
VAX 6200 System

Technical User’s Guide

Order Number: EK-620AA-TM-001

This manual serves as a reference on how to write software to this

machine and covers the information needed to do field-level repair or

programming customized to the CPU. It includes information on interrupts,
error handling, and detailed theory of operation.

digital equipment corporation maynard, massachusetts

First Printing, May 1988

The information in this document is subject to change without notice and should

not be construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may

appear in this document.

The software, if any, described in this document is furnished under a license and

may be used or copied only in accordance with the terms of such license. No

responsibility is assumed for the use or reliability of software or equipment that is

not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright ©1988 by Digital Equipment Corporation.

All Rights Reserved.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEBNA ULTRIX VAXELN

DEC UNIBUS VAX RTA

DECnet VAX VMS

DECUS VAXBI XM

PDP VAXcluster mflgflnan TM

FCC NOTICE: The equipment described in this manual generates, uses, and may

emit radio frequency energy. The equipment has been type tested and found to

comply with the limits for a Class A computing device pursuant to Subpart J of

Part 15 of FCC Rules, which are designed to provide reasonable protection against

such radio frequency interference when operated in a commercial environment.
Operation of this equipment in a residential area may cause interference, in which

case the user at his own expense may be required to take measures to correct the

interference.

Contents

PREFACE Xv

CHAPTER 1 THE VAX 6200 SYSTEM QVERVIEW 1-1

1.1 VAX 6200 INTRODUCTION 1-2

1.2 VAX 6200 CONFIGURATIONS 1-3

1.3 VAX 6200 SYSTEM ARCHITECTURE 1-4

1.4 TYPICAL SYSTEM 1-6

1.5 VAX 6200 SYSTEM (FRONT VIEW) 1-8

1.6 VAX 6200 SYSTEM (REAR VIEW) 1-9

1.7 SUPPORTED VAXBI ADAPTERS AND OPTIONS 1-10

1.8 XMI BACKPLANE AND CARD CAGE 1-11

1.9 VAXBI BACKPLANE AND CARD CAGE 1-13

1.10 VAXBI EXPANDER CABINET 1-14

1.11 TK TAPE DRIVE | 1-15

1.12 STANDARD /O CONNECTIONS 1-16

1.13 I/0 BULKHEAD CONNECTIONS 1-17

1.14 POWER SYSTEM 1-18

Contents

1.15 COOLING SYSTEM 1-20

CHAPTER 2 THE XMI 2-1

2.1 XMl OVERVIEW 2-2

2.1.1 XMl System Block Diagram Description 2-2

2.1.2 XMl Corner 2-4

2.1.3 XMl Data Transactions 2-6

2.1.4 XMl Interrupt Transactions 2-9

2.1.5 Arbitration 2-10

2.1.6 Bus Integrity 2-11

2.2 XM|I ADDRESSING 2-12

2.2.1 XMI Memory Space 2-13

2.2.2 XM /O Space 2-13

2.2.2.1 XMI Private Space * 2-14

2.2.2.2 XMI Nodespace * 2-14

2.2.2.3 I/O Adapter Address Space ¢ 2-15

2.3 ARBITRATION CYCLES 2-16

2.4 XMI CYCLES 2-18

2.4.1 Function Codes 2-18

2.4.2 Command Cycles 2-19

2.4.2.1 Command Field » 2-20

2.4.2.2 Mask Field « 2-21

24.2.3 Length Field ¢ 2-22

24.2.4 Address Field 2-23

2.4.2.5 Node Specifier Field » 2-24

2.4.3 Write Data Cycles 2-25

2.4.4 Good Read Data (GRD) and Corrected Read Data
Response (CRD) Cycles 2-25

2.4.5 Locked Response Cycle (LOC) 2-26

2.4.6 Read Error Response Cycle (RER) 2-26

2.4.7 The Null Cycle 2-26

2.5 XMI TRANSACTIONS 2-27

2.5.1 Read Transaction 2-27

2.5.2 Interlock Read Transaction 2-28

2.5.3 Write Mask Transaction 2-29

2.5.4 Unlock Write Mask Transaction 2-30

2.5.5 Interrupt and Identify Transactions 2-30

Contents

2.5.6 Implied Vector Interrupt Transactions 2-31

2.5.7 Transaction Examples 2-32

2.5.7.1 Single Data Cycle Reads ¢ 2-32

25.7.2 Multiple Data Cycle Reads ¢ 2-34

2.5.7.3 Longword and Quadword Writes ¢ 2-37

2574 Multiple Data Cycle Writes » 2-37

2.6 XMI INITIALIZATION 2-38

2.6.1 Causes of an Initialization 2-39

2.6.2 Power-Up 2-39

2.6.3 System Reset 2-40

2.6.4 Node Reset 2-40

2.7 XMI REGISTERS 2-41

DEVICE REGISTER (XDEV) 2-42

BUS ERROR REGISTER (XBER) 2-44

FAILING ADDRESS REGISTER (XFADR) 2-51

2.8 XMi ERRORS 2-52

2.8.1 Error Conditions 2-52

2.8.1.1 Parity Error ¢ 2-52

2.8.1.2 Inconsistent Parity Error ¢ 2-52

2.8.1.3 Transaction Timeout ¢ 2-52

2.8.1.4 Sequence Error o 2-53

2.8.2 Error Handling 2-54

2.8.3 Error Recovery 2-55

2.8.4 Error Reporting 2-55

CHAPTER 3 KA62A CPU MODULE 3-1

3.1 KA62A CPU MODULE FEATURES 3-2

3.2 KA62A CPU MODULE PRIVATE I/0 ADDRESS SPACE MAP 3-5

3.3 CPU SECTION OF THE MODULE -

3.3.1 Data Types

3.3.2 Instruction Set Types

3.3.3 Memory Management

3.3.4 interrupts

3.3.5 Exceptions

3.3.6 Machine Checks

3.3.7 System Control Block (SCB)

Contents

Vi

3.3.8 Hardware Restart Sequence 3-16

3.3.9 CPU References -17

3.3.10 System Support Chip (SSC) -18

3.3.11 EEPROM -19

3.3.12 Floating-Point Accelerator -19

3.4 CACHE MEMORY 3-20

3.4.1 First-Level Cache 3-21

3.4.1.1 First-Level Cachable References ¢ 3-21

3.4.1.2 First-Level Cache Organization ¢ 3-22

3.4.1.3 First-Level Cache Address Translation ¢ 3-24

3.4.1.4 First-Level Cache Data Allocation * 3-26

3.4.1.5 First-Level Cache Behavior on Writes ¢ 3-26

3.4.1.6 First-Level Cache Coherency ¢ 3-26

3.4.1.7 First-Level Cache Control ¢ 3-27

3.4.1.8 First-Level Cache Error Detection » 3-27

3.4.2 Second-Level Cache 3-28

3.4.2.1 Second-Level Cache Description ¢ 3-29

3.4.2.2 Controlling the Second-Level Cache * 3-33

3.5 XMi CORNER-TO-CPU INTERFACE 3-34

3.5.1 The XCPGA Chip 3-38

3.5.2 The Write Buffer 3-40

3.5.3 Duplicate Tag Store 3-41

3.5.4 XMl Interrupt Operation 3-42

3.5.5 Implied Vector Interrupts (IVINTR) 3-44

3.6 KA62A CPU MODULE REGISTERS 3-46

3.6.1 Processor Registers 3-49

3.6.2 XMl Registers and Control and Status Register 1

Characteristics 3-49

INTERVAL CLOCK CONTROL AND STATUS

REGISTER (ICCS)

CONSOLE RECEIVER CONTROL AND STATUS

(RXCS)

CONSOLE RECEIVER DATA BUFFER (RXDB)

CONSOLE TRANSMITTER CONTROL AND

STATUS (TXCS)

CONSOLE TRANSMITTER DATA BUFFER

(TXDB)

CACHE DISABLE REGISTER (CADR)

MEMORY SYSTEM ERROR REGISTER (MSER)

SYSTEM IDENTIFICATION REGISTER (SID)

CONTROL AND STATUS REGISTER 1 (CSR1)

SYSTEM TYPE (SYSTYPE)

3-51

3-52

3-54

3-56

3-58

3-59

3-62

3-64

3-66

3-72

Contents

SSC BASE ADDRESS REGISTER (SSCBR) 3-74

SSC CONFIGURATION REGISTER (SSCCR) 3-76

CDAL BUS TIMEOUT CONTROL REGISTER
(CBTCR) 3-80

CONSOLE SELECT REGISTER (CONSEL) 3-82

TIMER CONTROL REGISTER 0 (TCRO0) 3-84

TIMER INTERVAL REGISTER 0 (TIRO) 3-87

TIMER NEXT INTERVAL REGISTER 0 (TNIRO) 3-88

TIMER INTERRUPT VECTOR REGISTER 0

(TIVRO) 3-89

TIMER CONTROL REGISTER 1 (TCR1) 3-90

TIMER INTERVAL REGISTER 1 (TIR1) 3-93

TIMER NEXT INTERVAL REGISTER 1 (TNIR1) 3-94

TIMER INTERRUPT VECTOR REGISTER 1

(TIVR1) 3-95

CSR1 BASE ADDRESS REGISTER (CSR1BADR) 3-96

CSR1 ADDRESS DECODE MASK REGISTER

(CSR1ADMR) 3-97

EEPROM BASE ADDRESS REGISTER

(EEBADR) 3-98

EEPROM ADDRESS DECODE MASK REGISTER

(EEADMR) 3-99

DEVICE REGISTER (XDEV) 3-100

BUS ERROR REGISTER (XBER) 3-102

FAILING ADDRESS REGISTER (XFADR) 3-111

XMI GENERAL PURPOSE REGISTER (XGPR) 3-112

CONTROL AND STATUS REGISTER 2 (CSR2) 3-113

3.7 KA62A CPU MODULE INITIALIZATION, SELF-TEST, AND BOOTING 3-121

3.7.1 Initialization Overview 3-121

3.7.1.1 Initialization Description ¢ 3-122

3.7.1.2 CPU Self-Test » 3-122

3.7.1.3 CPU/MEM Test ¢ 3-123

3.7.2 Detailed Initialization Description 3-124

3.7.2.1 Determine Type of Restart ¢ 3-126

3.7.2.2 CPU Self-Test » 3-126

3.7.2.3 Determine the Boot Processor ¢ 3-127

3.7.24 CPU/MEM Test ¢ 3-128

3.7.2.5 Execute DWMBA XMI-to-VAXBI Adapter Self-Test ¢ 3-129

3.7.2.6 Boot Processor Sets Up Memory ¢ 3-129

3.7.3 Bootstrapping or Restarting the Operating System _____ 3-130

3.7.31 Operating System Restart ¢ 3-130

3.7.3.2 Failing Restart « 3-132

3.7.3.3 Restart Parameters o 3-132

3.7.3.4 Operating System Bootstrap ¢ 3-133

3.7.3.5 Parameters Passed to the Boot Primitive ¢ 3-134

3.7.3.6 Parameters Passed to the Bootblock Program ¢ 3-135

vii

Contents

3.7.3.7 Parameters Required by the Boot Primitive ® 3-135

3.7.3.8 Considerations for Tape Drives » 3-135

3.7.3.9 Considerations for Ethernet Devices ¢ 3-136

3.8 INTERPROCESSOR COMMUNICATION THROUGH THE CONSOLE
PROGRAM 3-137

3.8.1 Required Communications Paths 3-137

3.8.2 Console Communications Area 3-139

3.8.3 Sending a Message to Another Processor 3-146

3.9 KA62A CPU MODULE ERROR HANDLING 3-148

3.9.1 Parity Generation and Checking for Error Detection ____ 3-149

3.9.2 Error Interrupt Service Routines 3-149

3.9.3 KA62A CPU Module Error Matrix 3-150

CHAPTER 4 MS62A MEMORY MODULE 4-1

4.1 MODULE FEATURES 4-2

4.2 TECHNICAL DESCRIPTION 4-3

4.3 SELF-TEST AND INITIALIZATION 4-4

4.4 STARTING ADDRESS AND INTERLEAVING 4-5

4.4.1 Starting and Ending Addresses 4-5

4.4.2 Interleaving 4-5

4.5 CONTROL AND STATUS REGISTERS 4-6

viii

BUS ERROR REGISTER (XBER) 4-8

DEVICE REGISTER (XDEV) 4-11

INTERLOCK FLAG REGISTER (IFLGN) 4-12

MEMORY CONTROL REGISTER 1 (MCTL1) 4-14

MEMORY CONTROL REGISTER 2 (MCTL2) 4-18

MEMORY ECC ERROR ADDRESS REGISTER

(MECEA) 4-20

MEMORY ECC ERROR REGISTER (MECER) 4-21

STARTING AND ENDING ADDRESS REGISTER

(SEADR) 4-24

TCY TESTER REGISTER (TCY) 4-26

Contents

4.6 ERROR HANDLING AND COMMAND RESPONSES 4-27

4.6.1 Read Errors 4-27

4.6.2 Full Write Errors 4-27

4.6.3 Partial Write Errors 4-28

CHAPTER 5 DWMBA XMI-TO-VAXBI ADAPTER 5-1

5.1 DWMBA OVERVIEW 5-2

5.2 CPU TRANSACTIONS 5-4

5.2.1 General Operation 5-5

5.2.2 VAXBI I/O Space Reads 5-6

5.2.3 VAXBI I/O Space Writes 5-6

5.2.4 Interrupts 5-7

5.2.4.1 XMI IDENT to VAXBI IDENT e 5-7

5.2.4.2 XMI IDENT with DWMBA Adapter Pending Interrupt ¢ 5-7

5.2.4.3 Passive Release of VAXBI Interrupts ¢ 5-7

5.3 DMA TRANSACTIONS 5-8

5.3.1 VAXBI-to-XMI Memory Space Reads 5-9

5.3.1.1 VAXBI-to-XMI Memory Space Interlock Reads ¢ 5-9

5.3.2 VAXBI-to-XMI Memory Writes 5-10

5.3.3 VAXBI-Generated Interrupts 5-10

5.4 DWMBA XMI-TO-VAXBI ADAPTER REGISTERS 5-11

DEVICE REGISTER (XDEV)

BUS ERROR REGISTER (XBER)

FAILING ADDRESS REGISTER (XFADR)

RESPONDER ERROR ADDRESS REGISTER

(AREAR)

ERROR SUMMARY REGISTER (AESR)

INTERRUPT MASK REGISTER (AIMR)

IMPLIED VECTOR INTERRUPT

DESTINATION/DIAGNOSTIC REGISTER

(AIVINTR)

DIAG 1 REGISTER (ADG1)

CONTROL AND STATUS REGISTER (BCSR)

ERROR SUMMARY REGISTER (BESR)

INTERRUPT DESTINATION REGISTER (BIDR)

TIMEOUT ADDRESS REGISTER (BTIM)

VECTOR OFFSET REGISTER (BVOR)

VECTOR REGISTER (BVR)

5-14

5-16

5-22

5-23

5-24

5-29

5-35

5-36

5-39

5-41

5-46

5-47

5-48

5-49

Contents

DIAGNOSTIC CONTROL REGISTER 1 (BDCR1) 5-50

RESERVED REGISTER 5-53

DEVICE REGISTER (DTYPE) 5-54

5.5 INTERRUPTS 5-55

5.5.1 DWMBA XMi-to-VAXBI Adapter Vector Formats and

Requirements 5-56

5.5.1.1 XMl Bus Vector Format e 5-57

5.5.1.2 Offsettable Bus Vectors ¢ 5-57

5.6.1.3 VAXBI Node Vectors ¢ 5-57

5.5.2 Interrupt Levels and Vectors 5-58

5.56.3 Types of Interrupts 5-58

5.5.3.1 DWMBA-Generated Interrupts ¢ 5-58

5.5.3.2 VAXBI-Generated Interrupts ¢ 5-59

5.5.4 XMI IDENT to VAXBI IDENT 5-60

5.5.4.1 XMl to VAXBI IDENT ¢ 5-60

5.5.4.2 XMI to VAXBI IDENT (DWMBA Interrupt Pending) ¢ 5-60

5.6 ERROR REPORTING 5-61

5.6.1 VAXBI Errors 5-61

5.6.2 DWMBA Errors 5-61

5.6.3 DWMBA XMi-to-VAXBI Adapter Error Response Matrix __ 5-62

5.7 DWMBA INITIALIZATION, SELF-TEST, AND BOOTING 5-69

5.7.1 DWMBA Initialization 5-69

5.7.2 DWMBA Self-Test and Diagnostics 5-70

5.7.21 Loopback ¢ 5-70

5.7.2.2 Self-Test » 5-70

CHAPTER 6 POWER AND COOLING SYSTEMS 6-1

6.1 POWER SYSTEM 6-1

6.1.1 Input Power 6-2

6.1.2 H7206 Power and Logic Unit 6-2

6.1.3 H7214 Power Reguiator 6-2

6.1.4 H7215 Power Regulator 6-3

6.1.5 XTC Power Sequencer 6-3

6.1.5.1 XMI Reset Timing Control Logic ¢ 6-3

6.1.5.2 TOY Circuits » 6-3

6.1.5.3 Console Line Driver and Receiver ¢ 6-3

6.1.6 Power System Signals 6-4

6.2 COOLING SYSTEM 6-5

Contents

INDEX

FIGURES

i-1 VAX 6200 System Architecture 1-4

1-2 Typical VAX 6200 System 1-6

1-3 VAX 6200 System (Front View) 1-8

1-4 VAX 6200 System (Rear View) 1-9

1-5 VAXBI Adapters 1-10

1-6 VAX 6200’s XMi 1-11

1-7 VAX 6200’s VAXBI 1-13

1-8 VAXBI Expander Cabinet 1-14

1-9 TK Tape Drive 1-15

1-10 Console and Terminal Connectors 1-16

1-11 Sample I/0 Bulkhead Connections 1-17

1-12 Power System 1-18

1-13 Airflow Pattern 1-20

2-1 VAX 6200 System Block Diagram 2-2

2-2 XMi Node Block Diagram Showing the XMI Corner 2-4

2-3 XMI Memory and I/O Address Space 2-12

2-4 XMI I/O Space Address Allocation 2-13

2-5 XMl Arbitration Block Diagram 2-16

2-6 Data Transaction Command Cycle Format 2-19

2-7 Interrupt Transaction Command Cycle Format 2-19

2-8 Mask Field Bit Assignments , 2-21

2-9 Node Specifier Field 2-24

2-10 Read Transaction 2-32

2-11 Interlock Read Transaction to a Locked Location 2-32

2-12 Multiple Data Cycle Reads Command Cycle 2-34

2-13 Read Data Cycles 2-34

2-14 Read Data Cycles with HOLD 2-34

2-15 Hexword Read with Single Correctable Read Error 2-36

2-16 Hexword Data Return with Uncorrectable Read Error 2-36

2-17 Longword and Quadword Writes 2-37

2-18 Multiple Data Cycle Writes 2-37

2-19 XMl Initialization Flowchart 2-38

2-20 A Failed Octaword Write Transaction 2-53

3-1 KA62A CPU Module Block Diagram 3-2

3-2 KA62A CPU Module Private I/O Address Space Map 3-5

3-3 The Stack in Response to a Machine Check 3-12

3-4 System Control Block Base Register 3-14

3-5 Simplified Block Diagram of KA62A CPU Module Memory 3-20

3-6 First-Level Cache Organization 3-22

3-7 Cache Entry 3-23

Xi

Contents

3-8 Tag Block 3-23

3-9 Data Block 3-23

3-10 First-Level Cache Address Translation 3-24

3-11 Second-Level Cache Block Diagram 3-28

3-12 Cache Address Line Contents During a Cache Read 3-30

3-13 Cache Address Line Contents During a Cache Fill 3-30

3-14 Second-Level Cache Addressing 3-31

3-15 XMI Corner-to-KA62A CPU Module Interface 3-34

3-16 XCPGA Block Diagram 3-38

3-17 Interprocessor IVINTR Generation Address Example 3-44

3-18 Initialization Flowchart, Part 1 of 2 3-124

3-19 Initialization Flowchart, Part 2 of 2 3-125

3-20 Restart Parameter Block Format 3-131

3-21 CCA Layout, Part 1 3-140

3-22 CCA Layout, Part 2 3-141

3-23 Layout of XMI Node Buffers 3-144

5-1 DWMBA XMi-to-VAXBI Adapter Block Diagram 5-2

5-2 XMI Bus Vector Format 5-56

5-3 UNIBUS Vector Format 5-56

5-4 VAXBI Node Bus Vector Format 5-56

TABLES

1-1 Typical VAX 6200 System 1-7

1-2 XMl Slots 1-12

1-3 Input Voitage 1-18

1-4 DC Power Distribution 1-19

2-1 Usable XMI Bandwidth 2-3

2-2 Data Transactions Supported by the XMl 2-6

2-3 XMl Terms 2-7

2-4 XMl Interrupt Transactions 2-9

2-5 XMl Arbitration Lines 2-10

2-6 XMI Nodespace Addresses 2-14

2-7 XMl Function Codes 2-18

2-8 XMiI Command Codes 2-20

2-9 XMI Transaction Length Codes 2-22

2-10 XMI Transactions 2-27

2-11 XMl Registers 2-41

2-12 Abbreviations for Bit Type 2-41

3-1 KA62A CPU Module Interrupts 3-9

3-2 KA62A CPU Module Exceptions 3-11

3-3 Machine Check Parameters 3-13

3-4 System Control Block Format 3-14

3-5 Mapping of CVAX Operations to XMI Transactions 3-36

3-6 Detailed CVAX Read Operation to XMI Map 3-37

Xii

5-7

5-9

5-10

5-11

5-12

6-1

Contents

KA62A CPU Module Internal Processor Registers 3-46

Types of Registers and Bits 3-48

KA62A CPU Module Registers in XMI Private Space 3-50

XMI Registers for the KA62A CPU Module 3-50

Boot Parameters Loaded into GPRs 3-134

Input Parameters Required by the Boot Primitive 3-135

Output Parameters Required by the Boot Primitive 3-135

CCA Fields 3-142

Buffer Fields 3-145

CDAL Bus Parity Errors 3-150

First-Level Cache Parity Errors 3-151

Second-Level Cache Data Parity Errors 3-152

Second-Level Cache Tag Parity Errors 3-153

XMI Bus Timeout Errors 3-154

XMI Bus Parity Errors 3-155

CDAL Bus Timeout Errors 3-156

iain Memory Correctabie Errors 3-157

Main Memory Uncorrectable Errors 3-158

MS62A Memory Module Control and Status Registers 4-6

XMi-to-VAXBI Command Translations 5-4

VAXBI-to-XMI Command Translations 5-8

XMi Registers on the DWMBA/A Module 5-11

XMi Registers on the DWMBA/B Module 5-12

VAXBI Registers 5-13

DWMBA Adapter Interrupt Levels and Vectors 5-58

XMI Errors During DMA Transactions (VAXBI to XMl Memory) 5-62

XMI Errors During CPU I/O Transactions (XMl to VAXBI) 5-63

DWMBA Errors During DMA Transactions (VAXBI to XM

Memory) 5-64

DWMBA Errors During CPU I/O Transactions (XMl to VAXBI) ____ 5-65

VAXBI Errors During DMA Transactions (VAXBI to XM! Memory) _ 5-66

VAXBI Errors During CPU I/O Transactions (XMI TO VAXBI) 5-67

Power System Signals 6-4

xiii

Preface

Intended Audience

This manual is written for the DIGITAL field service engineers installing

and repairing in the field and for OEMs who are writing specialized

applications, such as their own operating systems.

Document Structure

This manual has six chapters.

» Chapter 1 gives you a basic introduction to the VAX 6200 system and

its parts.

e Chapter 2 tells you about the XMI bus and protocol.

¢ Chapter 3 explains the KA62A CPU module.

e Chapter 4 explains the MS62A memory module.

e Chapter 5 tells you about the DWMBA and its DWMBA/A module and
DWMBA/B module.

e Chapter 6 explains the components of the power system and the

cooling system.

e The Index provides additional reference support.

XV

Preface

Associated Documents

Documents in the VAX 6200 documentation set include:

Title Order Number

VAX 6200 Installation Guide EK-620AA-IN

VAX 6200 Owner’s Manual EK-620AA-OM

VAX 6200 Mini-Reference EK-620AA-HR

VAX 6200 Options and Maintenance EK-620AA-MG

VAX 6200 System Technical User’s Guide EK-620AA-TM

Other documents that you may find useful include:

Title Order Number

The VAX Architecture Reference Manual EY-3459E-DP

VAX Hardware Handbook EB-25949-46

VAX Software Handbook Set EJ-28250-DP

VAXBI Options Handbook EB-29228-46

TK50 Tape Drive Subsystem User’s Guide EK-OTK50-UG

XVi

1 The VAX 6200 System Overview

This chapter describes the system packages and system components and

notes the location of components in the cabinet.

This chapter includes the following sections:

VAX 6200 Introduction

VAX 6200 Configurations

VAX 6200 System Architecture

Typical System

VAX 6200 System (Front View)

VAX 6200 System (Rear View)

Supported VAXBI Adapters and Options

XMI Backplane and Card Cage

VAXBI Backplane and Card Cage

VAXBI Expander Cabinet

TK Tape Drive

Standard I/O Connections

I/O Bulkhead Connections

Power System

Cooling System

The VAX 6200 System Overview

1.1 VAX 6200 Introduction

The VAX 6200, a general purpose computer system designed for growth, is

configured for many different applications. Like other VAX systems, the

VAX 6200 can support many users in a time-sharing environment.

The VAX 6200 does the following:

Supports a full set of VAX applications

Functions as a stand-alone system, a member of a VAXcluster, or as a

boot node of a local area VAXcluster

Allows for expansion of processors, memory, and I/O

Implements multiprocessing where all processors have equal access to

memory

Uses the VAXBI bus (VAX Bus Interconnect) as the 1/O interconnect

Uses a high-bandwidth internal system bus designed for

multiprocessing

Interleaves memory bank accesses in a user-definable sequence

Performs automatic self-test on power-up, reset, reboot, or system

initialization

The VAX 6200 System Overview

1.2 VAX 6200 Configurations

The VAX 6200 system family has configuration packages that differ in the

number of processors and amount of memory.

Refer to the VAX Systems and Options Catalog for the available

configurations.

Each configuration has a 60-inch system cabinet that includes one 14-slot

high-bandwidth internal system bus backplane (XMI) and two 6-slot VAXBI

backplanes.

1.3

The VAX 6200 System Overview

VAX 6200 System Architecture

1-4

The VAX 6200 uses a high-speed system bus, called the XMI bus, to

interconnect its KA62A CPU module(s) and its MS62A memory module(s).

All I/O devices connect to the VAXBI bus. The VAX 6200 supports

multiprocessing with multiple KA62A CPU modules.

Figure 1-1 shows a four-processor VAX 6200.

Figure 1-1 VAX 6200 System Architecture

CPU CPU CPU CPU

1 2 3 4

XMI

< >

MEM 1/0 MEM I/0 MEM

1 1 2 2 3-8

VAXBI 2

>

VAXBI 1

>

The VAX €200 System Overview

The XMI is the VAX 6200 system bus; the VAXBI bus supports the I/O

subsystem. The XMI is a 64-bit system bus with a 64 nanosecond bus

cycle, and a maximum throughput of 100 megabytes per second. The
DWMBA interconnects the I/O adapters.

The VAXBI and XMI share similar but incompatible connector and module

technology. Both the VAXBI and XMI buses have the concept of a node. A

node is a single functional unit that consists of one or more modules. On
the VAXBI bus, a node may be more than one VAXBI module that operates

as a single functional unit. On the XMI bus, a node is a single module that

occupies one of the 14 logical and physical slots on the XMI bus.

The XMI has three types of nodes: processor nodes (KA62A CPU module),

memory nodes (MS62A memory module), and I/O adapters (DWMBA).

A processor node, called a KA62A CPU module, is a single-board
processor that contains a central processor unit (CPU) that executes

instructions and manipulates data contained in memory; a floating-point

processor; 256 Kbytes of onboard cache; and 1 Kbyte of on-chip cache.

The KA62A CPU module communicates with main memory over the XMI

bus. The VAX 6200 supports multiprocessing of KA62A CPU modules. A

KA62A CPU module becomes the boot processor during power-up and
that boot processor handles all system communication. The other CPUs
become secondary processors and receive system information from the

boot processor.

A memory node is an MS62A memory module. Memory is a global

resource equally accessible to all processors on the XMI. Each MS62A

memory module uses MOS 1-megabit dynamic RAMs, ECC logic, and

control logic. The memories are automatically interleaved for maximum

performance. An optional battery backup unit protects memory in case of

power failure.

The DWMBA supports bidirectional communication between the XMI and

the VAXBI. That is, from CPUs on the XMI to I/O options on the VAXBI

and from I/O options on the VAXBI to memory modules on the XML

The DWMBA is a 2-board adapter. The DWMBA/A module is installed

on the XMI bus, and it communicates with the DWMBA/B module on the

VAXBI.

1-5

The VAX 6200 System Overview

Typical System

A typical VAX 6200 system has a main cabinet, a console terminal, a disk

drive cabinet, an accessories kit, and a set of documentation. It may have

additional tape or disk drives and may be a member of a VAXcluster.

Figure 1-2 Typical VAX 6200 System

—

| @S

|| i

Wiyg

Wi

CONSOLE

TERMINAL

{HARD COPY)

MAIN

CABINET

MANUALS SOFTWARE

MLO-HC-000288

The VAX 6200 System Overview

Table 1-1 Typical VAX 6200 System

Component Function

Main cabinet Houses system components

TK tape drive Software distribution; stores and transfers data

Console terminal Manages system and its resources

System documentation See Preface for full list of documentation reiated to the

VAX 6200

Disk expansion cabinet Provides storage capacity

The VAX 6200 components include:

¢ The main cabinet which houses a TK tape drive, the XMI card cage,

two VAXBI card cages, the control panel switches, status indicators,

and restart controls.

e The TK tape drive, in the main cabinet, is used for installing

operating systems, software, and diagnostics and may be used for

data interchange.

e The disk drive cabinet is used for local storage.

e The console terminal is used for booting and for system management

operations.

e VAX 6200 documentation includes:

— VAX 6200 Installation Guide

— VAX 6200 Owner’s Manual

— VAX 6200 Mini-Reference

— VAX 6200 Options and Maintenance

— VAX 6200 System Technical User’s Guide

The VAX 6200 System Overview

1.5 VAX 6200 System (Front View)

The TK tape drive and control panel are on the front of the system cabinet.
With the front door open, there is access to the system control panel,
VAXBI and XMI card cages, the cooling system, battery backup unit (if
present), and power regulators.

Figure 1-3 VAX 6200 System (Front View)

gl

'V

:/ / 4 TK TAPE DRIVE

CONTROL PANEL —-——Ej —— POWER REGULATORS

VS
VAXBI

FRONT CARD CAGES
—3+— XMICARD CAGE

COOLING

SYSTEM

POWER

SUPPLY | —T—1— BATTERY BACKUP

UNIT (OPTIONAL)

msb-0002-88

These components are visible from the inside front of the cabinet (see
Figure 1-3 for their location):

* TK tape drive

* Control panel

* Power regulators

* Battery backup (if installed)

. XMI card cage

e Two VAXBI card cages

* Cooling system

The VAX 6200 System Overview

1.6 VAX 6200 System (Rear View)

With the rear door open, there is access to the following: power

regulators; the TK tape drive and control panel connections; cooling

system; power and logic box; battery backup unit (if present); AC power

controller; console, terminal, and disk connectors; and the 1/O bulkhead

space.

Figure 1-4 VAX 6200 System (Rear View)

XTC POWER

SEQUENCER MODULE

2%é POWER —fl—
(45 REGULATORS

(/4

VAXBIREAR i —H—— CARD CAGES
CARD CAGE

TERMINAL, DISK

——F— AND CONSOLE
c
o
o
m
a

C
O
N
N
E
C
T
O
R
S

SYSTEM

—J1 POWERAND

LOGIC BOX (H7208)

BATTERY BACKUP —+

UNIT (OPTIONAL) — é((:)r\FJ"I(?F\x)ELRLER
(H405)

msb-0003-88

These components are visible from the rear of the cabinet (see Figure 1-4):

* Five replaceable power regulators

¢ TK tape drive and XTC power sequencer connections

* Cooling system, with open grid over a blower

* Power and logic unit (H7206)

* Battery backup unit (optional)

¢ AC power controller (H405)

e DWMBA cables

* Terminal, disk, and console connectors

¢ 1/O bulkhead space (The I/O bulkhead panel covers the XMI and

VAXBI areas.)

1-9

The VAX 6200 System Overview

1.7 Supported VAXBI Adapters and Options

The VAX 6200 system supports the use of the many different VAXBI

adapters including CIBCA, DEBNA, TBK50, DHB32, DMB32, DRB32,

KDB50, and TUSI1E.

Figure 1-5 VAXBI Adapters

VAXBI (10 MBYTES/S) | DWMBA/B] | DWMBA/B |

T T T T T
TBKS0 DEBNA DMB32 DHB32 KDBSO IBCA_} DRB‘sil

R
N N
N N
N \
N N

@ 9 \ N
N N

8 TERMINALS

N N
1 TO USER

VAXcluster DEVICE

ETHERNET

msb-0007-88

See the VAX Systems and Options Catalog for a complete list of VAXBI

adapters available for the VAX 6200 and the VAXBI Options Handbook for

detailed information on each VAXBI adapter.

