21

4-21

4-23

4-25

5-4

7-11

7-13

8-2

XV

Preface

Intended Audience

This manual is intended for programmers who are building embedded,
real-time, or turnkey applications in the VAX Ada language for use with
the VAXELN executive.

Structure of This Document

The VAXELN Ada User's Manual has three parts, which are organized as
follows:

Part I, Introduction to VAXELN Ada, contains the following chapter:

e Chapter 1 gives an overview of VAXELN Ada and its development
environment. It also compares VAX Ada and VAXELN Ada features.

Part II, Program Development, contains the following chapters:

e Chapter 2 shows how to get started by introducing the compiler, the
program library manager (ACS), the VAXELN System Builder Utility
(EBUILD), and the VAXELN Remote Debugger. A sample VAXELN
Ada application is also included.

e Chapter 3 gives information on how to compile and link VAXELN
Ada programs. It includes information on Ada program libraries and
sublibraries, and summarizes the syntax of the ACS commands for
program library management, compilation, and linking.

e Chapter 4 describes how to build a VAXELN system with the VAXELN
System Builder Utility. It gives the syntax of the EBUILD command
and explains the use of System Builder menus.

e Chapter 5 explains the various methods for booting and running
VAXELN systems on a target machine.

Part III, Run-Time Related Topics, contains the following chapters:

Chapter 6 includes a description of the VAXELN Remote Debugger
and the remote debugger commands. This debugger is used at a host
system to debug, by means of an Ethernet connection, a program
running on a target machine.

Chapter 7 lists the VAXELN Ada input-output packages and provides
detailed information about files and file access, as well as summary
information about specifying external file attributes with the VAX/VMS
File Definition Language (FDL).

Chapter 8 discusses tasking issues relevant to the VAXELN
environment.

Chapter 9 discusses the package VAXELN_—SERVICES and the use of
strings described in this package. In addition, it lists VAXELN services
according to function.

The following appendixes are also included:

Appendix A describes the types, subtypes, and constants used in
VAXELN Ada service calls. It also contains the procedure declarations
for each VAXELN service and fully describes the arguments and
possible status values for each procedure.

Appendix B lists and describes the VAXELN Remote Debugger com-
mands and summarizes VAX/VMS Debugger commands that can be
used with the remote debugger.

Appendix C summarizes the features relevant to the VAXELN system.

Associated Documents

A description of the VAX Ada implementation can be found in the VAX
Ada documentation set, which consists of the following volumes:

xvii

VAX Ada Language Reference Manual
VAX Ada Programmer's Run-Time Reference Manual
Developing Ada Programs on VAX/VMS

VAXELN information can be found in the VAXELN User’s Guide.

Information on installing VAXELN Ada is in the VAXELN Ada Installation
Guide.

Conventions Used in This Document

This document uses the following conventions:

Convention Meaning

RET A symbol with a one- to six-character abbre-

viation indicates that you press a key on the
terminal, for example, ;

The phrase CTRL/X indicates that you
must press the key labeled CTRL while
you simultaneously press another key, for
example, CTRL/C, CTRL/Y, CTRL/U.

¢ SHOW TIME Interactive examples show all output lines or
07-JAN-1986 10:35:13 prompting characters that the system prints

or displays in black letters. All user-entered
commands are shown in red letters.

out Boldface indicates VAXELN Ada reserved
words.

[expression] . Square brackets indicate that the enclosed
item is optional.

[{job_specifier,...] Horizontal ellipsis means that the item may
be repeated zero or more times.

Part I Introduction to VAXELN Ada

This section gives an overview of VAXELN Ada and dis-
cusses differences between VAXELN Ada and VAX Ada.

Chapter 1

Introduction to VAXELN Ada

This chapter provides an overview of VAXELN™ Ada® , its development
environment, and its differences from VAX Ada.

1.1 What Is VAXELN Ada?

VAXELN Ada is a VAX/VMS layered product that provides the capability
for developing, debugging, and running Ada standalone applications on
VAX processors using the VAXELN real-time executive.

VAXELN Ada components are

e VAXELN Ada run-time library, which supports all standard Ada
features, including the packages TEXT_IO, SEQUENTIAL _IO, and
DIRECT_IO. It also supports all VAX Ada-specific features, except
nonsequential files, ASTs, and timeslicing.

e Additional units for the VAX Ada library of predefined units.

e VAXELN debugging support, including the VAXELN Remote Debugger.
Based on the VAX/VMS Debugger (DEBUG), the remote debugger
provides the means for debugging VAXELN Ada applications running
on a target VAX machine from a host VAX/VMS system, connected by
Ethernet.

VAXELN Ada is layered on VAX Ada, the VAXELN Toolkit (VAXELN),
and the VAX/VMS operating system. It can be used with development
environment tools such as the VAX Language-Sensitive Editor and
DEC/CMS.

> VAX and VAXELN are trademarks of Digital Equipment Corporation.

Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

Introduction to VAXELN Ada 1-1

VAXELN Ada is based on the VAX Ada compiler and program library
manager (ACS); the VAXELN Ada run-time components are VAXELN-
specific versions of VAX Ada components.

1.2 The VAXELN Ada Program Development Environment

VAXELN Ada applications are developed on a host VAX/VMS system
using the VAX Ada compiler, the VAX Ada program library manager
(ACS), and the VAX/VMS Linker and ACS LINK command. Chapter 2
gives an example of a VAXELN Ada application.

Once the Ada application is developed, you build a VAXELN system
with the VAXELN System Builder Utility (EBUILD). The System Builder
combines the Ada program with the VAXELN kernel, VAXELN services,
and the VAXELN Ada run-time library to produce a bootable system. You
can load a system by means of a disk, tape cartridge, PROM, or Ethernet
to a VAX processor. The processor serves as a dedicated machine and runs
the VAXELN system as a standalone application.

You can use the VAXELN Remote Debugger to debug VAXELN Ada pro-
grams running on a target. The remote debugger is part of the VAX/VMS
environment and is used from a terminal connected to the host system.
The remote debugger communicates with the target machine by means of
an Ethernet connection.

Figure 1-1 is an overview of the VAXELN Ada development environment
and the steps involved in producing a VAXELN Ada application.

1.3 Differences from VAX Ada

1-2

VAXELN Ada supports all of the VAX Ada language and implementation-
defined features except for the following:

e Pragma TIME_SLICE

e Pragma AST_ENTRY

e AST_ENTRY attribute

e Packages RELATIVE_IO, RELATIVE_MIXED_IO, INDEXED_IO,
INDEXED_MIXED_IO

Introduction to VAXELN Ada

Figure 1-1: VAXELN Ada Development Environment

Host VAX/VMS System

|) VAX Ada Compiler | |

'
| Ada Program Library |

| Naa
Program Library Manager (ACS) |

 | VAX/VMS Linker

! |
rogram VAXELN Ada

prog run-time library |

| VAXELN System Builder

 VAXELN

services

(EBUILD)

bootable system

/

VAXELN Remote Debugger

 —_ «-~ ——- —— | —- J

tape cartridge Ethernet

disk
is we VAX procesor

target PROM

2K 4847 85

Introduction to VAXELN Ada 1-3

In addition, the implementation of the form string (used to specify external
file characteristics in the input-output procedures CREATE and OPEN)
differs slightly for VAXELN Ada.

VAXELN Ada also provides a number of implementation-dependent
features designed to aid in the writing of Ada programs for the VAXELN
target.

These differences are summarized in the following sections.

1.3.1 Time Slicing

The VAXELN system does not have time-sliced scheduling. Thus, the
VAX Ada pragma TIME_SLICE, if specified in a compilation unit, is
not supported for VAXELN Ada. The compiler will diagnose and ignore
the pragma when the value of SYSTEM.SYSTEM_NAME is VAXELN.
In other words, an Ada program unit containing pragma TIME—SLICE
depends on a value of VAX_VMS for SYSTEM.SYSTEM_NAME, and
cannot be linked into a VAXELN target image.

SYSTEM.SYSTEM_NAME and unit dependences are discussed in
Chapter 3.

1.3.2 Asynchronous System Traps

1-4

The VAXELN system does not support the VAX/VMS asynchronous
system trap (AST) mechanism. Therefore, neither the VAX Ada pragma
AST_ENTRY nor the VAX Ada AST_ENTRY attribute is supported in
VAXELN Ada. The compiler diagnoses and ignores the use of both the
pragma and the attribute when the current value of SYSTEM.SYSTEM_—
NAME is VAXELN. In other words, an Ada program unit containing
pragma AST_ENTRY or the AST_ENTRY attribute depends on a value of
VAX_VMS for SYSTEM.SYSTEM_NAME, and cannot be linked into a
VAXELN target image.

SYSTEM.SYSTEM_NAME and unit dependences are discussed in
Chapter 3.

Introduction to VAXELN Ada

1.3.3 implementation of the Form String

All of the Ada input-output packages provide CREATE and OPEN pro-
cedures. All of these procedures, in turn, have a FORM parameter that
allows you to specify the characteristics of an external file from your Ada
program. In VAX Ada, the value of the FORM parameter (called a form
string) can be either a string of VAX Record Management Services (RMS)
File Definition Language (FDL) statements, or a string referring to a file
of FDL statements. In VAXELN Ada, the value can only be a string of
FDL statements. Also, VAXELN Ada recognizes a different set of FDL
statements (a subset of the statements recognized by VAX Ada, plus an
additional statement that is useful only with VAXELN Ada).

See Chapter 6 for a full explanation.

1.3.4 Relative and Indexed Files

The VAXELN system does not provide relative and indexed files, so the
VAX Ada packages RELATIVE_IO, INDEXED_IO, RELATIVE_MIXED_
IO, and INDEXED_MIXED_IO are not supported by VAXELN Ada, and
the bodies of these packages require that they be used only in programs
that are executed on VAX/VMS targets. In other words, the relative and
indexed packages depend on a value of VAX_VMS for the predefined
constant SYSTEM.SYSTEM_NAME, and cannot be linked into a VAXELN
target image.

SYSTEM.SYSTEM_NAME and unit dependences are discussed in
Chapter 3.

1.3.5 VAXELN-Related Language Features

To allow you to specify fixed-size stack and stack storage areas for the
task associated with the main program (main task), VAX Ada provides

Pragma MAIN_STORAGE

For distinguishing between target systems, VAX Ada provides

The enumeration literals VAXELN and VAX_VMS for type
SYSTEM.SYSTEM_NAME

Introduction to VAXELN Ada 1-5

1-6

For communicating with device registers and internal processor registers,
VAX Ada provides

Function SYSTEM.READ_REGISTER
Procedure SYSTEM.WRITE__REGISTER
Function SYSTEM.MFPR
Procedure SYSTEM.MTPR

For coding VAX interlocked instructions directly from an Ada program,
VAX Ada provides

Type SYSTEM.ALIGNED_SHORT_INTEGER
Procedure SYSTEM.ADD_INTERLOCKED
Procedure SYSTEM.CLEAR_INTERLOCKED
Procedure SYSTEM.SET_INTERLOCKED

For coding VAX queue instructions directly from an Ada program, VAX
Ada provides

Type SYSTEM.INSQ_STATUS
Type SYSTEM.REMQ_STATUS
Procedure SYSTEM.INSQHI
Procedure SYSTEM.INSQTI
Procedure SYSTEM.REMQHI
Procedure SYSTEM.REMQTI

The specifications for these features are documented in Appendix C.

VAXELN Ada also provides the package VAXELN_—SERVICES, which
defines interfaces to the VAXELN system services, utility routines, and
device drivers. The package contains definitions of the special types
needed by the VAXELN routines as well as definitions of the routines
themselves. This package is described in Chapter 9 and specified in
Appendix A.

Introduction to VAXELN Ada

- Partll Program Development

This section presents information on program development
using VAXELN Ada. It provides an overview of the steps
in program development and gives detailed information
on using the VAX Ada compiler and program library man-
ager, VAXELN system building, loading finished VAXELN
systems to target machines, and remote debugging.

Chapter 2

Getting Started

This chapter presents the basic steps you need to follow in building a
VAXELN Ada application. It tells you how to use

e The VAX Ada compiler and program library manager (ACS) to compile
and link an Ada program

e The VAXELN System Builder Utility (EBUILD) to produce a finished
VAXELN application

¢ Downline loading capabilities to load the application to a target
machine

e The VAXELN Remote Debugger to debug the application from the host
system

The Ada source code for the sample application discussed here is included
at the end of the chapter. VAXELN Ada program development is dis-
cussed more fully in Chapter 3 and Chapter 4. The remote debugger is
discussed in Chapter 6.

2.1 Creating a VAXELN Ada Application

The following sections describe how to build a VAXELN Ada application.

Getting Started 2-1

2.1.1 Using the VAX Ada Compiler and Program Library Manager (ACS)

2-2 Getting Started

Programs are developed on the VAX/VMS host system, using the VAX
Ada compiler and program library manager (ACS). ACS provides the user
interface to the compiler and VAX/VMS Linker, which is used to link
VAXELN Ada programs.

The following steps illustrate how to create and select an Ada library, and
how to compile and link an Ada program. The sample application used
here has three units. The source code, an explanatory diagram, and a full
description are given in Section 2.2.

1. Create the Ada program library.

$ ACS CREATE LIBRARY [.ADALIB]

Define the current program library.

$ ACS SET LIBRARY [.ADALIB]

Compile the Ada programs.

The following example shows how you would compile each unit
separately. The /DEBUG qualifier is a default on the ADA command,
but is shown here for clarity.

The ERROR_HANDLING unit must be compiled first, because it must
be defined in the current program library when you compile the other
two units.

$ ADA /DEBUG ERROR_HANDLING. ADA

$ ADA /DEBUG SQRT_SERVER.ADA

$ ADA /DEBUG SQRT_SERVER_TESTER. ADA

The /DEBUG qualifier requests the compiler to write the symbol
records associated with the units being compiled into the resulting
object modules and allows you to run each unit under debugger
control.

Link the Ada programs.

After compiling the programs, you can link them using the /DEBUG
qualifier and the /SYSTEM—_NAME=VAXELN qualifier. The ELN$:RTL
/INCLUDE=(KER$MSGDEF_TEXT) parameter causes the message text
for messages generated by the VAXELN kernel to be included in the
images.

$ ACS LINK/DEBUG/SYSTEM_NAME=VAXELN SQRT_SERVER -

_$ ELN$:RTL /INCLUDE=(KER$MSGDEF_TEXT)
$ ACS LINK/DEBUG/SYSTEM_NAME=VAXELN SQRT_SERVER_TESTER -

_$ ELN$:RTL /INCLUDE=(KER$MSGDEF_TEXT)

The /DEBUG qualifier on the ACS LINK command requests the
linker to include all symbol information that is contained in the object
modules in the executable image.

The /SYSTEM_NAME=VAXELN qualifier directs ACS to produce an
image to be run under the VAXELN executive.

2.1.2 Using the VAXELN System Builder Utility

Before you can run the application, you must invoke the VAXELN System
Builder Utility with the EBUILD command to combine the application
programs with the VAXELN kernel to form a bootable system image.

The EBUILD command invokes the System Builder to combine one or
more program images into a bootable system image. The following
command creates a VAXELN system image, SOQRT_SERVER.SYS, whose
system characteristics are described in SQRT_SERVER.DAT.

$ EBUILD/NOEDIT SQRT_SERVER

The /NOEDIT qualifier in the previous example indicates that the system
was built using a noninteractive mode. This causes the System Builder to
build a system image immediately, from the current contents of a specified
data file.

The interactive mode of system building, specified with the default /EDIT
qualifier, allows you to select various system options or attributes from a
series of menus.

See the VAXELN User’s Guide and Chapter 4 of this book for more
information on the VAXELN System Builder.

This discussion uses the data file SQRT_SERVER.DAT, constructed with
the EBUILD command. This file describes the characteristics of this partic-
ular system and is the mechanism for giving the collected information to
the System Builder. The data file contains:

characteristic /noconsole /nofile /name=ARTHUR /node_address= 42

/server /enulator=both /boot_method=downline

/debug=remote /network
program SQRT_SERVER /run /debug /initialize
program SQRT_SERVER_TESTER /norun /nodebug
program SQRT_SERVER_TESTER /run /debug

Getting Started 2-3

Note that there are two program descriptors for the program SQRT_
SERVER_TESTER. By having multiple program descriptors, you can
create jobs running the same program, but with different attributes. The
System Builder names these jobs SQRT_SERVER_—TESTER and SQRT_
SERVER—TESTER;1.

During system startup, the VAXELN kernel creates jobs for all programs
that have the /initialize and /run attributes. Therefore, a job will be
created running the program SQRT_SERVER. Since the program has the
/debug attribute, the job will start under debugger control.

Any other programs that have the /run attribute (but not the /initialize
attribute) run when the jobs with the /initialize attribute either exit, or call
the INITIALIZATION_DONE procedure. Therefore, once SQRT_SERVER
calls the INITIALIZATION_DONE procedure, the VAXELN kernel will
create a job running the program SQRT_SERVER_TESTER.

2.1.3 Downline Loading the System Image

After the system has been built on the VAX/VMS host machine, it can be
downline loaded to a target machine running the VAXELN executive. The
host must have service enabled for the circuit to allow remote triggering of
the node.

To downline load the target machine, the target machine must be running
the downline load bootstrap loader. On a MicroVAX I or II, press the
HALT button twice (in, and then out) and type:

>>> B XQAO

On the host, the following command causes the specified program to be
downline loaded and begins a debugging session:

$¢ DEBUG/REMOTE ARTHUR /LOAD=SQRT_SERVER .SYS

VAXELN Remote Debugger Version V1.0-00

“RDEBUG-I-ATTEMPT_LOAD, Setting load file for node ARTHUR

to TESTD: ([ADA.EXE] SQRT_SERVER.SYS;

“7RDEBUG-I-TRIGGER, Triggering node ARTHUR

“%RDEBUG-I-ATTEMPT_CONNECT, Connecting to node ARTHUR
“%RDEBUG-I-RETRY_CONNECT, Retrying connect to node ARTHUR

2-4 Getting Started

Note that if the host machine or the Ethernet is heavily loaded, the
operation may timeout, as indicated by the following message.

“%BOOT-F-ERROR, No response from load server XQAO

If this occurs, type

>>> B XQAO

on the target system’s hardware console to restart the boot operation.

When the VAXELN system starts, the VAXELN kernel announces its
presence on the target system’s hardware console terminal:

VAXELN V2.1-03

See Chapter 5 and the VAXELN User’s Guide for further information on
this topic and on downline loading non-MicroVAX machines.

2.1.4 Using the VAXELN Remote Debugger

In order to run a job under remote debugger control, you must have
compiled and linked it with the /DEBUG qualifier in effect and you must
specify that you want to run the job under debugger control by selecting
the appropriate menu options when you build the system.

Once the remote debugger connects to the target node, it reports the job
number, name, and state of each job in the system that is in a debug-
wait state. In this case, SOQRT_SERVER has started under control of the
debugger and is therefore in a debug-wait state.

“7RDEBUG-S-CONNECTION, Connected to node ARTHUR
Job 4.1 (SQRT_SERVER) is waiting for your attention
“%RDEBUG-S-SET_TIME, System time set on node ARTHUR
RDBG*>

Type the SHOW SYSTEM command to get an overview of the current
state of the jobs in the system. For example:

RDBG*> SHOW SYSTEM

Job Program Priority State Shared Size Readonly size

2 XQDRIVER 1 waiting 31232 30208

3 EDEBUGREM 3 running 5120 11264

4 SQRT_SERVER 16 debug-wait 3584 66560

This command shows the jobs that are currently running on the system.
The XQDRIVER job is the network driver. The EDEBUGREM job is the
remote debugger nucleus. The SQRT_SERVER job is running the appli-
cation to be debugged. Since the SQRT_SERVER job is in a debug-wait

Getting Started 2-5

state, it is ready to start a command session. The SET JOB/CURRENT
command begins a command session. For example:

RDBG+> SET JOB/CURRENT SQRT_SERVER

“%RDEBUG-I-SESSION_INIT, Loading symbols for Job 4. (SQRT_SERVER)
-RDEBUG-I-FROM, from file TESTD: [ADA.EXE]SQRT_SERVER.EXE; 1

“RDEBUG-I-INITIAL, language is ADA, module set to 'SQRT_SERVER'

“%RDEBUG-I-NOTATMAIN, type GO to get to start of main program

RDBG>

This command begins a command session with the job SOQRT_SERVER.
The remote debugger reads the symbol table information from the image
file associated with the job and prepares to accept commands that may be
directed at that job.

RDBG> GO
break at routine SQRT_SERVER

21: procedure SQRT_SERVER is

Typing the GO command causes the program to proceed directly to the
beginning of the program.

For more information on how to use the remote debugger, see Chapter 6.

2.2 Sample Application

The following section presents a sample VAXELN Ada application. The
application consists of three parts:

e The program SQRT_SERVER.ADA, which is an example of how a
typical server might be implemented using Ada tasks and calls to
VAXELN service routines. The function of this server is to compute
square roots.

e The package ERROR_HANDLING, which contains a routine to display
error messages.

e The program SQRT_SERVER—TESTER.ADA, which makes use of
SQRT_SERVER.ADA, the sample server example program.

Figure 2-1 outlines the operations of this application. Program comments
give a detailed explanation of the design and operation of the program.

2-6 Getting Started

Figure 2—1: Square-Root Server Application

Jobs requiring
square root

calculations

Control

Port request
. . connection

continuation to server
SORT_SERVER SORT_SERVER_

—- = > TESTER
of request

Pit]
match a dedicated

server task to

each requestor |

SORT_SERVER_

r|— > TESTER

| ! values & values & |

results results

3 _-- = — —4,

SORT_SERVER_
| = 3 TESTER

2 —— — — — — —d |

|
1 — — — — _-_ — —!

Task stack Data

ports

2K-4846.85

Getting Started 2-7

2.2.1 Square-Root Server Program

SQRT_SERVER .ADA

with STARLET;

with VAXELN_SERVICES;
with CONDITION_HANDLING; use CONDITION_HANDLING;

with SYSTEM; use SYSTEM;

with TEXT_I0; use TEXT_IO;

with FLOAT_MATH_LIB; use FLOAT_MATH_LIB;

with ERROR_HANDLING; use ERROR_HANDLING;

2-8 Getting Started

This program shows how a simple network-wide multithread server

can be implemented using VAXELN Ada and VAXELN kernel service routines.

The server uses a global VAXELN job port to receive VAXELN circuit

requests for square-root calculations from other VAXELN jobs.

When the server receives a request, it connects the requestor

(using a VAXELN circuit) to a dedicated Ada server task that
computes one or more square root values, depending on the

requestor's needs. When a server task detects that its service

is ended (the circuit with the requestor is disconnected), the
task makes itself available for another requestor and more

computations.

The square root calculations are passed as VAXELN messages between

the requestor and its Ada server task. Each message contains one

floating-point value. The square root of each value received by

the server task is computed using the SQRT function in the

MATH_LIB package available with VAXELN (and VAX) Ada.

Note that this program depends on the value of SYSTEM.SYSTEM_NAME,

which must be VAXELN.

procedure SQRT_SERVER is

-- Server task availability is controlled using a stack of server

-- task pointers. In this example, the stack size is 3.

MAX_SERVER_TASKS : constant := 3;

subtype TASK_INDEX is INTEGER range O .. MAX_SERVER_TASKS;

-- Task type for server tasks; note that to keep them from competing

-- with the main task (procedure SQRT_SERVER), their priority is set
-- to a lower priority of 4 (the main task has the default priority of 7).

task type SQRT_TASK is

entry SQRT_ENTRY(TASK_ARRAY_INDEX :
pragma PRIORITY (4);

end;

TASK_INDEX) ;

-- The default working storage size for a VAXELN Ada task is 60

-- physical pages (the pages are physical, not virtual, because

-- VAXELN is a nonpaging system). Since the server task or tasks in

-- this program do not use large amounts of stack space, it is safe and

-- efficient to use a smaller working storage size of 12 pages.

for SQRT_TASK'STORAGE_SIZE use 12*512;

type ACCESS_TO_TASK is access SQRT_TASK;

-- The following objects and exceptions are used in the

-- management of the server task stack:

STACK_GUARDIAN : VAXELN_SERVICES .MUTEX_TYPE;

NAME_OBJECT : VAXELN_SERVICES .NAME_TYPE;
JOB_PORT : VAXELN_SERVICES.PORT_TYPE;
SERVER_TASK_AVAILABLE =: VAXELN_SERVICES.EVENT_TYPE;
STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;
FIVE_MINUTES : STARLET .DATE_TIME_TYPE;

VAXELN_SERVICE_ERROR : exception;

SERVER_ALREADY_RUNNING : exception;

NUM_ACTIVE_SERVER_TASKS : INTEGER range 0 .. MAX_SERVER_TASKS := 0;

ALL_TASKS_WERE_BUSY : BOOLEAN;

SERVER_TASK : array (1 .. MAX_SERVER_TASKS) of ACCESS_TO_TASK;

TASK_ARRAY_ INDEX : TASK_INDEX := 0;

STACK_OF_IDLE_TASKS > array (1 .. MAX_SERVER_TASKS) of TASK_INDEX;

STACK_OF_IDLE_TASKS_TOP : TASK_INDEX := 0;

Getting Started 2-9

2-10 Getting Started

-- Task body for server tasks.

task body SQRT_TASK is

MY_TASK_ INDEX : TASK_INDEX;

RECEIVED_MESSAGE : ADDRESS ;
MESSAGE_OBJECT : VAXELN_SERVICES .MESSAGE_TYPE;

RECEIVED_MESSAGE_SIZE : SYSTEM.UNSIGNED_LONGWORD ;
STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;

WAIT_RESULT : INTEGER;

CIRCUIT_PORT : VAXELN_SERVICES .PORT_TYPE;
PARTNER_EXITED : exception;

TIMEOUT : exception;

BAD_MESSAGE_SIZE : exception;

SQRT_NEGATIVE : exception;

pragma IMPORT_EXCEPTION (SQRT_NEGATIVE, "MTH$_SQUROONEG") ;

procedure MAKE_TASK_AVAILABLE is

-- Each server task calls this procedure when the task

-- is available for more work. In other words, MAKE_TASK_AVAILABLE

-- is called when, for one reason or another, a server task has

-- finished servicing one requestor and is ready to service another.

begin

-~ Push the calling server task on the STACK_OF_IDLE_TASKS.

-- (In this example, a mutex is used to synchronize access

-- to the stack. You could also use an Ada task to achieve

-- the same effect.)

VAXELN_SERVICES .LOCK_MUTEX (MUTEX => STACK_GUARDIAN) ;

STACK_OF_IDLE_TASKS_TOP := STACK_OF_IDLE_TASKS_TOP + 1;

STACK_OF_IDLE_TASKS (STACK_OF_IDLE_TASKS_TOP) := MY_TASK_INDEX;

VAXELN_SERVICES .UNLOCK_MUTEX (MUTEX => STACK_GUARDIAWN) ;

-- Signal the VAXELN event that tells the main task

-- that a server task is ready for more work.

VAXELN_SERVICES . SIGNAL_EVENT (

STATUS => STATUS,

EVENT => SERVER_TASK_AVAILABLE) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

end MAKE_TASK_AVAILABLE;

begin
-- Create a VAXELN port that will be used by the server task

-- to communicate with the requestor.

VAXELN_SERVICES . CREATE_PORT (

STATUS => STATUS,

PORT => CIRCUIT_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

Loop

begin

~- Force a circuit disconnection in case the finished

-- requestor did not disconnect properly.

VAXELN_SERVICES . DISCONNECT_CIRCUIT(

STATUS => STATUS,

PORT => CIRCUIT_PORT) ;

accept SQRT_ENTRY(TASK_ARRAY_INDEX : TASK_INDEX) do

-- Set the index into the server task stack (an array

-- of pointers to SQRT_TASKs).

MY_TASK_INDEX := TASK_ARRAY_INDEX;

-- Wait for a circuit connection to be established with

-- a requestor.

VAXELN_SERVICES . ACCEPT_CIRCUIT(

STATUS => STATUS,
CONNECT_PORT=> CIRCUIT_PORT,

SOURCE_PORT => JOB_PORT) ;

end SQRT_ENTRY;

-- Check the status of the circuit connection (the check is

-- made outside of the accept statement so that a possible

-- resulting exception is not propagated up to the main task).

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

Getting Started 2-11

2-12 Getting Started

loop

-- Wait for a message containing a computable floating-point

-- value to arrive in the port (or timeout after 5 minutes).
-- If the server does not receive a message from the

~- requestor before the timeout expires, the server assumes

-~ that the requestor has implicitly terminated the dialog.

VAXELN_SERVICES . WAIT_ANY (
STATUS => STATUS,

VALUE1 => CIRCUIT_PORT,

TIME => FIVE_MINUTES,

RESULT => WAIT_RESULT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

if WAIT_RESULT = 0 then -- A WAIT_RESULT of O means that the

-- wait was satisfied by a timeout.

raise TIMEOUT;
end if;

-- The wait has not timed-out; a message has arrived.

-- Remove the message from the message port.

VAXELN_SERVICES . RECEIVE (

STATUS => STATUS,
MESSAGE => MESSAGE_OBJECT,

DATA_ADDRESS => RECEIVED_MESSAGE,

MESSAGE_SIZE => RECEIVED_MESSAGE_SIZE,

SOURCE_PORT => CIRCUIT_PORT) ;

-- Check to see if the requestor has become disconnected.

if STATUS = VAXELN_SERVICES .KER_DISCONNECT then

raise PARTNER_EXITED;

else
if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;
end if;

-- Check the size of the message, and raise an exception if

-- it is not the same size as a floating-point value.

if RECEIVED_MESSAGE_SIZE /= FLOAT'SIZE/8 then

raise BAD_MESSAGE_SIZE;

end if;

-- Use an Ada address representation clause to obtain the

-- floating-point value from the received message to be

-- used in the square-root computation.

declare
MESSAGE_DATA : FLOAT;

for MESSAGE_DATA use at RECEIVED_MESSAGE;
begin

-- Compute the square root of the value that was

-- just received.

MESSAGE_DATA := SQRT(MESSAGE_DATA) ;

-- Return the message to the sender.

VAXELN_SERVICES . SEND (

STATUS => STATUS,

MESSAGE => MESSAGE_OBJECT,

MESSAGE_SIZE => RECEIVED_MESSAGE_SIZE,

DESTINATION_PORT => CIRCUIT_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

end;

end loop;

Getting Started 2-13

2-14 Getting Started

-- Error handling related to message passing.

exception

-- When the requestor disconnects the circuit,

-- this task makes itself available for new work.

when PARTNER_EXITED =>

PUT_LINE("SQRT_SERVER_TASK - Partned Exited.");

MAKE_TASK_AVAILABLE;

-- Note that this program does not attempt to recover from

-- any errors (as a real server should). It simply displays

-- a message and makes itself available for new work, thus

-- ignoring the troublesome requestor.

when TIMEOUT =>

PUT_LINE("SQRT_SERVER_TASK - Timeout detected.");

MAKE_TASK_AVAILABLE;

when BAD_MESSAGE_SIZE =>
PUT_LINE("SQRT_SERVER_TASK - A bad message was received"&

" (wrong size).");
MAKE_TASK_AVAILABLE ;

when SQRT_NEGATIVE =>

PUT_LINE("SQRT_SERVER_TASK - A bad message was received"&

" (negative number) .");
MAKE_TASK_AVAILABLE;

end;

end loop;

-- Error handling related to requestor connections.

exception

when VAXELN_SERVICE_ERROR =>
DISPLAY_ERROR_MESSAGE(STATUS) ;

-- Clean up...

-- Delete the port

VAXELN_SERVICES . DELETE_PORT (

STATUS => STATUS,

PORT => CIRCUIT_PORT) ;

when others =>

PUT_LINE("SQRT_SERVER_TASK - An 'others' exception was raised."&

" Resignaling the exception") ;
raise;

end SQRT_TASK;

begin

-- This is the body of the procedure SQRT_SERVER (the master process

-- in the VAXELN job and the Ada program's main task). It services circuit

-- requests coming in on the job port by calling an existing server task or

-- creating a new one.

-- Begin by creating a VAXELN name object for the job port.

VAXELN_SERVICES . JOB_PORT (

STATUS => STATUS,

PORT => JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR:

end if;

VAXELN_SERVICES . CREATE_NAME (

STATUS => STATUS,

NAME => NAME_OBJECT,

PORT_NAME => "SQRT_SERVER_PORT",

PORT => JOB_PORT,

SCOPE => VAXELN_SERVICES .UNIVERSAL) ;

-- If the name "SQRT_SERVER_PORT" is already defined,

-- a SQRT_SERVER job is probably already running somewhere on

-- the network, so exit.

if STATUS = VAXELN_SERVICES .KER_DUPLICATE then

raise SERVER_ALREADY_RUNNING;

end if;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR:;

end if;

-- Create the VAXELN mutex object that will serialize access to the

-- stack of server tasks (note that stack access could also

-- be controlled with a serializing Ada task).

VAXELN_SERVICES . CREATE_MUTEX (

STATUS => STATUS,

MUTEX => STACK_GUARDIAN);

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

Getting Started 2-15

2-16 Getting Started

-- Create the VAXELN event object that each server task

-- will signal when it is ready for more work.

VAXELN_SERVICES . CREATE_EVENT (

STATUS => STATUS,
EVENT => SERVER_TASK_AVAILABLE,

INITIAL_STATE => VAXELN_SERVICES . CLEARED) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;:

end if;

-- Get the delta time used in the calls to the VAXELN WAIT_ANY service

-- (the service is used to wait for connection requests coming in on

-- the job port named "SQRT_SERVER_PORT") .

STARLET . BINTIM(

STATUS => STATUS,
TIMBUF => "0 00:05:00.00",

TIMADR => FIVE_MINUTES) ;

-- This call to the VAXELN INITIALIZATION_DONE service informs the

-- VAXELN kernel that the job port initialization sequence is

-- complete (in this case, the job port name object has been created).
-- Jobs that count on this initialization being done can now be started.

-- Because of this required initialization, any job running this program

-- needs to have the Program Description Init required option set to "Yes"

-- in its System Builder data file.

VAXELN_SERVICES .INITIALIZATION_DONE (STATUS => STATUS) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

loop
-- Wait for any requests for square roots on the job port.

VAXELN_SERVICES . WAIT_ANY (

STATUS => STATUS,

VALUE1 => JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

VAXELN_SERVICES . CLEAR_EVENT (

STATUS => STATUS,
EVENT => SERVER_TASK_AVAILABLE) ;

-- If there is a free server task, let it handle this request;

-- or, if there are fewer than the maximum allowed tasks,

-- create a new task to handle the request. If there are no

-- free server tasks or all server tasks in the task stack

~- are busy, wait for a server task to become free.

if STACK_OF_IDLE_TASKS_TOP = O and

NUM_ACTIVE_SERVER_TASKS < MAX_SERVER_TASKS then

-- Create a new server task to handle the incoming request.

NUM_ACTIVE_SERVER_TASKS := NUM_ACTIVE_SERVER_TASKS + 1;
SERVER_TASK (NUM_ACTIVE_SERVER_TASKS) := new SQRT_TASK;

-- Call the new task at its SQRT_ENTRY.

SERVER_TASK (NUM_ACTIVE_SERVER_TASKS) . SQRT_ENTRY (NUM_ACTIVE_SERVER_TASKS) ;

else

-- No server tasks are available. Wait for one to become inactive.

if STACK_OF_IDLE_TASKS_TOP = O then

PUT_LINE("SQRT_SERVER - All server tasks are busy; waiting...");

VAXELN_SERVICES . WAIT_ANY (SERVER_TASK_AVAILABLE) ;
PUT_LINE("SQRT_SERVER - A server task is free; continuing...");

end if;

-- There is an inactive server task.

-- First, lock the mutex that synchronizes access to the

-- stack of idle tasks

VAXELN_SERVICES.LOCK_MUTEX (MUTEX => STACK_GUARDIAN) ;

-- Next, choose the available task at the top of the stack,

-- and call the task's SQRT_ENTRY.

TASK_ARRAY_INDEX := STACK_OF_IDLE_TASKS(STACK_OF __IDLE_TASKS_TOP) ;

SERVER_TASK (TASK_ARRAY_INDEX) . SQRT_ENTRY (TASK_ARRAY_INDEX) ;

STACK_OF_IDLE_TASKS_TOP := STACK_OF_IDLE_TASKS_TOP - 1;

-- Finally, allow other tasks to access the task stack.

VAXELN_SERVICES .UNLOCK_MUTEX (MUTEX => STACK_GUARDIAN) ;

end if;

end loop;

exception
when SERVER_ALREADY_RUNNING =>

PUT_LINE("SQRT_SERVER already running elsewhere; exiting");

when VAXELN_SERVICE_ERROR =>

DISPLAY_ERROR_MESSAGE (STATUS) ;

Getting Started 2-17

-- Clean up...

-- Delete the name object "SQRT_SERVER_PORT"

VAXELN_SERVICES . DELETE_NAME (

STATUS => STATUS,

NAME => NAME_OBJECT) ;

-- Delete the mutex and event objects used by the main task

VAXELN_SERVICES . DELETE_MUTEX (

STATUS => STATUS,

MUTEX => STACK_GUARDIAN) ;

VAXELN_SERVICES . DELETE_EVENT (
STATUS => STATUS,

EVENT => SERVER_TASK_AVAILABLE) ;

end SQRT_SERVER;

2.2.2 Error-Handling Package

with SYSTEM;

with STARLET;

with CONDITION_HANDLING;

This package contains a simplified VAXELN interface to the VAX/VMS

Put Message service (STARLET.PUTMSG). PUIMSG is a generalized

message formatting and output routire used to write informational

and error messages to the device used for error messages.

Note that this package does not depend on the value of SYSTEM.SYSTEM_NAME,

which can be either VAX_VMS or VAXELN.

package ERROR_HANDLING is

procedure DISPLAY_ERROR_MESSAGE(
MESSAGE_CODE : in CONDITION_HANDLING.COND_VALUE_TYPE) ;

end ERROR_HANDLING ;

2-18 Getting Started

package body ERROR_HANDLING is

procedure DISPLAY_ERROR_MESSAGE (
MESSAGE_CODE : in CONDITION_HANDLING.COND_VALUE_TYPE) is

-- This procedure displays the error text associated

-- with a VAX/VMS or VAXELN condition value to the device

-- used for error messages.

-- For VAX/VMS this device is denoted by the logical name SYS$ERROR.

-- For VAXELN this device is specified by the third program argument,

-- if null, CONSOLE: is used.

-- MESSAGE_CODE is a longword value that uniquely identifies the message.

MESSAGE_VECTOR : SYSTEM.UNSIGNED_LONGWORD_ARRAY(1 .. 2);
PUTMSG_STATUS : CONDITION_HANDLING.COND_VALUE_TYPE;

begin

-- Build the message vector that specifies the message to be

-- written, and then call PUTMSG toc display the error text.

MESSAGE_VECTOR (1)

MESSAGE_VECTOR (2)

STARLET.PUTMSG (

STATUS => PUTMSG_STATUS,

MSGVEC => MESSAGE_VECTOR) ;

1; -- One argument follows

SYSTEM . UNSIGNED_LONGWORD (MESSAGE_CODE) ;

end DISPLAY_ERROR_MESSAGE;

end ERROR_HANDLING;

Getting Started 2-19

2.2.3 Square-Root Server Application Program

SQRT_SERVER_TESTER. ADA

with VAXELN_SERVICES;
with CONDITION_HANDLING; use CONDITION_HANDLING;

with SYSTEM; use SYSTEM;

with TEXT_I0; use TEXT_IO;

with FLOAT_TEXT_I0; use FLOAT_TEXT_IO;
with ERROR_HANDLING; use ERROR_HANDLING;

This example program is a simple application that makes use

of the square-root server program (SQRT_SERVER. ADA).

The application starts by connecting its job port to the

square-root server and passing it a FLOAT'SAFE_LARGE value.

It then accepts the square root of that value from the server

and sends it right back again. This exchange continues until

the value returned is as close to 1.0 as possible. The dialog

with the square-root server ends when the circuit is disconnected.

Note that this program depends on the value of SYSTEM.SYSTEM_NAME,

which must be VAXELN.

procedure SQRT_SERVER_TESTER is

2-20 Getting Started

INITIAL_MESSAGE_ADDRESS : ADDRESS;

INITIAL_MESSAGE_OBJECT : VAXELN_SERVICES.MESSAGE_TYPE;

INITIAL_MESSAGE_SIZE : SYSTEM. UNSIGNED_LONGWORD ;

MESSAGE_ADDRESS : ADDRESS;

MESSAGE_OBJECT : VAXELN_SERVICES . MESSAGE_TYPE;

MESSAGE_SIZE : SYSTEM.UNSIGNED_LONGWORD ;

SAVED_MESSAGE_DATA : FLOAT := 0.0;

OUR_JOB_PORT : VAXELN_SERVICES.PORT_TYPE;

STATUS : CONDITION HANDLING .COND_VALUE_TYPE;

VAXELN_SERVICE_ERROR : exception;

begin

-- Start by establishing a VAXELN circuit connection between this

-- job's job port and the square-root server task's input port.

-- The connection is made by using the global name -- "SQRT_SERVER_PORT".

-- Once a server task is connected to the square-root server tester,

-- the exchange of values and their square roots can take place between

-- the tester and its dedicated server task.

VAXELN_SERVICES . JOB_PORT (

STATUS => STATUS,

PORT => OUR_JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

VAXELN_SERVICES . CONNECT_CIRCUIT (

STATUS => STATUS,

SOURCE_PORT => QUR_JOB_PORT,

DESTINATION_NAME => "SQRT_SERVER_PORT") ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR ;
end if;
-- Create a message that will contain the floating-point value

-- used in the initial square root calculation. The VAXELN CREATE_MESSAGE

-- procedure creates the message object and an associated data

-- buffer. The address of the data buffer is returned in the DATA_ADDRESS

-- parameter of CREATE_MESSAGE.

INITIAL_MESSAGE_SIZE := FLOAT'SIZE/8; -- Compute the size

-- (in bytes) of the
~- message; required

-~- by CREATE_MESSAGE.

VAXELN_SERVICES . CREATE_MESSAGE (
STATUS => STATUS,
MESSAGE => INITIAL_MESSAGE_OBJECT,
DATA_ADDRESS => INITIAL_MESSAGE_ADDRESS,
MESSAGE_SIZE => INITIAL_MESSAGE_SIZE) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

Getting Started 2-21

2-22 Getting Started

-- Use an address representation clause to obtain the

-- address of the data buffer and store the initial

-- floating-point value into that data buffer.

declare
INITIAL_MESSAGE_DATA : FLOAT := FLOAT'SAFE_LARGE;

for INITIAL_MESSAGE_DATA use at INITIAL_MESSAGE_ADDRESS ;

begin

PUT_LINE ("SQRT_SERVER_TESTER - Sending initial message to SQRT_SERVER") ;

-- Send the first computable value to the square-root server.

VAXELN_SERVICES . SEND (

STATUS => STATUS,
MESSAGE => INITIAL_MESSAGE_OBJECT,

MESSAGE_SIZE => INITIAL_MESSAGE_SIZE,

DESTINATION_PORT => OUR_JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;
end if;

end;

loop
begin

-- Wait for a response from the square-root server task

-- to arrive in the port.

VAXELN_SERVICES . WAIT_ANY (

STATUS => STATUS,

VALUE1 => OUR_JOB_PORT) ;

-- The message has arrived! Remove it from the port.

VAXELN_SERVICES . RECEIVE (

STATUS => STATUS,

MESSAGE => MESSAGE_OBJECT,

DATA_ADDRESS => MESSAGE_ADDRESS ,

MESSAGE_SIZE => MESSAGE_SIZE,

SOURCE_PORT => OUR_JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;
end if;

-- Use an address representation clause to obtain the

-- floating-point value from the message.

declare
MESSAGE_DATA : FLOAT;

for MESSAGE_DATA use at MESSAGE_ADDRESS;
begin

PUT ("SQRT_SERVER_TESTER - Received: ");

PUT (MESSAGE_DATA, AFT => 10);
NEW_LINE;

-- Exit when the square-root calculations are finished

-- (that is, when they come as close to 1.0 as possible).

exit when SAVED_MESSAGE_DATA = MESSAGE_DATA;

SAVED_MESSAGE_DATA := MESSAGE_DATA;

-- Send back the message using the same message object.

VAXELN_SERVICES . SEND (

STATUS => STATUS,
MESSAGE => MESSAGE_OBJECT,

MESSAGE_SIZE => MESSAGE_SIZE,

DESTINATION_PORT => OUR_JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

end;

end;

end loop;

-- Clean up...

-- Delete the message object.

VAXELN_SERVICES . DELETE_MESSAGE (

STATUS => STATUS,

MESSAGE => INITIAL_MESSAGE_OBJECT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

-- Disconnect the job port from the square-root server.

-- This makes the square-root server task available to

~- accept work from other requestors.

VAXELN_SERVICES . DISCONNECT_CIRCUIT (

STATUS => STATUS,

PORT => QUR_JOB_PORT) ;

if not SUCCESS(STATUS) then

raise VAXELN_SERVICE_ERROR;

end if;

PUT_LINE ("SQRT_SERVER_TESTER - Successfully exiting");

Getting Started 2-23

-- Error handling for bad message transmission or

-- any other error returned by a VAXELN service.

exception

when VAXELN_SERVICE_ERROR =>

DISPLAY_ERROR_MESSAGE (STATUS) ;

-- Clean up...

-- Attempt to delete the message object,

-- disconnect the circuit, and exit.

VAXELN_SERVICES . DELETE_MESSAGE (

STATUS => STATUS,

MESSAGE => INITIAL_MESSAGE_OBJECT) ;

VAXELN_SERVICES .DISCONNECT_CIRCUIT (

STATUS => STATUS,

PORT => OUR_JOB_PORT) ;

end SQRT_SERVER_TESTER ;

2-24 Getting Started

Chapter 3

Program Compilation and Linking

VAXELN Ada programs are compiled and linked on a VAX/VMS host
system using the VAX Ada compiler and the VAX Ada program library
manager (ACS). Thus, all of the information relevant to VAX Ada program
development is also relevant to VAXELN Ada program development,
and Developing Ada Programs on VAX/VMS is the best source of detailed
program development information.

However, for convenience and completeness, this chapter summarizes
the most important information on how to compile and link VAXELN
Ada programs. It also summarizes the syntax and properties of the
ACS commands, and points out features of interest to VAXELN Ada
programmers in particular. Detailed information on related Ada language
features is given in the VAX Ada Language Reference Manual.

3.1 Basic Concepts and Terminology

This section reviews the basic concepts and terminology necessary for
understanding how compiling and linking work in the VAX Ada and
VAXELN Ada program library (ACS) environment. These concepts are
related to modular program development, which is a primary feature of
the Ada language.

Program Compilation and Linking 3-1

3.1.1 Program and Compilation Units

Program units are the functional building blocks of Ada programs. There
are four kinds of program units: subprograms (procedures and functions),
packages, tasks, and generic units. An Ada program generally consists of
a main program and its related program units. A main program is always a
subprogram.

To facilitate modular development, each program unit consists of a speci-
fication and a body. The specification contains only the declarations that
need to be made visible to other program units; the body contains the
implementation of the declarations in the specification.

The parts of Ada program units that can be compiled separately are called
compilation units. Compilation units consist of the following:

e Subprogram specifications and bodies

e Package specifications and bodies

e Generic unit (subprogram and package) specifications and bodies

e Generic instantiations (Subprogram and package) of generic units

e Subunits

NOTE

Tasks are the only program units that cannot be compiled
separately. A task specification or body must be contained
within a package or a subprogram before it can be compiled.
A task body can be a subunit, however, and subunits can be
compiled separately.

The Ada language distinguishes between two classes of compilation units:

e Library units are the compilation units that are essential for program
compilation. They consist of library unit specifications, or library
specifications (consisting of subprogram, package, and generic specifica-
tions), generic instantiations, and subprogram bodies that do not have
separate specifications.

e Secondary units are the compilation units that are not essential for
program compilation, but are essential for program linking and run-
ning. They consist of library unit bodies, or library bodies (consisting of
subprogram, package, and generic bodies), and subunits.

3-2 Program Compilation and Linking

Thus, you can begin Ada program development by designing and com-
piling a program consisting only of library units. Once your program’s
structure is established, you can add the secondary units (bodies and
subunits). This process is designed to organize the development of
large, complex programs, but it works efficiently for the development of
programs of any size or complexity.

3.1.1.1 Compilation Unit Dependences

During and after compilation, the compiler and ACS maintain current data
on the status of compilation units and the dependences among units. In
this way, the compiler can enforce certain order-of-compilation rules, and
ACS can manage the program library to support those rules.

Compilation unit dependences are derived from Ada’s scope and visibility
conventions:

e A library body depends on its library specification, if there is one.

e A subunit depends on its parent unit and therefore depends on its
parent’s associated library body and library specification.

e Each compilation unit depends on any units that are named in any
context clauses. (A context clause consists of one or more with clauses

~ and optional use clauses.) More precisely, each compilation unit
depends on the library specifications of any units that are named in
context clauses.

Note that target-related dependences are caused by the value of the
predefined constant SYSTEM_NAME in package SYSTEM. This constant
and its effects are described in Section 3.2. Order-of-compilation rules are
described in Section 3.1.2.

3.1.1.2 Current and Obsolete Units

The VAX Ada compiler and ACS keep track of the date-time of the most
recent compilation of a unit. Whenever a unit is compiled, any dependent
unit, as defined in Section 3.1.1.1, is made obsolete and must eventually
be compiled again before the set of units can be linked. For example,
compiling a library specification makes the associated library body and
any subunits obsolete; moreover, if the library specification is named in a
context clause of a given unit, the given unit is also made obsolete, as are
its dependent units.

Program Compilation and Linking 3-3

You need to know about obsolete units when you link the units com-
prising your program. If you try to link a set of units that contains any
obsolete units, ACS warns you about those units and terminates the
operation. Because obsolete units are a natural consequence of Ada’s com-
pilation rules (see Section 3.1.2), ACS has a RECOMPILE command that
automatically finds dependent units that have been made obsolete and
compiles them in the right order. This process makes the units current.
In keeping with this command, the verb to recompile is used in a very
restricted sense in this chapter: it means to use the ACS RECOMPILE
command to compile and make current a set of obsolete dependent units.

3.1.1.3 Unit and File-Naming Conventions

While doing program development in the ACS environment, you should
be aware of the distinction between source files and units. A source file
(having a default file type of .ADA) can contain several compilation units.
However, after compilation of the file, ACS maintains information about
the individual units, and most of the ACS commands operate on units (not
source files). Thus, it is recommended that you use a separate source file
for each compilation unit.

Use of a separate source file for each compilation unit also promotes
efficient use of the compiler. Every time a unit is compiled, any dependent
unit in the program library is made obsolete and must be recompiled. If,
for example, you have placed two library specifications in the same source
file, every time you modify one, you must compile both in the same
compilation. Thus, you would have to recompile dependent units for both
specifications rather than for only the one you modified.

The Ada language has some specific rules about compilation unit names,
which you should observe when you name your compilation-unit source
files. For example, although a library specification and its library body are
distinct compilation units, they share the same name, called the unit name.
All of the unit names in a program library must be unique. Similarly, all
of the subunit names associated with a given ancestor library unit must
be unique (every subunit mentions the name of its parent unit, and if the
parent unit is a library unit, the parent is called the ancestor library unit).

Thus, the following file-naming conventions are recommended:

e The name of the source file for a library specification should be the
name of the unit, followed by a trailing underscore character (—_): for
example, ERROR_-HANDLING_.ADA.

3-4 Program Compilation and Linking

The name of the source file for a library body should be the name
of the unit (without a trailing underscore): for example, ERROR—
HANDLING.ADA.

The name of the source file for a library generic instantiation should be
the name of the instantiation: for example, FLOAT_MATH_LIB.ADA.

The name of the source file for a subunit should be the name of the
ancestor unit, followed by two underscore characters, followed by the
name of the subunit: for example, ERROR_HANDLING_—BAD_—
DATA_—ERROR.ADA (if procedure BAD_-DATA_ERROR were indeed
a subunit of the ERROR-_HANDLING package shown in Chapter 2).

These conventions are consistent with ACS and VAX/VMS file-naming
conventions, and they are also used by the VAXELN Remote Debugger for
the names of modules and pathnames.

3.1.2 Order-of-Compilation Rules

The VAX Ada compiler and ACS enforce the rules governing the order
in which compilation units are compiled. These order-of-compilation
rules stem from Ada’s scope and visibility conventions, which create the
dependences among units described in Section 3.1.1.1. The rules are as
follows:

You can compile a given unit only after compiling all library specifica-
tions named in that unit’s context clause.

You can compile a library body only after compiling its library specifi-
cation. Note, however, that the body of a nongeneric library subpro-
gram can also serve as its own library specification and, therefore, does
not necessarily depend on a separately compiled specification. _

You can compile a subunit only after compiling its parent unit.

In summary, a unit must be compiled before any of its dependent units.

If you follow these rules, then the following are true:

You can submit the compilation units of a program to the compiler in
one or more compilations (invocations of the compiler). Also, you can
submit one or more compilation units of a program at any one time.
The units of any one compilation are compiled in the given order,
whether submitted in one or more files. Thus, a pragma that applies
to the whole of a compilation must appear before the first unit of that
compilation.

Program Compilation and Linking 3-5

e Units can be compiled in an otherwise arbitrary order relative to each
other. For example, compiling a subunit affects only its subunits, if
any; and compiling a library body generally does not affect any other
units except its own subunits, if any. Compiling a library body affects
other units in the following two cases:

— Compiling a library body that is a generic template makes all units
containing instantiations of that generic unit obsolete.

- Ifa library specification specifies pragma INLINE, then compiling
the library body makes a given unit that mentions the library
specification in a with clause obsolete, if the given unit has a call
that was actually expanded inline.

If these rules are not violated when you compile a unit or set of units, and
no other errors are detected, then the program library is updated. When
the program library is updated for a unit that already exists in the library,
the previous versions of its associated files (see Section 3.3.1) are deleted.
If the compilation is unsuccessful for any reason, no updating is done.

Note that the VAX Ada compiler always processes compilation units in a
manner that is consistent with Ada’s order-of-compilation rules. However,
observance of the compilation rules does not ensure that the set of units
in a program library is current. Nor does observance of the rules ensure
that the set of units is complete. For example, a library body or a subunit
may still be missing from the program library, or may have been made
obsolete by the previous compilation. If you try to link an incomplete set
of units, the library manager will warn you about the missing units, and
terminate the operation. Obsolete units are discussed in Section 3.1.1.2;
what constitutes a complete set of units is discussed in Section 3.1.3.

3.1.3 Closure

When you compile a given unit, the compiler identifies any unit that the
given unit depends on, as specified in Section 3.1.1.1, and determines
whether that unit is defined in the current program library. For example,
if the given unit is a library body, the compiler looks for its specification.

Any unit that the given unit depends on may itself depend on yet another
unit, which must also be defined in the current program library. The
total set of units that the given unit depends on, directly and indirectly,
is called the compilation closure of the given unit. Thus, the compilation
closure of a given unit consists of all the units that must be defined in the
current program library before you can compile the given unit.

3-6 Program Compilation and Linking

To link a program into an executable image, it is necessary to form the
execution closure of the main program. The execution closure consists of
the compilation closure plus all associated secondary units (library bodies
and subunits).

Several ACS commands operate on the execution closure of a specified set
of units—for example, the CHECK, COMPILE, COPY UNIT/CLOSURE,
ENTER UNIT/CLOSURE, EXPORT, LINK, RECOMPILE, and SHOW
PROGRAM commands. In the remainder of this chapter, the term closure
is used to signify execution closure, unless specified otherwise.

The execution closure of a specified set of compilation units is defined
formally as the smallest set of units such that

e All the specified units are contained in the closure.

e For any given unit in the closure, the following are also contained in
the closure, as applicable:

- Its specification, if the given unit is a body

- Its body, if the given unit is a specification

— Its immediate subunits, if any

— Its immediate parent unit, if the given unit is a subunit

— All units named by the given unit in its context clause

Note that a unit that names a given unit in its context clause is not part of
the execution closure of the given unit.

3.2 Setting the System Name

VAXELN Ada and VAX Ada have different run-time libraries. Also,
because of differences between the VAXELN executive and the VAX/VMS
operating system, VAXELN Ada has some target-specific differences (see
Chapter 1). ACS, as the interface to the VAX Ada compiler and VAX/VMS
Linker, is sensitive to these differences through the value of the predefined
constant SYSTEM_NAME in package SYSTEM. This constant can have a
value of either VAXELN or VAX_VMS.

The value of SYSTEM.SYSTEM_NAME does not cause the compiled
code to differ. It is used to determine target-related compilation unit
dependences, which can occur in your Ada code in the following cases:

e Use of SYSTEM.SYSTEM_NAME causes either a VAX_VMS or a
VAXELN dependence.

Program Compilation and Linking 3-7

e Use of pragma TIME_SLICE causes a VAX_VMS dependence.

e Use of pragma AST_ENTRY or the AST_ENTRY attribute causes a
VAX_VMS dependence.

e Use of any of the relative or indexed input-output packages causes a
VAX_—VMS dependence.

e Use of the package VAXELN_SERVICES causes a VAXELN
dependence.

For example, if a compilation unit uses pragma AST_ENTRY and the
system name at compile time is VAXELN, you are warned that your unit
depends on SYSTEM.SYSTEM_NAME and that this pragma is ignored
for a VAXELN target. Similarly, if a unit uses the AST_ENTRY attribute
and the system name at compile time is VAXELN, you are warned that
your unit depends on SYSTEM.SYSTEM_NAME and that your use of the
attribute is illegal.

When you create an ACS program library or sublibrary, the default value
of SYSTEM.SYSTEM_NAME is VAX_VMS. You can use the /SYSTEM—
NAME qualifier on the ACS CREATE LIBRARY or CREATE SUBLIBRARY
command to explicitly determine the value of SYSTEM.SYSTEM_NAME,
or you can permanently set the system name to VAXELN (or set it back to
VAX—VMS) by

e¢ Compiling the predefined Ada pragma SYSTEM_NAME.

e Executing the ACS SET PRAGMA command (ACS SET PRAGMA
/SYSTEM—_NAME=VAX_VMS or ACS SET PRAGMA/SYSTEM_
NAME=VAXELN).

To determine the current setting for your current program library, you
can use the ACS SHOW LIBRARY/FULL command; to determine system-
name dependences for individual program units, you can ‘use the ACS
SHOW PROGRAM command.

You can temporarily override the current setting when you link or export
units by using the /SYSTEM_NAME qualifier on the ACS LINK and
EXPORT commands. For example, if you are working in a VAX/VMS
environment (SYSTEM.SYSTEM_NAME=VAX_VMS), and the units you
have compiled do not contain any of the VAX/VMS-specific features,
you can link them for a VAXELN target with the ACS LINK/SYSTEM—
NAME=VAXELN command. However, a link-time error occurs if a unit
depends on the value of SYSTEM.SYSTEM_NAME and a /SYSTEM—
NAME qualifier specifies a different value. The LINK and EXPORT
commands are discussed in more detail in Sections 3.5 and 3.5.2.

3-8 Program Compilation and Linking

Note that when you use pragma SYSTEM_NAME or the ACS SET
PRAGMA command to change the system name (either with an argument
of VAX_VMS or VAXELN), an implicit recompilation of package SYSTEM
occurs. Those units that depend on the value of SYSTEM.SYSTEM—
NAME are then made obsolete, and must be recompiled in the context
of the new system name. For example, suppose you have the following
program (dashed lines separate the individual compilation units):

with TASK_WORK;
procedure ALL_WORK is -- Main program, depends on

-- target-dependent TASK_WORK

begin

TASK_WORK ;

end ALL_WORK;

procedure TASK_WORK is -- VAX/VMS-dependent procedure

pragma TIME_SLICE(0.4);

task type T;

type TASK_FORCE_TYPE is

array (INTEGER range 1..5) of T;

TASK_FORCE: TASK_FORCE_TYPE;

task body T is separate; -- Task body is a subunit

begin

end TASK_WORK;

with TEXT_I0; use TEXT_IO;

separate (TASK_WORK)

task body T is -- Target-independent subunit depends on

-- target-independent package TEXT_IO

-- and target-dependent ancestor, TASK_WORK

begin

PUT_LINE ("My work's just starting...");

delay 3.0;

PUT_LINE ("My work's all done!") ;
end T;

If you compile these units into a program library for which SYSTEM.SYSTEM-
NAME equals VAX_VMS, and subsequently use the ACS SET PRAGMA
command to set SYSTEM_NAME to VAXELN, then

e Procedure TASK_WORK becomes obsolete because it depends on
SYSTEM—NAME=VAX_VMS.

Program Compilation and Linking 3-9

e The main program, ALL_WORK, becomes obsolete because it depends
on procedure TASK_WORK.

e Subunit TASK_WORK.T becomes obsolete because it depends on its
ancestor, TASK_WORK.

All three units would have to be recompiled before they could be linked,
and recompilation would result in a warning because pragma TIME—
SLICE is ignored for VAXELN targets. Section 3.1.1.1 discusses unit de-
pendences in more detail. Obsolete units and recompilation are described
in Section 3.1.1.2.

3.3 Working with Program Libraries and Sublibraries

For compiling and linking VAXELN Ada programs—as for developing
VAX Ada programs—you need to have a program library, and may wish
to use sublibraries. Developing Ada Programs on VAX /VMS describes
program libraries and sublibraries in detail. However, for convenience,
Section 3.3.1 reviews program library and sublibrary concepts; Section
3.3.2 reviews how to set up a program library and summarizes the ACS
program and sublibrary management commands. Section 3.3.3 briefly
describes how to work in an environment containing programs that have
been developed to run on both VAXELN and VAX/VMS targets.

3.3.1 WAXELN Ada Program Libraries and Sublibraries

Program libraries and sublibraries—for either VAXELN Ada or VAX
Ada—are special, dedicated VAX/VMS (sub)directories that contain the
following files:

e A library index file (ADALIB.ALB) that identifies all the other files in
the program library. ACS uses the library index file to associate unit
and subunit names with their related VAX/VMS file specifications.
ACS also uses the library index file to record the date and time when
the VAX/VMS files were created or revised.

e A set of up to three files for each compilation unit successfully
compiled:

— Object file (.OBJ)—to contain the machine code instructions for that
compilation unit.

