" EK-78032-UG-PRE

MicroVAX 78032
32-Bit Central Processing Unit
User's Guide

PRELIMINARY

!
|

4
!

EK-78032-UG-PRE

MicroVAX 78032
32-Bit Central Processing Unit
User's Guide

PRELIMINARY

Preliminary, June 1985

Copyright ® 1985 by Digital Equipment Corporation
‘ All Rights Reserved

Printed in U.S.A.

The material in this document is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any
errors which may appear in this manual.

The following are trademarks of Digital Equipment Corporation:

Digital Logo MASSBUS TOPS-10
DEC MicroVAX TOPS-20
DECnet MicroVMS JLTRIX
DECUS MINC-11 UNIBUS
DECsystem-10 CMNIBUS TAX
DECSYSTEM-20 0sS/8 - VAXEZLN
DECwriter 'PDP TMS
DIBOL PDT T
Edusystem RSTS 73032
IAS RSX 73132

CHAPTER

CHAPTER

NN RONNDNRNDODNNDNDNDRDNN DN

1

=]
- »
N b

3%]
s e e s

- s & . - *
~N O U D B

e B2 8 & & 8 4 & &+ e s a2 a2 e e s & e & v & s
e o e+« s B s 2 e & & & =
(JJ (WL LW NN NN RN

[\
-

.

e & e e
e 4w 2 s s s e

. e LR ” -

N RO R RO R R RO R RN R N B
L] .
N O T T N Y IV SO QT N N

* -

Ll -

N =

. *

.
[USIN,S 2y o

L) . . L] . - .
H Ul b W N

- . LI

KRR

. e & a2 .
U W N

INTRODUCTION
DATA TYPES
Byte .

Word
Longword

CONTENTS .

INTRODUCTION

GENERAL DESCRIPTION
FUNCTIONAL OVERVIEW

ARCHITECTURE

- * - . -
-
.
.

.
-
.
.

» * . L . .

Quadword

vari

Char

Floa
F
D
G

REGISTERS

Non-
Ge

able Length Bit Field
acter String
ting Point
_floating

_floating
_floating

Priviledged Reglster
neral Registers . .

Processor .Status Word

Syst

em Registers . .

Interrupt Registers . .

Memory Management Registers
Processor Status Longword

Proc

MicroVAX 78032 CPU Speczfxc Regzste*s
Interval Clock Contrcl And Status Register

MEMORY MANAGEMENT . ., .

virt

Process Space . .
~System Space

Vi

Page Protection

essor Registers . .

(1ces) e . .
SAVPSL)

ual Address Space

rrual Address Format

- - . - . -

Memory Management Control
Access Control

Pr

ocessor Modes

Protection Code

Length Violation .

Access Control Vmolatlon

-
»
-
-
.
-
*
.

-
.

-

. . [.

.

.

.

.

. = . »

.

.

.

Access Across A Page Boundary

iii

System Control Block Base Qaglstev
Process Control Block Base Register

Console Saved Reqxstefs {SAVISP

»

. . « .

L] . L] 3 . »

.

»

-

SAVPC,

L]

L] » L] - » - - - »

-

» - * L] - [

- . . - . - . . * . * L »

. . * . . .

3

-

.

.« »

=
1

| T R R |

[I |
NN OOOW O & P W NN

|

TR RN RN R R R RN RN
)

1o
bt bt bt e e |

1

]
-
RN

i
—
>

|

NN NN NN
])

—

o e

2-18
2-19

2-20
2-21
2-22
2-23
2-23
2-23
2-24
2-24
2-25
2-26
2-26
2~-28
2-28
2-28

2.4.4
2.4.4.1
2.4.4.1.1
2.4.4.1.2
2.4.4.2
2.4.4.3
2.4.4.3.1
2.4.4.3.2
2.4.5
2.4.5.1
2.4.5.2
2.4.6

2.5

2.5.1
2.5.2
2.5.3
2.5.3.1
2.5.3.2
2.5.3.3

- L2 - » - . L] - - L]
[. . - - - - » .
B S N N S S N N N N N R R RN R IR
- - - . f]
. [» L] .
8

. 3
. e« o 8 & .

OO P PP WWOWLWNONNHFHF O UV > > W

. - .

.« .
s s+ e e
e s s e »
. e v .
[AS N o v N W N

. -

. . . L] . =
. . - -
. L] * » .
. L3
[\ I o

- -
. - »
- .
- * . L]
FTRENY™

. .
. . .

NNNPODNDRODNODNODNNDNDNDODNDNODNDNDNNDNDDNDNDNDNODNNDNDNDNDND
. .
gyt oToTgToToToTgtgraar ot

L] . -
3

.

N b

CONTENTS

Address Translation
Page Table Entry (PTE)

Protection Check Before Valli d Cnefk
Changes To Page Table Entries

(Cont)

3 * *

System Space Address Translation..

Process Space Address Translation
P0 Region Address Translation
Pl Region Address Translation

Translation Buffer
Translation Buffer Invalzdate Slngle Reglster
Translation Buffer Invalidate All Register

Memory Management Faults .

Processor Status . .

Interrupts

L3 - *

EXCEPTIONS AND INTERRUPTS .
Processor Interrupt Priority Levels (IPL}

. . = L]

.

-

.

*

.

°

-

-

*

.

L]

»

-

.

Urgent Inferrupts -— Levels 18- lr (Hex) .
Device Interrupts -- Levels 10-17 (Hex) .
Software Generated Interrupts -- Levels 01

(Hex)

Interrupt Ccntrol

Software Interrupt Summary Reglster
Software Interrupt Request Register
Interrupt Priority Level Register

Interrupt Example

Exceptions . .
Arithmetic Traps/?aults .

- L]

- . .

-

*

Integer QOverflow Trap .

Integer Divide By Zero Trap

Subscript Range Trap .
Floating Overflow Fault

Floating Divide By Zero @aul*

Floating Underflow Fault

Memory Management Exceptions
Access Control Violation Fault
Translation Not Valid Fault

Operand Reference Exceptions
Reserved Addressing Mode Fault

3

-

.

.

.

»

Reserved Operand Exception .

Instruction Execution Exceptions
Reserved/Privileged Instruction Fault

Emulated Instruction Fault

Extended Function Fault
Breakpoint Fault

Tracing

System Fazlure mxcep*lons
Kernel Stack Not Vvalid Abort .
Interrupt Stack Not Valid Halt

iv

- .

.

- e

*

.

.

.

.

. . . . *« = .

.

-

.

.

.

»

» - * L . L] - . - .

-

.

-

-

-

. - . . e .

~0F

2-28
2-29
2-30
2-30
2-30
2-33
2-33
2-34
2-36
2-37
2-38
2-38
2-39

"2-39

2-40
2-40
2-41
2-41

2-42
2-42
2-42
2-42
2-43
2-44
2-44
2-46
2-47
2-48
2-48
2-48
2-48
2-48
2-49
2-50
2-50
2-51
2-51
2-51
2-51
2-51
2-51
2-52
2-52
2-52
2-53
2-53
2-53

CHAPTER

CHAPTER

RN NNNRODNNORDNDNDNDNDNDNDNDNDND N

CONTENTS (Cont)

Machine Check And Memory Read/Write Error

.5.4.6.3
Abort e+ + o« o« « 2-53
.5.5 Contrast Between Exceptlcns And knterrupts . 2-56
.5.6 Serialization Of Exceptions And Interrupts . . 2-57
.5.7 Initiate Exception Or Interrupt e e e 2-57
.5.8 System Control Block (SCB) e e . 2-61
5.8.1 System Control Block Base (SCBB) e e .. 2-61
.5.8.2 Vectors .+ . + ¢ v v v 4 v i i s e s we e . 2-61
.6 PROCESS STRUCTURE . . . + &+ & ¢« v « & o« & &« « o« 2-63
6.1 Process Context . . . s e e e e . 4 . 2-63
.6.2 Asynchronous System ;raps {Asm) . e e e e . 2-67
.6.3 Process Structure Tnterrupts e e s e e o« &« o 2-68
o7 STACKS . . . o e e e e e e ¢+ e « + . . 2-68
7.1 Stack Re51dency e s eie e b s s s s e s . + 2-69
7.2 Stack Alignment 4 . 4 4 e 2-869
7.3 Stack Status Bits e+ e s o« 4 . 2-69
7.4 Accessing Stack Reglsters s e e s e s e e e . 2-70
.8 RESTART PROCESS . . . + + v ¢ 4 o o 4 o o &« o o« 2=-71
.8.1 Conscole Entry Protocol+« . « v «v v v o o 2-72
.8.2 Console Exit Protocol 2-73
3 INSTRUCTION FORMAT AND ADDRESSING MCDES
3.1 INSTRUCTION FORMAT ¢ v s+ e e e s e s « 3=1
3.1.1 Assembler Radix Notation . e v e e e e a e e . 32
3.1.2 Operating Code . . .« 4+ « &« « v o « o o o « o« « o+ 3-2
3.1.3 Operand Type " e e e s e e o« . 3-3
3.2 -ADDRESSING MODES A . 3-3
3.2.1 General Mode Addresszng i i e a RS . 3-6
3.2.1.1 General Register Address Modes 3-6
3.2.1.2 Program Counter Addressing 3-35
3.2.2 Branch Addressing e+ e e« + . 3-44
4 INSTRUCTION SET
4.1 INTRODUCTION ¢ & &« v v v o o o o o o o o o o . 4-
4.1.1 Instruction Descriptions « 4=
4.1.2 Operand Specifier Notation 4-
4.1.3 Operation Description Notation . . . e e .. -
4.2 INTEGER ARITHMETIC AND LOGICAL INSTRUCTEONS . i-
4.3 ADDRESS INSTRUCTIONS R -3
4.% VARIABLE LENGTH BIT FIELD INSTRUC“iONS . e $-3
4.5 CONTROL INSTRUCTIONS + v v v v v v v v o o o . 4-4
4.6 PROCEDURE CALL INSTRUCTIONS 4-6
4.7 . . -7

B L) U LD O 0 B BN

MISCELLANEQUS INSTRUCTIONS

CONTENTS (Cont)

4.8 QUEUE INSTRUCTIONS . . . + v v v v v v v« v o o « 4-83
4.8.1 Absolute Queues 4 4 . . 4 4 4w v . . 4-83
4.8.2 Self-relative Queues . . e e e e e . . 4-87
- 4.9 CHARACTER STRING TNSTRUCTIONS . e e . . 4-106
4.10 OCPERATING SYSTEM SUPPORT INSTRUC“IONS e s e o« o 4-111
4.11 FLOATING POINT INSTRUCTIONS 4-1214
4,11.1 Representation et W e e 4-124
4.11.1.1 Non-zero Floating Point Numbers e 4-124
4.11.1.2 Floating Point Zero e e v e . . 4-125
4,11.1.3 Reserved Operands « + & « « + o . . 4-125
4.11.2 ACCUracy . « « « v . . e e e e e e s . . 4=125
4.11.3 Instruction Descrlptzons < b e e e . . %=127
4,12 EMULATED INSTRUCTIONS WITH MICROCODE ASSIST . . 2-151
. CHAPTER 5 BUS TRANSACTIONS
5.1 INTRODUCTION v v o 4 o v e e s o. 5-1
5.2 BUS CYCLES . . + . v v v «v « & . . e« o + « 5-3
5.2.1 CPU Read Cycle o . . e e+ e« s+ . 5=3
5.2.2 CPU Write Cycle + « + . 5-5
5.2.3 Interrupt Acknowledge Cy cle57
5.2.4 DMA Cycle . . . e e . v« +« « . 5-8
5.3 EXTERNAL PROCESSGP CYCLES s .« 5-9
5.3.1 External Processor Read Cycle . e+ + 4+ « .+« . 5-8
5.3.2 External Processor Response Cycle . . e . 5-11
5.3.3 External Processor Write Cycle 5-11
5.4 MEMORY ACCESS PROTOCOL 4 &+ ¢ v & &« & ¢ « o o « . 5-13
5.5 EXTERNAL PROCESSOR PROTOCCLS + . + . 5-15
5.5;1 FPU Pl"GtOCO}. » 5‘15
5.5.2 Register Protocol . . . v v v v v v v o o . 5-16
5.5.2.1 Read From Processor Register . e .- . 5-16
5.5.2.2 Write To Processor Register 5-17
CHAPTER 6 PIN DESCRIPTION
6.1 INTRODUCTION « v v o o« . e 6-1
6.2 DATA/ADDRESS BUS . . « e s .l . . 6-3
6.3 BUS CONTROL . . el e . . . 6-3
6.3.1 Address Strobe (E8) 6-4
6.3.2 Data Strobe (D) : s .. 6-4
6.3.3 Byte Masks (BM<3:0>) 6-4
6.3.4 Write (WR) e . 6-5
6.3.5 Data Buffer Enable (ﬁﬁﬁ) o e . 6-5
6.3.6 Ready (RDY) B 6-5
6.3.7 Error (ERR) e el e e e e s . 6-5
6.3.8 External Processor Strobe. (EPS) 6-6

CONTENTS (Cont)

6.4 SYSTEM CONTROL v v v +« v + « & o O
6.4.1 Reset (RESET!) . + « .« . . e e e e 6-6
6.4.2 Halt (HACT) "v v v v « v o o 4 . o e wiwioa 6-6
6.4.3 Control Status {CS<2 02) v v v Ve e e e e 6-7
6.5 INTERRUPT CONTROL . , s s s+ v o+ s « & e« + + . . b-8
6.5.1 Interrupt Re ues* TRQ<3:0>) . . « « « « . . . 6-8
6.5.2 Power Fail () e el e et e e e e e e . 6-8
6.5.3 Interval Tlmer (Tﬁ M) . . e e e e e e 6-8
6.6 DMA CONTROL « e s e e e e e e 6-9
6.6.1 DMA Request (BMR) o v v v e e e L B9
6.6.2 DMA Grant (DMG) . Qe . e x e . 6-9
6.7 CSUPPLIES v v v o v 4 v v e e e e . 6-9
6.7.1 Power (vdd) « . . . e + s+ « « « . 6-9
6.7.2 Ground (Vss) . . o B 5 c e e + s e+ « .+ . 6-9
6.7.3 Back Bias Generator (Vbb) . . « « o+« o« . 6-10
6.8 CLOCKS e et e 4 e e e e e e e e . . 6-10
6.8.1 Clock In (CLKI) e v e e e e e e e e e e e e o B=10
6.8.2 Clock Qut (CLKO) e e . . 6-10
6.9 TEST (TEST) e e W e T e e e . 6-10
6.10 PIN DESCRIPTION SUMMA&Y e e 4 el s s e 4 e 6-11
CHAPTER 7 INTERFACING
7.1 INTRODUCTION . . v v v v « « & . e v e e e e . T-1
7.2 POWER . . « « « + . v e e s ela . Y
7.3 RESET/POWER-UP . . . v ¢ v ¢ & o 4 4 o o o o o o o 1=2
7.4 HALTING THE PROCESSOR . . .+ ¢ v v v o o s o o « . 7-3
7.5 MEMORY SUBSYSTEM . A s
7.6 BUS ERRORS . . i ¢ 4t ¢ v o o 4 o 4 v« o 2 o s s o« « 17-8
7.7 INTERRUPTS . . . B N O]
7.7.1 Powerfail (BWRFL) . . v v v v vow v i 098
7.7.2 - Interval Timer (T“TTTE) i e e e e e e e . .18
7.7.3 General Interrupts R <§*5) ST T e . . 7-6
APPENDIX A DC AND AC CHARACTERISTICS
A.l DC CHARACTERISTICS . & v v v o e i v u s . . A-1
A.2 AC CHARACTERISTICS . . . ¢ ¢ v v o « o « & . . A-3
A.2.1 CLKI Timing . .+ v v o v 4 ¢ 4« v v o v o . A-4
A.2.2 CPU Read Cycle, CPU write Cycle A-5
A.2.3 DMA Cycle e+ e e « .« . A-1l0
A.2.4 External Prouesscr Read!Respcnse Enable Cycle,
External Processor Write/Command Cycle . A-12
A.2.5 A-14

Reset Timing R TR E S P

vii

- CONTENTS (Cont)

APPENDIX B INSTRUCTION SET SUMMARY

B.1 CINTRODUCTION .+ + + v v o o o v .

B.2 INSTRUCTION SUMMARY ., . ..
B.3 FLOATING POINT INSTRUCTION SUMMARY . .
B.4

APPENDIX C

C
C
C

+ v e
G B

APPENDIX D

D.1

)
-
Yo}
[
"
®
Z
®)

L I R RO O DO B

[HE I T T TS R A

N R W D O

Y S SN N N N N N N N N S N N N S S e e
i
O N R Ve X IS T WS I IR SW I S

'~ EMULATED INSTRUCTION WITH MICROCODE ASSIST

SUM}'!ARY » . . 07 L a : » . - L] LR ° .

'CONSOLE ENTRY AND EXIT ROUTINES
INTRODUCTION . . . e
CONSOLE ENTRY AND EXIT ROUTINE . . .
MEMORY MANAGEMENT SIMULATION . . .
MECHANICAL SPECIFICATIONS

PACKAGING . + + « v v v o ' u v v

FIGURES

CTitle

Address SPACe . v+ « « « « s 4 e s e 4 e e

Bus Connections e e
MicroVAX 78032 CPU Block Dlagram. NS AN
Byte Data Type.

Word Data Type. . +« . .« .
Longword Data Type. . .
Quadword Data Type.
Variable Length Bit Fleld e s .
Variable Length Bit Field Speczflar
Variable Length Bit Field Across Reglsters.
Character String Data Type.+ . . .
F_floating Data Type. . . « « « « « &« « &
D floating Data Type. . . « + « « « .+ .

G_ floatxng Data Type. .

MicroVAX 78032 CPU ?roc*ammlng Mcdel

.
. . * * .

. - -

Processor Status Word
Processor Status Longwora o7 el wli et e
Interval Clock and Control Status Regxster
Console Saved Registers
Virtual Address Space+ + « .+ . .

viii

. * LI 3 . . L]

. (3 . .

O - * . . . »

oo B DO RO MR N BN NN - e
i

l'DC'DUJ.

U
m
GO
®

[I [T T R A A |
OOV UIE = WNNJOTWN

i

i i
o

{

[N \O IS\ O I \V]
i 1

N RO

8O W

Figure No.

2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
2~-31
2-32
2-33
2-34
2-35
2-36
2-37
2-38

[SR SN SR S
G
D

i

L

i

W W WWWWWWWWWwN
|
b A0 QO 8 OV O s G B

FIGURES (Cont)

Title

Virtual Address
Map Enable Register
Page Table Entry. . ¢« « o o o000 0.

System Mappzng Registers. . . .

-

.

System Virtual to Physical Adéress Translatzcn.

PO Region Mapping: Registers
PO Virtual to Physical Address Translatzon
Pl Region Mapping Registers
Pl Virtual to Physical Address Translation.
Translation Buffer Invalzdate Single Registe:
Translation Buffer Invalidate All Qeg ster.
Software Interrupt Summary Regxster .
Software Interrupt Request Register PR
Interrupt Priority Level Register S PR
Stack After Arithmetic Exception.
Fault Parameter Block
Machine Check Stack Parameters.
System Control Block Base Register.
Process Control Block Base (PQBB} Register.
Process Control Block (PCB) I R
AST Level Register.
Stack Selection
MicroVAX Instruction Format . .
Opcode Formats. : .
Register Mode Operand Specxfzer Fcrmat .
MOVW R1,R2 Move Word’ .
Regzster Deferred %@de Operand $§€lel&” For
t

[

* »

LI

. @ - *
- » L] L] i
.
L]

CLRQ (R4) Clear Quadword
Autoincrement Mode Operand Spec;fzer Forma
MOVL(R1)+,R2 Move Longword.
Autoincrement Deferred Gperand Spec1f1er For
MOVW 2{(R1)+,R2 Move Word. R T R AR
Autodecrement Mode Gperand Speﬂzf er ?crmat
MOVL ~-(R3),R4 Move Longword . O S A
Literal Mcde Cperand Specxflér Fsrﬁat
Short Literal Format.
Examples of Short Literals. . . .
Floating Literal. . P . .
F_floating and D_ fleatlng Operand
G~ _floating Operand.
MOVL S~#9,R4 Move Longword. . . P
Dlsplacemenr Mode Operand Specxfz&* Format.
MOVB B~5(R4),B~3(R3) Move Byte. . . .

. s * .

.
. . * .
.

*

-

*

K

r
-
-

-sn‘oonadttgitio-

-

.

« 8+ s & ¥ e & & + % & &

-

. -

. . . . * . L] . . .

L] L3

- Y » 3 -

Displacement Deferred Mode Operand Soec fLer Format

INCW @B"5(R4) Increment Word. . . . e
Index Mode Operand Specifier Format
INCW (R2)[(R5] Increment Word.
CLRL (R4)+[R5] Clear Longword

ix

3-25
3-26

3-29

Figure No.

3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35

i1

|

i
i = AD 00 ~d O U L)

i
b bt et
VN W L0 O

Pt

|

| BEE BN BN S |

!

Pt

[Y T S T SR NN B NN NEE SN N RS B |
U1 s L DN 00 b b bt WD Q0 3 OV U b Lo DD
; o :

D)~ G U U1 U UT U O UT U UL U H b e d e i e s e e e e o e e e
i

FIGURES (Cont)

Title

CLRW 3(R4)+[RS] Clear Word.
CLRW#-(R2)[R4] Clear wWord .

CLRL ##~X1012[R2] Clear uongwora.
CLRQ 2(R1)[R3] Clear Quadword e .
MOVL @~X14(R1)[R3],R5 Move Lohgword

Immediate Mode Ope*and Specxfler Format .

MOVL I“#6,R4 Move Longword.

Absolute Mode Operand Specifier Format.
"CLRL 3#7°674533 Clear Longword . . .
Relative Mode Operand Specifier Format.

MOVL ~X2016,R4 Move Longword. . .

®

- L3 - °

.

« o s 8 s » -

R
*

. LI . - »
* * s
L4

. *

Relative Deferred Mode Operand Saecxfler Format

MOVL &~X2050,R2 Move Longword . . .
Branch Addressxng Operand Specifier
Entry Mask., . . . ¢« + « ¢ ¢ v « o« o
Stack Frame

CALLG Stack Frame . . .

CALLS Stack Frame . . .
Empty Queue Header. .
Queue With Address B Inserted
Queue With Address Inserted at Head
Queue With Address Inserted at Tail
Queue With Address B Removed. .- . .
Empty Queue . . . R
Queue With Address B Inserted AP

.
. L
3

L - * *

- -
- -

o“c .
- -
.

-

Queue With Address A Inserted at Head ;
QueueVWLth Address C Inserted at Tail . .

Character String Control Block. . e
Stack After Change Mode Instruction
Emulated Instruction Argument List.
MicroVAX 78032 Bus Connections. .
MicroVaX 78032 Microcycle
CPU Read Bus Cycle.
CPU Write Bus Cycle
DMA Cycle 6w

.
»
R
.

External Processor Read/Response Cycle

External Processor Write Cycle. . .
MicroVAX 78032 Memory Organization.
Read From Processor Register. . . .
Write To Processor Register . .
MicroVAX 78032 Pin A351gnments.~.
Power Supply Debouuéxng .

CLKI Timing . « « +v v o 4 s o + &
CPU Read Timing . « + « s o o + &
CPU Write Timing. .+ . .+ « +« « + =«
DMA Timing. . . v .

Memory Subsystem with 32KB ?ROM and

« & o e s

Formati

*
.
3

» * - - -

»
. i . e« & e

. Y Y § ~ » . [- - & e

L] . * L] - L3 « @

. .

- L] .

. - . . ° . . . L]
*
L . » . - .

e W e

o e = .

.
.

-

b » L
l . .
. w »

. . . e

* L] . » - L] . . &
. - . . . »

External P*ocessor Read;?esnonse Ti mlng e

X

- . . . e . - . * . . .

- . . «]

- Page

3-30
3-31
3-32
3-33
3-34
3-36
3-37
3-38
3-39
3-40
3-41
3-42
3-43
3‘44

i

1

oy onin
§

i

i

RO EE TN
[
o b s e e}
G = 0 00 4 i RO F4 00 <3 W) B O O O > RO

i

i

BT i e - R LR ¢ N |
[

Zl;’:l'
bt et

Figure No.

A-6
A-7

c-1
c-2

'”Table No.

| IR U N I S YRR N IR S A B
O W D O

i

| T TN T ST T IR I T R T R R |

PR REPOOE WKWWWWRR NN RN RN NN NN N
i
UL G DD b s b bed (1 S L3 DD Bt et ot bt b = b D 0D 0 ON Y G B

‘Map Enable Register Bit Description .

Page Table Entry Bit Gescrlpt;an.

~Arithmetic Exception Type Codes . -

CPU Read Cycle, CPU Wrzte Cycle'

FIGURES (Cont)

Title

External Processor Write/Command Timing . .

) Res&t Tlmlnga . « = - . - . . . s e .

68 Pin CERQUAD, Surface Mount o e e e
68 Pin CERQUAD SOCket Mﬁunt- . . - - » . .

TABLES

Title

Processor Status Werd Blt Descrlptzmns. .
Processor Status Longword Bit QQSC'lptEOnS
Internal Processor Registers.
Virtual Address Bit Description . . .

Protection Codes.

Interrupt Priority Levels
Summary of Exceptions

. ® LI L -

Fault Parameter Word Bit Description
System Control Block Vectors.
Description of Process Control Block
Stack Pointer Selection

Stack Pointer Registers

s e 4 & & %
L]« e . s e . LT) . & -

e e & e N e e e e e

» LI . .

-

‘Restart Codes P

Summary of General Reglster Address1ng Modes
Summary of Program Counter Addressing Modes
Floating Literals . . « .« . & ¢ v o « 4 W .
Index Mode Aédresszng e e h e e e e e e
Program Counter Addressing Modes.
Instruction Operation Symbols .
Memory Access Control
MicroVAX 78032 Pln Summary. . .
CLKI Timing .

DMA CYC}.E Tlmlng L -
External Processor Cycle Timing
Reset Timing. . .«« « .

P w-} . e w
. foe
E L
N
hoe |
Yo

w . . . e @

.

« & = &

* €. 0» . O 3 - 3 « .

* - * L3 *

* & w .

. . LR . .

LI SRR TR T T S D L S S SHE S TR S S

LI S . T

Page

’3513

A-15
D-2

Page

2-13
2-15
2-17
2-24
2-25
2-27

- 2-29

2-40
2-46
2-47
2-50
2-62
2-65
2-69
2-70
2-72

3-4

3~5
3-20
3-27

3-35

4-4
5-14

6-11

A-4
A-5

A-10

A-12
A-14

PREFACE

This user’'s guide is intended to familiarize the reader with the
hardware and software <characteristics of the MicroVAX 78032 32-bit
Central Processing Unit chip. It is assumed that the reader has had
experience with microprocessor design. Familiarity with the VAX
architecture will also be helpful. R
Chapter 1, Introduction - Provides the reader with an overview and
brief functional description of the MicroVAX 78032 CPU single chip
microproceesor,

Chapter 2, Architecture - Describes the implementation of the VAX
architecture by the MicroVAX 78032 CPU. It covers such areas as:
data types, registers, memory management, stacks, interrupts, faults
and exceptlons, and the restart process. ' ‘

Chapter 3, ;nstructzon Farmats and Addresszng Modes - Provides a
detailed description of the 1nstructlon formats and addressing modes
used by the MicroVAX 78032 CPU,

Chagter 4, Instruction Set - Describes the instruction set for the
MicroVAX 78032 CPU and its companion floating point unit (FPU). This
chapter also describes the emulation process for the VAX instructions
that are not dxrectly xmplemenred in the CPU or its companion FPU,

Chapter 5, Bus Transactlons - Describes the ‘various bus cycles ahd
external processor/reglster protocols used by thg'MiCroVAX 78032 CPU.

Chapter 6, Pin Descrlptlon - Describes the function of each MicroVAx
78032 CPU pln. :

Chapter 7, xnterfaﬁing»« Provides some introductory information on
interfacing external logic to the MicroVaAxX ?8832 CPU '

Appendix A, DC and AC Characteristics - Pr0v1des power, env*ronmental
and detalxed timing information.

Appendix B, Instruction Set Summary - Provides a summary of the VAX
instructions implemented by the MicroVAX 78032 CPU and 78132 FPU.
This appendix also summarizes the 1nstructlcns that receive emulation
assistance from the CPU. o

Appendix C, Console Entry and Exit Routines - Sample consocle entry,
exit and memory management emulation routines.

Appendix D, Mechanical Specifications - Provides package dimensions
for the two different packages that the MicroVAX 78032 CPU comes in,

xii

, CﬁAP”ER l'

NTRGBUCTIQ&

1.1 GENERAL DESCRIPTION

The MicroVAX 78032 Centval‘Pracessing Unit (CPU) 1is a single chip
32-bit micrapracessor.,uitswprincipal design features,are:

e Instruction set, data tyye, and memory management compatibility
with the VAX-1l superminicomputer.

o« 1 Gbyte virtual address space, 1 Gbyte,phySigag,address space.
@ 32-bit internal and external data paths.
e High performance | |

¢ On chip, tightly integrated, demand paged virtual memory
management.,

¢ On chip clock generator and interrupt controller.
¢ Simple external interface.

The MicroVAX 78032 CPU implements a compatible subset of the VAX-11l

architecture. Visible machine state consists of sixteen general
purpose registers, a processor status word, and eighteen privileged
registers. The instruction set architecture supports all 304

native-mode VAX instructions. O©Of these, 175 are implemented in the
MicroVAX 78032 CPU, and 70 in the MicroVAX 78132 Floating Point Unit
~ (FPU). The remaining 59 instructions may be implemented via software
emulation, of which 27 are assisted by microcode. All VAX data types
- are supported. Of these, six are zmplemented in the MicroVAXx 78032
CPU: Dbyte, word, longword, and quadword integers; variable leagth bit
fields; and varzanle length character strlngs. Three are implemented
in the MicroVAX 78132 FPU: single precision, double precision, and
extended double precxslan fleoating point numbers. The remaining data
types are supported via software emulation. : o

INTRODUCTION

The memory management architecture provides demand paged virtual
memory management. Virtual memory 1is ¢ Gbyte, divided into four 1
Gbyte regions of 2**21 512 byte pages each: PO, Pl, system, and
reserved (Figure 1-1). The P0 and Pl regions are intended for user
programs and are mapped through double level page tables, that is, the
page tables reside in system virtual address space and can be paged.
The system region is used for the operating system and 1is mapped
through a single level page table. Four hierarchical access modes
(kernel, executive, supervisor, user) are provided, with kernel the
most privileged. Each 512 byte page can be set for read/write, read
only, or no access from each of the four modes. Physical address
space is 1 Gbyte, divided into 512 Mbyte for memory, and 512 Mbyte for
Input/Output (1/Q) devices or other special uses (Figure 1-1).

VIATUAL ADDRESS SPACE PHYSICAL ADDRESS SPACE
00000000 ~ - ———00000000
PO MEMORY
REGION , SPACE : ;
e G it s it e e wned i | Sl IFFFFRFF
‘ 20000000
170
: : SPACE ; :
IFFEFFFE 3FFFFFFF
I 40008000 ' : -
RS FRSA USRS ——
P1
REGION
TFFEFFEF
80000000
SYSTEM
REGION
1 BEEFFFFF
‘ c0000000
RESERVED
REGION
FEFFEFEF

VIR 10415

Figure 1-1 Address Space

The MicroVAX 78032 CPU provides a -simple and efficient external
‘interface which minimizes support devices without impacting
performance (Figure 1-2). The primary communications path is ‘the
multiplexed Data and Address Bus (DAL<31:00>). This bus is used =o
transmit address from and data to and from the MicroVAX 78032 CpPU.
The Address Strobe (AS) and Data Strobe (DS) signals provide timing
information for addresses and data, respectively. The Byte Masks
(BM<3:0>) control byte selection within the 32-bit DAL bus. The
Control Status (CS<2:0>) lines and Write (WR) signal provide status
information and data direction. Bus cycles are terminated

1-2

INTRODUCT IO

asynchronously when external logic asserts either Ready (RDY) or Error
(ERR). The timing of read and write bus cycles permit standard
dynamic RAMs to be interfaced "without cycle slips. An eight-byte
prefezch buffer, <together with a four-byte write buffer, permit
instruction fetches and data writes to be overlapped with other
operations. : : :

INTERRUPT | ——— PWAFL AGY je : i) AR
CONT)?DL - —— NIV . BMETS . TR i . ?;:C_‘___%’_ﬁ_b
——» [RQ<3.0> 0% = >
-A-g . . - AS -
DMA { ———»! MR . ' S arat - l o ,
CONTROL || e—oo ARG

DAL<31:00> K B, g?gg:ss ' _ BA<31.00> >

MicroVAX 78032

CENTRAL PROCESSING :
UNIT) N pata . T e
, 4 iz ”’::i:>,“fﬁhwsgav588’ (BB<3T00>
F W Y
i a0 BBE
T | KEE] OB .
sl TP & B e WA
WR : _l .
© MicrovAX 78132
FLOATING
e ; POINT
:) EPS ‘ . f’“"" UNIT
o RESET CS<2:0> e s =
CLKI CLKO
[,
o | 7%
: >
£8<2:0>
CLKO
MRT2668

Figure 1-2 Bus Connections

1-3

INTRODUCTION

1.2 FUNCTIONAL OVERVIEW

The MicroVAX 78032 CPU utilizes a pipelined, mi crobrog*amned 32-bit
implementation. The principal sections are shown in Figure 1-3.

e The data path (E Box) contains the 16 architecturally-specified
general registers, 20 scratch registers used by microcode, a
32-bit ALU for arithmetic and logical operations, and a 232-bit
barrel shifter for shifts and bit field operations.

e The memory management unit (M Box) contains three address
registers {two for data, one for instructions), a fully
assoc'ative, eight entry, ctranslation buffer utilxzzng least
recentl y used {uRU) replacement, and access checklng loglc.

. uhe*nstmc*mn decode logic (I Box) consists of an ei ight-byte
~prefetch buffer and three znstructlon and specifﬂer decode PLAs.

e The DAL lnterface cons;sts of memory data. read and write
rotators, the external operations sequencer, pin control legic,
and. xhe wrlte buffer.

e The Contral Store contains the «control microprogram, which
consists of 1600 39- blt mlcrowords.

e The Mlcrosequencer;;ontalns the microprogram PC, microprogram
subroutine return stack and the conditional microbrancn logic.

e The IPLA aux111ary ROM is an instruction lookup table containing
19 bxt: of information for each implemented instruction.

e The Interrupt logic synchronizes and prioritizes the seven
external interrupt inputs (halt, power fail, clock tick, and
inputs for four levels of vectored lnterrupts)

e The Clock logzc generates the internal phase clocks from an
external double fregquency source. R A

Essentially all se:tlons of the - MicroVax 78032 CPU operate
independently and concurrently. While the E Box is executing a data
path ~operation, the Control Store is accessing the next
microinstruction; the Microsequencer is calculating the address of the
following microinstruction; the M Box can be translating an address;
the I Box can be decoding an instruction or operand SDE”lfler and
prefetching further instruction data; the DAL Interfac can be
initiating or completing an external access.

WRITE
ROTATOR
AND
QUTPUT

DRIVERS

EXTERNAL

DATA AND

ADDRESS BUS
lpinimsinimoasinsmrins e A

INPUT
DRIVERS . |

PRIORITY
LEVEL

INTERSUPT

%
.-—-{* aEAD ACTATOR |

DATAPATH
TOP BUS

o] REaD DATA LATCH]

L——-? SYNCHRONIZER

INTERRUPFT
e REQUES TS

INTERRUPT
CONTROL

ALIGRMENT MUX

INSTRUCTIGN |

AN

o Lo HALT
| PrIORITIZER

POWEREAIL

ENTRY.POINT (ADCRESSES:

VAGDRESS

INTRODUCTICN

TEST
#ADDRESS

STACK

))
PHEFETCH STACK
e T R TION
TREAN ROTATOR
NIYRLCTION.
_DATA REGISTER
£BOX HPUT MUX

ABUS.

GPAS AND
SCRATCH PADS

8 8US

ALL WITH
LATCH AND
1 BT SHIFT

* -
BARREL SHIFTER -
WITH INPUT LATCHES

INTERNAL
DATA AND
ADDRESS

f“‘ DECODE LOGIL
]

INBTRUCTION

1BOX :
CONTROL
R

EBOX
CONTROL
il

AW
‘8US

BUS

te—ef LengTu AEGISTERS |
, 3

[renar ,cw;ﬁamﬂ

T VIRTUAL
¢ ADDRESS BUS
TRANSLATION
BUFFER: TAGS
PAGE TABLE

TB/AW BLUS

ENTRIES
PHYSICAL

1 ADDRESS BUS

S MuxORWVER -/

Figure 1-3

CONTROL
ionimsen it

MBOX

CONTAROL

DECODE !
Fa :

oy

. #BRAMCH OFFSET:

F e

MUX

ADDER

(JUMP HADDRESS!

MICROSEQUENCER
CONTROL

WADDRESS
LATCH

| (ADDRESS BUS

SEOQUENCER BUS.

RESEE

MICRONISTRUCTION
BUS

CONTROL STORE

ot
|

EXTERNAL CONTROLS
AND STROSES

CLOCK GENERATCR

(¢1}

MicroVax 78032 CPU Block Diagram

CHAPTER 2
ARCHITECTURE

2.1 INTRCDUCTION ’
This chapter describesrthe MicroVAX 78332 Central Processing Unit's
,implementaticn of the VAX archztecture. This chapter is divided into
the fOilQWlnq major sections~ ‘ ' ; ‘
- ® Data ;ypes

’c\'RegiSters

‘;'Memnrnyanagemént

e Exceptions and Interrupts

® Process Structure |

® Stacks

. Restart Proceés

The MicroVAX 78032 CPU instruction formats and instruction set are
discussed in Chapter 3 and Chapter 4. '

2.2 DATA TYPES

The MicroVAX 78032 CP“ supports nine data types: byte, word,
longword, quadword, haracter string, variable length bit field, and
through the companion MLCYQVAX 8132 FPU, F_floating, D _floating, and
G :ioatzng

ARCHITECTURE

2.2.1 Byte

A byte is 8 contiguous bits starting on an addressable byte boundary.
The bits are numbered from the right 0 through 7, Figure 2-1

Q7 -
L O L !
BYTE A
[I I O I N O &

MRA-11634

00

Figure 2-1 Byte Data Type

A byte 1is specified by its address A, - When interpreted
arithmetically, a byte 1is a twos complement integer with bits of
increasing significance going 0 through 6 and bit 7 the sign bit. The
value of the integer 1is 1in the range -128 through 127. For the
purposes of addition, subtracticn, and comparison, VAX-11 instructions
also provide direct support for the interpretation of a byte as an
unsigned integer with bits of increasing significance going 0 through
7. The value of the unsigned integer is in the range 0 through 255.

2.2.2 Word

A word is 2 contiguous bytes starting on an arbitrary byte boundary.
The bits are numbered from the right 0 through 15, Figure 2-2.

WORD

15 00
T T rrrrrroT

A

B NS NN TS N N TN TN N N A

MR-11835

Figure 2-2 Word Data Type

. ‘ ARCHITECTUR!

A word is specified by 1its address A, the address of the byte
containing bit 0. When interpreted arxthmetzcally, a word is a twos
complement integer with bits of increasing significance going 0
through 14 and _bit 15 the sign bit.~ The value of the integer is in
the range -32,768 througn 32,767. For the purposes of addition,
subtraction and comparison, VAX-1ll instructions also provide direct
support for the interpretation of a word as an unsigned 1integer with
bits of increasing significance going 0 through 15, The value of the
unsigned integer is in the range 0 through 65,535.

2.2.3 Longword

A longword is 4 contiguous bytes starting on an arbitrary byte

boundary. The bxts are numbered from the ragh* o through 31, Figure
2“36 k
LONGWORD e i
P L v Sy : 00
I!if}'ll[{!lf!!ilil’f!!fi!!l!!lif
A
}lllijriifll},iil&lli!kiiii!ii!ii
. L < w MR-11838

Figure 2-3 Longword Data Type

A longword is specified by its address A, the address of the byte
containing bit 0. When xnterpreted arxthmetxcaziy, a lengwcrd is a
twos complement irteger with bits of increasing sxgﬂlfxcaﬁce going O
~through 30 and bit 31 the sign bit. The value of the integer is in
the range -2,147,483,648 through 2,147, 483,647. For the purposes of
addition, subtractzan, and comparzSQn, ”Vax 11 instructions also
provide direct support. for. the interpretation of a longword as an
~unsigned integer with bits of increasing szgnlflcance going 0 through
31. The value of the unsigned integer is in the range 0 through
4,294,967,295.

2-3

ARCHITECTURE

2.2.% Quadword

A quadword is 8 contiguous Dbytes starting on an- arbitrary byte
boundary. The bits are numbered from the right 0 through 63, Figure
2-4, e e o A A

QUADWORD
31 00
LI O A O G I N A N N A A R A B N O SO Y A S S e
NS R U OO SR JUUNE SO SN SN UNUY U U NN B AN U O N OO VN Y I O O N A AN R A
AN N A I A SO A A O B A B O I S R A S B I P A+
(IR TR DN S N 0 S NS N T WO TN TR WY U A G D 0 e S T SN WA AR 0 WA O G O
63 32

MR.11637

Flgure 2- 4 Quadword Data Type o

A quadword is spec1f1ed by its address A the address of the Dbyte
containing bit 0. . When interpreted arxthmetlcally;,a'quadword is a
twos complement integer with bits of increasing significance going 0
through 62 and bit 63 the sign bit. The value of the integer is in
the range -2**63 to 2**g3-1. ’

2.2.5 ‘Variabla"Length Bit Field

A variable bit field is 0 to 32 contiquous bits located ‘arbltrarlly
~with respect to byte boundaries. A varlable bit field is specxfled by
3 attributes: the address A of a byte, a bit p051t10n P which is the
starting location of the field with respect to bit 0 of the byte at A,

‘and a size S of the field. The speﬂxfzcatzcn of bit field 1s'
indicated by the followxng where the fleld is the shadeé area, Figure
2-5.

VARIABLE LENGTH BIT FIELD

P+S P+S-1 , P P-1 00
FFFFFFFFFFFFFFFFFFFFFFFFFFFFF| A
1 00

AR 11539

Figure 2-5 Variable Length Bit Field

2-4

. ARCHITECTUR?

For bit strlngs in memory, the position is in the range -2**31 through
2**31-1 and is conveniently viewed as a signed 29- b ¢t byte offset and
a 3 -bit b1t~w1thxn-byte fl&ld ?zqura 2-6. o

3 ' 0302 QO
l??(flfiitliiiiiliiiiiiiliif T 1

BYTE OFFSET BWE |
!!111!?11!3111!1Iii!lji}i!i!li

MP-13398

Figure 2-6 Variable Length Bit Field Specifier

The sign extended 29-bit byte offset is added to the address A and the
resulting address specifies the byte in which the field begins. The
3-bit bit-within-byte field encodes the starting p@sztlon (0 through
7) of the field within that byte. The VAX-1l1 field instructions
provide direct support for the interpretation of a fzeld as a signed
or unsigned integer. When xnterpreted as a signed integer, it is twos
complement with bits of increasing significance going 0 through §-2;
bit S-1 1is the sign bit. When interpreted as an unsigned 1nteger
bits of 1ncreas*ng significance go from 0 to S-1. A field of size 0
has a value identi cal‘v equal to 0. ;

A variable bit field may be uantazned in 1 to 5 bytes. From a memory
management point of view only the minimum number of aligned longwords
necessary to contain the field are actually referenced.

For bit fields in registers, the position is in the ~range 0 through
31. The position operand specifies the starting posztlon (0 through
31) of the field in the register. A variable bit field may be
contained in 2 registers if the sum of position and size exceeds 32,
Figure 2-7. '

P P=1 00

Rn

EEZ éazza R [n+1)

P45 = P+S—1

MR-13387

Figure 2-7 Variable Length Bit Field Across Registers

2~5

~ ARCHITECTURE

2.2.6 Character String

A character string is a contiguous sequence of bytes in memory. = A
character string is specified by two attributes: the address A of the
first byte of the string, and the length L of the string in bytes.
The format of a character string is shown in Figure 2-8. The length L

of a string is'in the range 0 through 65,535,

CHARACTER STRING

Q7 00
L IR A
A
- o AFY
SN U
i
] : S
07 i 00
L N A S | o
: A+lg
(R O I O I | S
MA-TT638

Figure 2-8 Character String Data Type

ARCHITECTURE

2.2.7 Flca;ing Point

}The MicroVaxXx 78032 CPU supports the ‘cliowxng floating goxnt data
~ types through the xzcravéx 78132 Flaatxng Point Unl? :

2.2.7.1 F_floating -
An F_floating datum is 4 contiguous bytes starting on an arbitrary

byte boundary. The bits are labeled from the right 0 through 31,
Figure 2-9,

F_FLOATING

T T T SRR I (R s g T T T L m—
g it 1A+2
L. i 4 L) 1 o8 R0, e] i i g i [
it 3 SO TR SN ST EIE NI B ..
S R T arseas

Figure 2-9 F_flcating Data Type

An F_floating datum is specified by its address A the address of the
byte containing bit 0. The form of an F fleatzng datum is sign
magnitude with bit 15 the sign bit, bits 14:7 an excess 128 binary
exponent, and bits 6:0 and 31:16 a normalized 24-bit fraction with the
radun&ant most szgnif;cant fraction bit not represented. Within the
_fraction, bits of increasing szgnlfxcance go from 16 through 31 and 0
~ through 6. The 8-bit exponent field encodes the values 0 through 255.
~An exponent value of 0 together with a sign bit of 0, is taken to
~indicate that the F fleatxng datum has a value of 0. Exponent values
of 1 through 255 indicate true bzﬁary expaﬁents of ~12? thrcugh +127.
_An exponent value of 0 ftmgethér with a sign bit of 1, 1is taken as
_ reserved. Floating point instructio rocessing a reserved aperand
take a reserved operand fault. The value of an F_ fleatzng datum is in
the approximate range .29*10%**-38 through 1.7*10**38. The precision
of an F_floating datum is approximately one part in 2**23, 1i.e.,
typically 7 decimal digits. ‘

ARCHITECTURE

2.2.7.2 D_floating -

A D f;oatlng datum is 8 contiguous bytes startzng on an arbzt"arv byte
boundary. The bits are labeled from the right 0 through 63, gu"e
2-10. .

D_FLOATING
15 14 07 06 00
1 H 1] 1 1 i i 1 1 1 H i
S EXPONENT FRACTION o A
FRACTION S— R — o s e . ‘A+4
: FRACTION . R N P
: 1 L i 1 ol 1 i] | ;l . i 1 | 1 1
63) 28
MA-11641

?1gure 2-100 D float1ng Data Type :

AD floatlng datum is spec1f1ed by its address A, the adar655' of " the
abyte containing bit 0. The form of a D _floating datum is identical to
an F_ floatlng datum except for an additional 32 low 'significance
“fraction bits. within the fraction, bits of increasing significance
'go 48 through 63, 32 through 47, 16 through 31, and 0 through 6. The
- exponent conventzons, and approxzmate range. of valbes is the same for
D floating as F flsatzng The precision of a D _floating datum
approxxmately one ‘part in 2**55, i.e., typlcally 16 deczmal dlgzts.‘

2-8

ARCHITECTUR!

2.2.7.3 G_floating -

A G_floating datum is 8 contiguous bytes starting on an arbitraryv byte
boundary. The bits are labeled from the right 0 through 63, Figure
2-11, .

G_FLOATING
15 14 04 03 - " 00
1§ k) i i i i 1] 1 i 1 i 1
s EXPONENT FRACTION 1A
FRACTION A+2
FRACTION A+
FRACTION . A+B
1 | i | 1 1 i 1 } i § { 1 i 1
83 48

MR-11642

Figure 2-11 G_floating Data Type

A G_floating datum is specified by its address A, the address of the
byte containing bit 0. The form of a G_floating datum is sign
magnitude with bit 15 the sign bit, bits 14:4 an excess 1024 binary
exponent, and bits 3:0 and 63:16 a normalized 53-bit fraction with the
redundant most significant fraction bit not represented. Within the
fraction, bits of increasing significance go 48 through 63, 32 through
47, 16 through 31, and 0 through 3. The ll-bit exponent field encodes
the wvalues 0 through 2047. An exponent value of 0 together with a
sign bit of 0, is taken to indicate that the G_floating datum has a
value of 0. Exponent values of 1 through 2047 indicate true binary
exponents of -1023 through +1023. An exponent value of 0, together
with a sign bit of 1, 1is taken as reserved. Floating point
instructions processing a reserved operand take a reserved operand
fault. The value of a G_floating datum is in the approximate range
.56*10**-308 through .9*10**308. The precision of a G_floating datum
is approximately one part in 2**52, i.,e., typically 15 decimal digits.

ARCHITECTURE

2.3 REGISTERS

The MicroVAX 78032 CPU's register set is divided into two sections, as
seen 1in Figure 2-12. The.general registers and Processor Status Word
(PSW) are accessible to non-privileged software; the remaining
registers are reserved for system software. .

2.3.1 Non-Priviledged Registers

The non-privileged registers consist of sixteen 32-bit general purpose
registers and the processor status word (PSW).

2.3.1.1 General Registérs -

The sixteen 32-bit general registers, RO through R15, can be used for
temporary storage, as accumulators, as base registers, and as index
registers. Four of these registers have specific uses: the argument
pointer, the frame pointer, the stack pointer, and the program
counter.

l. Argument Pointer - R12 is the argument pointer (AP). The AP
contains the base address of a software data structure called the
argument list, which is maintained for procedure calls.

2. Frame Pointer - R13 is the frame pointer {(FP). The FP contains
~ the base address of a software data structure called the stack
frame, which is maintained for procedure calls.

3. Stack Pointer - Rl14 is the stack pointer (SP). The SP contains
the address of the top of the processor defined stack. There are
five stack pointers, one for each operating mode (kernel,
executive, supervisor, and user) of the processor and one for use
by the system when handling interrupts. The stack pointer
currently in wuse is determined by the operating mode of the
processor. The operating mode is selected by the current mode
bits and the IS bit of the Processor Status Longword {PSL).

4. Program Counter - R15 1is the program counter (PC), The PC
contains the address of the next instruction byte of the program.

A registers special function does not limit its use to that function,
with the exception of the PC. The PC cannot be wused as an
accumulator, as a temporary register, or as an index register. In

general, however, most software does not use the stack pointer,
argument pointer, or frame pointer for purposes other than those
designated.

ARCHITECTURE

When a register is used to contain data, the data 1is stored in the
same format that it would be stored in memory. If a guadword or
double floating datum is stored in a register, it is actually stored
in two adjacent registers, Rn and R[n+l1]. Writing a byte or a word to
a register writes only bits <7:0> or Dbits <15:0> respectively, the
remaining bits of the register are unaffected.

APPLICATIONS PROGRAMMING
GENERAL REGISTERS

RO AP

R1 . FP

RZ , i

R3 KSP

‘R4 ' ESP

RS SSP

R6 uSP

R7 : ‘

RS | __PC_ |
R9

R10 PROCESSOR STATUS WORD
R11 | PEW |

SYSTEM . PROGRAMMING

PROCESS CONTROL REGISTERS INTERRUPT REGISTERS
l scaB] I SIRA |
| PCBB Ji L SISR]

MEMORY MANAGEMENT REGISTERS L ISP]
POBR | T ASTLVL |
POLR ' ' '
P1BR PROCESSOR STATUS LONGWORD
PILR { fiec] psw |
SBR
SLR
I MAPEN 1
MR-10414

Figure 2-12 MicroVax 78032 CPU Prcgramming\Model

2-11

ARCHITECTURE

2.3.1.2 Processor Status Word -

The Processor Status Word (PSwW! contains the condition codes and trap
enable flags for the MicroVAX 78032 CPU, The PSW 1is the
non-privileged portion of the Processor Status Longword (PSL). The
lower 16 bits of the PSL contain the PSW. The format of the PSW is
"shown in Figure 2-13 and the function of each bit 1is described in
Table 2-1,

15 14 13 12 11 10 09 08 07 06 05 04 2 02 01 a0

MB2Z ovi{frU| w| T] N z v | c | .psw

Figure 2-13 Processor Status Word

2.3.2 System Registers

The system registers are processor (privileged) registers for use by
system software for process control, interrupt cantrol, memory
management mapping and control, and processor status.

2.3.2.1 System Control Block Base Register -

The System Control Block Base register (SCBB) contains the physical
address of the system control block (SCB). The SCB contains the
vectors for servicing interrupts and exceptions. For a description of
the SCB refer to Section 2.5.8.

2.3.2.2 Process Control Block Base Register -

The Process Control Block Base register (PCBB) contains the physical
address of the Process Control Block (PCB). The PCB contains the
hardware context of the current process. For a description of the PCB
refer to Section 2.6.

——— - " -

03:00

ARCHITECTURE

Table 2-1 Processor Status Word Bit Descriptions

Description

- - " - " - — " - - — - " o —— e -~ — - - o o

Must Be Zero (MBZ).

Trap Enable Flags - these bits are used to cause traps
to occur under special circumstances.,

DV - Decimal overflaw trap enable; used by emulation
software in the emulation of decimal instructions.

FU - Floating underflow fault enable; when set, this

: bit causes a floating underflow fault after an
instruction that produced a floating result too
small in magnitude to be represented.

IV - Integer overflow trap enable; when set, this bit
causes an integer overflow trap after an instruc-
tion that produced an integer result that could
not be correctly represented in the space provided.

T - Trace bit; when set, this bit causes a trace trap
to occur after execution of the next instruction.

Condition Codes - these bits contain information on the
result of the last processor arithmetic or logical
operation. The bits are set as follows:

N =1 if the result was negative.

Z =1 if the result was zero.

V =1 if the operation resulted in an arithmetic
overflow.

C=11if the operand resulted in a carry out of or

borrow into the MSB (most significant bit).

ARCHITECTURE

2.3.2.3 Interrupt Registers -

The Software Interrupt Summary (SISR), Software Interrupt Request
(SIRR) and Interrupt Priority Level (IPL) registers are used to
control the interrupt system of the processor. They xeep track of
interrupt requests, current interrupt priority level, and the

interrupt stack pointer. The function of these registers is described
in Section 2.5.3.

2.3.2.4 Memory Management Registers -

The Map Enable Register (MAPEN), System Base Register (SBR), System
Length Register (SLR), PO Base Register (POBR), PO Length Register
(POLR), Pl Base Register (PlBR)}, and Pl Length Register (PlLR) are
used to enable the on <chip virtual memory management unit and to
access the page table entries (in memory) used to translate virtual
addresses into physical addresses. The function of these registers is

described in Section 2.4.

2.3.2.5 Processor Status Longword -

The Processor Status Longword (PSL) contains status information - about
the processor. The lower 16 bits of the PSL are the non-privileged
Processor Status Word (PSW). The wupper 16 bits of the PSL are
privileged and accessed by system software when the processor is in
the kernel mode. Table 2-2 describes the function of each bit of the
PSL and Figure 2-14 shows the configuration of the PSL.

31302928 272625 242322 2120 1615 00
T 1 I L A B LR L]
MBZ lg,%% AR iPL PROCESSOR STATUS WORD :PSL
l i 1 L i I . . | G T TSN N [SUSON NN VU JUS AN T N N . |
mez| FPD MBZ
TP IS

MR-11800

Figure 2-14 Processor Status Longword

ARCHITECTURE

Table 2-2 Processor Status Longword Bit Descriptions

Bit Description
31 Must be zero.
30 Trace Pending (TP) - Forces a trace trap when set at

the beginning of any instruction. Set by the
processor if the T bit in the PSW is set at the
beginning of an instruction.

29:28 Must be zero.

27 First Part Done (FPD) - Set when an exception or
interrupt occurs during an instruction that can be
suspended. If FPD is set when the processor returns
from an exception or interrupt, it resumes the
interrupted instruction where it left off, rather
than restarting the instruction.

26 Interrupt Stack (IS) - Set when the processor is
executing on the interrupt stack.
25:24 Current Access Mode (CUR MOD) - The access mode of
the currently executing process:
0 = Kernel
1 = Executive
2 = Supervisor
3 = User
23:22 Previous Access Mode (PRV MOD) - Loaded from CUR MOD

by exceptions and Change Mode instructions, cleared
by interrupts, and restored by a Return From
Exception or Interrupt (REI) instruction.

21 Must be zero.

20:16 Interrupt Priority Level (IPL) - Contains the current
processor priority in the range 0 to 1F (hex). The
processor will only accept interrupts on levels
greater than the current IPL.

15:00 Processor Status Word (PSW) - Contains non-privileged
processor status.

ARCHITECTURE

2.3.3. Processor Registers

The VAX architecture uses a number of processor (privileged)
registers.’ Some of these registers are implemented in the MicroVAX
78032 CPU and some can be implemented in external logic and accessed
by the MicroVAX 78032 CPU. These registers are explicitly accessed
only by the Move to Processor Register (MTPR} and Move from Processor
Register (MFPR) instructions. The processor registers are listed in
Table 2-3.