1-10

The VAX 6200 System Overview

1.8 XMI Backplane and Card Cage

The XMI high-speed system bus interconnects KA62A CPU module(s)

and MS62A memory module(s). The XMI card cage has 14 slots and a

maximum bandwidth of 100 megabytes per second.

Figure 1-6 VAX 6200’'s XMI

[] /
/

i
|

FRONT \1[H -~ H’m

XMI CARD CAGE

#

\
C1

\O //—\ 0]

MLO-HC-000988

UP TO 4 PROCESSORS UP TO 256 MBYTES

Processors i Memories
|

XMI (100 MBYTES/S)

< D
DWMBA/A UP TO 6 DWMBAs

msb-0006-88

1-11

The VAX 6200 System Overview

The XMI is a limited-length, pended synchronous bus with centralized
arbitration. The XMI bus can process several transactions simultaneously,
making efficient use of the bus bandwidth. The bus includes the XMI
backplane, the electrical environment of the bus, the protocol that nodes
use on the bus, and the logic to implement this protocol.

The XMI backplane and 14-slot (nodes 1 through E) card cage are located
in the upper third of the cabinet on the right side, as viewed from the front
of the cabinet. A clear latched door protects the components housed in the
XMI card cage and helps to direct the airflow over the modules. Indicator
lights on the XMI modules can be viewed through this clear front door.

Each slot of the XMI card cage is hard-wired to a 4-bit node ID code that
corresponds to the physical slot number in the card cage. The node ID
number of the module is its slot position. The nodes are numbered 1
through E (hex) from right to left, as you view the card cage from the front
of the cabinet.

For information on installing modules in the XMI card cage, see the VAX
6200 Options and Maintenance manual. For in-depth technical information,
see the appropriate chapter of this manual.

Table 1-2 XMl Slots

Slot Node Permissible Modules'

1 1 CPU, 110

2 2 CPU, Mem, 110

3 3 CPU, Mem, I/O

4 4 CPU, Mem, I/O

5 5 CPU, Mem

6 6 CPU, Mem

7 7 CPU, Mem

8 8 CPU, Mem

9 9 CPU, Mem

10 A CPU, Mem

11 B CPU, Mem, 11O

12 C CPU, Mem, 110

13 D CPU, Mem, 1/O

14 E CPU, /0

'Key to permissible modules:

CPU = KA62A CPU module

Mem = MS62A memory module

/O = DWMBA

The VAX 6200 System Overview

1.9 VAXBI Backplane and Card Cage

The VAXBI is the I/O interface. The VAXBI card cages house modules

that connect the system to the Ethernet, VAXclusters, multiple terminals,

and other peripherals.

Figure 1-7 VAX 6200’s VAXBI

LV

[H
I

=
FRONT N I l: \

<

—
.

XVAXBI
CARD CAGES

7

The VAXBI card cages are located in the upper third of the cabinet on the

left side, as viewed from the front of the cabinet. A clear latched door

protects the components housed in the VAXBI card cages and helps to

direct the airflow over the modules. Indicator lights on the VAXBI modules

can be viewed through this clear front door.

MLO-HC-001088

The VAXBI is available in this system only as a 6-slot fixed-length,

nonexpandable card cage. The VAX 6200 system has two 6-slot VAXBI

card cages. A VAXBI expander cabinet can also be added to the system

(see Section 1.10).

1-13

1.10 VAXBI Expander Cabinet

The VAXBI expander cabinet enlarges the system’s VAXBI. The VAXBI
expander cabinet can have one 6-slot VAXBI card cage through as many as
four 6-slot VAXBI card cages.

Figure 1-8 VAXBI Expander Cabinet

-

—1 2BLOWERS

POWER
SUPPLY UNITS

€ S 6 TO 24 SLOTS
w9 OF VAXBI

°© =z

AC INPUT BOX

| 31.5in. |

(.8 M)

msb-0004-88

A VAXBI expander cabinet (see Figure 1-8) allows you to attach additional
VAXBI channels to provide up to 24 additional slots of VAXBI. The

maximum number of nodes for each VAXBI is 6, including the one node

required for its DWMBA/B module. The system accepts multiple VAXBI

expander cabinets.

The cabinet is 61.5 inches high by 31.5 inches wide. Four power supply

units provide power to the VAXBI backplanes. Two blowers cool the
cabinet, and an AC power controller completes the power system.

The VAX 6200 System Overview

1.11 TKTape Drive

The TK tape drive is mounted at the front of the system cabinet in the

upper left corner.

Figure 1-9 TK Tape Drive
|

B
]

FRONT

MLO-HC-000788

The TK tape drive is used for:

e Installing or updating software

e Loading diagnostics

e Interchanging user data

Saving, restoring, and updating the contents of the EEPROM

e Loading stand-alone backup

1-15

1.12

The VAX 6200 System Overview

Standard I/0 Connections

The Ethernet and console terminal signal connections are located in the
rear of the cabinet, above the AC power controller.

Figure 1-10 Console and Terminal Connectors

%

REAR

CONSOLE
ETHERNETTERMINAL

PORT N PORT

msb-0118-88

The Ethernet and console terminal ports are at the bottom of the I/O panel.
The Ethernet DEBNA port is a 15-pin receptacle located on the bottom
right, and the console terminal port is the 25-pin receptacle on the left.

This I/O panel also has two octal openings for additional I/O connections.
Typical I/O panels installed in this connector panel may include the tape
drive connect area and the KDB50 disk controller port.

The VAX 6200 System Overview

1.13 I/0 Bulkhead Connections

The 1/O bulkhead tray is located in the rear of the cabinet, above the

cooling system and standard 1/O connection panel, and below the power

regulators. The tray covers the XMI and VAXBI backplanes. It is hinged

at the bottom and folds out and down for access to the card cages.

Figure 1-11 Sample /0 Bulkhead Connections
.
-
l

REAR

A\
1/0

BULKHEAD

TRAY

TERMINAL

PORT

|

— 1/0 PANEL
H

35— ETHERNET

PORT

MLO-HC-001188

The tray is designed to accommodate a variety of /O connections.

1.14

The VAX 6200 System Overview

Power System

1-18

The power system consists of an H405E/F AC power controller, the H7206
power and logic unit, five power regulators for the XMI and VAXBI

backplanes, and an optional battery backup unit.

Figure 1-12 Power System

REGULATORS — m

— POWER AND

N LOGIC BOX

\ (H7206)

BATTERY BACKUP - AC POWER
(OPTIONAL) SANNNNNNNNNE CONTROLLER

\ (H405E/F)

N
msb-00018-88

Table 1-3 Input Voltage

Model No. Hz Nominal Phase

H405-E 60 208V 3

H405-F * 50 380V 3

H405-F 50 416V 3

*Change tap for 380V (nominal) operation.

The VAX 6200 System Overview

Table 1-4 DC Power Distribution

Current (Amps)

Voltage Min. - Max. Description

XMi

+5V 1 -120 Main logic supply

+5VBB 1 - 120 Memory supply

+12V 0 -4 Communications devices and TK tape drive

-12V 0-25 Communications devices

-5.2V 0 - 20 ECL supply

-2V 0-7 ECL terminator voltage

VAXBI

+ 5V 1 - 120 Main logic supply

+12V 0-4 Communications devices

-12v 0-25 Communication devices

-5.2V 0 -20 ECL voltage

-2V 0-7 ECL teminator voitage

H7206-A power and logic module (PAL)

+24V 0 -4 Blowers and airflow sensor

Ethernet transceivers

+13.5V 0-1.5

Most of the power system is visible from the rear of the cabinet. The AC

power controller is in the lower right corner. The power and logic box

is above the AC power controller. Across the top of the cabinet are the

power regulators for the XMI and VAXBI card cages.

Power is supplied by two H7215 power regulators and three H7214 power

regulators. One H7215 and one H7214 supply the power to the VAXBL;

one H7215 and two H7214s supply the power to the XMI. See Table 1-4.

The optional H7231 battery backup unit, if present, is located in the front

left lower third of the cabinet, near the airflow plenum. This unit supplies

200 watts of +5VBB to system memory for 10 minutes following power

interruption.

The H7231 battery backup unit power connection is on the H405 AC power

controller and is fuse-protected at 10 A (60 Hz) or 6 A (50 Hz).

Three neon lights on the H405-E AC power controller indicate when AC

power is present to the unit. The control panel on the front of the system

indicates the status of the battery backup unit.

1-19

1.15

The VAX 6200 System Overview

Cooling System

1-20

The cooling system consists of two blowers, an airflow sensor, a
temperature sensor, and an airflow path through the card cages and up

to the power regulators.

Figure 1-13 Airflow Pattern

1] -

REGULATORS

CARD CAGES

J ‘ BLOWERS

J/ ——

FRONT REAR

EXTERNAL

FRONT VIEW INTERNAL

SIDE VIEW
msb-0008-88

The cooling system is designed to keep system components at an optimal
operating temperature. It is important to keep the front and rear doors free
of obstructions, leaving a clear space of 3 feet (1 meter) from the cabinet,
so that air intake is kept at maximum capacity.

Air is taken in by the blowers, located in the lower half of the cabinet. The
blowers push air up through the VAXBI and XMI card cages. The airflow
continues through the top of the card cages, through the power regulators,
and out the top of the front and rear doors.

The system has safety detectors for the cooling system: an airflow sensor
and a temperature sensor installed above the power regulators in the
top of the cabinet. Extreme conditions activate these detectors. The
temperature sensor shuts off the power at the AC power controller if the
unit experiences extreme temperatures. If the system has airflow seriously
blocked for an extended period of time, then the airflow sensor will shut
off power.

2 TheXxml

This chapter describes the XMI, which includes a backplane and bus

interconnect, protocol, and logic.

This chapter includes the following sections:

e XMI Overview

e XMI Addressing

e Arbitration Cycles

o XMI Cycles

e XMI Transactions

e XMI Initialization

e XMI Registers

e XMI Errors

The XMI

2.1 XMl Overview

The XMI is the primary interconnect for the VAX 6200 system. The XMI

supports multiple processors, multiple memory modules, and multiple 1/O

adapters. Figure 2-1 shows a four-processor VAX 6200 system.

2.1.1 XMI System Block Diagram Description

Figure 2-1 VAX 6200 System Block Diagram

CPU CPU CPU CPU

1 2 3 4

XMI

<

MEM I1/0 MEM I/0 MEM

1 1 2 2 3-8

VAXBI 2

>

VAXBI 1

The XMl

The XMT consists of the electrical environment of the XMT bus, the protocol

observed by a node on the bus, the backplane, and the logic used to

implement the protocol.

The XMI bus is limited length, pended, and synchronous with centralized
arbitration. Several transactions can be in progress at a given time, allowing
highly efficient use of the bus bandwidth. Arbitration and data transfers
can occur simultaneously. The bus supports:

* Quadword-, octaword-, and hexword-length reads to memory

e Quadword- and octaword-length memory writes

e Longword-length read and write operations to /O space

The longword operations implement byte and word modes required by

certain I/O devices. The XMI has a 64 ns bus cycle. The XMI has a

bandwidth of 100 Mbytes per second; however, the usable bandwidth

depends on transaction length (see Table 2-1).

Table 2-1 Usable XMI Bandwidth

Operation Bandwidth (Mbytes/seconds)

Longword (4 bytes) Read 31.25

Quadword (8 bytes) Read 62.50

Octaword (16 bytes) Read 83.30

Hexword (32 bytes) Read 100.00

Longword Write 31.25

Quadword Write 62.50

Octaword Write 83.30

2-3

2.1.2

The XMI

XMl Corner

The XMI uses similar, but incompatible, connector and module technology

as the VAXBI bus and, like the VAXBI, XMI modules have an area

with predefined etch with custom components, which serves as the

interface between the module and the XMI bus. This predefined etch

and components is called the XMI Corner.

Figure 2-2 XMI Node Block Diagram Showing the XMl Corner

XMI /\
Corner

X

L

Node- XCI A

Specific / \ T

Logic \ / C

bus H

X

(7) M

I

XCI XL

CLOCKS

XCLDCK

CONTROL I

The XMI

The XMI Corner has a predefined etch and parts placement. The custom

components in the XMI Corner are called XLATCH and XCLOCK. Both

components are implemented in CMOS and interface node-specific logic

to the XMI Corner components over the XMI Corner interface (XCI) bus.

The XMI Corner, in turn, interfaces directly to the XMI bus. (See Figure

2-2.)

Each node has a set of three clock signals, which are distributed radially

to each node from a central source on the backplane. These clocks

are received by the XCLOCK chip, which then provides a set of clock

waveforms (XCI clocks) to the node-specific logic and the required control

lines (XL lines) for the seven XLATCH chips. The XLATCH chips provide

the interface to all the XMI lines except those directly interfaced to the

XCLOCK chip.

The XMI

2.1.3 XMl Data Transactions

The XMI supports various data transactions, as shown in Table 2-2.

Table 2-2 Data Transactions Supported by the XMI

Transaction Length I/0 Space Memory Space

Read Longword X

Quadword X

Octaword X

Hexword X

Interlock Read Longword X

Quadword X

Octaword X

Hexword X

Write Masked Longword X

Quadword X

Octaword X

Unlock Write Longword X

Quadword X

Octaword X

2-6

The XMI

The following terms are used to describe XMI transactions:

Table 2-3 XMI Terms

Term Description

Node

Transfer

Transaction

Commander

Responder

Transmitter

Receiver

Naturally aligned

Wraparound read

A hardware device that connects to the XMI backplane.

The smallest quantum of work that occurs on the XMI. Typical

examples of transfers are the command cycle of a read and

the command cyles with the following data cycles of a write.

The logical task being performed (such as a read). A

transaction is composed of one or more transfers. As an

example of a transaction, the read consists of a command

transfer followed, some time later, by a return data transfer.

The node that initiated the transaction in progress. For

example, the commander initiates a read transaction while the
responder (data source) initiates the read data transfer. The

responder is not the commander for the read data transfer

because the transfer was requested by the commander node.

The node that responds to the commander in a transaction.

The node that is sourcing the information on the bus. For

example, during a read transaction the commander is the

transmitter during the command transfer but is the receiver

during the return data transfer.

The node that is the target during a transfer.

Describes a data quantity whose address could be specified

as an offset, from the beginning of memory, of an integral

number of data elements of the same size. The lower bits of

a naturaily aligned data item are zero. All XMi writes transfer

a naturally aligned block of data.

An octaword or hexword read where read data is returned

with the specifically addressed quadword first, independent of

alignment. The remaining data in the naturally aligned block

of data containing the addressed quadword is returned in

subsequent transfers.

2-7

Reads cause the transfer of data from the responder to the commander.

Writes cause the transfer of data from the commander to the responder.

Longword commands transfer 4 bytes while quadword, octaword, and

hexword commands transfer 8, 16, and 32 bytes, respectively.

Interlocked variations of read commands are intended to do the same thing

as the regular reads, but they also invoke a mutual exclusion mechanism

where a lock flag associated with the location is set. Unlock writes cause

the clearing of the lock flag. During periods when a location is locked,

subsequent interlock reads to that location result in the responder returning

a "locked” response instead of read data.

All writes are masked and are accompanied by a set of mask bits that

specify which bytes of data are to be written. Any arbitrary pattern of bytes

can be written with a write mask.

Longword-length transactions may only be used in I/O space (A<29> =

1). Quadword-, octaword-, and hexword-length transactions may only be

used in memory space (A<29> = 0).

Addresses for memory and I/O space are given in Section 2.2.1 and

Section 2.2.2.

The XMI

XMl Interrupt Transactions

The XMI supports three types of interrupt transactions, listed in

Table 2-4.

Table 2-4 XMI interrupt Transactions

Type Mnemonic

Interrupt Request INTR

Identify (Interrupt Acknowledge) IDENT

Implied Vector Interrupt IVINTR

The INTR and IDENT transactions implement device interrupts. An /O

node issues an INTR transaction to a processor to interrupt the processor

at a specified interrupt priority level (IPL). The processor responds to
the INTR by issuing an IDENT transaction to the interrupting I/O node,
soliciting an interrupt vector.

An INTR transaction can be broadcast to multiple processor nodes. The

first processor to respond with IDENT receives the interrupt vector. All
other processors, upon seeing the IDENT directed to the interrupting

device, cease their interrupi-pending condition. If IDENTSs are issued
simultaneously by two or more processors, the first to gain the bus will
service the interrupt while the other(s) force a microcode passive release.

The IVINTR transaction implements single-cycle interrupt transactions

where the interrupt priority and the interrupt vector value are implied
by bits in the interrupt type field. The IVINTR transaction implements

VAX interprocessor interrupts (IPL = 14H, vector = 80H) and write error

interrupts (IPL = 1DH, vector = 60H). Since the value of the interrupt

vector is indicated by the value of the IPL field, IVINTR transactions do not

require a corresponding interrupt acknowledge cycle.

See Section 2.5.5 and Section 2.5.6 for more information on interrupt

transactions.

2-9

2.1.5

The XMi

Arbitration

The XMI protocol includes arbitration because, at any time, any or all of

the nodes may desire the use of the XMI. Arbitration determines

which node gains the XMI when more than one node requests the XMI

simultaneously.

Table 2-5 XMI Arbitration Lines

Name Use

XMi CMD REQ L Initiates XM transactions

XMI RES REQ L Returns data

XMI GRANT L Indicates which node has been granted the XMl bus

for the next cycle

The VAX 6200 supports an XMI bus of 14 nodes. Arbitration cycles

occur in parallel with data transfer cycles, since the XMI has a set of

lines dedicated to arbitration. These lines are listed in Table 2-5.

When a node desires ownership of the bus, it asserts one of its two request
lines (XMI CMD REQ L or XMI RES REQ L) that are connected to the

central arbiter. The XMI CMD REQ L line is used by nodes to initiate XMI

transactions (that is, act as a commander) while the XMI RES REQ L line is

used by nodes to return data to a commander (that is, act as a responder).

The XMI arbiter maintains two independent round-robin queues, one for

each request type. The responder requests are given higher priority than

commander requests.

See Section 2.3 for more information on arbitration.

2.1.6

The XMI

Bus Integrity

The XMI bus contains a number of features to enhance the integrity and

reliability of the bus.

The features of the XMI that enhance bus integrity and reliability are:

All bus information transfer lines are parity protected.

e Bus confirmation signals are ECC protected.

e XMI protocol permits detection and recovery of almost all single-bit

errors on the information transfer lines and bus confirmation signal

lines.

e XMI protocol defines timeout conditions that are used to detect failures.

2-11

The XMI

2.2 XMI Addressing

The XMI supports memory with a gigabyte (230 bytes) of address space.

This memory space is divided into the physical memory space and /O

space, shown in Figure 2-3.

Figure 2-3 XMI Memory and I/O Address Space

Byte Address

0000 0000

Physical Memory Space

(512 Mbytes)

1FFF FFFF

2000 0000

1/0 Space

(512 Mbytes)
3FFF FFFF

2-12

2.2.1

2.2.2

XMI Memory Space

The XMI

A/D<29> selects between the memory and /O space. A/ID<29> = 0
selects physical memory space, while A/D<29> = 1 selects I/O space.

The upper two bits of an XMI address are used to define transfer size.

XMI 1/O Space

XMI 1/O space is divided into private space, nodespace, and eight I/O
adapter address space regions.

Figure 2-4 XMI I/O Space Address Allocation

Byte Address

2000

2180

2200

2400

2600

2800

2A00

3600

3800

3A00

3C00

3E00

3FFF

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

FFFF

XMI Private Space

XMI Nodespace

I/0 Adapter 1 Address Space

I/0 Adapter 2 Address Space

I/0 Adapter 3 Address Space

I/0 Adapter 4 Address Space

Reserved

1/0 Adapter B Address Space

I/0 Adapter C Address Space

I/0 Adapter D Address Space

1/0 Adapter E Address Space

Reserved

Size

24 Mbytes

16 x 512 Kbytes

32 Mbytes

32 Mbytes

32 Mbytes

32 Mbytes

192 Mbytes

32 Mbytes

32 Mbytes

32 Mbytes

32 Mbytes

32 Mbytes

2-13

The XMI

2.2.2.1 XMi Private Space

References to XMI private space are serviced by resources local to a node,
such as local device CSRs and boot ROM. The references are not broadcast
on the XMI. XMI private space is a 24-Mbyte address region containing the
reset address.

2.2.2.2 XMI Nodespace

2-14

The VAX 6200 XMI nodespace is a collection of 14 512-Kbyte regions
located from 2188 0000 to 21F7 FFFF. Each XMI node is allocated one
of the 512-Kbyte regions for its control and status registers. The starting
address of the 512-Kbyte region associated with a given node is computed
as 2180 0000 + Node ID * 80000.

Table 2-6 XMI Nodespace Addresses

Slot Node Nodespace I/O Adapter Space

1 1 2188 0000 - 218F FFFF 2200 0000 - 23FF FFFF

2 2 2190 0000 - 2197 FFFF 2400 0000 - 25FF FFFF

3 3 2198 0000 - 219F FFFF 2600 0000 -~ 27FF FFFF

4 4 21A0 0000 - 21A7 FFFF 2800 0000 - 29FF FFFF

5 5 21A8 0000 - 21AF FFFF N/A

6 6 21B0 0000 - 21B7 FFFF N/A

7 7 21B8 0000 - 21BF FFFF N/A

8 8 21C0 0000 - 21C7 FFFF N/A

9 9 21C8 0000 - 21CF FFFF N/A

10 A 21D0 0000 - 21D7 FFFF N/A

" B 21D8 0000 - 21DF FFFF 3600 0000 - 37FF FFFF

12 C 21E0 0000 - 21E7 FFFF 3800 0000 - 39FF FFFF

13 D 21E8 0000 - 21EF FFFF 3A00 0000 - 3BFF FFFF

14 E 21F0 0000 - 21F7 FFFF 3C00 0000 - 3DFF FFFF

The XM|

22.2.3 I/0 Adapter Address Space -

1/O adapter address space consists of eight 32-Mbyte address regions used

to access VAXBI 1/O adapters. Longword-length references directed to a

VAXBI’s I/O adapter address space will be reissued on that VAXBI bus.

XMI transactions are translated into a corresponding VAXBI transaction.

The VAXBI address of the transaction is computed from XMI addresses as

2000 0000 + offset, where offset is the difference between the XMI address

and the start of the appropriate DWMBA/A module’s address space. XMI

devices can only access VAXBI I/O space, as VAXBI memory space is not

accessible to nodes on the XML

To calculate the address of the first register in nodespace (the DTYPE

register):

e The base address of I/O space is 2000 0000 (hex).

e Bits<28:25> correspond to the XMI node number, which is the same

as the slot number except that node numbers are in hexadecimal while

slot numbers are in decimal. The VAX 6200 VAXBI nodes are 1, 2, 3,

4, B, C, D, and E. These are used for:

E - the VAXBI in the middle of the system cabinet

D - the VAXBI in the left of the system cabinet

C - the first VAXBI in an expander cabinet; usually leftmost

B - the second VAXBI in an expander cabinet; usually center-left

1 - the third VAXBI in an expander cabinet; usually center-right

2 - the fourth VAXBI in an expander cabinet; usually rightmost

3 - the fifth VAXBI in an expander cabinet; not usually used

4 - the sixth VAXBI in an ex»ander cabinet; not usually used

e Bits<16:13> correspond to the VAXBI node number. For the VAXBIs

inside the system cabinet, the node number is usually the same as the

slot number: 1, 2, 3, 4, 5, or 6. For the VAXBIs in a VAXBI expander

cabinet, consult the system-specific configuration chart.

For example, the leftmost slot in the VAXBI in the left of the system

cabinet, usually VAXBI node 6 would be connected to XMI node D. The

DTYPE register for the VAXBI option in that slot would be addressed as

3A00 C000.

2-15

2.3

The XMI

Arbitration Cycles

2-16

The XMI protocol includes arbitration because, at any time, any or all
of the nodes may desire the use of the XMI. Arbitration determines
which node gains the XMI when more than one node requests the XMI
simultaneously. Arbitration cycles occur in parallel with data transfer

cycles, since the XMI has a set of arbitration-dedicated lines.

Figure 2-5 XMI Arbitration Block Diagram

XMI HOLD L

XMI SUP L

XMI CMD REQ[1] L

XMI RES REQ[1] L

Node

#1 XMI GRANT[1] L

Central

Arbiter

XMI CMD REQ[14] L

XMI RES REQ[14] L

Node

#E XMI GRANT[14] L

The XMI

The XMI protocol architecturally supports up to 16 XMI nodes. However,

the VAX 6200 implementation supports 14 nodes. Each node on the XMI

bus has a hexadecimal identification number (1 through E) called the node

ID, which is provided by the node’s hardwired XMI NODE ID<3:0> H

lines. The physical slot number equals the node ID. Slot 1 is the rightmost

slot in the XMI card cage when viewed from the front of the cabinet.

Any or all nodes may desire the use of the XMI at any given time,

Arbitration cycles occur in parallel with data transfer cycles by using a

set of lines dedicated to arbitration. The XMI CMD REQ L line, the XMI

RES REQ L line, and the XMI GRANT L line go between the central arbiter

and each node. The XMI CMD REQ L line is used by nodes to initiate

XMI transactions (to act as a commander), while the XMI RES REQ L line

is used to return data to a commander (to act as a responder). The XMI

arbiter maintains two independent round-robin queues, one for each of

the request types. The responder requests have a higher priority than

commander requests.

During any given cycle, all nodes have the opportunity to request the bus.

The arbiter receives all the requests, decides which node will be granted

the bus, and uses that node’s XMI GRANT L line to tell the node that it

has been selected. In the next cycie, the seiected node begins its transfer.

The XMI has two additional arbitration control signals, XMI HOLD L and

XMI SUP L. XMI SUP L suppresses all commander requests but allows

responder requests to continue to be serviced. Assertion of XMI HOLD L

guarantees that the current XMI transmitter will be granted ownership of

the bus in the next cycle, independent of the value of any other outstanding

requests. The XMI HOLD L signal is used for multicycle transfers, allowing

the current transmitter to keep ownership of the bus for consecutive cycles.

A node can temporarily block the start of additional XMI transactions by

asserting the XMI SUP L signal should it have difficulties in keeping up

with bus traffic, such as a memory queue becoming full or a CPU backing

up on cache invalidate operations due to XMI writes.

The XMI arbitration scheme consists of three priority classes:

e Hold, which has the highest priority and guarantees that the current

transmitter will be granted the bus in the next cycle.

* Responder requests, the next highest priority.

¢ Commander requests, the lowest priority.

Within the responder and commander classes, priority is distributed in a

round-robin manner.

2-17

The XMI

2.4 XMI Cycles

The purpose of an XMI cycle is determined by four signal lines on the
XMI backplane, XMI F<3:0> L.

2.4.1 Function Codes

The XMI uses four lines to encode the function being performed on the
bus. Table 2-7 lists the function codes.

Table 2-7 XMI Function Codes

XMI F<3:0> L

Logic Levels

3 2 1 0 Function Mnemonic

0 0 0 0 NULL cycle NULL

0 0 0 1 Command cycle CMD

0 0 1 0 Write Data cycle WDAT

0 0 1 1 Reserved (decoded as NULL)

0 1 0 0 Lock Response LOC

0 1 0 1 Read Error Response RER

0 1 1 0 Reserved (decoded as NULL)

0 1 1 1 Reserved (decoded as NULL)

1 0 0 0 Good Read Data 0 GRDO

1 0 0 1 Good Read Data 1 GRD1

1 0 1 0 Good Read Data 2 GRD2

1 0 1 1 Good Read Data 3 GRD3

1 1 0 0 Corrected Read Data 0 CRDO

1 1 0 1 Corrected Read Data 1 CRD1

1 1 1 0 Corrected Read Data 2 CRD2

1 1 1 1 Corrected Read Data 3 CRD3

2-18

2.4.2 Command Cycles

The XMI

During XMI command cycles, commander nodes initiate XMI transactions.

The commander drives its commander ID on XMI 1D <5:0> L and

drives command information on D<63:0> L, as shown in Figure 2-6

and Figure 2-7.

Figure 2-6 Data Transaction Command Cycle Format

6 65 44 3332

3 009 8 7 21009 0

MBZ MASK ADDRESS

L COMMAND _]
LENGTH

Figure 2-7 Interrupt Transaction Command Cycle Format

6 65 21 11

3 009 09 65 0

MUST BE ZERO IPL |NODE SPECIFIER

L COMMAND

The command cycle has the command fields discussed in the following

subsections:

e Command field

e Mask field

¢ Length field

* Address field

¢ Node Specifier field

The XMI

2.4.2.1 Command Field

The Command field is XMI D<63:60> L. The Command field specifies

the transaction being initiated in the command cycle. (See Table 2-8.)

Table 2-8 XMI Command Codes

XMI D<63:60> L

Logic Levels

63 62 61 60 Command Mnemonic

0 0 0 0 Reserved

0 0 0 1 Read READ

0 0 1 0 Interlock Read IREAD

0 0 1 1 Reserved

0 1 0 0 Reserved

0 1 0 1 Reserved

0 1 1 0 Unlock Write Mask UWMASK

0 1 1 1 Write Mask WMASK

1 0 0 0 Interrupt INTR

1 0 0 1 Identify IDENT

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Implied Vector Interrupt IVINTR

2-20

The XMI

2.42.2 Mask Field

The Mask field is XMI D<47:43> L. The Mask field supplies byte-level

mask information for the XMI Write Mask and Unlock Write Mask

transactions. During nonwrite transactions this field is a "don’t care,”

but proper parity is still generated. (See Figure 2-8.)

The maximum length of a write transaction is an octaword, which requires

16 mask bits in the upper longword of the command. The mask bits define

which bytes of the following write data cycles are to be written to the

specified locations. For longword- and quadword-length writes, the unused

mask bits (D<47:36> L and D<47:40> L, respectively) are unspecified

and are ignored by responders, other than to check parity.

Figure 2-8 Mask Field Bit Assignments

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

156 |14 |13 |12 J11 |10 9 | 8 | 7 | 6 | B |4 |3]|]2}|1]O

First QW |b7 |b6 |b5 |b4 |b3 {b2 |bl |bO

63 0

b7 |b6 |b5 |b4d |b3 |b2 |bil |bO Second QW

‘ (if octaword transaction)

63 0

2-21

The XMI

2-22

2.4.2.3 Length Field

The Length field is XMI D<31:30> L. The Length field is used to define

the number of words in the XMI data transfer. Table 2-9 shows the Length

field coding. Longword-length transactions are only used in I/O space.
Quadword-, octaword-, and hexword-length transactions are only used in

memory space. Hexword lengths are only used for Read or Interlock Read

transactions.

Table 2-9 XMI Transaction Length Codes

XMl

D<31:30> L

Logic Levels

31 30 Size

0 0 Hexword

0 1 Longword

1 0 Quadword

1 1 Octaword

The XMI

2.4.2.4 Address Field

The Address field, XMI D<29:0> L, defines the address of an XMI read

or write transaction. The number of significant bits in the address depends

on the transaction type and length.

Quadword and octaword write transactions are assumed to be naturally

aligned, allowing the lower bits of the address to be "don’t care.” Reads

require that the lower bits be significant because memory does wraparound

reads. All wrapped reads need to identify the quadword to be transferred

first.

For longword-length transactions, XMI D<1:0> L are only significant for a

VAXBI word-mode or byte-mode transaction in I/O space. XMI D<1> L is

required for word mode and bits<1:0> are required for byte mode.

The relationship between the high and low words, the state of bit<1>, and

the data bits is:

XMI D<1>

XMID<1>

1 = high word = D<31:16>

0 = low word = D<15:0>

The data returned on the opposite word of the one specified will have

correct parity, but its data is unspecified.

For a longword-oriented device, bit<1> is ignored as an address bit and a

full longword of data is returned for a read operation.

2-23

The XMI

2-24

2.4.2.5 Node Specifier Field

The Node Specifier field is XMI D<15:0> L. During command cycle

interrupt transactions (INTR, IDENT, IVINTR), the Node Specifer

field is used to specify the source or destination of an interrupt. (See

Figure 2-7.) The relationship between bits in the Node Specifer field and

the source/destination of an interrupt transaction is shown in Figure 2-9.

The VAX 6200 uses nodes 1 through E.

Figure 2-9 Node Specifier Field

11111

432109876543210(¢2
l

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

| L

O
r
r
r
N
D
W
k
O
N
O
N
O
Y
P
»
P
T
O
Q
O
I
M
E
T

The XMI

2.4.3 Write Data Cycles

A function code of 0010 identifies an XMI write data cycle. Write data

cycles immediately follow the XMI command cycle during an XMI write

transfer. During this cycle, the commander drives its ID on XMI ID<5:0>
L and drives write data on D<63:0> L. The full 64 bits of data are used

during quadword-length or larger writes. For longword-length writes,

only the lower longword D<31:0> L is used and the value of the upper

longword is unspecified. In either case, the full 64 bits are used when

checking XMI P<2:0> L.

2.4.4 Good Read Data (GRD) and Corrected Read Data Response (CRD)

Cycles

Function codes 1000 through 1111 are used to identify return data in

response to a Read, Interlock Read, or IDENT transaction. The Good Read

Data response (GRDn, codes 1000 - 1011) indicates that the quadword of

data is error-free. The Corrected Read Data response, CRDn, codes 1100 -

1111) indicate that the corresponding quadword of data stored in memory

contained a single-bit error which was successfully corrected using ECC
prior to shipment on the XMI. Both types of read data responses contain

a sequence ID located in XMI F<1:0> L, which is used to identify when a

read data cycle has been lost due to an XMI parity error.

