ﬂﬂﬂﬂﬂn INTEROFFICE MEMORANDUM

TO: DISTRIBUTION DATE: February 13, 1975

FROM: Dave Nelson

COMPANY PRIVATE === it rieonsns/acchicectune

EXT: 4509 LOC: ML54§67
A

. » o0
SUBJ: PROPOSAL FOR PDP-11 I/0 ARCHITECTURE ”«737
- /

I propose that the attached specification be adopted in future imp en-
tations of the PDP-1ll architecture.

For background information, reference is made to Section I (I/O Systems)
and Section II (Interrupt System) of the 1/22/75 version of the PDP-11
Architectural Enhancement Strategy publication.

Many discussions have been held with people in Software Engineering,
Peripheral Engineering, Micro Products, Communications Engineering,

Hardware Engineering, and R/D, all of whom have contributed in various
ways.

The attached document appears somewhat revolutionary in that some new
terminology is introduced. I believe, however, that this terminology
is necessary if we wish to realize the full potential of the approach
and avoid some of the past mistakes.

I'd appreciate whatever comments you have, and I'll be holding some de-
sign review sessions shortly.

Regards.
DN:elb

DISTRIBUTION

Phil Arnold

Jega Arulpragasam

Vince Bastiani
Gordon Belly’
Jim Bell

Ron Brender
Jack Burness
Roger Cady
Dick Clayton
Skip Coombe
Dave Cutler
Bruce Delagi
Bill Demmer

Tom Fava

Robin Frith
Lorrin Gale
Mike Garry
Andy Goldstein
John Holman
John Hughes
Chuck Kaman
Julius Marcus
Craig Mudge
Clay Neil

Jim O'Loughlin
Ralph Platz

Larry Portner
Bob Puffer
Maurice Richeson
Al Ryder

Grant Saviers
Bill Strecker
Steve Teicher
Nate Teichholtz
Mike Tomasic
Pete van Roekens
Larry Wade

Stu Wecker

Garth Wolfendale

PDP-11 I/O PHILOSOPHY

Some discussion regarding the philosophy and intended direction of
the PDP-11 is warranted as an introduction to the proposed concepts
and their motivations.

With the introduction of the 11/70 and 11/Q machines, the PDP-11 arch-
itecture will span a greater performance range than any other computer,
with the possible exception of the IBM 360. However, this performance
range is primarily restricted to the instruction set architecture.

The I/0 architecture is so directly coupled to the physical existence
of the UNIBUS, both extremes of the performance range have had to make
compromises. It is therefore a goal of this proposal to introduce
concepts into the PDP-11l I/0 structure that:

l. rely, to a lesser degree, on the UNIBUS; and
2. are amenable to a broader performance range for
(a) low-performance I/O for micro-1lls
(b) high-performance I/0 for large lls
The following diagram intuitively characterizes some of the intents

of this proposal; namely, to derive a machine structure which is con-
ducive to all possible paths shown.

!

PROCESS
PDP 1/0
PROCESS PROCESS
PROCESS
STRUCTURED I/0 DONE S
11/20 AUTO CONTEXT BY EXTERNAL 1/0 DONE
COMPATIBLE SWITCHING CONTROLLERS CPU MICROCODE
FAST 1/0
INTERRUPT
!
UNIBUS I/0 NON-UNIBUS !
SYSTEMS SYSTEMS |
Mo i
~ 74
OPTIMIZED HIGH LOW~PERFORMANCE
PERFORMANCE MICRO-11 I/0

I/0 SYSTEMS SYSTEMS

MOTIVATION

This proposal intends to provide a consistent and comprehensive approach
to the following areas:

1. Fast Machine Context Switching

A mechanism is provided that rapidly saves and restores
machine registers when a process is switched.

2. Higher I/O Performance

The architecture is more conducive to designing self-
optimizing I/0 systems that increase high-end performance
and better manage UNIBUS bandwidth.

3. Low I/0 Capability

The architecture will allow us to develop low cost I/O
systems for NON-UNIBUS low end 1lls.

4. CPU Microcode 1I/0

Higher performance at lower cost is attainable for com-
munications and intermediate speed peripherals, by
utilizing central processing resources for I/0 functions.

5. I/0 Page and Trap Vector Space

The I/0 page, now fully occupied, will contain descriptor
registers which "float" in the address space. Device reg-
ister information will be accessed through memory locations,
and the trap vectors will be program assigned.

OVERVIEW

The concept of a process is introduced to describe both PDP-1l1 pro-
grams and I/0 functions. Processes are uniquely defined by 32 bit
process descriptors which, in turn, are located in memory space by
16 bit process numbers.

e

Processes are defined to be procedures with context which serves to
distinguish between the descriptive information (context) needed to
characterize the process, and the procedural information (actual
mechanism, such as CPU, microcode, controller, I/O processor, etc.)
required to carry out the process. Specifically, with regard to I/O,
the architecture requires software to establish only the descriptive
information, and thus is able to accomodate wide variants in the ac-

tual mechanisms and implementation techniques that perform the I/O
function.

In terms of current PDP-1ll definitions, the process descriptor is a
generalization of the Program Status word and Program Counter. The
process number for interrupt service routines is a generalization

of the trap vector address. PDP-1l1l context is the general registers,
KT map, etc., and I/0 context is contained in the CSRs located in the
I/0 page.

PROCESS DESCRIPTOR FORMAT

The 32 bit Process Descriptor has the following format:

S

TYPE FUNC E STATUS LoC

TYPE (2 bits) - Process Type

00,01,10 - PDP-11 process (Kernel, User, Spvr.)
11 - I/0 process

FUNC (3 bits) =~ Function

-- previous mode and register select for PDP-1l
processes

-- function code for I/O processes
E (1 bit) - Extended Context

-- used to select interpretations of LOC
STATUS (8 bits)

-~ priority level and condition codes for PDP-11
processes

-~ word count for non-extended I/O processes
-- status bits for.extended I/0O processes
LOC (16 bits) - Address Location

-~ Program counter (virtual Kernel space) for
non-extended PDP~1l1 processes

-~ Location of context block for extended PDP-11
processes :

-- Buffer Address (physical) for non-extended I/O
processes

-- Location of context block for extended I/O pro-
cesses

CONTEXT BLOCKS

For extended PDP-11 processes, the context block has the format:

(PREVIOUS MAP) - address of previous KT-1ll register image

(CURRENT MAP) address of current KT-1ll register image

(if zero, auto loading is suppressed)

RO-R6

general registers

PC

program counter
(virtual Kernel space)

For extended I/O processes, the context block has the format:

PLINK - process number of next process
(normally the trap vector address)

DEVCTX - device context (word count, buffer address, etc.)

PROCESS NUMBERS

Since Process Descriptors reside in memory address space, one can
consider this space an enormous Process Descriptor Table, whereby
the location of all descriptors is specified by a 16 bit index called

the process number. Processes are invoked by three distinct mechan-
isms:

1. 2An I/O process Descriptor, located in the I/O page,is
invoked by CPU setting register bits. The process num-
ber is the address of device register (PD).

2. A PDP-11 or an I/O Process Descriptor, located in low
core (trap vector space), is invoked by an interrupt re-

quest via the UNIBUS. The process number is the trap
vector address.

3. A PDP-1l1 process (possibly an I/0O process on future ma-
chines), located in program area, is invoked at software
level by execution of an RTI. The process number is in
R6, and the process descriptor is on top of the stack.

The location of process descriptors is therefore correlated to the

mechanism that carries out the process. For example, I/0 processes
can either be performed by external controllers (in which case they
reside in 1/0 page), or they can be performed by CPU microcode (in

which case they reside in trap vector address space).

I1/0 I/0 Process Descriptors for externally controlled
PAGE processes
PROGRAM PDP Process Descriptors for software level proces-
SPACE ses

TRAD PDP and I/O Process Descriptors for CPU controlled
VECTORS processes

LINKED PROCESSES

In general, processes are linked together in a series of lists where-
by processes in any given list are performed serially. This ensures
orthogonality among processes that comprise a list, and serves to re-
solve data contention and synchronization problems discussed later.
The list structure only applies to I1/0 processes and is character-
ized by the following:

-- for extended context processes, the first location in the
context block contains the process number for the follow-
ing process.

-~ for non-extended context processes, the process number for
the following process is the current process plus four
(4 bytes).

1111 _/
Pio (CﬂntNlNG)——\—1p 1/0 PROC. OEsC. 3&;‘:’:‘.
/0 PROC. O&C. ‘\‘\
K (OPTtM\’t&D)——————-» Iro PROC. DESc.
Lio PROC. DEsC. | -
K (S\WPLE) ——— g |T70 RROC. Desc. 'ics\t:a gy,
VIRT mOols
COUNT /st AT
A T eses |
ety MODAS
covey
STATUS
[i.o]-&? U _mickocone) . Irn eroc. vesc.
NP PROL. ULSC, |eol—
Ple ~P [N
oo PDP PROC. DesC. 4*}&“::?
ess wak.
Number I Ro - R,
0060000\ —
HARDWARE PROCESS CONTERT
SSO DESCRIPTOR BLOCKS

TABLE

Rem'\'\w Between Hnroware Processors amd DescrieTive ConTesT Buocks

I/0 PROCESS FOR AN EXTERNAL DEVICE/CONTROLLER

Process Descriptors for external devices reside in the I1/0 page.

For the extended context case (normal for external devices), the
descriptor contains the address of the context block which contains
the device registers (address, count, etc.) and the next (linked)
process number. The linked process number will normally be the trap
vector address which locates the process descriptor (Ps, Pc) of the
interrupt service routine.

Initiating _ eI T S~
PDP-11 e S o
Process ~
170 AR
Process)
PDP"ll o~
Interrupt
Process

In this specific case, the initiating PDP-1l routine would invoke the
I/0 process by initiating the process descriptor located in the I1/0
page (similar to current approach). The I/0 process, once initiated,
continues until the I/0O is terminated, at which point it asserts the
process number (trap address) of the interrupt service routine on the
CPU. It should be noted that a similar I/0 process descriptor could
reside down in the trap vector space and operate under control of

CPU microcode in a manner equivalent to 1/0 processes operating under
control of external device controllers.

I/0 PROCESS CONTROLLED BY CPU MICROCODE

Many block transfer devices, such as a floppy disk, may have control-
lers which, due to cost, are designed to interrupt on a per-word
basis, each interrupt performing the data storage and memory incre-
ment. Other devices, primarily communication devices, are required
to interrupt on a per-character basis in order to manage message pro-
tocols, control characters, buffer management, etc.

The current practice of interrupting the CPU for these relatively
trivial reasons causes unacceptable burdens on the CPU and, conse-
quently, unacceptable levels of performance. It is the purpose of
this proposal to define the architectural relationships between those
functions that can be done more efficiently by CPU microcode and
those functions which require PDP-11 interrupt service routines.

The process-structured architecture discussed herein provides an in-
tegrated approach to all I/0 processes, regardless of whether they
are implemented by CPU microcode or an external controller. Further,
the descriptors for all CPU functions are of the same form, regard-
less of whether they are PDP-~1ll processes or I/0 functions.

For CPU-controlled I/O functions, we will, in general, have the fol-
lowing events:

1. 1Initiating PDP-11 routine starts the device.

2. The device transfers data (1 word or character) and
generates an interrupt request to the CPU.

3. The CPU handles the request in microcode logic, stores
the data in memory, and determines if a PDP-1l service

routine is required (word count expires, special charac-
ter, etc.).

4. The CPU executes a PDP-1ll interrupt service routine when
conditions require.

Initiating _ Address of process descriptor in I/0 page
PDP-11

Process

Unibus trap vector
I1/0
Transfer

Trap address of ISR

PDP-11
Service
Routine

PDP-11 AUTO CONTEXT SWITCH

PDP-11 type process descriptors can be in the extended context format
in which the low order 16 bits contains the virtual address in Kernel
space of the processes context block. Context switches for these pro-
cesses are performed automatically by the CPU, and can be invoked by
either (1) the assertion of an interrupt by a device, or (2) the ex-
ecution of an RTI instruction (used for task scheduling, as well as
interrupt dismissal).

PDP-11 context consists of all eight general registers and the set
of KT-11l map registers whose address is located in the context block
(auto loading of map registers can be suppressed by specifying zero
as the map address).

When a context switch is invoked, the current context is saved in

the current processes' context block, and the new context is loaded
from the new processes' context block. This deviates somewhat from
the "stack" philosophy of saving current context on the new processes
stack, hav1ng the disadvantage of providing maximum stack space for
the maximum level of nesting.

The current proposal, however, requires that it be impossible for an
extended process (one which has a context block) to interrupt a non-
extended process, since the new process would load registers with new
values without having saved the old values. Consequently, the rules
for determining which processes can take advantage of auto context
switching must be in accordance with the task's priority.

The following diagram generalizes the relation between priority level
and the context switching mechanism. Here, M denotes switching by
microcode, P denotes switching by program (usually saving only a part
of the registers), and H denotes selectlng a different set of hard-
ware registers. The first letter in the pair is for the general
registers, and the second letter is for the map registers. At any
given time, the complete system must correspond to a single path con-
necting MM (both microcode) to HH (both hardware re-select).

MM --- Priority 0

;1 R 4

These constraints satisfy the general intention to (1) auto switch

tasks running at low priority levels, (2) partially switch intermediate-
level tasks under program control, and (3) automatically switch hard-
ware register sets for high-priority tasks.

COMPATIBILITY

The operation of a PDP process, non-extended context, is binary com-
patible with existing machines. Furthermore, it is possible to mix
extended and non-extended processes in the same environment (follow-
ing the rules previously discussed).

The process structuring of I/0 mechanisms is compatible with exist-
ing peripherals. There are no modifications required for CSR
addresses, trap vector addresses, or UNIBUS characteristics. Further-
more, extended I/0 devices can be added to and can co-exist with
existing hardware.

The I/0 aspects of the architecture are physically unrelated to the
PDP-11 program aspects (although, logically, they directly relate in-
sofar as they both have context which is accessed in similar ways,
etc.). Consequently, advantage in the I/O area can be realized with-
out the necessity of implementing microcode features in the CPU, and
vice versa.

EXTENDABILITY

A major goal of the proposed architecture is the ability to extend I/O
functions to allow (1) a higher performance optimized system for high-
end machines, and (2) a cost-effective lower performance system for
low-end machines. To do this, we make a clear distinction between

(1) the descriptive information required to generically describe the
I/0 function, and (2) procedural information required to specify mech-
anisms and algorithms that perform the I/0 function. Specifically,
the architecture requires software to establish only the descriptive
information, allowing wide variations in the actual I/O mechanisms

that handle the I/0O functions in accordance with varying performance
requirements.