Each of the processor registers listed in Table 2-3 falls into one of
the following categories:

]

implemented by the MicroVAX 78032 CPU as specified by
the VAX Architecture

implemented by the MicroVAX 78032 CPU unigquely
passed to external logic via the external processor
register protocol; if not implemented externally,
read as zero, no-oped on write

access not allowed (reserved operand fault)

1

[]

2
3

(2
it

ARCHITECTUR]

Table 2-3 Internal Processor Registers

Number : '
(Decimal) Register Name , Mnemonic Type Scope Init Cat
0 Kernel Stack Pointer KSP rw proc -- 1
1 Executive Stack Pointer ESP rw proc -- 1
2 Supervisor Stack Pointer SSP rw proc -- 1
3 User Stack Pointer usp rw proc - 1
4 Interrupt Stack Pointer ISP rw cpu -- 1
5 reserved . -- -- -- -- 4
6 reserved -- -- -- -- 4
7 reserved - -- -- -- 4
8 P0 Base Register - POBR rw proc - 1
9 PO Length Register POLR rw proc - 1
10 Pl Base Register P1BR rw proc - 1
11 Pl Length Register P1LR rw proc - 1
12 System Base Register SBR rw cpu -- 1
13 System Length Register SLR rw cpu -- 1
14 reserved : -- -— -= -- 4
15 reserved -- -- -- -- 4
16 Process Control Block Base PCBB rw proc -- 1
17 System Control Block Base SCBB rw cpu e 1
18 Interrupt Priority Level IPL rw cpu yes 1
19 AST Level . : ASTLVL rw proc yes 1
20 Software Interrupt Reguest SIRR w cpu -- 1
.21 . Software Interrupt Summary. - SISR rw cpu ves 1
22 Interprocessor Interrupt - IPIR rw cpu -- 4
23 CMI Error Register CMIERR r cpu -- 4
24 Interval Clock Control ICCS rw cpu yes 2
25 Next Interval Count -NICR w cpu -- 3
26 Interval Count ICR r - cpu -- 3
27 Time Of Year TODR rw cpu -- 3
28 Console Storage Receiver CSRS rw cpu - 3
Status ‘
29 Console Storage Receiver CSRD By cpu -~ 3
Data
20 Console Storage Transmitter CSTS rw cpu -- 3
Status
31 Console Storage Transmitter CSTD W cpu -- 3
Data
32 Console Receiver Status RXCS rw cpu -- 3
33 Console Receiver Data RXDB r cpu = -- 3
34 Console Transmitter Status TXCS rw cpu ~-- 3
35 - Console Transmitter Data TXDB W cpu -- 3
36 Translation Buffer Disable TBDR rw cpu -- 3
37 Cache Disable CADR rw cpu -- 3
38 Machine Check Error Summary MCESR rw cpu - 3
39 Cache Error CAER W cpu -- 3

—— - ———————] —————— o —— - ———_—— . _— -~ - o — o — o~ o_—————_—— o o s " a2 o o o

ARCHITECTURE

Table 2-3 Internal Processor Registers (Continued)

Number

(Decimal) Register Name Mnemonic Type Scope Init Cat
40 Accelerator Control/Status ACCS rw cpu -- 3
41 Console Saved ISP SAVISP r cpu -- 2
42 Console Saved PC SAVPC r cpu -- 2
43 Console Saved PSL SAVPSL r cpu -- 2
44 WCS Address WCSA rw cpu -- 4
45 WCS Data WCSD rw cpu -- 4
46 reserved -- -- L= -- 4
47 reserved -- -- -- -- 4
48 SBI Fault/Status SBIFS rw cpu -- 3
49 SBI Silo - SBIS r cpu -- 3
50 SBI Silo Comparator , SBISC rw cpu -- 3
51 SBI Maintenance SBIMT rw cpu -- 3
52 SBI Error Register SBIER rw cpu -- 3
53 SBI Timeout Address SBITA r cpu -- 3
54 SBI Quadword Clear SBICC W cpu - 3
55 IO Bus Reset IORESET w cpu -- 3
56 Memory Management Enable MAPEN rw cpu yes 1
57 Trans. Buf. Invalidate All TBIA W cpu -- 1
58 Trans. Buf. Invalidate Single TBIS W cpu -- 1
59 Translation Buffer Data TBDATA rw cpu -- 3
60 Microprogram Break MBRK rw cpu -- 3
61 Performance Monitor Enable PMR rw proc -- 3
62 System Identification .SID r cpu -- 1
63 Translation Buffer Check TBCHK W cpu | -- 1
64:127 reserved ’ - - -- -- 4

Legend:

r = read

W = write

rw = read/write

cpu = process specific, loaded by LDPCTX

proc = system-wide, not affected by LDPCTX

Init = 1initialized at power-up or chip reset by the restart process

ARCHITECTURE

2.3.3.1 MicroVAX 78032 CPU Specific Registers -

The implementation specific processor registers are: Interval Clock
Control and Status (ICCS), Console Saved Interrupt Stack Pointer
(SAVISP), Console Saved PC (SAVPC), and Console Saved PSL (SAVPSL).
These are described in the following paragraphs.

2.3.3.1.1 Interval Clock Control And Status Register (ICCS) -

The ICCS register controls the interval timer (INTTIM) interrupt. It
contains a single bit, bit <6>, to enable or disable the interval
timer interrupt. Bit <6> is read/write. When set, interval timer
interrupts are enabled at IPL16; when clear, interval timer interrupts
are disabled. Bits <31:7,5:0> read as zero and are ignored on writes,
Bit <6> is cleared by RESET. Figure 2-15 shows the ICCS register.

31 070605 00

LA I I P O B IO O T T T :
(1ICCS

IS U T TR RN T U T O T U T T O e 0 S 0 Y U Lt AR S MU T AR

MR.13390

Figure 2-15 Interval Clock and Control Status Register

ARCHITECTURE

2.3.3.1.2 Console Saved Registers (SAVISP, -SAVPC, SAVPSL) -

The console saved registers (SAVISP, SAVPC, SAVPSL) arse limited life
processor registers used to record the value of the interrupt stack
pointer, PC, and PSL, respectively, at the time a chip restart occurs.

The SAVISP and SAVPC registers are used to save the interrupt stack
pointer and the PC, respectively. The SAVPSL register is used to save
the contents of the PSL, MAPEN,.and the restart code. Figure 2-16
shows these registers. Refer to Section 2.8 for a description of how

these registers are used.

31 00
A O TR I N Y A R N N NN Y A I N) B N N NN A ¢
SAVED INTERRUPT STACK POINTER {SAVISP
NN
31 00
T T T T T T T T T T I T T T T T T T T
SAVED PROGRAM COUNTER :SAVPC
NN
2 " 181514 00
L O O I O B T T T T T T T T T
PSL <31:16> RESTART CODE PSW ‘SAVPSL
| I W A O I T OO O T I N R N | O T OO S O O O I O O O A

MR-13391

Figure 2-16 Console Saved Registers

-20

[\%]

ARCHITECTQR

2.4 MEMORY MANAGEMENT

Memory management consists of the hardware and software which control
the allocation and use of physical memory. Typically, 1in a
multiprogramming system, several processes may reside in physical
memory at the same time. The MicroVAX 78032 CPU wuses memory
protection and multiple address spaces to ensure that one process will
not affect other processes or the operating system.

‘To further improve software reliability, four hierarchical access
modes provide memory access contrel. They are, from most to least
privileged: kernel, executive, supervisor, and user. Protection is
specified at the individual page level, where a page may be
inaccessible, read-only, or read/write for each of the four access
modes. Any location accessible to one mode is also accessible to all
more privileged modes. For each access mode any location that can - be
written can also be read.

When memory management is enabled, the CPU generates virtual addresses
when a program is executed. However, before these addresses can be
used to access instructions and data, they must be translated into
physical addresses. Memory management software must maintain tables
of mapping information (page tables) that keep track of where each 512
byte wvirtual page 1is located in physical memory. The CPU utilizes
this mapping information when it translates virtual addresses to
physical addresses.

Memory management is the scheme that provides both the memory
protection and memory mapping mechanisms of the MicroVAX 78032 CPU.
Memory management meets several goals:

1. Provide a large address space for instructions and data.
2. Allow data structures up to one gigabyte.
3. Provide convenient and efficient sharing of instructions and data.

4. Contribute to software reliability.

A virtual memory system provides a large address space, yet allows
programs to run on hardware with limited memory confiqurations.
Programs execute in an environment termed a process. The virtual
memory system for the MicroVAX 78032 CPU provides each process with a
4 billion byte virtual address space.

Memory management divides virtual address space into two equal size
spaces, the system address space and the per-process address space.
The system address space is the same for all processes. It 1s used
for the operating system, which may be written as callable procedures.
Thus all system code can be available to all other system and user
code via a CALL instruction, Each process has its own separate
process address space. However, several processes may have access to

2-21

ARCHITECTURE

the same page, thus providing controlled sharing.

2.4.1 Virtual Address Space

A virtual address is a 32 bit wunsigned integer specifying a byte
location in the address space. To the programmer memory is a linear
array of 4,294,967,296 bytes. The virtual address 'space 1is broken
into 512 byte wunits termed pages. Each page may-be relocated and
protected.

Memory management provides the mechanism to map the active part of the
virtual address space to the available physical address space. Memory
management also provides page protection between processes. The
operating system controls the virtual-to-physical address mapping
tables, and swaps the inactive but used parts of the wvirtual address
space onto the external storage media.

The virtual address space is divided into two parts. The half with
the lower addresses, known as "per-process space," is distinct for
each process running on the system. The half with the higher
addresses, known as ‘"system space,"” 1is shared by all processes.

Figure 2-17 shows the division of virtual address space.

00000000 :
LENGTH OF PO REGION IN PAGES-
{POLR)
PO
REGION
i PO REGION GROWTH DIRECTION
IFFFFFFF
40000000
I P1 REGION GROWTH DIRECTION
P1
REGION
LENGTH OF P1 REGION IN PAGES
{2**21~P1LR)
JFFFFFFF
80000000 ,
LENGTH OF SYSTEM REGION IN PAGES
{SLR)
SYSTEM
REGION
l SYSTEM REGION GROWTH DIRECTION
BEFEFFFF
0000000
RESERVED
REGION
FEEFFFFF

MR-11603

Figure 2-17 Virtual Address Space

2-22

ARCHITECTURE

2.4.1.1 Process Space -

Addresses 00000000-7FFFFFFF (hex) of virtual address space are called
"per-process space”. The per-process space is divided into two equal
parts, the program region (PO region) and the control region (Pl
region). Each process has a separate address translation map for
per-process space, so the per-process spaces of all processes can be
completely disjointed. The address map for per-process space is
context switched {(changed) when the process running on the system 1is
changed.

2.4.1,2 System Space -

Addresses 80000000-FFFFFFFF (hex) of virtual address space are called
"system space”. All processes use the same address translation map
for system space, soO system space is shared among all processes. The
address map for system space is not context switched.

2.4.1.3 Virtual Address Format -

The MicroVAX 78032 CPU generates a 32-bit wvirtual address for each
instruction and operand in memory. °~ As the process executes, the
processor translates each virtual address to a physical address. The
format of a virtual address is shown in Figure 2-18 and described in
Table 2-4. '

When bit 31 is one, the address is in the system space. When bit 31
is zero, the address is in the per-process space.-

Within the per-process space, bit 30 distinguishes between the program
and control regions. When bit 30 1is one, the control region is
referenced, and when it is zero, the program region is referenced.

31 0908 00
TI1 1T T T iT1TI1TTrrrrrryrrrrrrrrrTr T d
VPN BYTE NUMBER
N S AU G TR OO O OO W U TN O O N O OO N O T A | N O O

MR-11604

Figure 2-18 Virtual Address

ARCHITECTURE

Table 2-4 Virtual Address Bit Description

Field Bits Description

VPN <31:09> Virtual Page Number - This field
specifies the virtual page to be
referenced. Virtual address space
contains 8,388,608 pages of 512 bytes
each.

Bits <31:30> of the VPN are used to
select the region cf virtual address
space being referenced.

Value of ~ Region
Bits <31:30> Referenced
0 PO
1 Pl
2 System
3 Reserved
BYTE NUMBER <08:00> Byte Number - This field specifies the

byte number within the page.

—— - ——— o — " —— -~ — - — o " — o —————— - " - — " —— o — - — ——— - o~ —— o —

2.4.1.4 Page Protection -

Independent of its location in virtual address space, a page (512
bytes) may be protected according to its use. Even though all of
system space is shared, in that a program may generate any address,
the program may be prevented from modifying or even accessing portions
of system space. A program may also be prevented from accessing or
modifying portions of process space.

2.4.2 Memory Management Control

The action of translating a virtual address into a physical address is
controlled by the setting of the Memory Mapping Enable (MME) bit in

the Map Enable (MAPEN) register. The format of the Map Enable
Register 1s shown in Figure 2-19 and described in Table 2-5.

[\

-243

ARCHITECTURE

3t 0100
rrrrrrrfrrryrrryryrrrryrrrrrrrrroot

MEZ) MAPEN
| S T N D S IR DU AN R N N O NS NS OO NN N (NN U OO U N U N NN N A |

. MME

MR-11605

Figure 2-19 Map Enable Register

Table 2-5 Map Enable Register Bit Description

Field Bit Description
MBZ <31:01> Must Be Zero
MME <00> . Memory Management Enable - used to

~enable and disable memory management.

Enabled

MME 1
0 Disabled

MME

o

2.4.3 Access Control

Access control is the function of validating whether a particular type
of memory access 1is to be allowed to a particular page. Every page
has associated with it a protection code that specifies for each mode
whether or not read or write references are allowed. Also, each
address is checked to make certain that it is in the PO, Pl, or system
region of virtual address space.

2-25

ARCHITECTURE

2.4.331 Processor Modes -

There are four hierarchical modes used for protection by the MicroVax
78032 CPU. The modes in the order of most to least privileged are:

0 Kernel .- used by the kernel of the operating system for page
management, scheduling, and [/0 drivers.

1 Executive - used for many of the operating system service calls.
2 Supervisor - used for such services as command interpretation.

3 User - used for user level code, utilities, compilers, debuggers,
etc.

The mode at which the processor is currently running is stcred in the
current mode field of the Processor Status Longword (PSL). ‘

2.4.3.2 Protection Code -

Associated with each page in virtual address space 1is a protection
code that is located in the page table entry for that page. The
protection code allows a choice of protection for each processor mode,
within the following limits:

1. Access for each processor mode can be read/write, read only, or no
~access. L

2. If a processor mode has read access then all more privileged modes
also have read access.

3. If a processor mode has write access then all more privileged
modes also have write access.

The protection codes are listed in Table 2-6.

code

Table 2-6 Protection Codes

decimal binary mnemonic

—— > oo -

Legend:

Hononu

no access
read only
read/write

0000

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

——

. ——

- ER

Cwnmx

NA - - - .
unpredictable
KW RwW - - -
KR R - - -
Uw RW RW RW RW
EW RW RW - -
ERKW RW R - -
R R - -

SwW RW RW R®’RW -
SREW RW RW R -
SRKW RW R R -
SR : R R R -
URSW RW RW BRW R
UREW RW RW R R
URKW RW R R R
UR R R R R

= Kernel

= Executive

= Supervisor

= User ‘

current mode
K E S u

ARCHITECTURE

comment

—— - o -

no access
reserved

all access

ARCHITECTURE

2.4.3.3 Length Viclation -

Every valid virtual address lies within bounds determined by the
addressing region (PO, Pl, or System) and 1its associated length
register (POLR, PlLR, or SLR). Virtual addresses +that are outside
these bounds will cause a length.violation. o

2.4.3.4 Access C;ntrol Violation -

An access control violation fault occurs if an illegal access is
attempted, as determined .by the current PSL mode and the page's
protection field, or if the address causes a length violation.

2.4.3.5 Access Across A Page Boundary -

If an access is made across a page boundary, the order in which the
pages are accessed is wunpredictable. However, for a given page an
access control violation always takes precedence over a translation
not valid.

2.4.4 Address Translation

The action of translating a virtuadl address to a physical address by
memory management 1s controlled by the setting of the Memory
Management Enable (MME) bit in the MAPEN register. When MME is a 0,
memory mapping disabled, bits<29:00> of the virtual address become the
physical address and there is no page protection. This means that all
accesses are allowed 1in all modes. When MME is a 1, memory mapping
enabled, address translation and access control are on and the
processor uses the following to determine whether an intended access
is allowed:

"1l. The virtual address, which is used to index a page table,
2. The intended access type (read or write), and
3. The current privilege level from the Processor Status Longword, or
kernel level for page table mapping references.

If the access is allowed and the address can be mapped, the result is
the physical address corresponding to the specified virtual address.
The intended access is READ if the operation to be performed is a
read. The intended access is WRITE if the operation to be performed
ls a write. If the operation to be performed is a modify (that |is,

read followed by write) the intended access is specified as a WRITE.

2-28

ARCHITECTUR:

If an operand is an address operand, then no reference is made. This
means the page does not need to be accessible or even exist.

2.4.4.1 Page Table Entry (PTE) -

The MicroVAX 78032 CPU uses a Page Table Entry (PTE) to translate
virtual addresses to physical addresses. The page table entry is
shown in Figure 2-20 and described in Table 2-7,.)

3130 272625242322 2120) 00
T T LI B S N A N A I O B N A S N D I O A A

v| proT |Mlo| oo PFN

it 4 TR SN0 TN (OO 05 N T O 0 A N O OO O O | 11;1y51‘

Figure 2-20 Page Table Entry
Table 2-7 Page Table Entry Bit Description

Field Bit Descrxptzen
v 31 Valid bit - Governs the valzdzty of the «
modify (M) bit and the page frame number (PFN)
field. Vv =1 for valid; Vv = 0 for not valid.

PROT 30:27 Protection field - Describes the protection
for the page. This field is always valid.and
is used by the hardware even when V = 0.

M 26 Modify bit - This bit is set (= 1) if the
page has already been recorded as modified.
M = 0 if the page has not been recorded as
modified. Used only if Vv = 1,

o 25 Must be zero.

OWN 24:23 Owner bits - reserved.

0 22:21 Must be zero.

PFN 20:00 Page Frame Number - The upper 21 bits of the

physical address of the base of fhe page.
Used only if v = 1,

2-29

- ARCHITECTURE

2 4.4, l - Protection Check Before Valid Check -

The page table entry is defined as having a valid bit that only
controls the wvalidity of the modify bit and page frame number field.
The protection field is defined as always being valid and 1is checked
first. }

2.4.4.1.2 Changes To Page Table Entries -

The operating system changes PTEs as part of its memory management
functions. For example, MicroVMS sets and clears the valid bit and
changes the PFN field as pages are swapped in and out of physical
memory.

The software must guarantee that each PTE is always consistent within
itself. Changing a PTE one field at a time may result in incorrect
system operation. An example would be to set PTE<V> with one
instruction before establishing PTE<PFN> with another instruction. An
interrupt routine between the two instructions could use a virtual
address that would be mapped by memory management wusing the
inconsistent PTE Software can solve this problem by building a new
PTE in a reglster and then moving the new PTE to the page table with a
single instruction such as Move Long (MOVL).

Multiprocessing makes the problem more complicated. Another
processor, be it another CPU or an 1/0 processor, can reference the
same page tables that the first CPU is changing. The second processor
must always read consistent PTEs. In order to guarantee this, first
note that PTEs are longwords, longword-aligned. Then two requirements
must be met:

1. Whenever the software modifies a PTE in more than one byte, it
must use a longword, longword-aligned, write-destination
instruction, such as MOVL. '

2. The hardware must guarantee that a longword, longword-aligned
write 1is an atomic operation. That is, a second processor cannot
read (or write over) any of the first processor's partial results.

2.4,4.2 System Space Address Translation -

A virtual address with bits <31:30> = 2 is defined as an address 1in
system virtual address space.

System virtual address space is mapped by the System Page Table (SPT),

which 1is defined by the System Base Register (SBR) and the Sys:em
Length Register (SLR), Figure 2-21. The SBR contains the base
physical address of the the System Page Table. The SLR contains the

2-30

ARCHITECTURE

size of the SPT in longwords, that 1is, the number of Page Table
Entries. The Page Table Entry addressed by the System Base Reglster

maps the first page of system virtual address space, that is, virtual
‘ byte address 80000000 (hex).

Figure 2-22 illustrates the translation of a svstem flrtual address to
a physical address.

- The algorithm to generate a physzcal address from a system region
virtual address is: . ,

SYS PA = (ssa+4*svas29;é>}<2o:00>rsva<es:ao>,

313029 ' 02 0100

T ™ T T T LIS I T A A I B A AN A A O ™7 LT T 1§
MBZ) " PHYSICAL LONGWORD ADDRESS OF SPT imMBZ| S8R
TN U SN TN OO U NN VNN O S WAt TR DU S N0 SR A NN A0 OO L WS N MO 1
31 2221 00
LA S T T SR U T i (R S At AN S B RN A EN M M S N SHNE B S e e A M R |
MBZ LENGTH OF SPT IN LONGWORDS SLR -
I T 1S SO SN SO GRS N WO N WO S AN NN YOO SR8 YU WA NN WO JUK S OIS RO O DO

MA-11609

Figure 2-21 System Mapping Registers

ARCHITECTURE

) 313029 _ 0908 00
SVA: 1 IR L L A N A B B L O R | BN]
(SYSTEM VIRTUAL , 2 ' BYTE
- ADCRESS) ; o -l NN L N SO W T O O WO B S Y O O R R A R | {000 T T I W O
EXTRACT AND
CHECK LENGTH
31 2322 02/0100
L LR L A I] Py T T T T T T T T rrTTT) 1
] ' 0
Ll Jl b 1 1 i 1 I SN AN SN NN TS NN NS O N O T N OO O NN A]
ADD
31 0100
T T T T T T T rrrrTrTTTTTTY Ll AN
SBR: PHYSICAL BASE ADR OF SPT 10
| SN S U TR NN SR SO SO NN NN O U SN NN PR NS AU U AN (SN RN TR N W N WS NANE RRE | i
YIELDS
31 , 0100
LI O N T A A T A A TN AN N SR AN NN (AN RN SN SN N S B S ¥ | I’
, 4 ; PHYSICAL ADR OF PTE R I
j I I T I I | S TN TSNS WS SN YU N NN U N IS N A N N NN NN A A 1
FETCH
3130 2120 o .00
ST e Pty T rrrrrrrrTrTrT
PTE: 1 : PFN
§ T S A T | N O NN NS NN WO SO WS NN NN U TN SN U NN N DO SO NOU |
CHECK ACCESS - THIS ACCESS CHECK
IN CURRENT MODE
29 « - 0908 ¢ 00

PHYSICAL ADR OF DATA:

MR 11810

Figure 2-22 System Virtual to Physical Address Translation

ARCHITECTURE

2.4.4.3 Process Space Address Translation -

A virtual address with bit <31> = 0 is an address in the process
virtual address space. Process space is divided into two equal sized,
separately mapped reqzons,' If virtual address bit <30> = 0, the
address is in region PO, If virtual address bit <30> = 1, the address
is in region P1. : :

2.4.4.3.1 PO Regzcn Address ;ranslatlon -

The PO region of v1rtual address space is mapped by the PO Page Table
(POPT), which 1is defined Dby the P) Base Register (POBR) and the PQ
Length Register (POLR), Figure 2-23. The POBR contains the system
virtual address of the PO Page Table. The POLR contains the size of
the POPT in longwords, that is, the number of Page Table Entries. The
Page Table Entry addressed by the PO Base Register maps the first page
of the PO region of the virtual address space, that is, virtual byte
address 0.

Figure 2-24 illustrates the translation of a PO virtual address to a
physical address.

The algorlthm to generate a physxcal address from a PO regzon virtual
address is:

PVA_PTE = POBR+4*PVA<29:09>
PTE PA = (SBR+4*PVA PTE<29: 09>)<20 00> PVA PTE<(0B8:00>
PRGC PA = (PTE PA)<20:00>'PVA<08:00>
313029 020100
) LIBEINE S I 2 F 1T LT PP A Pt rTlTrrtiTrrtlIirr 1
2 ' SYSTEM VIRTUAL LONGWORD ADDRESS OF POPT mez| PoBR
{ B 200 S IO T N T T T OO TS 1 O O T | | 0 N T S N R A | t’ 1 1
3 221 ' , : 00
L A L L T T P T T V7T 1T T T 1T 17T 17T ¢ 7101 T T 0 7 11
MBZ LENGTH OF POPT IN LONGWORDS :POLR

llilkiy‘llli’liilililiii!iitllllll

MR-11811

Figure 2-23 PO Region Mapping Registers

2-33

ARCHITECTURE

313029 : : 15 0908 00
PVA: T T T T T T T T T rrTrrro T1T T 1T
{PROCESS VIRTUAL 0 ; : , BYTE
ADORESS) . { I SO S U O TN N O U T O R S A N AT
EXTRACT AND
CHECK LENGTH
31 . 23(22 02{0100
L L L LR 1R A A A I I B L A e t
0 0
| N S N T O T | | S O SO NS O AN O VS T IO TN O T T O N O O | {
ADD .
31 - 0100
. T errryrrrrrrrrrrrryrrrrrrrrr T T
pOBR: ' , SYS VIRT BASE ADR DF POPT : , o
15 SO0 S (N AN (RN PO SO S IS U MO S SN TN N TN O N ML SN S T R A N T 1
YIELDS - .
31 : © 0160
L R R A T 2 T T M U D 1
, SYS VIRTUAL ADR OF PTE 0
| S5 T S5 I NS N VRO U U NN N T N U NN DU T U NV SUN DU U NRE NN MY R N AN 1 i

FETCH BY SYSTEM SPACE
TRANSLATION ALGORITHM,
INCLUDING LENGTH AND
PP KERNEL MODE ACCESS CHECKS :
3130 2120 ‘ 00
TPy rrrrrrrrryrrrrrrrTTT
PTE: 1 PFN .
o SRR S SN T S NUFS TSN TN UGt 0 OGN S S W VOO0 UOF U GO OO KW AU s WU O OO SUNN NN G L OO WL A WO

CHECK ACCESS THIS ACCESS CHECK
IN CURRENT MQDE

29 09l + 00

PHYSICAL ADR OF DATA:

MR-11612

Figure 2-24 PO Virtual to Physical Address Translation

2.4.4.3.2 Pl Region Address Translation -

The Pl region of virtual address space is mapped by the Pl Page Table
(P1PT), which is defined by the Pl Base Register (P1BR) and the Pl
Length Register (P1LR), Figure 2-25. Because Pl space grows towards
smaller addresses, and because a consistent hardware interpretation of
the base and length registers 1s desirable, P1BR and PlLR describe the
portion of Pl space that is NOT accessible. Note that PLLR contains
the number of nonexistent PTEs. P1BR contains the system virtual
address of what would be the PTE for the first page of Pl, that is,

irtual byte address 40000000 (hex). The address in PIBR is not
necessarily a wvalid system virtual address, but all the addresses of
PTEs must be valid system virtual addresses.

2-34

. ARCHITECTURE
Figure 2-26 illustrates the Pl virtual address to physical address
translation. '

~ The algorithm to generate a phys cal address from a Pl region virtual
address is: :

P1BR+4*PVA<29:09>

PVA_PTE = '
PTE_PA = (SBR+4*PVA PTE<29:09>)<20:00>'PVA_PTE<08:00>
PROC_PA = (PTE_ PA)<20:00>'PVA<08:00>
k3 o - ‘ ' - 020100
f | AR TR NN R OO AN IR D N N (N N S N UNRD BN DR AN N AN HNNE B S N S B A | 1
SYSTEM VIRTUAL LONGWORD ADDRESSOF P1PT IMBZ] :P1BR
| T O U T N AN N R i | O SRNEE SRR SR JNRK UORN (LU SN WU St SN NN R ROS TN RN SN O 1
. 221 } | 00
E R I S D I A A i | S O S O 3 I I LR L AL L I I MR B
1 P A i LENGTH OF P1PT IN LONGWORDS PILR

{ AR IV SRS A0 NS, U W O 1 i!!lii_!llll!liilli!tl

MA 11613

‘Figuré 2-25 Pl éégioﬁ Mapping Registers

2-35

ARCHITECTURE

313029 0908 L 00
PVA: I fi?if[l!li]lf!!l!iTI P T T
(PROCESS VIRTUAL , 1 V BYTE
ADDRESS) O T T T T T T R O I B I A N I T I I S N R R
EXTRACT AND
» CHECK LENGTH
31 23|22 : 02/0100
. LI Ot O A I A | L L L L D A D i D T 20 S O O B AR
0 ' 0
NS 2000 T T O T O | NS AV AU U NN AN AU TUU DU N NN S YN R N | [. {
ADD
31 0100
vty T T T T T T rrrrTrrtTTTTTT 1 3R}]
P1BR: 1o ' SYS VIRT BASE ADR OF P1PT ' a
SV T TN WO OO N T U O T B R T R B B TN Y I S R U N N | L
YlELDé
31 0100
P LT T T T T T T T rrrrrT—TTrT L I] H
B SYSVIRTUALADROFPTE L o
bodod b b Lo b 1t e L L8 L {
' FETCH BY SYSTEM SPACE
TRANSLATION ALGORITHM:
INCLUDING LENGTH AND
KERNEL MODE ACCESS CHECKS
3130 , 2120 00
LR R A] l‘l i P T T Y T T T T T T rmTrT
PTE: 41 o 8 ' _ ‘ PFN
| S T T O T I O) | R N N R S N e I | |
CHECK ACCESS THIS ACCESS CHECK
IN CURRENT MODE
29 09108 ¢ 00
. rrT v T T T T IITTrriT1tTrrrrrr—T L LR L T
PHYSICAL ADR OF DATA:
T T A T 2 N O O A O I T O O O I | SO S S O SO O
MR 11614

Figure 2-26 Pl Virtual to Physical Address Translation

2.4.5 Translation Buffer

In order to save actual memory references when repeatedly referencing
pages, the MicroVAX 78032 CPU has a fully associative, eight entry
translation buffer that contains page table entries (PTE) for
successful virtual address translations and page status. This buffer
helps to save memory references when repeatedly referencing the same
pages. Control of th translation buffer 1is done zchrough two
registers: the Translation Buffer Invalidate Single (TBIS) register
and the Translation Buffer Invalidate All (TBIA) register.

When the process context is loaded using the Load Process Context
(LDPCTX) instruction, the translation buffer is automatically updated
(that is, the process virtual address translations are invaiidated).

2-36

ARCHITECTURE

However, when software changes any part of a valid PTE for the system
or current process region, it must invalidate any translation buffer
entry by moving a virtual address in the corresponding page to the
TBIS register. Section 2.4.5.1 gives a description of the TBIS
‘regisLer. : N ' : :

When software changes a system page table entry »hat maps any part of
the current process page table, all translation buffer entries for the
affected process pages must be invalidated. ‘This can be done by
moving an address in each of the affected pages 1into the TBIS
register, or by invalidating the entire translation buffer by moving a
0 1into the TBIA Pegzster. Section 2.4.5.2 gives a description of the
TBIA register. : S e AR '

The translation buffer does not store invalid PTEs. Therefore,
software is not required to invalidate translaticn buffer entries when
making changes for PTEs that are already invalid.

When the location or the size of the system map is changed (SBR, SLR)
the entire translation buffer must be cleared.

Whenever memory management is disabled (MME = 0) the contents of the
translation buffer are unpredictable. Therefore, before enabling
memory management at processor initialization time, or any other time,
the entire translation buffer must be c?eared Thls is done by moving
a 0 into the TBIA reqzster.w : o

2.4.5.1 Translatiun~auffér Invalidate Single Register -

The TBIS register is used to invalidate single PTE entries 1in the
translation buffer. This is done by system software writing a virtual
address into the TBIS register, Figure 2-27. The MicroVAX 78032 CPU
will invalidate the translation buffer entry that maps the page in
virtual mem@ry accessed by the v1rtual address wrztten into the TBIS
reg;ster '

3N 00
T T

VIRTUAL ADDRESS :T8IS
AU T V0N B0 R TN I T T N A % R B B M S B R O A N A S T R |

MR-11806

Figure 2-27 Translation Buffer Invalidate Single Register

 ARCHITECTURE

2.4.5.2 Translation Buffer Invalidate All Register -

The TBIA register is used to clear the entire translation buffer by
invalidating all the PTE's in the translation buffer. This is done by
software moving a 0 into the 0 into the TBIA register, Figure 2-28.
When a 0 is written into the TBIA register the MicroVAX 78032 CPU will
invalidate all the PTE's in the translation buffer. o D

31 5) 00
L LA T A N 0 R A O T N O T N T E T

MBZ : TBIA
IO TOUR SO S T N I N O O A R A A I A T T R R | I S S N B S | -

| MR.11807
Figure 2-28 Translation Buffer Invalidate All Register

2.4.6 Memory Management Faults

Two types of faults are associated with memory mapping and protection:
translation not valid and access control vioclation. A translation not
valid fault is taken when a read or write reference is attempted
through an’ invalid PTE (PTE<31> = 0). An access control violation
fault is taken when the protection field of the PTE indicates that the
intended page reference in the specified access mode would be illegal.
Note that these two faults have separate vectors in the system control
block. If both access control violation (ACV) and translation not
valid (4NV) faults occur, the access control violation fault takes
precedence. An access control violation fault is also taken if the
virtual address referenced is beyond the end of the associated - page
table, Such a "length violation" 1is essentially the same as
referencing a PTE that specifies "No Access" in its protection field.
To eliminate the need to recompute the length check, a length
violation indication is stored in the fault parameter block. For a
description of the fault parameter block refer to Section 2.5.4.2.

2-38

ARCHITECTUR]

2.5 EXCEPTIONS AND INTERRUP”S

At certain times during the operatlcn oF a system, events within the
system require the execution of particular pieces of software outside
the explicit flow of control. The processor transfers control by
forcing a change in the flow of control from that explicitly indicated
in the currently executing process.

Some of the events are relevant primarily to the currently executxng
process, and normally invoke software in the context of the current
process. The notxfxcatzcn of such events is termed an exception.

Other events are przmarzly seievant to other processes, or to the
system as a whole, and are therefore serviced in a system-wide
context. The notification process for these events 1is termed an
interrupt, and the system-wide context is described as "executing on
the interrupt stack" (IS). Further, some interrupts are of such
urgency that they require high-priority service, while others must be
synchronized with ‘independent events. To meet these needs, the
processor has priority logic that grants interrupt service to the
highest priority event at any point in time. The priority associated
with an interrupt is termed its interrupt priority level (IPL).

2.5.1 Prccessor interrupt Przorlty Levels {IPL)

The VAX architecture has 31 zaterrupt priority levels (I?L}, divided
~ inte 15 software levels (numbered, in hex, 0l to OF), and 16 hardware
levels (10 to 1F, hex). user“appiications, system’calls, and system
services all run at process level, which may be thought of as IPL 0.
Higher numbered interrupt levels have higher priority, that is, any
requests at an interrupt level higher than the processor's current IPL
will interrupt immediately but requests at a lower or equal level are
deferred.

The interrupt levels zmplemented by the MicroVAX 78032 CPU are listed
in Table 2-8.

- ARCHITECTURE

Table 2-8 Interrupt Priority Levels

IPL levels (hex) interrupt condition

1F unused

1E ~ PWRFL asserted

18 - 1D , unused

17 et IRQ<3> asserted

16 . . INTTIM asserted

e : IRQ<2> asserted

15 : TRQ<I> asserted

14 . , : IRQ<0> asserted

10.--13 i A unused . A
01 - QOF software interrupt request

'2.5.2 Processor Status

When -an exception or an interrupt is serviced, the processor status
must be preserved so that the interrupted process may continue
normally. This is done by autcmatically saving the Program Counter
(PC) and the Processor Status Longword (PSL). These are later
restored with the Return from Exception or Interrupt instruction
(REI). Any other status required to correctly resume an interruptable
~instruction is stored in the general registers. Process context such
as mapping information is not saved or restored on each interrupt or
exception. Instead, it 1is saved and restored only when process
‘context switching is performed. . f - I

A

2.5.3 Interrupts

The processor arbitrates interrupt reguests according to priority.
Only when the priority of an interrupt reguest 1s greater than the
current IPL (bits <20:16> of the Processor Status Longword) will the
processor raise the IPL and service the interrupt reqguest. The
interrupt service routine is entered at the IPL of the interrupt
request, or at IPL17 1f the vector supplied by the interrupting device
has bit <00> = 1,

Interrupt requests can come from devices, controllers, or the
processor itself, Software executing in kernel mode can raise and
lower the priority of the processor by executing MTPR src,%IPL, where
sSrc contains the new priority desired,

ARCHITECTURE

The processor services interrupt requests between instructions. The
processor also services interrupt requests at well defined points
' dur:ng the execution of long, iterative instructions such as the
- string 1nstruct10ns.; For these instructions, in order to avoid saving
‘additional instruction state in memory, interrupts are initiated when
the instruction state can be completely contained in the registers,
PSL, and PC. ’

The following events cause interrupts:

1. Interrupt from ‘a peV1phera1 device received on IRQ«B G> (IPL14 to
. 17 hex) , :

2. HALT (non~maskable)

3. power fail (IPLIE hex)

4., Interval timer (IPLl6 hex) :

5. Software interrupt 1nvoxed by MTPR src, #SIRR (IPLOl to OF hex)

6. AST delivery when REI rastares a PSL wlth moée greater ~than or
~ equal to ASTLVL (1PL 02 hex) T

Each devlce has a separate interrupt vecncr location 1in the system
control block (SCB). Thus interrupt service routines do not need to
poll devices in order to determine which device interrupted. The
vector address for each dev1ce is determined by hardware.

In order to reduce Lnterrupt overhead, no memory mapping information
is changed when an interrupt occurs. Thus the instructions, data, and
contents of the interrupt vector fer an interrupt service routine must
be in the system address space or present in every process at the same
address.

2.5.3.1 Urgent Interrupts -- Levels 18-1F (Hex) -

The VAX architecture has 8 priority levels for wuse Dby urgent
conditions including serious errors (e.g., machine check) and power
fail. Interrupts on these levels are initiated by the processor upon
detection of certain conditions. Some of these conditions are not
interrupts, but are exceptions that are run at IPLIF (hex).

2.5.3.2 Device Interrupts -- Levels 10-17 (Hex) -

The VAX architecture has 8 priority levels for wuse by peripheral
devices. Of these 8 priority levels the MicroVAX 78032 CPU implements
four, levels 14 through 17 (hex). The processor recelives device
interrupt requests via I1RQ<3:0> and INTTIM.

2-41

ARCHITECTURE

2.5.3.3 Software Generated Interrupts -- Levels 01-0F (Hex) -

- The processor has 15 interrupt levels for use by software. These
levels are 01l through OF (hex). These lnterrupts are used by system
software to generate software controlled interrupts.

2.5.3.4 Interrupt Control.-

The hardware_interrupt system is controlled by the IRQ<3:0>, - HALT,
PWRFL, and INTTIM inputs to the processor along. with three registers.
Asserting any of the input pins results in an interrupt being
generated at the hardware level given 1in Table 2-8. The three
registers are used to control the software interrupt system.

2.5.3.4.1 Software Interrupt Summary Register -

The Software Interrupt Summary Register (SISR), Figure 2-29, 1is a
~privileged register that records pending software interrupts. It
contains 1l's in the bit positions corresponding to levels on which
software interrupts are pending. All such levels, of course, must be
lower than the current processor IPL, or the processor would have
taken the requested interrupt. k. o - '

31 e B 1615 L oo
i ’ - T
T T DING SOFTWARE INTERRUPTS 1
Ll Ll 11y toyor g (FEDICBIAGS T, 6,54,3,21)

MB

MR-11815

:SISR

Figure 2-29 Software Interrupt Summary Register

2.5.3.4.2 Software Interrupt Request Register -

The software interrupt reguest register (SIRR), Figure 2-30, 1is a
write-cnly four bit privileged register used for making software

lnterrupt requests.

ARCHITECTURE

m S ; : ;,04& 00

i O D B B O B R O A G R i | I | i { D O D i B f S
IGNORED ' REDUEST] :SiRR

I N S S | ! [N S JUUE SO R AU DTS RN NS SO TS N S ! | U IR W | {1t

MA-11616

Figure 2-30 Software Interrupt Request Register

Executing MTPR src, #SIRQ requests an interrupt at the level specified
by src<3:0>, Once @& software interrupt request is made, it will be
cleared by the hardware when the interrupt is taken. If src<3:0> is
greater than the current IPL, the interrupt occurs before executloﬂ of
the following instruction, If src<3:0> is less than or equal the
current IPL, the interrupt will be deferred until the IPL is lewered
to less than src<3:0> and there is no higher level interrupt pending.

2.5.3.5 Interrupt Priority Level Register -

Writing to the IPL, Figure 2-31, with the MTPR instruction will load
the processor priority field in the Program Status Longword (PSL),
that is, PSL<20:16> is loaded from IPL<4:0>. Reading from IPL with
the MFPR instruction will read the processor priority field from the
PSL. :

31 , 05 04 00
b O R T 2 2D G D D A OES G G SRR D M R DR D kB A R DR B BN | LS D D |
IGNORED, RETURNS 0 L PL
| U O O N0 SN O N N TS I SO SOV O U TN SO OV T SN N L N N | {111)
 PSL<20:16>
’ M1 Y817

Figure 2-31 Znterrupt'Priority Level Register

Interrupt service routines must follow the discipiine of not lowering
IPL below their inizial level. If they do, an interrupt at an
intermediate level could cause the stack nesting to be improper.
Actually, a service routine could lower the IPL if it ensures that no
intermediate levels could interrupt. However, this would result in
unreliable code. ' '

(48]

-43

ARCHITECTURE

2.5.3.6 Interrupt Example -

As an example, .assume the processor is running in response to an
interrupt at IPL5, it then sets IPL to 8, and then posts software
reguests at IPL3, IPL7, and I?L?."Tben a device interrupt arrives at
IPLI6 (hex). Finally IPL 1is set back to IPLS The sequence of
execution is: : g

state after event

IPL in
event IPL SISR PSL on
(hex) {hex) stack
{initial) , , 5 0 Q-
MTPR #8,#IPL , 8 0 0
MTPR #3;#SIRR ' 8 8 0
MTPR #7,#SIRR 8 88 0
MTPR #9,#SIRR interrupts to) 88 8,0
ydev;ce‘lnterrupts to 16 88 9,8,0
device service routine REI 9 88 8,0
IPLS service routine REI 8 88 0
MTPR #5,#IPL changes IPL to 5
and the request for 7 is
granted immediately R 7 8 5,0
IPL7 service routine REI 5 -~ 8 0

initial IPLS service routine
- REI back to IPLO and the
request for 3 is granted
immediately 3 0 0
IPL3 service routine REI 0

2.5.4 Excépﬁions

Most exceptlon service routines execute at IPL 0 in response to
exception conditions <caused by scftware. A variation from this are
serious system failures, which raise the IPL to the highest level (1lF,
hex) to minimize processor interruption wuntil the problem is
corrected. Exception service routines are wusually coded to avoid
exceptions; however, nested exceptions can occur.

A trap 1s an exception canditicn that occurs at the encfgof the
instruction that caused the ex;eptzon. Therefore the PC saved on the
stack is the address of the next instruction that would normally have
been executed. Software can enable and disable some of the trap
conditions with a single instruction. : ,

ARCHITECTUR]

A fault is an exception condition that occurs during an instruction,
and leaves the registers and memory in a consistent state such that
elimination of the fault condition and restarting the instruction will
give correct results. Note that faults do not always leave everything
as it was prior to the faulted instruction; they only restore enough
to allow restarting. Thus, the state of a process that faults may not
be the same as that ‘of a prccess that was interrupted at the same
point.

An abort is an exception condition that occurs during an instruction,
leaving the value of registers and memory unpredictable, such that the
instruction cannot necessarzly be correctly restarted, completed,
simulated, or wundone. After an instruction aborts, the PC addresses
the opcode of the aborted instruction. The following are
unpredictable: : e

. destznatlon operands (lncLudxng implied operands, such as the top
of ‘the stack in an JS& instruction) : ,

'3 regxsters modxfled by Gperand specifier evaluation (intiuding
specifiers for implied operands)

e the PTE<M> bit in PTEs that map destination operands, if the

- operands could have been written but were not written, and PTE<M>
was clear before the instruction

e condition codes

e PSL<FPD>

e PSL<TP>

Except where otherwise noted in the description of the abort, the rest
of the PSL, other registers, and memory are unaffected.

The MicroVAX 78032 CPU recognizes six types of exceptions, as
summarized in Table 2-9.

 ARCHITECTURE

Table 2-9 Summary of Exceptions

exception class instances
arithmetic integer overflow trap
traps/faults integer divide by zero trap

subscript range trap
floating overflow fault
floating divide by zero fault
floating underflow fault

memory management access control violation fault
exceptions ' translation not valid fault

operand reference ' reserved addressing mode fault
exceptions reserved operand fault or abort
instruction execution reserved/privileged instruction fault
exceptions emulated instruction fault

extended function fault
breakpoint fault "

tracing exception _trace fault
system failure memory read error abort
exceptions memory write error abort

kernel stack not valid abort
interrupt stack not valid halt
machine check abort

2.5.4.1 Arithmetic Traps/Faults -

The various exceptions that occur as the result of an arithmetic or
conversion operation are mutually exclusive and are assigned the same
vector in the SCB. Each indicates that an exception had occurred
during the last instruction and that the instruction has been
completed (trap) or backed up (fault). A code unigque to each
exception type is then pushed on the stack as a longword. The stack
after an arithmetic exception is shown in Figure 2-32. Table 2-10
lists the type codes.

ARCHI

TYPE CODE o -sp

 PC OF NEXT INSTRUCTION TO EXECUTE"

PSL

*SAME AS THE INSTRUCTION CAQS%NG EXCEPTION IN CASE OF FAULT

MR-T3394

Figure 2-32 Stack After Arithmetic Exception

Table 2-10 Arithmetic Exception Type Codes

type code exception type
(hex)
TRAPS
1 ~ integer overflow
2 integer divide by zero
7 : subscrlpt range
FAULTS
8 floating overflow
9 floating divide by zero
A flecating underflow

2.5.4.1.1 Integer Overflow Trap -

An integer overflow trap is an exception that indicates that the last
instruction executed had an integer overflow setting the V condition
code and that integer overflow was enabled (IV set). The result
stored 1is the low-order part of the correct result. N and Z are set
according to the stored result. The type code pushed on the stack is
1. Note that the instructicns RET, REI, REMQUE, REMQHI, REMQTI, and
BISPSW do not cause overflow even if they set V. Also note that the
"EMODx floatxng point 1nstruct*0ns can cause integer overflow.

2-47

TECTUR

ARCHITECTURE

2.5.4.,1.2 Integer Divide By ‘Zero Trap -

An integer divide by zero trap is an exception that indicates that the
last instruction executed had an integer zero divisor. The result
stored is equal to the dividend and condition code V is set. The type
code pushed on the stack is 2.

2.5.4.1.3 Subscript Range Trap'«

A subscript range trap is an exception that indicates that the last
instruction was an INDEX instruction with a subscript operand that
failed the range check. The value of the subscript operand 1is Llower
than the low operand or greater than the high operand. The result is
stored in indexout, and the condition codes are set as if +the
subscript were within range. The type code pushed on the stack is 7.

2.5.4.1.4 Floating Overflow Fault -

A floating overflow fault is an exception that indicates that the last
instruction executed resulted in an exponent greater than the largest
representable exponent for the data. type after normalization and
rounding. The destination was unaffected and the saved condition
codes are unpredictable. The saved PC points to the instruction
causing the fault. In the-case of a POLY instruction, the instruction
is suspended with FPD set. The type code pushed on the stack is 8.

2.5.4.1.5 Floating Divide By Zero Fault -

A flocating divide by zero fault is an exception that 1indicates that
the last 1instruction executed had a floating =zero divisor. The
quotient operand was unaffected and the saved condition codes are
unpredictable. The saved PC points to the instruction causing the
fault. The type code pushed on the stack is 9.

2.5.4.1.6 Floating Underflow Fault -

A fleating underflow fault is an exception that indicates +that the
last instruction executed resulted in an exponent less than the
smallest representable exponent for the data type after normalization
and rounding and that fleocating underflow was enabled (FU set). ' The
destination operand is unaffected and the saved condition codes are
unpredictable. The saved PC points to the instruction causing the
fault. In the <case of a PCLY instruction, the instruction 1is
suspended with FPD set. The type code pushed on the stack is 10.

2-48

ARCHITECTUR!

2.5.4.2 Memory Management Exceptions -

The two exceptions that occur as a result of memcry management
operations - use separate vectors in the SCB but push the same
information onto the stack. The information pushed on +the stack is
called the fault parameter block and is shown in Figure 2-33.

The same parameters are stored in the fault parameter block for both
types of memory management fault. The first parameter pushed on the
kernel stack after the PSL and PC is a virtual address that is located
in the same page as the virtual address that caused the fault. Note
that a process space reference can result in‘a system space virtual
reference for the PTE. If the reference to the per-process PTE
faults, the virtual address that 1is saved 1is the process virtual
address and a 1 is stored in bit 1 of the fault parameter word. The
second parameter pushed on the kernel stack is the fault parameter
word and contains information related to the type of memory management
violation, PTE reference, and type of memory access (read, write,
etc.). Table 2-11 gives a description of the bits used in the fault
parameter word.

31 , 03 02 01 00
m|P|L §sp

SOME VIRTUAL ADDRESS IN THE FAULTING PAGE

PC OF FAULTING INSTRUCTION

PSL AT TIME OF FAULT

MA 13420

Figure 2-33 Fault Parameter Block

ARCHITECTURE

Table 2-11 Fault Parameter Word Bit Descriptions

Bit Field Description
<31:03> Unused.
<2> M Write or Modify Intent - this bit is set to 1 to

indicate that the intended access was a write or
modify. This bit is 0 if the programs intended
access was a read. ‘

<1l> P PTE Reference - this bit is set to 1 to indicate
that the fault occurred during the reference to the
process page table associated with the wvirtual
address. This bit can be set on either length or
protection faults.

<0> Length Violation - this bit is set to 1 to indicate

that an Access Control Violation was the result of a

length violation rather than a protection violation.

This bit is always 0 for a Translation Not Valid

Fault. ’

[

2.5.4.2.1 Access Control Violation Fault -

An access control violation fault is an exception indicating that the
process attempted a referencqﬁct allowed for the access mode at which
the process was operating. Software may restart the process after
changing the address translation information.

2.5.4.2.2 Translation Not Valid Fault -

A translation not valid fault is an exception indicating that the
process attempted a reference to a page for which the valid bit in the
page table was not set. Note that if a process attempts to reference
a page for which the page table entry specifies both Not Valid and
Access Violation, an Access Control Violation Fault occurs.

[\
[
w
o

ARCHITECTURE

2.5.4.3 Operand Reference Exceptions -

2.5.4.3.1 Reserved Addressing Mode Fault -

A reserved addressing mode fault is an exception indicating that an
operand specifier attempted to wuse an addressing mode that is not
allowed in the situation in which it occurred. NOo parameters are
pushed.

2.5.4.3.2 Reserved Operand Exception -

A reserved operand exception indicates that an operand accessed has a
format reserved for future use by DIGITAL. No parameters are pushed.
This exception always backs up the PC to point to the opcode. The
exception service routine may determine the type of operand by
examining the opcode using the stored PC. Note that only the changes
made by instruction fetch and because of operand specifier evaluation
may be restored. Therefore, some instructions are not restartable.
These exceptions are labeled as ABORTs rather than FAULTs. The PC is
always restored properly unless the instruction attempted to modify it
in a manner that results in unpredictable results.

2.5.4.4 Instruction Execution Exceptions -

2.5.4.4.1 Reserved/Privileged Instruction Fault -

A reserved/privileged instruction fault occurs when the processor
encounters an opcode that 1is not specifically defined, or that
requires higher privileges than the current mode. No parameters are
pushed. Opcode FFFF (hex) will always fault.

2.5.4.4.,2 Emulated Instruction Fault -

An emulated instruction fault occurs when an opcode that has microcode
assistance for instruction emulation is encountered by the processor.
Section 4,12 describes microcode assistance for emulated iastructions.

ARCHITECTURE

2.5.4.4.3 Extended Function Fault -

An extended instruction fault occurs when an opcode reserved to the

user is executed. All opcodes reserved to the user start with FC
(hex), which is the XFC instruction. No parameters are pushed on the

stack.

2.5.4.4.4 Breakpoint Fault -

A breakpoint fault is an exception that occurs when the breakpoint
instruction (BPT) is executed. No parameters are pushed.

To proceed from a breakpoint, a debugger or tracing program typically
restores the original contents of the location containing the BPT,
sets T in the PSL saved by the BPT fault, and resumes. When the
breakpointed instruction completes, a trace exception will occur. At
this point, the tracing program can again re-insert the BPT
instruction, restore T to its original state (usually clear), and
resume. Note that if both tracing and breakpointing are in progress
(i.e., 1f PSL<T> was set at the time of the BPT), then on the trace
.exception both the BPT restoration and a normal trace exception should
be processed by the trace handler.

2.5.4.5 Tracing -

A trace trap is an exception that occurs between instructions when
trace is enabled. Tracing is wused for tracing programs, for
performance evaluation, or debugging purposes. It is designed so that
one and only one trace exception occurs before the execution of each
traced instruction. The saved PC on a trace is the address of the
next instruction that would normally be executed. If a trace fault

- and a memory management fault occur simultaneocusly, the order in which
the exceptions are taken is unpredictable. The trace fault for an
instruction takes precedence over all other exceptions.

In order to ensure that exactly one trace occurs per instruction
despite other traps and faults, the PSL contains two bits, trace
enable (T) and trace pending (TP). Instead of the PSL<T> bit being
defined to produce a trap after any other traps or aborts at the end
of an instruction, the trap effect is implemented bv copying PSL<T> to
a second bit (PSL<TP>} that 1is actually used to generate the
exception. PSL<TP> generates a fault before any other processing at
the start of the next instruction.

]
]
[61]
(3]

ARCHITECTUR!

2.5.4.6 System Failure Exceptions -

2.5.4.6.1 Kernel Stack Not Valid Abort -

‘Kernel stack not valid abort is an exception that indicates that the
kernel stack was not valid while the processor was pushing information
onto the kernel stack during the initiation of an exception or
interrupt. Usually this is an indication of a stack overflow or other
executive software error. The attempted exception is transformed into
an abort that wuses the interrupt stack. No extra information is
pushed on the interrupt stack in addition to PSL and PC. Bits <1:0>
of the exception vector should be 1, if they are 0, 2, or 3, the
operation of the processor is UNDEFINED. Software may abort the
process without aborting the system. However, because of the lost
information, the process cannct be continued. If the kernel stack 1is
not valid during the normal execution of an instruction (including
CHMK or REI), the normal memory management fault is initiated.

2.5.4.6.2 Interrupt Stack Not Valid Halt -

An interrupt stack not valid halt is an exception that indicates that
the interrupt stack was not valid while the processor was pushing
information onto the interrupt stack during the initiation of an
exception or interrupt. No further interrupt requests are
.acknowledged. The processor leaves the PC, the PSL, the ISP, and the
reascn for the halt in privileged registers (SAVISP, SAVPC, SAVPSL)
and initiates the restart process, see Section 2.8,

2.5.4.6.3 Machine Check And Memory Read/Write Error Abort -

A machine check or memory read/write error abort indicates that the
processor detected an internal error in itself or a memory read/write
bus error (ERR asserted). Bits <1:0> of the exception vector should
be equal to 1l; if they are equal to 0, 2, or 3, the operation of the
processor 1s UNDEFINED.

The parameters pushed on the stack are shown in Figure 2-3%&.

ARCHITECTURE

BYTE COUNT (000C000C HEX)

. MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION

PC

PSL

MR 13395

Figure 2-34 Machine Check Stack Parameters

SP

The parameters are:

machine check code (hex):

most recent virtual
address:

internal state
information:

U= O N

o

7
8

9

80
81
82
83

<31:0>

<28:24>
<23:20>
<19:16>
<l4>

<T7+¢0>

<31:0>

<31:0>

ononouou

[A

#

wononoH

]

[}

"

ARCHITECTURE

impossible microcode state (FSD)
impossible microcode state (SSD)
undefined FPU error code 0
undefined FPU error code 7
undefined memory management status

(TB miss flows)

undefined memory management status

{(M = 0 flows)

process PTE address in PO space

process PTE address in Pl space
undefined interrupt ID code

read bus error, VAP is virtual address
read bus error, VAP is physical address
write bus error, VAP is virtual address
write bus error, VAP is physical address

current contents of VAP register
(possibly incremented by 4)

current contents
current contents
current contents
current contents
bit

of ATDL register

of STATE<3:0>

of ALU cond codes
of VAX CANT RESTART

delta PC at the time of the exceptidn

PC at the start of the current

instruction

current contents

of PSL

ARCHITECTURE

2.5.5 Contrast Between Exceptions And Interrupts

Exceptions and interrupts are very similar. When either is initiated,
both the processor status longword (PSL) and the program counter (PC)
are pushed onto the stack. However there are seven important
differences: ,

1. An exception condition is caused by the execution of the <current
instruction while an interrupt is caused by some activity in the
computing system that may be independent of . the current
instruction.

2. An exception condition is usually serviced in the context of the
process that produced the exception condition, while an interrupt
is serviced independently from the currently running process.

3. The IPL of the processor is usually not changed when the processor
initiates an exception, while the IPL is always raised when an
interrupt is initiated.

4. Exception service routines usually execute on a per-process stack
while interrupt service routines normally execute on a per-CPU
stack.

5. Enabled exceptions are always initiated immediately no matter what
the processor IPL 1is, while interrupts are held off until the
processor IPL drops below the IPL of the requesting interrupt,

6. Most exceptions can not be disabled. However, 1if an exception
causing event occurs while that exception 1is disabled, no
exception 1is initiated for that event even when enabled
subsequently. This includes overflow which is the only exception
whose occurrence is indicated by a condition code (V). If an
interrupt condition occurs while it is disabled, or the processor
is at the same or higher IPL, the condition will eventually
initiate an interrupt when the proper enabling conditions are met
if the condition is still present.

7. The previous mode field in the PSL is always set to kernel on an
interrupt, but on an exception it indicates the mode at the time
of the exception.

ARCHITECTUR

2.5.6 Serialization Of Exceptions And Interrupts

The sequence in which recognition of simultaneously occurring
interrupts and exceptions takes place is:

1. Machine check exception.
2. Arithmetic exceptions.
3. Console Halt

4. Interrupts at a higher priority (IPL) than the current processor
priority. '

5. Trace fault (only one per instruction).

6. Start instruction execution or restart suspended instruction.

2.5.7 Initiate Exception Or Interrupt

The following operation describes the action taken by the MicroVax
78032 CrU when initiating an exception or interrupt. For a
description of the notation used to describe the operation refer to
Section 4.1.3.

Operation:

!The notation PSL<xxx> SP is used to refer
!to the SP appropriate to the mode xxx specified
'in the PSL.

{disable interruptsi};
tmpl <- SCB(vector]; lget correct vector
if tmpl<l:0> EQLU 3 then {UNDEFINED};
if tmpl<l:0> EQLU 0 AND {machine check or
kernel stack not valid} then {UNDEFINED};
if tmpl<l:0> NEQU O AND {CHMx} then {UNDEFINED};
if tmpl<l:0> EQLU 2 then {UNDEFINED};

if PSL<IS> EQLU 0 then- tswitch stacks
begin
PSL<CUR_MOD>_SP <- SP; !save old sP
1f tmpl<l:0> EQLU 1 then
SP <~ I8P;
else
SP <- new_mode_ SP; tkernel SP unless CHMx
end;

tmp2 <- PSL;
PSL<CM,TP,FPD,DV,FU,IV,T,N,Z,V,C> <~ 0; tcleanocut PSL
if {interrupt} then

PSL<PRV_MQOD> <- 0; tkernel mode

ARCHITECTURE

else .