3-10 Program Compilation and Linking

— Compilation unit file (.ACU)—to contain the intermediate represen-
tation of a compilation unit. This file contains data that is used to
support separate compilation, linking, and program library man-
agement. The data includes the name of the compilation unit;
whether it is a specification, a body, or a subunit; use of certain
pragmas, and so on. The compilation unit file also identifies all
library specifications that the given compilation unit depends on.

— Copied source file (.ADC)—to contain a copy of the source text for
the given compilation unit. Copied source files are optional, and
are used primarily for recompilation.

ACS uses these files to automate library operations during compilation
and linking, as well as to automate library management in general. Any
change to a program library (or sublibrary), such as writing or deleting
files or data, is called updating the library. Updating is a consequence of
successful compilation (see Section 3.1.2).

You can organize program libraries and sublibraries to suit the needs of
your project. The compilation units of an entire Ada program can be
stored in a single program library, or they can be distributed among a
number of program libraries. ACS allows compilation units to be shared
among program libraries, either by direct copy, using the ACS COPY
UNIT command, or by reference, using the ACS ENTER UNIT command.

The difference between program libraries and sublibraries is that sub-
libraries exist in the context of a parent library. Units in a sublibrary are
thus compiled in the context of both the sublibrary and the parent library,
but only the sublibrary is updated with new files and index entries.
Thus, you can use sublibraries to isolate particular compilation units for
individual development. When the units in the sublibrary are stable, you
can merge them into the parent library using the ACS MERGE command.
A particular use of sublibraries for developing mixed VAXELN and VAX
Ada programs is described in Section 3.3.3.

Note that a sublibrary’s unique structure sets the following scope conven-
tions:

¢ A compilation unit that has been compiled, copied, or entered into a
parent library can be used in a sublibrary of that parent library as if the
unit had been entered into the sublibrary.

e A unit in a parent library is hidden from a sublibrary of the parent if a
unit of the same name has been compiled, copied, or entered into the
sublibrary.

e The scope conventions for nested sublibraries are an extension of those
for a single sublibrary.

Program Compilation and Linking 3-11

e The visibility of unit names is determined from the bottom up; that
is, the compiler starts searching in the sublibrary that is defined to
be the current program library. If the unit name is not found in the
sublibrary, the compiler then searches its parent library, and so on up
the library tree.

A more detailed summary of these conventions, as well as illustrations
of the use of sublibraries, is presented in Developing Ada Programs on
VAX/VMS.

3.3.2 Setting Up and Working in a VAXELN Ada Development Environment

You set up a VAXELN Ada development environment just as you would
set up a VAX Ada development environment: by using a series of ACS
commands to create a program library and applicable sublibraries on your
VAX/VMS host (see Section 3.3.1 for a summary of those commands).

First, you use the DCL CREATE/DIRECTORY command to define a
VAX/VMS subdirectory to contain your VAXELN Ada source files:

$ CREATE/DIRECTORY [SMITH. SERVER]

Then, you use the ACS CREATE LIBRARY command to set up and
initialize a program library:

$ ACS CREATE LIBRARY [SMITH.SERVER .PROGLIB]

Note that you should use a separate VAX/VMS subdirectory for your
program library because it is wise not to alter any of the files in your
program library.

If you need a sublibrary for testing or modifying particular units in your
program library, you can use the DCL CREATE/DIRECTORY command
to define a VAX/VMS subdirectory for containing copies of the Ada source
files you intend to work with:

$ CREATE/DIRECTORY (SMITH. TEST}

Then, you use the ACS CREATE SUBLIBRARY command to set up and
initialize the program sublibrary:

$ ACS CREATE SUBLIBRARY/PARENT=(SMITH.SERVER.PROGLIB] -
_$ (SMITH. TEST. SUBLIB]

Again, you should use a separate VAX/VMS subdirectory for your sub-
library, to avoid altering any of the files that the library manager creates
and updates.

3-12 Program Compilation and Linking

Note that you may want to specify the parent library when creating a
sublibrary; the default parent is the current (sub)library, and it is possible
to accidentally create the’ wrong structure. You can use the ACS SHOW
LIBRARY/FULL command with your sublibrary name to determine its
parent.

You can use the ACS SET LIBRARY command to determine the current
library or sublibrary for the products of compilation:

$.ACS SET LIBRARY [SMITH.SERVER PROGLIB]

or

$ ACS SET LIBRARY (SMITH. TEST .SUBLIB)

All of the ACS commands for managing program libraries and sublibraries
are described in detail in Developing VAX Ada Programs on VAX/VMS.
For quick reference, the management commands are summarized in
Tables 3-1 and 3-2. Online descriptions are also available using the ACS
HELP command.

Table 3-1: ACS Program Library Management Commands

Command Function

CHECK unit-namef[,...] Forms the closure of the given units
and checks the completeness and
currency of all the units in the
closure.!

COPY FOREIGN file-spec unit-name Copies the given foreign (non-Ada)
object file into the current program
library as a library unit body.

COPY UNIT from-directory-spec Copies one or more compiled units
unit-name[....] from another program library into

the current program library.

CREATE LIBRARY directory-spec Creates a VAX Ada program library.

CREATE SUBLIBRARY directory-spec Creates a VAX Ada program sub-
library, and initializes it to refer to
the parent program library; allows
you to isolate the development of
selected units.

lin simple terms, “closure” is the complete set of units that a given unit depends on, plus any other
units needed for its execution. Closure and currency are discussed briefly in Sections 3.1.3 and 3.1.1.2.

Program Compilation and Linking 3-13

Table 3-1 (Cont.): ACS Program Library Management

Commands

Command Function

DELETE LIBRARY directory-spec Deletes the given program library
and its contents.

DELETE SUBLIBRARY directory-spec Deletes the given program subli-
brary and its contents.

DELETE UNIT unit-namef....] Deletes the given units from the
current program library.

DIRECTORY [unit-namef{,...]] Alphabetically lists the units in the
current program library. Displays
information, such as name and
date-time of the last compilation,
about the given units.

ENTER FOREIGN file-spec unit-name Enters a reference (pointer) to the
given external file into the current
program library. The entered file is
then recognized as a foreign (non-
Ada) library body for the given
unit.

ENTER UNIT from-directory-spec unit- Enters references, in the current
name{,...] program library, to one or more

units located in another program
library. Entered units can be used
in the current program library as if
they were actually in it.

EXTRACT SOURCE unit name{,...] Creates, in the current default
directory, copies of source files for
the given units.

MERGE unit-name[,...] Merges, into the parent library, new
versions of one or more units from
the sublibrary where they were
modified. The MERGE command
replaces the older obsolete versions
in the parent library.

3-14 Program Compilation and Linking

Table 3-1 (Cont.): ACS Program Library Management
Commands

Command Function

REENTER unit namef{,...]

SET LIBRARY directory-spec

SET PRAGMA/pragma-name=value

SHOW LIBRARY [directory-spec{,...]]

SHOW PROGRAM unit-namef,...]

VERIFY [directory-spec]

Enters current references to the
given units. Presumes that the units
were compiled after they were last
entered with the ENTER UNIT
command.

Defines the given (sub)directory to
be the current program library—
that is, the library that is to be the
compilation context and the target
library for compiler output and ACS
commands.

Redefines specified values of
the pragmas LONG_FLOAT,
MEMORY_SIZE, and SYSTEM—
NAME.

Displays the name and charac-
teristics of one or more program
libraries.

Displays information, such as
dependence on other units, about
the closure of the given units.
Optionally displays a portability
summary.

Performs a series of consistency
checks on the given program library
to determine whether the library
structure and library files are in
valid form. Corrects some of the
inconsistencies detected.

Program Compilation and Linking 3-15

Table 3—2: Additional ACS Commands

Command Function

ATTACH process-name Switches control of your terminal
from your current process running
ACS to another process in your job.

EXIT Exits from ACS. You can also use

CTRL/Z.

HELP [keyword ...] Invokes the VAX/VMS HELP

facility to provide information about
ACS commands.

SPAWN [DCL-command] Creates a subprocess of the current
process and suspends execution of
the current process.

3.3.3 Working in a Mixed VAXELN Ada and VAX Ada Environment

The key to working with mixed-target programs is that you can link units
that have been compiled with a system name of either VAXELN or
VAX_VMS, as long as the units do not involve the following target-
dependent features:

e Pragma TIME_—SLICE

e Pragma AST_ENTRY

e The AST_ENTRY attribute

e Relative and indexed input-output packages

e Package VAXELN_SERVICES

Thus, if you need to write programs that can run on both VAXELN and
VAX/VMS targets, an efficient way to organize your code is to use target-
independent specifications and target-dependent bodies, and then collect
the bodies into sublibraries (see Section 3.3.1).

For example, suppose you needed to have a square-root server program
that could run on both VAXELN and VAX/VMS targets, but you wanted to

3-16 Program Compilation and Linking

minimize the amount of work involved in writing it. You might organize
the SQRT_SERVER program shown in Chapter 2 as follows:

Project program library: [PROJ.SERVER.PROGLIB]

This library contains only the parts of the program that would be
common to both implementations: the specification and body of
ERROR—_HANDLING, as well as the specifications for the main
program and the test program:

ERROR_HANDLING _ (specification)
ERROR_HANDLING (body)
SQRT_SERVER— (specification)
SQORT_SERVER_TESTER~_ (specification)

VAXELN sublibrary: [PROJ.SERVER. VAXELN.SUBLIB]

This sublibrary (created with the ACS CREATE SUBLIBRARY
/SYSTEM_NAME=VAXELN command) contains the VAXELN versions
of the main program and test program bodies:

SQRT_SERVER
SQRT_SERVER_TESTER

VAX/VMS sublibrary: [PROJ.SERVER. VAXVMS.SUBLIB]
This sublibrary (created with the ACS CREATE SUBLIBRARY com-
mand), contains the VAX/VMS versions of the main program and test
program bodies:

SQRT_SERVER
SQRT_SERVER_TESTER

By using this organization, you can compile and link against the common
units in the parent library while keeping the target-dependent units
separate.

A sample series of commands for compiling and linking within this
structure follows (information on compilation and linking commands
appears in Sections 3.4 and 3.5):

$! Set up the initial program directory.

$ CREATE/DIRECTORY [PROJ .SERVER]

$ SET DEFAULT [PROJ .SERVER]

$! Edit your common source files.

$ EDIT ERROR_HANDLING_.ADA

$ EDIT ERROR_HANDLING. ADA

$ EDIT SQRT_SERVER_.ADA

$ EDIT SQRT_SERVER_TESTER_.ADA

Program Compilation and Linking 3-17

$! Create your main program library. It will have
$! a default value of SYSTEM.SYSTEM_NAME=VAX_VMS.

$ ACS CREATE LIBRARY [PROJ.SERVER.PROGLIB]

$
$
$

! Set the current library to your main program

! library and initially compile your source files.

ACS SET LIBRARY [.PROGLIB]

$ ADA ERROR_HANDLING_,ERROR_HANDLING , SQRT_SERVER_,SQRT_SERVER_TESTER

$! Create subdirectories and sublibraries for your

$! VAXELN-specific bodies.
$ CREATE/DIRECTORY [PROJ.SERVER .VAXELN]

$ ACS CREATE SUBLIBRARY/PARENT= [PROJ .SERVER . PROGLIB] -

_$ /SYSTEM_NAME=VAXELN [PROJ .SERVER .VAXELN .SUBLIB]

$! Edit and compile your VAXELN-specific bodies.

$ SET DEFAULT [PROJ .SERVER.VAXELN]
$ EDIT SQRT_SERVER. ADA

$ EDIT SQRT_SERVER_TESTER. ADA

$ ACS SET LIBRARY [.SUBLIB]
ADA SQRT_SERVER , SQRT_SERVER_TESTER

! Add some code to a common unit (will require

! recompilation from your sublibrary because those

! units that depend on it are now obsolete).

EDIT [PROJ .SERVER] ERROR_HANDLING. ADA

ACS COMPILE SQRT_SERVER

! Link the VAXELN version of your progran;

! The resulting executable image will be in your

! VAXELN subdirectory.

ACS LINK SQRT_SERVER

! Build and boot your program as described in

Chapters 4 and 5.

Follow a similar procedure for creating, compiling

and linking your VAX/VMS-related program, except

use the default version of ACS CREATE SUBLIBRARY

(/SYSTEM_NAME=VAX_VMS) .

3-18 Program Compilation and Linking

3.4 Compiling and Recompiling VAXELN Ada Programs

VAXELN Ada programs are compiled in an identical fashion to VAX
Ada programs, using the VAX Ada compiler and ACS commands. The
DCL-level syntax for these commands is as follows (ACS COMPILE and
RECOMPILE can also be issued interactively from within ACS):

$ ADA file-spec[,...]

$ ACS COMPILE unit-name[,...]

$ ACS RECOMPILE unit-name[,...]

Developing VAX Ada Programs on VAX/VMS gives complete information on
these commands. For quick reference, Table 3-3 summarizes the proper-
ties of these commands (along with the properties of the related ACS SET
SOURCE and SHOW SOURCE commands); Table 3-4 summarizes the
optional command qualifiers and applicable qualifier defaults.

Online descriptions of all of these commands and all of their qualifiers are.
also available using the ACS HELP command.

Table 3-3: Compilation Commands

Command Function

DCL Commands

ADA file-spec Invokes the VAX Ada compiler to compile
all compilation units in the given Ada source
files. The default mode for this command
is interactive. The ADA command must be
used for the initial compilation of units.

Program Compilation and Linking 3-19

Table 3-3 (Cont.): Compilation Commands

Command Function

ACS Commands

COMPILE unit-name[....]

RECOMPILE unit-namef,...]

SET SOURCE directory-spec{,...]

SHOW SOURCE

Forms the closure of the given compilation
units; checks the completeness and currency
of the units in the closure; and identifies
units that have revised source files (it uses
a date-time check of the source files). The
COMPILE command then compiles the units
that have revised source files and implicitly
calls the ACS RECOMPILE command. The
default mode for this command is batch.

Forms the closure of the given compilation
units, and checks the completeness and
currency of the units in the closure (it
uses a date-time check of the units). The
RECOMPILE command then recompiles any
obsolete units in the appropriate order to
make them current. The default mode for
this command is batch.

Defines a search list of the VAX/VMS
directories where the COMPILE command

should search for source files.

Displays the directory search list used by the
COMPILE command.

3-20 Program Compilation and Linking

Table 3-4: ADA, COMPILE, and RECOMPILE Qualifiers

Applicable
Command Qualifier! Default Command

/AFTER=time / AFTER= TODAY COMPILE
RECOMPILE

/(NO]CHECK /CHECK COMPILE
RECOMPILE

/CLOSURE COMPILE
RECOMPILE

/COMMANDFFfile-spec] COMPILE
RECOMPILE

/[NO]JCONFIRM /NOCONFIRM COMPILE
RECOMPILE

/[NO]JCOPY_SOURCE /COPY_SOURCE COMPILE
RECOMPILE

/{NO]DEBUG[-(option|....])] /DEBUG=ALL COMPILE
RECOMPILE

/[NO]DIAGNOSTICS|=file-spec] /NODIAGNOSTICS COMPILE
| RECOMPILE

/([NOJERROR_LIMIT[-number] /ERROR_LIMIT=30 COMPILE
RECOMPILE

/{NO]KEEP / KEEP COMPILE
RECOMPILE

/LIBRARY=directory-spec /LIBRARY=ADA$LIB ADA

/(NOJLIST|[=file-spec] /NOLIST COMPILE
RECOMPILE

/{NO]LOG /NOLOG COMPILE
RECOMPILE

/[NOJMACHINE_CODE /NOMACHINE_CODE COMPILE
RECOMPILE

/NAME=job-name COMPILE
RECOMPILE

VA command qualifier has the same effect, regardless of where it appears in the command string
(whether it is appended to the command verb or to a parameter).

Program Compilation and Linking 3-21

Table 3-4 (Cont.): ADA, COMPILE, and RECOMPILE

Qualifiers

Applicable
Command Qualifier! Default Command

/{[NO]JNOTE_SOURCE /NOTE_SOURCE COMPILE
RECOMPILE

/{NO]NOTIFY / NOTIFY COMPILE
RECOMPILE

/[NO]OPTIMIZE|=option] /OPTIMIZE=TIME COMPILE
RECOMPILE

/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT COMPILE
RECOMPILE

/{NO]PRINTER[=queue-name] /NOPRINTER COMPILE
RECOMPILE

/QUEUE=queue-name / QUEUE=ADA$BATCH? COMPILE
RECOMPILE

/{(NO]SHOW/[-option] /NOSHOW COMPILE
RECOMPILE

/SUBMIT /SUBMIT COMPILE
RECOMPILE

/([NO]JSYNTAX_ONLY /NOSYNTAX_ONLY COMPILE
RECOMPILE

/WAIT /SUBMIT COMPILE
RECOMPILE

/{NO]WARNINGS|=(option]....])] COMPILE
RECOMPILE

Applicable
Positional Qualifier” Default Command

/BODY COMPILE
RECOMPILE

1A command qualifier has the same effect, regardless of where it appears in the command string
(whether it is appended to the command verb or to a parameter).

24 positional qualifier has a different effect depending on where it appears in the command string.
A positional qualifier appended to the command verb affects the entire command string. A positional
qualifier appended to a parameter affects only that parameter.

Sif ADA$BATCH is not defined as a batch queue, then SYS$BATCH is used.

3-22 Program Compilation and Linking

Table 3—4 (Cont.): ADA, COMPILE, and RECOMPILE

Qualifiers

Applicable
Positional Qualifier’ Default Command

/{NO]DATE_CHECK /DATE_CHECK COMPILE
RECOMPILE

/{NOJCHECK /CHECK ADA

/{NO]JCOPY_SOURCE /COPY_SOURCE ADA

/{NO]DEBUG|=(option{,...])] /DEBUG=ALL ADA

/{NO]JDIAGNOSTICS|=file-spec] /NODIAGNOSTICS ADA

/[NO]JERROR_LIMIT[-=number] /ERROR_LIMIT=30 ADA

/(NOJLIST|[=file-spec] /NOLIST ADA

/([NO]MACHINE_CODE /NOMACHINE—CODE ADA

/{NO]JNOTE_SOURCE /NOTE—SOURCE ADA

/{NO]JOPTIMIZE[Foption] /OPTIMIZE=TIME ADA

/(NO]|SHOW[Foption] /NOSHOW ADA

/([NO]JSYNTAX_ONLY /NOSYNTAX—_ONLY ADA

/{NOJWARNINGS|=(option]....])] ADA

24 positional qualifier has a different effect depending on where it appears in the command string.
A positional qualifier appended to the command verb affects the entire command string. A positional
qualifier appended to a parameter affects only that parameter.

3.5 Linking VAXELN Ada Programs

Because of the way Ada compilation units and program libraries are
organized and managed, VAXELN Ada and VAX Ada do not use the
VAX/VMS Linker directly. Instead, you link VAXELN Ada units with the
ACS LINK command, which has the following syntax at DCL level (you
can also issue this command interactively, within ACS):

$ ACS LINK[(/qualifiers] unit-name [file-spec[,...]]

In particular, if you are linking units with a non-Ada main program, the
syntax is

$ ACS LINK/NOMAIN unit-name[,...] file-spec[,...]

Program Compilation and Linking 3-23

The optional qualifiers and applicable qualifier defaults for the ACS LINK
command are summarized in Table 3-5; more detailed information is
given in Developing Ada Programs on VAX/VMS.

Online descriptions of the ACS LINK command and its qualifiers are also
available using the ACS HELP command.

Note in particular the qualifier /SYSTEM_NAME. This qualifier allows
you to specify the name of the target on which you intend to run your
program. You must specify ACS LINK/SYSTEM—NAME=VAXELN for
any units or files that are to be linked as part of a VAXELN application,
or you must set the value of SYSTEM.SYSTEM_NAME to VAXELN for
your current program library (see Section 3.2). When SYSTEM.SYSTEM_—
NAME is VAXELN, the Ada units and object files named in the ACS LINK
command are linked against the VAXELN-specific Ada run-time libraries
and not the VAX/VMS-specific Ada run-time libraries. In other words,
when the intended target is VAXELN, the ACS LINK command makes
use of the DCL LINK/NOSYSLIB command to prevent searches of the
standard VAX/VMS libraries.

A summary description of the ACS LINK command follows the table.
Link-related operations of special interest to VAXELN Ada programmers
are described in Sections 3.5.1 and 3.5.2.

Table 3-5: ACS LINK Command Qualifiers

Command Qualifier! Default

/ AFTER=time / AFTER=TODAY

/ BRIEF

/COMMANDPFFfile-spec]

/{NO]JCROSS_REFERENCE / NOCROSS_REFERENCE

/(NO]DEBUG[=file-spec] /NODEBUG

/([NOJEXECUTABLE/=file-spec] /EXECUTABLE

/FULL

/{NO]KEEP / KEEP

/{[NO]LOG /NOLOG

/(NO]MAIN /MAIN

‘hs command qualifier has the same effect, regardless of where it appears in the command string
(whether it is appended to the command verb or to a parameter).

3-24 Program Compilation and Linking

Table 3—5 (Cont.): ACS LINK Command Qualifiers

Command Qualifier! Default

/{(NO]MAP|=file-spec] /NOMAP

/NAME=job-name

/(NO]NOTIFY /NOTIFY

/OBJECT=file-spec

/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT

/{NO]PRINTER[=queue-name] /NOPRINTER

/QUEUE=queue-name /QUEUE=SYS$BATCH

/SUBMIT /WAIT

/{NO]SYSLIB /SYSLIB

/{NO]SYSSHR /SYSSHR

/SYSTEM_NAME=system /SYSTEM_NAME=current-value

/{NO]JTRACEBACK / TRACEBACK

/WAIT /WAIT

Parameter Qualifier” Default

/LIBRARY

/INCLUDE

/OPTIONS

/SHAREABLE

1 command qualifier has the same effect, regardless of where it appears in the command string
(whether it is appended to the command verb or to a parameter).

24 parameter qualifier can be used only with a specified parameter. It cannot be appended to the
command verb.

The ACS LINK command goes through the following steps:

1. If the LINK/MAIN command (the default) is specified, checks that
only one unit is specified and that the unit is an Ada main program.

2. Forms the closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the
closure are present and current. If ACS detects an error, the operation
is terminated before the VAX/VMS Linker is invoked.

Program Compilation and Linking 3-25

3. Creates a DCL command file for the VAX/VMS Linker. The command
file is deleted after the ACS LINK operation is terminated or aborted,
unless the LINK/COMMAND command is specified. If the LINK
/COMMAND command is specified, the command file is retained for
future use, and the linker is not invoked.

4. Creates an object file (to be linked with the program) that elaborates
the library units in proper order at run time. If the /MAIN qualifier is
specified, the object file also contains the image transfer address. This
object file is deleted after the ACS LINK operation is terminated or
aborted, unless the LINK/COMMAND command is specified. If the
LINK/COMMAND command is specified, the object file is retained
and the linker is not invoked.

5. Unless the /COMMAND qualifier is specified, invokes the VAX/VMS
Linker as follows:

a. By default (LINK/WAIT), the linker command file generated in step
3 is executed in a subprocess. You must wait for the link operation
to terminate before issuing another command.

b. If you use the LINK/SUBMIT command, the linker command file is
submitted as a batch job.

Note that any logical names needed by subprocesses doing linking
(or compilation) should at least be in the VAX/VMS job logical name
table, not in the process logical name table.

ACS output originating before the VAX/VMS Linker is invoked is reported
to your terminal by default, or to a file specified with the /OUTPUT
qualifier. Linker diagnostics are reported to your terminal by default, or to
a log file if the ACS LINK command is executed in batch mode (ACS LINK
/SUBMIT). The VAX/VMS Linker is described in detail in the VAX/VMS
Linker Reference Manual.

3.5.1 Including Object Modules from Other Libraries

The ACS LINK command can be used with the /LIBRARY, /INCLUDE,
/OPTIONS, and /SHAREABLE qualifiers to allow you to link VAXELN or
VAX Ada units against object library, shareable image, or options files.

The LINK/INCLUDE combination is of particular interest in writing
VAXELN Ada programs, because it allows you to link specific object
files, such as error-message text, from an object-module or shareable-
image library with a main program. By default, error-message text is not
included with a VAXELN system. Each facility—KER$, ELN$, ADA$, and

3-26 Program Compilation and Linking

so on—supplies a module in ELN$:RTL.OLB that has the message text for
that facility. The module name has the following form:

facility-nameMSGDEF _TEXT

You must specifically include any error-message text when you link
your main program if you want the messages to be part of the finished
VAXELN system.

For example, the square-root server program (SQRT_SERVER) in Chapter.
2 depends on a package ERROR_HANDLING, which contains a sub-
program that displays VAXELN kernel error messages. To link SQRT_
SERVER—and thus ERROR-HANDLING, because it is in the closure of
the main program SQRT_SERVER—with the appropriate error message
text, you would use the following command:

$ ACS LINK SQRT_SERVER ELN$:RTL/INCLUDE=(KER$MSGDEF _TEXT)

This command causes the modules KER6MSGDEF_TEXT from the object-
module library ELN$:RTL.OLB to be linked with the Ada main program
SQRT_SERVER. (The default file type for the external library is OLB.)

Note that you do not need to include message text if you are running
your system under the control of the remote debugger. Instead of message
text, you will receive a hexadecimal message number, which you can
then identify using the debugger command EVALUATE/CONDITION _—
VALUE. See Chapter 6 for more information on the remote debugger and.
general debugger commands.

3.5.2 Using the ACS EXPORT Command

The ACS EXPORT command lets you export library units from your
program library so that you can link them with foreign-language (non-
Ada) code. You can use the ACS EXPORT command to export units that
are to be used as part of a foreign-language main program; you can also
use the ACS EXPORT command to export a main (or entire) Ada program.
You can also use the ACS EXPORT command to build a shareable image
that consists of object modules exported from a program library. (This is
the only way to build a shareable image from units in a program library.)

The command has the following syntax (DCL version shown):

$ ACS EXPORT unit-name[,...]

and its result is a concatenated object file (unit-name.OBJ) in your default
directory. The object file contains the generated code for all units in the
closure of the specified units.

Program Compilation and Linking 3-27

The ACS EXPORT command takes several optional qualifiers. The three
most significant are

e /OBJECT=file-spec, to provide an alternative file specification (and
directory) for the generated object file.

e /{NO]JMAIN, to indicate whether or not you are exporting a main
program. The /NOMAIN qualifier (the default) allows you to specify
more than one unit name with the EXPORT command, and the
concatenated object file for the exported units includes no image
transfer address (indicating a main program). The /MAIN qualifier
allows you to name only one unit with the EXPORT command, and
the object file for the exported unit includes the image transfer address.

e /SYSTEM—NAME, to determine the target (VAXELN or VAX_VMS)
for which the specified units are to be linked. The target choices are
VAXELN and VAX_VMS; the default is VAX_VMS when you create
your program library or sublibrary (see Section 3.2).

For a complete list of qualifiers, see Developing Ada Programs on VAX/VMS.

Note that object files created by different invocations of the EXPORT
command may include some code that is common—for example, if each
closure includes the predefined unit TEXT_IO. In such cases, you will
not be able to link those files into the same image. Whenever you think
that the closures may include units in common, you should specify all
the units in a single EXPORT command line. To export a set of units
contained in more than one program library, create a temporary program
library and enter the applicable units into that library using the ENTER
UNIT command. Then, export the units from the temporary library using
a single EXPORT command, and delete the library using the DELETE
LIBRARY command.

Also note that the object file produced by the ACS EXPORT command is
target specific. In other words, the link will fail if you export units when
the value of SYSTEM.SYSTEM_NAME is VAX_VMS, and then try to
link them with the VAXELN run-time libraries. Conversely, the link will
fail if you export units when the value of SYSTEM.SYSTEM_NAME is
VAXELN, and then try to link them with the VAX/VMS run-time libraries.
See Section 3.2 for more information on SYSTEM.SYSTEM_NAME; see
Section 3.5 for more information on the ACS LINK command.

Also note that when you export VAXELN Ada units that are to be used
by a foreign-language main program, the ACS EXPORT command does
not arrange for an automatic call of the initialization routine needed to
elaborate any library packages used by the exported units. In other words,
if the ACS EXPORT command is executed with an explicit or implicit

3-28 Program Compilation and Linking

/NOMAIN qualifier and an explicit or implicit value of VAXELN for
SYSTEM.SYSTEM_NAME, you must call the initialization routine from
the non-Ada main program.

You call the initialization routine in the following manner. The name
of the routine is ADA$ELAB_unit, where unit is the name of the first
unit specified with the ACS EXPORT command. The routine has no
arguments, and it must be called by the main program before calls are
made or data is accessed from any of the exported units.

For example, if you wanted to export an Ada subprogram to be called
by a VAXELN Pascal main program, you would declare the elaboration
procedure and call it from the Pascal main program as follows:

MODULE main_prog;

PROCEDURE swap (VAR swapi,swap2 : INTEGER) ;
EXTERNAL ;

PROCEDURE ADA$ELAB_SWAP;

EXTERNAL ;

PROGRAM use_swap (INPUT, OUTPUT) ;
VAR

x,y: INTEGER;

BEGIN

ADA$ELAB_SWAP ;
(* Give x and y values *)
x := 7;

y := 5;

WRITELN (x,y) ;
swap(x,y);
WRITELN (x, y) ;

END ;

END;

procedure SWAP (A,B: in out INTEGER) is
TEMP: INTEGER;

begin

TEMP := A;

A := 8B;

B := TEMP;

end SWAP;
pragma EXPORT_PROCEDURE (SWAP) ;

Alternatively, for the following command

ACS EXPORT/NOMAIN A,B,C

the main (foreign) program needs to call the procedure ADA$ELAB_A to
execute the elaboration code units for A, B, and C before it calls anything
or uses any data in A, B, or C.

Program Compilation and Linking 3-29

Note that any exported Ada unit that is not a main Ada program or is
not part of an exported main program must also use the export pragmas
described in Chapter 13 of the VAX Ada Language Reference Manual.

Also note that when you link exported VAXELN Ada units (either main
programs or individual units) from your VAX/VMS host system, you must
specify the necessary VAXELN run-time libraries as follows (the ACS
LINK command does this automatically; the DCL LINK command does
not):

$ LINK/NOSYSLIB object-module[,...] ,ELN$:RTLSHARE/LIB , ELN$:RTL/LIB

Thus, to use the DCL LINK command to link the swap program previously
shown, you would use

$ LINK/NOSYSLIB main_prog, swap, ELN$:RTLSHARE/LIB , ELN$:RTL/LIB

3-30 Program Compilation and Linking

Chapter 4

Building aSystem

After you have compiled and linked your VAXELN Ada program, you
build the resulting image into a system using the VAXELN System Builder.
System building involves combining VAXELN Ada linked images (jobs)
with other images, servers, device drivers, and the VAXELN kernel
executive to form a bootable system image. The System Builder is a
component of VAXELN, and provides a convenient set of menus for
describing and building a VAXELN system.

The description of the System Builder in this chapter is designed to give
you essential information on the EBUILD command and on the System
Builder menus. More complete information is presented in the VAXELN
User's Guide.

4.1 The EBUILD Command

The EBUILD command (plus any optional qualifiers) invokes the VAXELN
System Builder with a data file that specifies the images that are to be
combined into a VAXELN system. The command has the following
syntax:

$ EBUILD [qualifier-list] data-file-specification

The result (when the system is built) is a file with a default file type
of .SYS, and, unless otherwise specified with the /SYSTEM qualifier,
the same file name as the data file. If you omit the required data file
specification, you receive a prompt for a file name; the default file type for
the data file is .DAT.

Building a System 4-1

Table 4-1 summarized the qualifiers to the EBUILD command.

Table 4-1: EBUILD Command Qualifiers

Qualifiers Description Default

/{NO]BRIEF

/{NOJEDIT

4-2 Building a System

Used with the /MAP qualifier to §/BRIEF
control the contents of a system
map listing. The /BRIEF qualifier
causes all the images, devices,
and terminals, as well as all of the
system characteristics, to be listed.
The /NOBRIEF qualifier (same
as the /FULL qualifier) causes
all the images in the system,
all program descriptions, all
device descriptions, all terminal
descriptions, and all system
characteristics to be listed.

Determines whether or not an | JEDIT
interactive screen-editing mode
is entered for creating or altering
the data file specified with the
EBUILD command. The /EDIT
qualifier causes the System
Builder to enter a data-file editor
that is compatible with VT100-
and VT200-series terminals. The
/NOEDIT qualifier causes the
System Builder to build a system
image directly from the contents
of the data file specified with the
EBUILD command.

Table 4—1 (Cont.): EBUILD Command Qualifiers

Qualifiers Description Default

/{NO]FULL Used with the /MAP qualifier to =/NOFULL
control the contents of the system
map. The /FULL qualifier causes
all the images in the system,
including all program descrip-
tions, all device descriptions, all
terminal descriptions, and all
system characteristics, to be listed.
The /NOFULL qualifier (same as
the /BRIEF qualifier) causes all
images, devices, and terminals, as
well as the system characteristics,
to be listed.

/KERNEL+=file-spec Specifies the name of a kernel
image other than the default
kernel image, ELN$:KERNEL.EXE.
This feature is useful only for
special applications in which the
kernel is being debugged.

/[NO]JLOG Specifies whether or not the /LOG
System Builder displays the size
of the finished system image.

/{NO]JMAP|-file-spec] Enables or inhibits the production /NOMAP
of a system map listing. If the
/MAP qualifier is used without
its optional file specification, the
listing has the same name as
the specified data file, with a file
type of .MAP. The contents of
the map listing are controlled by
the /BRIEF and /FULL qualifiers,
which are mutually exclusive.

/SYSTEM=file-spec Specifies an alternate file name
for the file to which the system
image is written. By default, the
system image file has the same
name as the specified data file,
with a file type of SYS.

Building a System 4-3

4.2 Using the System Builder Menus

The easiest way to create or alter the data file required by the System
Builder is to work with the menus that appear when you execute the
EBUILD command in EDIT mode (the default mode for this command).
Each menu supplies a set of defaults for each of its options. You either
use the existing defaults, or you can edit the default values to suit your
needs.

When you invoke the System Builder in EDIT mode, you receive a Main
menu that lists the following choices:

4-4 Building a System

Build System—uses the EBUILD data file to combine programs with
the VAXELN kernel and run-time software to create a bootable system
image.

Edit System Characteristics—presents a set of menu options that de-
scribe particular system characteristics.

Edit Network Node Characteristics—presents a set of menu options that
describe particular network and network node characteristics.

Edit Program Descriptions—lists the existing program descriptions as
choices for editing.

Add Program Description—presents a set of menu options for an
individual program. If the program has never been characterized,
you can use this menu to add the program to the set of program
descriptions.

Edit Device Descriptions—lists the existing device descriptions as
choices for editing.

Add Device Description—presents a set of menu options for an individ-
ual device. If the device has never been characterized, you can use this
menu to add the device to the set of device descriptions.

Edit Terminal Descriptions—lists the terminals (except for the console
terminal) that have been characterized.

Add Terminal Description—presents a set of menu options for an
individual terminal. If the terminal has never been characterized,
you can use this menu to add the terminal to the set of terminal
descriptions.

Edit Console Characteristics—presents a set of menu options that
describe particular console terminal characteristics.

All menu editing functions are controlled with the PF1, PF2, PF3, and PF4
keys; the four arrow keys; and the control sequences CTRL/E, CTRL/H,
CTRL/R, and CTRL/U.

The four PF keys correspond, left to right, with four legends at the bottom
of each menu. For reference, a sample menu (in this case, the Main menu)
is shown in Figure 4-1.

Figure 4—1: Sample System Builder Menu

Build System

Edit System Characteristics

Edit Network Node Characteristics

Edit Program Descriptions

Add Program Description

Edit Device Descriptions

Add Device Description

Edit Terminal Descriptions

2K-4848-85

On all menus, the PF1 key corresponds to the DO function. When you
press the PF1 key, you activate the currently selected entry or add a set of
edited characteristics to the system. Similarly, on all menus, the PF2 key

Building a System 4-5

corresponds to the HELP function. The definitions of the PF3 and PF4
keys vary, depending on the activity represented by the menu:

e On the Main menu, the PF3 key corresponds to the QUIT function,
which aborts the System Builder session without altering the data file.
The QUIT function requires confirmation with the DO function (bound
to the PF1 key).

e On the Main menu, the PF4 key corresponds to the EXIT function,
which ends the System Builder session but incorporates any changes.

e On the Edit Program Descriptions, Edit Device Descriptions, and Edit
Terminal Descriptions menus, the PF3 key corresponds to the DELETE
function, which deletes the current set of descriptions from the data
file. The DELETE function requires confirmation with the DO function
(bound to the PF1 key).

e On all menus except the Main menu, the PF4 key corresponds to the
BACK function, which returns you to the previous menu, without
incorporating any edits.

NOTE

The VT200-series keyboard keys, F15 and F16, usually labeled
HELP and DO, are not recognized by the System Builder.

The arrow keys move up, down, left, and right among menu choices.

Four control sequences are predefined for working with input text (you
cannot use them for manipulating menu choices):

¢ CTRL/E moves to the end of a line of text.

e CTRL/H (backspace) moves to the beginning of a line of text.

¢ CTRL/R refreshes the screen.

e CTRL/U deletes text from the cursor back to the beginning of the
current line.

CTRL/E, CTRL/H, and CTRL/U are particularly useful for editing long
strings of input text.

Note that the display for input text scrolls to the left of the column
allocated for that value if you enter more information than will fit on the
screen (such as when you enter information for the Arguments option of
the Program Characteristics menus). A diamond symbol appears at the
top, bottom, or edge of a menu when text—either text that you have
entered or menu options—is off the screen.

4-6 Building a System

4.2.1 Build System

When chosen from the Main menu and activated with the DO function
(bound to the PF1 key), the Build System option causes the System
Builder to create a new system image file using the data file specified with
the EBUILD command. You generally make this choice when you have
finished specifying your system with the System Builder menus.

By default, the image file has the same file name as the data file and a
default file type of SYS. By using the /SYSTEM qualifier on the EBUILD
command, you can explicitly control the naming of the system image file.
(See Section 4.1 and Table 4-1.)

This menu choice is comparable to the EBUILD/NOEDIT command.

4.2.2 System Characteristics

The system characteristics define the general properties of the VAXELN
system you are building. The Edit System Characteristics Menu options
and their default values are presented in Table 4-2.

Table 4-2: Edit System Characteristics Menu

Menu Option Description Default

System image

Debug
Local

Remote

Both

None

Specifies the name of the system image data-file-
file to be created by the System Builder. spec.SYS

Specifies which debuggers are to be built | Remote
into the system. Local means that the
EDEBUGLCL debugger image is included.
Remote means that the EDEBUGREM
debugger image is included. Both means
that both EDEBUGDCL and EDEBUGREM
are included: in that case, EDEBUGREM
is the primary debugger, and EDEBUGLCL
gets control only in the event of a system
error.

Note that the VAXELN Remote Debugger
communicates with EDEBUGREM, so that
in order to perform remote debugging you
must specify either Remote or Both.

Building a System 4-7

Table 4—2 (Cont.): Edit System Characteristics Menu

Menu Option Description Default

Console Specifies that communication with the Yes
Yes console terminal on the target machine
No is desired. Yes means that a VAXELN

Console Driver and the device description
for the console terminal are included
automatically when the system is built.

Note that when the Debug option is
Local or Both, then the driver and device
description are included implicitly, in-
dependent of the value of the Console
option. If you select No and the Debug
option is Remote, the remote VAX/VMS
terminal behaves as the console terminal
while you are using the remote debugger.

The name for the system’s console termi-
nal is CONSOLE:.

Instruction emulation —_Selects emulation software for instructions String
String that are present in the full VAX archi-
Float tecture, but that are not included in the

Both MicroVAX architecture. None indicates a

None full VAX target. Float includes emulation
software for the floating-point instructions.
String includes emulation for the other
instructions in the subset. Both includes
both floating-point and string emulation
software.

On a MicroVAX I, Both is recommended;

on a MicroVAX II, String is sufficient,

unless H_floating types (like LONG
LONG_FLOAT) are involved.

4-8 Building a System

Table 4—2 (Cont.): Edit System Characteristics Menu

Menu Option Description Default

Boot method

Disk

ROM

Downline

Disk/volume names

Guaranteed image list

Selects the method by which the finished Downline
system will be booted on the target
machine, and determines the type of
image header used in the system:

Disk and tape—No header
ROM—MicroVAX ROM header
Downline—VAX/VMS image header

If you select Disk or ROM but did not
specify a node address in the Edit
Network Node Characteristics menu, a
warning message is issued.

Supplies the device specifications and
volume names for disks present on the
target machine in the following format:
“device-specification volume_name’”.
Programs can then refer to a volume by
prefixing the given name with DISK$. For
example, “DUAO TEST” can be referred to
as DISK$TEST.

Multiple names must be separated by
commas; the first specification in the list
identifies the default disk volume. When
the system is bootstrapped, the VAXELN
File Service automatically mounts the
indicated volumes. Because the volume
name is optional, the file service will
attempt to mount whichever disk is
present in the indicated drive if the
volume name is omitted from this menu.

Lists the shareable images (separated by
commas) that are referenced by programs
loaded by the dynamic program loader.
Shareable images that are referenced by
programs in the system are automatically
included.

Building a System 4-9

Table 4—2 (Cont.): Edit System Characteristics Menu

Menu Option Description Default

Page table slots

Ports

Pool size

4-10 Building a System

Specifies the maximum number of page 64
tables that the system can use at one
time. Each job requires two process page
tables (one for mapping the PO region and
one for the P1 region). Each additional
subprocess in the job requires one more,
for mapping its P1 region. The default
value of 64 thus accommodates a system
with 32 simultaneous jobs (if they do
no multitasking). The minimum number
of page table slots is 2; the maximum is
32,767.

Specifies the maximum number of mes- 256
sage ports the system can use at one time.

The minimum number of ports is 2; the
maximum is 32,767.

Specifies the approximate number of 384 blocks
VAXELN system objects that can be
in simultaneous use (Ada types for
these objects are predefined in package
VAXELN SERVICES). One pool block
(128 bytes) is needed for each system
object in use, processes require a total of
3, and a few additional blocks are needed
for each job. Essentially, you can use
one block per system object plus three
times the number of jobs and processes in
simultaneous use. The minimum number
of blocks is 16; the maximum is 32,764.

Table 4-—2 (Cont.):

Menu Option

Virtual size

Interrupt stack

I/O region size

Dynamic program
space

Edit System Characteristics Menu

Description Default

Specifies the maximum size, in 512-byte 1024
pages, of each PO and P1 region in the blocks
system. The value is used by the VAXELN
kernel to allocate process page tables for
each job and process. By default, then,
each job can use 0.5 million bytes of
virtual memory for its PO region and an
equal amount for each process’s P1 region.
The minimum number of pages is 128; the
maximum is 32,640.

Specifies the maximum number of pages 2 pages
required for the system interrupt stack.
The minimum number of pages is 2; the
maximum number is 8,192.

Specifies the maximum number of 512- 128 pages
byte pages required by all interrupt service
communication regions. The value is used
by the VAXELN kernel to allocate system
page table entries during the startup of the
system. The minimum number of pages is
0; the maximum is 32,767.

Specifies the number of 512-byte memory 0 pages
pages that can be allocated for dynami-
cally loading programs into the running
system (the pages are not actually al-
located until they are needed). The
minimum number of pages is 0; the
maximum is 32,767.

Building a System 4-11

Table 4—2 (Cont.): Edit System Characteristics Menu

Menu Option Description Default

Time interval Specifies the interval (in microseconds) 10000 micro-
between interval-timer interrupts. In other seconds
words, this option specifies the minimum
time that can be used for time-dependent
operations. Each interrupt increments the
system time and starts time-dependent
scheduling in the system. The minimum
time is 1 microsecond; the maximum time
is 120,000,000 microseconds (2 minutes).

Note that on some processors (including
the MicroVAX), the default of 10,000
microseconds cannot be altered.

Connect time Specifies the time (in seconds) that is 45 seconds
allowed to elapse before a VAXELN
circuit connection must be accepted. The
minimum time is 1 second; the maximum
is 3,599 seconds (59 minutes, 59 seconds).

Memory limit Specifies the maximum amount of physical 0 pages
memory (in 512-byte pages) that is
available for use by the system. A value
of 0 means that the system should use
all the memory available on the target
configuration. Thus, a limit needs to be
specified only for special applications.
The minimum is 0 pages (no limit); the
maximum is 65,535 pages.

4.2.3 Network Node Characteristics

The Edit Network Node Characteristics menu defines characteristics for
the VAXELN Network Service and Authorization Service. The menu
options and default values are presented in Table 4-3.

4-12 Building a System

Table 4—3: Edit Network Node Characteristics Menu

Menu Option Description Default

Network service

Yes

No

Name server

Yes

No

File access listener

Yes

No

Network device

UNA

QNA

Other

Node name

Determines whether or not the VAXELN Yes
Network Service is included automatically.

Determines whether or not the VAXELN Yes
Network Service running on this target
machine can volunteer to be the name
service in network applications. If Yes is
specified, then a value of Yes must also be
specified for the Network service option.

Determines whether or not the VAXELN Yes
File Access Listener is included auto-
matically. The System Builder issues
an informational message if you include
the File Access Listener without also
specifying Yes for the Network service
option.

Selects the type of interface that connects QNA
a VAXELN machine to the Ethernet
in network applications. UNA is the
DIGITAL UNIBUS-to-Ethernet adapter
(DEUNA). QNA is the QBUS-to-Ethernet
adapter (DEQNA). The necessary device
driver program and device description are
included automatically if you also specify
Yes for the Network service option.

Specifies the node name by which a
VAXELN node is identified in a network.
It can have a maximum of 6 characters,
and must be unique in the network. You
do not need to specify the node name if
your system will be downline loaded from
your development system.

Building a System 4-13

Table 4—3 (Cont.): Edit Network Node Characteristics Menu

Menu Option Description Default

Node address

Authorization

required
Yes

No

Authorization service

Local

Network

None

Authorization file

Default UIC

Node triggerable
Yes
No

4-14 Building a System

Specifies the address for a VAXELN node
in a network. The address can have one
of three forms: nnn is a DECnet node
number, aaa.nnn is a DECnet area and
node number, and nn-nn-nn-nn-nn-nn is

a 48-bit Ethernet address (where a and n
are digits).

You do not need to specify the node
address if your system will be downline
loaded from your development system.

Determines whether or not the VAXELN

Network Service can authorize inbound

circuit connections by communication with
the VAXELN Authorization Service.

Determines whether or not an

Authorization Server is included in the

system, and, if it is included, whether
the service should serve only the local
node or the entire local area network.

Some nodes can have local services of

their own, but there should be only one
network Authorization Server.

Specifies the name of the data file that
the Authorization Service should use. The

data file must exist either on the same

node as the Authorization Service, or it

must exist on a node that the service is

authorized to access.

Specifies the default user identification
code (UIC) for users that are not explicitly
authorized.

Specifies whether or not downline load
triggers are enabled. Yes means that the
system will allow itself to be remotely
triggered, and should be the setting during
development, so that developers can
remotely load the system.

0

None

AUTHORIZE.C

(1,1]

Yes

Table 4-3 (Cont.): Edit Network Node Characteristics Menu

Menu Option Description Default

Network segment size Specifies the size (in bytes) of the largest 576 bytes
segment that can be sent over the net-
work. This maximum applies to any
intermediate routing nodes between the
source and destination of a message. The
segment size includes a 32-byte header
prefixed to remote datagrams by the
Network Service; consequently, the largest
message data buffer that can be sent to a
remote node as a datagram has a byte size
of the seent size minus 32.

The segment size has a minimum value of
192 bytes; the maximum value is 1,470.

4.2.4 Program Descriptions

Each image in the system (except the kernel, debugger, device drivers,
shareable run-time library images, and network and authorization service)
has a program description. The Edit Program Descriptions menu lists all of
the program descriptions characterized in the data file; the Add Program
Description menu presents a menu of options for the individual program
chosen from the Edit Program Descriptions menu, or for a new program
that is to be added to the system. The options and default values for the
Add Program Description menu are presented in Table 4-4.

Note that the Edit Program Descriptions menu is empty if there are no
program descriptions yet in the system. When you select the Edit Program
Descriptions menu and it is empty, you can use the DO function (bound
to the PF1 key) to switch directly to the Add Program Description menu
without returning to the Main menu.

Also note that some program descriptions are added for you automatically
by the System Builder. For example, if you specify Yes for the File Access
Listener option on the Edit Network Node Characteristics menu, the File
Access Listener’s image and program description are automatically added.
Most device drivers are also added automatically. (See the VAXELN User's
Guide for more information.)

Building a System 4-15

Table 4—4: Add Program Description Menu

Menu Option Description Default

Program

Debug
Yes
No

Run

Yes

No

Init required
Yes
No

Mode

Kernel

User

4-16 Building a System

Specifies the program image name (with-
out the file type, device, or directory).

Determines whether or not any job No
that runs this program gives control
to the debugger instead of executing
immediately.

Determines whether or not a job running Yes
the program image is started automatically
when the system itself is started.

Determines whether or not an initializa- No
tion procedure is done for the program.
More specifically, Yes means that the
program is run automatically and will
run to completion before any other pro-
gram starts unless it calls the VAXELN—
SERVICES.INITIALIZATION_DONE
procedure. If several programs have this
property, they are started in order of job
priority. (The System Builder assures,
however, that debuggers and device
drivers are started in the necessary order.)

Determines the mode in which the pro- User
gram is run. Kernel mode is required for
device drivers (programs calling CREATE
DEVICE), as well as for programs using
the VAXELN_SERVICES.ALLOCATE_—
MAP, SYSTEM.MFPR, SYSTEM.MTPR,
and VAXELN_—SERVICES.FREE_MAP
subprograms. User mode is recommended
unless a program definitely requires kernel
mode.

Table 4—4 (Cont.): Add Program Description Menu

Menu Option Description Default

User stack (initial)

Kernel stack

Job priority

Process priority

Job port message limit

Determines the initial stack size of the 1 page
user stack (the user stack is used for
user-mode calls to your own procedures
and most predeclared procedures; it is
extended automatically as needed during
the execution of the job). The minimum
size is 1 page; the maximum is 32,767
pages.

(Note that the user stack is not used by
VAXELN Ada, so the default is sufficient

for VAXELN Ada programs.)

Determines the actual stack size of your 1 page
kernel stack (the kernel stack is used by
all programs for kernel procedure calls,
and by kernel-mode programs for all
execution; it is fixed in size and is thus not
automatically extended during execution of
the program). Most kernel-mode programs
require a larger kernel stack than the
default of 1 page. The minimum size is 1
page; the maximum is 32,767 pages.

Determines the priority of the job in 16
which your program is executing (0 is the
highest priority; 31 is the lowest).

Determines the initial priority of the 8
master process and any subprocesses it
creates (0 is the highest; 15 is the lowest).

(Note that this value is ignored for all
VAXELN Ada tasks, including the main
task. Also note that the priority of
VAXELN Ada tasks is calculated as 15-P,
where P is the process priority.)

Determines the maximum number of 16,384
messages that can reside at one time in messages
the job port. The minimum number of
messages is 0; the maximum is 16,384.

Building a System 4-17

Table 4-4 (Cont.): Add Program Description Menu

Menu Option Description Default

Powerfailure Determines whether or not the pro- No
exception gram receives an exception (VAXELN—

Yes SERVICES.KER_POWER_SIGNAL) when
No the processor restarts after a power failure.

You should select this option only if the
program has an exception handler estab-
lished for it; such a handler allows you
to take general, system-wide action when
power has failed. Device drivers generally
need to handle power recovery in a spe-
cial way, with interrupt service routines;
this use of interrupt service routines is not
affected by this menu option.

Argument(s) Specify additional information needed for
building the program, for example, device
names or file specifications. Arguments
must be strings, and, if they have em-
bedded spaces, must be enclosed in
double quotation marks (not apostrophes).
Multiple arguments must be separated by
commas.

4.2.5 Device Descriptions

Each device that is part of the target machine’s hardware configura-
tion should be specified and built into the system. The Edit Device
Descriptions menu lists all of the device descriptions currently character-
ized in the data file; the Add Device Description menu presents a menu of
options for the individual device chosen from the Edit Device Descriptions
menu, or for a new device that is to be added to the system. The options
and default values for the Add Device Description menu are presented in
Table 4-5.

Note that the Edit Device Descriptions menu is empty if there are no
device descriptions yet in the system. When you select the Edit Device
Descriptions menu and it is empty, you can use the DO function (bound
to the PF1 key) to switch directly to the Add Device Description menu
without returning to the Main menu.

4-18 Building a System

Also note that no device description is needed for the target machine's
console terminal or Ethernet adapter; these descriptions are provided for
you automatically when you select the corresponding options on the Edit
System Characteristics menu.

Table 4-5: Add Device Description Menu

Menu Option Description Default

Name Describes a device controller. For termi-
nals, individual lines are described by
terminal descriptions and named with the
controller name and a line number (for ex-
ample TTA1). Note that the device name
must be used consistently across various
contexts; however, the actual choice of the
device name is up to you.

Register address Gives the physical 18-bit address of the %O000000
device’s first device control register (18-
bit values are also used for the QBUS).
Valid values range from %0000000
to %O777777, and can be specified in
decimal, octal (%QO), or hexadecimal (%X).

To configure a device on the second
UNIBUS adapter of a VAX-11/750 target
system, you must prefix the 18-bit register
address with a one bit, implying UNIBUS
adapter 1, rather than the default adapter
0. For example, for a DLV11-type device
on the first adapter, you might specify a
CSR (control status register) address of
%O776500, but on the second you would
specify %01776500.

Vector address Gives the address of the device’s first %O000
interrupt vector. Valid values range from

%0000 to %0776. For UNIBUS and
Q22 bus devices, this is the vector that

the device asserts on the bus when its
interrupt request is acknowledged. It is
actually used by the VAX processor as an
index into the second page of the System
Control Block (SCB).

Building a System 4-19

Table 4—5 (Cont.):

Menu Option

Add Device Description Menu

Description Default

Determines the device’s bus-request 5
priority, from 4 (high) to 7 (low). These
values correspond to the VAX interrupt
priority levels 14 (hex) to 17 (hex),
respectively.

Interrupt priority

Autoload driver Determines whether or not the appro- Yes
Yes priate device driver image is included
No automatically in the system. For a detailed

description of this option, see the VAXELN
User’s Guide.

You specify the control status register (CSR) addresses, interrupt vector
addresses, and priorities for bus devices exactly as they are described in
the appropriate device hardware manual or in the Microcomputer Products
Handbook.

You can also use the VAX/VMS System Generation Utility (GYSGEN)
CONFIGURE command to calculate UNIBUS and QBUS CSR and vector
addresses if you know the device name. For example, to determine the
CSR and vector addresses for two MSCP disk controllers, an Ethernet con-
troller, and a TK50, you would execute the following series of commands:

¢ RUN SYSS$SYSTEM: SYSGEN

SYSGEN> CONFIGURE
DEVICE> UDA, 2

DEVICE> QNA

DEVICE> TU8i

DEVICE> DHVi1

The resulting output (when you press CTRL/Z) would be

Device: UDA Name: PUA CSR: 772150 Vector: 154 Support: yes

Device: TU81 Name: PTA CSR: 774500 Vector: 260 Support: yes

Device: QNA Name: XQA CSR: 774440 Vector: 120 Support: yes

Device: UDA Name: PUB CSR: 760334* Vector: 300* Support: yes

Device: DHVi1 Name: TXA CSR: 760500* Vector: 310* Support: yes

A complete discussion of the SYSGEN Utility and a list of the devices that
SYSGEN configures automatically are presented in the VAX/VMS System
Generation Utility Reference Manual.

4-20 Building a System

Table 4-6 lists common QBUS device names (for MicroVAX systems) and
their SYSGEN eguivalents. Table 4—7 lists common UNIBUS device names
(for VAX-11/730 and VAX-11/750 systems). In both tables, where device
names are grouped and indented, the main device name is the name of
the controller, and the indented device names are common devices that
can be attached to that controller. Names spelled with a lowercase n
or x represent a family of individual devices (the n or x designates an
appropriate integer).

Table 4-6: Common QBUS Device Names and Their SYSGEN
Equivalents

Device SYSGEN Name

RODXn UDA

RD5x

RX50

KDA50 UDA

RA6x

RA8x

RC25 UDA

TK50 TU81

DEQNA ONA

DZV11 DZ11

DZQ11 DZ11

DHV11 DHV11

LPV11 LP11

Table 4—7: Common UNIBUS Device Names and Their
SYSGEN Equivalents

Device SYSGEN Name

DMF-32 DMF32

RB730 RB730

R80

RLO2

Building a System 4-21

Table 4—7 (Cont.): Common UNIBUS Device Names and
Their SYSGEN Equivalents

Device SYSGEN Name

UDA50 UDA

RA6x

RA8x

TU81 TU81

DEUNA UNA

TU58 TU58!

Mh the console TU58 is on a VAX-11/730 or VAX-11/750, leave the register address blank and use
%O360 for the vector.

Note that devices with multiple interrupt vectors require only one device
description; the other vectors are obtained from the procedure parameters
of VAXELN—SERVICES.CREATE_DEVICE.

4.2.6 Terminal Descriptions

Each terminal connected to an asynchronous serial controller line should
be described and built in your system, and the terminal descriptions must
include the characteristics of the asynchronous controller (for example,
the DMF-32 or DZV11). The Edit Terminal Descriptions menu lists all of
the program descriptions characterized in the data file; the Add Terminal
Description menu presents a menu of options for the individual terminal
chosen from the Edit Terminal Descriptions menu, or for a new terminal
that is to be added to the system. The options and default values for the
Add Terminal Description menu are presented in Table 4-8.

Note that the Edit Terminal Descriptions menu is empty if there are no
terminal descriptions yet in the system. When you select the Edit Terminal
Descriptions menu and it is empty, you can use the DO function (bound
to the PF1 key) to switch directly to the Add Terminal Description menu
without returning to the Main menu.

Also note that the console terminal has a separate menu, Edit Console
Characteristics (see Section 4.2.7).

4-22 Building a System

Table 4-8: Add Terminal Description Menu

Menu Option Description Default

Terminal

Terminal controller

type

DMF
DZ
DH

Speed

Parity
Yes

No

Parity type
Odd
Even

Display type
Scope
Hardcopy

Specifies the terminal name, which is the
controller device name suffixed with a unit

number. For example, terminal TTAO is
the first terminal line on controller TTA.

Specifies the type of controller used for DZ
terminals. DMF applies to asynchronous
lines on a DMF-32 controller. DZ desig-
nates the DZV11 or DZQ11 interface for

the MicroVAX. DH designates the DHV11
interface for the MicroVAX. Note that this
designation is used only to select and load
the terminal driver for the controller type;

it is the terminal name that designates a
terminal in programs.

Specifies the baud rate that applies to the 9600
individual line, as well as specifying the
speed for both input and output. Possible
values are 50, 75, 110, 134, 150, 300, 600,
1200, 1800, 2000, 2400, 3600, 4800, 7200,
9600, 19200, 38400.

Determines whether or not parity checking No
is enabled on this line.

Determines the kind of parity checking (if | Even
checking is enabled).

Specifies the kind of output display. Scope Scope
means that the attached terminal is a
cathode ray tube (CRT) terminal, such as
a VT100 or VT200. Hardcopy means that
the attached terminal is a terminal that
prints on paper rather than displaying
output on a screen. The setting of this
option is ignored on a DDCMP-specified
line.

Building a System 4-23

Table 4-8 (Cont.): Add Terminal Description Menu

Menu Option Description Default

Escape recognition Determines whether or not the terminal Yes
Yes driver program checks the format of
No escape sequences to see if they conform to

ANSI format. The setting of this option is
ignored on a DDCMP-specified line.

Echo Determines whether or not input char- Yes
Yes acters are echoed on the terminal. The
No setting of this option is ignored on a

DDCMP-specified line.

Pass all Determines whether or not all control No
Yes characters are passed to the user’s pro-
No gram as ordinary input, instead of being

interpreted by the driver program. The
setting of this option is ignored on a
DDCMP-specified line.

Eight-bit Determines whether or not the attached No
Yes terminal uses 8-bit ASCII characters. The
No setting of this option is ignored on a

DDCMP-specified line.

Modem Indicates whether or not a modem is No
Yes attached to the line. Modems are sup-
No ported only on the DHV11 and DMF-32

controllers.

DDCMP Specifies whether the terminal line should No
Yes use the DIGITAL Data Communications
No Message Protocol (DDCMP) for asyn-

chronous DECnet communication with
another system. Yes means that the line
behaves as a point-to-point full-duplex
DDCMP link. No means that the line is a
regular terminal line.

4.2.7 Console Characteristics

The console terminal on the target machine must be characterized sep-
arately, and a separate menu—Edit Console Characteristics—exists for

4-24 Building a System

that purpose. The menu options and their default values are presented in
Table 4-9.

Table 4-9: Edit Console Characteristics Menu

Menu Option Description Default

Display type Identifies the kind of display. Scope means Hardcopy
Scope that the attached console terminal is a
Hardcopy CRT terminal. Hardcopy means that the

console terminal displays its output on
paper.

Escape recognition Determines whether or not the console Yes
Yes terminal driver program checks the format
No of escape sequences to see whether they

conform to ANSI format.

Echo Determines whether or not input charac- Yes
Yes ters are echoed on the terminal.
No

Pass all Determines whether or not all control No
Yes characters are passed to the user’s pro-
No gram as ordinary input, instead of being

interpreted by the driver program.

Fight-bit Determines whether or not the attached No
Yes console terminal uses 8-bit ASCII
No characters.

Building a System 4-25

Chapter 5

Booting and Running a System ona
VAXELN Target

In order to run a system image that has been produced by the VAXELN
System Builder (a file with the file type .SYS), the image must be booted
on the target system.

The three methods available for transferring your application to the target
are

e Disk and TU58 or TK50O tape

e Downline loading over Ethernet

e Programmable read-only memory (PROM)

This chapter describes how to use each of these methods.

5.1 Booting Systems from Disks and Tape

The system image can be booted from any Files—11 disk that is supported
as a boot device by the target processor; the disk need not be one that is
supported by the VAXELN executive. In addition, the TK50 cartridge tape
drive can be used for booting a MicroVAX II. In this case, the procedure is
the same as for a disk. The TU58 cartridge tape drive can also be used on
the VAX-11/725, VAX-11/730, and VAX-11/750.

