KAV30

Programmer’s Reference Information

Part Number: AA-PEYCA-TE

KAV30
Programmer’s Reference Information

Order Number: AA-PEYCA-TE

July 1991

This guide describes the KAV30 software and describes how to develop
real-time applications for the KAV30.

Revision Information: This is a new guide.

Operating System and Version: VMS Version 5.0 or higher,
VAXELN Version 4.2 or higher

Software Version: VAXELN KAV Toolkit Extensions for VMS
Version 1.0

Digital Equipment Corporation
Maynard, Massachusetts

July 1991

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1991.
All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: CVAX, DEC, DECnet,
DECwindows, Digital, rtVAX, ULTRIX, VAX, VAX Ada, VAX C, VAX FORTRAN, VAXELN,
VAXELN Pascal, VMS, and the DIGITAL logo.

68000 and Motorola are registered trademarks of Motorola, Inc. Intel is a trademark of Intel
Corporation.

This document was prepared using VAX DOCUMENT, Version 2.0.

Preface .

Contents

1 KAV30 Overview

1.1

1.2
1.3
1.3.1
1.3.2

2 KAV30 Functionality

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.10.1
2.10.2
2.1
2.12
213

.. iX
KAV30Hardwareciitienn i 1—1
VAXELN ToolKkit. . ..o oo i e e e i e e e e e e e e e e 1-2
KAV30 Softwarecoviiii i i 1-4

Naming Conventionsoiiiinennnn. 14

KAV30 System Servicescouuiiiiinnnnnnnnnn 1-5
VMEDbus Master Functionality 2—1
VMEDbus Slave Functionality 2-2
VSB Master Functionality 2-3
VMEDbus Arbiter Functionality 2-3
VSB Arbiter Functionality 2-4
VMEbus Deadlockcciiiiiin... 2-4
VMEDbus Utility Bus Signals 2-4
DAL BusTimeouts.ciiiiiiiiinnnnan. 2-5
Parity Errors e e 2-6
VMEDbus Interrupt Handler Functionality 2-6

Handling Vectored Interrupts 2-6

Handling Autovectored Interrupts 2-8
VMEDbus Interrupt Requester Functionality................. 2-10
VSB Interrupt Handler Functionality 2-12
KAV30 Interrupt Priority i 2-12

3 KAV30 Kernel

3.1
3.1.1
3.1.2
3.2
3.3
3.4
3.5
3.6
3.6.1
3.6.2
3.6.3
3.7
3.8

Asynchronous System Trap Processing
AST Deliveryovvi i e e e e
AST Data Structures

Timers
Calendar/clock
FIFO Buffers .

Battery Backed-Up RAM
Scatter-Gather Map
Outgoing SGM i
Incoming SGM
Byte Swapping During SGM Operations

Communicating

with Another KAV30

KAV30 Error Logging Support,

4 KAV30 System Services

KAVSBUS BITCLRottt e e e
KAVSBUS BITSETttt eeeeeeeaeaen
KAVSBUS READttt e e
KAVSBUS WRITEt
KAVSCHECK BATTERYttt

KAV$CLR_AST
KAV$DEF_AST

......................................

KAVSFIFO_READ i

KAV$FIFO_WR

ITE ...

KAVSGATHER_KAV_ERRORLOGcociinrnenn..

KAVS$IN_MAP
KAVS$INT_VME
KAVS$LIFO_WR

ITE ...

KAVSNOTIFY_FIFOttt e e e
KAVSOUT_MAP.ottt e e e e e eae e
KAVSQUE_AST . ..ot e

KAV$RTC. . ..

KAVSRW_BBRAMottt

KAVS$SET_AST

KAVSSET CLOCKottt et e e

KAV$TIMERS
KAV$UNMAP

.......................................

3-1
3-2
3-3
3-5
3-6
3-9
3-10
3-10
3-10
3-14
3-18
3-21
3-24

4-10
4-16
4-23
4-30
4-34
4-37
4-41

4-51
4-58
4-67
4-74
4-78
4-84
4-96
4-100
4-116
4-122
4-127
4-131
4-144

KAVSVME_SETUPttt

5 Developing KAV30 Applications

5.1
5.1.1
5.1.1.1

51.1.2

5.1.2
5.2
5.21
52.11

5.2.2
523
524
5.2.4.1
5.3
5.4
5.4.1
55
5.6
5.7
5.8

Design Guidelines
Accessing the VMEbus and VSB Address Space
Directly Accessing the VMEbus and VSB Address
OPaCE .« .ot e e
Using the KAV$BUS_READ and KAV$BUS_WRITE
Services e
Writing Asynchronous System Trap Routines
Coding Guidelinescoiiiiiiiiinnennnnnnnn.
VAX Ada ...t e
Coding Asynchronous System Trap Routines in
VAX Adao
VAX C o e
VAX FORTRAN e e e
VAXELN Pascal
Coding AST Routines in VAXELN Pascal
Compiling and Linking KAV30 Applications
Building KAV30 System Images.
Configuring the VMEbus and VSB.....................
Loading and Running KAV30 System Images
Debugging KAV30 Applicationscoviinua..
Developing SCSI Class Driverso oo,
Building a SCSI Class Driver into an Application

A Initial KAV30 Configuration

A
A2

Hardware Configuration
Software Settings i e

B Example Programs—Interprocessor Communication

B.1
B.2

FIFO Producero
FIFO Consumeroi ittt ettt e e

5-2

5-3
5-3
5-3

5-7
5-8
5-9
5-9
5-12
5-13
5-14
5-20
5-20
5-22
5-23

A1
A-2

B-1
B-5

C Example Programs—MVME335 Device Driver

CA1 Device Driver e
C2 Interrupt Service Routine

D Example Programs—VDAD Device Driver

DA Device Drivero
D.2 Definitions File
D.3 Test Programttt
D.4 Build File oo e
D.5 DataFile e

Glossary
Index
Figures
1-1 Host and Run-Time System Software
2—1 Converting VMEbus Interrupt Vectors into VAX Interrupt
VECtors . . oo e e
2-2 Constructing an 8-bit VMEbus Interrupt Vector
3-1 ASBFieldsc i i
3-2 AST Queue.t e e
3-3 Calendar/clock Address Mapcovuu...
34 KAV30 as Producer and Consumer
3-5 KAV30 as Neither Producer or Consumer
3-6 Outgoing SGM Conversion to VMEbus or VSB A32
Addresses . . .o vv it e
37 Outgoing SGM Conversion to VMEbus or VSB A24
Addresses. . ..o oot e e
3-8 Outgoing SGM Conversion to VMEbus or VSB A16
Addresses. . ..ot e e
3-9 A32 Incoming VMEbus Address
3-10 A24 Incoming VMEbus Address
3-11 Incoming SGM Conversion of A32 VMEbus Addresses
3-12 Incoming SGM Conversion of A24 VMEbus Addresses
3-13 Little-Endian Storage Format

vi

Cc-16

D1
D-17
D-21
D-25
D-25

2-7
2-11
3-4
3-4
3-8
3-11
3-12

3-13

3-14

3-15
3-16
3-17
3-17
3-18
3-19

3-14 Big-Endian Storage Format 3-19

3-15 Mode 0 Byte Swapping. 3-20
3-16 Mode 2 Byte Swapping. 3-22
3-17 Mode 3 Byte Swapping. 3-23
3-18 Sample Master Error Log Entry 3-25
3-19 Sample Slave Error LogEntry 3-25
4-1 Programming the Real-Time Clock A 4-101
5-1 A Remote Debugging Configuration 5-21
5-2 A Local Debugging Configuration. 5-22
5-3 Sample Add Device Description Menu 5-24
Tables
1-1 KAV30 System Servicesouiiiiiiinnnennnn.. 1-5
2-1 Interrupt Source Codes 2-7
2-2 System Control Block Layout......................... 2-8
2-3 SCB Vector Offsets for Autovectored ISRs 2-10
2-4 VMEbus Address Lines A<3..1>....................... 2-11
2-5 KAV30 Interrupt Pins 2-13
2-6 KAV30 Interrupt Priorities 2-14
31 Internal Master Error Code 3-27
3-2 Internal Slave Error Code 3-28
5-1 Compiling and Linking Commands 5-12

vii

Preface

This guide describes the KAV30 software and describes how to develop real-
time applications for the KAV30.

Who Should Read This Guide

This guide is for programmers who want to develop real-time applications
for the KAV30. This guide assumes that the reader is familiar with the
VAXELN™ Toolkit and that the reader can program in one of the following
computer languages:

VAX Ada™

VAX C™

VAX FORTRAN™
VAXELN Pascal™

Structure of This Guide

This guide is divided into five chapters, four appendixes, a glossary, and an
index:

Chapter 1 gives an overview of the KAV30 hardware and software.
Chapter 2 describes the KAV30 bus functionality and related topics.

Chapter 3 describes how the KAV30 hardware relates to the KAV30
software.

Chapter 4 describes the KAV30 system services.
Chapter 5 describes how to develop applications for the KAV30.

Appendix A describes the initial KAV30 hardware and software
configuration.

Appendix B lists source code which demonstrates interprocessor
communication between two KAV30s.

Appendix C lists source code which implements an MVME 335 device
driver.

Appendix D lists source code which implements a VDAD device driver.

The glossary defines some important terms used in this guide.

Associated Documents

For more information, see the following documents:

KAV30 Software Cover Letter (AV-PEYFA-TE)
KAV30 Software Product Description (AE-PFB5A-TE)
KAV30 System Support Addendum (AE-PFB6A-TE)

KAV30 Software Installation and System Testing Information
(AA-PEYAA-TE)

KAV30 Hardware Cover Letter (AV-PFSSA-TE)
KAV30 Hardware Installation and User’s Information (AA-PFM6A-TE)

Related Documents

For additional information, see the following documents:

VMEbus Specification, Revision C.1 (PRINTEX, Phoenix, AZ, USA)

The VME Subsystem Bus (VSB) Specification, Revision B.1 (Motorola®,
Phoenix, AZ, USA)

rtVAX 300 Hardware User’s Guide

rtVAX 300 Programmer’s Guide

Introduction to VAXELN

VAXELN rtVAX 300 Supplement

VAXELN Ada User’s Guide

VAXELN Application Design Guide

VAXELN C Runtime Library Reference Manual
VAXELN C Reference Manual

VAXELN Development Utilities Guide
VAXELN FORTRAN Runtime Library Reference Manual
VAXELN Guide to DECwindows

e VAXELN Installation Guide

. VAXELN Internals Manual

e VAXELN Master Index and Glossary

e VAXELN Messages Manual

e VAXELN Pascal Language Reference Manual

e VAXELN Pascal Runtime Library Reference Manual
o VAXELN Pocket Reference

* VAXELN Release Notes

* VAXELN Runtime Facilities Guide

For detailed information about VAXELN, Digital Equipment Corporation
recommends the VAXELN Internals and Data Structures manual. The
VAXELN Internals and Data Structures manual describes the internal
data structures and operations of the VAXELN Kernel and its associated
subsystems.

For information about the VAX architecture, Digital recommends the following
documents:

e Henry M. Levy and Richard H. Eckhouse, Jr., Computer Programming
and Architecture: The VAX, Second Edition, Bedford, (Massachusetts): The
Digital Press, 1989

¢ Timothy E. Leonard, editor, The VAX Architecture Reference Manual,
Bedford (Massachusetts): The Digital Press, 1987

Conventions

The following conventions are used in this guide:

Convention Description

Note A note contains information that is of special
importance to the reader.

xi

Convention

Description

UPPERCASE

italic type
boldface type
Monospace Type

[1

n.nn

nn nnn.nnn nn

<n..n>

Words in uppercase indicate the following:

e VMS™ reserved words and identifiers

¢ VAXELN reserved words and identifiers
* KAV30 reserved words and identifiers

* VAX signal lines

¢ VMEDbus signal lines

Italic type emphasizes important information and
indicates the complete titles of manuals.

Boldface type indicates the first occurrence of terms
defined either in text, in the glossary, or both.

Monospace type indicates system displays and user
input.

In system service format descriptions, brackets
enclose optional system service arguments.

Brackets are also used in the syntax of a directory
name in a VMS file specification.

Horizontal ellipsis points indicate that you repeat
the preceding item one or more times.

Vertical ellipsis points in a figure or example
indicate that not all the information the system
displays is shown.

A period in numerals signals the decimal point
indicator. For example, 1.75 equals one and three-
fourths.

A space character separates groups of 3 digits in
numerals with 5 or more digits. For example, 10
000 equals ten thousand.

Three or more consecutive signal line numbers
are enclosed in angle brackets, with the first line
number separated from the last line number with
two periods (..). For example, signal lines <1..4>
represent signal lines 1, 2, 3, and 4.

Xii

1

KAV30 Overview

This chapter gives an overview of the KAV30 hardware and software. It briefly
describes the following:

e KAV30 hardware
e VAXELN Toolkit
e KAV30 software

The KAV30 software and hardware operate in a host and target system
environment. You use the KAV30 software to develop and build VAXELN
applications on a VMS (host) system. Then, you down-line load, run, and
debug the applications on the KAV30 (target) system. The KAV30 is a
single-board computer that allows VAXELN applications to interface with
VMEDbus and VME subsystem bus (VSB) devices.

The KAV30 software is a VMS layered product that forms an extension to
the VAXELN Toolkit. The VAXELN Toolkit is a set of development tools that
allows you to develop real-time applications quickly and easily for the VAX™
family of computers.

1.1 KAV30 Hardware

This section describes the KAV30 hardware. The KAV30 is a single-board
computer that allows VAXELN applications to interface with VMEbus and VSB
devices. The KAV30 contains the following hardware:

¢ An rtVAX™ 300 real-time processor, which includes a CVAX™
microprocessor, a floating point coprocessor, and a second-generation
Ethernet controller

* Logic circuitry that implements a scatter-gather map (SGM)
e 4M or 16M bytes of system random-access memory (RAM)

e Up to 1M bytes of user read-only memory (ROM)

e Four 255-longword first-in/first-out (FIFO) buffers

KAV30 Overview 1-1

Introduction

e 32K bytes of battery backed-up RAM (programmers can access 22K bytes)
* A calendar/clock

¢ Counter/timers

e A second-generation small computer systems interface (SCSI) controller

e Two serial line ports: the console port and the auxiliary port

e A watchdog timer

¢ Logic circuitry that implements VMEbus arbiter and bus request
functionality

e Logic circuitry that implements VSB arbiter and bus request functionality

¢ Logic circuitry that implements VMEbus interrupt request and handler
functionality

¢ Logic circuitry that implements VSB interrupt request and handler
functionality

1.2 VAXELN Toolkit

This section describes the VAXELN Toolkit. The VAXELN Toolkit is a set of
development tools that allows you to develop real-time applications quickly and
easily for the VAX family of computers. The VAXELN Toolkit consists of the
following:

* VAXELN Host System Software, which consists of the following:

— High-level language compiler (supported languages are VAXELN Ada,
VAX C, VAX FORTRAN, and VAXELN Pascal)

— Object module libraries
— System Builder
— Debugger
e VAXELN Run-Time System Software, which consists of the following:
— VAXELN kernel
— Run-time libraries
— Network and file services
— Device drivers
— VAXELN DECwindows™ client functionality

1-2 KAV30 Overview

Introduction

— Error-logging support
* VAXELN Utilities, which consist of the following:
— VAXELN Performance Utility (EPA)
— VAXELN Display Utility (EDISPLAY)
— VAXELN Command Language Utility (ECL)
— Local Area Transport (LAT) Control Program (LATCP)
— Outbound remote terminal utility (SET_HOST)

Figure 1-1 shows how the components of the VAXELN Toolkit are distributed
between the host and target systems. The figure also shows the host and
target connected by an Ethernet.

Figure 1-1 Host and Run-Time System Software

VMS Host VAXELN Target
Host System Software Run-Time System Software
— VAXELN PASCAL Compiler - Kernel
— VAXELN Libraries — Run-Time Libraries
— VAXELN System Builder — Device Drivers
— VAXELN Debugger — Network Drivers
- VAXELN Utilities — File Service
- VMS Utilities, Editors, CMS, MMS ~ Error Logging Service
— DECwindows Libraries - VAXELN Utilities
— DECwindows Server

Other
Targets

Ethernet

KAV30 Overview 1-3

Introduction

See the Introduction to VAXELN for information on the VAXELN Toolkit. For
more detailed information, see the VAXELN Development Utilities Guide and
the VAXELN Runtime Facilities Guide.

1.3 KAV30 Software

This section describes the KAV30 software. The KAV30 software is a VMS
layered product that forms an extension to the VAXELN Toolkit. It simplifies
the development of VAXELN applications that use the KAV30. The KAV30
software consists of the following:

e The KAV30 kernel
e A SCSI port driver

¢ Automated initialization of the KAV30

You can specify initialization parameters when you build the VAXELN
system.

e Sample applications, including a device driver for a VMEbus device
* The KAV30 system exerciser

The KAV30 kernel is a VAXELN kernel image that is designed specifically for
the KAV30. It has the following features:

* System services that you can use to set up and control the KAV30

e Asynchronous notification of events by means of asynchronous system traps
(ASTs) for KAV30 kernel services and user-written device drivers

* Error logging to battery backed-up RAM
* VMEbus and VSB exception handling

1.3.1 Naming Conventions

The KAV30 software conforms to the naming conventions set out in the Guide
to Creating VMS Modular Procedures. The names are derived from the facility
prefix. The facility prefix for the KAV30 software is KAV$. All the KAV30
software names (such as system services, global variables, and status codes)
begin with KAV$.

Note

Because the dollar sign ($) is not part of the VAX Ada character set,
KAV30 kernel services in VAX Ada have the facility prefix KAV_
instead of KAV$.

1-4 KAV30 Overview

1.3.2 KAV30 System Services

Introduction

The KAV30 system services allow you to do the following tasks:

e Initialize the KAV30

* Set up and control access to the devices on the VMEbus and VSB
* Set up and control the KAV30 FIFO buffers

* Set up and control the calendar/clock and counter/timers

e Exchange data with VMEbus and VSB devices

¢ Read and write the battery backed-up RAM on the KAV30

* Gather error information from the battery backed-up RAM

e Use ASTs in user-written device drivers

Table 1-1 summarizes the KAV30 system services. See Chapter 4 for more
detailed information on each system service.

Table 1-1 KAV30 System Services

System Service

Description

KAV$BUS_BITCLR
KAV$BUS_BITSET
KAV$BUS_READ
KAV$BUS_WRITE
KAV$CHECK_BATTERY

KAV$CLR_AST
KAV$DEF_AST

KAVS$FIFO_READ
KAVS$FIFO_WRITE
KAV$GATHER_KAV_ERRORLOG

KAV$IN_MAP

Clears the bits at a VMEbus or VSB address
Sets the bits at a VMEbus or VSB address
Reads the contents of a VMEbus or VSB address
Writes data to a VMEbus or VSB address

Checks the power supply to the battery backed-
up RAM and the calendar/clock

Clears a device’s AST queue

Creates an asynchronous system block (ASB) for
an event on a VMEbus or VSB device

Reads data from a KAV30 FIFO buffer
Writes data to a KAV30 FIFO buffer

Reads error log information from the KAV30
battery backed-up RAM

Maps a 64K byte page of VMEbus address space
to the KAV30 process address space

(continued on next page)

KAV30 Overview 1-5

Introduction

Table 1-1 (Cont.) KAV30 System Services

System Service

Description

KAVS$INT _VME
KAV$LIFO_WRITE

KAV$NOTIFY_FIFO
KAV$OUT_MAP

KAV$QUE_AST
KAV$RTC

KAV$RW_BBRAM

KAV$SET_AST
KAV$SET_CLOCK

KAVS$TIMERS

KAV$UNMAP

KAV$VME_SETUP

Generates vectored VMEbus interrupts

Writes data to a KAV30 last-in/first-out (LIFO)
buffer

Delivers an AST when a specified event occurs
in a KAV30 FIFO buffer

Maps KAV30 system I/O space to the VMEbus
or VSB address space, in 64K byte pages

Queues an AST for delivery to a process

Performs real-time clock functions, using the
KAV30 calendar/clock

Reads or writes the KAV30 battery backed-up
RAM

Places an entry in a device’s AST queue

Sets the KAV30 system clock and the calendar
/clock

Sets a counter/timer and delivers an AST when
the timer interval expires

Unmaps VMEbus address space from KAV30
system RAM, or KAV30 system RAM from the
VMEDbus address space

Configures the VMEbus and VSB interrupt
delivery mechanism

1-6 KAV30 Overview

2

KAV30 Functionality

This chapter describes the KAV30 bus functionality and related topics. It gives
information on the following:

VMEDbus master functionality

VMEDbus slave functionality

VSB master functionality

VMEDbus arbiter functionality

VSB arbiter functionality

VMEDbus deadlock

VMEDbus utility bus signals

Data and address lines (DAL) bus timeouts
Parity errors

VMEDbus interrupt handler functionality
VMEDus interrupt requester functionality
VSB interrupt handler functionality
KAV30 interrupt priority

2.1 VMEbus Master Functionality

This section describes the KAV30 VMEbus master functionality. The KAV30
includes logic circuitry that implements VMEbus master functionality. That is,
the KAV30 can start read/write operations between itself and other devices on
the VMEbus. To start read/write operations on the VMEbus, the KAV30 must
first get control of the VMEbus. To do this, the KAV30 can use any one of the
four VMEbus bus request (BR) lines. When it has control of the VMEbus, the
KAV30 VMEDbus master logic circuitry can perform the following transfers:

VMEDbus A16, A24, and A32 data transfers

KAV30 Functionality 2-1

KAV30 Functionality

¢ Read-modify-write transfers

See The VMEbus Specification for more information about VMEbus data
transfers.

The KAV30 VMEbus master logic circuitry can operate in the following modes:
* Release-when-done (RWD) or release-on-request (ROR)
* Fair or not fair

e Hidden or not hidden

Note

The KAV30 can operate in hidden mode only when the other masters
on the VMEDbus system operate in hidden mode.

The KAV30, by default, issues bus requests to the VMEbus, using BR line 3
while operating in the ROR, not fair, and not hidden modes. See The VMEbus
Specification for more information about the VMEbus master operation modes.

2.2 VMEbus Slave Functionality

This section describes the KAV30 VMEbus slave functionality. The KAV30
includes logic circuitry that implements the VMEbus slave functionality.
That is, another master module on the VMEbus system can start read/write
operations between itself and the KAV30. The KAV30 VMEbus slave logic
circuitry can access the following devices on the KAV30:

e System RAM

¢ FIFO buffers

¢ VMEDus reset register

The KAV30 VMEDbus slave logic circuitry can process the following transfers:
e VMEDbus A16, A24, and A32 data transfers

e VMEbus D08, D16, D32, and block mode data transfers

¢ Read-modify-write transfers

See The VMEbus Specification for more information about VMEbus data
transfers.

2-2 KAV30 Functionality

KAV30 Functionality

The VMEDbus slave logic circuitry requests control of the DAL bus when it
wants to respond to a VMEDbus cycle. The KAV30 central processing unit
(CPU), when appropriate, indicates that the VMEbus slave logic circuitry can
use the DAL bus. When the VMEDbus slave logic circuitry finishes using the
bus it signals the KAV30 CPU and returns control of the bus to the CPU.
However, when the KAV30 wants to perform a read-modify-write cycle, the
VMEDus slave data interface logic circuitry does not return control of the DAL
bus until it completes the read and write cycles.

Note

The devices that transfer data into the KAV30 by direct memory access
(DMA) can use a block size of up to 4 longwords.

If a VMEbus device uses a block size that is greater than 4 longwords, a bus
timeout occurs on the VMEbus device.

2.3 VSB Master Functionality

This section describes the KAV30 VSB master functionality. The KAV30
includes logic circuitry that implements VSB master functionality. That is,
the KAV30 can start read/write operations between itself and other devices on
the VSB. The KAV30 supports VSB ALTERNATE, SYSTEM, and I/O address
spaces. See the VME Subsystem Bus (VSB) Specification for more information
about the VSB address spaces.

Note

The VSB master logic circuitry does not assert the VSB LOCK signal
when the KAV30 CPU performs a read-modify-write cycle.

2.4 VMEbus Arbiter Functionality

This section describes the KAV30 VMEbus arbiter functionality. The KAV30
includes logic circuitry that implements VMEbus arbiter functionality. The
KAV30 can perform prioritized or round-robin arbitration, using the four
VMEDbus bus request and bus grant levels. Use the VMEbus arbiter switch to
enable the VMEbus arbiter functionality. Use the VAXELN System Builder
to configure the VMEbus arbiter functionality. See the KAV30 Hardware
Installation and User Information for more information about the VMEbus

KAV30 Functionality 2-3

KAV30 Functionality

arbiter switch. See Section 5.4.1 for more information about configuring the
VMEDbus arbiter functionality.

Only one VMEbus arbiter can be on a VMEbus system, and that arbiter must
reside in the leftmost slot of the VMEbus system (slot 1). When you use the
KAV30 as a VMEbus arbiter, the KAV30 can also provide the VMEbus system
clock and logic circuitry to drive the VMEbus SYSRESET signal.

2.5 VSB Arbiter Functionality

This section describes the KAV30 VSB arbiter functionality. The KAV30
includes logic circuitry that implements VSB arbiter functionality. You can
use software to enable and configure the VSB arbiter functionality (see
Section 5.4.1 for more information).

Only one VSB arbiter can be on a VSB system, and that arbiter must reside in
the leftmost slot of the VSB system (slot 0).

2.6 VMEbus Deadlock

This section describes how the KAV30 deals with VMEbus deadlock. A
deadlock can occur on the KAV30 when the KAV30 VMEDbus slave logic
circuitry requests control of the DAL bus at the same time as the KAV30
CPU requests control of the VMEbus. In such a case, the VMEbus slave logic
circuitry is using the VMEDbus and is requesting ownership of the DAL bus,
while the KAV30 CPU is using the DAL bus and is requesting ownership of the
VMEDbus.

Such deadlocks are handled by the hardware. When this deadlock situation
occurs, the KAV30 postpones the KAV30 CPU’s request for the VMEbus and
allows the VMEDbus slave logic circuitry to own the DAL bus. When the
VMEDbus slave logic circuitry returns control of the DAL bus, the postponed
CPU request for the VMEbus is resumed.

2.7 VMEbus Utility Bus Signals

This section describes the KAV30 VMEbus utility bus signals. The KAV30 uses
the following VMEbus utility bus signals:

e SYSRESET
When enabled, the SYSRESET signal can generate a local reset pulse on
the KAV30 with the same duration as the SYSRESET signal. This pulse
allows the system to initialize the KAV30 at the same time as the other
modules on the VMEbus system.

2-4 KAV30 Functionality

KAV30 Functionality

The VMEbus SYSRESET signal jumper controls the interaction between
the KAV30 and the SYSRESET signal. See the KAV30 Hardware
Installation and User’s Information for more information about the
VMEDbus SYSRESET signal jumper.

¢ VMEDbus Global Reset Register
A VMEDbus write access via the SGM to the VMEDbus global reset register
causes a 10 microsecond (us) local reset pulse.

e ACFAIL
The KAV30 interrupts its CPU at interrupt priority level 1E when the
VMEDbus ACFAIL signal is asserted.

e SYSFAIL
The KAV30 VMEbus master interface logic circuitry can assert the
SYSFAIL signal and respond to assertions of the SYSFAIL signal.

When the KAV30 detects an assertion of the SYSFAIL signal, it performs
one of the following actions:

- The KAV30 delivers an AST

To deliver an AST, call the KAV$SET AST routine with the KAV$K_
VME_SYSFAIL device code and AST routine address as arguments.

- The KAV30 calls an interrupt service routine (ISR) at vector 54014

The KAV30 performs one of these two actions. The KAV30 cannot ignore
the assertion of the SYSFAIL signal. The action that the KAV30 performs
depends on the setting of the VAXELN System Builder System Parameter
1. See Section 5.4.1 for more information.

See The VMEbus Specification for more information about the VMEbus utility
signals.

2.8 DAL Bus Timeouts

This section describes DAL bus timeouts. The KAV30 CPU, SCSI controller,
and master logic circuitry can act as DAL bus masters. The DAL bus
generates an error when it times out. The default DAL bus timeout period

is approximately 20 us. You can use the KAV$TIMERS service to change the
DAL bus timeout period. However, Digital™ strongly recommends that you do
not change this value.

KAV30 Functionality 2-5

KAV30 Functionality

2.9 Parity Errors

This section describes parity errors. When the KAV30 CPU stores data in its
system RAM, it sends one parity bit with each byte of data. It sends an even
parity bit when a byte has an even address, and an odd parity bit when a byte
has an odd address. When the CPU reads a byte of system RAM, it checks the
parity bit.

2.10 VMEbus Interrupt Handler Functionality

2.10.1

This section describes the KAV30 VMEbus interrupt handler functionality. The
KAV30 includes logic circuitry that implements VMEbus interrupt handler
functionality. The VMEbus interrupt handler logic circuitry can handle
interrupt-requests (IRQs) that it receives from the devices on the VMEbus.

The KAV30 VMEbus interrupt handler logic circuitry can receive IRQs on the
VMEDbus lines IRQ<1..7> and the POWER_FAIL line. When it receives more
than one IRQ, the interrupt handler logic circuitry assigns priorities to the
requests depending on the line on which it receives the requests. It handles
requests in the order of the highest priority to the lowest priority. The IRQs on
the POWER_FAIL line have the highest priority. The IRQs on the IRQ7 line
have the next highest priority, and so on to the IRQs on the IRQ1 line, which
have the lowest priority.

VMEDbus autovectored interrupts occur when a module asserts a VMEbus IRQ
line but does not provide an interrupt vector. Often VMEbus systems use

the VMEbus IRQ 2 line for autovectored interrupts. The KAV30 hardware
can handle only autovectored interrupts on the VMEbus IRQ7 line. However,
an application program can emulate a vectored VMEbus IRQ 7 interrupt by
forcing a VMEbus interrupt-acknowledge (IACK) cycle from the software.

Note

Do not use VMEbus IRQ lines for vectored and autovectored interrupts.

Handling Vectored Interrupts

The KAV30 receives 8-bit interrupt vectors from the VMEbus. However, the
KAV30 CPU expects 16-bit interrupt vectors. Therefore, the KAV30 interrupt
handler logic circuitry must convert the 8-bit interrupt vectors it receives into
16-bit interrupt vectors that the KAV30 CPU can process. Figure 2—1 shows
this conversion.

2-6 KAV30 Functionality

KAV30 Functionality

The VAX interrupt vector consists of the following data:
e Bits <0,1> and <12..15> contain the value 0
* Bits <2..9> contain the 8-bit VMEbus interrupt vector

* Bits <10,11> contain the interrupt source code (see Table 2—1)

Figure 2-1 Converting VMEbus Interrupt Vectors into VAX Interrupt Vectors

VMEDbus Interrupt Vector
7 6 5 4 3 2 1 0

Interrupt
Source
Code

VAX Interrupt Vector

Table 2—1 describes the interrupt source codes. The KAV30 CPU uses these
interrupt source codes to determine the source of an interrupt.

Table 2-1 Interrupt Source Codes
Bit 11 Bit 10 Type of Interrupt

0 0 UART interrupts
0 1 Local interrupts (including VMEbus and VSB autovectored
interrupts)

(continued on next page)

KAV30 Functionality 2-7

KAV30 Functionality

2.10.2

Table 2—1 (Cont.) Interrupt Source Codes
Bit 11 Bit 10 Type of Interrupt

0 VMEDbus vectored interrupts
1 Not used

The KAV30 CPU uses bits <2..15> of the VAX interrupt vector as a pointer

to a longword in the system control block (SCB). This longword contains the
address of the interrupt service routine for that interrupt. Table 2-2 describes
the layout of the SCB.

Table 2-2 System Control Block Layout

Address Range Contents

000016 to 03FC1g Interrupt vectors for various system exceptions and software
interrupts such as power failure, access violation, and so on

040016 to 07FC16 KAV30 interrupt vectors

080016 to 0BFCy¢ VMEDbus interrupt vectors for vectored VMEbus interrupts

OCOOIG to F FFCle Not Used

The low-order two bits of each SCB vector determine the stack on which the
interrupt is to be serviced. For all the KAV30, VMEbus, and VSB interrupts
these two bits have the value 1, which means that the processor services the
interrupts on the interrupt stack. The remaining bits contain the address of
the ISR.

Handling Autovectored Interrupts

The KAV30 can handle autovectored interrupts on any of the seven VMEbus
IRQ<1..7> lines. However, the KAV30 hardware can take longer to handle
autovectored interrupts that it receives on VMEbus IRQ lines 1, 2, or 3. Using
VMEDbus IRQ lines 1, 2, or 3 for autovectored interrupts can take 20 us longer,
before the appropriate ISR executes, and 40 ps longer, after the ISR executes.

When another VMEbus module generates an autovectored interrupt on one of
the VMEbus IRQ lines, the KAV30 hardware performs the following actions:

1. It interrupts the CPU.

2. The CPU requests an interrupt vector.

2-8 KAV30 Functionality

KAV30 Functionality

If the IRQ is on the VMEbus IRQ lines 1, 2, or 3, the KAV30 hardware
sometimes performs the following actions:

a. Generates a VMEbus IACK cycle.

b. Because the interrupting module is generating an autovectored
interrupt, it does not respond with an interrupt vector. The cycle
times out after approximately 20 ps.

c. The KAV30 hardware asserts the VAX ERR signal, which causes the
CPU to start executing a passive release ISR.

d. Because the other VMEbus module still asserts the VMEbus IRQ line,
the CPU again requests an interrupt vector. This request interrupts
the process of starting the passive release ISR.

3. The KAV30 hardware returns an interrupt vector that was previously
programmed into the hardware by the KAV30 kernel.

4. The CPU starts executing the appropriate ISR. The CPU uses the interrupt
vector to determine which ISR it executes.

5. The ISR accesses the other VMEbus module and causes it to stop asserting
the VMEbus IRQ line.

6. The CPU finishes executing the ISR.

7. When the KAV30 hardware performs steps A to D, it now causes the
CPU to resume executing the passive release ISR. The passive release
ISR writes an error log entry and finishes executing. This process takes
approximately 40 us.

Because autovectored interrupts received on the VMEbus IRQ lines 1, 2, and 3
can take 60 us longer to process by the KAV30 hardware, Digital recommends
that you use the VMEbus IRQ lines 4, 5, 6, and 7 only for autovectored
interrupts.

When autovectored interrupts occur, the KAV30 hardware gives the interrupt
vector to the CPU. The KAV30 hardware was programmed by the KAV30
kernel with the vectors that the kernel gives in response to autovectored IRQs.
Table 2-3 lists these vectors. This table describes the condition that causes the
interrupt and gives its offset (in hexadecimal) into the SCB.

KAV30 Functionality 2-9

KAV30 Functionality

Table 2-3 SCB Vector Offsets for Autovectored ISRs

Description Offset into SCB
Autovectored VMEbus IRQ1 50016
Autovectored VMEbus IRQ2 50416
Autovectored VMEbus IRQ3 50816
Autovectored VMEbus IRQ4 50C6
Autovectored VMEbus IRQ5 51046
Autovectored VMEbus IRQ6 51416
Autovectored VMEbus IRQ7 51846
Autovectored VSB IRQ 54C1¢
Note

The SCB also contains vectors for SCSI IRQs and the VMEbus
SYSFAIL signal. The vector for SCSI IRQs is at an offset of 550¢.
The vector for SCSI ERR interrupts is at an offset of 55414. The vector
for the VMEbus SYSFAIL signal is at an offset of 5401¢.

See The VMEbus Specification for more information on VMEbus interrupt
handler functionality.

2.11 VMEDbus Interrupt Requester Functionality

This section describes the KAV30 VMEbus interrupt requester functionality.
The KAV30 includes logic circuitry that implements VMEDbus interrupt
requester functionality. The VMEDbus interrupt requester logic circuitry can
generate vectored IRQs, which any module on the VMEDbus, including the
KAV30 VMEDbus interrupt handler logic circuitry, can handle.

The KAV30 VMEDbus interrupt requester logic circuitry can request interrupts,
using VMEDbus lines IRQ<1..7>. It places IRQs on these VMEbus IRQ lines
according to the priority of the IRQ. The KAV30 VMEbus interrupt requester
logic circuitry asserts an IRQ line until an interrupt handler acknowledges
the request. When an interrupt handler acknowledges the request, the KAV30
stops asserting the IRQ lines and sends an interrupt vector to the interrupt
handler.

When the KAV30 requests an interrupt it generates an 8-bit interrupt vector,
which it places on the VMEbus. Figure 2-2 shows how the KAV30 CPU
constructs the 8-bit VMEbus interrupt vector.

2-10 KAV30 Functionality

KAV30 Functionality

The VMEDbus interrupt vector consists of the following data:

e Bits <2..0> contain VMEbus address lines A<3..1> respectively. These
address lines represent the IRQ level being acknowledged. Table 2—4
explains the contents of these three bits.

e Bits <7..3> contain bits <8..4> of the interrupt vector that the user provides

Figure 2-2 Constructing an 8-bit VMEbus Interrupt Vector

0 (o0 0 | User Interrupt Vector

A<3> A<2> A<1>

ARy

7 6 5 4 3 2 A1 0

-

VMEbus Interrupt
Vector

See The VMEbus Specification for more information on VMEbus interrupt
requester functionality.

Table 2-4 VMEbus Address Lines A<3..1>
Bit 3 Bit 2 Bit1 VMEbus IRQ line

0 0 0 Not used
0 0 1 IRQ1
0 1 0 IRQ2
0 1 1 IRQ3

(continued on next page)

KAV30 Functionality 2-11

KAV30 Functionality

Table 2-4 (Cont.) VMEbus Address Lines A<3..1>
Bit 3 Bit 2 Bit1 VMEbus IRQ line

1 0 0 IRQ4
1 0 1 IRQ5
1 1 0 IRQ6
1 1 1 IRQ7

2.12 VSB Interrupt Handler Functionality

This section describes the KAV30 VSB interrupt handler functionality. The
KAV30 includes logic circuitry that implements VSB interrupt handler
functionality. The VSB interrupt handler logic circuitry can handle IRQs it
receives from devices on the VSB. Although the VSB specification defines
the handling of vectored as well as autovectored interrupts, the KAV30 VSB
interrupt handler logic circuitry can handle only autovectored interrupts.

See the VME Subsystem Bus (VSB) Specification for more information on VSB
interrupt handler functionality.

2.13 KAV30 Interrupt Priority

This section describes the KAV30 interrupt priority scheme. The KAV30 CPU
receives IRQs on seven interrupt pins, as follows:

* The DAL bus error pin

e The VAX HALT pin

¢ The VAX POWER_FAIL pin
¢ The VAX IRQ pins<3..0>

The KAV30 CPU assigns interrupt priority levels (IPLs) to these pins as shown
in Table 2-5.

2-12 KAV30 Functionality

Table 2-5 KAV30 Interrupt Pins

KAV30 Functionality

Interrupt Pin

Interrupt Priority Level (Hexadecimal)

DAL bus error
VAX HALT

VAX POWER_FAIL
VAX IRQ 3

VAX IRQ 2

VAX IRQ 1

VAX IRQ 0

1F (exception)

1F
1E
17
16
15
14

When the KAV30 CPU receives more than one IRQ, it services the IRQs in the
order of highest priority to lowest. The IRQs on the 1F (exception) level have
the highest priority, IRQs on IPL 1F have the next highest priority, and so on

to the IRQs on IPL 14, which have the lowest priority.

The KAV30 CPU also prioritizes interrupts within each IPL. Table 2-6
describes this priority scheme. In this table, the priority scheme is shown as

follows:

* An en dash (-) prefixes sources that have an equal priority.

* A number prefixes sources that have an unequal priority. The magnitude
of the number is inversely related to the priority of the source. That is, the
number 1 prefixes the source with the highest priority.

KAV30 Functionality 2-13

KAV30 Functionality

Table 2-6 KAV30 Interrupt Priorities

IPL Interrupting Condition

IPL 1F:

IPL 1E:

IPL 17:

2-14 KAV30 Functionality

Occurrence of bus timeouts

Occurrence of an IPL 1F control and status register (CSR) bit
interrupting conditions, when the relevant CSR bit is configured to
cause an interrupt on IPL 1F

Issuing of the break command from a device connected to the KAV30
serial line ports

Setting of the KAV30 reset/halt switch to the halt position

Receiving a trigger boot message from a device on an Ethernet network

Occurrence of an IPL 1E CSR bit interrupting conditions, when the
relevant CSR bit is configured to cause an interrupt on IPL 1E

Assertion of the VMEbus ACFAIL signal
Receiving an autovectored VMEbus IRQ on the IRQ7 line

Occurrence of IPL 17 CSR bit interrupting conditions, including the
following:

— Receiving interrupts at IPL 17

— Occurrence of FIFO buffer 3 full and empty errors

— Occurrence of FIFO buffer 2 full and empty errors

— Receiving VMEbus autovectored IRQs on the IRQ5 or IRQ6 line
Receiving a vectored IRQ on the VMEbus IRQ5 and IRQ6 lines

(continued on next page)

KAV30 Functionality

Table 2—6 (Cont.) KAV30 Interrupt Priorities

IPL

Interrupting Condition

IPL 16:

IPL 15:

IPL 14:

Occurrence of rtVAX 300 INTIM 10 milliseconds (ms) timer input

2. Occurrence of IPL 16 CSR bit interrupting conditions, including the
following:

Receiving interrupts at IPL 16

Receiving SCSI interrupts

Receiving VSB interrupts

Receiving VMEDbus autovectored IRQs on the IRQ3 or IRQ4 line

3. Receiving vectored IRQs on the VMEbus IRQ4 line

Occurrence of Ethernet controller interrupts

2. Occurrence of IPL 15 CSR bit interrupting conditions, including the
following:

Receiving interrupts at IPL 15

Occurrence of FIFO buffer 1 full and empty errors

Occurrence of FIFO buffer 0 full and empty errors

Receiving of VMEbus autovectored IRQs on the IRQ1 or IRQ2 line

3. Receiving of vectored IRQs on the VMEbus IRQ3 line

Receiving of an interrupt from the KAV30 UART

Occurrence of IPL 14 CSR bit interrupting conditions
Receiving of vectored IRQs on the VMEbus IRQ1 and IRQ2 lines

KAV30 Functionality 2-15

3

KAV30 Kernel

This chapter describes how the KAV30 hardware relates to the KAV30
software. It gives information on the following:

¢ Asynchronous system trap processing
¢ Timers

* Calendar/clock

* FIFO buffers

* Battery backed-up RAM

¢ Scatter-gather map

* Communicating with another KAV30
¢ KAV30 error logging support

3.1 Asynchronous System Trap Processing

This section describes how the KAV30 processes ASTs. In real-time systems,
a process must be able to respond to events that occur asynchronously to

the execution of the process. These events can result from actions by other
processes in the system, by peripheral devices, or by the operating system
itself. When a user program starts an event that can complete asynchronously
(for example, an analog-to-digital conversion), it can specify the address of an
AST routine. An AST routine is a procedure in the user program that the
operating system calls when a particular event occurs.

The operating system maintains a queue of ASBs for each process. Each entry
in the queue describes one requested AST and contains the address of the AST
routine to be called when a specified event occurs.

If the user process is active when the system delivers an AST, the system
interrupts the process and transfers control to the first AST routine in the
queue. Each AST routine in the queue executes in turn. When the last AST
routine in the queue returns, the user process resumes where it stopped.