Simple Controllers

1/0

Optimized Controllers —7| context
1/0 Blocks
- Process
I1/0 Processors Descriptors
—

CPU Microcode

(DESCRIPTIVE
(MECHANISMS) INFORMATION)

In this way, it becomes possible to extend the architecture to include
wide variations of performance requirements on future PDP-11 systems.

A WO L SQULL

ﬂﬂﬂﬂan INTEROFFICE MEMORANDUM

TO: Distribution DATE: January 22, 1975

FROM: Dave Nelson

WM?MY c@NFime DEPT: 11 Architecture/Planning

EXT: 4509 LOC: ML5/E67
SUBJ: PDP-l1l1l ARCHITECTURAL ENHANCEMENT STRATEGY

This document is intended to focus on several architectural
areas of PDP-1ll systems which require improvements due to
changes in technology, application, or competition.

The contents presented here generally falls into two
categories:

1. Architectural modification/maintenance required
for systems of current capability as a result of
technology improvements, including:

a. Faster context switching.
b. WCS applications,

c. ASCII console.

d. Serial multidrop bus.

2. Architectural enhancements required to significantly
improve system capabilities and performance,
including:

a. Virtual address space extension.

b. Higher performance I/0 system.

c. Mapping hardware for virtual memory.
d. Configurations for multiprocessing.

Considerable effort has been expended trying to categorize
and compare the architecture of competitive machines,
including the extent to which their operating software

supports their architecture. Particular attention has been
paid to MODCOMP, DG, HP, and INTERDATA.

At the same time, the structures of large scale machines have
been analyzed in order to predict and evaluate architectural
enhancements that will effect minicomputers in 3-5 years:
in particular, MULTICS (virtual address space extension),

IBM and Burroughs (high performance I/0 systems, and virtual
memory) .

. (f"““\

-2

Emphasis has been placed on virtual address space extension
and problems relating to the 1I/0 system. Secondary areas in-
clude the interrupt system, writable control store, and
multiprocessing.

That the 11 is becoming limited by its current virtual address
space is a foregone conclusion. Several approaches to virtual
address space extensions are included; however, recommendations
which take into account compatibility, cost, and other archi-
tectural alternatives, are not vet fully developed.

Problems relating to the I/0 architecture have not received
as much attention, but it is likely that no single aspect of
the PDP-11 is causing more problems: configurations of mul-
tiple controllers won't work (due to UNIBUS overruns) ;
high-speed peripherals are being purposefully slowed down by
sector interlacing; multiple controllers are being designed
(UNIBUS and MASSbus) for the same peripherals; interfaces to
MASSbus are expensive; overall performance is low; increasing

data rates and configuration sizes are making things worse and
worse.

Preliminary analysis of these problems leads one to conclude
that: 1) The UNIBUS has adequate performance capability if

intelligently controlled by an I/0 processor; and 2) we need
a serial bus for low-performance peripherals.

II.

III.

Iv.

VI.

VII.

VIII.

PDP-11 ARCHITECTURAL STRATEGY

I/0 SYSTEM

I1/0 Busses

I/0 Processor

Block Multiplexor Channel
Simulation Results

Serial System Bus

o HH
(S0 - EV I SR

INTERRUPT SYSTEM
II.1 Found Description
II.2 Interrupt

IT.3 Return from Interrupt
I1.4 Compatibility and Extendability

VIRTUAL MEMORY SYSTEMS

ITII.1 Some Characteristics of VM
III.2 Advantages of VM to Digital
ITI.3 Memory Mapping Hardware

VIRTUAL ADDRESS SPACE EXTENSION

IV.1l Linear Address Space Specification
IV.2 Segmented Address Space Specification

PDP-11 INSTRUCTION SET

WRITABLE CONTROL STORE

MULTIPROCESSING CONFIGURATIONS

ASCII CONSOLE

SECTION I

I/0 SYSTEM

I. PDP-11 I/0 SYSTEM

Overview

The architecture of the PDP-1ll I/0 system has remained essen-
tially unchanged since the inception of the PDP-11/20, over
five years ago. Since that time, the PDP-11 has grown to sup-
port large operating systems in applications requiring high
performance I/0 throughput; and at the same time, the cost of
low-end systems has dropped to the point where the UNIBUS is
no longer cost-effective for many of its intended uses.

This section deals specifically to the following:

1. The PDP-1l1l has no data channeling capability which
would allow gather write and scatter read operations.
Consequently, operating systems are unable to load
tasks to/from fragmented memory. Similarly, the lack
of command chaining operations precludes the loading
of programs to/from fragmented disk.

2. The UNIBUS, as currently used, has become obsolete:

‘ It is an overkill for most slow-speed devices (LP, CR,
terminals); therefore, it is not cost-effective. In ad-
dition, it has inadequate bandwidth to effectively
handle current mass storage devices (RP, RS, RK). The
magnitude of this problem is best illustrated by our
current practice of building high-speed peripheral de-
vices, and then having to slow them down (by 2 or 3
sector interlacing) in order to use them on a UNIBUS.

3. Wwhile the UNIBUS appears to have inadequate bandwidth
for our high-speed peripherals, the alternative of
building multiple special high~bandwidth memory busses
(3 1a 11/70) for I/0 controllers does not appear to be
cost-effective, considering the marginal performance
gain that is realized in actual systems. Multiple high-
speed controllers may eliminate data overruns, but they
don't appreciably increase performance, and as such,
price-performance competitive pressures will force us
to abandon this brute force approach in favor of one
which more efficiently utilizes the I/O facility.

The use of a high-speed serial bus for correcting unit
record peripherals and terminals will afford significant
advantages in interface costs, cable costs (over long
distances), flexibility in configurations, great reli-
ability, and better serviceability. A serial bus can

be used as a systems bus in small, inexpensive appli-
cations (microprocessor, terminals, LP, floppy).
providing minicomputer capability with some acceptable
loss in performance.

Competition

I/0 systems are difficult to compare and evaluate because of

wide variations in concepts and objectives.

tures of H-P, MODCOMP, DG,

The I/0 architec-

INTERDATA, and IBM have been compared

against features which are judged to be most important for high-

performance, general-purpose, multiprogramming systems. Some
of these features include:

DG H-P MOD INT IBM PDP-11 I0pP-11

VWV 7/

fragmented memory Y Y Y N Y N Y
I/0 (data chaining)
fragmented disk I/0 N N N N Y N Y
(command chaining)

. (1) (2) (3) (4)
simultaneous block Y Y Y N N Y Y
transfer

o : (5)
channel optimization N N N N Y N Y

(1) Does have AUTO-DRIVER, implemented via CPU microcode, limited

performance.

(2) No concurrency on some mpxr channel; can have multiple chan-

nels.

(3) Restricted by UNIBUS bandwidth, uncontrolled.

(4) MASSbus systems with wide band memory access only.

(5) Includes device optimization and request optimization,

described herein

THE FOLLOWING PAGES DESCRIBE THESE FEATURES

IN MORE DETAIL

Data General ECLIPSE

Mp M.map ——— Pc

M.map ————— K(#0:63)

Features:

o I/0 is transferred to/from VIRTUAL mem space
(allows fragmented memory) .

o Simple operation: Address and word count pair for
each of up to 64 devices.

Disadvantages:

o Although the MAP allows memory fragmentation, there
is no command chaining that would allow disk
fragmentation.

o Like the PDP-11 I/0 is asynchronous and uncoordinated.
The sum of all device transfer rates is limited by
peak bandwidth of the bus. ‘

o Any optimization is purely software controlled.

o All I/0 goes thru same map: restricted to 32K.

Hewlett Packard 3000

Cs
Mp ——— P

io; (#0:15,Multiplexor) K(#0)

K(#0:63,Direct)

\— Pio; (#0:15,Selector) K (#0)
Features:

o All 1I/0 classified into 3 distinct categores.
- Direct for terminals, unit record, etc.
- MPXR for intermediate speed disks, high speed

unit received. ' '

- Selector for high speed mass storage.

o MPXR and SELECTOR are programmable (ala IBM 360)
and capable of command and data chaining.

Disadvantages:

o - Channel prbgrams cannot cross device controllers.

0 Device controllers cannot connect to multiple channels
(therefore, very little optimization is possible).

0 SELECTOR channel is busy for duration of a single
channel program - little optimization possible.

o

No memory management support, except via chaining
data.

MODCOMP IV

cy
Mp P — —_— K
io; (#0:7,Multiplexor)

K.dma (not used)

Features:

o Up to 16 subchannels, programmable with data
chaining facility.

o Memory is paged with 256 word block size, so that
constructing a channel program for a fragmented

memory is straight forward.

o DMA provided via separate memory ports.

Disadvantages:

o No command chaining facility.

0 Only one channel program per device controller.
Cannot easily optimize devices across multiple
requests.

INTERDATA 7/32

Mp — Pc

K(#0:255,Multiplexor)

L\——-K(=|it=0:15,Selector)

Features:

(@]

MPXR performs word and limited block transfers under
program control.

SELECTOR, controlled via MPXR, can perform high
speed block transfers, directly to DMA port.

"AUTO-DRIVER" channel converts interrupt devices into
block transfer.

Disadvantages:

o

No real channel capability for SELECTOR or MPXR
devices; no chaining capability; no memory management.

Sum of all device rates cannot exceed MPXR bandwidth
(no burst mode capability).

Only one device active on SELECTOR; channel busy for

duration of request; channel optimization must be
done in software.

No large block transfer on MPXR, except using
AUTO-DRIVER, which is low performance. Only one
channel program per device.

Mp

IBM 370

c: ,
P —XK (#0:191)
io; (Block Multiplexor -

Pio; (Selector) K(#0:191)

Features:

o

64 subchannels operating under control of unigue
channel programs - complete chaining capability.

Channel is busy only for duration of transfer.
Arbitration is done at device level in real time,
transparent to channel program. This optimizes
channel utilization over 360 MPXR approach which
arbitrated channel activity in software.

Disadvantages:

o

o

I/0 is done to/from physical memory requiring the
exec to construct a channel program from memory
maps.

A controller/device can only be connected to a single
channel program. Consequently, optimization of I/0
requests from independent tasks is complex --- probably
not feasible.

Each device forces burst mode, utilizing 100% of
channel regardless of its data rate.

Current PDP-11

Mp S M.map

Pc

Features:

o Simple operation: Address and word count pairs for
each device.

o All device types run on the same multiplexor bus.

Disadvantages:

o No capability for block transfer to/from fragmented
memory and fragmented mass storage devices.

o I/0 is asynchronous and uncoordinated: The sum
of all device transfer rates is limited by the
bandwidth of the UNIBUS.

C: _ K
Mp M.map -~— P l
io; (#0:15,Multiplexor) K.map (#0:15)

M.map

Proposed PDP-11 with IOP-11

K

Pio; (#0:15,Multiplexor) ——————— K.map (#0:15) K

Features: .

o

I/0 transfers to/from virtual addresses.

There can be an arbitrarily large number of maps,
each for a different 1/0 process, no data chaining
required.

I/0 transfers to/from virtual disk addresses by
means of disk segmentation maps, eliminating need
for command chaining.

IOP controls positional and rotational optimization
by multiplexing all I/0 processes across all I/0
devices. Channel is busy only for duration of
transfer.

Bandwidth permitting, IOP will schedule multiple
MASS busses in accordance with device data rates to
maximize bandwidth utilization.

IOP will translate virtual block transfers into
multiple physical block transfers and perform them
in parallel. '

IOP will allow UNIBUS to perform word multiplexing
operations and block multiplexing operations
concurrently.

Summary of Conclusions

Two preliminary conclusions are derived from the studies to

date: (1) It is possible to protect Digital's substantial
investment in the UNIBUS over the next 3-5 years and immediately
obtain a significant increase in system performance if we control
the bus as a block multiplexor , (by using an I/0 processor

with no hardware changes to bus or devices) and do away with
sector interlacing, and (2) Design a serial bus as a more

cost effective interface to low speed devices.

While an I/0O processor will not substantially improve
performance (only 50%), it will allow us to build large, high
performance systems using the UNIBUS (unmodified bus and
interfaces) and that the I/0 systems on these configurations
~will perform better than machines built around high bandwidth
memory/massbus connections (11/70). Further performance

gain over present UNIBUS systems is realized by (1) Elimin-
ating sector interlacing which will reduce transfer time for
multiple sector transfers, and (2) Performing multiple
physical requests for the same logical request in parallel.

I.1 I/0 Busses

Figure I.l1 shows the data rate of several PDP-1ll busses
(memory, massbuss, UNIBUS, etc., as a function of the cost
of a typical interface. Superimposed on this graph is the
data rates of several typical peripherals from which we
conclude that the UNIBUS is a performance overkill (and not
very cost effective) for line printers, card readers, and
floppies. Also, the UNIBUS cannot adequately handle the
data rates of high speed disks, requiring buffering and
sector interlacing to effectively slow them down. Also
plotted, is the data rate of the UNIBUS when controlled by
an I/0 processor, or when configured as a block multiplexor
channel, which are described in sections I.2 and I.3.

I.2 I/0 Processor Architecture

This section describes the architecture of a microprogrammed
I/0 processor capable of performing complete data channel
operations between main memory and UNIBUS or MASSBUS mass
storage peripherals.

The I/0 processor is designed to multiplex a variable number
of concurrent I/0 requests in a manner which optimizes
positional and rotational latency, and overlapped seeks.

Each of the variable number of requests is described as
independent transfers from independent virtual spaces; both
main memory and disk memory are virtualized using memory
maps having the structure of the KTr-1ll segmentation unit,

and the FILES-1ll retrieval pointer window, respectively. The
disk map is a simple list of file segments and as such, it is
adaptable to a variety of file structures.

Multiple I/0 processors can be configured to perform
multiple simultaneous I/0 transfers. A single I/0 processor
could be microprogrammed to control multiple controllers,
giving the functional equivalent of multiple I/0 processors.

The concepts are shown to be extendable to unit-record and
communication devices.

FORMAL DESCRIPTION

Original PDP-11/20 had a PMS* diagram like:

4 Here, all addresses between
¢ Pc & M,, and between Py/q,
| My, & Mg are physical

(go mapping). M, = disk.

l | I S

Me K:; M

With KT-11 memory map option, we can consider each process, 1,
having its own set of map registers, so that with memory management
we have

[

MAP ¢

| |

MP KIJ,"—— M‘

A first level enhancement over the above would be to allow a

P1/0 to operate through a MAPj so that memory management is seen
symmetrically between P, and Pp/y:

"
|
MAP L
|
| e
MAP 4
Mp |
Prjp——Ms

*Bell & Newell, Comp Str. P 15.

A second level improvement would allow Py/y to operate on Mg
thru a MAP'y, where MAP'y translates virtual block addresses into
physical BLOCK addresses (analagous to the logic which currently
exists in FILES-11):

R
|

!hﬁr !