PSL<PRV_MOD> <- PSL<CUR_MOD>;
PSL<CUR_MOD> <- new_mode; ‘kernel mocde unless CHMx
-{SP) <- tmp2; ton a fault or abort, the

!saved conditicn codes are
'unpredictable as backed up
-(SP) <- PC; - !1if necessary
{push parameters if any};
'if kernel stack not valid
fexception occurs while
!pushing tmp2, PC, or other
!parameters then
!PSL <~ tmp2 before
!initiating exception
if {interrupt} then

PSL<IPL> <=~ new_IPL !set new IPL

else

if tmpl<1:0> EQLU 1 then

- PSL<IPL> <- 31; '1F (hex)
if tmpl<l:0> EQLU 1 then PSL<IS> <- 1; !otherwise keep old IS
PC <- tmpl<3l:2> ' 0<1:0>; !longword aligned

{enable interruptsi;
if {PSL<IPL> LEQU 15} AND {PSL<IPL> GEQU 1} then
SISR<PSL<IPL>> <~ (: !clear SISR bit for
!software interrupt
!being initiated

Condition Codes (if vector<l:0> code is Q0 or 1):

N <- 0;
Z <- 0;
Vv <- 0:
C <- 0;

Exceptions:

interrupt stack not valid halt
kernel stack not valid abort

Description:

The handling is determined by the contents of a longword vector in the
system control block which is indexed by the exception or interrupt
being processed. If the processor is not executing on the interrupt
stack, then the current stack pointer 1is saved and -he new stack
pointer is fetched. The old PSL is pushed onto the new stack. The PC
is backed wup (unless this is an interrupt between instructions or a
trap! and is pushed onto the new stack. The PSL is set to a xnown
state. IPL 1s <changed if this 1is an 1interrupt or if it is an
exceptlion with vector<l:0> code 1. Any parameters are pushed. Zxcept
for interrupts, the previous mode in the new PSL is set to the old
value of the current mode. Finally, the PC is changed to point %o the
longword indicated by the vector<3l:2>,

2-58

ARCHITECTUR

Notes:
1. Interrupts are disabled during this seguence.
2. If the vector<l:0> code is invalid, the behavior is undefined.

3. On a fault or interrupt, the saved condition codes are
unpredictable; they are only saved to the extent necessary to
ensure correct completion of the instruction when resumed.

4. After an abort, the following are unpredictable:

a. Destination operands, including implied operands such as the
top of the stack during a JSR instruction.

b. Registers modified by operand specifier evaluation, including
registers modified by referencing implied operands.

¢. Condition codes.
d. PSL<FPD>,
e. PSL<TP>.

- £. The page table entry Modify bit for pages mapping write or
modify type operands. The Modify bit will be set if the
instruction modified the page. If the instruction did not
modify the page, the Mcdify bit is unpredictable.

After an abort, the PC pushed on the stack addresses the
instruction which aborted, unless the instruction modified the PC
in a way that produces unpredictable results. The other
registers, other bits of the PSL, and the rest of memory are
unaffected by an abort. :

5. After an abort or fault or interrupt that pushes a PSL with FPD
set, the general registers except PC, SP, and FP are unpredictable
unless the instruction description specifies a setting. If FP is
the destination in this case, then it is also unpredictable. ©n a
kernel stack not valid abort, both SP and FP are unpredictable.

6. If the processor gets an Access Control Violation or a Translation
Not Valid condition while attempting to push information on the
kernel stack, a kernel stack not wvalid abort 1is 1initiated. The
additional information, if any, associated with the original
exception is lost. However, the PSL and PC are pushed on the
interrupt stack with the same values as would have been pushed on
the kernel stack, and the IPL 1is <changed to 1F (hex). If
vector<l:0> for the kernel stack not valid abort 1is 0, the
operation of the processor is undefined.

2-59

ARCHITECTURE

7.

If the processor gets an Access Control Violation or a Translation
Not Valid condition while attempting to push information on the
interrupt stack, the processor 1s halted and only the state of the
ISP, PC, and PSL is ensured to be correct. The PSL and PC have
the values that would have been pushed on the interrupt stack.

The value of PSL<TP> that is saved on the stack is as follows:

fault clear

trace clear

interrupt clear (if FPD set)
from PSL<TP> (if after
traps, before trace)

abort unpredictable

trap from PSL<TP>

CHMx from PSL<TP>

BPT,XFC clear

reserved

instruction clear

9. The value of PC that 1s saved on the stack points to the

following:

instruction

fault instruction faulting
trace next instruction to execute
i.e., instruction at the beginning
of which the trace fault was taken
interrupt instruction interrupted or
next instruction to execute
abort instruction aborting or
detecting kernel stack not valid
» (not ensured on machine check)
trap next instruction to execute
CHMx next instruction to execute
BPT, XFC BPT, XFC instruction
reserved

reserved instruction

ARCHITECTUR

2.5.8 System Control Block (SCB)

The System Control Block is a table containing the vectors .by which
exceptions and interrupts are dispatched to the appropriate service
routines.

2.5.8.1 System Control Block Base (SCBB) -

-~

The SCBB is a privileged register containing the physical address of
the System Control Block, which must be page-aligned, Figure 2-35.

313029 0908 : 00
¥ VPPN T T TrTrTrrTrrTTTvrrTT T 1 1 8 &1 1 1 1
MBZ PHYSICAL LONGWORD ADDRESS OF SCB MBZ :5C88B
i LN SO U NN N EVU WU NSNS NN IO O S S U W A O OO O [R SO O T B A |

MR 11518

Figure 2-35 System Control Block Base Register

2.5.8.2 VYectors -

A vector 1is a longword in the SCB that is used by the processor when
an exception or interrupt occurs to determine how to service the
event. Table 2-12 lists the vectors contained in the SCB.

Separate vectors are defined for each interrupting device and each
class of exceptions. Bits <1:0> of the vector are interpreted as
follows:

0 Service this event on the kernel stack unless already running on
the interrupt stack, in which case service on the interrupt stack.

1 Service this event on the interrupt stack. If this event is an
exception, the IPL is raised to 1F (hex).

2 This code results in the MicroVAX 78032 CPU entering the restart
process, see Section 2.8.

3 This code results in the MicroVAX 78032 CPU entering the restart
process, see Section 2.8.

2-61

ARCHITECTURE

Table 2-12 System Control Block Vectors

Vector

(hex) Name Tvype

00 unused - -

04 machine check abort

08 kernel stack not valid abort

ocC power fail interrupt
10 reserved/privileged instruction fault

14 extended instruction - fault

18 reserved operand fault/abort
iC reserved addressing mode fault

20 access control violation fault

24 translation not wvalid . fault

28 trace pending (TP) fault-

2C breakpoint instruction fault

30 unused -

34 arithmetic trap/fault
38-3C unused . -

40 CHMK trap

44 CHME } trap

48 CHMS trap

4C CHMU trap
50-80 unused -

84 software level 1 interrupt
88 software level 2 interrupt
8C software level 3 interrupt
S0-BC software levels 4-15 interrupt
co interval timer interrupt
c4 unused -

cs ‘emulation start fault

CC emulation continue fault
DO-FC unused -
100-1FC adapter vectors* interrupt
200-3FC device vectors* interrupt

T o - . -~ " —— " —— " " - - o - 0 - - - — -~ o - ik o - e

*Used by the MicroVAX 78032 CPU to directly vector
interrupts from the external bus. The vector is
determined from Dbits <9:2> of the value supplied by
external hardware. If Dbit <0> of this value is 07,
then the new IPL is forced to 17 (hex). Only device
vectors in the range of 100 to 3FC (hex) should be
used. Except Dby devices emulating console storage
and terminal devices.

ARCHITECTURE

2.6 PROCESS STRUCTURE

A process is the basic entity that may be scheduled Dby the MicroVAX
78032 CPU. It consists of an address space, a hardware context, and a
software context. The hardware :ontext is defined by a data structure
called the process control block (PCB), which contains images of 14
general registers, the processcr status longword (PSL), the program
counter (PC), the four per-process stack pointers, the process virtual
memory defined by the base and length registers (POBR, POLR, PlBR, and
P1LR), and several minor control fields. When a process is not
executing, its hardware context 1is stored in the process control
block. In order for a process to execute, the majority of the PCB
must be moved into processor registers: while a process 1is being
executed, some of 1its hardware context 1is being updated in the
processor registers.

Saving the contents of the privileged registers in the PCB of the
currently executing process and then loading a new set of context in
the privileged registers from another PCB is termed context switching.
Context switching occurs as one process after another is schedulea for
execution.

2.6.1 PrOCéSSeCOQtEXt

The process control block for the currently executing process 1is
pcinted to by the contents of the process control block base (PCBB)
register, an internal privileged register, which contains the physical
address cf the PCB. Figure 2-36 shows the PCBB register.

The process control block contains all of the the switchable process
context collected into a compact form for ease of movement zo and from
the privileged internal registers. Although in any normal operating
system there s additional software context for each process, the
following description is limited to that portion of the the PCB known
to the hardware. Figure 2-37 shows the PCB and Table 2-13 describes
its contents.

313029 020100
T et r T rrr ey it e e e Ty r v i
MBZ PHYSICAL LONGWORD ADDRESS OF PCB MBZ| :PCBB

| |1 S I T O U S OO T T T O VOO O O I O N NN 1

MR-11820

Figqure 2-36 Process Control Block Base (PCBB) Register

ARCHITECTURE

31 00
KSP :PCB
ESP +4
ssP +8
usP +12
RO +16
R1 +20
R2 +24
R3 +28
R4 +32
RS5 +36
R6 +40
R7 +44
RS +48
R9 +52
R10 +66
R11 +60
AP (R12) +64
FP (R13) +68
PC +72
PSL +76
POBR . +80
MB2Z AST | mez POLR +84
P1BR +88
PME M8z PILR +92
NOTE: THE PME FIELD 1S UNUSED.
MR-11619

Figure 2-37

Process Control Block (PCB)

ARCHITECTURE
Table 2-13 Description of Process Control Block

Longword Bits Mnemonic Description
0 <31:0> KSP Kernel Stack Pointer. Contains the
stack pointer to Dbe used when the
current access mode field in the PSL
is 0 and IS = 0.

1 <31:0> ESP Executive Stack Pointer. Contains
the stack pointer to be used when the
current access mode field in the PSL
is 1.

2 <31:0> sSSP Supervisor Stack Pointer. Contains
the stack pointer to be used when the
current access mode field in the PSL
is 2.

3 <31:0> Usp User Stack Pointer. Contains the
stack pointer to be wused when the
current access mode field in the PSL
is 3.

4-17 <31:0> RO-R11, General registers RO through R11l,

AP ,FP AP, FP,
1 <31:0> PC Program Counter,.
19 <31:0> PSL Program Status Longword.
20 <31:0> POBR Base register for page table

describing process virtual addresses
from 0 to 2**30-1.

21 <21:0> POLR Length register for page table
located by POBR. Describes effective
length of page table.

21 <23:22> MBZ Must be zero.

ARCHITECTURE

Mnemonic

Description of Process Control Block (Continued)

Description

S e D e T G e s 4 ot ot ot o Bt o S ok S e A oo o o S o e o - e e v o

Table 2-13
' Longword Bits
21 <26:24>
21 <31:27>
22 <31:0>
23 <21:0>
23 <30:22>
23 <31>

ASTLVL

MBZ

P1BR

PI1LR

MBZ

PME

Contains access mode number
(established by software) of the most
privileged access mode for which an
Asynchronous System Trap (AST) .is
pending. Controls the triggering of
the AST delivery interrupt during REI .
instructions.

ASTLVL Meaning

2 AST pending for access
mode 0 (kernel)

1 AST pending for access
: mode 1 (executive)

2 AST pending for access
mode 2 (supervisor)

3 AST pending for access
mode 3 (user)

4 No pending AST

5-7 Reserved to DIGITAL

Must be zero.

Base register for page table
describing process virtual addresses
from 2**30 to 2**31-1,

Length register for page table
located by P1BR. Describes effective
length of page table,.

Must be zero.

Unused.

ARCHITECTURE

A process must be executing in kernel mode to alter its POBR, PIBR,
POLR, PILR, or ASTLVL. It must first store the desired new value in
the memory image of the PCB then move the value to the appropriate
privileged register. This protocol results from the fact that these
are read-only fields (for the context switch instructions) in the PCB.

The ASTLVL field of the PCB is contained in a processor privileged

register when the process is running. Figure 2-38 shows the format of
the AST Level Register,

3t Q302 o0

/N N A A N N T A B S R Y N B O 0 B B e By

IGNORED: RETURNS 0 ’ AST-

AN L
(READ/WRITE)

MR-13392

Figure 2-38 AST Level Register

2.6.2 Asynchronous System Traps (AST)

Asynchronous system -traps are a technique for notifying a process of
events that are not synchronized with its execution and initiating
processing for asynchronous events with the least possible delay.
This delay 1in delivery of the AST may be due to either process
non-residence or an access mode mismatch. The efficient handling of
AST's requires some hardware assistance to detect changes in access
mode (current access mode in PSL). A process 1in any of the four
execution access modes (kernel, executive, supervisor, and user) may
receive AST's; however, an AST for a less privileged access mode must
not be permitted to interrupt execution in a more protected access
mode. Since outward access mode transitions occur only 1in the REI
instruction, comparison of the current access mode field is made with
a privileged register (ASTLVL) containing the most privileged access
mode number for which an AST is pending. If the new access mode is
greater than or equal to the pending ASTLVL, an IPL 2 software
interrupt is triggered to cause delivery of the pending AST.

ARCHITECTURE

2.6.3 Process Structure Interrupts

Two of the 15 software interrupt priority levels are . reserved for
process structure software.

/
They are:

(IPL 2) - AST delivery interrupt,

This interrupt is triggered by a REI that detects
PSL<CUR_MOD> GEQU ASTLVL and indicates that a pending
AST may now be delivered for the currently executing
process.

(IPL 3) - Process scheduling interrupt.

This interrupt is only triggered by software to allow
the software running at IPL3 to cause the currently
executing process to be blocked and the highest
priority executable process to be scheduled.

2.7 STACKS

Stacks, also called pushdown lists or last-in/first-out gueues, are an
important feature of the MicroVAX 78032 CPU's architecture. They are
used for:

e Saving the general registers, including PC, at entry to a
subroutine, for restoration at exit.

e Saving PC, PSL, and general registers at the time of interrupts
and exceptions, and during context switches.

e C(Creating storage space for temporary use, or for nesting of
recursive routines.

At any time, the processor is either in a process context and in one
of four access modes (kernel, executive, supervisor, or user and the
interrupt stack bit (IS) of the PSL = 0) or in the system-wide
interrupt service context (IS = 1) that operates with kernel
privileges. There is a stack pointer (SP) associated with each of
these five states. Any time the processor changes startes, the SP
(R1l4) is stored in the process context stack pointer for the old state
and loaded from the one for the new state. The process context stack
pointers (KSP=kernel, ESP=executive, SSP=supervisor, and USP=user) are
stored in the hardware PCB with a copy of the current stack pointer in
the SP (R1l4) register. The stack pointer values in the PCB are
accessed whenever a stack pointer is switched.

2-68

ARCHITECTURE

2.7.1 Stack Residency

- The user, supervisor, and executive stacks do not need to be resident
in physical memory. The kernel can bring in or allocate process stack
pages as address translation not valid faults occur. However, the
kernel stack for the current process and-the interrupt stack (which is
process independent) must be resident and accessible. :

Translation not valid and access control viclation faults occurring on
references to either the kernel or interrupt stack are serious
failures from which recovery is impossible. If either of these faults
occur on a reference to the kernel stack, the processor aborts the
current sequence and initiates a kernel stack not wvalid abort. If
either of these faults occur on a reference to the interrupt stack,
the processor halts.

2.7.2 Stack Alignment

Except on CALLx instructions, the hardware makes no attempt to align
the stacks. For best performance the stack should be aligned on a
longword boundary and allocated in longword increments.

'2.7.3 Stack Status Bits

The interrupt stack bit (IS) and current mode bits in the processor
status longword (PSL) specify which of the five stack pointers is
currently in use as given in Table 2-14.

The processor does not allow the current mode to be non-zero when
IS = 1. This 1is achieved by clearing the mode bits of the PSL when
taking an interrupt or exception, and by causing a reserved operand
fault if return from exception or interrupt (REI) attempts to load a
PSL in which both IS and the current mode are non-zero.

Table 2-14 Stack Pointer Selection

IS Mode Register
1 ox ISP
0 0 KSP
Q 1 ESP
0 2 SSP
0 3 UsP

*Hardware will only allow a mode of 0 when the ISP 1s selected.

2-69

ARCHITECTURE

The stack to be used when servicing an interrupt or exception is
selected by the IS bit of the PSL and the contents of bits <1:0> of
the vector for the service routine as shown in Figure 2-39.

VECTOR <1:.0>=

00 01
0 KSP ISP
PSLIS>
1 ISP ISP
MR-13393

Figure 2-39 Stack Selection

2.7.4 Accessing Stack Registers

The MicroVAX 78032 CPU implements 5 privileged registers to allow
access to each stack pointer. These registers always access the
specified stack pointer, even for the current mode. Because the per
process stack pointers are stored in the PCB, the MTPR and MFPR
instructions access the hardware PCB. This means, the Process Control
Block Base Register (PCBB) must contain a valid address. Table 2-15
lists the stack pointers and their related privileged register.

Table 2-15 Stack Pointer Registers

Stack Pointer Mnemonic Register
Kernel Stack Pointer KSP 0
Executive Stack Pointer ESP 1
Supervisor Stack Pointer SSP 2
User Stack Pointer use 3
Interrupt Stack Pointer ISP 4

2-70

ARCHITECTURE

2.8 RESTART PROCESS

 The Restart process of the MicroVAX 78032 CPU is initiated when one of
the following happens.

1. The RESET pin is asserted.
2. The HALT pin is asserted.
3. A HALT instruction is executed with the processor in kernel mode.

4. The hardware or kernel software environment becomes severely
corrupted. -

The restart process saves the current values of the PC, PSL, interrupt

tack pointer, MAPEN<0>, and the restart code, in internal processor
registers: SAVISP, SAVPC, and SAVPSL. See Section 2.3.3.2 for a
description of these registers.

NOTE

SAVISP, SAVPC, and SAVPSL are limited 1life 1internal
processor registers and must be saved in memory before
re-enabling the memory management unit or wusing any
emulated instructions.

The restart process sets the state of the processor as follows:

proc reg SAVISP
proc reg SAVPC
proc reg SAVPSL

saved interrupt stack pointer

saved PC

saved PSL<31:16,7:0> in SAVPSL<31:16,7:0>
saved MAPEN<(> in SAVPSL<15>

saved restart code in SAVPSL<14:8>

[1

SP = stack pointer at time of restart
(NOT stack pointer specified by PSL<26:24>)
PSL = 041F0000 (hex)
PC = 20040000 (hex)
MAPEN = 0
ICCS = 0 (reset only)
SISR = 0 (reset only)
ASTLVL = 4 (reset only)
all else = undef ined

After setting the state of the processor <the restart process will
start executing user code at physical address 20040000 (hex). The
code there can execute MFPR's to read the saved PC, PSL and interrupt
stack pointer, establish a new interrupt stack and start the console
routine. Since memory management is disabled, and the current mode of
the processor is kernel, the console routine has full privileges to

2-71

ARCHITECTURE

examine and or modify the 1internal state of the processor. The
console routine may require an area of known good memory for scratch
variables. The console routine entry and exit protocols are described
in the following sections.

The reason for entering the restart process is given by the restart

code that is saved in SAVPSL<14:8>. Table 2-16§ gives a list of the
restart codes.

Table 2-16 Restart Codes

code condition

2 HALT asserted

3 initial power on, RESET asserted

4 interrupt stack not valid during exception

5 machine check during machine check or kernel stack

not valid exception

6 HALT instruction executed in kernel mode

.7 SCB vector bits<l:0> = 11

8 SCB vector bits<l:0> = 10

A CHMx executed while on interrupt stack

10 ACV or TNV during machine check exception

11 ACV or TNV during kernel stack not wvalid exception

2.8.1 Console Entry Protocol

The console is entered with the state of the processor saved in
internal registers. Because these are limited life registers the
state of the processor is valid for a limited time only. The user
must be careful not to enable memory management or use any emulated
instructions until these registers are moved to memory. Therefore,
the protocol for console entry is as follows:

1. Save the limited 1life 1internal registers SAVPC, SAVPSL, and
SAVISP.

2. Save the current stack pointer. This is done to complete a stack
swap 1if necessary, that is, store the SP in the KSP, ESP, SSP, or
USP of the current process contrecl block.

A stack swap needs to be performed if the processor was not
running on the interrupt stack when the restart process was
entered. This is because the MicroVAX 78032 CPU stores the
non-interrupt stack pointers in the PCB. If the IS bit of the
saved PSL is clear (=0), the console routine must complete the

2-72

ARCHITECTUR

stack swap by storing the saved value of SP into the appropriate
location of the PCB, if cone exists. The location in the PCB that
the SP 1s to be suored in is determined by the CUR MOD field of
the saved PSL. If the IS bit of the saved PSL is set (=1), a
stack swap does not have to be performed.

3. Set up the console stack pointer.
4. Begin the console routine.

A typical console entry routine and description can be found in
Appendix C of this user's guide.

2.8.2 Console Exit Protocol
Exiting from the console depends on two things:

1. If memory management 1is to be enabled, the environment to which
the console is exiting must have a valzdly mapped interrupt stack
with at least two spare Jlongwords at the bottom. The wuser's
console code will have to verify this by simulating the memory
management process, thereby proving that the interrupt stack is
resident and points to valid physical memory. If the interrupt
stack is not valid, the exit sequence must be aborted.

2. The REI which restores the PC and PSL must be in the same physical
longword that contains the instruction that sets the MME bit in
the MAPEN register.

The protocol for exiting from the console is as follows:

1. Push the saved PC and PSL onto the (mapped} bottom of the SAVED
interrupt stack. ‘ '

2. Enable memory mapping, if appropriate.
3. Exit via an REI.

A typical console exit routine with memory management simulation can
be found in Appendix C of this user's guide.

CHAPTER 3

INSTRUCTION FORMAT AND ADDRESSING MODES

3.1 INSTRUCTION FORMAT

The VAX instruction set has a variable length instruction format which
may be as short as one byte and as long as needed depending on the
type of instruction. The general format of a VAX instruction is shown
in Figure 3-1. Each instruction is made up of an opcode followed by
zero to six operand specifiers, The number and type of operand
specifiers 1is dependent on the opcode. All operand specifiers are of
the same format, an address mode plus additional information wused to
locate the operand. This additional information contains up to two
register designators and addresses, data, or displacements. The
operand wusage 1is determined implicitly from the opcode and is called
the operand type. It includes both the access type and the data type.

OPCODE (1 OR 2 BYTES)

OPERAND SPECIFIER 1

OPERAND SPECIFIER 2

OPERAND SPECIFIER 3

{ {

1]
{ ¢
)

OPERAND SPECIFIER 6

MR.11601

Figure 3-1 MicroVAX Instruction Format

3-1

INSTRUCTION FORMAT AND ADDRESSING MODES

3-1.1 Assembler Radix Notation

The radix of the assembler is decimal. To express a hexadecimal
number in assembler notation, it is required to precede the number by
~“X. For example, the assembler interprets the 3456 in
"MOVW #3456,-(SP)" as a decimal number. If it is to be interpreted as
a hexadecimal number, it would be written "MOVW '#°X3456,-(SP)",

3.1.2 Operating Code

Each VAX instruction contains an operating code (opcode) which
specifies the desired operation to be performed. The opcode may be
one or two bytes long, depending on the contents of the byte at

address A. The opcode is two bytes long if the value of the byte at

address A is FD

{hex).

Q7

Figure 3-2 shows the opcode format.

Q0

R L) 1] k3 L T
ONE 8YTE OPCODE: OPCODE A
1 1 H L i
15 08 07 00
i I ¥ H 1 Ll i i 1
TWC BYTE OPCODE: OPCODE FD ‘A
1 1]] ! i A | i
MA-11602
Figure 3-2 Opcode Formats

3-2

INSTRUCTION FORMAT AND ADDRESSING MODE:

3.1.3 Operand Type

The operand type specifies how the operand associated with an
instruction is used. Information provided- by the opcode includes the
data type of each operand and how it 1s accessed.

An operand may be accessed in one of 6 ways.
1. Read - The specified operand is read-only.
2. Write - The specified operand is write-only.

3. Modify - The specified operand’ is read, may or may not be
modified, and is written.

4., Address - Address calculation occurs until the actual address of
the operand 1is obtained. In this mode, the data type indicates
the operand size to be used in address calculation. The specified
operand is not accessed directly, although the instruction may use
the address to access that operand.

5. Variable bit field base address - If just R[n] is specified, the
field 1is in general register R[n] or in R{n+l1]'Rn, that is R{n+1]
concatenated with R{n]. Otherwise address calculation occurs
until the actual address of the operand is obtained. This address
specifies the base to which the field position (offset) 1is
applied.

6. Branch - No opérand is accessed. The operand specifier 1is the
branch displacement. In this specifier, the data type indicates
the size of the branch displacement.

3.2 ADDRESSING MODES

Addressing modes can be divided into two basic categories, general
mode addressing and branch addressing. A summary of the addressing
modes is given in Table 3-1 and Table 3-2. A description of each mode
follows.

«

INSTRUCTICN FORMAT AND ADDRESSING MODES

Table 3-1 Summary of General Register Addressing Modes

- Mode ‘ Assembler Access -
(hex) Name Notation rmwav PC SP Indexable
0-3 literal S*4literal vy £ £ £ £ - . f

! index i[Rx] yyyyy £ vy £
S register Rn yvyy fy u uqg £
6 register deferred {(Rn) YYY Y Y u Y v
7 autodecrement -{(Rn) YYVY VY u v ux
8 autoincrement (Rn)+ YYYVYY D Y ux
9 autoincrement 2(Rn)+ YYyYyvYYy P Y ux
deferred ~
A byte displacement B~d(Rn} Y Y Y Y Y D Y ¥ -
B byte displacement ZB~d(Rn) YYYYY P y ¥
deferred _
C word displacement W~d(Rn) YYYYY P ¥ ¥
D word displacement @W~d(Rn) YYYYY P Y y
deferred
E longword displacement L~d(Rn) YYYYY P Y Y
F longword displacement @&L~d(Rn) YYYYY P Y y
deferred
Addressing Legend
Access: Assembler Notation Syntax:
r = read i = any indexable address mode
m = modify d = displacement
w o= write Rn = general register, n = 0 to 15
a = address Rx = general register, x = 0 to 14
v o= field B = byte
W = word
L = longword
Results
y = yes, always valid address mode
£ = reserved address mode fault
- = logically impossible
p = program counter addressing
u = unpredictable
ug = unpredictable for quad, D/G_floating,
or field if pos + size > 32
ux = unpredictable if index reg = base reg

INSTRUCTION FORMAT AND ADDRESSING MODES

«

Table 3-2 Summary of Program Counter Addressing Modes

Assembler . Access

Mode ~Name Notatio rmwav Indexable
8 Immediate I~#constant Yy Uuyy ¥
9 absolute ¢#address Y VY YV 4
A byte relative B~address Y YYVYY y
B byte relative @B~address YYVYVYY 34
: deferred
c word relative W~address YYYVYY y
D word relative W~address Y YYVYY V4
deferred :
E - longword relative L~address vy YY VY ¥
F longword relative L~address YyYYVYY y
' deferred
Addressing Legend
Access: Assembler Notation Syntax:
r = read i = any indexable address mode
m = modify d = displacement
W= write Rn = general register, n = 0 to 15
a = address Rx = general register, x = 0 to 14
v = field B = byte
W = word
L = longword
Results:
y = yes, always valid address mode
f = reserved address mode fault
- = logically impossible
p = program counter addressing
u = unpredictable
ug = unpredictable for quad, D/G_floating,
or field if pos + size > 32
ux = unpredictable 1f index reg = base reg

INSTRUCTION FORMAT AND ADDRESSING MCDES

3.2.1 General Mode Addressing

3.2.1.1 General Register Address Modes -

The general register address mcdes use cne or more of the general
registers, depending on the instruction and data type, to contain the
operand(s) or information required to 'locate the operand(s) to be used
by the specified instruction.

Register Mode (Figure 3-3)

Assembler Syntax: Rn

Mode Specifier: 5

07 04 03 00
4 I i f i li

| ! L L i !

VIR-13642

The operand is the contents of register n {(or
R{n+1] concatenated with Rn for guadword,
D_floating, and certain field operations):

Cperand = Rn 'if one register, or
R{n+1]'Rn 'if two registers
Figure 3-3 Register Mode Operand Specifier Format

Description:

With register mode, any of the general registers may be used as simple
accumulators and the operand is contained in the selected register.
Since they are hardware registers within the processor, they provide
speed advantages when wused for operating on fregquently accessed

variables.

Special Comments:

This mode can be used with operand specifiers using read, write or
modify access but cannot be used with the address access type;
otherwise, an illegal addressing mode fault results. The program
counter (PC) cannot be wused in this mode. 1If the PC is read, the

3-6

INSTRUCTION FORMAT AND ADDRESSING MODE!

value is unpredictable; if the PC is written, the next instruction
executed or the next operand specified is unpredictable. Similarly,
if PC is used in register mode for a write—access operand which takes
two adjacent registers, the contents of RO are unpredictable.

The stack pointer (SP) cannot be used in this mode for an operand
which takes two adjacent registérs since that would imply a direct
reference to tne PC and the results are unpredictable.

INSTRUCTIDD\% FORMAT 'AND ADDRESSING MCDES

Example: REGISTER MODE, MOVE WORD INSTRUCTIOCN

Instruction Format: MOVW R1,R2 Instruction moves a 16-bit word

of data from Rl to R2.

BEFORE INSTRUCTION EXECUTION

R1 R2

MACHINE CODE: ASSUME STARTING LOCATIONOOOQOO03000

00003000 80 OPCODE FOR MOVE WORD INSTRUCTION
00003001 51 OPERAND SPECIFIER, SOURCE: REGISTER MODE 1
00003002 52 OPERAND SPECIFIER, DESTINATION: REGISTER MODE 2

MR-13399

Figure 3-4 MOVW R1,R2 Move Word

This example, Figure 3-4, shows a Move Word instruction using register
mode. The content of Rl is the operand. The Move Word instruction
causes the least significant half of Rl to be transferred to the least

significant half of register R2. The upper half of R2 is unaffected.

3-8

INSTRUCTION FCRMAT AND ADDRESSING MODES
Register Deferred Mode (Figure 3-5)

 Assembler Syntax: (Rn)

Mode Specifier: 6

07 04 03 00

MR-13643

Figure 3-5 Register Deferred Mode Operand Specifier Format
Description:

The register deferred mode provides one level of indirect addressing
over register mode; that is, the general register contains the address
of the operand rather than the operand itself. The deferred modes are
useful when dealing with an operand whose address is calculated.

Special Comments:
The PC may not be used in register deferred mode. If it 1is the

address of the operand 1is unpredictable and the next instruction
executed or the next operand is unpredictable. :

2

INSTRUCTION FORMAT AND ADDRESSING MODES

Example: REGISTER DEFERRED MODE, CLEAR QUAD INSTRUCTION

Instruction Format: CLRQ (R4}

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE - R4
00001010 | A8 00001010
00001011 | cD
00001012 | EF
00001013 | 12
00001014 | 3a.
00001015 | s6
00001016 | 76
00001017 | 65
AFTER INSTRUCTION EXECUTION
ADDRESS v
SPACE R4
00001010 | o0 00001010
00001011 | 00
00001012 | 00
00001013 | 00
00001014 | 00
00001015 | 00
00001016 | 00
00001017 00

MACHINE CODE: ASSUME STARTING LOCATIONQOO0O0 3000

00003000 7C OPCODE FOR CLEAR QUAD INSTRUCTION
00003001 64 OPERAND SPECIFIER FOR REGISER DEFERAED MODE,. R4

MR-13400

riy

igure 3-6 CLRQ (R4) Clear Quadword

This example, Figure 3-6, shows a Clear Quad instruction wusing
Register Deferred Mode. R4 contains the address of the operand. The
instruction specifies that the byte at this address plus the following
seven bytes are to be cleared.

3-10

INSTRUCTION FCRMAT AND ADDRESSING MODES
Autoincrement Mode (Figﬁre 3-7)

Assembler Syntax: " (Rn)+

Mode Specifier: 8

07 04 03 , 00

MR-13644

Figure 3-7 Autoincrement Mode Operand Specifier Format
Description:

In autoincrement mode addressing, Rn contains the address of the
operand. After the operand address is determined, the size of the
operand (which is determined by the instruction) in bytes (1 for byte,
2 for word, 4 for longword or F_floating, and 8 for gquadword,
D_floating, or G_floating) is added to the contents of Rn and the
contents of Rn are replaced by the result. This'mode provides for
automatic stepping of a pointer through sequential elements of a table
of operands. Contents of registers are incremented to address the
next sequential location. The autoincrement mode is especially useful
for array processing and stacks. It will access an element of a table
and then step the pointer to address the next operand 1in the table.
Although most useful for table handling, this mode is general and may
be used for a variety of purposes.

Special Comments:
If the PC is used as the general register, this addressing mode is

designated immediate mode and has special syntax (refer to immediate
mode) .

INSTRUCTION FORMAT AND ADDRESSING MODES

Example: - AUTOINCREMENT MODE, MOVE LONG INSTRUCTION

Instruction Format: MOVL (R1)+,R2 This instruction will move
a longword of data (32 bits)
to R2

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R1 R2
=TT
00001010 | 00 , , ,
00001011 m QPERAND)
00001012 22
00001013 33
Q0001014 44
00001015 55
SOURCE OPERAND ADDRESS = 000001010

AFTER INSTRUCTION EXECUTION

ADDRESS
SPACE R1) R2

00001014 33221100
00001010 oL}
00001011 n __’/
00001012 22
00001013 33

Q0001014 44
00001015 55

MACHINE CODE: ASSUME STARTING LOCATION 3000

00003000 00 OPCODE FOR MOVE LONG WORD INSTRUCTION
00003001 81 AUTOINCREMENT MODE. REGISTER R1
00003002 52 REGISTER MODE. REGISTER R2

MR-134071

Figure 3-8 MOVL(R1)+,R2 Move Longword

This example, Figure 3-8, shows a Move Long instruction using
autolincrement mode. The content of Rl is the effective address of the
source operand. Since the operand is a 32-bit longword, four bytes
are transferred to R2. Rl is then incremented by four since the
instruction specifies a longword data type.

3-12

INSTRUCTION FORMAT AND ADDRESSING MODE!
Autoincrement Deferred (Figure 3-9)

Assembler Syntax: @(Rn)+

Mode Specifier: 9

07 04 03 00

MR-13645

Figure 3-9 Autoincrement Deferred Operand Specifier Format
Description:
In autoincrement deferred addressing, Rn contains a longword address
which 1is a pointer to the operand address. After the operand address
has been determined, four is added to the <contents of Rn and the
contents of Rn are replaced with the result. The quantity four is
used since there are four bytes in an address.
Special Comments:

If the PC is used as the general register, this addressing mode Iis
designated absolute mode (refer to absolute mode).

3-13

INSTRUCTION FORMAT AND ADDRESSING MODES

Example: AUTOINCREMENT DEFERRED MODE, MOVE WORD INSTRUCTION

Instruction Format: MOVW 3(R1)+,R2

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R1 R2

00001010 00 00001010 00000000
00001011 1 OPERAND ADDRESS

00001012 22 33221100

00001013 33

00001014 44

00001018 58

33221100 34
33221101 5F
33221102 [8]o]
33221103 [o]o]
N

AFTER INSTRUCTION EXECUTION
. A1 A2

00001014 00008F34

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 BO OPCODE FOR MOVE WORD INSTRUCTION
00003001 N AUTOINCREMENT DEFERRED MODE, REGISTER R}
00003002 52 REGISTER MODE. REGISTER R2

MR-13402

Figure 3-10 MOVW @(R1l)+,R2 Move Word

This example, Figure 3-10, shows & Move Word instruction using
autoincrement deferred mode. The contents of Rl is a pointer to the
operand address. Since a word length instruction 1is specified, the
byte at the effective address and the byte at the effective address
plus one are loaded into the low-order half of register R2; the upper
half of R2 is not altered. Rl is then incremented by four since it
points to a 32-bit address.

3-14

INSTRUCTION FORMAT AND ADDRESSING MCDES
Autodecrement Mode (Figure 3-11)

Assembler Syntax: -{(Rn)

Mode Specifier: 7

AR 13646

Figure 3-11 Autodecrement Mode Operand Specifier Format
Description:

In autodecrement mode the contents of Rn are decremented and then used
as the address of the operand. The size of the operand, in bytes (1
for byte, 2 for word, 4 for longword or F_floating, and 8 for
quadword, D_floating or G_floating) is subtracted from the contents of
Rn and the contents of Rn are replaced by the result. The updated Rn
contains the address of the operand.

Special Comments:
The PC may not be used in autodecrement mode. If it is, the address

of the operand is unpredictable and the next instruction executed or
the next operand is unpredictable.

INSTRUCTICN FORMAT AND ADDRESSING MCDES

Example: AUTODECREMENT MODE, MOVE LONG INSTRUCTICN

Instruction Format: MOVL -(R3),R4

BEFORE INSTRUCTION EXECUTION

ADDRESS

SPACE a3 A4
00001014 10 00001018 000C0000
00001015 32
00001016 54 CE543210
00001017 CE
AFTER INSTRUCTION EXECUTION R3 R4
00001014 CEB43210

MACHINE CODE: ASSUME STARTING LOCATION 00003000

. 00003000 DO OPCODE FOR MOVE LONG INSTRUCTION
00003001 73 AUTOINCREMENT MODE, REGISTER R3
00003002 54 REGISTERMODE, REGISTER R4

M£-13403

Figure 3-12 MOVL -(R3),R4 Move Longword

This example, Figure 3-12, shows a Move Long instruction wusing
autcdecrement mede. The contents or R3 are decremented according to
the data type specified in the opcode (four in this example because a
longword is wused). The updated contents of R3 are then used as the
address of the operand. The instruction causes the operand to Dbe
fetched and loaded into R4,

INSTRUCTION FORMAT AND ADDRESSING MODES

<

Literal Mode (Figure 3-13)

Assembler Syntax: s~# literal

Mode Specifier: 0,1,2, or 3
: : (depending on literal value specified)

Q7 08 05 04 03 02 o Q0
| ¥) I 1 T

0 0 © o LITERAL

S| { 1 | 1 I

MA-13404

Figure 3-13 Literal Mode Operand Specifier Format

Description:

Literal mode addressing provides an efficient means of specifying
integer constants in the range from 0 to 63 (decimal). This is called
short literal. Literal values above 63 can be obtained by immediate
mode (autoincrement mode using the PC) although immediate mode is
longer. For predefined values, the assembler will choose between
short literal and immediate modes. For short literal operands, the

format is shown in Figure 3-14. Bits 7 and 6, however, are always set
to zero. ,

MODE SPECIFIER .

A
4 b

07 08 05 04 03 02 o 00
T T T T T 1

0 0 '
1 1] i 1 i

MR-13405

Figure 3-14 Short Literal Format

The following example, Figure 3-15 shows some short literals; the
literals are 14, 30, 46, and 62.

INSTRUCTION FORMAT AND ADDRESSING MODES

1410 o o]o o 1 1 1 ol -ranae oF Mope «Sspffm =0
3010 o olo 1 1 1 1 o RANGE OF MODE 3s:>;=_é:msn =1
4616 o o1 o 1 1 1 o RANGE OF MOOE i?ff,’m =2
620 o o |1 1 1 1 1 o RANGE OF MODE ggfgmsn =3

MR-13408

Figure 3-15 Examples of Short Literals

Floating point literals as well as short literals can be expressed.
For operands of data type F_floating, D_floating, and G_floating, the
6-bit literal field is composed of two ~3-bit fields, Figure 3-16,
where EXP is exponent and FRA is fraction.

05 04 03 02 01 00
T T T Y

EXP FRA
1 i) H 1

MR-13407

Figure 3-16 Floating Literal

The EXP and FRA fields are used to form an F_floating or D_floating
operand as shown 1in Figure 3-17. Bits 63332 are not present in an
F_floating operand.

. INSTRUCTION FORMAT AND ADDRESSING MCDES

*

15 14 ; 07 08 04 03 00

0 128 + EXP FRA 0
0 | A2 ‘
0 | :A+4
0 ' ' ' A+6

MR 3408

Figure 3-17 F_floating and D_floating Operand

The EXP and FRA fields are used to form a G_floating operand as shown
in Figure 3-18. ‘

15 14 ’ v 04 03 o 00

0 1024 + EXP FRA 0
0 :A+2
0 A+4 :
0 A+6

MB-13409

Figure 3-18 G_floating Operand

3-19

INSTRUCTION FORMAT AND ADDRESSING MODES

Table 3-3 gives the numbers that can be represented by floating
literals. ‘

Table 3-3 Floating Literals

EXP! FRAC -->

Lo

v 0 1 2 3 4 5 6 7

o o o o o o o o " T — A W W O ot o s Ams S o e amn m o W e - — - o " — - — - a2
0o | 1/2 9/16 5/8 11/16 3/4 13716 7/8 - 15/16
1 i1 1 1/8 1 1/4 1 3/8 1172 1 5/8 1 3/4 1 7/8
2 12 2 1/4 2 1/2 2 3/4 3 3 1/4 3 1/2 3 3/4
3 1 4 4 1/2 5 5 1/2 6 6 1/2 7 7 1/2
i | 8) 10 11 12 13 14 i5

5 1 16 18 20 22 24 26 28 30

6 | 32 36 40 44 48 52 56 60

7 | 112 120

64 72 80 88 96 104

3-20

- INSTRUCTION FORMAT' AND ADDRESSING MODES

¢

Example: LITERAL MODE, MOVE LONG INSTRUCTION

Instruction Format: MOVL S~#9,R4

BEFORE INSTRUCTION EXECUTION

Ra
' 00000000

AFTER INSTRUCTION EXECUTION
R4

00000008

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 Do OPCODE FOR MOVE LONG INSTRUCTION
00003001 09 UITERAL &
00003002 54

REGISTER MODE, REGISTER R4

MR-13410

Figure 3-19 MOVL S"#9,R4 Move Longword

This example, Figure 3-19, shows a Move Long instruction using literal
mode., The literal 9 is transferred to register R4 as a result of the
instruction. ’

INSTRUCTION FORMAT AND ADDRESSING MODES

Displacement Mode (Figure 3-20)

Assembler Syntax: D(Rn)
B~"D(Rn} - Byte displacement
WAD(Rn) - Word displacement
L”"D(Rn) - Longword displacement

Mode Specifier: A - (byte displacement)

C - (word displacement)

E - (longword displacement)

15 08 07 04 03 00
YT
DISPLACEMENT A Rn gwgiACEMENT
23 08 07 04 03 00
DISPLACEMENT - ¢ Rn WORD
DISPLACEMENT
39 : 08 07 04 03 00
DISPLACEMENT E An K{S?Sf\;ﬂ}’ggngNT

MR-13847

Figure 3-20 Displacement Mode Operand Specifier Format
Description:

In displacement mode addressing, the displacement (after being
sign-extended to 32 bits if it is a byte or word) is added to the
contents of register Rn and the result is the operand address.

The MicroVAX architecture provides for an 8-bit, 16-bit, or 32-bit
offset. Since most program references occur within small discrete
portions of the address space, a 32-bit offset is not always necessary
and the 8- and 16-bit offsets will result in the saving of space
(fewer bits are required).

If the PC is used as the general register, this mode 1is <called
reiacive mode (refer to relative mode).

INSTRUCTION FORMAT AND ADDRESSING MODES

-

Example: DISPLACEMENT MODE, MOVE BYTE INSTRUCTION

Instruction Format: MOVB B~S(R4),B"3(R3)

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE ~ R4 R3
00001015 | -00 §. 0ono1012. 00002020
00001018 00
e bt 96 | «— operanD
Lot +5 .
00001017 ﬁﬁ&ﬁ%
e
00002021 | 00
00002022 | 00
00002023 00
™

AFTER INSTRUCTION EXECUTION '
_ o e g K5

00601012 00002020

00001015
00001016
00001017
00001018

00002021
00002022
00002023

“-— OPERAND

{_888}(8888

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 90 QPCODE FOR MOVE BYTE INSTRUCTION
00003001 A4 | SIGNED BYTE DISPLACEMENT. REGISTER R4
00003002 05 SPECIFIER EXTENSION (DISPLACEMENT OF §)
00003003 A3 | SIGNED BYTE DISPLACEMENT, REGISTER R3
00003004 03 SPECIFIER EXTENSION {DISPLACEMENT OF 3)

b

MR-713411

Figuré 3-21 MOVB B”5(R4),B"3(R3) Move Byte

This example, Figure 3-21, shows a Move Byte instruction using
displacement mode. A displacement of 5 is added to the contents of R4
to form the address of the byte operand. The operand is moved to the
address formed by adding the displacement of 3 to the contents of R3.

3-23

INSTRUCTICN FORMAT AND ADDRESSING MODES

Displacement Deferred Mode (Figure 3-22)

Assembler Syntax: iD(Rn)
¢B"D(Rn) - Byte displacement deferred
sW~D{(Rn) - Word displacement deferred

dL"D(Rn) - Longword displacement deferred

B - (byte displacement deferred)
D - (word displacement deferred)
F - (longword displacement deferred)

Mode Specifier:

15 08 07 04 03 00

, BYTE
DISPLACEMENT B Rn DISPLACEMENT
DEFERRED

23 B 08 07 04 03 00

WORD
DISPLACEMENT D Rn DISPLACEMENT
DEFERRED

39 , ' 08 07 04 03 00

: LONGWORD
DISPLACEMENT F Rn DISPLACEMENT
: DEFERRED

MR-136848

Figure 3*22 Displacement Deferred Mode Operand Specifier Format

Description: In displacement deferred mode addressing, the
displacement (after being sign-extended to 32 bits if a byte or word)
is added to the contents of the register Rn and the result 1is the
longword address of the operand address.

If the PC is used as the general register, this mode 1is called
relative deferred mode.

3-24

INSTRUCTION FORMAT AND ADDRESSING MODE!

L]

Example: DISPLACEMENT DEFERRED MODE, INCREMENT WORD INSTRUCTION

Instruction Format: INCW 3B"~5(R4)

BEFORE INSTRUCTION EXECUTION

R4
00001017 | 88 0002
00001018 | 42 | | opemand / |
00001018 | 24 ADDRESS 00001012
, S
00001017
68244288 | 13
68244289 | 57 :} OPERAND 5713 OPERAND
+
. 1 INCREMENT

5714 NEW OPERAND

AFTER INSTRUCTION EXECUTION

68244288 14
68244289 57

R4
! 00001012

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 | B OPCODE FOR INCREMENT WORD INSTRUCTION

- 00003001 SIGNED BYTE DISPLACEMENT, REGISTER R4
00003002 SPECIFIER EXTENSION REGISTER R3 PLUS SIGN

MR- 13412

Figure 3-23 INCW 34B~5(R4) Increment Word

This example, Figure 3-23, shows an Increment Word instruction using
displacement deferred mode. The quantity 5 is added to the contents
of R4 and the result is the longword address of <the address of the
operand. The operand of 5713 is incremented to 5714, ‘

w
i
[
[33]

INSTRUCTION FORMAT AND ADDRESSING MODES

Index Mode (Figure 3-24)

,n.
oy
F

Assembler Syntax:

-

Mode Specifier:

PRIMARY OPERAND
A

. r)
15 08 07 - 04 03 Q0

i « BASE OPERAND
| DISPLACEMENT SPECIFIER -4 - R

MR-13843

Figure 3-24 Index Mode Operand Specifier Format
Description:

The operand specifier consists of at least two bytes - a primary
operand specifier and a base operand specifier. The primary operand
specifier contained in bits 0 through 7 includes +the index register
(Rx) and a mode specifier of 4. The address of the primary operand is
determined by first multiplying the contents of the index register Rx
by the size of the primary operand in bytes (1 for byte, 2 for word, %
for longword or F_floating, and 8 for quadword, D_floating, or
G_floating). This value is then added to the address specified by the
base operand specifier (bits 15:8), and the result is taken as the
operand address.

Index mode addressing permits very general and efficient accessing of
arrays. The Dbase address of the array is determined by the operand
address calculation of the base operand specifier. The contents of
the index registers are taken as a logical index into the array. The
logical index is converted into a real (byte) offset by multiplying
the contents of the index register by the size of the primary operand
in bytes. '

Specifying register, literal, or index mode for the base operand
specifier will result in an illegal addressing mode fault. If the use
of some particular specifier is 1illegal (causes a faulr or
unpredictable behavior), then that specifier is also iilegal as a base
operand specifier in index mode under the same conditions.

Special Comments:

INSTRUCTION FORMAT AND ADDRESSING MODES

The following restrictions are placed on index register Rx:

1. The PC cannot be used as an index register., If it is, a reserved
addressing mode fault occurs. : '

2. If the base operand specifier is for an addressing mode which
results in register modification (autoincrement, autoincrement
deferred, or autodecrement), the same register cannot be the index

‘register. If it is, the primary operand address is unpredictable.

Table 3-4 lists the various forms of index mode addressing available.
The names of the addressing modes resulting from index mode addressing
are formed by adding indexed to the addressing mode of the base
operand specifier. The general register is designated Rn and the
index register 1is RX. , :

Table 3-4 Index Mode Addressing

Mode Assembler Notation

Register Deferred Indexed (Rn){Rx]
Autoincrement Indexed ~ (Rn)+[Rx]
Autoincrement Deferred @(Rn)+(Rx]
Indexed
Absolute Indexed @#éddreSs[Rx}_
Autodecrement Indexed -(Rn) [Rx]
Byte, Word, Longword B~D(Rn) [Rx]
Displacement Indexed W~D(Rn) [Rx]
L~D(Rn) [Rx]
Byte, Word, Longword aB~D(Rn) [Rx]
Displacement Deferred 3W~D(Rn) [Rx]
Indexed 3aL~D(Rn) [Rx]

It is important *to note that the operand address {(the address
containing the operand) is first evaluated ané then the index
specified by the index register is added to the operand address to
find the indexed address. To illustrate this, an example of each type
of indexed addressing follows.

3-27

INSTRUCTION FORMAT AND ADDRESSING MODES

Example #1: REGISTER DEFERRED - INDEXED MODE, INCREMENT
INSTRUCTION ‘ :
‘Instruction Format: [INCW (RZ}[RSJ
BEFORE INSTRUCTION EXECUTION
ADDRESS
SPACE R2 RS
00001012 | o4 mewm] 00000003

00001013 56
00001014 78
00001015 87

e’

00001018 67

e

AFTER INSTRUCTION EXECUTION
R2

00001012

0000101 4 Py
0'8 3 } OPERAND 00001018

316 X 2 BYTES PER WORD = 6

RS

00001018 46 00001012

00000003

00001019 67

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 86 OPCODE FOR INCREMENT WORD INSTRUCTION

00003001 45 INDEX MODE, REGISTER RS

00003002 62 REGISTER DEFERRED MODE, REGISTER R2

MR-+3413

Figure 3-25 [INCW (R2)[R5] Increment Word

This example, Figure 3-25, shows an Increment Word instruction

register deferred index addressing. The

base

index register is multiplied by the word data size of two.

3-28

in

WORD

using
operand address is
evaluated. This location is indexed by 6 since the value (3)

the

‘ INSTRUC’??ON FORMAT AND ADDRESSING MCDE!

Example #2: AUTOINCREMENT INDEXED MODE, CLEAR LONGWORD INSTRUCTION

Instruction Format: CLRL (R4)+[RS]

BEFORE INSTRUCTION EXECUTION

ADDRESS '

SPACE R4 RS
00001046 { 11 - {.00001012 00000025
32%;‘823 3 OPERAND INDEX = 251 X 4 BYTES PER
00001049 | 44 ' ' LONGWORD = 94,5

ADDRESS OF OPERAND

AFTER INSTRUCTION EXECUTION

R4 RS
0001086 | oo 00001016 | 00000025
00001047 | 00
00001048 | 00
000010A2 | 00

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 | 04 ~OPCODE FOR CLEAR LONGWORD INSTRUCTION
00003001 45 INDEX MODE. REGISTER RS
00003002 | 84 AUTOINCREMENT MODE, REGISTER R4

A 13414

Figure 3-26 CLRL (R4)+[R5] Clear Longword

This example, Figure 3-26, shows a Clear Long instruction wusing the
autoincrement indexed addressing mode. The base operand address is in
R4. This value is indexec by the quantity in RS multiplied by the
data size, in bytes. This location, plus the next three, are cleared

"since a longword instruction is specified.

<

INSTRUCTION FORMAT AND ADDRESSING MODES

Example #3: AUTOINCREMENT DEFERRED INDEX MODE, CLEAR WORD INSTRUCTION

Instruction Format: CLRW 3(R4)+(R5]

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE
00001012 43
00001013 21
00001014 | 08
00001015 | 06
ADDRESS
, SPACE
06082140 | 22
0808214E 33
0808214F 56

AFTER INSTRUCTION EXECUTION

06082140
0608214¢
. 0808214F

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000
00003001
00003002

00
00
56

B4
45
94

Figure 3-27

‘This example, Figure 3-27, shows a Clear Word
autoincrement deferred indexing mode.
operand address. The index value A is obtained
[R5], by the data size,
ls cleared.

contents of the index

register,
which i1s 2. The calculated word address

516 X 2 BYTES PER WORD = Q000000A

R4 RS
00001012 00000005
™ opeRAND
ADDRESS
\\\‘“ 06082143
0000000A
06082145
} OPERAND
R4 RS
00001014 00000005

OPCODE FOR CLEAR WORD INSTRUCTION

INDEX MODE, REGISTER RS

AUTOINCREMENT DEFERRED MODE, REGISTER R4

CLRW 2(R4)+[R5] Clear Word

3-30

instruction
R4 contains the address of
multiplying

Dy

the
the
the

in bytes,

RR, IR T

'INSTRUCTION FORMAT AND ADDRESSING MCDE:

L.

Example #4: AUTODECREMENT INDEXED MODE, CLEAR WORD INSTRUCTION

Igstruction Format: CLRW -(R2)[R4]

BEFORE INSTRUCTION EXECUTION

ADDRESS .
SPACE R2 - R4
0000101 A 00001016 00000003
00001018 | £) ‘
0000101C 316 X 2 BYTES PER WORD = 6(INDEX}
00001010

00001016
Q0000002 DECREMENT BY 2

00001014 OPERAND ADDRESS
00000006 INDEX VALUE

0000101A INDEXED OPERAND ADDRESS

AFTER INSTRUCTION EXECUTION

ADDRESS
 SPACE R2 ~ Ra
00001014 | 00 00001014 | | 00000003

00001018 .00
0000101C 33
00001010 33

MACHINE CODE: ASSUME S"?ARTENG LOCATION 000Q3000

00003000 84 OPCODE FOR CLEAR WORD INSTRUCTION
00003001 44 INDEX MODE, REGISTER R4
00003002 72 AUTOINCREMENT DEFERRED MODE REGISTER R2

MR-13818

Figure 3-28 CLRW -(R2)[R&] Clear Word

‘This example, Figure 3-28, shows a Clear Word instruction using

autodecrement indexed mode. The contents of R2 are decremented by
two, the data size in bytes. The index register, R%, is multiplied by
the data size and the result is added to the contents of R2 to form
the operand address. Since a clear word instruction is specified, two
bvtes are cleared. ‘ \ ‘ .

INSTRUCTION FORMAT AND ADDRESSING MODES

.Example #5: ABSOLUTE INDEXED MODE, CLEAR LONGWORD INSTRUCTION

Instruction Format: CLRL 34"X1012[R2]

BEFORE INSTRUCTION EXECUTION

R2

1026 | a5 00000005
1027 | 36
1028 | 81 516X 4 =141
1029 | 43 00001012
— 00000014
; 00001026
AFTER INSTRUCTION EXECUTION
1026 | 00 Ra
1027 | 00
1028 | oo 20000005
00

1029

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 D4 OPCODE FOR CLEAR LONGWORD INSTRUCTION

00003001 42 INDEX MODE, REGISTER R2
00003002 9F ABSOLUTE MODE
50003008 | 12 }ease operand

MR 72417

Figure 3-29 CLRL 3#~X1012[R2] Clear Longword

This example, Figure 3-29, shows a Clear Longword instruction using
absolute indexed mode. The base of 00001012 is indexed by R2 which
contains 5. Since a longword data type is specified, 5x4 = 14(16),
which becomes the index value. This value 1is added to 00001012
yielding 00001026. This is the operand address, and four _bytes are
cleared since a longword data type has been specified.

: INSTRUCTION FORMAT AND ADDRESSING MODES

]

Example #6: DISPLACEMENT INDEXED MODE, CLEAR QUADWORD INSTRUCTION

Instruction Format: CLRQ ZtRi){RB}

BEFORE INSTRUCTION EXECUTION

ADDRESS
SPACE R3
0000402A 24 . 0DOD000S

00004028 68
0000402C 13
06004020 57

516 X 8 BYTES PER QUAD WORD
= 28 (INDEX)

Q000402 | 862
0000402F 143 CONTENTS OF R1
W30 34 BYTE aiSPLACEma\ET
00004031 47 ‘

v

© 00004002 OPERAND ADDRESS
00000728 INDEX

T 0000402A INDEXED OPERAND ADDRESS

AFTER INSTRUCTION EXECUTION

ADDRESS -

SPACE a1 \3
00004024 | ©0 00004000 00000005
00004028 | 00 bt
QUo0402C 00
00004020 [o]¢]
0O000402€E Q0
0000402F 00
(0004030 00
00004031 - 00

ko’

MACHINE CODE: ASSUME STARTING LOCATION 00003000

Q0003000
Q0003001
00003002

QPCODE FOR CLEAR QUAD WORD INSTRUCTION
INDEX MODE. REGISTER R3 '
REGISTER DEFERRED MODE. REGISTER A1

MR- 13418

Figure 3-30 CLRQ 2(R1)[R3] Clear Quadwéfd

This example, Flguge 3 30, shows a Clear Quadword lﬂstructzon using
displacement index mode. "The byta displacement of two is added to the
content of R1. The index which is calculated as 28 is added to this
~address. This location and the next seven locations (since a quadword
instruction is specified) are cleared.

3-33

INSTRUCTION FORMAT AND ADDRESSING MODES

Example #7: DISPLACEMENT DEFERRED INDEX MODE, MOVE LONG INSTRUCTION

Instruction Format: MOVL 2~X14(R1)[R3],RS5

BEFORE INSTRUCT!ION EXECUTION

ADDRESS

SPACE | R1
Q0001012 12 ! 00001012 ’ 415 X 4 BYTES PER LONGWORD
00001013 34 A3 = 104 §INDEX
0000101} e B 00000004 .
cooo1015 | 78 e

00000000

’ 00001012 CONENTS OF R1
00001026 11)

L 00000014 P
00001027 | 22 00000014 DISPLACEMENT
00001028 a3 000010286 ADDRESS OF OPERAND ADDRESS
00001029 44
44332221 ; 44332211 OPERAND ADDRESS

332221 0 ’ 00000010 INDEX

44332222 23 —e
44332223 | a5 44332221 INDEXED OPERAND ADDRESS
44332224 67
44332225 89 OPERAND

AFTER INSTRUCTION EXECUTION

RT
1 o0ooo1012

67452301

MACHINE CODE: ASSUME STARTING LOCATION 00003000

00003000 00 OPCODE FOR MOVE LONGWORD INSTRUCTION
Q0003001 43 INDEX MODE. REGISTER R3 :
00003002 81 SIGNED BYTE DISPLACEMENT, REGISTER R1
00003003 14 SPECIFIER EXTENSION

00003004 55 REGISTER MQDE, REGISTER RS

MR-13419

Figure 3-31 MOVL 27X14(R1)[R3],R5 Move Longword

This example, Figure 3-31, shows a Move Long instruction using
‘displacement deferred indexed addressing. ‘The displacement of 14 is
added to the contents of Rl yielding 00001026. The contents of this
location are the operand address, 44332211, ‘This guantity is added to
the index yielding the indexed operand address of 44332221, The
contents of this address are moved into RS. ‘ '

3-34

3.2.1.2, Program Counter Addressing -

Register 15 is the program counter (PC).
‘register in

counter as the
addresses
incremented is

1s

addressing
opcode,

specifiers, and so on.

operand

INSTRUCTION FORMAT AND ADDRESSING MODE!

modes.