Booting and Running a System on a VAXELN Target 5-1

VAXELN provides a COPYSYS.COM command procedure in the ELN$
directory on the development system that is used to create a disk or
tape containing a bootable system image. When executed, the COPYSYS
procedure prompts for the system image file name and the output device
name. It then asks if the disk or tape should be initialized.

NOTE

System images using the COPYSYS procedure described in
this section must be built with the System Builder System
Characteristics menu Boot method option set to Disk. (See
Chapter 4 for more information on the System Builder and the
EBUILD command.)

The following example shows the use of the COPYSYS procedure to place
the system image called TEST on a TU58 tape cartridge:

$ @OELN$:COPYSYS

System image file: TEST

Output disk: DDAO

Initialize the disk? (Y/N) [N]: Y

$

This example assumes that a separate TU58 drive named DDAO is avail-
able on the host system. If you are instead using the console device,
CSA1:, and you receive the error message “No such device” when execut-
ing COPYSYS, the console device has not been made available for use.
To make the console device available, have your system manager connect
it with the following command:

$ MCR SYSGEN CONNECT CONSOLE

You have now created a disk containing a VAXELN system image. You
must answer “Y” to the initialization question the first time you use the
cartridge for this purpose; if you reuse it for another VAXELN system, you
can say “N” (the default is “N”).

You can also enter the entire command on one line:

$ @ELN$:COPYSYS TEST DDAO

Here, the default “no initialization” is chosen.

The cartridge containing the application system can be transferred to the
target machine, (in this example, a VAX-11/750), and booted with the
following console boot command:

>>> B DDO

5-2 Booting and Running a System on a VAXELN Target

The system responds by displaying the following information:

hh

VAXELN V2.1-03

For a VAX-11/730, the console boot command takes the name of the
device to be booted. For example:

>>> B DQi

Here, presumably DQ1 contains an RLO2 cartridge that you have prepared
with the COPYSYS command procedure.

For a TU58 cartridge in the external VAX-11/730 drive, the console
command is

>>> B DDO

The command for booting from an RX50 diskette (DUA1) in the first
floppy disk drive on a MicroVAX is

>>> B DUAI

5.2 Downline Loading

This section gives the procedure and preparatory steps for using the
Ethernet (instead of portable disks or other media) to load systems onto
target machines.

Downline loading of a VAXELN system uses a downline load and boot-
strap loader, which resides on the target machine, as well as the DECnet
network facilities on the host development system. These two software
components use the network communication hardware to copy a VAXELN
system image file from the host development system to the main memory
of the target machine. Once the VAXELN system is stored in the target
memory, it gets control of the processor and begins execution.

The VAXELN system need not contain the Network Service to be loaded
downline. The Network Service must, however, be included to allow
network communication between the VAXELN system and other systems
on the same network. (For more information, see the VAXELN User's
Guide.)

Perhaps the easiest method of downline loading is with the VAXELN
Remote Debugger (whether or not you intend to debug your system). This
method is described in Section 5.2.8, as well as in Chapter 6.

Booting and Running a System on a VAXELN Target 5-3

5.2.1 Preliminary Steps

You need to perform the following preliminary steps to set up your host
and target machines before downline loading:

1. Install communication hardware on the host and target machines.

2. Install and configure DECnet-VAX software on the host system.

3. Test communication between the host and target machines.

4 . Add the target machine’s description to the host system’s network
node database.

5. Configure or install the downline load bootstrap loader on the target
machine.

The following sections describe these steps in more detail.

Note, however, that before continuing with the setup procedures, you
should become familiar with the Network Control Program (NCP). This
utility is the principal tool used to control the network software and
hardware and is described fully in the Guide to Networking on VAX/VMS.

5.2.2 Installing Communication Hardware on the Target Machine

The communication hardware should be installed at the default input-
output bus address on the target processor. Table 5-1 lists the address as-
sumed by the downline load bootstrap loader for each particular hardware
device.

Table 5-1: Datalink Device Default Addresses

Device Address (Octal)

DEUNA 774510

DEQNA 774440

5.2.3 Configuring a Host for Downline Loading

The following commands must be issued to configure your VAX/VMS
host for downline loading. These commands enable the host’s recognition
of boot-request messages from the target system.

5-4 Booting and Running a System on a VAXELN Target

NOTE

These commands are valid for a VAX/VMS system. The
commands to configure a MicroVMS system are the same,
except that the service line and the service circuit are QNA-0
instead of UNA-O.

$ RUN SYS$SYSTEM : NCP
NCP> DEFINE LINE UNA-O SERVICE ENABLED

NCP> DEFINE CIRCUIT UNA-O SERVICE ENABLED

NCP> SET LINE UNA-O STATE OFF

NCP> SET LINE UNA-O ALL

NCP> SET CIRCUIT UNA-O STATE OFF

NCP> SET CIRCUIT UNA-O ALL

5.2.4 Adding the Target Machine to the Host Node Database

The target VAXELN machine needs to be described in the host system’s
network node database. To enter the machine in the database, use the
NCP utility to store the target machine’s node address, node name,
Ethernet hardware address, and host load device name. This information
is typically stored in the permanent database using the DEFINE command.
For example, for a node named “ARTHUR’:

$ RUN SYS$SYSTEM: NCP
NCP> DEFINE NODE ARTHUR ADDRESS 42 SERVICE_CIRCUIT UNA-O

NCP> DEFINE NODE ARTHUR HARDWARE_ADDRESS AA-00-03-00-00-E1

NOTE

These commands are valid for a VAX/VMS system. The
commands to configure a MicroVMS system are the same,
except that the service line and the service circuit are QNA-0
instead of UNA-O.

The node address and name may have already been specified when your
network was installed, but you should always be sure each node in your
network has a unique address and name. The service circuit is the name
of the host system’s hardware device controller, which connects the host
system to the target machine.

The hardware address is required for downline loading through the
Ethernet and is the Ethernet address contained in read-only memory
on the target machine’s Ethernet hardware controller. This address is
normally printed on the controller board, but if it is not, contact your
DIGITAL field service representative, who can provide the address by
running the controller’s diagnostic package.

Booting and Running a System on a VAXELN Target 5-5

Once the target machine had been added to the host system’s permanent
database, the information should be copied to the current volatile database
using the SET command. For example:

NCP> SET NODE ARTHUR ALL

After the DEFINE and SET ALL commands have been used, the target
machine’s description remains permanently in both databases; that is, the
target machine description remains even across rebootstraps of the host
system.

Note that the DEFINE command requires a system user identification code
(UIC) or SYSPRV privilege, and the SET command requires the OPER
privilege.

5.2.5 Configuring the Bootstrap Loader

The downline load bootstrap loader must be either configured or installed
on the target machine. VAX-11/730- and VAX-11/750-family processors
use the console storage medium (TU58) to store the bootstrap loaders. On
the MicroVAX processors, the downline loader is contained in the boot
read-only memory (ROM).

To install the downline load bootstrap loader on a TU58 console tape,
use the VAXELN NEWBOOT command procedure. This procedure copies
the bootstrap image file (and for VAX-11/730s, a bootstrap command
procedure) to the console medium. This command procedure prompts for
the bootstrap load device (KE=DEUNA), the device containing the console
medium on which the loader is to be installed, and the processor type of
the target machine. For example:

$ SET DEFAULT ELN$
$ GNEWBOOT

Bootstrap device [XE]:
Console media device [CSA1]:
Processor type [730]:
Set default bootstrap? (Y/N) [Y]:

The command procedure copies the loader files to the console medium,
and the loader installation is complete.

Note that writing to the console storage device requires that the storage
device’s driver be loaded, an operation that requires the CMKRNL privi-
lege. It is recommended that you use the NEWBOOT procedure from the
fully privileged system manager account.

5-6 Booting and Running a System on a VAXELN Target

Since the MicroVAX downline loader is contained in its boot ROM, there:
is, strictly speaking, no configuration necessary. However, it may be
useful to set the MicroVAX I CPU’s configuration DIP switches to skip
disk booting, and thus enable unattended downline loading of the target
machine. (See the system configuration section of the MicroVAX I Owner's
Manual for details.)

5.2.6 Downline Loading Procedure

To downline load a target machine, the VAXELN system image file must.
be available to the network software on the host development system,
and the downline load bootstrap loader must be running on the target
machine.

When you build the system with the System Builder, be sure to specify
Downline for the Boot method option of the Edit System Characteristics
menu.

The VAXELN system image file is made known to the network software
by storing its file name in the host system’s network node database using
NCP. For example:

NCP>

The same operation can be performed by the remote debugger as de-
scribed in Section 5.2.8.

Once the system image file has been made known to the network soft-
ware, the downline load bootstrap loader can be started using the console
boot command (“B”) on the target machine. For example, to start the
DEUNA loader on a VAX-11/730, type

>>>

For a VAX-11/750, type

>>>

For a MicroVAX I or II, type

>>>

When the loader starts, it sends a load request message to the host system.
In response to the load request, the network software on the host system
creates a Maintenance Operation Monitor (MOM) process that reads the
specified VAXELN system image file and sends the image file to the target
bootstrap loader.

Booting and Running a System on a VAXELN Target 5-7

When you downline load a machine (in contrast to bootstrapping it from
a disk or read-only memory), you do not need to use the System Builder
to set the node name or node address; as part of the load procedure, the
target machine receives its proper node name and address. Thus, if you
have a system that needs to be run on multiple processors in a network,
the same system image can be used for each machine.

5.2.7 Reloading a Machine That Has the Network Service

Once a VAXELN system is initialized and is running the Network Service,
it is usually not necessary to enter a new boot command on the target
machine’s console. Instead, the remote bootstrap “trigger” function can be
used.

To use this feature, you must set the default bootstrap loader to the
downline load bootstrap loader by setting the default bootstrap selection
switches to the correct read-only loader. On the VAX-11/730, this setting
is performed by the NEWBOOT command procedure. On a VAX-11/750,
set the Default Boot Device switch to “A”; on the MicroVAX I, set the CPU
configuration DIP switch number 1 to “on”.

To trigger a target machine, use the NCP TRIGGER command. (You must
have also built the system with a value of Yes for the Node triggerable
option of the Edit Network Node Characteristics menu.) For example:

NCP> TRIGGER NODE ARTHUR

The trigger function sends a “boot-request” message to the target machine,
which causes the VAXELN datalink device driver to halt execution of
the VAXELN executive and begin execution of the default bootstrap, the
downline load bootstrap loader.

NOTE

If desired, the DEUNA controller on a VAX-11/730 or
VAX-11/750 target machine can be configured to process the
boot-request message and cause the machine to halt by causing
a power-failure sequence.

Therefore, to assure that the VAX-11/730 or VAX-11/750
restarts, you must put the Auto Restart switch in the Boot
position. Note that this implies that a machine that requires
unattended triggering cannot also restart using memory with
a battery backup (that is, it will always rebootstrap when the
power is restored).

5-8 Booting and Running a System on a VAXELN Target

If you encounter problems loading your target machine, the network
event-logging facility on the host system can often be used to locate the
problem. To enable event logging on your host system, use the NCP SET
LOGGING commands.

For example, to enable network event logging to your host’s console
terminal:

NCP> SET LOGGING MONITOR KNOWN EVENTS

NCP> SET LOGGING MONITOR STATE ON

The resulting messages on the console display the maintenance messages
and network state changes observed by the MOM network process. Any
problems opening the VAXELN system image file or communicating with
the target machine are displayed.

5.2.8 Downline Loading Using the VAXELN Remote Debugger

During the VAXELN programming and development cycle, the target
machine is likely to be loaded downline and remotely debugged many
times. To facilitate this operation, the remote debugger can load machines
downline. In fact, using the remote debugger is one of the easiest methods
for downline loading, whether or not you intend to remotely debug your
system.

The /LOAD qualifier on the DEBUG/REMOTE command performs two
functions:

e It causes the specified VAXELN system image file name to be stored in
the network node database.

e It triggers the target machine’s downline load bootstrap loader.

For example, the system TEST.SYS is loaded during a remote debugger
session as follows (you must have the OPER privilege to execute this
command):

$ DEBUG/REMOTE /LOAD=DISK$WORK : [ROBOT]TEST SYS ARTHUR

and the effect of this command is equivalent to the effect of the following
pair of commands (see Section 5.2.7 for information on triggering):

NCP> SET NODE ARTHUR LOAD FILE DISK$WORK {ROBOT]TEST SYS

NCP> TRIGGER NODE ARTHIR

Booting and Running a System on a VAXELN Target 5-9

You can use the /NOCONNECT qualifier on the DEBUG/REMOTE
command if you just want to load without debugging.

See Chapter 6 for a complete description of the remote debugger.

5.2.9 Reloading Production Machines Downline

Once a VAXELN application has been debugged and is installed in
production use, you can continue to use the downline load facilities to
load the target machines. The host’s node database needs to contain a
description of each VAXELN machine and system in the network. The
description should contain all the information described in the previous
sections, including the file name of the production VAXELN system image
file.

The default bootstrap loader on the target machines should be set to the
downline load bootstrap loader, as described in Section 5.2.6. Whenever
a target machine is rebootstrapped (for example, after a power failure or
a serious hardware or software failure), it will be reloaded by the host
system.

5-10 Booting and Running a System on a VAXELN Target

Chapter 6

Debugging VAXELN Ada Programs

This chapter presents information on debugging VAXELN Ada programs
with the VAXELN Remote Debugger. The remote debugger allows you
to debug a program running on a target machine “remotely,” that is, from
a host VAX/VMS system. The host and target must be connected by
Ethernet, as described in the VAXELN Ada Installation Guide. Remote
debugger features include support for most VAX/VMS Debugger (DEBUG)
features, including Ada-specific commands with additional support for
features that allow you to

Get information about job and system resources

Create jobs

Delete jobs

Halt and continue jobs

Change job priorities

You may also wish to refer to Developing Ada Programs on VAX/VMS for
detailed information on debugging VAX Ada programs.

Debugging VAXELN Ada Programs 6-1

6.1 The Debugging Environment

You need to correct your program when any of the following happens:

e The compiler flags errors.

e The linker detects errors.

e The VAXELN System Builder detects errors.

e The run-time library detects errors.

e You determine, based on receiving incorrect output during a program’s
execution, that a logic error exists.

The VAXELN Remote Debugger lets you control the execution of your
program so that you can monitor specific locations, change the contents
of locations, check the sequence of program control, and otherwise locate -
and correct errors as they occur. In the process, the remote debugger lets
you use the same symbolic names that appear in your program to refer
to variables, compilation units, labels, and so on. After you track down
the errors, you can edit your source program and compile, link, EBUILD,
downline load, and execute the corrected version.

6.1.1 VAXELN Remote Debugger Support for VAX/VMS Debugger Features

You can use most VAX/VMS Debugger commands and features with the
VAXELN Remote Debugger with the exception of

¢ SHOW AST
¢ ENABLE AST
¢ DISABLE AST
¢ CTRL/Y DEBUG
¢ SHOW EXIT_HANDLER

Appendix B provides command descriptions for remote debugger com-
mands and a summary of VAX/VMS Debugger commands used with
VAXELN Ada programs.

6-2 Debugging VAXELN Ada Programs

6.1.2 VAXELN Terms and Concepts Related to Debugging

This section lists and defines the terms used in this chapter and presents
a brief discussion of VAXELN concepts used in debugging. Some terms,
such as job and process, have different meanings in VAX/VMS and
VAXELN environments. See Chapter 8 for further discussion.

Ada tasks in the VAXELN environment

In the VAXELN Ada environment, each Ada task is a subprocess of the
Ada main program (the main process) within a VAXELN job. It is also
possible for a VAXELN Ada program to create processes that are not
Ada tasks with the CREATE_PROCESS procedure (for example, a Pascal
process block). See Chapter 8 for further information on the use of tasks
in VAXELN Ada.

In the debugger (and Ada) context, %TASK 0 is the null task and
% TASK 1 is the main program. Each task introduced thereafter by the
Ada program is given the next sequential task number. The main (envi-
ronment) task is equivalent to the master process.

debug-wait state

A debug-wait state is the state that a job or process is in when it is waiting
for the attention of the debugger. A process enters this state when it hits
a breakpoint, tracepoint, or watchpoint or raises an unhandled exception.
Once a process in a job is in a debug-wait state, process-switching is
disabled for the job, so the entire job is considered to be in a debug-wait
state.

A process can be placed into a debug-wait state using the SET JOB/HALT
command.

job

Within a VAXELN system, programs are executed by jobs. Within each
job, a master process executes the main program and zero or more subpro-
cesses. In:the VAXELN Ada environment, each Ada task is a subprocess.
For any job (regardless of how many subprocesses it may create), there is
one and only one image (.EXE). It is also possible for a VAXELN Ada job
to have one or more subprocesses that are not Ada tasks.

All processes in a job share the same PO region. Each process has its own
P1 region.

Debugging VAXELN Ada Programs 6-3

The “family” of a master process and any of its subprocesses is a job
in VAXELN terminology. Jobs can be created dynamically to execute
a specific program that was included with the System Builder. You
can create jobs with the CREATE_JOB procedure or with the debugger
command CREATE JOB.

One copy of a program’s code is shared by any number of jobs executing
that program. A System Builder option also allows you to specify which
jobs should be created by the kernel when the system is started, to
run designated programs in the system and, as an additional option, to
perform initialization sequences before other jobs are allowed to execute.
The options are detailed in Chapter 4.

job specifier

A job specifier identifies a VAXELN job, a set of jobs, or a process within a
job. The job specifier may be a job ID or program name and may contain
wildcards. The syntax for a job specifier for a job can be

job_ID (4)
job_ID.n (4.1)
job_name (server)
job_name.n (server .1)

where 1 is a process number in that job.

If multiple jobs are running the same program, then the program name
will not identify a unique job. Use the job ID to uniquely identify a
particular job.

process

Processes are the execution agents for VAXELN programs or for concur-
rently scheduled parts of programs. The “main” thread of execution for a
program is executed by a master process, created implicitly by the kernel
when the program is started. In VAXELN Ada, this thread is called the
environment task.

command session

A command session is used to enter commands that are directed to a
specific job. This session is a dialog between you and a specific job
running on the target system. Command sessions are started with the SET
JOB/CURRENT command. The command session prompt is

RDBG>

6-4 Debugging VAXELN Ada Programs

Only one command session may be active at a time. To end a command
session and begin a new one, use the SET JOB/CURRENT command.
Note that when a command session is ended, the context of that command
session is discarded, including watchpoints, breakpoints, and tracepoints,
and the job is left in whatever state it was in prior to the termination of
the command session.

system session

The system session is used to enter commands when the process being
debugged is not waiting for debugging input. This session does not permit
a debugging dialog with a specific job; that is, commands entered in the
system session are not directed at any particular job. The system session
prompt is

RDBG*>

The system session is the current session when there is no command
session, or when CTRL/C was pressed during a command session. Only
general debugging commands are allowed in the system session. Many
commands, such as EXAMINE, DEPOSIT, STEP, and GO are not allowed.

6.2 Compiling and Linking Programs for Debugging

In VAXELN Ada, as in VAX Ada, to execute a program with the debugger,
you first compile and link the program with the /DEBUG qualifier. The
/DEBUG qualifier is a default to the DCL ADA command and ACS
COMPILE and RECOMPILE commands, so normally you should only
have to link your program with the /DEBUG qualifier. In the following
example, the /DEBUG qualifier is appended to the ADA command only
for emphasis.

For example,

$ ADA /DEBUG MY_PROGRAM

The /DEBUG qualifier on the ADA and any of the compilation commands
requests the compiler to write the symbol records associated with the
units being compiled into the resulting object modules. These records
permit you to specify in debugging commands the names and other
identifiers declared in your program—that is, the names of any variables,
subprograms, packages, and so on.

Debugging VAXELN Ada Programs 6-5

If you use the ADA or compilation commands with the /NODEBUG
qualifier, only symbol records for global symbols are included in the object
modules. Global symbols consist of any names that the program exports
to modules in other languages by means of an export pragma: EXPORT
PROCEDURE, EXPORT_FUNCTION, EXPORT_OBJECT, EXPORT_
EXCEPTION, and PSECT_OBJECT.

While debugging, you will probably want to refer to the source code
of the program, either in a debugger-generated display (see the screen
mode description in the VAX/VMS Debugger Reference Manual) or in a
listing file (.LIS). To obtain a listing file, use the /LIST qualifier with your
compilation command.

After compiling a program, you must link it using the /DEBUG qual-
ifier ACS LINK command. If the system name has not been specified
with the pragma SYSTEM_NAME or with the ACS SET PRAGMA
/SYSTEM—NAME= command, then you must specify the /SYSTEM—
NAME=VAXELN qualifier to the ACS LINK command as well. This links
the program against the VAXELN Ada run-time library and the VAXELN
system libraries.

For example,

¢ ACS LINK/DEBUG/SYSTEM_NAME=VAXELN MY_PROGRAM

Invoking VAX/VMS Linker

The /DEBUG qualifier on the ACS LINK command requests the linker to
include in the executable image all symbol information that is contained
in the object modules.

6.3 Setting up the Remote Debugger Environment

After you have developed the programs needed by a VAXELN system,
you create the system image using the VAXELN System Builder Utility
(EBUILD). To use the remote debugger, you must build the VAXELN
system image to include remote debugging capabilities. This section
describes how various system characteristics affect the VAXELN Remote
Debugger, and how to select debugging options for programs in the
system. For more information on using the VAXELN System Builder, see
Chapter 4 or the VAXELN User’s Guide.

You create a VAXELN system image with the VAXELN System Builder
Utility, using the DCL command EBUILD. The format for this command is

EBUILD [/qualifier(s)] data_file

6-6 Debugging VAXELN Ada Programs

Issuing the EBUILD command places you at the Main menu (see
Figure 6-1) for the VAXELN system you are creating. From this menu,
you may choose options to describe or modify system contents and
characteristics.

Figure 6-1: Main System Menu

System image SAMPLE

Debug Local

Console Yes

Instruction emulation String

Boot method Disk

Disk/volume names

Guaranteed image list

Page table slots 64

Remote Both None

No

Float Both None

ROM Downline

ZK-4858-85

6.3.1 System Characteristics

Characteristics that control the overall properties of the system can be
selected from the System Characteristics menu. To access this menu,
choose the Edit System Characteristics option from the Main menu.

Debugging VAXELN Ada Programs 6-7

Remote debugging is affected by the following system characteristics:

e Debug—tThe options specify which debuggers are built into the system,
if any. Including a debugger during the development of a system is
useful even if no program description has the debug option. This
ensures that the debugger gains control in the event of an exception
that is not handled by a program.

Menu Option Description

Local Designates the local debugger image EDEBUGLCL
is included. This allows you to enter EDEBUG
commands from the hardware console device.

Remote Designates the remote debugger image (EDEBUGREM),
for use with either the EDEBUG utility or the remote
debugger.

Both Designates that both the local debugger image and
remote debugger image are included for use with
either the EDEBUG utility or the remote debugger.

e Console—The console parameter specifies whether a console driver
should be included in the VAXELN system image. Note that the
console driver is included implicitly if the Local or Both debug option

is in effect.

Menu Option Description

Yes Specifies that a console driver should be included in
the system. Console input-output is directed to the
hardware console device.

No Specifies that a console driver should not be included
in the system. Console input-output is directed to
the remote debugger.

If the console driver is not included in the VAXELN system image, the
remote debugger directs all output to the output display and the log
file, if logging is enabled. The remote debugger uses a special prompt
to indicate that a remote console input request needs to be satisfied.

6-8 Debugging VAXELN Ada Programs

Boot Method—Selects the method by which the finished system is
booted on the target machine. The default is downline.

Menu Option Description

Disk Specifies that the target system will be booted from
disk.

ROM Specifies that the target system will be booted from
read-only memory. The ROM method is normally
only used when an application has been fully
debugged.

Downline Specifies that the target system will be loaded
downline.

Node triggerable Specifies whether the downline load triggers are
enabled. Selecting Yes, the default, means that the
system can be remotely triggered.

Virtual Size—Selects the maximum size, in 512-byte pages, of each
PO and P1 region on the system. The value is used by the kernel to
allocate process page tables for each job and process.

Value Description

default value The default value for a job’s PO region and for each
process’s P1 region is 1024 pages.

maximum value The maximum value is 32,640 pages for a job’s PO
region and an equal amount for each process’s P1
region.

The remote debugger uses this value to determine how much of its
PO space must be reserved to map the VAXELN process’ P0 space.
The default Virtual Size values will allow the remote debugger to run
on the VAX/VMS system without changing the default VAX/VMS
VIRTUALPAGECNT SYSGEN parameter (VAXELN systems with
higher Virtual Size values may require the SYSGEN parameter to be
increased so that the remote debugger may allocate enough virtual
memory to map both the remote virtual memory and virtual address
space needed to contain the debugger).

Debugging VAXELN Ada Programs 6-9

Note that the Virtual Size value is used by the VAXELN kernel
when allocating page tables for each job and process on the sys-
tem. Therefore, if this value is large to satisfy the requirements of a
single program, the remote debugger must allocate large amounts of
virtual memory to debug any program on the system even though the
program being debugged only uses very little virtual memory.

6.3.2 Program Descriptions

Each executable image (.EXE) included in the system must be described
in a program description. To access the Program Description menu, select
the Edit Program Description or Add Program Description option from
the Main menu. Both options allow you to select a debug option that
determines whether this program should begin execution under debugger
control.

¢ Debug—Choose “Yes” or “No” to select whether this program will
begin execution under control of the debugger. “Yes” is the default.

Menu Option Description

Yes Select “Yes” if you want any VAXELN job that runs this
program to give control directly to the debugger.

No Select “No” if you want any VAXELN job that runs
this program to execute immediately without debugger
intervention. (Even if the program is executed without
having given control first to the debugger, a subsequent
unhandled exception can give control to the debugger;
this includes asynchronous exceptions that may be raised
using the debugger command SET JOB/HALT.)

6.4 Using the VAXELN Remote Debugger

The remote debugger allows you to use most standard VAX/VMS
Debugger commands, with the addition of a command set designed
for use in remote debugging. The remote debugger also lets you use Ada-
specific debugging commands, such as SHOW TASK. These commands are
described fully in Developing Ada Programs on VAX/VMS and summarized
in Appendix B of this book.

6-10 Debugging VAXELN Ada Programs

The remote debugger uses the logical names RDBG$INPUT and
RDBG$OUTPUT for input-output. They are usually assigned to
SYS$INPUT and SYS$OUTPUT respectively. This allows remote de-
bugger commands to be entered with VAX/VMS command procedures.

The following sections present an overview on starting and terminating
sessions with the remote debugger. Topics include

e The DEBUG/REMOTE command

¢ Downline loading files

e Using HELP

e Exiting a remote debugger session

e Interrupting and reinvoking the remote debugger —

e Invoking and exiting command and system sessions

6.4.1 The DEBUG/REMOTE Command

The DCL command DEBUG/REMOTE invokes the remote debugger. To
use the remote debugger the host system must be connected to the target
machine by Ethernet. You can specify any node connected to the host
system as the node from which the session is to be conducted. You can
also use the DEBUG/REMOTE command to load new systems from the
host to the target node, to start systems with or without the debugger in
control, and to reconnect to nodes that were loaded previously. Section
6.9 illustrates use of this command.

The DEBUG/REMOTE command has the format

DEBUG/REMOTE [/optional_qualifier(s)] node_name

Debugging VAXELN Ada Programs 6-11

The optional qualifiers are

Option Description

/{NO]JCONNECT Controls whether you can enter debug-
ging commands. /CONNECT is the
default.

/{NO]GO Controls whether jobs that initially
require debugging continue in their
execution or are left suspended. /NOGO
is the default.

/LOAD=file_specification Controls whether the file specification
that names a VAXELN system image
should be downline loaded to the target
node.

For example,

$ DEBUG/REMOTE ARTHUR

invokes the remote debugger in debugging programs of the target node
ARTHUR. The prompt

RDBG*>

indicates that you are in a remote debugging system session and can enter
remote debugging commands.

Use of the /LOAD qualifier alone and in combination with other qualifiers
is presented in the next section.

6.4.2 Downline Loading During Debugging

During the VAXELN programming and development cycle, the target
machine is likely to be loaded downline and remotely debugged many
times. To facilitate this operation, the remote debugger can load machines
downline.

The downline load operation may be performed using the DCL command

DEBUG/REMOTE /LOAD=file_specification node_name

The /LOAD qualifier stores the specified system image file name in the
host system’s network node database and triggers the target machine’s
downline load bootstrap loader.

6-12 Debugging VAXELN Ada Programs

The following table describes the effect of using the /LOAD qualifier
alone and in combination with other DEBUG/REMOTE qualifiers.

Format Function

DEBUG/REMOTE /LOAD=file_spec node_name Sets the load file
for the target node and
triggers it with the remote
debugger in control.

DEBUG/REMOTE /LOAD=file_spec /GO node_name Sets the load file for the target
node and triggers it with the
remote debugger in control.
Issues the equivalent of the
GO command for each job in a
debug-wait state.

DEBUG/REMOTE /LOAD=file_spec /NOCONNECT node_name Sets the load file
for the target node
and triggers it.
Returns immediately to DCL.
No debug dialog takes place.

6.4.3 Using HELP

At any time during a remote debugging session, you can get on line HELP
by using the HELP command. For example, if you type HELP STEP at
a remote debugger prompt, the debugger displays information about its
STEP command. Type the HELP HELP command to obtain information
on using the HELP facility.

6.4.4 Exiting from the Remote Debugger

You can leave a remote debugging session by typing the EXIT or QUIT
commands, or by pressing CTRL/Z at either the command or system
session prompt.

The EXIT or QUIT commands, and CTRL/Z all cause the orderly termina-
tion of the debugging session.

When you leave a remote debugging session, any tracepoints, breakpoints,
and watchpoints from that command session are lost and the program is
left in its current state from the time you terminated the command session.

Debugging VAXELN Ada Programs 6-13

Pressing CTRL/Y interrupts the remote debugger and brings you back to
the DCL prompt.

6.4.5 Interrupting and Reinvoking the Remote Debugger

If you wish to temporarily exit the remote debugger without losing the
session’s context, use the SPAWN or ATTACH command to create a
subprocess or switch to an existing process. For example:

RDBG> SPAWN MAIL

MAIL> EXIT
Z“RDEBUG-I-RETURNED, control returned to process...

Note that when you leave the subprocess and recommence the remote
debugging session, you return to the previous point in the command
session and that any watchpoints, breakpoints, or tracepoints that were set
still exist.

6.4.6 Interrupting and Restarting a Remote Debugger Command Session

If the command session is not waiting for input (for example, if the job
attached to the command session is running), you can press CTRL/ Ci to
enter the system session. For example

RDBG> GO
CTRL/C

RDBG*> SET JOB/HALT

RDBG>

6.4.7 Exiting from a Remote Debugger System Session

There are three ways to leave a system session.

e To return to DCL level from a system session, type the EXIT or QUIT
commands, or press CTRL/Z.

e¢ To begin a new command session, type the SET JOB/CURRENT
command.

e To return to an active command session, press the RETURN key at the
RDBG*> _ prompt.

6-14 Debugging VAXELN Ada Programs

6.4.8 Console Input-Output

Remote console input and output requests are only processed when there
is no debugger prompt displayed. Console output is prefixed with the
node name enclosed in square brackets. Console input uses a prompt that
consists of the node name followed by an angle bracket. For example,

RDBG> GO
[ALLUDE] Enter today's date
ALLUDE> 09-AUG-1986

[ALLUDE] Today's date is 09-AUG-1986

6.5 Monitoring Job and System Activity

In addition to support for DEBUG commands, the remote debugger
provides commands that allow you to monitor system activity, create and
delete jobs, control job execution, and select jobs for debugging.

6.5.1 Monitoring System Activity

In order to monitor the overall execution of the system, you can use the
SHOW SYSTEM command. This provides a list of the jobs running on the
system, and their current status. For example:

RDBG*> SHOW SYSTEM

Job Program Priority State Shared Size Readonly size

2 XQDRIVER 1 waiting 31232 30208

3 EDEBUGREM 3 running 5120 11264

4 EXAMPLE_B 5 waiting 35832 26894

& EXAMPLE_A 5 waiting 32768 30208

To get information about specific jobs, use the SHOW JOB command. To
get information about each process that makes up the job, use the SHOW
JOB/FULL command.

Debugging VAXELN Ada Programs 6-15

For example:

RDBG+> SHOW JOB EXAMPLE_A

Job Program Priority State Shared Size Readonly size

5 #EXAMPLE_A 5 waiting 32768 30208

RDBG*+> SHOW JOB/FULL EXAMPLE

Job Program Priority State Shared Size Readonly size

5 EXAMPLE_A 5 waiting 32768 30208

Process Priority State Stack Size CPU time

1 1 waiting 2560 00:00:11.21

2 8 waiting 2560 00:00:00.17

3 2 waiting 2560 00:00:00.06

4 4 waiting 2560 00:00:02.32

10 8 waiting 2560 00:00:00.16

6.5.2 Creating Jobs

It is often useful to introduce new jobs to the running system while
debugging a VAXELN system. The remote debugger provides commands
to create jobs. Jobs may be created from programs that are already present
in the VAXELN system, or from program images loaded into the VAXELN
system prior to creating the job.

To create a job running a program that was included in the VAXELN
system image, use the CREATE JOB command. This command is useful
when a job exits and you wish to rerun the program, perhaps with
tracepoints and breakpoints set to monitor execution.

To create a job running a program that was not included in the VAXELN
system image, use the CREATE JOB/LOAD command. The /LOAD
qualifier allows you to load a program image from a file that is accessible
from the target node prior to creating a job running that image. This
command is useful when you wish to try a new version of a program
without rebooting the VAXELN system.

For example, if you were to find a bug in a program running on the target
system, you could edit the source program, compile and link the program,
and create a new job running the corrected program.

When using the /LOAD qualifier with the CREATE JOB command, you
may also specify the kernel stack size (/KERNEL_—STACK) and starting
job priority (/PRIORITY) that will be used for jobs running the program.

6-16 Debugging VAXELN Ada Programs

Note that once a program image is loaded using the CREATE JOB/LOAD
command, you may create other jobs running that program without
loading new copies of the program image. In this case, the /LOAD
qualifier may be omitted unless you deleted the program from the system
using the DELETE JOB/UNLOAD command.

For example:

RDBG+> CREATE JOB EXAMPLE /LOAD=DUAO [EXES]EXAMPLE EXE /PRIORITY=6

Job 4 (EXAMPLE) is waiting for your attention

The program image is loaded from the file DUA0:[EXESJEXAMPLE.EXE
on the target system. The job is created with a starting job priority of 5.
Note that the file is opened in the context of the target system.

RDBG*> CREATE JOB EXAMPLE |
Job 5 (EXAMPLE) is waiting for your attention

The job is created using the program image loaded in the previous exam-
ple. Since a priority of 5 was specified when the program was loaded, this
job is also created with a starting job priority of 5.

6.5.3 Deleting Jobs from a VAXELN System

You can delete jobs that are running on a target system with the DELETE
JOB command. All objects owned by the process, including subprocesses,
are deleted; all open files are closed.

To unload a program image that was loaded by using the CREATE JOB
/LOAD command or by the LOAD_PROGRAM procedure, described in
Appendix A, the /UNLOAD qualifier may be used. Note that the program
is only unloaded when all jobs running that program have exited.

For example:

RDBG*> DRIFTER IOP EXAMPLE UNLUAI

This command deletes the job EXAMPLE from the system. The
_ JUNLOAD gualifier indicates that this program, which was loaded us-

ing the CREATE JOB/LOAD command, should be unloaded when the
program exits.

You must be careful not to delete jobs such as EDEBUGREM (the remote
debugger nucleus), or XQDRIVER (the network driver), because the
VAXELN Remote Debugger will then not be able to communicate with the

- target system.

Debugging VAXELN Ada Programs 6-17

6.5.4 Selecting a Job to Be Debugged

When the remote debugger is invoked, it displays a list of all jobs that are
in a debug wait state. A job is in a debug wait state when it has a process
that:

1. Is starting under debugger control

2. Raised an unhandled exception

3. Is waiting at a breakpoint

4. Is waiting at a tracepoint

Under normal circumstances, the last two states, at a breakpoint, or
at a tracepoint, occur only if a command session was left in that state
previously. This may happen if you exit from the remote debugger when
the command session is stopped at a breakpoint.

The SET JOB/CURRENT command may be used to begin a command
session with any job that is in a debug wait state. If the program is not
in a debug wait state, then the SET JOB/HALT command may be used to

_ put that job in a debug wait state.

For example:

RDBG+> SHOW JOB EXAMPLE*

Job Program Priority State Shared Size Readonly size

4 EXAMPLE_A 5 waiting 3584 66560

6 EXAMPLE_B 8 debug-wait 3584 66560

RDBG+> SET JOB/CURRENT EXAMPLE_B

“%RDEBUG-I-SESSION_INIT, Loading symbols for Job 6. (EXAMPLE_B)
ZRDEBUG-I-FROM, from file TESTD: [EXE] EXAMPLE_B.EXE; 1

“%RDEBUG-I-INITIAL, language is ADA, module set to 'EXAMPLE'

“4RDEBUG-I-NOTATMAIN, type GO to get to start of main program
RDBG>

Of the jobs listed previously, only job EXAMPLE_B is currently ready
to begin a command session. If you wanted to begin a command session
with job EXAMPLE_A, then you would have to use the SET JOB/HALT
command first.

The program image file that was supplied to the System Builder must
be available to the remote debugger so that it can read in the symbol
table information from it. The file must be local to the host system. The
target system provides the remote debugger with the program image
file specification that the System Builder used when building the system
image. If the file has moved, then the /IMAGE qualifier must be used

6-18 Debugging VAXELN Ada Programs

with the SET JOB/CURRENT command to indicate where the file may
currently be found. If the program was loaded using the CREATE JOB
/LOAD command, then the /IMAGE qualifier must be used to indicate
where the file may be found.

For example:

RDBG*> CREATE JOB EXAMPLE /LOAD=DUAO: [EXES] EXAMPLE. EXE
Job 5 (EXAMPLE) is waiting for your attention

Here, since the file specified with the /LOAD qualifier is opened in the
context of the target system, the file is loaded from DUA0:[EXESJEXAMPLE.E»
on the target node.

RDBG*> SET JOB/CURRENT/IMAGE=([LOCAL_EXES] EXAMPLE.EXE EXAMPLE

7RDEBUG-I-SESSION-_INIT, Loading symbols for Job 6. (EXAMPLE_B)

“%RDEBUG-I-FROM, from file TESTD: [LOCAL_EXES] EXAMPLE. EXE; 1

“%RDEBUG-I-INITIAL, language is ADA, module set to ‘EXAMPLE’
“%RDEBUG-I-NOTATMAIN, type GO to get to start of main program
RDBG>

The /IMAGE qualifier may then be used with the SET JOB/CURRENT
command to specify the local copy of the executable image that the remote
debugger may use.

You should take great care that the file specified with the /IMAGE
qualifier is the same as the one running on the target node. Otherwise,
the symbol table information used to debug the program will not match
the actual program that is running on the target system.

6.5.5 Controlling Execution of Jobs

It is often useful to debug a particular job in isolation from other jobs
in the system. You can use the SET JOB/HALT command to freeze the
state of jobs in the system. This causes the specified jobs to raise an
asynchronous debug exception, thus placing the job or jobs in a debug
wait state. By using wildcards and job lists you can stop the execution of
several jobs using one command. For example:

RDBG> SET JOB/HALT JOB_A,JOB_B, *SERVER, 7

You must be careful not to halt jobs such as EDEBUGREM (the remote
debugger nucleus), or XQDRIVER (the network driver), as the remote
debugger will then not be able to communicate with the target system.

Debugging VAXELN Ada Programs 6-19

In order to continue execution of jobs that are in a debug wait state, the
SET JOB/CONTINUE command may be used. This has the effect of
executing a GO command for the process that put the job in a debug
wait state. If the job is associated with the command session, then the
command session is ended and the system session is reentered.

By using wildcards and job lists, it is possible to continue the execution of
several jobs using one command. For example:

RDBG> SET JOB/CONTINUE JOB_A,JOB_B, *SERVER ,7

6.5.6 Changing Job Priorities

The SET JOB/PRIORITY command may be used to assign new priorities
to jobs running on the target system. This allows you to try different job
priority combinations without rebuilding or rebooting the VAXELN system
each time a change is made. The job must be in a debug wait state to use
this command. For example:

RDBG*> SHOW JOB 4

Job Program Priority State Shared Size Readonly size

4 SQRT_SERVER 16 debug-wait 3584 66660

RDBG+> SET JOB/PRIORITY=14 4

RDBG+> SHOW JOB 4

Job Program Priority State Shared Size Readonly size

4 SQRT_SERVER 14 debug-wait 3584 66560

The priority of Ada tasks (which are implemented as VAXELN processes)
may be changed using the SET TASK/PRIORITY command.

6.6 Controlling Program Execution

You can enter commands by typing in the command name or by using the
keypad. When you use the keypad, you can use the predefined VAX/VMS
Debugger functions that are set when you invoke the debugger, or you
can redefine the commands associated with the keys.

Note that VAX/VMS Debugger commands that control program execution
can only be used in a remote debugger command session.

6-20 Debugging VAXELN Ada Programs

6.6.1 The GO command

Use the GO command to start program execution after invoking the
remote debugger with the DEBUG/REMOTE command and beginning a
command session, and to resume program execution any time thereafter—
that is, whenever the program has been suspended for any reason and the
remote debugger command session prompt (RDBG>) is displayed.

When you run a VAXELN Ada program under debugger control, execution
is suspended initially before the elaboration of library packages. This gives
you the option to control and observe the package elaboration phase by
using the techniques described in the next sections.

6.6.2 Breakpoints, Tracepoints, and Watchpoints

The sequence of events when your program encounters a breakpoint is
as follows: the debugger suspends program execution, displays the line
number and source line (or instruction) where the breakpoint occurred,
executes any DO command sequence (if specified), and prompts for a
command. For example:

RDBG> SET BREAK {LINE 37 DO (EXAMINE TEST_RESULT)

RDBG> GO
break at COUNTER.%LINE 37

37: end loop;

COUNTER.TEST_RESULT: 253.02 ~
RDBG>

As with breakpoints, every time a tracepoint is reached, the debugger
issues a message and displays the source line. However, the program
continues executing past the tracepoint.

To display the currently active breakpoints or tracepoints, use the SHOW
BREAK or SHOW TRACE command, respectively. For example:

RDBG> SHOW BREAK

breakpoint at COUNTER.%LINE 37
RDBG>

To cancel a breakpoint or tracepoint, use the CANCEL BREAK or
CANCEL TRACE command, respectively, specifying the program loca-
tion exactly as you did when setting the breakpoint or tracepoint. The
CANCEL BREAK/ALL command cancels all breakpoints. The CANCEL
TRACE/ALL command cancels all tracepoints.

Debugging VAXELN Ada Programs 6-21

A breakpoint suspends execution at the first byte of the specified location,
so that the instruction beginning at that location does not execute. If you
set a breakpoint on a subprogram, the call to the subprogram is executed
before the debugger takes control and issues the message “routine break
at routine NAME”. Note that all breakpoints are lost when exiting the
remote debugger and the program is left in a suspended state.

The SET WATCH command lets you specify program variables that the
debugger will monitor as your program executes. This process is called
setting watchpoints. If the program modifies the value of a “watched”
variable, the debugger informs you by suspending execution and display-
ing information. The debugger monitors watchpoints continuously during
program execution. Note that the SET BREAK/MODIFY command is
identical to the SET WATCH command.

When using the SET WATCH command, the address expressions you
specify as parameters are variable names. This is in contrast to using the
SET BREAK or SET TRACE commands, where the address expressions you
specify as parameters are program locations (line numbers, subprograms,
labels, and so on). For example, the following command sets a watchpoint
at the variable TEST_RESULT:

RDBG> SET WATCH TEST_RESULT

RDBG>

Subsequently, every time the program modifies the value of TEST_
RESULT, the watchpoint is activated.

Like the SET BREAK and SET TRACE commands, the SET WATCH
command accepts optional DO and WHEN clauses.

The sequence of events when your program modifies the contents of a
watched variable is as follows: The debugger suspends program execution;
displays the location of the watched variable (line number plus byte
offset), the source line, and the old and new values of the variable;
executes any DO command sequence (if specified), and prompts for a
command. The following example sets a watchpoint on the variable X in
the module SCREEN _IO and starts execution:

RDBG> SET WATCH X

RDBG> GO

watch of SCREEN_IO.X.%LINE 13+3

13: X := XK +i;

old value: 16

new value: 17

break at SCREEN_IO.%LINE 14

14: SWITCH(X,Y);
RDBG>

6-22 Debugging VAXELN Ada Programs

As with breakpoints and tracepoints, you use the SHOW WATCH and
CANCEL WATCH commands to display and cancel the currently active
watchpoints.

Note the following restriction when setting watchpoints. As for VAX
Ada, you can set watchpoints only on statically allocated variables. The
only variables that are statically declared are those declared in library
packages. Thus, you can set watchpoints only on variables that are
declared in a library package specification or in the declarative part of that
package’s body. You cannot set watchpoints on variables that are declared
in subprograms or tasks, or in packages nested within subprograms or
tasks. Such variables are dynamically allocated, either on the stack or
in registers. If you try to set a watchpoint on a variable whose storage
is dynamically allocated, the debugger issues a message such as the
following:

“%RDEBUG-W-BADWATCH, cannot watch protect address OOOOE898

6.7 Using the Kernel Debugger

This section describes how to invoke the kernel debugger when the system
is booted and how to invoke the kernel debugger on a running system.
You must set the system characteristic Debug to “local” or “both” to use
the kernel debugger.

The kernel debugger is of use in cases where you need to set breakpoints
and examine locations in the VAXELN kernel image. You must do kernel
image debugging from the VAX hardware console terminal. See the
VAXELN User’s Guide for more information.

6.7.1 Invoking the Kernel Debugger at Boot Time

Type the following at the VAX hardware console to boot the system under
control of the kernel debugger:

>>> B/4 <device>

The following example shows how to downline load and boot a VAXELN
system on a MicroVAX I, with the kernel debugger getting control during
the system initialization sequence. The GO command is used to leave the
kernel debugging session.

Debugging VAXELN Ada Programs 6-23

>>> B/4 XQAO

ATTEMPTING BOOTSTRAP

Kernel Edebug V2.1-00

Kernel Breakpoint.

8000122B: NOP
Kernel Edebug> 60

VAXELN V2.1-03

6.7.2 Invoking the Kernel Debugger on a Running System

Place the VAX processor in hardware console mode (on the MicroVAX,
this is accomplished by pressing the HALT button twice; for other VAX
processors, the appropriate hardware manual should be consulted).

Type the following at the VAX hardware console:

>>> D/I 14 5

>>> C

This invokes the kernel debugger and causes the following message to be
displayed on the hardware console device:

Kernel Breakpoint

8000122B: NOP
Kernel Edebug>

Note that if the local debugger was not included when the system was
built, (that is, if debug=none or debug=remote was specified), the com-
mands listed previously are ignored.

6.8 Ada Tasking and Remote Debugging

This section discusses considerations in Ada tasking and remote debug-
ging. The remote debugger performs an automatic stack check for Ada
tasks whenever the debugger is in control and checks the amount of stack
space in use in any task, thus immediately detecting stack overflow.

This is true only for the job associated with the command session.

6-24 Debugging VAXELN Ada Programs

6.8.1 Stack Storage

As pointed out in the VAX Ada Programmer's Run-Time Reference Manual,
an undetected stack overflow can occur in certain circumstances, and can
lead to unpredictable execution. To help you detect these kinds of stack
problems, the remote debugger performs automatic stack checks as you
use it.

If the stack pointer is out of bounds, the remote debugger displays an error
message. The stack check is performed for the active task after a STEP or
BREAKPOINT event triggers (except if /SILENT is used). The stack check
is also performed for each task whose state is displayed in a SHOW TASK
command—hence, a SHOW TASK/ALL automatically checks the stack of
all tasks.

The following are samples of the error messages that the remote de-
bugger displays when a stack check fails. Note that a warning is issued
when most of the stack has been used up, even if the stack has not yet
overflowed.

warning: %TASK 2 has used up over 90% of its stack

SP: 0011194C Stack top at: 00111200 Remaining bytes: 1868

error: %4TASK 2 has overflowed its stack

SP: O010E93C Stack top at: 00111200 Remaining bytes: -10436

6.8.2 Monitoring Tasking Performance

Information derived by using the debugging command SHOW TASK
/STATISTICS/FULL can be useful in measuring the effects of any changes
you may make to improve task performance. For example,

Debugging VAXELN Ada Programs 6-25

RDBG> SHOW TASK/STATISTICS/FULL

task statistics

Entry calls = 65 Accepts = 2 Selects = 2

Tasks activated = 3 Tasks terminated = 2

ASTs delivered = 0 Hibernations = 1

Locks tested = 86 Locks that blocked = 21, 24%

Total schedulings

Due to readying a higher priority task

Due to task activations

Due to suspended entry calls

Due to suspended accepts

Due to suspended selects

Due to waiting for a DELAY

Due to scope exit awaiting dependents

Due to exception awaiting dependents

Due to waiting for I/0 to complete
Due to delivery of an AST

Due to task terminations

Due to shared resource lock contention

n
m
u
u
w
t
t

a
u
s
t

W
W

ot

O
N

O
W
r
R
P
O
r
F
P

F
P
N

C
1

W

The SHOW TASK/FULL command provides detailed information about
each task selected for display. For example,

RDBG> SHOW TASK/FULL 4%TASK 1, “TASK 2

task id pri hold state substate task object

* ZTASK 1 7 SUSP 1690144

Task type: MAINSTASK
Created at PC: 19800

Parent task: “TASK O
Start PC: 19800

Task control block: Stack storage (bytes):
Task value: 159824 RESERVED_BYTES : 10640

Entries: 0 TOP_GUARD_SIZE: 5120

Size: 1440 STORAGE_SIZE: 30720

Stack addresses: Bytes in use: 632

Top address: 0001F800

Base address: OOO26FFC Total storage: 47920

6-26 Debugging VAXELN Ada Programs

task id pri hold state substate task object

“4TASK 2 4 SUSP Accept 100352

Awaiting rendezvous at: accept SQRT_ENTRY

having do part at address 0000211C

Task type: SQRT_TASK

Created at PC: SQRT_SERVER.LOOP$397.{%LINE 424+71

Parent task: “~TASK 1
Start PC: SQRT_SERVER . SQRT_TASK$TASK_BODY

Task control block: Stack storage (bytes):
Task value: 161424 RESERVED_BYTES : 10640

Entries: 1 TOP_GUARD_SIZE: 5120

Size: 1453 STORAGE_SIZE: 6144

Stack addresses: Bytes in use: 792

Top address: O002BC00

Base address: OO002D3FC Total storage: 23357

6.9 Sample Remote Debugging Session

This example shows a typical debugging session for a VAXELN Ada
program. It illustrates the purpose of system sessions and command ses-
sions, and shows the use of remote debugger commands and VAX/VMS
Debugger commands in obtaining VAXELN and VAX Ada information. It
also illustrates system loading from the remote debugger.

The program in this example is the square-root server presented in
Chapter 2. It shows how a simple network-wide multithread server
can be implemented using VAXELN Ada and VAXELN kernel service
routines.

The server uses a global VAXELN job port to receive VAXELN circuit
requests for square-root calculations from other VAXELN jobs. When the
server receives a request, it connects the requestor (using a VAXELN cir-
cuit) to a dedicated Ada server task that computes one or more square root
values, depending on the requestor’s needs. When a server task detects
that its service is ended (the circuit with the requestor is disconnected), the
task makes itself available for another requestor and more computations.

The square-root calculations are passed as VAXELN messages between the
requestor and its Ada server task. Each message contains one floating-
point value.

Debugging VAXELN Ada Programs 6-27

Example 6-1: Debugging a VAXELN Ada Program

oO SDEBUG/REMOTE ARTHUR /LOAD=SQRT_SERVER . SYS

VAXELN Remote Debugger Version V1.0-00

“%RDEBUG-I-ATTEMPT_LOAD, Setting load file for node ARTHUR 1

to TESTD: [ADA.EXE] SQRT_SERVER.SYS;

“%RDEBUG-I-TRIGGER, Triggering node ARTHUR
“%RDEBUG-I-ATTEMPT_CONNECT, Connecting to node ARTHUR 2
“~RDEBUG-I-RETRY_CONNECT, Retrying connect to node ARTHUR

“%RDEBUG-S-CONNECTION, Connected to node ARTHUR
Job 4.1 (SQRT_SERVER) is waiting for your attention 3
“%RDEBUG-S-SET_TIME, System time set on node ARTHUR 4
RDBG*> 5

@ RDBG*>sHOW SYSTEM

Job Program Priority State Shared Size Readonly size

2 XQDRIVER 1 waiting 31744 30720

3 EDEBUGREM 3 running 4608 11776

4 SQRT_SERVER 16 debug-wait 4608 93696

© RDBG*>sET JOB/CURRENT SQRT_SERVER
4RDEBUG-I-SESSION_INIT, Loading symbols for Job 4. (SQRT_SERVER)
-RDEBUG-I-FROM, from file TESTD: [ADA.EXE] SQRT_SERVER. EXE; 1

“4RDEBUG-I-INITIAL, language is ADA, module set to 'SQRT_SERVER'

“%RDEBUG-I-NOTATMAIN, type GO to get to start of main program
RDBG>

RDBG>¢o

break at routine SQRT_SERVER

53: procedure SQRT_SERVER is

0 RDBG>sTEp

stepped to SQRT_SERVER.%LINE 66
66: entry SQRT_ENTRY(TASK_ARRAY_INDEX : TASK_INDEX);

RDBG>sTEP 9
stepped to SQRT_SERVER.%LINE 330

330: begin

© RDBG>EXAMINE NUM_ACTIVE_SERVER_TASKS
SQRT_SERVER . NUM_ACTIVE_SERVER_TASKS: 0

© RDBG>sET BREAK /EVENT=ACTIVATING
OQ RDBG>¢g

[CTRL/C]
RDBG*>CREATE JOB SQRT_SERVER_TESTER 3

RDBG*> [RETURN] 4
break on ADA event ACTIVATING 5

Task 4TASK 2 is about to begin its activation

Its task body is at: SQRT_SERVER.SQRT_TASK$TASK_BODY

NS

RDBG>

(Continued on next page)

6-28 Debugging VAXELN Ada Programs

Example 6-1 (Cont.): Debugging a VAXELN Ada Program

© rpBe>

task id pri hold state substate task object
“TASK 1 7 SUSP Activating tasks 1740056

* {TASK 2 4 SUSP Activating 103424
RDBG>

Job Program Priority State Shared Size Readonly size

* 4 SQRT_SERVER 16 debug-wait 151040 93184

Process Priority State Stack Size CPU time

1 8 waiting 3584 00:00:00.68

* 2 11 debug-wait 3072 00:00:00.07

® rpse>
RDBG*>

[ARTHUR] SQRT_SERVER_TESTER - Sending initial message to SQRT_SERVER

[ARTHUR] SQRT_SERVER_TESTER - Received: 1.3043814304E+19

[ARTHUR] SQRT_SERVER_TESTER - Received: 3.6116221440E+09

([ARTHUR] SQRT_SERVER_TESTER - Received: 6.0096773438E+04

[ARTHUR] SQRT_SERVER_TESTER - Received: 1.0000001192E+00

[ARTHUR] SQRT_SERVER_TESTER - Successfully exiting
[ARTHUR] SQRT_SERVER_TASK - Partner Exited.

® prpsc+>
_RDBG*>

Job 6.1 (NEW_TESTER) is waiting for your attention
RDBG*>

Job 7.1 (NEW_TESTER) is waiting for your attention

® rppc+>
RDBG*>

[ARTHUR] SQRT_SERVER_TESTER - Sending initial message to SQRT_SERVER

[ARTHUR] SQRT_SERVER_TESTER ~- Received: 1.3043814304E+19

[ARTHUR] SQRT_SERVER_TESTER - Received: 3.6116221440E+09

[ARTHUR] SQRT_SERVER_TESTER - Received: 6.0096773438E+04

[ARTHUR] SQRT_SERVER_TESTER - Received: 2.4514643860E+02

[ARTHUR] SQRT_SERVER_TESTER - Received: 1.0000001192E+00

[ARTHUR] SQRT_SERVER_TESTER - Successfully exiting
[ARTHUR] SQRT_SERVER_TASK - Partner Exited.

(Continued on next page)

Debugging VAXELN Ada Programs 6-29

Example 6-1 (Cont.): Debugging a VAXELN Ada Program

® rppc*> SET JOB/CURRENT -
_RDBG+> /IMAGE=[(ADA.EXE]SQRT_SERVER_TESTER.EXE 6
“%RDEBUG-I-SESSION_INIT, Loading symbols for Job 6. (NEW_TESTER)
-RDEBUG-I-FROM, from file TESTD: [ADA.EXE] SQRT_SERVER_TESTER . EXE; 1

“RDEBUG-I-INITIAL, language is ADA, module set to 'SQRT_SERVER_TESTER'

“%RDEBUG-I-NOTATMAIN, type GO to get to start of main program

® Rpsc> SET JOB/CURRENT SQRT_SERVER
“ZRDEBUG-W-NOTWAITING, Job 4 is not in a debug-wait state

@® rpBG> SET JOB/HALT SQRT_SERVER
Job 4.1 (SQRT_SERVER) is waiting for your attention

@ RpBG> SET JOB/CURRENT SQRT_SERVER
“%RDEBUG-I-SESSION_INIT, Loading symbols for Job 4. (SQRT_SERVER)
-RDEBUG-I-FROM, from file TESTD: [ADA.EXE] SQRT_SERVER.EXE; 1
ZRDEBUG-I-INITIAL, language is ADA, module set to 'ADA$ELAB_SQRT_SERVER'

@ prppc> EXIT
$

The following notes explain the events in Example 6-1.

@ The DEBUG/REMOTE command invokes the remote debugger. The
VAXELN system image SORT_SERVER.SYS is loaded to the target
node ARTHUR and then booted.

When you invoke the remote debugger, a series of messages appears.
The following list explains these messages in the order in which they
occur:

1. The /LOAD qualifier causes the specified VAXELN system image
SQRT_SERVER.SYS to be loaded on ARTHUR. The system is
booted after the system image is loaded.

2. Once the trigger request has been sent to the target node, the
remote debugger attempts to connect to the target node. Depending
on the size of the VAXELN system image, network traffic, and
host-system activity, the remote debugger may have to repeat the
connection attempt several times before the system boots.

3. The remote debugger reports the job number, name, and state of
each job in the system that is in a debug-wait state. In this case,
SQRT_SERVER has started under control of the debugger and is
therefore in a debug-wait state.

4. If the system time on the target node has not been set, then it is set
to the current time on the host.

6-30 Debugging VAXELN Ada Programs

5. The current session is the system session, as indicated by the
prompt RDBG*> .

The SHOW SYSTEM command displays an overview of the current
state of the jobs in the system. |

The XQDRIVER job is the network driver. The EDEBUGREM job is
the remote debugger nucleus. The SQRT_SERVER job is running the
application that is to be debugged. Since the SORT_SERVER job is in
a debug wait state, it is ready to start a command session.

The SET JOB/CURRENT command begins a command session with
the job SQRT_SERVER. The remote debugger reads the symbol table
information from the image file associated with the job and prepares to
accept commands that may be directed at that job.

The GO command begins job execution.

The STEP command executes the program a line at a time. As shown
in the second STEP command, it is possible to step over several lines
with one command.

The EXAMINE command displays the current value of one or more
variables during program execution.

The SET BREAK command selects locations for program suspension.
You may also set breakpoints that will be triggered by various Ada
events. In this example, the SET BREAK/EVENT=ACTIVATING
command causes a breakpoint to be triggered when a task is about to
begin its activation.

The breakpoint may be triggered by the following sequence of com-
mands:

1. The GO command causes the program to continue execution.
When the program is running, the command session is not waiting
to accept commands.

2. CTRL/C gains the attention of the system session. Once in the
system session, you may enter commands.

3. The CREATE JOB SQRT_SERVER—TESTER command creates a job
running a test program for the SORT_SERVER.

4. Pressing the RETURN key while in the system session returns
control to the command session.

5. Once SQRT_SERVER_TESTER begins execution, it connects to
SQRT_SERVER and SQRT_SERVER creates a new task. So, SORT_
SERVER triggers a breakpoint on the Ada event ACTIVATING.

Debugging VAXELN Ada Programs 6-31

© The SHOW TASK/ALL command displays information about all
currently existing tasks. In this example, there are currently two
existing tasks, the environment task, %TASK 1, and the task that is
currently being activated, %TASK 2.

Note that the SHOW TASK command presents information using the
Ada categories of task and task priorities. You can obtain information
on VAXELN processes and process priorities by means of the SHOW
JOB command.

© The SHOW JOB/FULL command displays information about all
existing processes in a VAXELN job. In this example, process 1 is the
VAXELN process that is running the Ada task %TASK 1, and process
2 is the VAXELN process that is running the Ada task %TASK 2. The
priorities listed are their VAXELN process priorities.

@® The SET JOB/CONTINUE command causes a job this is in a debug-
wait state to continue execution. This command causes Job 4 to
continue execution as if a GO command were executed. Because the
job was associated with the command session, the command session is
ended and control is returned to the system session.

@® The CREATE JOB/LOAD command creates jobs running programs that
were not part of the VAXELN system image.

The first CREATE JOB command loads the program image for the pro-
gram SQRT_SERVER_TESTER from the node “180” to the target node
and then creates a job running that program. The second CREATE JOB
command creates another job running that same program; the /LOAD
qualifier is not needed in this case because the program was already
loaded on the system.

® The SET JOB/CONTINUE command causes a job that is in a debug-
wait state to continue execution.

This command causes Job 7 to continue execution as if a command
session was started with that job and a GO command was executed.
since the VAXELN system was created without a console driver,
all console output generated by the job SQRT_SERVER_TESTER is
directed to your debugging terminal, as illustrated in the previous step.

® The SET JOB/CURRENT command begins a new command session.