During a read data response cycle, the responder drives the commander’s

ID on XMI ID<5:0> L and read data on D<63:0> L. All 64 bits of data are

used during quadword- and octaword-length reads. For longword-length

reads, only the lower longword (D<31:0> L) is used. In this case, the

value of the upper longword is unspecified. In either case, the full 64 bits

are used when checking XMI P<2:0> L.

2-25

2.4.5

2.4.6

2.4.7

The XMi

Locked Response Cycle (LOC)

The Locked Response indicates that the location specified in an Interlock
Read transaction was already locked. During this cycle the responder
drives 0100 on XMI F<3:0> L and the commander’s ID on XMI ID<5:0>
L. The value of the data bits, D<63:0> L, is unspecified but must be
consistent with P<2:0> L. A Locked Response signals the termination of
an Interlock Read transaction. When issued, it is always the first and only
read response to the transaction.

Read Error Response Cycle (RER)

The Read Error Response indicates that a Read, Interlock Read, or IDENT
transaction completed unsuccessfully due to an error condition at the
responder node. The Read Error Response is used for an uncorrectable
memory error or a reference to a nonexistent location on the VAXBI.
During this cycle the responder drives 0101 on XMI F<3:0> L and the
commander’s ID on XMI'ID<5:0> L. The value of the data bits, D<63:0>
L, is unspecified but must be consistent with XMI P<2:0> L. A Read Error
Response signals the termination of the transaction, and no further read
responses are provided.

The Null Cycle

2-26

A null cycle is an unused XMI cycle as no node has requested the bus. The
null cycle is ignored by all XMI responders.

2.5

2.5.1

The XMI

XMI Transactions

XMI transactions are listed in Table 2-10.

Table 2-10 XMI Transactions

Name Mnemonic

Read READ

Interlock Read IREAD

Write Mask WMASK

Unlock Write Mask UWMASK

Interrupt INTR

Identify IDENT

Implied Vector Interrupt IVINTR

Read Transaction

The Read transactions (READ) are used to transfer a longword, quadword,

octaword, or hexword of data from the responder to the commander. A

Read transaction is initiated by a commander driving the XMI address and

function lines to represent a longword read, quadword read, octaword read,

or hexword read. The Read command cycle is decoded by all responder

nodes. The node that recognizes its own address latches that address and

command. This node is the responder.

When the responder has the requested data, it initiates a return data

transfer. Multiple transfers may be necessary to transfer all the quadwords

in a given octaword or hexword transaction. The commander monitors the

bus traffic waiting for its return data, and then latches the information. The

commander issues its own ID in the ID field during the command cycle.

The responder returns this same ID with the return read data so that the

commander can recognize the return read data it had requested.

Longword-length transactions can only be used in I/O space while

quadword-, octaword-, and hexword-length transactions can only be used
in memory space.

2-27

2.5.2

The XM

Interlock Read Transaction

2-28

An Interlock Read transaction, combined with a corresponding Unlock

Write transaction, permits mutually exclusive access to memory space

locations.

The Interlock Read transaction (IREAD) works in memory space. This
transaction gains access to a shared object in memory. The exact effect

of the Interlock Read depends on the state of the memory’s lock bit.
Quadword-, octaword-, and hexword-length transactions are used in
memory space.

If the memory is already locked, memory responds to IREAD with a

Locked Response, and no data is returned. This tells the commander that
the shared memory structure is not available at this time. The commander

responds to the locked response by repeating the IREAD.

If the memory is not locked, memory locks itself to further IREADs upon
receipt of an IREAD and provides the data contained in the addressed
locations(s) to the commander. Unlocking the memory requires an
UWMASK transaction.

The use of Interlock Read transactions in I/O space is implementation
dependent. Most I/O locations treat an Interlock Read like a regular READ.
Only longword-length transactions can be used in I/O space.

The XMI

2.5.3 Write Mask Transaction

Write Mask transactions transfer data from the commander to the

responder.

Write Mask transactions (WMASK) transfer quadwords or octawords from

the commander to the memory-space responder, such as the MS62A

memory module. The commander gains the XMI and sends a command

cycle specifying the type of transaction (a longword Write Mask, quadword

Write Mask, or an octaword Write Mask), a byte Write Mask, and the

desired address. The commander immediately follows this with one or two

cycles of write data. All nodes on the XMI decode the address, and the

node that recognizes the address becomes the responder.

The responder accepts the command, address, and data and performs

the requested write. The mask field that accompanies each command

and address has 16 bits. Each bit corresponds to a byte of data in the

associated one or two quadwords. If the bit is zero, then that byte is not

written; if the bit is one, then that byte is written.

All cache-resident nodes on the XMI are required to monitor write traffic

and perform cache invalidates if the XMI write "hits” a block stored in

cache.

The XMI has the concept of a "cache invalidate” transaction that does

not result in an update of main memory. A commander can perform an

invalidate operation by issuing either a quadword Write Mask or octaword

Write Mask command with the mask field equal to all zeros. The size

of the region to be invalidated is specified in the Length field. Since an

invalidate operation is a degenerate case of a Write Mask transaction, it

obeys all the Write Mask transaction requirements, including supplying the

appropriate write data cycles consistent with the transaction length. As the

write data will be discarded by the responder, the value of XMI D<63:0>

L during these cycles is unspecified but is consistent with XMI P<1:0> L.

2-29

The XMI

2.5.4 Unlock Write Mask Transaction

The Unlock Write Mask transaction, combined with a corresponding
Interlock Read transaction, is used to relinquish the locked memory
location after an interlock read.

After a node successfully gains the lock in memory and finishes the
required access to the shared structure, it then relinquishes the lock
by performing an Unlock Write Mask (UWMASK) to the memory with
appropriate data. The memory, which has been monitoring the bus traffic,
reacts to the Unlock Write by unlocking memory and writing the data in the
request.

If an Unlock Write Mask transaction is directed to a location that is
not currently locked, the responder performs the write operation. An
implementation might log this as an error in its CSRs.

Unlock Write Mask transactions to 1/O space are implementation
dependent and can only be longword length.

2.5.5 Interrupt and Identify Transactions

2-30

Any 1/O device can send an interrupt to one or more processor nodes. A
processor eventually issues an Identify and then performs the necessary

service routine.

Any of the up to eight /O devices on the XMI can send out an Interrupt
transaction (INTR) to one or more CPU nodes, as designated by a

destination mask. One of the processors eventually issues an Identify
transaction (IDENT) at a selected level <7:4> and chooses one interrupting

node to send it to. That processor then clears the I/O interrupt but other
I/O interrupts (if any) remain in parallel to maintain the CPU interrupt
request. An interrupt vector is eventually sent to the CPU, which then

performs the necessary service routine and then sends out another IDENT
or other transaction.

Interrupting nodes do not need to reissue their interrupts after one

node/level is serviced. Each CPU monitors the XMI for IDENTSs issued
by another node. An IDENT issued by one CPU to an interrupting device
causes the other processor nodes to clear their corresponding interrupt-

pending flag. An interrupting node is not allowed to have more than one
interrupt outstanding at a given level.

If more than one processor issues an IDENT for the same interrupt, the
first processor node to win the XMI processes the interrupt and the other
CPUs clear their corresponding interrupt-pending flags and abort the
IDENT by taking a microcode passive release, which is not seen by the
operating system.

The XMI

2.5.6 Implied Vector Interrupt Transactions

The Implied Vector Interrupt is a single-cycle transfer used to implement

VAX interprocessor interrupts and write error interrupts where the interrupt

priority and interrupt vector are implied by the type of interrupt.

Interprocessor interrupts are issued at IPL 14H with a vector of 80H. Write

error interrupts are issued at IPL. 1DH with a vector of 60H. Since the value

of the interrupt vector is indicated by the value of the Type field, IVINTR

transactions do not require a corresponding IDENT (identify or interrupt

acknowledge cycle).

The IVINTR transaction contains a 4-bit Type field used to specify the type

of interrupt. Only two bits are used: <16> specifies an interprocessor

interrupt, while <17> specifies a write error interrupt. The IVINTR

transaction also contains a 16-bit Node Specifier field (one bit per node)

indicating which nodes are to be interrupted. Interprocessor interrupt

transactions can be directed to more than one node. Write error interrupt

transactions are directed to only one node.

2-31

The XMi

2.5.7 Transaction Examples

Examples are found in the following subsections:

* Single Data Cycle Reads

® Multiple Data Cycle Reads

* Longword and Quadword Writes

* Multiple Data Cycle Writes

2.5.7.1 Single Data Cycle Reads

The four types of single data cycle reads are:

¢ Longword Read

* Longword Interlock Read

¢ (Quadword Read

¢ Quadword Interlock Read

Figure 2-10 Read Transaction

0 1 2 3 4 5 6 7

FUNCT CMD GRDO

DATA READ DATA

ID CMDR - CMDR

CONF ACK ACK

ARB CMDR RESP

ACK = acknowledge; ARB = arbitration winner; DATN = data n;

CMD = command; CMDR = commander; CRDN = corrected read data n;

FUNCT = Function; GRDN = good read data n; RESP = responder:

WDAT = write data; WRTM = write mask

Figure 2-11 Interlock Read Transaction to a Locked Location

0 1 2 3 4 5 6 7

FUNCT CMD LOC

DATA READ

ID CMDR e CMDR

CONF ACK ACK

ARB CMDR RESP

2-32

The XMI

The Read transactions consist of a command transfer followed by a return

data transfer, as shown in Figure 2-10. The two transfers are the command

(FUNCT = CMD) and the read data response (FUNCT = GRD0). The

commander arbitrates for the bus in cycle 0 and wins. In cycle 1, it drives

the function, command, address of the read, and its own ID (for later use

to identify the returning data). In cycle 3, the responder confirms receipt of

the information.

Some variable time later, in this example at cycle 4, the return data transfer

begins with the responder arbitration for the bus. Having won it, the

responder drives the function, the data, and the commander’s ID in

cycle 5. The status of the returning data is specified in the read response

function code, either Good Read Data, Corrected Read Data, or Read Error

Response. The commander monitors the bus, checking for an ID match

during read data cycles to indicate that the read data is meant for that

commander.

If the particular transaction requested had been an Interlock Read, and if

the memory was already interlocked, the commander would have provided

a Locked Response in place of the returned data. (See Figure 2-11.)

2-33

The XMI

2-34

2.5.7.2 Multiple Data Cycle Reads

The four types of multiple data cycle reads are:

¢ QOctaword Read

¢ (Octaword Interlock Read

e Hexword Read

¢ Hexword Interlock Read

Figure 2-12 Multiple Data Cycle Reads Command Cycle

FUNCT CMD

DATA READ

ID CMDR

CONF ACK

ARB CMDR

Figure 2-13 Read Data Cycles

FUNCT GRDO GRD1

DATA DATO DAT1

ID CMDR CMDR

CONF ACK ACK

ARB RESP RESP

Figure 2-14 Read Data Cycles with HOLD

o 1 2 3 4

FUNCT GRDO|GRD1

DATA DATO|DAT1

ID CMDR | CMDR

CONF ACK JACK

ARB RESP |HOLD

The XMi

The four multiple data cycle read transactions move either 16 bytes

(octaword) or 32 bytes (hexword) of data from the responder to the

commander. Figure 2-12 is the command transfer of the transaction.
The Interlock Read checks the state of the lock bit in the memory and

qualifies the request, based on its state. This illustration applies to both

octaword and hexword reads.

Figure 2-13 is a diagram of the return data transfer applicable to octaword

reads, moving four longwords of data. The function field of the bus in

cycle 1 indicates "good read data 0” with the ID field identifying the
intended receiver (the transaction commander). Cycle 4 is a Good Read

Data 1 cycle. Each cycle provides a new quadword of read data while the

ID remains unchanged.

Read data may be returned in consecutive cycles through the use of HOLD,
as shown in Figure 2-14. The transmitter asserts HOLD in the first cycle to

ensure that it maintains the use of the bus until it completes the transfer.
HOLD is the highest priority arbitration line and guarantees use for a

maximum of four consecutive cycles. The confirmation is returned to the

commander two cycles after the command cycle.

Bus usage during a hexword read with a single correctable read error is
shown in Figure 2-15.

Figure 2-16 illustrates the events during a return data of hexword length
containing an uncorrectable read error. When memory encounters an

uncorrectable read error, it returns a Read Error Response and suppresses

further read responses for that transaction.

2-35

The XM

2-36

Figure 2-15 Hexword Read with Single Correctable Read Error

0 1 2 3 4 5 6 7

FUNCT GRDO |GRD1 |CRD2 GRD3

DATA DATO|DAT1 |DAT2 DAT3

ID CMDR | CMDR | CMDR CMDR

CONF ACK [ACK [ACK ACK

ARB RESP |HOLD | HOLD RESP

Figure 2-16 Hexword Data Return with Uncorrectable Read Error

0 1 2 3 4 5

FUNCT GRDO|GRD1 |RER

DATA DATO|DAT1

ID CMDR | CMDR | CMDR

CONF ACK |ACK [ACK

ARB RESP |HOLD |HOLD

The XMI

2.5.7.3 Longword and Quadword Writes

Longword and quadword writes can be either Write Mask or Unlock Write

Mask transactions.

Figure 2-17 Longword and Quadword Writes

0 1 2 3 4

FUNCT CMD |WDAT

DATA WRTM|DATA

ID CMDR

CONF ACK |ACK

ARB CMDR |HOLD

Longword and quadword writes move the number of bytes specified by the

Mask field. The commander arbitrates for the XMI bus and, upon winning

it, drives the appropriate write command, the intended address, the data

mask, its own ID, and asserts HOLD to signal that it will need the next

cycle as a Write Data cycle. It then provides the write data but no ID field,

having identified itself in the command cycle. Cycles 3 and 4 show the

confirmation from the responder.

2.5.7.4 Muitiple Data Cycle Writes

The multiple data cycle writes are the octaword Write Mask and the

octaword Unlock Write Mask transactions.

Figure 2-18 Mulitiple Data Cycle Writes

1 2 3 4 5

FUNCT CMD |WDAT |WDAT

DATA WRTM|DATO | DAT1

ID CMDR

CONF ACK [ACK |ACK

ARB i CMDR| HOLD {HOLD

NOTE: The write data must immediately follow the

comand cycle with no intervening null cycles.

Multiple data cycle writes identify the first cycle of the transfer with the

desired write length. HOLD is asserted while successive cyles provide new

data.

2-37

2.6

The XMi

XMl Initialization

2-38

Regardless of the method used te cause a node to initialize, the
initialization process consists of the same steps.

Figure 2-19 XMI Initialization Flowchart

(DC L0 asserts]

XMI BAD L asserts;

XBER<STF> sets;

Self-test LED off

DC LO deasserts

Node self-test runs

Self-test LED stays off;

XBER<STF> stays set;

XMI BAD L stays asserted

XBER<STF> clears;

XMI BAD L clears if

all nodes are good;

XDEV loaded with DTYPE;

Self-test LED on

END

2.6.1

2.6.2

The XM

Causes of an Initialization

Three causes of XMI initialization are:

¢ Power-down/power-up

e System reset

e Node reset

Power-Up

On power-up, the XMI AC LO L, XMI DC LO L, and XMI RESET L lines

are sequenced to provide initialization of all nodes in the system.

During normal power-up, a node cannot access XMI-accessible memory

space locations until the deassertion of XMI AC LO L. However, memory

nodes clear memory locations following the deassertion of XMI DC LO L

if a cold start is indicated. During a system reset sequence, it is possible

for the resetting node to access memory prior to the deassertion of XMI

AC LO L, but no other node can access memory prior to the deassertion of

XMI ACLO L.

During brownout power conditions, XMI AC LO may assert and later

deassert without an assertion of XMI DC LO L. XMI AC LO L remains

asserted for a period of time after the deassertion of XMI DC LO L,

allowing a node’s internal initialization signals to be removed before a

power restart interrupt is raised.

XMI DC LO L warns of the impending loss of DC power and is used for

initialization on power-up. DC power and the XMI clock become valid

before the deassertion of XMI DC LO L. XMI DC LO L is asserted after

the assertion of XMI AC LO L, allowing the power-fail routine to save

processor state in memory and to halt. The result of any XMI transaction

in progress when XMI DC LO L asserts is indeterminate.

XMI DC 1.O L asserts before the loss of DC power so that nodes such as

disk controllers can stop certain activities before the removal of power.

In a power outage, first AC power is lost, then (if not restored quickly), DC

power falls below acceptable levels, asserting first XMI AC LO L and then

XMIDCLO L.

During a power outage, systems with the battery backup option have their

memory nodes supplied with battery power, allowing memory contents

to be retained. After power is restored, the memory is not reinitialized.

However, if the power outage is lengthy and exhausts the battery, the data

in memory is no longer reliable. One function of the XTC power sequencer

is to monitor the battery backup power voltage and assert the XMI RESET

L line if the battery was exhausted.

2-39

2.6.3

2.6.4

The XMI

System Reset

A power-down/power-up sequence can be emulated through the use of the

XMI RESET L line, which causes the sequencing of XMI AC LO L and XMI

DC LO L in the same way as a true power-down/power-up sequence. This
allows all nodes in the system to be returned (or "reset”) to their power-up

state without cycling the power supplies. The XTC power sequencer is also

used to carry out the reset sequence.

The XTC power sequencer monitors the XMI RESET L line and drives the
XMI ACLO L, XMI DC LO L, and XMI RESET L lines. Upon detection

of an asserted XMI RESET L line, the XTC begins the reset sequence.
If XMI RESET L is asserted while XMI AC LO L and XMI DC LO L are

deasserted, the XTC asserts XMI AC LO L first, then XMI DC LO L,

and finally deasserts XMI DC LO L. In response, all XMI nodes perform

self-test and initialization. When the RESET line is deasserted, the reset

module deasserts XMI AC LO L, completing the emulation of the power-

down/power-up sequence. If the RESET line remains asserted until after

XMI DC LO L is deasserted, then all memory nodes reset, including those
with battery backup.

Node Reset

2-40

A single node in a system can be reset without resetting the entire system

by writing a one to the Node Reset bit (NRST) in the XMI Bus Error

Register of that particular node. The node is inaccessible for the duration

of its initialization and XMI BAD L is asserted. Accessing the node during
self-test may cause a self-test failure. Software drivers that share a node
must agree in advance that a node needs to be reset and lock the selection
of that node.

The XMI

2.7 XMI REGISTERS

This section describes the registers required for all XMI nodes.

Each XMI node is required to have a set of two or three registers in a

specified location within the node’s nodespace, as shown in Table 2-11.

Table 2-12 defines the abbreviations used to describe the type of bits in

the register descriptions. '

Descriptions of module-specific XMI registers are given in the chapters on

the XMI options.

Table 2-11 XMI Registers

Register Mnemonic Address Node Requirements

Device Register XDEV ' BB 2 + 0000 0000 All nodes

Bus Error XBER BB + 0000 0004 All nodes

Register

Failing Address XFADR BB + 0000 0008 Commanders only

Register

'X in the mnemonic indicates that this is an XMI register.

BB = base address of a node, which is the address of the first location in

nodespace.

Table 2-12 Abbreviations for Bit Type

Abbreviation Definition

0 Initialized to logic level zero

1 Initialized to logic level one

X Initialized to either logic state

RO Read only

R/W Read/write

RWIC Read/cleared by writing a 1

2-41

XMI Registers

Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the node. Both fields
are loaded during node initialization. A zero value indicates an uninitialized
node.

(S

ADDRESS Nodespace base address + 0000 0000

3 11

1 6 5 0

Device Revision Device Type

1

5 87 0

Device Type Field Class ID

[_!—— 1/0 Device
Memory Device

CPU Device

Device Types are:

KA62A CPU Module: 8001

MS62A Memory Module: 4001

DWMBA/A XMI Module: 2001

bits<31:16>
Name: Device Revision

Mnemonic: DREV

Type: R/W, 0

Identifies the functional revision level of the device. The use of the
Device Revision field is implementation dependent.

2-42

bits<15:0>

XMl Registers

Device Register (XDEV)

Name: Device Type

Mnemonic: DTYPE

Type: R/W, 0

Identifies the type of node. The Device Type field is broken into two

subfields: Class and ID. The Class field indicates the major category
of the node. The currently defined classes are CPU, memory, and 1/O.
The ID field uniquely identifies a particular device within a specified

class.

2-43

XMI Registers

Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register contains error status on a failed XMI transaction.
This status includes the failed command, commander ID, and an error bit
that indicates the type of error that occurred. This status remains locked
up until software resets the error bit(s).

“

ADDRESS Nodespace base address + 0000 0004

-

W

o

w

©

N

N ~
N

N

D
N

o &
=

N

w

N

N
N

-

N

o
n
N

O

=

o
0

-

~

=

N

-

= [
~

W B - O © 4 3 0

L Failing
Commander (FCMD)

Failing Commander

ID (FCID)

— Self-Test Fail (STF)

— Extended Test Fail (ETF)

— Node-Specific Error Summary

(NSES)

Commander Errors

— Transaction Timeout (TTO)

— Reserved; must be zero

— Command NO ACK (CNAK)

— Read Error Response (RER)

— Read Sequence Error (RSE)

— No Read Response (NRR)

~— Corrected Read Data (CRD)

— Write Data NO ACK (WDNAK)

Responder Errors

— Read/IDENT Data NO ACK (RIDNAK)
— Write Sequence Error (WSE)

— Parity Error (PE)

— Inconsistent Parity (IPE)

Miscellaneous

— Write Error Interrupt (WEI)

— XMI Fault (XFAULT)

— Corrected Confirmation (CC)

— XMI BAD (XBAD)

— Node HALT (NHALT)

— Node Reset (NRST)

— Error Summary (ES)

2-44

bit<31>

bit<30>

bit<29>

bit<28>

XMI Registers

Bus Error Register (XBER)

Name: Error Summary

Mnemonic: ES

Type: RO, 0

ES represents the logical OR of the error bits in this register. Therefore,

ES asserts when any error bit asserts.

NOTE:

Name: Node Reset

Mnemonic: NRST

Type: R/W, 0

Writing a one to NRST initiates a complete power-up reset similar to

the assertion and deassertion of XMI DC LO L (see note below); the

node performs self-test and asserts XMI BAD L until it is successfully

completed. Like power-up reset, nodes are precluded from accessing

the node from the time it is node reset until it completes self-test (or

the maximum self-test time is exceeded).

During the time that a node is responding to node reset, the node

does not access other nodes on the XMI bus. In response to a real

power-up sequence (caused by XMI DC LO L), the NRST bit will be

reset. Following a node reset sequence, it will remain set allowing

the processor to recognize that it should not attempt to go through the

normal boot process.

Name: Node HALT

Mnemonic: NHALT

Type: R/W, 0

Writing a one to NHALT forces the node to go into a "quiet” state

while retaining as much state as possible. The KA62A CPU module

will force the CVAX chip to HALT and go into console mode waiting

for console commands.

Name: XMI BAD

Mnemonic: XBAD

Type: R/W, 1

On reads, XBAD indicates the state of the XMI BAD signal. A one

indicates that BAD is asserted. Writes to this location supply the

state to be driven on the wired-OR XMI BAD L line by this node;

writing a one asserts XMI BAD L, while writing a zero releases it.

Only XMI processor nodes are required to implement this bit. If not

implemented, nodes return zero.

2-45

XMI Registers

Bus Error Register (XBER)

bit<27>

bit<26>

bit<25>

bit<24>

bit<23>

2-46

Name: Corrected Confirmation

Mnemonic: CC

Type: RW1C, 0

CC sets when the node detects a single-bit CNF error. Single-bit CNF

errors are automatically corrected by the XCLOCK chip.

Name: XMI FAULT

Mnemonic: XFAULT

Type: R/Wi1C, 0

When set, XFAULT indicates that the XMI FAULT signal has been

asserted for at least one cycle. Only XMI processor nodes are required

to implement this bit. If not implemented, nodes return zero.

Name: Write Error Interrupt

Mnemonic: WEI

Type: R/W1C, 0

When set, WEI indicates that the node has received a write error

interrupt transaction. Only XMI processor nodes are required to

implement this bit. If not implemented, nodes return zero.

Name: Inconsistent Parity Error

Mnemonic: IPE

Type: R/W1C, 0

When set, IPE indicates that the node has detected a parity error on
an XMI cycle and the confirmation for the errored cycle was ACK.

This indicates that at least one node (the responder) detected good
parity during the cycle time that this node detected a parity error.
Only XMI processor nodes are required to implement this bit. If not
implemented, nodes return zero.

Name: Parity Error

Mnemonic: PE

Type: R/W1C, 0

When set, PE indicates that the node has detected a parity error on an
XMI cycle.

bit<22>

bit<21>

bit<20>

bit<19>

bit<18>

XMI Registers

Bus Error Register (XBER)

Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, 0

When set, WSE indicates that the node aborted a write transaction due

to missing data cycles. Only XMI responder nodes are required to

implement this bit. If not implemented, nodes return zero.

Name: Read/IDENT Data NO ACK

Mnemonic: RIDNAK

Type: R/W1C, 0

When set, RIDNAK indicates that a Read or IDENT data cycle (GRDn,

CRDn, LOC, RER) transmitted by the node has received a NO ACK

confirmation.

Name: Write Data NO ACK

Mnemonic: WDNAK

Type: R/WI1C, 0

When set, WDNAK indicates that a Write data cycle (GRDn, CRDn,

LOC, RER) transmitted by the node has received a NO ACK

confirmation.

Name: Corrected Read Data

Mnemonic: CRD

Type: R/W1C, 0

When set, CRD indicates that the node has received a CRDn read

response. Only XMI commander nodes are required to implement this

bit. If not implemented, nodes return zero.

Name: No Read Response

Mnemonic: NRR

Type: R/W1C, 0

When set, NRR indicates that a transaction initiated by the node failed

due to a read response timeout. Only XMI commander nodes are

required to implement this bit. If not implemented, nodes return zero.

2-47

XMI Registers

Bus Error Register (XBER)

bit<17>

bit<16>

bit<15>

bit<14>

2-48

Name: Read Sequence Error

Mnemonic: RSE

Type: R/W1C, 0

When set, RSE indicates that a transaction initiated by the node

failed due to a read sequence error. Only XMI commander nodes

are required to implement this bit. This bit will be set only if the

reattempt fails on commanders implementing error recovery. If this bit

is not implemented, nodes return zero.

Name: Read Error Response

Mnemonic: RER

Type: R/W1C, 0

When set, RER indicates that a node has received a Read Error

Response. Only XMI commander nodes are required to implement

this bit. If not implemented, nodes return zero.

Name: Command NO ACK

Mnemonic: CNAK

Type: R/W1C, 0

When set, CNAK indicates that a command cycle transmitted by

the node has received a NO ACK confirmation caused by either a

reference to a nonexistent memory location or a command cycle parity

error. Only XMI commander nodes are required to implement this bit.

If not implemented, nodes return zero. For commanders implementing

error recovery, this bit is set only if the reattempts fail.

Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bit<13>

bit<12>

bit<11>

bit<10>

bits<9:4>

XMI Registers

Bus Error Register (XBER)

Name: Transaction Timeout

Mnemonic: TTO

Type: RW1C, 0

When set, TTO indicates that a transaction initiated by the node failed

due to a transaction timeout. Only XMI commander nodes are required

to implement this bit. If not implemented, nodes return zero. For

commanders implementing error recovery, this bit is set only if the

reattempts fail.

Name: Node-Specific Error Summary

Mnemonic: NSES

Type: RO, 0

When set, NSES indicates that a node-specific error condition has been

detected. The exact nature of the error is contained in node-specific

registers.

Nama: Extended Test Falil

Mnemonic: ETF

Type: R/W1C, 1 (processors), 0 (all o;hers)

When set, ETF indicates that the node has not yet passed its extended

test. This bit clears when the node passes its extended test. Only

processor nodes implement extended test; all other nodes power up

with ETF cleared.

Name: Selt-Test Fail

Mnemonic: STF

Type: R/W1C, 1

When set, STF indicates that the node has not yet passed its self-test.

This bit is cleared by the user interface when the node passes its

self-test.

Name: Failing Commander ID

Mnemonic: FCID

Type: RO

This field logs the commander ID of a failing transaction. Only

XMI commander nodes are required to implement this bit. If not

implemented, nodes return zero.

2-49

XMI Registers

Bus Error Register (XBER)

bits<3:0>
Name: Failing Command

Mnemonic: FCMD

Type: RO

This field logs the command code of a failing transaction. Only

XMI commander nodes are required to implement this bit. If not

implemented, nodes return zero.

2-50

XMI Registers

Failing Address Register (XFADR)

Failing Address Register (XFADR)

The Failing Address Register logs address and length information

associated with a failing transaction. Only XMI commander nodes are

required to implement this register.

ADDRESS Nodespace base address + 0000 0008

332

1009 0

Failing Address

L— Failing Length (FLN)

bits <31:30>
Name: Failing Length

Mnemonic: FLN

Type: RO

This field logs the value of XMI D<31:30> during the command cycle

of a failing transaction.

bits <29:0>
Name: Failing Address

Mnemonic: None

Type: RO

This field logs the value of XMI D <29:0> during the command cycle

of a failing transaction.

2-51

The XMI

2.8 XMl Errors

The XMI bus detects all single-bit transmission-related errors on XMI D,
XMI F, XMI ID, XMI P, and XMI CNF lines. The XMI protocol permits
XMI commanders to recover from all transient memory space read/write
transaction errors as well as from most 1/O space read/write transaction

errors.

2.8.1 Error Conditions

2-52

To detect single-bit errors, all nodes monitor parity of the bus. Any XMI
receiver detecting bad parity ignores the cycle and returns a NO ACK

Under certain error conditions, some nodes might detect bad parity while
others compute proper parity. If the intended target of the transaction
computes good parity, then the cycle may be ACKed (and assumed good
by the commander), even if other nodes ignore the cycle due to bad parity.
For XMI memory-space write transactions, this class of error may result
in cache coherency problems due to cached processors failing to perform
cache invalidates. For XMI IVINTR transactions, some destinations of
the IVINTR transaction may not receive the interrupt. All other XMI
transactions are insensitive to this class of error.

2.8.1.1 Parity Error

confirmation.

2.8.1.2 Inconsistent Parity Error

2.8.1.3 Transaction Timeout

The XMI protocol specifies that a timeout of 16 milliseconds be used
by commanders to detect transaction failure. Responders ensure that
transactions do not exceed these timeout values.

* Response Timeout—During an XMI Read, Interlock Read, or IDENT
transaction, if a commander does not receive all read responses within
a certain number of cycles after the transaction is issued, the transaction
is considered to have failed. This does not imply that a responder has
"died” since XMI receivers ignore cycles with bad parity and response
timeouts can occur as a result of ignored cycles.

* Retry Timeout—An XMI commander needs to reissue an XMI
transaction if it receives a NO ACK or a Locked Response. If the
commander has not successfully completed the transaction within the
timeout period, the transaction has failed.

The XMI

2.8.1.4 Sequence Error

Many transactions require that XMI cycles occur in a certain sequence.

When the cycles occur out of sequence, the transaction is in error.

Read, Interlock Read, and IDENT transactions use sequence IDs embedded
in the read data responses (GRDn, CRDn, RER—the sequence ID for RER is

implicitly 0). The required order for read responses is 0, 0, 0...1, and 0...3

for longword (including IDENT), quadword, octaword, and hexword length

transactions, respectively. For example, if the commander detects data

returned out of sequence (such as GRD0, GRD2, GRD3), then it NO ACKs
the out-of-order read response (GRD2) and the additional read response

(GRD3) for that transaction.

Correct sequencing of write transactions is determined by the location of

the write data cycles relative to the write command cycle rather than using
sequence IDs. The write command cycle and associated write data cycles
must occur in contiguous timeslots. If a responder detects missing data

cycles in a write transaction, the incorrect cycle (and subsequent write data
cycles) are NO ACKed. Figure 2-20 shows examples of failing octaword
write transactions.

Figure 2-20 A Failed Octaword Write Transaction

Missing First Data Cycle

FUNCT CMD |XXXX|WDAT

DATA WRTM | XXXX

CONF ACK |NO ACK|NO ACK

Missing Second Data Cycle

FUNCT CMD |WDAT |XXXX

DATA WRTM | DATA |XXXX

CONF ACK |ACK |NO ACK

2-53

2.8.2

The XMI

Error Handling

2-54

XMI commanders and responders react to error conditons as follows:

* Receivers that detect bad parity ignore the cycle.

* Responders suppress any write transactions containing a sequence
or parity error; that is, none of the data at the referenced location is
modified as the entire write transaction is ignored.

* Responders receiving a NO ACK confirmation to a read response do
not transmit further read responses associated with that transaction
within 10 XMI cycles of the NO ACK.

* Memory nodes do not set a lock bit unless all read responses
associated with an Interlock Read transaction receive an ACK
confirmation.

* Memory nodes do not clear a lock bit unless all write data cycles
associated with the Unlock Write Mask transaction are properly
received.

* Cached processors detecting an inconsistent parity error either flush
their caches or perform a machine check.