It can also be used as a

The processor increments the program
specifier, and
(of the instruction) are evaluated.
determined by

‘immediate data or
The amount that the PC
opcode, number of operand

The PC can be used with @ll of the addressing modes except register of

index
unpredictable.

mode, since-

as a general register.

Table 3-5

these

- Assembler

modes the
‘Table 3-5 lists the aédress1ng modes that use the PC

results will be

Program Counter Addressing Modes

“Function

- —— - — - -] — o —— —— -~ - — - ——_—_— - W ——— -~ ——— i — - ——— o - - — - - o " o o~

73

Immediate

‘Absolute

Byte Relative

Word Relative

Longword Relative.

Byte Relative
Deferred

Word Relative
Deferred

Longword Relative
Deferred

[~#Operand
3#Location
B~G(PC)

W G(PC)
L~G(PC)
@B~G(PC)
W G(PC)

3L~G(PC)

Constant operand follows address
mcde

~Absalute address follews aédress

mode

Displacement is added to current
value of PC to obtain operand
address

Displacement is added to current
of PC to give the address of the
operand address

INSTRUCTION FORMAT AND ADDRESSING MODES

Immediate Mode (Figure 3-32)

Assembler Syntax: [~4operand
‘Mode Specifier: .8
= 07 04 03 00
CONSTANT 8 F

SIZE DEPENDS
ON CONTEXT

MA-1559%

Figure 3-32 Immediate Mode Operand Specifier Format
Description:
This mode is autoincrement mode when the PC is used as the general

register. The contents of the location following the addressing mode
are immediate data.

INSTRUCTION FORMAT AND ADDRESSING MODE:

¥

Example: IMMEDIATE MODE, MOVE LONG INSTRUCTION

Instruction Format: MOVL I"46,R%

BEFORE INSTRUCTION EXECUTION

PC
00001012 | 00 | opeane Fam mavs [c Lo
OPCODE FOR MOVE LONG INSTRUCTION

00001013 8F OPERAND SPECIFIER AUTOINCREMENET PC (IMMEDIATE}
00001014 o8 }
Q0001015 Qo
00001016 | 00 IMMEDIATE DATA
00001017 00 :
00001018 54 -

Nttt

REGISTER MODE, REGISTER R4

AFTER INSTRUCTION EXECUTION

00001014 08 IMMEDIATE
00001015 00 DATA
00001018 00
00001017 00 \\\‘
i R4
00000008

MR-13420

Figure 3-33 MOVL I746,R%4 Move Longword

This example, Figure 3-33, shows a Move Long instruction wusing
immediate mode. The immediate data (00000006) following the opcode
and operand specifier are moved to R4.

3-37

INSTRUCTION FORMAT AND ADDRESSING MODES

Absolute Mode (Figure 3-34)

Assembler Syntax: 2#location

Mode Specifier: 9

X 07 04 03 00
ADDRESS 9 F

8

MR-15596

Figure 3-34 Absolute Mode Operand Specifier Format

Description:

This mode is autoincrement deferred using the PC as the general
register. - The contents of the longword following the operand
specifier is the operand address. This is interpreted as an absolute
address (an address that remains constant no matter where in memory
the assembled instruction is executed). ‘

3-38

INSTRUCTION FORMAT AND ADDRESSING MODE:!

*

Example: ABSOLUTE MODE, CLEAR LONG INSTRUCTION

Instruction Format: CLRL 3#°X674533

BEFORE INSTRUCTION EXECUTION

ADDRESS
PE~ SPACE
© 00001012 04 | OPCODE FOR CLEAR LONG INSTRUCTION
00001013 - | 9F OPERAND SPECIFIER, AUTOINCREMENT DEFERRED PC (ABSOLUTE)
00001014 33 ;

1 ¥ | S pRe
0000118 .1 48 } OPERAND ADDRESS

00674533 | 23 .

100674534 45
00674535 72
00674536 83

Wi

AFTER INSTRUCTION EXECUTION

00674533 oo |
00674534 00
00674835 | 00
006745386 00

e

MA-13421

Figure 3-35 CLRL @#7674533 Clear Longword

This example, Figure 3-35, shows a Clear Longword instruction using
the absolute addressing mode. This instruction causes the location(s)
following the operand specifier to be taken as the address of the
operand, and 1s 00674533 in this case. The longword operand
assocliated with this address is cleared.

3-39

INSTRUCTIQS FORMAT AND ADDRESSING MODES

Relative Mode (Figure 3-36)

Assembler Syntax: 8°D - Byte displacement
W"D - Word displacement
L™D - Longword displacement

Mode Specifier: A - (byte)
C - (word)
E - (longword)
15 0807 0403 00
; i ~|8YTE
DISPLACEMENT . | A F__loispLacement
23 0807 0403 00
DISPLACEMENT c F g@?{;chENT
39 0807 0403 00 ’
= |LONGWORD
[*‘ | DISPLACEMENT E F |oisPLACEMENT

MRB-15597

Figure 3-36 Relative Mode Operand Specifier Format

Description:

This mode is displacement mode with the PC used as the general
register. The displacement which follows the operand specifier is

added to the PC, and the sum becomes the address of

the operand. This

mode is wuseful for writing position independent code, since the
ilocation referenced is always fixed relative to the PC.

3-40

INSTRUCTION FORMAT AND ADDRESSING MODE.

<

Example: RELATIVE MCDE, MOVE LONGWORD INSTRUCTION

Instruction Format: MOVL ~X20le,R4

BEFORE INSTRUCTION EXECUTION .

ADDRESS
| PC~._ SPACE , 00000000
00001012 | DO | OPCODE FOR MOVE LONG
00001013 | CF |_ DISPLACEMENT MODE WITH PC
- 00001014 00 _w DISPLACEMENT = 1000
00001015 10 ,
00001016 { sS4 _REGISTER MODE. REGISTER R4
01016 | ¢ R , oiote
—N o S . 1000
e s , oTe
00002015 | Nt
100002017 | 00 | | LONG WORD o
00002018 86 OPERAND
00002019 oo ff{. .
N e

AFTER INSTRUCTION EXECUTION
R4

(qm&mn

MR-13422

Figure 3-37 MOVL ~X2016,R4 Move Longword

This example, Figure 3-37, shows a Move Long instruction using
relative mode. The word following the operand specifier is added to
the PC to obtain the address of the PC.

In this example, the PC is pointing to location 00001016 after the
first operand specifier 1is evaluated. The word following the first
opcode and first operand specifier is 00001000 and is added to the PC.
The result is 00002016. This value represents the address of the
longword operand (00860077). The operand is then moved to register
R4. The PC contains 00001017 after instruction execution.

3-41

INSTRUCTION FORMAT AND ADDRESSING MODES

Relative Deferred Mode (Figure 3-38)

Assembler Syntax: | 3B”D - Byte displacement deferred
W™D - Word displacement deferred
¢L”"D - Longword displacement deferred

Mode Specifier: B - (byte)
) D - (word)
F - (longword)

DISPLACEMENT B F |DISPLACEMENT

- ’ DEFERRED

3 ' 7 0807 0403 00, ..

DISPLACEMENT D F |DISPLACEMENT

— DEFERRED

= #0300 HnewoRD
DISPLACEMENT ch F F |DISPLACEMENT

~ : ' DEFERRED

MR-15598

Figure 3-38 Relative Deferred Mode Operand Specifier Format

Description:

This ;mode is similar to relative mode, except that the displacement
which follows the addressing mode is added to the PC and the sum is
the longword address of the address of the operand. This addressing
mode is useful when processing tables of addresses.

INSTRUCTION FORMAT AND ADDREéSING MODE.

E

‘Example: RELATIVE DEFERRED MODE, MOVE LONG INSTRUCTION

Instruction Format: MOVL @7X2050,R2

BEFORE INSTRUCTION EXECUTION

PC A2
00002000 00 MOVE LONG OPCODE 00000000
00002001 BF BYTE DISPLACEMENT FROM PC
00002002 ap AMOUNT OF DISPLACEMENT
00002003 52 REGISTER MODE, REGISTER 2

' DISPLACEMENT

- CALCULATION

00002050 00002003
00002051 { OPERAND A
00002052 ADDRESS 00002050

B o
00
60
00
00002053 00 J
st/
[———

00006000 67
00006001 45
00006002 23 | { OPERAND
00006003 01
o
e

AFTER INSTRUCTION EXECUTION

R2

! 01234567

MR-13423

Figure 3-39 MOVL @7X2050,R2 Move Longword

This example, Figure 3-39, shows a Move Long instruction where
00002050 represents the address of the operand. A byte displacement
would be selected by the assembler since the displacement 1is within
128 (decimal) addressable bytes. When the displacement is evaluated,
the program counter is pointing to 00002003. The displacement of 4D
is added to the current value of the PC to give the address of
00002050. The contents of this address are then used as the address
of the operand (00006000) and the operand is moved to R2.

3-43

‘ INSTRUCTION FORMAT AND ADDRESSING MODES

3.2.2 Branch Addressing

In branch displacement addressing the byte or word displacement is
sign-extended to 32 bits and added to the updated content of the PC.
The updated contents of the PC are the address of the first byte
beyond the operand specifier.

Branch Addressing {(Figure 3-40)

-

Assembler Syntax: A
Mode Specifier: None
g7
DISPLACEMENT
BYTE DISPLACEMENT
15 00

DISPLACEMENT

WORD DISPLACEMENT

MRA-15539

Figure 3-10 Branch Addressing Operand Specifier Format
Description:

In branch displacement addressing, the byte or word displacement is
sign-extended to 32 bits and added to the updated contents of the PC.
The updated contents of the. PC is the address of the first byte after
the operand specifier.

The assembler notation for byte and word branch displacement
addressing 1is A, where A is the branch address. Note the branch
address and not the displacement is used.

Branch instruction are most frequently used after instructions like
compare (CMP) and are used to cause different actions depending on the
results of the compare.

Example #1:

Example #2:

UNSIGNED BRANCH

INSTRUCTION FORMAT AND -ADDRESSING MODE.

<

This example causes a branch to location NOT if C is
not a digit (i.e., C is treated as an unsigned number
outside the range 0 through 9).

CMPB C, #~A/0/
BLSSU NOT
CMPB C,#“A/9/

BGTRU NOT

BRANCH ON BIT

BBS #2,B,X

BBSC #2,B,X

BLBS B,X

;Compare C and ASCII representation
;of digit 0.

:Branch to location NOT if less than an
;unsigned 0.

;Compare C and ASCII representation
;of digit 9.

;Branch to location NOT if greater than
;an unsigned 9.

—
[}
et
~

sBranches to X if bit <2> in B is set

:Branches to X if bit <2> in B is set
rand bit is then cleared.

o~
1}

Jt

e

*Branches to X if bit <0> of B is set {=1)

1]

CHAPTER 4

INSTRUCTION SET

4.1 INTRODUCTION
This chapter describes the instructions used by the MicroVAX 78032
CPU. The MicroVAX 78032 CPU implements a subset of the VAX
instruction set. The instruction set is divided 1into the following
major sections:

e Integer arithmetic and logical

® Address

e Variable length bit field

e Control

e Procedure call

e Miscellaneous

e Queue

e Character string

e Operating system support

e Floating point

® Emulated instructions with microcode assist

A concise list of instructions and opcode assignments appears 1in
Appendix B.

INSTRUCTION SET

4.1.1 Instruction Descriptions

Within each major section, instructions which are closely related are
combined into groups and described together. The instruction group
description is composed of the following:

1. The group name.

2. The format of each instruction in the group. This gives the name
and type of each instruction operand specifier and the order in
which it appears in memory. Operand specifiers from left to right
appear in increasing memory addresses.

3. The operation of the instruction.

4. The effect on condition codes.

5. Exceptions specific to the instruction. Exceptions which are
generally possible for all instructions (e.g., illegal or reserved
addressing mode, T-bit, memory management violations, etc.) are
not listed. .

6. The opcodes, mnemonics, and names of each instruction in the
group. The opcodes are given in hex.

7. A description in English of the instruction.

8. Optional notes on the instruction and programming examples.

4.1.2 Operand Specifier Notation
Operand specifiers are described in the following way:
<name>.<access type><data type>

where:

1. Name is a suggestive name for the operand in the context of the
instruction. The name is often abbreviated.

2. Access type is a letter denoting the operand specifier access
type:

a - Calculate the effective address of the specified
operand. Address is returned in a longword
which is the actual instruction operand. Context
of address calculation is given by <data type>:
i.e. size to be used in autoincrement, autodecrement,
and indexing.

1-2

INSTRUCTION SET

b - No operand reference. Operand specifier is a
branch displacement. Size of branch displacement
is given by <data type>.

m - Operand is read, potentially modified and written.
Note that this is NOT an indivisible memory
operation, Also note that if the operand is not
actually modified, it may not be written back.
However, modify type operands are always checked
for both read and write accessibility.

)
i

Operand is read only.

v - Calculate the effective address of the specified
operand. If the effective address is in memory,
the address is returned in a longword

which is the actual instruction operand. Context
of address calculation is given by <data type>.
If the effective address is Rn, the operand is

in Rn or R{n+1]'Rn.

w - Operand is write only.

3. Data type is.a letter denoting the data type of the operand:
b - byte
w - word
1 - longword
g - quadword
f - F_floating
d - D_floating
g - G_floating
x - first data type specified by instruction

y - second data type specified by instruction

4.1.3 Operation Description Notation
The operation of each instruction is given as a sequence of control

and assignment statements. Table 4-1 describes the symbols used when
describing an operation,

INSTRUCTION SET
Table 4~-1 Instruction Operation Symbols

Symbol Description

+ addition
- subtraction, unary minus
* multiplication
/ division (quotient only)
ol exponentiation
! concatenation
<= is replaced by
= is defined as
Rn or R[n] contents of register Rn
PC, SP, FP, the contents of register R135, R14, R13,
or AP or R12 respectively
PSW the contents of the processor status word
PSL the contents of the processor status long word
(x) contents of memory location whose address is x
(x)+ contents of memory location whose address is x;
X incremented by the size of operand referenced
at x
-(x) x decremented by size of operand to be referenced
at x; contents of memory location whose address is x
<X:1y> a modifier which delimits an extent from bit
~ position x to bit position y inclusive
<x1l,x2,..,¥n> a modifier which enumerates bits x1,x2,...,%xn
{1} arithmetic parentheses used to indicate precedence
AND logical AND
OR logical OR
XOR logical XOR
NOT logical (ones) complement
LSS less than signed
LSSU less than unsigned
LEQ less than or equal signed
LEQU less than or equal unsigned
EQL requal signed
EQLU equal unsigned
NEQ not equal signed
NEQU not equal unsigned
GEQ greater than or equal signed
GEQU greater than or equal unsigned
GTR greater than signed
GTRU greater than unsigned
SEXT(x) X is sign extended to size of operand
needed
ZEXT(x) X 1s zero extended to size of operand needed
REM(x,y) remainder of x divided by y, such that x/y
and REM(x,y) have the same sign
MINU(x,y) minimum unsigned of x and vy
MAXU(x,y) maximum unsigned of x and vy

INSTRUCTICN SET

The following conventions are used when describing the operation of an
instruction.

1. Other than that caused by {()+, or -(), and the advancement of
PC, only operands or portions of operands appearing on the left
side of assignment statements are affected.

2. No operator precedence is assumed, other than that replacement
(<=) has the lowest precedence. Precedence .is indicated
explicitly by { }.

3. All arithmetic, logical, and relational operators are defined 1in
the context of their operands. For example "+" applied to
floating operands means a floating add, while "+" applied to byte
operands 1is an integer byte add. Similarly, "LSS" is a floating
comparison when applied t¢ floating operands, while "LSS" is an
integer byte comparison when applied to byte operands.

4. Instruction operands are evaluated according to the operand
specifier conventions. The order in which operands appear in the
instruction description has no effect on the order of evaluation,

5. Condition codes are in general affected on the value of actual
stored results, not on "true" results {which might be generated
internally to greater precision). Thus, for example, two positive
integers can be added together and the sum stored, because of
overflow, as a negative value. The condition codes will indicate
a negative value even though the "true" result is clearly
positive.

INSTRUCTION SET

4.2 INTEGER ARITHMETIC AND LOGICAL INSTRUCTIONS

ADAWI Add Aligned Word Interlocked

Format:
opcode add.rw, sum.mw
Operation:

tmp <- add;

{set interlock!};

sum <- sum + tmp;
{release interlock}:

Condition Codes:

N <- sum LSS 0;

Z <- sum EQL 0O;

Vv <- {integer overflow};

C <- {carry from most significant bit};

Exceptions:

reserved operand fault
integer overflow

Cpcodes:

58 ADAWI Add Aligned Word Interlocked

Description:

The addend operand is added to the sum operand and the sum operand is
replaced by the result. The operation is interlocked against similar
operations on other processcrs in a multiprocessor system. The
destination must be aligned on a word boundary, i.e., bit 0 of the
address of the sum operand must be zero. If it 1is not, a reserved
operand fault is taken.

Notes:

1. Integer overflow occurs if the input operands to the add have the

same sign and the result has the opposite sign. On overflow, the
sum operand 1s repilaced by the low order bits of the true result.

2. If the addend and the sum operands overlap, the vresult and the
condition codes are unpredictable.

INSTRUCTION SET

ADD Add
Format:
opcode add.rx, sum.mx 2 operand

opcode addl.rx,-addz.r%, sum.wx 3 operand
Operation:

sum <- sum + add; 12 operand

sum <- addl + add2; '3 operand
Condition Codes:
| <- sum LSS 0;
<- sum EQL 0O;

<- {integer overflow};
<~ {carry from most significant bit};

NNz

Exceptions:

integer overflow

Opcodes:
80 ADDB2 Aadd Byte 2 Operand
81 ADDB3 Add Byte 3 Operand
Al ADDW2 Add Word 2 Operand
Al ADDW3 Add Word 3 Operand
Co ADDL2 Add Long 2 Operand
Cl ADDL3 Add Long 3 Operand

Description:

In 2 operand format, the addend operand is added to the sum operand
and the sum operand is replaced by the result. In 3 operand format,
the addend 1 operand is added to the addend 2 operand and the sum
operand is replaced by the result. :

Notes:
Integer overflow occurs if the input operands to the add have the same

sign and the result has the opposite sign. On overflow, the sum
operand is replaced by the low order bits of the true result.

INSTRUCTION SET

ADWC Add With Carry

Format:

opcode add.rl, sum.ml
‘Operation:

sum <- sum + add + C;
Condition Codes:
<- sum LSS 0;
<= sum EQL 0;

<- {integer overflow};
<- {carry from most significant bit};

aO<NZ

Exceptions:
integer overflow
Cpcodes:

D8 ADWC Add With Carry

Description:

The contents of the condition code C bit and the addend operand are
added to the sum operand and the sum operand is replaced by the
result.

Notes:

1. On overflow, the sum operand is replaced by the low order bits of
the true result.

2. The 2 additions in the operation are performed simultaneously.

e
I
Qo

INSTRUCTION SET

ASH Arithmetic Shift

Format:

opcode cnt.rb, src.rx, dst.wx
Operation:

dst <- src shifted cnt bits;
Condition Codes:
<- dst LSS 0;
<- dst EQL 0;

<- {integer overflow};
<~ 03

<Nz

Exceptions:

integer overflow

Opcodes:
78 ASHL Arithmetic Shift Long
79 ASHQ Arithmetic Shiftr Quad

Description:

The source operand is arithmetically shifted by the number of bits
specified by the count operand and the destination operand is replaced
by the result. The source operand is unaffected. A positive count
operand shifts to the left bringing 0's into the least significant
bit. A negative count operand shifts to the right bringing in copies
of the most significant (sign) bit into the most significant bit. A 0
count operand replaces the destination operand with the wunshifted
source operand.

Notes:

1. Integer overflow occurs on a left shift if any bit shifted into
the sign bit position differs from the sign bit of the source
operand.

2. If ent GTR 32 (ASHL) or cnt GTR 64 (ASHQ) the destination operand
is replaced by 0.

3. If cnt LEQ -31 (ASHL) or cnt LEQ -63 (ASHQ) all the bits of the
destination operand are copies of the sign bit of the source
operand.

INSTRUCTION SET

BIC Bit Clear
Format:
opcode mask.rx, dst.mx 2 operand

opcode mask.rx, src.rx, dst.wx 3 operand
Operation:

dst <- dst AND {NOT mask}: '2 operand

dst <- src AND {NOT mask!}; !3 operand

Condition Codes:

N <- dst LSS 0Q:
Z <- dst EQL 0;
V <- 0;
C <- C:

Exceptions:
none
Cpcodes:

3A BICB2 Bit Clear Byte
8B BICB3 Bit Clear Byte
AA BICW2 Bit Clear Word
AB BICW3 Bit Clear Word
Ca BICL2 Bit Clear Long
CB BICL3 Bit Clear Long

Description:

In 2 operand format, the destination operand is ANDed with +the ones
complement of the mask operand and the destination operand 1s replaced
by the result. In 3 operand format, the source operand is ANDed with
the ones complement of the mask operand and the destination operand is
replaced by the result.

en
|

[

o

INSTRUCTION SET

BIS Bit Set

Format:

opcode mask.rx, dst.mx 2 operand

opcode mask.rx, src.rx, dst.wx 3 operand
Cperation:

dst <- dst OR mask; !2 operand

dst <- src OR mask; '3 operand
Condition Codes:

N <- dst LSS 0;

Z <- dst EQL 0;

Vv <~ 0:

C <~ C;

Exceptions:

none

Cpcodes:
88 BISB2 Bit Set Bvte 2 Operand
83 BISB3 Bit Set Byte 3 Operand
A8 BISW2 Bit Set Word 2 Operand
AS BISW3 Bit Set Word 3 Operand
C8 BISL2 Bit Set Long 2 Cperand
CS BISL3 Bit Set Long 3 Operand

Description:

In 2 operand format, the mask operand is ORed with the destination
operand and the destination operand is replaced by the result., In 3
operand format, the mask operand is ORed with the source operand and
the destination operand is replaced by the result.

INSTRUCTION SET

BIT Bit Test

Format:

opcodé mask.rx, src.rx
Operation:

tmp <- src AND mask;

Condition Codes:

N <- tmp LSS 0;
Z <- tmp EQL 0;
v o<- 0;
- C <= C;
Exceptions:
none
Opcodes:
93 BITB Bit Test Byte
B3 BITW Bit Test Word
D3 BITL Bit Test Long

Description:

The mask operand is ANDed with the source operand. Both operands are
unaffected. The only action is to affect condition codes. :

CLR Clear

quﬁat:

opcode dst.wx
Operation:

dst <- 0;

Condition Codes:

N <- 0;
Z <~ 1;
v <- 0;
C <- C;
Exceptions:
none
Opcodes:
94 CLRB Clear Byte
B¢ CLRW Clear Word
D4 CLRL Clear Long
i CLRF Clear F_floating

7C CLRQ Clear Quad
CLRD Clear D_floating
CLRG Clear G_floating
Description:
The destination operand is replaced

Notes:

by O.

INSTRUCTION SET

CLRx dst is equivalent to MOVx S~#0,dst, but is 1 byte shorter.

INSTRUCTICN SET

CMP Ccmpare<

Format:

Spcode srcl.rx, src2.rx
Cperation:

srcl - src2;
Condition Codes:

N <- srcl LSS src2;

Z «<- srcl EQL src2:

vV <- 03

C <- srcl LSSU src2:

Exceptions:

none
Opcodes:
91 CMPB Compare Byte
Bl CMPW Compare Word
D1 CMPL Compare Long

Description:

The source 1 operand is compared with the source 2 operand. The only
action is to affect the condition codes.

INSTRUCTION

cvT Convert

Format:

opcode src.rx, dst.wy
Operation:

dst <- conversion of src;

Condition Codes:

N <- dst LSS 0;

Z <- dst EQL O;

Vv <- {integer overflow};
C <- 0;

Exceptions:
integer overflow
Cpcodes:

99 CVTBW Convert Byte to Word
98 CVTBL Convert Byte to Long
33 CVTWB Convert Word to Byte
32 CVTWL Convert Word to Long
F6 CVTLB Convert Long to Byte
F7 CVTLW Convert Long to Word

Description:

The source operand is converted to the data type of the destination
operand and the destination operand 1is replaced by the result.
Conversion of a shorter data type to a longer 1is done by sign
extension; conversion of longer to a shorter is done by truncation of
the higher numbered (most significant) bits.

Notes:

Integer overflow occurs 1f any truncated bits of the source operand
are not equal to the sign bit of the destination operand.

SET

INSTRUCTION SET

DEC Decrement

Format:
opcode dif.mx
Operation:
dif <- dif - 1;
Condition Codes:
N <- dif LSS 0;
2 «<- dif EQL 0;
Vv <- {integer overflow};
C <- {borrow into most significant bit};

Exceptions:

integer overflow

Opcodes:
97 DECB Decrement Byte
B7 DECW Decrement Word
D7 DECL Decrement Long

Description:

One is subtracted from the difference operand and the difference
operand is replaced by the result.

Notes:

1. Integer overflow occurs if the largest negative integer is
decremented. On overflow, the difference operand is replaced by
the largest positive integer.

2. DECx dif is equivalent to SUBx2 S"“#1,dif, but is 1 byte shorter.

" INSTRUCTICN

DIV Divide

Format:
opcode divr.rx, quo.mx 2 cperand
opcode divr.rx, divd.rx, Qquo.wx 3 operand

Operation:
quo <- quo / divr; '2 operand
quo <- divd / divr; '3 operand

Condition Codes:

N <- quo LSS 0;

Z <- quo EQL O0;

V <- {integer overflow} OR {divr EQL 0};
C <- 0;

Exceptions:

integer overflow
divide by zero

Opcodes:
86 DIVB2 Divide Byte 2 Operand
87 DIVB3 Divide Byte 3 Operand
A6 DIVW2 Divide Word 2 Operand
A7 DIVW3 Divide Word 3 Operand
Cé DIVL2 Divide Long 2 Operand
c7 DIVL3 Divide.Long 3 Operand

Description:

In 2 operand format, the quotient operand is divided by the divisor
operand and the 'quotient operand is replaced by the result. In 3
operand format, the dividend operand is divided by the divisor cperand
and the quotient operand is replaced by the result.

Nores:
1. Integer overflow occurs 1if and only 1f the largest negative

integer is divided by -1. ©On overflow, operands are affected as
in Note 2.

~d

=
!

S

)

Laad
kS

INSTRUCTION SET

2. If the divisor operand is 0, then in 2 operand format the gucotient
operand 1s not affected; in 3 operand format the quotient operand
is replaced by the dividend operand. :

e
I
}t
a0

INSTRUCTION SET

EDIV Extended Divide

Format:
opcode divr.rl, divd.rg, quo.wl, rem.wl
Operation:

quo <- divd / divr;
rem <- REM{divd, divr}:

Condition Codes:

N <- quo LSS 0;

Z <- quo EQL 0; _ _
Vv <- {integer overflow} OR {divr EQL 0};
C <- 0;

Exceptions:

integer overflow
divide by zero

Opcodes:

7B EDIV Extended Divide

Description:

The dividend operand is divided by the divisor operand; the quotient
operand is replaced by the gquotient and the remainder operand is
replaced by the remainder.

Notes:

1. The division is performed such that the remainder operand (unless
it is 0) has the same sign as the dividend operand.

2. On overflow or if the divisor operand 1is 0, then the quotient
operand 1is replaced by bits 31: 0 of the dividend operand, and the
remainder operand is replaced by 0.

INSTRUCTION SET

EMUL Extended Multiply

Format:

opcode mulr.rl, muld.rl, add.rl, pred.wq

Operation:

prod <- {muld * mulr} =+ SEXT(add);

Condition Codes:

N <- prod LSS 0;
Z <- prod EQL 0;
VvV <- {:
C <- 0;

Exceptions:
none
Opcodes:

7a EMUL Extended Multiply

Description:

The multiplicand operand is multiplied by +<hé multiplier operand
giving a quadword result. The addend operand 1is sign-extended to a

quadword and added to the result.
the final result.

=

The product operand is replaced by

(3]
O

INSTRUCTION SET

INC Increment

Format:
opcode sum.mx
Operation:
sum <- sum + 1;
Condition Codes:
N <- sum LSS 0O;
Z <- sum EQL 0
Vv <- {integer overflow!};
C <- {carry from most significant bit};

Exceptions:

integer overflow

Opcodes:
96 INCB Increment Byte
B6 . INCW Increment Word
Dé INCL Increment Long

Description:

One is added to the sum operand and the sum operand is replaced by the
result.

Notes:

1. Arithmetic overflow occurs if the largest positive 1integer 1is
incremented. On overflow, the sum operand is replaced by the
largest negative integer. ‘

2. INCx sum is equivalent to ADDx2 S"#l,sum, but is 1 byte shorter,

INSTRUCTION SET

MCOM Move Complemented

Format:

opcode src.rx, dst.wx
Operation:

dst <- NOT src;

Condition Codes:

N <- dst LSS 0;
2 <- dst EQL O
vV <~ 0:
C <- C;
Exceptions:
none
Opcodes:
92 MCOMB Move Complemented Byte
B2 MCOMW Move Complemented Word
D2 MCOML Move Complemented Long

Description:

The destination operand is replaced by the ones complement of the
source operand.

INSTRUCTION SET

MNEG Move Negated

Format:
opcode src.rx, dst.wx
Operation:
dst <- -src;
Condition Codes:
N <- dst LSS 0;
Z «<- dst EQL 0;
V <- {integer overflow};
C <~ dst NEQ 0;
Exceptions:
integer overflow
Opcodes:
8E MNEGB Move Negated Byte
AE MNEGW Move Negated Word
CE MNEGL Move Negated Long
Description:

The destination operand is replaced by the negative of the source
operand.

Notes:

1. Integer overflow occurs if the source operand 1is the largest

negative integer (which has no positive counterpart). On
overflow, the destination operand 1is replaced by the source
operand.

2. MNEGx src.rx,dst.wx 1s equivalent to SUBx3 src.rx,S"#0,dst.rx, but
is one byte shorter.

INSTRUCTION SET

MOV ‘ Move

Format:

opcode src.rx, dst.wx
Cperation:

dst <=~ src;

Condition Codes:

N <- dst LSS 0;
Z <- dst EQL 0;
vV <- 0:
C <- C;

Exceptions:

none
Opcodes:
S0 MOVB Move Byte
BO MOVW Move Word
DO MOVL Move Long
7D MOVQ * Move Quad

Description:

The destination operand is replaced by the source operand.

INSTRUCTION SET

MOVZ Move Zero-Extended

Format:

opcode src.rx, dst.wy
Operation:

dst <- ZEXT(src);

Condition Codes:

N <- 0;
Z <- dst EQL O;
v <- 0;
C <- C;
Exceptions:
none
 Opcodes:
SB MOVZBW Move Zero-Extended Byte to Word
Sa MOVZBL Move Zero-Extended Byte to Long
3C MOVZWL Move Zero-Extended Word to Long

Description:

For MOVZBW, bits <7:0> of the destination operand are replaced by the
source operand; bits <15:8> are replaced by zero. For MOVZBL, bits
<7:0> of the destination operand are replaced by the source operand;
bits <31:8> are replaced by 0. For MOVZWL, bits <15:0> of the
destination operand are replaced by the source operand; bits <31:16>
are replaced by 0.

INSTRUCTION SET

MUL Multiply

Format:
cpcode mulr.rx, prod.mx 2 operand
opcode mulr.rx, muld.rx. prod.wx 3 operand
Operation:
prod <- prod * mulr; '2 operand
prod <- muld * mulr; '3 operand
Condition Codes:
<- prod LSS 0;
<- prod EQL O0:

<- {integer overflow};
<- 0:

N<NZ

Exceptions:

integer overflow

Opcodes:

84 MULB2 Multiply Byte 2 Cperand

85 MULB3 Multiply Byte 3 Operand

asd MULWZ2 Multiply Word 2 Operand

AS MULW3 Multiply Word 3 Operand

Ci MULL2 Multiply Long 2 Operand

Cc5 MULL3 Multiply Long 3 Operand
Description:
In 2 operand format, the product operand s multiplied by the
muitiplier operand and the product operand is replaced by the low half
of the double length resuit. In 3 operand format, -he multiplicand

operand 1s multiplied by the multiplier operand and the product
operand is replaced by the low nhalf of the double length rssult.

Notes:

Integer overflow occurs if the high half of the double length result
is not equal to the sign extension of the low half.

PUSHL Push Long

Format:

opcodé src.rl
Operation:

-{SP) <- src;
Condition Codes:

N <~
7L -
& <

v o<
C <~

LSS 0;
BEQL 0O;

O 0O

r
Ped
kS
.
’
r

Nounuwn

Exceptions:
none
Opcodes:

DD PUSHL Push Long

Description:
The longword source operand
Notes:

PUSHL 1is eguivalent to MOVL

Ny

is pushed on the stack.

N

INSTRUCTION SET

src,-(SP), but 1s 1 byte shorter.

INSTRUCTION SET

ROTL - Rotate Long

Format:

opcode cnt.rb, src.rl, dst.wl
Operation:

dst <- src rotated cnt<bits;

Condition Codes:

N <- dst LSS 0;
2 <- dst EQL Q;
V <= 0;
C <~ (;

Exceptions:
none
Opcodes:

SC ROTL Rotate Long

Description:

The source operand 1is rotated logically by the number of bits
specified by the count operand and the destination operand is replaced
by the result. The source operand is unaffected. A positive count
operand rotates to the left. A negative count operand rotates to the
right. A 0 count operand replaces the destination operand with the
source operand. :

INSTRUCTION SET

SBWC Subtract With Carry

Format:

.pcode sub.rl, dif.ml
Qperation:

dif <- dif - sub - C;
Condition écdes: ”
<- dif LSS 0O:
<- dif EQL 0;

<- {integer overflow};
<- {borrow into most significant bit};

O<NZ

Exceptions:
integer overflow
Opcodes:

DS SBWC Subtract With Carry

Description:

The subtrahend operand and the contents of the condition code C bit
are subtracted from the difference operand and the difference operand
is replaced by the result. C

Notes:

I1. On overflow, the difference operand is replaced by the low order
bits of the true result.

2. The 2 subtractions in the operation are performed simultaneously.

INSTRUCTION SET

SUB Subtracz
Format:
opcode sub.rx, dif.mx 2 operand

opcode sub.rx, min.rx, dif.wx 3 operand
Operation:

dif <- dif - sub; !2 operand

dif <- min - sub; !3 operand

Condition Codes:

<- dif LSS 0;

<- dif EQL O;

<- {integer overflow};

<- {borrow into most significant bit};

NNz

Exceptions:

integer overflow

Opcodes:
32 SUBB2 Subtract Byte 2 Operand
83 SUBB3 Subtract Byte 3 Operand
A2 SUBWZ2 Subtract Word 2 Operand
A3 SUBW3 Subtract Word 3 Operand
c2 SUBL2 Subtract Long 2 Operand
C3 SUBL3 Subtract Long 3 Operand

Description:

In 2 operand format, the subtrahend operand is subtracted from <the
difference operand and the difference operand 1is replaced by the
result. In 3 operand format, the subtrahend operand 1is subtracted
from the minuend operand and the difference operand is replaced by the
result.,

Notes:

Integer overflow occurs 1f th
different signs and the si
subtrahend. On overflow, the £
low order bits of the true result.

1 t operands to the subtract are of
n of the vresult is the sign of the
rence operand i1s replaced by <the

1-30

INSTRUCTION SET

1
w3
3

Test

Format:

opcode src.rx
Operation:

src - 03

Condition Codes:

N <- src LSS 0
Z <- src EQL 0;
vV <= 0;
C <- 0;
Exceptions:
none
Opcodes:
95 TSTB Test Byte
BS TSTW Test Word

DS TSTL, Test Long

Description:

. The condition codes are affected according to the value of the source
operand,

Notes:

TSTx src is equivalent to CMPx src,S"#0, but is 1 byte shorter.

INSTRUCTION SET

XOR Exclusive OR

Format:
opcodé mask.rx, dst.mx 2 operand
opcode mask.rx, src.rx, dst.wx 3 operand
Operation:
dst <- dst XOR mask; !2 operand
dst <- src XOR maék; !'3 operand

Condition Codes:

N <- dst LSS 0;
Z <- dst EQL 0O;
vV <- 0;
C <- C;
Exceptions:
none
Opcodes:
8C XORB2 Exclusive OR Byte 2 Operand
8D XORB3 Exclusive OR 3yte 3 Operand
AC XORW2 Exclusive OR Word 2 Operand
AD XORW3 Exclusive OR Word 3 Operand
cC XORL2 Exclusive OR Long 2 Operand
CD XORL3 Exclusive OR Long 3 Operand

Description:

In 2 operand format, the mask operand is XORed with the destination
operand and the destination operand is replaced by the result. In 3
operand format, the mask operand is XORed with the source operand and
the destination operand is replaced by the result.

4,3 ADDRESS INSTRUCTIONS

Mova Move Address

Format:

opcode src.ax, dst.wl

Cperation:
dst <- srg;

Condition Codes:

N <- dst LSS 0;
Z <- dst EQL 0;
vV <~ 0;
Cc <- C;

Exceptions:
none
Opcodes:

gE MOVAB Move Address
3E MOVAW Move Address
DE MOVAL Move Address
MCVAF Move Address
75 MOVAQ Move Address
MOVAD Move Address
MOVAG Move Address

Description:

The destination operand is

Byte.

Word

Long
F_floating
Quad
D_floating
G_floating

replaced by

INSTRUCTION SET

operand. The

context 1in which the source operand is evaluated is given by the data

type of the instruction.

The

destination operand is not referenced.

operand address

replaces the

INSTRUCTION SET

PUSHA Push Address

Format:

opcode Src.ax
Cperation:

-{8P) <- src;

Condition Codes:

N <- src LSS 0;
Z <- src EQL 0;
vV <- 0;
C <= C;
Exceptions:
none
Opcodes:
SF PUSHAB Push Address Byte
3F PUSHAW Push Address Word
DF PUSHAL Push Address Long

PUSHAF Push Address F_floating
7F PUSHAQ Push Address Quad

PUSHAD Push Address D_floating

PUSHAG Push Address G_floating

Description:

The source operand is pushed on the stack. The context in which the
source operand 1s evaluated 1is given by the data type of the
instruction. The operand whose address is pushed is not referenced.

Notes:

PUSHAx src is equivalent to MOVAx src,-{(SP), but is 1 byte shorter.

INSTRUCTION SET

4.4 VARIABLE LENGTH BIT FIELD INSTRUCTIONS

A variable length bit field is specified by 3 operands:

<

1. A longword position operand.

2. A byte field size operand which must be in the range O through 32
or a reserved operand fault occurs.

3. A base address (relative to which the position is used to locate
the bit field). The address is obtained from an operand of
address access type. However, unlike other 1nstances of operand
specifiers of address access type, register mode may be designated
in the operand specifier. In this case the field is contained in
the register n designated by the operand specifier (or register
n+1 concatenated with register n). If the field is contained in a
register and size 1is not zero, the position operand must have a
value in the range 0 through 31 or a reserved operand fault
occurs.

In order to simplify the description of the variable bit field
instructions, a macro FIELD(pos, size, address) is introduced with the
following expansion (if size NEQ 0):

FIELD(pos, size, address)

L}

(address + SEXT(pos<31:3>))<{size - 1} + pos<2:0>:pos<2:0>>
tif address not specified by register mode
= {R[n+1]'Rn}i<{size - 1} + pos:pos>

'if address specified by register mode and pos + size
'GTRU 372

Rn<{size - 1} + pos:pos>
'if address specified by register mode and pos + size
'LEQU 32

The number of bytes referenced by the contents () operator
above is:

1 - i{{i{size - 1} + pos<2:0>} / 8:

Zero bytes are referenced if the field size 1is 0.

=
i

35

INSTRUCTION SET

CMP Compare Field

Format:
opcode pos.rl, size.rb, base.vb, src.rl
Operation:

tmp <- if size NEQU 0 then SEXT(FIELD (pos, size, base))

else 0Q; {CMPV
tmp <- if size NEQU 0 then ZEXT(FIELD (pos, size, base))
else 0; !CMPZV

tmp - src;
Condition Codes:

<- tmp LSS src:
<- tmp EQL src;
<= 0:

<- tmp LSSU src;

<Nz

Exceptions:

reserved operand

.OpCodes:
EC CMPV Compare Field v
ED CMPZV Compare Zero-Extended Field

Description:
The field specified by the position, size, and base operands is
compared with the source operand. For CMPYV, the source operand is
compared with the sign extended field. For CMPZV, the source operand
s compared with the =zero extended field. The only action is to
affect the condition codes.
Notes:
1. A reserved operand fault occurs if:

a. size GTRU 32.

b. pos GTRU 31, size NEQ 0, and the field 1is contained in the
registers,

INSTRUCTION SET

the condition codes are

L]
[o}]
(!
’,—.J
ot

2., On a reserved operand.
unpredictable.

INSTRUCTION SET

EXT Extract Field

Format:
opcode pos.rl, size.rb, base.vb, dst.wl
Operation:

dst <- if size NEQU 0 then SEXT(FIELD(pos, size, base))
else 0; 'EXTV

dst <- 1f size NEQU O then ZEXT(FIELD{(pos, size, base))
else 0: EXTZV

Condition Codes:

N <~ dst LSS 0:
Z <- dst EQL 0:
vV <= 0;
C <- C;

Exceptions:

reserved operand

Opcodes:
EE EXTV Extract Field

EF EXTZV Extract Zero-Extended Field

Description:

For EXTV, the destination operand is replaced by the sign extended
field specified by the position, size, and base operands. For EXTzZV,

the destination operand 1is replaced by the zero extended
specified by the position, size and base operands. I[f =«

operand is 0, the only action is to replace the destination
with 0 and affect the condition codes.

Notes:
1. A reserved operand fault occurs if:
a. size GTRU 32.

b. pos GTRU 31, size NEQ 0, and the field 1is contained
registers.

field
he size
operand

-

On a reserved operand fault, the destination operand is
and the condition codes are unpredictable.

INSTRUCTICN SET

unaffected

INSTRUCTION SET

F Find First

rxj

Format:

Operation:

state = if {FFS} then 1 else 0;
if size NEQU 0 then :

begin
tmpl <- FIELD{startpos, size, base);
tmp2 <- 0;

while {tmpl<tmp2> NEQ state} AND
{tmp2 LEQU {size - 1l}} do
tmpZ <~ tmp2 + 1;
findpos <- startpos + tmp2;
end
else
findpos <- startpos;

Condition Codes:

N <- 0;
Z <- {bit not found};
V.<- 0;
C <- 0;

Exceptions:
reserved operand
Cpcodes:

EB FFC Find First Clear
EA FFS Find First Set

Description:

A field specified by the start position, size, and base operands is
extracted. The field 1is tested for a bit in the state indicated by
the instruction, starting at bit 0 and extending to the nhignest bit in
the field. If a bit 1in the 1indicated state is found, the find
position operand is replaced by the position of the bit, and the 2
condition code bit 1is cleared. If no bit in the indicated state is
found, the find positicn operand is replaced by the position (relative
to the base) of a bit one position to the lefr of the specified field,
and the Z condition code bit is set. If the size operand is 0, the
ind position operand is replaced by the start position operand, and

1

he Z condition cocde bit is set.

t rh

INSTRUCTION SET

Notes:
1. A reserved operand fault occurs 1if:
a. size GTRU 32.

b. startpos GTRU 31, size NEQ 0, and the field 1is contained in
the registers.

2. On a reserved operand fault, the find position operand is
unaffected and the condition codes are unpredictable.

INSTRUCTION SET

INSV Insert Field

Format:

opcode src.rl, pos.rl, size.rb, base.vb

Cperation:

-

if size NEQU 0 then FIELD(pos, size, base) <- src<{size-1}:0>

Condition Codes:

N <- N:
4 <= Z;
Vo< - ‘Ej’;
C <- C;

Exceptions:
reserved operand
Opcodes:

FO INSV Insert Field

Description:

The field specified by the position, size, and base cperands is

replaced by bits size-1:0 of the source operand. If the size operand

1s 0, the instruction has no effect.

Notes:

l. A reserved operand fault occurs if:
a. size GTRU 32.

b. pos GTRU 31, size NEQ O, and the field 1is contained in the
registers.

2. On a reserved operand fault, +the field 1is wunaffected and the
condition codes are unpredictable.

12

e
|

INSTRUCTION SET

1.5 CONTROL INSTRUCTIONS

ACB Add Compare and Branch

Format:
opcode limit.rx, add.rx, index.mx, displ.bw
Operation:

index <~ index + add: _

if {{add GEQ 0} AND {index LEQ limit}} OR
{{add LSS 0} AND {index GEQ limit}} then
PC <- PC + SEXT(displ);

" Condition Codes:

<- index LSS 0;

<- index EQL 0;

<- {integer overflow};
<- C;

n<NZ

Exceptions:
integer overflow
Cpcodes:

9D ACBB Add Compare and Branch Byte
3D ACBW Add Compare and Branch Word
Fl ACBL Add Compare and Branch Long

Description:

The addend operand is added to the index operand and the index operand
is replaced by the result. The index operand is compared with the
limit operand. If the addend operand 1is positive (or ¢) and the
compariscon is less than or equal, or if the addend is negative and the
comparison 1s greater than or equal, the sign-extended branch
displacement is added to PC and PC is replaced by the result.

INSTRUCTION SET

Notes:

ACB efficiently implements the general FOR or DO loops in high
level languages, since the sense of the comparison between index
and limit is dependent on the sign of the addend.

On integer cverflow, the index operand 1is replaced by the low
order bits of the true result. Comparison and branch
determination proceed normally on the updated index operand.

=
|

=

Vi

INSTRUCTION SET

AOBLE Add One and Branch Less Than or Equal

Format:
opcode limit.rl, index.ml, displ.bb
Operation: : .
index <- index + 1;
if index LEQ limit then PC <-
PC + SEXT(displ);

Condition Codes:

N <- index LSS 0:

Z <- index EQL 0;

Vv <- {integer overflow};
C <= C;

Exceptions:
integer overflow
Opcodes:

F3 AOBLEQ Add One and Branch Less Than or Equal

Description:

One is added to the index operand and the index operand is replaced by
the result. The index operand is compared with the limit operand. If
it is less than or equal, the sign-extended branch displacement is
added to PC and PC is replaced by the result.

Notes:
Integer overflow occurs if the index operand before addition 1is the

largest positive integer. On overflow, the index operand is replaced
by the largest negative integer, and the branch is taken.

INSTRUCTION S

o]

m
L

ACBLSS Add One and Branch Less Than

Format:

opcode limit.rl, index.ml, displ.bb
Operation:

index <- index + 1;

if index LSS limit then PC <=

PC + SEXT(displ);

Condition Codes:
<- index LSS 0:
<- index EQL 0;

<- {integer overflow};
<= C:

N<NZ

Exceptions:
integer overflow
Ovcodes:

F2. AQOBLSS Add One and Branch Less Than

Description:

One is added to the index operand and the index operand is replaced by
the resulit. The index operand is compared with the limit operand. If
it is less than, the sign-extended branch displacement is added :to the
PC and PC is replaced by the result,

Notes:

Integer overflow occurs if the index operand before addition 1is the
largest positive integer. On overflow, the index operand is replaced
by the largest negative integer, and, unless the limit operand is the
largest negative integer, the branch is taken.

B 3ranch on (condition)

Format:
opcode displ.bb

Cperation:

-

INSTRUCTION §

-

if condition then PC <- PC + SEXT(displ);

Condition Codes:

NNz
A
!
N<NZ

Exceptions:

none

Opcodes: Condition
14 {N OR Z} EQL 0
15 {N OR Z} EQL 1
12 Z EQL 0
13 Z EQL 1
18 N EQL 0
1 N EQL 1
1A {C OR Z} EQL 0
18 {C OR Z} EQL 1

BGTR
BLEQ

BNEQ,
BNEQU
BEQL,
BEQLU
BGEQ

BLSS
BGTRU

BLEQU

BVC
BVS
BGEQU,

3CC
BLSSU,
3CS

Branch on Greater Than
(signed)

Branch on Less Than or Equal
(signed)

Branch on Not Equal (signed)
Branch on Not Equal Unsigned
Branch on Equal (signed)
Branch on Equal Unsigned
Branch on Greater Than or
Equal (signed)

Branch on Less Than (signed)
Branch on Greater Than
Unsigned

Branch Less Than or Equal
Unsigned

Branch on Overflow Clear
Branch on QOverflow Set
Branch on Greater Than or
Equal Unsigned

Branch on Carry Clear

Branch on Less Than Unsigned
Branch on Carry Set

-
=
&~

T

INSTRUCTION SET

Description:

The condition codes are tested and if the condition indicated by cthe
instruction is met, the sign-extended branch displacement is added to
the PC and PC is replaced by the result.

Notes:

The VAX conditional branch -instructions permit considerable
flexibility in branching but require care in choosing the correct
branch instruction. The conditional branch instructions are best seen
as 3 overlapping groups: “ -

1. Overflow and Carry Group

BvVS V EQL 1
BVC V EQL O
BCS C EQL 1
BCC C EQL O

These instructions are typically used to check for overflow (when
overflow traps are not enabled), for multiprecision arithmetic,
and for other special purposes.

2. Unsigned Group

BLSSU C EQL 1
BLEQU {C OR 2} EQL 1
BEQLU Z EQL 1
BNEQU Z EQL O
BGEQU C EQL 0
BGTRU {C OR Z} EQL O

These instructions typically follow integer and field instructions
where the operands are treated as wunsigned integers, address
instructions, and character string instructions.

3. Signed Group

-

BLSS N EQL
BLEQ {N OR Z} EQL 1

BEQL Z EQL 1

BNEQ Z EQL 0

BGEQ N EQL 0§

BGTR {N OR Z} EQL 0
These instructions typically follow integer and field instrucrions
where the operands are being treated as signed integers, flcating

point instructions, and decimal string insctructions.

INSTRUCTION SET

BB Branch on Bit

Format:
opcode pos.rl, base.vb, displ.bb
Operation:
teststate = if {BBS} then 1 else 0;
if FIELD(pos, 1, base) EQL teststate then
PC <- PC + SEXT(displ);

Condition Codes:

N <~ N3
Z <- Z;
V <= V3
C <- C;

Exceptions:

reserved operand

Opcodes:
EO BBS Branch on Bit Set
El BBC Branch on Bit Clear

Description:

The single bit field specified by the position and base operands 1is
tested. If it is in the test state indicated by the instruction, the
sign-extended branch displacement is added to PC and PC is replaced by
the result. .

Notes:

1. A reserved operand fault occurs if pos GTRU 31 and the bit Is
contained in a register.

2. On a reserved operand fault, the condition codes are
unpredictable.

INSTRUCTION SET

BB Branch on Bit (and modify without interlock)

Formar:
opcode pos.rl, base.vb, displ.bb
Operation:

teststate = if {BBSS or BBSC} then 1 else 0;
newstate = if {BBSS or BBCS} then 1 else 0:
tmp <- FIELD(pos, l, base);
FIELD(pos, 1, base) <- newstate:
if tmp EQL teststate then

PC <- PC + SEXT(displ);

Condition Codes:

N <- N:
Z <- Z:
V <= V:
C <- C;

Exceptions:

reserved operand

Opcodes:
E2 BBSS Branch on Bit Set and Set
E3 BBCS Branch on Bit Clear and Set
E4 BBSC Branch on Bit Set and Clear
ES BBCC Branch on Bit Clear and Clear

Description:

The single bit field specified by the position and base operands is
tested. If it is in the test state indicated by the instruction, the
sign-extended branch displacement is added to PC and PC is reolacec by
the result. Regardless of whether the branch is taken or not, the
tested bit is put in the new state as indicated by the instruction.

Notes:

1. A reserved cperand fault occurs if pos GTRU 31 and +the bit is
contained in a register.

2. 0On a reserved operand fault, the field is wunaffected and the
condition codes are unpredictable.

INSTRUCTION SET

3. The modification of the bit is not an interlocked operation. See
8BSSI and BBCCI for interlocking instructions.

INSTRUCTION SET

-

BB Branch on Bit Interlocked

Format:
opcode pcs.rl, base.vb, displ.bb
Cperation:

teststate = if {BBSSI} then 1 else 0;:
newstate = teststate;
{set interlock};
tmp <- FIELD(pos, 1, base);
FIELD(pos, 1, base) <- newstate;
{release interlock};
1f tmp EQL teststate then

PC <- PC + SEXT(displ);

Condition Codes:

N <- N3
2 <= Z;
vV <- V;
C <= C;

Exceptions:

reserved operand

Opcodes:
E6 BBSSI Branch on Bit Set and Set Interlocked
E7 BBCCI Branch on Bit Clear and Clear Interlocked

Description:

The single bit field specified by the position and base operands is
rested. If it is in the test state indicated by the instruction, the
sign-extended branch displacement is added to the PC and PC is
replaced by the result. Regardless of whether the branch is effected
or not, the tested bit is put in the new state as 1indicated by the
instruction. If the bit is contained in memory, the reading of the
state of the bit and the setting of it to the new state 1is an
interlocked operation. No other processor or /0 device can do an
interlocked access on the bit during the interlocked operation.

Notes:

1. A reserved operand fault occurs if pos GTRU 31 and the Dit is
contained in a register.

On a reserved operand fault, the field
condition codes are unpredictable.

Except for memory interlocking BBSSI is
BBCCI is equivalent to BBCC.

This instrtuction is designed to support
processors or devices.

Example: To implement "busy waiting”

1$: BBSSI bit,base,1l$

INSTRUCTION SET

is unaffected and the

equivalent

interlocks

to

BBSS and

with other

INSTRUCTION SET

BLB Branch on Low Bit

Format:
opcode src.rl, displ.bb
Cperation: . .
teststate = if {BLBS} then 1 else 0;
1f src«<0> EQL teststate then
PC <- PC + SEXT(displ);

Condition Codes:

N <- N;
Z <- Z;
V <= V;
C <- C;

Exceptions:

none
Opcodes:
E8 BLBS Branch on Low Bit Set
EY9 BLBC Branch on Low Bit Clear

Description:

The low bit (bit 0) of the source operand is tested and if it is equal
to the test state indicated by the instruction, the sign-extended
branch displacement is added to PC and PC is replaced by the result.

BR Branch

Format:

opcode displ.bx

Operation:

PC <- PC + SEXT(displ);

Condition Codes:

N <- N;
Z <= 2
vV <= V;
Cc <- C;

Exceptions:

none
Cpcodes:
11 BRB
31 BRW

Description:

The sign-extended branch displacement 1s added

Branch With Byte Displacement
Branch With Word Displacement

replaced by the result.

INSTRUCTION

and PC is

S

E

T

INSTRUCTION SET

BSB u Branch To Subroutine

Format:
" opcode displ.bx
Operation: : .

-(SP) <- PC;
PC <- PC + SEXT(displ};

ConditionACodes:

N <- N;
Z <- 2Z;
vV <-V;
C <- C;

Exceptions:

none
Opcodes:

10 BSBB Branch to Subroutine With Byte Displacement

30 BSBW Branch to Subroutine With Word Displacement

Description:

PC is pushed on the stack as a longword. The sign-extended branch
displacement is added to PC and PC is replaced by the result.

e
|
Wi
o

INSTRUCTION SET

CASE Case

Format:

opcode selector.rx, base.rx, limit.rx,
displ(0].bw,..., displ{limit].bw

Operation:

tmp <- selector - base;
PC <- PC + if tmp LEQU limit then
SEXT(displitmpl) else {2 + 2 * ZEXT(limit)};

Condition Codes:

<- tmp LSS limit;
<- tmp EQL limit;
<- 0:

<- tmp LSSU limit;

Oo<<NZ

Exceptions:
none
Cpcodes:

8F CASEB Case Byte
AF CASEW Case Word
CF CASEL Case Long

Description:

The base operand. 1is subtracted from the selector operand and a
temporary is replaced by the result. The temporary is compared with
the limit operand and if it is less than or equal unsigned, a branch
displacement selected by the temporary value is added to PC and PC is
replaced by the result. Otherwise, 2 times the sum of the limit
operand and 1 is added to PC and PC is replaced by the result., This
causes PC to be moved past the array of branch displacements.
Regardless of the branch taken, the condition codes are affected by
the comparison of the temporary operand with the limit operand.

Notes:

1. After operand evaluation, PC is pointing at displ{0], not the next
instruction. The branch displacements are relative to the address
of displ(0].

v
|
Ui
~J

INSTRUCTION SET

2. The selector and base operands can both be considered either as
signed or unsigned integers.

JMP Jump

Format:

opcode dst.ab
Cperation:

PC <- dst;

Condition Codes:

N <- N;
Z <- Ly
v o<- V3
c <= C

Exceptions:
none
Opcodes:

17 JMP Jump

Description:

PC is replaced by the destination

operand.

INSTRUCTION SET

INSTRUCTION SET

JSB Jump to Subroutine

Format:
opcode dst.ab
Operation:

-(SP) <~ PC;
PC <- dst;

Condition Codes:

N <- N;
Z <- Z;
V <= V:
C <- C;

Exceptions:
none
Opcodes:

16 JSB Jump to Subroutine

Description:

PC is pushed on the stack as a longword. PC is replaced by the
destination operand.

Notes:
Since the operand specifier conventions cause the evaluation of the
destination operand before saving PC, JSB can be used for coroutine

calls with the stack used for linkage. The form of such a call is JSB
2{(SP)+,

RSB Return from Subroutine

Formatz:

opcode
Operation:

PC <- (SP)+;

Condition Codes:

N <- N;
Z <- Z:
Vv <- V;
C <- C;

Exceptions:
none

Opcodes:

05 RSB Return From Subroutine

Description:

PC is replaced by a longword popped from the stack.

Notes:

1. RSB is used to return from subroutines called by

and JSB instructions.

2. RSB is equivalent to JMP 3(SP)+, but is 1 byte shorter.

i

INSTRUCTION SET

BSBB, BSBW

INSTRUCTION SET

SOBGEQ Subtract One and Branch Greater Than or Equal

Format:

opcode index.ml, displ.bb
Cperation:

index <- index - 1;

if index GEQ 0 then PC <~

PC + SEXT(displ);

Condition Codes:
<- index LSS 0;
<- index EQL 0;

<- {integer overflow};
<- C:

NO<NZ

Exceptions:
integer overflow
Opcodes:

Fi SOBGEQ Subtract One and Branch Greater Than or Egqual

Description:

One is subtracted from the index operand and the index operand is
replaced by the result. If the index operand is greater than or equal
to 0, the sign-extended branch displacement is added to PC and PC is
replaced by the result.