KAV30 Kernel 3-1

KAV30 Kernel

If the user process is inactive when the system delivers an AST, the process
wakes up for the execution of the delivered ASTs. After the last AST is
delivered the process returns to the original state.

When the programs specify an AST routine, they can also specify an associated
argument called the AST parameter, which will be passed to the AST routine.

The KAV30 kernel queues ASTSs to a process in the current access mode (user
or kernel). The kernel mode ASTs have higher priority than the user mode
ASTs, and the KAV30 kernel places them ahead of user mode ASTs in the

queue.

3.1.1 AST Delivery

The VAXELN applications can include device drivers for the devices on the
VMEDbus or VSB that the KAV30 interacts with.

Each device driver that uses ASTs contains initialization code that calls

the KAV$DEF_AST service to set up a queue called an AST queue. Each
entry in the AST queue is a data structure called an ASB. The ASB contains
information about the AST routine for a particular event relating to the
device. (The KAV$DEF_AST service returns a code that the KAV$CLR_AST,
KAV$SET _AST and KAV$QUE_AST services subsequently use to identify this
ASB.))

Each device driver that uses ASTs also includes an input/output (I/0) section,
in which the program calls the KAV$SET_AST routine to place data in an ASB.
See Section 3.1.2 for information about ASBs and ASB queues.

After the KAV30 starts 1I/0, the relevant device driver returns control to the
main program. When the device finishes performing I/0O, it sends an IRQ
signal to the KAV30.

If the IRQ is a vectored IRQ, the KAV30 processor sends an IACK signal to the
device, which then sends an interrupt vector back to the module. The KAV30
processor uses this vector to specify an offset into the SCB. At the specified
offset in the SCB, there is a longword vector that contains the address of an
ISR.

If the IRQ is an autovectored IRQ, the KAV30 processor does not acknowledge
the interrupt. Instead the KAV30 transfers control directly to the ISR whose
address is contained in a predefined SCB vector. See Section 2.10 for more
information.

Regardless of whether the IRQ is vectored or autovectored, the ISR executes at
a device IPL.

3-2 KAV30 Kernel

KAV30 Kernel

There are 32 interrupt priority levels, in increasing order of priority from 0 to
31. The IPLs 16 to 31 are hardware IPLs, and the IPLs O to 15 are software
IPLs. There are four device IPLs: IPL 20 to IPL 23. User processes execute
at IPL 0, the lowest priority level. AST delivery executes at IPL 2, and AST
routines execute at IPL 0.

The KAV30 kernel calls an ISR, which can include a call to the KAV$QUE_AST
service (any ISRs executing at a higher IPL end before this ISR completes).
The KAV30 kernel queues an AST to a process when the corresponding event
oceurs.

3.1.2 AST Data Structures

Several ASTs can be outstanding for a process at any time. The KAV30 kernel
stores the ASTs in a FIFO queue. The entries in the queue are ASBs, which
contain the following fields:

e ASB type code

This field indicates whether the ASB is pending or free. The ASB is
pending if it contains information about an AST that the KAV30 kernel has
not yet delivered. The ASB is free if it does not contain information about
an AST — this arises if the KAV$SET_AST service has not yet placed
information in the ASB, or if the KAV30 kernel has delivered the AST.
Using the KAV$CLR_AST service frees all the pending ASBs.

The ASB type code field contains either the value ASB$K_ASBPEND or
the value ASB$K_ASBFREE, which indicates whether the ASB is pending
or free.

e PCB address
This field contains the address of the PCB for the process that receives the
AST.

e AST address
This field contains the address of the AST routine.

e AST parameter

This field contains an optional parameter to the AST routine. This
parameter can specify a data value or the address of a block of data values.

e AST flag

If this flag is set, the KAV30 kernel requeues the ASB to the AST pending
queue for the device event immediately after delivery. If the flag is cleared,
the KAV30 kernel clears the ASB after it delivers the AST.

KAV30 Kernel 3-3

KAV30 Kernel

Figure 3—1 ASB Fields

FLINK

BLINK

ASB
Type Code

AST
Flags

Device Code

PCB Address

AST Address

AST Parameter

Figure 3-1 illustrates the fields in the ASB.

The head of the AST queue is located in the Process Control Block (PCB). The
KAV30 kernel modifies the standard VAXELN PCB by adding two longword
fields, PCB$A_ASTFLK and PCB$A_ASTBLK to the end of the PCB. These
fields are pointers to the AST queue for that process, as shown in Figure 3-2.

See the Introduction to VMS System Services guide for more information.
The Introduction to VMS System Services is part of the VMS programming

documentation.

Figure 3-2 AST Queue

PCB

AST Queue

3-4 KAV30 Kernel

Listahead | €—»

ASB

ASB

ASB

ASB

KAV30 Kernel

3.2 Timers

This section describes the KAV30 timers. There are five 32-bit timers and two
16-bit timers on the KAV30. The 32-bit timers are for general-purpose use.
One 16-bit timer is a watchdog timer and the other is the local bus timeout
timer.

Each timer operates as follows: you use the KAV$TIMERS service to load a
value into the timer register. The value then decrements on each clock cycle
until it reaches zero. When the value reaches zero, the KAV30 delivers an AST.
To calculate the value that you must load, divide the required timer interval by
the clock period. The clock period is 400 nanoseconds (ns).

A 16-bit timer can time intervals up to (216 — 1) clock cycles, so the maximum
interval that you can use is as follows:

216 _ 1 = 65535

Maximum interval = 65 535 x 400 ns
= 26.214 ms

The 32-bit timers are made up of two 16-bit timers. The low-order word in
the timer acts as a prescaler. Every time the prescaler decrements to zero, the
high-order word decrements by one. The minimum value that you can specify
for the prescaler is two. A 32-bit timer can time intervals up to (216) times
longer than a 16-bit timer can, that is, intervals of up to (232 — 1) clock cycles,
so the maximum interval that you can use is as follows:

232 _{ = 4204 967 295

Maximum interval = 4 294 967 295 x 400 ns

= 28.633 minutes(min)

A convenient way to program a timer is to load the value 2500 into the
prescaler. Because the clock period is 400 ns, this value causes the prescaler
to decrement to zero in 1 ms. Then, to time intervals in multiples of 1 ms,
load the multiple into the high-order word. However, the timer loads the
multiple into the high-order word after the prescaler first decrements to

zero. Therefore, to ensure that the timer expires after the correct number

of decrements, subtract one from the value that you load into the high-order
word. For example, to set a timer to expire after 1 s, load the value 2500 into
the prescaler and 1000 minus one into the high-order word. The value you load
into the timer is as follows:

(65 536 x (1000 — 1)) + 2500 = 65 472 964 = 03E709C414

KAV30 Kernel 3-5

KAV30 Kernel

The KAV30 also has a watchdog timer and a local bus timeout timer. These
are 16-bit timers. If the watchdog timer expires, a system reset occurs. The
local bus timeout timer is used by the rtVAX 300 to monitor the DAL bus.
Digital strongly recommends that you do not change the value of the local bus
timeout timer, because this can lead to unpredictable results and VMEbus or
VSB errors.

You can program the timers, using the KAV$TIMERS service. See the
description of the KAVSTIMERS service for more information.

3.3 Calendar/clock

This section describes the calendar/clock on the KAV30. The calendar/clock
maintains the time and date in units ranging from one-hundredth of a second
to a year and leap year, as well as providing counters for the day of the week,
day of the month, and day of the year. The calendar/clock keeps the time and
date in binary coded decimal (BCD) format.

The calendar/clock has the following features:

e Alarm

You can set the calendar/clock to interrupt the KAV30 at a specified time.
You can also set it to interrupt after a specified interval.

e Timesave RAM

The calendar/clock has a timesave area, in which it stores the contents of
the clock in the event of a power failure.

e Twelve-hour and 24-hour clock

The calendar/clock can operate in 12-hour mode or 24-hour mode. In
12-hour mode, you can specify A M. and PM.

3-6 KAV30 Kernel

KAV30 Kernel

Julian date

The calendar/clock also provides the date in Julian format. The Julian date
is the number of elapsed days in the year. For example, the Julian format

for March 17, 1991 is 076 (because March 17 is the seventy-sixth day of the
year). The Julian format for March 17, 1992 is 077 (because 1992 is a leap
year and March 17 is the seventy-seventh day).

Device RAM

The calendar/clock contains 31 bytes of general purpose RAM, which you
can read from or write to using the KAV$RTC system service. Either a
battery or the VMEDbus standby power supply backs up the device RAM.

Timers

The calendar/clock has two 16-bit timers. The VMEDbus uses one of these
timers as a bus timeout timer. This timer controls the length of time
within which the VMEbus must respond to an attempt by the KAV30

to gain control of the bus. Digital strongly recommends that you do not
change the value of this timer because this can lead to unpredictable
results.

The second 16-bit timer is for general use. You can program this timer
in the same way as the other KAV30 timers. See Section 3.2 for more
information.

Figure 3-3 shows the address map of the calendar/clock. The first 31 bytes
contain time and date information. The second 31 bytes are general-purpose
RAM.

You can use the KAVSRTC system service to carry out the following operations
on the calendar/clock:

Interrupt the KAV30 at a specified time (alarm)

Interrupt the KAV30 when the interval you specify elapses (periodic alarm)
Read the time at which the calendar/clock is set to interrupt the KAV30
Set the time at which the calendar/clock interrupts the KAV30

Read the calendar date

Set the calendar date

Read data from the calendar/clock RAM

Write data to the calendar/clock RAM

Read data from the calendar/clock timesave area

KAV30 Kernel 3-7

KAV30 Kernel

Figure 3-3 Calendar/clock Address Map

Page Select=0 Page Select = 1
1F RAM/TEST Register 1F RAM
1E RAM 1E RAM
1D Months Time Save RAM 1D RAM
1C Day of Month Time Save RAM 1C RAM
1B Hours Time Save RAM 1B RAM
1A Minutes Time Save RAM 1A RAM
19 Seconds Time Save RAM 19 RAM
18 Day of Week Compare RAM 18 RAM
17 Months Compare RAM 17 RAM
16 Day of Month Compare RAM 16 RAM
15 Hours Compare RAM 15 RAM
14 Minutes Compare RAM 14 RAM
13 Seconds Compare RAM 13 RAM
12 Timer 1 MSB 12 RAM
11 Timer 1 LSB 11 RAM
10 Timer 0 MSB 10 RAM
OF Timer 0 LSB OF RAM
0E Day of Week Clock Counter 0E RAM
oD 100’s Julian Clock Counter oD RAM
ocC Units Julian Clock Counter ocC RAM
0B Years Clock Counter 0B RAM
0A Months Clock Counter 0A RAM
09 Day of Month Clock Counter 09 RAM
08 Hours Clock Counter 08 RAM
07 Minutes Clock Counter 07 RAM
06 Seconds Clock Counter 06 RAM
05 1/1000 Second Counter 05 RAM

/ \ 04 RAM

03 RAM
Register Select =0 Register Select = 1 02 RAM
Interrupt Routing Register Interrupt Control Register 1| o1 RAM

Periodic flag Register 03 | Interrupt Control Register 0
Timer 1 Control Register | 02 Output Mode Register
Timer 0 Control Register | 01 | Real Time Mode Register

\

00 [Main Status Register |

e Write data to the calendar/clock timesave area

See the description of the KAV$RTC service for more information.

3-8 KAV30 Kernel

KAV30 Kernel

3.4 FIFO Buffers

This section describes the FIFO buffers on the KAV30. The KAV30 contains
four independently operating FIFO buffers. The purpose of the FIFO buffers
is to enable an intelligent device on the VMEDbus to exchange data with the
KAV30. The VMEbus devices can write data into the FIFO buffers, and the
KAV30 can then read the data from the buffers. Similarly, the KAV30 can
write data into the FIFO buffers, and the VMEDbus device can then read the
data from the buffers.

Each FIFO buffer is organized into 255 longwords. However, it is possible to
perform longword, quadword, and octaword operations on the FIFO buffers.
When you perform quadword and octaword operations on the FIFO buffers,
the FIFO logic circuitry writes or reads the message as an atomic collection of
longwords.

Any device on the VMEbus (including the KAV30) can read from and write to
the FIFO buffers in FIFO mode, or write to the buffers in LIFO mode.

A device that writes the data into the KAV30 FIFO buffers is called the
producer. A device that reads the data from the buffers is called the
consumer. The KAV30 can act as a producer or as a consumer, as shown in
Figure 3—4. The KAV30 can also act neither as the producer or the consumer.
In that case, two devices on the VMEbus act as producer and consumer, as
shown in Figure 3-5.

The FIFO logic circuitry indicates an error when you read a message from an
empty FIFO buffer, or write a message to a full FIFO buffer.

You can read/write the FIFO buffers, using the KAV$FIFO_READ, KAV$FIFO_
WRITE, and KAVSLIFO_WRITE system services. See Chapter 4 for more
information.

You can configure the KAV30 to notify you when a FIFO buffer changes its
state under one or more of the following circumstances:

* When the state changes from empty to not-empty

¢ When the state changes from not-empty to empty

* When the state changes from not-empty to full

See the description of the KAVSNOTIFY_FIFO for more information.

KAV30 Kernel 3-9

KAV30 Kernel

3.5 Battery Backed-Up RAM

This section describes the battery backed-up RAM on the KAV30. The battery
backed-up RAM allows you to store information that you want to protect in the
event of a system or power failure. For example, you can write error messages
to the battery backed-up RAM. If the system fails, the error information

will still be in the RAM after the system is rebooted. You can use the error
information to analyze the cause of the failure. However, you must install the
battery jumper during the hardware installation to enable this functionality.
See the KAV30 Hardware Installation and User’s Information for more
information.

Programs can use 22 of the 32K bytes of battery backed-up RAM. Of the
remaining 10K bytes, 8K bytes are reserved for use by the KAV30 kernel and
2K bytes are reserved for future use by Digital.

You can read from and write to the battery backed-up RAM, using the
KAV$RW_BBRAM service. See the description of the KAVSRW_BBRAM
service for more information.

3.6 Scatter-Gather Map

This section describes the SGM. The SGM is the part of the KAV30 hardware
that allows the devices on the VMEbus to access the KAV30 and allows the
KAV30 to access the devices on the VMEbus or VSB. The SGM has two parts:
the outgoing SGM and the incoming SGM.

The KAV30 uses the outgoing SGM while operating in master mode, that is,
when the KAV30 accesses the devices on the VMEbus or VSB. It uses the
incoming SGM while operating in slave mode, that is, when the devices on the
VMEDbus access the KAV30.

3.6.1 Outgoing SGM

The outgoing SGM maps KAV30 system (S0) virtual address space to the
address space of a target device on the VMEbus or VSB. This makes the
address space of a target device visible to the KAV30, and enables the KAV30
kernel to access the target device address space.

3-10 KAV30 Kernel

KAV30 Kernel

Figure 3—-4 KAV30 as Producer and Consumer

KAV30 as a Producer
Producer Consumer
KAV30 Other Device

it ii

[
!

VMEbus
KAV30 as a Consumer
Consumer Producer
KAV30 Other Device
VMEbus

When you configure the KAV30, you pass the base address of the device on the
VMEDbus or VSB to the KAV$OUT_MAP kernel service. This service returns
the KAV30 SO space virtual address that corresponds to the base address of the
VMEDbus or VSB device. To write data to an offset in the address space of the

KAV30 Kernel 3-11

KAV30 Kernel

Figure 3-5 KAV30 as Neither Producer or Consumer

Producer Consumer

Other Device KAV30 Other Device

| . |

VMEbus

[
>

VMEDbus or VSB device, add the offset to the virtual address returned by the
KAV$OUT_MAP service, and write to the resulting address.

The outgoing SGM can map 230M bytes of KAV30 I/O space to the VMEbus or
VSB address space. The size of the VMEbus or VSB address space depends on
the type of addressing you use, as follows:

* When you use VMEbus or VSB A32 addressing you can access 4G bytes of
address space

e When you use VMEbus or VSB A24 addressing you can access 14M bytes
of address space

e When you use VMEbus or VSB A16 addressing you can access 64K bytes of
address space

The outgoing SGM logic circuitry uses one SGM entry to map each 64K byte-
page of KAV30 I/O space to the VMEbus or VSB address space. However, the
first SGM entry for a device specifies the base VMEbus or VSB address of its
memory-mapped I/O space. You can map up to 3584 64K byte-pages of KAV30
S0 space to the VMEbus of VSB address space. See the description of the
KAV$OUT_MAP service for more information.

When the KAV30 sends a VAX address, bits <15..0> of the VAX address
remain unchanged in the VMEbus or VSB address, and the outgoing SGM
logic circuitry uses the remainder of the VAX address as an index into the
outgoing SGM. Figure 3-6 illustrates the conversion of a VAX address into
an A32 VMEDbus or VSB address. Figure 3-7 illustrates the conversion of a

3-12 KAV30 Kernel

KAV30 Kernel

VAX address into an A24 VMEbus or VSB address. Figure 3-8 illustrates the
conversion of a VAX address into an A16 VMEbus or VSB address.

Figure 3-6 Outgoing SGM Conversion to VMEbus or VSB A32 Addresses

[} I, 28 27 iiieeee 16 15 e 00
Index into - VAX
Outgoing SGM Address Within 64K Bytes Page Address
Outgoing SGM
/ + A4 . N\
B e ee 16 15 e 00
VMEbus
From the SGM From the VAX Address or VSB
Address

KAV30 Kernel 3-13

KAV30 Kernel

Figure 3—7 Outgoing SGM Conversion to VMEbus or VSB A24 Addresses

3128 27 e 16 15 ek 00
Index into - VAX
Outgoing SGM Address Within 64K Bytes Page Address
Outgoing SGM
v Y
K} I 24 23 ceeaaan 16 15 e 00
VMEbus
Don't Care Bits From the SGM From the VAX Address or VSB
Address

3.6.2 Incoming SGM

The incoming SGM maps one or more 64K byte-pages of VMEbus address
space to the KAV30 process (P0) virtual address space. The size of the VMEbus
address space depends on the size of the VMEbus address. The VMEbus A24
addresses can access up to 1M byte, or sixteen 64K byte-pages of address
space. The VMEbus A32 addresses can access up to 4M bytes, or 256 64K
byte-pages of address space.

To program the incoming SGM, call the KAV$IN_MAP service and specify an
entry number in the incoming SGM. This entry number indicates the 64K
byte-page of VMEbus address space that you want to map into KAV30 PO
space. The KAV$SIN_MAP service returns the virtual address to which the
incoming SGM maps the base address of the 64K byte-page of VMEDbus address
space.

3-14 KAV30 Kernel

KAV30 Kernel

Figure 3-8 Outgoing SGM Conversion to VMEbus or VSB A16 Addresses

310028 27 e 16 15 e cecccmccec——aaa 00
Index into o VAX
Outgoing SGM Address Within 64K Bytes Page Address
Outgoing SGM
Y Y
/ N N\
3 PR 16 15 e 00
VMEbus
Don't Care Bits From the VAX Address or VSB
Address

When the KAV30 maps a page of VMEbus address space to a page of PO space,
it sets both the page boundaries where the low-order 16 bits are all 0.

The following list describes the VMEbus addresses for each type of addressing:

e A32 addressing
The VMEDbus physical address for A32 addressing consists of the following:

— Bits 0 to 15 represent an address within a 64K byte-page
— Bits 16 to 23 represent an index into the incoming SGM

— Bits 24 to 31 are taken from the setting of the KAV30 VMEbus A32
base slave address register

KAV30 Kernel 3-15

KAV30 Kernel

The KAV30 base address specifies the part of the VMEbus address
space allocated to the module. For A32 addressing, each device has
16M bytes of VMEbus address space. You can set bits 24 to 31 by
calling the KAV$VME_SETUP service to set up the VMEbus system.

Figure 3-9 shows the A32 incoming VMEbus address.

Figure 3-9 A32 Incoming VMEbus Address

VMEbus A32 Index into
Base Slave Address| Incoming SGM

Address Within 64K Bytes Page

* A24 addressing
The VMEDbus physical address for A24 addressing consists of the following:

Bits 0 to 15 represent an address within a 64K byte-page

Bits 16 to 19 represent the 4 low-order bits of an SGM entry

In A24 addressing, the incoming SGM can map up to sixteen 64K byte-
pages of VMEDbus address space into PO space, so the SGM can have a
maximum of 16 entrics.

Bits 20 to 23 are taken from the setting of the KAV30 rotary switch.
This switch specifies the KAV30 VMEbus base slave address.

The KAV30 base address specifies the part of the VMEbus address
space allocated to the module. For A24 addressing mode, cach device
has 1M bytes of VMEbus address space. You can set bits 20 to 23 by
using the KAV30 rotary switch. See the KAV30 Hardware Installation
and Users Information for more information.

Bits 24 to 31 are don't care bits.

Figure 3—-10 shows the A24 incoming VMEbus address.

When the KAV30 receives a VMEbus address, the conversion process it uses
differs depending on the type of VMEbus address that it receives. Figure 3—11
shows how it converts A32 VMEbus addresses. Figure 3—-12 shows how it
converts A24 VMEbus addresses.

3-16 KAV30 Kernel

KAV30 Kernel

Figure 3—-10 A24 Incoming VMEbus Address

VMEbus | Index
A24 Base| into
Slave |Incoming
Address | SGM

Don't Care Bits Address within 64K Bytes Page

Figure 3-11 Incoming SGM Conversion of A32 VMEbus Addresses

31 e 24 283 aoa. 1615 L 00
VMEDbus A32 | . VMEbus
Base Slave | ndex 'gth Address Within 64K Byte Page Address
Address neoming
Incoming SGM
Y \
3130292827262524 23 ... 16 15 e e 00
VAX
0jo 0|o|ojo|0| FromtheSGM From the VMEbus Address Address

The SGM can map the VMEbus address space into the KAV30 FIFO buffers
instead of into PO space. Another device on the VMEbus can then access the
information in the FIFO buffers.

KAV30 Kernel 3-17

KAV30 Kernel

Figure 3-12 Incoming SGM Conversion of A24 VMEbus Addresses

[I 24 232019 . 1615 c e accmme—mm—————- 00
VMEbus | Index XzﬂdEbUS
. . A24 Base| into . ress
Don't Care Bits Slave |Incoming Address Within 64K Bytes Page
Address | SGM
Incoming SGM
Y Y
3130292827262524 23 oo, 16 15 e 00
VAX
o]0 oloJo|o|o From the SGM From the VMEbus Address Address

See the description of the KAV$IN_MAP service for more information.

3.6.3 Byte Swapping During SGM Operations

The KAV30 arranges the bytes in each longword it uses in little-endian format.
However, VMEbus and VSB devices arrange the bytes in a longword in big-
endian format. Therefore, when you want to transfer information between the
KAV30 and a big-endian device, swap the bytes in the longword to preserve
the order of the data. Figure 3—13 shows the little-endian data format.
Figure 3-14 shows the big-endian data format.

3-18 KAV30 Kernel

KAV30 Kernel

Figure 3-13 Little-Endian Storage Format

Word 1 Word 0

The KAV30 can perform the following types of byte swapping:

Mode 0 swapping

Two terms are commonly used to describe mode 0 byte swapping: no swap,
and byte and word swap. The term no swap refers to the relative position
of the bytes in the two formats. That is, both devices process the data in
the same order. For example, the byte at bit 0 in the big-endian format is
the byte at bit 0 in the little-endian format. The term byte and word swap
refers to the hardware operation that the byte swap logic circuitry performs
on the data. That is, the byte swap logic swaps the low-order and high-
order bytes in each word, and then swaps the low-order and high-order
words in the longword. Figure 3—15 shows mode 0 byte swapping.

Mode 1 swapping
Mode 1 swapping is Digital reserved.

KAV30 Kernel 3-19

KAV30 Kernel

Figure 3—-15 Mode 0 Byte Swapping

31l 24 23 ... 16 15 oo S 0
Big-Endian
Byte 3 Byte 2 Byte 1 Byte 0 Device
Byte 0 Byte 1 Byte 2 Byte 3 KAV30
O S A : T 1516 ceeeees 28324 31

3-20 KAV30 Kernel

KAV30 Kernel

* Mode 2 swapping

Note

When you use mode 2 swapping, you can perform only word-aligned
word accesses and longword-aligned longword accesses.

Mode 2 swapping is also referred to as word swapping. This is because the
low-order and high-order words in the longword are swapped. Figure 3-16
shows mode 2 swapping.

* Mode 3 swapping

Note

When you use mode 3 swapping, you can perform only word-aligned
word accesses and longword-aligned longword accesses.

Two terms are commonly used to describe mode 3 byte swapping: byte
and word swap, and no swap. The term byte and word swap refers to the
relative position of the bytes in the two formats. That is, although the
two formats receive identical data, big-endian devices process the data in
a different manner than the little-endian devices. For example, the byte
at bit 0 in the big-endian format is identical to the byte at bit 24 in the
little-endian format. The term no swap refers to the hardware operation
that the byte swap logic circuitry performs on the data. That is, the byte
swap logic circuitry does not perform any hardware operation on the data.
Figure 3-17 shows mode 3 byte swapping.

3.7 Communicating with Another KAV30

This section describes how two KAV30s can communicate with each other. A
KAV30 can communicate with another KAV30 in two ways:

* By using shared memory pages to access the system RAM of the other
KAV30

KAV30 Kernel 3-21

KAV30 Kernel

Figure 3-16 Mode 2 Byte Swapping

31, 24 23.......... 16 16........... 8 7eeaan 0
Big—-Endian
Word 1 Word 0 Device
Word 0 Word 1 KAV30
O, 7 8 15 16 ccaaa... 2324 ... 31

Two KAV30s in a VMEbus system can communicate using shared memory
pages. The shared memory pages map physical pages from one of the
modules into a virtual address space on both modules. The module whose
physical page the shared memory page uses is the slave module. However,
it is possible to configure the system so that the physical memory of both
modules has a shared memory page.

3-22 KAV30 Kernel

KAV30 Kernel

Figure 3-17 Mode 3 Byte Swapping

SO 0
Big—Endian
Longword
9 Device
Longword KAV30
L 31

The shared memory pages provide the fastest method for one KAV30 to
pass information to another KAV30, because the modules have the data
area mapped into their virtual address space.

When two KAV30s use shared memory pages to communicate, the
application program must provide proper synchronization methods to
ensure data integrity.

* By reading and writing the FIFO buffers on the other module

Two KAV30s can also communicate using the KAV30 FIFO buffers. To
write data to the FIFO buffer of another KAV30, the first module uses

the KAV$BUS_WRITE kernel service with the KAV$M_FIFO_ACCESS
modifier to write the data to the VMEbus address space. The second
module uses its incoming SGM to map the FIFOs onto the VMEDbus address
space. The second module then uses the KAVSFIFO_READ service to read
the data in the FIFO buffers.

KAV30 Kernel 3-23

KAV30 Kernel

The FIFO buffers method has the advantage that the sender does not have
to wait for the receiver to process data before it sends more data to the
receiver.

Communicating using the KAV30 FIFO buffers is preferable, except when you
want to transfer large amounts of data. In this case, the shared memory pages
method is preferable.

In VMEbus systems containing two KAV30s, ensure that you do not configure
the modules at the same VMEbus base address.
Note

When a VMEbus system contains two KAV30s with the same VMEbus
base address, unpredictable results occur.

3.8 KAV30 Error Logging Support

This section describes the KAV30 error logging support. The KAV30 logs errors
that you generate in its battery backed-up RAM. When you build error-logging
into the system, the KAV30 also logs errors in the KAV30 error log file. The
KAV30 kernel creates the error log file and sends it to the host system if a
DECnet™ connection to the host is available.

The KAV30 logs the following errors:
* Bus errors and timeouts

* Invalid SGM entries

* SGM access violations

You can analyze the KAV30 error log file, using the VMS Error Log Utility.
However, the reports that this utility generates are primarily intended to assist
Digital Customer Services personnel. (See the VAXELN Development Utilities
Guide for more information on VAXELN error logging.)

Note

You might want to build two versions of a system: one with error
logging support and the other without error logging support. Then, if
problems arise, you can run the version with error logging to analyze
the problem.

3-24 KAV30 Kernel

KAV30 Kernel

Error log-reports contain two sections: the identification section and the
device-dependent data section. The identification section consists of the first
four lines of the report. The device-dependent data section, which follows the
identification section, contains information about the selected error log entries.
Each line in this section gives a hexadecimal value and a short description

of what the value signifies. See the VMS Error Log Utility Manual for more
information.

There are two types of error log entry: error log entries for errors that occur
while the KAV30 acts in master mode, and error log entries for errors that
occur while the KAV30 acts in slave mode. Figure 3—18 shows a sample error
log report entry for an error that occurred while the KAV30 was acting in
master mode. Figure 3-19 shows a sample error log report entry for an error
that occurred while the KAV30 was acting in slave mode.

Figure 3—-18 Sample Master Error Log Entry

KAKKKAAKKK KKK KK KKK KX KKKk x K kX x % ENTRY GAA. *xxkkkkkhhkhk kAR KKKk hhhkh kKK Kk Kk K
ERROR SEQUENCE 20479. LOGGED ON: SID 0A000006
DATE/TIME 1-FEB-1991 21:30:31.53 SYS TYPE 09100002

SCS _NODE: KAV30E
1)

$SNDERR MESSAGE KA300 CPU REV# 7. FW REV# 1.0 (2]
MESSAGE TEXT
00007E0C Status Code ©
3944000B VME/VSB Master AM & Error Code & Retry Count (4]
00F03038 VME/VSB Address Accessed @
8000B7C0 pC O
00c80009 PSL @

KhkKKKkKKKRA KRR KRR I AR A KRk AR Ak ARk Rk hkkhkkhhhkhkkhhkkkhkkkhkkhkkkkkkkkhkkkkhkkkkh k%

Figure 3-19 Sample Slave Error Log Entry

KhkkKKKK kKKK KKK KX KKKKX KKKk A k%% ENTRY D4, KkkkkkKhkKhAhhkhhk Kk kkkk Kk kX Kk
ERROR SEQUENCE 2. LOGGED ON: SID 0A000006
DATE/TIME 28-Jan-1991 15:15:30.87 SYS TYPE 09100002

SCS NODE: KAV30D
(1]
$SNDERR MESSAGE KA300 CPU REV# 7. FW REV# 1.0 @

(continued on next page)

KAV30 Kernel 3-25

KAV30 Kernel

Figure 3—19 (Cont.) Sample Slave Error Log Entry
MESSAGE TEXT
00007E3C Status Code ©
00000084 VME Slave Error Status @
00000001 VME Slave Error count @

Kk KKk KRk K Rk R A AR R A ARk AR A A AR A AR A A kA kA Rk Ak kA m ARk kXK kh kK kA XKk kX xhkkhkkkkkkkkkkkkh k%

The following list explains the information labeled with callouts in Figure 3—-18
and Figure 3-19.

© The first four lines make up the identification section. See the VMS Error
Log Utility Manual for a description of the information contained in the
identification section.

@ This line gives the following information:
¢ The mechanism used to write the error log entry into the error log file
¢ The CPU type
* Hardware and firmware revision levels

© This line gives the KAV30 status code for the error. The status codes
returned by KAV30 services are similar to those returned by VAXELN
kernel procedures. All of these codes follow the VAX convention for
status codes. A message is associated with each status code. You can
use the ELN$GET_STATUS_TEXT VAXELN message-processing routine
to retrieve the message text associated with a specified status code. An
application can use these routines to retrieve a message text from the
system message files or user-created message files. See the VAXELN
Runtime Facilities Guide for more information.

O The contents of this line depend on whether the error occurred while the
KAV30 was acting in master mode or slave mode:

e If the error occurred while the KAV30 was acting in master mode, this
line provides the following:

— The VMEDbus or VSB Address Modifier (AM) bits
— The internal master error code

— The number of times the KAV30 kernel retried to gain control of
the VMEbus or VSB

3-26 KAV30 Kernel

KAV30 Kernel

The high-order byte of the status code provides the AM bits that the
KAV30 was using when the error occurred.

The next byte gives the internal master error code. Table 3-1 explains
the bits of the internal master error code.

Table 3—1 Internal Master Error Code

Bit

Value Meaning

0

0 The SGM entry for the VMEbus or VSB address is valid.

The SGM entry for the VMEbus or VSB address is invalid.

The SGM entry for the VMEbus or VSB address is not write protected.
The SGM entry for the VMEbus or VSB address is write protected.
The KAV30 local bus timeout timer has not expired.

The KAV30 local bus timeout timer has expired.

The KAV30 was trying to gain control of the VMEbus when the error
occurred.

1 The KAV30 was trying to gain control of the VSB when the error
occurred.

0 The KAV30 did not access one of the FIFO buffers on the module when
the error occurred.

1 The KAV30 accessed one of the FIFO buffers on the module when the
error occurred.

0 The VMEbus IACK cycle did not fail.
The VMEbus IACK cycle failed.

0 The KAV30 did not have control of the VMEbus or VSB when the error
occurred.

The KAV30 had control of the VMEbus or VSB when the error occurred.

0 The KAV30 was performing a write operation when the error occurred.

O H O H O M

The KAV30 was performing a read operation when the error occurred.

The low-order word contains the number of times the KAV30 kernel
retried to gain control of the bus (this does include the retries
performed by the KAV30 hardware). In this sample master error
log entry the KAV30 kernel performed eight software retries.

If the error occurred while the KAV30 was acting in slave mode, this
line gives the internal slave error code. Table 3—2 explains the bits of
the internal slave error code.

KAV30 Kernel 3-27

KAV30 Kernel

Table 3-2 Internal Slave Error Code
Bit Value Meaning

0 The SGM entry for the VMEbus address is valid.

The SGM entry for the VMEbus address is invalid.

The SGM entry for the VMEbus address is not write protected.

The SGM entry for the VMEbus address is write protected.

The KAV30 local bus timeout timer has not expired.

The KAV30 local bus timeout timer has expired.

The KAV30 was accessing system RAM when the error occurred.
The KAV30 was accessing the FIFO buffers when the error occurred.

When the bit 3 has the value 1, the KAV30 was accessing a FIFO port
when the error occurred.

1 When the bit 3 has the value 1, the KAV30 was accessing FIFO memory
when the error occurred.

(=]

[\
S H O H O = O H

5 0 The KAV30 was performing a write operation when the error occurred.
The KAV30 was performing a read operation when the error occurred.

6 When bit 3 has the value 1, bit 6 contains the value of the least
significant bit of the FIFO port number that you were accessing when
the error occurred.

7 When bit 3 has the value 1, bit 7 contains the value of the most
significant bit of the FIFO port number that you were accessing when
the error occurred.

©® The contents of this line depend on whether the error occurred while the
KAV30 was acting in master mode or slave mode:

e If the error occurred while the KAV30 was acting in master mode, this
line gives the VMEbus or VSB address that the KAV30 tried to access.
In this case, the address was 00F0 30381g. The address is always
longword aligned.

e If the error occurred while the KAV30 was acting in slave mode, this
line gives the address being accessed when the error occurred.

@ This line is displayed in the error log entry only when the error occurred
while the KAV30 was acting in master mode. This line gives the value
of the Program Counter (PC) when the error occurred. If the KAV30
was trying to perform a read operation, the PC points to the failing
instruction. If the module was trying to perform a write operation by
accessing the VMEbus or VSB directly rather than using the KAV$BUS_

3-28 KAV30 Kernel

KAV30 Kernel

READ or KAV$BUS_WRITE kernel services, this PC is of no value. This
is because the rtVAX 300 processor performs disconnected write operations
(see Section 5.1.1 for more information).

This line is displayed in the error log entry only when the error occurred
while the KAV30 was acting in master mode. This line lists the value of
the processor status longword when the error occurred.

KAV30 Kernel 3-29

4

KAV30 System Services

This chapter describes the KAV30 system services. Each service description
has the following format:

An overview of the service

The call format for the service in each supported language
A list of the arguments for the service

A list of the status values returned by the service

A list of related services

Examples

KAV30 System Services 4-1

KAV$BUS_BITCLR

KAV$BUS_BITCLR

Clears the bits at a specified VMEbus or VSB address according to a specified
bit mask.

Note

This service performs read-modify-write cycles on the VMEbus or VSB.

The VMEbus or VSB address that you specify must be mapped to the KAV30
system virtual address (SO) space via the incoming SGM.

You can clear the bits in a byte, a word, or a longword. However, the VMEbus
or VSB device containing the bits that you want to clear must allow the type
of access that you specify. Also, when you want to clear the bits in a word or a
longword, ensure that the address you specify is aligned to a word or longword.

The bit mask indicates the bits that you want to clear. For each bit that is
set in the bit mask, this service clears the corresponding bit at the VMEbus or
VSB address.

Calls to this service can result in VMEbus or VSB errors such as arbitration
failures and bus timeouts. When the KAV$M_NO_RETRY flag in the
KAV$OUT_MAP service is not set, the KAV30 retries 29 times to clear the
bits. However, the KAV30 kernel can direct the module to perform additional
retries—you can specify this when you build the system. See Section 5.4 for
more information.

4-2 KAV30 System Services

KAV$BUS_BITCLR

Ada Call Format
WITH KAVDEF;

KAV_BUS_BITCLR ([STATUS => status,]
DATA_TYPE => data_type,
VIRTUAL_ADDRESS => virtual_address,
MASK => mask);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

data_type : in INTEGER,;

virtual_address : in SYSTEM.ADDRESS;

mask : in INTEGER;

C Call Format
#include $vaxeinc
#include "eln$:kavdef.h"

int kav$bus_bitclr ([status],
data_type,
virtual_address,
mask)

argument information

int *status;

int data_type;

void *virtual_address;
int mask;

KAV30 System Services 4-3

KAV$BUS_BITCLR

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR'
CALL KAV$BUS BITCLR ([status],

%VAL(data_type),
virtual_address,
%VAL(mask))

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

status
data_type
virtual_address
mask

Pascal Call Format
INCLUDE $KAVDEF;

KAV$BUS_BITCLR ([STATUS := status,]

data_type,
virtual_address,
mask)

argument information

status : INTEGER,;
data_type : INTEGER;
virtual_address : AANYTYPE;
mask : INTEGER,;

4-4 KAV30 System Services

KAV$BUS_BITCLR

Arguments
status
Usage: Longword (unsigned)
VAX Type: cond_value
Access: Write only

Mechanism: Reference

Receives the completion status.

data_type

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies whether this service clears the bits in a byte, a word, or a longword.
Specify one of the following values:

KAV$K_BYTE Clears the bits in a byte
KAV$K_LONGWORD Clears the bits in a longword
KAV$K_WORD Clears the bits in a word

The VMEbus or VSB device containing the bits that you want to clear must
allow accesses of the type that you specify.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the virtual address, in SO address space, of the bits that you want to
clear.

To calculate the VMEbus or VSB address, follow these steps:

1. Calculate the base address of the VMEDbus or VSB device containing the
bits that you want to clear. The KAVSOUT_MAP service returns the base
VMEbus or VSB address of a device. See the description of the KAV$OUT_
MAP service for more information.

2. Calculate the offset, into the device’s address space, of the bits that you
want to clear.

KAV30 System Services 4-5

KAV$BUS_BITCLR

3. Add the base address to the offset.

mask

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the bit mask that indicates the bits to clear. The bit mask is the
type that you specify in the data_type argument. For example, if you specify
KAV$K_WORD for the data_type argument, the bit mask is in the low-order 16
bits of the mask address.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_BUS_ARB_ERROR A VMEDbus or VSB arbitration failure occurred.
KAV30$_BUS_RD_ERROR A VMEDbus or VSB read error occurred.
KAV30$_BUS_WRT ERROR A VMEbus or a VSB write error occurred.

KAV30$_INVALID_SG_ You specified an invalid SGM entry.

ENTRY

KAV30$_NO_BUS_RD_RESP There was no read response from the device.

KAV30$_NO_BUS_WRT_ There was no write response from the device.

RESP

KAV30$_WRPROT_SG_ You attempted to write to a write-protected

ENTRY SGM entry.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_NO_ACCESS The service could not access an item.

KER$_SUCCESS The operation was successful.

4-6 KAV30 System Services

KAV$BUS_BITCLR

" Related Services

KAV$BUS_BITSET KAV$BUS_WRITE
KAV$BUS_READ

Examples

The following code is an example program that calls the KAV$BUS_
BITCLR service:

~
>*

Facility: KAV30 VAXELN System Services programming example.

Description: This is an example program demonstrating the calling
procedures for the following KAV System Services:
1. KAVSVME SETUP (Configure VMEbus interrupting,...)

2. KAVSOUT MAP (Map onto VMEbus address)
3. KAV$BUS BITSET (Set a bit at a VMEbus address)
4. KAVSBUS_BITCLR (Clear ceed)
Abstract: This program assumes that there is a VME-bus device located

on the bus, at the address specified below.
It performs a bit-clear and a bit-set on two of this
device’s registers.

Language: Vax C; Version 3.1

Notes: (1) If there is no device located on the VME-bus at the
specified address, then the KAV System Service routines
will return errors (in the ’status’ variable).

(2) The device is assumed to be set up for 24-bit addressing.
(3) In the interests of program clarity, no error checking has
been included.

* % ok ok 3k %k X 3 ok 3k % X X >k %k ¥ Xk o F % % ¥ F

>*
~

#include stdio
#include $vaxelnc
#include <eln$:kavdef.h> /* KAV30 definitions file. */

KAV30 System Services 4-7

KAV$BUS_BITCLR

/*
* The following definitions are device-specific.

*/

#define DEVICE ADDRESS 0xfe0000 /* Base address of the device. */
#define REGISTER BASE 0x0e00 /* The rotary switch on the KAV */

/* module must be set up to */
/* agree with this addressing. */
#define REGISTER1 OFFSET 0x01 ; /* Offset of first register. */

#define REGISTER2 OFFSET 0x03 ; /* Offset of second register. */

main()
{
unsigned long am code,
setup functions,
buffer,
entry,
vir addr,
phys_addr ;
unsigned long *registerl address, /* Note these are address POINTERS. */
*register2 address ;
int status,
page_count,
map_functions ;

unsigned char bit0 = 0x01, /* Bit-0 (least significant bit in byte). */
bit7 = 0x80 ; /* Bit-7 (most). */
/%
* Setup the VME functions to disable the VME-device from interrupting.
*
*/
buffer 0x00000000; /* No IRQ allowed by VME-device */

setup_functions
KAVSVME SETUP(&status, setup functions, &buffer);

KAVSK ALLOW VME IRQ;

/*
* Map into the device register region.

*

*/

page_count =1; /* Number of 64K pages. */
phys_addr = DEVICE ADDRESS ;

am_code = KAVSK USER 24 ; /* Standard User Mode addressing.*/
map_functions = KAVSM VME + KAVSM MODE 0 SWAP; /* Byte/Word Swapping. */

KAVSOUT MAP(&status, &entry, page_count,
phys _addr, &vir addr,
am code, map_ functions);
/%
* Setup the register pointers (virtual)
x/
registerl address
register2 address

vir_addr + REGISTER BASE + REGISTERL OFFSET ;
vir_addr + REGISTER BASE + REGISTER2 OFFSET ;

4-8 KAV30 System Services

KAV$BUS_BITCLR

/* (we are now able to access the device’s registers)
*

* SET bit-0 in first register.
*
*/
KAVSBUS BITSET(&status,
KAVSK BYTE,
registerl address,
bit0) ;
/%
* CLEAR bit-0 in second register.
*
*/
KAV$BUS BITCLR(&status,
KAVSK BYTE,
register2_address,
bit7) ;
} /* end -program- */

KAV30 System Services 4-9

KAV$BUS_BITSET

KAV$BUS_BITSET

Sets the bits at a specified VMEbus or VSB address according to a specified bit
mask.