2.8.3

2.8.4

The XMI

Error Recovery

Error recovery involves one or more reattempts of the failed transaction

before reporting a hard error. A failed XMI transaction is retried under the

following circumstances:

All transactions receiving a NO ACK confirmation for the command

cycle are retried. The NO ACK can result from either a reference

to nonexistent memory locations (NXM) or from bus parity errors.

Transactions failing the retry are assumed to be to an NXM.

Failing XMI Write transactions are retried.

XMI IDENT transactions receiving a response timeout are retried.

Since this may result in a lost interrupt vector, the consequences are

implemented by software.

Failing XMI 1/O space Write Mask or Unlock Write Mask transactions

are retried.

Failing DWMBA I/O space Read or Interlock Read transactions

receiving a response timeout are NOT retried since some /O devices

might have read side effects.

Error Reporting

The XMI bus protocol supports two mechanisms that signal error

conditions to processors if normal transaction-level error reporting cannot

be used.

Normal transaction-level error reporting mechanisms include NO ACK,
Read Error Response (RER), and timeout. The mechanisms that signal
error conditions to processors if normal transaction-level error reporting

cannot be used are:

Write error interrupt—This transaction is directed to one or more

CPU nodes, resulting in each targeted CPU taking an IPL 29 (decimal;
error interrupt. The CPU then identifies the source of the write error

interrupt.

XMI FAULT—When XMI FAULT is asserted, all XMI CPUs take an IPL

29 (decimal) error interrupt .

An example of a write error interrupt is if the DWMBA is unable to
complete either an XMI-to-VAXBI windowed write operation or a VAXB:-

to-XMI windowed write operation. Then the DWMBA issues a write error

IVINTR transaction to the nodes designated in the DWMBA AIVINTR

destination register.

2-55

3 KAG62A CPU Module

This chapter describes the KA62A CPU module, the 32-bit, virtual memory

microprocessor for the VAX 6200.

This chapter includes the following sections:

Module Features

KA62A Private I/O Address Space Map

CPU Section of the Module

Cache Memory

XMI Corner-to-CPU Interface

KAG62A Registers

Initialization, Self-Test, and Booting

Error Handling

Interprocessor Communication through the Console Program

Error Handling

KA62A CPU Module

3.1 KA62A CPU Module Features

The KA62A CPU module implements a 32-bit, virtual memory

microprocessor conforming to the MicroVAX subset including floating-

point instructions. Multiple KA62A CPU modules can be installed in a

VAX 6200.

Figure 3-1 KA62A CPU Module Block Diagram

XMI

CVAX 2ND-LEV

w/ 1KB CFPA CACHE F—

CACHE 256KB

CLOCK

LAT/BUF

CVAX CDAL

ADRS

DUP XMI A<31:0>

TAG INTERFACE EEPROM

STORE GATE ARRAY SSC

[— To/From System Console
XCI

XMI

XCLOCK XLATCH x 7 CORNER

KA62A CPU Module

The KA62A CPU module includes the following;:

1 The CPU section, which contains:

e The CVAX processor chip, which supports the MicroVAX subset
of the VAX instruction set and data types. It has full VAX memory

management including demand paging and 4 Gbytes of virtual

memory. The CPU chip includes the first-level cache for I-stream
(instruction) storage only. The first-level cache is one Kbyte,
organized with 128 tags. The cache is write-through, two-way

associative, and filled eight bytes at a time. The cache provides
parity protection on both the tag and data stores.

e The CFPA floating-point accelerator chip, with the MicroVAX

subset of the VAX floating-point instruction set and data types.

¢ The system support chip (SSC), which incorporates in one

integrated circuit required functions to support the MicroVAX

system environment.

e The clock chip, which includes a VAX standard time-of-year (TQY)
clock with battery backup, an interval timer with 10 millisecond

interrupts, and two programmable timers.

2 The 256-Kbyte direct-mapped second-level cache, which contains both
I- and data-stream (D-stream) data. The second-level cache is write-

through and organized with 4096 tags. If a processor read misses an

entry in the cache, or if the entry is invalid, the XCP gate array reads

the data from main memory. The cache is filled 32 bytes at a time; the
first longword read satisfies the processor’s read request. The cache
provides parity protection on both the tag and data stores.

3 The XCP gate array (XCPGA) chip, which handles the task of interfacing

the CDAL bus to the XMI Corner. The XCPGA chip controls a

duplicate TAG store that monitors XMI write transactions and filters

out all addresses that are not in the second-level cache. The processor

performance is only affected by XMI write activity when the write

address from another node hits in the cache. When this occurs,

the second-level cache block corresponding to the XMI write is

invalidated.

4 An XMI interface, which includes:

e An octaword write buffer that decreases bus and memory controller

bandwidth needs by packing writes into larger, more efficient

blocks prior to sending them to main memory

e Hexword cache fill logic that loads the second-level cache with

eight longwords of data on each cache miss

e XMI write monitoring logic that uses a duplicate tag store to

efficiently flag write addresses that must be invalidated in the

second-level cache

e Full set of error recovery and logging capabilities

3-3

KA62A CPU Module

3-4

5 The console and diagnostics section, which includes:

A console read-only memory (ROM), which contains the code for

initialization, executing console commands, and bootstrapping the

system.

A diagnostic ROM, which contains the power-up self-test and

extended diagnostics.

An electrically-erasable ROM (EEPROM), which contains system

parameters and boot code. The parameters can be modified by

using the console SET commands. The SSC contains circuits for

writing the EEPROM and controlling the console.

KA62A CPU Module

3.2 KA62A CPU Module Private 1/0 Address Space Map

Figure 3-2 shows the private I/O address space map for the KA62A CPU

module.

Figure 3-2 KAG62A CPU Module Private I/0 Address Space Map

Byte Address

2000

2000

2000

2004

2007

2008

2008

2008

200B

200C

200F

2010

2013

2014

2014

2014

2014

2014

2100

2101

2101

2102

2102

2103

217F

0000

0004

3FFF

0000

FFFF

0000

TFFF

8000

FFFF

0000

FFFF

0000

FFFF

0000

O3FF

0400

O7FF

0800

FFFF

0000

FFFF

0000

FFFF

0000

FFFF

CSR1

RESERVED

Self-test/Console/Boot Code

implemented in

two (2) 128KB X 8 PROMs

Self-test/Console/Boot Code

implemented in

one (1) 32KB X 8 EEPROM

RESERVED

Non-HALT Protected

Self-test/Console/Boot Code

implemented in two (2) 128KB X 8 EEPROMs

(double-mapped addresses — same physical

ROMs as access=d by 2004 0000 to 2007 FFFF)

RESERVED

SSC CSRs

SSC Battery-backed Up RAM

RESERVED

Interprocessor

IVINTR Generation "Virtual" Registers

Write Error

IVINTR Generation "Virtual" Registers

RESERVED

Size

4 Bytes

approx.

256 Kbytes

256 Kbytes

32 Kbytes

224 Kbytes

256 Kbytes

256 Kbytes

1 KByte

1 Kbyte

approx.

14 .8 Mbytes

64 Kbytes

64 Kbytes

approx.

7.75 Mbytes

3-5

3.3

3.3.1

KA62A CPU Module

CPU Section of the Module

The KA62A CPU module central processor supports full VAX memory
management and the MicroVAX subset of the VAX instruction set and data

types. Most of the CPU is implemented in a VLSI chip called the CVAX.

The KA62A CPU module floating-point accelerator is implemented in a

VLSI chip called the CFPA.

Data Types

3-6

The CPU supports the following subset of the VAX data types:

Byte

Word

Longword

Quadword

Character string

Variable-length bit field

F_floating

D_floating

G_floating

Support of the remaining VAX data types is provided by macrocode
emulation.

3.3.2 Instruction Set Types

KA62A CPU Module

The CPU implements the following subset of the VAX instruction set types

in microcode:

-
-

Address

Variable-length bit field

Control

Procedure call

Miscellaneous

Queue

Character string moves

e CMPC3/ICMPC5

e LOCC

e MOVC3/MOVC5

e SCANC

e SKPC

e SPANC

Operating system support

F_floating

D_floating

G_floating

The CVAX chip provides special microcode assistance to aid the

macrocode emulation of the following instruction groups:

Character string moves not included in microcode

Decimal string

CRC

EDITPC

The following instruction groups are not implented but are emulated by

macrocode:

QOctaword

H_floating

Compeatibility mode instructions

3.3

KA62A CPU Module

Memory Management

3-8

The KA62A CPU module implements full VAX memory management.
System space addresses are virtually mapped through single-level page
tables, and process space addresses are virtually mapped through two-level
page tables.

The KA62A CPU module uses a 28-entry, fully associative, translation
buffer for caching modified VAX page table entries (PTEs). Each entry
stores a modified PTE for translating virtual addresses in either the VAX
process space or VAX system space. Each entry is divided into two parts:
a 23-bit tag register and a 32-bit PTE register.

The tag register stores the virtual page number (VPN) of the virtual page
that the corresponding PTE register maps. The PTE register stores the 21-
bit PFN field, the PTE.V bit, the PTE.M bit, and an 8-bit partially decoded
representation of the 4-bit VAX PTE PROT field, from the corresponding
VAX PTE and a Translation Buffer Valid (TB.V) bit.

During virtual to physical address translation, the contents of the 28 Tag
registers are compared with the Virtual Page Number field (bits <31:9>) of
the virtual address of the reference. If there is a match with one of the Tag
registers, then a translation buffer "hit” has occurred and the contents of
the corresponding PTE register is used for the translation.

If there is no match, the translation buffer does not contain the necessary
VAX PTE information to translate the address of the reference, and the
PTE must be fetched from memory. Upon fetching the PTE, the translation
buffer is updated by replacing the entry that is selected by the replacement
pointer. Since this pointer is moved to the next sequential translation
buffer entry whenever it is pointing to an entry that is accessed, the
replacement algorithm is Not Last Used.

Both exceptions and interrupts divert execution from the normal flow of
control. An exception is caused by the execution of the current instruction
and is typically handled by the current process, such as an arithmetic
overflow, while an interrupt is caused by some activity outside the current
process and typically transfers control outside the process, such as an
interrupt from an external hardware device.

3.3.4

KA62A CPU Module

Interrupts

Table 3-1 lists the CPU’s use of the 31 interrupt levels that the VAX

architecture specifies.

Table 3-1 KAG62A CPU Module Interrupts

Interrupt Level Interrupt Condition

Nonmaskable CTRL/P typed at the console

Node HALT bit XBER<29>) set

iF Unused

1E XMI AC LO L assertion

1D (MEMERR) "Hard” Errors Write Data NO ACK (XBER <20>) set

Command NO ACK (XBER<15>) set

All forms of IDENT errors

CDAL Write Parity Error (CSR2<28>) set

XMI Write Error Interrupt (XBER <25 >) set

XMt FAULT assertion (XBER<26>) set

1C - 1B Unused

1A (CRD) "Soft" Errors Correctable Main Memory Errors (XBER<19>)

set (hardware disable supported)

" 2nd-level Cache Valid Bit Parity Error

(CSR2<31>) set

2nd-level Cache Tag Parity Error (CSR2<30>)

set

2nd-level Cache Invalidate Queue Overflow

(CSR2<29>) set

Duplicate Tag Store Parity Error (CSR2<26>)

set

Cache Fill Error (CSR2<27>) set

Corrected XMl CNF Error (XBER <27 >) set

(hardware disable supported)

Inconsistent Parity Error (XBER <24 >) set

Parity Error (XBER <23>) set

19 - 18 Unused

17 XMi Level 7 INTR

3-9

KA62A CPU Module

Table 3-1 (Cont.) KA62A CPU Module Interrupts

Interrupt Level Interrupt Condition

16 interval Timer Interrupt’

XMl interprocessor IVINTRs

XMI Level 6 INTR

15 Console Terminal Interrupts’

Programmable Timer Interrupts

XMl Level 5 INTR

14 XMI Level 4 INTR

13 - 10 Unused

OF - 01 Software interrupt request

'At a given IPL, the priority of interrupts is shown in descending order.

3.3.5 Exceptions

KA62A CPU Module

The VAX architecture recognizes six classes of exceptions, as shown in

Table 3-2.

Table 3-2 KA62A CPU Module Exceptions

Exception Class Instances

Arithmetic traps/faults

Memory management exceptions

Operand reference exceptions

Instruction execution exception

Tracing exception

System failure exception

Integer overflow trap

Integer divide by zero trap

Subscript range trap

Floating overflow fault

Floating divide by zero fault

Floating underflow fault

Access control violation fault

Transiation not valid fauit

Reserved addressing mode fault

Reserved operand fault or abort

Reserved/privileged instruction fault

Emulated instruction fault

Extended function fault

Breakpoint fault

Trace fault

Machine-check abort including:

1. CDAL bus parity errors on demand reads

(detected by CVAX chip)

2. 1st- and 2nd-level cache parity errors on

demand reads (detected by CVAX)

3. Main memory uncorrectable read errors

on demand reads (XCPGA asserts ERR)

4. Nonexistent XMl memory errors on

demand reads (XCPGA asserts ERR)

5. CDAL bus timeout errors (SSC asserts

ERR)

Kernel stack not valid abort

Interrupt stack not valid abort

3-11

KA62A CPU Module

3.3.6 Machine Checks

A machine check is an exception that indicates a processor-detected error.

Machine checks are taken regardless of the current IPL. The machine

check exception vector bits (<1:0>) specify one, or the operation of the

processor is UNDEFINED. The exception is taken on the interrupt stack

and the IPL is raised to 1F (hex).

Figure 3-3 shows the parameters that are pushed on the stack in response

to a machine check. Table 3-3 lists these parameters.

Figure 3-3 The Stack in Response to a Machine Check

BYTE COUNT (0000 0010 HEX)

MACHINE CHECK CODE

MOST RECENT VIRTUAL ADDRESS

INTERNAL STATE INFORMATION #1

INTERNAL STATE INFORMATION #2

PC

PSL

3-12

KA62A CPU Module

Table 3-3 Machine Check Parameters

Parameter Value Description

Machine check code (hex) 1 Floating-point protocol error

2 Floating-point reserved instruction

3 Floating-point unknown error

4 Floating-point unknown error

5 Process PTE in PO space during TB

miss flows

6 Process PTE in P1 space during TB

miss flows A

7 Process PTE in PO space during M

= 0O flows

8 Process PTE in P1 space during M

= 0 flows

9 Undefined INT.ID value

Undefined MOVCx state

80 Memoryread error

81 SCB, PCB, or SPTE read error

82 Memory write error

83 SCB, PCB, or SPTE write error

Most recent virtual address <31:.0> Current contents of VAP register

Internal state information #1 <31:24> Opcode

<23:16> 1110, highest priority software

interrupt <3:0>

<15:8> CADR<7:0>

<7:0> MSER<7:0>

Internal state information #2 =~ <31:24> Most recent contents of SC register
<7:0>

<23:16 > 11, state flags <5:0>

<15:8> Restart flag, 111, ALU CC flags

<3:0>

<7:0> Offset from saved PC to PC at time

of machine check

PC <31:0> PC at the start of the current

instruction

PSL <31:0> Current contents of PSL

3-13

KA62A CPU Module

3.3.7 System Control Block (SCB)

The SCB is a page containing the vectors for servicing interrupts and
exceptions. The SCB is pointed to by IPR17, the System Control Block
Base Register (SCBB). See Figure 3-4.

Figure 3-4 System Control Block Base Register
- o
w

O

N

9 8 0

MBZ PHYSICAL LONGWORD ADDRESS OF PCB MBZ

The system control block format is shown in Table 3-4.

Table 3-4 System Control Block Format

Vector Name Type Param Notes

00 Unused - - IRQ passive release on other VAXes

04 Machine check Abort 4 Parameters depend on error type

08 Kernel stack not valid Abort 0 Must be serviced on interrupt stack

0C Power fault Iinterrupt 0 IPL is raised to 1E

10 Reserved/privileged Fault 0

intstruction

14 Customer reserved Fault 0 XFC instruction

instruction

18 Reserved operand Fault/abort 0 Not always recoverable

1C Reserved addressing Fault 0

mode

20 Access control Fault 2 Parameters are virtual address, status code
violation

24 Translation not valid Fault 2 Parameters are virtual nddress, status code

28 Trace pending (TP) Fault 0

2C Breakpoint instruction Fault 0

30 Unused - - Compatibility mode in other VAXes

34 Arithmetic Trap/ fault 1 Parameter is type code

38 - 3C Unused - - -

40 CHMK Trap 1 Parameter is sign-extended operand word

44 CHME Trap 1 Parameter is sign-extended operand word

48 CHMS Trap 1 Parameter is sign-extended operand word

4C CHMU Trap 1 Parameter is sign-extended operand word

50 Unused ~ - -

54 Corrected read data interrupt 0 IPL is 1A (CRD L)

3-14

Table 3-4 (Cont.) System Control Block Format

KA62A CPU Module

Vector Name Type Param Notes

58 - 5C Unused - - -

60 Memory error interrupt 0 IPL is 1D (MEMERR L)

64 - 74 Unused - - -

78 SSC programmable interrupt 0 Reserved for DEC use only

timer O

7C SSC programmable interrupt 0 Reserved for DEC use only

timer 1

80 Interprocessor Interrupt 0 IPL is 16

interrupt

84 Software level 1 Interrupt 0 -

88 Software level 2 Interrupt 0 Ordinarily used for AST delivery

8C Software level 3 Interrupt 0 Ordinarily used for process scheduling

90 - BC Software levels 4-15 Interrupt 0 -

Co intervai timer interrupt 0 IPL is 16 (INTTIM L)

C4 Unused - - -

C8 Emulation start Fault 10 Same mode exception, FPD =0; parameters

are opcode, PC, specifiers

CcC Emulation continue Fault 0 Same mode exception, FPD=1;no

parameters

DO - F4 Unused - - -

F8 Console receiver Interrupt 0 IPL is 15

FC Console transmitter Interrupt 0 IPL is 15

10D - XMI/VAXBI device Interrupt 0 DWMBA appends bits <15:9> to VAXBI

FFFC vectors vectors that have <13:9> =0 before

transmission on the XMl

3-15

3.3.8

KA62A CPU Module

Hardware Restart Sequence

3-16

The CPU enters the hardware restart process upon the occurrence of one

of several events:

* Following an XMI power-up sequence.

* Following an XMI system reset sequence, an "emulated” power-up

sequence that is initiated by asserting the XMI RESET L line. This can

be accomplished by writing to IPR55 (ICRESET).

¢ When node reset (XBER<30>) is set from the XMI.

* When HALTs are enabled and a CTRL/P is generated by the console or

node HALT (XBER<29>) is set from the XMI.

* When the hardware or kernel software environment becomes severely

corrupted and the CPU cannot continue normal processing.

¢ When a HALT instruction is executed in kernel mode.

When the hardware restart process begins, the CPU executes a microcode

restart sequence and passes control to console code beginning at physical

address 2004 0000 (hex). The current value of the PC is stored in IPR42

(SAVPC). The PSL, MAPEN <0>, and the restart code are saved in IPR43

(SAVPSL). The current stack pointer is saved in the appropriate internal

register. The PSL is set to 041F 0000 (hex), and the current stack pointer is

loaded from the interrupt stack pointer. The restart process sets the initial

state of the CPU.

KA62A CPU Module

3.3.9 CPU References

All references by the CPU are classified as request instruction-stream

read references, demand data-stream read references, or write references.

Request reads are generated when the data is not immediately needed by

the CPU, while demand reads are generated when the data is immediately

needed by the CPU.

Request read errors do not affect program flow; however, demand read

errors cause a machine check abort.

Instruction-Stream Read References. The CPU has an instruction

prefetcher with a 12-byte (3 longwords) Instruction Prefetch Queue (IPQ)

for prefetching program instructions from either cache or main memory.

Whenever there is an empty longword in the IPQ and the prefetcher is

not halted due to an error, the instruction prefetcher generates an aligned

longword, request instruction-stream (I-stream) read reference.

Data-Stream Read References. Whenever data is immediately needed

by the CPU to continue processing, demand data-stream (D-stream) read

references are generated on operand, page table entry (PTE), system

control block (SCB), and process control block (PCB) references. When

interlocked instructions, such as Branch on Bit Set and Set Interlock

(BBSSI), are executed, a demand D-stream Read-Lock reference is

generated.

Write References. Whenever data is stored or moved, a Write Reference is

generated.

Since the CPU does not impose any restrictions on data alignment

other than the aligned operands of the ADAWI and Interlocked Queue

instructions and since memory can only be accessed one aligned longword

at a time, all data read references and write references are translated into

an appropriate combination of masked and unmasked aligned longword

read references. If the required data is a byte, a word within a longword,

or an aligned longword, then a single aligned longword demand D-stream

read reference or write reference is generated. If the required data is a

word that crosses a longword boundary or an unaligned longword, then

two successive aligned-longword demand D-stream read references or

write references are generated. Data larger than a longword is divided into

a number of successive aligned-longword demand D-stream reads, with no

optimization, or writes.

3-17

KA62A CPU Module

3.3.10 System Support Chip (SSC)

3-18

The SSC incorporates in one integrated circuit the following required

functions to support the MicroVAX system environment:

ROM support by performing ROM address decoding and providing

chip select signals. It returns RDY to the CVAX chip for ROM access

and performs byte packing of ROM data to longwords for the CVAX.

1 Kbyte of internal, battery-backed-up RAM

Console support by providing a VAX SRM-compatible terminal UART

that supports a full set of baud rates and BREAK-detect functions.

A 100 Hz interval timer.

A battery-backed-up 32-bit counter time-of-year (TOY) clock.

Two programmable address strobes, used by the KA62A CPU module

to access CSR1 and to write the EEPROM.

A 4-bit general purpose output port used to control the console line

multiplexer and to drive a status LED.

Two programmable timers and a CDAL bus timeout register.

KA62A CPU Module

3.3.11 EEPROM

The EEPROM stores parameters for initialization of the KA62A CPU

module and patches to the ROM code which does VAX standard console

emulation, module self-tests, and boot code.

The EEPROM can be read with byte, word, or longword references and is

coordinated by the SSC. If the READ is word or longword, the SSC reads

a byte at a time from the EEPROM and returns the full word or longword

to the CVAX chip.

Console (initialization) code sets the ROM Size field in the SSC

Configuration Register (SSCR <22:20>) to the 1-Mbyte block 2004 0000

to 2013 FFFF (hex). The halt protect field (SSCR<18:16>) is set to map the

512-Kbyte block from 2004 0000 to 200B FFFF (hex). This double maps the

ROM and EEPROM to provide halt-protected and unprotected images of

the contents. Writes to the ROM portion of this address space result in a

machine check.

Console code alsc sets the EEPROM Address Decode Mask Register

(EEADMR) and the EEPROM Base Address Register (EEBADR).

Writes to the remainder of the EEPROM address space must follow these

rules:

¢ Write only a byte of data at a time. The write data must be driven on

CDAL<7:0>.

e The botton two address bits for the EEPROM are provided by

CSR1<1:0> (EEADR). These bits must be set to the proper state

before the EEPROM wrrite is issued.

e A front panel switch provides write enable protection for the EEPROM

by controlling the XMI UPDATE EN H line. The state of this line is

read as SSCCR<5> (FPEEUE). Console code confirms that this bit is

set before updating the EEPROM.

e EEPROM updates are controlled by console software. Console code

sets SSCCR< 6:4>, the EEPROM enable field, to 101 just before the

write and then clears the field immediately following the update.

¢ Console code delays the return prompt until an internal counter expires

to prevent accesses immediately after a write.

3.3.12 Floating-Point Accelerator

The KA62A CPU module floating-point accelerator (FPA) is implemented

in a VLSI chip called the CFPA. The FPA processes F_floating, D_floating,

and G_floating format instructions and accelerates the execution of MULL,

DIVL, and EMUL integer instructions. The FPA supports byte, word,

longword, quadword, F_floating, D_floating, and G_floating data types.

The H_floating data type is not supported but is emulated by macrocode.

3-19

3.4

KA62A CPU Module

Cache Memory

3-20

The KA62A CPU module has a two-level cache to maximize CPU

performance. The first-level cache is implemented in the CVAX chip.

The second-level cache is implemented on the KA62A CPU module using

64K x 4-bit static RAMs.

Figure 3-5 Simplified Block Diagram of KA62A CPU Module Memory

80 ns access

2-way assoc.

8-byte block

8-byte fill

160 ns access

Direct-mapped

64-byte block

32-byte fill

1st-Level 2nd-Level XMI Main

CPU Cache Cache Memory

(1Kbyte) (256Kbyte) (Up to 512Mbyte)

I-stream only I&D-Stream

1200 ns access,

assuming an

"idle" XMI

KA62A CPU Module

3.4.1 First-Level Cache

The first-level cache is 1-Kbyte, two-way associative, and write-through with

an 80 ns cycle time. CPU read references access one longword at a time,

while CPU writes can access as little as one byte at a time. A single parity

bit is generated, stored, and checked for each byte of data and each tag.

Only I-stream references to VAX memory space are stored in the first-level

cache.

3.4.1.1 First-Level Cachable References

Any reference stored by the first-level cache is called a “first-level

cachable reference” ("FL cachable reference”). For cache coherency to

be maintained, the first-level cache is configured by initialization code

to store only I-stream CPU read references made to VAX memory space

(physical address <29 > =0) by writing CADR<5:4> =10.

The CPU generates CDAL references, depending on the reference type, as

follows:

* Whenever the CPU generates a non-FL cachable reference, a single

longword reference of the same type is generated on the CDAL bus.

* Whenever the CPU generates an FL cachable reference that is already

stored in the first-level cache, no reference is generated on the CDAL

bus.

* Whenever the CPU generates an FL cachable reference that is not

stored in the first-level cache, a quadword transfer is generated on the

CDAL bus. On the KA62A CPU module, all FL cachable references

consist of two indivisible longword transfers, the first being a Request

I-stream Read (prefetch) and the second being a Request I-stream Read

(fill).

3-21

KA62A CPU Module

3-22

3.4.1.2 First-Level Cache Organization

The first-level cache is divided into two independent storage arrays called

Set 1 and Set 2. Each set contains a 64-row x 22-bit tag array and a 64-row

x 72-bit data array. The organization of the two sets is shown in Figure 3-6.

Figure 3-6 First-Level Cache Organization

Set 1 Set 2
—

64x22—| 64x72-Bit 64x22—| 64x72-Bit

Bit Data Array Bit Data Array

Tag Tag

64 Rows — Array Array

—

-

93 72 71 0O 93 7271 0

Cache Entry —

A row within a set corresponds to a cache entry, resulting in 64 entries in

each set and 128 entries in the entire cache. Each entry contains a 22-bit

tag block and a 72-bit (8-byte) data block. Figure 3-7 shows the format of a

cache entry.

A tag block consists of a parity bit, a valid bit, and a 20-bit tag, as shown in

Figure 3-8.

A data block consists of eight bytes of data, each with an associated parity

bit. The total data capacity of the cache is 128 8-byte blocks (1024 bytes).

A data block is organized as shown in Figure 3-9.

KA62A CPU Module

Figure 3-7 Cache Entry

TAG BLOCK DATA BLOCK

Figure 3-8 Tag Block

TAG

I l— VALID BIT
PARITY BIT

Figure 3-9 Data Block

6 5 5 4 4 4 3 3 3 2 21 1

3 6 58 70 92 1 4 3 6 5 8 70

P| B7 |P| B6 |P| B5 |P| B4 |P| B3 |P| B2 |P| B1 |P| BO

PARITY BIT (One of eight parity bits) J
DATA BYTE O (One of eight data bytes)

3-23

KA62A CPU Module

3.4.1.3

3-24

First-Level Cache Address Translation

Whenever the CPU requires I-stream data, the first-level cache is checked

to determine if the referenced location is stored there.

Figure 3-10 First-Level Cache Address Translation

(Physical Address

22 **]
9 8 9 8 32 0

Cache Tag

l—- I/0 Space Cache Index

Cache Displacement —

Valid Bit Valid Bit

Set 1 Set 2

20~ 64-Bit 20- 64-Bit

Bit Data Block Bit Data Block

Tag Tag

v |
\"/ \'/

Set 1 | Match 7 Set 2 | Match ?

Data

KA62A CPU Module

The first-level (FL) cache is checked by translating the physical address (see

Figure 3-10) as follows:

On non-FL cachable references, the reference is never stored in the

cache, so a first-level "miss” occurs and a single longword reference is

generated on the CDAL bus.

On FL cachable references, the physical address must be translated

to determine if the contents of the referenced location is resident in

the cache. The Cache Index field, bits<8:3> of the address, is used

to select one of the 64 rows of the cache, with each row containing a

single entry from each set. The Cache Tag field, bits<28:9> of the

physical address, is then compared to the Tag Block of the entry from

both sets in the selected row.

If a match occurs with the Tag Block of one of the set entries, and the

valid bit within the entry is set, the contents of the referenced location

is contained in the cache and a cache "hit” occurs. On a cache hit,

the Set Match Signals generated by the compare operation select the

data block from the appropriate set. The Cache Displacement field,

bits<2:0> of the physical address, is used to select the byte(s) within

the block. No CDAL bus transfers are initiated on CPU references that

“hit” the first-level cache.

If no match occurs, then the contents of the referenced location is not

contained in the cache and a cache "miss” occurs. The data must be

obtained from either the second-level cache or from XMI memory. If

the reference is cachable, then a quadword transfer is initiated on the

CDAL bus. If the reference is not cachable, then a single longword

transfer is initiated on the CDAL bus.

3-25

KA62A CPU Module

3-26

3.4.1.4 First-Level Cache Data Allocation

FL cachable references that "miss” the first-level cache cause a quadword
read to be initiated on the CDAL bus. When the requested quadword is
supplied by either the second-level cache or the main memory controller,
the requested longword is passed to the CPU, and a data block is allocated
in the cache to store the entire quadword.

Since the cache is two-way associative, there are two data blocks (one in
each set) that can be allocated to a given quadword. These two data blocks
are determined by the Cache Index field of the address of the quadword,
which selects a unique row within the cache. Selection of a data block
within the row (that is, set selection) for storing the new entry is random.

3.4.1.5 First-Level Cache Behavior on Writes

On CPU-generated write references, the first-level cache is "write through.”
All CPU write references that "hit” the first-level cache cause the contents
of the referenced location in main memory to be updated as well as the
copy in the cache.

3.4.1.6

CAUTION:

First-Level Cache Coherency

VAX architecture requires that a Return from Exception or Interrupt (REI)
instruction be executed between procedure instructions and writable data.
Since the KA62A CPU module FL-cache is operated in "I-stream-only”
mode, the coherency of the first-level cache is maintained by invalidating

the cache on every REI instruction.

If the following rules are not followed, it is possible that stale data will be
read from the cache, causing UNPREDICTABLE results.

In order for the I-cache to remain coherent, the following requirements are
placed on software:

1 A native mode procedure may not write data that is to be subsequently

executed as an instruction without an intervening REI instruction being
executed.

2 A new process is invoked by executing a LDPCTX (Load Process

Context) instruction. A LDPCTX must be followed by an REI
instruction.

3 When using the operating system to generate 1/0, the process must
execute a CHMK (Change Mode to Kernel) instruction. An REI will
be generated when the operating system returns to user mode after
initiating the I/O request. The process must assure that the data is not
accessed until the I/O has completed.

4 When a privileged process does not use the operating system to initiate
I/O but initiates 1/O directly, the privileged process must perform an
REI after initiating the I/O request. The process must assure that the
data is not accessed until the I/O has completed.

KA62A CPU Module

3.4.1.7 First-Level Cache Control

The first-level cache is enabled by writing 0000 00EC to CADR (IPR37). It

is disabled by writing 0000 00CC to CADR. Any writes to CADR cause the

first-level cache to flush.

3.4.1.8 First-Level Cache Error Detection

Both the tag and data arrays in the first-level cache are protected by

parity. Each 8-bit byte of cache data and the 20-bit tag are stored with an

associated parity bit. The Valid bit in the tag is not covered by parity. Odd

data bytes are stored with odd parity, and even data bytes are stored with

even parity. The tag is stored with odd parity. The stored parity is valid

only when the Valid bit associated with the cache entry is set. Tag and data

parity (on the entire longword) are checked on read references that hit the

cache, while only tag parity is checked on CPU write references that hit the

cache.

The action taken following the detection of a cache parity error depends on

the reference type:

e During a request I-stream reference, the entire cache is flushed, the

cause of the error is logged in MSER<1:0> (DAT and TAG), the

prefetch is halted, but no machine check abort occurs. The cache

remains enabled.

¢ During a demand D-stream reference, the entire cache is flushed, the

cache is disabied (CADR is cleared), the cause of the error is logged in

MSER<5,3:0>, and a machine-check abort is initiated.

¢ During a request D-stream reference, the entire cache is flushed, the

cause of the error is logged in MSER<3:0>, but no abort occurs and

the cache remains enabled.

3-27

KA62A CPU Module

3.4.2 Second-Level Cache

The second-level cache is a 256-Kbyte, direct-mapped, write-through cache
with a 160-ns cycle time. All VAX memory space read references made
by the CPU except Interlock Reads, including both I-stream and D-stream
references, are stored in the second-level cache.