Mp MAP

Fb,-«—-N““fK-——-ﬁﬁs

This makes Pc symmetric to Pr/p, and M, symmetric to Mg.
Now, if'we let

= t
| = R
and MAP . MHP v
J _ P&,s
, = I/0
P’/o -——-Mﬂp W
then the above becomes:
Pc"
W\? Pl’lo “ - M’

which is same as original PDP-11, with virtual Mp, Mg.

What are the advantages?

P e i)
Advantages of {,‘\mnPi are well known to us.
They allow us to address above 32K, and to map global,
reentrant areas, etc, etc.

ﬂ .
Advantages of [M P‘\ﬁ]would allow us to fragment physical
memory (currently a regzriction under RSX-11D) and transfer

to Mg without processor () intervention. That is, it allows
the equivalent of data chaining.

Advantages of [ﬁu.-MﬂP'ﬂ] would allow us to efficiently frag-
ment disk (currently done in FILES-11, purely software).

As above, we could transfer fragmented disk areas without
processor intervention. This allows the equivaient of
command chaining. ’

Advantages of integrating both maps in Py/, allow direct
transfer between memory and disk with arbitrary fragmentation.
Advantages over traditional data channels (offered by MODCOMP
and Interdata)are (1) maps are related to processes and files,
and they already exist, (2) no data channel programming, and
storage elements are symmetric.

The total logic involved in MAPJ and MAP', is shown in figure 1.

Currently, the virtual M_ map exists exclusively in hardware
(KT-11). P

Also, currently the virtual Mg map exists exclusively in
software (FILES-11).

What 1is proposed is a hardware/software trade off within each
map scheme to optimize total performance.

The fundamental question relating to the implementation of the
proposed architecture is: what portions of the organization should
reside in hardware or software, P, or PI/O’ and what are the inter-

face relations between them? ¢

I/0 ARCHITECTURE AND OPTIMIZATION

Formally, we have shown the fundamental I/0 process to be
represented by

i,
Mp — P:t/o M

\

where j represents a virtual memory transformation for process j,
and k represents a virtual memory (disk) transformation for file k.

Together, the pair (Jj,k) describes one of several I/0 processes
which may be in operation at any given time. That is, in general,
for P processes and F files, we can have:

P Process # -~ file =

! OTHER Pououe) \
r S Conturednt T/0 1
3 PROCESSES s
\ .
) '\ ‘
SV, cess L)¥ K
J V‘P‘ % :
v !
\ Nis -(-
P

Here, we have used the term I/0 Process, IOP4,, to denote a
particular (Jj,k) pair representing I/0O between %wo particular

virtual spaces.

In general, then, we could have an arbitrary number of IOPJk
processes (not to be confused with P. processes) at any given
time. A particular device controller could be designed to handle
a limited number of IOP;,S, say up to 8. (The variability of this
number allows a wide raﬂge of implementation § simple devices
could be limited to 1; complex could have 16, etc).

The minimum context associated with an IOij process 1s:

J P. PrRocess @ (KT maP PRTR)
KW —— FiLe & (PRNTR To RETRIEVAL POwTELS)
VMp —— VIRTUAL MEMORY AbDDResS

VMg VIRTuAL FiLe AODRess

VN VIRTUAL wWORD (OuUNT

The question remains as to what portion of this context should

reside in memory, under management of P,, and wnhat should reside
in the device controller, under management of Pr/oe

One possible hardware/software allocation of context is to have
control blocks in memory (set up initially by software) whose
physical address is loaded into a controller register.

Imf‘.,L comm-g_m/' oo

' 5 [F—— [Map
VM

l ey \ Fioe winbow
VN mMeP’ K

1,';_2‘:3,&
éx
Ne ‘ ug___\ To I0Pn! CONTEXT BLOCKY
(T/0 PAGE) (fnesicaL memoty)

The I/b processor (device controller) would then compute and
maintain the following table:

l

'IOF{Lu
Iuoex, ,
Ne

Dévice | CYL | TRW | SECTOR | Mem ADDAS | Bk COunY | X/0

—
VIRTUAL .:’ ;[VIRTUAL
MEMORY CONTEXT LisK
ADDRESS xS IIF AODRESS
[Asel gﬁ Jms.’i) | oces [sectox Jworb]
|
FiLéE MAP
KT-0_mne U L seemenr DLSCRIPTORSY)|
\ b&é
}
LENGTH so‘é?'&'\ﬁ‘ f_::‘m?ﬂs
@-.————J y
DISPLALEMENT
\ I W3 THIN
\ 10 SECMENT
L l 1 {_l | i 3
PrysiCAL PHYSICAL
MEMOR Y DS
AODRES S PODRESS

—— e -

- CVIRTUAL PRIMARY | -
Fia T, TRONSLATION OF {P“;Z‘m_z ADDRESSES OF %mwmm WEMOR

Fn'c, 1

Device
hmtis SHREpnen [~
sT0Q¢ T™MOLG
, P“\' l
!V, KT-\\ wmaP s I P
RT"H BLOCKS iu\ % ——— S - ‘YS Fite mAP
(v}
MGM L / s. R /J D \cn e T—/
DQY ‘ P Y ‘S \ DRTU
S " X s
o -) Ss $.°%X ©
H(| G "\ [~ DA
¢ 4 ‘e / sl
-
Pro CONTEXT
) BLOLES
LoGeRL LRELATIONOSHIP OF {mo_wﬁfi § PamAR 1 N
_ 1%
PuvsicaL{ SPACE OF 9 ononns’ “é’“"”

POSITIONAL AND ROTATIONAL LATENCY OPTIMIZATION

We have described an architecture whereby the I/0 processor
is given a number of I/O requests to perform input or output
between arbitrarily fragmented memory and disk. Each request is
independent of others, and a typical I/0 processor could be
designed to handle up to 16 requests at any given time.

Now, since all requests are independent, and since their disk
data is possibly fragmented, the I/0 processor can be designed to
multiplex all requests so as to optimize positional and rotational
latency, and perform overlapped seeks for multi-device controllers.

We define an index, np, which identifies I/0 requests

0 < np (i,J,vmp,vmg,vn) { 15

where we have arbitrarily restricted the number of concurrent
requests to 16.

For a multiple device, moving head disk controller, the I/0
processor could be microprogrammed to perform the following
sequences at the completion of each sector,

Sector)
end h

l Initiate overlapped
seeks, 1if any

_ 1
Load controller

with next request)

Update context of
request, np, that
Just co?nleted

Accept new np
requests from P,. if any

Scan context table of

all nps, and choose
optimized request for
next sector period. Also,
determine if overlapped
seek are required

]
Wait for nex?d\
Sector End ,/

IMPLEMENTATION APPROACH

In general, I/0 devices fall into one of the following categories:

2) unit record (printers. readers, etc.)

3 communication (terminals, synchronous lines,
multidrop, etc.)

éli mass storage (random or sequential occurs)

All devices in these categories could be implemented using
similar I/0 micro processors with writeable control store. Memory

trauslation (virtual My— Physical My — Physical Mg —* Virtual Mg)
has been divided into 8istinct context blocks., so that

mapping of primary memory is the same in all cases

mapping of secondary memory space is device type dependent:
for mass storage., we map file segments; for communications

devices, we map onto lines; for unit record and magtapes,
we don't map at all.

That is, one microprocessor approach with writeable control
store could provide channel capability for most all device types.

% GGN ER\C F°¢M$ oF PDP/IOP"\ STZ\A(TU‘ZfS

| ®

MP m— P‘ M' P‘
| | . I |
K.wwdow Kl.ums\u ? 'MW Kwwndow Kiaw Kumbug
\
\
M. pio = Ti0o M.pio : - P,
((L.Lt.(k (Av\é)\ (ot v C\ o sedav U*Q bLiusse ').) L(\\(K\ a4 CenXvol on Cevy ¥ L\\ Lusss

\V_\QVV“’\P\‘S ngl‘v?& "\'C' ()(0 5\"5 V\C‘\
W(V\& [Vt) .

@ @ av 1Y (*H'wb X4
Me 3 Me P)

c\disahied
K. Window e P 3
M.tio = I Piv K. ueidug
Komgus K.Rw — 1. R W
oXon & onlv e\ o P\:, SRVES I - o
(’{c\%t‘/\‘\x:&{fé(\' *‘-v\ P; L V\";ﬂ\ ((&1\"[0\ < oY) e Ve bU\Ss\
e e)
pAlelc|P
MARD WARE ASPECTS
O UNIBUS window requived 7 YIY|Y|N
o dual port Comtvollers mv'ch ? Y NN |IN
PERTOLMANCE BSPECTS .
0 dots F-Mp bus qet data dwechly ? Y [N [N]Y
0 dves Pio bus qet interrupts dvectlyl | Y IN IN IN
odees Pc & Pty campete fiv memory 7 N [N N |Y
COMPATIBWLITY ASPLCLTS
0 compalible wWithout V‘ecouQuﬁurdfou 7 N|Y |Y [N

SPECIFIC STRUCTUREs BAsed 00 emsTING

POP-1/dsS (qeneric form A

Mo
B KT@nit —— MASSbw

T
M.pio | { Po (POP-w/04)
e

Pob-un /Po@ (e\encv‘{c fovm D)

Pae - w/10 (c\mw’sc forwn A

Me M. cache P
I l\)mou 1
LI L LY) Pir MASS BV S

(new Rw

CPWS,

C
Mp P{iol L\Ui\\s werdeabie ww*!c\
o store, . an additiond
processor)
Ve
P{a
—K
—— K

I.3 Performance of Block Multiplexors

Section I.3 is a preliminary design of an I/0 processor
designed to optimize data channeling activity on medium scale
11 systems. This section compares the theoretical data used
by IBM to design their Block Multiplexor Channel (IBM Systems
Journal, Vol. 11, #3, 1972), with a theoretical study of
DECsystem-10 performance (Turner, Stone, Disk Throughput
Estimation, 1071), and actual measurements on CS-2 (Turner).

The IBM data agrees well with ours (less than 50% variation
in total throughput as a function of Q lengths, number of
devices, channel architecture, etc.), and sufficient confi-
dence has been attained in their applicability to PDP-11
systems to draw the following preliminary conclusions:

1. In terms of performance, IBM's Block Multiplexor
Channel is equivalent to an 1/0 processor, although
the architectual approaches are quite different.

2. - 1/0 processors don't help matters as much as we
tend to think they would. On PDP-11l scale systems,
we might increase throughput by 50%. However, for
certain applications, and systems (demand paging),
throughput could increase 100%.

3. But, an I/0 processor is considerably better than
multiple MASSBUS controllers, even when the MASSBUS
is programmed for overlapped seeks. IBM data show
that a single Block Multiplexor Channel (performing
one I/0 operation at a time) can outperform eight
MASSBUS type controllers, on a system with 64 devices.

4. The UNIBUS, under control of an I/0O processor, can
run similarly to IBM's Block Multiplexor Channel at
a rate greater than a million words per second which
is more than any of our mass storage devices.
Consequently, an arbitrarily large configuration of
RS04's, RPO4's, etc., all connected to the UNIBUS
(unmidified) can out perform the same configuration
connected by up to eight MASSBUS controllers having
wideband (non UNIBUS) access to memory.

An I/0 processor (separate micro controller, or integrated
into CPU microcode) is a more cost effective way of managing
mass storage devices than are multiple MASSBUS's controlled
by software. The UNIBUS, on an 11/40 size machine, has

sufficient horsepower to out perform the largest configuration
(4 MASSBUSSES)of the PDP-11/70.

Figure 4 Simulation resvlts using o voriable number of 1BM 3330-like devices on &

single channel

g F’)
; 100 - "?(' DEVICES
“PRboscdr T
PRO(ess 0
;*-m CONTROMLIN
Y u ” ‘8 us BLOCK
| MULTIPLEXER

E - -

-
-
-

-
-

CHANNELS

128
__________ oSy

plater
e

LE8m)

SELECTOR
CHANNELS

THROuGHPUT
n

W

1

2 3 4

ToTAu

MASSBUS CILTROUERS
W ITH PQOGQAMMGB‘

ﬁ PA&ALL&L ™o RE Ve vivesa

-
ReusTs

2% DEVILéS
tlzi44(8]

SIMVLATION DATA
W 059"0 .

20| | ;L_

s qo

A
4S 166

l

0w/l -

o
3y iso 4 liog

oSS 8 {1t
THROULHAUT (BIKS/5E)

CompARison OF T@M /Oéc DATA
SHOWING THROUGHPUT ABVANTPALES
OF I/D PROLESSORS AND BLOCK MUXS,

© = Plososed /0 V4 (T
é PQOCéisO “ CHANNELS
g CONTROLLING
3 wh MULTIALE
=1 WSS Buss s P

'

-

4. 19,

z e
b 1

o

& I

¥ -

| g

Figure 5 Simulotion results using {BM 3330-like devices evenly distributed among o
variable number of chonnels

MULTIPLE MASSOUs
COMVTROLLELS W ITH
PROURAMM ¢S
W)

1 i 1 I
1 2 3

-
4 5

TOTAL & PARALLE

L T/0 Re@uesT

s QUEVE 5:2¢

Figure 6 1/O response time distributions for a constant queve of 25

o
&

s
&

i

FRe@uency (VoY

e) '«-' - —— -
RéépO“‘C‘ TIiMA ¢ {s(c ltsnm«sr-gcoucs

YSTEms)

——
f Tro PROREsson (0R BLock MPxR)
TRANSACTIONS/SEC 350 a Kee“” =
(vor ennidgric
Fod Ok
MASSBus
md” " CONTAOLLE R

iy

I.4 Simulation of I/0 System

Current efforts include a digital simulation of the PDP-11
I/0 system. These results will measure:

1. Performance gain for I/0 processor and multiple
controller configurations.

2. Effects of mixing device types on the same MASSBUS
controller.

3. Throughput as a function of request que length for
for typical configurations.

4. Configurations and activities that characterize
data late conditions.

This section will be included when specific results are
obtained.

I.5 Serial Bus

The serial multidrop bus is intended to provide:

1. A low cost systems buss for small processors at
an acceptable performance level.

2. A cost effective means of connecting multiprocessor
systems.

3. A means of connecting large numbers of terminals.

4. A cost effective bus for unit record peripherals
for medium and large scale 1ll's,

Figure I.5.1 shows the organization of the bus arbitrator

in relation to each node. The arbitrator is a processor with
a buffer memory used for communication among nodes. Transfers
to and from node zero uniquely bypass the buffer memory, and

as such, node zero may be used to connect the central processor
in a hierarchial system.

Figure I.5.2 shows the variety of interconnections possible
with the serial bus protocol. Multidrop nodes can connect
to remote multidrop nodes, a low cost dedicated inter-

processor link (IPL), or to microprocessor based computer
systems.