Note

This service performs read-modify-write cycles on the VMEbus or VSB.

The VMEbus or VSB address that you specify must be mapped to the KAV30
system virtual address (SO) space via the incoming SGM.

You can set the bits in a byte, a word, or a longword. However, the VMEbus
or VSB device containing the bits that you want to set must allow the type

of access that you specify. Also, when you want to set the bits in a word or a
longword, ensure that the address you specify is aligned to a word or longword.

The bit mask indicates the bits that you want to clear. For each bit that is set
in the bit mask, the service sets the corresponding bit in the VMEbus or VSB
address.

The calls to this service can result in VMEbus or VSB errors such as
arbitration failures and bus timeouts. When the KAV$M_NO_RETRY flag

in the KAVSOUT_MAP service is not set, the KAV30 retries 29 times to set the
bits. However, the KAV30 kernel can direct the module to perform additional
retries — you can specify this when you build the system. See Section 5.4 for
more information.

4-10 KAV30 System Services

KAV$BUS_BITSET

Ada Call Format
WITH KAVDEF;

KAV_BUS_BITSET ([STATUS => status,]
DATA_TYPE => data_type,
VIRTUAL_ADDRESS => virtual_address,
MASK => mask);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

data_type : in INTEGER;

virtual_address : in SYSTEM.ADDRESS;

mask : in INTEGER,;

C Call Format
#include $vaxeinc
#include "eln$:kavdef.h"

int kav§bus_bitset ([status],
data_type,
virtual_address,
mask)

argument information

int *status;

int data_type;

void *virtual_address;
int mask;

KAV30 System Services 4-11

KAV$BUS_BITSET

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'

CALL KAV$BUS_BITSET ([status],
%VAL(data_type),
virtual_address,

%VAL(mask))
argument information
INTEGER*4 status
INTEGER*4 data_type
INTEGER*4 virtual_address
INTEGER*4 mask

Pascal Call Format
INCLUDE $KAVDEF;

KAV$BUS_BITSET ([STATUS := status,)
data_type,
virtual_address,
mask)

argument information

status : INTEGER,;
data_type : INTEGER;
virtual_address : AANYTYPE;
mask : INTEGER;

4-12 KAV30 System Services

KAV$BUS_BITSET

Arguments
status
Usage: Longword (unsigned)
VAX Type: cond_value
Access: Write only

Mechanism: Reference

Receives the completion status.

data type

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies whether this service sets the bits in a byte, a word, or a longword.
Specify one of the following values:

KAV$K BYTE Sets the bits in a byte
KAV$K_LONGWORD Sets the bits in a longword
KAV$K_WORD Sets the bits in a word

The VMEDbus or VSB device containing the bits that you want to set must allow
the type of access that you specify.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the virtual address, in SO address space, of the bits that you want to
set.

To calculate the VMEbus or VSB address, follow these steps:

1. Calculate the base address of the VMEbus or VSB device containing the
bits that you want to set. The KAVSOUT_MAP service returns the base
VMEDbus or VSB address of a device. See the description of the KAVSOUT _
MAP service for more information.

2. Calculate the offset into the device’s address space of the bits that you
want to clear.

KAV30 System Services 4-13

KAV$BUS_BITSET

3. Add the base address to the offset.

mask

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the bit mask that indicates the bits to set. The bit mask is of the
type that you specify in the data_type argument. For example, if you specify
KAV$K_WORD for the data_type argument, the bit mask is in the low-order 16
bits of the mask address.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$ BUS_ARB_ERROR A VMEbus or VSB arbitration failure occurred.
KAV30$_BUS_RD_ERROR A VMEDbus or VSB read error occurred.
KAV30$_BUS_WRT ERROR A VMEbus or a VSB write error occurred.

KAV30$_INVALID_SG_ You specified an invalid SGM entry.

ENTRY

KAV30$_NO_BUS_RD_RESP There was no read response from the device.

KAV30$_NO_BUS_WRT_ There was no write response from the device.

RESP

KAV30$_WRPROT_SG._ You tried to write to a write-protected SGM

ENTRY entry.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_NO_ACCESS The service could not access an item.

KER$_SUCCESS The operation was successful.

4-14 KAV30 System Services

KAV$BUS_BITSET

Related Services

KAV$BUS_BITCLR KAV$BUS_WRITE
KAV$BUS_READ

Examples
See the examples in the description of the KAV$BUS_BITCLR service.

KAV30 System Services 4-15

KAV$BUS_READ

KAV$BUS_READ

Reads the contents of a VMEbus or VSB address. The VMEbus or VSB address
you read must be mapped to the KAV30 system virtual address (S0) space via
the outgoing SGM.

You can read data in byte, word, or longword format. However, ensure that the
VMEDbus or VSB device from which you read data allows the type of access you
specify.

When you call this service to read data from a FIFO buffer on another VMEbus
or VSB device, specify the KAV$M_FIFO_ACCESS and KAV$K_LONGWORD
values in the data_type argument. This causes the KAV$BUS_READ service
to read data from the same VMEbus or VSB address each time. If you do

not specify the value KAV$M_FIFO_ACCESS, the KAV$BUS_READ service
increments the address after each read operation, as follows:

e When the service reads data in byte format, it increments the address by 1

byte.
e When the service reads data in word format, it increments by 2 bytes.

* When it reads data in longword format, it increments by 4 bytes.

Note

Digital recommends that you exchange data by directly accessing the
VMEbus and VSB, rather than by calling the KAV$BUS_READ service.
See Section 5.1.1 for more information.

4-16 KAV30 System Services

KAV$BUS_READ

Ada Call Format
WITH KAVDEF:

KAV_BUS_READ ([STATUS => status,]
DATA_TYPE => data_type,
VIRTUAL_ADDRESS => virtual_address,
BUFFER => buffer,
COUNT => count);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

data_type : in INTEGER,;

virtual_address : in SYSTEM.ADDRESS;

buffer : in SYSTEM.ADDRESS;

count : in INTEGER;

C Call Format
#include $vaxelnc
#include "eln$:kavdef.h"

int kav$bus_read ([status],
data_type,
virtual_address,
buffer,
count)

KAV30 System Services 4-17

KAV$BUS_READ

argument information

int
int
void
int
int

*status;
data_type;
*virtual_address;
*buffer;

count;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'
CALL KAV$BUS READ ([status],

%VAL(data_type),
virtual_address,
buffer,
%VAL(count))

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

status
data_type
virtual_address
buffer

count

Pascal Call Format

INCLUDE $KAVDEF;
KAV$BUS_READ ([STATUS := status,]

data_type,
virtual_address,
buffer,

count)

4-18 KAV30 System Services

KAV$BUS_READ

argument information

status : INTEGER,;

data_type : INTEGER;

virtual_address : AANYTYPE;

buffer : AANYTYPE,;

count : INTEGER,;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

data_type

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value
Specifies the format of the data you want to read.

Specify one of the following values:

KAV$K BYTE Reads data in byte format
KAV$K_LONGWORD Reads data in longword format
KAV$K_WORD Reads data in word format
KAV$M_FIFO_ACCESS Reads data from a FIFO buffer

The VMEDbus or VSB device that you want to read from must allow the type of
access you specify.

KAV30 System Services 4-19

KAV$BUS_READ

Note

When you want to read data from a FIFO buffer on another VMEbus
or VSB device, specify the KAV$M_FIFO_ACCESS and KAV$K _
LONGWORD modifiers.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the virtual address, in SO space, where you want to begin reading
data. To calculate the address, follow these steps:

1. Calculate the base address of the VMEbus or VSB device containing the
bits that you want to read from. The KAV$OUT_MAP service returns
the base VMEbus or VSB address of a device. See the description of the
KAV$OUT_MAP service for more information.

2. Calculate the offset, into the device’s address space, that you want to read
from.

3. Add the base address to the offset.

When you read data from a FIFO buffer on another KAV30, use the following
offsets when calculating the address:

FIFO Buffer Offset

0 400044

1 401046

2 402016

3 403046

buffer

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Specifies the address of a buffer into which the KAV$BUS_READ service places
the data that it reads from the VMEbus or VSB device.

4-20 KAV30 System Services

KAV$BUS_READ

count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the number of data items (of the type specified by the data_type
argument) that the KAV$BUS_READ service reads from the VMEbus or VSB
device.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_BUS_RD_ERROR A VMEDbus or VSB read error occurred.
KAV30$_BUS_ARB_ERROR A VMEDbus or VSB arbitration failure occurred.

KAV30$_INVALID_SG._ You specified an invalid SGM entry.

ENTRY

KAV30$_NO_BUS_RD_RESP There was no read response from the device.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_NO_ACCESS The services could not access an item.

KER$_SUCCESS The operation was successful.

Related Services

KAV$BUS_BITCLR KAV$OUT_MAP
KAV$BUS_BITSET KAV$BUS_WRITE

KAV30 System Services 4-21

KAV$BUS_READ

Examples

The following code is an example KAV$BUS_READ call:

vir address = virtual address + '3603'X
3020 CALL KAVSBUS_READ (status,
%VAL (data_type),
%VAL(vir_address),
buffer,
VAL (count))
IF (.NOT. status) TYPE 3030, status
3030 FORMAT (1H, 'KAV$BUS READ, status is :’, Z4.4)

=W N

The file SYSSCOMMON:[SYSHLP.EXAMPLES.KAVIKAV_MVME.FOR
contains a program that calls the KAV$BUS_READ service

4-22 KAV30 System Services

KAV$BUS_WRITE

KAV$BUS_WRITE

Writes data to a VMEbus or VSB address. The VMEbus or VSB address you
write to must be mapped to the KAV30 system virtual address (S0) space via
the outgoing SGM.

You can write data in byte, word, or longword format. However, ensure that
the VMEbus or VSB device to which you write data allows the type of access
you specify.

When you call this service to write data to a FIFO or LIFO buffer on another
VMEbus or VSB device, specify the KAVSM_FIFO_ACCESS and KAV$K
LONGWORD values in the data_type argument. This causes the KAV$BUS_
WRITE service to write data to the same VMEbus or VSB address each time.
If you do not specify the KAV$M_FIFO_ACCESS value, the KAV$BUS_WRITE
service increments the VMEbus or VSB address after each write operation, as
follows:

* When it writes data in byte format, it increments the address by 1 byte

* When it writes data in word format, it increments the address by 2 bytes

¢ When it writes data in longword format, it increments the address by 4
bytes

Note

Digital recommends that you exchange data by directly accessing the
VMEbus and VSB, rather than by calling the KAV$BUS_WRITE kernel
service. See Section 5.1.1 for more information.

KAV30 System Services 4-23

KAV$BUS_WRITE

Ada Call Format
WITH KAVDEF:;

KAV_BUS_WRITE ([STATUS => status,]
DATA_TYPE => data_type,
VIRTUAL_ADDRESS => virtual_address,
BUFFER => buffer,
COUNT => count);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

data_type : in INTEGER,;

virtual_address : in SYSTEM.ADDRESS;

buffer : in SYSTEM.ADDRESS;

count : in INTEGER,;

C Call Format
#include $vaxeinc
#include "eIn$:kavdef.h"

int kav§bus_write ([status],
data_type,
virtual_address,
buffer,
count)

4-24 KAV30 System Services

argument information

int
int
void
void
int

*status;
data_type;
*virtual_address;
*buffer;

count;

KAV$BUS_WRITE

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR’

CALL KAV$BUS_WRITE ([status],
%VAL(data_type),
virtual_address,

buffer,
%VAL(count))
argument information

INTEGER*4 status
INTEGER*4 data_type
INTEGER*4 virtual_address
INTEGER*4 buffer
INTEGER*4 count

Pascal Call Format
INCLUDE $KAVDEF;

KAV$BUS_WRITE ([STATUS := status]
data_type,
virtual_address,
buffer,
count)

KAV30 System Services 4-25

KAV$BUS_WRITE

argument information

status : INTEGER;

data_type : INTEGER,;

virtual_address : AANYTYPE;

buffer : AANYTYPE;

count : INTEGER;
Arguments

status

Usage: . Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

data_type

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value
Specifies the format of the data you want to write.

Specify one of the following values:

KAV$K_BYTE Writes data in byte format
KAV$K_LONGWORD Writes data in longword format
KAV$K_WORD Writes data in word format
KAV$M_FIFO_ACCESS Writes data to a FIFO or LIFO buffer

The VMEbus or VSB device that you want to write to must allow the type of
access you specify.

4-26 KAV30 System Services

KAV$BUS_WRITE

Note

When you want to write data to a FIFO or LIFO buffer on another
VMEbus or VSB device, specify the KAV$M_FIFO_ACCESS and
KAV$K_LONGWORD values.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the virtual address, in SO space, where you want to begin writing
data. To calculate the address, follow these steps:

* Calculate the base address of the VMEbus or VSB device that you want to
write to. The KAV$OUT MAP service returns the base VMEbus or VSB
address of a device. See the description of the KAV$OUT_MAP service for
more information.

e (Calculate the offset, into the device’s address space, that you want to write
to.

e Add the address to the offset.

When you write data to a FIFO buffer on another KAV30, use the following
offsets when calculating the address:

FIFO Buffer Offset

0 400046
1 401044
2 402016
3 403016

KAV30 System Services 4-27

KAV$BUS_WRITE

When you write data to a LIFO buffer on another KAV30, use the following
offsets when calculating the address:

LIFO Buffer Offset
0 404044
1 405016
2 406016
3 407016
buffer

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Reference

Specifies the address of the buffer of data that the KAV$BUS_WRITE service
writes to the VMEbus or VSB.

count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the number of data items (of the type specified by the data_type
argument) that the KAV$BUS_WRITE service writes to the VMEbus or VSB.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_BUS_WRT _ERROR A VMEbus or a VSB write error occurred.
KAV30$_BUS_ARB_ERROR A VMEDbus or VSB arbitration failure occurred.

KAV30$_INVALID_SG_ You specified an invalid SGM entry.

ENTRY

KAV30$_NO_BUS_WRT_ There was no write response from the device.
RESP

4-28 KAV30 System Services

KAV$BUS_WRITE

KAV30$_WRPROT_SG_ You tried to write to a write-protected SGM

ENTRY entry.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_NO_ACCESS The services could not access an item.

KER$_SUCCESS The operation was successful.

Related Services

KAV$BUS_BITCLR KAV$OUT_MAP
KAV$BUS_BITSET KAV$BUS_READ
Examples

¢ The following code is an example KAV$BUS_WRITE call:

vir address virtual address + '3601'X

buffer r13'X
CALL KAV$BUS WRITE (status,
1 %VAL(data type),
2 %VAL (vir_address),
3 buffer,
4 $VAL (count))
IF (.NOT. status) TYPE 1040, status
1040 FORMAT(1H, 'KAV$BUS WRITE, status is :', Z4.4)

¢ The file SYSSCOMMON:[SYSHLP.EXAMPLES.KAV]IKAV_MVME.FOR
contains a program that calls the KAV$BUS_WRITE service

KAV30 System Services 4-29

KAV$CHECK_BATTERY

KAV$CHECK_BATTERY

Checks the power supply to the battery backed-up RAM and the calendar/clock.

The power supply to the battery backed-up RAM and calendar/clock can be one
of the following:

e Sufficient

When the power supply to the relevant devices is sufficient, the devices
have enough power to operate normally.

e Dead

When the power supply to the relevant devices is dead, the devices do
not have enough power to operate normally. The contents of the relevant
devices are unpredictable.

Ada Call Format
WITH KAVDEF;
KAV_CHECK_BATTERY (STATUS => status);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

4-30 KAV30 System Services

KAV$CHECK_BATTERY

C Call Format
#include $vaxelnc
#include "eln$:kavdef.h"

int kav§check_battery (status)

argument information

int *status;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR’
CALL KAV$CHECK_BATTERY (status)

argument information

INTEGER*4 status

Pascal Call Format
INCLUDE $KAVDEF;
KAV$CHECK_BATTERY (STATUS := status)

argument information

status : INTEGER,;

KAV30 System Services 4-31

KAV$CHECK_BATTERY

Arguments
status
Usage: Longword (unsigned)
VAX Type: cond_value
Access: Write only

Mechanism: Reference

Receives the completion status.

Status Values

KAV30$_BAD_BATTERY The KAV30 battery is dead.

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_SUCCESS The operation was successful.

Examples

* The file SYS$COMMON:[SYSHLP.EXAMPLES.KAVIKAV_MVME.FOR
contains a program that calls the KAV$CHECK_BATTERY service

4-32 KAV30 System Services

KAV$CHECK_BATTERY

The following code is an example KAVSCHECK_BATTERY call:

CALL KAVSCHECK BATTERY (status)

IF (.NOT. status) TYPE 100, status
100 FORMAT (1H, ’KAV$CHECK_BATTERY status is :’,24.4)
buffer = "00000000’X
setup_function = KAVSK ALLOW VME IRQ
CALL ~ KAVSVME SETUP ~ (status,
1 %VAL (setup function),
2 buffer)

IF (.NOT. status) TYPE 1000, status
1000 FORMAT (1H, ’KAV$VME_SETUP status is :’,74.4)

KAV30 System Services 4-33

KAV$CLR_AST

KAV$CLR AST

Clears a device’s AST queue. The service clears all the ASB data structures
and removes any pending ASTs.

This service uses the device code returned by the KAVSDEF_AST service to
identify the AST queue to clear.

You can also use this service to remove any ASTs that are pending as a result
of a call to the KAV$SET_AST service that specified a repeating AST. See the
description of the KAV$SET_AST service for more information.

Ada Call Format
WITH KAVDEF;
KAV_CLR_AST ([STATUS => status,]
DEVICE_CODE => device_codg);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;
device_code : in INTEGER,;

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int kavclr_ast ([status],
device_code)

argument information

int *status;
int device_code;

4-34 KAV30 System Services

KAV$CLR_AST

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'
CALL KAVSCLR_AST ([status],
%VAL(device_code))

argument information

INTEGER*4 status
INTEGER*4 device_code

Pascal Call Format
INCLUDE $KAVDEF;

KAVSCLR_AST ([STATUS := status,]
device_code)

argument information

status : INTEGER;

device_code : INTEGER;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

KAV30 System Services 4-35

KAVS$CLR_AST

device code

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies a code that identifies the AST queue to clear. Use the code that the
KAV$DEF_AST service returned when you defined the AST queue.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_SUCCESS The operation is successful.

Related Services

KAV$DEF_AST KAV$QUE_AST
KAVS$SET_AST

4-36 KAV30 System Services

KAV$DEF_AST

KAV$DEF_AST

Creates an AST queue for an event associated with a VMEbus or VSB device.
It allocates the first available AST queue to the device event and returns a
device code.

When you call the KAVCLR_AST, KAVQUE_AST, or KAV$SET_AST services
in relation to the device event, use the device code to identify the AST queue.
Call this service only once for each device event.

The KAV30 kernel sets up 256 AST queues, 37 of which are reserved for use
by the KAV30. This leaves a total of 219 queues available for VMEbus or VSB
devices.

See Section 3.1 for more information on ASTs.

Ada Call Format
WITH KAVDEF;
KAV_DEF_AST ([STATUS => status,]
DEVICE_CODE => device_code);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;
device_code : in INTEGER,;

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int kav§def ast ([status],
device_code)

KAV30 System Services 4-37

KAVS$DEF_AST

argument information

int *status;
int *device_code;

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR'
CALL KAV$DEF_AST (status,

device_code)

argument information

INTEGER*4 status

INTEGER*4 device_code
Pascal Call Format

INCLUDE $KAVDEF;

KAV$DEF_AST ([STATUS := status,]

device_code)

argument information

status : INTEGER,;

device_code : INTEGER;

4-38 KAV30 System Services

KAVS$DEF_AST

Arguments
status
Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Receives the completion status.

device _code

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Returns a code that identifies the AST queue. Use this code to identify the
queue when calling the KAVCLR_AST, KAVQUE_AST, and KAV$SET_AST

services.

Status Values

KAV30$_ASBQUOTA You have reached the maximum number of
ASBs for this device code.

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_SUCCESS The operation is successful.

KAV30 System Services 4-39

KAVSDEF_AST

Related Services

KAV$CLR_AST KAVS$SET_AST
KAV$QUE_AST

Examples

See the programs listed in Appendix C for examples of KAV$DEF_AST
service calls.

4-40 KAV30 System Services

KAVS$FIFO_READ

KAVS$FIFO_READ

Reads a specified number of aligned longwords from one of the KAV30 FIFO
buffers.

When you read data from a FIFO buffer on another KAV30, use the following
offsets when calculating the address to read from:

FIFO Buffer Offset
0 400014
1 401014
2 402016
3 403014

See Section 3.4 for information about the KAV30 FIFO buffers.

Ada Call Format
WITH KAVDEF;

KAV_FIFO_READ ([STATUS => status,]
FIFO_NUMBER => fifo_number,
BUFFER => buffer,
COUNT => count);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

fifo_number : in INTEGER;

buffer : in SYSTEM.ADDRESS;

count : in INTEGER;

KAV30 System Services 4-41

KAV$FIFO_READ

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int kav$fifo_read ([status],
fifo_number,
buffer,
count)

argument information

int *status;

int fifo_number;
int *buffer;

int count,;

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR’

CALL KAV$FIFO_READ ([status],
%VAL(fifo_number),

4-42 KAV30 System Services

buffer,
%VAL(count)
argument information
INTEGER*4 status
INTEGER*4 fifo_number
INTEGER*4 buffer
INTEGER*4 count

KAV$FIFO_READ

Pascal Call Format
INCLUDE $KAVDEF;

KAV$FIFO_READ ([STATUS := status,]
fifo_number,
buffer,
count)

argument information

status : INTEGER,;

fifo_number : INTEGER,;

buffer : AANYTYPE;

count : INTEGER;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

fifo_number

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the FIFO buffer to read from. Specify one of the following values:

KAV$K_FIFO_0 Reads data from FIFO number 0
KAV$K_FIFO_1 Reads data from FIFO number 1
KAV$K_FIFO_2 Reads data from FIFO number 2
KAVS$K FIFO 3 Reads data from FIFO number 3

KAV30 System Services 4-43

KAV$FIFO_READ

buffer

Usage: Longword (unsigned)
VAX Type: longword_unsigned

Access: Write only
Mechanism: Reference

Specifies the buffer into which this service places the data (in aligned
longwords) it reads from the FIFO buffers.

count

Usage: Longword (unsigned)
VAX Type: longword_unsigned

Access: Read only
Mechanism: Value

Specifies the number of aligned longwords to read from the FIFO buffer.

Status Values

KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_COUNT_OVERFLOW
KER$_NO_ACCESS
KER$_SUCCESS

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

There is a FIFO counter overflow.
The services cannot access an item.
The operation is successful.

Related Services

KAV$FIFO_WRITE
KAV$LIFO_WRITE

4-44 KAV30 System Services

KAV$NOTIFY_FIFO

KAV$FIFO_READ

Examples

See the programs listed in Appendix B for examples of KAV$FIFO_READ
service calls.

KAV30 System Services 4-45

KAV$FIFO_WRITE

KAV$FIFO_ WRITE

Writes a specified number of aligned longwords to one of the KAV30 FIFO
buffers in FIFO mode.

When you write data to a FIFO buffer on another KAV30, use the following
offsets when calculating the address to write to:

FIFO Buffer Offset

0 400016
1 401044
2 402016
3 403016

See Section 3.4 for information about the KAV30 FIFO buffers.

Ada Call Format
WITH KAVDEF;

KAV_FIFO_WRITE ([STATUS => status,]
FIFO_NUMBER => fifo_number,
BUFFER => buffer,
COUNT => count);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE,;

fifo_number : in INTEGER,;

buffer : in SYSTEM.ADDRESS;

count : in INTEGER;

4-46 KAV30 System Services

KAVS$FIFO_WRITE

C Call Format
#include $vaxelnc
#include "eln$:kavdef.n"

int kav$fifo_write ([status],
fifo_number,
buffer,
count)

argument information

int *status;

int fifo_number;
void *buffer;

int count;

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR’

CALL KAV$FIFO_WRITE ([status],
%VAL(fifo_number),

buffer,
%VAL(count))
argument information
INTEGER*4 status
INTEGER*4 fifo_number
INTEGER*4 buffer
INTEGER*4 count

KAV30 System Services 4-47

KAVS$FIFO_WRITE

Pascal Call Format
INCLUDE $KAVDEF:

KAV$FIFO_WRITE ([STATUS := status,]
fifo_number,
buffer,
count)

argument information

status : INTEGER,;
fifo_number : INTEGER,;
buffer : AANYTYPE;
count : INTEGER,;
Arguments
status
Usage: Longword (unsigned)
VAX Type: cond_value
Access: Write only

Mechanism: Reference

Receives the completion status.

fifo_number

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the FIFO buffer that you want to write to. Specify one of the following
values:

4-48 KAV30 System Services

KAVS$FIFO_WRITE

KAV$K_FIFO_0 Writes data to FIFO number 0
KAV$K_FIFO_1 Writes data to FIFO number 1
KAV$K_FIFO_2 Writes data to FIFO number 2
KAV$K_FIFO_3 Writes data to FIFO number 3
buffer

Usage: Longword (unsigned)

VAX Type: longword_unsigned

Access: Read only
Mechanism: Reference

Specifies the buffer of data that this service writes (in aligned longwords) into

the FIFO buffer.
count
Usage: Longword (unsigned)

VAX Type: longword_unsigned

Access: Read only
Mechanism: Value

Specifies the number of aligned longwords that this service writes into the

FIFO buffer.

Status

Values

KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_COUNT_OVERFLOW
KER$_NO_ACCESS
KER$_SUCCESS

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

There is a FIFO counter overflow.
The services cannot access an item.
The operation is successful.

KAV30 System Services 4-49

KAVSFIFO_WRITE

Related Services

KAV$FIFO_READ KAV$NOTIFY_FIFO
KAV$LIFO_WRITE

Examples

See the programs listed in Appendix B for examples of KAV$FIFO_WRITE
service calls.

4-50 KAV30 System Services

KAVSGATHER_KAV_ERRORLOG

KAV$GATHER_KAV_ERRORLOG

Reads the error log entries from the error-log area of the KAV30 battery
backed-up RAM.

When certain error conditions occur in devices on the KAV30, VMEbus, or
VSB, the KAV30 kernel writes an error code to its battery backed-up RAM. See
Section 3.8 for more information.

Ada Call Format
WITH KAVDEF;

KAV_GATHER_KAV_ERRORLOG ([STATUS => status,]
ERRORLOG_FUNCTIONS => errorlog_functions,
BUFFER => buffer);
ENTRY_COUNT => entry_count);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

errorlog_functions in INTEGER;

buffer : in SYSTEM.ADDRESS;

entry_count : in INTEGER;

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int kav§gather_kav_errorlog ([status],
errorlog_functions,
buffer,
entry_count)

KAV30 System Services 4-51

KAV$SGATHER_KAV_ERRORLOG

argument information

int
int
void
int

*status;
errorlog_functions;
*buffer;
entry_count;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'

CALL KAVSGATHER KAV_ERRORLOG ([status)],

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

%VAL(errorlog_functions),
buffer,
%VAL(entry_count))

status
errorlog_functions
buffer

entry_count

Pascal Call Format
INCLUDE $KAVDEF;

KAV$GATHER_KAV_ERRORLOG ([STATUS := status,]

4-52 KAV30 System Services

errorlog_functions,
buffer,
entry_count)

argument information

KAV$GATHER_KAV_ERRORLOG

status : INTEGER;

errorlog_functions : INTEGER;

buffer : AANYTYPE;

entry_count : INTEGER,;
Arguments

status

Usage: Longword (unsigned)

VAX Type: longword_unsigned

Access: Write only

Mechanism: Reference

Receives the completion status.

errorlog_functions

Usage: Longword (unsigned)
VAX Type: Longword_unsigned

Access: Read only

Mechanism: Value

Specifies the operation that you want to perform. Specify one of the following

values:
KAV$K_CLEAR_ERR

Initializes all the error log data and pointers

KAVS$K_INIT RD_POINTER Sets the error log read entry pointer to the

KAV$K_MASTER_ERR
KAV$K _SLAVE_ERR

KAV$K_ALL_ERR

value of the error log write entry pointer

Gathers the error log entries that were caused
by the master VMEbus and VSB accesses

Gathers the error log entries that were caused
by the slave VMEbus accesses

Gathers the error log entries that were caused
by slave and master accesses

KAV30 System Services 4-53

KAV$GATHER_KAV_ERRORLOG

buffer

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Specifies the address of a buffer to which the service returns the error log
entries. The service returns one 28-byte buffer segment for each error log
entry it returns. The buffer you specify must be long enough to return 28-byte
segments for each error log entry you want to read. The number of error log
entries you want to read is specified in the eniry_count parameter. When the
buffer area is not long enough, the kernel will return an error status.

The contents of the buffer segment detailing an error log entry depend on
whether you read a master error or a slave error. Master errors have the
following layout:

Message Status Code 0

AM EC Retry 4

VMEbus/VSB Address 8
PC 12
PSL 16
20

Absolute System
Time

24

4-54 KAV30 System Services

KAV$GATHER_KAV_ERRORLOG

Slave errors have the following layout:

Message Status Code 0
Error Status 4
Error Count 8
Reserved for Digital 12
Reserved for Digital 16
Absolute System 20
Time 24
entry_count
Usage: Longword (unsigned)

VAX Type: Longword_unsigned

Access: Read only
Mechanism: Value

Specifies the number of error log entries that you want to read from the battery

backed-up RAM.

Status Values

KAV30$_BAD_PARAM

KAV30$_END_OF_
ERRORLOG

KAV30$_ERRORLOG_
EMPTY

KER$_BAD_COUNT

You did not specify a parameter in the correct
format.

You have reached the end of the KAV30 error
log area.

There is no error of the type that you specified
in the error log area.

You did not specify the correct number of -
arguments.

KAV30 System Services 4-55

KAV$SGATHER_KAV_ERRORLOG

KER$_BAD_VALUE You did not specify a value in the correct
format.
KER$_NO_ACCESS The services cannot access an item.
KER$_SUCCESS The operation is successful.
Examples

The following code is an example program that calls the KAVSGATHER_
KAV_ERRORLOG service:

/*
* Facility: KAV30 VAXELN System Services programming example.

*

* Description: This is an example program demonstrating the calling

* procedures for the following KAV System Services:

* 1. KAVSOUT MAP (Map onto VMEbus address)
* 2. KAVSBUS READ (Read from VMEbus address)
* 3. KAVSGATHER KAV ERRORLOG (Read KAV error log)

*

* Abstract: This program induces a KAV error condition, then requests
* the error log.

*

* Language: Vax C; Version 3.1

*

* Notes: (1) In the interests of program clarity, no error checking has
* been included.

*/

#include stdio
#include $vaxelnc

#include <eln$:kavdef.h> /* KAV30 definitions file. */
#define INVALID ADDRESS Oxddeeff /* Non-existent address for error. */
main ()
{
unsigned long buff[4] ; /* ...to receive the error report. */
unsigned long entry,
am_code,
vir addr,
device code,
phys_addr ;
unsigned long *bad address ;
int status,

page_count,
map_functions ;

4-56 KAV30 System Services

/*
* Map into the device register region.
*

*/

page_count =1

phys_addr = INVALID ADDRESS ;
am code = KAVSK USER 24 ;

map_functions
KAVSOUT MAP (

/*
*
*

*

KAVS$BUS_READ (

/*
*
*

*

}o/x

&status, é&entry, page count,
phys_addr, &vir addr,
am code, map_functions);

KAVSM VME+KAVSM MODE 0 SWAP;

KAV$GATHER_KAV_ERRORLOG

READ from the VMEbus (this should induce an error).

/

&status,
KAVSK BYTE,
vir_addr,
buff,

1)

Request error report

/

device code = KAVSK ALL ERR ;

KAV$GATHER_KAV_ERRORLOG (&status,
device code,
buff) ;

printf ("\n\nKAV Error report: /n");

printf (" Error Count =3%d (%

printf (" Address of last error = %d (%

printf(" VME/VSB error code =% (%

printf (" KAV error code =% (%
end -program- */

x hex)/n", buff[0], buff[0
X hex)/n", buff[l], buff[l
x hex)/n", buff[2], buff[2
x hex)/n", buff[3], buff[3

):
)
);
)

— e e

KAV30 System Services 4-57

KAVSIN_MAP

KAVSIN_MAP

Maps one or more 64K byte pages (aligned on a 64K byte boundary) of the
VMEDbus address space into KAV30 process (P0) space or into the FIFO buffers
on the KAV30.

This service uses the incoming SGM to perform the mapping. See Section 3.6
for more information.

The programs calling the KAV$IN_MAP service specify the SGM entry number
for the first page of the VMEbus address space mapped into the KAV30

PO space. These programs subsequently use this number in a call to the
KAV$UNMAP service to free pages of KAV30 PO space when mapping is no
longer required. The SGM entry must be in the range 0 to 15 for A24 mode
VMEDbus addresses and in the range 0 to 255 for A32 mode VMEbus addresses.

A calling program can set a modifier that forces the KAV30 to interrupt the
kernel if any VMEbus device accesses the part of the VMEbus address space
mapped by the incoming SGM map to KAV30 PO space. The kernel then
queues an AST to the process that called the KAVSIN_MAP service. This
function is called a location monitor. The location monitor also specifies the
interrupt priority level at which the KAV30 kernel delivers the interrupt.

The KAV30 kernel can also set write protection on the pages of PO space to
which the VMEbus address space is mapped. This prevents the VMEbus
devices from accidentally writing the part of the VMEbus address space
mapped to the KAV30 PO space.

The KAV30 is a little-endian device, so to exchange data with a big-endian
device, you must translate the data from big-endian format to little-endian
format. This service can map the address space directly to KAV30 PO space, or
it can specify byte-swapping or word-swapping as part of the mapping. When
a VMEbus device subsequently reads or writes the VMEbus address space, the
address space mapped into the KAV30 PO space is transformed according to
the swapping operations specified by this service. See Section 3.6.3 for more
information about data mapping.

4-58 KAV30 System Services

KAV$IN_MAP

Ada Call Format
WITH KAVDEF;

KAV_IN_MAP ([STATUS => status,]
SGM_ENTRY => sgm_entry,
PAGE_COUNT => page count,
VIRTUAL_ADDRESS => virtual_address,
[AST_ADDR => ast addr,
[AST_PARAM => ast param,]
MAP_FUNCTIONS => map_functions);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

sgm_entry : in INTEGER;

page_count : in INTEGER,;

virtual_address : out SYSTEM.ADDRESS;

ast_addr : in SYSTEM.ADDRESS;

ast_param : in INTEGER;

map_functions : in INTEGER;

C Call Format
#include $vaxelnc

#include "eln$:kavdef.n"

int kav§in_map ([status],
entry,
page_count,
virtual_address,
[ast_addh,
[ast_param),
map_functions)

KAV30 System Services 4-59

KAVS$IN_MAP

argument information

int *status;

int entry;

int page_count;

void **pirtual_address;

void *ast_addr();

int ast_param;

int map_functions;
FORTRAN Call Format

INCLUDE 'ELN$:KAVDEF.FOR'

CALL KAVSIN_MAP ([status],

%VAL(entry),

%VAL(page_count),
virtual_address,
[ast_adar],
[%VAL(ast_param)),
%VAL(map_functions))

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

status

entry
page_count
virtual_address
ast_addr
ast_param
map_functions

4-60 KAV30 System Services

KAVS$IN_MAP

Pascal Call Format
INCLUDE $KAVDEF;

KAVSIN_MAP ([STATUS = status,]
entry,
page_count,
virtual_address,
[AST_ADDR := ast _addr,
[AST_PARAM := ast param,
map_functions)

argument information

status : INTEGER;

entry : INTEGER;

page_count : INTEGER;

virtual_address : AANYTYPE;

ast_addr : A"ANYTYPE;

ast_param : INTEGER;

map_functions : INTEGER,;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

entry

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

KAV30 System Services 4-61

KAVS$IN_MAP

Specifies one of the following:

* The SGM entry number for the first page of VMEbus address space that
you want to map into KAV30 PO space

¢ The SGM entry number for the first page of VMEbus address space that
you want to map into the KAV30 FIFO buffers

page_count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the number of successive 64K byte pages of data that you want to
map.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Returns the virtual address in KAV30 PO space that corresponds to the starting
address of the 64K byte page of VMEbus address space. This service does not
return a virtual address if the map_functions argument has the value KAV$M_

CSR.

ast_addr

Usage: Procedure entry mask
VAX Type: procedure

Access: Read only

Mechanism: Reference

When you enable the location monitor in the map_functions argument, this
argument specifies the address of the AST routine that the KAV30 kernel
executes whenever a device reads to or writes from the pages that you want to
map. See Section 3.1 for more information about ASTs.

ast_param

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the parameter that you want to pass to the AST routine.

4-62 KAV30 System Services

KAVSIN_MAP

map_functions

Usage: Longword (unsigned)
VAX Type: mask_longword
Access: Read

Mechanism: Value
Specifies the following information that controls the mapping operation:

¢ The mapping direction—whether you want to map pages of VMEbus
address space into the KAV30 PO space or into the KAV30 FIFO buffers

¢ The location monitor
e The byte swapping mode
¢ The write-protection of a mapped area

Specify one or more of the following modifiers:

KAV$M_LOCMON_IPL15 Interrupts at IPL 154.
KAV$M_LOCMON_IPL16 Interrupts at IPL 164¢.
KAV$M_LOCMON_IPL17 Interrupts at IPL 174.

KAV$M_CSR Maps data from the VMEbus address space
into one of the KAV30 FIFO buffers. If you
do not supply this modifier, the KAV30 kernel
maps VMEbus address space into the KAV30

PO space.
KAV$M_MEMORY Maps the VMEbus address space into the
KAV30 PO space.
KAV$M_MODE_0_SWAP Performs mode 0 swapping.
KAV$M_MODE_2_SWAP Performs mode 2 swapping.
KAV$M_MODE_3_SWAP Performs mode 3 swapping.
KAV$M_WRT_PROT Sets write-protection on the page of the system

RAM that you want to map to the VMEbus.

Ensure that the values you specify do not conflict with each other. For
example, do not specify the KAV$M_MODE_3_SWAP and KAV$M_MODE_0_
SWAP values together.

KAV30 System Services 4-63

KAVS$IN_MAP

Status Values

KAV30$_BAD_MODIFIER
KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_NO_ACCESS
KAV$_NO_MEMORY
KER$_NO_PORT

KAV$_NO_VIRTUAL
KER$_SUCCESS

You did not specify a modifier in the correct
format.

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The service cannot access an item.
There is no physical memory available.

There are no free SGM entry ports. Unmap
one or more SGM entries and retry the call.

There is no virtual address space available.
The operation is successful.

Related Services

KAV$UNMAP

4-64 KAV30 System Services

KAVS$IN_MAP

Examples

QOO0

Q

The following code is an example program that calls the KAV$IN_MAP
service:

Description: This is an example program demonstrating the calling
procedures for the following KAV System Services:
1. KAVSIN MAP (Map VMEbus address space into P0 space)
2. KAVSUNMAP (Free Scatter Gather Map [SGM])
Abstract: Maps an area of PO space, then relinquishes it.
Language: Vax Fortran; Version 5.5
Notes: (1) In the interests of program clarity, no error checking

is performed.

PROGRAM EX MAPPING
IMPLICIT NONE

INCLUDE ’ELNS:KAVDEF.FOR'

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

INTEGER*4

map_functions

YU WN -

status

entry

pagecnt

vir addr
phys_addr
am_code
map_functions

index

Example of *** IN MAP *** (without AST parameters)

pagecnt =1
index =1
entry =1

KAVSM CSR + KAVSM LOCMON IPL17 +KAVSM WRT PROT

CALL KAVSIN MAP (status,
~ VAL (entry),
%VAL (pagecnt),
vir addr,

I

’
%VAL (map_functions))

KAV30 System Services 4-65

KAVSIN_MAP

c Example of *** UNMAP ***
c
map_functions = KAVSM IN
CALL KAVSUNMAP (status,
1 %VAL (entry),
2 $VAL (pagecnt),
3 $VAL(vir_addr),
4 %VAL (map_functions))
9999 STOP
END

4-66 KAV30 System Services

KAVSINT VME

KAVSINT_VME

Delivers an IRQ to the VMEbus, reads pending IRQs on the KAV30, or clears
any pending VMEbus interrupts.

The int_functions argument specifies whether this service delivers, reads, or
clears interrupts. The irq_level argument specifies the IRQ level, and the in¢_
vector argument specifies the VMEbus interrupt vector.

The irq_level argument is a bit mask (only the low-order byte is used). The
bit mask specifies the IRQ level at which you want to generate the IRQ. For
example, the following diagram shows a bit mask that specifies a level 5 IRQ:

7 6 5 4 3 2 1 0

0 0 1 0 0 0 0 0 20 (hexadecimal)

t_ Reserved, must be zero

The int_vector argument is a value that uses only the low-order byte of the
argument. This value specifies the interrupt vector that the KAV30 uses to
interrupt the VMEbus. For example, the following diagram shows an interrupt
vector that has the value 34 (hexadecimal):

7 6 5 4 3 2 1 0

0 0 1 1 1 0 0 0 34 (hexadecimal)

L Reserved, must be zero

The KAV30 constructs the vector with which it interrupts the VMEbus module

KAV30 System Services 4-67

KAVSINT_VME

in the following steps:

1. The KAV30 decodes the IRQ level in the irg_level argument into its binary
value and places this value in the 3 low-order bits of the VMEbus vector,
as follows:

7 6 5 4 3 2 1 0

1 0 1 IRQ Level 5 = 101 (binary)

2. The KAV30 places the value specified by the in¢_vector argument in the 5

high-order bits of the VMEbus vector, as follows:
7 6 5 4 3 2 1 0

0 0 1 1 1 34 (hexadecimal)

Steps 1 and 2 result in the following VMEbus vector:
7 6 5 4 3 2 1 0

0 0 1 1 1 1 0 1 3D (hexadecimal)

To place a particular vector on the VMEbus, follow these steps:
1. Place the binary representation of the IRQ level in the 3 low-order bits

2. Fill in the other 5 bits with the values required to give the specific
interrupt vector

3. Place these values in the int_lvl and int_vector arguments respectively.

If the int_functions argument specifies the value KAV$K_RD, this service uses
this method to return the IRQ level in the irq_level argument and the interrupt
vector value in the int_vector argument.

The programs that use this service to generate interrupt requests at a
particular level must configure the KAV30 so that incoming VMEbus
interrupts at that level are disabled. See Section 5.4 and the description of
the KAV$VME_SETUP service for information about configuring the VMEbus.