Notes:
Integer overflow occurs if the index operand before subtraction is the

largest negative integer. On overflow, the index operand is replaced
by the largest positive integer, and the branch is taken.

INSTRUCTION SET

SOBGTR Subtract Cne and Branch Greater Than

Format:
opcode index.ml, displ.bb
Operation:
index <- index - 1; .
if index GTR 0 then PC <-
PC + SEXT(displ};

Condition Codes:

N <- index LSS 0:

Z <- index EQL 0;

Vv <- {integer overflow};
C <- C;

Exceptions:
integer overflow
Opcodes:

F5 . SOBGTR Subtract One and Branch Greater Than

Description:

One is subtracted from the index operand and the index operand is
replaced by the result. If the index operand i$ greater than 0, the
sign-extended branch displacement is added to PC and PC is replaced by
the result.

Notes:

Integer overflow occurs if the index operand before subtraction is the
largest negative integer. On overflow, the index operand is replaced
by the largest positive integer, and the branch is taken.

INSTRUCTION SET

4.6 PROCEDURE CALL INSTRUCTIONS

Three instructions are used to implement a standard procedure calling
interface. Two instructions implement the CALL to the procedure; the
third implements the matching RETURN. The CALLG instruction calls a
procedure with the argument list actuals in an arbitrary location.
The CALLS instruction calls a procedure with the argument list actuals
on the stack. Upon return after a CALLS this list 1s automatically
removed from the stack. Both call instructions specify the address of
the entry point of the procedure being called. The entry point 1is
assumed to consist of a word termed the entry mask followed Dby the
procedure's instructions. The procedure terminates by executing a RET
instruction.

The entry mask, Figure 4-1, specifies the procedure's register use and
cverflow enables:

i 1 ¥ 1 i ¥ i i I 1 T T
bv A% MBZ REGISTERS

MR- 13424

Figure 4-1 Entry Mask

On CALL the stack is aligned to a longword boundary and the trap
enables in the PSW are set to a known state to ensure consistent
behavior of the called procedure. Integer overflow enable and decimal
overflow =2nable are affected according to bits 14 and 15 of the entry

mask respectively. Floating underflow enable 1is <cleared. The
registers R1l through RO specified by bits 11 through 0 respectively
are saved on the stack and are restored by the RET instruction,. In

addition, PC, SP, FP, and AP are always preserved Dby the CALL
instructions and restored by the RET instruction.

All external procedure CALLs generated by standard DIGITAL language
processors, and all inter-module CALLs to major VAX software
subsystems, comply with the procedure calling software standard. The
procedure calling standard requires that all registers in the range R2
through R1l used in the procedure must appear in the mask. RO and RI
are not preserved by any <called procedure that complies with the
procedure calling standard.

In order to preserve the state, the CALL instructions form & structure
on the stack termed a call frame or stack frame. This contains the
saved registers, the saved PSW, the register save mask, and several
control Dbits. The frame also includes a longword which the CALL
instructions clear: this is used to implement the VAX/VMS condition

1-64

INSTRUCTION SET

handling facility. At the end of execution of the CALL instruction,
FP contains the address of the stack frame. The RET instruction uses
the contents of FP to find the stack frame and restore state. The
condition handling facility assumes that FP always points to the stack
frame. The stack frame has the format shown in Figure 4-2,

CONDITION HANDLER {INITIALLY 0)) P
. SAVED
SPA S 0 MASK<11:0> z Ay 0

SAVED AP
SAVED FP
SAVED PC
SAVED RO (. .)

d .

* *

hd -
SAVED R11 (.:)

{0 TO 3 BYTES SPECIFIED BY SPA, STACK POINTER ALIGNMENT)

S = SET IF CALLS; CLEAR IF CALLG.

Z = ALWAYS CLEARED BY CALL CAN BE SET BY SOFTWARE TO FORCE
A RESERVED OPERAND FAULT ON A RET.

MR-134825

Figure 4-2 Stack Frame

Note that the saved condition codes and the saved trace
{(PSW<T>) are cleared.

enable
The contents of the frame PSW<«3:0> at the time RET 1is executed will
become the condition codes resulting from the execution of the
procedure. Similarly, the content of the f{rame PSW<4i> at the time the
RET is executed will become the PSW<T> bit.

INSTRUCTION SET

CALLG Call Procedure With General Argument List

Format:
opcode arglist.ab, dst.ab
Operation:
falign stack};
{create stack frame};
{set arithmetic exception enables};
{set new values of AP,FP,PC};

Condition Codes:

N <- 0;
Z <- 0;
vV <= 0;
C <- 0;

Exceptions:
reserved operand
Opcodes:

FA CALLG Call Procedure with General Argument List

Description:

SP is saved in a temporary and then bits 1:0 are replaced by 0 so that
the stack 1s longword aligned. The procedure entry mask is scanned
from bit 11 to 0 and the contents of registers whose number
corresponds to set bits in the mask are pushed on the stack as
longwords. PC, FP, and AP are pushed on the stack as longwords. The
condition codes are cleared. A longword containing the saved two low
bits of SP in bits 31:30, a 0 in bit 29 and bit 28, the low 12 bits of
the procedure entry mask in bits 27:16, a 0 in bit 15 and PSW<1l4:0> in
bits 14:0 with T cleared is pushed on the stack. A longword 0 is
pushed on the stack. FP is replaced by SP. AP is replaced by the
arglist operand. The trap enables in the PSW are set to a known

state. Integer overflow and decimal overflow are affected according
to bits 14 and 15 of the entry mask respectively; floating underflow
is cleared. T~-bit is unaffected. PC is replaced by the sum of

destination operand plus 2, which transfers control to the called
procedure at the byte beyond the entry mask. The appearance of the
stack after a CALLG instruction is executed is shown in Figure 4-3.

SP
:FP
STACK FRAME

(O TO 3 BYTES SPECIFIED BY SPA)

MR 13426

Figure 4-3 CALLG Stack Frame

Notes:

1. If bits 13:12 of the entry mask are not 0, a reserved operand
fault occurs.

2. On a reserved operand fault, the condition codes are
unpredictable. :

3. The procedure calling standard and the condition handling facility

require the following register saving conventions. RO and Rl are
always available for functicn return values and are never saved in

the entry mask. All registers R2 through R1l which are modified

in the called procedure must be preserved in the mask.

INSTRUCTION SET

CALLS Call Procedure with Stack Argument List

Format:
opcode numarg.rl, dst.ab
Cperation:
{push arg count};
{align stack};
{create stack frame};
{set arithmetic exception enables};:
{set new values of AP,FP,PC};

Condition Codes:

n<SsNZ
A
i
OO0
" R NE gy

Exceptions:
reserved operand
Opcodes:

FB CALLS Call Procedure With Stack Argument List

Description:

The numarg operand is pushed on the stack as a longword (byte O
contains the number of arguments, the high order 24 bits are used by
DIGITAL software). SP is saved in a temporary and then bits 1:0 of SP
are replaced by 0 so that the stack 1is longword aligned. The
procedure entry mask is scanned from bit 11 to bit 0 and the contents
of registers whose number corresponds to set bits in the mask are
pushed on the stack. PC, FP, and AP are pushed on the stack as
longwords. The condition codes are cleared. A longword containing
the saved two low bits of SP in bits 31:30, a 1 in bit 29, a 0 in bit
28, the low 12 bits of the procedure entry mask in bits 27:16, a 0 in
bit 15 and PSW<14:0> in bits 14:0 with T cleared 1is pushed on the
stack. A longword 3 is pushed on the stack. FP is replaced bv SP.
AP is set to the value of the stack pointer after the numarg operand
was pushed on the stack. The trap enables in the PSW are set to &
known state. Integer overflow and decimal overflow are affected
according to bits 14 and 15 of the entry mask; respectively, floating
underflow is cleared. T-bit is unaffected. PC is replaced by the sum
of destination operand plus 2, which transfers control to the zalled
procedure at the byte beyond the entry mask. The appearance of _the

1-683

INSTRUCTION SET

stack after CALLS is executed is shown in Figure 4-4.

:SP
:FP
STACK FRAME
(O TO 3 BYTES SPECIFIED BY SPA}
N ‘AP
™ -

d N LONGWORDS OF ARGUMENT LIST

..

MR-13427

Figure 4-4 CALLS Stack Frame
‘Notes:

1. If bits 13:12 of the entry mask are not 0, a reserved operand
fault occurs,

2. On a reserved operand fault, the condition codes are
unpredictable,

3. Normal use is to push the arglist onto the stack in reverse order
prior to the CALLS. On return, the arglist is removed from the
stack automatically.

4. The procedure calling standard and the condition handling facility
require the following register saving conventions. RO and Rl are
always available for function return values and are never saved in
the entry mask. All registers R2Z through R1ll which are modified
in the called procedure must be preserved in the entry mask.

INSTRUCTICN SET

RET Return from Procedure

- Format:
opcode
Operation:

{restore SP from FP};

{restore registers};

{drop stack alignment}:

{if CALLS then remove arglisti};
{restore PSW};

Condition Codes:

<- tmpl<3>;
<- tmpl<2>;
<= tmpl<l>;
<- tmpl<0>;

n<gNzZ

Exceptions:
reserved operand
Opcodes:

04 RET Return from Procedure

Description:

SP is replaced by FP plus 4. A longword containing stack alignment
bits i bits 31:30, a CALLS/CALLG flag in bit 29, the low 12 bits of
the procedure entry mask in bits 27:16, and a saved PSW in bits 15:0
is popped from the stack and saved in & temporary. PC, FP, and AP are
replaced by longwords popped from the stack. A register restore mask
is formed from bits 27:16 of the temporary. Scanning from bit 0 to
bit 11 of the restore mask, the contents of registers whose number is
indicated by set bits 1in the mask are replaced by longwords popped
from the stack. SP is incremented by 31:30 of the temporary. PSW 1is
replaced by bits 15:0 of the temporary. If bit 29 in the temporary is
1 (indicating that the procedure was called by CALLS), a longword
containing the number of arguments is popped from the stack. Four
times the unsigned value of the low byte of this longword is added to
SP and SP is repiaced by the result.

1-7¢

INSTRUCTION SET

Notes:
1. A reserved operand fault occurs if tmpl<l5:8> NEQ 0.

2. On a reserved operand fault, the condition codes are
unpredictable.

3. The value of tmpl<28> is ignored.

4. The procedure calling standard and condition handling facility
assume that procedures which return a function value or a status
code do so in RQ or RO and Ri.

S. I1f FP<l:0> is not zero, the results are unpredictable.

INSTRUCTION SET

4.7 MISCELLANEOQOUS INSTRUCT&ONS

BICPSW Bit Clear PSW

Format:

opcode mask.rw
Operation:

PSW <- PSW AND {NOT mask};
Condition Codes:

N <- N AND {NOT mask<3>}

Z <- Z AND {NOT mask<2>}

V <- V AND {NOT mask<l>}:
C <~ C AND {NOT mask<0>};

~w e

Exceptions:
reserved operand
Opcodes:

- BS BICPSW Bit Clear PSW

Description:

PSW 1s ANDed with the ones complement of the mask operand and PSW is
replaced by the result.

Notes:

A reserved operand fault occurs if mask <15:8> is not =zero. Cn a
reserved operand fault, the PSW is not affected.

v
i
~d
[y

 INSTRUCTION SET

BISPSW Bit Set PSW

Format:
opcode mask.rw
Operation:
PSW <- PSW OR mask;
Condition Codes:
<- N OR mask<3>;
<- Z OR mask<2>;

V OR mask<l>;
<- C OR mask<0>:

N <Nz
A
]

Exceptions:
reserved operand
Opcodes:
B8 BISPSW Bit Set PSW

Description:
PSW is ORed with the mask operand and PSW is replaced by the result.
Notes:

A reserved operand fault occurs if mask<1l5:8> 1is not zero. on a
reserved operand fault, the PSW is not affected.

INSTRUCTION SET

BPT Breakpoint Fault

Format:
opcode
Operation:

PSL<TP> <- 0; :
{breakpoint fault}; !push current PSL on stack

Condition Codes:

N <- 0; !condition codes cleared after BPT fault

Z <= 0;
vV <= 0;
C <- 0;

Exceptions:
none
Cpcodes:

03 BPT Breakpoint Fault
Description:

This instruction is used, together with the T-bit, to implement
debugging facilities.

1-74

 INSTRUCTION SET

>

HALT Halt

Format:
opcode
Operation:’

I1f PSL<current _mcde> NEQU kernel then
{privileged instruction fault}
else
{halt the processor};

Condition Codes:A

N <- Q; !If privileged instruction fault

Z <- 0; !'condition codes are cleared after

¥ <- 0; tthe fault. PSL saved on stack

C <- 0; !contains condition codes prior to HALT.
N <- N; !'If processor halt

Z <- 2 .

Vv <= V:

C <- C;

Exceptions:
privileged instruction
Opcodes:

00 HALT Halt

Description:

1f the process 1s running in kernel mode, the processor 1is halted.
Otherwise, a privileged instruction fault occurs.

Notes:

This opcode is 9 to trap many branches to data.

1-75

INSTRUCTION SET

INDEX Compute Index

Format:

opcode subscript.rl, low.rl, high.rl,
size.rl, indexin.rl, indexout.wl

Operation:
indexout <- {indexin + subscript} *size;
if {subscript LSS low} or {subscript GTR high}
then {subscript range trap};

Condition Codes:

N <- indexout LSS 0;
Z <- indexout EQL O0:
vV <- 0;
C <- 0:

Exceptions:
subscript range
Cpcodes:

0A INDEX Compute Index

Description:

The indexin operand is added to the subscript operand and the sum
multiplied by the size operand. The indexout operand is replaced by
the result. If the subscript operand is less than the low operand or
greater than the high operand, a subscript range trap is taken.

Notes:

1. No arithmetic exception other than subscript range can result from
this instruction. Thus no indication is given if overflow occurs
in either the add or multiply steps. 1If overflow occurs on the
add step the sum is the low order 32 bits of the true result. If
overflow occurs on the multiply step, the indexout operand is
replaced by the low order 32 bits of the true product of the sum
and the subscript operand. In the normal use of this instruction,
overflow cannot occur without a subscript range trap occurring.

2. The index instruction is useful in index calculations for arrays
of the fixed length data types (integer and floating) and for
index calculations for arrays of bit fields, <character strings,
and decimal strings. The indexin operand permits cascading INDEX

4-76

INSTRUCTION SET

[}

instructions for multidimensignal arrays. For one-dimensional bit
field arrays it also permits introduction of the constant portion
of an index calculation which is not readily absorbed by address
arithmetic. The following example shows some of the uses of
INDEX.

Example:
The COBOL statements:
01 A-ARRAY. _
02 A PIC X(25) OCCURS 15 TIMES INDEXED BY I.
01 B PIC X(25).
MOVE A(I) TO B.

are equivalent to:

INDEX I(RL1), #7~X0l, #~XOF, #~X19, #~X00, RO
MOVC3 #~%X19, A-25(R11)[RO], B(R1l)

The FORTRAN statements:

INTEGER*4 A(11:24), I
A(I)y =1 B

are equivalent to:

INDEX I(R11), #11, #24, #1, #0, RO
MOVL #1, A-44(R11)[RO]

The PASCAL statements:

: integer;
a : arrayll11..24] of integer;

are equivalent to:

INDEX I,#11,#24,41,40,R0
MOVZBL #1,A-44[RO]

INSTRUCTION SET

» ¥

MCVPSL Move from PSL

Format:

opcode dst.wl
Operation:

dst <- PSL;

Condition Codes:

N <- N;
2 <= Z;
V <= V;
C <- C;

Exceptions:
none
Cpcodes:

DC MOVPSL Move from PSL

Description:

The destination operand is replaced by PSL.

NOP No Operation

Format:
opcode
Operation:
none

Condition Codes:

N <- N:
Z <~ Z;
Vv <= V;
C <- C;

Exceptions:
none
Opcodes:

01 NOP No Operation

Description:

No operation is performed.

1-79

 INSTRUCTION SET

INSTRUCTION SET

PCPR Pop Registers

Format:
opcode mask.rw
Operation:

for tmp <- 0 step 1 until 14 do
if mask<tmp> EQL 1 then R{tmp] <- (SP)+;

Condition Codes:

N <- N;
Z <- Z:
V <= V:
C <- C;

Exceptions:
none
Opcodes:

BA POPR Pop Registers

Description:

The contents of registers whose number corresponds to set bits in the
mask operand are replaced by longwords popped from the stack. Rn is
replaced if mask<n> is set. The mask is scanned from bit 0 to bit 14.
Bit 15 is ignored.

1-80

INSTRUCTION SET

PUSHR Push Registers

Format:
opcode mask.rw
Cperation:

for tmp <- 14 step -1 until 0 do :
if mask<tmp> EQL 1 then -(SP) <- R[ltmp]l;

Condition Codes:

N <- N:
Z <- Z:
VvV <= V:
C <- C;

Exceptions:
none
Cpcodes:

BB PUSHR Push Registers

Description:

The contents of registers whose number corresponds to set bits in the
mask operand are pushed on the stack as longwords. Rn is pushed if
mask<n> is set. The mask is scanned from bit 14 to bit 0. Bit 15 is
ignored.

Notes:
The order of pushing is specified so that the contents of higher
numbered registers are stored at higher memory addresses. This

results in, say, a quadword datum stored in adjacent registers being
stored by PUSHR in memory in the correct order.

4-81

INSTRUCTION SET

XFC Extended Function Call

Format:
opcode
Operation:
{XFC fault};
Condition Codes:
N <-.
zZ <-

vV o<-
C <~

e we w& g

OO OO

Exceptions:
none
Opcodes:

FC XFC Extended Function Call

Description:

This 1instruction provides for wuser defined extensions to the
instruction set.

INSTRUCTION SET

4.8 QUEUE INSTRUCTIONS

A gueue is a circular, doubly linked list whose entries are specified
by their addresses. Each queue entry links to two others via a pair
of longwords. The first longword is the forward link: it speczfzes
the location of the succeeding entry. The second longword is the
backward link: it specifies the location of the preceding entry.

VAX supports two distinct types of links: absolute, and
‘self-relative. An absolute lznk contains the absolute address of the
entry that it points to., A self-relative link contains a displacement
from the present queue entry. A queue is classified by the type of
link it uses.

4,8.1 Absolute Queues

Absolute queues use absolute addresses as links. Queue entries are
linked by a pair of longwords.

The first (lowest addressed) longword 1is the forward link: the
address of the succeeding queue entry. The second (highest addressed)
longword is the backward link: the address of the preceding gqueue
entry. A queue is specified by a queue header which is identical to a
pair of queue linkage longwords. The forward link of the header is
the address of the entry termed the head of the queue. The backward
link of the header is the address of the entry termed the tail of the
queue. The forward link of the tail points to the header.

Two general operations can be performed on queues: insertion of
entries and removal of entries. Generally entries can be inserted or
removed only at the head or tail of a queue.

Figures 4-5 through 4-9 illustrate some queue operations. An empty
gueue is spec1fzed by its header at address H as shown in Figure 4-5.

31 00

H H+d

31

“A.13428

Figure 4-5 Empty Queue Header

If an entry at address B is inserted into an empty queue {at either
the head or tail), the queue is as shown in Figure 4-6.

INSTRUCTION SET

31

H+d

N

31

844

a

Q0

MR 13829

' Figure 4-6 Queue With Address B Inserted

If an entry at address A is inserted at the head

queue is as shown in Figure 4-7,

31

of the

N

3t

3

3

N

Figure 4-

Queue With Address Inserted at Head

00

okl

A+d

:B+4

MA-13430

Finally, if an entry at address C is inserted at the tail,
appears as shown in Figure 4 8.

1-84

queue,

the

the

queue

INSTRUCTION SET

kil oo
A H
c Hed
31 00
L3 00
B A
H : :At+d
3 - 06
3
c 8
A B4
m ' , 00
31 7 00
H :C
8 CH4
31 00

LEETS 1

Figure 4-8 Queue With Address Inserted at Tail

Following the above steps 1n reverse order gzves the effect of removal
at the tail and removal at the head.

If more than 1 process can perform operations on a queue
simultaneously, insertions and removals should only be done at the
head or tail of the queue. If only 1 process (or 1 process at a time)
can perform operations on a queue, insertions and removals can be made
at other than the head or tail of the queue. In the example above
with the queue containing entries A,B, and C, the entry at address B
can be removed and the queue appears as shown in Figure 4-9.

INSTRUCTION SET

31 , 00

A [~
C H+4
31 00
o ; I , 00
" c A
H _ At
31 00
3 00
H c
A C+4

31 Q0

A 13432

Figure'4—9 Queue With Address B Removed

The reason for the above restriction is that operations at the head or
tail are always valid because the queue header is always present;
operations elsewhere in the queue depend on specific entries being
present and may become invalid if another process is simultaneously
performing operations on the queue.

Two instructions are provided for manipulating absoclute queues:
INSQUE and REMQUE. INSQUE inserts an entry specified by an entry
operand into the queue following the entry specified by the
predecessor operand. REMQUE removes the entry specified by the entry
operand. Queue entries can be on arbitrary byte boundaries. Both
INSQUE and REMQUE are implemented as non-interruptible instructions.

INSTRUCTION SET

4.8.2 Self-relative Queues

Self-relative queues use displacements from queue entries as links.
Queue entries are linked by a pair of longwords. The first’ longword
(lowest addressed) is the forward link: the displacement of the
succeeding queue entry from the present entry. The second longword
(highest addressed) is the backward link: the displacemént of the
preceding queue entry from the present entry. A queue is specified by
a queue header, which also consists of two longword links.

Figures 4-10 through 4-13 show examples of queue dperations. An empty

queue 1is specified by its header at address H. Since the queue is
empty, the self-relative links must be zero as shown in Figure 4-10.

31 ‘ 00
Figure 4-10 Empty Queue

If an entry at address B is inserted into an empty gqueue (at either
the head or tail), the queue is as shown in Figure 4-11.

31 00
B=w H
8-H i a4
n -) 00
31 00
H=8 8
] H-8 ‘B+é
1] 00

VA 11434

Figure 4-11 Queue With Address B Inserted

4

87

INSTRUCTION SET

If an entry at address A is inserted at the head of the gqueue,

gueue 1s as shown in Fiqure 4-12.

31)
A= H H
8~H (M4
3 a
n [}
8~ A A
H=a) Atd
3 o
i . 0
H=-8 B8
A=-B B+4
31 ' o

MRA.13435

Figure 4-12 Queue With Address A Inserted at Head

Finally, if an entry at address C is inserted at the tail, the
appears as shown in Figure 4-13.

n a
A =M H
C=H H+4
31 [¢]
n [}
3—‘A A
H~=A ‘ (A+d
31 o
N ¢}
c~-8 B
A-B B4
31 c
3N 0
H=-C C
B-C C+4
31 4]

MR+3438

Figure 4-13 Queue With Address C Inserted at Tail

1-388

the

queue

INSTRUCTION SET

Following the above steps in reverse order gives the effect of removal
at the tail and removal at the head.

Four operations can be performed on self-relative queues: insert at
head, insert at tail, remove from head, and remove from tail.
Furthermore, these operations are interlocked to allow cooperating
processes in a multiprocessor system to access a shared list without
additional synchronization. Queue entries must be guadword aligned.
A hardware supported interlocked memory access mechanism is used to
read the queue header. Bit 0 of the queue header 1is wused as a
secondary interlock and is set when the queue is being accessed. If
an interlocked queue instruction encounters the secondary interlock
set, it terminates after setting the condition codes to indicate
failure to gain access to the queue. If the secondary interlock bit
is not set, then the interlocked queue instruction sets it during its
operation and clears it at instruction completion. This prevents

other interlocked queue instructions from operating on the same queue.

INSTRUCTION SET

INSQHI Insert Entry into Queue at Head, Interlocked

Format:
opcode entry.ab, header.aq

Operation:

!must have write access to header
'header must be quadword aligned
'header cannot be equal to entry
tmpl <- (header){interlocked}; !acquire hardware interlock
' ltmpl<2:1> must be zero

1f tmpl<0> EQLU 1 then
begin
{header){interlocked} <- tmpl;!release hardware interlock
{set condition codes and terminate instruction};
end;
else
begin
(header){interlocked} <- tmpl v 1;!set secondary interlock
!release hardware interlock
If {all memory accesses can be completed} then
!check if following addresses can be written
!without causing a memory management exception:
! entry
! header + tmpl
!also, check for quadword alignment
begin
{insert entry into queue};
{release secondary interlock};
end;
else
begin
{release secondary interlock}:
{backup instruction};
finitiate fault};
end;
end;

INSTRUCTION S

Condition Codes:

if {insertion succeeded} then
begin :
N <- 0;
Z <= (entry) EQL (entry+4); 'first entry in queue
v <= 0; . .
C <- 0;
end;
else
begin
N <=~
z <-
vV <~
C <-
end;

- OOo

ws Wy wa WE

!secondary interlock failed

Exceptions:
reserved operand
Opcodes:

5C INSQHI Insert Entry into Queue at Heéd, Interlocked

Description:

The entry specified by the entry operand is inserted into the queue
following the header. If the entry inserted was the first one in the
queue, the condition code Z-bit is set; otherwise it is cleared. The
insertion is © a non-interruptible operation. The insertion is
interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process even in a
multiprocessor environment. Before performing any part of the
operation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs,
the queue is left in a consistent state. If the instruction fails to
acquire the secondary interlock, the instruction sets condition codes
and terminates.

E

™
-

INSTRUCTION SET

Notes:

1. Because the insertion is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines.

2. The INSQHI, [INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchronization. :

3. To set a software interlock realized with a queue, the following
can_ be used:

INSERT: INSQHI ... ;Wwas queue empty?
BEQL 13 ;yes
BCS INSERT ;try inserting again
CALL WAIT(...) ;no, wait

1s:

4. During access validation, any access which cannot be completed
results in a memory management exception even though the queue
insertion is not started. : -

5. A reserved operand fault occurs if entry or header is an address

that ls not quadword aligned (i.e. <2:0> NEQU 0) or |if
(header)<2:1> is not zero. A reserved operand fault also occurs
if header equals entry. The queue is not altered. :

N
i

92

INSTRUCTION SET

INSQTI Insert Entry into Queue at Tail, Interlocked

Format:

opcode entry.ab, header.aq

Cperation:

!must have write access to header
'theader must be quadword aligned
'header cannot be equal to entry
tmpl <- {header){interlocked}; '!acquire hardware interlock
'tmpl<2:1> must be zero

1f tmpl<0> EQLU 1 then
begin ‘
(header){interlocked} <- tmpl;!release %ardware interlock
{set condition codes and terminate instructiont};
end;
else
begin
(header}{xnterlocked} <- tmpl v 1l;!set secondary interlock
'release hardware interlock
I1f {all memory accesses can be completed} then
tcheck if the following addresses can be written
!without causing a memory management exception:
! , entry
! : header + (header + &) ,
talso, check for quadword alzgnment
begln
{insert entry into queue};
{release secondary 1nterlmck}

end;

else
begin
{release secondary interlock};
{backup instruction};
{initiate fault};
end;

end;

INSTRUCTION SET

Condition Codes:

if {insertion succeeded} then

begin)
N <- 0y .
Z <- (entry) EQL (entry+4); 'first entry in queue
V <- 0: :
C <- 0;
end;
else '
begin
N <- 0:
Z <= 0;
vV <- 0: »
C <- 1; !secondary interlock failed
end;

Exceptions:
reserved operand
Opcodes:

5D INSQTI Insert Entry into Queue at Tail, Interlocked

Description:

The entry specified by the entry operand is inserted into the gueue
preceding the header. 1If the entry inserted was the first one in the
gueue, the condition cocde Z-bit is set; otherwise it is cleared. The
insertion is a non-interruptible operation. The insertion is
interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process even in a
multiprocessor environment. . Before performing any part of the
cperation, the processor validates that the entire operation can be
completed. This ensures that if a memory management exception occurs,
the queue is left in a consistent state., If the instruction fails to
‘acquire the secondary interlock, the instruction sets condition codes
and terminates.

e
t

94

INSTRUCTION SET

Notes:

1. Because the insertion is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchronization.

3. To set a software interlock realized with a queue, the following
can be used:

INSERT: INSQTI ... ;was gueue empty?
BEQL 13 - 1yes
BCS INSERT ytry inserting again
CALL WAIT(...) :no, wait

1$:

4, During access validation, any access which cannot be completed
results 1In a memory management exception even though the queue
insertion is not started.

5. A reserved operand fault occurs if entry, header, or (header+4) is
an address that is not quadword aligned (i.e. <2:0> NEQU 0) or ‘if
(header)<2:1> is not zero. A reserved operand fault also occurs
if header equals entry. The queue is not altered.

INSTRUCTION SET

INSQUE Insert Entry in Queue

Format:
opcode entry.ab, pred.ab
Operation:

If {all memory accesses can be completed} then

begin
(entry) <- (pred); !forward link of entry
(entry + 4) <- pred; !backward link of entry
((pred) + &) <- entry; !backward link of successor
{pred) <- entry; !forward link of predecessor
end; :
else
' begin

{backup instructiont;
{initiate fault};
end;

Condition Codes:

<- (ehtry) LSS (entry+4);

N. .

Z <- (entry) EQL (entry+4); !first entry in queue
vV <- 0:

C

<- (entry) LSSU (entry+4);
Exceptions:

none
Opcodes:

0E INSQUE Insert Entry in Queue

Description:

The entry specified by the entry operand is inserted into the queue
following the entry specified by the predecessor operand. If the
entry inserted was the first one in the queue, the condition code
Z-bit is set; otherwise it 1s «cleared,. The insertion is a
non-interruptible operation. Before performing any part of <the
operation, the processor validates that the entire operation can be
completed. This ensures that {f a memory management exception occurs,
the queue is left in a consistent state,

INSTRUCTION SET

Notes:

1. Three types of insertion can be performed by. appropriate choice of
predecessor operand:

a. Insert at head
INSQUE entry,h ;h is queue head
b. Insert at tail

INSQUE entry,dh+4 ;h is queue head
(Note "2@" in this case only)

c. Insert after arbitrary predecessor
INSQUE entry,p ip Ls predecessor
2. Because the insertion is non-interruptible, processes running in
kernel mode can share gqueues with interrupt service routines.
3. The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access a
shared list without additional synchronization if the insertions

and removals are only at the head or tail of the queue.

4., To set a software interlock realized with a queue, the following
cah be used:

INSQUE ... ;was queue empty?
BEQL 1s . ;yes
CALL WAIT(...) ;no, wait

1s:

5. During access validation, any access which cannot be completed
results in a memory management exception even though the queue
insertion is not started.

INSTRUCTION SET

REMQHI Remove Entry from Queue at Head, Interlocked

Format:

opcode header.aq, addr.wl

Cperation:

'must have write access to header
!header must be quadword aligned
!header cannot equal address of addr
tmpl <- (header)f{interlocked}; !acquire hardware interlock
'tmpl<2:1> must be zero

if tmpl<(> EQLU 1 then
begin
(header) {interlocked} <- tmpl;!release hardware interlock
{set condition codes and terminate instruction};
end;
else
begin .
(header) {interlocked} <- tmpl v 1l;!set secondary interlock
'release hardware interlock
If {all memory accesses can be completed} then
!check if the following can be done without
!causing a memory management exception:
!write addr operand
!read contents of header + tmpl {if tmpl NEQU 0}
!write into header + tmpl + (header + tmpl)
s {if tmpl NEQU 0}
!also, check for quadword alignment
begin
{remove entry from queue};
{release secondary interlock};
end;
else
begin
{release secondary interlock};
{backup instruction};
finitiate fault};
end;
end;

INSTRUCTION SET

Condition Codes:

if {removal succeeded}! then

begin
N <- 0;
Z <- (header) EQL 0; '!queue empty after removal
Vv <- {queue empty before this instructiont; :
C <- 0;
end;
else
begin
N <- 0;
Z <- 0;
Vv <= 1; !did not remove anything
C <- 1; !secondary interlock failed
end;

Exceptions:
reserved operand
Opcodes:

5E REMQHI Remove Entry from Queue at Head, Interlocked

Description:

If the secondary interlock is clear, the queue entry following the
header 1is removed from the queue and the address operand is replaced
by the address of the entry removed. If the gueue was empty prior to
this instruction or if the secondary interlock failed, the condition
code V bit 1is set; otherwise it 1is <cleared. If the 1interlock
succeeded and the queue is empty at the end of this instruction, the
condition code 2Z-bit is set; otherwise it is cleared. The removal 1is
interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process even 1in a
multiprocessor environment. The removal 1is a non-interruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures
that if a memory management exception occurs, the queue is left in a
consistent state. If the instruction fails to acquire the secondary
interlock, the instruction sets condition codes and terminates without
altering the queue.

INSTRUCTION SET

Notes:

e
i
e]

2.

Because the removal is non-interruptible, processes running in
kernel mode can share gueues with lnterrupt service routines.

The INSQHI, -INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared list without additional
synchronization,

To release a software interlock realized with a queue, the
following can be used:

13: REMQHI ... ' :removed last?
BEQL 2% ;ves
BCS 13 ;try removing again
CALL ACTIVATE(...) ;Activate other waiters
2$:

To remove entries until the queue is empty, the following can be
used:

13: REMQHI ... sanything removed?
BVS 28 ; no
process removed entry

.

BR 1$ T

2$: BCé 13 ;try removing again
queue empty

During access validation, any access which cannot be completed
results in a memory management exception even though the queue
removal is not started.

A reserved operand fault occurs if header or (header + (header))
is an address that is not gquadword aligned (i.e. <2:0> NEQU 9) or
if (header)<2:1> is not =zero. A reserved operand fault also
occurs if the header address operand equals the address of the
addr operand. The queue is not altered.

4-100

INSTRUCTION SET

REMQTI Remove Entry from Queue at Tail, Interlocked

Format:
opcode header.aq, addr.wl
Operation:

!must have write access to header
'header must be quadword aligned
'header cannot equal address of addr
tmpl <- (header){interlocked}; !acquire hardware interlock
'tmpl<2:1> must be zero

if tmpl<0> EQLU 1 then
begin
(header) {interlocked} <- tmpl;!release hardware interlock
{set condition codes and terminate instruction};
end;
else
begin
(header){interlocked} <- tmpl v 1l;!set secondary interlock
trelease hardware interlock
If {all memory accesses can be completed} then
tcheck if the following can be done without
!causing a memory management exceptlon~
!write addr operand
'read contents of header + (header + %)
! {if tmpl NEQU 0}
'write into header + (header + &)
t + (header + & + (header + 4)) {if tmpl NEQU 0}
talso, check for quadword alignment
begin
{remove entry from queue};
{release secondary interlock};
end;
else
begin
{release secondary interlock};
{backup instructiont};
{initiate fault};
end;
end;

INSTRUCTION SET

Condition Codes:

if {removal succeeded} then
begin
N «<- 0;
Z <- (header + 4) EQL 0;!queue empty after removal
V <- {queue empty before this instruction}: :
C <- 0;
end:
else
begin
N <-
7 <
V <=
C <-
end;

!did not remove anything
!secondary interlock failed

OO

we we wmes we

Exceptions:
reserved operand
Opcodes:

5F REMQTI Remove Entry from Queue at Tail, Interlocked

Description:

If the secondary interlock is clear, the gqueue entry preceding the
header 1is removed from the gueue and the address operand is replaced
by the address of the entry removed. If the queue was empty prior to
this instruction or if the secondary interlock failed, the condition
code V bit 1is set; otherwise it 1is cleared. If the 1interlock
succeeded and the queue is empty at the end of this instruction, the
condition code Z-bit is set; otherwise it is cleared. The removal is
interlocked to prevent concurrent interlocked insertions or removals
at the head or tail of the same queue by another process even in a
multiprocessor environment. The removal 1is a non-interruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures
that if a memory management exception occurs, the queue is left in a
consistent state. If the instruction fails to acquire the secondary
interlock, the instruction sets condition codes and terminates without
altering the queue.

INSTRUCTION SET

Notes:

1. Because the removal is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines.

2. The INSQHI, INSQTI, REMQHI, and REMQTI instructions are
implemented such that cooperating software processes in a
multiprocessor may access a shared 1list without additional
synchronization. '

3. To release a software interlock realized with a queue, the
following can be used: '

1$: REMQTI sremoved last?

BEQL 2% rYes
BCS 13 ;try removing again
CALL ACTIVATE(...) ;Activate cother waiters
28
4. To remove entries until the queue is empty, the following can be
used:
1S: REMQTI ... ;anything removed?
BVS 28 ;no
process removed entry
BR 1$;
28 BCS 1$;try removing again

queue empty

5. During access validation, any access which cannot be completed
results in a memory management exception even though the gueue
removal is not started.

6. A reserved operand fault occurs 1if header, (header + 4), or
(header + <(header + 4)+4) 1is an address that is not quadword
aligned (i.e. <2:0> NEQU 0) or if (header)<2:1> is not =zero. A
reserved operand fault also occurs if the header address operand
equals the address of the addr operand. The gueue is not altered.

4-103

INSTRUCTION SET

REMQUE Remove Entry From Queue

Format:
opcode entry.ab,addr.wl
Operation:

if {all memory accesses can be completed} then
begin

({entry+4)) <- (entry); !forward link of predecessor
((entry)+4) <- (entry +4);!backward link of successor
addr <- entry;
end;
else
begin
{backup instruction};
{initiate fault};
end;

Condition Codes:

N <- (entry) LSS (entry+4);
Z <- (entry) EQL (entry+4); !queue empty
V <- entry EQL (entry+4); 'no entry to remove

C <- (entry) LSSU (entry+4);
Exceptions:

none
Opcodes:

OF REMQUE Remove Entry from Queue

Description:

The queue entry specified by the entry operand 1is removed from the
queue, The address operand is replaced by the address of the entry
removed. If there was no entry 1in the queue to be removed, the
condition code V bit is set; otherwise it is cleared. 1If the queue is
empty at the end of this instruction, the condition code Z-bit is set;
otherwise it is cleared. The removal 1is a non-interruptible
operation. Before performing any part of the operation, the processor
validates that the entire operation can be completed. This ensures
that if a memory management exception occurs, the gqueue is left in a
consistent state.

INSTRUCTION SET

Notes:

1. Three types of removal can be performed by suitable choice of
entry operand:

1. Remove at head
REMQUE <2h,addr ;h is queue header
2. Remove at tail
REMQUE &h+4,addr :h is queue header
3. Remove arbitrary entry
REMQUE entry,addr H
2. Because the removal is non-interruptible, processes running in
kernel mode can share queues with interrupt service routines.
3. The INSQUE and REMQUE instructions are implemented such that
cooperating software processes in a single processor may access a
shared list without additional synchronization if the insertions

and removals are only at the head or tail of the queue.

4, To release a soﬁtware interlock realized with a gqueue, the
following can be used: : :

REMQUE ... ;queue empty?
BEQL 1$;yes
CALL ACTIVATE(...) ;Activate other waiters
1S:
5. To remove entries until the queue is empty, the following can be
used: '
1S: REMQUE ... ;anything removed?
BVS EMPTY ' o
BR 1$:

6. During access validation, any access which <cannot be compieted
results in a memory management exception even though the gqueue
removal is not started.

INSTRUCTION SET

4.9 CHARACTER STRING INSTRUCTIONS
A character string is specified by 2 operands:

1. An unsigned word operand which specifies the length of the
character string in bytes,

2. The address of the lowest addressed byte of the character string.
This is specified by a byte operand of address access type.

Each of the character string instructions uses general registers RO
through RS to contain a control block which maintains updated
addresses and state during the execution of the instruction, At
completion, these registers aré available to software to use as string
specification operands for a subsequent instruction on a contiguous
character string. During the execution of the instructions, pending
interrupt conditions are tested and if any is found, the control block
is updated, a first part done Dbit 1is set in the PSL, and the
instruction interrupted. After the interruption, the 1instruction
resumes transparently. The format of the control bldock is shown in
Figure 4-14.

LENGTH 1 ~ : RO

ADDRESS 1 . R1
LENGTH 2 . R2

Anansész . R3
0 : R4

o} : R‘S

MR 13437

Figure 4-14 Character String Control Block

The fields LENGTH 1l and LENGTH 2 contain the number of bytes remaining
to be processed in the first and second string operands respectively.
The fields ADDRESS 1 and ADDRESS 2 contain the address of the next
byte to be processed in the first and second string operands
respectively.

Memory access faults will not occur when a zero length string is
specified because no memory reference occurs.

1-106

INSTRUCTION SET

MOVC Move Character

Format:

opcode len.rw, srcaddr.ab, dstaddr.ab 3 operand
opcode srclen.rw, srcaddr.ab, fill.rb,
dstlen.rw, dstaddr.ab 5 cperand
Operation: b
tmpl <- len; '3 operand

tmp2 <- srcaddr;
tmp3 <- dstaddr;
if tmp2 GTRU tmp3 then

begin
while tmpl NEQU 0 do
begin
(tmp3) <- (tmp2);
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 + 1;
end;
Rl <- tmp2;
R3 <- tmp3;
end
else
' begin
tmpé <- tmpl;
tmp2 <~ tmp2 + ZEXT(tmpl);
tmp3 <- tmp3 + ZEXT(tmpl);
while tmpl NEQU 0 do
begin
tmpl <- tmpl - 1;
tmp2 <- tmp2 - 1;
tmp3 <- tmp3 -~ 1;
(tmp3) <= (tmp2);
end;
Rl <- tmp2 + ZEXT(tmp4);
R3 <- tmp3 + ZEXT(tmp4);
end;
RO <- 0;
R2 <- 0O;
R4 <- 0;
RS <- 03

4-107

INSTRUCTION SET

tmpl <- srclen;
tmp2 <- srcaddr;
tmp3 <- dstlen;
tmp4 <- dstaddr;
if tmp2 GTRU tmpé¢ then
begin
while {tmpl NEQU 0} AND {tmp3 NEQU 0} do
begin
{(tmpd) <- (tmp2);
tmpl <- tmpl - 1;
tmp2 <- tmp2 + 1;
tmp3 <- tmp3 - 1;
tmpd <- tmp4 + 1;
end;
while tmp3 NEQU 0 do
begin
(tmp4) <- fill;
tmp3 <- tmp3 - 1;
tmp4 <- tmp4 + 1;
end;
Rl <- tmp2;
R3 <- tmp4;
end
else
begin
tmp5 <~ MINU(tmpl, tmp3);
tmpé <- tmp3;
tmp2 <~ tmp2 + ZEXT(tmp3);
tmp4 <- tmp4d + ZEXT(tmp6);
while tmp3 GTRU tmpl do
oegin
tmp3 <~ tmp3 - 1;
tmp4 <- tmp4 - 1;
(tmp4) <- fill;
end:;
while tmp3 NEQU 0 do
begin
tmpl <- tmpl - 1;
tmp2 <- tmpl - 1;
tmp3 <- tmp3 - 1;
tmp4 <- tmp4 - 1;
(tmpd) <- (tmp2);
end;
Rl <- tmp2 + ZEXT (tmp5);
R3 <- tmpd + ZEXT (tmp6);
and;
RO <- tmpl;
R2 <- 0;
R4 <- Oy
RS <- (Q;

INSTRUCTION SET

«

Condition Codes:

<=~ 0; IMCVC3
<- 1;
<= 0
<- 0:

<- srclen LSS dstlen; IMOVCS
<- srclen EQL dstlen;

<= {:

<- srclen LSSU dstlen;

NL<NZ O<ANEg

Exceptions:

none

Opcodes:
28 MOVC3 Move Character 3 Operand
2C MOVCS Move Character % Operand

Description:

In 3 operand format, the destination string specified by the length
and destination address operands 1is replaced by the source string
specified by the length and source address operands. In 5 operand
format, the destination string specified by the destination length and
destination address operands 1is replaced by the source string
specified by the source length and source address operands. 1If the
destination string is longer than the source string, the highest
addressed bytes of the destination are replaced by the fill operand.
If the destination string is shorter than the source string, the
highest addressed bytes of the source string are not moved. The
operation of the instruction is such that overlap of the source and
destination strings does not affect the result.

$-109

INSTRUCTION SET

Notes:

1. After execution of MOVC3:

RO = 0

Rl = address of one byte beyond the source string

R2 =0

R3 = address of one byte beyond the destination string.
R& = 0

RS =0

2. After execution of MOVCS:
RO = number of unmoved bytes remaining in source string.
RO is non-zero only if source string is longer
than destination string

Rl = address of one byte beyond the last byte
ln source string that was moved

R2 = 0

R3 = address of one byte beyond the destination string .

i

R4 0
RS =0
3. MOVC3 is the preferred way to copy one block of memory to another.

4. MOVCS with a 0 source length operand is the preferred way to fill
a block of memory with the fill character.

INSTRUCTION SET

*

4.10 OPERATING SYSTEM SUPPORT INSTRUCTIONS

CHM Change Mode

Purpose: Request services of more privileged software

Format:
opcode code.rw
Operation:

tmpl <- {mode selected by opcode (K=0, E=1, S=2, U=3}};

tmp2 <- MINU(tmpl, PSL<CUR_MOD>); 'maximize privilege
tmp3 <- SEXT (code);
if {PSL<IS> EQLU 1} then HALT; tillegal from I stack
PSL<CUR_MOD> SP <- SP; !save old stack pointer
tmp4 <- tmp2_ SP; 'get new stack pointer
PROBEW (from tmp4-1 through

tmp4-12 with mode=tmp2); 'check new stack access

if {access control violation} then
{initiate access wviolation fault};

if {translation not valid} then
{initiate translation not valid fault};

{initiate CHMx exception with new_mode=tmp2
and parameter=tmp3
using 40+tmpl*4 (hex) as SCB offset
using tmp4 as the new SP
and not storing SP again};

Condition Codes:

N <- Q¢
Z <~ 0
v <= 03
C <- 0;

Exceptions:

halt
Cpcodes:
BC CHMK Change Mocde to Kernel
BD CHME Change Mode to Executive
BE CHMS Change Mode to Supervisor
to User

BF CHMU Change Mode

INSTRUCTION SET

Description:

Change Mode instructions allow processes to change their access mode
in a controlled manner. The instruction only increases privilege
(i.e., decreases the access mode).

A change in mode also results in a change of stack pointers; the old
pointer is saved, the new pointer is loaded. The PSL, PC, and code
passed by the instruction are pushed onto the stack of the new mode.
The saved PC addresses the instruction following the CHMx instruction.
The code 1is sign extended. After execution, the new stack's
appearance is as shown in Figure 4-15,.

SIGN EXTENDED CODE 'SP

PC OF NEXT INSTRUCTION

OLD PSL

MR 11438

Figure 4-15 Stack After Change Mode Instruction

The destination mode selected by the opcode is used to obtain a
location from the System Control Block. This location addresses the
CHMx dispatcher for the specified mode. If the vector<l:0> code NEQU
0 then the operation is UNDEFINED.

Notes:

1. As usual for faults, any Access Violation or Translation Not Valid
fault saves PC, PSL, and leaves SP as it was at the beginning of
the instruction except for any pushes onto the kernel stack.

2. By software convention, negative codes are reserved to CSS and
customers.

Return from Exception or Interrupt

0
(o]
-

Format:
Opcode
Operation:

tmpl <- (SP)+; !Pick up saved PC
tmp2 <- (SP)+; tand PSL

INSTRUCTION SET

"if {tmp2<CUR_MOD> LSSU PSL<CUR_MOD>} OR
{tmp2<zs> EQLU 1 AND PSL<IS> EQLU 0} OR
{tmp2<IS> EQLU 1 AND tmp2<CUR_MOD> NEQU 0} OR
{tmp2<IS> EQLU 1 AND tmp2<IPL> EQLU 0)} OR
{tmp2<IPL> GTRU 0 AND tmp2<CUR_MOD> NEQU 0} OR
{tmp2<PRV_MOD> LSSU tmp2<CUR_ MOD>} OR

{tmp2<IPL> GTRU PSL<IPL>} OR

{tmp2<PSL_MBZ> NEQU 0} then {reserved operand fault};

1f PSL<IS> EQLU 1 then ISP <- SP

'save old stack pointer

else PSL<CUR MOD> SP <- SP;

if PSL<TP> EQLU 1 then tmp2<TP> <- 1;

PC <- tmpl;
PSL <- tmp2l;
if PSL<IS> EQLU 0 then
begin
SP <- PSL<CUR_MOD>_SP;
1f PSL<CUR_MOD> GEQU ASTLVL

'TP <~ TP or stack TP

!switch stack
tcheck for AST delivery

then {request interrupt at IPL 2};

end;
{check for software interrupts};
{clear instruction look-ahead}
Condition Codes:
N <- saved PSL<3>;
Z <- saved PSL<2>;
V <- saved PSL<1>;
C <~ saved PSL<{>;
Exceptions:
reserved operand
Opcodes:

032 REI Return from Exception or

interrupt

INSTRUCTION SET

Description:

A longword is popped from the current stack and held in a temporary
PC. A second longword is popped from the current stack and held in a
temporary PSL. Validity of the popped PSL is checked. The current
stack pointer 1is saved and a new stack pointer is selected according
to the new PSL CUR_MOD and IS fields. The level of the highest
privilege AST is checked against the current mode to see whether a
pending AST can be delivered. Execution resumes with the instruction
being executed at the time of the exception or interrupt. Any
instruction look ahead in the processor is reinitialized.

Notes:

1. The exception or interrupt service routine 1is responsible for
restoring any registers saved and removing parameters from the
stack. .

2. As usual for faults, any Access Violation or Translation Not Valid
conditions for the stack pops restore the stack pointer and fault.

LDPCTX

Purpose:

Format:

Operation:

Load Process Context

restore register and memory management

opcode

if PSL<CUR_MOD> NEQU 0
then {privileged instruction fault};

INSTRUCTION SET

“

context

{invalidate per-process translation buffer entries?:
!PCB is located by physical address in PCBB

RO <-
Rl <~
R2 <-
R3 <~
R4 <-
RS <~
R6 <-
R7 <~-
RE <~
R9 <-
R10 <~
R11l <~
AP <-
FP <-

tmpl <- (PCB+88)

(PCB+16}):
(PCB+20);
(PCB+24);
(PCB+28):;
(PCB+32):
(PCB+361);
(PCB+40);
(PCB+44);
(PCB+48);
(PCB+52);

(PCB+56);
(PCB+60);

(PCB+64);
(PCB+68) ;

if {tmpl<31:30> NEQU 2} OR {tmo1<l 0> NEQU 0} then

POBR <- tmpl;

if (PCB+84)<31:27> NEQU
1f (PCB+84)<23:22> NEQU
(PCB+84)<21:0>:
if (PCB+84)<26:24> GEQU
(PCB+84)<26:24>:
(PCB+88}:

PCLR <-

ASTLVL <-
tmpl <=

{UNDEFINED} ;

tmp2 <- tmpl + 2**23;

if {tmp2<31:30> NEQU 2} OR {tmp2<l

P1BR <- tmpl;
if (PCB+92)<30:22> NEQU 0 then

P1LR <-

(PCB+92)<21:

0 then
Q0 then

5 then

§UNDEFINED§:
{UNDEFINED} ;

{UNDEFINED};

{UNDEFINED};

0>:

1f (PCB+92)<30:22> NEQU 0 then

if PSL<IS> EQLU 1 then

begin

ISP <~

SP;

{interrupts off};

PSL<IS> <~ 0:

{interrupts on};

{UNDEFINED};

{UNDEFINED};

:0> NEQU 0}

then

INSTRUCTION SET

end;
{SP) <~ (PCB! tget new KSP
-{SP) <~ (PCB+76); !push PSL
-{SP) <- (PCB+72); tpush PC

Condition Codes:

N <- N;
Z <~ Z:
Vv <= V;
C <- C;

Exceptions:

reserved operand
privileged instruction

Opcodes:

06 LDPCTX Load Process Context

Description:

The Process Control Block is specified by the privileged register
Process Control Block Base. The general registers are loaded from. the
PCB. The memory management registers describing the process address
space are also loaded and the process entries in the translation
buffer are cleared. Execution is switched to the kernel stack. The
PC and PSL are moved from the PCB to the stack, suitable for use by a
subsequent REI instruction.)

Note:

1. Loading ASTLVL with LDPCTX does not affect SISR or request a
software interrupt. Those effects of ASTLVL occur only during
REI.

2. To guarantee correct operation, a LDPCTX must be followed by an
REI instruction. :

3. To guarantee correct operation, a LDPCTX on the kernel stack must
be executed with interrupts disabled.

=
I
-
b
o

SVPCTX

Purpose:

Format:

Operation:

Save Process Context

save register context

opcode

1f PSL<CUR_MOD> NEQU 0 then

I1PCB 1s located

(PCB+16)
{PCB+20)

(PCB+24)

(PCB+28)
{PCB+32)
(PCB+36)
(PCB+40)
{PCB+44}
{PCB+48)
{PCB+52)
(PCB+56)
{PCB+60)
(PCB+64)
(PCB+68)
{PCB+72)
(PCB+76)

{privileged instruction fault};

<- RO:

<~ R1l;

<- R2;

<- R3;

<~ R&;

<- R5:

<~ R6:

<- R7:

<- R8;

<~ R9:

<- R10:;
<~ R1l1l:
<- AP:

<- FP:

<- (8P}+;
<- (SP)+;

If PSL<IS> EQLU 0 then

Condition Codes:

Exceptions:

Opcodes:

N <= N;
Z <- Z;
vV o<- V;
C <= C;

begin

PSL<IPL> <- MAXU(1,

(PCB) <- SP;
{interrupts off};
PSL<IS> <~ 1;

SP <- [SP;
{interrupts on};
end;

privileged instruction

by physical address in PCBB

'pop PC
!pop PSL

PSL<IPL>):

lsave KSP

INSTRUCTION SET

«

INSTRUCTION SET

07 SVPCTX Save Process Context

Description:

The Process Control Block is specified by the privileged register
Process Control Block Base. The general registers are saved into the
PCB. The PC and PSL currently on the top of the current stack are
popped and stored in the PCB. If a SVPCTX instruction is executed
when IS 1is clear, then IS is set, the interrupt stack pointer is
activated, and IPL 1is maximized with 1 because of the switch to the
interrupt stack.

Notes:

1. The map, ASTLVL, and PME contents of the PCB are not saved because
they are rarely changed. Thus, not writing them saves overhead.

2. Between the SVPCTX instruction that saves state for one process
and the LDPCTX that loads the state of another, the internal stack
pointers may not be referenced by MFPR or MTPR instructions. This
implies that interrupt service routines invoked at a priority
higher than the lowest one used for context switching must not
reference the process stack pointers.

INSTRUCTION SET

<

MTPR Move To Processor Register

Format:
opcode src.rl, procreg.rl
Operation:
if PSL<CUR_MOD> NEQ 0 then {reserved
instruction fault};

PRS[procreg] <- src;

Condition Codes:

N <- src LSS 0; 'if register is replaced

Z <- src EQL 0;

Vv <- 0;

C <- C;

N <- N; 'i1f register is not replaced
Z <- Z;

V <= V;

cC <- C;

Exceptions:

reserved operand fault
reserved instruction fault

Opcode:

DA MTPR Move To Processor Register
Description:
Loads the source operand specified by source into the processor
register specified by procreg. The procreg operand is a longword
which contains the processor register number. Execution may have
register-specific side effects.
Notes:

1. A reserved instruction fault occurs if instruction execution is
- attempted in other than kernel mode.

2. A reserved operand fault occurs on a move to a read only register,
or if the register does not exist., However, if a register is
implemented only as a PCB location, a reserved operand fault does
not occur.

INSTRUCTION SET

MFPR Move From Processor Register

Format:
opcode procreg.ri, dst.wl
Operaéian: ' v
1f PSL<CUR _MOD> NEQ 0 then {reserved
instruction fauirt};

dst <- PRS[procreg];

Condition Codes:

N <- dst LSS Q0: 'if destination is replaced

Z <- dst EQL 0;

Vv <~ 0;

C <- C;

N <- N; 'if destination is not replaced
2 <= Z;

V <= V;

C <- C;

Exceptions:

reserved operand fault
reserved instruction fault

Opcode:

DB MFPR Move From Processor Register
Description:
The destination operand is replaced by the contents of the processor
register specified by procregq. The procreg operand is a longword
which contains the processor register number. Execution may have
register-specific side effects.

Notes:

1. A reserved instruction fault occurs if instruction execution 1is
attempted in other than kernel mode.

2. A reserved operand fault occurs on a move from a write conly
register, or 1if the register does not exist. However, i1f a
register is implemented only as a PCB location, a reserved operand
fault does not occur.

INSTRUCTION SET

PROBEx PROBE ACCESSIBILIT

Purpose:
verify that arguments can be accessed

Format: :
opcode mode.rb, len.rw, base.ab

Operation:
probe_mode <- MAXU (mode<l:0>, PSL<PRV_MOD>)
condition codes <- {accessibility of base} and
{accessibility of {base+ZEXT(len)-1}}
using probe mode

Condition Codes:

N <- 0; ‘

Z <- if {both accessible} then 0 else 1;
vV <- 0;

C <- C;

Exceptions:

translation not wvalid

Opcodes: -
0C PROBER Probe Read Accessibility
0D PROBEW Probe Write Accessibility

Description:

The PROBE instruction checks the read or write accessibility of the
first and last Dbyte specified by the base address and the zero
extended length. Note that the bytes in between are not checked.
System software must check all pages between the two end bytes if they
will be accessed.

The protection is checked against the larger (and therefore less
privileged) of the modes specified in bits <1:0> of the mode operand
and the Previous Mode field of tne PSL. Note that propbing with a mode
operand of 0 1s equivalent to probing the mode specified in
PSL<previous-mode>.

Example:
MOVL 4(AP),RO ;Copy the address of first arg so that
; it can't be changed.
PRCBER #0,#4, (R0O) . ;Verify that the longword pointed to by
1-121

* INSTRUCTION SET

BEQL violation
MOVQ 8{AP),R0

PRCBEW #0,R0, (R1)

BEQL violation

Flows:

; the first arg could be read pby the

; previous access mode.

;Note that the arg list itself must

; already have been probed

;Branch if either byte gives an access
violation. "

Copy length and address of buffer args
sao that they can't change.

Verify that the buffer described by the
2nd and 3rd args could be written by

the previous access mode.

Note that the arg list must already
have been probed and that the 2nd arg
must be known to be less than S512.
Branch if either byte gives an access

violation.

™e NE N W s A We Ns s wa ws

The following flows describe the operation of PROBE on each of the

virtual addresses

is checking. Note that probing an address

recurns only the accessibility of the page(s) and has no effect on

their residency.

However, probing a process address may cause a page

fault in the system address space on the per-process page tables.

1. Look up the virtual address in the translation buffer. If found,
use the associated protection field to determine the accessibility

and EXIT.

2. Check for length viclation for System or per-Process address as

appropriate.

If length violation then return No Access and EXIT.

3. If System virtual address, form physical address of PTE, fetch the
PTE, use the protection field to determine the accessibility and

EXIT,

4., For per-Process

reference for

virtual address, must do a virtual memory
the PTE.

a. Look up the virtual address of the PTE in the translation

buffer, form

the PTE,

the physical address of the PTE if found, fetch
the protection field to determine the

accessibility and EXIT.

b. Check the
violation.
EXIT.