DISTRIBUTED el BUS CONFIGURATION

C.wost
'
ﬁ ! SéR AL Gus
(avtvator) l “L
tevrminals
(P, c.R,.." WZ‘C}’"\ c

C.nosy

|
P— Ko K ..k,
I

l SEkm, BUs

M
bulfer wsed for
\V\hfﬂﬂAe !;Gﬂ to/from

n°*€$,eldnucuns V\OL\Q Ko

' Ib*‘vh'cg
- o sevia)

bas

'Q\ﬂu\'e I.s- i

PossIBLE MULTIPROCESSDR LINKS

C.wosy
SERML_Bws)
W
Ly w terminaly
we
SERVAL
. CQocar)
N
N\
) ‘ L]
Vslli’ (\wker peotessov \mw)
C
[8
I SERA L
C(vemote\

fquee T52

SECTION II

INTERRUPT SYSTEM

II.

INTERRUPT SYSTEM

Overview

The use of a stack for saving and restoring machine
registers in the PDP-11l interrupt system works well
for small single user un-mapped operating systems.
In large mapped memory systems, running multiple
processes, however, some improvements could be made
to reduce the time overhead of saving and restoring
machine context.

Presented here is an architectural description which
contains many desired attributes for such systems,
while retaining a significant level of compatability
with existing machines.

Competition and Motivation

The motivations for this section include the following:

1. Both Modcomp and Data General have announced machines
which incorporate interrupt features which are of
superior performance to the PDP-11. These features
include switching of register blocks and memory
maps in hardware.

2. The existing KT-11 architecture is inadequate for
(a) Larger virtual addresses, (b) More efficient
memory allocation, (c) High performance demand
paging. Improved memory management architecture
will require different techniques for changing the
memory mapping context. These changes explicitely
affect interrupt processing.

3. Operating Systems which are process structured
(RSX-11D) impose a high degree of context switching
among processes with significant overhead. Context
switching and interrupt servicing are highly related
and require an integrated approach.

4. The PDP-11 architecture does not lend itself toward
high speed communications and interrupt processing.
Interrupt-by-character devices run with excessive
overhead, and while the attached proposal does not
directly deal with this problem, it does provide the
groundwork. Further to this point is the growing
requirement for hardware managed I/0 functions such
as command and data chaining.

I1.1 Formal Description

Formally, a computer system operating in complex environment
can best be described in terms of "processes" (rather than
programs and variables, etc.). A process is defined as a
"procedure with context" where procedure denotes the machine
time-sequence structure, and context denotes the processes
state. Context infers different things in different environ-
ments, but in terms of the hardware processor, context
generally refers to the general registers, map registers,

and Program Status Word.

Emerging from the concepts of processes is the process number.
Symmetry behooves us to treat all processes alike (except for
priority), and therefore, since a process can be anything from
a FORTRAN program to an interrupt service routine, the pro-
cess number serves to distinguish them from within the system.

In the simplest sense, process numbers should be used as an
index into a table of context vectors. Each vector contains
a pointer to a context block which holds the machine state
for the process.

Interrupts in such a system are simply effected by asserting
a new process number on the CPU, which, upon arbitrating the
priority of the requested and running processes, may choose

to invoke a context switch to the new requested process.

Now, specific to the proposed PDP-1ll interrupt system, the
process number, P, is used as an index into the CONTEXT
VECTOR TABLE (origined at physical location zero) to obtain
the CONTEXT VECTOR, CVP. Currently, these locations are the
trap vectors which contain the new PC, PS. Under the new
definition, however, these locations would contain the
physical address of the CONTEXT BLOCK (a mode bit in the PS
could control this redefinition and thereby retain full
compatibility).

Referring to figure II.2, MAP contains the location of the
memory map registers (KT-1ll registers or equivalent). SP and
PC contain virtual addresses of the processes stack pointer
and program counter, etc.

A new register located in the I/0 page would be assigned to
hold the CURRENT CONTEXT VECTOR, CCV. Upon interrupt, the
processor would save the existing context in the current
processes CONTEXT BLOCK, load the context addressed by the
CONTEXT VECTOR, and put the old CCV on the new processes stack.
A return from interrupt (RTI or RTT), or a fake (software
generated) RTI, would pop the old CCV off the stack and
restore the context of the old process.

I1.2 Interrupt:

a. Store context in block addressed by CCV. Save CCV
as CCVOLD.

b. Load CCV from CONTEXT VECTOR TABLE indexed by
process number (currently the trap address).

c. Load machine context from block addressed by CCV.
d. Push CCVOLD onto new stack.

ITI.3 Return from Interrupt:

a. POP CCVOLD from current stack.

b. Store machine context into block addressed by CCV.
c. Load CCV with CCVOLD.

d. Load machine context from block addressed by CCV.

IT.4 Compatibility and Extendibility:

Compatibility with existing peripherals is retained.

Compatibility with existing software is controlled by a
single mode bit. Modifications to existing software to take
advantage of improvements are minor.

Implementation logic is similar in that both modes involve
retrieval of vectors, pushing and popping variables onto stacks,
etc. Block or cache loading is, of course, new.

The concept naturally extends to scheduling of software
tasks, thereby reducing the time/core overhead of loading/
restoring machine registers for every context switch.
Admittedly, this is a small portion of a tasks context, but
would serve to speed up switching significantly.

The architecture allows for high performance implementations
which would "cache" the machines registers from context blocks,
thereby saving and restoring only those registers which were
used by a process.

The architecture allows for low performance implementations
which would treat the machine registers as ordinary memory,
thereby reducing the number of internal CPU registers.

The architecture allows for a simplified implementation
whereby all memory and machine registers are accessed through
a common cache. Access frequencies of the general registers
would naturally retain them in the fast access locations,

and performance could be retained by disabling memory up-
dating on all register addressing modes.

{wm cv...}
Stack on RS I

[CCVR 1/

CURRENT CONMTEXT
VELTOR REGiIsTC R
N

\oo.o\u\ Qv-vhh P,\

veetor Yable CONTEXT
O (wiCrvupt

\
{
\

' P‘
CONTEXT
/ H
: Pc, Ps, 5P
+ Ps. Ro-Ry¢
CURAENT CONTEXT MAP PTR
PROCLSS P RCs ~ ACs
%
l D
CONTEXT
Jecevol R
T™RLE CONTEXT

F-la\.we T\

waswavdwo) Y 'YL 3‘“\',‘_3

03%099%¢ P Y EEE AR Sk |
y
| e smaurrg
W 27034 A _1¥iNGd RIVAZE KLY
w30y d
W
59]
NAIWLS | . (s30T
NIALS
14245159
el 40)
MR
sd
§NaIAVI0Y INNO0TBACND? '3 $a935%2
(;wmao? '‘NoM VA M s oy PSS |

(Soer 207 7awmQaum mxu)

An Improved Interrupt System for the PDP-11 D. Nelson

Appendix A

The PDP-11 is in need of some hardware enhancements in the I/0 area
to facilitate command and data channing (like data channels), and
high speed communications channels. But, we should stop thinking of
data channels as some kind of unique processors. Rather, we should
consider the general I/0 function as simply another process within
the system. Currently these I/0 processes are our interrupt service
routines, but they are too slow for much of the I/0O because they run
at macro level. A better approach is to run the high throughput, .
short, interrupt routine processes at micro level with the device
context stored at the macro level. Advantages of this approach
include higher throughput and the ability to build transfer-by-word devices
and program them as NPR devices. We have a lot to learn in this
area, but in many subtle ways, the idea of processes having their
machine state contained in memory and addressable by a process
number provides a structural framework that relates well to the
general I/0 problem.

The following description of an asynchrounous line controller is

given by way of example and is not intended as a serious proposal.

The communication device described is an asynchrounous line multiplexor
that generates a BR request for each character. In order to minimize
the overhead of processing each character, it is desired to implement

a micro level controller that buffers all characters in separate line

buffers, and generates an interrupt when any CTRL character is encount-
ered.

The software handler is designed to set up buffers and process control
characters. 1In doing so, it loads the address of a table of buffer
pointers into R and then executes an RTI. The microprocessor would
be programed to store each character recieved into the appropriate line
buffer. This is accomplished in microcode by implicitly executing the
equivalent of :

MOV line (RO), Rl ;get address of buffer
MOV ch, @(RrRl) + ;store in buffer

MOV Rl, line (RO) ;update address

BIT ch, CTRL ;:test character

BEQ exit rexit

(generate macro interrupt)

Since the above instructions are processed at micro level without

having to undergo a macro level context switch, the character processing
rate is comparable to an NPR controller. An additional advantage is
the ability to generate macro level interrupts for control characters,
where higher level processing is required.

v
25 5
2o 2s
33 3% 3
unigus af 9 2p”
inYeveeup® \AAAAAAAND " 9 l
req uest | , |
| heve ca o | !
aToee WAy cY
' iw bubter C\of“.; £ l V\\‘\.’\
| # | Process .
cTRL
' chae l
l ($
L |
|
' l
PakdwARE WO CObDé | WMACRO c¢od¢
LeveL ——>J-4——— WS nfg——— LEVEL
PROCLESSWOG l PROLLss NG ' PROCESSING

PROLLSE DR Pm WOR WALRD tonTROLLED
COMMUNICATIONS CONTROLLER,

TO H\GHEL LeveL PRoLEsSES

SECTION IIX

VIRTUAL MEMORY SYSTEMS

ITI Virtual Memory

The idea of using a backing store (disk) to provide
a virtual memory (VM) environment has been around for about
15 years. Since the late 1960's, more than 200 research
papers have been published on the subject, and of the 50
papers published in IBM's Systems Journal since 1971, no less
than 10 (20%) have been devoted to VM. The advantages
and disadvantages of VM are becoming well understood, and
there are growing indications that mini-computer manu-
facturers (Modcomp, Data General) will be implementing VM
in the near future, as evidenced by their recently anncunced
memory management architectures.

The purpose of this section is twofold: first, to
focus attention on the potential that VM offers not only
as RSX-11D size systems, but also for RSX-11M and RT-11
size systems, and second, to expose the inadequacies of
our current KT1ll memory management hardware for use in
VM systems. Contained herein is a proposed memory manage-
ment unit which is claimed to be better suited for demand
paging as well as physical and virtual memory allocation.
It is also cheaper to build, faster in performance, and
adaptable to both small 16-bit machines as well as large
32 bit machines.

ITII. 1 Some Characteristics of VM Systems

Virtual memory (VM) systems can be characterized with
respect to real memory (RM) systems by distinguishing levels
of capability from levels of performance. In this sense, we
consider "capability" to be the types of functions that the
system can perform without regard to the rate at which it
does it. By the same token, we consider the machines "per-
formance" to be the raw speed of the machine without regard
to its capability. Given this, we can compare the relative
levels of capability and performance that can be attained
by VM and RM machines as a function of the system's real
memory size.

s J
3 M = RM
o Q-
& iy
- g
Cpre —> coke —

This simplified comparison shows that whereas the
capability of an RM system varies significantly as a function
of core (while its performance is constant), the capability
of a VM system is constant as a function of core (while its
performance varies). The key point here is that it is easier
and more cost-effective to build systems whose capabilities
are independent of the amount of core. The marketing and
engineering departments of Digital have become overly pre-
occupied with the significance of the amount of core memory
in its relation to functional characteristics. Rather than
treating real memory as just another level in an integrated
memory hierarchy, we continue to perceive it as a hard re-
source/facility which is critically related to functional
capability.

III. 2 Advantages of VM to Digital

It is tempting to suggest that VM offers the advantage
of reducing software development costs, since programs
could be written without regard to physical memory size.
While this is true to some extent, it is important to note
that a considerable portion of the research done in VM
systems has been concerned with effects of program structure
and program structuring techniques aimed at offsetting the
performance degradation inherent in VM systems. It has
become clear that virtual memory is far from "transparent",
and that in order to recover the performance loss, the soft-
ware engineering effort required to appropriately structure
programs will likely be comparable to the effort we currently
expend in coping with real memory overlaying techniques.

The primary advantage that VM gives us is the option to
structure programs rather than the necessity to do so. This
option allows us to write large, highly capable programs
which are either (a) unstructured with low performance, or
(b) highly structured for high performance or some inter-
mediate level depending on the intended frequency of use.
Thus, under VM, one applies program structuring techniques
in order to achieve a performance level, rather than a
capability level. On the other hand, under RM, large
program capability, and therefore performance, is impossible
without some degree of program structuring (overlaying).

[XF]
()
2| (cant doy RM - VM
c] — — — -
2 S
oL
52 Sg \x,si> ﬁz"
o VM z| &
éf Q
\ .
DEGREE oF PROCRAMA DECREE oF PROGRAN

STRUC TURE STRUCTURE

IIT. 3 Memory Management Unit

There have been numerous research studies published
regarding the optimization of various parameters for
virtual memory performance. Generally speaking, the results
of these studies show that the performance of VM systems is:
(a) Very sensitive to program structure characteristics
(b) Moderately sensitive to page size
(c) Slightly sensitive to page replacement technique

Performance is generally optimized when the page size
is comparable to the characteristic program structure size.
Unstructured programs favor a smaller page size, whereas
highly structured programs favor a larger page size. IBM
studies have shown that as long as the program is structured
in accordance with the page size, then larger page sizes are
disproportionately preferred (Hatfield, Journal of R/D).

While there are variations in optimized page size
values, there is general agreement that the KT-11/D page
frame (8K bytes) is too large, and that a more appropriate
value is 1K-2K bytes. Figure III. 1 compares the address
translation logic of the KT-11/D and a proposed KT-11/X.

It should be noted that the smaller 1K page size of the
KT-11/X is sufficiently small so that physical memory can
also be allocated in 1K sizes. This ability to allocate
physical space in the same size as virtual space not only
simplifies system software, but also eliminates the com-
plexity and latency required for the extra addition that's
currently required the KT-11/D.

Conclusion

Virtual memory on PDP-11 systems should be considered as
part of a 2-3 year systems strategy. While changes in
memory and backing store technologies may change some
parameters of VM, the basic concepts and economies of
memory hierarchies will long be with us.

PRESENT

o

. . - .

KT Rea Adoks

KT-1\/D PROPOSEd KT-\W /X
VIRTUAL ADDR VIRTVAL AOORS
3 \3 ‘ PAGE TABLE AODRS 6 10

J

+

SAR

Prysical A00es

P:

S

J

PAR PlA

v

PHYSICAL A0DRS

ENCOOED PROTELTION BITS
ENCODED STYATISTILS BITS

-C'\e\ Jugll

SECTION IV

VIRTUAL ADDRESS SPACE EXTENSION

IV. VIRTUAL ADDRESS SPACE EXTENSION

There is little doubt that a major restriction of the PDP-11
is its limitation of program size to 32K words.