4-68 KAV30 System Services

KAVSINT_VME

Ada Call Format
WITH KAVDEF;

KAV_INT_VME ([STATUS => status)]

INT_FUNCTIONS => int_functions,
IRQ_LEVEL => irq_level,
INT_VECTOR => int_vector);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;
int_functions : in INTEGER,;
irq_level : in out INTEGER;
int_vector : in out INTEGER,;
C Call Format
#include $vaxelnc
#include "eln$:kavdef.h"
int kav$int_vme ([status,]
int_functions,
irq_level,
int_vector)
argument information
int *status;
int int_functions;
int *irq_level,
int *int_vector;

KAV30 System Services

KAVSINT_VME

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR'

CALL KAVSINT_VME ([status],
%VAL(int_functions),
irg_level,
int_vector)

argument information

4-70 KAV30 System Services

INTEGER*4 status
INTEGER*4 int_functions
INTEGER*4 irq_level
INTEGER*4 int_vector
Pascal Call Format
INCLUDE $KAVDEF;
KAVSINT_VME ([STATUS := status,]
int_functions,
irq_level,
int_vector)
argument information
status : INTEGER;
int_functions : INTEGER,;
irq_level : INTEGER;
int_vector : INTEGER,;

KAVSINT _VME

Arguments
status
Usage: Longword (unsigned)
VAX Type: cond_value
Access: Write only

Mechanism: Reference

Receives the completion status.

int_functions

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the function that you want to perform. Specify one of the following

values:

KAV$K_RD Reads the IRQ currently pending on the
KAV30 and returns the interrupt vector (in
the int_vector argument) and the interrupt
level (in the irq_level argument).

KAV$K_VME_INT CLR Clears the interrupts that are currently
pending on the KAV30.

KAV$K _VME_REQ_INT Requests an interrupt at the IRQ level
specified by the irg_level argument.

irq_level

Usage: Longword (unsigned)

VAX Type: longword_unsigned

Access: Modify

Mechanism: Reference

If the int_functions argument specifies the value KAV$K_VME_REQ_INT, this
argument specifies the VMEbus IRQ level at which you want to generate an
IRQ on the VMEbus.

KAV30 System Services 4-71

KAV$INT_VME

The irq_level argument is a bit mask. However, this service uses only the
low-order byte of the bit mask. The bit mask specifies the IRQ level at which
you want to generate the IRQ, as follows:

7 6 5 4 3 2 1 0
AAIAIAIAIAIALA
L Reserved, must be zero

Generate IRQ at IRQ Level 1
Generate IRQ at IRQ Level 2
Generate IRQ at IRQ Level 3
Generate IRQ at IRQ Level 4
Generate IRQ at IRQ Level 5
Generate IRQ at IRQ Level 6
Generate IRQ at IRQ Level 7

If the int_functions argument specifies the KAVSK_RD value, the KAVSINT_
VME service returns the IRQ level in this argument.

It is not necessary to specify an IRQ level when clearing an interrupt.
Therefore, if the int_functions argument has the value KAVSK_VME_INT_
CLR, you can omit the irq_level argument.

int_vector

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Modify

Mechanism: Reference

Specifies the VMEbus vector that the KAV30 writes to the VMEbus when the
KAV30 receives an IACK signal from the VMEbus. The int_vector argument
is a value in which the 3 low-order bits must be 0, and the 5 high-order bits
contain the 5 high-order bits of the VMEbus interrupt vector.

If the int_functions argument has the value KAV$K_RD, the KAVSINT_VME
service returns the interrupt vector, for the IRQ currently pending on the
KAV30, in the low-order byte of the int_vector argument. However, it is not
possible to decode the 3 low-order bits.

4-72 KAV30 System Services

KAVSINT_VME

Status Values

KAV30$_BAD_MODIFIER
KAV30$_BAD_PARAM

KAV30$_VME_INT_PEND
KER$_BAD_COUNT

KER$_BAD_VALUE

KER$_NO_ACCESS
KER$_SUCCESS

You did not specify a modifier in the correct
format.

You did not specify a parameter in the correct
format.

An outgoing VMEDbus interrupt is pending.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The services cannot access an item.
The operation is successful.

Related Services

KAV$VME_SETUP

KAV30 System Services 4-73

KAVS$LIFO_WRITE

KAVSLIFO_WRITE

Writes a specified number of aligned longwords to one of the KAV30 FIFO
buffers in LIFO mode.

See Section 3.4 for information about the KAV30 FIFO buffers.

Ada Call Format
WITH KAVDEF;

KAV_LIFO_WRITE ([STATUS => status,]
FIFO_NUMBER => fifo_number,
BUFFER => buffer,
COUNT => count);

argument information

status : out SYSTEM.ADDRESS;
fifo_number : in INTEGER,;
buffer : in SYSTEM.ADDRESS;
count : in INTEGER;

C Call Format
#include $vaxelnc
#include "eln$:kavdef.h"

int kav$lifo_write ([status],
fifo_number,
buffer,
count)

4-74 KAV30 System Services

KAVSLIFO_WRITE

argument information

int *status;

int fifo_number;
void *buffer;

int count;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'

CALL KAVSLIFO_WRITE ([status],
%VAL(fifo_number),

buffer,
%VAL(count))
argument information
INTEGER*4 status
INTEGER*4 fifo_number
INTEGER*4 buffer
INTEGER*4 count

Pascal Call Format

INCLUDE $KAVDEF;
KAVSLIFO_WRITE ([STATUS := status)]

fifo_number,
buffer,
count)

KAV30 System Services 4-75

KAVSLIFO_WRITE

argument information

status : INTEGER,;

fifo_number : INTEGER,;

buffer : "ANYTYPE;

count : INTEGER,;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

fifo_number

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the FIFO buffer that you want to write to. Specify one of the following

values:

KAVS$K FIFO 0 Writes data to FIFO number 0
KAV$K _FIFO_1 Writes data to FIFO number 1
KAV$K _FIFO_2 Writes data to FIFO number 2
KAV$K FIFO_3 Writes data to FIFO number 3
buffer

Usage: Longword (unsigned)

VAX Type: longword_unsigned

Access: Read only

Mechanism: Reference

Specifies the buffer of data that this service writes (in aligned longwords) into
the FIFO buffer.

4-76 KAV30 System Services

KAVSLIFO_WRITE

count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the number of aligned longwords that this service writes into the
FIFO buffer.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD VALUE You did not specify a value in the correct
format.

KER$_COUNT_OVERFLOW There is a FIFO counter overflow.

KER$_NO_ACCESS The services cannot access an item.

KER$_SUCCESS The operation is successful.

Related Services

KAVS$FIFO_READ KAV$NOTIFY_FIFO
KAVS$FIFO_WRITE

KAV30 System Services 4-77

KAVSNOTIFY_FIFO

KAVS$SNOTIFY_FIFO

Delivers an AST when one of the KAV30 FIFO buffers make one of the
following transitions:

* From the state not full to the state full

* From the state not empty to the state empty

e From the state empty to the state not empty

See Section 3.4 for information about KAV30 FIFO buffers.

Ada Call Format
WITH KAVDEF;

KAV_NOTIFY_FIFO ([STATUS => status,]
FIFO_FUNCTIONS => fifo_functions,
FIFO_NUMBER => fifo_number,
AST_ADDR => ast _addr,
[AST_PARAM => ast param]);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

fifo_functions : in INTEGER,;

fifo_number : in INTEGER,;

ast_addr : in SYSTEM.ADDRESS;

ast_param : in INTEGER,;

4-78 KAV30 System Services

KAV$NOTIFY_FIFO

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int kav$notify_fifo ([status],
fifo_functions,
fifo_number,
ast adar,
[ast_param])

argument information

int *status;

int fifo_functions;
int fifo_number;
void *ast_addr();
int ast_param;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'

CALL KAVSNOTIFY_FIFO ([status],
%VAL(fifo_functions),
%VAL(fifo_number),
ast addr,
[%VAL(ast_param)])

KAV30 System Services 4-79

KAVS$SNOTIFY_FIFO

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

status
fifo_functions
fifo_number
ast_addr
ast_param

Pascal Call Format

INCLUDE $KAVDEF;
KAVSNOTIFY_FIFO ([STATUS := status,]

fifo_functions,

fifo_number,

ast addr,

[AST_PARAM := ast_param))

argument information

status : INTEGER,;
fifo_functions : INTEGER;
fifo_number : INTEGER;
ast_addr : AANYTYPE;
ast_param : INTEGER,;
Arguments

status

Usage: Longword (unsigned)
VAX Type: cond_value

Access: Write only
Mechanism: Reference

Receives the completion status.

4-80 KAV30 System Services

fifo_functions

KAV$NOTIFY_FIFO

Usage: Longword (unsigned)

VAX Type: Longword
Access: Read only
Mechanism: Value

Specifies the conditions that determine when the KAV30 delivers the AST.
Specify one or more of the following modifiers:

KAV$M_FIFO_EMPTY

KAV$M_FIFO_FULL

KAV$M_FIFO_NOT_EMPTY

KAV$M_RESET_FIFO

Delivers the AST when the FIFO buffer makes
the transition from the state not empty to

the state empty. If the FIFO buffer is empty
when you call this service, the KAV30 kernel
delivers the AST immediately.

Delivers the AST when the FIFO buffer makes
the transition from the state not full to the
state full. If the FIFO buffer is full when you
call this service, the KAV30 kernel delivers the
AST immediately.

Delivers the AST when the FIFO buffer makes
the transition from the state empty to the
state not empty. If the FIFO buffer is not
empty when you call this service, the KAV30
kernel delivers the AST immediately.

Resets the FIFO buffer.

The service clears the FIFO buffer memory,
pending AST delivery, and FIFO condition
interrupt.

You can specify the following combinations of values:
e KAV$M_FIFO_FULL and KAV$M_FIFO_EMPTY
e KAV$M_FIFO_FULL and KAV$M_FIFO_NOT_EMPTY

fifo_number

Usage: Longword (unsigned)
VAX Type: longword_unsigned

Access: Read only
Mechanism: Value

Specifies the FIFO buffer that you want to operate on.

KAV30 System Services 4-81

KAVSNOTIFY_FIFO

Specify one of the following values:

KAV$K_FIFO_0 Operates on FIFO buffer 0
KAV$K FIFO_1 Operates on FIFO buffer 1
KAV$K_FIFO_2 Operates on FIFO buffer 2
KAV$K FIFO_3 Operates on FIFO buffer 3
ast_addr

Usage: Procedure entry mask

VAX Type: procedure

Access: Read only

Mechanism: Reference

Specifies the address of the AST routine that you want to execute when the
FIFO buffer meets the conditions specified by the fifo_functions argument.

This argument is optional when the fifo_functions argument specifies the value
KAV$M_RESET_FIFO.

ast_param

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the address of a parameter, which this service passes to the AST
routine. See Section 3.1 for more information about ASTs.

This argument is optional when the fifo_functions argument specifies the value
KAV$M_RESET_FIFO.

Status Values

KAV30$_BAD_MODIFIER You did not specify a modifier in the correct

format.

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_FIFO_BUSY The FIFO buffer you want to operate on is
busy.

4-82 KAV30 System Services

KAVSNOTIFY_FIFO

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_NO_ACCESS The service cannot access an item.

KER$_SUCCESS The operation is successful.

Related Services

KAV$FIFO_READ KAVS$LIFO_WRITE
KAV$FIFO_WRITE

Examples

See the programs listed in Appendix B for examples of KAV$NOTIFY_
FIFO service calls.

KAV30 System Services 4-83

KAV$OUT_MAP

KAV$OUT MAP

Maps one or more 64K byte pages (aligned on a 64K byte boundary) of the
KAV30 system virtual address (S0) space to the VMEbus or VSB address
space.

After you map the address space, use one of the following methods to access it:

e (Call the KAVBUS_BITCLR, KAVBUS_BITSET, KAV$BUS_READ, and
KAV$BUS_WRITE services

* Write directly to the address space. See Section 5.1 for more information.

Before you access the VMEDbus and VSB address space, configure the VMEbus
and VSB. See Section 5.4.1 for more information.

This service uses the outgoing SGM to perform the mapping. See Section 3.6
for more information.

The KAV30 is a little-endian device, so to exchange data with a big-endian
device, you must translate the data from the little-endian format to big-endian
format. This service can map KAV30 SO address space directly to the VMEbus
or VSB address space, or it can specify byte-swapping or word-swapping as
part of the mapping. When you call the KAV$BUS_READ or KAV$BUS_
WRITE service, these services read or write the data according to the swapping
operations that you specify using this service. See Section 3.6.3 for more
information about data mapping.

This service returns a virtual address, in KAV30 SO space, that corresponds to
the base VMEbus or VSB address of the address space of the device. To read or
write data at an offset into the VMEDbus or VSB address space, add the offset
to the virtual address and read or write that virtual address.

This service also returns the SGM entry number. Programs use this number in
a call to the KAVSUNMAP service to free pages of KAV30 SO space when they
are no longer required to be mapped to the VMEbus or VSB.

4-84 KAV30 System Services

KAVSOUT_MAP

Ada Call Format
WITH KAVDEF;

KAV_OUT_MAP ([STATUS => status,]
SGM_ENTRY => sgm_entry,
PAGE_COUNT => page_count,
BUS_ADDRESS => bus address,
VIRTUAL_ADDRESS => virtual_address,
AM_CODE => am_code,
MAP_FUNCTIONS => map_functions);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE,;

sgm_entry : out INTEGER;

page_count : in INTEGER;

bus_address : in SYSTEM.ADDRESS;

virtual_address : out SYSTEM.ADDRESS;

am_code : in INTEGER;

map_functions : in INTEGER;

C Call Format
#include $vaxelnc

#include "eln$:kavdef.h"

int kav$out_map ([status],
entry,
page_count,
bus_address,
virtual_address,
am_code,
map_functions)

KAV30 System Services 4-85

KAV$SOUT_MAP

argument information

int *status;

int *entry;

int page_count;

int bus_address;

void **pirtual_address;

int am_code;

int map_functions;
FORTRAN Call Format

INCLUDE ’ELN$:KAVDEF.FOR'

CALL KAV$OUT_MAP ([status],

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

4-86 KAV30 System Services

entry,
%VAL(page_count),
%VAL(bus_address),
virtual_address,
%VAL(am_code),
%VAL(map_functions))

status

entry
page_count
bus_address
virtual_address
am_code
map_functions

KAV$OUT MAP

Pascal Call Format
INCLUDE $KAVDEF;

KAVSOUT_MAP ([STATUS := status,)
entry,
page_count,
bus_address,
virtual_address,
am_code,
map_functions)

argument information

status : INTEGER,;

entry : INTEGER;

page_count : INTEGER,;

bus_address : INTEGER;

virtual_address : AANYTYPE;

am_code : INTEGER,;

map_functions : INTEGER,;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

KAV30 System Services 4-87

KAV$SOUT_MAP

entry

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Returns the SGM entry that corresponds to the first page of the KAV30 SO
space that you want to map to the VMEbus or VSB.

page_count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the number of successive 64K byte pages of KAV30 S0 space that you
want to map to the VMEbus or VSB.

bus_address

Usage: Longword
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the base physical address of the VMEbus or VSB address space. This
base physical address is the start of the first 64K byte page that this service
maps to the VMEbus or VSB address space.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Returns the KAV30 SO space virtual address that corresponds to the base
physical address (on the VMEbus or VSB) of the 64K byte page of memory that
this service maps to the VMEbus or VSB.

4-88 KAV30 System Services

KAV$OUT_MAP

am_code

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

This code specifies the VMEbus or VSB addressing mode. If you are mapping
to the VMEDbus, specify one of the following values:

Constant Value Explanation

KAV$K_USER_16 2916 Uses short addressing (16 address lines) in
VMEbus user mode

KAV$K_USER_24 3916 Uses standard addressing (24 address
lines) in VMEbus user mode

KAV$K_USER_32 0916 Uses extended addressing (32 address
lines) in VMEbus user mode

KAV$K_SUPER_16 2Dqg Uses short addressing (16 address lines) in
VMEDbus supervisor mode

KAV$K_SUPER_24 3D1g Uses standard addressing (24 address
lines) in VMEDbus supervisor mode

KAV$K_SUPER_32 0Dq¢ Uses extended addressing (32 address

lines) in VMEbus supervisor mode

If you are mapping to the VSB, specify one of the following values:

Constant Value Explanation

KAV$K_SYS 3 Uses the SYSTEM address space
KAV$K_IO 2 Uses the I/O address space
KAV$K_ALT 1 Uses the ALTERNATE address space
KAV$K_VSB_IACK 0 VSB IACK

If you want to specify an address modifier code with a value other than one
of these values, pass the value directly in the am_code argument. See the
VMEbus Specification and The VME Subsystem Bus (VSB) Specification for
other values that you can pass in the am_code argument.

The address modifier code that you specify in this argument must be the same
as the address modifier code of the VMEbus or VSB device to which this 64K
byte page of KAV30 SO space is mapped.

KAV30 System Services 4-89

KAVSOUT_MAP

map_functions

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value
Specifies the following information that controls the mapping operation:

* Mapping destination—whether you want to map pages of KAV30 SO space
to the VMEDbus or VSB address space

¢ Byte swapping mode
Specify one or more of the following modifiers:

KAV$M_NO_RETRY When you specify this modifier, the KAV30
performs one retry. When you do not
specify this modifier, the KAV30 performs
29 successive retries. If the access does not
succeed after 29 retries, the KAV30 signals
that an access failure occurred. The bus
arbitration failures and bus timeouts cause
accesses to fail.

KAV$M_MODE_0_SWAP Performs mode 0 swapping.
KAV$M_MODE_2_SWAP Performs mode 2 swapping.
KAV$M_MODE_3_SWAP Performs mode 3 operations.

KAV$M_VME Maps KAV30 SO space to the VMEDbus.
KAV$M_VSB Maps KAV30 SO space to the VSB.
KAV$M_WRT _PROT Sets write-protection on the page of system

RAM that you want to map to the VMEbus.

You must ensure that the modifiers you specify do not conflict with each other.
For example, do not specify the KAVEM_MODE_3_SWAP and KAV$M_MODE
0_SWAP modifiers together.

4-90 KAV30 System Services

KAVSOUT MAP

Status Values

KAV30$_BAD_MODIFIER
KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_NO_ACCESS
KAV$_NO_MEMORY
KER$_NO_PORT

KAV$_NO_VIRTUAL
KER$_SUCCESS

You did not specify a modifier in the correct
format.

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The service cannot access an item.
There is no physical memory available.

There are no free SGM entry ports. Unmap
one or more SGM entries and retry the call.

There is no virtual address space available.
The operation is successful.

Related Services

KAV$BUS_BITCLR
KAV$BUS_BITSET
KAV$BUS_READ

KAV$BUS_WRITE
KAVSUNMAP

KAV30 System Services 4-91

KAV$OUT_MAP

Examples

* See the examples in the descriptions of the KAV$BUS_READ and
KAV$BUS_BITCLR services

* The following code is an example program that calls the KAV$OUT_

MAP service:

MODULE ex INT VME ;
{++}
{
{ Facility: KAV30 VAXELN System Services programming example.
{
{ Description: This is an example program demonstrating the calling
{ procedures for the following KAV System Services:
{ 1. KAVSOUT MAP (Map KAV addr space to VMEbus)
{ 2. KAVSUNMAP (Un-map)
{ 3. KAVSBUS READ (Read VMEbus address)
{
{ Abstract: This program can be used to test the handling of
{ VMEbus interrupts. It does this by faking an IACK
{ cycle on the VMEbus.
{
{ Language: Epascal; Version 4.2
{
{ Notes: (1) In the interests of program clarity, no error
{ checking has been included.
{
{--}
INCLUDE $KAVDEF ; { (KAV30 definitions) '}
TYPE

comm region = RECORD { Communications Region }

int count : INTEGER; { Interrupt Service Rtne}

signal count : INTEGER;
bus_page ptr : "“ANYTYPE;
END;
byte = [byte] 0..255;

VAR

wait count : INTEGER;
device obj : DEVICE;

4-92 KAV30 System Services

KAV$OUT _MAP

{ KRKKKKKkkkkkkkkkkkkkkkkkkkkkkkkkkkkx }
{ **% Interrupt Service Routine *** }
{ KkkkkkkKKkkKkkkkkhkhkhkhkkhkkkkkkkkkkxx }
INTERRUPT SERVICE vme int isr(register ptr : “anytype;
region ptr : “comm region);

VAR

rd int count : INTEGER;

rd signal count : INTEGER;

value : byte;

temp value : INTEGER;

page ptr : “ANYTYPE;

status : INTEGER;
BEGIN

{ fake an IACK cycle to prevent handling of a vectorized
interrupt }

page ptr = READ_REGISTER(region ptr”.bus_page ptr);
temp value = page ptr :: INTEGER;
temp_value = temp value + %xc;
page ptr = temp value :: "“ANYTYPE;
REPEAT
{ }
{ === BUS READ === }
{ }
KAVSBUS READ(STATUS = status,
DATA TYPE = KAV$K BYTE,
VIRTUAL ADDRESS := page ptr,
BUFFER = ADDRESS (value),
COUNT =1);
UNTIL ODD(status);
SIGNAL DEVICE(device_number := 0);
END; { *** End of Interrupt Service Routine *** }
{ This process is activated by the ISR (see above) when it }
{ services an interrupt. }

PROCESS_BLOCK server_process(region ptr :“comm region);

VAR
rd int count : INTEGER;
text string : VARYING STRING(80);

BEGIN
text string := 'KAV30 example program interrupted’ ;

KAV30 System Services 4-93

KAVSOUT_MAP

REPEAT
WAIT ANY(device obj);
rd int count := READ REGISTER(region ptr”*.int count);
WRITELN(text string)

UNTIL FALSE
END;
{ kkkkkkkkkkkkkkkkhkkkxkkx }
{ **% Main process **¥* }
{ *hkkkkkhkkkkkkhkkkkkkkkkkx }

PROGRAM INT VME (INPUT, OUTPUT);

VAR
status : INTEGER;
p_id : PROCESS;
i : INTEGER;
rd int count : INTEGER;
rd signal count : INTEGER;
irq 1vl : INTEGER;
int_vec : INTEGER;
vme_int bitmask : INTEGER;
region ptr : “comm region;
device name : VARYING STRING(31);
temp page ptr : “ANYTYPE;
sgm_entry : INTEGER;
BEGIN

device name := PROGRAM ARGUMENT (4) ; { Get the device name from
{ the EBUILD '.DAT' file.

{
{ === 1IN MAP ===
{
KAVSOUT MAP (STATUS = status,
ENTRY := sgm_entry,
PAGE COUNT =1,
BUS_ADDRESS =0,
VIRTUAL ADDRESS := temp page ptr,
AM CODE %X80,

MAP_FUNCTIONS KAVSM MODE 3 SWAP + KAVSM VME);

{ Create Device object }

CREATE DEVICE(device name,
device obj,
SERVICE ROUTINE
REGION
STATUS

.
n

vme int isr,
region ptr,
status) ;

4-94 KAV30 System Services

KAV$OUT_MAP

WRITE REGISTER(region ptr”*.int count, 0);

WRITE REGISTER(reglon_ptr 31gnal count, 0);

WRITE REGISTER(region ptr”.bus page ptr :: INTEGER,
temp page ptr :: INTEGER);

{ Create the server process }

CREATE PROCESS(p_id,
server process,
region ptr,
STATUS := status);

WAIT ANY(p_id, STATUS := status);
{ }

{ === UN-MAP === }
{ }
KAVSUNMAP (STATUS = status,
ENTRY = sgm_entry,
PAGE_COUNT =1,
VIRTUAL ADDRESS := temp page ptr,
UNMAP FUNCTIONS = KAV$M ouT);
END; { **%* End of main process *** }
END; { ***x End of INT VME example program *** }

KAV30 System Services 4-95

KAV$SQUE_AST

KAVSQUE_AST

Queues an AST for delivery to a process.

This service removes an ASB from the AST pending queue! and places it on
the AST process? queue.

Before you call this service for a particular device code, call the KAVSDEF_AST
service (to allocate an AST queue for the device code) and the KAV$SET_AST
service to place an ASB for the device code in the AST pending queue.

This service uses the device code that the KAVSDEF_AST service returns to
ensure that it delivers the correct AST for a device code.

See Section 3.1 for more information on ASTs.

Ada Call Format
WITH KAVDEF;
KAV_QUE_AST ([STATUS => status,]
DEVICE_CODE => device_code);

argument information

status : out UNSIGNED_LONGWORD;
device_code : in UNSIGNED_LONGWORD;

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int KAVSQUE_AST ([status],
device_code)

! The pending queue is the queue that contains the ASBs that are waiting for an event
that will cause an AST to be delivered.

2 The process queue is the queue of ASTs for which an AST has been delivered, but an
AST routine has not been executed.

4-96 KAV30 System Services

argument information

int *status;
int device_code;

KAVSQUE_AST

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'
CALL KAV$QUE_AST ([status],
%VAL(device_code))

argument information

INTEGER*4 status
INTEGER*4 device_code

Pascal Call Format
INCLUDE $KAVDEF;
KAV$QUE_AST ([STATUS := status)]
device_code)

argument information

status : INTEGER,;
device_code : INTEGER,;

KAV30 System Services 4-97

KAVSQUE_AST

Arguments
status
Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Write only

Mechanism: Reference

Receives the completion status.

device code

Usage: Longword (unsigned)
VAX Type: Read only
Access: Value

Mechanism: None

Specifies the device code that identifies the AST you want to queue. The
KAV$DEF_AST service returns the device code when you define the AST.

Status Values

KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_SUCCESS

4-98 KAV30 System Services

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The operation is successful.

KAV$QUE_AST

Related Services

KAV$CLR_AST KAV$SET_AST
KAV$DEF_AST

Examples

See the programs listed in Appendix C for examples of KAV$QUE_AST
service calls.

KAV30 System Services 4-99

KAVS$RTC

KAV$RTC

Performs all the real-time clock functions, using the KAV30 calendar/clock.
This service allows you to configure the following real-time clock functions:
e Alarm

* Periodic alarm

* Read and write alarm

* Read and write calendar

* Read and write real-time clock RAM

* Read and write timesave RAM

* 16-bit timer functions

For more information about these functions, see Section 3.3.

The calendar/clock can operate in either 12-hour mode or 24-hour mode. You
specify the mode when you write calendar information into the calendar/clock.
Use the KAV$M_RTC_12_HOUR modifier to specify 12-hour mode, or use

the KAV$M_RTC_24_HOUR modifier to specify 24-hour mode. You must
initialize the calendar/clock to either 12-hour mode or 24-hour mode when you
initialize the system. In 12-hour mode, the most significant bit in the hours
byte indicates whether the time is AM. or PM. When you read or write the
calendar, a 0 in this bit indicates an A.M. time while a 1 indicates a PM. time.

The programs calling this service pass a modifier that indicates the function
to be performed by the service. The programs also pass a buffer that contains
the information required to perform the function. The buffer is a byte-oriented
buffer. Figure 4-1 gives an example of a buffer that passes the date Sunday,
March 17, 1991 and time 10:53:25.39 PM. to the real-time clock.

The year value in the example is the offset from the base year. The base year
value is 1990. Therefore, a 00 year value corresponds to the year 1990, a

01 year value corresponds to the year 1991, and so on. The following table
explains the day of week value in the example.

4-100 KAV30 System Services

KAVS$RTC

Value Day

1 Monday

2 Tuesday

3 Wednesday
4 Thursday

5 Friday

6 Saturday

7 Sunday

You can specify an AST routine that executes when the current time and date
are equal to the alarm time and date, or when a timer interval expires.

Figure 4-1 Programming the Real-Time Clock

4 < R 0
3 9 Hundreds = 39
2 5 Seconds = 25
5 3 Minutes = 53
Hours = 10 (but MSB =1
1 0 for PM Times)
1 7 Date =17
0 3 Month = 03
0 1 Year = 1991
7 6 Julian Date = 76
0 0 Julian Date (Hundreds) = 0
0 7 Day of Week = 7 (Sunday)

KAV30 System Services 4-101

KAV$RTC

Ada Call Format
WITH KAVDEF;

KAV_RTC ([STATUS => status,)
RTC_FUNCTIONS => rtc_functions,
BUFFER => buffer,
LENGTH => length,
[AST_ADDR => ast addr]
[AST_PARAM => ast param);

argument information

status : out CONDITION_HANDLING.COND_VALUE _
TYPE;

rtc_functions : in INTEGER,;

buffer : in SYSTEM.ADDRESS;

length : in INTEGER,;

ast_addr : in INTEGER,;

ast_param : in INTEGER,;

C Call Format

#include $vaxelnc
#include "eln$:kavdef.h"

int kav$ric ([status],
ric_functions,
buffer,
length,
[ast_addh],
[ast_param])

4-102 KAV30 System Services

KAV$RTC

argument information

int *status;

int rte_functions;
void *buffer;

int length,;

void *ast_addr();
int ast_param;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'

CALL KAV$RTC ([status],
%VAL(rtc_functions),
buffer,
%VAL(length),
[ast_addr)]
[%VAL(ast_param)))

argument information

INTEGER*4 status
INTEGER*4 rtc_functions
INTEGER*4 buffer
INTEGER*4 length
INTEGER*4 ast_addr
INTEGER*4 ast_param

KAV30 System Services 4-103

KAV$RTC

Pascal Call Format
INCLUDE $KAVDEF;

KAVSRTC ([STATUS := status,]
ric_functions,
buffer,
length,
[,ast_adan
[,ast_param))

argument information

status : INTEGER,;

rtc_functions : INTEGER,;

buffer : AANYTYPE;

length : INTEGER;

ast_addr : AANYTYPE;

ast_param : INTEGER,;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

rtc_functions

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the function that you want to perform.

4-104 KAV30 System Services

KAV$RTC

You must specify one or more of the following modifiers:

KAV$M_RTC_TMR_0
KAV$M_RTC_TMR_1

Performs a function on timer 0.
Performs a function on timer 1.

Warning

Timer 1 is reserved for the VMEbus timeout timer. It is set up by the
KAV30 kernel when you boot the KAV30. Digital strongly recommends
that you do not change or modify this timer.

KAV$M_LOAD_TMR_CNT

KAV$M_START TMR

Loads a value into one of the timers. If you
want to load the value into timer 0, also
specify the KAVSM_RTC_TMR_0 modifier. If
you want to load a value into timer 1, also
specify the KAV$M_RTC_TMR_1 modifier.

You must specify the AST routine address
and parameters when you load the timer. The
buffer argument specifies the value that you
want to load into the timer register, along with
the timer resolution.

If you specify the KAV$M_LOAD_TMR_CNT
modifier, you cannot specify the KAV$M_
READ_TMR_CNT modifier.

Starts the timer. The timer starts decrement-
ing the value in the timer register. When the
value in the register reaches zero, the KAV30
software issues an AST.

If you want to start timer 0, also specify the
KAV$M_RTC_TMR_0 modifier. If you want to
start timer 1, also specify the KAV$M_RTC_
TMR_1 modifier.

If you specify this modifier, you cannot also
specify the KAV$M_STOP_TMR modifier.

KAV30 System Services 4-105

KAV$RTC

KAV$M_STOP_TMR Stops the timer. This service does not issue an
AST when the timer stops—it issues an AST
only when the number in the timer register
reaches 0.

If you want to stop timer 0, also specify the
KAV$M_RTC_TMR_0 modifier. If you want to
stop timer 1, also specify the KAV$M_RTC_
TMR_1 modifier.

If you specify this modifier, you cannot also
specify the KAV$M_START_TMR modifier.

KAV$M_READ_TMR_CNT Reads the value stored in the timer register.
Read the value in the timer register only
when you also specify the KAVSM_STOP_
TMR modifier. That is, stop the timer before
reading the value in the register.

To read the value in timer 0, also specify the
KAV$M_RTC_TMR_0 modifier. To read the
value in timer 1, also specify the KAV$M _
RTC_TMR_1 modifier.

If you specify this modifier, you cannot

also specify the KAVSM_LOAD_TMR_CNT
modifier.

KAV$M_RESET _TMR Resets the calendar/clock.

To reset timer 0, also specify the KAV$M_
RTC_TMR_0 modifier. To reset timer 1, also
specify the KAV$M_RTC_TMR_1 modifier.

KAV$M_PERIODIC Queues an AST repeatedly at the interval
specified by the buffer argument.
KAV$M_ALARM Delivers an AST at the time specified by an

rtc_functions argument specifying the KAV$M_
WRITE_ALARM modifier.

KAVSM_READ_ALARM Reads the alarm setting and returns the value
in the buffer argument.

4-106 KAV30 System Services

KAV$SM_WRITE_ALARM

KAV$M_READ_CALENDAR
KAV$M_WRITE_CALENDAR

KAV$M_RTC_12_HOUR

KAV$M_RTC_24 HOUR

KAV$M_READ_TIMESAVE
KAV$M_WRITE_TIMESAVE

KAV$M_READ_RTCRAM

KAVS$RTC

Sets the alarm time to the value specified in
the buffer argument. When the calendar/clock
time becomes equal to the alarm time, the
KAV30 kernel queues an AST to the AST
pending queue when you are writing the
alarm time for the first time. When you are
not writing for the first time, call this service
again with the KAV$M_ALARM modifier.

Reads the current calendar date and returns
the value in the buffer argument.

Sets the calendar date to the date specified in
the buffer argument.

Sets the calendar/clock to operate in 12-hour
mode. You can specify the KAV$M_RTC_12_
HOUR modifier only when you also specify
the KAV$M_WRITE_CALENDAR modifier. If
you do not specify either the KAV$M_RTC_
12_HOUR modifier or the KAV$M_RTC_
24_HOUR modifier, the clock mode remains
unchanged.

Sets the calendar/clock to operate in 24-hour
mode. You can specify the KAVSM_RTC_24_
HOUR modifier only when you also specify
the KAVSM_WRITE_CALENDAR modifier. If
you do not specify either the KAV$M_RTC_
12_HOUR modifier or the KAVSM_RTC_
24_HOUR modifier, the clock mode remains
unchanged.

Reads the value stored in the timesave RAM
and returns it in the buffer argument.

Writes the data specified in the buffer
argument into timesave RAM.

Reads up to 31 bytes of data from the calendar
/clock battery backed-up RAM and returns the
data in the buffer argument. The low-order
word of this modifier specifies the number of
bytes to be read. The high-order word specifies
the base address in the battery backed-up
RAM of the data to read.

KAV30 System Services 4-107

KAVS$RTC

KAV$M_WRITE_RTCRAM Writes up to 31 bytes of data from the buffer
argument to the calendar/clock battery backed-
up RAM. The low-order word of this modifier
specifies the number of bytes to be read. The
high-order word specifies the base address in
the battery backed-up RAM of the data to be
read.

KAV$M_RTC_HOLD_TMR Puts the timer on hold. The timer stops
decrementing, and the value remains in the
timer register.

If you want to hold timer 0, also specify the
KAV$M_RTC_TMR_0 modifier. If you want to
hold timer 1, also specify the KAV$M_RTC_
TMR_1 modifier.

KAV$M_RTC_RESTART_ Restarts the timer after a previous call to this
TMR service had put the timer on hold.
If you want to restart timer 0, also specify the
KAV$M_RTC_TMR_0 modifier. If you want to
restart timer 1, also specify the KAVSM_RTC_
TMR_1 modifier.

buffer

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Modify

Mechanism: Reference

Specifies the address of a buffer. The address contains the value that you want
to write to or read from the calendar/clock. The value of the buffer argument
depends on the function that you specify in the rtc_functions argument, as
follows:

e If the value of the rtc_functions argument is KAV$M_LOAD_TMR_COUNT,
the buffer is a longword whose layout is shown in the following diagram:

Reserved Resolution Timer Count

The service uses only the first 24 bits, the high-order byte must be zero.
Bits <15..0> contain the value that the service loads into the timer register.
Bits <23..16> specify the timer resolution.

4-108 KAV30 System Services

KAV$RTC

Specify one of the following values for bits <23..16>:

KAV$K_RTC_100NS
KAV$K RTC_400NS
KAV$K_RTC_93US
KAV$K _RTC_1MS
KAV$K _RTC_10MS
KAV$K_RTC_100MS

KAV$K_RTC_1000MS

Specifies that the timer register
decrements every 100 ns

Specifies that the timer register
decrements every 400 ns
Specifies that the timer register
decrements every 93.5 ps
Specifies that the timer register
decrements every 1 ms

Specifies that the timer register
decrements every 10 ms
Specifies that the timer register
decrements every 100 ms
Specifies that the timer register
decrements every 1000 ms

If the value of the rtc_functions argument is KAVSM_READ_TMR_COUNT,
the buffer argument returns the 16-bit value that the timer register

contains.

If the value of the rtc_functions argument is KAV$M_PERIODIC, specify
one of the following values for the buffer argument:

KAV$K_PER_1MS
KAV$K _PER_10MS
KAV3$K_PER_100MSEC
KAV$K_PER_1SEC
KAV$K _PER_10SEC
KAVS$K _PER_60SEC

Queues an AST every 1 ms
Queues an AST every 10 ms
Queues an AST every 100 ms
Queues an AST every 1 s
Queues an AST every 10 s
Queues an AST every 60 s

To reset the periodic queuing of ASTs, specify 0 in the buffer argument.

When the value of the rtc_functions argument is KAVSM_ALARM, specify
one of the following values for the buffer argument:

KAV$K_ALR_SECOND
KAV$K_ALR_MINUTE
KAV$K _ALR_HOUR
KAV$K_ALR_DOM

Performs an alarm check every 1 second
Performs an alarm check every 1 min
Performs an alarm check every 1 hour

Performs an alarm check on one day every
month

KAV30 System Services 4-109

KAV$RTC

KAV$K_ALR_MONTH Performs an alarm check every month
KAV$K_ALR_DOM Performs an alarm check on one day every
week

Before you execute this service you must first use the KAV$M_WRITE _
ALARM service to set the alarm date and time.

e If the value of the rtc_functions argument is KAVSM_READ_ALARM or
KAV$M_WRITE_ALARM, the buffer argument is 6 bytes long and contains
the alarm information in BCD format, as shown in the following diagram.

Seconds (0 to 59)

Minutes (0 to 59)

Hours (1 to 12 or 0 to 23)

Day of Month (1 to 28, 29, 30, or 31)

Month (1 to 12)

Day of Week (1 to 7)

When the calendar/clock time becomes equal to the time that the buffer
argument specifies, the KAV30 kernel queues an AST to the AST pending
queue.

To set up an alarm, follow these steps:
1. Call this service to write the alarm time.

2. Call this service with KAV$M_ALARM specified as an argument.

You cannot combine both actions in one service call. To reset the alarm,
specify 0 in the buffer argument.

e If the value of the rtc_functions argument is KAV$M_READ_CALENDAR
or KAV$M_WRITE_CALENDAR, the buffer argument is ten bytes long and
it contains the calendar information in BCD format, as shown in the

4-110 KAV30 System Services

KAV$RTC

following diagram:

Hundreds (0 to 99)

Seconds (0 to 59)

Minutes (0 to 59)

Hours (1 to 12 or 0 to 23)

Day of Month (1 to 28, 29, 30, or 31)

Month (1 to 12)

Years (0 to 99)

Julian Date (1 to 99)

Julian Date (0 to 3)

Day of Week (1 to 7)

If the value of the rtc_functions argument is KAVSM_READ_TIMESAVE
or KAV$M_WRITE_TIMESAVE, the buffer argument is 5 bytes long and
it contains the timesave information in BCD format, as shown in the
following diagram:

Seconds (0 to 59)

Minutes (0 to 59)

Hours (1 to 12 or 0 to 23)

Day of Month (1 to 28, 29, 30, or 31)

Month (1 to 12)

KAV30 System Services 4-111

KAV$RTC

The date and time is automatically written when there is a power failure.
You can read this date and time when you boot the system after a power
failure to detect when the power failure occurred.

e If the value of the rtc_functions argument is KAV$M_READ_RTCRAM or
KAV$M_WRITE_RTCRAM, the buffer argument contains the data that you
want to read from or write to the calendar/clock battery backed-up RAM.
The length argument specifies the amount of data to read or write and the
base address in the battery backed-up RAM, as follows:

Base Byte Address Length

The base byte address is an offset into the battery backed-up RAM. The
length is the number of bytes.

Note

If the ric_functions argument specifies the value KAVSM_RTC_12_
HOUR, the high-order bit in the Aours byte is the AM./PM. bit—a zero
indicates A.M. and a one indicates PM.

length

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the length (in bytes) of the buffer whose address you specify in the
buffer argument.

ast_addr

Usage: Procedure entry mask
VAX Type: procedure

Access: Read only

Mechanism: Reference

Specifies the address of the AST routine, which the service calls when one or
more of the following occur:

- A timeout
- An alarm

4-112 KAV30 System Services

KAVS$RTC

- A periodic alarm

See Section 3.1 for more information about ASTs.

ast_param

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Reference
Specifies a parameter that this service passes to the AST routine.

See Section 3.1 for more information about ASTs.

Status Values

KAV30$_ALR_ACTIVE The alarm interrupts are active.

KAV30$_BAD_MODIFIER You did not specify a modifier in the correct
format.

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_PER_ACTIVE The periodic interrupts are active.

KAV30$_TMR_BUSY The timer is busy.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_NO_ACCESS The service cannot access an item.

KER$_SUCCESS The operation is successful.

KER$_TIME_NOT_SET The timer is not set.

KAV30 System Services 4-113

KAV$RTC

Examples
The following code is an example program that calls the KAVSRTC service:
/*
* Facility: KAV30 VAXELN System Services programming example.
*
* Description: This is an example program demonstrating the calling
* procedure for the following KAV System Service:
* KAVSRTC (RealTime Clock functions)
*
* Abstract: This program reads the RTC calendar. Simple as that.
*
* Language: Vax C; Version 3.1
*
* Notes: (1) In the interests of program clarity, no error checking has
* been included.
*/
#include stdio
#include $vaxelnc
#include <eln$:kavdef.h> /* KAV30 definitions file. */
tdefine BUFFER LENGTH 100
/* Main Program *x/
main ()
{
int status, 1 ;
unsigned long rtc functions ;
unsigned char buffer[BUFFER LENGTH] ;
void ast routine() ;
printf ("\n\nKAV30 Test program for RTC System Service call\n\n")
/*
* Read the CALENDAR from RTC
*
*/
rtc_functions = KAVSM READ CALENDAR ;

KAVSRTC (&status,

gast r
print

}o/*

rtc_functions,
sbuffer([0],
10,

outine, 0) ;

f("\n\nEND OF KAV30 Test program for RTC. \n\n") ;

end -program- */

4-114 KAV30 System Services

KAVS$SRTC

void ast routine() /* Dummy AST routine (NOT USED) */
{
int 1 ;
i=1234;
return ;

}

KAV30 System Services 4-115

KAV$RW_BBRAM

KAV$SRW_BBRAM

Writes data to or reads data from the KAV30 battery backed-up RAM.

You can write data into the battery backed-up RAM by passing a buffer to this
service. You can read data from the battery backed-up RAM by reading data
from the buffer that this service returns. You specify a modifier when you call
this service, which indicates whether you want to read from or write to the
battery backed-up RAM.

See Section 3.5 for information about the KAV30 battery backed-up RAM.

Ada Call Format
WITH KAVDEF;

KAV_RW _BBRAM ([STATUS => status,]
BUFFER_ADDRESS => buffer_address,
BUFFER_LENGTH => buffer_length,
BBRAM_OFFSET => bbram _offset,
BBRAM_FUNCTIONS => bbram _functions;

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

buffer_address : in SYSTEM.ADDRESS;

buffer_length : in INTEGER;

bbram_offset : in INTEGER;

bbram_functions : in INTEGER;

4-116 KAV30 System Services

KAV$RW_BBRAM

C Call Format
#include $vaxelnc
#include "ein$:kavdef.h"

int kav$rw_bbram ([status],
buffer_address,
buffer_length,
bbram_offset,
bbram_functions)

argument information

int *status;

void *buffer_address;
int buffer_length,;

int bbram_offset;

int bbram_functions;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR’

CALL KAV$RW_BBRAM ([status],
buffer_address,
%VAL(buffer_length),
%VAL(bbram_offset),
%VAL(bbram_functions))

KAV30 System Services 4-117

KAV$RW_BBRAM

argument information

INTEGER*4 status
INTEGER*4 buffer_address
INTEGER*4 buffer_length
INTEGER*4 bbram_offset
INTEGER*4 bbram_functions

Pascal Call Format
INCLUDE $KAVDEF;

KAV$RW_BBRAM ([STATUS := STATUS]
BUFFER_ADDRESS := buffer_address,
BUFFER_LENGTH := buffer_length,
BBRAM_OFFSET := bbram_offset,
FUNCTION := bbram_functions)

argument information

status : INTEGER;

buffer_address : AANYTYPE;

buffer_length : INTEGER;

bbram_offset : INTEGER;

bbram_functions : INTEGER;
Arguments

status

Usage: Longword (unsigned)

VAX Type: longword_unsigned

Access: Write only

Mechanism: Reference

Receives the completion status.