System virtual address of the PTE £for length

length wviolation, then return No Access and

c. Tl <- Page Table Entry for the page containing the per-process

PTE.

INSTRUCTION SET

d. If the protection field of Tl indicates no access (not even
readable by kernel), then return No Access and EXIT. A no
access to a page of PTE's conserves storage space for a page
full of no access PTE's.

e. If the valid bit in Tl is 0, then take a Translation Not Valid
Fault and EXIT. This case allows for the demand paging of
per-process page tables. ,

f. Finally, calculate the physical address of the per-process PTE
from the PFN field of Tl, fetch the PTE, use the protection
field to determine the accessibility, and EXIT.

Notes:

1. If the Valid bit of the examined Page Table Entry is set, 1t 1is
unpredictable whether the Modify bit of the examined Page Table
Entry is set by a PROBEW. If the Valid bit 1s clear, the Modify
bit is not changed.

2. Except for 1, above, the wvalid bit of the Page Table Entry,
PTE<31>, mapping the probed address is ignored.

3. A length violation gives a status of "not-accessible.”

4, On the probe of a process virtual address, if the valid bit of the
system Page Table Entry is 0 then a Translation Not Valid Fault
occurs. This allows for the demand paging of the process page
tables. :

5. On the probe of a process virtual address, if the protection field
of the system Page Table Entry indicates No Access, then a status
of "not-accessible” is given. Thus, a single No Access Page Table
Entry in the system map is equivalent to 128 No Access Page Table
Entries in the process map. .

INSTRUCTION SET

1.11 FLOATING POINT INSTRUCTIONS

These instructions are implemented in hardware only if the optional
flecating point unit (MicroVAX 78132 FPU) is present in the system. If
the optional floating point unit 1s not present the MicroVAX 78032 CPU
will execute a reserved operand fault for any of these instructions.

The MicroVAX architecture includes floating point instructions that
operate on F_floating, D_floating, and G_floating &ata types (see
Chapter 2). :

4.11.1 Representation

Mathematically, a floating point number may be defined as having the
&
Iorm

(+ or —)‘(2**K)*f,

where K is an integer and f is a non-negative fraction. For a
non-vanishing number, K and { are uniquely determined by imposing the
condition .

1/2 LEQ f LSS 1.

The fractional factor, £, of the number is then said to be binary
normalized. For the number zeroc, f must be assigned the value 0, and
the value of X is indeterminate.

The MicroVAX floating point data formats are derived from this
mathematical representation for floating point numbers. Single
precision, or F floating, data is 32 bits long. Double precision, or
D _floating, and extended range double precision, or G_floating, data
is 64 bits long. Sign magnitude notation is used and the following
paragraphs describe its use.

et

4.11.1.1 Non-zero Floating Point Numbers -
The most significant bit of the floating point data is the sign bit:
0 for positive, and 1 for negative. '

The fractional factor f 1s assumed normalized, so that 1its most
significant Dbit must be 1. This 1 is the "hidden" bit: it is not
stored in the data word, but of course the hardware restores it before
carrying out arithmetic operations. The F_floating, D_ficating, and
G floating data types use 23, 55 and 52 bits, respectively, for ¢,
which, with the hidden bit, imply effective significance of 24 bits,
56 bits, and 53 bits for arithmetic operations.

s
i
’—-‘
[ae)
"

In the F_floating and D_floating data types, eight bits are reserved
for the storage of the exponent XK in excess 128 notation. Thus
exponents from -128 to +127 could be represented, in biased form, by 0
to 255. For reasons given below, a biased EXP of 0 (true exponent of
-128), is reserved for floating point zero. Thus, for the F_floating
and D_floating data types, exponents are restricted to the range -127
to +127 inclusive, or in excess 128 notation, 1 to 255,

In the G_floating data type, eleven bits are reserved for the storage
of the exponent 1n excess 1024 notation. A biased exponent of 0 is
reserved for floating point zero. Thus, exponents are restricted to
-1023 to +1023 inclusive (in excess notation, 1 to 2047).

4.

-

1.1.2 Floating Point Zero -

Because -of the hidden bit, the fractional factor is not available to
distinguish between zero and non-zero numbers whose fractional factor
is exactly 1/2. Therefore VAX reserves a sign-exponent field of 0 for
this purpose. Any positive floating point number with biased exponent
of 0 is treated as if it were an exact 0 by the floating point
instruction set. In particular, a floating point operand, whose bits
are all 0's, is treated as zero, and this is the format generated by
all floating point instructions for which the result is zero.

4.11.1.3 Reserved Operands -

A reserved operand is defined to be any bit pattern with a sign bit of
one and a biased exponent of zero. All floating point instructions
generate a fault if a reserved operand 1is encountered. Since a
reserved operand has a biased exponent of 0, it can be (internally)
generated only if overflow occurs.

4.11.2 Accuracy

A floating point instruction is defined to be exact if its result,
extended on the right by an infinite sequence of zeros, is identical
to that of an infinite precision calculation 1invalving the same
operands. The prior accuracy of the operands is thus ignored. For
all arithmetic operations, except DIV, a zero operand implies that the
instruction 1is exact, The same statement holds for DIV if the zero
operand is the dividend. But if it is the divisor, division 1is
undefined and the instruction faults.

Note that an arithmetic result is exact if no non-zero bits are lost
in chopping the infinite precision result to the data length to be
stored. Chopping is defined to mean that the 24 (F_floating), 56
{D_floating), or 53 (G_floating) high order bits of the normalized

1-125

INSTRUCTION SET

fractional factor of a result are stored; the rest of the bits are
discarded. The first bit lost 1in chopping is referred to as the
"rounding" bit. The value of a rounded result is related to the
chopped result as follows:

1. If the rounding bit is one, the rounded result is the chopped
result incremented by an LSB {(least significant bit).

2. If the rounding bit is zeroc, the rounded and chopped results are
identical.

The VAX architecture implements rounding so as to produce results
identical to the results produced by the following algorichm. Add a 1
to the rounding bit, and propagate the carry, if it occurs. Note that
a vrenormalizaticn may be required after rounding takes place; 1if this
happens, the new rounding bit will be zero, so it can happen only
once. The following summarizes the relations among chopped, rounded
and true (infinite precision) results:

1. If a stored result is exact
rounded value = chopped value = true value.
2. If a stored result is not exact, its magnitude is:
a. always less than that of the true result for chopping.

b. always less than that of the true result for rounding 1f the
rounding bit is zero.

c. greater than that of the true result for rounding 1if the
rounding bit is one. ‘ '

(=
[
'..J
no
an

INSTRUCTION SET

4,11.3 Instruction Descriptions
ACB Add Compare and Branch

Format:
opcode limit.rx, add.rx, index.mx, displ.bw
Cperation:
index <- index + add;
if {{add GEQ 0} AND {index LEQ limit}!} OR
{{add LSS 0} AND {index GEQ limit}} then
PC <- PC + SEXT(displ);

Condition Codes:

N <- index LSS 0;
Z <- index EQL 0;
Vv <= 0;
C <~ C;

Exceptions:

floatihg overflow
floating underflow
reserved operand

Cpcodes:

4F ACBF Add Compare and Branch F_floating
6F ACBD Add Compare and Branch D_ _floating
4FFD ACBG Add Compare and Branch G_floating

Description:

The addend operand is added to the index operand and the index operand
is replaced by the result. The index operand is compared with the
limit operand. If the addend operand is positive (or 0J) and the
comparison is less than or equal or if the addend is negative and the
comparison is greater than or equal, the sign-extended branch
displacement is added to PC and PC is replaced by the result.

e
I
ot
N
|

INSTRUCTION SET

Notes:

1
P

ACB efficiently implements the general FOR or DO loops in high
level languages since the sense of the comparison between index
and limit is dependent on the sign of the addend.

On floating underflow, if FU is set, a fault occurs and the index
operand 1is wunaffected. If FU 1is clear, the index operand is
replaced by 0 and comparison and branch determination proceed
normally..

On floating overflow, the instruction takes a floating overflow
fault and the index operand is unaffected. :

On a reserved operand fault, the index operand is unaffected and
the condition codes are unpredictable.

1-128

INSTRUCTICN SET

ADD Add

Format:
opcode add.rx, sum.mx 2 operand
opcode addl.rx, add2.rx, sum.wx 3 operand

Operation:
sum <- sum + add; '2 operand
sum <- addl + add2; '3 operand

Condition Codes:

N <~ sum LSS 0;
Z <- sum EQL 0:
Vv <= 0;
C <=~ 0;

Exceptions:

floating overflow
floating underflow
reserved operand

Opcodes:
40 ADDF2 Add F_floating 2 Operand
31 ADDF3 Add F_floating 3 Operand
60 ADDD2 Add D_floating 2 Operand
61 ADDD3 Add D_floating 3 Operand
40FD ADDG2 ADD G_floating 2 Operand
41FD ADDG3 ADD G_floating 3 Operand

Description:

In 2 operand format, the addend operand is added to the sum operand
and the sum operand is replaced by the rounded result. In 3 operand
format, the addend 1 operand is added to the addend 2 operand and the
sum operand is replaced by the rounded result.

Notes:

1. On a reserved operand fault, the sum operand is unaffected and the
condition codes are unpredictable.

2. On floating underflow, if FU is set, fault occurs and the sum

operand is unaffected. If U 1is «clear, the sum operand is
replaced by 0 and no exception occurs.

1-129

INSTRUCTION SET

3. On floating overflow, the instruction faults; the sum operand is
unaffected, and the condition codes are unpredictable.

CLR Clear

Format:
opcode dst.wx
Operation:
dst <- 0;
Condition Codes:
<-
<-

& -
& -

NN Z
N O

Exceptions:
nene
Opcodes£
D4 CLRF Clear F_floating
7C CLRG, Clear G_floating,
CLRD Clear D_floating

Description:

The destination operand is replaced

(98]
ot

by 0.

INSTRUCTION SET

INSTRUCTION SET

CMP Compare

Format:

opcode srcl.rx, src2.rx
Operation:

srcl - src2;
Condition Codes:

N <- srcl LSS src2;

Z <- srcl EQL src2;

v <- 03

C <~ 0;

Exceptions:

reserved operand

Opcodes:
51 CMPF Compare F_floating
71 CMPD Compare D floating

S1FD CMPG Compare G_floating

Description:

The source 1 operand is compared with the source 2 operand. The only
action is to affect the condition codes.

Notes:

On a reserved operand fault, the condition codes are unpredictable.

cvyT Convert

Format:

opcode src.rx, dst.wy

Operation:

dst <- conversion of src;

Condition Codes:

N «<- dst LSS 0;
Z <- dst EQL 0;

V <- {integer overflowt};

- C <= 0;
Exceptions:

integer overflow
floating overflow
floating underflow
reserved operand

Opcodes:

-4C CVTBF Convert Byte
4D CVTWF Convert Word
4E CVTLF Convert Long

6C CVTBD Convert Byte
6D CVTWD Convert Word
6E CVTLD Convert Long

2CFD CVTBG Convert Byte
4DFD CVTWG Convert Word
¢EFD CVTLG Convert Long

to
to
to

to
to
to

to
to
to

F_floating
F_floating
F_floating

D_floating
D _floating
D _floating

G_floating
G_floating
G_floating

INSTRUCTICN SET

«

INSTRUCTION SET

48 CVTFB Convert F_floating to Byte

+9 CVTFW Convert F_ _floating to Word

1A CVTFL Convert F_floating to Long

iB CVTRFL Convert Rounded F_floating to Long
68 CVTDB Convert D_floating to Byte

69 CVTDW Convert D floating to Word

6A CVTDL Convert D floating to Long

6B CVTRDL Convert Rounded D_floating to Long
48FD CVTGB Convert G_floating to Byte

49FD CVTGW Convert G_floating to Word

4AFD CVTGL Convert G _floating to Long

4BFD CVTRGL Convert Rounded G_floating to Long
56 CVTFD Convert F_floating to D_floating
99FD CVTFG Convert F_floating to G_ _floating
76 CVTDF Convert D_floating to F_floating
33FD CVTGF Convert G_floating to F_floating

Description:

The source operand is converted to the data type of the destination
operand and the destination operand is replaced by the result. The
form of the conversion is as follows: .

CVTBF exact
CVTBD exact
CVTBG exact
CVTWF exact
CVTWD exact
CVTWG exact
CVTLF rounded
CVTLD . exact
CVTLG exact
CVTFB truncated
CVTDB truncated
CVTGB truncated
CVTFW truncated
CVTDW truncated
CVTGW truncated
CVTFL truncated
CVTRFL rounded
CVTDL truncated
CVTRDL rounded
CVTGL truncated
CVTRGL rounded

1-134

INSTRUCTION SET

*

CVTFD exact

CVTFG exact

CVTDF rounded -
CVTGF rounded

Notes:

1. Only CVTDF and CVTGF can result in a floating overflow fault; the
destination operand 1is wunaffected and the condition codes are
unpredictable.

2. Only converts with a floating point source operand can result in a
reserved operand fault. On a reserved operand fault, the
destination operand is unaffected and the condition codes are
unpredictable. :

3. Only converts with an integer destination operand can result in
integer overflow. On integer overflow, the destination operand is
replaced by the low order bits of the true result.

4, Only CVTGF can result in floating underflow. If FU is set, a
fault occurs and the destination operand is unaffected. If FU is
clear, the destination operand is replaced by 0 and no fault
occurs.

INSTRUCTION SET

DIV Divide

Format:
opcode divr.rx, gQuo.mx 2 operand
opcode divr.rx, divd.rx, quo.wx 3 operand
Operation:
quo <- quo / divr; !2 operand
quo <- divd / divr; !3 operand

Condition Codes:

N <- quo LSS 0;
Z <- quo EQL O0;
vV <- 0;
C <= 0;

Exceptions:

floating overflow
floating underflow
divide by zero
reserved operand

Cpcodes:
16 DIVF2 Divide F_floating 2 Operand
47 DIVF3 Divide F_floating 3 Operand
66 DIVD2 Divide D_floating 2 Operand
67 DIVD3 Divide D _floating 3 Operand
46FD DIVG2 Divide G_floating 2 Operand
47FD DIVG3 Divide G_floating 3 Operand

Description:

In 2 operand format, the gquotient operand is divided by the divisor
operand and the quotient operand is replaced by the rounded result.
In 3 operand format, the dividend operand is divided by the divisor
operand and the gquotient operand is replaced by the rounded result.

Notes:

1. On a reserved operand fault, the gquotient operand 1is unaffected
and the condition codes are unpredictable.

INSTRUCTION SET

On floating underflow, if FU is set, a fault occurs and the
gquotient operand is unaffected. If FU is clear, the quotient
operand is replaced by 0 and no exception occurs.

On floating overflow, the instruction faults; the gquotient operand
is unaffected, and the condition codes are unpredictable.

on divide by zero, the quotient operand and condition codes are
affected as in 3. above.

“

INSTRUCTICN SET

EMOD Extended Multiplf and Integerize

Faormat:

EMODF: :
opcode mulr.rx, mulrx.rb, muld.rx, int.wl, fract.wx

EMODG: :
opcode mulr.rx, mulrx.rw, muld.rx, int.wl, fract.wx

Operation:

int <- integer part of muld * {mulr'mulrx};
fract <- fractional part of muld * {mulr'mulrx};

Condition Codes:

N <- fract LSS 0;

Z <- fract EQL 0;

Vv <- {integer overflow};
C <- 0;

Exceptions:
integer overflow

floating underflow
reserved operand

Opcodes:
54 EMODF Extended Multiply and Integerize F_floating
74 EMODD Extended Multiply and Integerize D_floating

S4FD EMODG Extended Multiply and Integerize G_floating

Description:

The multiplier extension operand is concatenated with the multiplier
operand to gain 8 (EMODF and EMODD) or 11 (EMODG) additional low order
fraction bits. The low order 5 bits of the 16-bit multiplier
extension operand are 1gnored by the EMODG instruction. The
multiplicand operand is multiplied by the extended multiplier operand.
The multiplication is such that the result is eguivalent ro the exac:
product truncated (before normalization) to a fraction field of 32
bits in F_floating, 64 bits in D_floating and G_floating. Regarding
the result as the sum of an integer and fraction of the same sign, the
integer operand is replaced by the integer part of the result and the
fraction operand is replaced by the rounded fractional part of the
resulr.

1-138

INSTRUCTION SET

Notes:

1. On a reserved operand fault, the integer operand and the fraction
operand are unaffected. The condition codes are unpredictable.

2. On floating underflow, if FU 1s set, & fault occurs and the
integer and fraction parts are unaffected. 1If FU is clear, the
integer and fraction parts are replaced by 0 and no exception
occurs. '

3. On integer overflow, the integer operand is replaced by the low
order bits of the true result. .

4. Floating overflow 1is indicated by integer overflow; however
integer overflow is possible in the absence of floating overflow.

S. The signs of the integer and fraction are the same unless integer
overflow results,

6. Because the fraction part 1is rounded after separation of the

integer part, 1t 1is possible that the wvalue of the fraction
operand is 1.

1-139

INSTRUCTION SET

MNEG Move Negated

Format:

opcode src.rx, dst.wx
Operation:

dst <- =-src;

Condition Codes:

N <- dst LSS 0Q:
Z <- dst EQL 0;
VvV <~ 0;
C <- 0;

Exceptions:

reserved operand

Opcodeé:
52 MNEGF Move Negated F_floating
72 MNEGD Move Negated D_floating

52FD MNEGG Move Negated G_floating

Description:

The destination operand is replaced by the negative of the source
operand.)

Notes:

On a reserved operand fault, the destination operand is unaffected and
the condition codes are unpredictable.

4-140

INSTRUCTION SET

MOV Move

Format:

opcode src.rx, dst.wx
Operation: .

dst <- src;
Condition Codes:

N <- dst LSS 0;

Z <- dst EQL 0:

vV <= 0; -

C <- C;

Exceptions:

reserved operand

Opcodes:
50 MOVF Move F_floating
70 MOVD Move D_floating

SO0FD MOVG Move G_floating

Description:
The destination operand is replaced by the source operand.
Notes:

On a reserved operand fault, the destination operand is unaffected and
the condition codes are unpredictable.

INSTRUCTION SET

MUL Multiply

Format:
opcode mulr.rx, prod.mx , 2 operand
opcode mulr.rx, muld.rx, prod.wx 3 operand

Operation:
prod <- prod * mulr; '2 operand
prod <- muld * mulr; '3 operand
Condition Codes:
N <- prod LSS 0;
Z <- prod EQL 0O;
Vv <= 0;
C <- 0;
Exceptions:
floating overflow

floating underflow
reserved operand

Opcodes:
44 MULF2 Multiply F_floating 2 Operand
45 MULF3 Multiply F_floating 3 Operand
64 MULD2 Multiply D _floating 2 Operand
65 MULD3 Multiply D _floating 3 Operand
44FD MULG2 Multiply G_floating 2 Operand
45FD MULG3 Multiply G_floating 3 Operand

Description:

In 2 operand format, the product operand 1is multiplied by the
multiplier operand and the prcduct operand is replaced by the rounded
result. In 3 operand format, the multiplicand operand is multiplied
by the multiplier operand and the product operand is replaced by the
rounded result.

Notes:

1. On a reserved operand fault, the product operand 1is unaffected and
the condition codes are unpredictable.

-
|
bt
=
(3]

Oon flcocating underflow,
product operand 1is

operand is replaced by 0 and no exception occurs.

On floating overflow,

INSTRUCTION SET

if FU is set, a fault occurs and the

unaffected. If PU 1is

the instruction faults:

clear, the product

the product operand

is unaffected, and the condition codes are unpredictable.

INSTRUCTION SET

POLY

Format:

Polynomial Evaluation

opcode arg.rx, degree.rw, tbladdr.ab

Operation:

tmpl <- degree;

if tmpl GTRU 31 then RESERVED OPERAND FAULT;

tmp2 <- tbladdr;

tmp3 <=~ {(tmp2)+}; ltmp3 accumulates the partial result

'tmp3 is of type x

wnile tmpl GTRU 0 do

begin !computation loop

tmp4 <- {arg * tmp3}; 'tmp4 accumulates new partial result.

!tmp3 has old partial result.

'Perform multiply, and retain the 31 (POLYF) or
163 (POLYD, POLYG) most significant bits of the fraction
!by truncating the unnormalized product. (The most
!significant bit of the 31 or 63 bits
'in the product magnitude will be zero
'!'if the product magnitude is LSS 1/2 and GEQ 1/4.)
!Use the result in the following add operartion.

tmpd <- tmp4 + (tmp2); ‘ ,
'Align fractions, perform add, and retain the
31 (POLYF), 63 (POLYD, POLYG) most significant bits of
!the fraction by truncating the unnormalized result.
‘normalize, and round to type X.
tCheck for over/underflow only after the combined
'multiply/add/normalize/round sequence.

if OVERFLOW then FLOATING OVERFLOW FAULT

if UNDERFLOW then

begin

1f FU EQL 1 then FLOATING UNDERFLOW FAULT:
tmp4 <- 0; 'force result to 0:

end;

tmpl <- tmpl - 1;

tmp2 <- tmp2 + {size of data type};

tmp3 <- tmpé4; lupdate partial result in tmp3

end;

if POLYF then
begin
RO <- ¢
Rl <- 0
R2 <- Q;
R3 <- t
end;

if POLYD or POLYG then
begin

4-144

INSTRUCTION SET

R1'RO
R2 <-
R3 <-
R4 <~
RS <-
end;

tmp3;

OO <O AN
s wsm aw- i
o}

[\9]
~e

Condition Codes:

N <- RO LSS 0;
Z <- RO EQL O0:
v <- 0;
C <= Q3

Exceptions:

floating overflow
floating underflow
reserved operand

Opcodes:
55 POLYF Polynomial Evaluation F_floating
75 POLYD Polynomial Evaluation D floating

55FD POLYG Polynomial Evaluation G_floating

Description:

The table address operand points to a table of polynomial
coefficients. The coefficient of the highest order term of the
polynomial is pointed to by the table address operand. The table is
specified with lower order coefficients stored at increasing
addresses. The data type of the coeificients is the same as the data
type of the argument operand. The evaluation 1is carried out by
Horner's method and the contents of RO (R1'RO for POLYD or POLYG) are
replaced by the result. The result computed is:

if d = degree
and x = arg
result = C{O]*x**0 + x*(C[1] + x*(C{2] + ... x*C[dl))

The unsigned word degree operand specifies the highest numbered
coefficient to participate in the evaluation.

INSTRUCTION SET

Notes:

L.

2!

After execution:

POLYF

RO = result
R1 = 0

R2 = 0

R3 =

POLYD or POLYG

RO =

Rl = low order
R2 = 0

R3 =

Rd = Q

RS = 0

On a floating fault:

d.

reserved

If PSL<FPD> = 0, the
effects are restored

If PSL<FPD> = 1, the
saved in the general

table address + degree*4 + 1%

high order part of result
part

of result

table address + degree*8 + 8

instruction faults and all relevant side

to their original state.
state is

instruction is suspended and

registers as follows:

- POLYF . -
RO = tmp3 'partial result after iteration prior to the
'one causing the overflow/underflow
Rl = arg
R2<7:0> = tmpl !number of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 '!points to table entry causing exception
PCLYD and POLYG
R1'RO = tmp3 'partial result after iteration prior to the
'one causing the overflow/underflow
R2<7:0> = tmpl !number of iterations remaining
R2<31:8> = implementation specific
R3 = tmp2 !points to table entry causing exception
RS'R4 = arg
If the unsigned word degree operand is 0 and the argument is not a
operand, the result is C{0!. If che degree is 0, and
either the argument or C[{0] is a reserved operand, a reserved

operand fault occurs.

If the unsigned word degree operand is greater than 31, a reserved
operand fault occurs.

1-145

5. On a reserved operand fault:

a. if PSL<FPD> = 0, the reserved operand 1is either the degree
operand {greater than 31), or the argument operand, or some
coefficient.

b. if PSL<FPD> = 1, the reserved operand is & coefficient, and R3
is pointing at the value which caused the exception.

c. The s:tate of the saved condition codes and the other registers
is unpredictable. If the reserved operand is changed and the
contents of the condition codes and all registers are
preserved, the fault is able to be continued.

6. On floating wunderflow after the rounding operation at any
iteration of the computation loop, a fault occurs if FU 1is set.
If FU is clear, the temporary result (tmp3) is replaced Dby =zero
and the operation continues. In this case the final result may be
non zero if underflow occurred before the last iteration.

7. On floating overflow after the rounding operation at any iteration
of the computation loop, the instruction terminates with a fault.

8. If the argument is zero, the result is C[0]. Additionally, if one

of the coefficients in the table (other than C[0]) is a reserved
operand, whether a reserved operand fault occurs is unpredictable.

Example:

To compute P(x) = CO + Cl*x + C2*x**2
where C0 = 1.0, €1 = .5, and C2 = .25

POLYF X,#2,PTABLE

-

PTABLE: .FLOAT 3.25 ;C2
.FLOAT 3.5 ;CL
LFLOAT 1.0 ;CO

INSTRUCTION S

E

~
H
<

INSTRUCTION SET

SUB Subtract

Format:
opcode sub.rx, dif.mx 2 operand
opcode sub.rx, min.rx, dif.wx 3 operand
O?eration:
dif <- dif - sub; 12 operahd
dif <- min - sub; !3 operand

Condition Codes:

N <- dif LSS 0;
Z <- dif EQL O0;
V <= 0:
C <- 0;

Exceptions:

floating overflow
floating underflow
reserved operand

Opcodes:
42 SUBF2 Subtract F_floating 2 Operand
43 SUBF3 Subtract F_floating 3 Operand
62 SUBDZ Subtract D_floating 2 Operand
63 SUBD3 Subtract D_floating 3 Operand
42FD SUBG2 Subtract G_floating 2 Operand
43FD SUBG3 Subtract G_floating 3 Operand

Description:

In 2 operand format, the subtrahend operand is subtracted from the
difference operand and the difference 1is replaced by the rounded
result. " In 3 operand format, the subtrahend operand is subtracted
from the minuend operand and the difference operand is replaced by the
rounded result.

Notes:

1. ©On a reserved operand fault, the difference operand is wunaffected
and the condition codes are unpredictable.

1-148

INSTRUCTION SET

On floating underflow, i1f FU 1is set, a fault occurs and
difference operand is unaffected. If FU is clear,
operand is replaced by 0 and no exception occurs.

the
rthe difference

On floating overflow, the instruction faults: the difference
operand is unaffected, and the condition codes are unpredictable.

1-149

INSTRUCTION SET

TST Test

Format:

opcode src.rx
Operation:

src - 0;

Condition Codes:

N <- src LSS 0:
Z <- src EQL O;
V <= 0:
C <= 0;

Exceptions:

reserved operand

Opcodes:
53 TSTF Test F_floating
73 TSTD Test D floating

S3FD TSTG Test G_floating

Description:

The condition codes are affected according to the value of the source
operand.

Notes:

On a reserved operand fault, the condition codes are unpredictable.

INSTRUCTION SET

4.12 EMULATED INSTRUCTIONS WITH MICROCODE ASSIST

The MicroVAX 78032 CPU provides microcode assistance for emulation by
system software of the following instructions:

1. Character string: MOVTC, MOVTUC, SKPC, LOCC, SCANC, SPANC,
MATCHC, CMPC3, CMPCS.

2. Decimal string: MOVP, CMPP3, CMPP4, ADDP4, ADDP6, SUBP4, SUBPS6,
MULP, DIVP, ASHP, CVTPL, CVTLP, CVTPS, CVTSP, CVTTP, CVTPT.

3. Cyclic redundancy check: CRC.

4. Edit: EDITPC.

The processor processes the operand specifiers, creates an argument
list, and takes an emulated instruction fault.

The emulation process consists of the following steps if the TP and
FPD bits of the PSL are clear.

1. Evaluate the operand specifiers in order of instruction stream
occurrence, Save the address for address and write access type;
read the operand and save it for read access type.

2. Build the argument list on the exception stack. The exception
stack, Figure 4-16, contains 10 longword parameters (in addition

to the PC and PSL to be restored on returning from this
exception).

4-151

INSTRUCTION SET

3 00

OPCODE SP

OLD PC

SPECIFIER #1

SPECIFIER #2

SPECIFIER #3

SPECIFIER #4

SPECIFIER #5

SPECIFIER #6

SPECIFIER #7

SPECIFIER #8

NEW BC

SAVED PSL

MR-13398

Figure 4-16 Emulated Instruction Argument List

The opcode parameter contains the opcode of the instruction to be
emulated. The old PC points to the location of the instruction
causing the exception. The specifier parameters contain the
address of the operand or the operand itself. For a .rx
specifier, the parameter is the operand value; for .wx and .ax
specifiers, the parameter is the operand address. A register is
denoted by a reserved system space address corresponding to the
one's complement of the register number. The parameter
corresponding to a specifier that does not exist is unpredictable.
The new PC points to the instruction following the instruction
causing the exception.

Initiate an exception in current mode through the emulated
instruction vector using C8 (hex) as the SCB offset. The FPD bit
in the saved PSL is clear. The TP bit in the saved PSL is set if
T was set. The T, TP, IV, DV, FU and condition code bits in the

4-152

INSTRUCTION SET

“

new PSL are cleared. All other bits in the new PSL arfe unchanged
from their previous state.

If FPD is set, a suspended emulated instruction fault 1is taken in
current mode through the vector at SCB offset CC (hex). No parameters
are pushed onto the stack. The TP bit in the saved PSL is set 1if T
was set. All other bits in the saved PSL are unchanged. The saved PC
points to the instruction causing the exception. The FPD, T, TP, IV,
DV, FU and condition code bits in the new PSL are cleared. All other
bits in the new PSL are unchanged from their previous state.

4-153

CHAPTER S

BUS TRANSACTIONS

S.1 INTRODUCTION

This chapter describes the bus cycles used by the MicroVAX 78032 CPU.
The processor will perform a bus cycle for one of the following
reasons:

1. Reading or writing information from or to memory or a peripheral
device.

2. Acknowledging an interrupt by reading the device interrupt vector.

3. Transferring information from or to an external processor or
externally implemented processor register.

Figure 5-1 shows the bus connections used by the MicroVAX 78032 CPU.
A microcycle is the basic timing unit for a bus cycle. A microcycle

is defined as four cycles of CLKO, Tl through T4, as shown in Figure
5-2. A bus cycle may be one or more microcycles.

BUS TRANSACTIONS

— T ' ERR

e TALT ERR |e ERR
INTERRUPT el PWRFL ROY : RBY
CONTROL —! NTTIM BM<3.0> - EM<30> .
———® |RQ<3.0> DS ‘E_S_ >
. as AS .
DMA ,{"—“* BVA v
CONTROL STE

&t DMG
< ::"-: > ADDRESS ::‘__1“—‘_1 >
AL<I O .
DAL<L31:00> LATCH BA<31.00>

MicroVAX 78032

CENTRAL PROCESSING
UNIT DATA <31-:00>
::i:> TRANSCEIVERS BDb<3100

4
_— DBE
DBE — -
— WR
WR -
y
:.l > MicraVAX 78132
FLOATING
C e POINT
EPS UNIT
RESET cs<2:0>
» CLKI CLKO
EPS -~
£S<2:0>
CLKO
MR-12666
Figure 5-1 MicroVAX 78032 Bus Connections
- MICROCYCLE ‘ MICROCYCLE —“
T4 T T2 T3 T4 T1 ; T2 i T3 { T4 T

e WWM

WA 2T

Figure 5-2 MicroVAX 78032 Microcycle

5-2

BUS TRANSACTIONS

5.2 BUS CYCLES

The MicroVAX 78032 CPU wuses read, write, DMA, and interrupt
acknowledge bus cycles for the transfer of information between the
processor, memory, and [/0 devices. Each of these bus cycles 1is
described in the following paragraphs. .

5.2.1 CPU Read Cycle

The'processor uses a CPU read cycle (Figure 5-3) to input information
from memory or an 1/0 device. A CPU read cycle reqguires a minimum of
2 microcycles and may be extended for slower memory or I[/0 devices.

The first microcycle of a CPU read is used to output the address and
control information, During the last microcycle of a CPU read, data
is latched into the processor.

The sequence of events for a CPU read is as follows:

1. The physical (longword) address is driven onto DAL<29:02> by the
processor.

2. WR is unasserted and CS<2:0> are asserted as requlred to indicate
the type of read cycle being performed.

3. BM<3J:0> are asserted as required.

4, AS is asserted to indicate that the address is valid and can be
latched for demultiplexing. A58 also qualifies CS<2:0>, BM<3:0>,
and WR.

5. DS is asserted to indicate that the bus is free to receive the
requested information. DBE is also asserted at this time and can
be used to control the DAL bus transceivers.

6. If the requested data can be placed on the bus and be valid during
T3 of the next microcycle, external logic asserts RDY, and the
next microcycle is the last one for this bus cycle. 1If RDY is not
asserted by the end of the current microcycle, the bus cycle will
be extended by at least one microcycle.

If 8 bus error occurs, external logic responds by asserting ERR.
ERR takes precedence over RDY. If ERR is asserted during a data
read, the processor ignores the data on DAL<31:00>, extends the
bus cycle by one microcycle and initiates a machine check. If ERR
is asserted during an instruction read (CS<2:0> = 100), the
processor stops prefetching; when the instruction buffer is empty,
the processor will attempt to fetch the next instruction byte with
a data read cycle.

BUS TRANSACTIONS

»

——_m——

The assertion of either RDY or ERR results in the completion
the current bus cycle.

. The requested data is latched into <the processor and DS
deasserted.

8. AS and DBE are deasserted, ending the bus cycle.

MICROCYCLE MICROCYCLE f
1

of

is

= /N S\
I

|
DAL 3100 I - < JATA >-—--.—-
| i
| |
g
| e ; :
|
!
0s 1
i
i
8 |
i
i
i
WA]
|
€5~2.0-
[
2-23:0
|
s i
ADY, SAMPLING
£FR WINDOW
1 }
| | [
Jr— SAMPLING SAMPLING PLI! -
o e [

Figure 5-3 CPU Read Bus Cycle

5-4

8US TRANSACTIONS

5.2.2 CPU Write Cycle

The processor uses & CPU write cycle (Figure 3-4) to output
information to memory or an [/0 device. A CPU write cycle requires a
minimum of 2 microcycles and may be extended for slower memory or I,0
devices.

The first microcycle of a CPU write is used to output the address and
control information. During the last microcycle of a CPU write, the
data is valid and can be written.

The sequence of events for a CPU write is as follows:

1. The physical (longword) address is driven onto DAL<29:02> by the
processor.

2. WR is asserted and CS<2:0> are asserted as required.

3. BM<1:0> are asserted as required indicating which byte{s) are to
be written. _

4. AS is asserted to indicate that_the address is valid and _can be
latc%gﬁ for demultiplexing. AS also qualifies CS<2:0>, BM<3:0>,
and .

5. DBE is asserted and can be used to control DAL bus transceivers.

6. The processor drives data onto the DAL bus and asserts DS to
indicate that the data is valid.

7. If the data can be written during the next microcycle, external
logic asserts RDY and the next microcycle is the last one for this
bus cycle. 1If RDY is not asserted by the end of the current
microcycle, the Dbus cycle will be extended by at least one
microcycle. -

If a bus error occurs, external logic responds by asserting ERR
and the processor initiates a machine check. TERR takes precedence
over .

The assertion of either RDY or ERR results in the completion of
the current bus cycle.

8. DS is deasserted to indicate that the data is going to be removed
from the DAL bus by the processor.

9. AS and DBE are deasserted, ending the bus cycle.

BUS TRANSACTIONS

MICROCYCLE 1 MICROCYCLE
!

‘ ,
CLKO -
I 1
DAL 31 G0 x x ADDRESS x x DATA ><

= \\\
z
% ?\\\
|
[
ose \\\\ |
s
|
- !
. |
T
a
s 20 -
,] i
o !
8w 30 X X
i f
! i
BOv i
Y .)
7] e
? ;
! . |
SR SNoow / Z CUO woow

t = !
| | |

Figure 5-4 CPU Write Bus Cycle

BUS TRANSACTIONS

5.2.3 Interrupt Acknowledge Cycle

An interrupt acknowledge cycle is used to acknowledge an interrupt
request from an I/0 device, and to read a vector. The structure of
this cycle is the same as a CPU read cycle {Figure 5-3).

The first microcycle of an interrupt acknowledge cycle 1is used to
cutput the [IPL, in hex, that is being acknowledged. During the last
microcycle the interrupt vector from the interrupting device is
latched into the processor. ‘

The'Sequence of events for an interrupt acknowledge <cycle is as
follows:

1. The processor places the IPL, in hex, of the interrupt béing
acknowledged on DAL<04:00>. DAL<29:05> are zero and DAL<31:30> =
10 (longword access).

2. WR is unasserted and CS<2:0> are asserted to indicate an interrupt
acknowledge cycle. '

3. BM<3:0> are all asserted.

4., AS is asserted to indicate that the IPL level on DAL<04:00> is
valid. &S also qualifies CS<2:0>, BM<3:0>, and WR.

5. DS is asserted to indicate that the bus 1is free to receive
incoming data. DBE is also asserted at this time and can be used
to control the DAL bus transceivers.

6. External logic responds by placing the interrupt vector on
DAL<09:02> and the normal processing/Qbus processing £flag on
DAL<00> and asserting RDY. If RDY is not asserted by the end of
the first microcycle, the bus cycle will be extended by at least
one microcycle.

DAL<15:10,01> MUST be driven to a valid high or low level in
accordance with the set-up times speczfzed in the detailed timing
diagrams in Appendix A.

If an error occurs, external logic asserts ERR and the processor
cancels the cycle and ignores the data on the DAL bus.

7. The interrupt vector is latched into the processor and DS is
deasserted.

8. XS and DBE are deasserted ending the bus cycle.

BUS TRANSACTIONS

5.2.4 DMA Cycle

A DMA cycle (Figure 5-5) 1is wused by the processo to re1inquish
control of the DAL bus and related control signals upon request from a
DMA device or another processor.

The sequence of events for a DMA cycle is as follows:

1. The DMA device requests use of the bus by asserting DMR.

2. The processor
the current
DMA request.

3, The processor
and (CS<2:0>
the DAL bus.

samples the DMR line during each microcycle,unless
bus cycle is a read lock cycle, to see if there is a

three-states DAL<31:00>, AS, DS, DBE, WR, BM<3:0>,
and then asserts DMG to grant the DMA device use of

3. When the re g uesting device is finished using the bus, it deasserts

deasserts DM §

Ta ; T l T2 i T2

and three-states DAL<31:00>. The requesting device
and the MicroVAX 78032 CPU takes control of the bus.

-
4
~
1
w

> {f S
N S~
AN (" VAR
g —
N —

Figure 5-5 DMA Cycle

5-8

BUS TRANSACTIONS

5.3 EXTERNAL PROCESSOR CYCLES

The processor uses the external processor cycles to communicate with
" an external processor or externally implemented processor registers.
The external processor protocols are described in Section 5.5.

It is important to note that AS, DBE, DS, and BM<3:0> are not used and
are not asserted during external processor cycles. External processor

cycles are always 32-bits. This means that DAL<31:00> must be driven’

to a valid level for all read cycles.

5.3.1 External Processor Read Cycle

The processor uses an external processor read cycle (Figure 5-6}) to
input information from an external processor or external processor
registers. An external processor read cycle takes one microcycle and
¢an not be extended.

The sequence of events for an external processor read is as follows:

1. CS<1:0> are asserted as required and <(£S<2> is precharged and
sustained high. ‘ .

2. WR is not asserted for a read cycle.

3. EPS is asserted to indicate an external processor bus cycle and to
qualify CS<2:0> and WR.

4. The external processor places the requested information on the
DAL. o ~

S. The requested information is latched into the processor and EPS is
deasserted.

6. The external processor removes its information from the DAL,

ending the bus cycle,

BUS TRANSACTIONS

MICROCYCLE
i ?’

DAL :31:0G:- > { DATA ‘>—-

N e

€S- 105 . ><
cs.2 >.___<

S N BN

X
/

Figure 5-6 External Processor Reéd/Response Cycle

BUS TRANSACTIONS

"5,3.2 External Processor Response Cycle

The processor uses an external processor response cycle (Figure 5-6)
to input information and a completion or confirmation signal from an
external processor or external processor register. ‘An external
processor response cycle takes one microcycle and can not be extended.

The sequence of events for an external processor response is as
follows:-

‘1. (CS<1l:0> are asserted as regquired and C(S<2> 1is precharged and
sustained high.

2, WR is not asserted for a read cycle.

3. EPS is asserted to indicate an external processor bus cycle and to
qualify CS<2:0> and WR.

4. The external processor places the requested information on the
DAL, and optionally drives CS<2> low with an open drain driver.

5. The requested information is latched into the processor and EPS is
deasserted.

6. The external processor removes its information from the DAL and
deasserts C8<2>, if asserted, ending the bus cycle.

5.3.3 External Processor Write Cycle

The processor uses an external processor write cycle (Figure 5-7) to
output information to an external processor or external processor
register. An external processor write cycle takes one microcycle and
can not be extended.

The sequence of events for an external processor write is as follows:

1. CS<1l:0> are asserted as required and (S<2> is precharged and
sustained high.

2. WR is asserted for a write cycle.

3. TEPS is asserted to indicate an external processor bus cycle and to
qualify CS<2:0> and WR.

4. The processor drives the information onto the DAL.

5. EPS is deasserted and the external processor reads the
information, ending the bus cycle.

BUS TRANSACTIONS

l MICROCYCLE

™ ; T2 T3

OAL-31:0Q~

5l

!
TR
|

" e — o>

Figure 5-7 External Processor Write Cycle

-BUS TRANSACTIONS

5.4 MEMORY ACCESS PROTCCOL

The 28-bit address provided by the processor on DAL<29:02> is a
LONGWORD address which uniquely identifies one of up to 268,435,456
32-bit memory locations. To facilitate bgte accesses within the
32-bit memory locations four byte masks, BM<3:0>, are used. There are
no restrictions on data alignment, with the exception of the aligned
operands of ADAWI and the interlocked queue instructions. With these
exceptions, any data item, regardless of size, may be placed starting
at any memory address.

Memory is viewed as four parallel eight-bit banks, each of which
receives the longword address DAL<29:02>. Each bank reads or writes
one byte of the data bus (DAL<31:00>), when its associated byte mask
signal is asserted. This is illustrated in Figure 5-8.

BM<3S BM<Z> BM<IS BM<0>
. e A ™ . A - - - A - ~ o ==
A .
8BITS 8BITS 8 BITS 8 BITS
] ¥ T T
4 | 1 { I N
DAL<29:0Z>—» ! 1 { i o
| 1 { |
{ i 1 |

DAL<31:24> DALL23:16 > DALL15:08> DAL<07:00>

MR-11827

Figure 5-8 MicroVAX 78032 Memory Organization

BUS TRANSACTIONS

Any CPU read or CPU write falls into one of the following <categories:
byte access, word access within a longword, word ’access across
iongwords, aligned longword access, unaligned longword access.
(Quadword accesses are treated as two successive longword accesses,
with no optimization.) Byte accesses, word accesses within a longword,
and aligned longword accesses require one bus cycle. Word accesses
which cross a longword boundary, and wunaligned longword accesses,
require two bus cycles. The exact signal usage is shown in Table 5-1.

It is important to note that accesses requiring more than one bus
cycle are performed sequentially, with no computation 1in between:
However, DMA grants may occur between the bus cycles of an wunaligned
reference.

Table 5-1 Memory Access Control

ETvemren mm—— m—
Aciess Type (yole PAL~31:30« LAL<Z9:tizs BMs. 3 BM.Y - BM~ 1 BM- O
Byte 1 un A<29:02~ it Aslile«1d if RAci:0-s10) [RN) it] irAS1:0-200
word within i £ AUl [- TH IER FEE R V] iF oA ViuesTO P A O sUX it A~1uU-=00
Langwor o . fA<t:llr e 11}) st At 1iU-<UY
Al rtgined 1 T A<gY:ud- L [L i
tungword A~ 0> = futl
Wizt i) aul Ghn 1 Ul A Y0l L ri H H
tungwards v
o« Aeds J9:0e H 2l H [
A~ 10~ = 11}
Unal i gaed i]) AcL9:UL- L it AN1:U-=U) it As):iUa=01 H
funygward) ' ur AC1:0-210
< ter Avds 2908 - t Tt AU it A~i:0-=30 L
A~ 1.0 ne Uui wt A<1:0-=11
Nute: Uuiadwul Jd atwenhes ar e pel formed usim) ey lungmord accesses. A glighed Qquadworild aue@ss ises (wo

al igned lonywuid act esses atid att utial ignhed Quadwurid aciess uses two unaliuned luigwurd decesses.
DAL ~dY:3u- = 1V tor the Tiist altyned lungwurd acless andg the Tirst cycle 4f ealh unaligned

Clangwot d at. was and DAL<A1:3U> 5 10 Tur the second aligned Juhywoid acCess anu tiw secund cycle of
each unal igned iGnyword dy Less.

BUS TRANSACTIONS

5.5 EXTERNAL PRCCESSOR PRCTOCOLS

The external processor protocols allow the MicroVAX 783032 CPU to
communicate efficiently with one one or more external processors.
There are twoc distinct external processor protocols: one for
communicating with the optional MicroVAX 78132 Floating Point Unit,
- the second for communicating with external processor register logic.

§.5.1 FPU Protocol

The optional MicroVAX 78132 Floating Point Unit (FPU) functions wunder
the control of the processor. When the CPU receives a floating point
instruction it passes the opcode and operands to the FPU for
processing. The CPU waits for the FPU to finish and then requests
status information and any results. The FPU protocol is as follows:

1. Command Transfer - The processor performs an external processor

- write <cycle to transmit a command to the FPU. During this cycle,

CS<1:0> = 00 (FPU command}, and the opcode of the floating point
instruction is placed on DAL<GS 00>,

2. Operand Transfer - The VAX opcode determines the number and data
type of operands to be transferred from the processor to the FPU.
‘The processor performs one or more external processor write cycles
to transfer the operands. During these cycles'ﬁﬁ is asserted,

CS<1:0> = 01 (data transfer), and DAL<31:00> contain the data to
be transferred '

3. Operand Processing - While the FPU is processing the operands, the
processor polls for operation completion by executing external
processor response enable cycles.

4. Status Transfer - When the FPU has finished processing the
operands, it responds to the next external processor response
enable cycle by placing status information on DAL<05:00> and
driving CS<2> low. The processor responds to CS<2> being driven
low by reading the status information on DAL<05:00>.

5. Result Transfer - After reading the status code, the processor may
initiate one or more external processor read cycles to transfer
the result operands{(s), 1if any. During these cycles WR is
deasserted, (CS<1:0> = 01 (data transfer), and DAL<31:00> contain
the data to be transferred. The VAX opcode determines the number
and data type of the operand(s) to be transferred from the FPU to
the processor.

-BUS TRANSACTIONS

5.5.2 Register Protocol

The external processor register protocol permits external logic to
implement processor register functions that are a part of the VAX
Architecture but are not implemented in the MicroVAX 78032 CPU. Refer
to Table 1-3 for a list of the processor registers implemented by the
MicroVAX 78032 CPU. The processor will use one of the following
protocols when an MFPR or MTPR instruction 1is used to access a
register not contained in the processor.

5.5.2.1 Read From Processor Register -

This sequence (Figure 5-9) is performed when an MFPR instruction is
used to read data from one of the following processor registers: 25
through 39, 48 through 55, or 59 through 61. The read from processor
register protocol is as follows:

1. The processor initiates the transaction with an external »rocessor
write «cycle to specify the register number. During this cycle,
CS<1:0> = 10 (non-FPU command), DAL<31> = 1 (read register), and
DAL<05:00> <contain the register number specified by the MFPR
instruction. :

2. The processor waits one cycle.

3. The proc¢essor executes an external processor response cycle to

) read the register data. If CS<2> is driven low by the external
logic, the data on DAL<31:00> is the result of the MFPR
instruction. Otherwise, the processor returhs zero as the result.

BUS TRANSACTIONS

MICROCYCLE 1 MICROCYCLE
I

N

; MICROCYCLE

REGISTER NUMBER
* R BT

DALCIT 60>

es<rcs X

. . i
EXTERNAL PROCESSOR NOR-FPY i
COMMAND CYCLE 1

i

NQ-OP , EXTEANAL FROCESSOR READ. BESPONSE CYCLE

Figure 5-9 Read From Processor Register

5.5.2.2 Write To Processor Register -

This sequence (Figure 5-10) is performed when an MTPR instruction is
used to read data from one of the following processor registers: 25
through 39, 48 through 55, or 59 through 61. The move to processor
register protocol is as follows:

1. The processor initiates the transaction with an external processor
write cycle to specify the register number. During this cycle,
CS<1:0> = 10 (non-FPU command), DAL<31> = 0 (write register), and
DAL<05:00> contain the register number specified by the MTPR
instruction.

2. The processor executes an external processor write cycle to write
the register data. During this cycle, CS<1:0> = 01 (write data),
and DAL<31:00> contain the data specified in the MTPR instruction.

3. The next cycle is guaranteed not to be another external processor
cycle.

- BUS TRANSACTIONS ’

MICAOCYCLE

e _//_\\“//—_//‘\\;J/ﬂw_x/__//~_J/~w_J/—“_J/—\\n

DALLIT00>) { JEGSTER NUMBER e { WRITEDATA Jewemem

MICROCYCLE

CELHO>

!
!
[}
|
Cs<2> Y
i
I
I
1

EXTERNAL PROCESSOR NON-FPU
COMMAND CYCLE

EXTERNAL PROCESSOR WRITE CYCLE i

WA 12688

Figure 5-10 Write To Processor Register

CHAPTER 6

PIN DESCRIPTION

6.1 INTRODUCTION

Th

is chapter describes the function performed by each pin of

MicroVAX 78032 CPU. The pins are divided into 8 groups:

Data/Address bus
Bus control
System contrci
Interrupt control
DMA control

Power supply
Clocks

Test

Figure 6-1 shows the pin assignments of the MicroVAX 78032 CPU.

NOTE

During the pin descriptions references will be made to
the different bus cycles executed by the MicroVAX
78032 CPU. For a description of these bus cycles
refer to Chapter 5, Bus Cycles.

the

PIN DESCRIPTION

»

< 0D D0 U U0 UQUOoOOoOUsS S T «
& > >>P>P>>P>>»>P>>>DP > (vl
3888:55355355@3

RNy
(6059 58 57 56 55 54 53 52 51 50 49 48 47 46 45 ag)

vDD —{ 61 - 43
DALO6 —| 62 42
DALOS—63 . _ . _ ___ 41
DALO4 — 64 r 7 40
DALO3 —] 65 | I a9
DALO2—] 66 , ! 38
DALO! — 67 | | 37
DALO0— 68 | VieroVAX 75032 | 36

1 iICro

VSS —9 1 ' PROCESSOR CHIP ! 35
VDD -~ 2 |) ! 34
TRa3 — 3 ! I 33
Rz — 4 : ! 32
TEST— 5 ' : 31
{RQ1 —{ 6 30
TG0 — 7 b - 29
PWREL — 8 28
ves — 9 ~ 27
\10 1112 1314 15 16 1718 19 20 21 2223242526

|
x
b
~
-

Figure 6-1

@
2
=]

|

T T T TTTTTTTT

RSB OIMSo Mo

WU

EEFEEEEEEERE
=

[
9]
172}
=]

— VSS

= DAL22
— DAL23
— DAL24
—— DAL25
— DAL26
—— DAL27
- DAL28
~— DAL29
— DAL30
— DAL31
- VDD

[~ VSS

— AS
— 0S
— DBE

CLKO

MR 10297

MicroVAX 78032 Pin Assignments

PIN DESCRIPTION

6.2 DATA/ADDRESS BUS

The Data/Address Bus (DAL<31:00>) is a 32-bit time-multiplexed bus
used for the transfer of address, data, and interrupt information.
The information carried on DAL<31:00> is determined by the type of bus
cycle being executed. During the first part of a CPU read or CPU
write cycle DAL<31:00> carries the following address information:

DAL<31:30> - indicates the length of the memory operand.

DAL<31> DAL<30> Operand Length

- — - - — W o o S o o

Longwcrd
Quadword

DAL<29:02> - contains the longword address of the memory
operand. DAL<29> is used to distinguish a
memory space address from an I/O space
address.

DAL<29> Address Space

- — .- —- o o~ — - "~ -~ - = -

DAL<01:00> - are undefined. BM<3:0> determine which bytel(s)
. of the longword address are. to be used. Refer
to Section 5.4, Memory Access Protocol, for
an explanation. :

During the first part of an interrupt acknowledge cycle, DAL<(04:00>
carry the interrupt priority level (IPL), in hex, of the interrupt
being acknowledged. During the second part of a CPU read or interrupt
acknowledge cycle, DAL<31:00> receive incoming data or an _interrupt
vector. During the second part of a CPU write bus cycle, DAL<31:00>
are used to transmit outgoing data. ,

In addition to the transfer of information between the CPU and memory,
1/0 devices, etc., the DAL bus is used to exchange information between
external processors (i.e., FPU) and externally implemented processor
‘registers. The information present on the DAL bus for these bus
cycles is described in Section 5.5.

6.3 BUS CONTROL

There are 10 pins associated with bus control: A8, DS, BM<3:0>, TR,
BBE, BDY, and ERR. The function of each of these pins is described in
the following paragraphs.

PIN DESCRIPTION

6.3.1 Address Strobe (25)

AS is used to provide timing and control information to external
logic. This signal notifies external logic that a bus cycle is being
executed. The assertion of XS marks the beginning of a bus cycle, and
notifies external logic that the following signals are valid.

1. DAL<31:00> - valid address or interrupt priority levél (IPL)
2. WR - direction of transfer
3. (CS<2:0> - type of bus cycle

4, BM<3:0> - bytes of DAL bus that contain valid data during second
part of bus cycle

External logic should latch and/or decode these signals as required.
AS is negated to indicate the end of a bus cycle.

6.3.2 Data Strobe (DS)

DS is used to provide timing information for the transfer of data,.
During a CPU read or interrupt acknowledge cycle, the CPU asserts DS
to indicate that DAL<31:00> is free to receive 1incoming data. When
the CPU has received and latched the incoming data, it deasserts DS.
During a CPU write cycle, DS is asserted by the CPU to indicate .that
DAL<31:00> contain wvalid outgoing data. DS is deasserted by thé CPU
to notify external logic that the CPU is about to remove the data from
DAL<31:00>,

6.3.3 Byte Masks (BM<3:0>)

The four byte mask lines, BM<3:0>, specify which byte or bytes of the
DAL bus contain valid data during the second part of a CPU read or CPU
write cycle. During a CPU read cycle, the byte masks indicate which
bytes of the DAL bus are latched by the CPU. During a CPU write bus
cycle, the byte masks indicate which byte(s) of the DAL bus contain
valid data. BM<3:0> are valid when AS is asserted.

Byte Mask

bit asserted Data valid on
BM< 3> DAL<31:24>
BM<2> DAL<23:16>
BM<1> DAL<15:08>
BM<0> DAL<07:00>

[e
i
-

PIN DESCRIPTICN

NOTE

During 'a CPU read or external processor read/response
cycle, all bits of the selected byte(s) must be driven
to a valid state, except for an interrupt acknowledge
cycle when only bits<13:00> must be driven.

6.3.4 Write (WR)

WR specifies whether data for the current cycle is to be transferred
to or from the CPU. When WR is asserted, the CPU will drive data onto
the DAL bus. When WR is not asserted, the CPU 1is ready to receive
data from the DAL bus. WR can be used to control the direction input
of external DAL bus transceivers. WR is valid when AS or EPS is
asserted. ‘

6.3.5 Data Buffer Enable (DBE)

BBE can be used, by external logic to enable external DAL bus
transceivers. This signal in conjunction with WR provide the
necessary control signals for external bus transceivers.

6.3.6 Ready (RDY)

RDY is asserted by external logic to normally end the current CPU
read, CPU write, or interrupt acknowledge cycle. During a CPU read or
interrupt acknowledge cycle, the assertion of RDY indicates that
external logic will place the requested data on the DAL bus as
specified in Table A-2 and Figure A-2. During a CPU write cycle, the
assertion of BDY indicates that the information placed on the DAL bus
by the CPU will be received as specified in Table A-2 and Figure A-3
finishes the current bus cycle and proceeds. At the conclusion of the
current bus cycle (AS deasserted), external logic deasserts RDY.

6.3.7 Error (ERR)

TER is asserted by external logic to indicate that an error (i.e., bus
timeout or parity error) occurred during the current CPU read, CPU
write, or interrupt acknowledge cycle. Th assertion of TERR has
priority over RDY and results in the current bus cycle being extended.
At the conclusion of the extended bus cycle (AS deasserted), external
logic deasserts ERR. For a description of how the MicroVAX 78032 CPU
handles errors refer to Section 7.6.

PIN DESCRIPTION

6.3.8 External Processor Strobe (EPS)

" EPS provides timing and control information for external processor
transactions. When EPS is asserted, an external processor bus cycle
is beginning and: -

1. DAL<31:00> is ready to receive or contains valid information
2. WR is valid
3. (CS<2:0> are valid

EPS is deasserted at the end of the external processor cycle. For an
explanation of external transactions refer to Section 5.3.

6.4 SYSTEM CONTROL

There are 5 pins associated with system control: RESET, HALT, and
CS<2:0>, The function of each of these pins is described in the
following paragraphs.

6.4.1 Reset (RESET)

RESET is asserted by external logic to force the CPU to a known state.
A description of the reset sequence is given in Section 7.3.

' 6.4.2 Halt (HALT)

HALT is asserted by external logic to halt the execution of
macroinstructions by the CPU. When HALT is asserted the CPU will:

1. Execute an external processor write cycle at the conclusion of the
current macroinstruction. During this cycle, (CS<1:0> = 10
(non-FPU command) and DAL<(05:00> = 111111, ‘

2. The CPU will enter the restart process with a restart code = 2
(HALT asserted), see Section 2.8.

HALT is an edge sensitive signal that is sampled every microcycle, is
synchronized internally, and generates a non-maskable interrupt. TALT
must be asserted an minimum of two microcycles to guaranzee it is
sampled. HALT must be deasserted a minimum of two microcycles before
another halt request will be recognized. '

PIN DESCRIPTION

6.4.3 Control Status (CS<2:O>}A

The three control status lines are used in conjunction with WR and
either &S or EPS to define the type of operation in progress for the
current bus cycle. CS<2:0> are valid when AF or EPS is asserted.