This command causes the command session with job SQRT_SERVER
to end and a new command session with Job 6 (NEW_TESTER) to
begin. The /IMAGE qualifier is used to direct the remote debugger to
a local copy of the program image file for the program that the target
job is running.

6-32 Debugging VAXELN Ada Programs

® To begin a command session with a job that is not in a debug-wait
state, you must first put the job in a debug-wait state using the SET
JOB/HALT command.

The SET JOB/CURRENT command demonstrates that you cannot
begin a command session with a job that is not in a debug-wait state.

© The SET JOB/HALT command causes the SQRT_SERVER task to
raise an asynchronous debugging exception, thus putting the job into a
debug-wait state.

@ You may then begin a command session with the job using the SET
JOB/CURRENT command.

® Use the EXIT command to exit from the remote debugger.

This command causes an orderly termination from the remote debug-
ger. All breakpoints, tracepoints, and watchpoints in the job associated
with the command session are canceled. All jobs are left in whatever
state they were in prior to executing the EXIT command.

Debugging VAXELN Ada Programs 6-33

Part II] Run-Time Related Topics

This section presents information on run-time related topics.
It discusses input-output, Ada tasking, and using VAXELN
system services.

Chapter 7

Input-Output

This chapter explains the kinds of VAXELN files that are available for
input-output operations. It also describes the use of file specifications in
VAXELN Ada, and gives an explanation of how to control the characteris-
tics of external files.

The VAXELN Ada predefined packages and their operations are imple-
mented using VAXELN file organizations and facilities. VAXELN Ada
supports the following VAX Ada predefined input-output packages for
operations on sequential files:

e SEQUENTIAL_IO

e DIRECT_IO

e SEQUENTIAL—_MIXED_IO

e DIRECT_MIXED_IO

e TEXT_IO

VAXELN Ada does not support the following VAX Ada predefined
input-output packages:

e RELATIVE_IO

¢ RELATIVE_MIXED_IO

e INDEXED_IO

e INDEXED_MIXED_IO

All package specifications, as well as explanations of the operations pro-
vided by each package, are presented in the VAX Ada Language Reference
Manual.

Input-Output 7-1

Before reading this chapter, you should be familiar with the Ada language
and the VAX Ada predefined input-output packages, as described in the
VAX Ada Language Reference Manual. You should also have some familiar-
ity with VAX/VMS Record Management Services (RMS) file organizations
and access methods. You should know how to work with VAX/VMS
file specifications and directories, and have some familiarity with the
VAX/VMS File Definition Language (FDL). The VAX Ada Programmer’s
Run-Time Reference Manual also contains more detailed information on
input-output.

7.1 Files and File Access

VAXELN Ada supports only sequential files. Thus, VAX Ada packages
that deal specifically with relative and indexed files (RELATIVE_IO,
RELATIVE_MIXED_IO, INDEXED_IO, and INDEXED_MIXED_IO) are
not supported. A VAXELN Ada program that attempts to use any of these
packages will not link. An attempt to access a nonsequential file with the
supported packages will raise the USE_ERROR exception.

Input-output operations can be performed on terminals, printers, and other
devices. The VAX Ada predefined input-output packages can also be used
to communicate with other nodes in a DECnet network, as well as with
other VAXELN jobs using the VAXELN interjob communication services.

The following sections describe how external files can be accessed from a
VAXELN Ada program.

7.1.1 Disk Files

7-2 Input-Output

The VAXELN Disk File Service is used whenever a program accesses a
file on a disk device. The Disk File Service supports Files—11 On-Disk
Structure Level 2 (ODS-2), which is compatible with the VAX/VMS file
system. Therefore, disks and files can be exchanged between VAXELN
and VAX/VMS systems.

When the application system boots, you can specify that certain disks be
mounted automatically. The System Characteristics menu of the System
Builder Utility (EBUILD) allows you to list the device names and gives you
the option of listing the volume names. The first disk specified in the list
of disks to be mounted automatically is considered the default disk. The
default disk is used if a device name is not given in a file specification. If
a disk is not specified to be mounted automatically, the first disk mounted

by the application becomes the default disk. See Section 7.2.2 for more
information on disk device names. You can also initialize, mount, and
dismount disks by calls to the VAXELN Disk Utility procedures. See
Chapter 9 for more information on the Disk Utility procedures.

You must explicitly define the disk devices to be used by your application
by means of one or more Device Description entries in the System Builder
menu. See Chapter 4 for more information on Device Description entries.

The Disk File Service is automatically included with your applica-
tion unless you specify that it should not be included in the System
Characteristics menu of EBUILD. The disk device drivers supplied with
the VAXELN system are already linked with the Disk File Service. If you
are using your own disk driver and want to use the Disk File Service, you
must link your driver with the File Service. For more information, see the
VAXELN User’s Guide.

7.1.2 Tape Files

The VAXELN Tape File Service is used whenever a program accesses
a file on a tape device. The Tape File Service supports Level 3 of the
ANSI standard for magnetic tapes, and is compatible with the VAX/VMS
system.

Tape volumes can be initialized, mounted, and dismounted by calls to the
VAXELN Tape Utility procedures. See Chapter 9 for more information on
the Tape Utility procedures.

You must explicitly define the tape devices to be used by your application
by means of one or more Device Description entries in the System Builder
menu. See Chapter 4 for more information on Device Description entries.

The Tape File Service is included with your application unless you specify
that it should not be included in the System Characteristics menu of
EBUILD. The tape device drivers supplied with the VAXELN system are
already linked with the Tape File Service. If you are using your own tape
driver and want to use the Tape File Service, you must link your driver
with the File Service. For more information, see the VAXELN User’s Guide.

Input-Output 7-3

7.1.3 Terminals and Printers

The VAXELN system provides device drivers for terminals and printers.
These can be accessed just like files by specifying the appropriate de-
vice name in a file specification. You must explicitly include support for
the terminal or printer interface device by means of one or more Device
Description entries in the System Builder menu. You can also specify char-
acteristics of individual terminal lines by means of Terminal Description
entries in the System Builder menu. See Chapter 4 for more information
on the System Builder Utility. See the VAXELN User’s Guide for more
information on terminal and printer devices.

Console support is included by default unless you specify that it should
not be included in the Systems Characteristics menu of EBUILD. However,
if console support is not present and the remote debugger is included,
console input-output is automatically directed through the remote de-
bugger. If you specify debug=both or debug=local, then console support
is included, (even if you specified that it should not be included). See
Chapter 6 for more information.

7.1.4 Network Files

7-4 Input-Output

A VAXELN system can function as an end node in a DECnet Phase IV
network using Ethernet as the communications medium. The Network
Service is included with your application by default unless you specify
that it should not be included in the Network Node Characteristics menu
of the System Builder Utility.

If the Network Service is present, you can access files on other DECnet
nodes and perform DECnet task-to-task communication with other nodes.
If the File Access Listener (which is the default), is also included, other
DECnet nodes can access files on your VAXELN system. Section 7.2.1
provides information on how to specify remote files and DECnet task
objects.

It is not necessary to define device support for the Ethernet interface
device; support is automatically included if you include the Network
Service. For more information on the Network Service, see the VAXELN
User's Guide.

7.1.5 VAXELN Circuits

VAXELN circuits allow you to communicate with other jobs on VAXELN
nodes and with DECnet tasks on other nodes in a DECnet network. While
you can call VAXELN services directly to create and use circuits, VAXELN
Ada provides a simple way of using Ada input-output to communicate
by means of circuits. For more information on circuits, see the VAXELN
User's Guide.

If the VAXELN—CIRCUIT attribute in the FILE section of a FORM string
parameter to the CREATE or OPEN procedure is specified as YES, a
circuit is used rather than a normal file. The CREATE procedure creates a
circuit and waits for other processes to connect to the circuit. The OPEN
procedure connects to an existing circuit. For both the CREATE and OPEN
procedures, the name of the circuit is specified by the NAME parameter.
The following example creates a circuit named MY_CIRCUIT.

CREATE (FILE => CIRCUIT_FILE,

MODE => INOUT_FILE,

NAME => "MY_CIRCUIT",

FORM => "FILE; VAXELN_CIRCUIT YES") ;

Once the connection is established, you can use any of the operations
provided by the input-output packages to send and receive information
over the circuit. The following packages support circuits:

e SEQUENTIAL_IO

e SEQUENTIAL_MIXED_IO

e TEXT_IO

The TEXT_IO package sends or receives each line as an individual mes-
sage over the circuit. To connect a circuit to a job on another node, the
Network Service must be included with your application. For more in-
formation on the capabilities of VAXELN interjob communication, see the
VAXELN User’s Guide. For an example of using VAXELN circuits, see the
sample program file ELN$:SQRT_SERVER_TESTER.ADA on your system.

Input-Output 7-5

7.1.6 Other Devices

You can use the VAXELN Ada predefined input-output packages to access
other devices if your device driver supports calls from the File Service.

VAXELN also provides device drivers for serial and parallel communica-
tions devices, which can be accessed using calls to VAXELN services. The
following devices are supported by VAXELN:

e Serial devices

DMF-32
DHV11
DZV11
DLVJ1

e Parallel devices

DMF-32 parallel port
DRC11

e Real-time devices

ADV11C interface
AXV11C interface
KWV11C programmable clock

For more information on device drivers, see the VAXELN User’s Guide.

7.2 Naming External Files

VAXELN Ada supports the VAX/VMS file specification syntax except for
hyphens that are not allowed in unquoted file specifications. However,
there are a few differences in the use of some of the file specification
fields. These differences are described in the following sections.

7.2.1 Node Names

If you have included the Network Service in your application, you can
access files on other nodes connected to yours in a DECnet network.
However, the VAXELN system does not support the use of node names
for non-VAXELN nodes. You must use the node number for non-VAXELN

7-6 — Input-Output

nodes. To find your node number on a VAX/VMS node, type the follow-
ing command at the DCL prompt ($):

$ SHOW NETWORK

The node number is specified as a decimal integer, for example:

$ 110: :USER_DISK: [SMITH] ANALOG_DATA.DAT

If the remote node is not in the same DECnet area as your VAXELN node,
specify the node address in the form “a.n” where “a” is the DECnet area
number and “n” is the DECnet node number in that area. For example:

$ 2.110: : USER_DISK: [SMITH] ANALOG_DATA.DAT

If you are accessing a file on another VAXELN node connected to yours
by the Ethernet, you do not need to specify the node name if the remote
node has created a universal name for a device on another VAXELN node.
See Section 7.2.2 for more information.

7.2.2 Device Names

The first time a disk or tape device is mounted, the Name Service creates
a universal name for the device. This name has the form DISK$name or
TAPE$name, where “name” is the volume name of the disk or tape that
was mounted. For example, if a disk with the volume name TEST was
mounted, the universal name DISK$TEST would be created.

A universal name is available to all VAXELN nodes connected to your
node by the Ethernet, so you do not need to specify a node name to
access disks or tapes mounted on other nodes. If another disk or tape of
the same volume name is mounted, a local name is created; a local name
is only visible on the node where it was created. You can use universal
names as device names in file specifications in the NAME parameter to
the OPEN and CREATE procedures. For example:

OPEN (FILE => F,
MODE => IN_FILE,

NAME => "DISK§TEST: [TEST_DIR] TEST_DATA.DAT") ;

You can supply a list of disk device names and volume names in the
Systems Characteristics menu of EBUILD. Devices in this list are mounted
automatically by the File Service. If you include a volume name for a
device in this list, it must match the actual volume name. In addition, the
name DISK$DEFAULT_VOLUME is created for the first disk in this list.
This disk is then used if you do not specify a device in a file specification,
and is also used for temporary files. If a disk is not specified to be

Input-Output 7-7

mounted automatically, then the first disk mounted by the application is
considered the default volume. See the VAXELN User’s Guide for more
information.

You can also use the physical device name in file specifications. The
physical device name is composed of the controller name (as specified in a
Device Description menu in EBUILD) and the unit number. For example,
if you have a device description for device DUA, the device name for
unit 0 on DUA would be DUAO:. The device name for the console is
CONSOLE:. For more information on device descriptions, see Chapter 4
of this manual, as well as the VAXELN User's Guide.

7.2.3 Directory Name

If you do not include a directory name in a file specification, [000000] is
the default directory.

7.2.4 File Type

VAXELN Ada does not provide a default for the file type. The DEFAULT_
NAME attribute in the FILE section of a FORM string is not supported. If
a file type is not specified in a file argument, then a default is not given.
For example, if you create the file [SMITH]TEST, TEST. would be the file
name; it would not have a type.

7.3 Standard Input-Output Files

7-8 Input-Output

The default file specification for the standard input and standard output
files is “CONSOLE:”. You can supply an alternate file specification for
standard input by means of the first program argument in the Program
Description menu of EBUILD. If you specify a nonnull string as the first
program argument, that string is used as the file specification for standard
input. Similarly, the second program argument, if nonnull, is used as the
file specification for standard output.

If a VAXELN Ada program generates an unhandled exception, the message
for that exception is displayed by the VAXELN Ada run-time library. By
default, the file specification used for exception messages is “CONSOLE:’;
however, if you specify a nonnull string as the third program argument,
that string is used instead.

The convention of using the first, second, and third program arguments
for the standard input, output, and error files is also observed by VAXELN
Pascal and VAXELN C programs.

7.4 Specifying External File Attributes with the File Definition
Language (FDL)

VAXELN Ada programs can specify the system-dependent attributes
of an external file using the FORM parameter of the CREATE and
OPEN procedures. VAXELN Ada uses a subset of the VAX RMS File
Definition Language (FDL), which is used by VAX Ada programs under
the VAX/VMS system. VAXELN Ada also supports an additional at-
tribute, VAXELN—CIRCUIT, which is not supported by VAX Ada. See
Section 7.4.2 for more information on the VAXELN—CIRCUIT attribute.

VAXELN Ada does not support the ability to specify the name of a
separate file containing FDL statements by the use of an initial at sign
character (@) in the value of the FORM parameter.

When using FDL to specify the attributes of an Ada external file, you
should observe the following FDL rules:

e The primary attributes must appear in the order shown in Table 7-1.

e Each attribute string (primary or secondary) constitutes an FDL state-
ment, and must be terminated with a semicolon. For example:

-- Create SOME_FILE.DAT with fixed record format and

-- have it submitted to the print queue when the file

-- is closed.

CREATE(FILE => MY_FILE,

MODE => OUT_FILE,

NAME => "SOME_FILE.DAT",

FORM => "RECORD; FORMAT FIXED; SIZE 120;");

Note that the exclamation point is the comment character in FDL, and
anything following it is ignored. For example:

-- Create SOME_FILE.DAT with fixed record format

CREATE(FILE => MY_FILE,

MODE => OUT_FILE,

NAME => "SOME_FILE.DAT",

FORM => "RECORD; FORMAT FIXED; !fixed-size records") ;

Input-Output 7-9

Each FDL statement can represent only one primary or secondary
attribute and its associated value. Each statement can have no more
than a total of 132 characters (including blanks). To format your
program without adding extra blanks to the form string, you can use
the Ada concatenation operator (ampersand) to break up the form
string into individual statement strings. Thus, the first example could
be rewritten as follows:

CREATE(FILE => MY_FILE,

MODE => OUT_FILE,

NAME => "SOME_FILE.DAT",

FORM => "RECORD; " &
"FORMAT FIXED;" &
"SIZE 120;");

Keywords can be truncated to their shortest unique abbreviations.
Strings must be enclosed in either a pair of apostrophes or a pair of
double quotation marks. Note that Ada-based integers or integers with
underscores are not legal FDL syntax.

The following sections include a table describing the primary and sec-
ondary attributes, a detailed description of the VAXELN_CIRCUIT
attribute, and a list of the most commonly used FDL attributes. For
more information on the use of the FORM parameter, see the VAX Ada
Programmer's Run-Time Reference Manual.

7.4.1. FDL Primary and Secondary Attributes

7-10 Input-Output

FDL statements in a VAXELN Ada form string specify predefined VAXELN
file attributes. Primary attributes take a single value or represent a group
of related or secondary attributes, which also take values. (Most of the
primary attributes that have secondary attributes do not themselves take
values.) Table 7-1 lists the available primary and secondary attributes.

Table 7-1: FDL Primary and Secondary Attribute Descriptions

Primary
Attribute Function Secondary Attributes

TITLE Gives a title to the FDL file; for comment None
purposes only.

IDENT Gives the date and time of creation of the None
FDL file, and specifies the name of the
creating utility; treated as a comment.

SYSTEM Takes no value. DEVICE, SOURCE, TARGET
Secondary attributes give system identifi-
cation information.

FILE Takes no value. ALLOCATION,
Secondary attributes determine file charac- BEST_TRY_CONTIGUOUS,
teristics: Owner, Organization, protection, CONTIGUOUS,
and revision; what will happen when the CREATE_IF,
file is opened or closed; whether data DELETE_ON-_-CLOSE,
checking will be done when the file is DIRECTORY_ENTRY,
read or written; what kind of processing is EXTENSION,
allowed; how much space is allocated for ©MAXIMIZE_VERSION,
the file and whether the space is contigu- ©MT_CLOSE—REWIND,
ous; and so on. Secondary attributes also ©MT_CURRENT_POSITION,
allow specification of magnetic tape file MT_NOT_EOF,
operations. MT_OPEN_REWIND,
The value given for NAME in a form NAME,
string is ignored by VAXELN Ada. ORGANIZATION,

OWNER,

PROTECTION,
READ_CHECK,
SEQUENTIAL_ONLY,
SUPERSEDE, TEMPORARY,
TRUNCATE_ON_CLOSE,
USER_FILE_OPEN,
VAXELN—CIRCUIT,
WRITE_CHECK

RECORD Takes no value. BLOCK_SPAN,
Secondary attributes specify the following
characteristics of records in the file: size,
kind of carriage control, and format.

CARRIAGE_CONTROL,
CONTROL_FIELD,
FORMAT, SIZE

Input-Output 7-11

Table 7-1 (Cont.): FDL Primary and Secondary Attribute Descriptions

Primary
Attribute

ACCESS

SHARING

CONNECT

Takes no value.
Secondary attributes specify the file-
processing operations.

Takes no value.
Secondary attributes specify whether mul-
tiple readers or writers can concurrently
access the file.

Takes no value.
Secondary attributes specify run-time
features and operations related to record
access and performance.

Secondary Attributes

GET, PUT,
TRUNCATE

GET, PROHIBIT, PUT,
USER_INTERLOCK

END_OF_FILE,
NOLOCK,
READ_AHEAD,
TRUNCATE_ON_PUT,
UPDATE_IF,
WRITE_BEHIND

7.4.2 VAXELN_CIRCUIT Attribute

7-12 Input-Output

VAXELN Ada supports an additional attribute called VAXELN—CIRCUIT
in the FILE section of the FDL language. Any two ports (usually in
different jobs) can be bound into pairs called circuits. The VAXELN—
CIRCUIT attribute specifies whether or not the program wants to access
a VAXELN circuit rather than an actual file. After the OPEN or CREATE
procedure, all READ operations read from the circuit, and all WRITE
operations write to the circuit. Circuits can be used only with packages
SEQUENTIAL _IO, SEQUENTIAL _MIXED_IO, and TEXT_IO.

You can specify the following values for VAXELN—CIRCUIT:

YES

NO

Specifies that the OPEN or CREATE procedure is to access or create a
named circuit, where the name is supplied by the NAME parameter.
Circuits are given universal names, and have a limit of four messages
waiting in the circuit at any one time; an attempt to exceed that limit
causes the sender to wait until space is available.

Specifies that the OPEN or CREATE procedure is to access a file, not
a circuit. No is the default.

7.4.3 Commonly Used FDL Attributes

Table 7-2 describes the primary and secondary FDL attributes that you
are most likely to use in a VAXELN Ada program, and gives their default
values. The table provides a quick reference and summarizes information
presented in the VAX/VMS File Definition Language Facility Reference
Manual.

As shown in the table, the value assigned to an attribute can take one of
the following forms:

Switch

Keyword

String

Integer

A logical value, set to TRUE, YES, FALSE, or NO. TRUE (or
YES) sets the attribute; FALSE (or NO) clears it. (You can also
use the abbreviations T, Y, F, and N.)

A word that you must type (in either uppercase or lowercase)
after the attribute name. You can truncate a keyword to its
shortest unique abbreviation.

A character string (enclosed in either a pair of apostrophes or
a pair of double quotation marks) that you must type after the
attribute name. The null string is a valid string value.

A decimal integer (based integers or underscores are not
allowed).

Table 7—2: Commonly Used FDL Attributes

Type of Value and

FDL Attributes Default Function

TITLE String of up to 132 char- Comment
acters, including the TITLE
keyword.
No default value.

Input-Output 7-13

Table 7-2 (Cont.):

FDL Attributes

IDENT

SYSTEM

DEVICE

FILE

ALLOCATION

BEST_TRY_CONTIGUOUS

CONTIGUOUS

7-14 — Input-Output

Type of Value and
Default

String of up to 132 charac-
ters, including the IDENT
keyword.
Default value is the date,
time of creation, and name
of the creating utility if
created with EDIT/FDL
or ANALYZE/RMS-_FILE;
otherwise, no default value.

String.
Default value is null.

Integer in the range of 0 to
4294967295.
Default value is 0.

Switch.

Default value is NO.

Switch.

Default value is NO.

Commonly Used FDL Attributes

Function

Comment (names the disk
model on which the file will

reside).

Sets the number of blocks that
will be initially allocated for the
file. If 0, the system will not
preallocate space for the file.

Controls whether the file will
be allocated contiguously if
there is enough space. If set
to YES, and there is enough
space for the file, the file will
be allocated contiguously; if
there is not enough space,
the file will not be allocated
contiguously. If set to NO, this
attribute is ignored.

Controls whether the file must
be allocated contiguously.
When set to YES and there
is not enough space for the
file’s initial allocation, an error
message results. When set to
NO, the attribute is ignored.

Table 7—2 (Cont.) Commonly Used FDL Attributes

FDL Attributes

Type of Value and
Default Function

EXTENSION

ORGANIZATION

PROTECTION

Integer in the range of 0 to
65535.
Default value is 0.

Keyword.
Default value is SEQUENTIAL.

String.
Default value is the process
default.

Sets the number of blocks for

the default extension value for

the file. Each time the file is

extended, the specified number.
of blocks is added. If 0, the

extension size is determined by
the system each time the file
must be extended.

Defines the type of file organ-
ization. The keyword must be
SEQUENTIAL for VAXELN
Ada.

Defines the levels of file
protection. Its value can
take one of two forms
(SYSTEM=code, OWN=code,
GROUP=code, WORLD=code)

or (SYSTEM:code, OWN:code,
GROUP:code, WORLD:code)
where the code is a protection
specification for READ, WRITE,
EXECUTE, and DELETE in the
form RWED. To deny a specific
access right, you omit it from
the code. To give no access
rights to a user classification,
you omit the classification from
the list.

For example, the following
string gives all access rights to
SYSTEM and OWNER, gives
only READ access to GROUP,
and gives no access rights to
WORLD: (SYSTEM=RWED,
OWNER=RWED, GROUP=R).

Input-Output 7-15

Table 7-2 (Cont.): Commonly Used FDL Attributes

FDL Attributes

Type of Value and
Default Function

SEQUENTIAL_ONLY

RECORD

CARRIAGE_CONTROL

FORMAT

SIZE

7-16 — Input-Output

Switch.

Default value is NO.

Keyword.
Default value is

CARRIAGE—RETURN.

Keyword.
Default value is VARIABLE.

Integer.
No default value.

Indicates that the file can be
processed only sequentially,
thus allowing certain processing
optimizations. Any attempt to
perform random access results
in an error.

Specifies the type of carriage
control for the records in the
file. Must be one of the key-
words CARRIAGE_RETURN,
FORTRAN, NONE, or PRINT.
See the Vax Ada Programmer's
Run-Time Reference Manual and
the VAX/VMS File Definition
Language Facility Reference
Manual for more information.

Sets the record format for the
data file. Must be one of the
keywords FIXED, STREAM,
STREAM_CR, STREAM_LF,
UNDEFINED, VARIABLE,
VFC. See the VAX/VMS File
Definition Language Facility
Reference Manual for more
information.

Sets the maximum record size
in bytes. With fixed-length
records, this value is the length
of every record in the file.
With variable-length records,
this value is the length of the
longest record that can be
placed in the file.

Table 7-2 (Cont.): Commonly Used FDL Attributes

FDL Attributes

Type of Value and
Default Function

ACCESS

GET

PUT

TRUNCATE

SHARING

GET

Switch.
Default value is GET when
using an OPEN procedure
and if no other ACCESS
secondary attribute has been
specified.

Switch.
Default is PUT when using a
CREATE procedure.

Switch.

Default value is FALSE.

Switch.
Default is TRUE if ACCESS
GET has also been specified.

You can specify 0 and the
system will not impose a
maximum record length.

If the records are variable
with fixed-control (VFC), the
fixed control portion of the
record is not included in the
SIZE calculation; only the data
portion is set by this attribute.
The fixed area is the size
in bytes of the fixed-control
portion of VFC records. Regular
variable-length records have
a fixed-control size of 0. See
the VAX/VMS File Definition
Language Facility Reference
Manual for the maximum sizes
allowed for the various record
organizations and formats.

Permits VAXELN GET or FIND
operations.

Permits VAXELN PUT or
EXTEND operations.

Permits VAXELN TRUNCATE
operations.

Allows other users to read the

file.

Input-Output 7-17

Table 7-2 (Cont.): Commonly Used FDL Attributes

Type of Value and

FDL Attributes Default Function

PROHIBIT Switch. Prohibits any type of file
Default is YES if ACCESS sharing by other users. When
DELETE, ACCESS PUT, set to YES, this attribute takes
ACCESS TRUNCATE, or precedence over all other
ACCESS OPERATE has been ACCESS secondary attributes.
specified.

PUT Switch. Allows other users to write
No default value. records to the file.

CONNECT

READ_AHEAD Switch. Indicates read-ahead opera-

TRUNCATE_ON_PUT

7-18 — Input-Output

No default value.

Switch.

No default value.

tions; to be used with multiple
buffers. When one buffer is
filled, the next record is read
into the next buffer while the
input-output operation takes
place for the first buffer. Since
the system does not have to
wait for input-output com-
pletion, input and computing
can overlap. This attribute
is ignored for DECnet opera-
tions. See the VAX/VMS File
Definition Language Facility
Reference Manual for more
information.

Specifies that a VAXELN PUT
or WRITE operation can occur
at any point in a file, truncating
the file at that point. A WRITE
operation causes the end of file
mark to immediately follow the
last byte written. This attribute
can be used only with VAXELN
sequential files.

Table 7-2 (Cont.): Commonly Used FDL Attributes

Type of Value and

FDL Attributes Default Function

UPDATE_IF Switch. Indicates that if a PUT oper-
No default value. ation is specified for a record

that already exists in the file,
the operation is converted to an:
update.

WRITE_BEHIND Switch. Indicates that write-behind
No default value. operations are to occur when

multiple buffers are used.
When one buffer is filled, the
next record is written into the
next buffer while the input-
output operation takes place
for the first buffer. Since the
system does not have to wait
for input-output completion,
computing and output can
overlap. See the VAX/VMS
File Definition Language Facility:
Reference Manual for more
information.

Certain FDL attributes can significantly improve application performance;
that is, if the files used by the application are designed and tuned properly,
the application will run more efficiently, often because a minimum number
of input-output operations occur. File design and tuning are important for
large files. The file characteristics specified when a file is created often
have a significant effect on application performance at run time.

The following attributes can affect application performance:

FILE ALLOCATION
FILE BEST_TRY_CONTIGUOUS
FILE CONTIGUOUS
FILE EXTENSION
FILE SEQUENTIAL_ONLY
CONNECT READ_AHEAD
CONNECT WRITE_BEHIND
ACCESS and SHARING attributes

For additional information on file applications, refer to the Guide to
VAX/VMS File Applications.

Input-Output 7-19

Chapter 8

Tasking

The use of Ada tasks in the VAXELN environment is very similar to the
use of Ada tasks in the VAX/VMS environment. However, there are
differences in the way VAXELN Ada tasks are implemented. This chapter
provides information on those differences.

Note that the structure of this chapter parallels the structure of the tasking
information provided in the VAX Ada documentation set. If you are not
familiar with VAX Ada tasking, you should first read Chapter 9 of the
VAX Ada Language Reference Manual and review the tasking information
given in the VAX Ada Programmer's Run-Time Reference Manual. For more
information on VAXELN concepts, see the VAXELN User's Guide.

8.1 Introduction to Using Tasks on VAXELN

Because both VAXELN Ada and VAX Ada conform to the Ada language
standard, they both provide the same tasking mechanisms, and those
mechanisms involve the same principles:

e Tasks are defined as entities whose execution proceeds (conceptually)
in parallel.

e A main, or environment, task is automatically created whenever a main
program is run; this task first elaborates any library packages associated
with the program, and then calls the main program. When execution
of the main program is completed, and all tasks that depend on its
library packages terminate, the main task is terminated, and the job is
deleted.

Tasking 8-1

8-2 Tasking

e Any task is said to depend on a number of masters (blocks, tasks, sub-
programs, or library packages). An immediate master is the master that
immediately contains the declaration of a task object, or that immedi-
ately contains the definition of the access type whose designated type
is a task type. Control cannot leave a master until all of its dependent
tasks have terminated.

e Whenever a task is created, the VAXELN Ada run-time library creates
a task control block to manage the task; whenever a task is activated,
the VAXELN Ada run-time library creates a process and a stack for the
statements, which the task will execute.

e Synchronization (in Ada) is accomplished with the rendezvous
mechanism.

The SQRT_SERVER example in Chapter 2 shows the use of Ada tasks
in a VAXELN application; other tasking examples are given in the VAX
Ada Language Reference Manual and the VAX Ada Programmer's Run-Time
Reference Manual.

Both VAXELN Ada and VAX Ada implement parallel tasks with inter-
leaved execution on a single physical processor. However, other task im-
plementation details are different, and they mirror the differences between
the VAX/VMS operating system and the VAXELN kernel. Table 8-1
presents these conceptual differences.

Table 8—1: Comparison of VAX/VMS and VAXELN Ada Task

implementations

Ada Entity VAX/VMS Equivalent VAXELN Equivalent

Ada program Image executing in the A job, set up by a call to
context of a VAX/VMS the VAXELN CREATE_JOB

1 2 process. procedure.“ (The call can be
either implicit, when the system
is booted, or explicit.)

1 When a VAX Ada program terminates, control returns to the command line interface (CLI), if there
is one.

2When a VAXELN Ada program terminates, the job terminates.

Table 8-1 (Cont.): Comparison of VAX/VMS and VAXELN
Ada Task Implementations

Ada Entity VAX/VMS Equivalent VAXELN Equivalent

Main (envi-

ronment) task

Task

Created and managed by
the Ada run-time library
task scheduler in the
context of the process
in which the program is
executing.

Stack expands automat-
ically as the program
executes, and is allo-
cated in P1 space of the
process in which the
program is executing.

Created and managed by
the Ada run-time library
task scheduler in the
context of the process
in which the program is
executing.

Stack has a fixed size,

and is allocated in PO

space.

A VAXELN master process,
created and managed by the
VAXELN kernel.

Stack has a fixed size, and is

allocated in PO space.°

A VAXELN process within
the job (subprocess). Created
by a VAXELN Ada run-time
library call to the VAXELN
CREATE—PROCESS procedure,
and managed by the VAXELN
kernel.

Stack has a fixed size, and is

allocated in PO space.°

3
VAXELN process stacks are normally allocated in P1 space. However, when a VAXELN process is

used to implement an Ada task, a stack is immediately created in PO space for the task, and a stack
switch is made. (This switch permits each task to address variables in any other task’s stack in the
same Ada program.)

8.2 Task Storage Allocation

In the VAXELN environment, as in the VAX/VMS environment, each task
created in your Ada program requires a certain amount of storage. The
following sections explain how to control the amount of storage allocated
for VAXELN Ada tasks.

Tasking 8-3

You should note that, unlike the VAX/VMS operating system, the
VAXELN executive is a nonpaging virtual memory system: every vir-
tual memory page is associated with a physical memory page. Thus, all
VAXELN Ada tasks are always memory resident, and the number of tasks
you can create is limited by the amount of physical storage available on
your system.

You should also note that the number of tasks you can create may be
further limited by the amount of virtual address space available. You can
select the amount of available virtual address space with the Virtual size
option on the System Builder Edit System Characteristics menu when you
build your system image; see Chapter 4 for more information.

8.2.1 Storage Created for a Task Object—the Task Control Block

8-4 Tasking

In VAXELN Ada, as in VAX Ada, a task control block is allocated when-
ever a task object is created. This task control block keeps track of
its task’s execution, and is deallocated when control leaves the task’s
immediate master (not when the task terminates).

The size of a VAXELN Ada task control block depends on the character-
istics of the task’s type. In other words, the size increases in proportion
to the number of single entries in the task type and the total number of
members of all its entry families (note that a main task has no entries, so
main task control blocks have a constant size).

Estimating the size of a task control block is the same in VAXELN Ada
as it is in VAX Ada. However, because VAXELN does not have an
asynchronous trap mechanism, AST entries do not have to be accounted
for. You can do the estimation with the following formula:

TCB_SIZE (pages) = (FIXED_AMOUNT + E*12.2)/512

where

FIXED_AMOUNT = 3000

E = the number of single entries plus the number of
members in all entry families

For most task types (that is, those having fewer than a few hundred total
entries), the storage consumed by the task control block is relatively small.
You can reduce the size of the task control block by reducing the number
of entries and the number of entry family members. You can also reduce
the total accumulated amount of task storage by arranging for control to
leave the immediate masters of any terminated tasks. In so doing, you

cause the storage consumed by the terminated tasks’ control blocks to be
released. See the VAX Ada Programmer's Run-Time Reference Manual for
an example and for further discussion.

8.2.2 Storage Created for a Task Activation—the Task Stack

In both VAX Ada and VAXELN Ada, a task stack is allocated each time an
Ada task is activated; the task stack is deallocated as soon as the task is
terminated.

In VAXELN Ada, a separate VAXELN process is created for a task when
the task is activated; all task stacks, including the stack for the main task,
are allocated in PO space. The main task stack has a fixed size. (This
implementation differs from the VAX Ada implementation, where multiple
tasks in an Ada program are created in the context of a single VAX/VMS
process. The stack for a VAX Ada main task is adjustable and is allocated
in P1 space; the stacks for all other tasks have fixed sizes and are allocated
in PO space.)

The task stack allocated for any VAXELN Ada task (including the main
task) has two areas: a working storage area and a top guard area. The
working area is used during normal task execution to store variables,
call frames, and so on. The top guard area is a set of pages (512 bytes
per page) at the top of the stack. These pages are inaccessible to your
program—that is, attempts to read or write them will cause a hardware
access violation (ACCVIO), which will usually terminate the process (task)
immediately. The purpose of these guard pages is to help you detect
accidental overflow of the working area of the stack. Accidental stack
overflow can occur, for example, when a task executes non-Ada code for
which stack checking is not performed or when storage size checks are
suppressed when you compile the program.

Unless you specify otherwise, the size of the working area and the top
guard area of all task stacks are set by the VAXELN Ada run-time library.
By default, the working area is set to 60 pages, and the top guard area is
set to 10 pages.

The default stack allocation for all tasks allows an additional 10 pages of
stack for calls to non-Ada routines, which is adequate for most routines,
including VAXELN kernel routines.

Tasking 8-5

As in VAX Ada, you may need to specify the sizes of a VAXELN Ada
task’s stack areas for a number of reasons:

e You may find that the task or main program is raising the exception
STORAGE_ERROR, and you want to increase its working area.

e You may find that the task does not need all of its default stack
allocation, and you may wish to reduce the working area so that the
unused storage can be put to other use by your program.

e You have not called any non-Ada routines, and you are not having
any stack overflow (you have not suppressed checks and STORAGE
ERROR is not being raised). Thus, you may wish to decrease the top
guard area and put the storage to other use.

e You may suspect that some non-Ada routine might be overflowing the
stack, and you may wish to increase the top guard area in an attempt
to detect the overflow.

To control the storage allocated for main task stacks, you can use pragma
MAIN_—STORAGE; to control the storage allocated for all other task
stacks, you can use the STORAGE_SIZE length representation clause and
pragma TASK_STORAGE. Note, however, that because VAXELN virtual
pages are always memory-resident, you should be careful about setting
excessive working storage and top guard areas.

The following sections describe how to work with task stacks.

8.2.2.1

8-6. Tasking

Controlling the Size of a Main Task Stack

Main task stacks have a fixed size in the VAXELN environment. However,
VAX Ada provides the pragma MAIN_STORAGE to allow you to control
the size of a main task stack. (Note that in the VAX/VMS environment,
pragma MAIN_STORAGE forces the main stack to be allocated as it is
in the VAXELN environment: with a fixed size and in PO space. Thus,
you can use this pragma to simulate the behavior of a VAXELN main task
when you are working with VAX Ada on a VAX/VMS target.)

The following example shows the use of pragma MAIN_STORAGE to
decrease the stack allocation for a main task (TRY_MAIN).

procedure TRY_MAIN is
-- Cut down the stack size by allocating four pages

-- of working storage, and no guard pages

pragma MAIN_STORAGE(WORKING_STORAGE => 4,

TOP_GUARD => 0);

type NUM_ARRAY_TYPE is array (1..10) of INTEGER;
NUM_ARRAY: NUM_ARRAY_TYPE := (others => 0);
I: INTEGER;

begin

for I in NUM_ARRAY'RANGE loop

end loop;

end;

The syntax and rules for using pragma MAIN_STORAGE are given in
Appendix C.

8.2.2.2 Controlling the Size of Other Task Stacks

To control the size of other tasks’ working storage areas, you can use the
STORAGE-_SIZE length representation clause. For example, the attribute

for SQRT_TASK'STORAGE_SIZE use 12+*512;

sets the working storage size for the task type SQRT_TASK to 12*512
bytes (that is, 12 physical pages).

If you specify a size of zero (bytes), the default stack size is used.
Regardless of what size you specify, at least 10 pages of additional space
are allocated for task management purposes. See Chapter 13 of the VAX
Ada Language Reference Manual for a description of the syntax and use of
STORAGE_SIZE.

You can determine the amount of storage you need for the stack working
area by executing your program with the VAXELN Remote Debugger, and
using the task debugging features for examining changes in stack storage
as the program executes (see Chapter 6 for more information).

To control the stack’s top guard area, you can use pragma TASK—
STORAGE. For example, the statement

pragma TASK_STORAGE(SQRT_TASK, 0)

sets the top guard area of the task type SQRT_TASK to zero. See Chapter
13 of the VAX Ada Language Reference Manual for a description of the
syntax and use of pragma TASK_STORAGE.

Tasking 8-7

8.2.3 Stack Overflow and Non-Ada Code

In both VAXELN Ada and VAX Ada, you are protected from stack over-
flow in your Ada program: the exception STORAGE_ERROR is raised
when an attempt is made to overflow either the main stack or an Ada task
stack. In addition, the default 10-page stack storage allocated for each
non-Ada call should be adequate protection against stack overflow for
most non-Ada routine calls. However, you should be aware that non-Ada
routines and kernel routines do not check for stack overflow. Thus, when
you call a non-Ada routine from an Ada program, it could be possible
that the stack of the main task or an individual task would overflow,
and the Ada program would not be able to detect it because the excep-
tion STORAGE_ERROR would not be raised. Such an undetected stack
overflow could result in random changes to various locations beyond the
storage allocated for the stack. Because the correct operation of the Ada
program may depend on such locations, undetected stack overflow could
make your program erroneous.

Thus to be safe, you should not mix VAXELN Ada and non-Ada programs
without checking for stack overflow. You can use the top guard areas of
tasks in your program to detect if a non-Ada routine causes the stack to
overflow. (See Section 8.2.2 for information about the top guard area.) If
you make the size of the guard pages in the top guard area large enough,
then undetected overflows that are not larger than the guard pages will
raise a hardware access violation (ACCVIO) exception. In most cases, this
exception will terminate your VAXELN process (task) immediately.

The VAXELN Remote Debugger can be used to detect stack overflow. The
remote debugger performs an automatic stack check for you, and you can
have it display the amount of stack space in use in any task, including the
main task. For further information, see Chapter 6.

8.3 Task Switching

8-8 Tasking

In the context of a single Ada program, or job, VAXELN Ada tasks are
implemented to meet the following language requirement: when two
tasks are eligible for execution, and they have different priorities, the
lower priority task will not be executing while the higher priority task is
ready and waiting to execute. Switching between tasks of equal priority
normally takes place only when the running task becomes suspended (for
example, a delay, an entry call, an input-output request, an interaction
with the VAXELN service that causes a wait, and so on). In other words,
Ada task scheduling is first-in-first-out (FIFO).

In the context of a VAXELN system composed of Ada programs (or Ada
programs mixed with programs written in VAXELN Pascal or C), tasks are
treated as any other VAXELN processes. VAXELN process scheduling is
primarily FIFO. (See the VAXELN User’s Guide for detailed information on
how process scheduling works.)

VAXELN does not have a time-slicing mechanism, and therefore VAXELN
Ada does not provide the VAX Ada pragma TIME_SLICE. Thus, the only
means of modifying task switching behavior in VAXELN Ada is to change
individual task priorities. You can use the Ada pragma PRIORITY to
change task priorities, as in the following example:

task type SQRT_TASK is

entry SQRT_ENTRY(TASK_ARRAY_INDEX : TASK_INDEX) ;
pragma PRIORITY(4) ;

end;

The range of possible VAXELN Ada task priorities is the same as for
VAX Ada: from 0 to 15 (low to high). Because VAXELN processes have
priorities ranging from 15 to 0 (low to high), the relationship between
the priority of an Ada task and the priority of the VAXELN process that
implements it is defined by the following formula:

process_priority = 15 - task_priority

Tasks specified without pragma PRIORITY have a default midrange
priority of 7 (and a VAXELN process priority of 8).

Note that you should use only pragma PRIORITY to set the priorities of
VAXELN Ada tasks because the following VAXELN methods of setting
priorities do not apply to Ada tasks:

e The Process priority option in a System Builder program descriptions
menu (this option is ignored for VAXELN Ada tasks, including main
tasks).

e The SET_PROCESS_PRIORITY procedure (the VAXELN Ada run-time
library tends to reset task priorities according to Ada rules).

The syntax and use of pragma PRIORITY are described in detail in
Chapter 9 of the VAX Ada Language Reference Manual.

Tasking 8-9

8.4 Special Tasking Considerations

Use of tasks in an Ada program requires some care, because, like any other
language construct, tasking has its own characteristic set of programming
pitfalls: deadlock, busy waiting, abort statements, shared variables,
reentrancy, and so on. Information on these general topics is given in the
VAX Ada Programmer's Run-Time Reference Manual. You should bear in
mind the following differences:

e There is no CTRL/Y mechanism in the VAXELN environment, so
all cautions about interrupting an Ada program with CTRL/Y can
be ignored (and the VAX Ada predefined package CONTROL_C_
INTERCEPTION is not provided for VAXELN Ada).

e Because the VAXELN executive does not use the asynchronous system
trap (AST) mechanism, VAXELN Ada does not provide the AST_
ENTRY attribute and pragma.

e All VAXELN kernel services and utilities are fully reentrant.

e Use of VAXELN semaphores, mutexes, events, and areas from Ada
tasks can introduce potential waits not under the control of Ada.

8.5 Calling VAXELN Kernel Services from Tasks

All VAXELN kernel services and utility routines are available from tasks
(see Chapter 9 for information on how to call them). In general, these
services and routines do not interfere with program execution, or the
execution of other tasks in the program. In other words, if a wait is
involved in a call from a VAXELN Ada task to a VAXELN service or
routine, the wait does not block the job in which the task is executing:
only the calling task waits until the service or routine call is completed.

8.6 Measuring and Tuning Tasking Performance

8-10 Tasking

When you use tasks in your program, you must frequently trade off
between responsiveness and throughput. Responsiveness is how fast
a task responds to an asynchronous event, such as a user typing at a
keyboard. Throughput is how much useful work, as measured by CPU
time, a program accomplishes in a given amount of elapsed time (time
spent switching tasks is overhead and takes CPU cycles that could be used
for useful work).

Because time-slicing is not available with VAXELN Ada, the only way
to increase responsiveness (rather than throughput) is to assign a higher
priority to a task. Assigning a higher priority to some task invariably
means that the program will perform more task switches—every time the
high priority task becomes eligible for execution, Ada rules require that it
displace a currently running lower priority task.

To help you measure the effects of any changes you may make to im-
prove tasking performance, the VAXELN Remote Debugger provides the
commands SHOW TASK/STATISTICS and SHOW TASK/FULL. See
Chapter 6 for more information.

Tasking 8-11

Chapter 9

Calling VAXELN Services

VAXELN system services and utilities can be called using the VAX Ada
package VAXELN_SERVICES. Package VAXELN—SERVICES provides
type definitions for VAXELN types and specifications for VAXELN kernel
services. It also defines interfaces to VAXELN system services, utility
routines, and device drivers and can be considered analogous in function
to package STARLET in VAX Ada.

You can obtain the complete package specification by using the ACS
EXTRACT SOURCE command.

The specification of data types is presented in Appendix A along with
Ada-language procedure specifications, which are the interfaces for calling
VAXELN services, and detailed argument descriptions for each procedure.

This chapter discusses VAXELN objects, the use of strings with VAXELN
Ada, and presents a summary of VAXELN services grouped by function.

§.1 Objects in VAXELN Services

VAXELN services are object oriented. An object is a data structure that
the kernel uses to represent a resource or some ongoing activity, such as a
process’ execution.

VAXELN objects are AREA, DEVICE, EVENT, MUTEX, MESSAGE,
NAME, PORT, PROCESS, and SEMAPHORE. The following sections
summarize the function and properties of each of these objects. See the
VAXELN User's Guide for a complete discussion of objects.

Calling VAXELN Services 9-1

9.1.1 AREA Object

An AREA object represents a region of memory that can be shared among
jobs on a single node in a VAXELN network.

An AREA object has the following associated properties:

e A character-string name of up to 31 characters that supplies a name for
the area

e A state of being either signaled or free

¢ The list of processes waiting for access to the area

e The associated region of memory

Operations with AREA Values

AREA values are used in the following operations:

CREATE_AREA Creates an area or maps an existing area
into the creating job’s virtual address
space.

DELETE_AREA Deletes an area from an existing applica-
tion and unmaps the data from its address
space.

SIGNAL AREA Signals that a referencing process is
finished with its exclusive access to an
area. This allows the next waiting process
to gain explicit access. Use this only if an
area is “locked” by a process.

WAIT_ALL or WAIT_ANY A wait for an AREA object is satisfied
when the object is signaled. Waiting for
an area implies that the waiting process
has exclusive access to the area until a
complementary signal is sent. If the area
is of zero length, the object represents
a named interjob binary semaphore,
in which case the semaphore count is
decremented if the wait is satisfied by
signaling the semaphore.

9-2 Calling VAXELN Services

§.1.2 DEVICE Object

A DEVICE object provides the means for a program’s interrupt service
routine to signal the occurrence of a particular device controller interrupt
to a waiting process.

A DEVICE object has the following associated properties:

e A set of device characteristics established with the System Builder
Utility (EBUILD)

e A communication region

e An interrupt service routine that is invoked by the kernel when an
appropriate interrupt occurs and is passed the DEVICE value and
communication region

Operations with DEVICE Values

DEVICE values are used in the following operations:

CREATE—DEVICE Establishes a connection between a physical
device, a program, and an interrupt service
routine. |

DELETE—_DEVICE Removes a DEVICE object from the system.
When a DEVICE object is deleted, the memory
used for its communication region is deleted,
and any pointers to that memory become
invalid.

SIGNAL—DEVICE Signals a DEVICE object from an interrupt
service routine.

WAIT_ALL or WAIT_ANY Causes a wait until the device is signaled from
an interrupt service routine. The DEVICE object
is cleared when the wait is satisfied.

9.1.3 EVENT Object

An EVENT object records occurrences of events in real time and stores
that information until the information is explicitly cleared by a program.

An EVENT object has the following associated properties:

e A state of being either signaled or cleared

Calling VAXELN Services 9-3

e A list of processes waiting for the event to be signaled

Operations with EVENT Values

EVENT values are used in the following operations:

CLEAR_EVENT Sets the state of an EVENT object to cleared.

CREATE_EVENT Creates and initializes an event with an initial state

of signaled or cleared returning the EVENT value
that identifies the event.

DELETE_EVENT Removes an EVENT object from the system. When
an event is deleted, any waiting processes are
removed from their wait states immediately.

SIGNAL EVENT Sets the state of an EVENT object to signaled.

WAIT_ALL or Causes a wait until an EVENT object is signaled.
WAIT_ANY Waiting for an event causes no modification of the

object and all waiting processes continue if their wait
conditions are otherwise satisfied.

9.1.4 MESSAGE Object

A MESSAGE object is used to send data from a job to a port, which will
usually be in another job.

The MESSAGE object describes a block of memory that can be moved
from one job’s virtual address space to another’s. The block of memory is
called a message’s test variable and is allocated dynamically by the kernel
from physically contiguous, page-aligned blocks of memory. A MESSAGE
object and its associated text variable are both created by calling the
CREATE_MESSAGE kernel service.

A MESSAGE object has the following associated properties:

e A data buffer to hold the message text

e The message length

9-4 Calling VAXELN Services

Operations with MESSAGE Values

MESSAGE values are used in the following operations:

CREATE—MESSAGE

DELETE_MESSAGE

RECEIVE

SEND

Creates a MESSAGE object that allocates and maps
its associated message data.

Removes the MESSAGE object from the system.
When a message is deleted, it is unavailable for
sending or receiving, and any pointers to the message
data become invalid.

Removes a message from the designated message
port. The procedure maps the message data into
the receiver job’s virtual address space, returns
a MESSAGE value identifying the message, and
optionally returns PORT values identifying the reply
port and destination port (normally the same value
supplied by the sender for the receiver's port).

Sends a message to a port. This procedure removes
the message data from the sender’s address space
and queues the MESSAGE value identifying the
message in the message port supplied by the PORT
value identifying the destination.

§.1.5 MUTEX Object

A MUTEX object represents a mutually exclusive semaphore that monitors
access to a resource. A mutex function is identical to a binary semaphore’s
function except that a mutex saves resources by not calling a kernel service
unless contention occurs. |

\

Operations with MUTEX Values

MUTEX values are used in the following operations:

CREATE_MUTEX

DELETE_MUTEX

Initializes a mutex (initially unlocked) and
creates its associated semaphore.

Removes a MUTEX object from the system.
When a mutex is deleted, any waiting
processes are removed from their wait states
immediately.

Calling VAXELN Services 9-5

LOCK_MUTEX Locks a mutex (used instead of WAIT_ANY
or WAIT_ALL).

UNLOCK—MUTEX Unlocks a mutex (used instead of SIGNAL).

9.1.6 NAME Object

A NAME object is an entry in a name table that associates character-string
names with message ports. The local name table is used only within a
node. The universal name table establishes port names valid at all nodes
in the local area network.

A NAME object has the following associated properties:

e -A character string of up to 31 characters that names an existing mes-
sage port

e The PORT value identifying the message port

e One of two properties, either local or universal

Operations with NAME Values

NAME values are used in the following operations:

CREATE_NAME Creates a NAME object and associate it with a
message port.

DELETE_NAME Deletes a specified message port name.

TRANSLATE_NAME Finds the value of a port associated with the specified
name.

9.1.7 PORT Object

A PORT object (or, informally, message port) is a destination for messages.
Each port belongs to a particular job, but can be referenced from any job
in the local area network. Unlike other object values, the identifying value
of a port is meaningful in all jobs in all nodes in the network.

Each executing job in a system has a unique message port, its job port,
created when the first process in the job is started and which it can use to
receive messages from other jobs. Programs can create additional message
ports dynamically with the CREATE_PORT procedure.

3-6 Calling VAXELN Services

A PORT object has the following associated properties:

e The maximum number of queued messages

e A list of queued messages (which will be removed from the port by the
RECEIVE procedure)

e The state of the port as regards circuit connection: unconnected,
connected, or in one of the special states arising during establishment
of a connection

e If connected, the PORT value identifying the port to which it is
connected

Operations with PORT Values

PORT values are used in the following operations:

CONNECT_CIRCUIT

DISCONNECT_CIRCUIT

CREATE_PORT

JOB_PORT

RECEIVE

WAIT_ALL or WAIT_ANY

Connects a port to a specified destination port.
This causes the invoking process to wait for the
connection request to be accepted.

Breaks the circuit connection between two ports.

Creates a message port.

Returns a PORT value identifying the caller’s job
port. A unique job port is created whenever a job
is started.

Removes a message from the designated message
port. The procedure maps the message data into
the receiver job’s virtual address space, returns
a MESSAGE value identifying the message, and
optionally returns PORT values identifying the
reply port and destination port.

Causes a process to wait for the receipt of a
message by giving the PORT value to WAJT_ALL
or WAIT_ANY. When a message arrives at the
port, any process waiting on that port is allowed
to continue if its wait conditions are otherwise
satisfied.

§.1.8 PROCESS Object

A PROCESS object has the following associated properties:

e One of 16 levels of process priority

Calling VAXELN Services 9-7

e One of the process states—running, ready, waiting, or suspended

e A user name and a user identification code (UIC)

Operations with PROCESS Values

A PROCESS object represents the current context of a thread of execution
in a program within a job. A job refers to a family of cooperating pro-
cesses that share memory and other resources; there can be any number
of processes within a job.

PROCESS values are used in the following operations:

CREATE_PROCESS

CURRENT_PROCESS

EXIT_PROCESS

RAISE_PROCESS_EXCEPTION

RESUME

SET_PROCESS_PRIORITY

SUSPEND

Creates a new subprocess.

Returns the PROCESS value identifying
the process from which it is called.

Exits the calling process.

Raises the asynchronous exception
KER—PROCESS_ATTENTION in the
specified process.

Resumes the execution of a suspended
process.

Sets the scheduling priority of the
specified process to an integer in the
range of 0 to 15. Priority 0 is the
highest.

Suspends the execution of a process.

9.1.9 SEMAPHORE Object

A SEMAPHORE object is used to protect a resource, including other
data, from simultaneous access. It is also used to control the execution of
processes that require some limited resource.

A SEMAPHORE object has the following associated properties:

e A count of the number of processes that will be allowed to obtain the
semaphore without waiting for some other process to signal it.

e The maximum allowed value for count, which is the maximum num-
ber of processes that may simultaneously have the semaphore. If
the maximum allowed count equals one, use of a MUTEX object is
recommended.

§-8. Calling VAXELN Services

e A list of processes waiting for the semaphore to be signaled.

Operations with SEMAPHORE Values

SEMAPHORE values are used

CREATE_SEMAPHORE

DELETE_SEMAPHORE

SIGNAL SEMAPHORE

WAIT_ALL or WAIT_ANY

in the following operations:

Creates a semaphore and initializes it with an
initial count and a maximum count.

Removes a SEMAPHORE object from the
system. When a semaphore is deleted, any
waiting processes are removed from their wait
states immediately.

Increments and tests the semaphore count.

Causes a process to wait to be signaled by a
semaphore. When the wait is satisfied, the
semaphore count is decremented.

9.2 VAXELN Types

The identifying values for each object for VAXELN systems are defined
as types in the package VAXELN_SERVICES. Each VAXELN object is
represented by an Ada type as described in the following table.

Object Name VAXELN Ada Type

AREA object

DEVICE object

EVENT object

MESSAGE object

Mutual-exclusion (MUTEX) object

NAME object

PORT object

PROCESS object

SEMAPHORE object

AREA_TYPE

DEVICE_TYPE

EVENT_TYPE

MESSAGE_TYPE

MUTEX_TYPE

NAME_TYPE

PORT_TYPE

PROCESS_TYPE

SEMAPHORE_TYPE

Calling VAXELN Services 9-9

9.3 Using Strings with VAXELN Services

Many VAXELN services and utility procedures have one or more argu-
ments that are of a string type. However, there are several kinds of strings
that are used, and you must be aware of which kind is needed when
passing an argument to a VAXELN procedure.

VAXELN procedure string arguments may be either fixed-length strings or
varying-length strings. These are discussed in the next two sections.

9.3.1 Fixed-Length Strings

Fixed-length strings are the same as the Ada type STRING, and the usual
Ada language features dealing with type STRING can be used. To identify
a fixed-length string argument, refer to the argument type’s definition in
the first section of Appendix A. If the type is defined as STRING, then it
is a fixed-length string, as in the following example:

subtype AREA_NAME_TYPE is STRING;

You can pass character and string literals, constants, or variables where
the base argument type is STRING.

9.3.2 Varying-Length Strings

Most of the utility procedures require varying string arguments. The
structure of a varying string is one that is compatible with the varying
string types present in VAX Pascal and VAX PL/I. The structure consists
of a 16-bit unsigned word integer that is the current length of the string,
followed by an array of characters whose length is the maximum length
of the string; this array contains the value of the varying string. The
remainder of the value array past the “current length” is considered
undefined. You can modify the contents of the string by changing the
current length and the appropriate characters in the value array.

Ada does not define a varying string type, therefore type definitions
for varying strings are provided in package VAXELN_SERVICES. The
VAXELN procedures use varying strings in a variety of maximum lengths;
the package contains a separate definition for each maximum length
required. The name of each type is VS_n, where n is the maximum
length.

9-10 Calling VAXELN Services

Thus, to determine if a particular argument type is a varying string,
examine the declaration of that type in Appendix A. For example:

subtype FILE_NAME_TYPE is VS_255;

This declares FILE_NAME_TYPE to be a varying string of maximum
length 255.

The following is an example of the definition of a varying string. This
describes the type VS_16, a varying string of maximum length 16:

type VS_16 is

record

LENGTH: NATURAL range 0..16 := 0;

VALUE : STRING (1. .16);
end record;

for VS_16 use

record

LENGTH at O range 0. .15;

end record;

The LENGTH and VALUE component in the previous example are com-
mon to all definitions of varying strings.

The LENGTH component

e is constrained to the maximum length of the varying string

e has a representation clause that causes the component to be the first 16
bits of the record

e has an initialization value to cause variables of this type to be initial-
ized as zero-length strings

The VALUE component is the size of the maximum length of the string.

9.3.2.1 Uses of Varying Strings

The following examples show typical uses of varying strings in VAXELN
Ada:

1. To declare an object of a varying string type, use the argument type
name.

LOG_FILE : FILE_NAME_TYPE

Calling VAXELN Services 9-11

2. To assign a value to a varying string from a STRING variable and a
separate current length:

LOG_FILE.LENGTH := CURRENT_LENGTH;

LOG_FILE.VALUE (1..CURRENT_LENGTH) := FIXED _STRING (1..CURRENT_LENGTH) ;

3. To use the value of a varying string as an item of type STRING:

PUT_LINE (LOG_FILE.VALUE (1..LOG_FILE.LENGTH)) ;

9.3.2.2 Varying String Descriptors

Some procedures have an argument of type VS_DESCR_TYPE. This is a
descriptor of a varying string and is used when the maximum length of the
string argument is not constant. An example of declaring and initializing
such a descriptor is

MY_STRING : VS_255;

MY_STRING_DESCR : VS_DESCR_TYPE;

MY_STRING_DESCR.MAXLEN := MY_STRING.VALUE' LAST;

MY_STRING_DESCR.POINTER := MY_STRING' ADDRESS;

9.4 VWAXELN Services

This section discusses VAXELN services by the type of function these
services can be used to perform.

See Appendix A for a complete description of each system service and util-
ity. These descriptions include the VAXELN Ada procedure specification
for calling each service or utility.

9.4.1 Authorization Utility Procedures

The following procedures are used to set or return the user identity of

processes:

Procedure Purpose

GET_USER Returns the user identity of a process.

SET_USER Sets the user identity of the current process.

9-12 Calling VAXELN Services

9.4.2 Authorization Service Utility Procedures

The following procedures are used to maintain the authorization database:

Procedure Purpose

AUTH_ADD_USER Adds a new user record to the authorization
database.

AUTH—MODIFY_USER Modifies an existing user record in the autho-
rization database.

AUTH—_REMOVE_USER Removes an existing user record from the
authorization database.

AUTH_SHOW_USER Returns authorization database information.

9.4.3 Device Driver Utility Procedures

The VAXELN development system includes device drivers for the follow-
ing real-time devices.

The ADV11C or AXV11C analog-to digital converter

The KWV11C programmable, real-time clock

The DLVJ1 asynchronous serial line controller

The DRV11-J parallel line interface device

The design of these drivers prohibits accessing a given device from more
than one job. However, gaining access from different processes within the
same job is possible, provided the caller ensures there is no simultaneous
access to the same device.

Calling VAXELN Services 9-13

9.4.3.1 Analog-to-Digital Converter Procedures

The following procedures are used in programs that access ADV11C or
AXV11C real-time devices.

Procedure Purpose

AXV_INITIALIZE

AXV_READ

AXV_WRITE

Readies an ADV or AXV device for input-output
and creates all needed data structures.

Reads analog data from the specified channels,
converts it to binary form, and stores it in a
data array.

Writes a value to an analog-to-digital conversion
output register on an AXV device.

9.4.3.2 Real-Time Clock Procedures

The following procedures are used in programs that access KWV11C
real-time devices.

Procedure Purpose

KWV_INITIALIZE Readies a KWV device for input and creates all
needed data structures.

KWV_READ Reads time values from a KWV device and
stores them in a data array.

KWV_WRITE Sets up the KWV11C device to generate the
clock-overflow signal.

9.4.3.3 Asynchronous Serial Line Controller Procedures

The following procedures are used in programs that access DLVJ1 serial
line controller devices.

9-14 = Calling VAXELN Services

Procedure Purpose

DLV_INITIALIZE

DLV_READ_BLOCK

DLV_READ_STRING

DLV_WRITE_STRING

Readies a DLV device line for input-output and
creates all needed data structures.

Reads characters from a serial line until the

specified number of characters are read.

Reads characters from a serial line until a

carriage return character is encountered.

Writes the specified character string to a serial
line.

9.4.3.4 Parallel Line Interface Procedures

The following procedures are used in programs that access DRV11-J
parallel line interface devices.

Procedure Purpose

DRV_INITIALIZE Readies a DEV device controller for input-
output and creates all needed data structures.

DRV_READ Reads data words from the specified parallel
port.

DRV_WRITE Writes data words to the specified parallel port.