4-118 KAV30 System Services

KAVSRW_BBRAM

buffer_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Modify

Mechanism: Reference

Supplies the address of the buffer that this service uses. If the value of the
function argument is KAVSK_BBR_READ, this service reads data from the
battery backed-up RAM and writes it to the buffer. If the value of the function
argument is KAV$K_BBR_WRITE, this service writes the data in the buffer to
the battery backed-up RAM.

buffer_length

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Supplies the length of the buffer whose address is supplied by the buffer_
address argument. The maximum buffer length is 22K bytes.

bbram_offset

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value
Specifies an offset into the 22K byte battery backed-up RAM area.

bbram_functions

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Supplies a code that determines whether this service writes the data in the
buffer to the battery backed-up RAM or reads the data from the battery
backed-up RAM and writes it to the buffer. Specify one of the following values:

KAV$K_BBR_READ Reads data from the battery backed-up RAM.
KAV$K BBR_WRITE Writes data to the battery backed-up RAM.

KAV30 System Services 4-119

KAV$RW_BBRAM

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.
KER$_BAD_COUNT You did not specify the correct number of
arguments.
KER$_BAD_VALUE You did not specify a value in the correct
format.
KER$_NO_ACCESS The service cannot access an item.
KER$_SUCCESS The operation is successful.
Examples
The following code is an example program that calls the KAVSRW_BBRAM
service:
/*
* Facility: KAV30 VAXELN System Services programming example.
*
* Description: This is an example program demonstrating the calling
* procedure for the following KAV System Service:
* KAVSRW BBRAM (Read/Write BB-Ram)
*
* Abstract: This program reads and writes to the KAV30’s Battery-
* backed-up RAM.
* Firstly; it initializes a buffer with known data which
* it writes to the BB-Ram.
* Secondly, it reads the BB-Ram and checks the data read
* against the data written.
*
* Language: Vax C; Version 3.1
*
* Notes: (1) In the interests of program clarity, no error checking has
* been included.
*/

#include stdio
#include $vaxelnc

#include <eln$:kavdef.h> /* KAV30 definitions file. */
#define BUFFER SIZE 32 /* Test buffer size. */
#define BUFFER OFFSET 0 /* Test buffer offset. */

4-120 KAV30 System Services

KAV$RW_BBRAM

/* Main Program */
main ()

{

int status, i ;

unsigned char buffer in[BUFFER SIZE],
buffer_out[BUFFER_SIZE] ;

printf ("\n\nKAV30 Test program for RW BBRAM System Service call\n\n")

/*
* Initialize the test buffer with a simple incrementing sequence, -
* and clear out the output buffer.

*/

for (1 =0; 1< BUFFER SIZE; i++)
{ buffer in[i] = i+l ; buffer out[i] =0 ; 1} ;

/*
* WRITE to BB-RAM
* e ———
*/
KAV$RW_BBRAM(&status,
&buffer in[0],
BUFFER SIZE,
BUFFER OFFSET,
KAVSK BBR WRITE) ;
/*
* READ from BB-RAM
*

*/

KAV$RW_BBRAM(&status,
&buffer out[0],
BUFFER SIZE,
BUFFER OFFSET,
KAVSK BBR READ) ;

/*
* Lastly, compare the two buffers - they should be identical.
*/
for (i = 0, status = 0; i < BUFFER SIZE; i++)
{ if (buffer in[i] != buffer out([i]) status++ ; } /* Flag an error */

if (status !'= 0)

{ printf("Total of %d errors found.\n", status) ; } else

{ printf("No errors found in data read back from BBRAM.\n") ; } ;

if (status != 0) { printf("Total of %d errors found.\n", status) ; }
else { printf("No errors found in data read back.\n") ; } ;

printf ("\n\nEND OF KAV30 Test program for RW BBRAM \n\n") ;

}/* end -program- */

KAV30 System Services 4-121

KAV$SET_AST

KAVS$SET_AST

Places an ASB in the AST pending! queue.

You must call the KAVSDEF_AST service before you call this service. The
KAV$DEF_AST service returns a device code that associates an AST queue
with a particular device event. This service uses this device code to ensure
that it places the ASB in the correct AST queue.

The KAV30 kernel deletes entries from the queue once it has queued the
entries to a process, unless the ast_functions argument specifies the value
KAV$M_REPEAT. In that case, the KAV30 kernel requeues the AST to the
pending queue, immediately after it has delivered the AST. You can call the
KAV$CLR_AST service to cancel the repeating ASTs.

See Section 3.1 for more information on ASTs.

Ada Call Format
WITH KAVDEF;

KAV_SET AST ([STATUS => status,]
AST_ADDR => ast add,
[AST_PARAM => ast param,)]
AST_FUNCTIONS => ast functions,
DEVICE_CODE => device_code);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

ast_addr : in SYSTEM.ADDRESS;

ast_param : in INTEGER,;

ast_functions : in INTEGER;

device_code : in INTEGER;

! The pending queue is the queue of ASBs that is waiting for an event that will cause
an AST to be delivered. The process queue is the queue of ASTs for which an AST
has been delivered, but the AST routine has not yet been executed.

4-122 KAV30 System Services

KAVS$SET_AST

C Call Format
#include $vaxelnc
#include "eIn$:kavdef.h"

int kav§set_ast ([status],
ast_addr,
[ast_param],
ast functions,
device_code)

argument information

int *status;

void *ast_addr();
int ast_param;
int ast_functions;
int device_code;

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR’

CALL KAV$SET_AST ([status],
ast addr,
[%VAL(ast_param)],
%VAL(ast_functions),
%VAL(device_code))

KAV30 System Services 4-123

KAVS$SET_AST

argument information

INTEGER*4 status
INTEGER*4 ast_addr
INTEGER*4 ast_param
INTEGER*4 ast_functions
INTEGER*4 device_code

Pascal Call Format
INCLUDE $KAVDEF;

KAVSSET_AST ([STATUS := status,)
ast _adar,
[AST_PARAM := ast param,]
ast_functions,
device_code)

argument information

status : INTEGER,;

ast_addr : AANYTYPE;

ast_param : INTEGER,;

ast_functions : INTEGER,;

device_code : INTEGER;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

4-124 KAV30 System Services

KAV$SET AST

ast_addr

Usage: Procedure entry mask
VAX Type: procedure

Access: Read only

Mechanism: Reference

Specifies the address of the AST routine. The KAV30 software calls the AST
routine at this address when the device code that you specify in the device_code
argument causes an AST to be issued to the process.

ast_param

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies a parameter that this service passes to the AST routine.

ast_functions

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specify the KAVSM_REPEAT value for this argument when you want to queue
the AST to the AST pending queue for the device code immediately after the
KAV30 kernel delivers the AST.

device _code

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the device code that identifies the AST that you want to set. The
KAV$DEF_AST service returns the device code when you define the AST.

KAV30 System Services 4-125

KAVSSET AST

Status Values

KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_SUCCESS

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The operation is successful.

Related Services

KAV$CLR_AST
KAV$DEF_AST

KAV$QUE_AST

Examples

See the programs listed in Appendix C for examples of KAV$SET_AST

service calls.

4-126 KAV30 System Services

KAV$SET_CLOCK

KAV$SET CLOCK

Allows you to perform the following actions:

* Read the value of the KAV30 real-time clock and place it in the VAXELN
system time.

¢ Read the value of the VAXELN system time, and place it in the KAV30
real-time clock. You can place the value in the KAV30 real-time clock in
either 12- or 24-hour mode.

Ada Call Format
WITH KAVDEF;
KAV_SET_CLOCK ([STATUS => status,]
CLOCK_FUNCTIONS => clock_functions);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;
clock_functions : in INTEGER;

C Call Format
#include $vaxeinc
#include "eln$:kavdef.h"

int kav§set_clock ([status,]
clock_functions)

KAV30 System Services 4-127

KAV$SET_CLOCK

argument information

int *status;
int clock_functions;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR'
CALL KAV$SSET_CLOCK ([status,]
%VAL(clock_functions))

argument information

INTEGER*4 status
INTEGER*4 clock_functions

Pascal Call Format
INCLUDE $KAVDEF:

KAV$SET CLOCK ([STATUS := status,]
CLOCK_FUNCTIONS := clock_functions)

argument information

status : INTEGER,;
clock_functions : INTEGER,;

4-128 KAV30 System Services

KAVS$SET_CLOCK

Arguments
status
Usage: Longword (unsigned)
VAX Type: Longword
Access: Write only

Mechanism: Reference

Receives the completion status.

clock_functions

Usage: Longword (unsigned)
VAX Type: Longword_unsigned
Access: Read only

Mechanism: Value

Specifies the function that you want to perform. Specify one of the following
values:

KAV$K_SET VAX TIME Reads the value of the KAV30 real-time clock and
places the value in the VAXELN system time.

KAV$K_SET_RTC_TIME Reads the value of the VAXELN system time and
places the value in the KAV30 real-time clock.

When you specify the KAV$K_SET RTC_TIME value, also specify one of the
following modifiers:

KAV$M_RTC_12_HOUR Sets the real-time clock value in 12-hour mode.
KAV$M_RTC_24_HOUR Sets the real-time clock value in 24-hour mode.

Status Values

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_INVALID TIME The time that the service reads is invalid.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KAV30 System Services 4-129

KAVS$SET_CLOCK

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$_SUCCESS The operation is successful.

KER$_TIME_NOT_SET The clock value that the service reads is not
set.

Related Services

KAV$RTC

4-130 KAV30 System Services

KAVS$TIMERS

KAVS$TIMERS

Performs various timer functions on the timer you specify.

There are five 32-bit timers available for general use. This service allows you
to load, start, stop, and reset these timers. You can also use this service to
read the value in the timer register and to set the timer to repeat mode.

The service arguments specify the timer number and the function that you
want to perform on the timer. If the function is to start the timer or to set
the timer to repeat mode, the KAV30 kernel delivers an AST when the timer
interval expires.

Note

The KAV30 kernel delivers an AST only when the timer interval
expires. It does not deliver an AST if this service stops the timer.

In addition to the five 32-bit timers, there are also two 16-bit timers. One of
these is the watchdog timer, the other is the local bus timeout timer. If the
watchdog timer expires, a KAV30 hardware reset occurs.

Note

The local bus timeout timer specifies the maximum interval for local
VAX bus accesses. Digital strongly recommends that you do not alter
this value.

The KAV30 kernel does not deliver an AST when the local watchdog timer or
the local bus timeout timer expires.

See Section 3.2 for more information about the KAV30 timers. See Section 3.1
for more information about ASTs.

KAV30 System Services 4-131

KAV$TIMERS

Ada Call Format
WITH KAVDEF;

KAV_TIMER ([STATUS => status,]
TIMER_FUNCTIONS => timer_functions,
TIMER_NUMBER => timer_number,
TIMER_COUNT => timer_count,
AST_ADDR => ast addr,

[AST_PARAM => ast param,));

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

timer_functions : in INTEGER,;

timer_number : in INTEGER,;

timer_count : in out INTEGER;

ast_addr : in SYSTEM.ADDRESS;

ast_param : in INTEGER;

C Call Format
#include $vaxelnc

#include "ein$:kavdef.h"

int kav§timers ([status],
timer_functions,
timer_number,
timer_count,
ast _addr,
[ast_param,)

4-132 KAV30 System Services

KAVS$TIMERS

argument information

int *status;

int timer_functions;
int timer_number;
int *timer_count;
void *ast_addr();

int ast_param;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR’

CALL KAVS$TIMERS ([status],
%VAL(timer_functions),
%VAL(timer_number),
timer_count,
%VAL(ast_addr),
[%VAL(ast_paramy))

argument information

INTEGER*4 status
INTEGER*4 timer_functions
INTEGER*4 timer_number
INTEGER*4 timer_count
INTEGER*4 ast_addr
INTEGER*4 ast_param

KAV30 System Services 4-133

KAVS$TIMERS

Pascal Call Format
INCLUDE $KAVDEF;

KAVSTIMERS ([STATUS := status,]
timer_functions,
timer_number,
timer_count,
ast_adar,

[AST_PARAM := ast param,)

argument information

status : INTEGER,;

timer_functions : INTEGER;

timer_number : INTEGER;

timer_count : INTEGER;

ast_addr : AANYTYPE;

ast_param : INTEGER;
Arguments

status

Usage: Longword (unsigned)

VAX Type: cond_value

Access: Write only

Mechanism: Reference

Receives the completion status.

timer_functions

Usage: Longword (unsigned)
VAX Type: mask_longword
Access: Read only

Mechanism: Value

Specifies the function that you want to perform on the timer.

4-134 KAV30 System Services

KAVS$TIMERS

Specify one or more of the following modifiers:

KAV$M_LOAD_TMR_CNT Loads a value into the timer register.
Specify the value in the ¢imer_count argument.
Also, specify the AST routine address and
parameters when loading the timer.
If you specify the KAV$M_LOAD_TMR_CNT
modifier, you cannot also specify the KAV$M_
READ_TMR_CNT modifier.

KAV$M_START_TMR Starts the timer. The timer starts decrement-
ing the value in the timer register. When the
value in the register reaches zero, the KAV30
software issues an AST.

If you specify the KAVSM_START TMR
modifier, you cannot also specify the KAV$M _
STOP_TMR modifier.

KAV$M_STOP_TMR Stops the timer. This service does not issue an
AST—it issues an AST only if the number in
the timer register reaches 0.
If you specify the KAV$M_STOP_TMR
modifier, you cannot also specify the KAV$M_
START_TMR modifier.

KAV$M_READ_TMR_CNT Reads the value stored in the timer register.
Read the value in the timer register only
when you also specify the KAV$M_STOP_TMR
modifier. That is, stop the timer before you
read the value in its register.

If you specify the KAVSM_READ_TMR_CNT
modifier, you cannot also specify the KAV$M_
LOAD_TMR_CNT modifier.

KAV30 System Services 4-135

KAVS$TIMERS

KAV$M_REPEAT TMR Sets the timer to repeat mode. In this mode
the KAV30 software requeues the AST after it
is delivered, and then reloads and restarts the
timer.

You can specify the KAVSM_REPEAT TMR
modifier only when you also specify the
KAV$M_LOAD_TMR modifier.

KAV$M_RESET_TMR Resets the specified timer and deletes the
pending ASTs.

If you specify the KAV$M_RESET _TMR
modifier, you cannot specify other modifiers.

timer_number

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the timer on which the KAV30 software performs the functions
specified by the timer_functions argument. Specify one of the following values:

16-bit Timers

KAVS$K _LCL_TO KAV$K_WDOG

32-bit Timers

KAV$K_CTMRO KAV$K_CTMR1 KAV$K_CTMR2
KAV$K_CTMR3 KAV$K_CTMR4

timer_count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Modify

Mechanism: Reference

Specifies the value that the KAV30 software loads into the timer register (the
timer is the one specified by the timer_number argument). You can use the
KAV$M_READ_TMR_CNT modifier to read the timer register. The value of
the timer_count argument, when multiplied by the clock period for the timer
(400 ns), specifies the time that elapses before the timer issues an AST.

4-136 KAV30 System Services

KAVS$TIMERS

For the 32-bit timers, the value of the timer_count argument must not exceed
(232 — 1). For the watchdog timer and the local bus timeout timer, which are
16-bit timers, the value of the timer_count argument must not exceed (216 — 1).
If the timer_count argument specifies a value greater than the maximum
allowed, the service truncates the value to the maximum value.

The minimum prescaler value is two. This gives a minimum time of 800 ns.

See Section 3.2 for more information about the KAV30 timers.

ast_addr

Usage: Procedure entry mask
VAX Type: procedure

Access: Read only

Mechanism: Reference

Specifies the address of the AST routine that this service calls when the timer
interval expires. See Section 3.1 for more information about ASTs.

Specify the ast_addr argument only when the timer_functions argument
specifies the KAVSM_LOAD_TMR_CNT modifier.

ast_param

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies a parameter that this service passes to the AST routine that this
service calls when the timer interval expires. See Section 3.1 for more
information about ASTs.

Specify the ast_param argument only when the timer_functions argument
specifies the KAVSM_LOAD_TMR_CNT modifier.

KAV30 System Services 4-137

KAVSTIMERS

Status Values

KAV30$_BAD_MODIFIER
KAV30$_BAD_PARAM

KAV30$_TMR_BUSY
KER$_BAD_COUNT

KER$_BAD_VALUE

KER$_NO_ACCESS
KER$_SUCCESS

You did not specify a modifier in the correct
format.

You did not specify a parameter in the correct
format.

The timer is busy.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The service cannot access an item.
The operation is successful.

Examples

The following code is an example program that calls the KAV$TIMERS

service:

#module kav_timer

4-138 KAV30 System Services

KAVS$TIMERS

/**

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Kkkkkkkhkhkkkkkhhkkkhkkhhkhhkkkkhhkrhhhhkhhhhkkkkhkkkhkkkhkdxhhkkhkkhkkkkhkkx

/*

*/

COPYRIGHT (C) 1991

*
*

BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS. *

*

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED*
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE*
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER*
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY*
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY*

TRANSFERRED.

*
*

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE*

AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT

CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

FACILITY: KAV system services DIM suite

* ok o ok k%

~

PURPOSE: This routine uses one of the 32-bit timers to measure the
time between to system services or to generate an AST when

the timer times out.

#include S$vaxelnc

#include stdio

#include <eln$:kavdef.h>
#include $get message text

#define CONST

void
void

int

0x10000

error_text ();
ast_routine();

ast_count;

main ()

{

error text ();
status, ipl;
i, j, value,tick;

void
int
int
timer count, timer value;
high value, low_value;
min value, max value;

unsigned int
unsigned int
int

/* status for any call */

/*params for KAVSTIMERS*/

KAV30 System Services 4-139

KAVS$TIMERS

ipl = 22;
ast_count =0;
tick = 2;
value =0;
low value =5; /* 5 * 400ns = 2us => tick */
high value = 0xFFF;
timer count = high value * CONST + low value;
printf ("start of timer test \n");
/%
* raise IPL to prevent timer IRQ - Kernel mode only !!!
*/

/**/

ELN$DISABLE INTERRUPT (ipl);

/**************;***/

for (i=0; i<100; i++)
{

/*
* Load and start timer (from here timer can only be read in
* conjunction with STOP modifier)

*/

KAVSTIMERS (&status,
KAVSM_START_TMR + KAV$M_LOAD_TMR_CNT,
KAVS$K_CTMRI,
&timer count,
ast_routine,

NULL) ;
/%
* Time is measured between these routines - any code put in
* here will be ’'measured’
* if the time value (high value * tick) is less then 90us,
* the high counter will time out and an AST is generated.
*/

/**/

/*** put your code to 'measure’ in here ...and see whats happening... ***/
/**/

KAVSTIMERS (&status,
KAVSM STOP TMR + KAV$M READ TMR CNT,
KAV$K CTMRI,
&timer value,
NULL,
NULL) ;

if (! (status & 1))

error_text (status);

4-140 KAV30 System Services

KAV$TIMERS

/*
* The timer value high order word (high counter) is shifted
* to the low order word (disregarding low_counter value) and
* then subtracted from high value (high counter start value).
* timer value is then the elapsed time in tick’s. timer value

* is added to value, this cumulates the timer values for all runs.

*/

timer value high value - (timer value / CONST);

value value + timer value;
if (1 > 0)
{
if (timer value < min value) min value = timer value;
if (timer value > max value) max value = timer value;
}
else
{
min value = timer value;
max value = timer value;
}
/*
* In order to run the timers again, they have to be reset
*/

KAVSTIMERS (&status,
KAVSM_RESET TMR,
KAVSK CTMRI,
&timer_ count,
NULL,
NULL) ;

if (! (status & 1))

error_text (status);

} /* continue with loop */

/*
* The cumulated value is divided by i (number of runs) and

* multiplied with tick (low counter time). The first low counter
* timeout will load the high counter value and the second (and

* every following) low counter timeout will decrement the

* high counter, therefore one tick is added to value.

*/

if (ast_count >0)
printf ("number of AST’s ocurred: %d \n", ast count);

KAV30 System Services 4-141

KAVS$TI

else

min value
max value

MERS

{

value

((value / i) * tick) + tick;
(min_value * tick) + tick;
(max value * tick) + tick;

priﬁtf("mean time for $d runs : $d microSeconds \n", i, value);
printf("best case: %d uS - worst case: %d uS\n", min value,

max value);

}

printf("Test KAV TIMER completed successfully");

exit

}

(1):

/***

*

d % % 3 o 3 k% % Xk > >k %k F % X > > F * ¥

Name:

Abstrcat:

Input:
Output:

Comment :

AST ROUTINE ()

Control is transferred to this routine whenever
the started timer counts to zero

ast_param (if defined in KAV$TIMERS)
none

If the high value is short enough, high counter
will timeout before the STOP+READ service has
executed therefore an AST will occur and control
is transferred to this routine. Since the timeout
will stop the high counter (low_counter will
continue decrementing), any read of timer value
will show the original contents of the
load_registers. If timers are set to repeated
mode, counters will be reloaded and started again.
Any READ in the AST ROUTINE without the STOP
modifier will then return the TIMER BUSY error.

**/

/* status for any call */

void ast_routine()

{
void error_text ();
int status;
int timer functions;
int timer number;
int timer value;
ast_count+t;
return;

4-142 KAV30 System Services

KAVS$TIMERS

/***

*

: Name: ERROR_TEXT ()

* Abstrcat: Routine converts kernel error number’s to text
: and print’s it

: Input: status

: Output: none

: Comment : none

**/

void error text (status)

{

int status;

int text map functions; /* parameters for $get message */
char text buffer[255];
VARYING STRING(255) result string;

text map functions = STATUSSALL;
eln$get_status_text (status,

text map functions,

&result string);
VARYING TO CSTRING (result string,text buffer);
printf("%s\n", text buffer);
printf ("KAVSXXX Error : %d \n", status);

return;

KAV30 System Services 4-143

KAVSUNMAP

KAVSUNMAP

Frees the SGM entries that the KAVSIN_MAP and KAV$OUT_MAP services

allocate.

If the SGM entries were allocated by calls to the KAVSIN_MAP service that
specified a location monitor, the KAV$UNMAP service clears any ASTs that are
pending as a result of attempts by VMEbus devices to access the KAV30 PO

space.

See Section 3.6 for more information about the SGM.

Ada Call Format
WITH KAVDEF;

KAV_UNMAP ([STATUS => status]

SGM_ENTRY => sgm_entry,
PAGE_COUNT => page count,
VIRTUAL_ADDRESS => virtual address,
UNMAP_FUNCTIONS => unmap_functions);

argument information

status : out
sgm_entry : in
page_count : in
virtual_address : in

unmap_functions: in

4-144 KAV30 System Services

CONDITION_HANDLING.COND_VALUE_
TYPE;

INTEGER;

INTEGER;

SYSTEM.ADDRESS;

INTEGER;

KAVSUNMAP

C Call Format
#include $vaxelnc
#include "ein$:kavdef.h"

int kavunmap ([status,]
entry,
page_count,
virtual_address,
unmap_functions)

argument information

int *status;

int entry;

int page_count;

void *virtual_address;
int unmap_functions;

FORTRAN Call Format
INCLUDE "ELN$:KAVDEF.FOR’

CALL KAVSUNMAP ([status],
%VAL(entry),
%VAL(page_count),
virtual_address,
%VAL(unmap_functions))

KAV30 System Services 4-145

KAV$UNMAP

argument information

INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4
INTEGER*4

status

entry

page_count
virtual_address
unmap_functions

Pascal Call Format
INCLUDE $KAVDEF;

KAVSUNMAP ([STATUS := status,)

entry,

page_count,
virtual_address,

unmap_functions)

argument information

status :

entry :
page_count :
virtual_address :
unmap_functions :

4-146 KAV30 System Services

INTEGER;
INTEGER;
INTEGER;
AANYTYPE;
INTEGER;

KAVSUNMAP

Arguments
status
Usage: Longword (unsigned)
VAX Type: cond_value
Access: Write only

Mechanism: Reference

Receives the completion status.

entry

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the first SGM entry that you want to unmap.

page_count

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the number of successive 64K byte pages that you want to unmap.

virtual_address

Usage: Longword (unsigned)
VAX Type: longword_unsigned
Access: Read only

Mechanism: Value

Specifies the virtual address at which the KAV30 software starts unmapping
pages.

KAV30 System Services 4-147

KAVSUNMAP

unmap_functions

Usage: Longword (unsigned)
VAX Type: mask_longword
Access: Read only

Mechanism: Value

Specifies whether the SGM entries that you want to unmap are incoming
(mapping VMEDbus address space into KAV30 I/O space) or outgoing (mapping
KAV30 I/0 space to VMEbus or VSB address space). Specify one of the
following modifiers:

KAV$M_IN Unmaps the incoming SGM entries
KAV$M_OUT Unmaps the outgoing SGM entries
KAV$M_CSR Unmaps the SGM entries that map the KAV30
FIFO buffers to the VMEbus address space
KAV$M_MEMORY Unmaps the SGM entries that map the

VMEDbus or VSB address space

Status Values

KAV30$_BAD_MODIFIER You did not specify a modifier in the correct

format.

KAV30$_BAD_PARAM You did not specify a parameter in the correct
format.

KAV30$_SGMSETCLR The SGM entry is valid but must be invalid.

KAV30$_SGM_INCONS The SGM entries are inconsistent.

KER$_BAD_COUNT You did not specify the correct number of
arguments.

KER$_BAD_VALUE You did not specify a value in the correct
format.

KER$ NO_ACCESS The service cannot access an item.

KER$_SUCCESS The operation is successful.

4-148 KAV30 System Services

KAVSUNMAP

Related Services

KAVS$IN_MAP KAV$OUT_MAP

Examples

See the examples in the description of the KAV$BUS_READ, KAVS$IN_
MAP, and KAV$OUT_MAP services.

KAV30 System Services 4-149

KAV$VME_SETUP

KAV$VME_SETUP

Allows you to perform the following VMEbus and VSB configuration:
¢ Enable or disable the VMEbus IRQs

e Enable or disable the VSB IRQs

* Read the VMEbus A24 base address

¢ Set the VMEbus A32 base address

¢ Read the VSB slot number

This service specifies a subset of the configuration information that you
specify when you use the VAXELN System Builder utility to build the system.
However, the values that you specify in a call to this service override the values
that you specify when you use the VAXELN System Builder. See Section 5.4
for more information about using the VAXELN System Builder.

This service allows you to perform the following VMEbus and VSB
configuration:

¢ VMEDbus IRQs

The VMEbus can send the IRQs at seven different levels. You can specify
the IRQ levels at which the KAV30 can receive the IRQs. You pass a bit
mask to the service to enable or disable the KAV30 to receive the IRQs at
each IRQ level.

When you enable an IRQ line, you can pass a bit mask to this service to
switch between autovectored IRQs and vectored IRQs on that line. See
Section 5.4.1 for more information.

e VSB IRQs

The VSB has one IRQ line, on which the KAV30 can receive autovectored
IRQs from the VSB. You can call this service to enable or disable an IRQ
from the VSB.

e VMEDbus A24 base address

You can use this service to read the setting of the KAV30 rotary switch.
This switch determines the value of the KAV30 VMEbus A24 base address.

4-150 KAV30 System Services

KAV$VME_SETUP

e VMEbus A32 base address
You can use this service to specify the KAV30 VMEbus A32 base address.

e VSB slot number

The VSB has up to six slots that accommodate from zero to six VSB
modules. You can use this service to read the VSB slot number for the
KAV30. When you do not have a VSB backplane, this service returns the
slot number seven.

Ada Call Format
WITH KAVDEF;

KAV_VME_SETUP ([STATUS => status,]
SETUP_FUNCTIONS => setup_functions,
BUFFER => buffer);

argument information

status : out CONDITION_HANDLING.COND_VALUE_
TYPE;

setup_functions : in INTEGER,;

buffer : in SYSTEM.ADDRESS;

C Call Format
#include $vaxelnc
#include "eln$:kavdef.h"

int kavvme_setup ([status],
setup_functions,
buffen)

KAV30 System Services 4-151

KAV$VME_SETUP

argument information

int *status;
int setup_functions;
int *buffer;

FORTRAN Call Format
INCLUDE 'ELN$:KAVDEF.FOR’

CALL KAV$VME_SETUP ([status],
%VAL(setup_functions),

buffer)
argument information
INTEGER*4 status
INTEGER*4 setup_functions
INTEGER*4 buffer

Pascal Call Format
INCLUDE $KAVDEF;

KAV$VME_SETUP ([STATUS := status,]
setup_functions,
buffer)

argument information

status : INTEGER,;
setup_functions : INTEGER,;
buffer : INTEGER;

4-152 KAV30 System Services

KAV$VME_SETUP

Arguments
status

Usage: Longword (unsigned)

VAX Type: cond_value
Access: Write only
Mechanism: Reference

Receives the completion status.

setup_functions

Usage: Longword (unsigned)
VAX Type: longword_unsigned

Access: Read only
Mechanism: Value

Specifies the function that you want this service to perform. Specify one or

more of the following values:
KAV$K_ALLOW_VME_IRQ

KAV$K _AUTO_VME_IRQ

KAV$K _DISABLE_VSB_IRQ

KAV$K_ENABLE_VSB_IRQ
KAV$K _RD_A24_ROTARY

KAV$K RD_VSB_SLOT

KAVS$K _SET A32_BASE

Enables or disables the VMEDbus interrupts
according to the bit mask specified by the
buffer argument.

Switches from vectored to autovectored IRQs
when an IRQ line is enabled. If a bit is clear,
the corresponding IRQ line handles vectored
interrupts. If a bit is set, the corresponding
IRQ line handles autovectored interrupts.

Disables the VSB interrupts.

Enables the VSB interrupts.

Reads the value of the VMEbus A24 mode
base address from the KAV30 rotary switch.

This service returns the value of the switch in
the low-order four bits of the buffer argument.

Reads the VSB slot number into the low-order
3 bits of the buffer argument.

Sets the high-order byte of the VMEbus A32
mode base address to the value specified in the
buffer argument.

KAV30 System Services 4-153

KAV$VME_SETUP

buffer

Usage: Longword (unsigned)
VAX Type: longword_unsigned

Access: Modify
Mechanism: Reference

Contains data that this service uses to carry out the function specified by the
setup_functions argument. The following table explains the contents of the
buffer argument for each setup_functions value.

setup_functions Value

Contents of buffer argument

KAV$K _ALLOW_VME_IRQ

The low-order byte contains a bit mask
that controls whether the KAV30 enables

or disables the VMEbus IRQs at each IRQ
level. The KAV30 enables the VMEbus IRQs
at each IRQ level for which a bit is set. The
following diagram shows the bit mask:

\

L Reserved, must be zero
Allow VMEbus IRQ 1
Allow VMEbus IRQ 2
Allow VMEbus IRQ 3

Allow VMEbus IRQ 4

Allow VMEbus IRQ 5

Allow VMEbus IRQ 6

Allow VMEbus IRQ 7

KAV$K_AUTO_VME_IRQ

4-154 KAV30 System Services

The low-order byte contains a bit mask

that controls whether the KAV30 switches

an enabled IRQ line from vectored to
autovectored. The KAV30 switches an enabled
IRQ line from vectored to autovectored at each
IRQ level for which a bit is set. The bit mask
has the same layout as the vectored IRQ bit
mask.

KAV$VME_SETUP

setup_functions Value

Contents of buffer argument

KAV$K _RD_A24_ROTARY

KAV$K_RD_VSB_SLOT

KAV$K_SET _A32_BASE

Returns the value of the VMEbus A24 mode
base address from the rotary switch on the
KAV30 in the low-order four bits of the buffer
argument.

Returns the VSB slot number in the low-order
three bits of the buffer argument.

The low-order byte contains the VMEbus A32
mode base address.

Status Values

KAV30$_BAD_PARAM
KER$_BAD_COUNT
KER$_BAD_VALUE

KER$_NO_ACCESS
KER$_SUCCESS

You did not specify a parameter in the correct
format.

You did not specify the correct number of
arguments.

You did not specify a value in the correct
format.

The service cannot access an item.
The operation is successful.

Related Services

KAVS$INT VME

Examples

See the examples in the description of the KAV$BUS_BITCLR service.

KAV30 System Services 4-155

D

Developing KAV30 Applications

This chapter describes how to develop applications for the KAV30. It gives
information on the following:

® Design guidelines

¢ Coding guidelines

* Compiling and linking KAV30 applications
* Building KAV30 system images

* Loading and running KAV30 system images
* Debugging KAV30 applications

e Developing SCSI class drivers

® Building a SCSI class driver into an application

5.1 Design Guidelines

This section gives guidelines for designing KAV30 applications. It gives
guidelines for the following actions:

* Accessing the VMEbus and VSB address space
* Writing AST routines

5.1.1 Accessing the VMEbus and VSB Address Space

This section gives guidelines for accessing the VMEbus and VSB address space.
There are two methods of accessing the VMEbus and VSB address space:

¢ Directly accessing the address space
¢ Using the KAV$BUS_READ and KAV$BUS_WRITE services

Developing KAV30 Applications 5-1

Developing KAV30 Applications

5.1.1.1 Directly Accessing the VMEbus and VSB Address Space

Digital recommends that you directly access the VMEbus and VSB address
space under the following circumstances:

¢ When the KAV30 is the only bus master and there are no slow devices on
the bus

* When you want to migrate existing VMEbus or VSB applications to the
KAV30

Use the virtual addresses that the KAVSOUT_MAP service returns to access
the address space.

When errors occur during a direct access, the KAV30 kernel generates an
exception condition. If you want your application to handle the exception,
the application must include a condition handler for the exception. In the
process context, when the application does not include a condition handler for
the exception, the system invokes the last chance handler. Invoking the last
chance handler usually deletes the process that causes the exception to occur.

Note

The system fails if an error occurs while you are directly accessing the
VMEDbus or VSB from an ISR.

If the system fails because an error occurs while you are directly accessing the
VMEDbus or VSB from an ISR, the stack contains the following data:

¢ The number of arguments

¢ The VAXELN status code

¢ The VMEbus or VSB address that the KAV30 tried to access

¢ The value of the Program Counter (PC) when the error occurred

e The value of the processor status longword when the error occurred

A sample stack dump follows:

4
00007E3C
00F00000
8000B123
00C80009

5-2 Developing KAV30 Applications

Developing KAV30 Applications

5.1.1.2 Using the KAV$BUS_READ and KAV$BUS_WRITE Services

Digital recommends that you use the KAV$BUS_READ and KAV$BUS_WRITE
services only under the following circumstances:

e When there is more than one bus master
¢ When there are slow devices on the bus
¢ When you want to communicate with another KAV30

¢ When you want to ensure that the errors due to bus timeouts and
arbitration problems do not interfere with the data transfer

e When you are testing systems that are under development

e When you are writing an ISR routine (elevated IPL)

5.1.2 Writing Asynchronous System Trap Routines
Use the following guidelines for writing AST routines:

¢ Do not include mutexes
¢ Do not include I/O routines
¢ Do not include signal calls to your own process

When an AST routine contains a mutex or an I/O routine, unpredictable
behavior can result, especially in cases where your application code is not
reentrant. When an AST routine contains a signal call to your own process,
the system can hang.

5.2 Coding Guidelines

This section provides guidelines for coding KAV30 applications in each of the
supported languages. The supported languages are as follows:

* VAX Ada

* VAXC

* VAX FORTRAN
* VAXELN Pascal

Developing KAV30 Applications 5-3

Developing KAV30 Applications

5.2.1 VAX Ada
When you write VAX Ada programs for the KAV30, follow these guidelines:

Include the VAX Ada package for the KAV30 kernel. The name of this
package is ELN$:KAVDEF.ADA.

When you call the KAV30 system services, specify their inclusion at the
start of the code. For example:

WITH KAVDEF;
USE KAVDEF;

KAV_._DEF_AST (status, device code);
If you omit the USE statement, call the system services as follows:
WITH KAVDEF;

KAVDEF .KAV DEF_AST (status, device code);

When you call VAXELN kernel routines, include the following line in the
code:

WITH VAXELN SERVICES;

See the VAXELN Ada User’s Manual and the VAXELN Ada Runtime Library
Reference Manual for more information about writing programs in VAX Ada.

5.2.1.1 Coding Asynchronous System Trap Routines in VAX Ada
When you write AST routines in VAX Ada, declare the routines in a separate
package. For example:

with VAXELN SERVICES;

package AST ROUTINES is

TRIGGERED EVENT : VAXELN SERVICES.EVENT TYPE;
procedure AST ROUTINE;

pragma EXPORT PROCEDURE (AST ROUTINE);

end AST ROUTINES;

package body AST ROUTINES is

procedure AST ROUTINE is

5-4 Developing KAV30 Applications

Developing KAV30 Applications

begin

VAXELN SERVICES.SIGNAL EVENT(EVENT => TRIGGERED EVENT);
end AST ROUTINE;
end AST ROUTINES;

When you specify an AST parameter in a call to a KAV30 service, specify

the value of the AST parameter. However, because VAX Ada always passes
arguments by reference, you must use the SYSTEM.TO_INTEGER function

to convert the address of the AST parameter into an integer and pass the
integer to the service. Because VAX Ada passes arguments by reference, it
uses the integer as an address. However, because the address contains the
required AST parameter value, the AST routine receives the correct value. The
following example shows how to implement this mechanism in a call to the
KAV$IN_MAP system service.

with AST ROUTINES, VAXELN SERVICES;
package signaller task is
SIGNALLER EVENT : VAXELN SERVICES.EVENT TYPE;

task type signaller is
end signaller;

end signaller task;

package body signaller task is
task body signaller is

begin

VAXELN SERVICES.WAIT ANY(VALUEl => AST ROUTINES.TRIGGERED EVENT);
VAXELN_SERVICES.CLEAR EVENT(EVENT => AST ROUTINES.TRIGGERED_ EVENT);
VAXELN SERVICES.SIGNAL EVENT(EVENT => AST ROUTINES.TRIGGERED EVENT);

end signaller;
end signaller task;

with AST ROUTINES, TEXT IO, KAVDEF, CONDITION HANDLING, SYSTEM,
VAXELN SERVICES, SIGNALLER TASK;

procedure AST TEST is

Developing KAV30 Applications 5-5

Developing KAV30 Applications

STATUS : CONDITION HANDLING.COND VALUE TYPE;

SGM_ENTRY : INTEGER;

BUS PAGE : SYSTEM.ADDRESS;

IN PAGE : SYSTEM.ADDRESS;

MAP _FUNCTIONS : INTEGER;

UNMAP_FUNCTIONS : INTEGER;

KAV SERVICE ERROR : exception;

package STATUS IO is new

TEXT IO.INTEGER IO(CONDITION HANDLING.COND VALUE TYPE);
signaller : SIGNALLER TASK.SIGNALLER;

begin
MAP FUNCTIONS := KAVDEF.KAV M MEMORY + KAVDEF.KAV M LOCMON IPL17;
VAXELN SERVICES.CREATE EVENT(EVENT =>

AST ROUTINES.TRIGGERED EVENT,
INITIAL STATE => VAXELN_ SERVICES.CLEARED);

VAXELN SERVICES.CREATE EVENT(EVENT =>
SIGNALLER TASK.SIGNALLER EVENT,
INITIAL STATE => VAXELN SERVICES.CLEARED);

SGM_ENTRY := 0;

KAVDEF.KAV_IN MAP(STATUS => STATUS,
SGM_ENTRY => SGM_ENTRY,
PAGE_COUNT =1,
VIRTUAL ADDRESS => BUS PAGE,
AST ADDR => AST ROUTINES.AST ROUTINE’ADDRESS,
MAP_FUNCTIONS => MAP_FUNCTIONS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise KAV_SERVICE_ERROR;
end if;

VAXELN SERVICES.WAIT ANY(VALUEl => SIGNALLER TASK.SIGNALLER EVENT);
TEXT_IO.PUT LINE("After call to WAIT_ANY");

KAVDEF . KAV_UNMAP (STATUS => STATUS,
SGM_ENTRY => SGM_ENTRY,
PAGE_COUNT =1,

VIRTﬁAL_ADDRESS => BUS_PAGE,
UNMAP FUNCTIONS => KAVDEF.KAV M IN);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE ERROR;
end if;

exception

5-6 Developing KAV30 Applications

Developing KAV30 Applications

when KAV_SERVICE ERROR =>
TEXT_IO.PUT("Error detected: ");
STATUS_IO.PUT(ITEM => STATUS, WIDTH => 8, BASE => 16);
TEXT I0.NEW LINE;

when others =>
raise;

end AST TEST;

See Section 3.1 for more information about ASTs and AST parameters. See
the VAX Ada Run-Time Reference Manual for more information about writing
VAXELN Ada programs that involve ASTs.

5.22 VAXC
When you write VAX C programs for the KAV30, follow these guidelines:

Use the #include compiler preprocessor directive to include the following
text libraries:

— $vaxelnc, which defines the necessary VAXELN constants, data types,
and procedures

— eln$:kavdef.h, which defines the KAV30-specific constants, data types,
and procedures

Specify all the arguments, required and optional, in system service calls.
Specify optional arguments—that is, arguments for which you want to
use default values—as 0 or NULL. NULL is a constant (defined in the
$vaxelnc library) that allows you to supply the value 0 for an argument,
yet maintain readability.

The default argument passing mechanism in VAX C is by value. Use one of
the following methods to pass an argument by reference in VAX C:
— Prefix the argument with the address-of operator (&). For example:

define ASB()
{

int *status;

kav$def ast (&status,
device code);
}

— Create a pointer to the argument, then pass the pointer itself. For
example:

Developing KAV30 Applications 5-7

Developing KAV30 Applications

define ASB()
{

int *status address, status;
status_address = &status;

kav$def ast (status_address,
device code);
}

Digital recommends that you use the address-of operator method, because
using the pointer method increases the number of variables that you use
and the amount of work the compiler must perform.

The KAV30 system service descriptions prefix arguments that must be
passed by reference with an asterisk (*).

Use a bitwise AND operation (&) on the status value and 1 to check the
status values, or if you are testing for failure, negate the result, as follows:

if (status & 1)
success_statement; /* success */

if (! (status & 1))
error statement; /* failure */

See the VAXELN C Reference Manual and the VAXELN C Runtime Library
Reference Manual for information about writing VAXELN programs in VAX C.

5.2.3 VAX FORTRAN

When you write VAX FORTRAN programs for the KAV30, follow these
guidelines:

Include the file ELN$:KAVDEF.FOR. This file includes the KAV30-specific
constants, data types, and procedures.