During a read, write, or interrupt cycle (AS asserted), WR and CS<2:0>
have the following meaning:

WR CS<2:0> Bus Cycle Type

H " LLL reserved

H LLH reserved

H LEL reserved ,

H LHH interrupt acknowledge

H HLL read (instruction)

H HLH . read lock ,

H HHL read {(data, modify intent)
H HHH read (data, no modify intent)
L LLL reserved

L -LLH reserved

L LHL reserved

L LHH reserved

L HLL reserved

L. HLH . write unlock .

L HHL reserved

L HHH write {(data}l

During an External Processor read, write, or response cycle (EPS
asserted), (CS<2> 1is always high. WR and CS<1:0> have the following
meaning: ' , i

WR CS<1:0> Bus Cycle Type

H LL reserved

H LH read data

H HL reserved

H HH response enable

L LL _ write command {(FPU)

L LH write data

L HL write command (non-~fFPU)
L HH reserved

PIN DESCRIPTION

6.5 INTERRUPT CONTROL

‘There are 6 pins associated with interrupt control: IRQ<3:0>, PQRFL,
and TNTTIM. The function of each of these pins is described in the
following paragraphs. ~ ;

6.5.1 Interrupt Request (IRQ<3:0>)

These four lines are used by external logic to send interrupt requests
te the CPU. If the interrupt request 1is at a higher interrupt
priority level (IPL) than the current IPL of the CPU, an interrupt
acknowledge bus <cycle will be executed. Each line has the following
interrupt priority level (IPL):

Interrupt Priority
IRQ Line Level (hex)

—— s - — - " — - - idn am -

IRQ<§> . IPL17
TRQ<Z2> IPL16
IRQ<L> IPL1S
TRQ<0> IPL1S

TRQ<3:0> are level sensitive, are sampled during every microcycle, and
are synchronized internally.. For a description of the interrupt
handling process refer to Section 7.7.

6.5.2 Power Fail (PWRFL)

PWRFL allows external logic to notify the CPU of a power fail
condition. The assertion of PWRFL results in an interrupt at IPLI1E
that uses vector 0C (hex) in the system control block (SCB). A power
fail interrupt 1is not acknowledged with an interrupt acknowledge bus
cycle. PWRFL is edge sensitive, is sampled every microcycle, and is
synchronized internally. PWRFL must be asserted an minimum of two
microcycles to guarantee it is sampled. PWRFL must be deasserted a
minimum of two microcycles before another halt request will be
recognized. For a description of how PWRFL is used refer to Section
7.7.1.

6.5.3 Interval Timer (INTTIMI

INTTIM allows external logic to notify the CPU of an interval timer
rollover, The assertion of INTTIM results in an interrupt at IPL16
that uses vector CO (hex) in the SCB. An interval timer interrupt Iis
not acknowledged with an interrupt acknowledge bus cycle. TINTTIM is
edge sensitive, is sampled every microcycle, and 1is synchronized

6-3

PIN DESCRIPTICN

internally. TNTTIM must be asserted an minimum of two microcycles to
guarantee it is sampled. TINTTIM must be deasserted a minimum of two
microcycles before another halt request will be recognized. For a
description of how TNTTIM is used refer to Section 7.7.2.

6.6 DMA CONTROL

There are 2 pins associated with DMA control: DMR and DMG. The
function of each of these pins 1is described in the following
paragraphs. ’

6.6.1 DMA Request (DMR)

DMR is asserted by external logic to notify the CPU that it would like
to take control of the DAL bus and related control signals. DMR is
level sensitive, 1is sampled every microcycle, and 1is internally
synchronized.

6.6.2 DMA Grant {(DMG) .

DMG is asserted by the CPU in response to DMR. When DMG is__ asserted
the CPU three-states DAL<31:00>, &S, WR, DS, ©DBE, BM<3:0>, and
CS<2:0>, When external logic is finished using the bus, it deasserts
25, DS, DBE, and DOMR and the CPU responds by deasserting DMG and
beginning the next bus cycle. :

6.7 SUPPLIES ’
There are 9 pins associated with power: 4 for +5 VDC '(Vdd}, 4 for

ground (Vss), and 1 for the back bias generator (Vbb). The function
of each of these pins is described in the following paragraphs.

6.7.1 Power (vdd)
There are 4 pins called vdd, which are used to iﬁput +5 VDC .to the

MicroVAX 78032 CPU. +5 VDC is supplied by external circuitry and must
be maintained to within +/-5%.

6.7.2 Ground (Vss)
There are 4 pins called Vss, which provide a ground reference for the

6-9

PIN DESCRIPTICN

MicroVAX 78032 CPU. These pins are connected to the ground reference
for external logic.

6.7.3 Back Bias Generator (Vbb)

The Vbb pin is the output of the on chip back bias generator. This
pin MUST NOT be connected.

6.8 CLOCKS

There a 2 pins associated with clock signals: LKI and CLKO. The

function of each of these pins 1is described in the follewin
P g

paragraphs.

6.8.1 Clock In (CLKI)

CLKI receives the output of a TTL oscillator, which provides basic
timing to the CPU.

6.8.2 Clock Out (CLKO)

CLKO supplies a timing output at half the frequency of CLKI.

6.3 TEST (TEST)

This pin is used by chip manufacturing for internal testing of the
MicroVAX 78032 CPU. For normal use this pin MUST be tied to ground.

6.10 PIN DESCRIPTION SUMMARY

Table 6-1

- CPU.

PIN DESCRIPTION

summarizes the function of the pins on the MicroVAX 78032

Signal Name

Table 6-1

MicroVAX 78032 Pin Summary

I/0

Function

- e i i - 7 Y- " " o S "~ o " - St " s o o i it e

30

29

12-15

28

DAL<31:00>

7

1/0

(Time-multiplexed) During the first part
CPU read cycles, CPU write cycles,
interrupt acknowledge cycles, provides
address information on DAL<29:02> and

_length information on DAL<31:30>. During

During the second part of a read or

interrupt acknowledge cycle, receives
data driven by memory or I/0 devices.
During the second part of a write cycle,
provides data from the MicroVAX 78032,

A strobe that indicates'ﬁﬁ, BM<3:0>,
CS<2:0>, and DAL<31:00> are valid.

A strobe that indicates that DAL<31:00>:

-- Are free to receive data during a

~ read cycle or interrupt cycle. It
is deasserted to signal that the
data has been received.

-~ Contain valid data during a write
write cycle, It is deasserted to
signal that the data is about to
be removed.

Specify which bytes of the DAL contain

valid data. Used as an input for

testing purposes only.

Specifies the direction of data transfer
on the DAL.

Asserted by the MicroVAX 78032 CPU to
enable external DAL transceivers.

o-11

PIN DESCRIPTION
Table 6-1 MicroVAX 78032 Pin Summary (Continued)

Pin No. Signal Name 1/0 Function
13 RDY -1 Asserted by external logic to notify
the MicroVAX 78032 CPU that:

-- during a read cycle or interrupt
cycle that requested data is present
on the DAL

-- during a write cycle that the data
on the DAL has been received

18 ~ ERR I Asserted by external logic to indicate
a a8 bus error, e.g., non-existent memory
or parity error.

16 RESET I Asserted by external logic to initialize
the MicroVAX 78032 CPU to a known ini-
tial state.

11 . HALT I A non-maskable interrupt used to halt
the execution of macroinstructions.

24-26 CS<2:0> 1/0 Indicate the type of bus cycle,i.e.,
data access, instruction access,
lock/unlock, read/modify/write, or
interrupt acknowledge.

CS<2> is used as an input during
external processor response cycles.

3,4 IRQ<3:0> ‘ I Four maskable interrupt request lines

6,7 for device interrupts.

8 PWRFL I A maskable interrupt used to signal a
power fail condition.

9 INTTIM I A maskable interrupt used to signal a
system clock tick.

20 DMR I Asserted by external logic to request
a DMA cycle.

22 DMG 0 Asserted by the MicroVaAX 78032 CPU to
acknowledge a DMA request.

23 EPS 0 Asserted by the MicrovVax 73032 CPU to

coordinate external processor trans-
actions.

-12

(o))

PIN DESCRIPTION

Table 6-1 MicroVAaXx 78032 Pin Summary (Continued)

Function

e o —— o ——— - —— —— ————]~ ——— - - o —— . —_ - — - " -~

VDD I
VSS I
CLKI I
CLKO . 0
VBB 0
TEST I

+5 volt supply
Ground reference
A double frequency clock input that

provides chip timing.

lock output at half the frequency of
CLKI. Can be used as system clock.

Output of on-chip back bias generator.
Must not be connected.

Reserved. Must be tied to ground.

CHAPTER 7

INTERFACING

7.1 INTRODUCTION

This chapter provides the wuser with some general gquidelines and
examples for interfacing to the MicroVAX 78032 CPU. Some of the areas
covered are:

& Power

e Power-Up/Reset

¢ Memory Subsystem
® Bus Errors

e Interrupts

7.2 POWER

The MicroVAX 78032 CPU requires a single +5 ¥V supply. There are 8
pins associated with the power supply, four VDD pins and four VSS
pins. The VDD pins are connected to +5 V and the VSS pins are
connected to ground. Decoupling and grounding with the MicroVAX 78032
CPU is very important. Decoupling the power supply is done by
connecting a capacitor between each VDD pin and its associated VSS pin
as shown in Figure 7-1. The recommended value of the decoupling
capacitor is 10 uf Tantalum +1,-10%. The ground pins (VSS) should be
tied to the common point ground for the power supply. The ground pins
should be tied together at the chip.

NOTE

All VDD pins must be connected to the +5 V supply and
all VSS pins must be connected to ground.

INTERFACING

The MicroVAX 78032 CPU internally generates its own negative voltage

which 1is
this voltage,

VBSX

brought

out on the VBB pin.
therefore the VBB pin must NOT be connected.

=

L

T (50
+5V 1 61

VCCX

]

44)

43

L

It 1s not necessary to filter

VCCX

T +5 vV

MicroVAX 78032

VESi g
1
o+
+5V 2

VCCl
veel 32 o
—~
3
vssi =
_ w,
ALL CAPACITORS
10 uF TANTALUM, +1 -10%
: ;) N . MR-12664
Figure 7-1 Power Supply Decoupling

7.3 RESET/POWER-UP
The MicroVAX 78032 CPU is reset at any time by pulling the
low as follows:

RESET pin

1. when power is first applied, the RESET pin must be held low for a
minimum of 3 msec after VDD has reached a stable +4.75 V. This
makes certain that all on chip voltages are stable before
beginning operation.

2. TRESET must be held low for a minimum of 3.0 usec 1if RESET 1is

asserted after VDD has been at +4.,75 V for more than 3 msec.

ions and

instruceti
an explanation

When RESET 1s asserted the processor stops executing i
F~4
tOor

enters the Restart Process. Refer to Section 2.8
of the Restart Process.

During reset/power-up the MicroVAX 78032 CPU initializes its internal
lcgic and checks to see if the opticnal MicroVAX 78132 FPU [s present,
. It checks for the FPU by:

7-2

INTERFACING

§—t

Performing an external processor command cycle. This synchronizes
the FPU with the CPU.

2. Issuing a valid instruction to the FPU via an external processor
command cycle.

3. Transferring data to the FPU using an external processor write
data cycle.

4. After waiting a period of time, performing an external processor
response/enable cycle. This verifies whether or not the FPU is
present.

7.4 HALTING THE PROCESSOR

The MicroVAX 78032 CPU is a dynamic part and cannot be halted by
disabling 1its CLKI input. The MicroVAX 78032 CPU is halted in one of
two ways:

1. Execution of a HALT instruction in kernel mode.
2. Assertion of the HALT pin.

Either one of these actions causes the execution of macroinstructions
to be suspended and the restart process to be entered. The initiation
of the restart process is under control of the processor microcode.
The microcode saves the processor state and passes control to user
code beginning at physical address 20040000 (hex). For a more
detailed explanation of the restart process refer to Section 2.8.

Assertion of the HALT pin results in the execution of a non-maskable
interrupt by the CPU. HALT is edge sensitive and must be asserted for
a minimum of two microcycles to guarantee its being sensed by the CPU
and be deasserted for a minimum of two microcycles before another HALT
will be recognized.

7.5 MEMORY SUBSYSTEM

Figure 7-2 shows an implementation of memory subsystem with 32KB of
PRCM and 128KB of Static RAM (SRAM). This susbsytem consists of an
address latch, address decode logic, read/write control . logic, RDY
logic, 32KB of PROM, and 128KB of SRAM.

The longword address is latched in the LS373 transparent latches Dy
AS, The address is decoded by the LS138 decoder. The ocutput of the
decoder is used to select the PROM or one of the four banks of SRAM.
The Dbyte(s) to be accessed within the longword are selected by
BM<3:0> Note that this system does not do a unique address decode.

- 3
[-
/

INTERFACING

WYHS €M8ZT PUR WOYd 8MZf Y3ta waisisqns Aaowsp

Z-{ 8anb1y
O M
15008 O T..A n AT —
1 AQY ~——C)
1squm é THM -0
15a 0
" O
-0
Q
1“
300030)
H EWe ——CC T\L Qrgoapaov] F
b e 1P HCTH>ED
TWOH W owa fsA az0
1 EWvH 1 woy —CvA vzo P TEv
T AQH 1 ZWYY 1 j A
11y H LWe 1 Mss. M M> b MG
1 0WvH - W owmav -
v
:oia.l}Av‘,\l!l “h“”“.c; H sLuaY 1 sob—1
oA : r =
BELST = -0
A SNY SSIMAAY A
HCZO P I>HaY HCIOPI>HOY HEZOPI>HaY :,ANQIV»B(, H<ZO P I>HAY -
SSINOAY
frx)
Iy €1 (Y st ¥ o) £LEST
st) e - r4
1L 152 b~ nco:comn 1 isof—n<oE>we 150}——H<0E>WE 10 f—wmaesng 30 P-1won
SO T ENVY 52— 1envy 252 1 vy 52 P 7 owvy 30 P-1sogy
IMP- 1508M amp— 1saum ImP- 150um 3Im - 1saum
30— 15004 30— 1s0ay 30 p—1saoy 30 o~ 1saoy
(23] 124 irx) {vxd tex)
axng OB XN gxue g
nvys Hvys wvs WYys Woud3
v9z9 ¥929 voz9 ¥oL9 (315
J] J J J
J J J b] :
J J J J J
wq wd Y w } z¢ 4
H<00:1E>1v0 H<EO IE> V] H <00:LE> IV H<00'LE>TVA H<O0 LE> VO
A.r sne 1va \v

AQH
HM

SO

<E>NA
<Z>WNg
<i>wg
<O>W8

<L>G8D

feegaal
CE0BL XY AN

<00 LE> Y]

INTERFACING

7.6 BUS ERRORS

Recognition of bus errors (e.g. bus timeout, parity) is implemented
in external logic. wWhen a bus error occurs, the external logic
notifies the processor of the error by asserting ERR. When ERR is
asserted one of three things happen:

1. If the bus cycle is a CPU read or write, as determined by CS<2:0>,
the current bus cycle is extended one microcycle and then the
processor performs a machine check. .

2. If the bus cycle is an instruction prefetch (I-stream read)
prefetching 1is halted. Wwhen the prefetch buffer is empty, the
processor will try to fetch the instruction with a data read. If
an error occurs again the processor will perform a machine check.

3. If the bus cycle is an IAK cycle, the processor ends the bus cycle
and ignores the interrupt.

If the assertion of ERR results in a machine check, it is up to the
executing program to determine the type of error from information
pushed on the stack and in external logic. Refer to Section 2.5.4.6.3
for a description of the parameters pushed on the stack for a machine
check.

7.7 INTERRUPTS

The MicroVAX 78032 CPU recognizes 6 hardware interrupts. These
interrupts are Powerfail, Interval Timer, and IRQ<3:0>.

7.7.1 Powerfail (PWRFL)

The powerfail interrupt can be used to implement a power fail routine
+hat is located at vector O0C hex in the SCB or as a high priority
interrupt (IPLLE) with an internally generated vector (0C). Because
the vector is generated by the CPU, there is no external interrupt
acknowledge cycle associated with this interrupt.

A powerfail interrupt is initiated by the assertion of the PWRFL pin.

is edge sensitive and must be asserted for a minimum of two
microcycles to guarantee its being sensed by the CPU and be deasserted
for a minimum of two microcycles before another powerfail interrupt
will be recognized. '

INTERFACING

7.7.2 Interval Timer (INTTIM)

The interval timer interrupt allows external logic to signal an
interval timer rollover with a vector of CO hex in the SCB. This
interrupt could also be used as an IPLl6 interrupt with an internally
generated vector (CO0). Because the vector 1s generated by the CPU,
there is no external interrupt acknowledge cycle associated wita this
interrupt.

An interval timer interrupt is initiated by the assertion of the
INTTIM pin. INTTIM 1is edge sensitive and must be asserted for a
minimum of two microcycles to guarantee its being sensed by the CPU
and be deasserted for a minimum of two microcycles before another
interval timer interrupt will be recognized.

For compatibility with Digital's MicroVMS, ULTRIX, and VAXELN software
a 100 Hz oscillator should should be used for the INTTIM input.

7.7.3 General Interrupts (IRQ<3:0>)

The MicroVAX 78032 CPU has four interrupt levels for use by peripheral
devices. An interrupt is requested by a device asserting one of the
four interrupt lines (IRQ<3:0>) of the processor. The processor will
arbitrate the interrupt and then perform an interrupt acknowledge
cycle to acknowledge the highest pending interrupt, if it is higher
than the current IPL of the processor. The interrupting device must
then provide an interrupt vector to the processor and assert RDY.

When interfacing to the interrupt mechanism of the MicroVAX 78032 CPU
the user has to consider the following requirements:

1. If more than 4 devices are to be used, some type of priority
scheme must be implemented in external logic.

2. External logic has to decode CS<2:0>, X5, and WR for an interrupt
acknowledge cycle.

3. External logic has to decode the IPL level, in hex, on DAL<04:00>.

4. External logic has to supply a vector to the CPU and assert TRDY.
This vector 1is an offset into the SCB for the location of the
interrupt routine.

If the vector provided by the interrupting device has DAL<00> = 1,
the CPU will set its IPL to IPL17 (hex) before servicing the
interrupt.

For a description of an interrupt acknowledge bus cycle, refer to
Section 5.2.3.

-4

INTERFACING

In its simplest form the MicroVAX 78032 CPU will accept four different
devices, one for each interrupt level.. To expand this capability the
user must provide prioritization logic, such as a daisy chain,

vectored interrupt controller, etc.

APPENDIX A

DC AND AC CHARACTERISTICS

A.1 DC CHARACTERISTICS

Absolute Maximum Ratings

Storage Temperature Range
Active Temperature Range

Supply Voltage

Input or Output Voltage Applied
Maximum Power Dissipation

Electrical Characteristics
Specified Temperature Range
Minimum Air Flow Over Chip
Specified Supply Voltage Range

Test Conditions

i

.« . [#1]
W OOl
SRR NN e

i
A OO

0 C to
100 linear ft/min
+4,75 V to +5.25 V

to +125 C
to +70 C

to. +7.0 V
to +7.0 V
Watts

+70 C

Temperature = +70 C

Vss
vdd

=

o v
+4.,75 V (except as noted)

DC AND AC CHARACTERISTICS

Symbol

Voh
Volr
Vohe
Vole
Iils
Iil
Iol

Idd

Cin

Parameter

High level input
voltage

Low level input
voltage

High level output
voltage

Low level output
voltage

High level output
voltage (EPS only)

Low level output
voltage (EPS only)

Input leakage
current (CS<2>)

Input leakage
current

Qutput leakage
current

Active supply current

Input capacitance

0.8

3.2

10

10

700

v

v

mA
uaA
ulA

mA

pF

Test Condition

Ioh = - 400 uA
Iol = 2.0 mA
Ioh = - 100 ua
Iol = 1.0 ma

vin = 0.4 V

0 < vin < vdd

0.4 < Vvin < vdd

Iout = 8, Ta = 0 C

DC AND AC CHARACTERISTICS

A.2 AC CHARACTERISTICS

The following notes apply to Figures A-1 through A-7 and their
associated timing tables.

1.. Formulas for the timing parameters are stated in terms of the CLKI
) period. CLKI period = tCIP = P.

2. All times are in nanoseconds except where noted.

3. AC characteristics are measured with a purely capacitive load of
100 pf. Times are valid for loads of up to 100 pf on all pins.

4., AC highs are measured at 2.0 volts and AC lows at 0.8 volts except
for .

5. AC high for EPS is measured at 2.2 volts and AC low at 0.6 volts.
6. S = the number of slipped microcycles during a bus cycle.

7. The sampling window is used to sample the following asynchronous
signals: RDY, ERR, and DMR. RDY and ERR are qualified by AS
being asserted. DMR is qualified by S being deasserted. The
effect of these signals on the current bus cycle is as follows:

- The bus cycle will conclude at the end of the current
. microcycle if TRDY (and NOT ERR) is asserted throughout the
sampling window while AS is asserted.

- If ERR is asserted throughout the sampling window while &S is
asserted, the current microcycle becomes an extension cycle
and the bus cycle ends after the next microcycle.

- 1f RDY or Qﬁﬁxgo through a transition during the sampling
window while AS is asserted, the result is indeterminate.

- TDHMR is sampled at every microcycle boundary.

- If DMR is asserted throughout the sampling window, and &S is
not asserted, and the CPU has not locked the bus the next
microcycle will be the beginning of a DMA cycle.

- I[f DMR is asserted throughout the sampling windecw, &S is
asserted, and the CPU has not locked the bus, the first
microcycle after the end of the current bus cycle will be the
beginning of a DMA cycle

- A DMA cycle will conclude at the end of the current microcycle
if PMR is deasserted throughout the sampling window.

DC AND AC CHARACTERISTICS

A.2.1 CLKI Timing

Table A-1 CLKI Timing

SYMBOL DEFINITION 7 MIN -~ MAX

tCIF Clock In fall time 4.5

tClIH Clock In high - ‘ 8

tCiL Clock in !ow’ 8

tCIP Clock Period 25 250

tCIR Clock In rise time 4.5
pe—1C1 H icip

\

MA-11621

iR —
LCIF et e

Figure A-1 CLKI Timing

DC AND AC CHARACTERISTICS
A.2.2 CPU Read Cycle, CPU Write Cycle
Table A-2 CPU Read Cycle, CPU Write Cycle Timing

SYMBOL DEFINITION ' MIN MAX NOTES

tAAS Address set up time to AS 2P - 28
assertion
tASA Address hold time after AS 2P - 15
assertion
1ASHC AS rising through 2.0V to P23
CLKO rising through 0.8V
tASLC AS failing through 0.8V to P.20
CLKO rising through 0.8V
tASDB AT assertion to DBE and 3P - 15 3P + 20
DS (read) assertion
tASDI AT assertion to read data valid 11P - 30 + 8PS 1
tASDSO AS assertion to DS assertion 5P - 15 5P + 20
{write) '
tASDZ AS and DBE deassertion to 2P . 20
data 3-state
TASHW AT deassertion width 3p
tASLW AT assertion width 12P - 15 ~ 8PS
tASWB AS assertion to beginning of (6P - 45) - 8PS 2
HDVY. ERR. and DMR sampling
window
IASWE AT assertion to end of RDY. 6P + 10 + 8PS , 3

ERR. and DMR sampling window

tASWR WR. BM<3.0-. CS<2:0> hold P .20
time fram AS deassertion

1BMAS BM<3:0> set up time before 2P - 25
AS assertion

tCASH CLKO rising through 2.0V to P .
AS rising through 0.8V

~l
0

i
-
(8]

DC AND AC CHARACTERISTICS

Table A-2

CPU Read Cycle, CPU Write Cycle Timing (Continued)
sYMBOL DEFINITION MIN MAX NOTES
1CASL CLKO rising through 2.0V to P-9 P - 18

AT falling througn 2.0V
tCol CLKO rising through 2.0V to P-53
read data valid
tICDO Write data hold time from P . 15
CLKO rising through 2.0V
tCF CLKOQO tall time 12.5
tCH CLKQO high 2P - 25 x .5
CL CLKOQO low 2P - 251 x 5
tCP CLKO period 30 500
tCR CLKO rise time 12,5
4
tCWwa T4 CLKO rising through 2.0V 3P - 45 2
to beginning of RDY. ERR,
and DMR sampiing window
tICWE T4 CLKO nsing through 0.8V 3P + 15 3
to end of RDY. ERR. and DMR
sampling window
tDBLW DBE assertion width 9P - 20 + 8PS
t0D0OC Write data set-up time to 3P - 42
CLKO rising through 0.8V
tDODS Write data set-up time to DS 3P - 30
assertion
tDSAS DS deassertion to AS and P - 15
DOBE deassertion
t0SD Read data hotd time atter DS 0
deassertion
108D DS assertion to reac data valid 8P - 35 - 8PS 1

DC AND AC CHARACTERISTICS

Table A-2 CPU Read Cycle, CPU Write Cycle Timing (Continued)

SYMBOL DEFINITION MIN 7 MAX NOTES
© 1DSDO Write data hold time from DS 3P - 20
deassertion
1DSDZ DS deassertion to read data ' 3P - 20
3-state
tDSHW DS deassertion width 6F
tDSLWI DS assertion width (read) 8P - 20 - 8PS
tDSLWO DS assertion width {write) &P . 20 - 8PS
tWEDI Sampling window end o , 3P - 25

read data valid

tWRAS WR, CS<2:0 set up time before 3P - 35
AS assertion

Notes:

i

Read data is valid early enough if tASDI or tDSDI or tCDI is satisfied.

2. Requirements for the beginning of the sampling window are satisfied if aither IASWB or tCWB is
satisfied.

3. Requirements for the end of the sampling window are satisfied if either tASWE or t{CWE is satisfied.

DC AND AC CHARACTERISTICS

| !
T4 ‘ Tt T2 3 T3 { T4) § T2 3 ; T4 T
{ | f
cLKe j
T i !
L—ch_.-__EL_.s ‘casL —] - L t ICASH —=f — !
- . o
tASLC :., teor — i fe— g
: }]\ 4 Yy
DAL-31.00> ADDRESS 1> DATA
A I {
TAAG -~ pe—mlggp ~—a DS
— LASHW A . ot 105 D2
~ ASDI
2% 1 \ - fasiw
) . .
!
|

‘ tosHw — tosos
— ! osLwt
o8 } % \ osL
i Lo -

> tASDB (MiNi =

oELW
58€ BN
2N
@R |
; i
r—-‘wms% i |
s f t ;
cs2n - X >(P | :
; L !
g‘[BMAS' | :
I ! ; i X
M 3.0 |)
i i
[ag BWEDI =‘{
ROY T SAMPLING
ERR X WINDOW
I
[——— fcwe “
IR AR SAMPLING SAMPLING SAMPLING |
WINDOW WINDOW WINDOW “

astrung

Figure A-2 CPU Read Timing

A-3

DC AND AC CHARACTERISTICS

e
-~ tasic
DAL<31:08> x >< ADDRESS §< TNE DATA §<

taag— [~tasa—t §'~*—-~‘Dsno-~3

} fasHw |
}\ TASLW — - * /

< .
—tp0ps—w

L ASDSO iR) {

—) tosLwo “
BH /) /F

tASDSO (MAXH

&

i

TBE i tosLw <
O8E o R \
/ ASOB ¢ i N B /

—t— tASDS IMAX} ———

;g
—) |
WR \ %
AN i
]
i
|
€205 | X X i
" o X
,
o
2y % SAMPLING
&R 7 % WINDOW !
- o towB ;
{ !
: - fowe =
SAKPLING L e / SAMPLING SAMPLING F7
55 woow G5 /f;zf/f";;:{ 4 wioow WINDOW P

Figure A-3 CPU Write Timing

DC AND AC CHARACTERISTICS

A.2.3 DMA Cycile

Table A-3 DMA Cycle Timing

SYMBOL DEFINITION MIN MAX NOTES
tASG AS and DBE deassertion to 4P - 25

DMG assertion
tICGH CLKO rising through 2.0V to P.7 P + 18

DMG rising through 0.8V
tCGL CLKO rising through 2.0V to P.7 P - 18

DMG falling through 2.0V
tDMRG DMR tc DMG latency - 10P - 25 BOP - 20 - 16PS
IDMRGU DMR to DMG latency with 0P - 25 28P - 20 + 8PS

bus- unlocked

tGDALZ DMG deassertion to externai 4P - 20
device three-state of DALS.

1GDMR DMG assertion to DMR deassertion 6P - 45 = 1
such that no more DMA cycles are (N - 2) x 8P)
requested.

tGHC DMG rising through 2.0V to P-25
CLKO rising through 0.8V

tGLC DMG falling through 0.8V to P .23
CLKO rising through 0.8V

1GLW DMG minimum assertion width 10P - 25 + 1

N - 2) x 8P

1GS2 DMG assertion to three-state -10 0
of AS, DS. BBE. WA. CS.2:0>
and BM<3.0>

tGZ DMG deassertion to axternal 3P - 20 2
device three-state of AS. DS
DBE. WR. CS¢2:0-. ana BM 30",

Notes:

N = the number of microcycles that a DMA grant lasts. A DMA grant s issued for a minimum of

WO micrecycles.

n

At the conclusion of a DMA grant the external logic MUST deassert AS. DS. ana DBE before the

external bus drivers are put in the nigh impedance state.

DAL 3104

oL =

.
;:j e
,
—_\:—W!ame MG RY et

DC AND AC CHARACTERISTICS

Ll {4
i) - | bt
: GOMR - [
i { ' H
1 TN tGLw ;‘(7Frv
i — e
1k H
A4 e UG DAL Z et
'Y \ n - /
%t’ / . \.._
; tasG i_____wz_____i
S — N
E—— ! o ‘
v Nam—
e} %
%
f A 4
i’
(
7; >/ A \d {
.__..._.._L} E [W
Figure A-4 DMA Timing

DC AND AC CHARACTERISTICS

A.2.4

External Processor Read/Response Enable
Processor Write/Command Cycle

Cycle, E

Table A-4 External Processor Cycle Timing
SYMBOL DEFINITION MIN MAX
{CEP CLKO falling through 0.8V to P.5 P+ 19
EPS falling through 2.2V
tDOEPH Write data valid set up time 2P . 35
to EPS deassertion
tEPCSL EPS assertion to external 0 3P - 40
processor assertion of £S<2>
tERPCSZ EPS deassertion to CS<2> three- 0 2P - 20
stated by externai processor
tEPDI EPS assertiocn to read data valid 4P - 40
tEPF EPS fall time from 2.2V to 0.6V 0 10
tEPHDO Write data hoid time from 2P - 25
EPS deassertion
tEPLC EPS talling through 0.6V to P-25
CLKO falling through 2.0V
tEPLWI ~ EPS assertion width (read) 4P - 20 4P + 20
tEPLWO EPS assertion width (write) 5P - 20 5P + 20
tEPWR WR and CS<1:0> hoid time from P .20
EFS deassertion
tEPZ EPS deassertion to read data 3P - 20
three-state
tWREP WR and CS<1:0> set up time 2P - 35

before EPS assertion

iy
]

.

N

DC AND AC CHARACTERISTICS

CLKO

s
DAL<31:00> : \ - é DATA
/ LEpf e A
tEPDI ez

e !EPLWz (MA X} oo

L S~ \u-——«-tsﬂwx (MIN e

‘WREP —= e e

73

- %

e XX X

[tEpCSL

= _ /7

MA 11831

Figure A-5 External Processor Read/Response Timing

T4 T3 TS T

m ln

CLxg

¢ S
fce - 'EPLC

DAL<31:00> »—---< ; {

EPF— e (DOEPH et
(EPLWO (MAX)
% __—/_—_—.\\ EPLWO (NN
R
'wasr—-? P——

NS |
RN

IR §§g

Cs<2:» X X

RLRRTET

Figure A-6 External Processor Write/Command Timing

A-13

DC AND AC CHARACTERISTICS

A.2.5 Reset Timing

Table A-5 Reset Timing

SYmBoOL DEFINITION MIN MAX NOTES

tRES RESET deassertion to first P - 10 3P + 85
CLKO pulse if RESET is
deasserted synchronously

tRESC Number of CLKO periods from 32 penods
RESET deassertion until first
DAL activity

tRESGH RESET assertion to DMG. EP , - 150 T
deassertion
tRESH RESET assertion to AS. DS. DRE. 1.0 usec 2

WR deassertion

tRESW RESET assertion width after 3.0 msec
VDD = 4.75Vv
tRESWB RESET assertion width if VDD has 3.0 usec

already been at 4.75V for 3 msec
when RESET s asserted

tRESZ RESET assertion to DAL 31:00-. 100 3
BM<3:0>, CS8<2:0> three-state

Notes:

—

When RESET is asserted. DMG and EPS are brought high and heid high by their ouput drivers.

2. When RESET is asserted. AS. DS. DBE. and WR are put in the high impedance state and brought
nigh by low current internai pull-ups.

3. Whe RESET is asserted BM<3:0> and CS<2:0> are put in the high impedance state.

DC AND AC CHARACTERISTICS

73 T4 T T ‘

e /—_./\ WM
It F{,
1) ki3

o IRES: ‘RESC
i 4
1 1 T
RESET REsw
L

'RESZ — p—
! .
UNKNOWN é 4 i 4t

133
5WG
9
It 74 % I
1} 1
A3 0 UNKNOWN /
BHE WR i@

am 11633

Figure A-7 Reset Timing

APPENDIX B

INSTRUCTION SET SUMMARY

8.1 INTRODUCTION

This section provides a summary of the VAX-1ll instructions implemented by
the MicroVAX 78032 CPU, the floating point instructions supported by the
floating point unit, and the emulated instructions that are assisted by the
MicrovVax 78032 CPU's microcode. V

The. standard notation for operand specifiers is:
<name>.<access type><data type>
where:

1. Name is a suggestive name for the operand in the context of the
instruction. It is the capitalized name of a register or block
for implied operands.

2. Access type is a letter denoting the operand specifier access
type.

address operand

branch displacement

modified operand (both read and written)
read only operand .

if not "Rn", same as a, otherwise R[{n+1]'Rn
write only operand

I T I | B I

£ <1300

w
O
[\
ot
3
or
]
el
]
[
0

a letter denoting the data type of the operand.

oyte

D_floating

F_floating

G_floating

longword

quadword

field (used only in implied operands)

word

multiple longwords (used only in implied operands)

* € < Qa0 Mmoo
(T2 TS T { T O I A 1§

v
B..;
FS

INSTRUCTION SET SUMMARY

4. Implied operands, that is, locations that are accessed by the
instruction, but not specified in an operand,
braces {}.

‘The abbreviations for condition codes are:

* -

o
oW onoH

conditionally set/cleared
not affected

cleared

set

The abbreviations for exceptions are:

rsv
iov
idvz
fov
fuv
fdvz
dov
ddvz
sub
prv

oW ogonwuon o

reserved operand fault
integer overflow trap

integer divide by zero trap
floating overflow fault
floating underflow fault
floating divide by zero fault
decimal overflow trap

decimal divide by zero trap
subscript range trap
privileged instruction fault

Opcode values are given in hexadecimal.

are denoted by

INSTRUCTION SET SUMMARY

B.2 INSTRUCTION SUMMARY

The following is a summary of the VAX-1l instructions implemented by the
MicroVAxX 78032 CPU.

OP Mnemaonic & Arguments Description N 2V C Exceptions

80 ACBB limit.rb. add.rb. index.mb, Add compare and branch byte T iov
dispi.bw : . :

F1 ACBL timit.rl, add.rl. index.mi, Add compare and branch long ot iov
displ.bw , .

30 ACBW tlimitrw, add.rw, index.mw,. Add compare and branch word ot iov
displ.bw

58 ADAWI! add.rw. sum.mw Ada aligned word interiocked T T T ov

80 ADDB82 add.rb. sum.mb Add byte 2-operand oot iov

81 ADDB3 addl.rb. add2.rb. sum.wb Add byte 3-operand T T ov

C0 ADDL2 add.rl. sum.mi Add fong 2-operand Tt T iov

Ct ADOL3 add1.rl. add2.rl. sum.wi Add long 3-operand T v

A0 ADDW2 agd.rw. sum.mw Add word 2-cperand A iov

At ADDW3 aadl.rw. add2.rw. sum ww Add word 3-operand Tt ov

08 ADWC add.rl. sum.mi Add with carry T T T o

F3 AOBLEQ limitrl, ingex.mi. Add one and branch on less or equal = * * - iov
dispi.bb . . :)

F2 AOBLSS imitrl. index.ml, displ.bb Add one and branch on less R 1Y

78 ASHL cntrb. src.rl. dst.wl Arithmetic shift left Tt 0 iov

7 ASHQ c¢nt.rb. src.rg. dstwg Arithmetic shift gquad R ¢ Qv

€1 BBC pos.ri. base vb. displ.bb. Branch on bit clear B -,
field.rv! :

E5 BBCC pos.rl. base.vb. displ.bb. Branch on bit clear and ciear - . sV
{field.mvi

£7 BBCC! pos.rl. base.vo. dispt.bb. Branch on bit clear and clear e rsv
field.mv} interiocked

E3 BBCS pos.rl. base.vb. displ.bb. Branich on bit clear and sat - e e rsv
{field.mv! :

EQ BBS pos.rt. base.vb. displ.bb. Branch on bit set - e e . rsv
‘tield.rv} '

E4 BBSC pos.rl. base.vb. dispi.bb. Branch on bit set and clear < e e s rsv
tfield.mv} ; '

E2 BBSS pos.rl. base.vb. displ.bb. Branch on bit set and set - - - . rsv
itield.mv]

E6 BBSS! pos.rl. base.vb, displ.bb, Branch on bit set and set e e rsv
{field.mvj interiocked

1E BCC{=B8GEQU]} displ.bb Branch on carry clear e e

1F BCS{=BLSSU} dispi.bb Branch on carry set e e

13 BEQL{=BEQLU]} dispi.bb Branch on equal .

18 BGEQ displ.bb Branch on greater or equal o« e e .

14 BGTR displbb Branch on greater . .

1A BGTRU displ.bb Branch on greater unsigned - e

8A BICB2 mask.rb. dst.mb Bit clear byte 2-operand 0

88 BICB3 mask.rb. src.rb, dst.wb Bit clear byte 3-operand © 0 -

CA BICL2 mask.rl, dst.mi Bit clear long 2-operand g -

CB BICL3 mask.rl, src.ri. dst.wi Bit ctear long 3-operand 0 -

INSTRUCT

op
B
AA
AB
g8

89

C8
Ce
88
AB
AQ
o3

03

83
ES

=g~

£3

12

4
1

19
12
03
11
31
10

30

1C
1D
FA
FB
3F

AF

ao
8C
BE
BF

94
04
7C
84

ION SET SUMMARY

Mnemonic & Arguments
BICPSW mask.rw

8ICW2 mask.rw, dst.mw
BICW3 mask.rw, src.rw, dst.ww
8i1SB2 mask.rb. dst.mb
BISB3 mask.rb. src.rb, dst.wb
8ISL2 mask.rl. dst.mi

BISL3 mask.rl. src.rl. dstwl
BISPSW mask.rw

BISW2 mask.rw, dst.mw
BISW3 mask.rw, src.rw, dst.ww
8I1TB mask.rb, src.rb

8ITL mask.rl, src.ri

BITW mask.rw. src.rw

BLBC src.rl, displ.bb

B8LBS src.rl. dispi.bb

BLEQ displ.bb

BLEQU displ.bb

BLSS displ.bb
BNEQ{ = BNEQU! displ.bb
BPT [-(KSPLw"}

BRB displ.bb

8RW displ.bw

BSBB displ.bb. [-(SPLwl;

BSBW displ.bw, -(SP).wi}

BVC dispi.bb

BVS dispi.bb

CALLG arglist.ab. dst.ap. -(SPLw"!
CALLS numarg.rl, dst.ab. -(SPyLw"!
CASER selector.rb, base.rb, limit.rp.
displ.bw-list

CASEL selector.ri. base.rl. limit.rl,
displ.bw-list

CASEW selector.rw. base.rw, fimit.rw.

displ.bw-list

CHME param.rw, {-{ySP)w"!}
CHMK param.rw, {-{ySP).w~}
CHMS param.rw, [-(ySP).w~}
CHMU param.rw. [-{(ySP).w"}

Where y = MINU{(x.PSL<{current _mode>)}

CLRB dst.wb
CLRL dst.wi

CLRQ dst.wq
CLRW dst.ww

Description

Bit clear processor status word
8it ctear word 2-operand

it clear word 3-operand

Bit set byte 2-operand

Bit set byte 3-operand

Bit set long 2-gperand

Bit set long 3-operand

Bit set processor status word
Bit set word 2-operand

Bit set word 3-operand

Bit test byte

it test long

Bit test word

Branch on low bit clear
Branch on low bit set

Branch on less or equal
Branch on less or equal unsigned
Branch on less :
Branch on not equal

Break point fault

Branch with byte disptacement
Branch with word displacement
Branch to subroutine with byte
disptacement

Branch to subroutine with word
displacement

Branch on overflow clear
Branch on overflow set

Cail with generai argument list
Call with argument list on stack
Case byte

Case long
Case word

Change mode to executive
Change mode to kernel
Change made to supervisor
Change mode to user

Clear byte
Clear long
Clear quad
Clear word

o

QO OO

OO0 0o

(ol NelNe

QOO0

<
« O

«

OO0 D00

[=] OO O

OO Q0
QOO0

O OO O0

Exceptions
rsv

rsv

rsv
rsv

op
21

D1
EC

81
ED

EB
EA

Q0
96
D8
86
0A

sC
50
QE
FO

17
16

Mnemonic & Arguments

CMPB srct.rb, src2.rb

CMPL srct.rl, src2.r

CMPV pos.rl. size.rb. base.vb.
field.rvi. src.rl

CMPW srctrw, sre2.rw
CMP2ZY pos.rl. size.rb. pbase.vo.
‘field.rv}, src.rl

CVTBL sre.rb. dst.wl

CVTBW src.rb. dst.wli

CVTLB srcri, dst.wb

CVTLW srerl, dstoww

CVTWB src.rw. dst.wb

CVTWL sre.rw, dstwi

DECB dif.mb

DECL dif.m|

DECW dif.mw

DIVB2 divr.rb. quo.mb

DIVB3 divr.rb. divd.rb. quo.wb
DIVL2 divr.ri. quo.mi

DIVL3 divr.rl, divd.ri. quo.wl
DIVW2 divr.rw. quo.mw

DIVW3 divr.rw, divd.rw. quo.ww
EDIV divr.rl. divd.rq. quo.wl, rem.wi
EMUL muir.rl, muld.ri. add.rl.prod.wg
EXTV pos.ri. size.rb. base.vb,
‘teld.rvi. dstwi

EXTZV pos.rl. size.rb. base.vb,
field.rvi, dstwl

FFC startpos.rl. size.rb. base.vb.
‘field.rvl, findpos.wi

EFS startpos.rl, size.rb. base.vh.
‘field.rv}. findpos.wi

HALT [{KSPLw"}

INCB sum.mb

INCL sum.mi

INCW sum.mw

INDEX subscript.rt. iow.rl. high.ri.
size.rl. indexin.rl, indexout.wi
INSQHI entry.ab. header.aq
INSQTI entry.ab. header.aq
INSQUE entry.ab. pred.ab
INSV src.ri, pos.rl, size.rb.
base.vi. (field.wv}

JMP dst.ab

JSB dst.ab. [-(SPyLw

Description

Compare byte
Compare long
Compare field

Compare word
Compare zero-extended field

Convert byte 0. iong -
Convert byte 10 word
Convert long 1o byte
Convert long to word
Convert word 10 byte
Convert word to long
Decrement byte
Decrement long
Decrement word
Divige byte 2-operand
Dwvide byte 3-operand
Divide long 2-operand
Divide long 3-operand
Divide word 2-operand
Divide word 3-operand
Extended divide
Extended muitiply
Extract field

Extract zero-extended field
Find first clear bit -

Find first set bit

Halt (kernel mode only)

Increment byte
increment long
incrament word
index calcuiation

Insert at head of queue. interlocked
insert at tai of queue. interiocked
Insert into queus

insert field

Jump
Jump 10 subroutine

INSTRUCTION SET SUMMARY

NZVC Exceptions
e qg -
- -9 -
MR ¢ B rsv
- eg ot
R ¢ rsv
T T0 0
Q0
Tt g ov
DR 1oV
RO ¢ iov
. . 0
e e e e iov
« e e oV
v e e e oV
M ¢ iov. dvz
M v, idvz
DA ¢ ov. idvz
AR ¢ V. igvz
© T T 0 iov. idvz
R ¢ iov, idvz
AR ¢ iov. idvz
R ¢ e
Q- rsv
AR # B rsv
Q00 rsv
0 090 rsv
e orv
. e e iov
e e v s iov
T oV
00 sub
o 0 - rsv
0 Q- rsv
< .9 -

.. rsv

INSTRUCTION SET SUMMARY

oP
06

g2

D2
B2
(w]:}

8E
Ce
AE
SE
De
7E
- 3E
20
28

2C

Do
oC
70
80
o8
QA
3C
DA

84
85
C4
Ccs
Ad
AS
01
BA
oC
[o]»}
oF
DF
7=
3F
nls}
88
Q2

Mnemanic & Arguments
LOPCTX (PCB.r*. -(KSP)L.w"}

MCOMB src.rb, dst.wb
MCOML src.rl, dst.wt

MCOMW sre.rw. dst.ww
MFPR procreg.rl, dst.wi

MNEGS8 src.rb. dst.wb
MNEGL src.rl. dst.wi

MNEGW sre.rw, dstww
MOVASB src.ab. dst.wi
MOVAL{ =~} src.al, dstwl
MOVAQ{=0D=G} src.aq. dstwi
MOVAW src.aw. dst.wi

MOVEB src.rb. dst.wh

MOVC3 len.rw, srcaddr.ab. dstaddr.ab.

{RO-5.wi}

MOVC5 srclen.rw. srcaddr.ab. fill.riy,
dstlen.rw, dstaddr.ab. {RO-5.wi}
MOVL sre.rl, dst.wi

MOVPSL dstwi

MOVQ src.rq. dst.wg

MOVW src.rw. dstww
MOVZBL src.rb. dst.wi
MOVZBW src.rb, dst.wb
MQOVZWL src.rw, dstww
MTPR src.rl. procreg.ri

MULB2 muir.rb. prod.mb

MULB3 muir.rb. muid.rp. prod.«~b
MULL2 mulr.rl. prod.mi

MULL3 muir.rl, muld.ri. prod.wl
MULW2 mulr.rw. prod. mw

MULW3 muir.rw, muld.rw. prod.ww
NOP

POPR mask.rw, [(SPY~ r"!
PROBER mode.rb. len.rw. base.ab
PROBEW mode.rb, len.rw. base.ab
PUSHAB src.ab. {-(SP}).wi}
PUSHAL{ =F} src.al, {-{SP).wl}
PUSHAQ({ =D =G} src.aq. {-(SP).wi}
PUSHAW src.aw. {-(SPL.wi}
PUSHL sre.ri.

PUSHR mask.rw. [«{SPL.w"!

RE! ((SP)+.r7}

Description

Load process context
(kernel mode only)

Move complemented byte
Mave compiemented long
Move complemented word
Move from processor register
{kernel mode only)

Move negated byte

Move negated long

Move negated word

Move address of byte
Move adaress of long
Move address of quad
Move address of word
Move byte

Move character 3-operand

‘Move character S-operand

Move long

Move processor status longword
Move quad

Move word

Move zero-extended byte to long
Move zero-extended byte to word
Mgve zero-extended word to long
Move to processor register
(kernel mode oniy)

Muitiply byte 2-operand

Multipiy byte 3-operand

Muttiply long 2-operand

Muitiply long 3-operand

Muitiply word 2-operand

Multiply word 3-operand

No operation

Pop registers

Probe read access

Probe write access

Push address of pyte

Push address of iong

Push address of quad

Push address of word

Push long

Push reqisters

Return form exception or interrupt

o

(e}

*

cocoo0ooo

QOO OCOOoO0

OO0 OO0 0

OO O O Q0O

Exceptions

TSV, prv

rsv,

iov
Qv
1oV

F3V,

oV
1oV
ov
oV
1oV

sv

orv

prv

F5
82
83
cz2
C3
A2
A3
07

85

0s
B8s

FC
8C
80
CcC
Co
AC
AD

Mnemonic & Arguments
REMQHI header.aq, addr.wi

AEMQT! header.aq, addr.wi

REMQUE entry.ab. addr.wi
RET {(SPY+.r7}

ROTL cnt.rb. src.ri. dst.wl
RSB {SP)+ .1}

SBWC sub.ri, dit.mi
SOBGEQ index.mi, displ.bb

SOBGTR index.mi. displ.bb
SUBB2 sub.rb. dit. mb

SUBB3 sub.rb. min b, aif.wb
SUBL2 sub.rl. dif.mi o
SUBL3 sub.rl, min.ri. gif.wi
SUBW2 sub.rw. dif. mw
SUBWS3 sub.rw. min.rw. dif.ww
SVPCTX ((SP)+ .r". PCB.w"!

TSTB srec.rb

TSTL src.ri

TSTW srcorw

XFC [unspecified operands;
XORB2 mask.rb. dst.mp

XORB3 mask.rb. sre.rp. ast.wh
XORL2 mask.rl. dst.mi

XORL3 mask.rl. src.rl, dst.wi
XORW2 mask.rw. dst.mw
XORW3 mask.rw, src.rw. dst.ww

Description

Remove from head of queue.
imeriocked

Remove from tad of queue.
interiocked

Remove from queue .
Return form procedure
Rotate long

Return from subroutine
Subtract with carry

Subtract one and branch on greater
or equal

Subtract one and branch on greater
Subtract byte 2-operand
Subtract byte 3-operand
Subtract long 2-operand
Subtract long 3-operand
Subtract word 2-operand
Subtract word 3-operand
Save process context
(kernel mode. only)

Test byte

Test long

Tast word

Extended function call
Exclusive or byte 2-operand
Exciusive or byte 3-operand
Exclusive or long 2-operand
Exclusive or long 3-operand
Exclusive or word 2-operand
Exciusive or word 3-operand

INSTRUCTION SET SUMMARY

o2z

<
« O

.

QOO0 0O0O0DDOCOO

R B o Y o

iov,

Exceptions
rsv

1

T8V

oV

oV
1oV
oV
v
oV
oV
oV
prv

INSTRUCTION SET SUMMARY

B.3

These
78132
78132
taken

FLOATING POINT

INSTRUCTION SUMMARY

instructions are implemented in. hardware 1f the optional MicroVax
Floating Point Unit (FPU) is present in the system. If the MicroVAX

FPU is not present in the system a reserved operand fault will be
and system software may emulate these instructions.

OP Mnemaonic & Arguments Description NZVC Exceptions

8F ACBD limit.rd, add.rd, index.rd Add compare and branch D _floating T Q - rsv, fov, fuv

4F ACBF timut.rf, add.rf. index.rf Add compare and branch F_Hoating Q0 rsv. fov, fuv

4FFD ACBG limit.rg, add.rg, index.rg Add compare and branch G _floating * ~ 0 - rsv. fov, fuv

80 ADDD2 add.rd. sum.md Add D _floating 2-operand "0 G rsv, fov, fuv

61 ADDD3 add1.rd. add2.rd. sum.wd Add D _floating 3-operand 00 rsv. fov, fuv

40 ADDF2 add.rf. sum.mf Add F_floatng 2-operand T 0 0 rsv. fov. fuv

41 ADDF3 add1t.rf, add2.rf. sum.wt Add F_floating 3-operandg "0 Q rsv. fov. tuv
40FD ADDG2 add.rg, sum.mg Aad G _floating 2-operand 00 rsv, fov. fuv

41FD ADDG3 addi.rg, add2.rg. sum.wg Add G _floaung 3-operand T T 0 0 rsv. fov. fuv

71 CMPD srei.rd. src2.rd Compare D _floating T 00 rsv

31 CMPF sret.rf, src2.rt Compare F_floating T 00 rsv

51FD CMPG srcl.rg, src2.rg Compare G _floating T T Q00 rsv

6C CVTBD src.rb. dst.wd Convert byte to D_floating T T00

iC CVTBF src.rb. dst.wt Convert byte to F_floating T T00

4CFD CVTBG src.rb. dst.wg Convert byte to G_floating 00

&8 CVTDB srec.rd. dst.wb Convert D _tloating to byte T T 0 rsv. oy

76 CVTDF src.rd. dstwf Convert D _floating to F_floating "0 0 rsv. fov

8A CVTDL src.rd. dst.wt - Convert D _foating to long ft T 0 rsv, iov

69 CVTDW src.rd. dst.ww Convert D _floating to word T T 0 rav. iov

48 CVTFB src.rf, dst.wb Convert F_floating to byte T 0 sy, iov

36 CVTFD src.rf, dst.wd Convert F_floatng to D _floating ST T 00 rsv

98FD CVTFG src.rf. dst.wg Convert F_floating to G _floating * 00 rsv

A CVTFL src.rf. dst.wi Convert F_floating to 10 long T T T 0 rsv. iov

49 CVTFW src.rf, dst.ww Convert F_floating to word T T 0 rsv. iov

48FD CVTGB src.rg, dstwb Convert G _floating to byte © Tt 3 rsv. iov

33FD CVTGF src.rg. dst.wt Canvert G _floating to F_floatng * 0 0 rsv. fov. fuv

IAFD CVTGL src.rg. dst.wi Convert G _floating to to iong T T 0 rsv. iov

49FD CVTGW sre.rg, dstww Convert G _floating to 10 word T T 0 rsv. ov

8E CVTLD sre.rl, dst.wd Convert long to D _floating T T0a0

4E CVTLF src.rl, dst.wf Convert iong 10 F_floating 00

4EFD CVTLG src.rl, dstwg Convert long to G_floating 00

60 CVTWD src.rw, dst.wd Convert word to D _floating " T00

4D CVTWF src.rw. dst.wf Convert word to F _floating 00

40FD CVTWG sre.rw, dst.wg Convert word to G _floating 00

68 CVTRDL src.rd. dst.w! Convert rounded D _floating 0 long T T 0 rsv. iov

48 CVTRFL src.rf, dst.wi Convert rounded F_floatng to tong T T 0 rsv. iov

4BFD CVTRGL src.rg, dst.wi Convert rounded G _floating 10 long T T 0 rsv.oov

66 DIVD2 divr.rd, quo.md Divide D _floating 2-operand 00 rsv, fov, fuv. fdvz
87 DIVD3 divr.rd, divd.rd. quo.wd Dwide O _flcating 3-operand 00 0 rsv. fov, fuv, fdvz
46 DIVF2 divr.rf, quo.mf Divide F_floating 2-operand 00 rsv, fov. fuv. fdvz
a7 DIVF3 divr.rf, divd.rf, quo.wf Dwide F_floating 3-operand T g0 rsv, fov, fuv. fdvz
46FD DIVG2 divr.rg. quo.mg Divide G_floating 2-operana T 00 rsv. fov. fuv. fdvz
47FD DIVGS3 divr.rg, divd.rg, quo.wg Civide G _floating 3-operand T 00 rsv. fov. fuv. fdvz
7 EMODD muir.rd. muirx.rb. muld.rd. Extended modulus D _floating 0 rsv. fov. fuv. ov

int.wi, tract.wd

52FD

50FD
84
85
44
35
44FD
45FD
75

33
55FD
62
63
42
43
42F0
43FD
73
33
33F0

Mnemonic & Arguments

EMODF muir.rf. muirx.rb, muid.rf,
int.wi, fract.wf

EMODG muir.rg, mulrx.rw, muid.rg.
int.wl. fract.wg

MNEGD src.rd. dst.wd

MNEGF src.rf. dst.wt

MNEGG src.rg. dst.wg

MQVD sre.rd. dstwd

MOVF src.rt, dst.wf

MOVG src.rg. dst.wg

MULD2 muir.rd. prod.md

MULD3 mulr.rd. muld.rd, prod.wd
MULF2 mulr.rf. prod.mf

MULF3 muir.rf. muid.rf. prod.wf
MULG2 muir.rg. prod.mg

MULG3 muir.rg. muid.rg. prod.wg
POLYD arg.rd. degree.rnv. table.ab
POLYF arg.rf. degree rw. table.ab
POLYG arg.rf. degree.rw. table.ab
5UBD2 sub.rd. dif.md

SUBD3 sub.rd. min.rd. dif.wd
SUBF2 sub.rf. dif.mt

SUBF3 sub.rf. muin.rf. dif wf
SUBG2 sub.rg, dit.mg

SUBGS3 sub.rg. min.rg. dif.wg
TSTOD src.rd

TSTF sre.rf

- TSTG src.rg

Description
Extended modulus F _tloaung

Extended modulus G _floating

Move negated D _floating
Move negated F_floating
Move negated G _floating
Move D _floating

Move F_floating

Move G _floating

Multiplty O _floating 2-operand
Muitiply D _floating 3-operand
Multiply F _floating 2-operand
Multiply F _floating 3-operand
Muitiply G _floating 2-operang
Multipty G _floating 3-operand

Evaiuate polynomial D _floating

Evaluate polynomial F _floating

Evaluate poiynomial G _floating

Subtract D _floating 2-operand
Subtract D _floating 3-operand
Subtract F _floating 2-operand
Subtract F _floaung 3-operand
Subtract G _floating 2-operang
Subtract G _flganng 3-operand
Test O _floating
Test F_floating
Test G_floating

INSTRUCTION SET SUMMARY

-
.
QOO0 O0OO0DQOO0OO0OLOO0OCOOoOOLDOOOCCOODOO

COOODOOODOUODO0OQOO0OOLOO !

OO O0O < (o]

.

Exceptions
rsv. fov. fuv, 10v

rSv.

rsv
rsv
sV
sv
sy
rsv

sy,

rsv. fov.
rsv.
rsv,
rsv.
rsv,
rsv,
rsv.
rsv.
rsv,
rsv.
rsv,
rsv.
rsv,
rsv.

rsv
rsv
rsv

fov.

fov.

fov,
fov.
fav.
fov.
fow,
fov.
fov.
fov,
fov,
fov,
tov.
fov.
fov,

fuv, iov

fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv
fuv

INSTRUCTION SET SUMMARY

*

B.4

EMULATED INSTRUCTION WITH MICRCCODE ASSIST

SUMMARY

The MicroVAX 78032 CPU provides microcode assistance for the.
these instructions by system software.

oP
20

21

F8
29
20
35
37
o8
F9
38
08
09
24
26
27
38

3A
38

34
2E

2F

25

2A

38

Mnemonic & Arguments

ADDP4 addlen.rw, addaddr.ab,.
sumien.rw, sumaddr.ab

ADDP§ addilen.rw, addladdr.ab.
add2len.rw, add2addr.ab,
sumlen.rw. sumaddr.ab

ASHP cnt.rb. srclen.rw, srcaddr.ab,
round.rb. dstlen.rw. dstaddr.ab
CMPC3 len.rw. srctaddr.ab,
src2addr.ab

CMPCS srctlen.rw, srctaddr.ab,
fill.rb, src2len.rw. src2addr.ab
CMPP3 lenrw. srctaddr.ab,
src2addr.ab

CMPPR4 srctlen.rw. srciaddr.ab.
src2len.rw, src2addr.ab

CRC tbl.ab. inicrc.ri. strien.rw.
stream.ab

CVTLP src.rl. dstlen.rw. dstaddr.ab
CVTPL srclen.rw. srcaddr ab. dst.wi
CVTPS srclen.rw. srcaddr.ab,
dstlen.rw. dstaddr.ab

CVTSP srclen.rw, srcaddr.,
dstlen.rw, dstaddr.ab

CVTPT srclen.rw. srcaddr.ab.
tbladdr.ab. dstlen.rw. dstaddr.ab
CVTTP srclen.rw. srcaddr.ab.
tbladdr.ab. dstlen.rw. dstaddr.ab
OIVP divrien.rw, givraddr.ab.
divdlen.rw. quolen.rw. gquoaddr.ab
EDITPC srclen.rw. srcaddr.ab,
pattern.ab, dstaddr.ab

LOCC char.rb. len.rw. addr.ab
MATCHC objien.rw. objaddr.ab.
srclen.rw, srcaddr.ab

MOVP len.rw, srcaddr.ab. dstaddr.ab
MQVTC srclen.rw. srcaddr.ab. fill.rb,
thiaddr.ab, dstlen.rw. dstaddr.ab

MQVTUC srcien.rw. srcaddr.ab. esc.rb.

tbiaddr.ab. dstien.rw. dstaddr.ab
MULP muirlen.rw. muiraddr.ab.
muldlen.rw. muldaddr.ab. prodien.rw,
prodaddr.ab

SCANC len.rw, addr.ab. tbladdr.ab.
mask.rb

SKPC char.rb. len.rw. addr.ab

Description
Add packed 4-cperand

Add packed 6-operand

Arithmetic shift and round packed
Compare character 3-operand
Compare character 3-operand
Compare packed 3-operand
Compare packed 4-operand
Calcutate cyclic redundancy check
Convert long to packed

Convert packed to long _
Convert packed to leading separate
Convert leading separate to packed
Convert packed to trailing

Convert packed to trailing

Cwide packed

Edit packed to character string

Locate character
Match characters

Move packed
Move transiated characters

Move translated until character

Muitiply packed

Scan for character

Skip character

+ Z
« N
<
QO

emulation

O

OO

of

Exceptions

fsv.,

8V,

rsv.

rsv.

sv.

rsv.

rsv,

rsv,

rsv.,

sv,

rsv.