Competively, the PDP-11 does not compare favorably as evidenced
by the following chart:

Hp DG |MOD IV INT iBM | pDP-11

Virtual address space | 96k(1)| 64k [256r(2)| 224 224 64Kk (3)
(bytes)

I1&D separation Y N Y N N Y

Physical address space | 128K 256K| 512K 221 224 222

1. Program segments restricted to 32K, data segments to
65K. Operating system features segmentation which allows

subroutine segments to coexist in separate address
spaces.

2. Includes factor of two for I&D space separation. Note
that in practice, this is not attainable.

3. Excludes I&D space separation because it is unsupported.

This section contains descriptions of two approaches to virtual
address space extension: segmented and linear.

SECTION 1IV.1

LINEAR ADDRESS SPACE SPECIFICATION

(To Be Included)

IV.2 Segmented VAX Overview

Attached is a preliminary specification for extending virtual address
space for the PDP-Ll. The concepts and content of this document was,
to a large extent, extracted from previous work done by Craig Mudge
and Bill Strecker, and to some extent incorporates the combined advan-
tages of both proposals.

It should be clear that this is a specification for an architecture,

and not an implementation. Some freedom has therefore been exercised

in creating two segment modes (1 KT compatible, and another with improved
paging characteristics) that may be implemented as either in combined
form, as seperate options, or excluding one or the other entirely. The
combined architecture serve to show their comparisons and differences,
and also serves to introduce compatibility whenever required.

The assumptions used in designing the extension logic were those presented
in the September 13th memo from Craig Mudge, with some relaxation on the
assumption of KT-1ll compatability. Accordingly, some attempt has been
made to clarify the motivation and advantages of a smaller page size than
that presently used on the KT. Additional motivation for the smaller

page size is the good possibility of the paging architecture being applied
to small 11/05 systems, whereby protection would be implemented by a single
segment®*page table, thereby not only allowing for better protection on RT1ll
size systems, but also providing the ability for these small systems to

run within a segment on the larger 32bit machines.

The total effort involved in extending the address space of the PDP-1l
extends far beyond the effort required to design and build the basic mach-
ine. Effects on operating systems, compilers and linkers are significant
if implemented in their full potential. The section dealing with these
effects and related implications of the full implementation will be pres-
ented later.

* Previously called 'chapter' by Mudge, 'segment' by Strucker. The
term segment is not consistent with KT1ll documentation by more consistent
with usage in the computer industry.

L e

PDP 11/VX SPECIFICATION
Overview

The PDP 11 architecture explicitly involves the use of the
general registers for all memory reference address modes.
This characteristic suggests a natural means for extending
the virtual address ability of the machine by simply extend-
ing the width of each register to say 32 bits. The concat-
enation of each register with its extension forms a 32 Eit
segmented address space with a logigal capability of 21
segments each having a length of 21° bytes. The PDP 11/VX
central processor is capable of executing existing programs
residing within a segment with additional instructions provided for
control and data transfer among segments.

The translation of the virtual address to the physical address
is managed by the contents of segment tables which point to

page tables whose contents in turn point to memory locations.
This clasical segmentation /paging architecture combines the
advantages of program construction and protection afforded by
virtual address space segmentation, as well as the advantages

of physical memory allocation and demand paging. The PDP 11/VX
architecture allows for both KT1ll compatible segments of lengths
up to 8K bytes, as well as segments having a smaller fixed size
of 1K bytes.

Appropriate mode bits have been added in the processor status
register (PS) to provide compatibility with existing software
particular concern has been given to interrupt and trap sequences,
as well as segment and page fault recovery techniques. (to be
supplied)

Correlations between expected functional performance/capability
and related implications on the operating systems, compilers,
linkers and additional hardware requirements are analyzed (to
be supplied).

Formation of the Virtual Address

Since all PDP-11 memory reference instructions specify one
of the general registers, the virtual address is formed by
concatenating the contents of the extended register with
the conventional PDP-1l1 effective address. Referencing
figure 1, the extended register contents specifies the
segment number and the PDP-11l effective address specifies
the offset within the segment.

The address formation can be expressed more formally by
using the following notation:

R = 16 bit genera. register as in the current PDP-11

RS =16 bit extension of R called the segment register

O = concatenation operator

Re = Rs O R
= 32 bit extended register
() = contents of

The operation of the eight addressing modes is as follows:

mode operand address A
" R contains operand
1 A = (Re)
2 A = (Re)

(R) = (R) + &

3 A= (Rs)a ((Re))
R=R + &

4 (R) = (R) - &
A = (Re)

5 (R) = (R) - &
A = (Rs)a ((Re))

6 A= (Rs)d (R) + X

7 A = (Rs)m@ ((Rs)O (R) +X)

Existing PDP-1l1l instructions will provide processing of data
and control of programs within a segment. Additional instruct-
ions are defined to provide data transfer and control among
segments.

l.

Load Long (LL)

opcode: @7 5R SS

operation: The 2 word starting at the location specified
by SS are used to load the extended register specified by P.

The word pointed to by SS is used to load the segment reg-
ister and the next word 1is used to load the general register.
If SS is of the form PR (i.e. mode @F) then the extended regis-
ter specified by R is loaded with contents of the extended
register specified by R'. The value of & for autoincrement
modes ls 4. In immediate mode the next two words inline with
the next two words inline with the LL instruction are used to
load the extended register.

Store Long (SL)

ovcode: @7 6R DD

operation: The extended register specified by R is loaded
into the 2 words starting at the location specified by SS.
The format of the 2 words is as in the LL instruction. If
DD is of the form @R' then the extended register specified
by R' is loaded with the extended register specified by R.
In autoincrement and autodecrement modes the value of A is
4.

Jump to Subroutine Long (JSL)

opcode: 10 7R DD

operation: The 2 word destination specified by DD is saved

in an internai register. (If DD is of form YR an illegal
instruction trap occurs.) Two words are pushed on the stack.

The first is the low 16 bits of the extended register specif-

ied by R, The second word contains the segment register spec-
ified by R. The contents of the register specified by R are
replaced by the contents of the (extended) PC. The contents of
the PC are then replaced by the contents of the internal register.

Return from Subroutine Long (RSL)

opcode: P P2 1R

operation: The contents of the (extended) pPC are replaced by
the contents of the extended register specified by R. The
contents of the extended register specified by R are replaced
by the top two words popped from the stack. The first word
popped replaces the contents of the segment register specified
by R; The second word popped replace the contents of the
general register specified by R.

Jump Long (JL)

opcode:

operation: The contents of the PC are replaced by the contents
of the double word addressed by DD.

Virtual to Physical Address Translation

There exists two independent motivations for the design of the
address translation logic:
(1) First, the desirability for system and application prog-

rams to be logically divided into independent segments
whereby control over protection, linking, sharing and executability

can be affected at the segment level irrespective of the manner in
which physical memory is allocated and associated.

(2) Second, the desirability for the operating system to physic-
ally divide memory into small pages whereby control over memory
allocation, mapping and replacement (demand paging or virtual memory)
can be affected at the physical page level irrespective of the manner
in which the system and application programs are segmented.

Thus, segmentation relates to virtual address management, while
paging relates to physical address management. The requirement
that they co exist within the same architecture has determined
the translation logic described herein.

To a large extent, the design of the KT-1ll memory management
unit does not reflect the above motivations (the 4K page size

is too large, and the 32 word block size is too small). Never-
theless, architectural compatibility has been retained while at
the same time, an operational mode (called page mode) has been
provided which adequately meets the above motivations, thereby
eliminating several KT deficiencies. This mode allows for more
efficient allocation of memory and provides the possiblity of
implementing demand paging (virtual memory) by reducing the page
size to 512 words. Since the mode distinctions are applied at
the segment level, both KT and page mode segments can be combined
within a process running on a fully implemented system. Compat-
ibility between the modes relating to access control, statistics
gathering bits, etc., has been applied wherever possible.

Figure 1 has been sectioned into three areas to schematically
describe the address translation mechanism: (1) the logic which
currently exists on the PDP-11 with KT1ll (enclosed in dashed lines),
(2) the additional logic required for 32 bit segmented address (upper
left), and (3) the additional logic to reduce the page size to that
comensurate with the requirements to facilitate improved physical
memory allocation and demand paging.

The translation of the physical address is accomplished by using
the segment field as an index into a segment table (origined at
a physical location specified by a base register, STBR). The
segment table entry contains access bits, residency bit, KT mode
bit, segment lemgth, and a pointer to the origin of the segments
page table (origined on an eight word boundary).

The offset of the virtual address contains a page field (3 bits
for KT mode, 6 bits for page mode) and a displacement. The page
field is used as an index into a page table which contains statis-
tics bits, a residency bit, and pointer to the physical page. The
displacement field is used as an index into the physical page to
locate the addressed word. The detailed format of each register
is shown in figure 2.

Note that the contents of the segment tables relate to segment
level access control, and the contents of the page table relates
to physical memory management.

Note further that these table reside in physical memory, and are
logically accessed for every memory reference. The actual number

of core accesses per memory reference is solely a function of imple-
mentation, thereby satisfying the goal of common architecture imple-
mentable over a broad range of performance levels.

Compatiblity

In order to guarantee that existing user programs will run on

the 11/VX machine (in an address space other than segment zero),

a bit in the Program Status register, PS€08), is assigned to
specify X or non-X mode. When the X mode bit is set, the contents
of all extended registers is taken from R7 (PC). This allows an
extended program to call a non-extended subroutine by a normal
JSR instruction.

To ensure that system programs are compatible, another spare bit
PS (Oék,is used to control the stacking and unstacking of PCX on
interrupts and RTI, return from interupt. All interrupts are
returned to Process @, Segment @. The interrupt vector here, in
particular PS <09), controls the stacking and unstacking of PCX.

/ ABOED WX INSTRUCT L ON
LOGAC [P SRC | DsT n

ﬁeN {1 C\‘ BASE gggﬂ | [—M—%-] |

EXRTENDED REG\STERS |
RiX K

_ COMPUT €
i POP W/20
ADDRES S
} AR I
, | oF FSeT |
) VIRTUAL ADDRESS

SEG TBL ENTRY f‘h
n?j\-L |P]| D
o . J EXISTING |
"o /40 LoGIC

r PAGE T8

[

-

//
_— " CLASSIC S&G/
PAGING LOGIC

1 PHYSICAL ADNDRESS
Flauwne | - -

STBR

366 TGL NODREss (STA)

1 ugnern (STL)

SEG. TBL AGOARLSSES PAGLE TOL
é 22

ALLLLNE0 0N | .
(edde «t'ub M':'..‘.'\' slory

00 N Access
G\ RD owe%
1O gabe oMY
1y RO/WR

RESWOENST

PAce TBL

: ?
_LPOGE PODRESELPAN]] PLE Jah// JelAcF]

KT Mooe:
6 BT B LACIWMAWOT AcCEss CONTROL Fill
(s A BiT AGOLEsS ~ EXTENSION QAREC T
wRitren rok
ALCES D BIRTISTNCS
1)
PAGE Mose: | oA | AR . ¥ 2R 3
10 BiT D015 PLACEMEDT (as “go"ﬂ\\g(s\b(u*r

GAvEy 206 BT AlLeEsSS

Tiquve 2.

SECTION V

PDP-11 INSTRUCTION SET

(To Be Included)

SECTION VI

WRITABLE CONTROL STORE

(To Be Included)

SECTION VII

MULTIPROCESSING CONFIGURATIONS

VII. MULTIPROCESSING CONFIGURATION

Preliminary Price/Performance Analysis For Multiprocessor
Configurations

Preliminary analysis shows that it makes more sense
to consider tightly coupled multiprocessor systems to be
based on large PDP-11/40 and PDP-11/45 systems rather than
small PDP-11/05 systems. The reasons for this involve the
cost of the MCll and DAll with respect to the cost of the
processor, and the fact that a large number of processors
will likely require memory configurations exceeding 28K.

Both the PDP-11/40 and the PDP-11/45 processors are
sufficiently fast so that we can assume that the primary
limitation in processing rate is imposed by the speed of
the UNIBUS accessing memory. Therefore, if we assume that
the processing rate is directly proportional to the rate
of memory accesses, and that each processor randomly accesses
each of M memory banks (true for interleaved memories), then
the effective throughput of a system comprised of N processors
can be shown to be:

(1) Throughput = M(l—(l-%)N)

This expression for system performance has been computed
for several configurations and divided by system price to
obtain price/performance values. I have attached several
figures which graphically represent these results. Figure 1
is a plot of Equation 1 showing lines of constant throughput
ratio as a function of the number of processors and the number
of parallel memory banks. Figure 2 shows the system through-
put (in units of single processors) as a function of the number
of memory banks, indicating that in configurations where the
number of processors equals the number of memories, the system

throughput is approximately 60% that of the theoretical maxi-
mum. Figure 3 shows a plot of the number of effective CPU's

as a function of the number of actual CPU's for various .
memory configurations, operating in both bank and interleaved
modes (Interleaved memory is accomplished by using the least
significant memory address bits as bank addresses, whereas
bank mode is accomplished by using most significant address
bits as bank addresses. In the case of the former, memory
addresses from processors are randomly distributed; whereas

in the case of the latter each processor can execute a program
which is local to each memory bank.). Figure 4 shows the
price/performance ratio for various multiprocessor configura-
tions as a function of typical single-processor system price.
As is seen, large price/performance gains are realized in large
svstem configurations. In Figure 5, we plotted the same price/
performance data as a function of the total multiprocessor
system price. Comparison of Figures 4 and 5 shows that for an
eight-processor system, a factor of 2 increase in price perform-
ance is attained from a $300,000 system whose single-processor
configuration would be priced at roughly $150K.

These price/performance calculations account for the
current retail prices for PDP-11/40 systems, and for the
current retail prices for the DAll-F and MCll. 1In addition,
the performance degradation due to delays imposed by the MCl1
is accounted for. Memory contention was computed under the
assumption of random accesses which is a worst case assumption
for interleaved memories. An additional 50% gain in price/
performance can be realized by assuming that processors execute
programs which are local to 16K banks.

A further significant increase in price/performance can
be realized with the use of MOS memory. In this case, the
scheduling algorithm would be designed to schedule particular
processors to tasks which reside in that processor's high-
speed memory, requiring that the scheduler be aware and take
advantage of the PDP-11/45 high-speed memory bus. I would
estimate that a 4 CPU system which utilizes this technique
would have a price/performance ratio aporoaching 3:1 relative
to a single~-processor system selling in the area of $150K.

Regards.