9.4.4 DMA Device Handling Procedures

The following direct memory mapping access (DMA) device handling
procedures are used in memory mapping for UNIBUS and QBUS devices.
These procedures can only be called from programs running in kernel
mode.

Procedure Purpose

ALLOCATE_MAP

ALLOCATE_PATH

Allocates a contiguous block of UNIBUS or
QBUS map register.

Allocates a UNIBUS adapter buffered datapath.

Calling VAXELN Services 9-15

Procedure Purpose

FREE_MAP Frees a set of previously allocated UNIBUS or
QBUS map registers.

FREE_PATH Frees a previously allocated UNIBUS adapter

LOAD_UNIBUS_MAP

PHYSICAL_ADDRESS

UNIBUS_MAP

UNIBUS_UNMAP

buffered datapath.

Loads UNIBUS or QBUS map registers.

Returns the physical address of the variable
supplied as its argument.

Maps memory buffers for direct memory access
by UNIBUS or QBUS devices.

Unmaps memory buffers previously mapped for
direct memory access by a UNIBUS or QBUS
device.

9.4.5 Exception Handling Procedures

The following procedures relate to VAXELN exception handling and
accessing the message database.

Procedure Purpose

DISABLE_ASYNCH EXCEPTION Prevents the delivery of asynchronous
exceptions.

ENABLE_ASYNCH_EXCEPTION Allows the delivery of asynchronous
exceptions.

GET_STATUS_TEXT

RAISE_EXCEPTION

RAISE_PROCESS_EXCEPTION

UNWIND

Returns the text associated with a

status code.

Causes a software exception in the
calling process.

Raises the KER$_PROCESS_
ATTENTION exception.

Unwinds the call stack to a new

location.

9-16 Calling VAXELN Services

9.4.6 Exit Utility Procedures

The following procedures establish and delete an exit handler to perform:
cleanup operations following the termination of a job with the EXIT

procedure.

Procedure Purpose

CANCEL —_EXIT_HANDLER Deletes a specific exit handler routine.

DECLARE_EXIT_HANDLER Calls an exit handler routine defined by the:
program.

9.4.7 File Service Procedures

9.4.7.1 Disk Utility Procedures

The following procedures are performed by the VAXELN disk File Service.

Procedure Purpose

DISMOUNT_VOLUME Dismounts a File Service volume on the speci-
fied disk drive.

INIT_VOLUME Initializes a File Service disk for use as a

file-structured volume.

MOUNT_VOLUME Mounts a File Service disk for use as a file-

structured volume.

9.4.7.2 File Utility Procedures

The following procedures are performed by the VAXELN File Service for
disk and tape volumes.

Calling VAXELN Services 9-17

Procedure Purpose

COPY_FILE

CREATE—_DIRECTORY

DELETE_FILE

DIRECTORY_CLOSE

DIRECTORY_LIST

DIRECTORY_OPEN

PROTECT_FILE

RENAME-_FILE

Makes an exact duplicate of the specified file.

Creates a directory on the specified disk volume.

Deletes a file from a mounted disk volume.

Closes an existing directory on a mounted disk
volume.

Obtains the next file name from a mounted disk

directory.

Opens an existing directory on a mounted disk
volume in preparation for a directory listing.

Changes the protection of a disk file.

Renames a disk file.

9.4.7.3 Tape Utility Procedures

The following procedures are performed by the VAXELN tape File Service.

Procedure Purpose

DISMOUNT_TAPE_VOLUME

INIT_TAPE_VOLUME

MOUNT_TAPE_VOLUME

Dismounts a File Service tape on the speci-
fied tape drive.

Initializes a File Service tape for use as a
file-structured volume.

Mounts a File Service tape for use as a
file-structured volume.

§.4.8 interrupt Priority Level Procedures

The following procedures raise or lower the processor’s interrupt priority
levels.

9-18 Calling VAXELN Services

Procedure Purpose

DISABLE_INTERRUPT Prevents interrupts from a device by raising the
interrupt priority level.

ENABLE_INTERRUPT Allows interrupts from a device by lowering the
interrupt priority level to 0.

9.4.9 Memory Allocation Procedures

The following procedures relate to allocating and freeing memory.

Procedure Purpose

ALLOCATE-MEMORY Allocates physical VAX memory pages into the
virtual address space of the job that calls it.

FREE_MEMORY Frees a region of physical VAX memory pages
previously allocated

MEMORY_SIZE scans the kernel database and returns the
value for the initial main memory, current
free memory, and current largest, physically
contiguous block of free memory.

9.4.10 Message Transmission Procedures

The following procedures relate to transmitting messages between pro-
cesses, jobs, and ports.

Procedure Purpose

ACCEPT_CIRCUIT Establishes a circuit between two ports.

CONNECT_CIRCUIT Connects a port to a specified destination
port.

CREATE_MESSAGE Creates a message and its associated mes-
sage data.

CREATE_NAME Creates a name for a port.

Calling VAXELN Services 9-19

Procedure Purpose

CREATE_PORT Creates a message port.

DELETE_MESSAGE Deletes the specified message object.

DELETE_PORT Deletes the specified port.

DELETE_NAME Deletes the specified name.

DISCONNECT_CIRCUIT Breaks the circuit connection between two
ports.

JOB_PORT Returns the current job port.

RECEIVE Receives a message from a port.

SEND Sends a message from a port.

TRANSLATE_NAME Returns a value identifying a named port.

9.4.11 Program Argument Procedures

The procedures summarized in this section obtain arguments, argument
list lengths, and argument counts.

Procedure Purpose

PROGRAM_—ARGUMENT Returns the character string passed as an
argument.

PROGRAM_ARGUMENT_COUNT Returns the number of arguments passed
to the program.

9.4.12 Program Loader Procedures

The following procedures dynamically load and unload program images
into a running VAXELN system after the initial system is built.

After a program image is loaded, the CREATE_JOB procedure is used to
execute the program image.

9-20 Calling VAXELN Services

Procedure Purpose

LOAD_PROGRAM Loads the specified image file into a running system.

UNLOAD_PROGRAM Unloads the specified program from the system.

§.4.13 Time-Representation Procedure

The following procedure is used to set a new system time.

Procedure Purpose

SET_TIME Sets a new system time.

9.4.14 Virtual-to-Physical Address Procedure

See DMA Device Handling Procedures

9.4.15 Other Services

The following procedures are also available.

Procedure Purpose

DISABLE_SWITCH Disables process switching for the job from
which it is called.

ENABLE_SWITCH Restores preemptive process scheduling, or
switching, for the calling job.

ENTER _KERNEL—CONTEXT _ Executes the specified user routine in the kernel
processor mode.

INITIALIZATION_DONE Informs the kernel that the calling job has
completed an initialization sequence, and other
programs can be started if specified.

SET_JOB_PRIORITY Sets the scheduling priority of the current job.

Calling VAXELN Services 9-21

9.5 VAX/VMS Services Available with VAXELN Ada

The following VAX/VMS-compatible services are available with VAXELN
Ada in the package STARLET:

SYS$ASCTIM
SYS$BINTIM
SYS$CANEXH
SYS$DCLEXH (Restriction—exit reason code not used)
SYS$EXIT
SYS$FAO (Restriction—!%U and !%I not supported)
SYS$FAOL (see SYS$FAO)
SYS$GETMSG
SYS$GETTIM
SYS$NUMTIM
SYS$PUTMSG (Third program argument used as file specification for

output, if null, CONSOLE: is used)
SYSSUNWIND

The following VAX/VMS-compatible Run-Time Library routines are
available:

LIB$SIGNAL
LIB$STOP (Restriction—does not disallow continuation)
LIBfCREATE_USER_VM_ZONE
LIBS$CREATE_VM_ZONE
LIB$CVT_DTB
LIB$CVT_HTB
LIB$CVT_OTB
LIB$ DELETE_VM__ZONE
LIB$FREE_VM
LIB$FREE_VM_—PAGE
LIB$GET_VM
LIB$GET_VM_PAGE
LIBSMATCH_COND
LIBSRESET_VM_ZONE
LIB$SIG_TO_RET
LIB$TPARSE (Restriction—TPA$_FILESPEC, TPA$_UIC,

TPA$_IDENT not supported)
OTS$CVT_L_TB
OTS$CVT_L_TI
OTS$CVT_L_TL
OTS$CVT_L_TO
OTS$CVT_L_TU

9-22 Calling VAXELN Services

OTS$CVT_L_TZ
OTS$MOVE3
OTS$MOVE3_R5
OTS$MOVE5
OTS$MOVE5_R5

Calling VAXELN Services 9-23

Appendix A

Package VAXELN_SERVICES

The first section of this appendix presents definitions for the types, sub-
types, and constants used in the package VAXELN_SERVICES. The sec-
ond section lists and describes the VAXELN Ada procedure specifications
used in calling VAXELN services.

A.1 Type Definitions

The following information describes the types, subtypes, and constants
used in VAXELN Ada service calls. It is the first major section of the pack-
age VAXELN_SERVICES. The complete specifications of this package can
be obtained using the ACS EXTRACT SOURCE command. Explanatory
text precedes each type definition.

with SYSTEM; use SYSTEM;

with CONDITION_HANDLING; use CONDITION_HANDLING;

package VAXELN_SERVICES is

-- Package VAXELN_SERVICES provides the types, operations,

-- constants, and so on that are needed to call VAXELN

-- kernel services and utility routines. Use of this

-- package is described in Chapter 9 of the

-- VAXELN Ada User's Manual.

Package VAXELN_SERVICES A-1

-- VAXELN_SERVICES is divided into the following major sections:

-- 1. Types, subtypes, and constants used in

-- service calls.

-- 2. Kernel service routines.

-- 3. Utility routines.

-- 4. Status values that are returned by VAXELN services and

-- utility routines. These include all KER_ and ELN_

-- status values.

-- Section 1. Types, subtypes, and constants used in

-- service calls.

-- Ada parameter types and subtypes for VAXELN

-- service calls.

-- Types defined in predefined STANDARD that are used

-- as parameter types for VAXELN service calls

-- include BOOLEAN, INTEGER and STRING.

-- Several types in predefined SYSTEM are used,

-- including ADDRESS, UNSIGNED_LONGWORD,
-- and other unsigned types.

-- Type COND_VALUE_TYPE from package CONDITION_HANDLING

-- is used.

-- Additional parameter types are defined as follows:

-- Varying string types

-~- Many VAXELN utility routines and some kernel services require

-- string arguments to be passed as varying strings, following the

-- VAX/VMS standard datatype VT (varying text) format. This format
-- includes an unsigned word for the current length of the string,

-- followed immediately by the string data itself. This format

-- is also used as the VAXELN Pascal VARYING_STRING type.

-- While it is possible to define a general purpose varying string

-- package in Ada, it is more efficient and more convenient to

-- define a set of record types, one for each type of varying string

-- used. The current length and string value are then directly

-- accessible and can be manipulated by the user as desired.

-- For each varying string type, the record consists of a LENGTH and

-- a VALUE. LENGTH is an unsigned word integer that is constrained

-- to be within the maximum length of the string type. VALUE is

-- the "body" of the string; a fixed length string of the proper

-- length. The constraints are necessary because the VAXELN services

-- and utility routines assume that arguments are the correct type.

A-2 Package VAXELN_SERVICES

-- VS_6

-- A varying string with a maximum length of 6 characters.

type VS_6 is

record
LENGTH : NATURAL range 0..6 := 0;

VALUE : STRING (1. .6);
end record;

for VS_6 use

record

LENGTH at O range 0. .15;

end record;

-- V§_12

-- A varying string with a maximum length of 12 characters.

type VS_12 is

record

LENGTH : NATURAL range 0..12 := 0;

VALUE : STRING (1. .12);

end record;

for VS_12 use

record

LENGTH at O range 0. .15;

end record;

-- VS_16

-- A varying string with a maximum length of 16 characters.

type VS_1i6 is

record

LENGTH : NATURAL range 0..16 := 0;

VALUE : STRING (1..16);
end record;

for VS_16 use

record

LENGTH at O range 0. .15;

end record;

Package VAXELN_SERVICES A-3

-- VS_20

-- A varying string with a maximum length of 20 characters.

type VS_20 is

record

LENGTH : NATURAL range 0..20 := 0;

VALUE : STRING (1..20);
end record;

for VS_20 use

record

LENGTH at O range 0. .15;

end record;

-- VS_30

-- A varying string with a maximum length of 30 characters.

type VS_30 is

record
LENGTH : NATURAL range 0..30 := 0;

VALUE : STRING (1..30);
end record;

for VS_30 use

record

LENGTH at O range 0. .15;

end record;

-- VS_32

-- A varying string with a maximum length of 32 characters.

type VS_32 is

record
LENGTH : NATURAL range 0..32 := 0;

VALUE : STRING (1. .32);
end record;

for VS_32 use .

record

LENGTH at O range 0. .15;

end record;

A-4 Package VAXELN_SERVICES

-- VS_40

-- A varying string with a maximum length of 40 characters.

type VS_40 is

record

LENGTH : NATURAL range 0..40 := 0;

VALUE : STRING (1. .40);
end record;

for VS_40 use

record

LENGTH at O range 0. .15;

end record;

-- VS_64

-- A varying string with a maximum length of 64 characters.

type VS_64 is

record
LENGTH : NATURAL range 0..64 := 0;

VALUE : STRING (1. .64);

end record;

for VS_64 use

record

LENGTH at O range 0. .15;

end record; .

-- VS_100

-- A varying string with a maximum length of 100 characters.

type VS_100 is

record

LENGTH : NATURAL range 0..100 := 0;

VALUE : STRING (1..100);
end record;

for VS_100 use

record

LENGTH at O range 0. .15;

end record;

Package VAXELN_SERVICES A-5

-- VS_128

-- A varying string with a maximum length of 128 characters.

type VS_128 is

record

LENGTH : NATURAL range 0..128 := 0;

VALUE : STRING (1..128);
end record;

for VS_128 use

record

LENGTH at O range 0O..15;

end record;

-- VS_255

-- A varying string with a maximum length of 255 characters.

type VS_255 is

record

LENGTH : NATURAL range 0..255 := 0;

VALUE : STRING (1..255);
end record;

for VS_255 use

record

LENGTH at O range 0. .15;

end record;

-- VAXELN object and argument types

-- This section contains the types of arguments that are passed to

-- VAXELN kernel services and utility procedures.

-- AREA_NAME_TYPE

-- A string of 1 to 31 characters specifying the name of an

-- AREA object.

subtype AREA_NAME_TYPE is STRING;

A-6 Package VAXELN_SERVICES

-- AREA_TYPE

-- An AREA object represents a region of memory that can be

-- shared among jobs on a single node in a VAXELN network.

-- An AREA object contains a binary semaphore that can be used

-- by the sharing jobs to synchronize access to the area's

-- data. Areas with a size of zero are valid and represent

-- only the semaphore. Values of type AREA_TYPE identify

-- areas, and are returned by the CREATE_AREA procedure. This

-- type should be considered private to the VAXELN kernel.

subtype AREA_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

-- AUTH_FIELDS_TYPE

-- A structure that is used to specify in

-- a call to the AUTH_MODIFY_USER procedure which fields

-- are to be modified. If a component of
-- the record has the value TRUE, the

-- corresponding element of the authorization

-- record is changed.

type AUTH_FIELDS_TYPE is

record

USERNAME_FIELD : BOOLEAN := FALSE;

NODENAME_FIELD : BOOLEAN := FALSE;

PASSWORD_FIELD : BOOLEAN := FALSE;
VIC_FIELD : BOOLEAN := FALSE;

USERDATA_FIELD : BOOLEAN := FALSE;

FILLER_1 : UNSIGNED_27 := 0;

end record;

for AUTH_FIELDS_TYPE use

record

USERNAME_FIELD at O range 0 .. O;

NODENAME_FIELD at O range 1 .. 1;

PASSWORD_FIELD at O range 2... 2;
VIC_FIELD | at O range 3... 3;

USERDATA_FIELD at O range 4... 4;

FILLER_1 at O range 5 .. 31;

end record;

for AUTH_FIELDS_TYPE'SIZE use 32;

-- AUTH_STRING_TYPE

-- A varying string specifying a user name or password.

subtype AUTH_STRING_TYPE is VS_20;

Package VAXELN_SERVICES A-7

-- ARG_LIST_TYPE

-- A procedure argument list consisting of one or more

-- longwords; the first longword contains an unsigned

-- integer count of the number of successive, contiguous

-- longwords, each of which is a parameter to be passed to

-- a procedure by means of a VAX CALLG instruction.

subtype ARG_LIST_TYPE is SYSTEM.UNSIGNED_LONGWORD_ARRAY ;

-- AXV_DAC_CHANNEL_TYPE

-- An enumerated type that specifies which DAC channel

-- is to be used in a call to the AXV_WRITE procedure.

type AXV_DAC_CHANNEL_TYPE is (CHANNEL_A, CHANNEL_B) ;

-- AXV_DATA_TYPE

-- The values read from or written to an AXV device, or

-- read from an ADV device, are of this type. The interpretation

-- of the values depends on the Data Notation (binary, offset

-- binary or two's complement) as specified by jumpers on the

-- board.

subtype AXV_DATA_TYPE is SYSTEM.UNSIGNED_WORD;

-~- AXV_GAIN_ARRAY_TYPE

-- An array of AXV_GAIN_VALUES elements, one per channel,

-- used in a call to the AXV_READ procedure.

type AXV_GAIN_VALUES is (ONE, TWO, FOUR, EIGHT);

for AXV_GAIN_VALUES'SIZE use 16;

type AXV_GAIN_ARRAY_TYPE is array (INTEGER range <>) of AXV_GAIN_VALUES;

-~ AXV_IDENTIFIER_TYPE

-- The value used to identify a connection to an ADV or

-- AXV device. This value is returned by a call to the

-- AXV_INITIALIZE procedure.

subtype AXV_IDENTIFIER_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

AXV_IDENTIFIER_ZERO : constant AXV_IDENTIFIER_TYPE := 0;

-- CIRCUIT_DATA_TYPE

-- A varying string that specifies or receives optional data in

-- a call to the ACCEPT_CIRCUIT procedure or the CREATE_CIRCUIT procedure.

subtype CIRCUIT_DATA_TYPE is VS_16;

A-8 Package VAXELN_SERVICES

-~- COND VALUE_TYPE (CONDITION HANDLING . COND.VALUE_TYPE)

-- A VAXELN (and VAX/VMS) condition value. (See

~- package CONDITION_HANDLING. }

COND_VALUE_ZERO: constant

0; CONDITION HANDLING .COND_VALUE_TYPE :=

COND_VALUE_i: constant

CONDITION _ HANDLING: COND_VALUE_TYPE := i;

~- CREATE_DEVICE_NAME_TYPE

-- A string of i to 30 characters naming a device

-~ in a call to the CREATE_DEVICE procedure. The name must match one of the

~-- device names established with the System Builder Utility.

subtype CREATE_DEVICE_NAME_TYPE is STRING;

' -~ DATE_TIME_TYPE

~- A 64-bit unsigned, binary integer denoting a date and

-- time as the number of elapsed 100-nanosecond units

-- since 00:00 o'clock, November 17, 1858

subtype DATE_TIME_TYPE is SYSTEM. UNSIGNED_QUADWORD:;

DESTINATION_NAME_TYPE

-- A string specifying the destination for a circuit

-- connection request in a call to the CONNECT_CIRCUIT procedure.

-- The destination can-be a name established by the

~~ CREATE_NAME procedure or can be a DECnet

-- object number. See the description of the

-- CONNECT_CIRCUIT procedure for more information.

subtype DESTINATION_NAME_TYPE is STRING;

-- DEVICE_NAME_TYPE

-~ A varying string specifying the name of a device in

-- a call to a device driver utility initialization

-- routine.

subtype DEVICE_NAME_TYPE is VS_30;

Package VAXELN_SERVICES A-9

-- DEVICE_NUMBER_TYPE

-- An integer value in the range of 0 to 15 specifying

-- a particular device in an array of devices.

subtype DEVICE_NUMBER_TYPE is NATURAL range 0..15;

DEVICE_NUMBER_ZERO: constant DEVICE_NUMBER_TYPE := 0;

-- DEVICE_TYPE and DEVICE_ARRAY_TYPE

-- A DEVICE object provides the means for a program's interrupt

-- gervice routine to signal the occurrence of a particular

~- device controller interrupt to a waiting process. The

-~ interrupt service routine ie called by the kernel each time

-- the connected interrupt occurs; it can signal the DEVICE

-- object to eyncaronize itself with processes in the job

-- that ereated the object. Values of type DEVICE_TYPE identify

-- devices, and’ are returned by the CREATE_DEVICE procedure.

-- This type should be considered private to the VAXELN kernel.

-- The DEVICE_ARRAY_TYPE denotes an array of DEVICE objects, one for

-- each unit on a device controller, which ig passed to

-- the CREATE_DEVICE procedure.

subtyps DEVICE_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

type DEVICE_ARRAY_TYPE is array (INTEGER range <>) of DEVICE_TYPE;

~~ DIR_CONTEXT_TYPE and DIR_CONTEAT_ACCESS_TYPE

-- The directory context as returned by the DIRECTORY_OPEN,

-- and specified on calls to DIRECTORY_CLOSE and DIRECTORY_LIST, to

-- identify a directory search context.

-- Note that pricer to calling the DIRECTORY_OPEN procedure, you must

-- allocate a variable of type DIR_CONTEXT_TYPE. For example:

-- DIRECTORY_CONTEXT : DIR_CONTEXT_ACCESS_TYPE := new DIR_CONTEXT_TYPE;

-- DIRECTORY_OPEN (DJR_CONTEXT := DIRECTORY_CONTEXT

type DIR_CONTEXT_TYPE is.
record

DAPD : SYSTEM. ADDRESS;

DIR_STATUS : SYSTEM. UNSIGNED_LONGWORD;

SERVER : VS_255;
VOLUME : VS_255;

DIRECTORY : VS_255;

end record;

pragma PACK (DIR_CONTEXT_TYPE) ;

type DIR_CONTEXT_ACCESS_TYPE is access DIR_CONTEXT_TYPE;

A-10 Package VAXELN_SERVICES

-- DISK_BADBLOCK_TYPE

-- A record that describes one bad block on a disk volune,

-- as a range of either logical or physical block numbers.

-- DISK_BADBLOCK_TYPE is a variant record with the

-- discriminant being Boolean field PBN_FORMAT. If the PBN_FORMAT

~- field is FALSE, the record describes a range of logical blocks.

~- If PBN_FORMAT is TRUE, the record describes a range of

~- physical blocks. See the descriptions of types

-- DISK_BADLIST_TYPE and DISK_BADLIST_DESCR_TYPE, and of

~- the INIT_VOLUME procedure, for more information.

type DISK_BADBLOCK_TYPE (PBN_FORMAT : BOOLEAN := FALSE) is

record

FILL: SYSTEM.UNSIGNED_15 := 0; -- Must be zero

case PBN_FORMAT is

when FALSE => -- logical block format

START_LBN: INTEGER;

LBN_COUNT: SYSTEM.UNSIGNED_WORD;
when TRUE => -- physical block format

SECTOR: SYSTEM.UNSIGNED_BYTE;

TRACK: SYSTEM.UNSIGNED_BYTE;

CYLINDER: SYSTEM.UNSIGNED_WORD;

PBN_COUNT: SYSTEM.UNSIGNED_WORD;
end case;

end record;

for DISK_BADBLOCK_TYPE use

record

START_LBN at O range 0. .3i;

LBN_COUNT at 4 range 0. .15;

SECTOR at O range 0..7;

TRACK at i range 0. .7;

CYLINDER at 2 range 0. .15;

PBN_COUNT at 4 range 0. .15;

PBN_FORMAT at 6 range 0..0; -- discriminant

FILL at 6 range 1..15;

end record;

for DISK_BADBLOCK_TYPE'SIZE use 64;

-- DISK. BADLIST_DESCR_TYPE

-- A descriptor of an array that specifies a list of bad blocks

-- as input to the INIT_VOLUME procedure. The LIST_SIZE field is to

-~- be set to the size of the array of type DISK_BADLIST_TYPE that

-- is to be used; use the 'SIZE attribute to obtain this information.

-- The LIST_ADDRESS field is to be set to the address of the array;

-- use the 'ADDRESS attribute to obtain this information.

Package VAXELN_SERVICES A-11

type DISK_BADLIST_DESCR_TYPE is

record

LIST_SIZE: INTEGER;

LIST_ADDRESS: SYSTEM. ADDRESS;
end record;

DISK_BADLIST_DESCR_NONE: constant DISK_BADLIST_DESCR_TYPE :=

(LIST_SIZE => 0,

LIST_ADDRESS => SYSTEM. ADDRESS_ZERO) ;

-- DISK_BADLIST_TYPE

-- An array of items of type DISK_BADBLOCK_TYPE that specifies

-- a list of bad blocks to the INIT_VOLUME procedure.

type DISK_BADLIST_TYPE is array (INTEGER range <>) of DISK_BADBLOCK_TYPE;

-- DISK_DATA_CHECK_TYPE

-- An enumerated value specifying the type of data

-- checking to be done for a disk.

type DISK_DATA_CHECK_TYPE is (CHECK_READ, CHECK_WRITE, NOCHECK) ;

-- DISK_INDEX_POSITION_TYPE

-- An enumerated value specifying the location of

-- a disk index.

type DISK_INDEX_POSITION_TYPE is (POSITION_BEGINNING,
POSITION_MIDDLE, POSITION_END) ;

-- DISK_VOLUME_NAME_TYPE

-- A varying string specifying the name of a disk volume.

subtype DISK_VOLUME_NAME_TYPE is VS_12;

-- DLV_BLOCK_TYPE

-- Data returned from a call to the DLV_READ_BLOCK procedure is stored in an

-- array of characters of a fixed length, that length being the

-~- value of the MAXIMUM_LENGTH argument to the DLV_INITIALIZE

-- procedure. The call is to ensure that the

-- size of the array of type DLV_BLOCK_TYPE is sufficient to

-- hold the number of characters returned.

subtype DLV_BLOCK_TYPE is SYSTEM.UNSIGNED_BYTE_ARRAY ;

A-12 Package VAXELN_SERVICES :

-- DLV_IDENTIFIER_TYPE

-- This type identifies a connection to a specific DLV line. Values of typs

-- DLV_IDENTIFIER_TYPE are returned by a call to the DLV_INITIALIZE

-- procedure.

subtype DLV_IDENTIFIER_TYPE is SYSTEM.UNSIGNED _LONGWORD ;

-- DLV_STRING_TYPE

-- A string written to a DLY¥Y device by the DLV_WRITE_STRING procedure.

subtype DLV_STRING_TYPE is STRING;

-- DRV_IDENTIFIER_TYPE

-- This type identifies a connection to a specific DLV controller. Values «

-- type DRV_IDENTIFIER_TYPE are returned by a call to the

-- DRV_INITIALIZE procedure.

subtype DRV_IDENTIFIER_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

-- DRV_PORT_INDEX_TYPE

-- An enumerated value specifying which port of

-- a DRY device to use.

type DRV_PORT_INDEX_TYPE ia (PORT_A, PORT_B,

PORT_C, PORT_D);

-- DRV_PORT_SET_TYPE

-- A Boolean array specifying which DRY ports

-- are to be used for output.

type DRV_PORT_SET_TYPE is array (DRV_PORT_INDEX_TYPE) of BOOLEAN;

pragme PACK (DRV_PORT_SET_TYPE) ;

-~- EVENT _TYPE

-- An EVENT object records occurrences of events in real time

-~ and stores that information until explicitly cleared by

-- a program. Values of type EVENT_TYPE identify events,

-~ and are returned by the CREATE_EVENT procedure. This type should

-- be considered private to the VAXELN kernel.

subtype EVENT_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

Package VAXELN_SERVICES A-13

-- EVENT_STATE_TYPE

-- An enumerated type specifying the initial

-- value of an EVENT object.

type EVENT_STATE_TYPE is (CLEARED, SIGNALED);
for EVENT_STATE_TYPE use

(CLEARED => 0, SIGNALED => 1);

-- EXIT_CONTEXT_TYPE

~- A value passed to an exit handler that is

-- also used to identify a particular exit handler.

subtype EXIT_CONTEXT_TYPE is SYSTEM.UNSIGNED_LONGWORD ;
EXIT_CONTEXT_ZERO : constant EXIT_CONTEXT_TYPE := 0;

-- FILE_NAME_TYPE

-- A varying string that specifies or receives a

-- file specification.

gubtype FILE_NAME_TYPE is VS_255;

-- FILE_PROTECTION_TYPE

-- A 16-bit file protection mask. The mask contains four

-- 4-bit fields, each of which specifies the protection

-- to be applied to file access attempts by one of the

-- four categories of user.

type FILE_PROTECTION_FLAGS_TYPE is

record

NOREAD : BOOLEAN := FALSE; -- deny read access

NOWRITE : BOOLEAN := FALSE; -- deny write access

NOEXE : BOOLEAN := FALSE; -- deny execution access

NODEL =: BOOLEAN := FALSE; -- deny delete access

end record:

pragma PACK (FILE_PROTECTION_FLAGS_TYPE) ;

type FILE_PROTECTION_TYPE is

record

SYS : FILE_PROTECTION_FLAGS_TYPE;

OWN : FILE_PROTECTION_FLAGS_TYPE;

GRP : FILE_PROTECTION_FLAGS_TYPE;

WLD : FILE_PROTECTION_FLAGS_TYPE;

end record;

A-14 Package VAXELN_SERVICES

for FILE_PROTECTION_TYPE use

record

SYS at O range 0 ..

OWN at O range 4 ..

GRP at 1 range O ..

WLD at 1 range 4 ..

end record;

“
a

~“
0

for FILE_PROTECTION_TYPE'SIZE use 16;

FILE_PROTECTION_FLAGS_NONE: constant FILE_PROTECTION_FLAGS_TYPE :=

(NOREAD => FALSE,

NOWRITE => FALSE,

NOEXE => FALSE,

NODEL => FALSE);
FILE_PROTECTION_TYPE_NONE: constant FILE_PROTECTION_TYPE :=

(SYS => FILE_PROTECTION_FLAGS_NONE,

OWN => FILE_PROTECTION_FLAGS_NONE,

GRP => FILE_PROTECTION_FLAGS_NONE,

WLD => FILE_PROTECTION_FLAGS_NONE) ;

-- IO_BUFFER_TYPE

-- An array of bytes used as an input-output

-- buffer by a device driver.

subtype IO_BUFFER_TYPE is SYSTEM.UNSIGNED_BYTE_ARRAY ;

-- IPL_TYPE

-- A value denoting a specific Interrupt Priority

-- Level setting. This type is used in device drivers.

subtype IPL_TYPE is SYSTEM.UNSIGNED_LONGWORD range 0. .31;

-- JOB_ARGUMENT_TYPE

-- A string specifying an argument to a job created by a call

-- to the CREATE_JOB procedure.

subtype JOB_ARGUMENT_TYPE is STRING;

-- JOB_PRIORITY_TYPE

-- An integer value for the priority of a job

-- in the range of 0 to 31 with O being the

-- most urgent priority.

subtype JOB_PRIORITY_TYPE is NATURAL range 0. .31;

JOB_PRIORITY_16 : constant JOB_PRIORITY_TYPE := 16;

Package VAXELN_SERVICES A-15

-- KWV_CLOCK_RATE_TYPE

-- An enumerated value specifying the clock rate for

-- a KWV device.

type KWV_CLOCK_RATE_TYPE is (RATE_STOP, RATE_1MHZ,

RATE_100KHZ, RATE_10KHZ, RATE_1KHZ, RATE_100HZ,

RATE_ST1, RATE_LINE) ;

-- KWV_COUNTER_TYPE

-- A value range for data returned from a KWV device.

subtype KWV_COUNTER_TYPE is SYSTEM.UNSIGNED_WORD ;
KWV_COUNTER_1 : constant KWV_COUNTER_TYPE := 1;

-- KWV_IDENTIFIER_TYPE

-- A value used to identify a connection to a KWV device.

subtype KWV_IDENTIFIER_TYPE is SYSTEM.UNSIGNED_LONGWORD ;
KWV_IDENTIFIER_ZERO : constant KWV_IDENTIFIER_TYPE := 0;

-- KWV_MODE_TYPE

-- An enumerated value specifying the mode of operation

-- of a KWV device.

type KWV_MODE_TYPE is (MODE_ZERO, MODE_ONE, MODE_TWO, MODE_THREE) ;

-- MEMORY_PROTECTION_TYPE

-- An enumerated value specifying the protection to

-- be given to a set of memory pages.

type MEMORY_PROTECTION_TYPE is

(READ_ONLY, READ_WRITE, NO_ACCESS) ;
for MEMORY_PROTECTION_TYPE use

(READ_ONLY => 0, READ_WRITE => 1, NO_ACCESS => 2);

-- MESSAGE_TYPE

-- A MESSAGE object is used to send data from a job to a port,

-- which will usually be in another job. Values of type

-- MESSAGE_TYPE identify messages, and are returned by the

-- CREATE_MESSAGE procedure. This type should be considered

-- private to the VAXELN kernel.

subtype MESSAGE_TYPE is SYSTEM.UNSIGNED_LONGWORD;

A-16 Package VAXELN_SERVICES

-- MUTEX_TYPE

-- The MUTEX_TYPE type is provided as an optimization of

-- binary semaphores. Locking and unlocking mutexes, when

-- there is no contention for the resource, do not involve

-- calls to the VAXELN kernel, resulting in a significant

-- improvement in performance compared to using a

-- SEMAPHORE object. Mutexes are not VAXELN objects, and

-- thus cannot be used with the WAIT_ALL, WAIT_ANY and

-- SIGNAL procedures. The operations provided for mutexes are

-- CREATE_MUTEX, LOCK_MUTEX,

-- UNLOCK_MUTEX and DELETE_MUTEX.

type MUTEX_TYPE is private;

-- NAME_TYPE

-- A NAME object is an entry in a name table that associates

-- character-string names with message ports. The local name

-~- table (maintained by the kernel) is used only within a node.
~- The universal name table (maintained with the aid of the

-- Network Service) establishes port names valid at all nodes

-- in the local area network. Values of type NAME_TYPE identify

-- names, and are returned by the CREATE_NAME procedure. This

-- type should be considered private to the VAXELN kernel.

subtype NAME_TYPE is SYSTEM.UNSIGNED_LONGWORD;

-- NAME_SCOPE_TYPE

-- An enumerated type that specifies whether the name

-- being created (CREATE_NAME) or translated
-- (TRANSLATE_NAME) is of local or universal
-- scope. Local names are valid only on the

-- executing node, while universal names are

-- valid throughout the application or on

-- any node. The value BOTH is only applicable

-- to the TRANSLATE_NAME procedure.

type NAME_SCOPE_TYPE is (LOCAL, UNIVERSAL, BOTH);
for NAME_SCOPE_TYPE use

(LOCAL => 0, UNIVERSAL => 1, BOTH => 2);

-- NODE_NAME_TYPE

-- A varying string specifying or receiving a node name.

subtype NODE_NAME_TYPE is VS_32;

Package VAXELN_SERVICES A-17

-- PHYSICAL_ADDRESS_TYPE

-- The physical address of a memory location.

subtype PHYSICAL_ADDRESS_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

-- PORT_NAME

-- A string specifying or receiving the name of a PORT object.

subtype PORT_NAME_TYPE is STRING;

-- PORT_TYPE

-- A PORT object (or, informally, message port) is a
-- destination for messages. Each port belongs to a

-- particular job, but it can be referenced from any job

-- in the local area network. In contrast to other object

-~ values, the identifying value of a port is meaningful

-- in all jobs in all nodes in the network. Values of

-- type PORT_TYPE identify ports, and are returned by the

-- CREATE_PORT procedure. This type should be considered

-- private to the VAXELN kernel.

type PORT_TYPE is array (1..4) of SYSTEM.UNSIGNED_LONGWORD;

-- PROCESS_TYPE

-- A PROCESS object represents the current context of a thread

-- of execution in a program within a job. A job refers to a

-- family of cooperating processes that share memory and other

-- resources; there can be any number of processes within

-- a job. Values of type PROCESS_TYPE identify processes, and

-- are returned by the CREATE_PROCESS procedure. This type should

-- be considered private to the VAXELN kernel.

subtype PROCESS_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

-- PROCESS_PRIORITY_TYPE

-- An integer value for the priority of a process

-- in the range of 0 to 15 with 0 being the

-- most urgent priority. Note that the Ada task

-- priority is (15 - p) where p is the VAKELN
-- process priority.

subtype PROCESS_PRIORITY_TYPE is NATURAL range 0..15;

PROCESS_PRIORITY_8 : constant PROCESS_PRIORITY_TYPE := 8;

A-18 Package VAXELN_SERVICES

-- PROGRAM_ARGUMENT_TYPE

-- A string containing an individual job argument string.

subtype PROGRAM_ARGUMENT_TYPE is VS_255;

-- PROGRAM_NAME_TYPE

-- A string specifying the name of a program to be loaded

-- or unloaded.

subtype PROGRAM_NAME_TYPE is VS_40;

-- A string specifying the name of a program to be created.

subtype PROGRAM_NAME_STRING_TYPE is STRING;

-- SEMAPHORE_TYPE

-- A SEMAPHORE object is used to protect a resource (including

-- other data) from simultaneous access or to control or "meter"

-- the execution of processes that require some limited resource.

-- The values of type SEMAPHORE_TYPE identify semaphores, and are

-- returned by the CREATE_SEMAPHORE procedure. This type should

~- be considered private to the VAXELN kernel. See also MUTEX_TYPE.

subtype SEMAPHORE_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

~- SERVER_NAME_TYPE

-- A varying string specifying the name of a DECnet node.

subtype SERVER_NAME_TYPE is VS_64;

-- SYSTEM_VALUE_TYPE

-- Any of the following VAKELN object types:

-~- AREA, DEVICE, EVENT, PROCESS or SEMAPHORE.

-~ PORT is not included. This type is used in

-- WAIT_ALL and WAIT_ANY procedures that can accept any of

-~ the listed types. The WAIT_ALL and WAIT_ANY procedures

~~ can also accept PORT_TYPE values; see the description

-- of these services in the VAXELN Ada User's Manual for

-- details.

aubtype SYSTEM_VALUE_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

-- TAPE_VOLUME_NAME_TYPE

-- A varying string specifying the name of a tape volume.

subtype TAPE_VOLUME_NAME_TYPE is VS_6;

Package VAXELN_SERVICES A-19

-- UIC_LONGWORD_TYPE

-- An unsigned longword denoting a User Identification

-- Code (UIC)

subtype UIC_LONGWORD_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

UIC_LONGWORD_ZERO : constant UIC_LONGWORD_TYPE := 0;

UIC_LONGWORD_1_1 : constant UIC_LONGWORD_TYPE := 16 00010001 =;

-- UNIBUS_ADDRESS_TYPE

-- The 18-bit UNIBUS or 22-bit QBUS address of a mapped

-- memory buffer.

subtype UNIBUS_ADDRESS_TYPE is SYSTEM.UNSIGNED_LONGWORD ;

-- USER_DATA_TYPE

-- A varying string that specifies or receives data in calls

-- to Authorization Service utility routines.

subtype USER_DATA_TYPE is VS_128;

-- VECTOR_NUMBER_TYPE

-- An integer value from 1 to 128 specifying which vector

-- of a nultiple-interrupt-vector device should be

-- connected to the interrupt-service routine in a call

-~ to the CREATE_DEVICE procedure.

subtype VECTOR_NUMBER_TYPE is NATURAL range 1. .128;

VECTOR_NUMBER_1: constant VECTOR_NUMBER_TYPE := 1;

-- VS_DESCR_TYPE

-- A descriptor of a varying string; needed when calling

-- certain services that accept varying strings of

-- arbitrary maximum length. This descriptor is compatible

-- with the VAX/VMS class VS string descriptor. To create

-- a descriptor of a varying string, set the MAXLEN field

-- to the maximum length of the string (use the 'SIZE

-- attribute of the string's VALUE field), and set the

-- POINTER field to the address of the varying string

-- record.

type VS_DESCR_TYPE is

record

MAXLEN: SYSTEM.UNSIGNED_WORD := 0;

DTYPE: SYSTEM.UNSIGNED_BYTE := 37; -- DSC$K_DTYPE_VT

CLASS: SYSTEM.UNSIGNED_BYTE := 11; -- DSC$K_CLASS_VS

POINTER: SYSTEM.ADDRESS := SYSTEM. ADDRESS_ZERO ;

end record;

A-20 Package VAXELN_SERVICES

A.2 VAXELN Service Procedure Descriptions

This section contains the procedure specifications for calling VAXELN
services and provides detailed argument descriptions for each procedure.
A list of possible status values that may be returned by the procedure is
also provided where applicable. This list is not intended to be exhaustive,
as most procedures invoke other procedures, which may fail and return
error status messages. The messages listed are those that a program
would return in a normal operation and for which some recovery may
be possible. Your program should always check the status returned by a
procedure for a possible failure.

Note that, as a quick reference, the word “optional” appears beside the
arguments that are not required for each procedure specification.

Package VAXELN_SERVICES A-21

ACCEPT_CIRCUIT

The ACCEPT_CIRCUIT procedure causes the invoking process to wait
for a circuit connection. When the wait is satisfied (that is, on successful
completion), the circuit is established between two ports.

Procedure Declaration

procedure ACCEPT_CIRCUIT (

STATUS : out COND_VALUE_TYPE; --optional

SOURCE_PORT : in PORT_TYPE;
CONNECT_PORT : in PORT_TYPE; --optional

FULL_ERROR : in BOOLEAN; --optional

ACCEPT_DATA : in CIRCUIT_DATA_TYPE; --optional
CONNECT_DATA : out CIRCUIT_DATA_TYPE); § --optional

Arguments

STATUS
This argument receives the completion status of the ACCEPT_CIRCUIT
procedure.

SOURCE_PORT
This argument supplies the value of the port on which to wait for a
connection request. Unless the CONNECT_PORT argument is present,
this port also forms the invoker’s half of the circuit. If, during the call, this
port receives a message that is not a connection request, the message is
ignored.

CONNECT_PORT
This argument supplies a different port, which is used for the actual
connection; if the CONNECT_PORT argument is absent, the SOURCE_—
PORT value is used for the connection.

FULL_ERROR
This argument supplies a value to enable or disable the implicit wait
caused when the partner port is full. The default is FALSE, meaning that
the sender waits if the partner is full. If TRUE is supplied, an error status

A-22 Package VAXELN_SERVICES

ACCEPT_CIRCUIT

or the corresponding exception occurs with the SEND procedure when
you attempt to send a message and the partner’s port is full.

ACCEPT_DATA
This argument supplies a varying string value that is passed to the process
requesting the circuit connection (that is, the requesting process receives
this value in the ACCEPT_DATA parameter of its CONNECT_CIRCUIT
call).

CONNECT_DATA
This argument receives varying string data passed by the requesting
process in the CONNECT_DATA parameter of its CONNECT_CIRCUIT
call.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_BAD_STATE A port specified to the ACCEPT_CIRCUIT
procedure contains unreceived messages or
has an incomplete CONNECT_CIRCUIT or
ACCEPT_CIRCUIT procedure pending.

KER_CONNECT_PENDING A CONNECT_CIRCUIT procedure is pend-
ing, and the port cannot be used for another
purpose until the connection has completed.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_SUCH—PORT No port with the specified value can be
found in the system or network, or the port
is not owned by the current job, as required
by ACCEPT_CIRCUIT procedure.

Package VAXELN_SERVICES A-23

ALLOCATE_MAP

The ALLOCATE_MAP procedure assigns a contiguous block of UNIBUS
map registers for use by a device driver program to map VAX memory
to UNIBUS memory addresses. This procedure can be called only from
programs running in kernel mode.

Procedure Declaration

procedure ALLOCATE_MAP (

STATUS : out COND_VALUE_TYPE; --optional

REGISTER : out ADDRESS;

NUMBER : out INTEGER;

COUNT : dn INTEGER;

DEVICE : dn DEVICE_TYPE;
SPT_ADDRESS : out ADDRESS) ; --optional

Arguments

STATUS
This argument receives the completion status of the ALLOCATE_MAP
procedure.

REGISTER
This argument receives the address of the first register allocated.

NUMBER
This argument receives the starting map register number (0 to 495).

COUNT
This argument supplies the number of registers to allocate.

DEVICE
This argument supplies the DEVICE value that identifies the device for
which the registers are to be used.

SPT_ADDRESS
This argument receives the base address of the system page table (SPT).

A-24 Package VAXELN_SERVICES

ALLOCATE_MAP

Status

Values

KER_SUCCESS

KER_BAD_MODE

KER_BAD_TYPE

KER_BAD_VALUE

KER_NO_ACCESS

KER_NO_MAP_REGISTER

The procedure completed successfully.

The procedure was called from a program
that was not running in kernel mode; kernel
mode is required for this procedure.

The DEVICE argument is not of type
DEVICE_TYPE.

The DEVICE argument is invalid or refers to
a deleted device.

An argument specified is not accessible to
the calling program.

No free UNIBUS map registers are currently
available; there are 496 map registers per
UNIBUS.

Package VAXELN_SERVICES A-25

ALLOCATE_MEMORY

The ALLOCATE_MEMORY procedure assigns physical VAX memory to
the job that calls the procedure. The memory allocation can be specified
to start at a given virtual address or at a given physical address.

Procedure Declaration

procedure ALLOCATE_MEMORY (

STATUS : out COND_VALUE_TYPE; --optional

MEMPOINTER : out ADDRESS;
SIZE : in INTEGER;
VIRTUAL : dn ADDRESS; --optional

PHYSICAL : in ADDRESS); --optional

Arguments

STATUS
This argument receives the completion status of the ALLOCATE
MEMORY procedure.

MEMPOINTER
This argument receives a pointer to the first location of the allocated
memory. The received value is always a virtual address.

SIZE
This argument supplies the number of bytes of memory to allocate. The
value you supply is rounded up to the next multiple of 512.

VIRTUAL
This argument supplies the starting virtual address of the allocated mem-
ory. If necessary, the value is truncated to address a 512-byte page
boundary. If this argument is omitted, the memory is allocated using
any available contiguous address space in region PO. If the argument is
present, allocation is attempted at the specified location in PO or P1.

A-26 Package VAXELN_SERVICES

ALLOCATE_MEMORY

PHYSICAL
This argument supplies the starting physical address of the allocated
memory. If necessary, the value is truncated to address a 512-byte page
boundary. If it is omitted, the allocated memory comes from the system’s
pool of free memory.

Notes:

Allocating physical memory that is part of the processor’s main memory
may have unpredictable results. This procedure is provided primarily so
a process can map some other addressable object (for example, a bit-map
graphics screen) into its virtual address space.

Specific physical memory can be allocated only from programs running in
kernel mode. The kernel does not restrict or control the specific physical
address when this parameter is used. Therefore, a program can acci-
dentally “double-map” pages of memory that are already in use. This
feature is intended primarily for very specialized applications; for example,
multiported memories or video memories.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_BAD_MODE The PHYSICAL argument was specified by
a program that was not running in kernel
mode; kernel mode is required to allocate
specific physical memory.

KER_BAD_VALUE The VIRTUAL argument is not in the job’s
address space.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_MEMORY No free pages of physical memory are
currently available.

KER_NO_VIRTUAL No free contiguous virtual address space is
currently available for the process; the size
of process virtual address space can be set
using the System Builder Utility.

Package VAXELN_SERVICES A-27

ALLOCATE_PATH

The ALLOCATE_PATH procedure allocates a UNIBUS adapter buffered
datapath for use by a direct memory (DMA) UNIBUS device. This proce-
dure can be called only from programs running in kernel mode.

Procedure Declaration

procedure ALLOCATE_PATH (
STATUS : out COND_VALUE_TYPE; --optional

REGISTER : out ADDRESS;
NUMBER : out INTEGER;

DEVICE : in DEVICE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the ALLOCATE_PATH
procedure.

REGISTER
This argument receives the address of the allocated datapath register.

NUMBER
This argument receives the allocated datapath register number (1 to 3).

DEVICE
This argument supplies the DEVICE value that identifies the device for
which the datapath is allocated.

Notes:

A buffered datapath can be used to optimize the use of memory by a
DMA device that does strictly sequential address transfers. (For additional
information on buffered datapaths, see the VAX Hardware Handbook.) The
VAX-11/750 is the only processor supported by the VAXELN system that
has UNIBUS buffered datapaths.

A-28 Package VAXELN_SERVICES

ALLOCATE_PATH

To use a buffered datapath for a DMA transfer, the allocated datapath
number must be loaded into the UNIBUS map registers being used for
the transfer. The UNIBUS_MAP and LOAD_UNIBUS_MAP procedures
accept an optional datapath number for loading into the UNIBUS map
registers.

When a UNIBUS buffered datapath is used for a DMA transfer, the
datapath must be “purged” when the transfer has completed. This is
accomplished by writing a value of 1 to the datapath register, identified by
the returned register pointer.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_BAD_MODE The procedure was called from a program
that was not running in kernel mode; kernel
mode is required for this procedure.

KER_BAD_TYPE The DEVICE argument is not of type
DEVICE_TYPE.

KER_BAD_VALUE The DEVICE argument is invalid or refers to
a deleted device.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_PATH_REGISTER No free UNIBUS adapter datapath register is
currently available; there are three buffered
datapaths per VAX-11/750 UNIBUS adapter.

Package VAXELN_SERVICES A-29

AUTH_ADD_USER

The AUTH_ADD_USER procedure adds a new user record to the
authorization database. This procedure requires that the caller be au-
thorized with a system group UIC (that is, a UIC less than or equal to
16#0008FFFF# or [10,177777)).

Procedure Declaration

procedure AUTH_ADD_USER (

STATUS : out COND_VALUE_TYPE; --optional

AUTH_CIRCUIT : in PORT_TYPE;

USER_NAME : dn AUTH_STRING_TYPE;

NODE_NAME : in NODE_NAME_TYPE;

PASSWORD | : dn AUTH _STRING_TYPE;

UIC : da UIC_LONGWORD_TYPE;

USER_DATA : in USER_DATA_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the AUTH_ADD_USER
procedure.

AUTH_CIRCUIT
This argument specifies the port that is connected in a circuit to the
Authorization Service’s AUTH$MAINTENANCE port.

USER_NAME
This argument supplies a varying string containing the user name for
the new user; it cannot be blank. The reserved name $ANY can be
specified for the USER_NAME argument, meaning that any user from
the specified node who does not match one of the explicit user names is
authorized with the specified UIC. See Table 4-8 for more information on
the Authorization Service.

A-30 Package VAXELN_SERVICES

AUTH_ADD_USER

NODE_NAME
This argument supplies a varying string containing the node name for the
node on which the new user is authorized; it can be blank. If NODE—
NAME is specified, the database record represents a proxy authorization
and the password is unused. If NODE—NAME is not specified, the record
represents a destination authorization. The reserved name $ANY can be
specified for the NODE_NAME argument, meaning that any user with
the specified name from any node that does not match one of the explicit
node names is authorized with the specified UIC.

PASSWORD
This argument supplies a varying string containing the password for the
new user. If a destination authorization record is added, the password is
stored with the record. Passwords are always stored in a scrambled form
so they cannot be read once stored. The password argument can be blank.

UIC
This argument supplies the UIC assigned to the new user.

USER_DATA
This argument is an arbitrary string of user-specified data. It is stored with
the user record for use by applications.

Notes:

If $ANY is specified for NODE_NAME and USER_NAME, users who
do not match an explicit USER-NAME/NODE_NAME combination are
authorized with the specified UICs—in other words, the default.

This procedure requires that the caller be authorized with a system group
UIC (that is, a UIC of less than or equal to 16#0008FFFF# or [10,177777}).

Package VAXELN_SERVICES A-31

AUTH_ADD_USER

Status KER_SUCCESS
Values ELN_AUTH_NO_PRIVILEGE

ELN—_AUTH—DUPLICATE—
USER

ELN_AUTH_INVALID_DIC

KER_BAD_TYPE

KER_NO_SUCH—PORT

A-32 Package VAXELN_SERVICES

The procedure completed successfully.

The caller does not have privilege to perform
the requested action.

The AUTH_ADD_USER procedure was
called with a name that is a duplicate of an
existing name.

The caller does not have the authorized UIC.

The AUTH_CIRCUIT argument does not
specify a port.

The AUTH_CIRCUIT argument specifies a
port that cannot be found.

AUTH—MODIFY_USER

The AUTH_MODIFY_USER procedure modifies an existing user record
in the authorization database. This procedure requires that the caller be
authorized with a system group UIC (that is, a UIC less than or equal to
16#0008FFFF# or [10,177777)).

Procedure Declaration

procedure AUTH_MODIFY_USER (
STATUS : out COND_VALUE_TYPE; --optional

AUTH_CIRCUIT : in PORT_TYPE;

USER_NAME : in AUTH_STRING_TYPE;

NODE_NAME : in NODE_NAME_TYPE;

NEW_FIELDS : dn AUTH_FIELDS_TYPE;

NEW_USER_NAME : in AUTH_STRING_TYPE;

NEW_NODE_NAME : in NODE_NAME_TYPE;

NEW_PASSWORD : in AUTH_STRING_TYPE;

NEW_UIC : in UIC_LONGWORD_TYPE;

NEW_USER_DATA : in USER_DATA_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the AUTH_MODIFY_
USER procedure.

AUTH_CIRCUIT
This argument specifies the port that is connected in a circuit to the
Authorization Service’s AUTH$MAINTENANCE port.

USER_NAME
This argument supplies a varying string containing the user name for the
record to be modified; it cannot be blank.

NODE_NAME
This argument supplies a varying string containing the node name, which
must be the user’s authorized node.

Package VAXELN_SERVICES A-33

AUTH_MODIFY_USER

NEW_FIELDS
This argument, which can be blank, supplies a structure which is used to
specify which fields are to be modified.

NEW_USER_NAME
This argument supplies a varying string containing a new user name for
the user; it cannot be blank. The reserved name $ANY can be specified
for the NEW_USER_NAME argument, meaning that any user from the
specified node who does not match one of the explicit user names is
authorized with the specified UIC. Note that if the user name is modified,
the password must be reset as well.

NEW_NODE_NAME
This argument supplies a varying string containing a new node name for
the user’s authorized node; it can be blank. If NEW_NODE_NAME is
specified, the database record represents a proxy authorization and the
password is unused. If NEW_NODE_NAME is not specified, the record
represents a destination authorization. The reserved name $ANY can be
specified for the NEW_NODE—NAME argument, meaning that any user
with the specified name from any node that does not match one of the
explicit node names is authorized with the specified UIC.

NEW_PASSWORD
This argument supplies a varying string containing a new password for
the user; it can be blank. If a destination authorization record is added,
the password is stored with the record. Passwords are always stored in a
scrambled form so they cannot be read once stored. Note that if the user
name is modified, the password must be reset as well.

NEW_UIC
This argument supplies the new UIC assigned to the user.

NEW_USER_DATA
This argument is an arbitrary string of user-specified data. It is stored with
the user record for use by applications.

A-34 Package VAXELN_SERVICES

AUTH_MODIFY_USER

Status

Values

KER_SUCCESS

ELN_AUTH_NO_PRIVILEGE

ELN_AUTH_NO_SUCH_USER

ELN_AUTH_INVALID_UIC

KER_BAD_TYPE

KER_NO_SUCH~—PORT

The procedure completed successfully.

The caller does not have privilege to perform
the requested action.

The user name does not match any existing
user name.

The caller does not have the authorized UIC.

The AUTH—CIRCUIT argument does not
specify a port.

The AUTH—CIRCUIT argument specifies a
port that cannot be found.

Package VAXELN_SERVICES A-35

AUTH_REMOVE_USER

The AUTH_REMOVE_VUSER procedure removes an existing user record
from the authorization database. This procedure requires that the caller be
authorized with a system group UIC (that is, a UIC less than or equal to
16#0008FFFF# or [10,177777)).

Procedure Declaration

procedure AUTH_REMOVE_USER (

STATUS : out COND_VALUE_TYPE; --optional

AUTH_CIRCUIT : in PORT_TYPE;

USER_NAME : in AUTH STRING_TYPE;

NODE_NAME : dn NODE_NAME_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the AUTH_REMOVE_
USER procedure.

AUTH_CIRCUIT
This argument specifies the port that is connected in a circuit to the
Authorization Service’s AUTH$MAINTENANCE port.

USER_NAME
This argument supplies a varying string containing the user name of the
user to be removed; it cannot be blank.

NODE_NAME
This argument supplies a varying string containing the node name, which
must be the node that the user is no longer authorized to use.

A-36 Package VAXELN_SERVICES

AUTH_REMOVE_USER

Status KER_SUCCESS The procedure completed successfully.

Values ELN—_AUTH_NO_PRIVILEGE The caller does not have privilege to perform
the requested action.

ELN_AUTH_NO_SUCH_USER The user name does not match any existing
user name.

KER_BAD_TYPE The AUTH_CIRCUIT argument does not
specify a port.

KER_NO_SUCH—PORT The AUTH—CIRCUIT argument specifies a
port that cannot be found.

Package VAXELN_SERVICES A-37

AUTH_SHOW_USER

The AUTH_SHOW_USER procedure returns authorization database
information for the specified users.

Procedure Declaration

procedure AUTH_SHOW_USER (
STATUS : out COND_VALUE_TYPE; --optional

AUTH_CIRCUIT : in PORT_TYPE;

USER_NAME : dn AUTH_STRING_TYPE;

NODE_NAME : in NODE_NAME_TYPE;

SHOW_ROUTINE_ADDRESS : in ADDRESS) ;

Arguments

STATUS
This argument receives the completion status of the AUTH_SHOW_USER
procedure.

AUTH_CIRCUIT
This argument specifies the port that is connected in a circuit to the
Authorization Service’s AUTH$MAINTENANCE port.

USER_NAME
This argument supplies a varying string containing the user name of the
user records to be accessed; it cannot be blank.

NODE_NAME
This argument supplies a varying string containing the node name which
must be the user’s authorized node.

SHOW_ROUTINE_ADDRESS
This argument supplies the address of a user routine to be invoked by the
AUTH—_SHOW_USER procedure.

A-38 Package VAXELN_SERVICES

AUTH _SHOW_USER

Status

Values

KER_SUCCESS

ELN_AUTH—NO_PRIVILEGE

ELN_AUTH_NO_SUCH_USER

KER_BAD_TYPE

KER_NO_SUCH—PORT

The procedure completed successfully.

The caller does not have privilege to perform
the requested action.

The user name does not match any existing
user name.

The AUTH_CIRCUIT argument does not
specify a port.

The AUTH_CIRCUIT argument specifies a
port that cannot be found.

Package VAXELN_SERVICES A-39

AXV_INITIALIZE

The AXV_INITIALIZE procedure readies an ADV or AXV device for input-
output and creates all needed data structures. This procedure must be
called at least once for each AXV or ADV device used. (The only reason
to call this procedure more than once for a single device is to change
the values of the Boolean flag parameters or the MAXIMUM_VALUES
parameter.)

Procedure Declaration

procedure AXV_INITIALIZE (
DEVICE_NAME : dn DEVICE_NAME_TYPE;
IDENTIFIER : out AXV_IDENTIFIER_TYPE;
MAXIMUM_VALUES : in INTEGER;
CLOCK_START_ENABLE : in BOOLEAN; --optional

EXTERNAL_START_ENABLE : in BOOLEAN; --optional
RE_INITIALIZE : dn BOOLEAN; --optional

USE_POLLING : in BOOLEAN; --optional

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string giving the name of the device
to be initialized. This name must match the name established with the
System Builder Utility.

IDENTIFIER
This argument receives a value to be used to identify this device in
subsequent calls to the procedures AXV_INITIALIZE, AXV_READ, and
AXV_WRITE.

MAXIMUM_VALUES
This argument supplies the maximum number of data values that can be
read from this device in a single call to the AXV_READ procedure.

A-40 Package VAXELN_SERVICES

AXV_INITIALIZE

CLOCK_START_ENABLE
This argument is a Boolean expression. TRUE enables a conversion to be
initiated by the KWV clock option. The default value is FALSE.

EXTERNAL_START_ENABLE
This argument is a Boolean expression. TRUE enables a conversion to be
initiated by an external signal. The default value is FALSE.

RE_INITIALIZE
This argument is a Boolean expression. TRUE means that the device has
been initialized previously, in which case the DEVICE_NAME argument
is ignored and the IDENTIFIER argument is used to identify the device.
No new data structures or objects are created unless the MAXIMUM
VALUES argument is greater than the previous value for this device. The
default value is FALSE.

USE_POLLING |
This argument is a Boolean expression. TRUE causes the device to be
driven by polling rather than interrupts; FALSE means interrupts will be
used to gather data. Polling is always done at device IPL (four for this
device). The default value is FALSE. Polling is only recommended if clock
or external starting is being used to initiate conversions.

STATUS
This argument receives the completion status of the AXV_INITIALIZE pro-
cedure. The only possible value is 1, which indicates that the procedure
completed successfully.

Status

Value

KER_SUCCESS The procedure completed successfully.

Package VAXELN_SERVICES A-41

AXV_READ

The AXV_READ procedure causes analog data to be sampled from spec-
ified channels. This data is then converted to binary form by the device,
and stored in a data array. The procedure performs one read for each
desired channel, and continues until all data has been collected.

Procedure Declaration

procedure AXV_READ (

IDENTIFIER : dn AXV_IDENTIFIER_TYPE;

START_CHANNEL : in INTEGER;

END_CHANNEL : in INTEGER;

READS_PER_CHANNEL : in INTEGER;

DATA_ARRAY_PTR : out ADDRESS;

KWV_IDENTIFIER : in KWV_IDENTIFIER_TYPE; --optional

GAIN_ARRAY : in AXV_GAIN_ARRAY_TYPE; --optional

STATUS : Out COND_VALUE_TYPE) ; --optional

Arguments

IDENTIFIER
This argument supplies a value that identifies the device. This value
is the one returned in the identifier parameter after a call to the
AXV_INITIALIZE procedure.

START_CHANNEL
This argument supplies the first analog channel number to be read.

END_CHANNEL
This argument supplies the last analog channel number to be read.

READS_PER_CHANNEL
This argument supplies the number of items to be gathered from each
channel.

A-42 Package VAXELN_SERVICES

AXV_READ

DATA_ARRAY_PTR
This argument receives the address of an array containing converted
data from the device. (The meaning of the converted data depends on the
positions of several hardware jumpers. The first array element corresponds
to the first channel read. All or part of the array may be overwritten by
subsequent calls to the AXV_READ procedure for this device.