SV,

dov

dov

dov

dov
10V

dov
dov
dov
dov

dov. ddvz

dov

dov

cP
28

22

23

Mnemonic & Arguments

SPANC len.rw, addr.ap. tbladdr.ab.

mask.ro

SUBP4 sublen.rw, subaddr.ab.
difien.rw, difaddr.ab

SUBP6 subilen.rw. subaddr. ab.
minien.rw, rminaddr.ab. diflen.rw,
difaddr.ab ’

Description
Soan characters

Subtract packed 4-operand

Subtract packed 6-operand

INSTRUCTION SET SUMMARY

o 2

v
)

o
Q

0

o

Exceptions

rsv. dov

rsv, dov

APPENDIX C

CONSOLE ENTRY AND EXIT ROUTINES

C.l1 INTRCDUCTION

This appendix contains an example of a console entry and exit routine and a
routine for simulating the memory management process. These routines are
written in VAX-1l Macro. :

C.2 CONSOLE ENTRY AND EXIT ROUTINE

The following are routines for entering and exiting the console. The
console typically would be entered from the restart process as described in
Section 2.8 of this user's guide. The console entry routine saves the
volatile internal registers and process state, performs a stack swap 1f
necessary, sets up the console stack pointer and calls the main console
routine. The console exit routine is a mirror of the entry routine and
restores the saved state of the processor back to the running state.

CONSQLE ENTRY AND EXIT ROUTINES

.TITLE Example of a Consocle Entry and Exit Routine

Include files: These files are a part of MicroVMS and can be
used to define the processor registers and the
PSL fields.

“e s me wa

SPRDEF ' ; Define processor registers
SPSLDEF ; Define PSL fields

e Ns we ms

; MACROS:

.macro mtpr_pic src,dst
moval src,r0

mtpr r0, #dst

.endm mtpr_pic

.macro mcheck dst
.if blank dst
clrl machine_check_cont

.1f_false
movab dst,machine_check_cont
.endc

.external machine_check_cont
.endm mcheck

H
;This macro calls the routine that simulates memory management

’

.macro poke data,dst
pushl #19.

pushal data

pushal dst

calls #3,memory
.external memory

.endm poke

e MY Ne

e wa we

Equated Symbols:

scb_a_mcheck

scb_a write_timeout

k_parity.error

X_bus.timeout

PRS_POBR
PRS_POLR
PRS_P1BR
PRS_P1LR
PRS_SBR
PRS_SLR
PRS_PCBB
PRS_SCBB
PRS_RXCS
PRS_TXCS
PRS_MCESR
PRS_SAVISP
PRS_SAVPC
PRS_SAVPSL
PRS_IORESET
PRS_MAPEN

PSLSV_CURMOD
PSLSS_CURMOD

declare the psects

.psect $$$$S0boot,page
.psect scb,page

T O T T I I O e

[}

~d8

~d9
~dlo
~dll
~dl2
~dl3
~dlé
~d1l7
~d32
~d34
~d38
~d4l
~d42
~d43
~d55
~d56

~d24
~d2

o

[}

[\ 2

~x60

. ke e e

CONSOLE ENTRY AND EXIT ROUTINES

MicroVAX special saved isp reg
MicroVAX special saved pc reg
MicroVAX special saved psl reg
Bus init

; main code psect for start
: scb is located here

CONSOLE ENTRY AND EXIT

.psect

+

s wa e

.align
SCB::
.long
.long
.long
.long
. long
.long
.long
.long
.long
.long
.long
.long
.long
. long
long
.long
.long
.long
. long
.long
.long
. long
.long
. long
.long
.long
.long
.long
. long
.long
.long
. long
.long
.long
.long
. long
.long
. long
.long
..ong
long
. long
long
.long
.long

.

Sscbs

Console Program SCB.

" page

scb int 00+1

machine check_detect~+l

scb_int_08+1
scb_int_0Oc+l
scb_int_10+1
scb int_ T1a+1

reserved operand

cb_int_Ic+1
scb_int_20+1
scb_int_24+1
scb_int_28+1
scb_int_2c+l
scb_int_30+1
scb_int_34+1
scb_int_38+1
scb_int_3c+l
scb_int_40+1
scb_int_44+1
scb_int_48+1
scb_int_4dc+l

ROUTINES

scb int 50+1.

sch int 54+1
scb int 58+1
scb int Sc+l

3
?

14
.
r
’
.
’

NQ‘.\O\(‘I‘i"‘.‘.\-\-\-\.\.\.\-\'

#00

#08
#0C
#10
#1l4

int+1

$1C
#20
#24
#28
#2cC
#30
#34
#38
#3C
#40
#44
#48
#4C
#50
#54
#58
#5C

write tlmeout 1nt+l

scb_int_64+1
scb_int_68+1
scb_int_6c+l
scb_int_70+1
scb_int_74+1
scb_int_78+1
scb_int_7c+l
scb_int_80+1
scb_int_84+1
scb_int_88+1
scb_int_8c+l
scb_int 90+l
scb_int_94+1
scb_int_98+1
scb_int_9c+l
scb_int_al+1
scb_int_a4+l
scb_int_a8+l
scb_int_ac+l
scb_int_b0+1

~e

Ne We Ne Ne NE N6 Te e Ve we e s we Ns M Ne Se e “e

#64
468
#6C
#70
#74
#78
$7C
480
#84
#88
#8C
#90
#94
298
#SC
#A0
a4
4A8
#AC
#80

;7 the console scb

; SCB must be aligned.

Unused.

: #04 MCHK
KSP invalid.
Power faillure.
Reserved/priv
XFC instr.

; #18 Reserved oprnd.
Reserved addr mode. ’
Access violation.
Trans invalid.
Trace pending.

BPT

Compatibility mode
Arithmetic

instr.

Unused

Unused

CHMK.

CHME

CHMS

CHMU

SBI SILO
Corrected Mem Read
SBI Alert

SBI Fault

; 460 Write timeout
Unused

Unused

Unused

Unused

Unused

Unused

Unused

Unused

Software level 1,
Software level 2.
Software level 3,
Software level 4.
Software level 5.
Sofrware level .
Software level 7,
Software level 8.
Software level 9.
Software level 10.
Software level 11.
Software level 12,

C-4

CCNSOLE ENTRY AND EXIT ROUTINES

#84 Software level 13.
$B88 Software level 14.
#8BC Software level 15,
#CO Interval timer.
#C4 Unused

#C8 Emulation start.
$CC Emulation continue,
#D0O Unused

#D4 Unused

#D8 Unused

#DC Unused

.long scb_int_bd~+l
.long scb_int_b8+l
.long scb_int_bc+l
.long scb_int_cO0+1
.long scb_int_c4+1
.long scb_int_c8+1
.long "scb_int_cc+l
.long scb_int_ 40+l
.long scb_int_d4+1
.long scb_int_d8+1
.long scb int dc+l

.long scb_int_e0+l #E0 CSS
.long scb_int_e4+l #E4 CSS
.long scb_int_e8+l #E8 CSS
.long scb_int_ec+l #EC CSs

#F0 Console TUSS8
#F4 Console TUS8
#F8 Console Transmit.
#FC Console Receive,

.long scb_int_f0+1
.long scb_int_f4+l
.long scb_int_£8+1
.long scb_int_fc+l

NE NS Me Ne WE N “e W WS Ve wE We We We WE NE Ny we ™o

CONSOLE ENTRY AND EXIT ROUTINES

WA NE WP WE RE NP RE NE M MO NB NE ME WET MO 8 WG RS N MG M e o U e e wE we

A*
+

.psect $$$$5S0boot ; get us to the right psect

CONSOLE

It all starts right here.

We get here on a halt condition. The system has been
brought to a stable/known state by microcode, and the
volatile system registers have been saved away in known
MicroVAX registers. This code copies the saved registers
to our private scratch RAM, The GPR's are saved as well.
It is assumed that the RAM is at a known address and good.

The processor state is as follows:

savpc = saved pc

savpsl = saved psl + saved mapen + error code
savisp = "real" isp

sSp = stack pointer at time of error
pc = 20040000

psl = 041F0000

astlvl = 27? (except RESET = 4)

sisr = ??? (except RESET = 0)

iccs = ??? (except RESET = 0)

The console is now entered with the state of the processor
saved in limited life internal registers. THIS STATE IS
VALID FOR A LIMITED TIME ONLY. IN PARTICULAR, MEMORY
MANAGEMENT MUST BE LEFT DISABLED, AND ONLY A SUBSET OF THE
INSTRUCTION SET CAN BE USED (no emulated instructions)
before the saved values are moved to permanent memory.

CONSOLE: :

2C
ISP
PSL
HALT
MAPPE
SP

RO -

mfpr
mipr
mipr
movz
clirb
movl
mova
pusn
cmpz
bneq
mova

CODE
N

R14

save saved pc

save saved isp

save saved psl

move the saved halt code - mappen
and take it out of the saved psl

#pr$_savpc,saved_pc
#pr$_savisp,saved_isp
#pr$_savpsl,saved psl

bl saved _psl+l,saved_hait
saved psl-1l

Sp, temp save sp, for now
1 saved_regs,sp point at end of saved reg space
r #-1 save all the regs

v #0,#7,saved_halt, #3 see 1f this is a RESET
53 : no, so ISP is real
1 ram_stack_end+<10%*4>,saved_isp ; yes, use end of our stack

B NG NE MR N WA s s wE e

Cc-6

58:

: Set up

H new SP
moval ram_stack, sp

; save

; SCBB

; PCBB

; update ?SP from before trap
mfpr #pr$_scbb,saved_scbb
mfpr #prs$_pcbb, saved pcbb
cmpzv #0,#7,saved_halt,#3
bneg 63
clrl saved_pcbb

6S: bbs #26.,saved_psl,isp_ok
movl saved pcbb rl
extzv #pslSv curmod, -

#pslSs_curmod, -
saved psl r2

moval (r1){r2],rl
movl temp,{rl}

isp_ok:

save

¢+ IE bit of RXCS
. [E bit of TXCS

mfpr #pr$_rxcs,rl
movl rl,saved_rxcs
bbcc #6,rl1,7S
mtpr rl, #prS rxcs
7S¢ mfpr #prs txcs,rl
movl rl, saved”rxcs
bbcc 46,r1,8$
metpr rl,#prs_txcs
8§$:
; setup
; SCB
; PCB
; trappers
; and call the console
mcheck

mTpr plC scb,prS_scbb
mtpr_pic ram_pcb,pr$_ pcbb
calls #0, ccﬂsole main

~e

WE Me WE s Me s g wa Ne “a

~e we “we

- wa we

~s we wa

;
~

~e me B M wa we

CONSOLE ENTRY AND EXIT ROUTINES

set us up on known ok stack

save users scb

save users pcb

see if this is a RESET

no, so PCBB is real

yes, so PCBB is undefined,
set it to 0

br if we were running on ISP
get pcb addr handy,

get current mode as well

for stack swap

get addr of ?SP cell
and copy SP there - was
saved in temp

get term
and save
clear IE

status
it away
if set

status
it away
if set

get term
and save
clear IE

disable mcheck trapper
i.e., mchecks are fatal
set up the scb

set up the pcb

we are up, go figure out
what to do

CONSCLE ENTRY AND EXIT ROUTINES

; now externalize all the externals we need

.external saved pc,saved psl,saved_isp,temp

.external saved_regs,saved_regs_end

.external saved_pcbb,saved_scbb,ram_pcb

.external ram_stack,ram_stack_end,saved_rxcs,saved_txcs
.external console_main,saved_halt

.external machine_check_cont

+
+

|
i

e e wa e e

5085

MAP_ON:

CONSOLE ENTRY AND EXIT ROUTINES

CONSOLE_EXIT .
This code is a mirror of CONSOLE, and restores the
saved state back to the running state.

.entry console exit,"m<r2,r3,r4,r5,r6,r7,r8,r9,rl0,ril>
mtpr #~xff, §pr$_mcesr H clear macﬁxne check error

mcheck 50$ if anything goes wrong, go back
movl saved isp,r2 ; get the stack pointer
poke saved psl,-(r2) ; put PSL on stack
; the PSL and PC must be put on
; the interrupt stack, prior to
; the REI, if MAPEN is also on,
; then the stack must be mapped,
; and the PSL and PC put back on
; the mapped stack...the poke
; macro calls a routine that
; handles the problems of
; dealing with the mapped stack
tstl rQ ; any errors?
bneg 508 ; yes, back we go
poke saved _pc,-(r2) ; put pc on stack
tstl r0 ; any errors?
bneg 508 ; ves, back we go
movl r2,temp save stack
mtpr saved rXCS, #prs$_rxcs restore terminal status (IE)
mtpr saved_txcs, #prS txcs restore terminal status (IE)
mcheck disable mcheck trapper
mtpr saved scbb, #pr$_scbb set up the scb

mtpr saved pcbb #prs_ “pcbb
moval saved_regs_end, sp

set up the pcb
point at start of saved reg
space

Ne Me WE pemE WS WE WA ws e We ws e No

popr $-1 restore all the registers
movl temp, sp restore saved sp to sp
bbc #7,saved_halt,console_rei ; if sys not mapped, skip
mapping.
brb map_on goto long word aligned map
turn on.
mcheck ; disable mcheck trapper
ret ; if we fail, go back to user.
.align long ; in order for the enable of
: MAPEN to work, it MUST be in
;s the same &ongword as the REI,
; thus this .align long is
; MOST critical
mtpr #1l,#prS_mapen ; Mapping is turned on

CONSOQLE ENTRY AND EXIT ROUTINES

CONSOLE REI::
rel : and back to user

.
14

now externalize

.external
.external
.external
.external

all the externals we need

saved_pc,saved_psl,saved_ isp
saved_regs, saved_regs_ end
saved pcbb saved _ “scbb, ram_pcb

ram_ stack, saved_ rXcs, saved txcs

CONSOLE ENTRY AND EXIT

ROUTINES

CONSOLE ENTRY AND EXIT ROUTINES

+
+

o*

machine_check_detect

functional description:

This sequence is the error trapper. This sequence runs when a
machine check occ¢urs. If machine_check _cont is not 0 the reason
for the machine check is moved to r0 and then an REI to the
machine_check_cont address is executed. If machine_check_cont
is 0 the trap is handled as an unexpected scb interrupt.

inputs:

machine check stack
machine_check_cont: = address of the continuation code or 0

outputs:

r0 = machine check code

e NGB Wa ME UE NS MY A NE R WA MA s NE WS NP e wa e wp

.align long

machine_check_detect:

mtpr #°xff,#pr$_mcesr ; clear machine check error
tstl machine_check_cont ; change return PC?
beql unfielded_scb_int ; unexpected error if no
; continue addr
movl 4(sp),ro0 : load reason
addl (sp)+,sp ; pop stack
movl machine_check_cont,{sp) ; actually change return PC
rei ; continue

CONSOLE ENTRY AND EXIT ROUTINES

+
+

write timeout
reserved_operand

functional description:
This sequence runs when a write timeout or reserved operand occurs.
inputs:

PC/PSL are on the stack
machine_check_cont = address to continue at or O

outputs:

r0 = error code

me me ME %e NA ME WE NS Wp We WP A Ws A s B e

.align long

write_timeout_int:
reserved_operand_int:

mov 1l machine_check_cont, (sp) ;reset PC

beqgl unfielded scb_int ;unexpected error 1f no
;continue addr

movl #k_bus.timeout,r0 ;set code

rei ;done

CONSOLE ENTRY AND EXIT ROUTINES

+
.t

unfielded_scb_int
functional description:

This routine is ekecuted if an unwanted SCB interrupt occurs during
booting. System is halted.

inputs:
scb interrupt stack
outputs:
r0 has scb offset for unfielded scb interrupt otherwise

rd is undefined
rl has sp at time of trap

TNE Ne N NP N NS NE ME M e Ny e NS we ME Wh Wa we

.align long
unfielded_scb_int:

movl sp,rl
halt

scb_int_00:
scb_int 04:
scb_int_08:

scb_int_Qc:

scb_int_10:
scb_int_1l4:
scb_int_18:

scb_int_lc:

scb_int_20:
scb_int_24:
scb_int_28:

scb_int_2c:

scb_int_30:
scb_int_34:
scb_int_38:

scb_int_3c:

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movli
brw

.align

long
#°x0,r0
unfielded_scb_int
long
#°x4,r0

long
#°x8,r0
unfielded_scb_int
long
#~xc,r0
unfielded_scb_int

long
#°x10,r0
unfielded_scb_int
long
#7°x14,r0
unfielded_scb_int
long
#°x18,r0
unfielded_scb_int
long
#~xlc,r0
unfielded_scb_int

long .
#~x10,r0

unfielded_scb_int

long
#~x14,r0
unfielded_scb_int
long
#~x18,r0
unfielded_scb_int
long
#~xlc,r0
unfielded_scb_int

long
#~x10,r0
unfielded_scb_int
long
#°x14,r0
unfielded_scb_int
long
#~x18,r0
unfielded_scb_int
long
#~xlc,r0
unfielded_scb_int

long

unfielded_scb_int

CONSOLE ENTRY AND EXIT ROUTINES

CONSOLE ENTRY AND EXIT

scb_int_30:

scb_int_44:
scb_int_48:

scb_int_4c:

scb_int_350:

scb_int_54:

scb_int_358:

scb_int_5c:

scb_int_60:
scb_int_64:
scb_int_68:

scb_int_sbc:

scb_int_70:
scb_int_74:
scb_int_78:

scb_int_7c:

scb_int_80:

movl
brw
.align
movl
brw
.align
movl®
brw
.align
movl
brw

.align
mov i
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
mov1l
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
bDrw
.align
movl
brw

.align
mov 1l

ROUTINES

#~x10,r0

unfielded scb_int

long
#~xl4,r0

unfielded scb_int

long
#°x18,r0

unfielded _scb_int

long
#~xlc,r0

unfielded_scb_int

long
#~x10,r0

unfielded_scb_int

long
#~x14,r0

unfielded_scb_int

long
#°x18,r0

unfielded_scb_int

long
#~xlc,r0

unfielded_scb_int

long
#~x10,r0

unfielded_scb_int

long
#°x14,r0

unfielded_scb_int

long
#°x18,r0

unfielded scb_int

long
$#~xlc,r0

unfielded_scb_int

long
#~x10,r0

unfielded_scb_int

long
#~x14,r0

unfielded scb_int

long
#~x18,r0

unfielded_scb_int

long
#~x1c,r0

unfielded_scb_int

long
#~°x10,r0

scb_int_84:
scb_int_388:

scb_int_8c:

scb_int_90:
scb_int_94:
scb_int_98:

scb_int_Sc:

scb_int_a0:
scb_int_a4:
scb_int_a8:

scb_int_ac:

scb_int_bO:
scb_int_b4:
scb_int_b8:

scb_int_bc:

scb_int_c0:

brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
mov1l
brw

.align
movl
Drw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw

unfielded_scb_int
long

#°x14,r0

unfielded_scb_int
long

#°x18,r0

unfielded_scb_int
long

#~xlc,r0

unfielded_scb_int

long
#°x10,r0
unfielded_scb_int
long
$7°x14,r0
unfielded_scb_int
long
#°x18,r0
unfielded_scb_int
long
#°xlc,r0
unfielded_scb_int

long
#~x10,r0
unfielded_scb_int
long
#~x14,r0
unfielded_scb_int
long
#~x18,r0
unfielded_scb_int
long
#~xlc,r0
unfielded_scb_int

long
#~x10,r0
unfielded_scb_int
long
#°x14,r0
unfielded_scb_int
long
#~x18,r0
unfielded_scb_int
long
$~xlc,r0
unfielded_scb_int

long
$~x10,r0
unfielded_scb_int

C-17

CONSOLE ENTRY AND EXIT ROUTINES

CONSQLE ENTRY AND EXIT

scb_int_c4:
scb_int_c8:

scb_int_cc:

scb_int_d0:
scb_int_d4:
scb_int_dS:

scb_int_dc:

scb_int_e0:
scb_int_ed:
scb_int_e8:

scb_int_ec:

scb_int_£0:
sco_int_f4:
scb_int_£8:

scb_int_fc:

.END

.align
movl
brw
.align
movl
brw
.align
movi
brw

.align
movl
brw
.align
movl
brw
.align
movi
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

.align
movl
brw
.align
movl
brw
.align
movl
brw
.align
movl
brw

ROUTINES

long
#~°x1l4,r0
unfielded_scb_int
long
$~x18,r0
unfielded_scb_int
long
#°xlc,r0
unfielded_scb_int

long

#°x10,r0
unfielded_scb_int
long

#°x14,r0
unfielded _scb_int
long :
#°x18,r0
unfielded_scb_int
long

#°xlc,r0
unfielded_scb_int

long

#~x10,r0
unfielded_scb_int
long

#7x14,r0
unfielded_scb_int
long -
#°x18,r0
unfielded_scb_int
long

#°xlc,r0
unfielded scb_int

long

#°x10,r0
unfielded_scb_int
long

#°x14,r0
unfielded scb_int
long

#°x18,r0
unfielded scb_int
long h
#~xlc,r0
unfielded scb_int

CONSOLE ENTRY AND EXIT ROUTINES

.TITLE BOOTRAM - MicroVAX BOCT RAM

+
+

Abstracrt:

ROM code.

Environment:

e e NS & NE HE WA WE MO NE e W WS e e

.psect

.align page
ram_start::
ram_pcbz:: .blkl
machine_check_cont::

.blkl

.align long

saved_rxcs:: .blkl
saved_txcs:: .blkl
saved_halt:: .blkl
saved_isp:: .blkl
saved_scbb:: .blkl
saved_pcbb:: .blkl
saved _regs_end::

.blkl
saved_regs::
saved pc:: .blkl
saved_psl:: .blkl
temp:: .blkl
ram_stack_end::

.blkl

ram_stacks::

ram_end::

.end

Mode=Kernel

128

b

128.

BOOTRAM, WRT, PAGE

BOOTRAM. . .provides initial setup of scratch
space in RAM

This sequence defines the scratch area in RAM used by the
This sequence uses preallocated space in RAM, an
alternative is to search for known good RAM and define it
as the scratch are for ROM. .

;process control block for rom code

~e S

e RE WE Ne Wé we

e e we we

~e

contains 0 or addr to xfer to

afte

save
save
save
save
save
save

save
save
save
temp

mini

r & machine check

rxcs IE bit here
txcs IE bit here

salted halt code/mapen here
salted isp here

scbb here

pcbb here

GPR's starting here
salted pc here
salted psl here
scratch cell for SP

stack to use while in rom code

CONSOLE ENTRY AND EXIT ROUTINES

C.3 MEMORY MANAGEMENT SIMULATICON

When memory management is to be enabled when exiting from the console, the
environment that the console exits to must have a validly mapped interrupt
stack with at least to spare longwords at the Dbottom. These routines
simulate read/writes to physical memory with memory management on or off.
These routines are called by the poke macro in the console exit routine.

.TITLE Example of MicroVAX Memory Management Simulation

Include files:

“E we me we W ws e

SPTEDEF ; Define PTE fields
SVADEF : Define virtual address fields
SPRDEF ; Define processor registers
. SPSLDEF : Define PSL fields
MACROS:

e e wa

.macro mcheck dst
.if blank dst
clrl machine_check_cont -

.1f_false
movab dst,machine_check_cont
.endc

.external machine_check_cont
.endm mcheck

.macro push mcheck

movl machine_check_cont,-(sp)
.external machine_check_cont
.endm push _mcheck

.macre pop mcheck

movl (spT+,machine_check_cont
.external machine_check_cont

. endm pop_mcheck

.y ww we e

e wn s

Equated Symbols:

success
err_acc_vio
err_bad_addr
err_len _vio
err_trans_nv
err_nxm

PRS_POBR
PRS_POLR
PRS_P1BR
PRS_PILR
PRS_SBER
PR$_SLR

PSLSV_CURMOD
PSL$SS_CURMOD

declare the psects

100
101
103
104
105

[T T A

~d8
~d9

~d10
~d11
~d12
~d13

oo

~d24
~d2

[}

.psect Smemman,page

CONSOLE ENTRY AND EXIT ROUTINES

; main code psect for memory

»
’

management

CONSOLE

+
+

PROBE

|
[

Ne MNE e NP NA NE WE NE. WE e e NE M Mo mp hE e s WE wd wa ma

30$:
40S:

ENTRY AND EXIT ROUTINES

.psect Smemman ; get us to the right psect
arguments are

R2 Virtual address

R3 Physical address

R4 " <1> Read/Write indicator (0 = read, 1 = write)

This routine translates a virtual addresses to a physical
address. If write intent, and MAPEN, then also sets the M bit
in PTE.

returned arguments are
R2 unchanged
R3 Physical address (filled in)
R4 unchanged

return status
success
err_acc_vio
err_len vio
err_trans_nv

L O I 1]
L N s O

.entry probe, m<R2>
movl r2,rl
movl r4é,r2

get Vaddr
get quals

~e wa»

get PO/Pl/S0/S1 dispatch
go to correct length checker

extzv #30,#2,rl1,r0
caseb , r0,#0,#2

.word 10s$-9% ; PO

.word 20$-Ss ; P1L

.word 30$-8S ; SO

movl ferr_acc_vio,r0 ; assume failure
brb 408 : err

map a p0 addr

~e

calls #0,get_p0_Vaddr

brb 408 ; join common
calls #0,get_pl Vaddr ; map a pl addr
brb 408 ; join common
calls #0,get_sys_Vaddr ; map a sys addr
movl rl,r3 ; return paddr
ret

-+

regs

e Me e wa M WE Mg wa wE Ne NE WE e e s Vo

; first

+ check

10§$:

20S:

GET_SYS_VADDR

arguments are
R1
R2
returns
RO
R1

it

Virtual address

<1> Read/Write indicator

-

status (0

sucgess,

CONSOLE ENTRY AND EXIT ROUTINES

(0

read,

else err)

physical address if success

are used in this routine as follows

R3 =
R4 = VPN
R6 = scratch

.entry GET_SYS_VADDR, “m<R3,R4,R6>

movl #err_
push_mcheck
mcheck 20$

get the byte

axtzv #0,4#9
extzv #9..,#%
page range
mfpr #prs_
cmpl r4,re6
bgequ 208
rotl #2,r4
mfpr #prs_
addl rée,ré¢
movl (ra),
bgeq 208
bbc #1,r2
bisl #1@26
extzv #0,#2
rotl #9.,r
bisl r3,rl
clrl ro
pop_mcheck
ret

acc_vio,r0

coffset and VPN
.,rl,r3
21.,rl,r4

slr,r6
,rd
sbr,ré
ré

, 108

.. (ré)
l.,r6,rl1
1,rl

.
r

-
’
.
r
.
4

.
’

e e e e WM NE ME WA Me N Ny Ne My N e

23

BOFF (byte offset within page)
(virtual page number, or VPN * 4, or PTE_Addr)

assume failure

any problem is an access
violation

offset within page
page number

get length (in ptes)

is pte in the table?

no so error

now is offset to pte in table
get sbr base address

got the pte address
and the pte ,
br if valid bit not set.

do we have write intent?

ves, set the Mcdified bit
get <29:9> of physical address
now is in place

and is correct physical
address

signal success

CONSOLE ENTRY AND EXIT ROUTINES

+

GET_PO_VADDR
arguments are

R1 Virtual address

R2 <1> Read/Write indicator (0 = read, 1 = write)
returns

RO status { 0 = success, else err)

iwon

R1 physical address if success

regs are used in this routine as follows

R3 = BOFF (byte offset within page)
R4 = VPN (virtual page number, or VPN * 4, or PTE_Addr)
R6 = scratch

MA RE NS e WE R MR WS WA N4 wQ ME We WE VA we

.entry GET_P0O_VADDR, “m<R3,R4,R6>

mov 1l #err_acc_vio,r0 ; assume failure
push_mcheck
mcheck 208$; any problem is an access

: violation
; first get the byte offset and VPN

extzv #0,#9.,rl,r3 offset within page
extzv #9.,4821.,rl,r4 ; page number

~e

; check page range

mfpr #prs pOlr,ré get length (in ptes)

cmpl ré,rs is pte in the table?
bgequ 208 no so error
rotl #2,r4,r4 now is offset to pte in table

mfpr #pr$_pObr,ré
addl re6,ré

get pObr base address
got the pte address

8 s s w8 N& we

; now translate the system virtual pte addr to physical

movl r2,-(sp) : save r2

clrl r2 ; sSay no write access

calls #0,get_sys_vaddr ; translate the pte address

movl (sp)+ T2 ; restore r2

tstl r0 ; did it translate?

bneq 208 ; no, return error

movl rl,r4 ; physical address of p0 pte

movl (r4),r6 ; and the pte

bgeq 208 ; br 1f valid bit not ser.

bbc #1,r2,108 ; do we have write intent?

bisl #1326.,(r4) : yes, set the Modified bit
10§: extzv #0,#21.,r6,r ; get <29:9> of phy addr

rotl #9.,ri,rl : now 1is in place

bisl r3,rl ; and is correct physical

address

(@]
]
N
S

CONSOLE ENTRY AND EXIT ROUTINES

cirl ro ; signal success
208 pop_mcheck
ret

CONSOLE

+

regs

WMa ME WS ME NS ME WMe WH S NE WEk NS WD WE W o

+ first

; check

ENTRY AND EXIT ROUTINES

GET_Pl_VADDR

arguments are

R1 Virtual address

R2 <1> Read/Write indicator (0 = read, 1 = write)
returns

RO = status (0 = success, else err)

Rl = physical address if success

are used in this routine as follows

R3 = BOFF (byte offset within page)
R4 = VPN (virtual page number, or VPN * 4, or PTE_Addr)
R6 = scratch

.entry GET_Pl_VADDR,”"m<R3,R4,R6>

movl 4err_acc_vio,r0 ; assume failure
push_mcheck
mcheck 20$ any problem 1s an access

~e we

violation
get the byte offset and VPN
extzv #0,#9.,rl,r3

extzv #9.,#21.,rl,ré

page range

mfpr $prs_pllr,ré

offset within page
page number

~e W

get length (in ptes)

cmpl rd,ré6 is pte in the table?
plssu 208 no so error
rotl 42,r4,ré now is offset to pte in table

get plbr base address

mfpr pr_plbr,ré
got the pte address

addl ré,rd

e We N N2 we wa

: now translate the system virtual pte addr to phySical

bisl #1@26.,(r4)
extzv #0,#21.,r6,rl

ves, set the Modified bit
get <29:9> of physical address

movl r2,-(sp) ; save r2

clrl r2 ; Say no write access

calls #0,get_sys_vaddr ; translate the pte address
movl (sp)+,r2 ; restore r2

tstl r0 ; did it translate?

bneqg 208 ; no, return error

movl rl,ré ; physical address of pl pte
movl (r4a),ré : and the pte

bgeg 20§ ; br if valid bit not set.
bbc #1,r2,108 ; do we have write intent?
rotl #9.,rl,rl ; now is in place

bisl r3,rl ; and is correct physical address
clrl rQ ; signal success

pop_mcheck

ret

CONSOLE

+

exits
status code to ro0

~§ we W we

done: clirl ro : return success
ret

acc_vio:
movl gerr_acc_vio,r ; failure return
ret

nxms
movl gerr nxm,r0 : failure return
ret ; :

ENTRY AND EXIT ROUTINES

err

err

CONSOLE ENTRY AND EXIT ROUTINES

P+
; MEMORY
; arguments are
: 4(ap) Physical/virtual address
; 8(ap} Address of Data to read/write
; 12(ap)
; <0> Physical/Virtual (0 = physical, 1 = virt)
: <1l> Read/Write indicator (0 = read, 1 = write)
; <4:2> Data length
: Q@ = err
H 1 = byte
H 2 = word
; 3 = err
: 4 = long
: This routine does not really do much it self, it is only an
: interface to the real memory access routine, RMEMCRY.
; The RMEMORY routine does physical/virtual IO to memory (both
; read and write).
H returned arguments are
; 4(ap) unchanged
; 8(ap) Data read or written.
: 12(ap) wunchanged
; return status
H success =0
H err_acc_vio = 1
.entry memory,” m<R2,R3,R4%4,R5>
mov 1 4(ap),r2 ; get Addr
mov1l 28(ap),rs ; get Data in case we want to
: write
movl 12(ap},r4 ; get quals
calls #0, rmemory ; now go do the real work
bbs #1,rd4,10$; 1f write, no need to write
; back data
movl r5,&8(ap) ; return data
10§ ret

CONSOLE ENTRY AND EXIT ROUTINES

HE
; RMEMORY
; arguments are
H R2 Physical/virtual address
; RS Data to read/write
H R4
; <g> - Physical/Virtual (0 = physical, 1 = virt)
: <1l> Read/Write indicator (0 = read, I = write)
; <4:2> Data length
: 0 = err
H 1 = byte
; 2 = word
; 3 = err
; 4 = long
; This routine does physical/virtual I0O to memory. (both read
: and write)
; returned arguments are
: R2 unchanged
H RS Data read or written.
H R4 unchanged
; return status in RO
; success =0
H err_acc_vio =1
:
R
; register usage while in this routine....
; r0 = status or SCRATCH
; r2 = original wirtual address
; r3 = Physical address to pass to memio or SCRATCH
; r4 = Qual (original or temporary)
; r5 = data to read or write
; r6 = DL for total access
H r7 = DL for page 2
H r8 = data accumulator
; r9 = original r5
.entry rmemory, "m<R2,R3,R4,R6,R7,R8,R9>
movl r5,r9
movl r2,r3 ; assume we want phyio
blbs ré,31s ; all ok if doing phyio
328 brw 308 ; br if phyio
31%: bbc 47.,saved_halt, 325 ; if mapen off, V is P, ok too,

; we are doing a virtual io,

extzv
extzv

dec

addl?2

1

#0,#9.,r2,rl H
#2,#3,r4,r6 ;
rl :
ro,rl ;

Cc-29

see if we span a page boundary

get low S bits of address
get data length

-1
now is VA<S:0>+DL-1

CONSCLE ENTRY AND EXIT ROUTINES

.
!

~ me

N

[y
(s]
R 7

.

wn
U}

bbc

#9.,r1,208

we now have a virtual access that spans

the access is legal to
seperate Vio's one for

bicl3

incl
calls

tstl
bneqg
addl
calls

subl
tstl
bneq

'subl3

insv
calls

tstl
bneqg
movl

subl3
addl
rotl

subl3.

rotl
insv

calls

ashl
subl3
ashl
bisl

#°c51l.,rl,r7

r7
#0,probe

rd

258
ré,r2

40 ,probe

ré,r2
ro
25%

r7,re6,rl
rl,#2,4#3,r4

40, rmemory

rQ
25%
r5,r8

r7,r6,rl
rl,r?
#3,rl,rl
rl,#32.,rl

rl,r9,r5
r7,#2,43,rd

#0, rmemory

#3,r7,r3
r3,#32.,r3
r3,r5,r5
r8,rS

#0,probe
r0
258

e e WA ME HE M NS HE WE NE Ta W wé

we Me Ne e N8 we me we

e NE Me WE NE Ne W Ne WA Ne We No Ne Wi s s

does not span page boundary
branch to address translation

a page boundary

save number of bytes on
second page-1l

now 1s correct

see if access is legal to
first page

any errors?

yes, return the error

now point to last byte
see if access 1s legal to
last page

put the first Vio addr back
any errors?

yes, return the error

both parts, now we split the Vio up into 2
each page

get DL for part 1

set up qual for the access
page 1

now recurse to do page one's
Vio

any errors?

yes, return the error

save the partial data

get DL for part 1 again

point to first byte of part 2
get number of bits in part 1
number of bits to left shift
data

r5 is now data for part 2

set up qual for the access
page 2

now recurse to do page two's
Vio

number of bits in part 2

now number of bits to shift by
shift part two to where it
belongs and set in the low
bytes

we are done now

is simple Vio, do probe
any errors?

yes, return the error

else now have phyio to do
so fall through and do 1it.

CONSOLE ENTRY AND EXIT ROUTINES

30S: calls 40, memio ; go do the IO
mcheck ; turn off the trapper

rets: ret

.external saved_halt

CONSOLE ENTRY AND EXIT ROUTINES

+

; MEMIQ
; arguments are
: R3 Physical address
H R¢ <1> Read/Write indicator (0 = read, 1 = write)
; <4:2> Data length
H ’ 0 = err
; 1 = byte
: 2 = word
H 3 = word+byte
; 4 = long
; R5 Data
: This routine does the actual read/write to physical memory
: returns
; RO = status (0 = success, else err)
; R3 = Unchanged
H R4 = Unchanged
: RS = Data if success
- .entry MEMIO,O
mcheck nxm ; error is nxm
extzv #2,43,r4,rl ; get data length
bbc #1,r4,1008 ; dispatch to read service
caseb rl,4#0,#4 ; g0 to correct writer
9s: .word 30-9 ; err
.word 10s-3s ; writeB
.word 20$-9s3 ; writeWw
.word 308-9s3 : writeW+writeB
.word 40$-393 ; writel
brw acc_vio ; err
10$: movb r5,(r3) ; write it out
brw done

20$: movw rs5,{(r3) write 1t out

brw done

~s

30s: pushl r5

pushl r3
movb r5,(r3)+ ; write out first byte
rotl #-8.,r5,rS ; shift the data for next part
movw r5,{r3) ; write it out
popl r3
popl r5
brw done
40S: movl r5,(r3) ; write it out
brw done

100s:
109s:

140S:

caseb rl,#0,#4

.word 130$-108s$
.word 110-109
.word 120$-10S$
.word 130$-108S
.word 140$-109S
brw acc_vio

movzbl (r3),rS
brw done

movzwl (r3),rS
brw done

pushl r3

movzwl (r3)+,r5
movzbl (r3),r3
rotl #16.,r3,r3
bisl r3,rS

popl r3

brw done

movl (r3),rs5
brw done

N® e e wme v me we

C-33

CONSOLE ENTRY AND EXIT ROUTINES

go to correct reader

err
readB
readw

readW+readB

readL
err

read data

read data

read data

read data

APPENDIX D

MECHANICAL SPECIFICATIONS

D.1 PACKAGING

The MicroVAX 78032 CPU is available in two different packages; surface
mount and socket mount. Figures D-1 and D-2 give the mechanical

specifications for these packages.

MECHANICAL SPECIFICATIONS

MINIMUM CLEAR
LEAUFRAME ZONE

.800

o — 4 o8

¥ v

.050

T m |

1125
+.005

’ [
J I | 184 Max
j A
- J H .180 MAX

030 MIN

38AMAX T }

S [

.120 MAX

s N . & o

020 MIN

MR-12670

Figure D-1 68 Pin CERQUAD, Surface Mount

MECHANICAL SPECIFICATIONS

MINIMUM CLEAR
LEADFRAME ZONE

- 800

 m———— : R
e —— | 'T~.mm
 m——— :::::::::—£~nm
L—""—_unf U :::::::::—f~

.mamm-.1 ;:. 7 o x

$ ¢

‘um n&

1
? T : it ¥) .042 MAX
.120 MAX 033! MAX
MR-12454

Figure D-2 68 Pin CERQUAD, Socket Mount

INDEX

Aborts, 2-45
kernel stack not valid,
machine check, 2-53
memory read/write error, 2-53
reserved operand, 2-51
Absolute mode addressing, 3-38
- Absolute queues, 4-83
AC characteristics, A-3
CLKI timing, A-4
CPU read, CPU write, A-5
DMA, A-10
external processor
read/response, A-12
external processor
write/command,
reset, A-1l4
ACBB add compare and branch byte,
4-43
ACBD add compare and branch
D_floating, 4-127
ACBF add compare and branch
F_floating, 4-127
ACBG add compare and branch
G_floating, 4-127
ACBL add compare and branch long,
4-43
ACBW add compare and branch word,
- 4-43
ADAWI add aligned word
interlocked, 4-6
ADDB add byte, 4-7
ADDD add D_floating, 4-129
ADDF add F_floating, 4-129
ADDG add G_floating, 4-129
ADDL add long, 4-7
Address instructions, 4-33
Address strobe (A3),
Address translation, 2-28
PO region
Pl region
process space, 2-33
system space, 2-30
Addressing modes, 3-3
ADDW add word, 4-7
ADWC add with carry, 4-8
AOBLEQ add one and branch less
than or equal, 4-45
AOBLSS add one and branch less
than, 4-46

2-53

A-12

Arithmetic traps/faults, 2-46

ASHL arithmetic shift long, 4-9

ASHQ arithmetic shift quad, 4-9

Assembler radix notation, 3-2

AST level (ASTLVL) register, 2-67

Asynchronous system traps (AST),
2-67

Autodecrement mode addressing,
3-15

Autoincrement deferred mode
addressing, 3-13

Autoincrement mode addressing,
3-11

Back bias generator (VBB), 6-10

BBC branch on bit clear, 4-49%

BBCC branch on bit clear and
clear, 4-50

BBCCI branch on bit clear and
clear interlocked, 4-52

BBCS branch on bit clear and set,
4-50

BBS branch on bit set, 4-49

BBSC branch on bit set and clear,

4-50

BBSS branch on bit set and set,
4-50

BBSSI branch on bit set and set
interlocked, 4-52

BCC branch on carry clear, 4-47

BCS branch on carry set, 4-47

BEQL branch on equal (signed),
4-47

BEQLU branch on equal unsigned,
4-47

BGEQ branch on greater than or
equal (signed), 4-47

BGEQU branch on greater than or
equal unsigned, 4-47

BGTR branch on greater than

(signed), 4-47
BGTRU branch on greater than
unsigned, 4-47

BICB bit clear byte, 4-10
BICL bit clear long, 4-10
BICPSW bit clear psw, 4-72
BICW bit clear word, 4-10
BISB bit set byte, 4-11
BISL bit set long, 4-11

Index~-1

INDEX

BISPSW bit set psw, 4-73
BISW bit set word, 4-11
BITB bit test byte, 4-12
BITL bit test long, 4-12
BITW bit test word, 4-12
BLBC branch on low bit clear,

4-54 ’
BLBS branch on low bit set, 4-54¢
BLEQ branch on less than or equal

(signed), 4-47
BLEQU branch less than or equal

unsigned, 4-47
BLSS branch on less than (signed),

4-47
BLSSU branch on less than

unsigned, 4-47
BNEQ branch on not equal (signed),

4-47
BNEQU branch on not equal

unsigned, 4-47
BPT breakpoint fault, 4-74
Branch addressing, 3-44
BRB branch with byte displacement,

4-55
BRW branch with word displacement,

4-55
BSBB branch to subroutine with

byte displacement, 4-56
BSBW branch to subroutine with

word displacement, 4-56
Bus control ‘signals, 6-3
Bus cycles, 5-3

CPU read, 5-3

CPU write, 5-5

DMA, 5-8

interrupt acknowledge, 5-7
Bus error handling, 7-4
BVC branch on overflow clear,

4-47
BVS branch on overflow set,
Byte masks (BM<3:0>), 6-4

4-47

CALLG call procedure with general
argument list, 4-66

CALLS call procedure with stack
argument list, 4-68

CASEB case byte, 4-57

CASEL case long, &-57

CASEW case word, 4-57

Character string instructions,
4-106

CHME change mode
4-111

to executive,

CHMK change mode
CHMS change mode
4-111

to kernel, 4-111
to supervisor,

CHMU change mode to user, 4-111
CLKI timing, A-%
Clock in (CLKI), 6-10

Clock out (CLKO),
Clocks, 6-10
CLRB clear byte, 4-13
CLRD clear D_floating, 4-13,
4-131
CLRF clear
4-131
CLRG clear
4-131
clear
clear quad,
clear word,
compare byte,

6-10

F_floating, 4-13,
G_floating, 4-13,

CLRL
CLRQ
CLRW
CMPB

4-13
4-13
4-13
4-14

long,

CMPD compare D_floating, 4-132
CMPF compare F_floating, 4-132
CMPG compare G_floating, 4-132
CMPL compare long, 4-14

CMPV compare field, 4-36

CMPW compare word, 4-14

CMPZV compare zero-extended field,

4-36

Console entry protocol, 2-72
Console exit protocol, 2-73
Console saved registers (SAVISP,
SAVPC, SAVPSL), 2-20
Control instructions, 4-43
Control status (CS<2:0>),
CPU read cycle, 5-3
CPU read, CPU write cycle timing,
A-5

6-6

CPU write cycle, 5-5

CVTBD convert byte to D_floating,
4-133

CVTBF convert byte to F_floating,
4-133

CVTBG convert byte to G_floating,
4-133

CVTBL convert byte to long, 4-15

CVTBW convert byte to word, 4-15

CVTDB convert D_floating to byte,
4-133

CVTDF convert D _floating to
F_floating, 4-133

CVTDL convert D floating to long,
4-133

CVTDW convert D _floating to word,
4-133

Index-2

CVTFB convert
4-133

CVTFD convert F floating
D floating,
CVTFG convert F_floating
G_floating,

CVTFL convert
4-133

CVTFW convert F_floating

4-133

CVTGB convert G_floating

4-133

CVTGF convert G_floating
F floatlng,
CVTGL convert G_floating

4-133
CVTGW convert
4-133
CVTLB convert
CVTLD convert
4~-133
CVTLF convert
4-133
CVTLG convert
4-133
CVTLW convert
CVTRDL

to
CVTRFL
to
CVTRGL
to
CVTWB convert
CVTWD convert
4-133
CVTWF convert
4-133
CVTWG convert
4-133
CVTWL convert

long,

long,

DAL<31:00>, 6-
enable (DBE),
(D%,
Data types, 2-

Data buffer
Data strobe

byte, 2-2
character

F_floating

G_floating

long
long

long
long
long

word
word

T4-133
F_floating

word

word
word

3

1

string

floating point,
D_floating, 2-
F_floating, 2-
G floating, 2-

longword, 2-
guadword, 2-

3
4

&6~

2-
8
7
-3

to byte,

to

T4-133

to
éo‘long,
to word,
to byte,

to

T4-133

to long,

to word,

to byte, 4-15
to D_floating,

to F_floating,
to G_floating,

to word, 4-15

convert rounded D_floating
4-133
convert rounded F_floating
4-133
convert rounded G_floating
long, 4-133

to byte, 4-15
to D_floating,

to F_floating,
to G_floating,

to long, 4-15

6-5
4

2-5
-

variable length bit field, 2-4
word, 2-2

Data/address bus, 6-3

DC characteristics, A-1

DECB decrement byte, 4-16

DECL decrement long, 4-16

DECW decrement word, 4-16

Displacement deferred mode
addressing, 3-24

Displacement mode addressing,
3-22

DIVB divide byte, 4-17

DIVD divide D_floating, 4-136

DIVF divide F_floating, 4-136

DIVG divide G _floating, 4-136

DIVL divide long, 4-17

DIVW divide word, 4-17

DMA control signals, 6-9

DMA cycle, 5-8 :

DMA cycle timing, A-10

DMA grant (DMG), 6-9

DMA request (ﬁﬁﬁ) 6-9

EDIV extended divide, 4-18

EMODD extended multiply and
integerize D_floating, 4-138

EMODF extended multiply and ,
integerize F_floating, 4-138

EMODG extended multiply and
integerize G floatzng, 4-138

EMUL extended mu;tzply, 4-20

Emulated instructions with

microcode assist, 4-151
Error (ERR), 6-5
Exceptions, 2-44
access control violation fault,
2-50
breakpoint fault, 2-52

emulated instruction fault,
2-31

extended function fault, 2-52

floating divide by zero fault,
2-48

floating overflow fault, 2-48

floating underflow fault, 2-48

integer divide by zero trap,
2-47

integer overflow trap, 2-47

interrupt stack not wvalid halt,
2-53

kernel stack not wvalid abort,
2-53

Index-3

INDEX

INDEX

machine check and memory
read/write error abort,
2-53
reserved addressing mode fault,
2-51
reserved operand exception,
2-51 ‘
reserved/privileged instruction
fault, 2-51
subscript range trap, 2-48
translation not valid fault,
2-50
Exceptions and interrupts, 2-39
contrast between, 2-56
initiation of, 2-57
processor status, 2-40
serialization of, 2-57
Executive mode, 2-26
External processor cycles,
read cycle, 5-9
response cycle, 5-11
write cycle, 5-11
External processor protocols,
5-15
FPU protocol, 5-15
register protocol, 5-15
External processor read cycle,
5-9
External processor read/response
cycle timing, A-12
External processor registers,
reading and writing, 5-15

5-9

Extern§l processor response cycle,
ExteS;;% processor strobe (EP3),
Exte?ggl processor write cycle,
Exteiggi processor write/command

cycle timing, A-12

EXTV extract field, 4-38

EXTZV extract zero-extended field,
4-38

Faults, 2-45 to 2-46

access control vioclation (ACV),

2-50
breakpoint,
emulated instruction, 2-51
extended function, 2-52
floating divide by zero,
floating overflow, 2-48
floating underflow, 2-48

2-52

2-48

reserved addressing mode, 2-51
reserved operand, 2-51
reserved/privileged instruction,

2-51
translation not valid (TNV),
2-50
FFC find first clear, 4-40
FFS find first set, 4-40
Floating point accuracy, 4-125

Floating point
4-124
Floating point numbers, 4-124
FPU, communicating with, 5-15

instructions,

General mode addressing, 3-6
program counter, 3-35
register mode, 3-6

Ground (VSS), 6-9

Halt (HALT), 6-6

HALT halt instruction, 4-75

Halting the processor, 7-3

Immediate mode 3-36

INCB increment

INCL increment long, 4-21

INCW increment word, 4-21

INDEX compute index, 4-76

Index mode addressing, 3-26

INSQHI insert entry into queue at
head, interlocked, 4-90

INSQTI insert entry into queue at
tail, interlocked, 4-93

INSQUE insert entry in queue,
4-96

Instruction descriptions, 4-2

Instruction execution exceptions,
2-51

Instruction

addressing,
byte, 4-21

format, 3-1
Instruction set summary,
INSV insert field, 4-42
Integer arithmetic and logical
instructions, 4-6
Interrupt acknowledge cycle, 5-7
Interrupt control signals, 6-8
Interrupt handling, 7-5
Interrupt priority level register
(IPL), 2-43
Interrupt request (IRQ<3:0>), 6-8
Interrupts, 2-40
control of, 2-42
device interrupts, 2-41
software interrupts, 2-411

B-1

Index-4¢

urgent interrupts, 2-%41
Interrupts, hardware, 7-5
general (IRQ<3:0>), 7-6
interval timer, 7-5
powerfail, 7-5
Interval clock control and status
register (ICCS), 2+19
Interval timer (INTTIM), 6-8

JMP jump, 4-59
JSB jump to subroutine, 4-60

Kernei mode, 2-26

LDPCTX load process context,
4-115 , :
Literal mode addressing, 3-17
Machine check, 2-53
Map enable register (MAPEN), 2-24%
MCOMB move complemented byte,
4-22
MCOML move
4-22
MCOMW move
4-22
Mechanical specifications, D-1
Memory access protocol, 5-13
Memory management, 2-21
access control, 2-25
address translation,
faults, 2-38
memory mapping enable, 2-24
page protection, 2-26
translation buffer, 2-36
violations, 2-28
access, 2-28
length, 2-28
Memory management
2-48 ,
fault parameter block, 2-48
Memory subsystem, 7-3
Microcycle, 5-1
MME bit, 2-24
MNEGB move negated byte, 4-23
MNEGD move negated D_{floating,
4-140
MNEGF move
4-140
MNEGG move
4-140
MNEGL move
MNEGW move

complemented long,

complemented word,

2-28

exceptions,

negated F_floating,
negated G_floating,

4-23
4-23

negate& long,
negated word,

address
address

MOVAB move
MOVAD move
4-33
MOVAF move
4-33
MOVAG move
4-33
MOVAL move
MOVAQ move
MOVAW move
MOVB move
MOVC move

byte, 4-33
D_floating,

address F_floating,

address G_floating,
address long, 4-33
address quad, 4¢-33
address word, 4-33
byte, 4-24
character,
MOVD move D_floating,
MOVF move F_floating,
MOVG move G_floating,
MOVL move long, 4-24
MOVPSL move from psl,
MOVQ move quad, 4-24
MOVW move word, 4-24

4-107
4-141
4-141
4-141

4-78

MOVZBL move zero-extended byte to
long, 4-25

MOVZBW move zero-extended byte to
word, 4-25

MCVZWL move zero-extended word to
long, 4-25

MULB multiply byte, 4-26

MULD multiply D floating, 4-142

MULF multiply F_floating, 4-142

MULG multiply G_floating, 4-142

4-26
4-26

MULL multiply
MULW multiply

long,
word,

NOP no operation, 4-79

OPcode format, 3-2

Cperand reference exceptions,
2-51

Operand specifier notation, 4-2

Operands, types of, 3-3

Operating system support
instructions, 4-111

P00 base register (POBR}, 2-33

PO length register (POLR), 2-33
Pl base register (PlBR), 2-34
Pl length register (PLLR)}, 2-34
Packaging

socket mount, D-3

surface mount, D-1
Page table entry (PTE), 2-29

making changes to, 2-30

Pin summary, 6-11

Index-5

INDEX

INDEX

POLYD polynomial evaluation
D floating, 4-144
PCLYF polynomial evaluation
F_floating, 4-144
POLYG polynomial evaluation
G_floating, 4-144
POPR pop registers, '4-80
Power, 6-9, 7-1
Power (VDD), 6-%9
Power fail (PWRFL), 6-8
Power supply decoupling, 7-1
PROBER probe read accessibility,
4-121
PROBEW probe write accessibility,
4-121
Procedure CALL instructions,
Process context, 2-63
Process space, 2-22
Process structure, 2-63
Process structure interrupts,
2-68
Processor interrupt priority
levels (IPL), 2-39
Processor modes, 2-26
executive
kernel
supervisor
user
Processor registers, 2-16
MicroVAX 78032 specific, 2-19
Processor status longword (PSL),
2-14
Processor status word (PSW), 2-11
PUSHAB push address byte, 4-34
PUSHAD push address D_floating,
4-34 :
PUSHAF push
4-34
PUSHAG push
4-34
PUSHAL push

1-64

address F_fleoating,
address G_floating,

address long, 4-34
PUSHAQ push address quad, 4-34%
PUSHAW push address word, 4-34
PUSHL push long, 4-27

PUSHR push registers, 4-81
Queue instructions, 4-83

Ready (RDY), 6-5

Register deferred mode addressing,

3-9
Register mode addressing, 3-6
Registers, 2-10

Index-6

general, 2-10
argument pointer, 2-10
frame pointer, 2-10
program counter, 2-10
stack pointer, 2-10
processor status word,
system, 2-12
for interrupt control, 2-14
for memory management, 2-14
process control block base
register (PCBB), 2-12
processor status longword
(PSL), 2-14
system control block base
register (SCBB), 2-12
return from exception or
interrupt, 4-113
Relative deferred mode addressing,
3-42 ‘
Relative mode addressing, 3-40
REMQHI remove entry from queue at
head, interlocked, %1-98
REMQTI remove entry from queue at
tail, interlocked, 4-101
REMQUE remove entry from queue,
4-104
Reset (RESET), 6-6
Reset timing, A-14
Reset/power-up, 7-2
Restart codes, 2-72
Restart proceéss, 2-71
restart codes, 2-72
RET return from procedure, 4-70
ROTL rotate long, 4-28
RSB return from subroutine,

2-11

REI

4-61

Saved interrupt stack pointer
register (SAVISP), 2-20, 2-71

Saved processor status longword
register (SAVPSL), 2-20, 2-71

Saved program counter register
(saveCc), 2-20, 2-71

SBWC subtract with carry, 4-29

Self-relative queues, 4-87

SOBGEQ subtract one and branch
greater than or equal, 4-62

SOBGTR subtract one and branch
greater than, 4-63

Software interrupt request

register (SISR), 2-42
Software interrupt summary
register (SISR), 2-42

Stack registers, access of, 2-70 -

Stacks, 2-68
alignment, 2-6%
residency, 2-68
selection, 2-69
status, 2-69
SUBB subtract byte, 4-30
SUBD subtract D_floating, 4-148
SUBF subtract F_floating, 4-148
SUBG subtract G_floating, 4-148
SUBL subtract long, 4-30
SUBW subtract word, 4-30
Supervisor mode, 2-26
Supplies, power, 6-9
SVPCTX save process context,
4-117
System base register (SBR), 2-30
System control block, 2-61
System control block base (scbb)
register, 2-61
System control signals, 6-6
System failure exceptions, 2-53
System length register (SLR),
2-30
System space, 2-23

Test (TEST), 6-10

Tracing, 2-52

Translation buffer invalidate all
register (TBIA), 2-37

Index-7

INDEX

Translation buffer invalidate
single register (TBIS), 2-37
Traps, 2-44, 2-46
integer divide by zerc, 2-47
integer overflow, 2-47
subscript range, 2-48
TSTB test byte, 4-31
TSTD test D_flcating, 4-150
TSTF test F_floating, 4-150
TSTG test G_floating, 4-150
TSTL test long, 4-31
TSTW test word, 4-31

User mode, 2-26

Variable length bit field
instructions, 4-35

Vectors, 2-61

Virtual address, 2-23

Virtual address space, 2-22

Virtual address, the translation
of, 2-28

Write (WR), 6-5

XFC extended function call, 4-82
XORB exclusive OR byte, 4-32
XORL exclusive OR long, 4-32
XORW exclusive OR word, 4-32