DLN/ehb
attachments

l"Efficiency of a Multi-Control Path Processor," D. L. Nelson
May, 1970 (report available)

UNIBUS DA;
cPy T f
CP2 ‘\ DAZ
' [9)]
. o) - -
a 0 -
=
i =,
| o]
CPy o— o > ‘]&‘ ‘ [
“‘\\.._.A‘W
MC1l MC11 MC11 peripherals
Ml Mz MN
FiS3T MOS BUS (OPTIONAL)

0 Jdecanu - N

C

8T 02

el

Lt

o 2 4 6 B8 10 ;12 .14 -16 18 20

M'-fhu@bépfbﬂfﬁéﬁoryfiéhksb y

Figure 1. System Throughput Improvement Ratio

Throughput for N Processors

N

saturation point
for N=16 processors

theoretical-
maximum

statistical
average

OTTE T T 6 80 12 1§ 16 18 ®m

»ﬂgM ﬁ?nbmber Of memqrf banks

Figure 2, System Thlroughput"r‘_;, 5

"CPU's (EFFECTIVE)

§
1

-

' i “ H
o | “ w : “ S ”
_ L | b L | w : o
| |] | , | o | | o | |
1 i ! B ! ! . _ snw\ll.l\. 4 oo - ” m. v _: “
_ I | “ | , I R
- AR i e b T I N Lo Do
o SRR : : Lo L w ' eight _
L R A | | memory ' .
o o | TR TS IO B S A m controllers!
o S T [R A o b Co
IR R N BN RSN TSN R A T O B
: m T | Lo S S
. : : H ; : : : . : ; .
R w N L v v P
! R el ! IR S I TR o i four b
;de\\vmjwmm L | memory. | |
15 wbnmnwmw<mﬂ | 'controllers:
Rt Rt el s B et U R R T
b bbb i
! ; : :
“ H | N
~) G S I | . w |
- VU N B R i i [
| b
, Lo | w
i BN l‘m-.}!!i‘.} PRI S [UUD SEE e . e —- — “ .. P |
| Sl EERENEN
w TUAL]- St i S Bt I
| - oy . _ ;
[R A R A AVEPT RN R SN S, - —— - - ¢ H 1 H 1
- A
P . T
| w) | | Lo
L L Figure 3. | | el fqoml =t 1 f
w ! A S PO A N SR S (S S SR A
' w B R P s N et S Dot s Sman Lol Sebanten Sl . ' i * w ! !
| ’ i i
! e m “
.” m i i b

)

UNITS OF EQUIVALEN
1 CPU SYSTEM

(

THROUGHPUT
---PRICE

o
!
i
.

S S S

i

i
]
i
H

: ;
{

e e S

oA

: . i i !
; ! w : ;
m ! m A ” M
; ! | o ; m
i ! : ! ! H ! ; i
L P i
P : ooy oo
. i . 3 { ' .
[i oo S
! : ! } { ; i
. = DR
. S R . .
! ; ; ' *. i i !
i ! i | i) !
I H] i i i Loy
m | ! ‘. i H \
; ; i ; ; i
'] : 4 : |
o b S m b
i h ' i : . 4 !
.4 . i . ; H . y
! _ : ; ! : P ! :
i , P ! ﬂ
i | | . ; :
1 Bl R S R R sl B RN
w 1 ! ! H ! !
H i H i i ! e :
_T.| g — - feee w ﬂ - *1 JE S T M ' }-
“ 1 N .
w H i ' i ;
_ - - f—— T N w - :
i : . 3 i
! | : _ :
b frmmg e - - I o ‘
‘ ' ' : i t
: m :
: . = i [S -
. i r i |
| | _
: ! } i — i i

w - M ~ i
._ | .
h .
o - o R e e e Bl ol -y S R | m
B . 1. _ S . R ! i ”
; m . |
Lo . S T P S NN S TR S N I
- _ _ . o |
; : 4, i : ;
50 1 So_ - U U O A 58 U S U T Y U SO O N
! , H ! “ “
ST _mo*h,?r ENT.- u.nmc SYSTEM. RRICE B S R O ! T I S IPS S
' (INDICATES wiunﬂ_uoz mzwrﬁ _RSX|,- LARGE |RSX, ..H.m_ﬁmmzwm?m_uw?-_- I A R I _
H M mmagnm 4 L] N A , :
. . ﬁ - -
Do Lo w " M

S

e
. ~—~j———-~;

)

NITS OF EQUIVALEN

e

THROUGHPUT

1 CPU SYSTEM

PRICE

1.0 4

- - Lo o s ”) j
L M . Lo M ’ w
: e | I e B il e o i Sl B
ST A . -
L A b ; -
| m . w - _ . ~ _ . ..J_ o) e — JRSUN W P S—
P A : m ! |
" A A m - BT R j
[S T A :
L j @nﬁﬁwA
| . SN A R O S B
v e]
|
. | W T
] N L
A | 1
- _ B I T O S
b B
A
. , FEREEEEE .
|
) }
o so | | |.abo| || | [| {2pal | Lapo) | |
S . |_.| sYSTEM |PRICE _(5K) . b
Pl ﬁ
f : ' W e — - R e f e - e f o e e e -
; M | - Figure $, . b , |
w j ! .“
w ~ - I S I k. . ;
; ; _
: w | ~) m
o R |

PDP-il MULTIPROCESSING SOFTwakt PROTOTYPE
(CURSORY RaD PROJECT NDESCRIPTION)

RICHARD W, ECKHOUSE, JR,
DFCEMRER 13, 1974

MULTIPRACESSING WwITH THE PDPwlt FAMILY COMPUTEKS IS A
NATURAL EXTENSION QF THE MULTIPROGRAMMING CAPARILITIFS
ALREADY PROVIDED BY RSXeiiM AND RSXeiiD, THE ANVANTARES OF A
MULTIPROCESSOR SYSTEM ARE MULTIFOLD, FIRSY, IT ALILOWS THE
USER TO INCREASE MIS TOTAL SYSTEM PERFORMANCFE ®8Y THE
ADDITION OF ANOTHMER PROCESSOR ELEMENT RATHER THAN BRY
REPLACING THE OLD SYSTEM WITH A NEW ONE, INDEED, IF THE
USER ALREADY HAS THE LARGEST SINGLE PROCESSOR SYSTEM,
INCREASINL PERFORMANCE CAN ONLY RE ACHIEVED RY THE AONITION
OF ONE OR MORE PROCESSORS,

A SECOND ADVANTAGE OF THE MULTIPRUCESSOR SYSTEM IS8
MONDULARITY, 8Y MODULARITY IS MEANT THE ABILITY TO CONFIGURE
SYSTEMS WHICH SPAN A WIDE RANGE OF CENTRAL PROCFSSING
PERFORMANCE WITH ONLY A SINGLE PROCESSOR NDESIGN, ODFEC HAS
ALREADY ACHIFVED SUCH MODULARITY 1IN ITS RFAL=TIME SYSTEM
SOFTWARE AND - IT 1S APPROPRIATE THATY IT DOES THE SaMeE THING
FOR THE REAL«TIME HARDWARE SYSTEMS,

A THIRD ADVANTAGE IS THE REDUNDANCY IN THF CENTRAL
PROCESSING CAPABILITY, - SHOULD AT LEAST ONF OF THE
PROCESSORS REMAIN OPIRATIVE, THE FAILURE OF THME OTHERS WILL
NOT CAUSE THE SYSTEM TO CEASE FUNCTIONING ENTIKELY,
AVAILABILITY S AN IMPORTANT ASPECT GOF HOST 0¥ THE
MULTI»COMPUTER SYSTEMS WHICH DEC CURKRENTLY SHIPS, AND &
TRULY MULTIPROCESSING SYSTEM CAN BE EXPECTED YO PROVIDE SOME
SORY OF "FAIL=SOFT" CAPABILITY,

THE HEAWT OF THME PDPeti MULTIPROCESSOR SYSTEM 1S SHARED
MEMORY, SINCE THE PROCESSORS RUN IN AN ANONYMQUS MODE,
SYSTEM FUNCTIONS ARE EXECUTED WITH EQUAL EASE BY FITHEK
PROCESSOR RUNNING REENTRANT PROGRAMS FROM THE COMMON MEMORY,
AS MANY TASKS AS PROCESSORS MAY BE RUNNING SIMULTANEOUSLY,
WITH EACH PROCESSOR HANDLING ITS OwN INTERRUPTS AND 1/0
PROCESSING, DOUPLICATE COPIES OF SYSTFM PROGRAMS ARE NOT
NEEDED SINCE PROCESSOR LOCKS MAVE BEEN ADDED 80 AS TO
PREVENT NONF PROCESSOR FROM INTERFERRING WITH ANOTHER WHILE
CRITICAL SYSTEM TABLES ARE ®EING MODIFIFD, THESE LOCKS
REQUIRE ONLY SMALL CHANGES TO THE STANDARD SOFTWARE SO THATY
THE GROWTH IN EXECUTIVE SIZE 1S NEGLIGIBLE,

USING COMMON TASK AND PARTITION DESCRIPTOR TABLES, THE
INDIVIDUAL PROCESSORS wILL EACH BE ABLE TO EXECUTE ALL USER
TASKS AND EXFCUTIVE REQUESTS, ALTHOUGH I/0 DEVICES WILL BRE

_ PHYSICALLY CONNECTED TO ONE PROCESSOR OR ANDTHER, THIS

CONNECTION WILL BE TRANSPARENT TO THE USENX TASKS, RESULTING
IN THE LOGICAL SHARING OF ALL I/0 DEVICES, :

BY ADAPTING A CURRENTLY aval_AslLt SOFTWARE PRODUCT,
R8X=11M, FEXTENDED USER GROWTH IS ACHIEVFD, EXTENNED GROWTH
MEANS THAT THME SMALL USER CAN GrOw FROM A& SINGLF PROCESSOR

PAGE ¢

SYSTEM TO A MULTIPLE PROCESSOR SYSTEM RAY A) RUYING THE
REQUISITE MARUWARE AND B) REBUILNDING RSXx USING "SYSGFnN", THE
USE" DOES NOT NEED TO LEARN A NEW SYSTFM QR NEw PROCFDURFES
BUT RATHER ADOS THE PROCESSORS IN MyCh THE SAME FASHION THAY
HE WOULD ADD NEw I/0 DEVICES,

HARDWARE REQUIREMENTS FOR THE MULTIPROCESSQOR SYSTEM ARE
RATHER MINIMAL, BESIDES THE ADDITIONAL PROCESSNKS (UP TO «
MAXIMUM), THE ONLY OTHER NEw PIlECE UF EQUIPMENT ACTUALLY
REQUIRED I8 MULTIPORT MEMORY, THE SIZ2E UF THIS MEMOKY 18
DICTATED BY THME REQUIREMENTS OF RSX=1iM (E,G,, A MININMUM DOFf
16K), SINCE ALL OF THE FEATURES SUPPORTEN IN RSXx=11M ARE
SUPPORTED IN THE MULIPROCESSOR SYSTEM, THE USER CaN ADD
MEMORY MANAGEMENT OR ADNITIONAL PERIFPHERAL DEVICES IF HE S8C
DESIRES, '

SECTION VIII

ASCII CONSOLE

VIII. ASCII CONSOLE

This section represents the collective efforts of the ASCII
Console Committee represented by Small, Medium, Large
11 Engineering, 8 Engineering, and Field Service.

The Committee produced an architectural specification which
all planned consoles will meet (11/05, 11/44*, 11/85, 8A%*,
Field Service). Each machine need implement only a subset

of the specification (varying from all to none at all). The
primary purpose of the specification, therefore, is to remove
redundant implementations of common functions.

The Committee did not determine which functions should or
should not be implemented on specific machines. Rather, this
is a function of relevant product managers for the particular
machines, and is based on marketing, cost, and implementation
considerations that clearly lie outside of the Committees
charter and domain.

Some specific issues, relating to consoles, which were not
reconciled include:

A. Whether or not ASCII console machines should be capable
of remote maintenance (11/05 will have serial consoles
which cannot be controlled remotely).

B. Whether or not ASCII consoles should facilitate remote
console control in a network for the purpose of remote
program loading, etc.

C. The alternatives to the use of the ESC character in our
present terminal oriented software.

Consequently, even though the Committee has successfully
removed all apparent redundancies and has provided a consis-
tent framework which relates to all known console functions,
the Committee did not (nor did it try) to reconcile the
diverse product philosophies that will continue to affect
our strategies in the areas of networks, terminal oriented
software, and remote maintenance.

* Cancelled

INTRQDUCTIONI

THE PURPOSE OF THIS SPECIFICATION IS TO DEFINE A SERIAL LINE
SYNTAX AND A BASIC ASCII COMMAND SET FOR THE IMPLEMENTATION OF A
CPU CONTROL DEVICE REPLACING THE LIGHTS AND SWITCHES CONTROL
PANEL, THE RESERVED ASCII COMMANDS ARE INTENDED TO PROVIDE A
CORE OF GENERIC OPERATIONS WHOSE PROPERTIES APPLY TO MOST DEC
PROCESSORS, PROVISION IS MADE TO EXPAND THIS SET IN AN ORDERLY
FASHION FOR EACH SPECIFIC CPU DESIGN, 1IT IS EXPECTED THAT EACH
CONSOLE IMPLEMENTATION WILL PROVIDE A DESIGN OESCRIPTION THAT
REFERENCES THE EXACT CPU REGISTERS INVOLVED AND ANY RESTRICTIONS
THAT MAY APPLY, RATHER THAN THE GENERAL DESCRIPTION INCLUDED
WITH THE COMMANDS IN THIS SPECIFICATION,

IN NORMAL OPERATION ASCII CONSOLE COMMANDS ARE MULTIPLEXED
OVER A SERIAL LINE SHARED WITH PROGRAM 1/0, THE PROTOCOL
DEFINES THE SEQUENCE FOR ARBITRATING THE LINE MULTIPLEXOR VIA
THE DATA STREAM (ALTERNATE MODE), A HARDWARE SWITCH MAY ALSO
BE PROVIDED WHICH CAN DISABLE ARBITRATION AND FORCE THE DATA
STREAM TO EITHER THE CONSOLE OR PROGRAM 1/0 CONTROLLER, THE
SERIAL LINE PROTOCOL DEFINED HERE APPLIES ONLY TO EXCHANGES
WITH THE ASCII CONSOLE LOGIC, THE CONSOLE APPEARS TRANSPARENT
EXCEPY FOR THE ESCAPE SEQUENCE WHEN THE LINE IS IN ALTERNATE
MODE,

1. SERJAL LINE PROTOCOL?

THE SERIAL LINE SYNTAX FOR CONSOLE COMMAND INPUT AND RESPONSE

18 DEFINED IN THIS SECTION, THE PROTOCOL IS INDEPENDENT OF LINE
SPEED OR FULL DUPLEX/HALF DUPLEX OPERATION, IN FULL DUPLEX
OPERATION EACH CHARACTER 1S ECHOED AS RECEIVED, EXCEPT WHERE
DEFINED OTHERWISE BY THIS SPECIFICATION, IN HALF DUPLEX

NO CHARACTER IS ECHOED,

1.1 COMMAND FORMAT}

THE COMMAND INPUT FORMAT IS AN ARBITRARY NUMHBER OF OCTAL DIGITS
TERMINATED BY A COMMAND CHARACTER OR COMMAND "SPECIAL SEQUENCE",

1.2 COMMAND RESPQNSE3

THE COMMAND RESPONSE CONSISYS OFs THE ECHO OF THE COMMAND
CHARACTER(S) (FULL OUPLEX LINE ONLY)J THE TRANSLATION OF ANY
NON=PRINTING COMMAND TO A PRINTABLE RESPONSE} THE RESPONSE
DATA (A8 REQUIRED)} AND THE COMMAND ACKNOWLEDGE (ASCII 840),

NOTEs COMMAND. ACKNOWLEDGE IS REPRESENTED 8Y THE HEART
SYMBOL "“on,

MULTIPLE RESPONSE?S

IF A SINGLE STIMULUS IS REQUIRED TO TRANSMIT SEVERAL
RESPONSES (AN QUTPUT MACRO), THEN EACH SECONDARY RESPONSE
MUST BE PRECEDED BY THE ASSOCIATED COMMAND CHARACTER ON
EITHER A HD OR FD LINE, EXAMPLEs ON DETECTION OF A
PROGRAMMED HALT THE NORMAL HALT RESPONSE MIGHT BE FOLLOWED
BY A CPU STATUS REQUEST COMMAND (S8T) AUTOMATICALLY,

EXs «#HOQQQ1098T{2440
1.2.4 OCTAL DATA OR NON=DESIGNATED ASCII CHARACTERS
THE OCTAL DIGITS @=7 (ASCII 60«67) ARE USED FOR NUMERIC DATA
ONLY, THE LOW=ORDER THREE BITS OF THESE CHARACTERS ARE
SHIFTED INTO THE RIGHT END OF THE TEMPORARY DATA REGISTER,
THE HIGH OCTAL DIGIT OF THIS REGISTER IS LOST,
ANY UNASSIGNED ASCII CHARACTER IS TREATED AS A "NO=OPERATION"
BY THE CONSOLE LOGIC, NOP CHARACTERS MAY OCCUR ANYWHERE IN
THE COMMAND INPUT STREAM,
1.2,2 COMMAND WITH NO DATA RESPONSE!