Figure 3-11 Second-Level Cache Block Diagram

SECOND-LEVEL SECOND-LEVEL

CACHE DATA STORE (RAM) CACHE TAG STORE (RAM & tag chips)
256 Kbytes 64-byte Block, 32-byte Subblock

[—-> HW Hit

Block Hit Sel

Parity 64Kx1 (4) 1 11 Logic

5 41 9 87 o

33 222 111

54 765 876 987 0 P1|V|tag |PO|tag [

2Kx9 2Kx9

P|byte3|P|byte2|P|bytel|P|bytel Vi | V2

P1|Vi|tag [PO|tag [—

64Kx4 64Kx4 64Kx4 64Kx4 2Kx9 2Kx9 4Kx4

@p @ N@ @ A /T

XOR—{Cntr F—Incr Subblock

Tag Index

Data

<31:0> A<17:5>|<4:2> A<28:18> A<17:6> A<b5>

Par

<3:0>\/ TT CVAX DAL <31:0> TT
< >

3-28

KA62A CPU Module

3.4.2.1 Second-Level Cache Description

The 256-Kbyte, direct-mapped, second-level cache supplements the 1-

Kbyte first-level cache that is internal to the CVAX chip. The second-

level cache is located on the CDAL bus and is partitioned into 64-byte

blocks that are subdivided into two 32-byte (hexword) subblocks. Both

the data and tag stores are protected with parity. An entire 64-byte

block is invalidated on a device write to memory. A duplicate tag store

is maintained by the XCPGA interface to reduce unnecessary CVAX

invalidate traffic.

The second-level cache memory array is a direct mapped 64K x 36-bit array

which stores up to 256 Kbytes of data. The data is physically stored in

eight 64K x 4-bit and four 64K x 1-bit static MOS RAM chips. A parity bit

is included with each byte.

The cache tags are stored in four 2K x 9 cache address comparator chips

which contain 4096 tag entries. This write-through cache is updated if there

is a cache hit during a write transaction. If the longword being written into

memory has not been cached, only main memory is written; that is, there

are no "write allocates.”

Each of the 4096 tag entries of two hexwords each (64 bytes per block) has

two valid bits stored with each tag in the tag store to specify the validity of

the two 32-byte hexwords in that block.

Whenever an Invalidate transaction occurs on the XMI, or when an XMI

memory write transaction is initiated by another node, the duplicate tag

store performs a tag lookup. If the data for that location is cached, then the

duplicate tag store logic immediately clears the appropriate valid bit of the

cache tag and generates a second-level cache invalidate request. An XMI

quadword write to a cached location in XMI memory results in an entire

64-byte block being invalidated in the cache.

3-29

KA62A CPU Module

3-30

The 16-bit second-level data cache address lines directly address the data
within the cache memory array. The data cache address lines are driven

with the address latched for the CDAL lines as shown in Figure 3-12.
During cache fill operations, they are driven by latched CDAL lines as

shown in Figure 3-13.

Figure 3-12 Cache Address Line Contents During a Cache Read

16 0

LATCHED DAL <17:2>

Figure 3-13 Cache Address Line Contents During a Cache Fill

15 3 2 0

LATCHED DAL <17:5> | <4:2>

Bits<2:0> are XORed with a straight 3-bit up counter to select the
longword within the eight-longword cache allocate block. These bits

always start with the addressed longword, then are wrapped within a

quadword, and the quadwords wrapped within an octaword to fill the

hexword subblock. For example, if the bits initially address 0228, they will
wrap around in the following order: 0228, 022C, 0220, 0224, 0238, 023C,
0230, 0234.

KA62A CPU Module

Figure 3-14 shows how the lower bits of the CDDAL physical address are

used to access the cache tag addresses that are compared with the physical

address on the CDAL bus. The CDAL address bits are also used to drive

the data store address lines for addressing the data cache RAMs.

Figure 3-14 Second-Level Cache Addressing

CVAX DAL PHYSICAL ADDRESS

28 COMPARE WITH TAG BITS 18 17 INDEX 2

CDAL BITS

409€ CACHE TAGS

A<17:6>—|— 28 TAG ADDRESS BITS 18{Vv1|V2

TAG ARRAY

ADDRESS

64-BYTE CACHE BLOCK

A<17:2> . HEXWORD #1 2 VALID

BITS

DATA CACHE HEXWORD #2

ADDRESS

Each of the 4096 entries in the tag store contains an 11-bit tag address, a

valid bit, and a parity bit, combined with a separate RAM containing two

valid bits. There is a tag address for each 64-byte block within the cache

data RAMS, and a (logical) valid bit that is actually two bits to support

single-bit error detection for each 32-byte hexword within the block. The

cache tag array is addressed by the physical address from the CDAL, and

a comparator generates a hit signal if the data is both resident and valid

within the cache data RAMs.

3-31

KA62A CPU Module

3-32

A CVAX memory read which results in a second-level cache miss will

cause the CDAL/XMI interface to begin a hexword read transaction to

update the cache. The first quadword fetched contains the longword

(quadword, if an I-stream request) requested by the CPU; the remaining

seven longwords (six longwords, if an I-steam request) comprise the cache

fill of the second-level cache only. During memory writes, a cache hit
results in both the cache and the main memory being written. This is

controlled by the second-level cache logic, which inhibits the write enables

to the cache RAMs if the write location was not cached.

KA62A CPU Module

3.4.2.2

CAUTION:

Controlling the Second-Level Cache

The second-level cache is controlled by the Control and Status Register 1

(CSR1).

The second-level cache is flushed by the following sequence:

1 Perform BIT SET of FMISS (CSR1<18>) and FCI (CSR1<20>)

2 Perform BIT CLEAR of FCI (CSR1<20>)

The second-level cache is enabled by first flushing the cache (above) and

then performing BIT CLEAR of FMISS (CSR1<18>).

The second-level cache must always be flushed immediately before

enabling.

It is disabled by performing BIT SET of FMISS (CSR1<18>).

3-33

KA62A CPU Module

3.5 XMl Corner-to-CPU Interface

3-34

The KA62A CPU module’s XMI Corner is a predefined interface to the
XMI bus. Refer to Chapter 2 for a discussion of the XMI.

Figure 3~15 XMI Corner-t0-KA62A CPU Module Interface

DUPLICATE

TAG

STORE

XCPGA

XCI

XMI CORNER

One(1) XCLOCK and Seven(7) XLATCHes

KA62A CPU Module

The KA62A CPU module generates the following XMTI transaction types:

* Hexword memory reads

®* Quadword memory interlock reads

¢ Quadword memory write masks

® Octaword memory write masks

¢ Quadword memory unlock write masks

* Longword I/O reads

e Longword I/O interlock reads

¢ Longword I/O write masks

¢ Longword I/O unlock write masks

® Write error IVINTRs

® Interprocessor IVINTRs

¢ IDENTSs (in response to CVAX interrupt acknowlege)

The KA62A CPU module responds to the following XMI transactions:

* Longword nodespace reads

* Longword nodespace write masks

* Interrupts

In addition, the KA62A CPU module monitors all memory writes for cache

invalidates.

The duplicate tag store logic and the XCPGA chip provide the functionality

required to interface the CVAX chip to the XMI Corner.

3-35

KA62A CPU Module

Table 3-5 Mapping of CVAX Operations to XMI Transactions

CVAX Operation Resulting XMI Transaction'

Memory Space References

Read (misses both caches)

Interlock Read (forced to miss both

caches)

Write Mask

Unlock Write Mask (forced to miss the

write bufter)

I/0 Space References

Read (forced to miss both caches)

Interlock Read (forced to miss both

caches)

Write Mask (forced to miss write buffer)

Unlock Write Mask (forced to miss write
buffer)

Miscellaneous References

Interrupt Acknowledge

I/O Space Wirite to IVINTR Generation

Space

Hexword Read

Quadword Interlock Read

No XMI transaction generated. Data is loaded in the

write buffer. If this is a write buffer miss, then the "old”

write buffer data is flushed to main memory with either a

Quadword or an Octaword Write Mask.

Quadword Unlock Write Mask

Longword Read

Longword Interlock Read.

Longword Write

Longword Unlock Write Mask

XMI IDENT (assuming that an XMI interrupt is pending

and no SSC (only for IPL 15) or IP IVINTR (IPL 16)

interrupts are pending)

XMI IVINTR

'Under certain conditions defined in Section 3.5.2, the KA62A CPU module may be required to flush its write
buffer prior to performing this resulting XMI transaction.

3-36

Tabie 3-6 Detailed CVAX Read Operation to XMi Map

KA62A CPU Module

CDAL XMi

Request Command Length CSR1:FMISS Transaction 2nd-Level Cache

I-Request Read or Read-Modify LW X HW Read Fill

l-Request Read or Read-Modify QW X HW Read Fill

D-Demand Read or Read-Modify LW X HW Read Fill

D-Demand Read or Read-Modify QW - lilegal -

D-Demand Read Lock Lw X QW Read No Fill

D-Demand Read Lock QW - lilegal -

-Request Read Lock X - lllegal -

3-37

KA62A CPU Module

3.5.1 The XCPGA Chip

The XCPGA is a gate array that serves as the interface between the XMI

bus and the KA62A CPU module’s CDAL bus.

Figure 3-16 XCPGA Block Diagram

CDAL

XMI ————| INTERCHIP
COMMANDER INTERCONNECT

CONTROLLER CONTROLLER

(xce) (IC)
WRITE

BUFFER

/A\ (WB)

READ

—) QUEUE — c

— (RQ) — v
X XMI CDAL A

c INTERFACE INTERFACE F—iX

I LOGIC LOGIC

(XL) INVALIDATE (IL) D
) QUEUE — A

(IQ) L

XMI

RESPONDER

CONTROLLER

(XRC)

3-38

KA62A CPU Module

Figure 3-16 is a block diagram of the XCPGA chip. The following is a

description of each block:

The XMI Commander Controller (XCC) performs the control functions

of the XMI commander. These consist of bus arbitration, issuance of

command/address and data, and control of returning read data.

The XMI Interface Logic (XL) is the data path logic needed to interface to

the XMI. It contains the 64-bit input and output registers and multiplexers.

It also contains all XMI registers and the XMI interrupt and invalidate

support logic.

The XMI Responder Controller (XRC) performs the control functions of

the XMI responder. These consist of CSR reads and writes.

The Invalidate Queue (IQ) stores up to eight invalidate addresses to be

sent to the external cache located on the CDAL bus.

The Read Queue (RQ) stores up to four quadwords from each read

command issued to the XMI. The queue is unloaded, one longword at

a time, for placement on the CDAL bus.

The CDAL Interchip Interconnect Contreller (IC) performs the control

functions of the interface to CVAX chip. It handles both master and slave

functions.

The CDAL Interchip Interface Logic (IL) is the data path logic needed to

interface to the CDAL bus. It also implements the 32 interrupt-pending

bits.

The Write Buffer (WB) is used to combine longword writes from the CVAX

to octaword write transactions, reducing XMI bus traffic.

3-39

3.5.2

KA62A CPU Module

The Write Buffer

3-40

The Write Buffer (WB) is a single-entry, double octaword write buffer used

to combine longword writes from the CVAX to octaword write transactions,

reducing XMI bus traffic. The write buffer also causes fewer bytes to be

written to memory by allowing the most recent write reference to the same

location to overwrite earlier ones. Read requests bypass the write buffer

if the address does not fall within the hexword boundary of the presently

active octaword. The write buffer accumulates data in one octaword buffer

until a memory write address falls outside the natural octaword boundary.

Then the second octaword buffer starts to fill while the first is emptied with

an XMI write transaction.

The KA62A CPU module automatically flushes the write buffer in response

to the following conditions:

1 In response to a write that misses the currently active write buffer. The

current write buffer is flushed while the new write is accepted by the

alternate buffer.

2 Before performing an XMI I/O space read or write reference, except for

XMI private space references. However, writes to IVINTR generation

space do cause a flush of the write buffer.

Before performing an Interlock Read or Unlock Write reference.

Before issuing an XMI read to a hexword location that includes the data

contained in the write buffer. The write buffer contents are flushed to

main memory and then the XMI read is issued. Reads that "miss” the

write buffer do not force a write buffer flush.

5 Following the assertion of the CVAX Clear Write Buffer (CWB) signal.

The XCPGA requests the CDAL bus and, when granted, will flush the

write buffer to main memory. MEMERR asserts if the write fails on the

XMI.

The CWB signal asserts:

* At the start of instructions or sequences that can change processor

state: CHMx; REI; and the start of interrupts, exceptions, or aborts

(including machine check, BPT, and so forth).

* As part of instructions or sequences that can change context: end

of LDPCTX; end of SVPCTX.

* As part of instructions or sequences involved in error recovery:

write to MAPEN; write to CADR; write to MSER.

KA62A CPU Module

3.5.3 Duplicate Tag Store

A duplicate tag store is located on the multiplexed XCI bus. It contains

a duplicate copy of the 4096 tag entries in the second-level cache located

on the CDAL bus. The duplicate tag store tracks the primary tag store on

allocates by monitoring XMI read transactions. Whenever an XMI memory

space read is initiated by this node (an XMI read has to occur whenever

a second-level cache fill is performed), it allocates the cache block that

corresponds to the read address.

The duplicate tag store also monitors all XMI write transactions and

performs a duplicate tag store lookup. If a "hit” occurs and the write

was not from this node, then the tag is invalidated and the address is

loaded into an 8-entry invalidate queue implemented in the XCPGA. Cache

invalidates are not performed in response to a KA62A CPU module’s

own writes since the write-through second-level cache always contains the

most recent data. A KA62A CPU module can be forced to look up and
conditionally invalidate data on all XMI memory writes (including those

generated by itself) by setting CSR2<10>, the Enable Self-Invalidates (ESI)

bit.

When an entry has been loaded into the invalidate queue, the CDAL
interface logic arbitrates for the CDAL bus and performs an invalidate of

the fuil 64-byte block in which the write address was located. The use of

a duplicate tag store reduces CDAL traffic to only necessary invalidate

transactions. After performing an invalidate, the XCPGA checks for any

additional invalidates that may have accumulated while the previous

invalidate was being serviced. If another invalidate request exists, then the

XCPGA services it prior to releasing the CDAL bus.

The CVAX chip provides the KA62A CPU module an opportunity to

be granted the CDAL bus between every bus operation to perform an
invalidate, ensuring a "no stale data” race condition with the invalidate

logic. Since it is possible for the XMI bus to issue writes quickly enough

to overflow the KA62A CPU module’s invalidate queue, the second-level
cache is disabled (CRS1<18> (FMISS) is set), an error bit (CSR2<29>
(IQQ)) is set, and a soft-error interrupt (Level 1A) is generated. While

the IQO bit is set, the invalidate queue is held cleared and FMISS stays
set. Cache Disable is also generated by CRS2<31,30,26> (VPE, TPE, and
DTPE) and XBER<4 > (IPE).

The soft-error interrupt routine that handles the IQO error must do the

following to return the system to normal operation:

1 Flush the second-level cache.

2 Clear the IQO bit.

3 Enable the second-level cache.

3-41

KA62A CPU Module

3.5.4 XMl Interrupt Operation

3-42

The XMI has an INTR and an IDENT command. Only I/O devices can

generate interrupts to interrupt one or more CPU nodes, as designated by

a destination mask.

The KA62A CPU module’s XMI receiver logic monitors each XMI cycle.

If it detects an interrupt command targeted to its node ID, it sets the
interrupt-pending bit corresponding to the interrupt level (IPL 17, 16, 15,
or 14) and the interrupting node’s node ID (E, D, C, B, 4, 3, 2, or 1). The

interrupt logic then posts an interrupt request at the appropriate level.

Since the CPU has only four interrupt request lines (one for each level), the

eight interrupt-pending bits at each level are ORed together to form a set of

four composite interrupt requests, one for each level.

Eventually the CPU drops its IPL low enough to recogize the interrupt.
The CPU then issues an interrupt acknowledge which is translated by the
XCPGA into an XMI IDENT. There can be up to eight outstanding XMI

interrupts at any given level (one from each of the maximum of eight

devices that can interrupt). The KA62A CPU module gives priority to the

highest node ID request within a given level.

Each CPU monitors the XMI for IDENT transactions. When an IDENT is
detected, the interrupt-pending bit at the corresponding level and node is
cleared, assuring that multiple interrupt-fielding nodes will not attempt to
service the same interrupt. Once the first CPU sends an IDENT to a given

node at a given level, all nodes clear the corresponding interrupt-pending
bit. After the transmission of the IDENT, the interrupting device returns

an interrupt vector to the CPU. The CPU then executes the appropriate

interrupt service routine.

KA62A CPU Module

The interrupt-pending bits are controlled as follows:

All KA62A CPU modules targeted by an XMI interrupt unconditionally

set the corresponding interrupt-pending bits.

All KA62A CPU modules unconditonally reset the corresponding

interrupt-pending bit whenever an IDENT is transmitted on the XMI.

For the KA62A CPU module generating the IDENT, the interrupt-

pending state is cleared before the KA62A CPU module knows that it

has successfully transmitted the IDENT to the interrupting node as it

takes two cycles after the IDENT for the confirmation to be returned.

The XMI interface stores the IDENT command so that, if the IDENT

transmission fails, it can be reattempted. The interrupt-pending bits
are not reexamined after a failed IDENT.

The XMI interface arbitrates for the bus and, when granted, drives

several null cycles to ensure that the interrupt-pending bits are quiesent

during generation of the IDENT command. These null cycles are used
to allow the interrupt-pending bits to become stable since the bits can

only change state in response to an XMI transaction. After the required
number of null cycles, the interrupt-pending bits are sampled and used
to generate the proper IDENT destination field.

It is possible that two nodes will attempt to service an interrupt at

about the same time, as more than one CPU can be interrupted for

a single interrupt condition. Only one processor wins the bus and
transmits the IDENT. In response to the IDENT, all processors reset

their corresponding interrupt-pending bits. It is possible, however,

that a second CPU will issue an interrupt acknowledgment before its

interrupt-pending bit resets. The second CPU module, once granted

the XMI, drives the required number of null cycles, samples the
interrupt-pending bits, finds none set, releases the bus, and issues

an ERR response to the CPU. The CVAX treats the ERR assertion to

an interrupt acknowledge as a “microcode passive release,” and the

operating system never knows that the interrupt happened.

It is possible that during the time between receipt of an IPL 16 XMI

interrupt and the generation of the corresponding IDENT that an

interprocessor interrupt (IP) IVINTR could be received, as IP IVINTRs

interrupt at IPL 16. Then the XMI logic performs the same XMI

arbitration/null process in response to the CPU’s interrupt acknowledge
except, when the interrupt-pending bits are sampled, it will find the IP
IVINTR bit set. Instead of sending an XMI IDENT it returns a vector

of 80H to the CPU. Since no IDENT was transmitted, the interrupt-
pending bit at IPL 16 is still set, and after servicing the IP IVINTR, the
CPU services the XMI device.

3-43

KA62A CPU Module

3.5.5 Implied Vector Interrupts (IVINTR)

The IVINTR is a single-cycle XMI transaction used to implement VAX
interprocessor interrupts (IP) and write error (WE) interrupts. For both
WE and IP interrupts, the interrupt priority level and interrupt vector are
implied by the type of interrupt.

Figure 3-17 Interprocessor IVINTR Generation Address Example

Destination Mask

i

i

1 1 1 1 1

5 4 3 2 0 9 87 6 5 4 3 2 10

2101 6 01 0000 01 0O 01 00 O0°UO

VAN
2101 2090 (I/0 address for IP IVINTR that targets nodes

C, 7, and 4)

2101

3-44

NOTE:

KA62A CPU Module

The KA62A CPU module can generate and respond to IP and WE IVINTRs.

WE IVINTRs are issued by 1/O nodes that are unable to complete an 1/O

write transaction ("disconnected” transfers on the XMI).

The KA62A CPU module has a fixed range of 1/O space addesses in XMI

private space that, when written to, cause the generation of an XMI IVINTR

transaction. The XMI interface handles the tranaction as if it were a write

for error reporting.

The write that generates the IVINTR must be generated by a byte-type

macro instruction. MOVB is recommended.

The IVINTR generation address ranges are:

e 2101 0000 to 2101 FFFF for IP IVINTR

e 2102 0000 to 2102 FFFF for WE IVINTR

For both types of IVINTRs, A<15:0> are used as the XMI destination

mask to indicate which nodes(s) are targeted by the IVINTR. Figure 3-17

gives an example of the address needed to send an IP IVINTR to XMI

nodes 4, 7, and C.

The receipt of an IP IVINTR with a destination mask that has the

corresponding node ID bit set causes the XMI interface logic to set an
internal IP IVINTR pending bit and generate an IPL 16 device interrupt

to the CPU. When the CPU acknowledges an IPL 16 interrupt, the XMI

interface checks the IP IVINTR pending bit and, if set, returns a vector of

80H. The XMI interface logic resets the IP IVINTR pending bit during the

XMI null cycles that precede each IDENT to ensure that no IP IVINTRs are

"lost.”

The receipt of a WE IVINTR with a destination mask that has the

corresponding node ID bit set causes the XMI interface logic to set

XBER <25 > (WEI) and generate a MEMERR interrupt to the CPU. The CPU

vectors directly to 60H in the SCB for a MEMERR interrupt. XBER<25>

is cleared by the MEMERR interrupt service routine prior to servicing the

write error interrupt. Software then polls all XMI devices to determine

which device sent the WE IVINTR.

3-45

KA62A CPU Module

KA62A CPU Module Registers

The KA62A CPU module registers consist of internal processor registers,
KA62A CPU module registers in XMI private space, and XMI required
registers.

Table 3-7 KA62A CPU Module Internal Processor Registers

Address Name Mnemonic Type' Class® Location

IPRO Kernel Stack Pointer KSP RW 1

IPR1 Executive Stack Pointer ESP RW 1

IPR2 Supervisor Stack Pointer SSP RW 1

IPR3 User Stack Pointer USP RW 1

IPR4 Interrupt Stack Pointer ISP RW 1

IPR5 - IPR7 Reserved 3

IPR8 PO Base Register POBR RW 1

IPR9 PO Length Register POLR RW 1

IPR10 P1 Base Register P1BR RW 1

IPR11 P1 Length Register P1LR RW 1

IPR12 System Base Register SBR RW 1

IPR13 System Length Register SLR RW 1

IPR14 - IPR15 Reserved 3

IPR16 Process Control Block Base PCBB RW 1

IPR17 System Control Biock Base SCBB RwW 1

IPR18 Interrupt Priority Level IPL RW 11

IPR19 AST Level ASTLVL RW 11

IPR20 Software Interrupt Request SIRR W 1

IPR21 Software Interrupt Summary SISR RW 11
IPR22 - IPR23 Reserved 3

IPR24 Interval Clock Control and Status® ICCS RW 2] CVAX

'See Table 3-8.

’Key to Classes:

1-Implemented by the KA62A CPU module (as specified in the VAX Architecture Reference Manual).
2-Implemented uniquely by the KA62A CPU module.

3-Not implemented. Read as zero; NOP on write.

4-Access not allowed; accesses result in a reserved operand fault.

5-Accessible, but not fully implemented; accesses yield UNPREDICTABLE results.

n I-the register is initalized on a KA62A CPU module reset (power-up, system reset, and node reset).

JInterval timer requests are posted at IPL 16 with a vector of CO (hex). The interval timer is the lowest priority
device at the IPL.

3-46

Table 3-7 (Cont.) KA62A CPU Module Internal Processor Registers

Address Name Mnemonic Type' Class®> Location

IPR25 Next Interval Count NICR W 3

IPR26 interval Count ICR RO 3

IPR27 Time-of-Year Clock* TODR RW 1

IPR28 Console Storage Receiver Status CSRS RW 51

iPR29 Console Storage Receiver Data CSRD RO 51

IPR30 Console Storage Transmitter CSTS RW 51

Status

IPR31 Console Storage Transmitter Data CSTD W 51

IPR32 Console Receiver Control/Status RXCS RW 21 SSC

IPR33 Console Receiver Data Buffer RXDB RO 21 SSC

IPR34 Console Transmit Control/Status TXCS W 21 SSC

IPR35 Console Transmit Data Buffer TXDB W 21 SSC

IPR36 Translation Buffer Disable TBDR RW 3

IPR37 Cache Disable CADR RW 21 CVAX

IPR38 Machine Check Error Summary MCESR RW 3

IPR39 Memory System Error MSER RW 21 CVAX

IPR40 - IPR41 Reserved 3

IPR42 Console Saved PC SAVPC RO 2

IPR43 Console Saved PSL SAVPSL RO 2

IPR44 - IPR47 Reserved 3

IPR48 SBI Fault/Status SBIFS RW 3

IPR49 SBI Silo SBIS RO 3

IPR50 SBi Silo Comparator SBISC RW 3

IPR51 SBI Maintenance SBIMT RW 3

IPR52 SBI Error SBIER RW 3

IPR53 SBI Timeout Address SBITA RO 3

IPR54 SBI Quadword Clear sSBIQC W 3

IPR55 I/O Bus Reset IORESET W 2

IPR56 Memory Management Enable MAPEN RW 1

IPR57 Translation Buffer Invalidate All TBIA W 1

'See Table 3-8.

2Key to Classes:

1-implemented by the KA62A CPU module (as specified in the VAX Architecture Reference Manual).

2-Implemented unigquely by the KA62A CPU module.

3-Not implemented. Read as zero; NOP on writs.

4-Access not allowed; accesses result in a reserved operand fault.

5-Accessible, but not fully implemented; accesses yield UNPREDICTABLE results.

n 1-the register is initalized on a KA62A CPU module reset (power-up, system reset, and node reset).

“TODR is maintained during power failure by the XMI TOY BBU PWR line on the XMI backplane.

3-47

KA62A CPU Module

Table 3-7 (Cont.) KA62A CPU Module Internal Processor Registers

Address Name Mnemonic Type' Class? Location

IPR58 Translation Buffer Invalidate TBIS W 1

Single

IPR59 Translation Buffer Data TBDATA R/W 3

IPR60 Microprogam Break MBRK RW 3

IPR61 Performance Monitor Enable PMR RW 3

IPR62 System Identification SID RO 1 CVAX

IPR63 Translation Buffer Check TBCHK W 1

IPR64 - IPR127 Reserved 4

'See Table 3-8.

’Key to Classes:

1-Implemented by the KA62A CPU module (as specified in the VAX Architecture Reference Manual).
2-Implemented uniquely by the KA62A CPU module.

3-Not implemented. Read as zero; NOP on write.

4-Access not allowed; accesses result in a reserved operand fault.

5-Accessible, but not fully implemented; accesses yield UNPREDICTABLE results.

n I-the register is initalized on a KA62A CPU module reset (power-up, system reset, and node reset).

Table 3-8 Types of Registers and Bits

Type Description

0

1

X

RO

R/W

R/Cleared on W

R/W1C

Initialized to logic level zero

Initialized to logic level one

Initialized to either logic level

Read only

Read/write

Read/cleared on write

Read/cleared by writing a one

3-48

KA62A CPU Module

3.6.1 Processor Registers

The processor state is stored in processor registers rather than in memory.
The processor state is composed of 16 general purpose registers (GPRs),
the processor status longword (PSL), and internal processor registers (IPRs).

Nonprivileged software can access the GPRs and the lower half of the
processor status longword (PSL<15:0>). The IPRs and PSL<31:16> can

only be accessed by privileged software. The IPRs are explicitly accessible
only by the Move To Processor Register (MTPR) and Move From Processor
Register (MFPR) instructions, which require kernel mode privileges.

In addition to the internal processor registers, the KA62A CPU module

contains registers in XMI private space and XMI required registers in XMI

nodespace. These registers are listed in Table 3-10 and Table 3-9.

3.6.2 XMI Registers and Control and Status Register 1 Characteristics

The KA62A CPU module’s XMI registers have the following characteristics
(items 1 and 2 also apply to CSR1):

1 The Mask bits are ignored on writes to the KA62A CPU module’s
Control and Status 1 and 2 registers. The CPU always performs a full

longword write.

2 Interlocks are not supported. Interlock Read and Unlock Write

Mask transactions are treated as Read and Write Mask transactions,

respectively.

3 The XMI responder queue is only one deep so the KA62A CPU module

will NO ACK subsequent CSR references until the read data for the

queued CSR read has been returned.

3-49

KA62A CPU Module

Table 3-9 KA62A CPU Module Registers in XMI Private Space

Hegister Mnemonic Address Location

XCP Control and Status 1 CSR1 2000 0000 External logic

XCP ROM ROM 2004 0000 - 2007 FFFF

XCP EEPROM EEPROM 2008 0000 - 2008 7FFF

SSC Base Address SSCBR 2014 0000 SSC

SSC Configuration SSCCR 2014 0010 SSC

CDAL Bus Timeout Control CBTCR 2014 0020 SSC

Console Select CONSEL 2014 0030 SSC

Timer Control Register 0 TCRO 2014 0100 SSC

Timer Interval Register 0 TIRO 2014 0104 SSC

Timer Next Interval Register 0 TNIRO 2014 0108 SSC

Timer Interrupt Vector Register 0 TIVRO 2014 010C SSC

Timer Control Register 1 TCR1 2014 0110 SSC

Timer Interval Register 1 TIR1 2014 0114 SSC

Timer Next Interval Register 1 TNIR1 2014 0118 SSC

Timer Interrupt Vector Register 1 TIVR1 2014 011C SSC

CSR1 Base Address CSR1BADR 2014 0130 SSC

CSR1 Address Decode Mask CSR1ADMR 2014 0134 SSC

EEPROM Base Address EEBADR 2014 0140 SSC

EEPROM Address Decode Mask EEADMR 2014 0144 SSC

SSC BBU RAM BBURAM 2014 0400 - 2014 O7FF

IP IVINTR Generation IPIVINTRGEN 2101 0000 - 2101 FFFF

WE IVINTR Generation WEIVINTRGEN 2102 0000 - 2102 FFFF

Table 3-10 XMI Registers for the KA62A CPU Module

Name Mnemonic Address Location

XMI Device Register XDEV BB' + 0000 0000 XCPGA

XMI Bus Error Register XBER BB + 0000 0004 XCPGA

XMI Failing Address XFADR BB + 0000 0008 SSC

Register

XMI XGPR XGPR BB + 0000 000C XCPGA

XCP Control and Status 2 CSR2 BB + 0000 0010 SSC

'""BB" = base address of a node, which is the address of the first location in

nodespace.

3-50

KA62A CPU Module Registers

Interval Clock Control and Status Register (ICCS)

Interval Clock Control and Status Register (ICCS)

The ICCS contains control information for the interval clock. The

interval clock is used for accounting, for time-dependent events, and

for maintaining the software date and time.

ADDRESS IPR24 (CVAX)

3

1 765 0

MUST BE ZERO MBZ

Interrupt Enable (IE) —I

bits<31:7>
Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

bit<6>
Name: Interrupt Enable

Mnemonic: |IE

Type: R/W,0

IE enables and disables interval timer interrupts. When IE is set, an

interval timer interrupt is requested every 10 milliseconds. When IE is

clear, interval timer interrupts are disabled.

bits <5:0>
Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

3-51

KA62A CPU Module Registers

Console Receiver Control and Status (RXCS)

Console Receiver Control and Status (RXCS)

The RXCS controls and reports the status of incoming data on the console

serial line.

ADDRESS IPR32 (SSC)

3

1 8765 0

MUST BE ZERO MUST BE ZERO

Receiver Done (RX DONE) —J I
Receiver Interrupt Enable (RX IE)

bits<31:8>
Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

bit<7>
Name: Receiver Done

Mnemonic: RX DONE

Type: RO, 0

RX DONE is set when an entire character has been received and is

ready to be read from RXDB<7:0> (RBUF). RX DONE is automatically

cleared when RXDB<7:0> is read.

bit<6>
Name: Receiver Interrupt Enable

Mnemonic: RX IE

Type: R/W, 0

If RX DONE and RX IE are both set, a program interrupt is requested.

3-52

KA62A CPU Module Registers

Console Receiver Control and Status (RXCS)

bits<5:0>
Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

3-53

KA62A CPU Module Registers

Console Receiver Data Buffer (RXDB)

Console Receiver Data Buffer (RXDB)

RXDB buffers incoming serial-line data and captures error information.
Error conditions remain until the next character is received, at which point
the error bits are updated.

ADDRESS IPR33 (SSC)

3 1111111

1 6543210 87 0

MUST BE ZERO o| | mBz

Error (ERR) —J |
Overrun Error (OVR ERR)

Framing Error (FRM ERR)

Received Break (RCV BRK)

Received Data Bits (RBUF)

bits<31:16>
Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

bit<15>
Name: Error

Mnemonic: ERR

Type: RO, 0

ERR is set if either bit<14> or <13> is set. ERR is clear if both bits
are clear. ERR does not generate a program interrupt.

bit<14>
Name: Overrun Error

Mnemonic: OVR ERR

Type: RO, 0

OVR ERR is set if a previously received character was not read before
being overwritten by the present character.

3-54

bit<13>

bit<12>

bit<11>

bits<10:8>

bits<7:0>

KA62A CPU Module Registers

Console Receiver Data Buffer (RXDB)

Name: Framing Error

Mnemonic: FRM ERR

Type: RO, 0

Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

Name: Received Break

Mnemonic: RCV BRK

Type: RO, 0

RCV BRK is set following the receipt of a CTRL/P character and

remains set until the register is read.

Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

Name: Received Data Bits

Mnemonic: RBUF

Type: RO

The RBUF field contains the last character received from the console.