KWV_IDENTIFIER
This argument supplies the identifier of a KWV real-time clock device;
this value is the one returned in the identifier parameter after a call to
the KWV_INITIALIZE argument. If the KWV_IDENTIFIER argument is
present, it is assumed that the KWV device's clock overflow is connected
to the AXV/ADV’s clock start line. Just before the data is sampled, the
clock is started, and it is stopped when all data has been gathered. The
KWYV device must have been initialized to operate in mode 1 (if more than
one value is to be read) or mode 0 (if only one value is to be read) and
set up with the desired tick count (which controls how often an overflow
is generated) by a call to the KWV_WRITE procedure. The call to the
KWV_WRITE procedure must also have specified the ST2_GO_ENABLE
argument as TRUE so that the call to the AXV_READ procedure will do
the actual starting of the clock. If the KWV_IDENTIFIER procedure is
not present, the call to the AXV_READ procedure does nothing to start a
real-time clock.

GAIN_ARRAY
This argument supplies the gain to be used in the data conversion for
each channel being read. The first array element corresponds to the first
channel to be read. The allowable values for this argument are one, two,
four, and eight, which are specified by the enumerated type AXV_GAIN_
VALUES. If this argument is not present, the gain value that was used for
the last conversion from this AXV device will be used. If no gains were
ever used on this device, its initial hardware value of 1 will be used.

STATUS
This argument receives the completion status of the AXV_READ
procedure.

Package VAXELN_SERVICES A-43

AXV_READ

Status KER_SUCCESS

Values KER_DEVICE_ERROR

A-44 Package VAXELN_SERVICES

The procedure completed successfully.

This value indicates that either a sampling
rate is too high and the data is subject to
error, or that a conversion was finished
before the previous conversion data was
read. Both of these conditions can occur
only if conversions are being initiated by the
clock or an external signal.

AXV_WRITE

The AXV_WRITE procedure causes a value to be written to an analog-to-
digital conversion output register on an AXV11C device. These registers
are not present on an ADVIIC device; therefore, this procedure cannot be
called from an ADV11C device. Calling this procedure causes an analog
output voltage to be generated on the specified channel.

Procedure Declaration

procedure AXV_WRITE (
IDENTIFIER : in AXV_IDENTIFIER_TYPE;

DAC_CHANNEL : in AXV_DAC_CHANNEL_TYPE;

DATA : im AXV_DATA_TYPE;
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

IDENTIFIER
This argument identifies the device to be written to; this value is the one
returned in the identifier parameter after a call to the AXV_INITIALIZE
procedure.

DAC_CHANNEL
This argument supplies the output channel to be written to.

DATA
This argument supplies the actual data to be written. This value
determines the output voltage by means of hardware jumper settings, as
described in the Microcomputer Products Handbook.

STATUS
This argument receives the completion status of the AXV_WRITE
procedure. The only possible value is 1, which indicates that the
procedure completed successfully.

Status KER_SUCCESS The procedure completed successfully.

Value

Package VAXELN_SERVICES A-45

CANCEL _EXIT_HANDLER

The CANCEL_EXIT_HANDLER procedure allows you to cancel an exit
handler (identified by the exit handler and an associated context value),
that was enabled by the DECLARE_EXIT_HANDLER procedure.

Procedure Declaration

procedure CANCEL_EXIT_HANDLER (
EXIT_HANDLER : in ADDRESS;

EXIT_CONTEXT : in EXIT_CONTEXT_TYPE) ; --optional

Arguments

EXIT_HANDLER
This argument supplies a procedure address that identifies the exit handler
routine to be canceled.

EXIT_CONTEXT
This argument must exactly match the EXIT_CONTEXT_TYPE variable
used in the DECLARE_EXIT_HANDLER call in order for the proper
handler to be canceled.

Status KER—_SUCCESS The procedure completed successfully.

Value

A-46 Package VAXELN_SERVICES

CLEAR_EVENT

The CLEAR_EVENT procedure sets the state of an EVENT value to
cleared.

Procedure Declaration

procedure CLEAR_EVENT (
STATUS : out COND_VALUE_TYPE; --optional

EVENT : in EVENT_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the CLEAR_EVENT
procedure.

EVENT
This argument supplies the EVENT value to be cleared.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The EVENT argument is not of type EVENT.

KER_BAD_VALUE The EVENT argument is invalid or refers to
a deleted event.

Package VAXELN_SERVICES A-47

CONNECT_CIRCUIT

The CONNECT_CIRCUIT procedure connects a port to a specified des-
tination port. If the process receiving the connection request accepts the
request, the two ports are bound together in a circuit. The destination port
can be specified either by name or by PORT value.

Procedure Declaration

procedure CONNECT_CIRCUIT (

STATUS : out COND_VALUE_TYPE; --optional

SOURCE_PORT : in PORT_TYPE;

DESTINATION_PORT : in PORT_TYPE; --optional

DESTINATION_NAME : in DESTINATION_NAME_TYPE; --optional

FULL_ERROR : dn BOOLEAN; --optional

CONNECT_DATA : in CIRCUIT_DATA_TYPE; --optional

ACCEPT_DATA : Out CIRCUIT_DATA_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the CONNECT_CIRCUIT
procedure.

SOURCE_PORT
This argument supplies a value that will form the caller’s half of the
circuit.

DESTINATION_PORT
This argument supplies a value giving the destination for the connection
request message. (Such a value can be obtained from the REPLY_PORT
argument of the RECEIVE procedure.) The argument can be omitted
only if a destination name is supplied by the DESTINATION_NAME
argument.

DESTINATION_NAME
This argument supplies the destination for the connection request message
as a character-string name, usually a name established by the CREATE
NAME procedure. If the destination is specified this way, by means of

A-48 Package VAXELN_SERVICES

CONNECT_CIRCUIT

a NAME object, the DESTINATION NAME argument is automatically
translated to a destination port. If the DESTINATION—PORT argument
is also specified, it overrides this argument. (Either this argument or the
DESTINATION—PORT argument must be present.) The DESTINATION —
NAME argument can also have the following forms:

NODE_NAME: : LOCAL_PORT_NAME

NODE_NUMBER : : LOCAL_PORT_NAME

for connection to a port in a VAXELN system (where the LOCAL_PORT_
NAME is a local NAME established on the VAXELN node), or:

NODE_NUMBER: : OBJECT

for connection to a DECnet-VAX (VAX/VMS) system (where object is
the name of the object on the VAX/VMS system that will handle the
connection).

FULL_ERROR
This argument enables or disables the implicit wait performed (with the
SEND procedure) when the partner port is full. The default is FALSE,
meaning that the sender waits until the partner port is not full. If TRUE
is specified, the SEND procedure returns an error status or raises the
corresponding exception if the partner port is full.

CONNECT_DATA
This argument supplies varying string data to the process receiving the
connection request.

ACCEPT_DATA
This argument receives any varying string data supplied by the accepting
process in its ACCEPT_CIRCUIT call.

Package VAXELN_SERVICES A-49

CONNECT_CIRCUIT

Status KER_SUCCESS
Values KER_BAD_STATE

KER_CONNECT_TIMEOUT

KER_NO_ACCESS

KER_NO_DESTINATION

KER_NO_SUCH—NAME

KER_NO_SUCH~— PORT

A-50 Package VAXELN_SERVICES

The procedure completed successfully.

A port specified to the CONNECT_CIRCUIT
procedure contains unreceived messages or
has an incomplete CONNECT_CIRCUIT or
ACCEPT_CIRCUIT procedure pending.

The connection request was not accepted
by the destination within the connection
timeout limit; the connection timeout can be
set by the System Builder Utility.

An argument specified is not accessible to
the calling program.

Neither a DESTINATION_PORT value nor
port name was specified in the procedure
call.

The procedure call specified a NAME value
for which there is no translation.

No port with the specified value can be
found in the system or network, or the port
is not owned by the current job, as required
by the CONNECT_CIRCUIT procedure.

COPY_FILE

The COPY_FILE procedure copies a file on a File Service disk volume.

Procedure Declaration

procedure COPY_FILE (

SOURCE_FILE : dm FILE_NAME_TYPE;
DESTINATION_FILE : in FILE_NAME_TYPE;
STATUS : out COND_VALUE_TYPE; --optional
SOURCE_FILE_ERROR : out BOOLEAN; --optional
BLOCK_MODE : out BOOLEAN; --optional

COUNT : out INTEGER; --optional

RESULTANT_SOURCE_FILE : Out FILE_NAME_TYPE; --optional
RESULTANT_DESTINATION_FILE : out FILE_NAME_TYPE) ; --optional

Arguments

SOURCE_FILE
This argument is a varying string of up to 255 characters giving the file
specification of the file to be copied.

DESTINATION_FILE
This argument is a varying string of up to 255 characters giving the file
specification of the copied file.

STATUS
This argument receives the completion status of the COPY_FILE
procedure.

SOURCE_FILE_ERROR
This argument receives an indication that an error exists in one of the files.
TRUE indicates that the error exists in the source file and FALSE indicates
that the error exists in the destination file. This value should only be used
if the STATUS argument returns an error status.

BLOCK_MODE
This argument receives an indication of the mode used to copy the file.
TRUE indicates block mode and FALSE indicates record mode.

Package VAXELN_SERVICES A-51

COPY_FILE

COUNT
This argument receives the number of blocks or records copied, as deter-
mined by the BLOCK-_MODE argument.

RESULTANT_SOURCE_FILE
This argument is a varying string of up to 255 characters giving the
resultant file name of the source file.

RESULTANT_DESTINATION_FILE
This argument is a varying string of up to 255 characters giving the
resultant file name of the destination file.

Status

Values

KER_SUCCESS The procedure completed successfully.

ELN _xxx Any error status returned by the file service.

A-52 Package VAXELN_SERVICES

CREATE_AREA

The CREATE_AREA procedure creates a new area object or maps an
existing area.

Procedure Declaration

procedure CREATE_AREA (

STATUS : out COND_VALUE_TYPE; --optional

AREA : out AREA_TYPE;

DATA : out ADDRESS;

SIZE : in UNSIGNED_LONGWORD;

NAME : idm AREA_NAME_TYPE;

VIRTUAL : in ADDRESS); --optional

Arguments

STATUS
This argument receives the completion status of the CREATE_AREA
procedure.

AREA
This argument receives the new AREA value.

DATA
This argument receives the address of the data portion of the area.

SIZE
This argument supplies the size in bytes of the area of memory.

NAME
This argument supplies the name for the area (as a 1- to 31-character
string).

VIRTUAL
This argument supplies the base virtual address where the area is to be
placed; it must be in PO space.

Package VAXELN_SERVICES A-53

CREATE_AREA

Status KER__SUCCESS
Values KER_BAD_VALUE

KER_NO_ACCESS

KER_NO_MEMORY

KER_NO_OBJECT

KER_NO_POOL

KER_.NO_VIRTUAL

A-54 Package VAXELN_SERVICES

The procedure completed successfully.

The NAME argument has a bad length,
the base virtual address or ending address
is not in PO space, or the virtual address
is specified and does not match the area’s
specified virtual address.

An argument specified is not accessible to
the calling program.

There were not enough memory pages to

complete the operation.

No free job object table entries are currently
available. There are a maximum of 1024
object table entries per job.

No free system pool is currently available.
The size of the system pool can be set by
the System Builder Utility.

The necessary virtual address range is not
available in the calling job’s virtual address
space.

CREATE—DEVICE

The CREATE—DEVICE procedure establishes a connection between
a physical device, a program, and an interrupt service routine. This
procedure creates one or more objects of type DEVICE_TYPE, which are
used to synchronize the program with the device. The CREATE_DEVICE
procedure can be called only from a program running in kernel mode.

Procedure Declaration

procedure CREATE_DEVICE (

STATUS : out COND_VALUE_TYPE; --optional

= DEVICE_NAME : dm CREATE_DEVICE_NAME_TYPE;
VECTOR_NUMBER : dm VECTOR_NUMBER_TYPE; --optional
SERVICE_ROUTINE : in ADDRESS; --optional
REGION_SIZE : dn UNSIGNED_LONGWORD; --optional

REGION : out ADDRESS; --optional

REGISTERS : out ADDRESS; --optional
ADAPTER_REGISTERS : out ADDRESS; --optional

VECTOR : out ADDRESS; ~-optional

PRIORITY : out UNSIGNED_LONGWORD ; --optional

DEVICE_ARRAY : dm DEVICE_ARRAY_TYPE;
DEVICE_COUNT : in INTEGER; --optional

POWERFAIL_ROUTINE : in ADDRESS) ; --optional

Arguments

STATUS
This argument receives the completion status of the CREATE_DEVICE
procedure.

DEVICE_NAME
This argument supplies a 1- to 30-character string naming the device. The
name must match one of the device names established with the System
Builder Utility.

VECTOR_NUMBER
This argument supplies a value of VECTOR _NUMBER_TYPE from 1 to
128, specifying which vector of a multiple-interrupt vector device should

Package VAXELN_SERVICES A-55

CREATE_DEVICE

be connected to the interrupt service routine. If this argument is omitted,
the default is 1 (first vector).

SERVICE_ROUTINE
This argument supplies the address of an interrupt service routine. To
drive a device by polling instead of interrupts, omit this argument. If the
interrupt address is supplied, the routine is called by the kernel on the
occurrence of a device interrupt.

REGION_SIZE
This argument supplies the size of the communication region to be created,
if any.

REGION
This argument receives a pointer to the communication region of the
interrupt service routine. The region is zeroed by the CREATE_DEVICE
procedure. The pointer is passed by the kernel to the interrupt service
routine on the occurrence of a device interrupt. If the argument is omitted,
no region is created, and the interrupt service routine (if any) receives the
ADDRESS_ZERO value instead of the region’s address. Note that every
call with this argument creates a new communication region; if you use
the same pointer variable from one call to another, the procedure will
overwrite its previous value with the address of the new communication
region.

REGISTERS
This argument receives a pointer to the first device control register.
(The address of the first control register is part of the device description
established with the System Builder Utility.) The pointer is passed to
the interrupt service routine on the occurrence of a device interrupt. The
argument can be omitted if no SERVICE_ROUTINE argument is supplied.
Within the interrupt service routine, the corresponding parameter is
declared to specify the type of the register pointer.

ADAPTER_REGISTERS
This argument receives a pointer to the first adapter control register.

VECTOR
This argument receives a pointer to the interrupt vector in the system
control block. The interrupt vector address is part of the device description
established with the System Builder Utility.

A-56 Package VAXELN_SERVICES

CREATE_DEVICE

PRIORITY
This argument receives the interrupt priority level (IPL) of the device. The
IPL is part of the device description established with the System Builder
Utility.

DEVICE_ARRAY
This argument supplies an array of DEVICE objects, one for each unit.

DEVICE_COUNT
This argument receives the number of objects of type DEVICE_TYPE in
the DEVICE_ARRAY argument.

POWERFAIL_ROUTINE
This argument supplies the address of an interrupt service routine that is
called, before any process or interrupt service routine is restarted, when
the processor enters a power recovery sequence.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_BAD_MODE The procedure was called from a program
that was not running in kernel mode; kernel
mode is required for this procedure.

KER_BAD_VALUE The DEVICE argument is an array with
more than 16 elements.

KER_DEVICE_CONNECTED The device named in the CREATE_DEVICE
call is already connected to a DEVICE
TYPE value.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_OBJECT No free job object table entries are currently
available. There are a maximum of 1024

object table entries per job.

KER_NO_POOL No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

Package VAXELN_SERVICES A-57

CREATE—DEVICE

KER_NO_SUCH_—DEVICE

KER_NO_SYSTEM_—PAGE

A-58 Package VAXELN_SERVICES

The device name specified in a CREATE_
DEVICE call cannot be found in the list
of devices created by the System Builder
Utility.

No free system page table entries are
currently available to map the I-O region.

CREATE_DIRECTORY

The CREATE_DIRECTORY procedure creates a directory on the specified
File Service disk volume. Note that the directory must be created on
a VAXELN disk volume; the procedure cannot create a directory on a
non-VAXELN volume.

Procedure Declaration

procedure CREATE_DIRECTORY (

DIRECTORY_NAME : dn FILE_NAME_TYPE;
STATUS : out COND_VALUE_TYPE; --optional

OWNER : out UIC_LONGWORD_TYPE; --optional

RESULTANT_DIRECTORY_NAME : out FILE_NAME_TYPE) ; --optional

Arguments

DIRECTORY_NAME
This argument is a varying string giving the file specification for the
directory to be created. For example, “DISK$TEST:[DATA)]” creates the
directory DATA.DIR in the master file directory of the volume. Note
that the procedure creates only the last directory in the specification; any
intermediate directories (as in “DISK$TEST:[INTERMEDIATE.LAST}]’)
must already exist.

STATUS
This argument receives the completion status of the CREATE_—
DIRECTORY procedure.

OWNER
This argument specifies the User Identification Code (UIC) of the owner of
the file.

RESULTANT_DIRECTORY_NAME
This argument is a varying string of up to 255 characters giving the
resultant file name of the created directory file.

Package VAXELN_SERVICES A-59

CREATE_DIRECTORY

Status KER_SUCCESS The procedure completed successfully.

Values ELN _xxx Any error status returned by the file service.

A-60 Package VAXELN_SERVICES

CREATE_EVENT

The CREATE_EVENT procedure creates and initializes an EVENT value.

Procedure Declaration

procedure CREATE_EVENT (
STATUS : out COND_VALUE_TYPE; --optional

EVENT : out EVENT_TYPE;
INITIAL_STATE : in EVENT_STATE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of CREATE_EVENT.

EVENT
This argument receives the new EVENT value.

INITIAL_STATE
This argument supplies a value of the predeclared enumerated type
EVENT_STATE_TYPE. It gives the initial state of the EVENT value.

Status KER_SUCCESS The procedure completed successfully.

Values KER_NO_OBJECT No free job object table entries are currently
available; there are a maximum of 1024
object table entries per job.

KER_NO_POOL No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

Package VAXELN_SERVICES A-61

CREATE_JOB

The CREATE_JOB procedure creates a new job, which executes a specified
program image.

Note that the CREATE_JOB procedure runs a program image already built
into the system (with the System Builder Utility or the LOAD_PROGRAM
procedure); it cannot add a new image to a system.

Procedure Declaration

procedure CREATE_JOB (

STATUS : out COND_VALUE_TYPE; --optional

JOB_PORT : out PORT_TYPE;
PROGRAM_NAME_STRING_TYPE : im PROGRAM_NAME_TYPE;

EXIT_PORT : in PORT_TYPE; --optional

ARG1 : dn JOB_ARGUMENT_TYPE; ~-optional

ARG2 : in JOB_ARGUMENT_TYPE; --optional
ARG3 : dn JOB_ARGUMENT_TYPE; --optional

ARG4 : dn JOB_ARGUMENT_TYPE; --optional

ARG5 : dn JOB_ARGUMENT_TYPE; --optional

ARG6 : dm JOB_ARGUMENT_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the CREATE_JOB
procedure.

JOB_PORT
This argument receives the new JOB PORT value. The value can be used
by the caller of the CREATE-_JOB procedure to send messages to the new
job. The same value is returned within the new job by the JOB_PORT
procedure.

PROGRAM_NAME_STRING_TYPE
This argument supplies a string that names the program the job is to run.
The name is one of the program names that appears on the System Builder
Utility’s map listing, or one created by a call to the LOAD_PROGRAM
procedure.

A-62 Package VAXELN_SERVICES

CREATE_JOB

EXIT_PORT
This argument supplies a PORT value for termination notification. If this
argument is present, a termination message is sent to the port when the
new job terminates. (Note that the port must already be created.) The
message data of the termination message is the value making up the
completion status of the created job’s master process. The job’s master
process can return an explicit status with the EXIT procedure; if it specifies
no status and completes successfully, the default status returned in the
termination message is 1 (success). If the argument is omitted, no message
is sent.

ARG1,ARG2...ARG6
These arguments supply strings that are to be used as arguments to the
program. Arguments can also be supplied to the program with the System
Builder Utility, as part of a program description. (Any arguments supplied
here override arguments supplied with the System Builder Utility.)

Status

Values

KER-SUCCESS The procedure completed successfully.

KER_BAD_LENGTH A string argument was too long.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_MEMORY No free pages of physical memory are
currently available.

KER_NO_PAGE_TABLE No free process pages table is currently
available; the number of process pages
tables can be set by the System Builder
Utility.

KER_NO_POOL No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

KER_NO_PORT No free system port table entries are cur-
rently available; the size of the system
port table can be set by the System Builder
Utility.

KER_NO_SUCH—PROGRAM No program with the specified name can
be found in the program list created by the
System Builder Utility.

Package VAXELN_SERVICES A-63

CREATE_MESSAGE

The CREATE_MESSAGE procedure creates a MESSAGE object and its
associated text variable.

Procedure Declaration

procedure CREATE_MESSAGE (
STATUS : out COND_VALUE_TYPE; --optional

MESSAGE : out MESSAGE_TYPE;
DATA_ADDRESS : out ADDRESS;
MESSAGE_SIZE : in UNSIGNED_LONGWORD) ;

Arguments

STATUS
This argument receives the completion status of the CREATE_MESSAGE
procedure.

MESSAGE
This argument receives the new MESSAGE value.

DATA_ADDRESS
This argument receives the address of the message’s data part. The
returned ADDRESS value is valid in the current job; it becomes invalid if
the message is sent or deleted.

MESSAGE_SIZE
This argument specifies the size in bytes of the message’s data part.

A-64 Package VAXELN_SERVICES

CREATE—MESSAGE

Status

Values

KER_SUCCESS

KER_NO_MEMORY

KER_NO_OBJECT

KER_NO_POOL

The procedure completed successfully.

There was not enough physical memory to
create the message data area.

No free job object table entries are currently
available; there are a maximum of 1024
object table entries per job.

No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

Package VAXELN_SERVICES A-65

CREATE_MUTEX

The CREATE_MUTEX procedure initializes a MUTEX variable for use in
guarding the access to a shared variable or other shared resource. The
initial state is “unlocked.”

Procedure Declaration

procedure CREATE_MUTEX(
STATUS : out COND_VALUE_TYPE; --optional

MUTEX : out MUTEX_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the COND_VALUE_
TYPE procedure.

MUTEX
This argument receives the new MUTEX value.

Status KER—SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The specified initial count is greater than the
maximum count.

KER _NO_OBJECT No free job object table entries are currently
available; there are a maximum of 1024

object table entries per job.

KER_NO_POOL No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

A-66 Package VAXELN_SERVICES

CREATE_NAME

The CREATE_NAME procedure creates a NAME object that refers to
a specified port. Names created by this procedure are guaranteed to be
unique within the specified name space (local or universal). If you attempt
to create a name that is not unique, the NAME object is not created, and
an error status is returned.

Procedure Declaration

procedure CREATE_NAME (

STATUS : out COND_VALUE_TYPE; --optional

NAME : out NAME_TYPE;
PORT_NAME : in PORT_NAME_TYPE;
PORT : in PORT_TYPE;
SCOPE : in NAME_SCOPE_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the CREATENAME
procedure.

NAME
This argument receives the new NAME value.

PORT_NAME
This argument supplies a string of 1 to 31 characters that is associated
with this specified port.

PORT
This argument specifies the port that is associated with the name being
created.

SCOPE
This argument supplies the enumerated value LOCAL or UNIVERSAL.
It specifies that the new name is either local (valid only in this system
or node) or universal (valid throughout the application or on any node).

Package VAXELN_SERVICES A-67

CREATE_NAME

LOCAL is the default. If the system does not contain the Network Service,
all names are placed in the local name table.

Status KER_SUCCESS
Values KER_BAD_LENGTH

KER_DUPLICATE

KER_NO_ACCESS

KER_NO_OBJECT

KER_NO_POOL

A-68 Package VAXELN_SERVICES

The procedure completed successfully.

A string argument was too long.

The CREATE_NAME procedure was called
with a name that is a duplicate of an existing
name.

An argument specified is not accessible to
the calling program.

No free job object table entries are currently
available; there are a maximum of 1024
object table entries per job.

No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

CREATE_PORT

The CREATE_PORT procedure creates a message port and optionally
specifies its maximum message capacity.

Procedure Declaration

procedure CREATE_PORT (

STATUS : out COND _VALUE_TYPE; --optional

PORT : out PORT_TYPE;
MESSAGE_LIMIT : in INTEGER); --optional

Arguments

STATUS
This argument receives the completion status of the CREATE_PORT
procedure.

PORT
This argument receives the new PORT value.

MESSAGE_LIMIT
This argument supplies the maximum number of messages that can be
queued to the port at one time. If the limit is exceeded, further messages
are lost unless the port is connected in a circuit. The default value is 4.

Package VAXELN_SERVICES A-69

CREATE_PORT

Status KER_SUCCESS
Values KER_NO_ACCESS

KER_NO_OBJECT

KER_NO_POOL

KER_NO_PORT

A-70 Package VAXELN_SERVICES

The procedure completed successfully.

An argument specified is not accessible to
the calling program.

No free job object table entries are currently
available; there are a maximum of 1024
object table entries per job.

No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

No free system port table entries are cur-
rently available; the size of the system
port table can be set by the System Builder
Utility.

CREATE_PROCESS

The CREATE_PROCESS procedure creates a new process executing a
specified procedure.

Procedure Declaration

procedure CREATE_PROCESS (

STATUS : out COND_VALUE_TYPE; --optional

PROCESS : out PROCESS_TYPE;
ENTRY_ROUTINE : in ADDRESS;
EXIT_STATUS : out EXIT_STATUS_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the CREATE_PROCESS
procedure.

PROCESS
This argument receives the new PROCESS value.

ENTRY_ROUTINE
This argument supplies the address of the procedure to be executed in the
new process.

EXIT_STATUS
This argument receives the final status of the created process. Such a
value can be returned with the EXIT procedure; by convention, odd-
numbered values indicate success and even-numbered values indicate
errors (not necessarily fatal). If the argument is omitted, neither status is
returned.

Package VAXELN_SERVICES A-71

CREATE_PROCESS

Status KER_ SUCCESS
Values KER_BAD_COUNT

KER_BAD_VALUE

KER_NO_ACCESS

KER_NO_OBJECT

KER_NO_MEMORY

KER_NO_PAGE-_ TABLE

KER_NO_POOL

KER_NO_STATUS

A-72 Package VAXELN_SERVICES

The procedure completed successfully.

The procedure call specified an incorrect
number of arguments.

The exit status variable is in P1 space.

An argument specified is not accessible to
the calling program.

No free job object table entries are currently
available; there are a maximum of 1024
object table entries per job.

No free pages of physical memory are
currently available.

No free process page table is currently
available; the number of process pages
tables can be set by the System Builder
Utility.

No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

The process was deleted; therefore, no exit
STATUS value is available to return (This
value is returned only as an exit status, in
the CREATE_PROCESS EXIT argument).

CREATE_SEMAPHORE

The CREATE_SEMAPHORE procedure creates and initializes a
semaphore.

Procedure Declaration

procedure CREATE_SEMAPHORE (
STATUS : out COND_VALUE_TYPE; --optional

SEMAPHORE : out SEMAPHORE_TYPE;

INITIAL_COUNT : in INTEGER;

MAXIMUM_COUNT : in INTEGER);

Arguments

STATUS
This argument receives the completion status of the CREATE
SEMAPHORE procedure.

SEMAPHORE
This argument receives the new SEMAPHORE value.

INITIAL_COUNT
This argument supplies the initial semaphore count. The initial count
must not exceed the maximum count.

MAXIMUM_COUNT
This argument supplies the maximum semaphore count. Signaling the
semaphore beyond this count is an error.

Package VAXELN_SERVICES A-73

CREATE_SEMAPHORE

Status KER_SUCCESS
Values KER_BAD_VALUE

KER_NO_OBJECT

KER_NO_POOL

A-74 Package VAXELN_SERVICES

The procedure completed successfully.

The specified initial count is greater than the
maximum count.

No free job object table entries are currently
available; there are a maximum of 1024
object table entries per job.

No free system pool is currently available;
the size of the system pool can be set by the
System Builder Utility.

CURRENT_PROCESS

The CURRENT_PROCESS procedure returns the PROCESS value identi-
fying the process from which it is called.

Procedure Declaration

procedure CURRENT_PROCESS (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : out PROCESS_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the CURRENT_PROCESS
procedure. KER_SUCCESS is the only possible status.

PROCESS
This argument receives the PROCESS value.

Status KER_SUCCESS The procedure completed successfully.

Value

Package VAXELN_SERVICES A-75

DECLARE —_EXIT_HANDLER

The DECLARE_EXIT_HANDLER procedure allows you to declare an exit
handler for a program. The named exit handler procedure is called upon
the termination of a job with the EXIT procedure.

Procedure Declaration

procedure DECLARE_EXIT_HANDLER (
EXIT_HANDLER : in ADDRESS;
EXIT_CONTEXT : in EXIT_CONTEXT_TYPE) ; --optional

Arguments

EXIT_HANDLER
This argument supplies the address of an exit handler routine to be called
upon the termination of a job with the EXIT procedure.

EXIT_CONTEXT
This argument will be passed to the specified exit handler routine when it
is invoked.

Status KER_SUCCESS The procedure completed successfully.

Value

A-76 Package VAXELN_SERVICES

DELETE_AREA

The DELETE_AREA procedure deletes an AREA object, unmapping it
from the calling process’s address space.

Procedure Declaration

procedure DELETE_AREA (
STATUS : out COND_VALUE_TYPE; --optional

AREA : in AREA_NAME_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE_AREA
procedure.

AREA
This argument specifies the area to delete.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The AREA argument is invalid or refers to a
deleted object.

KER_NOACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-77

DELETE_DEVICE

The DELETE_DEVICE procedure deletes the specified device.

Procedure Declaration

procedure DELETE_DEVICE (
STATUS : out COND_VALUE_TYPE; --optional

DEVICE : in DEVICE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE_DEVICE
procedure.

DEVICE
This argument supplies the DEVICE to be deleted.

Notes:

When a DEVICE object is deleted, the memory used for its communication
region is deleted, and any pointers to that memory become invalid. The
interrupt service routine is disconnected from the interrupt vector. Any
waiting processes are removed from their wait states immediately, with
the completion status KER_BAD_VALUE.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_STATE A device specified to be deleted has an
interrupt pending.

KER_BAD_VALUE The DEVICE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

A-78 Package VAXELN_SERVICES

DELETE_EVENT

The DELETE_EVENT procedure deletes an EVENT object from the
system. Any waiting processes are removed from their wait states imme-
diately; the status of WAIT_ANY or WAIT_ALL is KER_BAD_VALUE.

Procedure Declaration

procedure DELETE_EVENT (
STATUS : out COND_VALUE_TYPE; --optional

EVENT : in EVENT_TYPE);

Arguments

STATUS
This argument receives the completion status of the DELETE_EVENT
procedure.

EVENT
This argument supplies the device to be deleted.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The DEVICE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-79

DELETE_FILE

The DELETE_FILE procedure deletes a file from a mounted disk volume.

Procedure Declaration

procedure DELETE_FILE (

FILE_NAME : dm FILE_NAME_TYPE;
STATUS ; out COND_VALUE_TYPE; --optional

RESULTANT_FILE_NAME : out FILE_NAME_TYPE) ; --optional

Arguments

FILE_NAME
This argument is a string of up to 255 characters giving the file specifica-
tion of the file to be deleted. The file specification must have an explicit
version number or a semicolon or period to indicate the most recent ver-
sion. For example, “TEST.DAT;23” designates version 23 to be deleted;
“TEST.DAT;” and “TEST.DAT.” both designate the most recent version of
the file.

STATUS
This argument receives the completion status of the DELETE_FILE
procedure.

RESULTANT_FILE_NAME
This argument is a string of up to 255 characters giving the resultant file
name of the deleted file.

Status

Value

ELN —xxx Any error status returned by the file service.

A-80 Package VAXELN_SERVICES

DELETE_MESSAGE

The DELETE_MESSAGE procedure deletes the specified message object.
Once deleted, the message is unavailable for sending or receiving, and any
pointers to the message’s text variable become invalid.

Procedure Declaration

procedure DELETE_MESSAGE (
STATUS : out COND_VALUE_TYPE; --optional

MESSAGE : in MESSAGE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE_MESSAGE
procedure.

MESSAGE
This argument identifies the message to be deleted.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_STATE A device specified to be deleted has an
: interrupt pending.

KER_BAD_VALUE The MESSAGE argument is invalid or refers
to an object that was deleted.

KER._NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-81

DELETE_MUTEX

The DELETE_MUTEX procedure deletes the specified mutex.

Procedure Declaration

procedure DELETE_MUTEX (
STATUS : out COND_VALUE_TYPE; --optional

MUTEX : in MUTEX_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE_MUTEX
procedure.

MUTEX
This argument identifies the MUTEX value to be deleted.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The VALUE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

A-82 Package VAXELN_SERVICES

DELETE_NAME

The DELETE_NAME procedure deletes the specified name.

Procedure Declaration

procedure DELETE_NAME (
STATUS : out COND_VALUE_TYPE; --optional

NAME : in NAME_TYPE);

Arguments

STATUS
This argument receives the completion status of the DELETE_NAME
procedure.

NAME
This argument identifies the NAME value to be deleted.

Notes:

When a universal name is deleted, the Network Service on each node
ensures that the deletion is reflected in the list of universal names. The
deletion of local names is performed by the kernel on the local node and
does not involve the Network Service.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The VALUE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-83

DELETE_PORT

The DELETE_PORT procedure deletes the specified port.

Procedure Declaration

procedure DELETE_PORT (
STATUS : out COND_VALUE_TYPE; --optional

PORT : in PORT_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE_PORT
procedure.

PORT
This argument identifies the port to be deleted.

Notes:

When a port is deleted, any connected port (when the deleted port is in
a circuit) is disconnected. Any messages at the port are deleted, and the
wait conditions of any waiting processes are satisfied with the completion
status KER_BAD_VALUE.

Status KER—SUCCESS The procedure completed successfully.

Values KER ~BAD_VALUE The VALUE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS | An argument specified is not accessible to
the calling program.

A-84 Package VAXELN_SERVICES

DELETE_PROCESS

The DELETE_PROCESS procedure deletes the specified process.

Procedure Declaration

procedure DELETE_PROCESS (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : in PROCESS_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE_PROCESS
procedure.

PROCESS
This argument identifies the process to be deleted.

Notes:

When a process is deleted, if any other process is waiting for its termi-
nation, that aspect of its wait condition is satisfied permanently. When a
master process is deleted, all subprocesses in the same job are also deleted,
along with all data and kernel objects created by any processes in the job.
The exit status of a deleted process is KER_NO_STATUS.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_BAD_VALUE The VALUE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN__SERVICES A-85

DELETE_SEMAPHORE

The DELETE_SEMAPHORE procedure deletes the specified semaphore.
Any waiting processes are removed from their wait states immediately; the
status of WAIT_ANY or WAIT_ALL is KER_BAD_VALUE.

Procedure Declaration

procedure DELETE_SEMAPHORE (
STATUS : out COND_VALUE_TYPE; -~optional

SEMAPHORE : in SEMAPHORE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DELETE
SEMAPHORE procedure.

SEMAPHORE
This argument identifies the semaphore to be deleted.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The VALUE argument is invalid or refers to
an object that was deleted.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

A-86 Package VAXELN_SERVICES

DIRECTORY_CLOSE

The DIRECTORY_CLOSE procedure closes an existing directory on a
mounted disk volume.

Procedure Declaration

procedure DIRECTORY_CLOSE (
DIR_CONTEXT : in DIR_CONTEXT_ACCESS_TYPE;

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DIR_CONTEXT
This argument supplies the address of the context value that was stored
by a previous call to the DIRECTORY_OPEN procedure.

STATUS
This argument receives the completion status of the DIRECTORY_CLOSE
procedure.

Status

Values

KERSUCCESS The procedure completed successfully.

ELN—NMF There are no more files.

ELN _xxx Any error status returned by the file service.

Package VAXELN_SERVICES A-87

DIRECTORY_LIST

The DIRECTORY_LIST procedure obtains the next resultant file name
from a mounted disk directory.

Procedure Declaration

procedure DIRECTORY_LIST (
DIR_CONTEXT : in DIR_CONTEXT_ACCESS_TYPE;

DIRECTORY_NAME : out FILE_NAME_TYPE;

FILE_NAME : out FILE_NAME_TYPE;

STATUS : out COND_VALUE_TYPE; --optional

FILE_ATTRIBUTES : in ADDRESS); --optional

Arguments

DIR_CONTEXT
This argument supplies the address of the context value that was stored
by a previous call to the DIRECTORY_OPEN procedure.

DIRECTORY_NAME
This argument receives the resultant directory specification (when a wild-
card directory specification is used in the DIRECTORY_OPEN procedure).
That is, if more than one directory is affected by the DIRECTORY_LIST
procedure, the directory name will change.

FILE_NAME
This argument receives the file name not the volume or directory name.

STATUS
This argument receives the completion status of the DIRECTORY_LIST
procedure. An exception is raised if the procedure does not succeed and
this argument is omitted.

FILE_ATTRIBUTES
This argument supplies the address of a record of type FILE
ATTRIBUTES_TYPE that is filled in by the DIRECTORY_LIST procedure
with the attributes of the file found.

A-88 Package VAXELN_SERVICES

DIRECTORY_LIST

Status KER_SUCCESS The procedure completed successfully.

Values ELN—NMEF There are no more files.

ELN —xxx Any error status returned by the file service.

Package VAXELN_SERVICES A-89

DIRECTORY_OPEN

The DIRECTORY_OPEN procedure opens an existing directory on a
mounted disk volume in preparation for a DIRECTORY_LIST operation.

Procedure Declaration

procedure DIRECTORY_OPEN (
DIR_CONTEXT : in DIR_CONTEXT_ACCESS_TYPE;

SEARCH_NAME : in FILE_NAME_TYPE;
VOLUME_NAME : out FILE_NAME_TYPE;

DIRECTORY_NAME : out FILE_NAME_TYPE;

STATUS : out COND_VALUE_TYPE; --optional

SERVER_NAME : out SERVER_NAME_TYPE; --optional

FILE_ATTRIBUTES : out ADDRESS) ; --optional

Arguments

DIR_CONTEXT
This argument specifies the address of a variable that receives a context
value to be used in calls to the DIRECTORY_LIST and DIRECTORY_
CLOSE procedures.

SEARCH_NAME
This argument supplies a varying string of up to 255 characters giving a
specification of an existing directory. This string is used to search for the
directory string as follows:

disk: [directory]filename.type; version

The file name, type, and version can use the “wildcard” characters, percent
(%) and asterisk (*), as in VAX/VMS file specifications. The percent (%)
character matches any character in the corresponding position; the asterisk
(*) character matches any character or string in the indicated positions,
including null strings. For example, the string:

DISK$TEST: [testdata] *AZYC.*;*

A-90 Package VAXELN_SERVICES

DIRECTORY_OPEN

matches any specification with a file name of at least four characters, the
last being C and the fourth-from-last being A, and any file type or version.
Wildcards are not allowed in volume names or, for VAXELN volumes, in
directory specifications.

If the directory is on a VAX/VMS volume, the asterisk (*) and ellipsis (...)
can be used in the directory specification. The ellipsis following a directory
name matches all directories below including the named directory. For
example, the string:

{testdata...]*.¥*;*

VOLUME_NAME
This argument receives the volume name if the procedure is successful.

DIRECTORY_NAME
This argument receives the directory name if the procedure is successful.

STATUS
This argument receives the completion status of the DIRECTORY_OPEN
procedure. An exception is raised if the procedure does not succeed and
this argument is omitted.

SERVER_NAME
This argument is a varying string of up to 64 characters that receives the
resultant node specification or server process port name.

FILE_ATTRIBUTES
The address of a record of type FILE_ATTRIBUTES_TYPE that is filled in
by the DIRECTORY_LIST procedure with the attributes of the file found.

Status

Values

_KER_SUCCESS The procedure completed successfully.

ELN —xxx Any error status returned by the file service.

Package VAXELN_SERVICES A-91

DISABLE_ASYNCH_EXCEPTION

The DISABLE_ASYNCH_EXCEPTION procedure prevents the delivery
of asynchronous exceptions (such as KER_QUIT_SIGNAL and
KER_POWER_SIGNAL) to the calling process.

Procedure Declaration

procedure DISABLE_ASYNCH_EXCEPTION (

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the DISABLE_ASYNCH—
EXCEPTION procedure. The only possible status is KER_SUCCESS.

Status KER—SUCCESS The procedure completed successfully.

Value

A-92 Package VAXELN_SERVICES

DISABLE _INTERRUPT

The DISABLE_INTERRUPT procedure prevents interrupts from a device,
by raising the interrupt priority level (IPL) of the processor to the IPL of
the device. While interrupts are disabled, no kernel procedures can be
called; attempting to do so causes unpredictable results. The DISABLE—
INTERRUPT procedure can be called only from programs running in
kernel mode.

Procedure Declaration

procedure DISABLE_INTERRUPT (

PRIORITY : in IPL_TYPE) ;

Arguments

PRIORITY
This argument supplies an integer in the range of 1 to 31, giving the new
interrupt priority level.

Notes:

The current interrupt priority level is part of the processor-wide state of
a VAX processor. Disabling interrupts of a given priority also disables
all other system activities that occur at or below that priority level. In
essence, if the IPL is raised by a process to block device interrupts, that
process is the only activity, other than interrupt service routines, that
can execute until the process lowers the IPL by calling the ENABLE_
INTERRUPT procedure.

If the power fails while interrupts are disabled, the IPL is set to zero
before the KER_POWER_SIGNAL exception is raised. This exception
is handled like any other synchronous exception, but, if it occurs with
interrupts disabled, continuation from the exception causes unpredictable
effects.

Status

Values

None

Package VAXELN_SERVICES A-93

DISABLE_SWITCH

The DISABLE_SWITCH procedure disables process switching for the job
from which it is called. The calling process continues executing, regardless
of the priorities of other processes in the job, until switching is reenabled
with the ENABLE_SWITCH procedure.

Procedure Declaration

procedure DISABLE_SWITCH (
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the DISABLE_SWITCH
procedure.

Notes:

Process switching is reenabled automatically if the process calls the
EXIT_PROCESS procedure or deletes itself. See the description of the
ENABLE_SWITCH procedure for more information.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_COUNT_OVERFLOW The DISABLE_SWITCH procedure was
called more times than the ENABLE_
SWITCH procedure.

A-94 Package VAXELN_SERVICES

DISCONNECT_CIRCUIT

The DISCONNECT_CIRCUIT procedure is used to break the circuit
connection between two ports. If any process is waiting for either port
in the circuit, its wait condition is satisfied. A request for connection
can be rejected by first calling ACCEPT_CIRCUIT and then calling the
DISCONNECT_CIRCUIT procedure.

Procedure Declaration

procedure DISCONNECT_CIRCUIT (

STATUS : out COND_VALUE_TYPE; --optional

PORT : in PORT_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the DISCONNECT
CIRCUIT procedure.

PORT
This argument supplies a PORT value representing the caller’s half of the
circuit.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER_BAD_STATE A port specified to the DISCONNECT
CIRCUIT procedure was not connected.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_SUCH_—PORT No port with the specified value can be
found in the system or network, or else the
port is not owned by the current job, as
required by the DISCONNECT_CIRCUIT
procedure.

Package VAXELN_SERVICES A-95

DISMOUNT_TAPE_VOLUME

The DISMOUNT_TAPE_VOLUME procedure dismounts a File Service
tape on the specified tape drive. The procedure must be called on the
same node that has the File Service tape.

Procedure Declaration

procedure DISMOUNT_TAPE_VOLUME (
DEVICE_NAME : in DEVICE_NAME_TYPE;

UNLOAD : in BOOLEAN; --optional

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 31 characters naming the
tape drive; for example, ‘MUAO0’ for drive 0 on tape controller MUA.

UNLOAD
This argument specifies whether the tape is unloaded. The default is
FALSE, implying that the tape is rewound but not unloaded when the
volume is dismounted.

STATUS
This argument receives the completion status of the DISMOUNT_TAPE—
VOLUME procedure.

Status KER_SUCCESS The procedure completed successfully.

Values ELN_FILE xxx Any error status returned by the file service.

A-96 Package VAXELN_SERVICES

DISMOUNT_VOLUME

The DISMOUNT_VOLUME procedure dismounts a File Service volume
on the specified device. The procedure must be called on the same node
that has the File Service volume. A dismounted disk can be used for
logical I-O.

Precedure Declaration

procedure DISMOUNT_VOLUME (
DEVICE_NAME : in DEVICE_NAME_TYPE;

STATUS : Out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 31 characters naming the
device; for example, ‘DQA1’ for drive 1 on disk controller DQA.

STATUS
This argument receives the completion status of the DISMOUNT_
VOLUME procedure.

Status

Values

KER_SUCCESS The procedure completed successfully.

ELN_FILE —xxx Any error status returned by the file service.

Package VAXELN_SERVICES A-97

DLV_INITIALIZE

The DLV_INITIALIZE procedure readies an Asynchronous Serial Line
Controller for input-output and creates all needed data structures. This
procedure must be called once for each DLV serial line used. Since each
line is initialized and handled separately from other lines, each line should
have its own device description specified in the target system’s System
Builder menus.

Procedure Declaration

procedure DLV_INITIALIZE (
DEVICE_NAME : dn DEVICE_NAME_TYPE;

IDENTIFIER > out DLV_IDENTIFIER_TYPE;

MAXIMUM_LENGTH : in INTEGER; --optional

STRING_MODE : in BOOLEAN; --optional

USE_POLLING : in BOOLEAN) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 30 characters giving the
name of the device to be initialized. This name must match the name
established with the System Builder Utility.

IDENTIFIER
This argument receives an identifier to be used to identify this device
in subsequent calls to DLV_READ_STRING, DLV_READ_BLOCK, and

DLV_WRITE_STRING procedures.

MAXIMUM_LENGTH
This argument supplies the maximum string or block length, in bytes, that
will be read or written. The default value is 256.

STRING_MODE
This argument is a Boolean expression. TRUE causes the serial line to
be used in string mode; FALSE causes it to be used in block mode. The
default value is TRUE. String mode means the input is obtained by calling
the DLV_READ_STRING procedure and will always be terminated by

A-98 Package VAXELN_SERVICES

DLV_INITIALIZE

a carriage return character. Block mode means the input is obtained by
calling the DLV_READ_BLOCK procedure and will be fixed-length blocks
of data, with no carriage return checking performed.

USE_POLLING
This argument is a Boolean expression. TRUE means the read procedures
will poll the device register; FALSE means the read procedures will use
interrupts. Polling is always done at the device’s interrupt priority level,
which is four for the DLV. The default value is FALSE.

Status

Values

None

Package VAXELN_SERVICES A-99

DLV_READ_BLOCK

The DLV_READ_BLOCK procedure causes characters to be read from a
DLV device line until the specified number of characters is read. This pro-
cedure should be called to read from the serial line if the STRING_MODE
argument was FALSE in the call to the DLV_INITIALIZE procedure.

Procedure Declaration

procedure DLV_READ_BLOCK (
IDENTIFIER : in DLV_IDENTIFIER_TYPE;

BLOCK_DESCR : in DLV_BLOCK_DESCR_TYPE;

TIMEOUT : dm DATE_TIME_TYPE) ; --optional

Arguments

IDENTIFIER
This argument identifies the serial line device to be read; this value
is the one returned in the identifier parameter after a call to the
DLV_INITIALIZE procedure.

BLOCK_DESCR
This argument supplies a descriptor of the array into which the data is to
be read. See the description of the type DLV_BLOCK_DESCR_TYPE in
Chapter 8 for more information.

TIMEOUT
This LARGE_INTEGER argument specifies a time interval that is the
maximum time allowed for the block of characters to be read. If the
timeout occurs, the block is returned incomplete. The default value is
zero, which implies no timeout.

Status None
Values

A-100 Package VAXELN_SERVICES

DLV_READ_STRING

The DLV_READ_STRING procedure causes characters to be read from the
serial line until a carriage return character is encountered. This procedure
should be called to read from the serial line if the STRING_MODE
argument was TRUE in the call to the DLV_INITIALIZE procedure.

Procedure Declaration

procedure DLV_READ_STRING (
IDENTIFIER : in DLV_IDENTIFIER_TYPE;

STRING_DESCR : in VS_DESCR_TYPE) ;

Arguments

IDENTIFIER
This argument identifies the serial line device to be read; this value
is the one returned in the identifier parameter after a call to the
DLV_INITIALIZE procedure.

STRING_DESCR
This argument specifies a descriptor of a varying string that is to receive
the string read from the serial line.

Status

Values

None

Package VAXELN_SERVICES A-101

DLV_WRITE_STRING

The DLV_WRITE_STRING procedure causes the character string to
be written to the serial line. The characters are not interpreted by this
procedure; therefore, any variable-length string can be written.

Procedure Declaration

procedure DLV_WRITE_STRING (
IDENTIFIER : in DLV_IDENTIFIER_TYPE;

STRING : in DLV_STRING_TYPE) ;

Arguments

IDENTIFIER
This argument identifies the serial line device to be read; this value
is the one returned in the identifier parameter after a call to the
DLV_INITIALIZE procedure.

STRING
This argument specifies the character string to be written to the serial line.

Status None

Values

A-102 Package VAXELN_SERVICES

DRV_INITIALIZE

The DRV_INITIALIZE procedure readies a Parallel Line Interface
Controller for input-ouput and creates all needed data structures. This
procedure must be called once for each DRV controller used.

Procedure Declaration

procedure DRV_INITIALIZE (
DEVICE_NAME : in DEVICE_NAME_TYPE;

IDENTIFIER : out DRV_IDENTIFIER_TYPE;

BUFFER_PTR : out ADDRESS;

BUFFER_SIZE : in INTEGER;

OUTPUT_PORTS : in DRV_PORT_SET_TYPE;

USE_POLLING : in BOOLEAN);

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 30 characters giving the
name of the device to be initialized. This name must match the name
established with the System Builder Utility.

IDENTIFIER
This argument receives an identifier to be used to identify this device in
subsequent calls to the DRV_READ and DRV_WRITE procedures.

BUFFER_PTR
This argument receives the address of the input-output buffer. The buffer
is a two-dimensional array of data words; the first array index specifies the
port number and the second array index specifies a data word number.
The input-output buffer is allocated by the DRV_INITIALIZE procedure; it
will receive all data read from the device and should be filled with all data
to be written to a port.

BUFFER_SIZE
This argument specifies the size (the number of 16-bit words) of the input-
output buffer for each port allocated in the buffer array. This argument is
also an upper bound on the buffer array’s second index.

Package VAXELN_SERVICES A-103

DRV_INITIALIZE

OUTPUT_PORTS
This argument specifies the set of port numbers of type DRV_PORT_SET_
TYPE that are to be used for output instead of input. If a port is specified
as an output port, the port’s “DIR” bit is set in the port register; otherwise,
it is cleared.

USE_POLLING
This argument is a Boolean expression. TRUE means the read procedures
will poll the device register; FALSE means the procedures will use inter-
rupts. Polling is always done at the device's interrupt priority level, which
is four for the DRV11-J.

Status None

Values

A-104 Package VAXELN_SERVICES

DRV_READ

The DRV_READ procedure causes data words to be read from the speci-
fied parallel port. The resulting data is stored in the buffer pointed to by
the BUFFER_PTR parameter returned by the DRV_INITIALIZE procedure.

Procedure Declaration

procedure DRV_READ (
IDENTIFIER : in DRV_IDENTIFIER_TYPE;

PORT : in DRV_PORT_INDEX_TYPE;

WORD_COUNT : in INTEGER);

Arguments

IDENTIFIER
This argument supplies a value that identifies the device to be read; this
value is the one returned in the identifier parameter after a call to the
DRV_INITIALIZE procedure.

PORT
This argument supplies a value specifying which port to read.

WORD_COUNT
This argument supplies a value specifying the number of 16-bit words to
be read.

Status None

Values

Package VAXELN_SERVICES A-105

DRV_WRITE

The DRV_WRITE procedure causes data words to be written to the
specified parallel port. Before calling this procedure, the data words
should be stored in the buffer pointed to by the BUFFER_PTR parameter
returned by the DRV_INITIALIZE procedure.

Procedure Declaration

procedure DRV_WRITE (
IDENTIFIER : in DRV_IDENTIFIER_TYPE;

PORT : in DRV_PORT_INDEX_TYPE;

WORD_COUNT : in INTEGER);

Arguments

IDENTIFIER
This argument supplies a value that identifies the serial line device to be
written to; this value is the one returned in the identifier parameter after a
call to DRV_INITIALIZE.

PORT
This argument supplies a value specifying which port will be written to.

WORD_COUNT
This argument supplies an INTEGER value specifying the number of
16-bit words to be written.

Status

Values

None

A-106 Package VAXELN_SERVICES

ENABLE _ASYNCH_EXCEPTION

The ENABLE_ASYNCH_EXCEPTION procedure allows the delivery
of asynchronous exceptions (such as KER_QUIT_SIGNAL and KER—
POWER_SIGNAL) to the calling process. Asynchronous exceptions
are enabled by default and may be reenabled only after being explicitly
disabled.

Procedure Declaration

procedure ENABLE_ASYNCH_EXCEPTION (

STATUS : out COND_VALUE_TYPE); § --optional

Arguments

STATUS
This argument receives the completion status of the ENABLE_ASYNCH—
EXCEPTION procedure. The only possible status is KER_SUCCESS.

Status KER_SUCCESS The procedure completed successfully.

Value

Package VAXELN_SERVICES A-107

ENABLE_INTERRUPT

The ENABLE_INTERRUPT procedure allows interrupts from a device
by lowering the interrupt priority level (IPL) of the calling process to
minimum priority (0). It can be used only from programs running in
kernel mode.

Procedure Declaration

procedure ENABLE_INTERRUPT ;

Arguments

There are no arguments.

Status None
Values

A-108 Package VAXELN_SERVICES

ENABLE_SWITCH

The ENABLE_SWITCH procedure restores preemptive process scheduling,
or switching, for the calling job. When process switching is enabled, the
control of the CPU is given to the highest priority process in the job that
is ready to run.

Procedure Declaration

procedure ENABLE_SWITCH (
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the ENABLE_SWITCH
procedure.

Notes:

The ENABLE_SWITCH and DISABLE—SWITCH procedures have a fea-
ture that allows them to be called with reasonable effects from nested
routines. The implementation uses a counter that is incremented when- |
ever the DISABLE_SWITCH procedure is called and decremented when-
ever the ENABLE_SWITCH procedure is called. Switching is enabled
only when the number of calls to the ENABLE_SWITCH procedure is
equal to the number of calls to the DISABLE_SWITCH procedure for a
given process. For example:

procedure A;

begin

DISABLE_SWITCH;

ENABLE_SWITCH;

end;

Package VAXELN_SERVICES A-109

ENABLE_SWITCH

procedure B;
begin

DISABLE_SWITCH;

A; -- Call procedure A

ENABLE_SWITCH ;

end ;

Here, Procedure B disables process switching and then calls Procedure A.
Procedure A also disables process switching during its execution and then
calls the ENABLE_SWITCH procedure. This call does not reenable pro-
cess switching; however, since that would cause an error upon returning
to Procedure B. Process switching is reenabled only when Procedure B
calls the ENABLE_SWITCH procedure.

Status KER_SUCCESS The procedure completed successfully.

Values KER_COUNT_UNDERFLOW The ENABLE_SWITCH procedure was
called more times than the DISABLE
SWITCH procedure.

A-110 Package VAXELN_SERVICES

ENTER_KERNEL _CONTEXT

The ENTER_KERNEL—CONTEXT procedure executes the specified user
routine in kernel mode.

Procedure Declaration

procedure ENTER_KERNEL_CONTEXT (
STATUS : out COND_VALUE_TYPE;

ROUTINE : in ADDRESS;

ARGUMENT_LIST : in ARGUMENT_LIST_TYPE) ;

Arguments

STATUS
This argument receives the function value of the call to the ROUTINE
specified by the ROUTINE argument.

ROUTINE
This argument supplies the address of the routine to be executed in kernel
mode. The routine should be a function that returns a value of COND_
VALUE_TYPE as the result.

ARGUMENT_LIST
This argument supplies a pointer to the array of longwords that will
be passed as arguments to the user’s function, which is passed as the
preceding ROUTINE argument. This argument block should be in the
standard VAX/VMS format; a longword containing both the argument
count and the argument longwords themselves.

Note:

The result returned from the call to ROUTINE is returned in the STATUS
argument.

Package VAXELN_SERVICES A-111

EXIT_PROCESS

The EXIT_PROCESS procedure causes an immediate exit from the calling
process. If the calling process is the master process, all the objects it
owns (including subprocesses) are deleted. The status of open files is
unpredictable.

Procedure Declaration

procedure EXIT_PROCESS (
STATUS : out COND_VALUE_TYPE; --optional

EXIT_STATUS : in EXIT_STATUS_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the EXIT_PROCESS
procedure. The only possible status is KER_SUCCESS.

EXIT_STATUS
This argument supplies the exit status of the current process to its creator.
If it is omitted, the creating process receives a STATUS value indicating
that KER-NO_STATUS was returned.

Notes:

If process switching was disabled by the calling process, it is reenabled
automatically when the EXIT_PROCESS procedure is called.

Status

Value

KER_SUCCESS The procedure completed successfully.

A-112 Package VAXELN_SERVICES

FREE_MAP

The FREE_MAP procedure frees a set of previously allocated UNIBUS
map registers. It can be called only from a program running in kernel
mode. Any pointers to the freed registers become invalid.

Procedure Declaration

procedure FREE_MAP (
STATUS : out COND_VALUE_TYPE; --optional

COUNT : in INTEGER;
NUMBER : in INTEGER;
DEVICE : in DEVICE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the FREE_MAP
procedure.

COUNT
This argument supplies the number (count) of contiguous map registers to
be freed.

NUMBER
This argument supplies the map register number of the first map register,
such as the one returned by the ALLOCATE_MAP procedure.

DEVICE
This argument identifies the device for which the registers are freed.

Package VAXELN_SERVICES A-113

FREE_MAP

Status KER_SUCCESS

Values KER_BAD_MODE

KER_BAD_VALUE

KER_NO_ACCESS

A-114 Package VAXELN_SERVICES

The procedure completed successfully.

The procedure was called from a program
that was not running in kernel mode; kernel
mode is required for this procedure.

The DEVICE argument is invalid or identifies
a deleted device.

An argument specified is not accessible to
the calling program.

FREE_MEMORY

The FREE_MEMORY procedure frees a region of memory previously
allocated by the ALLOCATE_MEMORY procedure. Any pointers to the
freed memory become invalid.

Procedure Declaration

procedure FREE_MEMORY (
STATUS : out COND_VALUE_TYPE; ~-optional

SIZE : dn UNSIGNED_LONGWORD ;

VIRTUAL_ADDRESS : in ADDRESS) ;

Arguments

STATUS
This argument receives the completion status of the FREE_MEMORY
procedure.

SIZE
This argument supplies the number of bytes of memory to be freed. This
value is rounded up to the next 512-byte page.

VIRTUAL_ADDRESS
This argument supplies the starting virtual address of the memory, as re-
turned by the ALLOCATE_MEMORY procedure. This value is truncated
to a 512-byte page address.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The VIRTUAL_ADDRESS argument is not
in the calling job’s address space.

Package VAXELN_SERVICES A-115

FREE_PATH

The FREE_PATH procedure frees a previously allocated UNIBUS adapter
buffered datapath. This procedure can only be called from programs
running in kernel mode. The VAX-11/750 is the only processor supported
by the VAXELN system that has UNIBUS buffered datapaths.

Procedure Declaration

procedure FREE_PATH (
STATUS : out COND_VALUE_TYPE; --optional

NUMBER : in INTEGER;
DEVICE : in DEVICE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the FREE_PATH
procedure.

NUMBER
This argument is an INTEGER value that supplies the datapath register
number, such as the one returned by the ALLOCATE_PATH procedure.

DEVICE
This argument supplies the DEVICE value that identifies the device for
which the datapath is freed.

A-116 Package VAXELN_SERVICES

FREE_PATH

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_MODE The procedure was called from a program
that was not running in kernel mode; kernel
mode is required for this procedure.

KER_BAD_VALUE The DEVICE argument is invalid or identifies
a deleted device.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-117

GET_TIME

The GET_TIME procedure returns the current system time.

Procedure Declaration

procedure GET_TIME (
STATUS : out COND_VALUE_TYPE; --optional

TIME : out DATE_TIME_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the GET_TIME procedure.

TIME
This argument receives a value representing the time of day.

Status KER_SUCCESS The procedure completed successfully.

Values KER_TIME_NOT_SET The time of day has not been set. This is an
alternate success status.

KER_BAD_COUNT The procedure call specified an incorrect
number of arguments.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

A-118 Package VAXELN_SERVICES

GET_USER

The GET_USER procedure returns the user identity of either the calling
process or the partner process connected by a circuit to the caller’s port.

Procedure Declaration

procedure GET_USER (

STATUS : out COND_VALUE_TYPE; --optional

CIRCUIT : in PORT_TYPE --optional

USER_NAME : out AUTH_STRING_TYPE;

VIC : out UIC_LONGWORD_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the GET_USER
procedure. .

CIRCUIT
This argument supplies a PORT value specifying the partner process’s port
in the circuit. If this argument is supplied, the port must be currently con-
nected in a circuit that the caller has accepted with the ACCEPT_CIRCUIT
procedure. Valid information is not returned if the caller initiated the con-
nection with the CONNECT_CIRCUIT procedure; that is, the GET_USER
procedure can only provide information about the object of a connection,
not the subject.

USER_NAME
This argument receives a string of up to 20 characters that is the user
name of either the calling process or the partner process.

UIC
This argument is an INTEGER value that supplies the UIC of either the
calling process or the partner process. If the circuit is from a remote
user, but there is no Authorization Service available in the system (that
is, the Authorization required characteristic on the Edit Network Node

Package VAXELN_SERVICES A-119

GET_USER

Characteristics System Builder menu is “No”), the GET_USER procedure
returns zero for the UIC parameter.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_LENGTH The USERNAME argument is too long.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

A-120 Package VAXELN_SERVICES

INITIALIZATION DONE

The INITIALIZATION_DONE procedure informs the kernel that the
calling program has completed an initialization sequence, and other
programs can be started.