Unlike VAX C, where you must provide all the arguments, you can omit
optional arguments in calls to VAX FORTRAN run-time library routines.
For example:

CALL KAVSDEF_AST(status, device code) ! optional argument included
CALL KAVSDEF_AST(,device code) ! optional argument omitted

The default argument passing mechanism in VAX FORTRAN is by
reference. Use the %VAL function to pass arguments by value.

The KAV30 system service descriptions use the %VAL function to pass
arguments by value.

See the VAX FORTRAN Language Reference Manual and the VAXELN
FORTRAN Runtime Library Reference Manual for more information about
writing programs in VAX FORTRAN.

5-8 Developing KAV30 Applications

Developing KAV30 Applications

5.2.4 VAXELN Pascal

When you write VAXELN Pascal programs for the KAV30, include the file
ELN$:KAVDEF.PAS. This file includes the KAV30-specific constants, data
types, and procedures.

See the VAXELN Pascal Language Reference Manual and the VAXELN Pascal
Runtime Library Reference Manual for more information about writing
programs in VAXELN Pascal.

5.2.4.1 Coding AST Routines in VAXELN Pascal

When you write the AST routines in VAXELN Pascal, perform the following
actions:

* Declare the routines in a separate compilation module.

¢ In programs that call system services with an AST routine as an argument,
declare the routines to be external with data type KAVSAST ROUTINE_
TYPE. For example:

MODULE ast_routine;

VAR
ast triggered event : [EXTERNAL] event;

PROCEDURE ast_routine;
BEGIN
SIGNAL (ast_triggered event);
END;
END;

The following example shows a program called TEST, which includes a call to
the AST routine declared in the module described:

MODULE ast_test;
INCLUDE SKAVDEF;
TYPE

byte = [byte] 0..255;
vmebus_page = packed array [0..65535] of byte;

VAR
p_id : PROCESS;
ast triggered event : EVENT;
signaller_event : EVENT;
ast_routine : [EXTERNAL] kav$ast routine type;

PROCESS_BLOCK signaller;

Developing KAV30 Applications 5-9

Developing KAV30 Applications

BEGIN

WAIT ANY(ast _triggered event);
CLEAR EVENT(ast_triggered event);
SIGNAL(signaller_ event)

END;

PROGRAM test (input, output);

VAR
status : INTEGER;
entry : INTEGER;
bus page : “vmebus page;
in page : “vmebus_page;
map functions : INTEGER;

BEGIN

CREATE EVENT(ast triggered event, EVENTSCLEARED, STATUS := status);

IF NOT ODD(status) THEN
BEGIN
WRITELN (' CREATE EVENT error : ', HEX(status));
EXIT
END;

CREATE_EVENT(signaller event, EVENTSCLEARED, STATUS := status);

IF NOT ODD(status) THEN
BEGIN
WRITELN (' CREATE_EVENT error : ', HEX(status));
EXIT
END;

CREATE PROCESS(p _id, signaller, STATUS := status);
IF NOT ODD (status) THEN

BEGIN
WRITELN (' CREATE_PROCESS error : ', HEX(status));
EXIT
END;
map_functions := KAV$M_MEMORY + KAV$M_LOCMON_IPL17;
entry := 0;

KAVSIN MAP(STATUS := status,
ENTRY := entry,
PAGE COUNT := 1,
VIRTUAL ADDRESS := bus page,
AST ADDR := ADDRESS (ast_routine),
MAP FUNCTIONS := map functions);

5-10 Developing KAV30 Applications

Developing KAV30 Applications

IF NOT ODD(status) THEN
BEGIN
WRITELN (' KAVSIN MAP error : ', HEX(status));
EXIT
END;

WAIT ANY(signaller event,
STATUS := status);

IF NOT ODD(status) THEN
BEGIN
WRITELN ('WAIT ANY error : ', HEX(status));
EXIT
END;
CLEAR EVENT(signaller event);

WRITELN ('After call to WAIT_ANY’);
KAVSUNMAP (STATUS := status,

ENTRY := entry,
PAGE COUNT := 1,

VIRTUAL ADDRESS := bus_page,
UNMAP_FUNCTIONS := KAV3M IN);
IF NOT ODD(status) THEN
BEGIN
WRITELN (' KAVSUNMAP error : ', HEX(status));
EXIT
END;
END.
END;

Because the AST routine is an external reference, you can resolve it at link
time. For example, if the program containing the AST routine is called AST
ROUTINES.PAS, build it into the system as follows (where TEST.PAS is the
name of the main program):

$ LINK TEST + AST ROUTINE + ELN$:KAVSRTL OBJLIB/LIB + ELNS:RTLSHARE/LIB + -
_$ + RTL/LIB

When the AST routines include calls to the KAV30 system services, follow
these steps:

1.
2.

Include the file ELN$:KAVDEF.PAS in the program.

When you compile the program, include the KAV30 object library in the
command line. For example:

$ EPASCAL AST ROUTINE + ELN:KAVSRTL OBJLIB/LIB

Developing KAV30 Applications 5-11

Developing KAV30 Applications

For more information on the ASTs and AST parameters, see Section 3.1. For
more information on writing VAXELN Pascal programs that involve ASTs, see
the VAXELN Pascal Run-Time Language Reference Manual.

5.3 Compiling and Linking KAV30 Applications

For each language supported by the VAXELN Toolkit, there is an optimizing
compiler that generates position-independent object code from the source code.

Use the VMS Linker to link the object modules with the appropriate run-time
libraries for the language in which your source code is written. For example,
you must link C object modules with the VAXELN C Run-Time Library.

You must link all object modules with the VAXELN Kernel general purpose
run-time library (RTL.OLB), and with the VAXELN Pascal run-time shareable
library (RTLSHARE.OLB).

Linking the object modules with one or more run-time libraries results in a
single copy of each run-time library being built into the application image,
where it can be shared by all the programs that make up the image.

Table 5—1 lists the commands that compile and link programs written for the
KAV30 in each of the languages supported by VAXELN.

You can add qualifiers to the compiler command line to control the actions of
the compiler. For example, the /DEBUG qualifier instructs the compiler to
build symbolic debugging information into the application.

For more information about compiling VAXELN programs, see the appropriate
language reference manual. For more information about linking VAXELN
programs with run-time libraries, see the VAXELN Development Utilities
Guide.

Table 5-1 Compiling and Linking Commands

Language Compile Command

VAXELN Ada $ ADA FILENAME.ADA

VAX C $ CC FILENAME.C + ELNS :VAXELNC/LIB

VAX FORTRAN $ FORTRAN FILENAME .FOR

VAXELN Pascal $ EPASCAL FILENAME.PAS + ELN$:KAVSRTL OBJLIB/LIB -

+ ELNS :RTLOBJECT/LIB

5-12 Developing KAV30 Applications

Developing KAV30 Applications

Language Link Command

VAXELN Ada $ ACS LINK UNITNAME + ELN$:KAV$RTL_OBJLIB/LIB + -
t...

VAX C $ LINK FILENAME + ELNS:KAVSRTL OBJLIB/LIB + -

+ ELNS : CRTLSHARE/LIB + RTLSHARE/LIB + -
+ ELNS:RTL/LIB

VAX FORTRAN $ LINK FILENAME + ELN$:KAVSRTL OBJLIB/LIB + -
+ ELNS$:FRTLOBJECT/LIB + ELN$:RTLSHARE/LIB + -
+ ELNS:RTL/LIB

VAXELN Pascal $ LINK FILENAME + ELN$:KAVSRTL OBJLIB/LIB + -
+ ELNS :RTLSHARE/LIB + ELN$:RTL/LIB

5.4 Building KAV30 System Images

The VAXELN System Builder component of the VAXELN Toolkit combines
your application image with the VAXELN-supplied software components to
create a VAXELN system image, which you can load on the KAV30.

The System Builder provides a menu interface through which you enter
information about the system you are building. For example, you can enter
the names of the files that make up your application image on the Program
Description menu, and you can specify the external device information on the
Device Characteristics menu.

For more information about the System Builder, see the VAXELN Development
Utilities Guide.

To build a system image that runs as a target system on the KAV30, follow
these steps:

1. Invoke the VAXELN System Builder with the following command:
$ EBUILD/MAP mydatafile
(The /MAP qualifier generates a system map file called MYDATAFILE.MAP,

which contains a listing of the images in the system, the devices and
terminals you specify, and the system characteristics.)

2. On the Target Processor menu, choose rtVAX 300 for the Target Processor
entry.

3. Return to the Main Menu and add your program descriptions, device
descriptions, and so on as described in the VAXELN Development Utilities
Guide.

Developing KAV30 Applications 5-13

Developing KAV30 Applications

The Ethernet adapter on the rtVAX 300 is a Second Generation Ethernet
Controller (SGEC), type EZA. Therefore, specify EZA for the Network
device entry on the Network Node Characteristics Menu.

Note

For each 64K byte page of system RAM space mapped to the VMEbus
or VSB bus address space by the KAV$OUT_MAP service, you must
increase the System region size entry in the System Characteristics
menu by 128 pages. This is in addition to the 128 pages of system
space required to support KAV30 internal data structures.

For each 64K byte page of VMEbus address space mapped into KAV30
process address space by the KAVSIN_MAP service, you must increase
the PO virtual size entry in the System Characteristics menu by 128
pages. You do not have to do this for calls to the KAVSIN_MAP service
in which the service maps data from the KAV30 CSR pages to the
VMEDbus address space.

If you are running in kernel mode, increase the kernel stack by at least
two pages.

5.4.1 Configuring the VMEbus and VSB

When you build the KAV30 system with the VAXELN System Builder, you can
specify information that controls how the KAV30 interacts with other devices
on the VMEbus and VSB. You specify this information by setting the contents
of the System Parameter 1 and System Parameter 2 options in the EBUILD
System Characteristics Menu (the System Parameter 3 and System Parameter
4 options are available for use by the customers’ applications).

The following list describes how to set the System Parameter 1 and System
Parameter 2 options.

¢ System Parameter 1

— Enable System Parameter 1 and System Parameter 2 byte

T et meeemcaeaecaoceaoae 0
FF

This byte controls whether the System Builder uses System Parameter
1 and System Parameter 2 when building the system. When you do
not use System Parameter 1 and System Parameter 2, you can specify

5-14 Developing KAV30 Applications

Developing KAV30 Applications

parts of the information in programs by calling the KAV§VME_SETUP
system service. See the description of the KAV§VME_SETUP service
for more information.

By default this byte contains the value 0. When you want to use the
default configurations, set this byte to F Fyg and make sure that System
Parameter 1 and System Parameter 2 contain valid settings. When you
do not want to use the default configurations, set this byte to any value
other than FFyg.

— VMEDbus vectored interrupt mask byte

15 14 13 12 11 10 9 8

AIAIAIANIAIAIA

Reserved, must be zero
Allow VMEbus IRQ 1
Aliow VMEbus IRQ 2
Allow VMEbus IRQ 3
Allow VMEbus IRQ 4
Allow VMEbus IRQ 5
Allow VMEbus IRQ 6
Allow VMEbus IRQ 7

This byte controls whether the KAV30 enables or disables the VMEbus
IRQs at each IRQ level. The module allows the IRQs at each IRQ level
for which a bit is set (1).

This byte has the following default settings:

Bit Value Bit Value
8 0 12 0
9 0 13 0
10 0 14 0
11 0 15 0

Developing KAV30 Applications 5-15

Developing KAV30 Applications

— VMEDbus and VSB autovectored interrupt mask byte

23 22 21 20 19 18 17 16
AIAIAIAIAIATALA
L VSBIRQ (IHV Mode, Autovectored)
VMEDbus IRQ 1 (Autovectored)
VMEbus IRQ 2 (Autovectored)
VMEbus IRQ 3 (Autovectored)
VMEbus IRQ 4 (Autovectored)
VMEbus IRQ 5 (Autovectored)
VMEbus IRQ 6 (Autovectored)
VMEbus IRQ 7 (Autovectored)

This byte controls whether the KAV30 enables or disables the
autovectored IRQs at each IRQ level. The module allows the
autovectored IRQs at each IRQ level for which a bit is set (1). The
module allows vectored IRQs at each IRQ level for which a bit is clear
(0). This byte has the following default settings:

Bit Value Bit Value
16 0 20 0
17 0 21 0
18 0 22 0
19 0 23 0

5-16 Developing KAV30 Applications

Developing KAV30 Applications

— VMEDbus and VSB control byte
31 30 29 28 27 26 25 24

ANAIAIANIAIAIA

Enable A24 Slave Mode
L Enable A32 Slave Mode
Enable VMEbus/VSB Master Port

Reserved, must be zero

Enable VSB Arbitrator Function

Select VSB Release When Done Request Mode

Action to Take on Detection of the VMEbus SYSFAIL Signal

Set System Clock with Value of Real-Time Clock

This byte controls the interaction of the KAV30 with the VMEbus and
VSB. For example, to set the KAV30 to operate in A32 slave mode, set
bit 25 to 1. This byte has the following default settings:

Bit Value Bit Value
24 1 28 0
25 1 29 0
26 1 30 0
27 0 31 0

The value of bit 30 determines what action the KAV30 takes when

it detects the assertion of the VMEbus SYSFAIL signal. The KAV30
delivers an asynchronous system trap when bit 30 has the value 0. The
KAV30 calls an interrupt service routine (ISR) at vector 540;gwhen bit
30 has the value 1.

Developing KAV30 Applications 5-17

Developing KAV30 Applications

¢ System Parameter 2
— VMEDbus arbiter selection byte

7 6 5 4 3 2 A1 0
AIAIANIAIANIAIAIA
L—— Select VMEbus Request Level LSB

Select VMEbus Request Level MSB

Select VMEbus Request Release on Request
Select FAIR Mode for VMEbus Requester
Select HIDDEN Mode for VMEbus Requester

Reserved, must be zero
Select VMEbus Arbitration Mode LSB
Select VMEbus Arbitration Mode MSB

This byte specifies the VMEbus arbiter information. The following
table explains the VMEbus request level’s most significant bit (MSB)
and least significant bit (LSB):

MSB LSB VMEbus Request Level
0 0 BRO
0 1 BR1
1 0 BR2
1 1 BR3

The following table explains the VMEbus arbitration mode’s MSB and

LSB:

MSB LSB VMEDbus Arbitration Mode
0 0 Priority encoded

0 1 Round-robin

1 0 Reserved for Digital

1 1 Reserved for Digital

5-18 Developing KAV30 Applications

Developing KAV30 Applications

This byte has the following default settings:

Bit Value Bit Value
0 1 4 0
1 1 5 0
2 1 6 0
3 0 7 0

See Section 2.4 for more information about the KAV30 VMEbus arbiter
functionality.

— VMEDus slave mode A32 base address byte
15 14 13 12 11 10 9 8

AATATATAIAALA

VMEDbus Slave Address Bit A<24>
VMEbus Slave Address Bit A<25>
VMEbus Slave Address Bit A<26>
VMEbus Slave Address Bit A<27>
VMEbus Slave Address Bit A<28>
VMEDbus Slave Address Bit A<29>
VMEbus Slave Address Bit A<30>
VMEDbus Slave Address Bit A<31>

This byte specifies the VMEbus base address for the KAV30 acting as a
slave and using A32 addressing mode.

This byte has the following default settings:

Bit Value Bit Value
8 0 12 0
9 0 13 0
10 0 14 0
11 0 15 0

Developing KAV30 Applications 5-19

Developing KAV30 Applications

— Bus access software retry count word

Retry Count

The KAV30 kernel performs software retries of a bus access in addition
to the 29 retries performed by the hardware (you can disable hardware
retries, using the KAVSOUT_MAP kernel service). This word contains
the maximum number of times that a bus access retries before the
KAV30 kernel returns an error to the application. By default this word
contains the value 10 (decimal). Software retries can be necessary
because of bus arbitration contention or bus timeouts.

The number of software retries must be between 0 and 65 535.

5.5 Loading and Running KAV30 System Images

Once you have built the KAV30 system image, use one of the following
procedures to load it onto the KAV30:

¢ Down-line loading the system image over the Ethernet from the VMS host
system or from another VAXELN target system

* Boot the system image from the KAV30 ROM, a tape, or a disk

¢ Load the system image from an ULTRIX™ system (Digital does not
currently supply a VAXELN Toolkit for an ULTRIX host system)

* Boot the system image from a DEC™ SCSI floppy disk or hard disk

For more information about down-line loading VAXELN system images, see the
VAXELN Development Utilities Guide.

5.6 Debugging KAV30 Applications

The VAXELN Debugger enables you to debug your application while it runs on
the target computer (in this case, the KAV30). The Debugger allows you to set
breakpoints, examine variables and addresses, deposit values, and control the
execution of your application.

You can run the Debugger remotely (from a terminal connected to the host
computer) or locally (from the console terminal connected to the KAV30).

5-20 Developing KAV30 Applications

Developing KAV30 Applications

In remote mode, you can view source code and refer to program variables by
their symbolic names. In local mode, those operations that require source-file
or other host information, for example, eperations that refer to variables by
name, are unavailable. You choose local or remote mode when you build the
system image.

Choosing remote debugging places only a portion of the Debugger in the system
image; the remainder resides on the host system, as shown in Figure 5-1.

Figure 5-1 A Remote Debugging Configuration

VMS Host System VAXELN Target System
VAXELN Remote Symbolic Local Debugger
Debugger Component - Component |
- VMS User |
- Terminal
Ethernet

Choosing local debugging places the entire Debugger in the system image, as
shown in Figure 5-2.

See the VAXELN Development Utilities Guide for more information about using
the VAXELN Debugger.

Developing KAV30 Applications 5-21

Developing KAV30 Applications

Figure 5-2 A Local Debugging Configuration

VMS Host System VAXELN Target System
Debugger
Mass Storage Mass Storage Console
Transfer Media Transfer Media Terminal

5.7 Developing SCSI Class Drivers
To develop a SCSI class driver, follow these steps:
1. Write the SCSI class driver in one of the supported languages.
2. Compile the SCSI class driver. For example, to compile the SCSIUSER
class driver in VAX C, enter the following command:
$ CC SCSIUSER + ELNS:VAXELNC/LIBRARY

3. Modify the SCSI driver startup module (SCDRIVER.C) for the new SCSI
driver.

4. Compile the SCSI driver startup module. For example, to compile the
startup module in VAX C, enter the following command:

§ CC SCDRIVER + ELNS:VAXELNC/LIBRARY

5. Link the SCSI class driver and the SCSI driver startup module with the
VAXELN SCSI driver components to produce a new VAXELN SCSI driver
image. For example:
$ LINK/EXE=KRDRIVER SCDRIVER + SCSISNIF + SCSIDISK + SCSIGNRC + -

_$ SCSIUSER + SCSI53C700 + SCSI53C700_SCRIPT + SCSI53C700/0PT + -
_$ ELN$:CRTLSHARE/LIB + RTLSHARE/LIB + RTL/LIB

This LINK command links the SCSI class driver with the startup module,
the sniffer module, the supplied disk and generic class drivers, and the port
driver. If you modified the startup module so that it does not include the
supplied class drivers, omit those driver modules when linking the driver
image as follows:

5-22 Developing KAV30 Applications

Developing KAV30 Applications

$ LINK/EXE=KRDRIVER SCDRIVER + SCSISNIF + SCSIUSER + SCSI53C700 + -
_$ SCSI53C700_SCRIPT + SCSI53C700/OPT + ELNS$:CRTLSHARE/LIB + -
_$ RTLSHARE/LIB + RTL/LIB

6. Build the image into the VAXELN system. See Section 5.8 for information
about building the SCSI driver into a user application.

See the VAXELN Runtime Facilities Guide for more information about
developing user-defined SCSI class drivers.

5.8 Building a SCSI Class Driver into an Application

Before you use SCSI devices in an application, follow these steps:

1. Set the KAV30 SCSI ID

See the KAV30 Hardware Installation and User’s Information for more
information.

2. Connect the SCSI devices to the KAV30

See the KAV30 Hardware Installation and User’s Information for more
information.

3. Include the KAV30 SCSI class driver in the system image

Enter the following information at the Add Device Description menu in the
VAXELN System Builder:

VAXELN System Builder Prompt Information to Enter

Name DUA

Vector address %02520

Interrupt priority 6

Default file spec ELN$:KRDRIVER.EXE
Device-dependent parameter %X00000?'FF

!Enter the KAV30 SCSI ID instead of the question mark (?).

Do not enter information at the other prompts, use the default selections
for these prompts. Enter the KAV30 SCSI ID instead of the question
mark (?) in the information that you must enter as a response to the
Device-dependent parameter prompt. The Device-dependent parameter
determines the KAV30 SCSI ID when there is no valid SCSI ID in the
KAV30 battery backed-up RAM.

Developing KAV30 Applications 5-23

Developing KAV30 Applications

Figure 5-3 shows the Add Device Description menu in the VAXELN
System Builder when you enter the information and specify seven as the
SCSI ID.

Figure 5-3 Sample Add Device Description Menu

System KAVU30A.DAT - Editing Device

Name DUA
Register address %00000000
Yector address %025820
Interrupt priority 6
BI number 0
Adapter number 0
Autoload driver Yes No
Default file spec ELN$: KRDRIVER. EXE
Network device Yes No Default
Device-dependent parameter %XOOUDD?FFI
oo B e BN B o |

4. Specify the devices for automatic mounting at boot time

List the devices that you want to specify at the Disk/volume names prompt
of the Edit System Characteristics menu in the VAXELN System Builder.

See the VAXELN Development Utilities Guide for information about the
VAXELN System Builder.

While you use SCSI devices in applications, you can perform the following
actions:

e Access devices on the SCSI bus

Use the device’s unique SCSI device name to access the device. The device
name consists of the characters DUA followed by the SCSI ID of the device.
For example DUA2.

5-24 Developing KAV30 Applications

Developing KAV30 Applications

Manipulate disks and files

Use the VAXELN Command Language Utility (ECL) to manipulate local
disks and files. See the VAXELN Development Utilities Guide for more
information.

When the system image is correctly configured, use DECnet to manipulate
remote disks and files. See the following documents for more information
about manipulating remote disks and files in each supported language:

VAXELN C Reference Manual

VAXELN FORTRAN Runtime Library Reference Manual
VAXELN Ada User’s Guide

VAXELN Pascal Language Reference Manual

Use local error logging to disk
See the VAXELN Development Utilities Guide for more information.

Developing KAV30 Applications 5-25

A

Initial KAV30 Configuration

This appendix describes the initial KAV30 hardware and software
configuration.

A.1 Hardware Configuration
This section describes the initial KAV30 hardware configuration.

The KAV30 does not supply power to the SCSI bus TERMPWR signal.
The KAV30 responds to the VMEbus RESET signal.
The KAV30 has 256K bytes of user ROM.

The rtVAX 300 Ethernet controller can assert the KAV30 VAX HALT
signal.

The break key assertions on the devices connected to the auxiliary port do
not assert the KAV30 VAX HALT signal.

There is no power supply to the battery backed-up RAM and the
calendar/clock.

The KAV30 VMEDbus arbiter functionality is disabled.

The break key assertions on the devices connected to the serial line ports
assert the VAX HALT signal.

The VMEbus ACFAIL signal asserts the KAV30 VAX POWER_FAIL signal.
The KAV30 VMEbus A24 base slave address is set to zero.

Initial KAV30 Configuration A-1

Initial KAV30 Configuration

A.2 Software Settings
This section describes the initial KAV30 software configuration.
e The VSB arbiter functionality is disabled.
* The VMEbus A32 base slave address is set to zero.
¢ The VMEbus master functionality is enabled.
¢ The VSB master functionality is enabled.
e All the VMEbus IRQs are disabled.
e All the VMEbus autovectored IRQs are disabled.
e The VMEbus A24 slave functionality is enabled.
¢ The VMEbus A32 slave functionality is enabled.
e The VSB bus requester operates in ROR mode.
e The VMEbus bus requester operates in ROR mode.
e The VMEbus bus requester uses the VMEbus BR3 line.
e The VMEDbus arbiter operates in priority mode.
* The VMEDbus arbiter operates in not fair mode.
* The VMEDbus arbiter operates in not hidden mode.
¢ The FIFO buffers are clear.
e All SGM entries are invalid.
* The local bus timeout is 25 us.
¢ The VMEbus timeout is 125 us.
e All counter/timers are reset and clear.
¢ The VAXELN system time contains the value of the KAV30 calendar/clock.
® The default SCSI ID is seven.

A-2 Initial KAV30 Configuration

Example Programs—Interprocessor
Communication

This appendix lists a pair of VAX Ada programs that demonstrate
interprocessor communication between two KAV30s. The first program
implements a FIFO producer. The second program implements a FIFO
consumer.

B.1 FIFO Producer

-- FIFO_PRODUCER.ADA
-- This program is one of a pair that demonstrates how the KAV30 FIFOs may be
-- used for inter-processor communication

with KAVDEF, CONDITION HANDLING, SYSTEM, TEXT IO, ERROR_HANDLING,
VAXELN SERVICES, AST ROUTINES, SIGNALLER TASK;

-- The ERROR HANDLING package ships with VAXELN ADA to utilize this package
-- from your programs you must enter this package into your ADA program
-- manager library

procedure FIFO PRODUCER is

STATUS : CONDITION HANDLING.COND VALUE TYPE;
BUS_PAGE PTR : SYSTEM.ADDRESS;

IN PAGE PTR : SYSTEM.ADDRESS;
OUTGOING_SGM ENTRY : INTEGER;
INCOMING_SGM ENTRY : INTEGER;

MAP FUNCTIONS : INTEGER;
UNMAP_FUNCTIONS : INTEGER;
KAV_SERVICE ERROR : exception;
VAXELN SERVICE ERROR : exception;
BUFFER : INTEGER;

AST PARAM : INTEGER;

SIGNALLER : SIGNALLER TASK.SIGNALLER;

package INT IO is new TEXT IO.INTEGER IO(INTEGER);
begin

Example Programs—Interprocessor Communication B-1

Example Programs—Interprocessor Communication

-- create events for synchronization

VAXELN SERVICES.CREATE EVENT(EVENT => AST ROUTINES.TRIGGERED EVENT,
INITIAL STATE => VAXELN SERVICES.CLEARED,
STATUS => STATUS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise VAXELN_SERVICE ERROR;
end if;

VAXELN SERVICES.CREATE EVENT (EVENT =>
SIGNALLER TASK.SIGNALLER EVENT,
INITIAL STATE => VAXELN SERVICES.CLEARED,
STATUS => STATUS) ;

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise VAXELN SERVICE ERROR;
end if;

-- start signaller task
SIGNALLER.START;
-- map CSR page (FIFOs) on other KAV30
MAP FUNCTIONS := KAVDEF.KAV M VME + KAVDEF.KAV M MODE 0 SWAP;

KAVDEF .KAV_OUT MAP (STATUS => STATUS,
SGM_ENTRY => OUTGOING_SGM ENTRY,
PAGE_COUNT =1,
BUS_ADDRESS => 164F000004,
VIRTUAL ADDRESS => BUS_PAGE PTR,
AM CODE => KAVDEF.KAV K USER 24,
MAP FUNCTIONS => MAP_FUNCTIONS);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE ERROR;
end if;

-- make our CSR page (FIFOs) visible to another KAV30

MAP_FUNCTIONS := KAVDEF.KAV M CSR + KAVDEF.KAV M MODE 0 SWAP;
INCOMING_SGM ENTRY := 0;

KAVDEF .KAV_IN MAP(STATUS => STATUS,
SGM_ENTRY => INCOMING SGM_ENTRY,
PAGE_COUNT = 1,
VIRTUAL ADDRESS => IN PAGE PTR,
MAP FUNCTIONS => MAP FUNCTIONS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise KAV_SERVICE_ERROR;
end if;

-- set virtual address to point to FIFO 0
BUS PAGE PTR := SYSTEM."+" (BUS_PAGE PTR,16#4000%);

B-2 Example Programs—Interprocessor Communication

Example Programs—Interprocessor Communication

declare VALUE : INTEGER;
for VALUE use at BUS_PAGE_PTR;

begin
-- set up fifo notification on empty to not-empty state
KAVDEF .KAV _NOTIFY FIFO(STATUS => STATUS,
FIFO NUMBER => KAVDEF.KAV K FIFO 0,

FIFO_FUNCTIONS =>
KAVDEF .KAV M FIFO NOT EMPTY,

AST ADDR ="
AST ROUTINES.AST ROUTINE'ADDRESS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise KAV_SERVICE ERROR;
end if;

-- write a value to the remote KAV30 to start things off

VALUE := 1;
loop

-- wait for FIFO transition from empty to not empty

VAXELN SERVICES.WAIT ANY(VALUEl => SIGNALLER TASK.SIGNALLER EVENT,
STATUS => STATUS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise VAXELN SERVICE ERROR;
end if;

-- clear signaller event

VAXELN SERVICES.CLEAR EVENT(EVENT =>
SIGNALLER TASK.SIGNALLER EVENT,
STATUS => STATUS);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise VAXELN SERVICE ERROR;

end if;
-- read 1 longword from FIFO 0
KAVDEF .KAV_FIFO READ(STATUS => STATUS,
FIFO NUMBER => KAVDEF.KAV K FIFO 0,
BUFFER => BUFFER’ADDRESS,
COUNT =>1);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE ERROR;
end if;

-- re-establish FIFO notification on empty to not-empty transition

Example Programs—Interprocessor Communication

B-3

Example Programs—Interprocessor Communication

KAVDEF .KAV_NOTIFY FIFO(STATUS => STATUS,
FIFO_NUMBER => KAVDEF.KAV K FIFO 0,
FIFO_FUNCTIONS =>
KAVDEF.KAV_M FIFO NOT EMPTY,

AST ADDR ="
AST ROUTINES.AST ROUTINE’ADDRESS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise KAV_SERVICE ERROR;
end if;

-- display message on console

TEXT_IO.PUT("Read ");

INT I0.PUT(BUFFER);

TEXT IO.PUT(" writing ");
INT_IO.PUT(BUFFER+1);
TEXT IO.NEW_LINE;

-- increment value read from FIFO 0 and write it to the other KAV30
VALUE := BUFFER + 1;
end loop;
end;
exception
when VAXELN SERVICE ERROR =>
ERROR HANDLING.DISPLAY ERROR MESSAGE(STATUS);
when KAV_SERVICE ERROR =>
ERROR_HANDLING.DISPLAY ERROR MESSAGE(STATUS);
when others =>

raise;

end FIFO PRODUCER;

B-4 Example Programs—Interprocessor Communication

Example Programs—Interprocessor Communication

B.2 FIFO Consumer

-- FIFO_CONSUMER.ADA
-- This module forms one half of a pair of programs that demonstrate how the
-- KAV30 FIFOs can be used for inter-processor communication over VMEbus

with KAVDEF, CONDITION HANDLING, SYSTEM, TEXT IO, ERROR_HANDLING,
VAXELN_SERVICES, AST ' ROUTINES, SIGNALLER TASK;

-- The ERROR HANDLING package ships with VAXELN ADA to utilize this package
-- from your programs you must enter the ERROR HANDLING package into your ADA
-- program manager library

procedure FIFO CONSUMER is

STATUS : CONDITION HANDLING.COND VALUE TYPE;
BUS_PAGE PTR : SYSTEM. ADDRESS;

IN PAGE PTR : SYSTEM.ADDRESS;
OUTGOING_SGM_ENTRY : INTEGER;
INCOMING SGM ENTRY : INTEGER;

MAP FUNCTIONS : INTEGER;
UNMAP_FUNCTIONS : INTEGER;

KAV SERVICE ERROR : exception;

VAXELN SERVICE _ERROR : exception;
BUFFER : INTEGER;

AST PARAM : INTEGER;

SIGNALLER : SIGNALLER TASK.SIGNALLER;

package INT IO is new TEXT IO.INTEGER IO (INTEGER);

begin
-- create the event objects that will be used for synchronization
VAXELN SERVICES.CREATE EVENT(EVENT => AST ROUTINES.TRIGGERED EVENT,
INITIAL STATE => VAXELN SERVICES.CLEARED,
STATUS => STATUS) ;

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise VAXELN SERVICE ERROR;
end if;

VAXELN SERVICES.CREATE EVENT (EVENT =>
SIGNALLER TASK.SIGNALLER EVENT,
INITIAL STATE => VAXELN SERVICES.CLEARED,
STATUS => STATUS);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise VAXELN SERVICE ERROR;
end if;

-- start signaller task

Example Programs—Interprocessor Communication

B-5

Example Programs—Interprocessor Communication

SIGNALLER.START;
-- map CSR page (FIFOs) on second KAV30
MAP FUNCTIONS := KAVDEF.KAV M VME + KAVDEF.KAV M MODE 0 SWAP;

KAVDEF .KAV_OUT MAP (STATUS => STATUS,
SGM_ENTRY => OUTGOING SGM ENTRY,
PAGE_COUNT =1, -7
BUS_ADDRESS => 164E000004,
VIRTUAL ADDRESS => BUS_PAGE PTR,
AM CODE => KAVDEF.KAV K USER 24,
MAP_FUNCTIONS => MAP_FUNCTIONS);

if not CONDITION_ HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE ERROR;
end if;

-- map CSR page (FIFOs) on this module so that another KAV30 can access it

MAP_FUNCTIONS := KAVDEF.KAV M CSR + KAVDEF.KAV M MODE 0 SWAP;
INCOMING SGM_ENTRY := 0;

KAVDEF .KAV_IN MAP (STATUS => STATUS,
SGM_ENTRY => INCOMING_SGM_ ENTRY,
PAGE_COUNT = 1,
VIRTUAL ADDRESS => IN PAGE PTR,
MAP FUNCTIONS => MAP FUNCTIONS);

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise KAV_SERVICE_ERROR;
end if;

-- set virtual address to access FIFO 0 on the other KAV30
BUS PAGE PTR := SYSTEM."+"(BUS_PAGE_PTR,16#4000#);

declare VALUE : INTEGER;

for VALUE use at BUS_PAGE PTR;

begin

-- set up FIFO notification on empty to not empty transition
KAVDEF .KAV_NOTIFY FIFO(STATUS => STATUS,

FIFO NUMBER => KAVDEF.KAV K FIFO 0,
FIFO_FUNCTIONS =>
KAVDEF .KAV_M FIFO NOT EMPTY,

AST ADDR =>
AST ROUTINES.AST ROUTINE'ADDRESS);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE_ERROR;
end if;

loop

-- wait for signaller to signal us

B-6 Example Programs—Interprocessor Communication

-- clear

Example Programs—Interprocessor Communication

VAXELN SERVICES.WAIT ANY(VALUEl => SIGNALLER TASK.SIGNALLER EVENT,
STATUS => STATUS);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise VAXELN SERVICE ERROR;
end if;

signaller event

VAXELN SERVICES.CLEAR EVENT(EVENT =>
SIGNALLER TASK.SIGNALLER EVENT,

STATUS => STATUS) ;

if not CONDITION_HANDLING.SUCCESS(STATUS) then
raise VAXELN SERVICE ERROR;
end if;

-- read 1 longword from FIFO

KAVDEF .KAV_FIFO READ(STATUS => STATUS,
FIFO NUMBER => KAVDEF.KAV K FIFO 0,
BUFFER => BUFFER’ADDRESS,
COUNT =>1);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE ERROR;
end if;

-- re-establish fifo state transition notification

-- write

KAVDEF .KAV_NOTIFY FIFO(STATUS => STATUS,
FIFO NUMBER => KAVDEF.KAV K FIFO 0,
FIFO_FUNCTIONS =>
KAVDEF .KAV_M_FIFO NOT EMPTY,

AST ADDR =>
AST ROUTINES.AST ROUTINE'ADDRESS);

if not CONDITION HANDLING.SUCCESS (STATUS) then
raise KAV_SERVICE ERROR;
end if;

message to console

TEXT_IO.PUT("Read ");

INT IO.PUT(BUFFER);

TEXT IO.PUT(" writing ");
INT I0.PUT(BUFFER);

TEXT I0.NEW LINE;

-- write value read from FIFO back to the other KAV30
VALUE := BUFFER;
end loop;
end;
exception

Example Programs—Interprocessor Communication

B-7

Example Programs—Interprocessor Communication

when VAXELN SERVICE ERROR =>
ERROR_HANDLING.DISPLAY ERROR MESSAGE(STATUS);

when KAV _SERVICE_ERROR =>
ERROR_HANDLING.DISPLAY ERROR MESSAGE(STATUS);

when others =>
raise;

end FIFO_ CONSUMER;
-- AST ROUTINES.ADA

-- AST routine for use with FIFO PRODUCER / FIFO CONSUMER example programs

with VAXELN SERVICES;

package AST ROUTINES is

TRIGGERED_EVENT : VAXELN SERVICES.EVENT TYPE;
procedure AST ROUTINE;

pragma EXPORT PROCEDURE (AST ROUTINE);

end AST ROUTINES;

package body AST ROUTINES is

procedure AST ROUTINE is

begin
VAXELN SERVICES.SIGNAL EVENT(EVENT => TRIGGERED_ EVENT);
end AST ROUTINE;
end AST ROUTINES;
-- SIGNALLER TASK.ADA

-- This package contains the signaller process used by the FIFO PRODUCER /
-- FIFO_CONSUMER example

with SYSTEM, VAXELN SERVICES, AST ROUTINES;
package SIGNALLER TASK is
SIGNALLER EVENT : VAXELN SERVICES.EVENT TYPE;
task type SIGNALLER is
entry START;
end SIGNALLER;
end SIGNALLER TASK;
package body SIGNALLER TASK is

B-8 Example Programs—Interprocessor Communication

Example Programs—Interprocessor Communication

task body SIGNALLER is
STATUS : CONDITION HANDLING.COND VALUE TYPE;
begin
accept START;
loop
-- wait for event to be signalled by the ast routine

VAXELN SERVICES.WAIT ANY(STATUS => STATUS,
VALUE1 => AST ROUTINES.TRIGGERED EVENT);

-- clear the event

VAXELN SERVICES.CLEAR EVENT(STATUS => STATUS,
EVENT => AST ROUTINES.TRIGGERED EVENT) ;

-- signal signaller event

VAXELN SERVICES.SIGNAL EVENT(STATUS => STATUS,
EVENT => SIGNALLER EVENT);

end loop;
end SIGNALLER;
end SIGNALLER TASK;

CHARACTERISTIC /SHARED STATUS /NOFILE /NET DEVICE=EZA /NOSERVER /OBJECTS=512 -
/EMULATOR=BOTH /DEBUG=BOTH /P0_VIRTUAL SIZE=4096 /P1_VIRTUAL SIZE=512 -
/I0_REGION=2048 /TARGET=24

PROGRAM FIFO CONSUMER /WARM DEBUG

DEVICE EZA /VECTOR=%X130 /NET DEF

CHARACTERISTIC /REMOTE CLI /REMOTE TERM /SHARED STATUS /NOFILE /NET DEVICE=EZA -
/NOSERVER /OBJECTS=512 /EMULATOR=BOTH /DEBUG=BOTH /P0_VIRTUAL SIZE=4096 -
/P1_VIRTUAL SIZE=512 /IO REGION=2048 /TARGET=24

PROGRAM FIFO PRODUCER /WARM DEBUG

DEVICE EZA /VECTOR=%X130 /NET DEF

5!
$! INTERPROCESSOR BUILD.COM

ACS SET LIBRARY USER:[USER.ADALIB]

ADA ERROR HANDLING, AST ROUTINE, SIGNALLER TASK

ADA/DEBUG FIFO_PRODUCER

ADA/DEBUG FIFO CONSUMER

ACS LINK/DEBUG/SYSTEM=VAXELN FIFO PRODUCER ELNS$:KAVSRTL OBJLIB/LIB
ACS LINK/DEBUG/SYSTEM=VAXELN FIFO_CONSUMER ELN$:KAVSRTL OBJLIB/LIB
EBUILD/NOEDIT FIFO CONSUMER

EBUILD/NOEDIT FIFO PRODUCER

L Uy > > > O > >

Example Programs—Interprocessor Communication B-9

C

Example Programs—MVME335 Device
Driver

This appendix lists a pair of VAX C programs that implement a device driver
for the MVMES335 serial line module. The programs use ASTs to allow the ISR
and the driver to communicate with each other. The first program is the device
driver main body. The second program is the driver ISR.

Both programs are part of the KAV30 software kit. See the KAV30 Software
Installation and System Testing Information for more information.