3-55

KA62A CPU Module Registers

Console Transmitter Control and Status (TXCS)

Console Transmitter Control and Status (TXCS)

TXCS controls and reports the status of outgoing data on the console
serial line,

ADDRESS IPR34 (SSC)

3

1 8765 3210

MUST BE ZERO MBZ 0

Transmitter Ready (TX RDY) -—J l '
Transmitter Interrupt Enable (TX IE)

Maintenance (MAINT)

Transmit Break (XMIT BRK)

bits <31:8>
Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

bit<7>
Name: Transmitter Ready

Mnemonic: TX RDY

Type: RO,1

TX RDY is cleared when TXDB<7:0> (TBUF) is loaded and is set when
TBUF can receive another character.

bit<6>
Name: Transmitter Interrupt Enable

Mnemonic: TX IE

Type: R/W.,0

If both TX RDY and TX IE are set, a program interrupt is requested.

3-56

bits<5:3>

bit<2>

bit<1>

bit<0>

KA62A CPU Module Registers

Console Transmitter Control and Status (TXCS)

Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

Name: Maintenance

Mnemonic: MAINT

Type: R/W,0

MAINT facilitates a maintenance self-test. When MAINT is set, the

external serial output is set to MARK and the serial output is used as
the serial input (a loopback).

Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

Name: Transmit Break

Mnemonic: XMIT BRK

Type: R/W,0

When XMIT BRK is set, the serial output is forced to the SPACE
condition. While XMIT BRK is set, the transmitter operates normally,

but the output line remains low so that software can transmit dummy

characters to time the break.

3-57

KA62A CPU Module Registers

Console Transmitter Data Buffer (TXDB)

Console Transmitter Data Buffer (TXDB)

TXDB buffers outgoing data on the console serial line.

—

ADDRESS IPR35 (SSC)

3

1 87 0

MUST BE ZERO

Transmit Data Bits (TBUF) —-I

bits<31:8>
Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

bits<7:0>
Name: Transmit Data Bits

Mnemonic: TBUF

Type: WO

TBUF loads the character to be transmitted on the console serial line.

3-58

KA62A CPU Module Registers

Cache Disable Register (CADR)

Cache Disable Register (CADR)

CADR is used by the CVAX chip to control the first-level cache.

ADDRESS

bits <31:8>

bits<7:6>

IPR37 (CVAX)

876543210

MUST BE ZERO 1)1

Bit:

Firmware Initialized State:

"Normal State":

Set Enable

Cache Enable (CEN)

Write Wrong Parity (WW)

Diagnostic Mode (DIA)

= |
76543210

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Set Enable

Mnemonic: SEN

Type: R/W, 0

SEN is used to selectively enable or disable each set within the cache.

CADR< 7> sets to enable Set 2 of the cache and clears to disable Set
2. CADR<6> sets to enable Set 1 of the cache and clears to disable

Set 1.

3-59

KA62A CPU Module Registers

Cache Disable Register (CADR)

bits<5:4>

Configuration Rule:

bits<3:2>

bit<1>

3-60

NOTE:

Name: Cache Enable

Mnemonic: CEN

Type: R/W, 0

CEN is used to selectively enable or disable the storing of I-stream and
D-stream references in the cache. CADR<5> sets to enable I-stream
memory space reference storage in the cache and clears to disable
I-stream storage in the cache. CADR<4> sets to enable D-stream
memory space reference storage in the cache and clears to disable

D-stream storage in the cache.

The first-level cache MUST be configured for I-stream only operation
(CADR<5:4> =10).

The first-level cache can be disabled by either disabling both Set 1 and
Set 2 or by not storing both I-stream and D-stream references.

Name: Reserved

Mnemonic: None

Type: RO, 1

Reserved; both bits must be one.

Name: Write Wrong Parity

Mnemonic: WW

Type: R/W, 0

WW sets to require that incorrect parity be stored in the first-level
cache whenever it is written. When cleared, correct parity is stored in
the cache whenever the cache is written.

bit<0>

KA62A CPU Module Registers

Cache Disable Register (CADR)

Name: Diagnostic Mode

Mnemonic: DIA

Type: R/W, 0

DIA causes writes to the CADR to flush the first-level cache (all valid

bits set to the invalid state). The cache is configured for "normal”

write-through operation when cleared.

When DIA is set:

¢ Writes to the CADR will not cause the first-level cache to be

flushed.

e All CPU write references write the data into the cache as well as

main memory, irrespective of' whether or not a cache hit occurred.

e Errors are ignored (they do not cause a machine-check trap to be

generated or prevent data from being stored in the cache).

e There is no effect on read references.

Diagnostic mode blocks the flush of the cache when CADR is written.

Diagnostic mode is subject to the following restrictions:

¢ Diagnostic mode must only be selected when one and only one of

the two Sets is enabled. Operation of diagnostic mode with both

sets or neither set enabled yields UNPREDICTABLE results.

e A valid write allocation occurs only if a specific sequence of

instructions is followed. The first instruction must be a quadword

write (MOVQ) to a quadword-aligned destination. This instruction

writes the second longword of the source operand to the first

longword of the cache entry selected by the destination address.

The first longword of the source is not used and the second

longword of the cache entry remains unchanged. The cache tag

and valid bits are set so that subsequent reads and writes to either

longword in the destination report a cache hit.

¢ The second instruction must be a cachable read operation.

e The third instruction must be a longword write to the address

corresponding to the second longword in the cache entry. The

following is a sample macrocode listing showing this sequence:

MOVQ tquadscr, f#quaddst writes longword quadsrc+4 into
¥

: longword quaddst

MOVL #quaddst, RO : reads allocated longword quaddst

MFPR #mser, Rl ; get MSER in order to look at H/M
: bit later

’MOVE #longsrc, @#(quaddst+4); writes 2nd longword quaddst+4

When this sequence is followed, each cache entry can be allocated
with any arbitrary address.

3-61

KA62A CPU Module Registers

Memory System Error Register (MSER)

Memory System Error Register (MSER)

The memory system error register records the occurrence of first-level
cache hits and parity errors on the CDAL bus, in the first-level cache, and
in the second-level cache. The MSER is explicitly cleared via the MTPR
MSER instruction irrespective of the write data.

ADDRESS IPR39 (CVAX)

3

1 876543210

MUST BE ZERO MBZ

Hit/Miss (HM) :{_J
DAL Parity Error (DAL)

Machine Check — DAL Parity Error (MCD)

Machine Check — First-Level Cache Parity (MCC)

Data Parity Error (DAT)

Tag Parity Error (TAG)

bits<31:8>
Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

bit<7>
Name: Hit/Miss

Mnemonic: HM

Type: RO, 0

HM sets on all cachable references that miss the first-level cache and
clears on all cachable references that hit the first-level cache.

bit<6>
Name: DAL Parity Error

Mnemonic: DAL

Type: R/Cleared on W, 0

DAL sets whenever a CDAL bus or second-level cache data store p
error is detected.

3-62

arity

bit<5>

bit<4>

bit<3:2>

bit<1>

bit<0>

KA62A CPU Module Registers

Memory System Error Register (MSER)

Name: Machine Check - DAL Parity Error

Mnemonic: MCD

Type: R/Cleared on W, 0

MCD sets whenever a machine check is caused by a CDAL bus or

second-level cache parity error.

Name: Machine Check - First-Level Cache Parity Error

Mnemonic: MCC

Type: R/Cleared on W, 0

MCC sets whenever a machine check is caused by a first-level cache

parity error in the tag or data store.

Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

Name: Data Parity Error

Mnemonic: DAT

Type: R/Cleared on W, 0

DAT sets when a parity error is detected in the data store of the first-

level cache unless there is a simultaneous tag and data parity error.

Only TAG (bit<0>) sets when there are simultaneous tag and data
parity errors.

Name: Tag Parity Error

Mnemonic: TAG

Type: R/Cleared on W, 0

TAG sets when a parity error is detected in the tag store of the first-

level cache. Only TAG sets when there are simultaneous tag and data
parity errors.

3-63

KA62A CPU Module Registers

System Identification Register (SID)

System ldentification Register (SID)

SID specifies the processor type and includes an implementation-

dependent field. It can only be accessed locally. Other devices on the

XMI determine the nature of a node by reading its XMI Device Register
(XDEV).

ADDRESS IPR62 (CVAX)

3 2 2

1 4 3 87 0

TYPE RESERVED Microcode Rev.

bits<31:24>
Name: Processor Type

Mnemonic: TYPE

Type: RO

This field is always 0A (hex), indicating the CVAX chip.

bits <23:8>
Name: Reserved

Mnemonic: None

Type: RO

Reserved.

3-64

KA62A CPU Module Registers

Svstem ldentification Register (SID)

bits<7:0>
Name: Microcode Revision

Mnemonic: None

Type: RO

This field shows the microcode revision level of the CVAX chip, at the

time of printing, as follows:

CVAX Revision <7:0> (hex)

3.0 02

3.1 02

3.2 02

4.2 03

4.4 04

3-65

KA62A CPU Module Registers

Control and Status Register 1 (CSR1)

Control and Status Register 1 (CSR1)

CSR1 provides KA62A CPU module control and status. Since most bits in
CSR1 power up in an indeterminate state, console code initializes CSR1
very early in the power-up sequence.

(e

ADDRESS 2000 0000 (External logic)

332 2222222111111 1111

1009 6543210987654321098765143 0

NODE ID

[— Front
Panel Boot

Disable

(FPBD)
—Front

Panel EEROM

Update Enable

(FPEEUE)
— XMI AC LO

(XACLO)
— Self-Test Loop

(STL)

— EEPROM Write

Adr<0> (EEWADRO)

— EEROM Write

Adr<1> (EEWADR1)

— Delayed Lockout

Enabled (DLCKOUTEN)

— Self-Test Passed LED

(STPLED or DO)
—Status LED D6

— Status LED D5

— Status LED D4

—Status LED D3

— Status LED D2

— Force Cache Hit (FHIT)

— Force Cache Miss (FMISS)

— Force Bad Tag Parity (FBTP)

—Force Cache Invalidate (FCI)

— Cache Parity Update Disable (CPUD)

— Force Parity Select (FPSEL)

— Force Cache Enable (FCACHEEN)

— Status LED D1

— Lockout Disable (LCKOUTDIS)

— Reserved

—Cache Hit Status (LATHIT)

—Console Not Secure

3-66

bit<31>

bit<30>

bits <29:26>

bit<25>

bit<24>

KA62A CPU Module Registers

Control and Status Register 1 (CSR1)

Name: Console Not Secure

Mnemonic: None

Type: RO, 1

Console Not Secure reflects the received state of the XMI CON

SECURE L line that is driven from the XMI backplane. When this

bit is deasserted (a HIGH voltage level), the console is secure.

Name: Cache Hit Status

Mnemonic: LATHIT

Type: RO, X

LATHIT is used by cache coherency diagnostics running out of I/O

space (that is, the on-board ROM) to determine if a cache hit has

occurred. LATHIT is first cleared by writing a zero to CSRi<i0>

(DLCKOUTEN) and then releasing the clear by writing a one to the

same location. The next cache hit (meaning TAG address and VALID

bit match) causes LATHIT to be set. Once set, this bit remains set until

explicitly cleared by writing a zero to CSR1<10>.

Name: Reserved

Mnemonic: None

Type: RO, 1

Reserved; returns a one.

Name: Lockout Disable

Mnemonic: LCKOQUTDIS

Type: R/W, 0

LCKOUTDIS disables all assertions of XMI LOCKOUT

(CSR2<22:21>). Normally, the KA62A CPU module asserts

LOCKOUT even if interlock lockout avoidance is disabled.

Name: Status LED D1

Mnemonic: SLED1

Type: R/W, X

Status LED D1 is used with Status LED D2 through D6. See

CSR1<16:12>.

3-67

KA62A CPU Module Registers

Control and Status Register 1 (CSR1)

bit<23>

bit<22>

bit<21>

bit<20>

3-68

Name: Force Cache Enable

Mnemonic: FCACHEEN

Type: R/W, X

Setting FCACHEEN causes the cache to remain active after error
conditions. When cleared, certain errors will disable the cache.

Name: Force Parity Select

Mnemonic: FPSEL

Type: R/W, X

When FPSEL is set, the KA62A CPU module does not generate parity
for the XMI P<2:0> L lines but, instead, drives Force Parity <2:0>
(CSR2<6:4>). FPSEL is used only during diagnostic testing; remains
cleared during normal system operation.

Name: Cache Parity Update Disable

Mnemonic: CPUD

Type: R/W, X

When CPUD is set, the KA62A CPU module second-level cache
does not update its data parity RAMs. Bad parity can be forced by
first writing cache while CPUD is set. Then, after clearing CPUD,
subsequent writes to cache have correct/incorrect parity, depending on
the data pattern written.

When CPUD is set, CDAL parity checking is disabled for second-level
cache references, allowing operating system and diagnostic software to
capture data from a second-level cache location that contains a parity
error.

Name: Force Cache Invalidate

Mnemonic: FCI

Type: R/W, X

When ECl is set, the entire second-level cache and duplicate tag store
are held invalidated. The cache should be first disabled by setting
Force Miss, bit <18>, before setting FCI.

bit<19>

bit<18>

bit<17>

KA62A CPU Module Registers

Control and Status Register 1 (CSR1)

Name: Force Bad Tag Parity

Mnemonic: FBTP

Type: R/W, X

When FBTT is set, the parity enabie (PE) iline on each of the KA6ZA

CPU module tag chips is asserted during operations that write the tag,

forcing bad parity to be written by the tag chips for the current tag

entry. Subsequent reads of the tag entry cause parity errors.

Name: Force Miss

Mnemonic: FMISS

Type: R/W, 0

When FMISS is set, the KA62A CPU module second-level cache and

XMI interface behave as though a cache miss occurred, regardless

of the state of the tag and valid bits. Setting both FHIT CSR1<17>

(FHIT) and FMISS results in the disabling of both cache and XCPGA,

which should be avoided.

FMISS is also set by various error conditions that generate cache

disable. The error conditions must be removed before FMISS

can be cleared. Cache disable is inhibited when CSR1<23> =1

(FCACHEEN), as this is used for diagnostic purposes only (that is,

cache remains active after error conditions).

Operating system software is required to flush the second-level cache

(CSR1<FCI>) before resetting FMISS to ensure that the cache state

is consistent when the cache is reenabled. This is required since the

KA62A CPU module performs cache fills while FMISS is asserted but

does not update the cache on CVAX writes that "hit” (that is, write-

throughs are disabled), which could cause the state of the cache to

become inconsistent while FMISS is asserted.

Name: Force Hit

Mnemonic: FHIT

Type: R/W, X

When FHIT is set, the KA62A CPU module second-level cache and
XMI interface behave as though a cache hit occurs for each memory-

space reference regardless of the state of the tag and valid bits.

Associated XMI writes are suppressed and only the cache location

will be updated. 1/O space references are disabled as FHIT causes

the XCPGA chip to ignore CVAX transactions. To maintain the FHIT

functionality regardless of errors, the CSR1<23> (FCACHEEN) is also

set. Setting both FMISS and FHIT results in the disabling of both cache

and XCPGA, which should be avoided.

3-69

KA62A CPU Module Registers

Control and Status Register 1 (CSR1)

bits<16:12>

bit<11>

bit<10>

bits <9:8>

3-70

Name: Status LEDs D2-D6

Mnemonic: SLED2-SLED®6

Type: R/W, X

SLED1 (CSR1<24>) and SLED2-SLEDDS bits drive the six LEDs used
to report status of self-test as it runs and the failing test number if

self-test fails.

Name: Self-Test Pass LED

Mnemonic: STPLED

Type: R/W, 0

STPLED drives the self-test pass LED (D8) on the KA62A CPU module.
It is set following the successful completion of self-test.

Name: Delayed Lockout Enable

Mnemonic: DLCKOUTEN

Type: R/W, X

DLCKOUTEN enables an optional delay between the time that the
XCPGA chip asserts LOCKOUT until XMI LOCKOUT is asserted.
DLCKOUTEN is also used to clear the LATHIT latch (CSR1<30>)
during cache testing. The two functions of DLCKOUTEN are never
used as the same time.

Name: EEPROM Write Address <1:0>

Mnemonic: EEWADR

Type: R/W, X

The KA62A CPU module always provides write data on DAL<7:0>.
EEWADR gives the programmer the ability to write the data to any byte
address within the EEPROM since the EEPROM data path is a byte
wide.

Before updating an EEPROM location, the software must first load
the correct byte address into EEWADR<1:0>. Then the write to the
EEPROM can be started.

bit<7>

bit<6>

bit<5>

bit<4>

bits<3:0>

KA62A CPU Module Registers

Control and Status Register 1 (CSR1)

Name: Self-Test Loop

Mnemonic: STL

Type: RO

When STL is set, the KA6ZA CPU module continuaily reruns its

self-test sequence. STL is driven by an I/O pin and can be used to

implement a manufacturing "burn-in” test. This bit is "low true.”

Name: XMI AC LO

Mnemonic: XACLO

Type: RO

XACLO shows the state of the XMI AC LO L line. The KA62A

CPU module should not access main memory until the bit is a one,

indicating that XMI AC LO L is deasserted.

Name: Front Panel EEROM Update Enable

Mnemonic: FPEEUE

Type: RO

EPEEUE shows the received state of the XMI BOOT EN L line that is
driven by the front panel switch.

Name: Front Panel Boot Disable

Mnemonic: FPBD

Type: RO

FPBD shows the received state of the XMI BOOT EN L line that is

driven by the front panel switch.

Name: Node ID

Mnemonic: NID

Type: RO

NID contains the node ID as received from the XMI backplane.

3-71

KA62A CPU Module Registers

System Type (SYSTYPE)

System Type (SYSTYPE)

SYSTYPE is a 32-bit register implemented in the KA62A CPU module

ROM. It can only be accessed locally. Other devices on the XMI determine

the nature of a node by reading its XMI Device Register (XDEV).

ADDRESS 2004 0004 (EEPROM)

3 2 2 11

1 4 3 6 5 87 0

SYS TYPE REV LEVEL RESERVED LICENSE ID

bits<31:24>
Name: System Type

Mnemonic: SYS TYPE

Type: RO

SYS TYPE is 02 (hex) for the KA62A CPU module.

bits <23:16 >
Name: Revision Level

Mnemonic: REV LEVEL

Type: RO

REV LEVEL shows the revision level of the KA62A CPU module

console code. REV LEVEL is encode in the form x.y where x is encoded
into <23:20> and y is encoded into <19:16>. Therefore, a console

revision of 2.1 would be encoded as 21 (hex) while a console revision

of 2.10 would be 2A (hex).

bits<15:8>

3-72

Name: Reserved

Mnemonic: None

Type: RO

Reserved.

KA62A CPU Module Registers

System Type (SYSTYPE)

bits<7:0>
Name: License ldentifier

Mnemonic: LICENSE ID

Type: RO

LICENSE ID is set (logic level of one) to allow the processor to be part

of a timesharing system.

3-73

KA62A CPU Module Registers

SSC Base Address Register (SSCBR)

SSC Base Address Register (SSCBR)

SSCBR controls the base address of a 2-Kbyte block of the local I/0
space that includes the battery-backed-up RAM, the registers for the
programmable timers, the CSR1, the EEPROM Address Decode Match
and Mask Registers, the Diagnostic LED Register, the CDAL Bus Timeout
Register, and diagnostic registers that allow several IPRs to be accessed
by means of I1/O page addresses.

“

ADDRESS 2074 0000 (SSC)

3322 11

1098 10 0

MBZ[1| SSC Base Address (SSCBA) MUST BE ZERO

bits<31:30>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bit<29>
Name: Reserved

Mnemonic: None

Type: R/W, 1

Reserved; must be one.

bits<28:11>
Name: SSC Base Address

Mnemonic: SSCBA

-Type: R/W

SSCBA controls the base address of the 2-Kbyte block and is set to
2014 0000 (hex) by console code during processor initialization.

3-74

KA62A CPU Module Registers

SSC Base Address Register (SSCBR)

bits<10:0>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

3-75

KA62A CPU Module Registers

SSC Configuration Register (SSCCR)

SSC Configuration Register (SSCCR)

ADDRESS

3

1

3 2222

0O 8765

2

4

SSCCR controls the initialization parameters for the console serial line,
programmable timers, ROM, EEPROM, TOY clocks, and CSR1.

“

2014 0070 (SSC)

2 11

3 98o
n
N2

2

111 111

654 210 876 432 0

MBZ 0 0 0 0 0

Firmware Initialized State:

Binary:

Hex:

bit<31>

3-76

00O00O0

0

0001

1

011

7

[- CSR1 Enable
(CSR1 EN)

EEPROM Enable (EEPROM EN)
Auxiliary Baud Select

— Console Terminal Baud Rate Select

(CT BAUD SELECT)
Control/P Enable (CTP)

ROM Halt Protect Address Space Size

(HALT PROT SPACE)
ROM Address Space Sizer Select (ROM SIZE SEL)
ROM Speed (RSP)

Interrupt Priority Level Select (IPL LVL SEL)
Interrupt Vector Disable (IVD)

Battery Low (BLO)

1|011oloo1ooooooooo|o111'
6 2 0 0 7

Name:

Mnemonic:

Type:

Battery Low

BLO

R/W1C

BLO is set if the battery voltage goes below threshold while the module
is powered down. Once set, BLO can only be cleared by software
writing a zero to it. If set, the TOY clocks are cleared on KA62A CPU
module reset.

bits <30:28>

bit<27>

bit<26>

bits <25:24 >

bit<23>

bits <22:20>

KA62A CPU Module Registers

SSC Configuration Register (SSCCR)

Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

Name: Interrupt Vector Disable

Mnemonic: IVD

Type: R/W, 0

When IVD is set, the console serial line and programmable timers do

not respond to interrupt acknowledge cycles.

Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

Name: IPL Level Select

Mnemonic: IPL LVL SEL

Type: R/W, 0

IPL LVL SEL specify the IPL level of interrupt acknowledge cycles that

the console serial line and programmable timers respond to. On the

KA62A CPU module, this field is set to 01 (IPL 15) by console code.

Name: ROM Speed

Mnemonic: RSP

Type: R/W, 0

RSP selects the ROM access time. 0=450 ns; 1=250 ns.

Name: ROM Address Space Size Select

Mnemonic: ROM SIZE SEL

Type: R/W, 0

ROM SIZE SEL controls the size of the range of addresses to which

the ROM responds. ROM SIZE SEL is always 111, yielding an address

range of 1 Mbyte (2004 0000 to 2013 FFFF).

3-77

KA62A CPU Module Registers

SSC Configuration Register (SSCCR)

bit<19>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bits<18:16>
Name: ROM Halt Protect Address Space Size Select

Mnemonic: HALT PROT Space

Type: R/W

The halt protect address space is set to 512 Kbytes by console code
during processor initialization.

bit<15>
Name: Control/P Enable

Mnemonic: CTP

Type: R/W, 0

When CTP is set, it causes the CPU to be halted, if halts are enabled
(XMI CON SECURE reset), when CTRL/P is typed at the console.
When CTP is clear, it causes the CPU to be halted, if halts are enabled,
when BREAK is typed at the console.

bits<14:12>
Name: Console Terminal Baud Rate Select

Mnemonic: CT BAUD SELECT

Type: R/W, 0

CT BAUD SELECT use the following codes to select the console baud
rate:

CT BAUD

SELECT<14:12>

14 13 12 Baud Rate

0 0 0 300

0 0 1 600

0 1 0 1200

0 1 1 2400

1 0 0 4800

1 0 1 9600

1 1 0 19200

1 1 1 38400

3-78

KA62A CPU Module Registers

SSC Configuration Register (SSCCR)

bit<11>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved: must be zero,

bits<10:8>
Name: Auxiliary Baud Select

Mnemonic: None

Type: R/W, 0

Unused; read as written.

bit<7>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bits<6:4>
Name: EEPROM Enable

Mnemonic: EEPROM EN

Type: R/W, 0

EEPROM EN is set to 000 (binary) by console code during processor

initialization. When set to 101 (binary), updates to the EEPROM are

enabled.

bit<3>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bits<2:0>
Name: CSR1 Enable

Mnemonic: CSR1 EN

Type: R/W, 0

CSR1 EN enables CSR1 when set to 111 (binary) by a processor

initialization.

3-79

KA62A CPU Module Registers

CDAL Bus Timeout Control Register (CBTCR)

CDAL Bus Timeout Control Register (CBTCR)

CBTCR controls the amount of time (timeout) allowed to elapse before
a CDAL bus cycle is aborted. This prevents unanswered CPU read or
write accesses or interrupt acknowledge cycles (IDENT) from hanging the
system longer than the timeout interval.

ADDRESS 2014 0020 (SSC)

3

1

3 2 2 2

09 4 3 0

MBZ BUS TIMEOUT INTERVAL

I L— Read/Write Bus Timeout (RWT)
CDAL Bus Timeout (BTO)

bit<31>
Name: CDAL Bus Timeout

Mnemonic: BTO

Type: R/Cleared on W, 0

BTO is set when the Bus Timeout Interval (CBTCR <23:0>) has expired
during a CPU read, write, or interrupt acknowledge cycle.

bit<30>
Name: Read/Write Bus Timeout

Mnemonic: RWT

Type: R/Cleared on W, 0

RWT is set when the Bus Timeout Interval (CBTCR<23:0>) has
expired during a CPU read or write cycle but not during an interrupt
acknowledge cycle.

bits <29:24>

3-80

Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

KA62A CPU Module Registers

CDAL Bus Timeout Control Register (CBTCR)

bits <23:0>
Name: Bus Timeout Interval

Mnemonic: None

Type: R/W, 0

Bus Timeout Interval gives the desired timeout period. The available

range of 1 to FFFFFF (hex) corresponds to a selectable timeout range of

1 microsecond to 16.77 seconds in 1 microsecond increments. Writing

a zero to this field disables the bus timeout function.

3-81

KA62A CPU Module Registers

Console Select Register (CONSEL)

Console Select Register (CONSEL)

The CONSEL register is used to select which console lines are attached to
the console transmit and receive register.

ADDRESS 2014 0030 (SSC)

3

1 43210

MUST BE ZERO

Console Select <2> (CONSEL<2>) —J l
Status LED D7 (SLED7)

Console Select <1> (CONSEL<1>)

Console Select <0> (CONSEL<0>)

bits<31:4>
Name: Reserved

Mnemonic: None

Type: -

Reserved; returns zero.

bit<2>
Name: Status LED D7

Mnemonic: SLED7

Type: R/W, 0

SLED7 powers up cleared, which causes LED D7 to be on. Writing a

one to this bit turns LED D7 off.

3-82

bits<3> and

<1:0>

KA62A CPU Module Registers

Console Select Register (CONSEL)

Name: Console Select<2:0>

Mnemonic: CONSEL<2:0>

Type: R/W, 0

The CONSEL field selects the operational mode for the console

attached to the console transmit and receive register. The modes

are as follows:

CONSEL<2:0> RECV

2 1 0 Drive XMI Data Mode

0 0 0 No AUX AUX Power-up state

0 0 1 No XMI AUX All fail on power-up state

0 1 0 No LB AUX Loopback at XMl XMIT

_ driver input

0 1 1 No XMI/AUX Unused

i 0 0 Yes AUX XMI/AUX Unused

1 0 1 Yes XMI XMI/AUX Boot processor state

1 1 0 Yes LB XMIV/AUX Unused

1 1 1 Yes LB XMVAUX Loopback on XMl

It is possible to receive data on XMI CON RECV without having the

XMI CON XMIT driver enabled. This mode is used when no CPU

becomes the boot processor on power-up; all monitor the XMI console

lines for further commands.

3-83

KA62A CPU Module Registers

Timer Control Register 0 (TCRO)

Timer Control Register 0 (TCRO0)

TCRO controls timer 0.

ADDRESS 2074 0100 (SSC)

3

1

3 ‘
0 87664 2 0

MUST BE ZERO 0] |0

L— Error (ERR) Interrupt (INT) :!_J
Interrupt Enable (IE)

Single (SGL)

Transfer (XFR)

Stop (STP)

Run (RUN)

bit<31>
Name: Error

Mnemonic: ERR

Type: RW1C, 0

ERR is set whenever the Timer Interval Register overflows and INT is
already set, indicating a missed overflow.

bits <30:8>
Name: Reserved

Mnemonic: None

Type: R/W

Reserved; must be zero.

bit<7>

3-84

Name: Interrupt

Mnemonic: INT

Type: RWI1C, 0

INT is set whenever the Timer Interval Register overflows. If IE is set

when INT is set, an interrupt is posted at IPL 15.

bit<6>

bit<5>

bit<d4>

bit<3>

bit<2>

bit<1>

KA62A CPU Module Registers

Timer Control Register 0 (TCRO0)

Name: Interrupt Enable

Mnemonic: IE

Type: RW, 0

When IE is set, the timer interrupts at IPL 15 when INT is set.

Name: Single

Mnemonic: SGL

Type: R/W, 0

Setting SGL causes the Timer Interval Register to increment by one if

the RUN bit is cleared. If RUN is set, then writes to SGL are ignored.

SGL is always read as zero.

Name: Transfer

Mnemonic: XFR

Type: BR/W, 0

Setting XFR causes the Timer Next Interval Registér to be copied into
the Timer Interval Register.

Name: Reserved

Mnemonic: None

Type: R/W

Reserved; must be zero.

Name: Stop

Mnemonic: STP

Type: R/W, 0

STP determines whether the timer stops after an overflow. If STP is set

at overflow, RUN is cleared by the hardware at overflow and counting

stops.

Name: Reserved

Mnemonic: None

Type: R/W

Reserved; must be zero.

3-85

KA62A CPU Module Registers

Timer Control Register 0 (TCRO)

bit<0>
Name: Run

Mnemonic: RUN

Type: R/W, 0

When RUN is set, the Timer Interval Register is incremented once
every microsecond. INT is set when the timer overflows. If STP is

set at overflow, RUN is cleared by the hardware at overflow and

counting stops. When RUN is clear, the Timer Interval Register is not

incremented automatically.

3-86

KA62A CPU Module Registers

Timer Interval Register 0 (TIR0)

Timer Interval Register 0 (TIRO)

TIRO contains the interval count for timer 0.

ADDRESS 2014 0104 (SSC)

3

1 0

Timer Interval Register

bits<31:0>
Name: Timer Interval Register 0

Mnemonic: TIRO

Type: RO, 0

When TCR0<0> (RUN) is one, the register is incremented once every

microsecond. When the counter overflows, TCR0<7> is set, and an

interrupt is posted at IPL 15 if TCR0<6> is set. Then, if TCR0<2> is

zero, TCRO<0> is cleared and counting stops.

3-87

KA62A CPU Module Registers

Timer Next Interval Register 0 (TNIRO)

Timer Next Interval Register 0 (TNIRO)

TNIRO is for timer O.

/

ADDRESS 2014 0108 (SSC)

3

1 0

Timer Next Interval Register

bits<31:0>
Name: Timer Next Interval Register 0

Mnemonic: TNIRO

Type: R/W, 0

TNIRO contains the value that is written into TIRO after an overflow or

in response to TCR0<4> (XFR).

3-88

KA62A CPU Module Registers

Timer Interrupt Vector Register 0 (TIVRO)

Timer Interrupt Vector Register 0 (TIVRO)

TIVRO is used by timer 0.

ADDRESS 2014 010C (SSC)

3

) 10 9 210

MUST BE ZERO INTERRUPT VECTOR|MBZ

bits<31:10>
Name: Reserved

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

bits<9:2>
Name: Interrupt Vector

Mnemonic: IV

Type: R/W, 0

When TCR0<6> (IE) and TCR0<7> (INT) transition to a one, an

interrupt is posted at IPL 15. When a timer’s interrupt is acknowledged,

the contents of IV are passed to the CPU and TCR0<7> is cleared.

Interrupt requests are also cleared by clearing TCR0<6> or TCR0<7>.

IV is set to 78 (hex) by console code during processor initialization.

bits<1:0>
Name: Reserved

Mnemonic: None

Type: R/W, 0 i

Reserved; must be zero.

3-89

KA62A CPU Module Registers

Timer Control Register 1 (TCR1)

Timer Control Register 1 (TCR1)

TCR1 controls timer 1, which is used by the console code.

ADDRESS 2014 0110 (SSC)

3

1

3

0 876564 2 O

MUST BE ZERO 0| |O

|— Error (ERR) Interrupt (INT) —I—J
Interrupt Enable (IE)

Single (SGL)

Transfer (XFR)

Stop (STP)

Run (RUN)

bit<31>
Name: Error

Mnemonic: ERR

Type: R/W1C, 0

ERR is set whenever the Timer Interval Register overflows and INT is

already set, indicating a missed overflow.

bit<30:8>
Name: Reserved

Mnemonic: None

Type: R/W

Reserved; must be zero.

bit<7>

3-90

Name: Interrupt

Mnemonic: INT

Type: R/WI1C, 0

INT is set whenever the Timer Interval Register overflows. If IE is set

when INT is set, an interrupt is posted at IPL 15.

bit<6>

bit<5>

bit<4>

bit<3>

bit<2>

bit<1>

KA62A CPU Module Registers

Timer Control Register 1 (TCR1)

Name: Interrupt Enable

Mnemonic: IE

Type: R/W, 0

When IE is set, the timer interrupts at IPL 15 when INT is set.

Name: Single

Mnemonic: SGL

Type: R/W, 0

Setting SGL causes the Timer Interval Register to increment by one if

the RUN bit is cleared. If RUN is set, then writes to SGL are ignored.

SGL is always read as zero.

Name: Transfer

Mnemonic: XFR

Type: R/W, 0

Setting XFR causes the Timer Next Interval Register to be copied into

the Timer Interval Register.