Procedure Declaration

procedure INITIALIZATION_DONE (
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the INITIALIZATION —
DONE procedure.

Status KER_SUCCESS The procedure completed successfully.

Values KER_NO_INITIALIZATION The calling program was specified with a
“no Init required” characteristic.

Package VAXELN_SERVICES A-121

INIT_TAPE_VOLUME

The INIT_TAPE_VOLUME procedure initializes a File Service tape for
use as a file-structured volume. Tapes must be initialized before they are
used. The procedure is similar to the VAX/VMS command INITIALIZE, as
used for tape volumes. (For additional information, consult the VAX/VMS
documentation.)

You can initialize any volume on any node running a VAXELN system,
but only if the volume is not mounted or open for logical input-output.

Procedure Declaration

procedure INIT_TAPE_VOLUME (
DEVICE_NAME : in DEVICE_NAME_TYPE;

VOLUME_NAME : du TAPE_VOLUME_NAME_TYPE;
DENSITY : in DENSITY_TYPE;

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 31 characters, giving the
device specification of the tape drive; for example, ‘DQA1’ for drive 1
of controller DOA. The node must be specified explicitly for a drive on
another node.

VOLUME_NAME
This argument supplies a varying string of up to 12 characters, giving the
volume label for the disk.

DENSITY
This argument is an INTEGER value that supplies the density (in bytes
per inch) that the tape will be initialized to. If the specified density is not
supported, the tape will be initialized to the supported density closest to
it. The default density is the highest density supported by the specified
tape drive.

A-122 Package VAXELN_SERVICES

STATUS

INIT_TAPE_VOLUME

This argument is an INTEGER variable that receives the completion status
of the INIT_TAPE_VOLUME procedure.

Notes:

VAXELN processes that create files on the tape are not restricted by the
privileges implied by such parameters as VOLUME_PROTECTION. These
parameters are provided for compatibility with VAX/VMS systems.

Status

Values

KER_SUCCESS

ELN_TAPE_DEVINUSE

ELN—_TAPE_DEVMOUNT

ELN—TAPE_DEVERROR

ELN—TUTL_INVCHRVOL

ELN —FILE—xxx

KER_NO_SUCH— DEVICE

The procedure completed successfully.

The device is in use by another process.

The device is already mounted.

A device error occurred.

There is an invalid character in the volume

label.

Any other error returned by disk service.

The device does not exist.

Package VAXELN_SERVICES A-123

INIT_VOLUME

The INIT_VOLUME procedure initializes a File Service disk for use as
a file-structured volume. Disks must be initialized before they are used.
The procedure is similar to the VAX/VMS command INITIALIZE, as used
for disk volumes. (For additional information, consult the VAX/VMS
documentation.)

You can initialize any volume on any node running a VAXELN system,
but only if the volume is not mounted or open for logical input-output.

Procedure Declaration

procedure INIT_VOLUME (
DEVICE_NAME : dn DEVICE_NAME_TYPE;
VOLUME_NAME : dn DISK_VOLUME_NAME_TYPE;
DEF AULT_EXTENSION : dn UNSIGNED_WORD ; --optional
USERNAME : dn AUTH_STRING_TYPE; --optional

OWNER : dn UIC_LONGWORD_TYPE; --optional

VOLUME_PROTECTION : dn FILE_PROTECTION_TYPE; --optional
FILE_PROTECTION : dn FILE_PROTECTION_TYPE; --optional
RECORD_PROTECTION : dn FILE_PROTECTION_TYPE; --optional
ACCESSED_DIRECTORIES : in UNSIGNED_BYTE; --optional
MAXIMUM_FILES : in INTEGER; --optional

USER_DIRECTORIES : dn UNSIGNED_WORD; --optional
FILE_HEADERS : in INTEGER; ~-optional
WINDOWS : dn UNSIGNED_BYTE; --optional

CLUSTER_SIZE : dn UNSIGNED_WORD; --optional

INDEX_POSITION : dn DISK_INDEX_POSITION_TYPE; --optional
DATA_CHECK : dn DISK_DATA_CHECK_TYPE; --optional
SHARE : dn BOOLEAN; --optional

GROUP : dn BOOLEAN; --optional

SYSTEM : dn BOOLEAN; --optional

VERIFIED : dn BOOLEAN; --optional

BADLIST : dm DISK_BADLIST_DESCR_TYPE;
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 31 characters, giving
the device specification of the disk drive; for example, ‘DQA1’ for drive

A-124 Package VAXELN_SERVICES

INIT_VOLUME

1 of controller DQA. The node must be specified explicitly for a drive on
another node.

VOLUME_NAME
This argument supplies a varying string of up to 12 characters, giving the
volume label for the disk.

DEFAULT_EXTENSION
This argument supplies a value in the range of 0 to 65,535 (type
SYSTEM.UNSIGNED_WORD) giving the default extension quantity
in blocks for all files on the disk volume. The extension quantity is ap-
plied when the size of a file is increased beyond its initial allocation by an
update. The default is 5 blocks.

USER_NAME
This argument supplies a string of up to 20 characters, giving a user name
to be recorded on the volume. If it is omitted, the default is VAXELN.

OWNER
This argument supplies an integer identifying the volume owner UIC. The
default is 16#00010001#.

VOLUME_PROTECTION
This argument supplies a value (see the example at the end of this section)
that specifies the VAX/VMS protection for the volume. If it is not speci-
fied, users in all categories (system, owner, group, and world) have RWED
(read, write, execute, and delete) access. When you specify protection for
an entire disk volume, “execute” privilege implies create privilege. Note
that the GROUP, SHARE, and SYSTEM arguments can also be used to
specify volume protection.

FILE_PROTECTION
This argument supplies a value that specifies the default protection code
for all files on the volume. If it is omitted, the system and owner have
RWED access, the group has RE access, and the world has no access.

RECORD_PROTECTION
This argument supplies a value that supplies the write-protection code for
records. If it is omitted, the system and owner have RWED access, the
group has read access, and the world has no access.

Package VAXELN_SERVICES A-125

INIT_VOLUME

ACCESSED_DIRECTORIES
This argument supplies a value in the range of 0 to 255 designating the
number of directories that can be stored by the File Service by default.
The default is 3.

MAXIMUM_ FILES
This argument is an integer that supplies the maximum number of files
that can exist on a disk. The default is calculated by the procedure based
on the size of the disk.

USER_DIRECTORIES
This argument supplies a value in the range of 16 to 16000 specifying the
number of entries that are preallocated for user directories. The default
is 16.

FILE_HEADERS |
This argument is an integer that supplies the number of file headers
allocated initially for the index file (the file for the volume’s file structure).
The MAXIMUM value is the same as the MAXIMUM_FILES value. The
default is 16.

WINDOWS
This argument is a value in the range of 7 to 80 that supplies the number
of mapping pointers to be allocated for file windows. When a file is
opened, the mapping pointers are used to describe the logical segments of
the file for access. The default is 7.

CLUSTER_SIZE
This argument supplies a value in the range of 1 to 1/100 the size of the
volume giving the cluster size. The default is 1 for volumes with less than
or equal to 50000 blocks; otherwise the default is 3. The cluster size is the
minimum allocation unit for the volume.

INDEX_POSITION
This argument supplies a value that specifies the position of the index file.
Possible values are POSITION_BEGINNING, POSITION_MIDDLE, and
POSITION END. The default is POSITION—MIDDLE.

DATA_CHECK }
This argument enables or disables data checking on read or write oper-
ations. Possible values are READ (check following all read operations),
WRITE (check following all write operations), and NOCHECK. The default
is NOCHECK.

A-126 Package VAXELN_SERVICES

INIT_VOLUME

SHARE
This argument designates whether the volume is shareable. The default is
TRUE, implying that users in all categories have read, write, execute, and _
delete privileges. If the argument is FALSE, the default protection is no
access for group and world, RWED access for system and owner.

GROUP
This argument designates that the disk volume is a group volume. If it
is TRUE, the owner UIC defaults to the group number as specified in the
OWNER argument, and the member number defaults to 0. The default
is FALSE. If group is TRUE and share is FALSE, the volume protection is
RWED for the group, owner, and system. However, if group and share
are both TRUE, the volume protection is RWED for all user categories.

SYSTEM
This argument designates that the volume is a “system volume.” In this .
case, the default protection is RWED access for all users of the system.
Only VAX/VMS users with system UICs can create directories on system
volumes. The default is TRUE.

VERIFIED
This argument supplies a Boolean value that designates whether the
volume has information about where bad blocks are located. The default
is TRUE. FALSE means that the procedure should ignore information
already on the disk about bad blocks.

BAD_LIST
This argument supplies a list of bad blocks. These are areas on the volume
that are known to be faulty and are marked by the procedure so that no
data will be written on them. The bad block list specifies a range of either
logical or physical block numbers. For physical block numbers,
PBN FORMAT must be TRUE; for logical block numbers, it must be
FALSE. The argument is required, although a null list can be specified. To
specify a null list of bad blocks, allocate a zero-extent array.

STATUS
This argument receives the completion status of the INIT_-VOLUME
procedure.

Package VAXELN_SERVICES A-127

INIT_VOLUME

Notes:

VAXELN processes that create directories and files on the disk are not
restricted by the privileges implied by such parameters as VOLUME
PROTECTION. These parameters are provided for compatibility with
VAX/VMS systems.

Status KER_SUCCESS
Values ELN_DISK_DEVMOUNT

ELN_DISK_NOTFILEDEV

ELN—DISK_—xxx

KER_NO_SUCH—_DEVICE

A-128 Package VAXELN_SERVICES

The procedure completed successfully.

The device is already mounted.

The device is not file structured.

Any other error returned by disk service.

The device does not exist.

JOB_PORT

The JOB_PORT procedure returns a PORT value identifying the caller’s
job port. A unique job port is created whenever a job is started.

Procedure Declaration

procedure JOB_PORT (
STATUS : out COND_VALUE_TYPE; --optional

PORT =: out PORT_TYPE);

Arguments

STATUS
This argument receives the completion status of the JOB_PORT procedure.

PORT
This argument receives a PORT value identifying the caller’s job port.

Status KER_SUCCESS The procedure completed successfully.

Values KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-129

KWV_INITIALIZE

The KWV_INITIALIZE procedure readies a real-time clock for input and
creates all needed data structures. This procedure must be called at least
once for each KWV device used. (The only reason to call this procedure
more than once for a single device is to change the value of a parameter
or to stop a device that is running in mode 0 or mode 1.)

Procedure Declaration

procedure KWV_INITIALIZE (
DEVICE_NAME : in DEVICE_NAME_TYPE;
IDENTIFIER : out KWV_IDENTIFIER_TYPE;
MODE : dn KWV_MODE_TYPE;
CLOCK_RATE : dm KWV_CLOCK_RATE_TYPE;
MAXIMUM_VALUES : in INTEGER; --optional

RE_INITIALIZE : in BOOLEAN; --optional

USE_POLLING : dn BOOLEAN; --optional
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument supplies a varying string of up to 30 characters giving the
name of the device to be initialized. This name must match the name
established with the System Builder Utility.

IDENTIFIER
This argument receives a longword identifier to be used to identify this
device in subsequent calls to the KWV_INITIALIZE, KWV_READ, and
KWV_WRITE procedures.

MODE
This argument is an expression of type KWV_MODE that determines the
mode in which the device is to be operated.

e KWV_MODE-ZERO is a single interval mode. In this mode, action is
initiated by a call to the KWV_WRITE procedure. The clock is started
by either a Schmitt Trigger #2 signal or the call itself. The clock
stops after counting the number of ticks specified in the call to the

A-130 Package VAXELN_SERVICES

KWV_INITIALIZE

KWV_WRITE procedure. At this time (clock overflow), it interrupts the
processor, if that is enabled, and asserts the clock-overflow signal line.
Note that interrupting the processor on overflow is not supported by
this driver.

KWV_MODE-_ONE is a repeated interval mode. This mode is identical
to single interval mode, except that when clock overflow is reached,
the clock is repeatedly restarted to run for the same interval. Therefore,
the device produces repeated signals on the clock-overflow line and
repeated processor interrupts, if that is enabled. Note that interrupting
the processor on overflow is not supported by this driver.

KWV_MODE_TWO is an external event or program timing mode. In
this mode, used for timing an external event, action is initiated by a
call to the KWV_READ procedure. The clock’s counter is set to zero
and is started by either the KWV_READ call or a Schmitt Trigger #2
signal. The clock continues to run, and its COUNTER value is read
each time there is an external signal to Schmitt Trigger #2, until the
desired number of values has been read.

This mode may also be used to time a section of code; that is, the clock
may be started and stopped from program control. In this case, it is
started by a call to the KWV_WRITE procedure. A subsequent call to
the KWV_READ procedure stops the clock and reads a single value
from its counter, which represents the elapsed time since the write. If a
device is used in this way, switches 3 and 4 on dip switch sw3 should
be in the “off” position; otherwise, any external signals to Schmitt
Trigger #2 may result in incorrect operation.

KWV_MODE-_THREE is an external event timing from zero base
mode. This mode is identical to KWV_MODE_TWO, except that the
counter is reset to zero each time its contents are read.

CLOCK_RATE
This argument is an expression of type KWV_CLOCK_RATE that supplies
the clock frequency to be used. This can be a set crystal-controlled
frequency, the AC line frequency, or Schmitt Trigger #1 input.

MAXIMUM_VALUES
This argument supplies the maximum number of data values that can
be read from the specified device in a single call to the KWV_READ
procedure. This argument is only significant for KWV_MODE_TWO and
KWV_MODE_TWO. If this argument is not specified, a default of one is
assumed.

Package VAXELN_SERVICES A-131

KWV_INITIALIZE

RE_INITIALIZE
This argument is a Boolean expression. TRUE means that the device has
been initialized previously, in which case the IDENTIFIER argument is
ignored and is used to identify the device. No new data structures or
objects are created unless the MAXIMUM_VALUES argument is greater
than the previous value for this device. The default value is FALSE.

USE_POLLING
This argument is a Boolean expression. TRUE causes the device to be
driven by polling rather than interrupts; FALSE means interrupts will be
used to gather data. Polling is always done at device IPL (four for this
device). The default value is FALSE. This argument is only significant for
a device operating in KWV_MODE_TWO or KWV_MODE_THREE when
the KWV_READ procedure is called to gather data (that is, not when
the KWV_READ procedure is called following a call to the KWV_WRITE
procedure).

STATUS
This argument receives the completion status of the KWV_INITIALIZE
procedure. The only possible value is 1, which indicates that the proce-
dure completed successfully.

Status

Value

KER_SUCCESS The procedure completed successfully.

A-132 Package VAXELN_SERVICES

KWV_READ

The KWV_READ procedure reads TIME values from a specified device
and stores them in a data array. The procedure may only be called for
a device that has been initialized to operate in KWV_MODE_TWO or
KWV_MODE_THREE.

There are two possible cases in which the KWV_READ procedure would
be called:

° The device is not already running. In this case, the call to the KWV_
READ procedure either starts the device or sets the device so that a
signal from Schmitt Trigger #2 will start it. Subsequently, the specified
number of data is gathered (each representing the occurrence of a
Schmitt Trigger #2 signal), and the clock is stopped.

e The device is already running, having been started by a call to the
KWV_WRITE procedure. In this case, the call to the KWV_READ
procedure stops the clock, then reads and returns the clock’s
COUNTER value.

Procedure Declaration

procedure KWV_READ (

IDENTIFIER : in KWV_IDENTIFIER_TYPE;

VALUE_COUNT : in INTEGER;

DATA_ARRAY_PTR : out ADDRESS;

ST2_GO_ENABLE : in BOOLEAN; --optional
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

IDENTIFIER
This argument supplies a value that identifies the device to be read; this
value is the one returned in the IDENTIFIER argument after a call to the
KWV_INITIALIZE procedure.

VALUE_COUNT
This argument supplies the number of values to be read.

Package VAXELN_SERVICES A-133

KWV_READ

DATA_ARRAY_PTR
This argument receives the address of an array containing data from the
device. Output data is a signed 16-bit integer giving a count of ticks.

ST2_GO_ENABLE
This argument is a Boolean expression. TRUE causes the clock to begin
counting upon receipt of a Schmitt Trigger #2 signal. FALSE causes the
call to the KWV_READ procedure itself to start the counter. The default
value is FALSE. This argument is ignored if the clock is already running.

STATUS
This argument receives the completion status of the KWV_READ
procedure.

Status

Value

ELN_KWV_DATA_OVERRUN This value indicates that a Schmitt Trigger
#2 event occurred before the driver had
finished processing the previous one.

A-134 Package VAXELN_SERVICES

KWV_WRITE

The KWV_WRITE procedure performs differently depending on which
mode the device is operating in:

For devices initialized to operate in mode 0 or mode 1, the KWV_
WRITE procedure causes the device to generate the clock-overflow
signal when the specified number of ticks has occurred. Additionally,
if the device was initialized to operate in mode 1, clock-overflow
signals will be generated repeatedly after each interval containing the
specified number of ticks. The clock can be stopped by calling the
KWV_INITIALIZE procedure to reinitialize it.

For devices initialized to operate in KWV_MODE_TWO or KWV_
MODE_THREE, the KWV_WRITE procedure causes the device to
begin counting from zero, or wait for an ST2 signal to do so. It is then
expected that sometime a call to the KWV_READ procedure will be
made, which reads the current elapsed time.

Procedure Declaration

procedure KWV_WRITE (

IDENTIFIER : du KWV_IDENTIFIER_TYPE;

ST2_GO_ENABLE : in BOOLEAN; --optional

TICK_COUNT : in KWV_COUNTER_TYPE; --optional

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

IDENTIFIER

This argument supplies a value that identifies the device to be written to;
this value is the one returned in the IDENTIFIER argument after a call to
the KWV_INITIALIZE procedure.

ST2_GO_ENABLE
This argument is a Boolean expression. TRUE causes the clock to begin
counting upon receipt of a Schmitt Trigger #2 signal. FALSE causes the
call to the KWV_WRITE procedure itself to start the counter. The default
value is FALSE.

Package VAXELN_SERVICES A-135

KWV_WRITE

TICK_COUNT
This argument is an interval in clock ticks after which a clock-overflow
signal is asserted. This argument has no significance if the device was
initialized to operate in mode 0 or 1.

STATUS
This argument receives the completion status of the KWV_WRITE
procedure. The only possible value is 1, which indicates that the proce-
dure completed successfully.

Status KER_SUCCESS The procedure completed successfully.

Value

A-136 Package VAXELN_SERVICES

LOAD_PROGRAM

The LOAD_PROGRAM procedure loads a specified image file into a
currently running VAXELN system. After the image file is loaded, the
CREATE_JOB procedure is used to start the program running.

Procedure Declaration

procedure LOAD_PROGRAM (

FILE_NAME > dn FILE_NAME_TYPE;

PROGRAM_NAME : im PROGRAM_NAME_TYPE;

KERNEL_MODE : in BOOLEAN; --optional

START_WITH_DEBUG : in BOOLEAN; --optional
POWER_RECOVERY : in BOOLEAN; --optional

KERNEL_STACK_SIZE : in INTEGER; --optional

USER_STACK_SIZE : in INTEGER; --optional

MESSAGE_LIMIT : in INTEGER; --optional

JOB_PRIORITY : in JOB_PRIORITY_TYPE; --optional

PROCESS_PRIORITY : in PROCESS_PRIORITY_TYPE; --optional

STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

FILE_NAME
This argument supplies a varying string giving the name of the image
file to be loaded into the system. The file is opened in the context of the
caller, so the file name must be provided in sufficient detail to correctly
identify the file. The file can reside on the system or on a remote node.

PROGRAM_NAME
This argument supplies a varying string giving the name by which the
program will be known for the CREATE_JOB call. If the argument is
specified as a null string, the image name supplied by the linker is used.

KERNEL_MODE
This argument is a Boolean value specifying in which mode the program is
to run. TRUE means kernal mode; FALSE (the default) means user mode.

Package VAXELN_SERVICES A-137

LOAD_PROGRAM

START_WITH_DEBUG
This argument specifies whether the debugging process is to get control of
the program when it is started. TRUE means the process is to get control;
FALSE (the default) means the process is not to get control.

POWER_RECOVERY
This argument specifies whether the job running the specified program
is to be given the power recovery exception if the power fails on the
system. TRUE means the job is to be given the power recovery exception;
FALSE (the default) means the job is not to be given the power recovery
exception.

KERNEL_STACK_SIZE
This argument is an INTEGER value that supplies the size, in pages, of
the kernel mode stack for jobs running this program. User mode programs
require at least one page (the default) of kernel stack.

USER_STACK_SIZE
This argument is an INTEGER value that supplies the initial size, in pages,
of the user mode stack for jobs running this program. Programs require
at least one page (the default) of user stack. This parameter is ignored for
kernel mode programs.

MESSAGE_LIMT
This argument is an INTEGER value that specifies the maximum number
of messages the job port can contain; the default is 0.

JOB_PRIORITY
This argument is an integer from 0 to 31 that specifies the starting job
priority for this program; the default is 16.

PROCESS_PRIORITY
This argument is an integer from 0 to 15 that specifies the starting process
priority for this program; the default is 8.

STATUS
This argument receives the completion status of the LOAD_PROGRAM
procedure.

A-138 Package VAXELN_SERVICES

LOAD_PROGRAM

Status

Values

KER_SUCCESS

ELN xxx

KER_BAD_VALUE

KER_BAD_IMAGE_FORMAT

KER_NO_SUCH_IMAGE

KER_NO_SYSTEM_PAGE

The procedure completed successfully.

Any error status returned by the file service.

One of the parameters is invalid or the
program has already been loaded.

The image being loaded contains an unsup-
ported image format.

A required shareable image was not found.

There is not enough system page table
entries available.

Package VAXELN_SERVICES A-139

LOAD_UNIBUS_MAP

The LOAD_UNIBUS_MATP procedure is used in device driver programs
to load UNIBUS map registers for use by a direct memory access UNIBUS
device. This is an alternative procedure to the more commonly used
UNIBUS_MAP procedure.

Procedure Declaration

procedure LOAD_UNIBUS_MAP (
MAP_REGISTER : in ADDRESS;

BUFFER : in IO_BUFFER_TYPE;
BUFFER_SIZE : in INTEGER;
SPT_ADDRESS : in ADDRESS; --optional

DATA_PATH : in INTEGER) ; --optional

Arguments

MAP_REGISTER
This argument is a pointer to the first UNIBUS map register allocated by
the ALLOCATE_MAP procedure.

BUFFER
This argument represents the I-O buffer.

BUFFER_SIZE
This argument supplies the buffer size.

SPT_ADDRESS
This argument is a pointer to the system page table (SPT). If this argument
is not supplied, a device communication region (or any system space
buffer) cannot be mapped.

DATA_PATH
This argument supplies a UNIBUS datapath to be used for the transfer.
If the argument is not supplied, DATA_PATH 0, the direct datapath, is
used.

A-140 Package VAXELN_SERVICES

LOAD_UNIBUS_MAP

Notes:

The LOAD_UNIBUS_MAP procedure assumes that sufficient map regis-
ters have been allocated by the calling program using the ALLOCATE_—
MAP procedure (the UNIBUS_MAP procedure allocates them for the
caller). The LOAD_UNIBUS_MAP procedure also assumes that one
additional map register (beyond the number actually necessary to map the
buffer) has been allocated for use as an invalid “wild-transfer-stopper.”

Status None

Values

Package VAXELN_SERVICES A-141

LOCK MUTEX

The LOCK_MUTEX procedure locks a mutex (mutual exclusion
semaphore).

Procedure Declaration

procedure LOCK_MUTEX (
STATUS : out COND_VALUE_TYPE; ~-optional

MUTEX : in out MUTEX_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the LOCK_MUTEX
procedure.

MUTEX
This argument is the mutex to be locked. A mutex must be initialized by
the CREATE_MUTEX call before it can be locked.

Status KER—SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The MUTEX argument specifies an object
that is not a mutex.

KER_BAD_VALUE The MUTEX argument specifies a mutex that
has been deleted.

A-142 Package VAXELN_SERVICES

MEMORY_SIZE

The MEMORY_SIZE kernel procedure scans the kernel memory database
and returns, in units of 512-byte pages, the initial main memory, the
current free memory, and the size of the largest, physically contiguous,
block of free memory. While the MEMORY_SIZE procedure performs the
memory scan, all other kernel operations are stopped.

Procedure Declaration

procedure MEMORY_SIZE (
STATUS : out COND_VALUE_TYPE; --optional

TOTAL_SIZE : out INTEGER;

FREE_SIZE ; out INTEGER;

LARGEST_SIZE : out INTEGER) ;

Arguments

STATUS
This argument receives the completion status of the MEMORY_SIZE
procedure.

TOTAL_SIZE
This argument receives the size, in units of 512-byte pages, of the initial
main memory.

FREE_SIZE
This argument receives the size, in units of 512-byte pages, of the current
free memory.

LARGEST_SIZE
This argument receives the size, in units of 512-byte pages, of the largest,
physically contiguous, block of free memory.

Status KER_SUCCESS The procedure completed successfully.

Values KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-143

MOUNT_TAPE_VOLUME

The MOUNT_TAPE_VOLUME procedure mounts a File Service tape on
the specified tape drive for use as a file-structured volume that conforms
to ANSI standard X3.27-1978. The procedure requires that the device
and its driver (and the tape File Service) be present in the same system
from which it is called. The procedure does not return until the tape is
completely mounted.

Procedure Declaration

procedure MOUNT_TAPE_VOLUME (
DEVICE_NAME : in DEVICE_NAME_TYPE;
VOLUME_NAME : in TAPE_VOLUME_NAME_TYPE; --optional

BLOCK_SIZE : in INTEGER; --optional
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

DEVICE_NAME
This argument is a varying string of up to 31 characters, giving the device
specification of the tape drive; for example, ’MUAO0’ for drive 0 on tape
controller MUA. The node must be specified explicitly for a drive on
another node.

VOLUME_NAME
This argument supplies the volume label for the tape as a varying string
of 1 to 6 characters.

BLOCK_SIZE
This argument supplies a value that determines the number of bytes in
each block of a newly created file. The default is 2048.

STATUS
This argument receives the completion status of the MOUNT_TAPE_—
VOLUME procedure.

A-144 Package VAXELN_SERVICES

MOUNT_TAPE_VOLUME

Status

Values

KER—SUCCESS

ELN—TAPE_DIFLBLMNT

ELN_TAPE_VOLNAMMSK

ELN—TAPE_DEVINUSE

ELN_TAPE_DEVMOUNT

ELN—TAPE_DEVERROR

ELN_TUTL_INVCHRVOL

ELN—TUTL—BLKSIZ

ELN_FILE_DEVNOTMNT

ELN —_FILE xxx

KER_NO_SUCH—DEVICE

The procedure completed successfully.

A volume with a different label was
mounted (informational message).

This volume’s name is masked by another
volume (informational message).

The device is in use by another process.

The device is already mounted.

The device error occurred.

There is an invalid character in the volume

label.

The invalid block size is specified.

There is no volume mounted on the device.

Any other error returned by the file service.

The device does not exist.

Package VAXELN_SERVICES A-145

MOUNT_VOLUME

The MOUNT_VOLUME procedure mounts a File Service disk for use
as a file-structured volume. The procedure requires that the device and
its driver (linked to the File Service) be present in the same system
from which it is called. The procedure does not return until the disk is
completely mounted.

Procedure Declaration

Arguments

procedure MOUNT_VOLUME (
DEVICE_NAME : in DEVICE_NAME_TYPE;

VOLUME_NAME : in DISK_VOLUME_NAME_TYPE; --optional

STATUS : out COND_VALUE_TYPE) ; --optional

DEVICE_NAME
This argument is a varying string of up to 31 characters naming the disk
drive on which the volume is to be mounted; for example, ‘DQA1’ for
drive 1 cn controller DQA.

VOLUME_NAME
This argument is a varying string of up to 12 characters, supplying the
volume label. If it is omitted, the procedure simply mounts whatever
volume is loaded in the indicated drive.

STATUS
This argument receives the completion status of the MOUNT_VOLUME
procedure.

A-146 Package VAXELN_SERVICES

MOUNT_VOLUME

Status

Values

KER_SUCCESS

ELN_DISK_DEVMOUNT

ELN—DISK_INVCHRVOL

ELN—DISK_xxx

ELN_FILE_DEVINUSE

ELN_FILE_DEVNOTMNT

ELN_FILE_INCVOLLABEL

ELN_—FILE_VOLALRMNT

ELN_FILE_VOLIMPDSM

ELN_FILE_MLTVOLLABEL

ELN —FILE—xxx

KER_NO_SUCH —_DEVICE

The procedure completed successfully.

The device is already mounted.

There is an invalid character in the volume

label.

Any other error returned by the disk service.

The device is in use by another process.

There is no volume mounted on the device.

The volume label is not correct, however the

volume is mounted anyway.

The volume is already mounted.

The volume was improperly dismounted;
please rebuild on the VAX/VMS system.

A volume with this name has already been
mounted.

Any other error returned by the file service.

The device does not exist.

Package VAXELN_SERVICES A-147

PHYSICAL ADDRESS

The PHYSICAL_ADDRESS function returns the physical address of a
data item. A program that calls the PHYSICAL_ADDRESS function must
be linked with the kernel symbol table (ELN$:KERNEL.STB).

Procedure Declaration

function PHYSICAL_ADDRESS (
POINTER : in ADDRESS) return PHYSICAL_ADDRESS_TYPE;

Arguments

POINTER
This argument supplies the virtual address of a data item. The returned
value is the physical address of the data item.

A-148 Package VAXELN_SERVICES

PROGRAM ARGUMENT

The PROGRAM_ARGUMENT function returns the character string passed
as a program argument to the current job.

Procedure Declaration

function PROGRAM_ARGUMENT (

POSITION : in INTEGER) return PROGRAM_ARGUMENT_TYPE;

Arguments

POSITION
This argument is an integer expression that gives the position in the argu-
ment list (in CREATE_JOB or the System Builder’s program description).
The first position is 1.

The returned value is the character string passed as the argument in, for
example, a CREATE_JOB call.

If there is no argument or if POSITION exceeds the number of program
arguments, the returned value is the null string.

Package VAXELN_SERVICES A-149

PROGRAM _ARGUMENT_COUNT

The PROGRAM-_ARGUMENT_COUNT function returns an integer
indicating the number of arguments passed to the program.

Procedure Declaration

function PROGRAM_ARGUMENT_COUNT return INTEGER;

The returned value is an INTEGER value giving the number of arguments
passed.

A-150 Package VAXELN_SERVICES

PROTECT_FILE

The PROTECT_FILE procedure changes the file ownership UIC or pro-
tection code or both for a specified disk file. This procedure is invalid for
tape volumes.

Procedure Declaration

procedure PROTECT_FILE (

FILE_NAME : in FILE_NAME_TYPE;
OWNER : in UIC_LONGWORD_TYPE; --optional

PROTECTION : in FILE_PROTECTION_TYPE; --optional
STATUS : out COND_VALUE_TYPE; ~-optional

RESULTANT_FILE_NAME : out FILE_NAME_TYPE) ; --optional

Arguments

FILE_NAME
This argument is a varying string giving the file specification. Wildcard
characters are not permitted.

OWNER
This argument supplies the ownership UIC of the file. If this argument is
not specified or is specified as zero, the file ownership is not changed.

PROTECTION
This argument supplies a protection code for the file. The protection code
is a 16-bit word that is composed of four 4-bit fields. Each field represents
a category of users: system, owner, group, and world. Each of the four
fields consists of four 1-bit indicators that specify the access denied each
category. If this argument is not specified, the protection code is not
changed.

STATUS
This argument receives the completion status of the PROTECT_FILE ~
procedure. An exception is raised if the procedure does not succeed and
this argument is omitted.

Package VAXELN__SERVICES A-151

PROTECT_FILE

RESULTANT_FILE_NAME
This argument is a varying string that receives the resultant file name of

the file.

Status KER_SUCCESS The procedure completed successfully.

Values ELN —xxx Any error status returned by the file service.

A-152 Package VAXELN_SERVICES

RAISE_PROCESS_EXCEPTION

The RAISE_PROCESS_EXCEPTION procedure raises the asynchronous
exception KER-PROCESS_ATTENTION in the specified process.

Procedure Declaration

procedure RAISE_PROCESS_EXCEPTION (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : in PROCESS_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the RAISE_PROCESS_
EXCEPTION procedure.

PROCESS
This argument specifies the process in which the exception is to be raised.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The PROCESS argument is not of type
PROCESS.

KER_BAD_VALUE The PROCESS argument is invalid or refers
, to a deleted process.

Package VAXELN_SERVICES A-153

RECEIVE

The RECEIVE procedure removes a message from the designated message
port and maps the text of the message into the receiver job’s virtual
address space.

Procedure Declaration

procedure RECEIVE (

STATUS : out COND_VALUE_TYPE; --optional

MESSAGE : out MESSAGE_TYPE;

DATA_ADDRESS : out ADDRESS;

MESSAGE_SIZE : out UNSIGNED_LONGWORD ;
SOURCE_PORT : dn PORT_TYPE;

DESTINATION_PORT : out PORT_TYPE; --optional

REPLY_PORT : Out PORT_TYPE) ; ~-optional

Arguments

STATUS
This argument receives the completion status of the RECEIVE procedure.

MESSAGE
This argument receives the MESSAGE value identifying the next message,
if there is one in the port.

DATA_ADDRESS
This argument receives an ADDRESS value that is the location of the text
of the received message. The value is valid only in the current job and
becomes invalid if the message is sent or deleted.

MESSAGE_SIZE
This argument is an integer that receives the size in bytes of the text of
the message.

SOURCE_PORT
This argument supplies the value of the port from which to retrieve the
message.

A-154 Package VAXELN_SERVICES

RECEIVE

SIZE
This argument is an integer that receives the size in bytes of the text of
the message.

DESTINATION_PORT
This argument receives the value of the destination port. Normally, this
is the same value supplied by the sender for the receiver's port. It is
available, and returns a different value only for the internal interface
between the kernel and the Network Service.

REPLY_PORT
This argument receives the value of the reply port. Note that this value is
not set properly by the RECEIVE procedure if the port is connected in a
circuit.

Status

Values

KER_SUCCESS The procedure completed successfully.

KER—EXPEDITED The procedure completed successfully,
and the received message is an expedited
message.

KER_CONNECT_PENDING A CONNECT_CIRCUIT procedure is pend-
ing, and the port cannot be used for another
purpose until the connection has completed.

KER_DISCONNECT The circuit was disconnected by the partner
process.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

KER_NO_MESSAGE No unreceived messages are currently in the
port.

KER_NO_OBJECT No free job object table entries are currently
available; there are a maximum of 1024

object table entries per job.

Package VAXELN_SERVICES A-155

RECEIVE

KER_NO_SUCH_PORT

KER_NO_VIRTUAL

A-156 Package VAXELN_SERVICES

No port with the specified value can be
found in the system or network, or the port
is not owned by the current job, as required
by the RECEIVE procedure.

No free virtual address space (to map the
message text) is currently available for the
job; the size of the job’s virtual address
space can be set using the System Builder
Utility.

RENAME _FILE

The RENAME_FILE procedure renames a disk file. To rename several
related files, use the DIRECTORY_LIST procedure to find them and the
RENAME_-FILE procedure to rename each one.

Procedure Declaration

procedure RENAME_FILE (
OLD_FILE_NAME : im FILE_NAME_TYPE;

NEW_FILE_NAME : in FILE_NAME_TYPE;

STATUS : out COND_VALUE_TYPE; --optional

RESULTANT_OLD_FILE_NAME : out FILE_NAME_TYPE; --optional

RESULTANT_NEW_FILE_NAME : out FILE_NAME_TYPE) ; --optional

Arguments

OLD_FILE_NAME
This argument is a varying string giving the current file specification. No
wildcard characters are permitted.

NEW_FILE_NAME
This argument is a varying string giving the new file specification. The
new volume name must be the same as the old one; that is, if the old
specification includes a volume name, the new one must either supply
the same volume name or no volume name. Any parts of the current
specification that are not supplied in this argument are obtained from the
OLD_FILE_NAME procedure.

STATUS
This argument receives the completion status of the RENAME_FILE
procedure.

RESULTANT_OLD_FILE_NAME
This argument is a varying string that receives the resultant file name of
the old file.

Package VAXELN_SERVICES A-157

RENAME_FILE

RESULTANT_NEW_FILE_NAME
This argument is a varying string that receives the resultant file name of

the new file.

Status KER_SUCCESS The procedure completed successfully.

Values ELN xxx Any error status returned by the file service.

A-158 Package VAXELN_SERVICES

The RESUME procedure resumes a suspended process; a resumed process
is ready to run, but not necessarily running. If the process was waiting
when it was suspended, the wait is repeated when it is resumed, as
if the WAIT_ANY or WAIT_ALL procedure were called again. Any
asynchronous exceptions that occurred during the suspension are raised
before the procedure is resumed, including the exception KER_QUIT_
SIGNAL that results from signaling the process itself.

Procedure Declaration

procedure RESUME (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : in PROCESS_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the RESUME procedure.

PROCESS
This argument supplies a value of type PROCESS that identifies the
process to be resumed.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_STATE A process specified to resume is not sus-
pended.

KER_BAD_TYPE The first argument is not of type PROCESS.

KER_BAD_VALUE The PROCESS argument is invalid or
identifies a process that no longer exists.

Package VAXELN_SERVICES A-159

The SEND procedure removes a message’s text variable from the sender’s
address space and then places the MESSAGE object that describes the text
in the destination’s message port.

Procedure Declaration

procedure SEND (

STATUS : out COND_VALUE_TYPE;

MESSAGE : in MESSAGE_TYPE;

MESSAGE_SIZE : in UNSIGNED_LONGWORD ; --optional

DESTINATION_PORT : in PORT_TYPE;

REPLY_PORT : dn PORT_TYPE; --optional

EXPEDITE : in BOOLEAN); --optional

Arguments

STATUS
This argument receives the completion status of the SEND procedure.

MESSAGE
This argument supplies the MESSAGE value identifying the message to
send. After the operation, any pointers to the message’s text variable are
no longer valid.

MESSAGE_SIZE
This argument is an integer that supplies the length in bytes of the
message text to be sent; if it is omitted, the size of the originally created
text variable is the default. If size is specified, its value must be equal to
or less than the text variable’s size.

DESTINATION_PORT
This argument supplies the PORT value identifying the destination port; if
the message is being sent through a circuit, this port is the sender’s half,
and the message arrives at the receiver's half.

A-160 Package VAXELN_SERVICES

REPLY_PORT
This argument identifies the reply port. If it is not specified, the kernel
supplies the value of the sender’s job port.

EXPEDITE
This argument supplies a Boolean value stating whether to expedite the
message. The default is FALSE. An expedited message bypasses the
normal flow-control mechanism and can be received even if the receiving
port already has its maximum number of messages. The message is
received by the port before any normal data messages. The size of an
expedited message must not exceed 16 bytes.

Status

Values

KER_SUCCESS

KER_BAD_MESSAGE~_SIZE

KER_BAD_TYPE

KER_BAD_VALUE

KER_CONNECT_PENDING

The procedure completed successfully.

The message text variable is too large to be
sent to the destination port; this can occur
for the following reasons:

© The message is being sent to a remote
port not connected in a circuit. The
maximum message text variable size that
can be sent as a datagram to a remote
port is the System Builder’s Network
segment Size minus 32. The default
segment size is 576, so the maximum
size remote datagram in the default case
is 544 bytes.

e The message is being expedited. The
maximum text variable size that can be
sent as an expedited message is 16 bytes.

The argument is not of type MESSAGE.

The MESSAGE or SIZE argument is invalid
or the MESSAGE argument refers to a
deleted message.

A CONNECT_CIRCUIT procedure is pend-
ing, and the port cannot be used for another
purpose until the connection has completed.

Package VAXELN SERVICES A-161

KER_COUNT_OVERFLOW

KER_DISCONNECT

KER_NO_ACCESS

KER_NO_SUCH—PORT

A-162 Package VAXELN_SERVICES

The destination port is full (with circuits,
raised if the FULL_ERROR parameter
was TRUE, in the ACCEPT_CIRCUIT or
CONNECT_CIRCUIT procedures).

The circuit was disconnected by the partner
process.

An argument specified is not accessible to
the calling program.

No port with the specified value can be
found in the system or network, or the port
is not owned by the current job as required
by the SEND procedure with circuits.

SET_JOB_PRIORITY

The SET_JOB_PRIORITY procedure sets the scheduling priority of the
current job. The initial priority for a job can be set by the System Builder
Utility as part of a program description; the default is 16.

Procedure Declaration

procedure SET_JOB_PRIORITY (
STATUS : out COND_VALUE_TYPE; --optional

PRIORITY : in JOB_PRIORITY_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SET_JOB_PRIORITY
procedure.

PRIORITY
This argument is an integer in the range of 0 to 31 that supplies the new
priority. Priority 0 is most urgent.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The PRIORITY argument is out of range.

Package VAXELN_SERVICES A-163

SET_PROCESS_PRIORITY

The SET_PROCESS_PRIORITY procedure sets the scheduling priority of
the specified process. The initial priority for the processes in a job can
be set by the System Builder Utility as part of a program description; the
default is 8. Note that Ada task priorities are computed as 15-P, where P
is the VAXELN process priority.

Procedure Declaration

procedure SET_PROCESS_PRIORITY (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : in PROCESS_TYPE;

PRIORITY : im PROCESS_PRIORITY_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SET_PROCESS_
PRIORITY procedure.

PROCESS
This argument supplies the PROCESS value identifying the process whose
priority is to be changed.

PRIORITY
This argument supplies the new priority as an integer in the range of 0 to
15. Priority 0 is the most urgent. See Section 7.3 for more information on
the ordering of priorities.

A-164 Package VAXELN_SERVICES

SET_PROCESS_PRIORITY

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The first argument is not of type PROCESS.

KER_BAD_VALUE Either the PROCESS argument is invalid or
refers to a deleted process, or the PRIORITY
argument is out of range.

Package VAXELN_SERVICES A-165

SET_PROTECTION

The SET_PROTECTION procedure protects a specified region of virtual
memory.

Procedure Declaration

procedure SET_PROTECTION (
STATUS : out COND_VALUE_TYPE; ~-optional

SIZE : in UNSIGNED_LONGWORD;

BASE : in ADDRESS;

CODE : im MEMORY_PROTECTION_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SET_PROTECTION
procedure.

SIZE
This argument supplies the number of bytes of memory to be protected.

BASE
This argument supplies the virtual base address of the memory to be
protected.

CODE
This argument specifies the desired access: READ-ONLY, READ_WRITE,
or NO_ACCESS.

A-166 Package VAXELN_SERVICES

SET_PROTECTION

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The BASE argument is not in the calling
job’s address space.

KER_NO_MEMORY No free pages of physical memory are
currently available.

Package VAXELN_SERVICES A-167

SET_TIME

The SET_TIME procedure sets a new system time.

Procedure Declaration

procedure SET_TIME (
STATUS : out COND_VALUE_TYPE; --optional

TIME : in DATE_TIME_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SET_TIME procedure.

TIME
This argument specifies an absolute system time.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The TIME value is invalid.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

A-168 Package VAXELN_SERVICES

SET_USER

The SET_USER procedure sets the user identity of the current process.

Procedure Declaration

procedure SET_USER (

STATUS : out COND_VALUE_TYPE; --optional

USER_NAME : in AUTH_STRING_TYPE;
UIC : in UIC_LONGWORD_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SET_USER' procedure.

USER_NAME
This argument supplies a string of up to 20 characters giving the user
name to be associated with the process.

UIC
This argument is an INTEGER value that supplies the UIC to be associated
with the process.

Status KER_SUCCESS The procedure completed successfully.

Values KER-NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-169

SIGNAL _AREA

The SIGNAL_AREA procedure allows the next waiting process to gain
explicit access to an area when a referencing process is finished with its
exclusive access to that area. It is an error to signal an area if the area is
not “locked” by any process.

Procedure Declaration

procedure SIGNAL_AREA

STATUS : out COND_VALUE_TYPE; --optional

AREA : in AREA_NAME_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SIGNAL_AREA
procedure. The default is unit 0.

AREA
This argument selects the area to signal.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The VALUE argument identifies an object
that cannot be signaled.

KER_BAD_VALUE The VALUE argument is invalid or refers to
a deleted object.

A-170 Package VAXELN_SERVICES

SIGNAL _DEVICE

The SIGNAL _DEVICE procedure signals a DEVICE object from an
interrupt service routine. It can be called only from an interrupt service
routine or a subroutine thereof.

Procedure Declaration

procedure SIGNAL_DEVICE (

STATUS : out COND_VALUE_TYPE; --optional

DEVICE_NUMBER : in DEVICE_NUMBER_TYPE); § --optional

Arguments

STATUS
This argument receives the completion status of the SIGNAL_DEVICE
procedure.

DEVICE_NUMBER
This argument supplies an integer in the range of 0 to 15, identifying the
element in a DEVICE array to be signaled.

Notes:

No exceptions are raised by the procedure, even if status is not requested
and an error occurs.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The INTEGER argument is out of range.

Package VAXELN_SERVICES A-171

SIGNAL _EVENT

The SIGNAL_EVENT procedure sets the state of an event to SIGNALED
and continues all waiting processes whose wait conditions can be satisfied.

Procedure Declaration

procedure SIGNAL_EVENT (
STATUS : out COND_VALUE_TYPE; --optional

EVENT : in EVENT_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SIGNAL_EVENT
procedure.

EVENT
This argument selects the event to signal.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The VALUE argument identifies an object
that cannot be signaled.

KER_BAD_VALUE The VALUE argument is invalid or refers to
a deleted object.

A-172 Package VAXELN_SERVICES

SIGNAL PROCESS

The SIGNAL_PROCESS procedure signals a process to quit.

The process must establish a handler for the exception KER_QUIT_
SIGNAL. If it does not handle the exception, the process is forced to exit.

Procedure Declaration

procedure SIGNAL_PROCESS (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : in PROCESS_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SIGNAL—PROCESS
procedure.

PROCESS
This argument identifies the process you are signalling to quit.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The VALUE argument identifies an object
that cannot be signaled.

KER_BAD_VALUE The VALUE argument is invalid or refers to
a deleted object.

KER_COUNT_OVERFLOW The SIGNAL procedure was called for a
semaphore already at its maximum count.

Package VAXELN_SERVICES A-173

SIGNAL _SEMAPHORE

The SIGNAL_SEMAPHOERE procedure increments and then tests the
semaphore count.

Procedure Declaration

procedure SIGNAL_SEMAPHORE (
STATUS : out COND_VALUE_TYPE; --optional

SEMAPHORE : in SEMAPHORE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SIGNAL—
SEMAPHORE procedure.

SEMAPHORE
This argument identifies the semaphore to be signalled.

Notes:

If the new count is greater than zero, the first waiting process in the
semaphore’s queue whose wait conditions can be satisfied is continued,
and the count is decremented. If no processes are waiting, or if none
of the waiting processes can continue, the count is not decremented. At
most, One process continues as a result of signaling a semaphore.

A-174 Package VAXELN_SERVICES

SIGNAL _SEMAPHORE

Status

Values

KER—SUCCESS

KER_BAD_TYPE

KER_BAD_VALUE

KER_COUNT_OVERFLOW

The procedure completed successfully.

The VALUE argument identifies an object
that cannot be signaled.

The VALUE argument is invalid or refers to
a deleted object.

The SIGNAL procedure was called for a
semaphore already at its maximum count.

Package VAXELN_SERVICES A-175

The SUSPEND procedure suspends the execution of a process. If the
process is currently waiting, as a result of a WAIT_ANY or WAIT_ALL
procedure, it is removed immediately from the “waiting” state and then
suspended. If the process is subsequently resumed, the wait is repeated.

Procedure Declaration

procedure SUSPEND (
STATUS : out COND_VALUE_TYPE; --optional

PROCESS : in PROCESS_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the SUSPEND procedure.

PROCESS
This argument supplies a value identifying the process to be suspended.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The first argument is not of type PROCESS_
TYPE.

KER_BAD_VALUE The PROCESS argument is invalid or refers
to a deleted process.

A-176 Package VAXELN_SERVICES

TRANSLATE_NAME

The TRANSLATE_NAME procedure returns a value identifying a named
port. The specified name string is used to search for a NAME object with
a matching string. If the NAME object is found, a value for the name’s
associated port is returned.

Procedure Declaration

procedure TRANSLATE_NAME (

STATUS : out COND_VALUE_TYPE; --optional

PORT : out PORT_TYPE;

PORT_NAME : in PORT_NAME_TYPE;

SCOPE : in NAME_SCOPE_TYPE) ;

Arguments

STATUS
This argument receives the completion status of the TRANSLATE_NAME
procedure.

PORT
This argument receives the value of the associated message port.

PORT_NAME
This argument supplies the name of the port. Name strings are not case
sensitive; uppercase and lowercase versions of the same name mean the
same thing.

SCOPE
This argument specifies which name table (local or universal) is to be
searched. Possible values are values of the predeclared enumerated type
NAME_SCOPE_TYPE:

e LOCAL specifies that only the local name table is searched.

e UNIVERSAL specifies that only the universal name table is searched.

e BOTH specifies that the local name table is searched first, followed by
the universal table. The search ends as soon as a match is found.

Package VAXELN_SERVICES A-177

TRANSLATE_NAME

Status KER_SUCCESS The procedure completed successfully.

Values KER_NO_ACCESS An argument specified is not accessible to
the calling program. |

KER_NO_SUCH—NAME The translation for the specified name string
cannot be found.

A-178 Package VAXELN_SERVICES

UNIBUS_MAP

The UNIBUS_MAP procedure is used in device driver programs to map
memory buffers for direct memory access by UNIBUS devices. The
specified buffer is mapped into the UNIBUS address space, and the
address of the first register is returned.

Procedure Declaration

procedure UNIBUS_MAP (

DEVICE : in DEVICE_TYPE; ’

BUFFER : in IO_BUFFER_TYPE;

BUFFER_SIZE : dn INTEGER;
UNIBUS_ADDRESS : out UNIBUS_ADDRESS_TYPE;

DATA_PATH : in INTEGER); --optional

Arguments

DEVICE
This argument identifies the device that will use the mapped memory.

BUFFER
This argument represents an I-O buffer.

BUFFER_SIZE
This argument is an integer supplying the buffer size.

UNIBUS_ADDRESS
This argument receives the 18-bit UNIBUS address of the mapped buffer.

DATA_PATH
This argument supplies an integer that specifies the UNIBUS adapter
datapath to use. The default is 0, specifying the unbuffered datapath.

Package VAXELN_SERVICES A-179

UNIBUS_MAP

Notes:

The procedure allocates the correct number of map registers by calling
the ALLOCATE_MAP procedure. It then converts the virtual address of
each page of the buffer to a physical address and stores and validates the
physical page numbers in the allocated map registers. If a datapath other
than 0 is specified, it is stored in the map registers as well. Although the
map registers are allocated by the UNIBUS_MAP procedure before use, a
nonzero datapath number is assumed to be unused by any other device.

Status None

Values

A-180 Package VAXELN_SERVICES

UNIBUS_UNMAP

The UNIBUS_UNMAP procedure is used in device driver programs to
unmap memory buffers previously mapped for direct memory access by a
UNIBUS device.

Procedure Declaration

o
r

procedure UNIBUS_UNMAP

DEVICE : in DEVICE_TYPE;

BUFFER : in IO_BUFFER_TYPE;

BUFFER_SIZE : in INTEGER;

UNIBUS_ADDRESS : in UNIBUS_ADDRESS_TYPE) ;

Arguments

DEVICE
This argument identifies the UNIBUS device that was using the mapped
memory.

BUFFER
This argument represents an I-O buffer.

BUFFER_SIZE
This argument is an integer supplying the buffer size.

UNIBUS_ADDRESS ©
This argument supplies the 18-bit UNIBUS address of the mapped buffer.

Notes:

The procedure deallocates the correct number of map registers by calling
the FREE_MAP procedure.

Status

Values

None

Package VAXELN_SERVICES A-181

UNLOAD_PROGRAM

The UNLOAD_PROGRAM procedure unloads a specified program from a
currently running VAXELN system.

Procedure Declaration

procedure UNLOAD_PROGRAM (
PROGRAM_NAME : in PROGRAM_NAME_TYPE;
STATUS : out COND_VALUE_TYPE) ; --optional

Arguments

PROGRAM_NAME
This argument supplies a varying string identifying the program to be
unloaded.

STATUS
This argument receives the completion status of the UNLOAD_
PROGRAM procedure.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_VALUE The program does not exist.

A-182 Package VAXELN_SERVICES

UNLOCK MUTEX

The UNLOCK—_MUTEX procedure unlocks a mutex.

Procedure Declaration

procedure UNLOCK_MUTEX (
STATUS : out COND_VALUE_TYPE; --optional

MUTEX : in out MUTEX_TYPE);

Arguments

STATUS
This argument receives the completion status of the UNLOCK—_MUTEX
procedure.

MUTEX
The argument is a variable of type MUTEX.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_TYPE The MUTEX argument specifies an object
that is not a mutex.

KER_BAD_VALUE The MUTEX argument specifies a mutex that
has been deleted.

Package VAXELN_SERVICES A-183

WAIT_ALL or WAIT_ANY

The WAIT_ALL and WAIT_ANY procedures are used to make a process
wait for one or more objects, including processes, ports, semaphores,
events, devices, and areas. The WAIT_ANY procedure allows the invoking
process to proceed if any of the wait conditions are satisfied; the procedure
WAIT_ALL requires that all the conditions be satisfied simultaneously.
The WAIT_ANY procedure identifies the object that satisfied the wait.

Procedure Declaration

Procedure ' WAIT_ ALL (

STATUS : out COND_VALUE_TYPE; --optional

RESULT : out INTEGER; --optional

TIME : in DATE_TIME_TYPE; --optional

VALUE1 : in SYSTEM_VALUE_TYPE; --optional

VALUE2 : in SYSTEM_VALUE_TYPE; --optional

VALUE3 : in SYSTEM_VALUE_TYPE; --optional

VALUE4 : in SYSTEM_VALUE_TYPE) ; --optional

procedure WAIT _ANY (
STATUS : out COND_VALUE_TYPE; --optional

RESULT : out INTEGER; --optional

TIME : in DATE_TIME_TYPE; --optional

VALUE1 : in SYSTEM_VALUE_TYPE; --optional

VALUE2 : in SYSTEM_VALUE_TYPE; --optional

VALUE3 : in SYSTEM_VALUE_TYPE; --optional

VALUE4 : in SYSTEM_VALUE_TYPE) ; --optional

Arguments

STATUS
This argument receives the completion status of the WAIT_ALL or WAIT_
ANY procedure.

RESULT
This argument receives the argument number of the object that satisfied
the wait. The value 0 means that the wait was satisfied by a timeout,
as specified by the TIME argument. Otherwise, the value placed in the
RESULT argument identifies for the WAIT_ANY procedure the object that
satisfied the wait, where 1 indicates the first object in the list, and so forth.

A-184 Package VAXELN_SERVICES

WAIT_ALL or WAIT_ANY

With the WAIT_ALL procedure, 0 means that the procedure timed out,
otherwise, the result is an integer in the range of 1 to 4, the exact value
being unpredictable. The value of the RESULT argument is undefined if
the procedures terminate unsuccessfully.

TIME
This argument supplies an absolute time or time interval. At the specified
absolute time, or after the specified interval, the wait is satisfied regardless
of the states of the specified objects.

VALUE1, VALUE2, VALUE3, VALUE4
These arguments supply one to four values of type PROCESS,
SEMAPHORE, EVENT, MUTEX, DEVICE, or AREA. If no values are
listed, the wait is satisfied by the timeout if one is specified, or imme-
diately if no timeout is specified. VALUE1 may also be a value of type
PORT. To specify that VALUE2, VALUE3, or VALUE4 is a PORT type,
you must specify the address of the PORT variable. If you are waiting on
fewer than four objects, omit VALUE4 first, then VALUE3, VALUE2, and
then VALUE1.

Notes:

The WAIT procedures return immediately if one of their objects is deleted.
The deletion is indicated by KER_BAD_VALUE. Both procedures also
return immediately if the necessary conditions were satisfied already
(before the call). Therefore, the elapsed time is only the time required to
perform a procedure call, and any specified TIMEOUT value is irrelevant.

Note that, if more than one wait condition satisfies the wait, the RESULT
argument does not have any predictable value.

The WAIT_ANY procedure waits for any one of a number of conditions to
occur, up to a specified time. It might be used in a device driver to wait
for a device interrupt or device timeout. In a multiport server, it might
wait for a message to arrive on any one of several ports.

If an asynchronous exception (such as KER-POWER_SIGNAL) is deliv-
ered to a waiting process, several actions are possible, depending on the
action of the exception handler:

e If the handler returns FALSE, the exception is “resignaled”, meaning
that the stack is searched for another handler; here the process may
not reenter the waiting state.

e If the handler returns TRUE (meaning “exception handled”), the
process reenters the waiting state.

Package VAXELN_SERVICES A-185

WAIT_ALL or WAIT_ANY

e The conditions for satisfying waits for the various objects and the
effects of waiting for each type of object (both procedures have the
same effect on their arguments) are as follows:

PROCESS objects

A wait for a process is satisfied when it terminates. Waiting for
a process causes no modification to the object, and all waiting
processes continue if their wait conditions are otherwise satisfied.

PORT objects

A wait for a port (including a port in a circuit) is satisfied when it
has a message in it. Waiting for a port causes no modification to the
object, and all waiting processes continue if their wait conditions
are otherwise satisfied.

SEMAPHORE objects

A wait for a semaphore is satisfied when the object is signaled.
Waiting for a semaphore causes the semaphore count to be decre-
mented if the wait is satisfied by signaling the semaphore; at most
one process continues as the result of signaling a semaphore.

EVENT objects

A wait for an event is satisfied when the object is signaled. Waiting
for an event causes no modification to the object, and all waiting
processes continue if their wait conditions are otherwise satisfied.

DEVICE objects

A wait for a DEVICE object is satisfied when the state of the object
is “signaled” (the result of the SIGNAL—DEVICE procedure, called
from an interrupt service routine). Waiting for a device causes the
DEVICE object to be cleared if the wait is satisfied by the DEVICE
object. Only one process continues as a result of the action of an
interrupt service routine.

AREA objects

A wait for an AREA object is satisfied when the object is signaled.
Waiting for an area implies that the waiting process has exclusive
access to the area until a complementary signal is sent. When a
referencing job’s main process is deleted, a check is made and if the
process being deleted is the owner process, the area is implicitly
signaled. If the process being deleted is the last referencer, the area
is deleted.

A-186 Package VAXELN_SERVICES

If the area is of zero length, the object represents a named in-
terjob binary semaphore, in which case the semaphore count is
decremented if the wait is satisfied by signaling the semaphore.

Status KER_SUCCESS The procedure completed successfully.

Values KER_BAD_COUNT The procedure call specified an incorrect
number of arguments.

KER_BAD_TYPE An argument in the object-list is not a type
that can be waited for.

KER_BAD_VALUE An argument in the object-list is invalid or
refers to a deleted object.

KER_NO_ACCESS An argument specified is not accessible to
the calling program.

Package VAXELN_SERVICES A-187

Appendix B

Debugger Command Summary

This appendix lists and describes the commands used by the VAXELN
Remote Debugger and summarizes the VAX/VMS Debugger commands
that can be used with the remote debugger. You can obtain further
information on these commands by using the VAX/VMS Debugger HELP
facility.

B.1 VAXELN Remote Debugger Commands

This section lists the syntax and gives a description of each VAXELN
Remote Debugger command. The commands are listed alphabetically.

CREATE JOB program_name [(argument[,...}])] [/LOAD=filespec /KERNEL_STACK[{=n] /PRIORITY=n]

Creates a job on the target system, running the designated program. The program name is
specified as a string expression. Separate any arguments to the program by commas in a
parenthesized list. There can be up to 16 arguments, all of which are strings.

If you specify the optional /LOAD qualifier, the program image is installed on the target
system prior to creating the job. The program image file is opened in the context of the
target system, not the context of the host system.

The /KERNEL—STACK qualifier is used to supply the size, in pages, of the kernel mode
stack for jobs running this program.

The /PRIORITY qualifier specifies the starting job priority for this program.

Debugger Command Summary B-1

CTRL/C

Aborts the operation in progress and enters the debugger’s system session. You can use
the system session to enter commands when the command session is not waiting for
debug input (if, for example, the job attached to the command session is in a running
state).

The prompt RDBG*> indicates that the debugger is in the system session.

CTRL/Y

Interrupts the debugger and returns you to the DCL prompt. Unlike the VAX/VMS
Debugger, the remote debugger does not allow you to type DEBUG to return to the
debugger prompt.

CTRL/Z

Causes orderly termination of the debugging session. Its effect is identical to the EXIT
command.

DELETE JOB [job_specifier] [/UNLOAD]

Deletes a job running on the target system. If you do not provide a job specifier parameter,
the job attached to the command session is deleted. (The master process is deleted, along
with all subprocesses and all data and kernel objects created by any of the processes in
the job.)

If the deleted job was attached to the command session, then that command session is
ended and the system session is entered.

By providing a fully qualified job specifier, that is, one that contains a process number, you
can delete a specific process from the specified job. For example, the command DELETE
JOB 5.2 will delete only process 2 in job 5.

B-2 Debugger Command Summary

Using the optional /UNLOAD qualifier removes the program image from the system
after the job is deleted. The /UNLOAD qualifier only unloads program images that were
loaded using the CREATE JOB/LOAD command or by the LOAD_PROGRAM service. If
there are any other jobs on the system that are running the same program, the program
image is not unloaded until all jobs referencing the image exit.

SET JOB /CURRENT [/IMAGE=filespec] [job_specifier]

Establishes a command session with the specified job.

If a job is not in a debug-wait state, you must use the SET JOB/HALT command before
you can begin a command session with the job. The SET JOB/CURRENT command
causes the symbol table information to be read from the executable image file that is
associated with the remote job and prepares to accept debugging commands.

If you do not supply the job specifier parameter, the command session begins with the last
job that requested debugger attention.

If the SET JOB/CURRENT command is issued during a command session, a new com-
mand session is begun; all breakpoints and tracepoints are cleared for every process in
the previous job and any debug context for that job is lost. Any processes in the original
job that were in a debug-wait state remain in such a state until a SET JOB/CONTINUE
command is issued or the process is deleted.