THE COMMAND I8 ACKNOWLEDGED AT COMPLETION BY THE TRANSMISSION
OF A SPACE CHARACTER (ASCII '40),

EXs 3eeoLe
1.2.3 COMMAND WITH DATA RESPONSE1

OCTAL DATA IS QUTPUT FOLLOWED BY THE COMMAND ACKNOWLEDGE
AT COMPLETION, '

EX: EQ127370
1e2.4 ILLEGAL COMMAND3

AN ILLEGAL OPERATION WILL RESULT IN THE TRANSMISSION OF
A QUESTION MARK (ASCI! B77) FOLLOWED BY THE COMMAND
ACKNOWLEDGE,

EXs 1002L79
1.2.5 RECEIVE LINE ERRORS
THE CHARACTER IN ERROR IS TRANSMITTED WITH CORRECT PARITY
AND FRAMING (FULL DUPLEX ONLY), THEN A PLUS SIGN (ASCII1 ¥53)
IS TRANSMITTED FOLLOWED BY THE ACKNOWLEDGE.

EXs 100000 (FD LINE #sgERROR CHAR ECHO)
EX3 1000Le+° (HD LINE LsLOC COPY OF XMT CHAR)

2, RESERVED CHARACTERS:

THIS SPECIFICATION EXPLICITLY DEFINES THE COMMAND ACTION AND
RESPONSE FOR CERTAIN OF THE ASCI1 CHARACTERS USED AS SINGLE=-
CHARACTER COMMANDS, CONSOLES IMPLEMENTED UNDER THE TERMS OF
THIS SPECIFICATION MAY NOY USE THESE CHARACTERS FOR ANY

OTHER CONTROL FUNCTION, IF A PARTICULAR COMMAND CANNOT BE
IMPLEMENTED, THAT CHARACTER IS TO BE TREATED AS A "NO~-
OPERATION" (NOP) BY THAY CONSOLE, PROVISION FOR THE IMPLE~
MENTATION OF ADDITIONAL CPU=SPECIFIC COMMANDS IS MADE THROUGH
THE USE OF THE DOLLAR SIGN (ASCII ©44) COMMAND DEFINED BELOW,
ALL OTHER SINGLE CHARACTER COMMANDS ARE IMPLICITLY RESERVED
FOR FUTURE BASIC COMMAND SET EXPANSION,

2,1 ABBREVIATIONSS

2.1.1 ADDRESS REGISTER (AR)?
REGISYER CONTAINING THE ADDRESS FOR START,EXAMINE AND
DEPOSIT OPERATIONS, EXt PDP/118BUS ADDRESS REGISTER,
PDP/8sCP MEMORY ADDRESS REGISTER,

2.1.,2 DATA DISPLAY LINES (DD)1
INTERNAL REGISTERS OR MULTIPLEXORS DEFINED BY THE
CPU DESIGN SPECIFICATION, EX$ PDP 11/45 DISPLAY DATA
MULTIPLEXOR QUTPUT,

2.1.3 DEPOSIT FLAG (DEP)1
R/W STORE BIT THAT IS SET TO ONE TO INDICATE THE PREVIOUS
COMMAND WAS A DEPOSIT OPERATION, USED TO CAUSE A
DEPOSIT=STEP FOR SEQUENTIAL DEPOSIT OPERATIONS,

2.1.,4 EFFECTIVE ADDRESS (EA)&
THE EFFECTIVE ADDRESS IS THE CONTENTS OF THE ADDRESS
REGISTER JUSTIFIED YO THE NEXT LOW=ORDER CPU STORAGE
WORD, THE EFFECTIVE ADORESS IS USED TU PERFORM
START,DEPOSIT AND EXAMINE OPERATIONS,

2.1.5 EXAMINE FLAG (EXM)3

R/W STORE BIT THAT 18 SET TO ONE TO INDICATE THE PREVIOUS
COMMAND WAS AN EXAMINE OPERATION, USED TO CAUSE AN
EXAMINE=STEP FOR SEQUENTIAL EXAMINE OPERATIONS,

2.1.6 OCTAL FLAG (OCT):

R/w STORE BIT THAT IS SET TO ONE TO INUICATE THE LAST
CHARACTER WAS AN OCTAL DATA CHARACTER, USED TO CLEAR THE
OCTAL TYPE=IN REGISTER ON THE FIRST DATA CHARACTER
FOLLOWING ANY USE OF THE REGISTER CONTENTS,

2.1.7 OPEN FLAG (OPN)? '
R/W STORE BIT THAT IS SET TO ONE TO INDICATE THAT A
MEMORY OR REGISTER LOCATION HAS BEEN EXAMINED., USED TO
PERFORM AN IMPLIED DEPQSIT OF USER INPUT DATA,

2.1,8 PROGRAM COUNTER (PC)13
REGISTER THAT CONTAINS THE ADODRESS OF CURRENT PROGRAM

EXECUTION, EX3 PDP/4{1sCONTENTS OF R7, PDP/BsCONTENTS OF
CP MEMORY ADDRESS REGISTER,

2.1,9 SERIAL OUT (S0@):

THE SERIAL LINE FROM THE ASCII CONSOLE TO THE CONTROLLING
DEVICE, MAY BE A LOCAL TELEPRINTER OR REMOTE VIA DATA

SET,

2.1,10 SWITCH REGISTER (SW)t
REGISTER USED TO DRIVE THE CPU SWITCH REGISTER LINES,

2.1.11 TEMPORARY DATA REGISTER (TMP)3
REGISTER USED TO PACK OCTAL TYPE=INS, LOW=ORDER THREE
BITS OF OCTAL DATA CHARACTERS ARE SHIFTED INTO THE
RIGHT OCTAL POSITION AND THE LEFT OCTAL DATA POSITION
IS LOSsT,

2.1.12 CONDITIONAL ACTION (33
THE ACTION ENCLOSED BY THE BRACKETS IS CONDITIONALLY
EXECUTED DEPENDING ON SOME CONDITION SPECIFIED BY A
NOTE,

2,1.13 CONTENTS OF LOCATION ()3
INDICATES A REFERENCE TO THE CONTENTS OF THE REGISTER
OR MEMORY LOCATION ENCLOSED BY THE PARENS,

201014 TRANSFER DATA »>>3
INDICATES THE DATA SQURCE ON THE LEFT IS TRANSFERRED
TO THE DESTINATION ON THE RIGHT,

2.2 CPU CONTROL PRIMITIVES:

THE FOLLOWING COMMANDS ARE SENT TO THE ASCII CONSOLE 7O
CONTROL THE OPERATION OF THE PROCESSOR, THESE COMMANDS
ARE INTENDED TO REPRODUCE THE LEVEL OF CONTROL PROVIDED
BY THE LIGHTS AND SWITCHES CONTROL PANEL,

2.2.1 A(101) DISPLAY ADDRESSH

ADDRESS REGISTER CONTENTS ARE UNPACKED TO THE SERIAL OUT,
(AR) >> 80

2.2.2 C(1P3) CONTINUE!

CAUSES CPU TO RESUME EXECUTING INSTRUCTIONS AT THE ADDRESS
SPECIFIED BY THE PROGRAM COUNTER, UNCONDITIONALLY RESETS
THE HALT FF TO PERMIT CONTINUOUS EXECUTION.

2,2.,3 D(124) DEPOSIT:

THE CONTENTS OF THE TEMPORARY REGISTER ARE STORED IN THE
EFFECTIVE ADDRESS REFERENCED BY THE ADDRESS REGISTER. THE
SECOND AND SUCCESSIVE COMMANDS WILL DEPOSIT IN SEQUENTIAL
LOCATIONS, 1IF THE CONTENTS OF THE TEMPORARY REGISTER

ARE NOT ALTERED BY NEW OCTAL DATA, THE PREVIOUS CONTENTS
WILL BE USED,

[EA+3 >»>» EA] #}
(TMP) »> EA
@ >> 0OCT) 9 >> OPN) © >»>» EXM} { >>» DEP

COND w»i3 DEPsi
2.2.,4 E(105) EXAMINE:
THE CONTENTS OF THE EFFECTIVE ADDRESS REFERENCED BY THE
ADDRESS REGISTER ARE UNPACKED TO THE SERIAL OUT, THE
SECOND AND SUCCESSIVE EXAMINE COMMANDS WILL EXAMINE
SEQUENTIAL LOCATIONS,

[EA+s >> EA) w1

(EA) »> 80

2 >> 0OCT) § >> OPN) § »>» EXM} @ >»>» DEP

COND wis ExMsy
2.2.,5 H(11@) HALT?

CAUSES CPU YO STOP EXECUTING INSTRUCTIONS, WHEN HALT
COMMAND I8 COMPLETED THE CONTENTS OF THE PROGRAM
COUNTER ARE UNPACKED TO THE SERIAL OUT,

(PC) »>» 80
@ > 0CTs @ > OPN} @ >»>» EXM} @ »>» DEP

2.2.6 10(111) INITIALIZES
CAUSES A SYSTEM RESET, ANALOGOUS TO PDP/8 CLEAR

OPERATION OR PDP/11 START WITH HALT SWITCH ON,
FOLLOWING THE INITIALIZE THE PROGRAM COUNTER IS

UNPACKED TO THE SERIAL OUT,

(PC) >> 80
@ >> OCT» @ >> OPN} @ >> EXM) 0 >> DEP

2.2.7 L(§114) LOAD ADDRESS!

LOADS THE CONTENTS OF THE TEMPORARY REGISTER INTO
ADDRESS REGISTER,

(TMP) »> AR
2 » 0OCTp @ > OPN) @ > EXM} 0 >»> DEP

2.2.8 M(115) READ DATA DISPLAY:
THE STATE OF THE DATA DISPLAY REGISTER OR MULTIPLEXOR
IS UNPACKED TO THE SERIAL OUT, THIS COMMAND PROVIDES
A MEANS OF READING THE CONTENTS OF CPU EKRUR OR
OPERATIONAL INFORMATION REGISTERS WITH A SINGLE COMMAND
CHARACTER,
(OD) »> 8O
2.2.9 N(116) EXECUTE NEXT INSTRUCTION: |
CAUSES THE CPU TO EXECUTE A SINGLE INSTRUCTION AND THEN
HALT, THE WALT FF 1S FORCED SET BY THIS COMMAND, AT
COMPLETION OF THE COMMAND THE CONTENTS OF THE PROGRAM
COUNTER ARE OUTPUT TO THE SERIAL OUT,

(PC) »>» 80
@ >> OCT) @ >>» OPN) @ »>» EXM) @ >»>» DEP

2.2,19 R(122) READ SWITCH REGISTERS

SWITCH REGISTER CONTENTS ARE UNPACKED TO THE SERIAL OUT,
(SW) >> S0

2,2.11 8(123) START:

CAUSES A SYSTEM RESET AND TRANSFERS THE CONTENTS OF THE

ADDRESS REGISTER TO THE PROGRAM COUNTER, THIS COMMAND

ALWAYS RESETS THE HALT FF TO PERMIT THE CPU TO BEGIN
EXECUTING INSTRUCTIONS FOLLOWNING THE RESET,

2.2.12 W(127) WRITE SWITCH REGISTER!

THE CONTENTS OF THE TEMPORARY REGISTER ARE TRANSFERRED
TO THE SWITCH REGISTER,

(TMP) >> SW
@ > 0OCT) © >>» OPN) @ >>» EXM) 0 >»>» DEP

2.3 CPU MACRO COMMANDS3

THE FOLLOWING COMMANDS ARE CREATED B8Y COMBINING THE
PRIMITIVE COMMANDS INTO SEQUENCES AND DEFINING A SINGLE
CHARACTER TO INVOKE THE SEQUENCE, THESE MACRO'!'S MAY

NOT BE DUPLICATED BY TRANSMITTING THE SAME SEQUENCE OVER
THE SERIAL LINE, THE MACRO SET PROVIDES A HIGHER LEVEL
SYNTAX SIMILAR TO THE ONeLINE DEBUGGING TECHNIQUE FOUND
IN PDP/1t SYSTEM SOFTWARE, IN ADDITION, THE COMMANDS
HAVE BEEN DEFINED IN SUCH A WAY THAT THE SHARING OF THE
SERIAL LINE BETWEEN THE CONSOLE AND PROGRAM I/0 IS MADE
RELATIVELY TRANSPARENT TO THE USER,

2.3,1 G(327) GO

CAUSES THE SERIAL LINE TO SWITCH TO PROGRAM 1/0 MODE,
THEN STARTS PROGRAM EXECUTION AT THE ADDRESS IN THE
TEMPORARY REGISTER, THIS COMMAND IS ANALOGOUS TO THE
START PRIMITIVE,

SEQ! Z, L, S
2 > 0CTy 2 > 0PN} 0 > EXM) @ >»>» DEP

2.,3,2 P(128) PROCEED!:

CAUSES PROGRAM TO RESUME EXECUTION AND SWITCHES LINE
TO PROGRAM 1/0 MODE, THE HWALT SWITCH IS FORCED RESET
TO PERMIT CONTINUOUS EXECUTION SIMILAR TO THE CONTINUE
PRIMITIVE,

SEQ: 2, C
0 > 0OCT) @ > OPN} 0 >> ExM} @ >> DEP

2,3,3 /7(057) OPEN?