Name: Reserved

Mnemonic: None

Type: R/W

Reserved; must be zero.

Name: Stop

Mnemonic: STP

Type: R/W, 0

STP determines whether the timer stops after an overflow. If STP is set

at overflow, RUN is cleared by the hardware at overflow and counting

stops.

Name: Reserved

Mnemonic: None

Type: R/W

Reserved; must be zero.

3-91

KA62A CPU Module Registers

Timer Control Register 1 (TCR1)

bit<0>
Name: Run

Mnemonic: RUN

Type: R/W, 0

When RUN is set, the Timer Interval Register is incremented once

every microsecond. INT is set when the timer overflows. If STP is

set at overflow, RUN is cleared by the hardware at overflow and
counting stops. When RUN is clear, the Timer Interval Register is not

incremented automatically.

3-92

KA62A CPU Module Registers

Timer Interval Register 1 (TIR1)

Timer Interval Register 1 (TIR1)

TIR1 contains the interval count for timer 1, which is used by console
code.

L

ADDRESS 2074 0114 (SSC)

3

1 0

Timer Interval Register

bits <31:0>
Name: Timer Interval Register 1

Mnemonic: TIR1

Type: RO, 0

When TCR1<0> (RUN) is one, the register is incremented once every

microsecond. When the counter overflows, TCR1<7> is set, and an

interrupt is posted at IPL 15 if TCR1<6> is set. Then, if TCR1<2> is

zero, TCR1<0> is cleared and counting stops.

3-93

KA62A CPU Module Registers
Timer Next Interval Register 1 (TNIR1)

Timer Next Interval Register 1 (TNIR1)

TNIR1 is for timer 1, which is used by console code.

|

ADDRESS 2014 0118 (SSC)

3

1 0

Timer Next Interval Register

bits<31:0>
Name: Timer Next Interval Register 1

Mnemonic: TNIRO

Type: R/W, 0

TNIR1 contains the value that is written into TIR1 after an overflow or

in response to TCR1<4> (XFR).

3-94

KA62A CPU Module Registers

Timer Interrupt Vector Register 1 (TIVR1)

Timer Interrupt Vector Register 1 (TIVR1)

TIVR1 is used by timer 1, which is used by console code.

ADDRESS 2014 011C (SSC)

3

1 10 9 210

MUST BE ZERO INTERRUPT VECTOR|MBZ

bits<31:10>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bits<9:2>
Name: Interrupt Vector

iMinemonic: iV

Type: R/W, 0

When TCR1<6> (IE) and TCR1<7> (INT) transition to a one, an

interrupt is posted at IPL 15. When a timer’s interrupt is acknowledged,

the contents of IV are passed to the CPU and TCR1<7> is cleared.
Interrupt requests are also cleared by clearing TCR1<6> or TCR1<7>.

IV is set to 7C (hex) by console code during processor initialization.

bits<1:0> _
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

3-95

KA62A CPU Module Registers

CSR1 Base Address Register (CSR1BADR)

CSR1 Base Address Register (CSR1BADR)

CSR1BADR controls the address of CSR1.

‘e

ADDRESS 2014 0130 (SSC)

3 3 2

1009 210

MBZ CSR1 Base Address Register (CSR1BADR) MBZ

Mnemonic:

Reserved

None

R/W, 0

Reserved; must be zero.

Mnemonic:

CSR1 Base Address Register

CSR1BADR

R/W, 0

CSR1BADR controls the address of CSR1 and is set to 2000 0000 (hex)

by console code during processor initialization.

Mnemonic:

bits<31:30>
Name:

Type:

bits <29:2>
Name:

Type:

bits<1:0>
Name:

Type:

Reserved

None

R/W, 0

Reserved; must be zero.

3-96

KA62A CPU Module Registers

CSR1 Address Decode Mask Register (CSR1ADMR)

CSR1 Address Decode Mask Register (CSR1ADMR)

CSR1ADMR controls the addresses that select CSR1.

ADDRESS 2014 0134 (SSC)

332

1009 210

MBZ CSR1 Address Decode Mask Register (CSR1ADMR) MBZ

Reserved

Mnemonic: None

R/W, 0

Reserved; must be zero.

CSR1 Address Decode Mask Register

Mnemonic: CSRiADMR

R/W, 0

CSR1ADMR controls the addresses that select CSR1 and is set to 0000

0004 (hex) by console code during processor initialization.

bits <31:30>
Name:

Type:

bits <29:2>
Name:

Type:

bits<1:0>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

3-97

KA62A CPU Module Registers

EEPROM Base Address Register (EEBADR)

EEPROM Base Address Register (EEBADR)

EEBADR specifies the base address of the EEPROM.

ADDRESS 2014 0740 (SSC)

3 3 2

1009 210

MBZ EEPROM Base Address Register (EEBADR) MBZ

bits<31:30>

bits <29:2>

bits<1:0>

3-98

Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

Name: EEPROM Base Address Register

Mnemonic: EEBADR

Type: R/W, 0O

EEBADR specifies the base address of the EEPROM and is set to 2008

0000 (hex) by console code during processor initialization.

Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

KA62A CPU Module Registers

EEPROM Address Decode Mask Register (EEADMR)

EEPROM Address Decode Mask Register

(EEADMR)

EEADMR specifies the addresses that select the EEPROM.

ADDRESS 2014 0144 (SSC)

332

1009 210

MBZ EEPROM Address Decode Mask Register (EEADMR) MBZ

bits <31:30>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

bits <29:2>
Name: EEPROM Address Decode Mask Register

Mnemonic. EEADMR

Type: R/W, 0

EEADMR specifies the addresses that select the EEPROM and is set to

0000 7FFF (hex) by console code during processor initialization.

bits<1:0>
Name: Reserved

Mnemonic: None

Type: R/W, 0

Reserved; must be zero.

3-99

KA62A CPU Module Registers

Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the node. Both fields
are loaded during node initialization. A zero value indicates an uninitialized
node.

S

ADDRESS Nodespace base address + 0000 0000 (XCPGA)

3 11

1 6 5

Device Revision Device Type

1

5 87

Device Type Field Class ID

l-l— 1/0 Device
Memory Device

CPU Device

bits<31:16>
Name: Device Revision

Mnemonic: DREV

Type:

Identifies the functional revision level of the module in hexadecimal.

The DREV field always reflects the letter revision of the module as

R/W, 0

follows:

KA62A CPU Module Revision DREV (decimal) DREV (hex)

A0 1 0001

A1 1 0001

BO 2 0002

B1 2 0002

Z0 26 001A

3-100

bits <15:0>

KA62A CPU Module Registers

Device Register (XDEV)

Name: Device Type

Mnemonic: DTYPE

Type: R/W, 0

Identifies the type of node. The Device Type field is broken into two
subfields: Class and ID. The Class field indicates the major category

of the node. The ID field uniquely identifies a particular device within

a specified class. DTYPE contains 8001 (hex) for the KA62A CPU

module.

3-101

KA62A CPU Module Registers

Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register contains error status on a failed XMl transaction.

This status includes the failed command, commander ID, and an error bit
that indicates the type of error that occurred. This status remains locked

up until software resets the error bit(s).

ADDRESS Nodespace base address + 0000 0004 (XCPGA)

3322222222221111111111

109876543210987654321009 4 3 0o

ojojo|1jo0j0|O|OjO|O|O|O|O|O|O|O]O]|O|0O]|O]|L]1

I— Failing
Commander (FCMD)

Failing Commander

ID (FCID)

—Self-Test Fail (STF)

— Extended Test Fail (ETF)

— Node-8Specific Error Summary

(NSES)

Commander Errors

— Transaction Timeout (TTO0)

— Reserved; must be zero

— Command NO ACK (CNAK)

— Read Error Response (RER)

— Read Sequence Error (RSE)

— No Read Response (NRR)

— Corrected Read Data (CRD)

— Write Data NO ACK (WDNAK)

Responder Errors

— Read/IDENT Data NO ACK (RIDNAK)
— Write Sequence Error (WSE)

— Parity Error (PE)

— Inconsistent Parity (IPE)

Miscellaneous

— Write Error Interrupt (WEI)

— XMI Fault (XFAULT)

~Corrected Confirmation (CC)

—XMI BAD (XBAD)

— Node HALT (NHALT)

— Node Reset (NRST)

~—Error Summary (ES)

3-102

bit<31>

bit<30>

bit<29>

bit<28>

KA62A CPU Module Registers

Bus Error Register (XBER)

Name: Error Summary

Mnemonic: ES

Type: RO, 0

The state of ES represents the logical-OR of the error bits in this

register. Therefore, ES is asserted if any error bit is asserted.

NOTE:

Name: Node Reset

Mnemonic: NRST

Type: R/W, 0

Writing a one to NRST initiates a complete power-up reset similar

to the assertion and deassertion of XMI DC LO L (see note below);

the node performs self-test and asserts XMI BAD L until self-test

is successfully completed. Like power-up reset, nodes are precluded

from accessing the node from the time it is node reset until it completes

self-test (or the maximum self-test time is exceeded).

During the time that a node is responding to node reset, the node does

not access other nodes on the XMI. In response to a reai power-up

sequence (caused by XMI DC LO L), the NRST bit resets. Following
a node reset sequence, NRST remains set, allowing the processor to

recognize that it should not attempt to go through the normal boot

process.

Name: Node HALT

Mnemonic: NHALT

Type: R/W, O

Writing a one to NHALT forces the node to go into a "quiet” state

while retaining as much state as possible. The KA62A CPU module
will force the CVAX chip to HALT and go into console mode waiting

for console commands.

Name: XMi BAD

Mnemonic: XBAD

Type: R/W, 1

On reads, XBAD indicates the state of the XMI BAD signal. A one

indicates that BAD is asserted. Writes to XBAD cause the state to be

driven on the wired-OR XMI BAD L line by this node; writing a one

asserts XMI BAD L, while writing a zero releases it.

3-103

KA62A CPU Module Registers

Bus Error Register (XBER)

bit<27>

bit<26>

bit<25>

3-104

Name: Corrected Confirmation

Mnemonic: CC

Type: R/W1C, 0

CC sets when the node detects a single-bit CNF error. Single-bit CNF
errors are automatically corrected by the XCLOCK chip.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: Since the ACK/NAK is usable, no further action is needed.

Name: XMI FAULT

Mnemonic: XFAULT

Type: RW1C, 0

When set, XFAULT indicates that the XMI FAULT signal has been

asserted for at least one cycle. An XMI node asserts FAULT to indicate
that it has sensed a Transmit Error (data transmitted onto the XMI does
not compare with data received during the same cycle)on a cycle that

was ACKed.

Error Flag Asserted: MEMERR

Additional Status Stored: None

Action: MEMERR is also generated if XFAULT is asserted by another
XMI node, providing systemwide coverage of a connector or multiple

transmitter failure.

Name: Write Error Interrupt

Mnemonic: WEI

Type: R/W1C, 0

When set, WEI indicates that the node has received a write error

interrupt transaction (IVINTR).

Error Flag Asserted: MEMERR

Additional Status Stored: None

Action: CVAX polls nodes to determine source and cause.

bit<24>

bit<23>

bit<22>

KA62A CPU Module Registers

Bus Error Register (XBER)

Name: Inconsistent Parity Error

Mnemonic: IPE

Type: RWI1C, 0

When set, IPE indicates that the node has detected a parity error on an

XMI cycle and the confirmation for the errored cycle was ACK. This

indicates that at least one node (the responder) detected good parity

during the cycle time that this node detected a parity error. If this was
a successful write to memory, it could leave the cache incoherent.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: KA62A CPU module hardware disables the second-level cache

by asserting CSR1<18> (Force Miss, FMISS). Software flushes the

second-level cache by writing a one, then a zero, to CSR1<20> (Force

Cache Invalidate, FCI)

Name: Parity Error

Mnemonic: PE

Type: R/W1C, 0

When set, PE indicates that the node has detected a parity error on an

XMI cycle.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: Appropriate error recovery is initiated when PE is set.

Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, 0

Node aborted write transaction due to missing data cycles.

Error Flag Asserted: No Interrupt

Additional Status Stored: None

Action: Write to CSR is not performed. WSE bit sets but the

commander of the issuing node is responsible for error recovery.

3-105

KA62A CPU Module Registers

Bus Error Register (XBER)

bit<21>

bit<20>

bit<19>

3-106

Name: READ/IDENT Data NO ACK

Mnemonic: RIDNAK

Type: R/W1C, 0

When set, RIDNAK indicates that a read data cycle (GRDn, CRDn,

LOC, RER) transmitted by the node has received a NO ACK
confirmation. The KA62A CPU module does not respond to IDENT

transactions.

Error Flag Asserted: No Interrupt

Additional Status Stored: None

Action: When read data sent by the responder does not get ACKed,

the responder causes RIDNAK to set; but it is the commander of the
issuing node that is responsible for error recovery.

Name: Write Data No Ack

Mnemonic: WDNAK

Type: R/W1C, 0

When set, WDNAK indicates that a write data cycle transmitted by the
node has received a NO ACK confirmation. WDNAK sets only if the

reattempt fails.

Error Flag Asserted: MEMERR

Additional Status Stored: Failing Address (XFADR), Commander ID,

and Command.

Action: The transaction is reattempted until a timeout occurs. Failed
address is saved.

Name: Corrected Read Data

Mnemonic: CRD

Type: R/W1C, 0

When set, CRD indicates that the node has received a CRDn read

response, meaning that the read transaction was received by memory

with bad parity but memory corrected it.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: Since the data is usable, no further action is necessary.

bit<18>

bit<17>

KA62A CPU Module Registers

Bus Error Register (XBER)

Name: No Read Response

Mnemonic: NRR

Type: R/W1C, 0

When set, NRR indicates that a transaction initiated by the node failed

due to a read response timeout.

Error Flag Asserted (READ): ERR if during the first quadword, then

CFE during cache fill.

Error Flag Asserted (IDNET): MEMERR

Additional Status Stored: Failing Address (XFADR), Command ID,

and Command.

Action: No retry is attempted. CVAX does a machine check. Failed

address is saved.

Name: Read Sequence Error

Mnemonic: RSE

Type: R/W1C, 0

When set, RSE indicates that a transaction initiated by the node failed

due to a read sequence error, meaning that data which is returned as

the result of a read transaction or an interrupt vector which is returned

in an IDENT transaction is identified as being out of sequence.

Error Flag Asserted (READ): ERR if during the first quadword, then

CFE during cache fill.

Error Flag Asserted (IDENT): MEMERR

Additional Status Stored: Failing Address (XFADR), Commander ID,

and Command.

Action: CVAX does a machine check. Failed address is saved. No

retry is attempted.

3-107

KA62A CPU Module Registers

Bus Error Register (XBER)

bit<16>

bit<15>

3-108

Name: Read Error Response

Mnemonic: RER

Type: R/W1C, 0

When set, RER indicates that a node has received a Read Error

Response, meaning that the result of a read transaction or an interrupt

vector returned in an IDENT transaction is uncorrectable.

Error Flag Asserted (READ): ERR if during the first quadword, then

CFE during cache fill.

Error Flag Asserted (IDENT): MEMERR

Additional Status Stored: Failing Address (XFADR), Command ID,

and Command.

Action: CVAC does a machine check. Failed address is saved. No

retry is attempted.

Name: Command NO ACK

Mnemonic: CNAK

Type: R/W1C, 0

When set, CNAK indicates that a command cycle transmitted by

the node has received a NO ACK confirmation caused by either a
reference to a nonexistent memory location or a command cycle parity
error. This bit is set only if the error recovery reattempts fail.

Error Flag Asserted (READ): ERR

Error Flag Asserted (WRITE/IDENT): MEMERR

Additional Status Stored: Failing Address (XFADR), Commander ID,

and Command.

bit<14>

bit<13>

bit<12>

bit<11>

KA62A CPU Module Registers

Bus Error Register (XBER)

Name: Reserved

Mnemonic: None

Type: R/W, 0

Name: Transaction Timeout

Mnemonic: TTO

Type: R/W1C, 0

When set, TTO indicates that a transaction initiated by the node failed

due to a transaction timeout. This bit is set only if the error recovery

reattempt fails.

Error Flag Asserted: Varies, depends on the transaction causing the

error.

Additional Status Stored: Failing Address (XFADR), Command ID,

and Command.

Action: Depends on whether a read or write error caused TTO to set.

TTO always sets in conjunction with another error, and the other error

bit determines the appropriate action.

Name: Node-Specific Error Summary

Mnemonic: NSES

Type: RO, 0

When set, NSES indicates that a node-specific error condition has been

detected. The exact nature of the error is contained in node-specific

registers.

Name: Extended Test Fail

Mnemonic: ETF

Type: R/W1C, 1

When set, ETF indicates that the node has not yet passed its extended

test. This bit clears when the node passes its extended test.

3-109

KA62A CPU Module Registers

Bus Error Register (XBER)

bit<10>

bits <9:4>

bits<3:0>

3-110

Name: Self-Test Fail

Mnemonic: STF

Type: R/W1C, 1

When set, STF indicates that the node has not yet passed its self-test.
This bit is cleared by the user interface when the node passes its
self-test.

Name: Failing Commander ID

Mnemonic: FCID

Type: RO

FCID logs the commander ID of a failing transaction.

Name: Failing Command

Mnemonic: FCMD

Type: RO

FCMD logs the command code of a failing transaction.

KA62A CPU Module Registers

Failing Aadress Register (XFADR)

Failing Address Register (XFADR)

The Failing Address Register logs address and length information

associated with a failing transaction. The XFADR has an undetermined

value on power-up.

ADDRESS Nodespace base address + 0000 0008 (SSC)

332

1009 0

Failing Address

l— Failing Length (FLN)

bits <31:30>
Name: Failing Length

Mnemonic: FLN

Type: RO

FLN logs the value of XMI D<31:30> during the command cycle of a

failing transaction.

bits <29:0>
Name: Failing Address

Mnemonic: None

Type: RO

The Failing Address field logs the value of XMI D<29:0> during the
command cycle of a failing transaction.

3-111

KA62A CPU Module Registers

XMI General Purpose Register (XGPR)

XMI General Purpose Register (XGPR)

The XGPR is a general purpose register that is visible to the XMI. This
register is used during self-test and by the ROM-based diagnostics.

(A

ADDRESS Nodespace base address + 0000 000C (XCPGA)

3322222222221111111111

10987654321098765432109876543210

o[ojojojojojo|ojojo|ojofojolojojojo]|o|ojlo|0|O]jO]lO|O|O|O|O]O]|O]O

bits <31:0>
Name: XMI General Purpose Register

Mnemonic: XGPR

Type: R/W 0

The general purpose register is used by self-test and during ROM-based
diagnostics.

3-112

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

Control and Status Register 2 (CSR2)

CSR2 provides KA62A CPU module control and status to the XMI.

ADDRESS Nodespace base address + 0000 0070 (SSC)

3 2 2 222 1111111

1 8 7 321 6543210987605 43 o~

=211

098N

N3 2 222

09 654

ojojo|o|ojo|O|O|O o o|ojojojojojO]O|O|O}O10jO[O]O}|O]O}O

IlIIllIIIIIIII_J
Gate Array Revision (GAREV)

FP<0>

FP<1>

FP<2>

Reserved

CONTROL

- Write Buffer
Disable (WBD)

— Auto Retry

Disable (ARD)

— Enable Self

Invalidates (ESI)

— Read Upper (RUP)
— Timeout Select (TOS)

-— Reserved

— CRD Interrupt Disable (CRDID)

— CC Interrupt Disable (CCID)

STATUS

— WARM Start (WS)

— Boot Processor Disable (BPD)

— Boot Processor (BP)

— Commander NO ACK Received (CNAKR)
— Unlock Write Pending (UWP)

— Lockout<0>

—Lockout<1>

— Reserved
ERRORS

— Reserved

—Reserved

_ Duplicate Tag Parity Error (DTPE)
— Cache Fill Error (CFE)

— Write Data Parity Error (WDPE)

— INVAL Queue Overflow (IQO)

—TAG Parity Error (TPE)

— Valid Bit Parity Error (VPE)

3-113

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

bit<31>

bit<30>

bit<29>

3-114

Name: Valid Bit Parity Error

Mnemonic: VPE

Type: R/W1C, 0

VPE is set when a second-level cache subblock valid bit parity error is
detected.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: VPE causes a cache miss, resulting in a hexword fill on a read.
On a write, VPE results in a failue to update the cache. The KA62A
CPU module hardware flushes the second-level cache by asserting
Force Miss (CSR1<18> (FMISS)). Software flushes the second-
level cache by writing a one, then a zero, to Force Cache Invalidate
(CSR1<20> (FCI)).

Name: Tag Parity Error

Mnemonic: TPE

Type: R/W1C, 0

TPE is set when an external cache tag parity error is detected.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: TPE causes a cache miss, resulting in a hexword fill on a read.
On a write, TPE results in a failure to update the cache. The KA62A
CPU module hardware disables the second-level cache by asserting
Force Miss (CSR1<18> (FMISS)). Software flushes the second-
level cache by writing a one, then a zero, to Force Cache Invalidate
(CSR1<20> (FCI)).

Name: INVAL Queue Overflow

Mnemonic: 1Q0

Type: R/W1C, 0

IQO is set whenever the INVAL queue overflows. The KA62A CPU
module’s cache is flushed when this error occurs to ensure cache
coherency. When IQO is set, the INVAL queue in the processor is held
clear.

Error Flag Asserted: CRD

Additional Status Stored: None

Actions: KA62A CPU module hardware disables the second-level
cache by asserting Force Miss (CSR1< 18> (FMISS)). Software flushes
the second-level cache by writing a one, then a zero, to Force Cache
Invalidate (CSR1<20> (FCD)).

bit<28>

bit< 27>

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

Name: Write Data Parity Error

Mnemonic: WDPE

Type: R/W1C, 0

WDPE is set whenever a parity error is detected on write data driven

by the processor on the CDAL bus.

Error Flag Asserted: MEMERR

Additional Status Stored: None

Actions: The write transaction is not allowed to proceed onto the XMIL.

If a write buffer hit, then data is not loaded into the write buffer. The

failing address is not saved by the pinout error logic.

Name: Cache Fill Error

Mnemonic: CFE

Type: R/WI1C, 0

CFE is set whenever a second-level cache fill error occurs. Second-

ievel cache fill errors are soft errors that occur on the 2nd, 3rd, or

4th quadword of the second-level cache fills. CFE is always set in

conjunction with other error bits.

Whenever an error occurs on the data being returned to the CPU, the

second-level cache is disabled because CSR1<FMISS> asserts.

Error Flag Asserted: CRD

Additional Status Stored: Failing Address (XFADR), Command ID,

and Command (XBER)

Action: The Valid Parity Error bit is not set at the completion of a

hexword read. The resulting invalid subblock causes a cache miss

when addressed.

3-115

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

bit<26>

bits <25:23>

bits <22:21>

3-116

Name: Duplicate Tag Parity Error

Mnemonic: DTPE

Type: R/W1C, 0

DTPE is set whenever the duplicate tag store detects a parity error on

lookup. Since this error could result in a second-level cache coherency

problem (the write might have hit if the parity error had not occurred

and resulted in the generation of an invalidate) the KA62A CPU module

hardware disables the second-level cache when this error occurs and

posts a soft-error interrupt.

Error Flag Asserted: CRD

Additional Status Stored: None

Action: DTPE causes a miss, which if a memory write, results in a

potential second-level cache coherency problem. KA62A CPU module

hardware disables the second-level cache by asserting Force Miss

(CSR1< 18> (FMISS)). Software flushes the second-level cache by

writing a one, then a zero, to Force Cache Invalidate (CSR1<20>

(FCD)

Name: Reserved

Mnemonic: None

Type: -

Reserved.

Name: Lockout<1:0>

Mnemonic: None

Type: R/W, 01

The KA62A CPU module supports a lockout avoidance mechanism
that assures access to interlock variables. Lockout<1:0> controls these
mechanisms as follows:

Bits<22:21 >

22 21 Description

0 0 Interlock lockout avoidance is disabled but XMl LOCKOUT L is

still asserted as defined for Lockout<1:0> = 01.

0 1 Interlock lockout avoidance is enabled.

0 Reserved

1 1 Reserved

bit<20>

bit<19>

bit<18>

bit<17>

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

Name: Unlock Write Pending

Mnemonic: UWP

Type: R/W1C, 0

UWP is set whenever an Interlock Read is generated and is cleared

on the subsequent Unlock Write from the same node. The setting and

clearing of this bit is not gated by the successful transmission of the

XMI transaction.

Name: Commander NO ACK Received

Mnemonic: CNAKR

Type: R/WI1C, 0

CNAKR is set whenever a command/address NO ACK is received

to an XMI commander transfer. A NO ACK is not necessarily an

error on the XMI as it is used for retries, but this status bit is used by

diagnostics that wish to know whether a transfer was NO ACKed. The

KA62A CPU module automatically reattempts all XMI transfers that are

NO ACKed until a timeout occurs, unless CSR2<9> (ARD) is set.

Name: Boot Processor

Mnemonic: BP

Type: RW, 0

BP is used to indicate the boot processor. The console code sets this

bit after self-test if it determines that this KA62A CPU module is the

CPU with the lowest node ID number with its CSR2:BPD bit clear.

Name: Boot Processor Disable

Mnemonic: BPD

Type: RW, 0

BPD is used to indicate that a KA62A CPU module is ineligible to

become the boot processor. It is loaded by console code on power-up

with a state stored in EEPROM.

3-117

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

bit<16>

bit<15>

bit<14>

bit<13>

3-118

Name: Warm Start

Mnemonic: WS

Type: RO

When WS is set, it indicates that memory was battery backed up and
that the system should attempt a warm start. WS is loaded with the
state of the XMI RESET L line when the XMI DC LO L line deasserts (a
deasserted XMI RESET L indicates warm start). WS is not valid after a
node reset.

Name: CC Interrupt Disable

Mnemonic: CCID

Type: R/W, 0

CCID disables the generation of error interrupts to the KA62A CPU
module processor in response to corrected confirmation indications
from the XMI. While CCID is set, XBER <27> (CC) bit will still be set
on the receipt of a corrected confirmation code but the processor will
not be interrupted. When reset, the CRD line asserts when a corrected
confirmation code is received from the XMI (XBER <27> also sets).

Name: CRD Interrupt Disable

Mnemonic: CRDID

Type: R/W, 0

CRDID disables the generation of error interrupts to the processor
in response to Corrected Read Data responses from memory. While
CRDID is set, the XBER<19> (CRD) bit will still be set on the receipt
of a Corrected Read Data response but the processor will not be
interrupted. When reset, the CRD line will assert when a Corrected
Read Data response is received from the XMI (XBER<19> (CRD)
bit will also be set). Software should clear XBER <19 > (CRD) before
clearing CRDID to ensure that only newly generated CRD responses
cause interrupts.

Name: Reserved

Mnemonic: None

Type: -

Reserved.

bit<12>

bit<11>

bit<10>

bit<9>

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

Name: Timeout Select

Mnemonic: TOS

Type: R/W, 0

TOS selects one of two timeout values (0 selects 16,77 ms; 1 selects

~16.38 us). This timeout value is used to detect both Response and

Reattempt Timeout conditions. This bit remains clear during normal

system operation.

Name: Enable Read Upper

Mnemonic: ERUP

Type: R/W, 0

When ERUP is set, the upper longword of the data driven on the XMI

is returned in response to an I/O space read. Normally, the lower

longword is returned. ERUP is used during self-test to test the logic

and pins associated with the upper longword of the XMI data path.

Name: Enable Self-invalidates

Mnemonic: ESI

Type: R/W, 0

When ESI is set, the processor will also invalidate cache entries

matching its own XMI write addresses. Normally, since the cache is

write through, only writes from other XMI nodes generate invalidates.

ESI is used for testing because it permits a single processor, in

conjunction with XMI memory, to verify the operation of its invalidate

logic.

Name: Auto Retry Disable

Mnemonic: ARD

Type: R/W, 0

ARD disables auto retry of NO ACKed XMI commander transfers and

causes the immediate return of an error response after the receipt of a
NO ACK confirmation to a commander transfer. ARD is only used by
diagnostics and must be clear during normal operation.

3-119

KA62A CPU Module Registers

Control and Status Register 2 (CSR2)

bit<8>

bit<7>

bits<6:4>

bits<3:0>

3-120

Name: Write Buffer Disable

Mnemonic: WBD

Type: R/W, 0

WBD disables the write buffer so that all writes are written directly to
main memory. Logically, the write logic is forced to assume that all

writes are to 1/O space and this automatically forces the write buffer
function to be bypassed.

Name: Reserved

Mnemonic: None

Type: -

Reserved.

Name: Force Parity <2:0>

Mnemonic: FP

Type: R/W, 0

FP is used to provide the parity states for XMI P<2:0> when

CSR1<22> (Force Parity Select) is set.

Name: Gate Array Revision

Mnemonic: GAREV

Type: RO

GAREYV contains the revision level of the KA62A CPU module gate
array.

KA62A CPU Module

3.7 KA62A CPU Module Initialization, Self-Test, and Booting

This section give the KA62A CPU module initialization overview; describes

the initialization in detail; and then discusses the bootstrapping or

restarting of the operating system.

3.7.1 Initialization Overview

The three ways to reset the KA62A CPU module are:

Power-Up Sequence—When the VAX 6200 is powered up, XMI AC LO
L and XMI DC LO L are sequenced so that all XMI nodes are reset.

System Reset—The XMI emulates a power-up sequence by asserting

the XMI RESET L line, causing the power supply to sequence XMI AC

LO L and XMI DC LO L as in a "real” power-up. Software asserts XMI
RESET L by writing to IPR55. The XMI does not differentiate between

a "real” power-up and a system reset. The console INITIALIZE

command generates a system reset if no argument is given.

Node Reset—Any CPU can be "node reset” by setting its XBER<30>
(NRST) bit. The console INITIALIZE command generates a node reset
if a node ID argument is provided. For the KA62A CPU module the

difference between the node reset and a system reset is that XMI AC

LO L is not sequenced during node reset.

3-121

KA62A CPU Module

3-122

In response to a power-up or system reset, the KA62A CPU module(s)
perform the following sequence:

1 Reset(s) to a known state. (Refer to the individual registers and their
bits for their state on reset.)

2 All CPUs start executing code at 2004 0000 in ROM and execute a

3 Select a boot CPU, which prints self-test results and configures memory
for the CPU/MEM test.

4 All KA62A CPU modules execute a CPU/MEM test that uses memory,

unless this is a warm start, where the memory was maintained by

5 Again select a boot CPU. The boot CPU:

® Prints CPU/MEM test results.

* Tests the DWMBA.

* Prints the DWMBA test and corresponding VAXBI self-test results.

* Configures memory.

* Prints the memory configuration.

* Starts the operating system if the front panel key switch is in the

Restart position; otherwise, the boot CPU enters console input

If an individual KA62A CPU module node is reset, only steps 1 and 2
apply, except a boot CPU also prints its self-test results.

See Section 3.7.2 for a detailed flowchart and summary of the initialization

3.7.1.1 Initialization Description

complete self-test.

battery backup.

mode.

program.

3.7.1.2 CPU Self-Test

Self-test verifies all KA62A CPU module logic that does not require access
to other XMI nodes. XMI intranode transactions to the KA62A CPU
module’s I/O registers are used extensively to verify the XMI data path
logic.

CSR1<7> (STL) may be set by grounding an 1/O pin. The Self-Test Loop
bit is used to implement a manufacturing "burn-in” test.

KA62A CPU Module

3.7.1.3 CPU/MEM Test

While CPU self-test does not access other XMI nodes, the CPU/MEM test

does. Read and Writes are done to a defined section of XMI memory

as blocks are allocated based on node ID. Reads/Writes to the MS62A

memory module’s XMI registers are performed. This ability to access
memory allows the testing of logic that cannot be tested in self-test. The

areas tested in the CPU/MEM test but not in the CPU self-test are:

The MS62A memory module’s memory and XMI Corner. Self-test is

limited to 1/O space.

Quad-, octa-, and hexword XMI transactions.

Write Buffer/read queue functionality.

Duplicate tag store/inval queue functionality.

Parts of the second-level cache functionality.

Certain error conditions.

3-123

KA62A CPU Module

3.7.2 Detailed Initialization Description

The following is a flowchart and summary of the initialization program:

Figure 3-18 Initialization Flowchart, Part 1 of 2

Power-up or System Reset (Cold)

CPU 1 CPU 2 CPU n
Self-Test Self-Test Self-Test

Detemine Wait for XMI BAD to | deassert or self-test timeout
Boot

Processor Wait for expected | boot processor (BP)

Wait Print Self-Test Results Wait

BP CSR2<BP> set

CPU 1 CPU 2 CPU n
CPU/MEM Test CPU/MEM Test CPU/MEM Test

Determine

Boot

Processor

Wait for XMI BAD to

Test to timeout

BP CSR2<BP> clear

deassert or CPU/MEM

Wait for expected boot processor (BP)

3-124

Wait Print CPU/MEM Results

Execute DWMBA Self-Test

Wait

KAG62A CPU Module

Figure 3-19 Initialization Flowchart, Part 2 of 2

Print DWMBA/VAXBI Results

Configure Memory

Build CCA and

Bitmap

Print Memory

Configuration

CSR2<BP> set

Find CCA Find CCA

Wait in Prompt, Restart Wait in

Console Mode or Continue Boot Console Mode

Boot Operating

System (08)

Receive CCA 0S Starts Sec- Receive CGCA

Message ondary Processors Message

CPU 1 CPU 2 ce CPU n

Running Running Running

3-125

KA62A CPU Module

3-126

3.7.21 Determine Type of Restart

If entering console because of anything other than XCP RESET, then
print error code and wait in console input loop.

else continue

3.7.2.2 CPU Self-Test

All processors perform the following in parallel:

The following states are initialized by node hardware in response
to XCP Reset: Set Self-Test Failed and Extended Test Failed bits
(XBER<10> (STF) and XBER< 11> (ETF)). Assert XMI BAD L
(XBER<28> (XBAD)) and extinguish the Self-Test Passed LED
(STPLED).