The optional /IMAGE qualifier allows you to provide a file specification indicating a local
copy of the image being run by the target job.

Be certain that the program specified by the /IMAGE qualifier is identical to the image
being run by the target job, otherwise, you will get erroneous results. If the /IMAGE
qualifier is not provided, the remote debugger uses the file specification provided by the
System Builder, or the file specification provided by the program loader utility.

SET JOB /CONTINUE [job_specifier [,job_specifier...]]

Causes the specified jobs that were in a debug-wait state to continue execution. A job can
be waiting for debugger attention because it either started under debugger control, raised
an exception, or was placed in a debug-wait state using the SET JOB/HALT command.

Debugger Command Summary B-3

If no job specifier is provided, the job attached to the current command session is
continued.

SET JOB/HALT [job_specifier [,job_specifier...]]

Causes the specified jobs to enter a debug-wait state. The jobs are left in a debug-wait
state until either a SET JOB/CONTINUE or a SET JOB/CURRENT or DELETE JOB
command is executed.

This command has the same effect that a CTRL/Y DEBUG operation has in the VAX/VMS
environment. For example, if the program associated with the current command session is
in an infinite loop, you can type CTRL/C (to get into the system session), followed by a
SET JOB/HALT to reestablish user control.

By using a fully qualified job specifier, you can cause a specific process in the job to
enter a debug-wait state. For example, the command SET JOB/HALT 5.2 causes process
number 2 in job 5 to enter a debug-wait state. By default, the master process is placed in
a debug-wait state.

SET JOB /PRIORITY=nn [job_specifier [,...]]

Allows you to dynamically change job priorities of jobs running on the target system. If
no job specifier is provided, the priority of the current job is set. The priority can have
any value between 0 (highest) and 31 (lowest). Initially, when the job is created, the job
priority is set to the value specified during the system build process, or, as specified to the
LOAD_PROGRAM service.

SET TINE [time_string]

Sets the system time on the remote node. The time string must be in the standard DCL
format for absolute times ([dd-mmm-yyyy[:]] [hh:mm:ss.cc]). If no time string is specified,
then the system time on the host system is used.

B-4 Debugger Command Summary

SHOW JOB [job_specifier [,job_specifier...]] {/BRIEF, /FULL}

Displays information about one or more jobs running on the target system. If you do not
enter a job specifier, information about the job associated with the command session is
displayed.

The /BRIEF qualifier is the default. It causes minimal information about the job to be
displayed.

The /FULL qualifier causes more detailed job information as well as information about
each process running in the job.

SHOW SYSTEN {/BRIEF, /FULL}

Displays system statistics for the target system. The /BRIEF qualifier (the default) displays
a list of jobs in the system and information about the status of each. The /FULL qualifier
displays this information and, additionally, displays information on system resources.

SHOW TINE

Displays the target system’s current date and time.

B.2 Debugger Command Summary

The following sections list the debugger commands that you can use with
the remote debugger in functional groupings, along with brief descriptions.
Use these groupings to orient yourself among the commands.

Debugger Command Summary B-5

B.2.1 Starting and Terminating a Debugging Session

EXIT, CTRL/Z, QUIT Returns control to DCL

ATTACH Passes control of your terminal from the current
process to another process (like $ ATTACH)

SPAWN Creates a subprocess. Lets you issue DCL com-
mands without interrupting your debugging context
(like $ SPAWN)

B.2.2 Controlling and Monitoring Program Execution

GO

STEP

(SET,SHOW) STEP

(SET,SHOW,CANCEL) BREAK
(SET,SHOW,CANCEL) TRACE
(SET,SHOW,CANCEL) WATCH
(SET,CANCEL) EXCEPTION BREAK
SHOW CALLS

SHOW STACK

CALL

B-6 Debugger Command Summary

Starts or resumes program execution

Executes the program up to the
next line, instruction, or specified
instruction

(Establishes, displays) the current step
parameters

(Sets, displays, cancels) breakpoints

(Sets, displays, cancels) tracepoints

(Sets, displays, cancels) watchpoints

(Sets, cancels) exception breakpoints

Identifies the currently active routine
calls

Gives additional information about
the currently active routine calls

Calls a routine

B.2.3 Examining and Manipulating Data

EXAMINE Displays the value of a variable or
the contents of a program location

DEPOSIT Changes the value of a variable or
the contents of a program location

EVALUATE Evaluates a language or address
expression

B.2.4 Controlling Type Selection and Symbolization

(SET,SHOW,CANCEL) RADIX (Establishes, displays, restores) the radix
for data entry and display

(SET,SHOW,CANCEL) TYPE (Establishes, displays, restores) the type
to be associated with untyped program
locations

SET MODE [NO]G_FLOAT Controls whether double precision
floating-point constants are interpreted
as G_FLOAT or D_FLOAT

SET MODE [NO]LINE Controls whether code locations are
displayed in terms of line numbers or
routine-name + byte offset

SET MODE [NO]SYMBOLIC Controls whether code locations are
displayed symbolically or in terms of
numeric addresses

SYMBOLIZE Converts a virtual address to a symbolic
address

Debugger Command Summary B-7

B.2.5 Controlling Symbol Lookup

SHOW SYMBOL Displays symbols in your program

(SET,SSHOW,CANCEL) MODULE “Sets” a module by loading its symbol
records into the debugger’s symbol table,
identifies, cancels a “set” module

(SET,SHOW,CANCEL) IMAGE “Sets” a shareable image by loading data
structures into the debugger’s symbol
table, identifies, cancels a “set” image

SET MODE [NO]DYNAMIC Controls whether or not modules are
“set” automatically when the debugger
interrupts execution

ALLOCATE Expands the debugger’s memory pool to
let you “set” more modules

(SET,SHOW,CANCEL) SCOPE (Establishes, displays, restores) the scope
for symbol lookup

B.2.6 Displaying Source Code

TYPE Displays lines of source code

EXAMINE/SOURCE Displays the source code at the
location specified by the address
expression

(SET,SHOW,CANCEL) SOURCE (Creates, displays, cancels) a source
directory search list

SEARCH Searches the source code for the
specified string

(SET,SHOW) SEARCH (Establishes, displays) the search pa-
rameters for the SEARCH command

(SET,SSHOW) MAX—_SOURCE-_FILES (Establishes, displays) the maximum
number of source files that may be
kept open at one time

(SET,SSHOW) MARGINS (Establishes, displays) the left and
right margin settings for displaying
source code

B-8 Debugger Command Summary

B.2.7 Screen Mode

SET MODE [NO]SCREEN
SET MODE [NO]SCROLL

DISPLAY
(SET,SHOW,CANCEL) DISPLAY
(SET,SHOW,CANCEL) WINDOW

SELECT

SHOW SELECT

SCROLL

SAVE

EXTRACT

EXPAND

MOVE

(SET,SSHOW) TERMINAL

CTRL/W,DISPLAY /REFRESH

Enables/disables screen mode

Controls whether an output display is
updated line by line or once per command

Modifies an existing display

(Creates, identifies, deletes) a display

(Creates, identifies, deletes) a window
definition

Selects a display for a display attribute

Identifies the displays selected for each of
the display attributes

Scrolls a display

Saves the current contents of a display into
another display

Saves a display or the current screen state
into a file

Expands or contracts a display

Moves a display across the screen

(Establishes, displays) the height and width
of the screen

Refreshes the screen

B.2.8 Source Editing

EDIT

(SET,SHOW) EDITOR

Invokes an editor during a debugging
session

(Establishes, identifies) the editor invoked
by the EDIT command

Debugger Command Summary B-9

B.2.9 Defining Symbols

DEFINE

DELETE (UNDEFINE)
(SET,SHOW) DEFINE

SHOW SYMBOL/DEFINED

Defines a symbol as an address, command,
or value

Deletes symbol definitions

(Establishes, displays) the definition
parameter (address, command, or value)
for the DEFINE command

Identifies symbols that have been defined

B.2.10 Keypad Mode

SET MODE [NO]KEYPAD
DEFINE/KEY
DELETE/KEY (UNDEFINE/KEY)
SET KEY
SHOW KEY

Enables/disables keypad mode

Creates key definitions

Deletes key definitions

Establishes the key definition state

Displays key definitions

B.2.11 Command Procedures and Log Files

DECLARE

(SET,SHOW) LOG

SET OUTPUT [NO]LOG

SET OUTPUT [NO]SCREEN_LOG

SET OUTPUT [NO]VERIFY

B-10 Debugger Command Summary

Defines parameters to be passed to
command procedures

(Specifies, identifies) the debugger log
file

Controls whether a debugging session
is logged

Controls whether, in screen mode,
the screen contents are logged as the
screen is updated

Controls whether debugger com-
mands are displayed as a command
procedure is executed

SHOW OUTPUT

(SET,SHOW) ATSIGN

@file-spec

Displays the current output options
established by the SET OUTPUT
command

(Establishes, displays) the default file
specification that the debugger uses to
search for command procedures

Executes a command procedure

B.2.12 Control Structures

IF

FOR

REPEAT

WHILE

EXITLOOP

Executes a list of commands condi-

tionally

Executes a list of commands repeti-
tively

Executes a list of commands repeti-
tively

Executes a list of commands condi-
tionally

Exits an enclosing WHILE, REPEAT,
or FOR loop

B.2.13 Debugging Special Cases

SET OUTPUT [NO]TERMINAL

(SET,SHOW) LANGUAGE

(SET,SHOW) EVENT_FACILITY

(SET,SHOW) TASK

Controls whether debugger output,
except for diagnostic messages, is
displayed or suppressed

(Establishes, displays) the current
language

(Establishes, identifies) the current
run-time facility for language-specific
events

Modifies the tasking environment,
displays task information

Debugger Command Summary B-11

Appendix C

VAXELN-Related Features Added to

VAX Ada

The following features are designed to serve both VAX Ada and VAXELN
Ada programmers. These features were added to VAX Ada after the
release of Version 1.0, and so are not documented in the Version 1.0
VAX Ada Language Reference Manual. They will be incorporated into the
Version 2.0 documentation.

C.1 Main Task Storage Allocation

VAX Ada (Version 1.1 and later) provides pragma MAIN_STORAGE to
allow a fixed-size stack and stack storage areas to be specified for a main
task (the task associated with a main program). The form of this pragma
is as follows:

pragma MAIN_STORAGE(
main_storage_option [, main_storage_option]) ;

main_storage_option :=

(WORKING_STORAGE =>] static_simple_expression
| (TOP_GUARD =>] static_simple_expression

The simple expression given for a main storage option must be a nonneg-
ative static expression of some integer type; its value specifies the number
of storage units (bytes) to be allocated for the working storage (stack)
area or guard pages. For both WORKING_STORAGE and TOP_GUARD,
the value specified is rounded up to an integral number of pages (where
one page is 512 bytes). If the value is zero for WORKING_STORAGE, a
default size is assumed; if the value is zero for TOP_GUARD, no guard
pages are provided.

VAXELN-Related Features Added to VAX Ada C-1

A pragma MAIN_STORAGE is only allowed in the outermost declarative
part of a subprogram that is a library unit; at most, one such pragma is
allowed in a subprogram. If it occurs in a subprogram other than a main
program, this pragma has no effect. .

Note that on the VAX/VMS system, use of this pragma causes the main
stack to be allocated in PO space (rather than in the default P1 space); on
VAXELN, the main stack is always allocated in PO space.

C.2 The Package SYSTEM

To allow a choice between VAX/VMS and VAXELN targets, VAX Ada
(Version 1.2 and later) defines the type SYSTEM.NAME with two enumer-
ation literals: VAX_VMS and VAXELN. The default value of
VAX_VMS for the constant SYSTEM.SYSTEM_NAME can be changed
with the pragma SYSTEM_NAME or the ACS SET PRAGMA command
(see Chapter 4 for more information).

C.3 VAX Ada Additions to Package SYSTEM

For VAX Ada Version 1.1 and later, the following operations and types are
declared.

C.3.1 Register Operations

VAX Ada provides the following operations for reading from and writing
to device registers.

function READ_REGISTER (SOURCE : UNSIGNED_BYTE)

return UNSIGNED_BYTE;

function READ_REGISTER (SOURCE : UNSIGNED_WORD)

return UNSIGNED_WORD;

function READ_REGISTER (SOURCE : UNSIGNED_LONGWORD)

return UNSIGNED_LONGWORD;

procedure WRITE_REGISTER(SOURCE : UNSIGNED_BYTE;

TARGET : out UNSIGNED_BYTE) ;

procedure WRITE_REGISTER(SOURCE : UNSIGNED_WORD;

TARGET : out UNSIGNED_WORD) ;
procedure WRITE_REGISTER(SOURCE : UNSIGNED_LONGWORD;

TARGET : out UNSIGNED_LONGWORD) ;

C-2 VAXELN-Related Features Added to VAX Ada

The READ_REGISTER functions return the value of a variable reference
(byte, word, or longword). The WRITE_REGISTER procedures load a
specified value or group of values into a specified target variable refer-
ence (byte, word, or longword). Each READ_REGISTER and WRITE
REGISTER operation is performed by a single machine instruction and is
not affected by any compiler optimizations. Use of these operations is the
only safe method for reading or writing a device register, and can also be
used to read or write a shared variable.

The READ_REGISTER and WRITE_REGISTER operations should always
be used, instead of a direct assignment, to read or write the fields in a
device register. This use is required because the VAX architecture does
not permit certain instructions (in particular, the variable-length bit-field
instructions) to be used to read or write device registers. Use of READ_
REGISTER or WRITE_REGISTER ensures that the compiler will generate
only the allowed instructions.

VAX Ada also declares the following operations to provide Ada equiv-
alents for the VAX Move From Process Register (MFPR) and Move To
Process Register (MTPR) instructions.

function MFPR (REG_NUMBER : INTEGER)

return UNSIGNED_LONGWORD;

procedure MTPR (REG_NUMBER : INTEGER,
SOURCE : UNSIGNED_LONGWORD) ;

Function MFPR returns the current contents of the specified VAX internal
processor register; procedure MTPR moves a specified value into a spec-
ified VAX internal processor register. In both cases, the calling program
must be running in kernel mode.

Note that processor registers are a privileged system resource. Changing
the contents of a processor register while a system is running may cause
an unhandled exception.

VAXELN-Related Features Added to VAX Ada C-3

C.3.2 Interlocked Instructions

VAX Ada declares the following type and operations to provide Ada
equivalents for the VAX Branch on Bit Set and Set Interlocked (BBSSJ),
Branch on Bit Clear and Clear Interlocked (BBCCI), and Add Aligned
Word Interlocked (ADAWI) instructions. These instructions interlock
memory accesses, and thus provide a means for synchronizing access to
shared memory across processors.

procedure CLEAR_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN) ;

procedure SET_INTERLOCKED (BIT ; in out BOOLEAN;
OLD_VALUE : out BOOLEAN) ;

type ALIGNED_SHORT_INTEGER is record

VALUE : SHORT_INTEGER := 0;

end record;

for ALIGNED_SHORT_INTEGER use

record

at mod 2;

end record;

procedure ADD_INTERLOCKED (ADDEND : in SHORT_INTEGER ;

AUGEND : in out ALIGNED_SHORT_INTEGER;

SIGN : out INTEGER) ;

The CLEAR_INTERLOCKED and SET_INTERLOCKED procedures clear
or set a single bit and return the previous value of the bit, using the VAX
BBCCI and BBSSI instructions.

The type ALIGNED_SHORT_INTEGER specifies a word-sized integer that
is word-aligned (the type STANDARD.SHORT_INTEGER is a word-sized
integer that is byte-aligned).

The ADD_INTERLOCKED procedure adds two signed-word integers
(ADDEND and AUGEND), and places the result in AUGEND using the
VAX ADAWTI instruction. SIGN is assigned the integer result -1 if the new
value of AUGEND is negative; 0 if AUGEND is zero; +1 if AUGEND is
positive.

C-4 VAXELN-Related Features Added to VAX Ada

C.3.3 Queue Instructions

VAX Ada declares the following types and operations to provide Ada
equivalents for the VAX queue instructions: Insert Queue into Queue at
Head, Interlocked (INSQHI); Insert Entry into Queue at Tail, Interlocked
(INSQTI); Remove Entry from Queue at Head, Interlocked (REMQHI); and
Remove Entry from Queue at Tail, Interlocked (REMQT]I).

type INSQ_STATUS is (OK_NOT_FIRST, FAIL_NO_LOCK, OK_FIRST) ;

type REMQ_STATUS is (OK_NOT_EMPTY, FAIL_NO_LOCK,

OK_EMPTY,

procedure INSQHI (ITEM =: in
HEADER : in

STATUS : out

procedure REMQHI (HEADER : in
ITEM : out

STATUS : out

procedure INSQTI (ITEM : in
HEADER : in

STATUS : out

procedure REMQTI (HEADER : in
ITEM : out

STATUS : out

FAIL_WAS_EMPTY) ;

ADDRESS ;

ADDRESS ;

INSQ_STATUS) ;

ADDRESS ;

ADDRESS ;

REMQ_STATUS) ;

ADDRESS ;

ADDRESS ;

INSQ_STATUS) ;

ADDRESS ;

ADDRESS ;

REMQ_STATUS) ;

The types INSQ_STATUS and REMQ_STATUS are defined to represent
the status results of the procedures for manipulating self-relative queues
(queues where the forward and backward links are defined as offsets from
one link to the next, rather than as virtual addresses).

The INSQHI, REMQHI, INSQTI, and REMQTI procedures perform queue
insertion and removal operations at the head and tail of a self-relative
queue. The address values of HEADER and ITEM must be quadword-
aligned. The enumeration value assigned to STATUS gives the state of the
queue after the operation has been executed.

Note that the VAX INSQHI, REMQHI, INSQTI, and REMOQTI instructions
have “entry” parameters, but because “entry” is a reserved word in Ada,
the “entry” parameter has been named ITEM in these procedures.

VAXELN-Related Features Added to VAX Ada C-5

INDEX

A

ACCEPT_CIRCUIT procedure ® 9-20, A-22
ACS ® 3-1, 3-3, 3-4, 3-5, 3-7, 3-10, 3-11

additional commands ® 3-15
compilation commands ® 3-19
file naming conventions for ® 3-5
library management commands ® 3-13
‘using ® 2-2

ADASELAB routine ® 3-29

ADA command ® 3-19
qualifiers for ® 3-20

ADAW I instruction

see ADD_INTERLOCKED procedure
ADD_INTERLOCKED procedure ® 1-6, C-4
Add Device Description menu ® 4-4, 4-18, 4-19
Add Program Description menu ® 4-4, 4-15 ©
Add Terminal Description menu ® 4-4, 4-22
ALIGNED_SHORT_INTEGER type ® 1-6, C-4
ALLOCATE_MAP procedure ® 4-16, 9-16, A-24
ALLOCATE_MEMORY procedure ® 9-19, A-26
ALLOCATE_PATH procedure ® 9-16, A-28
Analog-to-Digital converter ® 9-14
AREA object ® 9-2
Arrow keys ® 4-5, 4-6
ASCIll characters

specifying 8-bit for an executable system
terminal © 4-24

specifying 8-bit for a system console terminal ®
4-25

AST ® 1-4

AST_ENTRY attribute ® 1-2, 1-4, 3-8, 3-16, 8-10
AST_ENTRY pragma ® 1-4, 3-8, 3-16, 8-10
Asynchronous serial line controller ® 9-14
Asynchronous system traps

Asynchronous system traps (cont’d.)

see also AST_ENTRY pragma and AST_ENTRY
attribute

see AST

ATTACH command ® 3-16
Attributes

affecting application performance ® 7-19
AUTH_ADD_USER procedure ® 9-13, A-30
AUTH_MODIFY_USER procedure ® 9-13, A-33
AUTH_REMOVE_USER procedure ® 9-13, A-36
AUTH_SHOW_USER procedure ® 9-13, A-38
Authorization service

specifying for an executable system ® 4-14
Authorization service procedures ® 9-13
Authorization utility procedures ® 9-12
Autoload driver

specifying for an executable system ® 4-20
AXV_INITIALIZE procedure ® 9-14, A-40

AXV_READ procedure ® 9-14, A-42
AXV_WRITE procedure ® 9-14, A-45

BACK (EBUILD editing function) ® 4-6
Baud rate

specifying for a system terminal ® 4-23
BBCCI instruction

see CLEAR_INTERLOCKED procedure
BBSSI instruction

see SET_INTERLOCKED procedure
Bodies ® 3-2, 3-7, 3-11, 3-16

see also Library bodies
Booting systems ® 5-1

from disks ® 5-1
from tape ® 5-1

Booting systems (cont’d.)

using Ethernet ® 5-3

see also Downline loading
Boot method

see also Booting systems
required for copying system images ® 5-2
required for downline loading ® 5-7
specifying for an executable system ® 4-9

Bootstrap loader ® 5-3
configuring for downline loading ® 5-6
device addresses recognized by ® 5-4

Breakpoint ® 6-21
Building systems ® 4-1

from the System Builder Main menu ® 4-4 to
4-7

with the EBUILD command ® 4-7

Build System choice
from System Builder Main menu ® 4-4

C

CANCEL _EXIT_HANDLER procedure ® 9-17, A-46
CANCEL BREAK command ® 6-21
CANCEL WATCH command ® 6-23
CHECK command ® 3-7, 3-13
Circuits ® 7-5
CLEAR_EVENT procedure ® 9-4, A-47
CLEAR_INTERLOCKED procedure ® 1-6, C-4

Closure ® 3-6, 3-20, 3-25
Command session

interrupting and restarting ® 6-14
Compilation ® 3-1, 3-19

see also ADA, COMPILE, RECOMPILE
commands

as source of obsolete units ® 3-3
basic concepts behind ® 3-1
effect of pragma INLINE on ® 3-6
effect of unit dependences on ® 3-3, 3-5

order-of-compilation rules for ® 3-5
organization of files for efficient®3-4 | |
organizing mixed VAXELN and VAX Ada units

for ® 3-16
results of successful ® 3-6, 3-11
separate ® 3-2, 3-11
terminology related to ® 3-1

Compilation unit files ® 3-11
Compilation units ® 3-2

2-Index

Compilation units (cont’d.)

see also Program libraries
Ada rules for naming ® 3-4
compilation closure of ® 3-6
current and obsolete ® 3-3
dependences affected by context clauses ® 3-3
dependences affected by SYSTEM.SYSTEM_—

NAME ® 3-3
dependences among ® 3-3, 3-6
difference from source files ® 3-4
effects of dependences on compiling ® 3-5
execution closure of ® 3-7
kinds of ® 3-2
obsolete ® 3-4, 3-6, 3-9
source file naming conventions for ® 3-4
target-related dependences among ® 3-7, 3-8

COMPILE command ® 3-7, 3-19, 3-20
qualifiers for ® 3-20

CONNECT_CIRCUIT procedure ® 9-7, 9-20, A-48
Connect time

specifying for an executable system ® 4-12
Console input-output ® 6-15
Console terminal

describing from the System Builder ® 4-24
device description for ® 4-19
specifying for an executable system ® 4-8

Context clauses
and closure of a set of compilation units ® 3-7
and obsolete units ® 3-3
and order of compilation ® 3-5
effect on compilation unit dependences ® 3-3

CONTROL —C_INTERCEPTION package ® 8-10
Control characters

specifying interpretation of for a system
console terminal® 4-25

specifying interpretation of for a system
terminal ® 4-24

Controllers
determining register and vector addresses for ®

4-20
Control status register address ® 4-20
Copied source files ® 3-11
COPY_FILE procedure ® 9-18, A-51
COPY FOREIGN command ® 3-13
Copying bootable images ® 5-2
COPYSYS command procedure ® 5-2
COPY UNIT command ® 3-7, 3-11, 3-13

CREATE_AREA procedure ® 9-2, A-53
CREATE_DEVICE procedure ® 4-16, 4-22, 9-3,

A-55
CREATE_DIRECTORY procedure ® 9-18, A-59
CREATE_EVENT procedure ® 9-4, A-61
CREATE_JOB procedure ® 8-2, A-62
CREATE_MESSAGE procedure ® 9-5, 9-20, A-64

CREATE_MUTEX procedure ® 9-5, A-66
CREATE_NAME procedure ® 9-6, 9-20, A-67
CREATE_PORT procedure ® 9-7, 9-20, A-69
CREATE_PROCESS procedure ® 8-3, 9-8, A-71
CREATE_SEMAPHORE procedure ® 9-9, A-73
CREATE JOB command ® B- 1
CREATE LIBRARY command ® 3-12, 3-13

changing the value of SYSTEM.SYSTEM_
NAME with ® 3-8

CREATE SUBLIBRARY command ® 3-12, 3-13,
3-17

changing the value of SYSTEM.SYSTEM_—

NAME with ® 3-8
CTRL/C

in the remote debugger ® B- 1
CTRL/E ® 4-5

used with System Builder menus ® 4-6
CTRL/H ® 4-5

used with System Builder menus ® 4-6
CTRL/R ® 4-5

used with System Builder menus ® 4-6
CTRL/U ® 4-5

used with System Builder menus ® 4-6
CTRL/Y

in the remote debugger ® B- 1
in VAXELN environment ® 8-10

CTRL/Z
in the remote debugger ® B- 1

Currency ® 3-3, 3-6, 3-13, 3-20, 3-25
CURRENT_PROCESS procedure ® 9-8, A-75

Data file ® 2-3
Datalink addresses ® 5-4
DDCMP

specifying for an executable system ® 4-24
DEBUG/REMOTE command ® 6-11

see also Remote debugger
use of for downline loading ® 5-9

Debugger

see also Remote debugger
building into a VAXELN system ® 4-7
specifying for an individual program ® 4-16

Debugging

see also Remote debugger
downline loading during ® 5-9

Debug-wait state ® 6-3
DECLARE_EXIT_HANDLER procedure ® 9-17,

A-76
DELETE (EBUILD editing function) © 4-6
DELETE_AREA procedure ® 9-2, A-77
DELETE_DEVICE procedure ® 9-3, A-78
DELETE_EVENT procedure ® 9-4, A-79
DELETE_FILE procedure ® 9-18, A-80
DELETE_.MESSAGE procedure ® 9-5, 9-20, A-81

DELETE_MUTEX procedure ® 9-5, A-82
DELETE_NAME procedure ® 9-6, 9-20, A-83
DELETE_PORT procedure ® 9-20, A-84
DELETE_PROCESS procedure ® A-85
DELETE_SEMAPHORE procedure ® 9-9, A-86
DELETE JOB command ® 6-17, B-1
DELETE LIBRARY command ® 3-14, 3-28
DELETE SUBLIBRARY command ® 3-14
DELETE UNIT command ® 3-14
Dependences —

see also Compilation, Compilation units,
SYSTEM_NAME constant

compilation unit ® 3-3
Development environment ® 1-2

Device controller name
specifying for an executable system ® 4-19

Device driver
specifying autoload of for an executable system

® 4-20
Device drivers

execution mode for ® 4-16
Device driver utility procedures ® 9-13

Device interrupt priority

specifying for an executable system ® 4-20
Device names

external ® 7-7
DEVICE object ® 9-3
Device register address

determining ® 4-20
specifying for an executable system ® 4-19

index-3

Device registers

predefined operations for ® 1-5, C-2
reading from ® C-2
writing to ® C-2

Devices
datalink default addresses for ® 5-4
describing from the System Builder ® 4-18
equivalent SYSGEN names for OBUS ® 4-21
equivalent SYSGEN names for UNIBUS ® 4-21

parallel ® 7-6
real-time ® 7-6
serial ® 7-6
supported ® 7-6

Device vector address
determining ® 4-20
specifying from the System Builder ® 4-19

DIGITAL Data Communications Message Protocol

see DDCMP
DIRECT_IO package ® 7-1
DIRECT_MIXED_IO package ® 7-1
Direct memory mapping access ® 9-15
DIRECTORY_CLOSE procedure ® 9-18, A-87

DIRECTORY_LIST procedure ® 9-18, A-88
DIRECTORY_OPEN procedure ® 9-18, A-90
DIRECTORY command ® 3-14
Directory name

external files ® 7-8
DISABLE_ASYNCH_EXCEPTION procedure ®

9-16, A-92
DISABLE_INTERRUPT procedure ® 9-19, A-93
DISABLE_SWITCH procedure ® 9-21, A-94

DISCONNECT_CIRCUIT procedure ® 9-7, 9-20,
A-95

Disk/volume names
specifying for an executable system ® 4-9

Disk files © 7-2
Disks

booting systems from ® 5-1
copying system images to ® 5-2

Disk utility procedures ® 9-17
DISMOUNT_TAPE_VOLUME procedure ® 9-18,

A-96
DISMOUNT_VOLUME procedure ® 9-17, A-97
DLV_INITIALIZE procedure ® 9-15, A-98
DLV_READ_BLOCK procedure ® 9-15, A-100
DLV_READ_STRING procedure ® 9-15, A-101
DLV_WRITE_STRING procedure ® 9-15, A-102

4-Index

DO (EBUILD editing function) ® 4-5, 4-6, 4-7, 4-15,
4-18, 4-22

Downline loading ® 2-4, 5-3
adding target to host database during ® 5-5
configuring a host for ® 5-4

configuring bootstrap loader for ® 5-6
determining target hardware address for ® 5-5
enabling event logging during reload ® 5-9
preliminary steps for ® 5-4
procedure for ® 5-7
reloading using ® 5-8, 5-10

using the remote debugger for ® 5-9
DRV_INITIALIZE procedure ® 9-15, A-103
DRV_READ procedure ® 9-15, A-105
DRV_WRITE procedure ® 9-15, A-106
Dynamic program space

specifying for an executable system ® 4-11

EBUILD command ® 4-1, 4-7
qualifiers for ® 4-2
using to generate System Builder menus ® 4-4

Edit Console Characteristics menu ® 4-4, 4-25
Edit Device Descriptions menu ® 4-4, 4-6, 4-18
Editing

System Builder menus ® 4-5
Edit Network Node Characteristics menu ® 4-4,

4-13
Edit Program Descriptions menu ® 4-4, 4-6, 4-15
Edit System Characteristics menu ® 4-4, 4-7
Edit Terminal Descriptions menu ® 4-4, 4-6, 4-22
ENABLE_ASYNCH_EXCEPTION procedure ® 9-16,

A-107

ENABLE_INTERRUPT procedure ® 9-19, A-108
ENABLE_SWITCH procedure ® 9-21, A-109

ENTER_KERNEL CONTEXT procedure ® 9-21,
A-111 ,

ENTER FOREIGN command ® 3-14
ENTER UNIT command ® 3-7, 3-11, 3-14, 3-28
Environment task ® 6-4

see Main task
Error messages

including text for during link ® 3-26
Escape sequences

specifying recognition of for a system console
terminal® 4-25

Escape sequences (cont'd.)

specifying recognition of for a system terminal ®

4-24
Ethernet

determining hardware address when downline

loading ® 5-5
determining network device for ® 4-13
using to downline load executable systems ®

5-3
Event logging

during downline loading ® 5-9
EVENT object ® 9-3
Exception handling procedures ® 9-16
EXIT (EBUILD editing function) ® 4-6
EXIT_PROCESS procedure ® 9-8, A-112

EXIT command ® 3-16
Exit utility procedures ® 9-17
EXPORT command ® 3-7, 3-27

changing the value of SYSTEM.SYSTEM_
NAME with ® 3-8

package elaboration with ® 3-28
qualifiers for © 3-28

Exporting Ada units ® 3-27

see also EXPORT command
from more than one program library ® 3-28

External file attributes ® 7-9
External files

directory name ® 7-8
type ® 7-8

External node names ® 7-6
EXTRACT SOURCE command ® 3-14

F

F15 key ® 4-6
F16 key ® 4-6

Failure
recovering from machine ® 5-10

FDL (File Definition Language)

attributes for Ada files ® 7-13
primary and secondary attributes ® 7-10
rules for using ® 7-9

tuning external files © 7-19

use with form string in VAXELN Ada ® 1-5
FDL attributes

table of © 7-10

File ® 7-2

File (cont'd.)

see indexed file
see nonsequential file

see relative file
see sequential file
commonly used FDL attributes

table of ® 7-13
disk ® 7-2
external attributes ® 7-9
external node names ® 7-6
FDL attributes ® 7-10
FDL attributes for tuning external ® 7-19
network ® 7-4
rules for specifying FDL attributes for external ®

7-9

standard ® 7-8
tape ® 7-3
type ® 7-8
VAXELN_CIRCUIT attribute ® 7-12

File access ® 7-2
File Access Listener

specifying for an executable system ® 4-13,

4-15
File Definition Language

see FDL
Files

default name of system image ® 4-7
naming conventions for Ada source ® 3-4
program library ® 3-10

File service procedures ® 9-17
File utility procedures ® 9-17
Fixed-size stacks ® 1-5
FORM parameter ® 1-5

see also Form string
Form string ® 1-2

see FORM parameter
implementation of ® 1-5

FREE_MAP procedure ® 4-16, 9-16, A-113
FREE_MEMORY procedure ® 9-19, A-115
FREE_PATH procedure ® 9-16, A-116

Generic instantiations ® 3-2
obsolete ® 3-6
source file naming conventions for ® 3-5

Generic units ® 3-2

Generic units (cont’d.)

effect of compilation on ® 3-6
GET_STATUS_TEXT procedure ® 9-16
GET_TIME procedure ® A-118

GET_USER procedure ® 9-12, A-119
Guaranteed image list

specifying for an executable system ® 4-9

HELP (EBUILD editing function) ® 4-6

HELP command ® 3-13, 3-16, 3-19, 3-24
Host machine

see also Downline loading
configuring for downline loading ® 5-4
connecting to target during downline loading ®

5-5
downline loading from ® 5-7
network node database for ® 5-5
preparing for downline loading ® 5-4
reloading systems from ® 5-10

Host systems
program development on ® 1-2

INDEXED_IO package ® 1-2, 1-5
INDEXED_MIXED_IO package ® 1-2, 1-5

Indexed file ® 1-5, 7-2
INIT_TAPE_VOLUME procedure ® 9-18, A-122
INIT_VOLUME procedure ® 9-17, A-124
INITIALIZATION_DONE procedure ® 4-16, 9-21,

A-121
Initialization procedure (VAXELN)

specifying for an individual program ® 4-16
INLINE pragma

effect on compilation ® 3-6
Input-output

differences from VAX Ada ® 1-2

Input-output packages
indexed ® 3-8, 3-16
relative © 3-8, 3-16

Input-output region size
specifying for an executable system ® 4-11

INSQ_STATUS type ® 1-6, C-5
INSQHI procedure ® 1-6, C-5
INSQTI procedure ® 1-6, C-5

Instantiations, generic ® 3-2

obsolete ® 3-6
source file naming conventions for ® 3-5

Instruction emulation
specifying for an executable system ® 4-8

Interlocked instructions
predefined type and operations for ® 1-6, C-4

Internal processor registers
predefined operations for ® 1-5

Interrupt priority level procedures ® 9-18
Interrupt stack size

specifying for an executable system ® 4-11
Interrupt time interval

specifying for an executable system ® 4-12

J

Job ® 6-3
changing priority of ® 6-20
controlling execution of ® 6-19
creating a® 6-16
deleting a® 6-17
monitoring a® 6-15
selecting for debugging ® 6-18

JOB_PORT procedure ® 9-7, 9-20, A-129
Job port message limit

specifying for an individual program ® 4-17
Job priority

specifying for an executable system ® 4-17

Jobs (VAXELN)

see also Programs
affected by Ada task waits ® 8-10
building into a system ® 4-1
determining number of page tables for in a

system ® 4-10
pool blocks required for ® 4-10
relationship to Ada tasks ® 8-2, 8-8

specifying debugger for ® 4-16
specifying port message limit for ® 4-17

specifying priority of © 4-17
starting automatically when system is booted ®

4-16
Job specifier ® 6-4

KER_POWER_SIGNAL exception ® 4-18

Kernel debugger
invoking ® 6-23

Kernel stack
specifying for an individual program ® 4-17

KWV_INITIALIZE procedure ® 9-14, A-130
KWV_READ procedure ® 9-14, A-133
KWV_WRITE procedure ® 9-14, A-135

L

Libraries

see Program libraries, Sublibraries
Library bodies ® 3-2, 3-13, 3-14

Ada rules for naming ® 3-4

and execution closure ® 3-7
and unit dependences ® 3-3, 3-6
effects of compilation order on ® 3-6
obsolete ® 3-3
order-of-compilation rules for ® 3-5

source file naming conventions for ® 3-5
Library index files ® 3-10
Library manager

see ACS
Library specifications ® 3-2, 3-5

Ada rules for naming ® 3-4
and obsolete units ® 3-3
dependences on ® 3-3, 3-6, 3-11
effect of pragma INLINE on ® 3-6
order-of-compilation rules for ® 3-5

organizing source files for ® 3-4

source file naming conventions for ® 3-4
Library units © 3-2

see also Library specifications, Generic

instantiations, Subprograms
Ada rules for naming ® 3-4

compilation unit dependences among ® 3-3
elaboration of ® 3-26, 3-28
exporting ® 3-27

use of MAIN_STORAGE pragma in ® C-2
LINK command (ACS) ® 3-7, 3-23, 3-26

changing the value of SYSTEM.SYSTEM_
NAME with ® 3-8 .

DCL command file created by ® 3-26

LINK command (ACS) (cont’d.)

explanation of ® 3-25
qualifiers for © 3-24

LINK command (DCL) ® 3-24, 3-30
Linking ® 3-1, 3-23

see also LINK command
Ada and non-Ada code ® 3-27
against other libraries or options files © 3-26
against specific run-time libraries ® 3-24
basic concepts behind ® 3-1, 3-3, 3-7
effect of incomplete units on ® 3-6
effect of obsolete units on ® 3-3
in target-specific environment ® 3-8
mixed VAXELN and VAX Ada units ® 3-16,

3-23
program library files associated with ® 3-10
terminology related to ® 3-1, 3-3, 3-6, 3-7
units containing AST_ENTRY pragma or

attribute © 1-4
units containing TIME_SLICE pragma ® 1-4

LOAD_PROGRAM procedure ® 9-21, A-137
LOAD_UNIBUS_MAP procedure ® 9-16, A-140

LOCK_MUTEX procedure ® 9-6, A-142

MAIN_STORAGE pragma ® 1-5, 8-6
specification for ® C-1

Main menu ® 4-5, 4-6, 4-7, 4-15, 4-18, 4-22
choices from System Builder ® 4-4

Main program ® 3-2
relationship to Ada tasks ® 8-1, 8-2
use of MAIN_STORAGE pragma in® C-2

Main task ® 8-1

see also Main program

see also Tasks
controlling size of stack for ® 8-6, C-1
implementation of # 8-3, 8-5
specifying storage for ® 8-6

stack overflow in ® 8-8
task stack for ® 8-5
termination of ® 8-1

Maintenance Operation Monitor

process created during downline loading ® 5-7
use of during system reload ® 5-9

index-7

Memory

specifying maximum amount for an executable
system ® 4-11

MEMORY_SIZE procedure ® 9-19, A-143
Memory allocation procedures ® 9-19
MERGE command ® 3-11, 3-14

MESSAGE object ® 9-4
Message transmission procedures ® 9-19
MFPR function ® 1-5, 4-16, C-3

Mode
specifying execution for an individual program ®

4-16
Modem

specifying for an executable system ® 4-24

MOUNT_TAPE_VOLUME procedure ® 9-18, A-
144

MOUNT_VOLUME procedure ® 9-17, A-146
MTPR procedure ® 1-5, 4-16, C-3
MUTEX object ® 9-5

Network node name
specifying during downline loading ® 5-5, 5-8
specifying for an executable system ® 4-13

Network segment size
specifying for an executable system ® 4-15

Network service
reloading a machine having ® 5-8
required for downline loading ® 5-3
specifying for an executable system ® 4-13

NEWBOOT (VAXELN command procedure) ® 5-6,
5-8

Node triggerable ® 5-8
specifying for an executable system ® 4-14

Nonsequential file © 7-2

NAME
see also SYSTEM_NAME

NAME object ® 9-6
NAME type

enumeration literals for ® C-2
NCP

using during downline loading ® 5-7

using in downline loading ® 5-4
using in host configuration during downline

loading ® 5-4
using to enable event logging ® 5-9
using to prepare host for downline loading ® 5-5
using to trigger a target machine ® 5-8

Network Control Program

see NCP
Network device

specifying for an executabin system ® 4-13

Network files ® 7-4
Network name server

specifying for an executable system ® 4-13
Network node address

specifying during downline loading ® 5- 5
specifying during dowriling loading ® 5-8
specifying for an exec utable system ® 4-14

Network Node Characte’ stics menu ® 5-8

8-Index

Object
area ® 9-2
device ® 9-3
event ® 9-3
message ® 9-4
mutex @ 9-5
name ® 9-6
port ® 9-6
process ® 9-7
semaphore ® 9-8

Object file ® 3-10
Obsolete units ® 3-3, 3-4, 3-6, 3-9, 3-20
Output display

specifying for a system console terminal ® 4-25
specifying for a system terminal ® 4-23

Overflow

task stack ® 8-5, 8-6, 8-8

P

Package

Statically allocated variable © 6-23
Packages ® 3-2, 7-1

elaboration of library ® 3-28, 8-1

Page table slots
specifying for an executable system ® 4-10

Parallel line interface ® 9-15
Parity

specifying for a system terminal ® 4-23

Pass all (cont’d.)

specifying for a system console terminal ® 4-25
specifying for a system terminal ® 4-24

PF1 key ®4-5, 4-6, 4-7, 4-15, 4-18, 4-22

PF2 key ® 4-5, 4-6
PF3 key ® 4-5, 4-6
PF4 key ® 4-5, 4-6
PHYSICAL ADDRESS function ® A-148
Physical memory size

specifying for an executable system ® 4-12

Pool size
specifying for an executable system ® 4-10

PORT object ® 9-6
Ports

specifying for an executable system ® 4-10
Power failure

recovering from ® 5-10
Powerfailure exception

specifying for an individual program ® 4-18
Printers ® 7-4
PRIORITY pragma ® 8-9
Procedures

see by individual name or Appendix A

Process ® 6-4
Processes (VAXELN)

determining number of page tables for in a
system ® 4-10

determining priorities for ® 4-17
master

relationship to Ada tasks ® 8-3
relationship to Ada tasks ® 8-3, 8-5, 8-9

PROCESS object ® 9-7
Process priority ® 8-9

see also Tasks

ignored for VAXELN Ada tasks ® 8-9
specifying for an individual program ® 4-17

Process registers
predefined operations for ® C-3

PROGRAM_ARGUMENT_COUNT function ® A-150
PROGRAM_ARGUMENT_COUNT procedure ® 9-20
PROGRAM_ARGUMENT function ® A-149
PROGRAM_ARGUMENT procedure ® 9-20
Program argument procedures ® 9-20
Program description ® 6-10
Program development

ACS commands for ® 3-13, 3-15, 3-19, 3-23,
3-27

Program development (cont'd.)

basic concepts behind Ada ® 3-1
in mixed-target environment ® 3-16
modular ® 3-2
terminology related to ® 3-1
top-down ® 3-11

Program execution
controlling ® 6-20

Program libraries ® 3-10

ACS commands for managing ® 3-13
commands for setting up ® 3-12

contents of ® 3-10
currency of ® 3-6
files associated with ® 3-10
names of units in ® 3-4
sharing units among ® 3-11
updating ® 3-6, 3-11
value of SYSTEM.SYSTEM_NAME for ® 3-8

Program library manager

see ACS
Program loader procedures ® 9-20
Programs

see also Jobs (VAXELN)

see also Main program
building in a system ® 4-4
compiling ® 3-19
describing to System Builder ® 4-15
determining stack size for kernel mode ® 4-17
difference between VAX Ada and VAXELN

Ada ® 8-2
estimating storage for tasking ® 8-7
implementation of VAXELN Ada ® 8-2
initializing before running ® 4-16
linking ® 3-23

mixing Ada with non-Ada ® 8-8
recompiling ® 3-19

recovering after a power failure ® 4-18
specifying execution mode for ® 4-16
specifying image names of to System Builder ®

4-16
specifying job priority for ® 4-17

specifying process priority for ® 4-17
task switching in ® 8-8
termination of ® 8-2

Program sublibraries

see Sublibraries
Program units ® 3-2

PROTECT_FILE procedure ® 9-18, A-151

Q22 bus ® 4-19
QBUS

common device names for ® 4-2 1
determining register and vector addresses for ®

4-20
Ethernet network device for ® 4-13
specifying register address for ® 4-19

Queue instructions
predefined types and operations for ® 1-6, C-5

QUIT (EBUILD editing function) ® 4-6

RAISE_EXCEPTION procedure ® 9-16

RAISE_PROCESS_EXCEPTION procedure ® 9-8,
9-16, A-153

RDBGSINPUT ® 6-10
RDBGSOUTPUT ® 6-10
READ_REGISTER function ® 1-5, C-2

READ_REGISTER functions ® C-3
Real-time clock ® 9-14
RECEIVE procedure ® 9-5, 9-7, 9-20, A-154
Recompilation ® 3-4, 3-19

implicit © 3-9
program library files associated with ® 3-11

RECOMPILE command ® 3-4, 3-7, 3-19, 3-20

qualifiers for ® 3-20
REENTER command ® 3-15
RELATIVE_IO package ® 1-2, 1-5
RELATIVE_MIXED_IO package ® 1-2, 1-5

Relative file® 1-5, 7-2
Reloading booted systems ® 5-8, 5-10

see also Triggering, Triggers
Remote Debugger

and Ada tasking ® 6-24
command session ® 6-4

compiling and Sinking considerations ® 6-5
debugging environment ® 6-2
downline loading with ® 6-12
exiting ® 6-13
interrupting and reinvoking ® 6-14
invoking ® 6-11

sample session ® 6-27 to 6-30, 6-33

10-Index

Remote Debugger (cont’d.)

setting up the environment ® 6-6

support for VAX/VMS Debugger features ® 6-2
system session ® 6-5 |
using ® 2-5

naming of modules and pathnames with ® 3-5
receiving error message text with ® 3-27
using to detect stack overflow ® 8-8
using to downline load VAXELN systems ® 5-3,

5-7, 5-9
using to estimate task storage ® 8-7
using to measure tasking performance ® 8-1 1

REMQ_STATUS type ® 1-6, C-5
REMOHI procedure ® 1-6, C-5
REMOQOTI procedure ® 1-6, C-5
RENAME_FILE procedure ® 9-18, A-157
RESUME procedure ® 9-8, A-159
Running a VAXELN system ® 5-1

see also Booting systems, Downline loading
Running programs

specifying from the System Builder ® 4-16
Run-time library (VAXELN Ada)

and Ada tasks ® 8-2, 8-3, 8-5, 8-9
linking against ® 3-24

Secondary units ® 3-2

see also Library bodies, Subunits
SEMAPHORE object ® 9-8
SEND procedure ® 9-5, 9-20, A-160
Separate compilation ® 3-2, 3-11
SEQUENTIAL _IO package ® 7-1
SEQUENTIAL—MIXED_IO package ® 7-1
Sequential file ® 7-1
SET_INTERLOCKED procedure ® 1-6, C-4
SET_JOB_PRIORITY procedure ® 9-21, A-163

SET_PROCESS_PRIORITY procedure ® 8-9, 9-8,
A-164

SET_PROTECTION procedure ® A-166
SET_TIME procedure ® 9-21, A-168

SET_USER procedure ® 9-12, A-169
SET BREAK command ® 6-21
SET JOB/CONTINUE command ® 6-20, B-1

SET JOB/CURRENT command ® B-1
SET JOB/HALT command ® 6-19, B-1
SET JOB/PRIORITY command ® B- 1

SET LIBRARY command ® 3-13, 3-15
SET PRAGMA command ® 3-8, 3-9, 3-15, C-2
SET SOURCE command ® 3-20
SET TIME command ® B- 1

Shareable images
building ® 3-27
linking Ada units against ® 3-26

SHOW BREAK command ® 6-21
SHOW JOB command ® 6-15, B-1
SHOW LIBRARY command ® 3-8, 3-13, 3-15
SHOW PROGRAM command ® 3-7, 3-8, 3-15
SHOW SOURCE command ® 3-20
SHOW SYSTEM command ® 6-15, B- 1
SHOW TASK command ® 6-26
SHOW TIME command ® B- 1
SHOW WATCH command ® 6-23

SIGNAL _AREA procedure ® 9-2, A-170
SIGNAL DEVICE procedure ® 9-3, A-17 1
SIGNAL_EVENT procedure ® 9-4, A-172
SIGNAL __PROCESS procedure ® A-173
SIGNAL SEMAPHORE procedure ® 9-9, A-174
SPAWN command ® 3-16
Specifications
Ada ® 3-2, 3-7, 3-11, 3-16

see also Library specifications
VAX/VMS file © 3-10

Specifications, library

source file naming conventions for ® 3-4
Stacks

see also Overflow
fixed size ® 1-5
kernel ® 4-17

main task ® 8-3, 8-5, 8-6, C-2
system interrupt ® 4-11
task ® 8-2, 8-3, 8-5, 8-7
user ® 4-17

Stack storage ® 6-25
specifying ® 1-5

Standard files ® 7-8
Storage

see also Tasks
see Memory

allocated for task activation ® 8-5
allocated for task object ® 8-4
allocated for tasks ® 8-3
controlling for main task ® 8-6
deallocated for task object ® 8-4

Storage (cont’d.)

default task stack size ® 8-5
estimating for Ada tasking programs ® 8-7

STORAGE_ERROR exception
raised for task stack overflow ® 8-6, 8-8

STORAGE _SIZE representation clause ® 8-6, 8-7
String descriptors ® 9-12
Strings

fixed-length ® 9-10
using with VAXELN services ® 9-10
varying-length ® 9-10

Sublibraries ® 3-10
see also Program libraries
ACS commands for managing ® 3-13
commands for setting up ® 3-12
contents of ® 3-10
determining the parents of ® 3-13
difference from program libraries ® 3-11
files associated with ® 3-10
scope conventions for ® 3-11
updating ® 3-6, 3-11
using to program for more than one target ®

3-16
value of SYSTEM.SYSTEM_NAME for ® 3-8

Subprocess ® 6-3
Subprograms ® 3-2, 8-2

use of MAIN_STORAGE pragma in ® C-2
Subunits ® 3-2, 3-11

Ada rules for naming ® 3-4
and execution closure ® 3-7
as secondary units ® 3-2
compilation unit dependences among ® 3-3
effects of compilation order on ® 3-6
obsolete ® 3-3
order-of-compilation rules for ® 3-5
source file naming conventions for ® 3-5

SUSPEND procedure ® 9-8, A-176
Synchronization

Ada task ® 8-2

SYSGEN CONFIGURE command
for determining device register address, device

vector address ® 4-20
SYSGEN Utility © 4-20
SYSTEM.NAME

see NAME type
SYSTEM_NAME constant

and AST_ENTRY pragma and attribute ® 1-4

Index—11

SYSTEM_NAME constant (cont’d.)

and pragma TIME_SLICE ® 1-4
default value of ® C-2
dependence of input-output packages on ® 1-5

possible values of ® 1-5

SYSTEM_NAME constant (in package SYSTEM) ®

3-7

default value of ® 3-8
determining value of ® 3-8

effect on compilation unit dependences ® 3-3
effect on exporting ® 3-29

effect on exporting Ada units ® 3-28
effect on linking ® 3-24
permanently setting the value of ® 3-8
temporarily setting the value of ® 3-8

SYSTEM_NAME pragma ® 3-8, C-2

System Builder editing functions ® 4-5
System Builder menus ® 4-4

see also individual menus by name
System Characteristics menu ® 8-4

System Control Block ® 4-19
System image

specifying for an executable system ® 4-7

System name

see SYSTEM_NAME
SYSTEM package

additions to for VAX Ada V1.1 and later ® C-2
default value of SYSTEM_NAME constant in ®

C-2
implicit recompilation of ® 3-9
NAME enumeration literals in © C-2

Systems (VAXELN)

booting and running ® 5-1
boot method required for downline loading ®

5-7
building ® 4-1, 4-7

building with debugger ® 4-7
determining characteristics of ® 4-7

network service requirements for ® 5-3

obtaining map listing for ® 4-3
providing instruction emulation for ® 4-8

recovering after a machine failure ® 5-10
specifying authorization service for ® 4-14
specifying autoload of device driver for ® 4-20
specifying boot method for ® 4-9

see also Booting systems
specifying circuit connect time for ® 4-12

12-Index

Systems (VAXELN) (cont'd.)

specifying console terminal control character
recognition for ® 4-25

specifying console terminal echo for ® 4-25
specifying console terminal for ® 4-8
specifying console terminal output display for ®

4-25

specifying console terminal recognition of
escape sequences for ® 4-25

specifying console terminal representation of
ASCII characters for ® 4-25

specifying device controller name for ® 4-19

specifying device interrupt priority for ® 4-20
specifying device register address for ® 4-19
specifying device vector address for ® 4-19
specifying disk and volume names for ® 4-9
specifying dynamic program space for ® 4-11

specifying File Access Listener for ® 4-13
specifying interpretation of control characters

for ® 4-24
specifying interrupt service communication

regions for ® 4-11
specifying interrupt stack size for ® 4-11

specifying interrupt time interval for ® 4-12

specifying message ports for ® 4-10

specifying message protocol for ® 4-24

specifying network device for ® 4-13

specifying network name server for ® 4-13

specifying network node address for ® 4-14

specifying network node name for ® 4-13
specifying network segment size for ® 4-15

specifying network service for ® 4-13
specifying object pool size for ® 4-10
specifying page table slots for ® 4-10
specifying physical memory for ® 4-12

specifying shareable images for ® 4-9
specifying terminal baud rate for ® 4-23

specifying terminal controller type for ® 4-23
specifying terminal echo for ® 4-24
specifying terminal output display for ® 4-23

specifying terminal parity checking for ® 4-23

specifying terminal recognition of escape

sequences for® 4-24

specifying terminal representation of ASCII
characters for® 4-24

specifying terminals for ® 4-23
specifying triggering for ® 4-14

Systems (VAXELN)

specifying triggering for (cont’d.)

see also Triggering
specifying use of modem for ® 4-24
specifying user identification code for ® 4-14
specifying virtual memory size for ® 4-11

System session
exiting © 6-14

T

Tape files © 7-3
Tapes

booting systems from ® 5-1
copying system images to ® 5-2

Tape utility procedures ® 9-18
Target machine

see also Downline loading

see also SYSTEM_NAME constant
adding to host node database during downline

loading ® 5-5
booting systems onto ® 5-1

configuring bootstrap loader for ® 5-6
connecting to host during downline loading ®

5-5
downline loading ® 5-3, 5-7
installing communication hardware on ® 5-4
preparing for downline loading ® 5-4
reloading ® 5-8, 5-10
triggering ® 5-8

Target systems ® 1-2
Task

in the VAXELN environment ® 6-3
TASK_STORAGE pragma ® 8-6, 8-7
Task control block ® 8-4

see also Tasks
estimating size of ® 8-4

Tasking

see also Tasks

differences from VAX Ada ® 8-10
implementation of VAXELN Ada ® 8-1

monitoring performance ® 6-25
Task priority ® 8-8, 8-9
Tasks

activation of ® 8-2
as program units ® 3-2
as VAXELN processes ® 8-3

Tasks (cont'd.)

calling VAXELN kernel services and utility
routines from® 8-10

controlling size of stacks for ® 8-7
controlling size of stack top guard area for ® 8-7
default priority for ® 8-9
default stack allocation for ® 8-5
default top guard area for ® 8-5
default working area for ® 8-5

effect of VAXELN objects on ® 8-10
estimating size of task control block for ® 8-4
estimating size of working area for ® 8-7
implementation of ® 8-1, 8-2
improving responsiveness of ® 8-11
maximum number of ® 8-4

measuring and tuning performance of ® 8-10
range of priorities for ® 4-17, 8-9
relationship to main program ® 8- 1

relationship to VAXELN processes ® 8-2, 8-9
separation compilation of ® 3-2
stack allocation for ® 8-3
stack overflow in ® 8-8
storage allocation for ® 8-3
switching among ® 8-8
synchronization of ® 8-2
task control blocks for ® 8-4
task stacks for ® 8-5
top guard area for ® 8-5, C-1
VAX/VMS and VAXELN equivalents for ® 8-2
working storage for ® 8-5, C-1

Terminal controller type
specifying for an executable system ® 4-23

Terminal echo

specifying for a system console terminal ® 4-25
specifying for a system terminal ® 4-24

Terminal name

specifying for an executable system ® 4-23
Terminals ® 7-4

describing for an executable system ® 4-22
TEXT_IO package ® 7-1

TIME_SLICE pragma ® 1-2, 1-4, 3-8, 3-10, 3-16,
8-9

Time-representation procedures ® 9-21

Time slicing ® 1-4, 8-11

see also TIME_SLICE pragma
Top guard area

see Tasks

Index-13

Tracepoint ® 6-21
TRANSLATE_NAME procedure ® 9-6, 9-20, A-

177
Triggering

during downline loading ® 5-9
during system reloading ® 5-8

Triggers (downline load) © 5-8
specifying for an executable system ® 4-14

UNIBUS
common device names for ® 4-21
determining register and vector addresses for ®

4-20
Ethernet network device for ® 4-13
vector address for ® 4-19

UNIBUS_MAP procedure ® 9-16, A-179
UNIBUS_UNMAP procedure ® 9-16, A-181
Units, compilation ® 3-2

Ada rules for naming ® 3-4
compilation closure of ® 3-6
dependences affected by context clauses ® 3-3
dependences affected by SYSTEM.SYSTEM_

NAME ® 3-3
dependences among ® 3-3, 3-6
difference from source files ® 3-4
effects of dependences on compiling ® 3-5
execution closure of ® 3-7
obsolete ® 3-4, 3-6, 3-9
source file naming conventions for ® 3-4
target-related dependences among ® 3-7, 3-8

Units, generic ® 3-2
Units, library ® 3-2

Ada rules for naming ® 3-4

compilation unit dependences among ® 3-3

elaboration of ® 3-26, 3-28
exporting ® 3-27

Units, obsolete © 3-3, 3-4, 3-6, 3-9, 3-20
Units, secondary ® 3-2

UNLOAD_PROGRAM procedure ® 9-21, A-182
UNLOCK_MUTEX procedure ® 9-6, A-183
UNWIND procedure ® 9-16
USE_ERROR

raised for FDL errors in FORM parameter ® 7-9
User stack

specifying the size of for an executable system
©4-17

14-Index

V

Variable .
statically allocated ® 6-23

VAX Ada

accounting for differences from VAXELN Ada ®
3-7

VAXELN Ada differences from ® 1-2, 8-2, 8-9,
8-10, 8-11

VAX Ada compiler ® 2-2
VAXELN_CIRCUIT attribute ® 7-12

VAXELN_SERVICES package ® 3-8, 3-16, 4-10,
9-1

VAXELN circuits ® 7-5
VAXELN objects ® 9-1
VAXELN Remote Debugger

see Remote Debugger
VAXELN services ® 9-12 to 9-21

calling ® 9-1
calling from tasks ® 8-10

VAXELN system
monitoring ® 6-15

VAXELN System Builder ® 2-3

see System Builder
VAXELN system characteristics ® 6-7

VAXELN types ® 9-9
VAX/VMS services ® 9-22
VERIFY command ® 3-15
Virtual memory size

effect on tasking ® 8-4
specifying for an executable system ® 4-11

Virtual-to-physical-address procedure ® 9-2 1

WAIT_ALL procedure ® 9-2, 9-3, 9-4, 9-7, 9-9,

A-184
WAIT_ANY procedure ® 9-2, 9-3, 9-4, 9-7, 9-9,

A-184 |
Watchpoint ® 6-21
Working storage area

see Tasks

WRITE_REGISTER procedure ® 1-5, C-2

WRITE_REGISTER procedures ® C-3

	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	Part I - Introduction to VAXELN Ada
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	Part II - Program Development
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	Part III - Run-Time Related Topics
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	9-1
	9-2
	9-3
	9-4
	9-5
	9-6
	9-7
	9-8
	9-9
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	9-20
	9-21
	9-22
	9-23
	A-1
	A-2
	A-3
	A-4
	A-5
	A-6
	A-7
	A-8
	A-9
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	A-21
	A-22
	A-23
	A-24
	A-25
	A-26
	A-27
	A-28
	A-29
	A-30
	A-31
	A-32
	A-33
	A-34
	A-35
	A-36
	A-37
	A-38
	A-39
	A-40
	A-41
	A-42
	A-43
	A-44
	A-45
	A-46
	A-47
	A-48
	A-49
	A-50
	A-51
	A-52
	A-53
	A-54
	A-55
	A-56
	A-57
	A-58
	A-59
	A-60
	A-61
	A-62
	A-63
	A-64
	A-65
	A-66
	A-67
	A-68
	A-69
	A-70
	A-71
	A-72
	A-73
	A-74
	A-75
	A-76
	A-77
	A-78
	A-79
	A-80
	A-81
	A-82
	A-83
	A-84
	A-85
	A-86
	A-87
	A-88
	A-89
	A-90
	A-91
	A-92
	A-93
	A-94
	A-95
	A-96
	A-97
	A-98
	A-99
	A-100
	A-101
	A-102
	A-103
	A-104
	A-105
	A-106
	A-107
	A-108
	A-109
	A-110
	A-111
	A-112
	A-113
	A-114
	A-115
	A-116
	A-117
	A-118
	A-119
	A-120
	A-121
	A-122
	A-123
	A-124
	A-125
	A-126
	A-127
	A-128
	A-129
	A-130
	A-131
	A-132
	A-133
	A-134
	A-135
	A-136
	A-137
	A-138
	A-139
	A-140
	A-141
	A-142
	A-143
	A-144
	A-145
	A-146
	A-147
	A-148
	A-149
	A-150
	A-151
	A-152
	A-153
	A-154
	A-155
	A-156
	A-157
	A-158
	A-159
	A-160
	A-161
	A-162
	A-163
	A-164
	A-165
	A-166
	A-167
	A-168
	A-169
	A-170
	A-171
	A-172
	A-173
	A-174
	A-175
	A-176
	A-177
	A-178
	A-179
	A-180
	A-181
	A-182
	A-183
	A-184
	A-185
	A-186
	A-187
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	B-10
	B-11
	C-1
	C-2
	C-3
	C-4
	C-5
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Index-9
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14