EXAMINES THE LOCATION AT THE EFFECTIVE ADDRESS IN THE
TEMPORARY REGISTER,

" SEQt L, E
B > 0CT) 1§ > 0PN} | >> EXM} 0@ »>» DEP

2.3.4 CR(215) CLOSE1 |
DEPOSITS ANY OCTAL DATA ENTERED SINCE THE LOCATION WAS

OPENED, THEN CLOSES THE LOCATION, IF NO LOCATION IS
OPEN THEN A LINE FEED IS SENT,

(D) #»¢
@ > 0CT) @ >>» OPN} @ >»> EXM} ® »>» DEP

COND #1s OCTai, OPNs{
2.3.5 LF(P12) OPEN SEQUENTIAL LOCATIONS

ODEPOSITS ANY OCTAL DATA ENTERED SINCE THE LOCATION WAS
OPENED, THEN CLOSES THE LOCATION, THE NEXT SEGUENTIAL
LOCATION I8 THEN OPENED AND THE ADDRESS ANUD CONTENTS
ARE SENT TO THE SERIAL OurT,

[D1 #1,%2

=,

. (”\

COND #1: 0OCTai
COND #¥23 OPNsi

2,3,6 A(136) OPEN PREVIOUS LOCATION?®

DEPOSITS ANY OCTAL DATA ENTERED SINCE THE LOCATION WAS
OPENED, THEN CLOSES THE LOCATION, THE PREVIOUS
SEQUENTIAL LOCATION IS THEN OPENED AND THE ADDRESS AND
CONTENTS ARE SENT TO THE SERIAL OUT,

(D] #1,#2

([EA=y >> EA) #2
[A) w2

(E] w2

o » 0CTy

COND #it OCTsi
COND #2: OPN=s{

2.4 CONSOLE CONTROL COMMANDS3

THE FOLLOWING COMMANDS ARE USED TO CONTROL THE ASCII
CONSOLE LOGIC, AS WITH THE CPU COMMAND SET, ALL UNIMPLE~
MENTED COMMANDS MUST BE TREATED AS NOP'S,

THE CONSOLE LOGIC MAY BE CONNECTED SIMULTANEOQUSLY TO A
LOCAL TELEPRINTER AND A COMMUNICATIONS DEVICE USED FOR
REMOTE CONSOLE ACYIVITY, TME REMOTE/LOCAL SWITCH ENABLES
EITHER PORT TO ORIGINATE CONSOLE COMMANDS EXCLUSIVELY,

2.4,1 3$(044) SPECIAL SEQUENCE?

THE DOLLAR SIGN IS USED AS THE FIRST CHARACTER IN A TWO
(OR MORE) CHARACTER SEQUENCE FOR PROCESSOR=DEPENDENT
COMMANDS, THE COMPLETE SEQUENCE IS TREATED AS A SINGLE
CONSOLE OR CPU COMMAND, ANY CONTROL FUNCTION NOT PROVIDED
FOR EXPLICITLY IN THIS SPECIFICATION MUST BE IMPLEMENTED
AS A SPECIAL SEQUENCE,

ANY CHARACTER EXCEPT THE NUMERICS (@60-067) MAY BE USED
(FOLLONING THE $) TO DEFINE SPECIAL SEQUENCE COMMANDS,
THE NUMERICS RETAIN THE SAME DEFININTION AS IN THE
RESERVED CHARACTER SEY AND MAY BE USED TO SUPPLY DATA
FOR A SPECIAL SEQUENCE COMMAND,

EXs ST FOR READ CPU STATUS DISPLAY
2.,4,2 ¢(100) CLEAR OCTAL INPUTS
THIS COMMAND IS USED TO CLEAR THE OCTAL TYPE-IN REGISTER,
THERE I8 NO RUB=QUT PROVISION AND THE ENTIRE INPUT NUMBER
MUST BE RE=«TYPED,
2.4,3 2(132) SET SLI OPERATIONG

SWITCHES THE ASCII DATA STREAM TO THE PROGRAM SERIAL
LINE CONTROLLER,

2.4,4 ESC @ (33,060) ESCAPE TO CONSOLE?S

THE CONSOLE ESCAPE SEQUENCE SWITCHES THE ASCII DATA
STREAM TO THE CONSOLE LOGIC, THE ESCAPE SEQUENCE
CHARACTERS ARE NOT ECHOED AS RECEIVED (FD) AND ARE

NOT PASSED TO THE PROGRAM, WHEN THE ESCAPE SEQUENCE I8
COMPLETE AN "«CON" MESSAGE IS SENT TO THE LINE, IF

THE CHARACTER FOLLOWING THE ESCAPE IS NOT THE CONSOLE
SWITCH CHARACTER, THAN BOTH CHARACTERS ARE TRANSFERRED
TO THE RUNNING PROGRAM IN A "BURSTH,

2.4.5 Be7 (60-67) OCTAL DATAS

THE OCTAL DIGITS ARE USED TO TRANSFER BINARY DATA OVER

THE SERIAL LINE, THE THREE LOW=ORDER BITS OF INPUT DIGITS
ARE SHIFTED TO THE LOW OCTAL DIGIT OF THE TEMPORARY
REGISTER, THE HIGH OCTAL DIGIT 18 LOST, CONSOLE RESPONSES
ARE UNPACKED INTO OCTAL DIGITS FUR TRANSMISSION OVER THE
SERIAL LINE,

2,4,6 AC(PO3) INITIALIZE CONSOLE MODE?

CAUSES THE CONSOLE TO EXIT FROM "LOGIN®™ MODE OR "SPECIAL
SEQUENCE®" MODE, RETURNS ALL CONSOLE FLAGS TO A NORMALIZED
STATE AND MAY BE DEFINED TO INITIALIZE CONSOLE CONTROL
OPTION REGISTERS,

2.4,7 AE(025) READ CPU ID3

CONSOLE RESPONDS WITH A UNIQUE ALPHA=NUMERIC SEGUENCE
ASSIGNED TO THE PARTICULAR CONSOLE IMPLEMENTATION,

EXt AEQ01145/004503 ~REPRESENTING AN 11/45 CPU
AND DATEs 74=323 (JULIAN)

2.4,8 AL(214) SET LOGIN MODE1

THIS COMMAND LOGICALLY CONNECTS THE LOCAL TELEPRINTER
SERIAL I/0 TO THE REMOTE EIA INTERFACE, CHARACTERS MAY
BE EXCHANGED BETWEEN THE LOCAL TELEPRINTER AND THE REMOTE
SYSTEM, THE CONSOLE WILL IGNORE ALL CHARACTERS EXCHANGED
OVER THE LINE UNTIL THE LINE MASTER SENDS THE INITIALIZE
CONSOLE COMMAND TO EXIT LOGIN MODE,

2.4,9 AT(024) TEST SHIFT REGISTER?S

CONSOLE LOGIC TRANSMITS A SYNCH SEQUENCE CUNSISTING OF THE
COMMAND ECHO (FD LINE), A NULL CHARACTER AND A RUBQUT, - THE
SHIFT REGISTER OPERATION IS THEN VERIFIED BY TRANSMITTING A
WORD OF ALL ZEROS FOLLOWED BY A WORD OF ALL ONES TO THE SERIAL
ouT,

3. ERRORS:

THE CONSOLE LOGIC DETECTS TWO CLASSES OF ERROR: THOSE
THAT RESULT FROM A USER COMMAND AND THOSE DETECTED BY
THE CONSOLE LOGIC INDEPENDENT OF USER ACTIVITY,

3.1 COMMAND EXECUTION ERRORS?S

COMMAND EXECUTION ERRORS ARE DETECTED IN CONSOLE MODE AND
DO NOT ALTER THE STATE OF THE CPU, THE RESPONSE TO A
COMMAND EXECUTION ERROR IS A SINGLE CHARACTER FOLLOWED

BY A COMMAND ACKNOWLEDGE (ASCII w©41),

de1e1 2(077) ILLEGALS

COMMAND COULD NOT BE INITIATED BECAUSE OF A CPU OR
CONSOLE CONDITION, EXs DEPOSIT WHILE CPU RUNNING
OR THE INPUT OF NUMERIC 8 AS DATA,

de1.2 +(053) LINE ERROR?3

COMMAND WAS RECEIVED WITH A FRAMING, OVERRUN OR
PARITY ERROR AND ABORTED, CONSOLE DESIGN SPECIFICATION
SHOULD DEYAIL WHICH ERRORS ARE DETECTED,

3.1.3 #(Q43) CPU RESPONSE TIME=OUT:

THE CONSOLE MUST PROVIDE AN INTERNAL TIME=OUT FOR ANY

CPU COMMAND THAT STOPS CONSOLE ACTIVITY UNTIL THE CPU

RESPONDS, IF THE CPU FAILS TO RESPOND A TIME=OUT OCCURS,

THE COMMAND IS ABORTED AND THE CONSOLE RETURNS TO THE READY STATE,

3.2 OPERATION ERRORSS

THE CONSOLE LOGIC DETECTS CERTAIN ERRORS IN PROGRAM OR
COMMUNICATION LINE OPERATION, THESE ERRORS RESULT IN A
MESSAGE WHICH IS NORMALLY DIRECTED TO THE SERIAL LINE
MASTER, ALL AUTOMATIC RESPONSES ARE PRECEDED WITH AN
ASTERISK, THE SERIAL LINE MUST BE LEFT IN THE SAME STATE
(CONSOLE/PROGRAM I/0) AS WHEN THE ERROR WAS DETECTED.

3.2.1 PROGRAMMED HALT3

IF THE PROGRAM EXECUTES A HALT, THE NORMAL HALT MESSAGE

I8 PREFIXED WITH AN ASTERISK AND SENT TO THE SERIAL 0UT,
THE MESSAGE GOES TO THE CONSOLE MASTER DETERMINED BY THE
REMOTE/LOCAL SWITCH,

3.2.2 CARRIER LOSTs

WHEN THE CONSOLE IS IN REMOTE OPERATION AND CARRIER HAS
BEEN RECEIVED FROM A REMOTE STATION, L0OSS OF CARRIER
WILL FORCE THE LINE TO "LOGIN" MODE AND SEND A MESSAGE
TO THE L O C A L TELEPRINTER, THE MESSAGE MUST BEGIN
WITH "wCAR"™ AND BE TERMINATED BY AN ACKNOWLEDGE CODE
(2408), NON=SPACE CHARACTERS MAY BE APPENDED TO THE
"«CAR" FOR CLARITY,

J.2.3 WATCH DOG TIMER ERROR?

THE CONSOLE LOGIC MAY CONTAIN A ONE=SHOT WHMICH IS

RETRIGGERED UNDER CPU PROGRAM CONTROL, THE TIME=OUT

ERROR MUST BE ENABLED/DISABLED UNDER SERIAL LINE CONTROL,

IF THE TIMER 18 ENABLED AND THE RUNNING PROGRAM FAILS TO
UPDATE, THEN AN ERROR MESSAGE IS SENT TO THE SERIAL LINE
MASTER, THE MESSAGE MUST BEGIN WITH "«w" AND BE TERMINATED
BY AN ACKNOWLEDGE CODE(P40), ADDITIONAL NON=SPACE CHARACTERS
MAY BE APPENDED TO THE "«W" FOR CLARITY, THE SERIAL LINE

IS LEFT IN PROGRAM 1/0 MODE,

ENTEREDS 11=19=74
BYs STEVE SKELTON

PROTOCOL SUMMARY {{e19=74

{) DESCRIPTION CHAR RESPONSE <<<COMMENT>>>
CPU CONTROL PRIMITIVES!
DISPLAY ADDRESS A AfAYO (AR) >> SO
CONTINUE oC co RESUME EXECUTION
i DEPOSIT *D 3L (TMP) >> EA
) EXAMINE *E EID)O (EA) >> 80
: HALT H HIAYO (PC) >> 80
INITIALIZE CPU " I11AY® (PC) >> SO} SYS RES
: LOAD ADDRESS wi [AILO (TMP) >> AR
; RCAD DATA DISPLAY M MIDI© (DD) »>> 80
o NEXT «N NIAJ© (PC) >> SO
e RCAD SWITCH REGISTER R RID)® (Sw) >> SO
o ‘8TART *8 8% (AR) >> PC
- . WRITE SWITCH REGISTER W (DI WO (TMP) >> Sw
- CPU CONTROL MACROSt
60 » *G (AJGO,NL Z» L, S» NL
PROCEED *p PY,NL Z, Cy NL
OPEN LOCATION ./ [A)J/ID)O L, A, E
CLOSE LOCATION «CR NLO (TMP) >> EAJ CLOSE
OPEN NEXT LOCATION «LF (AJ/(D]® CR, LF OPN NXT LOC
. OPEN PREY LOCATION "A [A}/([D)® CR, LF OPN PREV LOC
— CONSOLE CONTROL COMMANDSS
SPECIAL SEQUENCE s $¢)0 ()= CPU DEPENDENT COMD
CLEAR OCTAL DATA . (1] 2 > TMPj} RE=TYPE NO,
: S8CT PROG I/0 MODE 4 29,NL ASCI1 DATA TO PROG
i ' 8ET CONSOLE MODE ESCA NL,*CONY ASCII DATA TU CONSOLE
| OLTAL DATA B=7 @=7 DATA TO/FROM CONSOLE
'E .~ INITIALIZE CONSOLE A3 ACO CLEAR CONSOLE
- . READ cPU ID @05 AE(N]/(M]® NSCP ID,MBREV DATE
© 8ET LOGIN MODE 814 NL,AL® LOC=TO=REM CONVERSATION
-~ TEST SHIFT REGISTER M24 AT{01/1(71°
ERRORS$
ILLEGAL ? D70 ACTION ILLEGAL
. LINE ERROR + P40 FRAME, PARITY, OVERRUN
- RESPONSE TIME=QUT # pro NO CPU RESPONSE
. PROGRAM HALT NL,*H(A]®
CARRIER LOST NL,*CAR® REMOTE OPERATION ONLY

i_ - ~WATCH DOG TIMER ERROR NL, #WO NO PROG ACTIVITY

NOTES 1) 9sCONSOLF ACKNOWLEDGE (ASCII ©40)
2) | 1sADDRESS (Al, OR DATA (D] EXCHANGE
3) NLsNEW LINE (CR,LF)
4) *=]LLEGAL WHEN CPU IS RUNNING