C.1 Device Driver

#module mvme driver ast

/**

*

X% % % Ok Sk k% % ¥ X > %

COPYRIGHT (C) 1991
BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
COPIES THERECF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
CORPORATION.

ook ok Kk b s ok ok o F X A X

Example Programs—MVME335 Device Driver C-1

Example Programs—MVME335 Device Driver

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

* 3 X %
* o *

*
********************************‘k***/
/*
FACILITY: Device driver example for KAV30 using mvme335 serial line module
DESCRIPTION: driver body including initialisation and isr
this version uses 'KAV$QUE AST’ instead of
"ker$signal device’ t0 communicate from ISR
to driver body (this program).
*/

#include $vaxelnc
#include <eln$:kavdef.h>
#include "mvmedef.h" /* definition of module reg. */

#include stdio

#include $get message text
#include $kerneldef
#include S$kernelmsg
#include descrip

for(c=(cnt);c;c--)
*d++ = *st++;

/*
* Definitions and global variables for the driver
*/
#define mvme base 0x03600 /* mvme modul base address */
#define MVME IRQLEV 0x08 /* irq level on board = bit3 */
#define MVME PHYS ADDR 0x00
/%
Define the COPY BYTES macro -
* This macro copies the specified number of
* bytes from one string to another without
* any character interpretation.
*/
#define COPY BYTES (src,dst,cnt) \
{ \
char *s = (src); \
char *d = (dst); \
int ¢; \
\
\

}

struct mvme$dul region *mvme$dul reg ptr;

C-2 Example Programs—MVME335 Device Driver

struct mvme$packet
{
int function;
int error;
int length;
char buffer(];
}i

/*

Example Programs—MVME335 Device Driver

* "outside’ definitions for global use

*/

DEVICE mvmeS$Sdevice;
PORT mvmeSdriver port;
MESSAGE mvmeS$message;
NAME mvmeSname;

struct mvme$packet *mvmeS$request;

int request_size;

/*

* forward references for functions

*/

void mvme$tx ast
void mvme$rx_ast

void mvmeSerror text

BOOLEAN mvme$cond handler

();
()

(int
()

status);

/**

*

: Name: MVME DRIVER()

: Abstract: This is the driver main body
: Inputs: none

: Outputs: none

: Comment : has to run run in kernel mode

***/

mvme driver ()
{
extern void mvme$duartl isr 0
int mvme$setup module ();
int status;
int mvme$status;
int mvme$ipl;
int nmvme$vector;

Example Programs—MVME335 Device Driver C-3

Example Programs—MVME335 Device Driver

/*
*/

/*
*/

/‘k
*/

BOOLEAN done;
VARYING_STRING(32) mvme$device name;
static $DESCRIPTOR (mvme$port name,"MVMESDRIVER PORT");

static S$DESCRIPTOR (device name,"");

get the device name from the program argument list

eln$program argument (&mvme$device name,1);
device name.dscSw_length = mvme$device name.count;
device name.dsc$a pointer = mvme$device name.data;

Create the device object and connect to ISR and communication region

ker$create_device(&status, /* status */
&device name, /* device name */
1 /* relative vector */
mvme$duartl isr, /* interrupt service routine */
sizeof (struct mvme$dul region), /* size of communications region */
gmvme$dul_reg ptr, /* address of communications region */
NULL, /* register pointer */
NULL, /* adapter pointer */
s&mvme$vector, /* pointer to vector */
&mvme$ipl, /* interrupt priority */
sgmvmeSdevice, /* pointer to device variable */
MAX CHANNELS, /* number of devices to create */
NULL) ; /* power fail isr (not needed) */

if (status != KER$_SUCCESS)
mvmeSerror text (status); /* return ker$create device status */

establish condition handler

VAXCSESTABLISH (mvme$cond handler);
status = mvme$setup module(); /* setup MVME335 module */
if (! (status & 1))

mvmeSerror text (status);

ker$job port (&status,
smvmesdriver port);
if (! (status & 1))
mvmeSerror text (status);

C-4 Example Programs—MVME335 Device Driver

Example Programs—MVME335 Device Driver

ker$create name (&status,
- gmvme$name,

&mvme$port name,
&mvme$driver port,
NAMESLOCAL) ;

if (! (status & 1))

mvme$error text (status);
/*

* Set up the AST queue’s for Send and Receive
*/
KAVSDEF AST (&status,
emvme$dul reg ptr->tx dev);
if (! (status & 1))
mvme$error_text (status);

KAVSDEF _AST (&status,
&mvme$dul reg ptr->rx_dev);
if (! (status & 1))
mvmeS$error text (status);

/*
* Initialization complete - inform the kernel.
*/

ker$initialization done (NULL);

/**
*

Driver main routine - we stay here forever -

the main tasks are:

- wait for any caller and connect on request

- wait for a request package, perform the request
- disconnect on request

This version of the driver uses AST’s for communication
between ISR and driver instead of SIGNAL DEVICE,
the ISR to be used is MVMEDRIVER_ISR_IIME_AST.C

¥ % 3 Ok Sk %k % ¥ * F F* *

**/

Example Programs—MVME335 Device Driver C-5

Example Programs—MVME335 Device Driver

for (;/)
{
/*
* Connect on request
*/
ker$accept circuit (&status,
emvme3driver port,
NULL,
TRUE,
NULL,
NULL) ;
if (! (status & 1))
mvmeSerror text (status);
for (done = FALSE; !done;)
{
/*
* Wait for request package and receive it
*/
ker$wait any (&status,
NULL,
NULL,
&mvmes$driver port);
if (! (status & 1))
mvmeSerror text (status);
kerSreceive (&status,
&mvmeSmessage,
&mvmeS$Srequest,
&request size,
smvmeSdriver port,
NULL,
NULL) ;
if (! (status & 1))
mvmeSerror text (status);
/*
* Case on requested operation.
*/
switch (mvme$request->function)
{
case RD _BLOCK FUNC:
/* perform the READ BLOCK _FUNCTION */
/*
* set up AST in pending queue (rx device)
*/

C—-6 Example Programs—MVME335 Device Driver

/*
*/

/*
*/

/*
*

/*
*/

Example Programs—MVME335 Device Driver

KAVSSET AST (&status,
mvme$rx_ast,
NULL,
NULL,
mvme$dul reg ptr->rx dev);
if (! (status & 1))
mvme$error text (status);

Initialize com. region at device ipl (this disables irq's)

ELN$DISABLE_INTERRUPT(mvme$ipl);

mvme$dul reg ptr->read count =
mvmeSrequest- >length

mvme$dul reg ptr->rxbuf ptr

nvme$dul_reg ptr->error = FALSE;
mvme$dul reg ptr->read in progr = TRUE;
mvme$dul _reg ptr->dul irqmask.rxa ready = ENAB;

ELN$ENABLE INTERRUPT(),
Enable receiver irqg - since rx is enabled, we will see it imediately!

write register (mvme$dul reg ptr->dul irgmask,
mvme$dul _reg ptr->a dul w_imr);

Error checking and informing the caller about completion
is done in the AST routine (mvme$tx ast) - so nothing to do here..

break;
case WR _BLOCK FUNC:
/* perform the WRITE BLOCK FUNCTION */
COPY BYTES (mvmeSrequest->buffer,

mvme$dul reg ptr->write buffer,
mvme$request->length);

mvme$dul _reg ptr->write count= mvme$request->length;
mvme$dul reg ptr->txbuf ptr = 0;

set up AST in pending queue (tx device)

Example Programs—MVME335 Device Driver

c-7

Example Programs—MVME335 Device Driver

KAVSSET AST (&status,
mvme$tx_ast,
NULL,
NULL,
mvme$dul reg ptr->tx dev);
if (! (status & 1))
mvme$error_text (status);

/*
* Initialize com. region at device ipl (this disables irg’s)
*/
ELNSDISABLE INTERRUPT (mvme$ipl);
mvme$dul_reg ptr->write in progr = TRUE;
mvme$dul reg ptr->dul irqmask.txa ready = ENAB;
mvme$dul reg ptr->dul irgmask.rxa ready = ENAB;
ELN$ENABLE_INTERRUPT();
/%
* Enable transmitter irg - since tx is enabled, we will see it imediately!
* Enable receiver in order to get control char’s
*/
write_register (mvme$dul reg ptr->dul_irgmask,
mvme$dul_reg ptr->a dul w_imr);
/*
* Error checking and informing the caller about completion
* is done in the AST routine (mvme$tx ast) - so nothing to do here..
*/
break;
case DONE_FUNC:
mvme$request->error = 0;
ker$send(&status,
nmvme$message,
request size,
smvme$driver port,
NULL,
FALSE) ;
if (! (status & 1))
mvmeSerror text (status);
done = TRUE;
} /* end of switch block */
} /* end of for loop (done = FALSE) */
/*
* Wait for disconnect message and disconnect
*/

C-8 Example Programs—MVME335 Device Driver

Example Programs—MVME335 Device Driver

ker$wait any(&status,
- NULL,
NULL,
&mvme$driver port);
if (! (status & 1))
mvmeSerror text (status);

ker$disconnect circuit (&status,
&mvme$driver port);
if (! (status & 1))
mvmeSerror text (status);

} /* and of for’ever’ loop */

} /* end of driver main body */

/**
*

* Name: MVMESSETUP_MODULE ()

*

* Abstract: This function will setup the initial register
* values needed by the module (on VMEbus). First
* the VME register addresses are mapped to S0.
*

* Inputs: None

*

* Outputs: Status

*

* Comment : On any exception the condition handler

*

*

'mvme$cond handler’ is called
***/

int mvme$setup module ()

{

int status;

struct mvme status *a dul r sra;

struct mvme_mode one *a dul mrla;

struct mvme_command *a dul w_cra;

struct mvme_aux_control *a_dul w_acr;

struct mvme_clock *a_dul w_csra;

struct mvme irq mask *a dul w_imr;

struct mvme_irqg_status *a_dul r isr;

struct mvme_irq vector *a dul irv;

struct mvme txbuf *a_dul w txa;

struct mvme_rxbuf *a_dul_r rxa;

int setup_function, buffer; /* parameters for $VME SETUP */
int entry, pagecnt; /* parameters for $OUT MAP */

int physical_addr, vir_addr;
int am code, map_functions;

Example Programs—MVME335 Device Driver C-9

Example Programs—MVME335 Device Driver

setup_function,

’

1)

mvmeSerror text (status);

KAVSK ALLOW VME_IRQ;

/* VME irq 3 !! */

* map mvme335 register space (on vme-bus) to SO space

/*
* Enable VMEirqg level 3
*/

buffer = 0x08;
setup_function =
KAVSVME SETUP (&status,
&buffer)
if (! (status &

/*

*/
pagecnt =1;
physical addr = 0x00000
am_code =

map_functions

KAVSOUT MAP (&status,
&entry,
pagecnt,

000;

KAVSK USER 16;
KAVSM_VME+KAVSM MODE 0 SWAP;

physical addr,

&vir addr,
am_code,

map functions);

if (! (status &

1))

mvmeSerror text (status);

/* phys address at page bound.*/
/* ’short user mode 0x29’ */

* set up mvme register address (virtual) using <vir addr> as base

/*

*/
a dul r sra = vir addr
a_dul w imr = vir_ addr
a dul w cra = vir addr
a_dul mrla = vir_addr
a dul w acr = vir_addr
a dul w csra= vir addr
a_dul w txa = vir_addr
a dul r rxa = vir_addr
a dul r isr = vir addr
a_dul irv = vir addr

/*

* copy register address to

*/

mvme_base
mvme_base
mvme base
mvme_base
mvme base
mvme base
mvme_base
mvme_base
mvme base
mvme_base

+ o+ 4+ 4+ 4+ 4+

com.region

dul r sra;
dul w_imr;
dul w cra;
dul mrla;
dul w_acr;

dul w _csra;

dul w txa;

dul_r rxba;

dul r isr;
dul irv;

C-10 Example Programs—MVME335 Device Driver

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

status register a = */
irqg mask register a&b*/
command register a */
mode register a one */
aux. command reg. a */
clock select reg. a */
transmitter buffer a */
receiver buffer a */
irq status duartl */
irq vector duartl */

Example Programs—MVME335 Device Driver

a dul r sra;
a_dul w_imr;
a_dul w _cra;
a_dul mrla;

a_dul w acr;
a_dul w csra;
a_dul w txa;
a dul r rxa;
a_dul r isr;
a_dul irv;

mvme$dul reg ptr->a dul r sra
nvme$dul_reg ptr->a_dul_w_imr
nvme$dul reg ptr->a dul w cra
nvme$dul reg ptr->a dul mrla

mvme$dul _reg ptr->a “dul w acr
mvme$dul reg ptr->a “dul w_csra
mvme$dul_reg ptr->a dul w txa
nvme$dul reg ptr->a dul r rxa
nvme$dul reg ptr->a dul r isr
mvme$dul reg ptr->a dul irv

/*
* initialize registers on mvme335 duartl channel a only with the following

* parameters: 9.6 kBaud, 8bits, no parity
all default parameters can be found in mvmedef.h

*

*/

/* initialize duartl irq mask register [dul w_imr]: no irq */
write register (dul irgmask, a dul w imr);

/* perform bit set on channel a command register [dul w _cra] reset mrla ptr */
write register (dula_command, a_dul w cra);

/* write channel a mode register one [dul mrla] ptr -> mode register two */
write register (dula_mode one, a_dul mrla);

/* write channel a mode register two [dul mrla] */
write register (dula_mode two, a_dul mrla);

/* write channel a command register [dul w_cra]: reset rx, flush FIFO
dula command.misc = RESET RX;
write register (dula_command, a dul w cra);

/* write channel a command register [dul w_cra]: reset tx */
dula command.misc = RESET TX;
write register (dula_command, a_dul w cra);

/* write channel a command register [dul w cra]: reset error status */
dula command.misc = RESET ERR;
write register (dula_command, a_dul w cra);

/* write channel a auxiliary control register [dul w acr] */
write_register (dul_acr, a_dul w acr);

/* write channel a clock register [dul w csra]: 9600 baud both */
write register (dula clock, a dul w csra);

/* initialize duartl vector register [dul irv] (default = 0x00) */
dul irqvec.irq vector= 0x02;
write register (dul_irqgvec, a_dul irv);

/* enable transmitter and receiver [dula command]*/
mvmeSdul reg ptr->dula comm.ena_tx = ENAB;
mvme$dul reg ptr->dula_comm.ena rx = ENAB;
write register (mvme$dul reg ptr->dula comm, a dul w cra);

Example Programs—MVME335 Device Driver C-11

Example Programs—MVME335 Device Driver

return (status);
/* end of SETUP_MODULE */

}
/**

*

* Name: RX AST

. !

* Abstract: ast routine for rx events

*

* Inputs: None

*

* Outputs: None

*

* Comment : This routine is called every time the ISR delivers

* an AST for the rx device.

*

***/

void mvme$rx_ast 0
{
int status;
/*
* check for error and correct length
*/

if (mvme$dul reg ptr->error)
{
mvme$Srequest->error = -1;
mvme$request->length = mvme$dul reqg ptr->rxbuf ptr;
}

else
mvme$request->error = 0;
/*
* copy buffer
*/

COPY BYTES (mvme$dul reg ptr->read buffer,
mvme$request->buffer,
mvme$Srequest->length);

/*
* send message to caller and return
*/

C-12 Example Programs—MVME335 Device Driver

Example Programs—MVME335 Device Driver

ker$send(&status,
mvme$message,
request size,
&mvmeSdriver port,
NULL,
FALSE) ;

if (! (status & 1))

mvme$error text (status);

return;

/**
*

: Name: TX AST

: Abstract: ast routine for tx events

: Inputs: None

: Outputs: None

* Comment : this routine is called every time the ISR delivers
: an AST for the tx device

***/

void mvme$tx ast ()

{

/*
* reset error and send message to caller
*/

mvme$request->error = 0;
ker$send(NULL,
mvme$message,
request size,
&mvme$driver port,
NULL,
FALSE) ;

Exampfe Programs—MVME335 Device Driver C-13

Example Programs—MVME335 Device Driver

return;

/**
*

: Name: MVMESCOND HANDLER (signal ptr,mechanism ptr)
: Abstract: condition handler invoked by any exception
: Inputs: None

: Outputs: status = 1

* Comment : handler will not terminate the programm,

: the condition is not really handled here...!

***/

BOOLEAN mvme$cond handler (signal ptr,mechanism ptr)

struct chf$signal array
{
int chf$l sig args;
int chf$l sig name;
int chf$l sig argl;
b

struct chf$signal array *signal ptr;
struct chf$mech array *mechanism ptr;

{

void mvmeSerror text (int status); /* show error text x/
static int status, address;

printf ("Condition handler:");
status = signal ptr->chf$l sig name;
mvme$error_text (status);

address = signal ptr->chf$l sig argl;
printf("at VME address %x \n", address);

exit (1);

C-14 Example Programs—MVME335 Device Driver

Example Programs—MVME335 Device Driver

/**

*

X % %k o %k %k % ¥ X > o

Name: MVMESERROR_TEXT ()

Abstract: Routine converts kernel error number’s to text
and print’s it

Inputs: status
Outputs: none
Comment : none

***/

void mvmeSerror_text (int status) /* send error message to console*/
{
int text_flags; /* parameters for $get_message */
char text buffer[255];

VARYING STRING(255) result string;

text flags = STATUS$ALL;
eln$get _status_text (status,

text flags,

&result string);
VARYING TO CSTRING (result string,text buffer);
printf("$s\n", text buffer);
printf ("KAVS$XXX Error : %d \n", status);

return;

Example Programs—MVME335 Device Driver C-15

Example Programs—MVME335 Device Driver

C.2 Interrupt Service Routine

#module mvme isr ast

/**
*

COPYRIGHT (C) 1991
BY DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS.

*
*
*
* THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND COPIED
* ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH THE
* INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER
* COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAILABLE TO ANY
* OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFTWARE IS HEREBY
* TRANSFERRED.

* THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NOTICE
* AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIPMENT
* CORPORATION.

*

*

*

*

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF ITS
SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

¥ o k% o o H o ¥ > % ¥ ¥ X * *

*
**/

#include $vaxelnc
#include <eln$:kavdef.h>
#include "mvmedef.h" /* definition of module reg. */

#include stdio

#include S$kerneldef
/**
*

it executes in kernel mode.
Every acces to the VMEbus has to use the
KAV$BUS_READ or KAV$BUS WRITE system service.

* Name: MVMESDUART1 ISR()

*

* Abstract: This is the ISR for duartl

*

* Inputs: *register ptr = ptr to register (not used)
* *mvme$dul reqg ptr= ptr to comm. region

*

* Outputs: none

*

* Comment : this routine is invoked by an irg on the VMEbus,
*

*

*

*

***/

void mvme$duartl isr (register ptr, mvme$dul ptr)

struct register def *register ptr; /* has to be there! */
struct mvme$dul region *mvme$dul ptr;

C-16 Example Programs—MVME335 Device Driver

Example Programs—MVME335 Device Driver

{
int status, data_type, count, char num, i;
char control buf{3];
count =1;
char_num =0;
i = 0;
data_type = KAV$K BYTE;
/*
* Determine source of irq - get irq reg and check bit’s
*/
KAVSBUS READ (&status,

data_type,
mvmeSdul ptr->a dul r isr,
&mvme$dul ptr->dul_irgstat,
count) ;

/**

* If irq is for tx channel a - process it
**/

if (mvme$dul ptr->dul irgstat.txa ready)
{

/*
* If the driver is waiting for output, output
* characters to the mvme-module until done.
*/
if (mvme$dul ptr->write in_progr)
if (mvme$dul ptr->write count > mvme$dul ptr->txbuf ptr)
KAVSBUS_WRITE (&status,
data type,
mvme$dul ptr->a dul w_txa,
emvme$dul ptr->write buffer
[mvme$dul ptr->txbuf ptr++],
count) ;
else
/*
* A1l done, reset tx & rx irq mask bit
*/
mvme$dul ptr->write in progr = FALSE;
mvme$dul ptr->dul irgmask.rxa ready = 0;
mvme$dul ptr->dul_irgmask.txa ready = 0;

Example Programs—MVME335 Device Driver

C-17

Example Programs—MVME335 Device Driver

KAV$BUS_WRITE (&status,
data_type,
mvmeSdul ptr->a dul w imr,
emvme$dul ptr->dul irgmask,

count) ;
/*
* Copy error status to comm.reg and signal device
*/
mvme$dul ptr->status = status;

KAVSQUE AST (&status,
mvme$dul ptr->tx dev);

}
}

/**

* If irq is for rx channel a - process it
**/

if (mvme$dul ptr->dul irqgstat.rxa_ ready)
{

/*
* First check status reg. for any error (not implemented)
*/

KAVSBUS_READ (&status,
data type,
mvme$dul ptr->a dul r sra,
gmvme$dul ptr->dula_ stat,
count) ;

/*

* If the driver is waiting for input, read
* characters from the mvme-module until done.
*/

C-18 Example Programs—MVME335 Device Driver

/*
*/

/*
*/

/*
*/

/*
*/

/*
*/

Example Programs—MVME335 Device Driver

© if (mvme$dul ptr->read in progr)

{

if (mvme$dul ptr->read count > mvme$dul ptr->rxbuf ptr)
{
KAVSBUS READ (&status,

data_type,
mvme$Sdul ptr->a dul r rxa,
&mvme$dul ptr->read buffer

[mvme$dul ptr->rxbuf ptr],
count) ;

check for carriage control and stop if ...

if (mvme$dul ptr->read buffer[mvme$dul ptr->rxbuf ptr] == CR)
{

CR received -> all done, reset rx irq mask bit

mvme$dul ptr->error TRUE;
mvme$dul ptr->read in progr FALSE;
mvme$dul ptr->dul irqmask.rxa ready = 0;

KAVSBUS WRITE (&status,
data_type,
mvmeSdul ptr->a dul w_imr,
gmvme$dul ptr->dul irgmask,
count);

Copy error status to comm.reg and signal device

mvme$dul_ptr->status = status;
KAVSQUE AST (&status,

mvme$dul ptr->rx dev);
}

mvme$dul ptr->rxbuf ptr++;
}

else

Buffer ful, all done, reset rx irq mask bit

mvme$dul ptr->read in progr
mvme$dul ptr->dul irqmask.rxa ready

KAV$BUS WRITE (&status,
data_type,
mvme$dul ptr->a dul w_imr,
gmvme$dul ptr->dul_irgmask,
count) ;

FALSE;
0;

Copy error status to comm.reg and signal device

Example Programs—MVME335 Device Driver

C-19

Example Programs—MVME335 Device Driver

mvme$dul ptr->status = status;
KAVSQUE AST (&status,
mvme$dul ptr->rx dev);
}
}

/%
* No read in progr, is it a control char for write in progr ?
*/
else if (mvme$dul ptr->write in progr)
{
while (mvme$dul ptr->dula stat.rx_ready)
{
KAV$BUS_READ (&status,
data type,
mvme$dul ptr->a dul r rxa,
&control buf[char num],
count) ;
/%
* check status again if there is more than one char
*/ ,
KAV$BUS_READ (&status,
data_type,
mvme$dul_ptr >a _dul r sra,
&mvme$dul ptr->dula_stat,
count) ;
char numt+;
}
while (i < char_num)
{
/*
* If XOFF, disable transmitter
*/
if (control buf[i] == XOFF)
{
mvme$dul ptr->dula comm.ena tx = DISAB;
KAVSBUS WRITE(&status,
data_type,
mvmeSdul _ptr->a dul_w_cra,
&mvme$dul_ptr ->dula _comm,
count) ;
}
/*
* If XON, enable transmitter
*/

C-20 Example Programs—MVME335 Device Driver

Example Programs—MVME335 Device Driver

else (control buf[i] == XON)
{
mvme$dul ptr->dula_comm.ena_tx = ENAB;
KAV$BUS_WRITE (&status,
data_type,
mvme$dul ptr->a dul w cra,
&mvme$dul ptr->dula_comm,
count) ;
}
it+;
}
/*
* If it’s an unexepected char, disregard it
*/
}
/*
* If irq is not expected here, disregard
*/

Example Programs—MVME335 Device Driver C-21

D

Example Programs—VDAD Device Driver

This appendix lists the following files:

e A VAX C program that implements a device driver for the VDAD (I/O)
module

e A definitions file for the VDAD I/O module device driver
e A VAX C program that tests the VDAD I/O module device driver
® A build file for the VDAD I/O module device driver and test program

e A VAXELN System Builder data file for the VDAD I/O module device
driver test program

All the files are part of the KAV30 software kit. See the KAV30 Software
Installation and System Testing Information for more information.

D.1 Device Driver

#module VDADdriver

/%
* FACILITY:

* VAXELN Run Time System

*

* ABSTRACT:

* This module contains an ELN Driver for a VMEbus device.
*

* VERSION:

* V1.04 13-Mar-1991 Field Test Release.

Example Programs—VDAD Device Driver D-1

Example Programs—VDAD Device Driver

NOTE

%% O Ok 3k 3k X % > ok % % % % > % % ¥ *

>
~

S:

This is an example of a driver for a VMEbus device - the PEP VDAD
module. This device offers ADC, DAC, Timers and Digital I/O, although
only Analaog-to-Digital conversion is provided here.

The program illustrates the most important Driver functions, namely:
ELN Driver interface,
interrupt handling,
VMEbus device access,
user calling interface

It does NOT provide access to the full functionality of this module
- it merely demonstrates the methods required in order to access the
board under ELN driver philosophy.

*%% Tt provides basic ADC sampling only ***

Similarly, error handling and parameter checking are incomplete.

#include stdio

#include $get message text
#include types
#include chfdef
#include in
#include descrip /* descriptor definitions */
#include $mutex /* mutex */
#include $kernelmsg /* kernel messages */
#include $vaxelnc
#include <eln$:kavdef.h> /* KAV300 " */
#include "vdaddriver.h" /* VDAD definitions */
*
/* kkkkkkkkkkkkkkkhkkhkhkkkhkhhkhhhhhkkhkkkhkkkkkkkkkkkx
* **% Global variables for Driver routines ***
* kkkkkkkkkkkkhkkkhhkkkhkhhkhhhhhkhhhkkkhkkkkkkkkkhkkkkx
*/
int vdad$status ; /* Global status variable. */
unsigned long vdad$kav setup ; /* for $VME_SETUP */

unsigned long vdad$kav:data ;

unsigned long vdadSentry ;

unsigned long vdad$vir addr MO ; /* addr mode: Byte/Word swapping.*/
unsigned long vdad$vir addr M3 ; /* addr mode: NO swapping. */
VARYING STRING(32) vdad$controller name; /* device name for controller */

int

vdad$ipl ; /* device priority level */

D-2 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

vdad region type *vdad$region ; /* ptr to region for ISR comms. */
EVENT vdad$event_init; /* initialization sync event */
DEVICE vdad$device [MAX CHANNELS] ; /* device objects for signalling */
MUTEX vdad$mutex [MAX CHANNELS] ; /* controller ownership mutex’'s */
int vdad$channels [MAX CHANNELS];/* Array of process (channel) id's */
BOOLEAN vdad$interrupts enabled ; /* Polling or Interrupt ops. */
int vdad$vector ; /* Interrupt vector. */
BOOLEAN vdad$monitoring ; /* Statistics-gathering off/on. */
unsigned long vdad$conditions, /* ...for statistics-gathering. */
vdad$setups, /* (see '"monitoring’). */
vdadS$reads ; /* (see 'monitoring’). x/

/%

* Forward References for functions

*/
void vdad$error_text();
BOOLEAN vdad$cond handler();

/%

* Pointers to VDAD registers.

*/
unsigned short *p_adc_read conv_addr ; /* (WORD-addressable register) */
unsigned char *p_portA data dir regq, /* (BYTE-addressable registers) */

*p portA control reg,

*p portA data reg,
*p_port _gen control reg,
*p_port_service req_reg,
*p_port_int vec reg,

*p port status reg,
*p_int_level reg ;

Example Programs—VDAD Device Driver D-3

Example Programs—VDAD Device Driver

/*
* Useful macros.

*/
#define ERROR DETECTED (! (status & 1)) /* ...for error-testing... */
/*

* kkkkkkkkkkkkkhkkkkhkkhkhhkkkhhkkkhkkkkhkkhhkhxx

* *** VDAD-DRIVER main routine code ***

* kkkkkkkkkkkhhkkhkhhkkhhkhkkkkhhkkhkhkkkkhkhkhkkkkkk

*

* This is the main routine for the PEP VDAD driver.

* Tt first initialises the ELN Device control structures, then

* the VMEbus-specific structures.

*

* This is a ONCE-ONLY routine - it must NOT be called more than once.

*

* Note that we have to drop into Kernel mode in order to execute the

* KERSCREATE DEVICE call. Otherwise, we remain in User mode (or whatever

* mode we were in).

*

*/
int wvdad$init()
{
int status ;
int initialise() ;
struct { int arg_count, *status ; } arg block = {1, 0} ;

/*

* Initialise the VDAD Device into ELN.
*/

ker$enter kernel context (é&status,

initialise,
&arg _block) ;
if ERROR DETECTED vdad$error text (status);
/%
* Initialise the VME-bus mapping, etc..
x/
status = VMEbus_init();
if ERROR DETECTED vdad$error_text (status);

return(status) ;

}

D-4 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

kkkkkkkkkkkkkkkkkkk

¥ I NITIALISE **x

kkkkkkkkkkkkkkkkkkkx

This routine must execute in KERNEL MODE !!!

*
/* kkkkkkkkkkkk
*

* kkkkkkkkkkkk
*

*

* mmmm——

*/

int initialise()

{

void vdad isr();
void channel process (

)i

int status, channel ;

static S$DESCRIPTOR (devi
vdad$setups =0 ;

/*
Get the device name f
(NB: Program Argument

for Vax-C I/0])
*/

eln$program argument (&vd
device name.dsc$a pointe
device name.dsc$w_length
/*
* Create the device obj
*/
ker$create device(
&status,
&device name,
RELATIVE _VECTOR,
vdad_isr,
sizeof (vdad$regi
&vdad$region,
NULL,
NULL,
&vdad$vector,
&vdad$ipl,
&vdad$device([0],
MAX CHANNELS,
NULL) ;
if ERROR DETECTED vdadS$e
/%
* (Create the controller
*/
for (channel = 0; channe

{

ce_name,"");
/* Number of times SETUP has been called. */

rom the program argument list
number FOUR ! [params 1,2 & 3 are required

ad$controller name, 4);
r = vdad$controller name.data;
vdad$controller name.count;

ect
/* Status */
/* Device name */
/* Relative vector (NEVER ZERO !) x/
/* Interrupt service routine */
on), /* Size of communications region */

/* Address of communications reglon */
/* Register pointer

/* Adapter pointer */
/* Pointer to vector */
/* Interrupt priority */
/* ptr to receive device variable */
/* Number of devices to create */
/* Power fail isr (not needed) */

rror_text (status);

protection mutex’s (one per channel).

1 < MAX CHANNELS; channel++)

ELNSCREATE MUTEX(vdad$mutex[channel] , &status);

if ERROR_DETECTED

vdad$error_text (status);

Example Programs—VDAD Device Driver D-5

Example Programs—VDAD Device Driver

return(status) ;

}

/* Kkkkkkkkkkkhkkhkkkhhhhhhkhhkhkhkkkkkkkkkkhkkkkkkkhxkx
* *k* TNITIALIZE VME-bus ***
* Kkkkkkkkkkhhkhkkhhkhhhhhhhkkkkkkkhkkkkkkkkkkkkkhkkkkxx
*
* This routine is called to initialise the VMEbus mapping, and also
* internal pointers into the VDAD's registers.
*
* Returns: status
*
*

Inputs: none

/

>*

int VMEbus_init ()
{

unsigned long phy addr, addr mode; /* address ptrs for quick ref */
unsigned long pagecnt;
int status, KAV flags;
vdadSkav_data = 0x00000000; /* No IRQ allowed - x/
vdad$kav setup = KAVSK ALLOW VME IRQ; /* (initially, at least) */

KAVSVME_SETUP (&status,
vdad$kav_setup,
&vdad$kav_data);

if ERROR DETECTED vdad$error text (status);

D-6 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

pagecnt = 1; /* No. of 64K pages */
phy addr = VDAD PHYS ADDR ;
addr_mode = KAVSK USER 24 ; /* Standard User Mode */
KAV flags = KAVSM VME+KAVSM MODE 0 SWAP; /* Byte Swapping */
/*
* Note regarding byte/word swapping:
*
* Since most of the VDAD registers are byte accessed,
* and the VDAD itself is a "big endian", then we MUST
* set up for byte-swapping.
* HOWEVER, one register - where the 12-bit sampled data
* is read - is put onto the bus UN-BYTE-SWAPPED. If we
* attempt to access it in byte/word swapping mode, then
* the two bytes (containing the 12-bit sample) will be
* erroneously swapped, necessitating byte-swapping here
* in the Driver. Since this introduces an unacceptable
* overhead (ie. byte-swapping EACH sample), we must use
* another method.
* The solution is to create TWO 'OUT MAP’'s - one with
* byte-swapping, the other without.
*/
KAVSOUT MAP(&status,
&vdad$entry,
pagecnt,
phy addr,
&vdad$vir addr MO,
addr_mode,
KAV flags);
if ERROR DETECTED vdad$error_text (status);
KAV flags = KAVSM VME+KAVSM MODE_3 SWAP; /* NO Byte Swapping */
/%

* Now map with NO byte-swapping. We use this when accessing
* WORD registers on VDAD.
*/
KAVSOUT MAP(&status,
&vdadSentry,
pagecnt,
phy addr,
&vdad$vir addr M3,
addr_mode,
KAV flags);
if ERROR DETECTED vdad$error text (status);

Example Programs—VDAD Device Driver D-7

Example Programs—VDAD Device Driver

/*
* Setup the VDAD register pointers (virtual)

*/
p_portA data dir reg = vdad$vir_addr MO + VDAD BASE + -

+ OFFSET portA data dir reg;

p_portA control reg = vdad$vir addr MO+VDAD BASE+OFFSET portA control reg;
p_portA data reg = vdad$vir addr MO + VDAD BASE + OFFSET portA data reg;
p_port _gen control reg = vdad$v1r addr MO + VDAD BASE + -

+ OFFSET port _gen_ control _reg;
p_port service _req_reg = vdad$v1r addr MO + VDAD BASE + -

+ OFFSET port service req reg;
p_port_int vec_reg = vdad$vir_addr M0 + VDAD BASE + OFFSET port_int vec reg;
p_port status reg = vdad$vir addr MO + VDAD BASE + OFFSET port status_reg;
p_int Tevel reg = vdad$vir addr MO + VDAD BASE + OFFSET int level reg;
p_adc_read conv_addr = vdad$v1r addr M3 + "~ VDAD BASE + -

+ OFFSET adc_read conv_addr;

/*
* Copy the device registers into the comms region, so that the
* Interrupt Service rtne (vdad isr) can access the VDAD registers.
*/

p_portA data dir req ;
p_portA control reg ;
p_portA data reg ;
p_port_gen control reqg ;
p_port service req reg ;
p_port _int vec reg ;
p_port status _reg ;
p_int_level reg ;

p_adc read conv addr ;

vdad$region->p_portA data dir reg
vdad$region->p portA control reg
vdad$region->p portA data_reg
vdad$region->p port gen control reg
vdad$region->p port service req reg
vdad$region->p port int vec reg
vdad$region->p port status_reg
vdad$region->p_int Ievel reg
vdad$region->p _adc read conv_addr

return(status) ;
} /* end initialise controller */

D-8 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

/% -/
/*

* setup_controller

*

* This routine is called to perform the controller setup.
*

* Returns: int status (see .H file for definitions)

*

* Inputs: int gain,

* input_config,

* channel_mode,

* trigger type,

* interrupt_handling,

* condition handling,

* monitor switch

* Note: Any of the above params may be NULLed, in which case the ’current’
* default is used. This means that it is possible to, say, change
* ONLY the GAIN whilst the device is operating.

*

*
~

int vdad$setup(gain, input_config, channel mode, trigger type,
interrupt_handling, condition handling, monitor switch)

int gain,

input_config,

channel mode,

trigger_type,

interrupt_handling,

condition_handling,

monitor switch ;

{

int status ;
unsigned char temp ;
union {
portA data reg bits ; /* (for access to bits) */
unsigned char byte ; /* (BYTE access to entire register) */
} setup reg ;
union {
portA control reg bits ; /* (for access to bits) */
unsigned char byte ; /* (BYTE access to entire register) */
} control reg ;
vdad$conditions = 0 ; /* Zero this out (a driver global). */
vdad$reads =0 /* . */
vdad$setups+t ; /* Log this SETUP call (a driver global). */

if (condition handling == VDAD$SETUP_COND_ HANDLING DRIVER)

VAXCSESTABLISH (vdad$cond handler); /* Establish the DRIVER's Handler */
b

Example Programs—VDAD Device Driver D-9

Example Programs—VDAD Device Driver

/*
* Device Initialization

*x e

* We first have to read the register contents to access the 'current’
* defaults, in the case where the user has NULL’ed one or more of

* the input parameters.

*/

kav$bus_read(&status, KAVSK BYTE, p portA data reg, &setup reg, 1);
if ERROR DETECTED { vdad$error text(status); exit(-1); }

kav$bus_read(&status, KAVSK BYTE, p portA control reg, &control reg, 1);
if ERROR DETECTED { vdad$error text(status); exit(-1); }

switch (gain) /* << GAIN >>> */

{ /% - */
case VDADSSETUP GAIN 1 : setup reg.bits.gain = 0 ; break ;
case VDADSSETUP GAIN 10 : setup reg.bits.gain = 1 ; break ;
case VDADSSETUP ¢ GAIN 100 : setup reg.bits.gain = 2 ; break ;
default: break ;

} i+ /* end CASE */

switch (input config) /* <<< INPUT CONFIGURATION >>> */
{ J* e */
case VDADSSETUP INP CONFIG 1 : setup reg.bits.input config =0 ;
break ;
case VDAD$SETUP INP CONFIG 2 : setup reg.bits.input config =1 ;
break ;
case VDAD$SETUP INP_CONFIG 3 : setup_reg.bits.input_config = 2 ;
break ;
case VDAD$SETUP INP _CONFIG 4 : setup_reg.bits.input_config = 3 ;
break ;

default: break ;
} i /* end CASE */

switch (channel mode) /* <<< SINGLE/MULTI-CHANNEL MODE >>> */

{ J¥ | mmmmemmmemmmmmememeeees */
case VDADSSETUP CHANNEL MODE SINGLE: setup reg.bits.channel mode =
break ;
case VDADSSETUP CHANNEL MODE MULTIPLE: setup reg.bits.channel mode =
break ;

default: break ;
} ; /* end CASE */

D-10 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

switch (trigger type) /* << TRIGGER >>> */

(R */

case VDADSSETUP TRIGGER SOFTWARE : setup reg.bits.trigger type = 0;

break ;

case VDADSSETUP TRIGGER EXTERN : setup reg.bits.trigger type = 1;

break ;

case VDADSSETUP TRIGGER TIMER : setup reg.bits.trigger type = 2;

break ;

case VDADSSETUP TRIGGER EXTERN AND TIMER: setup reg.bits.trigger type = 3;

break ;

default: break ;

} i /* end CASE */

switch (interrupt handling) /* <<< INTERRUPTS or POLLING >>> */

{ I */

case VDADSSETUP INT DISABLE : control reg.bits.EOC ien = 0 ;

vdad$interrupts enabled = FALSE ;
break ;

case VDADSSETUP_INT ENABLE : control reg.bits.EOC_ien = 1 ;

vdad$interrupts_enabled = TRUE ;
break ;

default: break ;

} i+ /* end CASE */

switch (monitor switch) /* <<< Statistics-gathering >>> */

{ I e */
case VDADSSETUP MONITORING OFF : vdad$monitoring = FALSE ; break ;
case VDADSSETUP_MONITORING ON : vdad$monitoring = TRUE ; break ;
default: break ;

} i /* end CASE */

/*

* Register bits set up OK. Now initialise the device, depending on

* whether interrupts or polling has been selected.

*/

if (vdad$interrupts enabled)

a /* */

{ /* <<< Setup for INTERRUPTS >>> */

/* */
temp = VDAD IRQL; /* (Interrupt Request Level) x/

kav$bus write (&status, KAVSK BYTE, p int level reg, &temp, 1);
if ERROR DETECTED { vdad$error text (status); exit(-1); }

temp = VDAD IRQV; /* (Interrupt Vector Number) x/
kavSbus_write (&status, KAVSK BYTE, p port int vec reg, &temp, 1);
if ERROR DETECTED { vdadSerror text (status); exit(-1); }

temp = VDAD PGCR_INIT; /* (Port Gen Control reg) */
kav$bus_write(&status, KAVSK BYTE, p port gen control reg, &temp, 1);
if ERROR DETECTED { vdad$error text (status); exit(-1); }

Example Programs—VDAD Device Driver D-11

Example Programs—VDAD Device Driver

temp = VDAD PSRR INIT ; /* (Port Service Request reg) x/
kav$bus_write (sstatus, KAVSK BYTE, p port service req reg, &temp, 1);
if ERROR DETECTED { vdad$error ~_text (status); exit (-1); }

/* (Port Control reg) */
control reg.bits.fixed =1 i /* Set submode for A/D register. */
control reg.bits.EOC_ien =1 ; /* Enable interrupts. */

kav$bus wrlte(&status KAVSK BYTE,p_portA control reg,&control req,1);
if ERROR DETECTED { vdad$error text(status); exit (-1); }

temp = VDAD PADDR INIT ; /* (Port Data Direction reg) */
/* (Set up for A/D mode) */

kav$bus write(&status, KAV$K BYTE, p portA data_dir reg, &temp, 1);

if ERROR DETECTED { vdad$error _text (status); exit (-1); }

kav$bus write(&status, KAVSK BYTE, p portA data_reg, &setup reg, 1);
if ERROR DETECTED { vdad$error _text (status); exit (-1); }

/*

* Finally, we must set up the KAV to allow interrupts.

*/
vdad$kav_data = 0x00000002; /* IRQ 1 allowed. */
vdad$kav setup = KAVSK ALLOW VME IRQ;

KAVSVME §ETUP(&status, vdadSkav setup, &vdadSkav_data);
if ERROR DETECTED vdad$error text(status),

} else
/* */
{ /* <<< Setup for POLLING >>> */
/* */
temp = VDAD PADDR INIT ; /* Port-A Data Dir Reg init value. */
/* (Set up for A/D mode) */

kavSbus_write (&status, KAVSK BYTE, p portA data dir reg, &temp, 1);
if ERROR DETECTED { vdad$error text(status); exit(-1); }

control reg.bits.fixed =1 ; /* Set submode for A/D register. */
kav$bus write (&status,KAVSK BYTE,p portA control reg,&control reg,l);
if ERROR DETECTED { vdad$error text(status), ex1t(1); }

kav$bus_write (&status, KAVSK BYTE, p_portA data reg, &setup reg, 1);
if ERROR DETECTED { vdad$error _text (status); exit (-1); }
b

return(status) ;
} /* end -VDADSSETUP- */

D-12 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

*k kkkkkkkkkkkkhkkkkhkkkhkkkhkkkrkkkhkkhkx

* *%*% READ CHANNETL ***
K KKKk kAR AR KR KA KR KR KRk kok ko k Kk kKk &k

*

* This routine is called to read a block of data from a selected channel.
*
* Returns: int status (see .H file for definitions)
*
* Inputs: int channel, (A/D channel: 0..15)
* timeout,
* *puffer, (buffer to receive the data)
* num_samples, (number of samples requested)
* *num_samples read (actual numberreceived)
* Notes:
* (1) On return to the caller, "num samples" should always equal
* "num_samples read". In the case of timeout on a single conversion,
* the latter will reflect the number of successful samples up to the
* point of the timeout.
* (2) The "ADC Read/Convert" register is DANGEROUS !!
* ie. do NOT access it unless the EOC bit has signalled a successful
* conversion.
*/
int vdad$read(channel, timeout, buffer, num samples, num samples read)
int channel ;
long timeout ;
unsigned short *buffer ;
int num_samples, *num samples_read ;
{
int status, temp ;
register int i;
unsigned short *p sample ; /* This is purely for quick reference */
DEVICE dev ; /* ...ditto... x/
num_samples read = 0 ; / Zero this out (user’s data). */
status = SUCCESS ;
p_sample = §&(vdad$region->value[channel]) ;
dev = vdad$device[channel] ;

if (vdad$monitoring) { vdad$readst++ ; } /* Count calls to this rtne. */

Example Programs—VDAD Device Driver D-13

Example Programs—VDAD Device Driver

switch (vdad$interrupts_enabled) /* Poll or use interrupts ? */
{ [¥ mmmmmmmem - */
case TRUE :
/* kkkkkkkkkkkkkkkkkkkk */
/* *%x INTERRUPTS *** */
/* kkkkkkkkkkkkkkkkkkkk */
for (i = 0; 1 < num samples; i++, buffer++)
{
/*
* Write in the requested channel, starting the conversion.
*/
*p adc_read conv_addr = channel ;
/*
* Now wait for our ISR to do the read under interrupt control.
*/

ker$wait any(&status, NULL, NULL, dev) ;
if ERROR DETECTED { vdad$error_text (status); exit(-1); }

/*
* Copy data back to the user buffer.
*/
*buffer = *p sample ;
b /* end -for- */
break ; /* end -case- */
case FALSE :
/* kkkkkkkkkkkkkkkhkkkkk */
/-k * k% POLLING * k% */
/* kkkkkkkkkkkkkkkkkkkkx */
for (1 = 0; 1 < num samples; i++, buffer++)
{
/*
* Write in the requested channel, starting the conversion.
*/

*p adc_read conv_addr = channel ;

while (((*p_portA data reg) & 0x80) != 0x80);
{
/* ADC conversion complete. Copy the sampled data, */

/* ignoring bits 12-15 (ie. the channel). */
/* [we should really check the channel here] x/
*buffer = (*p_adc_read conv_addr & OxOFFF) ;
} /* end -while- */
} g /* end -for- */
break ; /* end -case- */
default: break ;
b /* end -switch- */
num_samples read = i ; / Return successful reads to user. */

D-14 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

return(status) ;

} /* **% end :- vdad read *** */
S */

/*

* khkkkhkkhkhkhkhkhhkkkkhhkhkkhkhkkhkhkhkhhkkhhhkkkhhkhkkkhkkkkkkkkkx

* kkkkk EXCEPTION HANDILER kokkkok

* khkkkkkkhkkkhkkhkhhkhkkhkhkkhhhkkhkkkhkhkkkhhkkkkkhhkhkkhkxkkk

*

* This routine is called AUTOMATICALLY when ELN raises an exception.
*

* Returns: int status (see .H file for definitions)
*

* Notes:

*/

BOOLEAN vdad$cond handler (signal ptr, mechanism ptr)
struct chf$signal array *signal ptr;
struct chf$mech array *mechanism ptr;

void vdad$error_ text (int status);
static int status;

if (vdad$monitoring)

printf ("\nVDAD-Driver: Condition Handled (number %d) - ",
vdad$conditions++) ;
} else

{
printf ("\nVDAD-Driver: Condition Handled - ");
status = signal ptr->chf$l sig name;
vdad$error text (status);
exit(1);
}

void vdad$error text(int error)
{
int text flags;
char text buffer([255];
VARYING STRING(255) result string;

text flags = STATUSSALL;

eln$get status_text (error, text flags, &result string);
VARYING TO CSTRING(result string, text buffer);

printf ("\n%s\n", text buffer) ;

Example Programs—VDAD Device Driver D-15

Example Programs—VDAD Device Driver

return;
}
/*
* VDAD isr
*
* This is the device interrupt status routine. It is called by the kernel
* when a device interrupt occurs.
* It reads the sampled data, strips off the 4-bit channel id (bits 12..15),
* and stores the result into the Comms Region.
* It then signals the waiting process. The Channel number indicates which
* Device Object is signalled.
*
* Returns: The sampled data is copied into the Device Comms
* Region.
*
* Inputs:
* register ptr = pointer to device registers
* region ptr = pointer to driver communications region
*
* Notes:
*
*/
void vdad isr(register ptr, vdad$region)
char *register ptr;

vdad_region_type *vdad$region ;

{

unsigned short reset irq = VDAD EOC IRQ ;
static short channel ;

int status ;

/*
* Read the data (a word) from VDAD.
*/
kav$bus_read(&status,
KAVSK_WORD,
vdad$region->p adc read conv_addr,
& (vdad$region->reg.word),
1)
/*
* Extract the channel (top 4 bits) and sampled value (bottom 12 bits).
*/

channel = vdad$region->reg.ADC register.channel ;
vdad$region->value[channel] = vdad$region->reg.ADC register.value ;
/*

* Reset the device for further interrupts.

*/

kav$bus_bitset (&status,

KAVSK BYTE,
vdad$region->p port status reg,
reset irq) ;

D-16 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

/*
* Signal the device (indexed by ’channel’).
*/

ker$signal_device (NULL, channel);
} /* -—- end of VDAD ISR --- */

D.2 Definitions File

/*
* C Definitions file for:-

*

*

* khkkkkkkkkhkkkhkhkkkhhkkhkhkkkkhkkkkkhkkkkhkkkkhkkkkkhkkkhkxk

* **% PEP VDAD Digital-Analog-Digital Converter ***

* kkkkkkkkkkkkhhkkkhkkkkkkkkkkkkkhhkkkkhkkhkkkhhkkkkkkkx

*

*/
#define VDAD_BASE 0x0e00 /*Check the rotary switch on the */

/*KAV - they should agree. */

#define VDAD_PHYS ADDR 0xfe0000 /*24-bit access. */
/* #define VDAD_PHYS ADDR 0x0000 */ /*16-bit access. */
#define VDAD_EOC_IRQ 0x01 /*Interrupt Reset value. */
#define VDAD_IRQL 0x01 /*Interrupt Request Level. */
#define VDAD_IRQV 0x04 /*Interrupt Vector number. */
#define VDAD _PADDR INIT Ox7F /*Port-A Data Dir Reg init value. */
#define VDAD_PGCR_INIT 0x11 /*Port Gen Cntrl Reg init value. */
#define VDAD PSRR_INIT 0x18 /*Port Service Req Reg init value.*/

#define VDAD_PACR_INIT INT 0x82 /*Port-A Cntrl Reg init val (INTER).*/
#define VDAD PACR_INIT POLL 0x80 /*Port-A Cntrl Reg init val (POLL).*/

/*
* This next assignment is IMPORTANT !!! It should NEVER be zero, and it
* should NOT be changed. The "Create device" call needs it.

*/ .

#define RELATIVE VECTOR 0x01 /* (NEVER ZERO !!!) */

/*

* Maximum 16 single-ended, 8 differential channels per board.
*/
#define MAX CHANNELS 16

Example Programs—VDAD Device Driver D-17

Example Programs—VDAD Device Driver

/*

* Status return values

*/
#define
#define
#define
#define
#define
#define
#define
#define
/*

*

* % kX

*/
/*
/*
#define
#define

#define
#define
#define

/*
/*

#define
#define
#define
#define

/%
/*

#define
#define

/*
/*

#define
#define
#define
#define

#define
#define

#define
#define

SUCCESS 1
ERROR -1
DEVOFFLINE 0x84
ILLIOFUNC 0xF4
IVADDR 0x134
IVBUFLEN 0x34C
NOSUCHDEV 0x908
TIMEOUT 0x22C

VDAD Setup options

Interrupts or Polling.

VDADSSETUP_INT DISABLE
VDAD$SETUP_INT ENABLE

1
2
VDADSSETUP_GAIN 1 1
VDADSSETUP_GAIN 10 2
VDAD$SETUP_GAIN 100 3

Input channel configuration :-

VDADSSETUP_INP CONFIG 1 1
VDADSSETUP_INP_CONFIG 2 2
VDAD$SETUP_INP CONFIG 3 3

44

VDAD$SETUP_INP CONFIG

Sampling mode

VDADSSETUP_ CHANNEL MODE SINGLE

/*
/*
/'k
/*

VDAD$SETUP_CHANNEL MODE MULTIPLE

Trigger types.

VDADSSETUP_TRIGGER SOFTWARE
VDADSSETUP_ TRIGGER EXTERN
VDADSSETUP_TRIGGER TIMER

Note: None of these can have the value zero, since the user may NULL
one or more of the parameters in a VDAD call.

/* Disable interrupts. */
/* Enable interrupts. */

/* Three options for GAIN value.

Single-ended

N =

w N

VDAD$SETUP_TRIGGER EXTERN AND TIMER 4

Differential
6 n/a
8..13 6,7
8..11 4..7
a 0..7
/* Single-channel.
/* Multi-.............
/* ...by software.
/* ...by external stim.
/* ...by Timer.
/* ...by extern & Timer.

/* Use Driver’s or User’s Condition Handler.*/
VDADSSETUP COND HANDLING DRIVER

VDAD$SETUP_COND_HANDLING USER

/* Turn 'monitoring’

VDADSSETUP_MONITORING ON
VDAD$SETUP_MONITORING OFF

D-18 Example Programs—VDAD Device Driver

1
2

(statistics) on/off. */
1

2

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

Example Programs—VDAD Device Driver

/*
* VDAD Register offsets
*
*/
#define OFFSET port gen control reg 0x01
#define OFFSET port service req reg 0x03
#define OFFSET portA data dir reg 0x05
#define OFFSET port int vec reg 0x0b
#define OFFSET portA control _reg 0x0d
#define OFFSET portA data reg 0x11
#define OFFSET port status_reg 0x1b
#define OFFSET_adc_read_conv_addr 0x40
#define OFFSET int_level reg 0xff
/* There are more registers on this module, but we do not require
* access to them in this version.
*/
/*
* khkkkkkkkkkkkkkkkkkhkkkkkhkhkhkhkhhkhhkkhkkxkkxx
* *%% VDAD Device register definitions ***
* Kkkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkkhkkkkkxkk
*/
typedef struct /* <<< Port-A Data Register >>> */
{ /* */
unsigned gain 2
unsigned input config 2 ;
unsigned channel mode 1
unsigned trigger type 2 ;
unsigned unused 1
} portA data reg ;
typedef struct /* << Port General Control Register >>> */
{ /* */
unsigned EOC_IRQ 1
unsigned edge 3 ;
unsigned HI1H2 enable 1
unsigned H3H4 enable 1;
unsigned fixed 2 ; /* (always zero) */

} port gen control reg ;

typedef struct /* <<< Port-A Control Register >>> * /
{ /* */
unsigned unusedl : ;
unsigned EOC ien
unsigned H2 ien
" unsigned H2 transition
unsigned unused2
unsigned fixed :
} portA control req ;

N Wk P
e e me ~e o~

Example Programs—VDAD Device Driver D-19

Example Programs—VDAD Device Driver

typedef struct /* << Port Status Register >>> */
{ /* */
unsigned H1234 levels : 4 ; /* Current levels at HI-H4 pins */
unsigned H432S status : 3 ; /* H4S, H3S, H2S status pins */
unsigned EOC_status : 1 ; /* BEOC status bit. */

} port status req ;

/*
*
* Driver-specific structures.
*
*/
typedef struct /* << A/D Read/Convert Address Register >>> */
{ /* */
unsigned value : 12 ; /* 12-bit converted value (HI NIBBLE).*/
unsigned channel : 4 ; /* Channel number. */
} AD RC reg ;
/* T

Note that when you WRITE to this register, you write the channel number
* into bits 0-3. However, when you READ this, VDAD puts the channel into
* bits 12-15.
*/

/%
* This is the data stucture which allows the Interrupt Service Routine

* to pass data to/from the rest of the Driver.

This is the only method, since an ELN ISR executes in a different context
from the ’owning’ process.

* %

*/
typedef struct /* <<< Communications Region for Interrupt Service >>> */
{ /* * [
union {
AD RC reg ADC register ; /* "bare’ contents of register */
unsigned short word ; /* (WORD access to register) */
} reg ;

unsigned short value[MAX CHANNELS] ; /*ADC value only (per channel)*/

unsigned char *p portA data_dir reg,/* VDAD register pointers. */
*p_portA control reg,
*p portA data reg,
*p port gen control reg,
*p port service req reg,
*p_port_int vec_reg,
*p port status reg,
*p_int_level reg ;

unsigned short *p adc read conv_addr ;

} vdad region type ;

D-20 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

D.3 Test Program

/*
* FACILITY:

* VAXELN Run Time System

*

* ABSTRACT:

* This program demonstrates how to access the VDAD Driver.
*

* VERSION:

* V1.00 13-Mar-1991 Field Test Release.

*

* NOTES:

* This is a simple example of how to access the VDAD Driver.
*/ .
/*

* Include Files

*/

#include stdio

#include $vaxelnc

#include $dda utility

#include $mutex

#include chfdef

#include descrip

#include <eln$:kavdef.h>

#include $get message text

#include types

#include "vdaddriver.h" /* VDAD Driver definitions

#define SIZE OF DATA BUFFER 1024

unsigned short sample buffer[SIZE_OF DATA BUFFER] ;
unsigned short *p buf ;

main ()
{
void error_text();
void display buffer() ;
BOOLEAN display samples ;
char beep{2] =" " ;
int status, temp, chan, use interrupts ;
long int num buffers, block count, num samples read ;

p_buf = &sample buffer([0] ;

block count = 0 ;

printf ("VDAD test process started\n");
printf ("Setting up the VDAD Device...\n");

Example Programs—VDAD Device Driver D-21

x/

Example Programs—VDAD Device Driver

/*
* Initialise the VDAD Driver (this is a once-only call).
*/
status = vdad$init() ;
if (!(status & 1)) { error text(status); exit(-1); }

/*
* Ask for number of iterations.
*/
printf ("\nHow many iterations (1 Kbyte per iteration) ? : ");
scanf ("%d", &num buffers);
/*
* Ask for ADC Channel number.
*/
get_chan:
printf ("\nWhich ADC channel [0-15] ? : ");

scanf ("%d", &chan);
if ((chan > 15) || (chan < 0))

printf("\nInvalid channel number. Re-enter correctly.");
goto get chan ;
b
/*
* Ask for "Interrupts or Polling".
*/
printf("\nDo you wish to use Interrupts [l=Yes, 0=No] ? : ");
scanf ("%d", &temp);
if (temp == 1)
{

use_interrupts = VDAD$SETUP_INT_ENABLE H
printf("\nInterrupts in use ! \n");
} else

{
use interrupts = VDADSSETUP INT DISABLIE ;

printf ("\nPolling (ie. NO interrupts)\n");

/*
* Does the user want a "sample-dump" ?

*/

printf("\nDo you wish to see the sampled buffer [l=Yes, 0=No] ? : ");

scanf ("%d", &temp);

if (temp == 1) { display samples = TRUE;} else { display samples = FALSE;};

D-22 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

/*
* Set up the VDAD Driver (this can be called at any time).
*/
status = vdad$setup(VDADSSETUP GAIN 1,

VDAD$SETUP_INP CONFIG 1,
VDADSSETUP CHANNEL MODE SINGLE,
VDADSSETUP TRIGGER SOFTWARE ,
use interrupts,
VDADSSETUP_COND_HANDLING DRIVER,
VDAD$SETUP_MONITORING OFF) ;
if (!(status & 1)) { error_ text(status); exit(-1); }

printf("\nVDAD Set up OK. Commencing sampling with block size of %d.",
SIZE OF DATA BUFFER) ;

printf ("\nNote that each '.’ represents ONE BLOCK successfully sampled.");

printf("\nA total of %d blocks will be sampled.", num buffers);

printf("\n[have you switched the console terminal into AUTO-WRAP ?]\n\n");

printf("\nHit a character, then <RETURN> to start sampling : ");

scanf ("%s", &temp);

printf("\nSampling commencing...\n");
printf (beep);

block count = 0 ;
while (block count++ < num buffers)

{

/*
* Request the VDAD Driver to fill in the buffer with the requested
* number of samples.

*/
status = vdad$read(chan,

NULL,
& (sample buffer([0]),
SIZE OF DATA BUFFER,
&num_samples_read) ;
if (!(status & 1)) { error text(status); exit(-1); }
printf(".") ;

if (display samples==TRUE) { display buffer() ; } ;
} 5 /* end -while- */
printf (beep);

printf ("\n\nVDAD Test process finito !\n");
}

void error text (status)
int status;
{
int text flags;
char text buffer([255];
VARYING STRING(255) result string;

Example Programs—VDAD Device Driver D-23

Example Programs—VDAD Device Driver

text flags = STATUSSALL;

eln$get status_text (status, text flags, &result string);
VARYING TO CSTRING(result string, text buffer);

printf ("%s\n", text buffer);

return;

}

void display buffer()
{

register int i, j ;

printf ("\n **%* Dump of sample buffer (16 samples per line) ****\n") ;

for (i=0; i < SIZE OF DATA BUFFER;)
for (j=0; (j < 16) &&(j+i < SIZE OF DATA BUFFER); j++)
{

printf("%3x,", sample buffer(i+j]) ;

/*
sample buffer[i+j] = SIZE_OF _DATA BUFFER - (i+]j) ;
*x/
}
i=1+16;
printf("\n") ;
return;
1
o *x/

D-24 Example Programs—VDAD Device Driver

Example Programs—VDAD Device Driver

D.4 Build File

!

! Command Procedure to compile, link and EBUILD the VDAD test program.
$!

$ cc /NOOPTIMIZE test vdad.c teln$:vaxelnc /library

$ cc /NOOPTIMIZE vdaddriver.c +eln$:vaxelnc /library

$!

$ If "''F$Search("VDAD.OLB")'" .EQS. "" Then LIBRARY/Create VDAD.OLB
$ LIBRARY/REPLACE VDAD.OLB test vdad.OBJ

$ LIBRARY/REPLACE VDAD.OLB VDADDRIVER.OBJ

$!

$ DEFINE CSLIBRARY ELNS:VAXELNC.TLB

$ DEFINE LNKSLIBRARY ELNS:CRTLSHARE

$ DEFINE LNKSLIBRARY 1 ELNS:RTLSHARE

$ DEFINE LNK$LIBRARY_2 ELNS:RTL

$ DEFINE LNKSLIBRARY 3 ELN$:KAVSRTL OBJLIB

$ LINK /EXE=test vdad vdad.olb/library/include=(test_vdad) -
/nosyslib/nosysshr

5!

$ EBUILD /noedi test vdad

!

Sexit

D.5 Data File

characteristic /nofile /net_device=EZA /node address=63.740 -

/noserver /objects=512 /debug=none /io region=1024 -

/target=24 /image list=(IPCSHR,AUXCSHR, ICSSHR)

program TEST VDAD.EXE /kernel stack=64 /user stack=10 /job priority=10 -
/argument=("", un, H"’ """VDAD""")

device EZA /vector=%X130 /net def

device VDAD /vector=%X810 /noautoload

Example Programs—VDAD Device Driver D-25

Glossary

The glossary defines some of the important terms used in this guide.

application program
A program that performs an end-user task.

ASB

Asynchronous system block. The ASB contains information about the AST
routine for a particular event.

AST

Asynchronous system trap. A procedure that the operating system calls when
a particular event occurs.

autovectored interrupt

An interrupt for which the interrupt handler provides the interrupt vector
address.

backup process _
The process of making copies of the data stored on the disk, so that you can
recover that data after an accidental loss. You make backup copies on RX33
diskettes, TK50 tape cartridges, or over a network.

backup copy

A copy of the data stored on the disk.

BCD

Binary coded decimal. Pertaining to a number representation system in which
each decimal digit is represented by a unique arrangement of binary digits.

big-endian device
A device based on the 68000® family of processors.

Glossary-1

BR line
Bus request line. A signal line on which a device issues a bus request signal.

CPU

Central processing unit. The main unit of a computer that contains the circuits
that control the interpretation and execution of instructions. The CPU holds
the main storage, arithmetic unit, and special registers.

CSR bit

Control and status register bit. The CSR bits consist of input bits and output
bits. The CSR input bits report on the status of the KAV30 hardware, while
the CSR output bits control the KAV30 hardware.

DAL bus

Data and address lines bus. A 32-bit multiplexed bus. The rtVAX 300 is the
source of the DAL bus.

DMA

Direct memory access. A method of accessing a device’s memory without
interacting with the device’s CPU.

FIFO

First-in/first-out. The order in which processing is performed. For example, a
FIFO queue processes data on a first-come, first-served basis.

FIFO buffer

A hardware area in which devices can store and retrieve data.

host system
The primary or controlling computer in a multiple computer network.

IACK

Interrupt-acknowledge signal. A signal, issued by an interrupt handler device,
which indicates that the device will handle an interrupt request.

interrupt
A break in the usual flow of a program to process an external request.

interrupt handler

A device that executes interrupt service routines for interrupt requesters. The
device receives interrupt requests from the bus.

Glossary-2

IPL

Interrupt priority level. The interrupt level at which an interrupt is generated.
There are 31 possible interrupt priority levels: IPL 1 is the lowest, 31 is the
highest. The levels arbitrate contention for processor service.

interrupt requester

A device that requests the execution of an interrupt service routine. The device
sends an interrupt request on the bus, which an interrupt handler responds to.

interrupt vector address

An indirect address that points to the starting address of an interrupt service
routine.

IRQ

Interrupt-request signal. A signal, issued by a device, to execute an interrupt
service routine.

ISR
Interrupt service routine. The software that processes interrupt requests.

LIFO

Last-in/first-out. The order in which processing is performed. For example, a
LIFO queue processes data on a last-come, first-served basis.

little-endian device
A device based on the Intel™ family of processors.

RAM
Random-access memory. A read/write memory device.

ROM

Read-only memory. A memory in which information is permanently stored at
the time of production and is not alterable by computer instructions.

ROR

Release-on-request. When a VMEbus requester operates in ROR mode, it gives
up the data transfer bus when another VMEbus module requests the bus.

RWD

Release-when-done. When a VMEbus requester operates in RWD mode, it
gives up the data transfer bus only when it finishes using the bus.

Glossary-3

SCB

System control block. The data structure in system space that contains all the
interrupt and exception vectors known to the system.

SCSl

Small computer systems interface. An interface designed for connecting disks
and other peripheral devices to computer systems. SCSI is defined by an
American National Standards Institute (ANSI) standard.

SGM

Scatter-gather map. A means of allowing either of the following types of data
transfer:

* From pages in memory that are not contiguous to contiguous blocks on a
bus

* From contiguous blocks on a bus to pages in memory that are not
contiguous

target system
A system in which a task executes.

vectored interrupts

An interrupt for which the interrupt requester provides the interrupt vector
address.

VSB
VME subsystem bus.

Glossary-4

A

A16 addressing, 2-1, 2-2, 3-13
A24 addressing, 2-1, 2-2, 3-13, 3-16,
4-150, 5-17
A32 addressing, 2-1, 2-2, 3-12, 3-15,
4-150, 5-17, 5-19
ACFAIL signal, 2-5, 2-14, A-1
ALTERNATE, 2-3,4-89
Arbiter, 1-2
fair mode, A-2
hidden mode, A-2
priority mode, A-2
VMEbus, 2-3 to 2—4, 5-18
VSB, 2-4, 5-17
Arbitration
prioritized, 2-3
round-robin, 2-3
ASB, 1-5, 3-1, 3-2, 4-34, 4-96, 4-122
ASB$K_ASBFREE, 3-3
ASB$K_ASBPEND, 3-3
AST, 1-5, 1-6, 2-5, 3-1 to 34, 4-34 to
4-36, 4-58, 4-131
coding in VAX Ada, 5-4 to 5-7
coding in VAXELN Pascal, 5-9 to 5-12
data structures, 3-3
defining, 4-37 to 440
parameters, 3-2
queuing, 4-96 to 4-99
routines, 3-2
setting, 4-122 to 4-126
writing, 5-3
AST queues’
clearing, 4-34 to 4-36

Index

Asynchronous context block
See ASB

Asynchronous System Trap
See AST

Autovectored interrupts
VMEDbus, 5-16, A-2
VSB, 5-16

Autovectored Interrupts, 3-2

Auxiliary port, 1-2, A-1

Battery, 1-5, 3-7
checking, 4-30 to 4-33
Battery backed-up RAM, 1-2, 1-5, 1-6,
3-10, 4-30, 4-51, 4-116 to 4-121, A-1
Battery backed-up random-access memory
See Battery backed-up RAM
Big-endian, 3-18, 4-58, 4-84
BR lines, 2-1
Break command, 2-14
Break key, A-1
Bus request, 1-2
ROR mode, A-2
VMEbus, 5-18
VSB, 5-17
Bus Request lines
See BR lines

Index-1

C

E

Calendar/clock, 1-2, 1-5, 1-6, 3-6 to 3-8,
4-30, 4-100 to 4-115, 5-17, A-1, A-2

Clock period, 3-5
Compiling

KAV30 applications, 5-12
Condition handler, 5-2
Configuration

KAV30, A-1to A-2
Console port, 1-2
Consumer, 3-9
Control and status register bits

See CSR bits
Control and status register page
See CSR page
Counter/timers, 1-2, 1-5, A-2
CSR bits, 2-14
CSR page, 5-14
CVAX microprocessor, 1-1

D

D08 transfers, 2—-2

D16 transfers, 2-2

D32 transfers, 2-2

DAL bus, 2-3,2-4, 3-6
master, 2-5
timeout period, 2-5
timeouts, 2-5

Data and address lines bus
See DAL bus

Data and Address Lines bus
See DAL bus

Debugging KAV30 applications, 5-20 to

5-21
Device drivers, 3-2
Direct memory access
See DMA, 2-3
DMA, 2-3

Index-2

ELN$GET_STATUS_TEXT, 3-26
ERR signal, 2-9
Error logging, 3-24 to 3-29
Ethernet, 2-14
Example programs
FIFO consumer, B-5 to B-9
FIFO producer, B-1to B4
interprocessor communication, B-1 to
B-9
MVMES335 device driver, C-1 to C-21
VDAD device driver, D-1 to D-25
Exception handling, 5-2

F

Fair mode, 2-2, A-2
FIFO buffers, 1-1, 1-5, 1-6, 2-2, 3-9, 3-23,
4-16, 4-19, 4-20, 4-23, 4-27, 4-41,
4-46, 4-58, 4-74, 4-78, A-2
consumer, 3-9
errors, 2-14, 2-15
producer, 3-9
FIFO modes, 4-46
First-inffirst-out buffers
See FIFO buffers

H

HALT signal, A-1
Hidden mode, 2-2, A-2
Host system, 1-1, 1-3

1/0, 2-3,4-89
routines, 5-3
IACK, 3-2
cycle, 2-6,2-9
Input/Output routines
See I/0 routines

Interrupt handler
VMEbus, 2-6 to 2-10

Interrupt handler (cont’d)
VSB, 2-12

Interrupt priority level
See IPL

Interrupt requester
VMEDbus, 2-10 to 2-12

Interrupt service routines

See ISR
Interrupt-acknowledge cycle

See IACK cycle

Interrupts, 1-2, 1-6, 4-67 to 4-73
autovectored, 2—6, 2—8 to 2-10, 3—-2
KAV30 source codes, 2-7
pins, 2-13
priority scheme, 2-12 to 2-15
vectored, 2-6 to 2-8
VMEbus, A-2
VMEDbus autovectored, 5-16
VMEDbus vectored, 5-15
VSB autovectored, 5-16

IPL, 2-12, 3-2

IRQ, 3-2, 4-67

ISR, 2-5, 2-8, 2-9, 3-2
accessing an, 5-2

K

KAV$BUS_BITCLR, 1-5, 4-2 to 4-9, 4-15,
4-21, 4-29, 4-84, 4-91
KAV$BUS_BITSET, 1-5,4-7, 4-10 to 4-15,
4-21, 4-29, 4-84, 4-91
KAV$BUS_READ, 1-5, 4-7, 4-15, 4-16 to
4-22, 4-23 to 4-29, 4-84, 4-91, 5-3
KAV$BUS_WRITE, 1-5, 3-23, 4-7, 4-15,
4-21, 4-23, 4-28, 4-84, 4-91, 5-3
KAV$CHECK _BATTERY, 1-5, 4-30 to 4-33
KAV$CLR_AST, 1-5, 3-2, 3-3, 4-34 to
4-36, 4-37, 440, 4-99, 4-126
KAV$DEF_AST, 1-5, 3-2, 4-34, 4-36, 4-37
to 4-40, 4-96, 4-99, 4-122, 4-126
KAV$FIFO_READ, 1-5, 3-9, 3-23, 4-41 to
4-45, 4-50, 4-77, 4-83
KAV$FIFO_WRITE, 1-5, 3-9, 4-44, 4-46 to
4-50, 4-77, 4-83

KAV$GATHER_KAV_ERRORLOG, 1-5,
4-51 to 4-57
KAV$INT_VME, 1-6, 4-67 to 4-73, 4-155
KAV$IN_MAP, 1-5, 3-14, 4-58 to 4-66,
4-149, 5-14
KAV$K_ALLOW_VME_IRQ, 4-153, 4-154
KAV$K_ALL_ERR, 4-53
KAV$K_ALR_DOM, 4-109, 4-110
KAV$K_ALR_HOUR, 4-109
KAV$K_ALR_MINUTE, 4-109
KAV$K_ALR_MONTH, 4-110
KAV$K_ALR_SECOND, 4-109
KAV$K_AUTO_VME_IRQ, 4-153, 4-154
KAV$K_BBR_READ, 4-119
KAV$K_BBR_WRITE, 4-119
KAV$K_BYTE, 4-5, 4-13, 4-19, 4-26
KAV$K_CLEAR_ERR, 4-53
KAV$K_CTMRO, 4-136
KAV$K_CTMR1, 4-136
KAV$K_CTMR2, 4-136
KAV$K_CTMR3, 4-136
KAV$K_CTMR4, 4-136
KAV$K_DISABLE_VSB_IRQ, 4-153
KAV$K_ENABLE_VSB_IRQ, 4-153
KAV$K_FIFO_0, 4-49, 4-76, 4-82
KAV$K_FIFO_1, 4-49, 4-76, 4-82
KAV$K_FIFO_2, 4-49, 4-76, 4-82
KAV$K_FIFO_3, 4-49, 4-76, 4-82
KAV$K_INIT_RD_POINTER, 4-53
KAV$K_LCL_TO, 4-136
KAV$K_LONGWORD, 4-5, 4-13, 4-16,
4-19, 4-20, 4-23, 4-26, 4-27
KAV$K_MASTER_ERR, 4-53
KAV$K_PER_100MS, 4-109
KAV$K_PER_10MS, 4-109
KAV$K_PER_10SEC, 4-109
KAV$K_PER_IMS, 4-109
KAV$K_PER_1SEC, 4-109
KAV$K_PER_60SEC, 4-109
KAV$K_RD, 4-68, 4-71, 4-72
KAV$K_RD_A24 ROTARY, 4-153, 4-155
KAV$K_RD_VSB_SLOT, 4-153, 4-155
KAV$K_RTC_1000MS, 4-109
KAV$K_RTC_100MS, 4-109

Index-3

KAV3$K_RTC_100NS, 4-109
KAV$K_RTC_10MS, 4-109
KAV$K _RTC_1MS, 4-109
KAV$K _RTC_400NS, 4-109
KAV$K _RTC_93US, 4-109
KAV$K _SET_A32_BASE, 4-153, 4-155
KAV$K_SET _RTC_TIME, 4-129
KAV$K_SET_VAX TIME, 4-129
KAV$K SLAVE_ERR, 4-53
KAV$K_SUPER_16, 4-89
KAV$K _SUPER_24, 4-89
KAV$K SUPER_32, 4-89
KAV$K USER_16, 4-89
KAV$K USER_24, 4-89
KAV$K USER_32, 4-89
KAV$K_VME_INT_CLR, 4-71, 4-72
KAV$K VME_REQ_INT, 4-71
KAV$K VME_SYSFAIL, 2-5
KAV$K WDOG, 4-136
KAV$K_WORD, 4-5, 4-13, 4-19, 4-26
KAV$LIFO_WIRTE, 1-6
KAVS$LIFO_WRITE, 3-9, 4-44, 4-50, 4-74
to 4-77, 4-83
KAV$M_ALARM, 4-106
KAV$M_CSR, 4-62, 4-63, 4-148
KAV$M_FIFO_ACCESS, 3-23, 4-16, 4-19,
4-20, 4-23, 4-26, 4-27
KAV$M_FIFO_EMPTY, 4-81
KAV$M_FIFO_FULL, 4-81
KAV$M_FIFO_NOT_EMPTY, 4-81
KAV$M_IN, 4-148
KAV$M_LOAD_TMR_CNT, 4-105, 4-135
KAV$M_LOCMON_IPL15, 4-63
KAV$M_LOCMON_IPL16, 4-63
KAV$M_LOCMON_IPL17, 4-63
KAV$M_MEMORY, 4-63, 4-148
KAV$M_MODE_0_SWAP, 4-63, 4-90
KAV$M_MODE_2_SWAP, 4-63, 4-90
KAV$M_MODE_3_SWAP, 4-63, 4-90
KAV$M_NO_RETRY, 4-2, 4-10, 4-90
KAV$M_OUT, 4-148
KAV$M_PERIODIC, 4-106
KAV$M_READ_ALARM, 4-106
KAV$M_READ_CALENDAR, 4-107

Index-4

KAV$M_READ_RTCRAM, 4-107

KAV$M_READ_TMR_CNT, 4-106, 4-135

KAV$M_REPEAT, 4-122, 4-125

KAV$M_REPEAT_TMR, 4-136

KAV$M_RESET FIFO, 4-81

KAV$M_RESET TMR, 4-106, 4-136

KAV$M_RTC_12_HOUR, 4-100, 4-107,
4-129

KAV$M_RTC_24_HOUR, 4-100, 4-107,
4-129

KAV$M_RTC_HOLD_TMR, 4-108

KAV$M_RTC_READ_TIMESAVE, 4-107

KAV$M_RTC_RESTART TMR, 4-108

KAV$M_RTC_TMR_0, 4-105

KAV$M_RTC_TMR_1, 4-105

KAV$M_START TMR, 4-105, 4-135

KAV$M_STOP_TMR, 4-106

KAV$M_VME, 4-90

KAV$M_VSB, 4-90

KAV$M_WRITE_ALARM, 4-107

KAV$M_WRITE_CALENDAR, 4-107

KAV$M_WRITE_RTCRAM, 4-108

KAV$M_WRITE_TIMESAVE, 4-107

KAV$M_WRT_PROT, 4-63, 4-90

KAV$NOTIFY_FIFO, 1-6, 444, 4-50, 4-77,
4-78 to 4-83

KAV$OUT_MAP, 1-6, 3-11, 4-5, 4-13,
4-21, 4-29, 4-84 to 4-95, 4-149, 5-2,
5-14, 5-20

KAV$QUE_AST, 1-6, 3-2, 4-36, 4-37, 4-40,
4-96 to 4-99, 4-126

KAV$RTC, 1-6, 3-7, 4-130

KAV$RW_BBRAM, 1-6, 3-10, 4-116 to
4-121

KAV$SET_AST, 1-6, 2-5, 3-2, 3-3, 4-34,
4-36, 4-37, 4-40, 4-96, 4-99, 4-122 to
4-126

KAVS$SET _CLOCK, 1-6, 4-127 to 4-130

KAV$TIMERS, 1-6, 2-5, 3-5, 3-6, 4-131 to
4-143

KAV$UNMAP, 1-6, 4-58, 4-64, 4-84, 4-91,
4-144 to 4-149

KAV$VME_SETUP, 1-6, 3-16, 4-68, 4-73,
4-150 to 4-155, 5-15

KAV30
initial configuration, A-1 to A-2

KAV30 applications
coding, 5-3 to 5-12
compiling, 5-12
debugging, 5-20 to 521
designing, 5-1 to 5-3
developing, 5-1 to 5-25
including SCSI devices, 5-23 to 5-25
linking, 5-12

KAV30 hardware, 1-1 to 1-2
configuration, A-1

KAV30 software, 1-1, 1-4 to 1-6
configuration, A-2

KAV30 system image
building, 5-13 to 5-14
loading, 5-20
running, 5-20

Kernel, 1-4

Kernel mode, 3-2

L

Last chance handler, 5-2
Last-in/first-out buffers

See LIFO buffers
LIFO buffers, 1-6, 3-9, 4-23, 4-27, 4-28
LIFO mode, 4-74
Linking

KAV30 applications, 5-12
Little-endian, 3-18, 4-58, 4-84
Local bus

timeout, A-2
Local bus timer, 3-5, 3-6, 4-131
Location monitor, 4-58, 4-62
LOCK, 2-3

Master, 2-5, 3-10
VMEDbus, 2-1 to 2-2, 5-17
VSB, 2-3,5-17
Mode 0 swapping, 3-19
Mode 1 swapping, 3-19

Mode 2 swapping, 3-21
Mode 3 swapping, 3-21
Modes

kernel, 3-2

user, 3-2
Mutex, 5-3

N

Not fair mode, 2-2
Not hidden mode, 2-2

P

Parity errors, 2-6
PC, 5-2
PCB, 34
PCB$A_ASTBLK, 34
PCB$A_ASTFLK, 34
Ports

auxiliary, 1-2, A-1

console, 1-2

serial line, 1-2, 2-14, A-1
POWER_FAIL signal, A-1
Prescaler, 3-5
Prioritized arbitration, 2-3
Priority mode, A-2
Process Control Block

See PCB
Producer, 3-9

Program Counter
See PC

R

Read-modify-write, 2-2, 2-3
Read-modify-write cycles, 4-2, 4-10
Real-time clock, 4-127 to 4-130
Release-on-request

See ROR
Release-on-request mode

ROR mode
Release-when-done

See RWD

Index-5

RESET signal, A-1

Reset/halt switch, 2-14

Retry count, 5-20

ROR, 2-2

ROR mode, A-2

Round-robin arbitration, 2-3

RTC/begin, 4-100

RTC/end, 4-115

rtVAX 300, 1-1, 5-14
Ethernet controller, A-1
timer, 2-15

RWD, 2-2

S

S0 space, 4-2, 4-5, 4-10, 4-13, 4-16, 4-23,
4-27

Scatter-gather map
See SGM

SCB, 2-8,2-9,3-2

SCSI bus, A-1

SCSI class driver
building, 5-23 to 5-25

SCSI class drivers
developing, 5-22 to 5-23

SCSI controller, 1-2, 2-5

SCSI ID, 5-23, A-2

Second Generation Ethernet Controller
See SGEC

Serial line ports, 1-2, 2-14

SGEC, 5-14

SGM, 1-1, 3-10 to 3-21, 4-2, 4-10, 4-16,

4-23, 4-58, 4-84, 4-144 to 4-149, A-2

byte swapping, 3-18 to 3-21
incoming, 3-14 to 3-18
outgoing, 3-10 to 3-13

Shared memory pages, 3—-21

Signal calls, 5-3

Slave, 3-10
VMEbus, 2-2 to 2-3, 2-4, 5-19

Small computer systems interface controller
See SCSI controller

Stack, 5-2

Index—6

SYSFAIL signal, 2-5
SYSRESET signal, 2—4
SYSTEM, 2-3, 4-89
System clock, 5-17
System Control Block
See SCB
System failure, 5-2
System image, 5-13
System Parameter 1, 5-14 to 5-17
System Parameter 2, 5-14, 5-18 to 5-20
System RAM, 1-1, 2-2
parity errors, 2-6
System random-access memory
See System RAM
System services, 1-5 to 1-6
System virtual address space

See SO space

T

Target system, 1-1, 1-3
TERMPWR signal, A-1
Timer
interval, 3-5
Timers, 3-5 to 3—6
prescaler, 3-5
Trigger boot, 2-14

(U

User mode, 3-2
User read-only memory

See User ROM
User ROM, 1-1, A-1

)

VAX
ERR signal, 2-9
HALT signal, A-1
POWER_FAIL signal, A-1
VAX Ada, 1-4
coding guidelines, 5-4 to 5-7

VAX C, 1-2

coding guidelines, 5-7 to 5-8
VAX FORTRAN, 1-2

coding guidelines, 5-8
VAXELN

status code, 5-2

system time, A-2
VAXELN Ada, 1-2
VAXELN applications

building, 1-1

debugging, 1-1

developing, 1-1

down-line loading, 1-1

running, 1-1
VAXELN Debugger, 1-2, 5-20
VAXELN kernel, 1-2
VAXELN Pascal, 1-2

coding guidelines, 5-9 to 5-12
VAXELN System Builder, 1-2, 5-13, 5-14

invoking, 5-13
VAXELN system time, 4-127 to 4-130
VAXELN Toolkit, 1-1, 1-2 to 1-4
VDAD device driver, D-1
Vectored interrupts

VMEbus, 5-15
VME subsystem bus

See VSB

VMEDbus, 1-1, 1-5
A24 base slave address, A-1
A24 slave, 5-17, A-2
A32 base slave address, A-2
A32 slave, 5-17, 5-19, A-2
accessing, 5-1 to 5-3
ACFAIL signal, 2-5, 2-14, A-1
arbiter, 1-2, 2-3 to 24, 5-18, A-1, A-2
autovectored interrupts, 5-16, A-2
BR lines, 2-1
BR3 line, A-2
bus request, 1-2, A-2
Bus Request lines, 2-1
configuring, 4-150, 5-14 to 5-20
deadlock, 24
global reset register, 2-5
interrupt handler, 1-2, 2-6 to 2-10
interrupt request, 1-2

VMEDbus (cont’d)
interrupt requester, 2-10 to 2-12
interrupts, 1-6, A-2
master, 2-1 to 2-2, 5-17, A-2
reading from, 4-16 to 4-22
reset register, 2—-2
RESET signal, A-1
retry count, 5-20
slave, 2-2 to 2-3, 24, 5-19
standby power supply, 3-7
SYSFAIL signal, 2-5
SYSRESET signal, 2—4
system clock, 2—4
timeout, A-2
utility bus signals, 2-4 to 2-5
vectored interrupts, 5-15

writing to, 4-2 to 4-9, 4-10 to 4-15, 4-23

to 4-29
VMEDbus bus request, 5-18
VMEDbus interrupt requester, 4-150
VMEDbus interrupts, 1-2
VMS linker, 5-12
VSB, 1-1,1-5
accessing, 5-1 to 5-3
address spaces, 2-3
ALTERNATE, 2-3, 4-89
arbiter, 1-2, 24, 5-17
autovectored interrupts, 5-16
bus request, 1-2, 5-17, A-2
configuring, 4-150, 5-14 to 5-20
I/0, 2-3, 4-89
interrupt handler, 1-2, 2-12
interrupt request, 1-2
interrupts, 1-6
LOCK signal, 2-3
master, 2-3, 5-17, A-2
reading from, 4-16 to 4-22
retry count, 5-20
SYSTEM, 2-3, 4-89

writing to, 4-2 to 4-9, 4-10 to 4-15, 4-23

to 4-29
VSB interrupt requester, 4-150
VSB interrupts, 1-2

Index-7

w

Watchdog timer, 1-2, 3-5, 3-6, 4-131

Index-8

Reader’s Comments KAV30 Programmer’s Reference Information

AA-PEYCA-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)

Organization (structure of subject matter)
Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

Ooooodoono
Oo0oogogooo
oooOoooono
ooooooono

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.
Company Date
Mailing Address

Phone

———— Do Not Tear - Fold Here and Tape ———————"——"—"—"—"—"""""""“"—"-"-———————-

™
AriX
STAMP
HERE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
ZKO1-3/J35

110 SPIT BROOK RD

NASHUA, NH 03062-9987

———— Do Not Tear - Fold Her¢ ———————"——"—"—"""""""""""—"—"(——(——(—————————-

Reader’s Comments KAV30 Programmer’s Reference Information

AA-PEYCA-TE

Please use this postage-paid form to comment on this manual. If you require a written
reply to a software problem and are eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR form.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor
Accuracy (software works as manual says) O O O O
Completeness (enough information) O O O O
Clarity (easy to understand) O O O O
Organization (structure of subject matter) O O O O
Figures (useful) O O O O
Examples (useful) O O O O
Index (ability to find topic) O O O O
Page layout (easy to find information) O O O O

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept. ——
Company Date

Mailing Address

Phone

———— Do Not Tear - Fold Here and Tape —————————————————————————— —-——

™
t AFFIX
STAMP
HERE

DIGITAL EQUIPMENT CORPORATION
Corporate User Information Products
ZKO1-3/J35

110 SPIT BROOK RD

NASHUA, NH 03062-9987

———— Do Not Tear - Fold Here¢ ————————————— e e — — -

dlilgliltiall

	Cover
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	2-7
	2-8
	2-9
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	4-61
	4-62
	4-63
	4-64
	4-65
	4-66
	4-67
	4-68
	4-69
	4-70
	4-71
	4-72
	4-73
	4-74
	4-75
	4-76
	4-77
	4-78
	4-79
	4-80
	4-81
	4-82
	4-83
	4-84
	4-85
	4-86
	4-87
	4-88
	4-89
	4-90
	4-91
	4-92
	4-93
	4-94
	4-95
	4-96
	4-97
	4-98
	4-99
	4-100
	4-101
	4-102
	4-103
	4-104
	4-105
	4-106
	4-107
	4-108
	4-109
	4-110
	4-111
	4-112
	4-113
	4-114
	4-115
	4-116
	4-117
	4-118
	4-119
	4-120
	4-121
	4-122
	4-123
	4-124
	4-125
	4-126
	4-127
	4-128
	4-129
	4-130
	4-131
	4-132
	4-133
	4-134
	4-135
	4-136
	4-137
	4-138
	4-139
	4-140
	4-141
	4-142
	4-143
	4-144
	4-145
	4-146
	4-147
	4-148
	4-149
	4-150
	4-151
	4-152
	4-153
	4-154
	4-155
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	A-1
	A-2
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	B-7
	B-8
	B-9
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	D-1
	D-2
	D-3
	D-4
	D-5
	D-6
	D-7
	D-8
	D-9
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	D-21
	D-22
	D-23
	D-24
	D-25
	Glossary-1
	Glossary-2
	Glossary-3
	Glossary-4
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	Index-8
	Comments
	Back