Start self-test duration timer.

Execute normal CPU self-test.

Load XDEV’s device type and device revision fields (this can be done
anytime while XBER <20> (XBAD) is asserted and the self-test timer
has not expired, but is attempted regardless of whether the self-test
passes or fails).

If self-test passes, clear XBER< 10> (STF) and light STPLED.

If self-test fails, then self-test leaves the results in a CPU location.

Load the XMl-visible Boot Processor Disable Bit with state stored in the
EEPROM’s boot processor enable flag.

If self-test passes, deassert XMI BAD L driver (XBER <28> (XBAD)).

The last step is performed since processors begin polling nodespace
registers after XMI BAD L deasserts and expect node state to be consistent
(for example, a node would not deassert XMI BAD L prior to the loading of
the Device Register or the XMI-visible Boot Processor Disable Bit).

KAG62A CPU Module

3.7.2.3 Determine the Boot Processor

All processors perform the following in parallel:

NOTE:

Wait for deassertion of XMI BAD L (XBER<28> (XBAD)) or for self-test

timer to reach its programmed expiration (60 seconds by default).

If this node is the lowest node ID CPU class node (indicated by set

XDEV <15>) which cleared its XBER< 10> (STF) bit and cleared its

Boot Processor Disable bit, this processor enables its tristate system

console.

If this is not the boot processor (BP), wait for expected BP to set its

CSR2<BP> bit.

If all CPUs have failed their self-test or are ineligible to be the BP, they

will all be sitting in a console "hang” loop. In this case, none will be

driving the console line, but all can still receive the console command,

"> >x", where x is the node 1D, which forces a CPU to become boot

processor.

This "hang” loop alternates the display of one with the previous

contents of the auxiliary LEDs. The previous contents would be either

a self-test error code or no code.

The BP prints a message indicating the status of testing so far.

The BP set its boot processor bit indicating to other CPUs that this

KA62A CPU module will be the BP.

3-127

KA62A CPU Module

3-128

3.7.2.4 CPU/MEM Test

Boot processor prints self-test results and all processors perform the

following in parallel:

All processors wait for CSR2<BP> to clear before continuing.

If memory battery voltage OK, then clear XBER<11> (ETF) bits (since

the CPU/MEM test will not be run) and go to FINAL-STEPS.

Start new CPU/MEM test timer.

Assert XMI BAD L (XBER<28> (XBAD)), disable its tristate system

console, and extinguish STPLED.

Execute CPU/MEM test.

If the CPU/MEM test fails, then leave code in CPU register.

If CPU/MEM test passes, then clear XBER< 11> (ETF), light STPLED to

reflect the successful test, and deassert the XMI BAD L driver.

After CPU/MEM test is complete, wait for all XMI BAD L to clear or for

timer to expire.

FINAL-STEPS:

NOTE:

NOTE:

Check if this node is the lowest node ID CPU class node (indicated by

set XDEV< 15> (CPU Device)) which cleared its XBER<10> (STF) and

XBER< 11> (ETF) bits and cleared its Boot Processor Disable bit. This

processor enables its tristate system console.

If this is not the boot processor, wait for expected BP to set its

CSR2<BP> bit.

If all CPUs have failed their self-test or CPU/MEM test or are ineligible

to be the BP, they will all be sitting in a console "hang” loop. In this

case, none will be driving the console line, but all can still receive the

console command, " > >x", where x is the node ID, which forces a

CPU to become boot processor.

This "hang” loop alternates the display of one with the previous

contents of the auxiliary LEDs. The previous contents would be either

a CPU/MEM test error code or no code.

If this is not the boot processor, wait for expected BP to set its

CSR2<BP> bit. When the bit sets, find the console communications

area (CCA) and then wait in console mode.

If the processor fails to find the CCA, it will sit in a console "hang"

loop. In this case, the processor will not be driving the console line

but can still receive the console command.

else continue

KA62A CPU Module

3.7.2.5 Execute DWMBA XMi-to-VAXBI Adapter Self-Test

Performed only by the boot processor:

If memory battery voltage OK, go to PRINT.

Assert XMI BAD L from the boot processor.

Fxecute DWMBA self-test. If successful, then clear the DWMBA's

XBER< 10> (STF) bit and light the XBI STPLED.

else store code in CPU register, display error number in auxiliary LEDs,

and begin testing the next DWMBA.

If all DWMBAs pass self-test, then deassert XMI BAD L.

PRINT:

Print test results.

3.7.2.6 Boot Processor Sets Up Memory

Performed only by the boot processor:

NOTE:

Set address and interleave parameters in all XMI memories.

Search for 256 Kbytes X number of CPUs + COMM block size bytes

of good memory. If no block of good memory can be found, then print

error message, set CSR<2> (<BPD>), and go into "hang” loop.

This "hang” loop alternates the display of two with the previous

contents of the auxiliary LEDs. The previous contents would be either

a CPU/MEM test error code or no code.

Write console communications area at good memory.

Set CSR2<BP> to signal other processors to search for CCA.

Set the "restart in progress” bit.

Search for restart parameter block (RPB) in memory.

If RPB found, restart operating system, otherwise restart fails.

Start the operating system (performed only by the boot processor)

If the key switch is in restart position, pass parameters to VMB, set the

"Bootstrap in Progress” flag, and boot the operating system. Operating

system passes START commands to all secondary processors

with XBER<10> (STF) and XBER< 11> (ETF) clear and clears the

"Bootstrap in Progress” flag when boot is complete.

else enter console input routine.

3-129

KA62A CPU Module

3.7.3 Bootstrapping or Restarting the Operating System

3-130

The console code bootstraps a copy of the operating system from a tape or
disk device and can attempt to restart an existing memory-resident copy of
the operating system ("warm start”).

Only the primary processor initiates a bootstrap. A secondary processor
cannot execute a BOOT command or perform the automatic bootstrap
sequence but remains in console mode awaiting further commands.

Only the primary processor attempts a restart following a power-up. The
operating system restarts any secondary processors by passing START
commands through the console communications area (CCA). Following an
error halt, such as nested machine checks, the halting processor always
attempts to restart, regardless of whether it is a primary or secondary.

3.7.3.1 Operating System Restart

The primary processor console code attempts to restart the operating
system whenever one of the following events occurs:

* Power is restored to the processor.

* A system reset occurs.

* The running processor halts due to an error halt. Neither a CTRL/P
from the console terminal nor a node halt (NHALT) is considered an
error halt.

Restart is suppressed if the control panel key switches are set to Enabled
and Halt.

A secondary processor console attempts a restart only following an error
halt. For all other halt conditions, the primary processor is responsible for
restarting the secondary.

Restart of the operating system is controlled by a memory data structure
called the restart parameter block (RPB), constructed by the operating
system. Console restart code searches memory for an RPB and, if a
valid RPB is found, restarts the operating system at an address stored in
the RPB.

The console code also keeps internal flags to indicate that a restart is
in progress. There is one flag for each processor, located at CCASQ_
RESTARTIP, in the CCA. These flags allow the console to avoid repeated
attempts to restart a failing system. The operating system clears these flags
following the successful restart of a processor.

The RPB is a page-aligned structure with the format shown in Figure 3-20.

KA62A CPU Module

Figure 3-20 Restart Parameter Block Format

PHYSICAL ADDRESS OF RPB

PHYSICAL ADDRESS OF RESTART ROUTINE

CHECKSUM OF THE FIRST 31 LONGWORDS OF RESTART ROUTINE

SOFTWARE RESTART IN PROGRESS FLAG BIT<O>

The algorithm used to locate the RPB is:

1 Examine the first longword of each page of memory for a location

- which contains its own physical address. If none is found, the search

fails.

2 Test that the second longword of the page contains a valid non-zero

physical address. If this test fails, resume Step 1.

3 Obtain the restart address from the second longword. Calculate the

signed longword sum of the first 31 longwords of the restart routine,

ignoring overflows. If this value does not match the contents of the

third longword of the page, resume Step 1.

4 If all the above tests pass, a valid RPB has been found.

3-131

KA62A CPU Module

3-132

3.7.3.2

NOTE:

Failing Restart

If the restart of a primary processor fails, a message is displayed on the
console terminal and a bootstrap is attempted. A failed restart is a serious
condition and causes the other processors to abandon whatever is still
running.

If a secondary processor’s restart fails, the console code examines the
CCA$_SECSTART field of the CCA. The console code forces a bootstrap
in the same manner as for a primary processor if the bit corresponding to
the failing processor is clear. If this bit is set, the console code does not
force a bootstrap and the failing processor enters console mode.

The CCA$Q_SECSTART bits are set by the operating system when it is
attempting to start a secondary processor. The operating system clears

these bits when it is satisfied that the secondary processor has successfully
started executing.

This extra state avoids the following scenario peculiar to multiprocessors:

1 A secondary processor encounters an error halt and then fails to restart.

2 The console code forces a bootstrap.

3 The primary processor boots and begins running the operating system.

4 The primary processor starts the defective secondary processor if the
secondary processor passed CPU self-test.

5 The secondary processor repeats its error halt and fails restart.

6 The console code again forces a bootstrap and the sequence repeats.

A secondary processor cannot directly perform a reboot because it cannot
notify the other secondary processors that an expected entry is planned.
If the location of the primary processor changed during the system reset,
the fact that a boot was in progress could be lost. To avoid this problem, a
secondary processor forces the primary processor into console mode (via

NHALT) and then signals through the CCA that a bootstrap is needed.

3.7.3.3 Restart Parameters

The console code transfers control to the restart address once a valid RPB
has been found. The console code passes the following restart parameters
in the GPRs, as specified by the VAX Architecture Reference Manual.

R10—Halt PC

R11—Halt PSL

AP—Halt code

SP—Address of the RPB + 512

KA62A CPU Module

3.7.3.4 Operating System Bootstrap

The console code attempts to bootstrap the operating system from the

primary processor whenever one of the following events occurs:

e The control panel is Enabled and the BOOT command is typed on the

console terminal.

* A restart is attempted and fails.

The console code’s goal in a bootstrap is to load the primary system

bootstrap program, VMB, into memory and begin its execution. VMB is

loaded from the device specified by the BOOT command or from a default

device recorded in EEPROM. The VAX 6200 uses a set of minimal device

handler routines, called boot primitives, to read VMB from the boot device,

a technique called "bootblock” booting.

The console searches tables in EEPROM and ROM, in that order, to locate

a boot primitive that matches the specified device as the first phase of

bootstrap. If a suitable primitive is found, the target device information is

saved in the SSC RAM of all CPUs. Then the console code forces a system

reset that could change the location of the primary processor.

The system reset causes all processors, memories, and 1/O adapters to

perform self-test with memory tested in the fastest possible manner.

The second phase of bootstrap begins as the console code is reentered

following the reset. The console code examines the SSC RAM to determine

that the entry was an "expected entry,” and then continues with the

bootstrap. The boot parameters are transferred from SSC RAM to the

GPRs, the boot primitive is again located, and control transfers to the

primitive.

The boot primitive initializes the boot device and reads the first logical

block from the device into the first page of good memory. The block

contains information about the location of VMB on the device and a

program that copies VMB into memory. The program begins at offset 12

in the block. The boot primitive provides a read-block routine that the

bootblock program uses to read a block from the device.

The boot devices supported are determined by the boot primitives stored

in EEPROM and ROM, and by devices supported in VMB. The KDB50

VAXBI disk adapter, the TBK50 tape adapter, the DEBNA Ethernet adapter,

and the CIBCA-A and CIBCA-B VAXBI-CI adapters are supported. The

table in EEPROM allows new primitives to be added as new devices are

developed.

If the boot device is a disk, the primitive loads logical block zero (the

"bootblock”) into memory and transfers control to it. The bootblock

contains code that knows the location and size of the VMB image on disk.

The bootblock code uses a service routine in the boot primitive to read

each block of VMB into memory. If the target device is not a disk, the boot

primitive must know how to ask for VMB from the device.

3-133

KA62A CPU Module

3.7.3.5 Parameters Passed to the Boot Primitive

The console code passes parameters to the boot primitive through the
GPRs. The boot primitive must preserve all the nonreserved registers
so that they can be passed to VMB. These parameters describe the boot
device and any bootstrap options that are to be used.

Table 3-11 show how the registers are used.

Table 3-11 Boot Parameters Loaded into GPRs

Register Bits Description

GPRO <7:0> VMB device type code, supplied by the boot primitive

GPR1 <7:4> XMI node number of the desired DWMBA

<3:0> VAXBI node number

<31:28> When loading VMB from the system TK tape drive, the

XMI node number of the DWMBA controlling the tape

drive.

<27:24> When loading VMB from the system TK tape drive, the

VAXBI node number of the DEBNA tape adapter.

GPR2 <15:0> The remote (HSC) node numbers, if the Boot/Node

qualifier was specified.

GPR3 Boot device unit number

GPR4 Reserved, the LBN of the secondary bootstrap

GPR5 Software boot control flags

GPR6 Used by the boot primitive to pass information to the

bootblock program

GRP7 Physical address of the CCA

GPRS8 Reserved

GPR9 Reserved

GPR10 The halt PC

GPR11 The halt PSL

AP The halt code

FP Used by boot primitive to pass information to the

bootblock program.

SP The address of the 256-Kbyte block of good memory +

512

3-134

KA62A CPU Module

3.7.3.6 Parameters Passed to the Boothlock Program

The parameters passed to the bootblock program are the same as those

passed to the boot primitive plus the contents of GPR6. GPR6 has the

physical address of the read-block routine provided by the primitive. The

bootblock program must preserve all parameters except GPR6 so that they

can be passed to VMB.

3.7.3.7 Parameters Required by the Boot Primitive :

When the bootblock program calls the read-block routine in the boot

primitive, it must supply the input parameters shown in Table 3-12 and the

output parameters shown in Table 3-13.

Table 3-12 Input Parameters Required by the Boot Primitive

Register Bits

GPR1 XMI and VAXBI node numbers of the boot device, as passed by the

console code

GPR3 Unit number of the boot device, as passed by the console code

GPRS8 LBN to be read or, if a tape drive using non-ANSI labeled tape, the

length of the block that was just read

FP Address of the data structures set in memory by the boot primitive

when it is first invoked

SP Physical address to receive the transfer

Table 3-13 Output Parameters Required by the Boot Primitive

Register Bits

GPRO SS$_NORMAL if successful, the low bit clears on error.

GPR7 through GPR10 May be modified

3.7.3.8 Considerations for Tape Drives

The boot primitive rewinds the tape before it performs the first read and

before transferring control to the loaded image.

The boot primitive checks the length of the first block read from the tape.

If the block is 80 bytes long, the tape is assumed to be ANSI labeled

and VMB is assumed to be the first file on the tape. The boot primitive

then skips to the first tapemark, reads blocks into memory by storing

them, beginning at the address passed in the SP. Blocks are loaded until a

tapemark is encountered, and then control is passed to the first byte in the

loaded image.

If the first block of the tape is not 80 bytes long, the remaining contents of

the first file are loaded and control is transferred to the loaded image at

offset 12 from the base of good memory.

The read-block routine also supports rewinding the tape. GPR0O must

contain I0$_READPBLK for a read operation or IO$_REWIND for a

rewind. The read-block routine always reads the next block from the

tape and ignores any logical block number (LBN) passed in GPR8. Instead,

GPR8 returns the length of the block just read.

3-135

KA62A CPU Module

3-136

3.7.3.9 Considerations for Ethernet Devices

The boot primitive for Ethernet devices uses the automatic load feature of
the DEBNA Ethernet adapter. The boot primitive signals the adapter to
request a tertiary load starting at the base of memory. If the load succeeds,
control is passed to the loaded image at the transfer offset supplied with

the image.

KA62A CPU Module

3.8 Interprocessor Communication through the Console Program

Each CPU of a multiprocessor system must communicate with the other

CPUs and the operating system. This section describes the interprocessor
communication for the VAX 6200.

The console program runs on each processor of a multiprocessor VAX

6200. These copies of console code must be able to communicate with

each other and with the operating system.

When two processors needing to communicate are running, that is, not in

console mode, the communications take place using mechanisms provided

by the operating system. When one, or both, of the processors is in

console mode, communications take place using a shared data structure

called the console communications area (CCA).

The primary processor controls the console terminai and, therefore, most

of the communication in the VAX 6200. There is no communication

between secondary processors.

3.8.1 Required Communications Paths

A processor can be in one of four communication states: a running primary

processor, a primary processor in console mode, a running secondary

processor, or a secondary processor in console mode. The following

communication paths are provided.

1 Running processor to running processor, independent of primary or

secondary.

The console program is not involved. The processors are supported by

the communications mechanisms within the operating system. These

paths are used even when the communication is related to the console

program. For example, when the system time is modified, the new

time must be stored in the time-of-year clocks on each processor. The

operating system uses its own methods to examine or propagate this

information.

A special case of communications on these paths involves the XDELTA

system debugger when it is entered on a secondary processor. The

operating system is responsible for passing characters to and from the

primary processor and, thus, to the console terminal.

3-137

KA62A CPU Module

2 Running primary console to/from secondary console.

3-138

The operating system on the primary processor must send complete
console commands to the secondary console, such as to start or stop
the secondary processor. The secondary console program must be able
to send responses (human readable messages) to the operating system
on the primary, such as when the secondary processor encounters an
error halt. The secondary processor can send these responses at any
time.

The secondary processor does not send commands to the primary
processor, and the primary processor does not send responses to the

secondary processor.

Console mode primary processor to/from running secondary processor.

Whenever the primary processor halts, the secondary processors
eventually block while waiting for resources locked by the primary.
The primary console supports receiving complete responses from the
running secondary processor.

Primary console to/from secondary console requires two different types
of communication.

The primary console sends complete commands to the secondary,
allowing the primary console to update the copy of a parameter stored
on each processor. An example of this type of communication is to
synchronize the console terminal baud rate whenever it is changed
on the primary. The secondary consoles send complete responses to
the primary console to report, for example, a processor halt. Since
responses arrive complete, there are no interleaving messages on the
console terminal. The secondary processor does not send commands,
and the primary processor does not send responses.

The consoles support character-at-a-time communications to implement
the "Z” command, which transfers characters to and from a secondary
node so that the secondary processor appears to be directly connected
to the console terminal. The primary processor sends single characters
of a command to the secondary processor. The receiving secondary
processor performs all the processing of the input characters, including

echoing and line editing. The secondary processor sends single
characters of a response to the primary processor for immediate
display on the console terminal. The "Z" command also extends to
communication with VAXBI devices and, potentially, to non-processor

XMI nodes.

KA62A CPU Module

3.8.2 Console Communications Area

The Console Communications Area (CCA) is the shared data structure

in high physical memory used for communications between console

programs. It consists of a one-page header followed by a variable number

of pages containing buffers. The header contains status information that

must be visible systemwide. The buffers, used for passing messages

between processors, are allocated one set for each XMI node that could be

in the system.

The CCA is initialized by the primary (boot) processor at system reset.

It is allocated beginning on a page boundary from the highest addressed

page of system memory that can be located by the primary processor. The

header lies in the lowest addressed page of the CCA, followed by buffers.

The CCA is not initialized under any other console entry conditions (node

reset or halts). The address of the CCA is obtained from the console state

remaining in SSC RAM.

Diagnostic tests that must test or reconfigure memory could overwrite the

CCA. If this should happen, the diagnostic tests must observe the following

conventions:

e The diagnostic tests can only be run from the primary processor.

e The diagnostic tests must force the secondary processors to stop polling

the CCA.

e The diagnostic tests must rebuild the CCA after completing testing.

e The secondary processors must wait for a signal passed through the

XGPR register before locating the new CCA.

The location of the CCA is passed to the operating system at bootstrap time

through GPR7. During system initialization, each processor is triggered to

search for the CCA. This search starts at the highest addressed memory

that can be located by each processor and then works backward. If a

processor cannot locate the CCA, it enters an endless loop and cannot

participate in the system. The algorithm used by the console code to locate

the existing CCA is as follows:

1 Next = highest memory address in system + 1 - 512.

If next < 0, then "Failed to find CCA.”

If (next + CCASL_BASE) < > next, then goto Step 7.

If (next + CCAS$SW_IDENT) < > "CC", then goto Step 7.

Compute sum of bytes at (next) through (next + CCA%$B_CHKSUM - 1)

ignoring overflow.

6 If sum = (next + CCA$B_CHKSUM), then "Exit with CCA found at

next.”

7 Next = next - 512.

8 Goto Step 2.

T

A
W
N

The overall layout of the CCA is shown in Figure 3-21 and Figure 3-22.

The contents of the fields are described in Table 3-14.

3-139

KA62A CPU Module

Figure 3-21 CCA Layout, Part 1

Offset (hex)

CCA$L_BASE 00

CCA$W_IDENT CCA$W_SIZE 04

CCA$B_REVISION |CCA$B_HFLAG|CCA$B_CHKSUM|CCA$B_NPROC 08

CCA$Q_READY 0C

CCA$Q_CONSOLE 14

CCA$Q_ENABLED i1C

CCASL_BITMAP_SZ 24

CCA$L_BITMAP 28

CCA$L_BITMAP_CKSUM 2C

Reserved CCA$B_TK50_NODE 30

CCA$Q_SECSTART 34

CCA$Q_RESTARTIP 3C

Reserved 44

Reserved 48

Reserved 4C

CCA$Q_USER_HALTED 50

CCA$Q_SERIALNUM 58

CCA$Q_HW_REVISION 60

(16 quadwords of chip/module revisions)

3-140

KA62A CPU Module

Figure 3-22 CCA Layout, Part 2

Offset (hex)

Reserved EO

1FC

200

CCA$R_BUFFERO

Buffers for processor at XMI node O

Buffers for processor at XMI node 1

3-141

KA62A CPU Module

Table 3-14 CCA Fields

Field Description

CCAS$L_BASE Physical address of the base of the CCA.

CCA$W_SIZE The size, in bytes, of the CCA, usually 3200.

CCASW_IDENT The ASCII characters "CC".

CCA$B_NPROC The number of processors supported by the CCA.

CCA$B_CHKSUM

CCA$B_HFLAGS

CCA$B_REVISION

CCA$Q_READY

CCA$Q_CONSOLE

CCA$Q_ENABLED

3-142

Checksum of the first CCASB_CHKSUM-1 bytes of the CCA. Computed by doing

signed, byte addition, ignoring any overflow.

Systemwide status flags:

[_E: CCA$V_BOOTIP
CCA$V_USE_ICACHE

CCA$V_USE_ECACHE

CCA$V_ECACHE_CLEARABLE

CCA$V_REBOOT

CCA$V_REPROMPT

CCA$V_CON_REBOOT

Spare

CCA$V_BOOTIP When set, a bootstrap is being attempted. This prevents

repeated attempts to bootstrap after a failure.

CCA$V_USE_ When set, the CVAX chip internal (first-level) cache is to be

ICACHE enabled by the operating system.

CCA$V_USE_ When set, the external (second-level) cache is to be

ECACHE enabled by the operating system.

CCA$V_ECACHE_ When set, the external cache clear operation can be used

CLEARABLE successfully. Some operating system error recovery is

needed to clear the cache.

CCA$V_REBOOT This bit is tested whenever the console is entered as a

result of a CTRL/P or a node halt. If the bit is set, the

operating system is requesting a reboot. The system is

rebooted from the default boot device regardless of the

front panel switch settings.

CCASV_REPROMPT This bit is used internally by the console to support the

SET CPU command.

The revision number for the CCA.

A bitmask of the processors that have data posted in their transmit buffer for

processing by the primary processor. This field allows the operating system to use

a Find First Set (FFS) instruction to locate any pending messages. The bits and

nodes are numbered, starting with zero.

A bitmask indicating the processors known to be in console mode. The appropriate

bit is set and cleared by each processor as it enters and leaves console mode.

A bitmask indicating which processors are enabled to leave console mode. A

processor sets or clears its bit during console initialization, based on a bit stored

in EEPROM. The EEPROM bit is set with the SET CPU command.

KA62A CPU Module

Table 3-14 (Cont.) CCA Fields

Field Description

CCAS$L_BITMAP_SZ

CCASL_BITMAP

CCASL_BITMAP_

CKSUM

CCA$B_TK50_NODE

CCA$Q_SECSTART

CCA$Q_RESTARTIP

CCA$Q_USER_HALTED

CCA$Q_SERIALNUM

CCA$Q_HW_REVISION

The size, in bytes, of the physical memory bitmap. The bitmap is always an even

number of longwords in length.

The physical address of the physical memory bitmap. The bitmap contains one

bit for each page of physical memory present on the system. The bit is clear if

the page contains a hard error or if the page is in use by the bitmap or CCA. The

bitmap is always page aligned.

Reserved; not used.

This field is used to pass to the operating system the XMI (in bits<7:4>) and

VAXBI (in bits<3:0>) node numbers of the adapter that controls the TK tape drive.

A bitmask indicating which processors are currently being started by the primary

processor. The console code uses this information to avoid repeatedly forcing a

bootstrap. This field is set and cleared by the operating system.

A bitmask indicating which processors are currently attempting restarts. Multiple

flags are maintained to allow simultaneous error restarts to be performed. The

operating system clears these fields if restart succeeds.

A bitmask indicating which processors entered console mode as a result of

user intervention (CTRL/P or STOP command). This information allows the

operating sytem to make decisions about timeouts in a symmetric multiprocessing

configuration.

The system serial number.

Consists of a 16-quadword array containing the chip and module revision

information for the processors. Module revisions are an ASCIl string; chip revisions

consist of two digits with an implied decima! point. The quadword is zero for

non-processor nodes. The layout of this quadword is:

Offset (hex)

FPA Rev SSC Rev CVAX Rev 00COM_GRP

Module Revision 04

The layout of the COM_GRP byte is:

76543 0

MBZ

I—SCCA$V_COM_GRP
CCA$V_COPR

CCA$V_MDIE

CCA$V_MDIE When set, this non-boot processor receives interrupts. I

this bit is clear, interrupts are directed only to the boot

processor.

3-143

KA62A CPU Module

Table 3-14 (Cont.) CCA Fields

Field Description

CCA$V_COPR When set, this bit indicates that the processor can correctly

perform a passive release on an interrupt acknowledge

cycle. If this bit is clear, data corruption results from

performing a passive release.

CCA$V_COM_GRP This binary field is used by the operating system to

determine if all processors in the system are hardware

compatible. Any processors not in the same group as the

boot processor are inhibited from starting.

3-144

The CCA contains a buffer area for each possible XMI node. Each buffer

area contains fields to support both message oriented and character-at-a-

time communications.

The address of the buffer area for XMI node n is given by:

Buffern = Base address of CCA + 512 + (n * 168)

The layout of the buffer area is shown in Figure 3-23, and the contents of

the field are described in Table 3-15.

Figure 3-23 Layout of XMI Node Buffers

Offset (hex)

Spare CCA$B_ZSRC| CCA$B_ZDEST |CCA$B_FLAGS 00

CCA$W_ZRXCD CCA$B_RXLEN |CCA$B_TXLEN 04

CCA$T_TX 08

(80 bytes)

CCA$T_RX b8

(80 bytes)

A8

KA62A CPU Module

Table 3-15 Buffer Fields

Field Description

CCA$B_FLAGS

CCA$B_ZDEST

CCA$B_ZSRC

CCA$B_TXLEN

CCA$B_RXLEN

CCASW_ZRXCD

Status flags:

‘ L CCA$V_RXRDY
CCA$V_ZDEST

CCA$V_ZSRC

CCA$V_ZALT

Spares

CCA$V_RXRDY When set, there is a complete message in the CCA$T_RX

buffer. The equivalent bit for CCA$T_TX is in CCA$Q_READY

of the CCA header.

CCAS$V_ZDEST When set, this nodeis sending "Z" command data to the

node listed in CCA$B_ZDEST.

CCAS$V_ZSRC When set, this node is receiving "Z” command data from the

node listed in CCA$B_ZSRC. This bit is always set or cleared

by the node originating the "Z" command.

CCASV_ZALT When set, the target of the current "Z" command cannot

communicate through the CCA. The target is either a non-

processor XMl node or a VAXBI node and must be accessed

using alternate RXCD protocol, as described in the VAXBI

System Reference Manual.

When CCA$V_ZDEST is set, this field contains the XMI node number of the node

receiving the "Z” command data that this node is sending. If the low four bits of this

field identify a node that is a DWMBA, the high order four bits contain the destination

VAXBI node number.

If CCA$V_ZSRC is set, this field contains the XMI node number of the node

transmitting "Z” command data to this node.

If the bit corresponding to this node is set in CCA$Q_READY, then this field contains

the length, in bytes, of the message in CCA$T_TX.

If CCA$V_RXRDY is set in CCA$Q_READY, then this field contains the length, in

bytes, of the message in CCA$T_RX.

This field is used for character-at-a-time communication in the same manner as a

VAXBI RXCD Register. The layout is:

11 11

54 21 87 0

MBZ

| |— CCA$B_ZDATA
: CCA$V_ZNODE

CCA$V_ZRDY

CCA$B_ZDATA When CCA$V_ZRDY is set, this field contains one byte of "Z”

command data being sent to this node.

3-145

3.8.3

KA62A CPU Module

Table 3-15 (Cont.) Buffer Fields

Field Description

CCA$V_ZNODE When CCA$V_ZRDY is set, this four-bit field contains the

XMI node number of the node that transmitted the data in

CCAS$B_ZDATA.

CCAS$V_ZRDY When this bit is set, there is valid data in the other CCA$W_

ZRXCD fields.

CCAST_TX This buffer is used by the node to transmit a response to the primary processor. Only
response data is passed through this buffer since a secondary processor does not

send commands to the primary processor.

CCAS$T_RX This buffer is used by the node to receive a command from the primary processor.
Only command data is passed through this buffer since a secondary processor does

not receive responses from the primary processor.

Sending a Message to Another Processor

The following two examples show how the CCA is manipulated when a
complete message is sent between two processors.

For the first example, the primary processor, located at XMI node 1, sends
a START command to the secondary processor, located at XMI node 4.

1 Node 1 examines the CCA$V_RXRDY bit in the CCA buffer area for
node 4. If the bit is clear, then goto Step 3.

2 Node 1 polls the bit until it clears or until a timeout of 12 seconds is
reached. If a timeout occurs, an error is reported.

3 Node 1 moves the text of the START command into the CCA$T_RX
buffer for node 4.

4 Node 1 sets the length of the command into the CCA$B_RXLEN field
for node 4.

5 Node 1 sets the CCA$V_RXRDY bit for node 4 to indicate that a
command is waiting.

6 Whenever node 4 enters its main console loop, it will eventually check
for commands to execute. It will examine its local command buffer and
then check its CCA$V_RXRDY bit for a command from another node.

7 Node 4 will now process the command contained in its CCA$T_RX
buffer.

8 After reading the command, node 4 then clears its CCAS$V_RXRDY bit,
indicating that the buffer is again available.

3-146

KA62A CPU Module

For the second example, the secondary processor, which is located at XMI

node 4, halts, enters console mode, and sends a "halted” message to the

primary processor, located at XMI node 1.

1

N
h

A

O
N

Node 4 examines bit 4 of the CCA$Q_READY field. If the bit is clear,

then goto Step 3.

Node 4 polls this bit until it clears.

Node 4 moves the text of its response into its CCA$T_TX buffer.

Node 4 sets the length of the response in its CCA$B_TXLEN field.

Node 4 sets bit 4 in CCA$Q_READY to indicates that a response is

waiting.

Node 4 issues an IVINTR interrupt to node 1. If node 1 is running,

this alerts the operating system that a response is waiting. Node 4

polls CCA$Q_READY until bit 4 clears or until a timeout of 60 seconds

expires, preventing the secondary node from performing any action

that might cause the response to be lost before the primary can display

it.

If node 1 is running, it responds to the IVINTR and eventually checks

for console responses, using an FFS instruction to check CCA$Q_

READY. If node 1 was in console mode, it would be polling CCA$Q_
READY and discover bit 4 set.

Node 1 (either the operating system or the console code) processes the

response from the CCA$T_TX buffer for node 4. If the console code is

running, it displays the response on the console terminal.

Node 1 clears bit 4 in CCA$Q_READY, indicating that the buffer is

again available.

3-147

3.9

KA62A CPU Module

KA62A CPU Module Error Handling

3-148

This section describes the error handling features of the KA62A CPU
modaule.

The KA62A CPU module hardware provides automatic reattempts of many
XMI bus transfer failures:

* All XMI command/address transfers are reattempted until
acknowledged or a transaction timeout occurs (when XBER<13>
(TTO) asserts).

* All XMI write transactions are reattempted until acknowledged or a
transaction timeout occurs.

All second-level cache errors, except data parity errors on CPU demand
reads, are "soft” and are signaled by asserting CRD to the CVAX chip.
KA62A CPU module hardware automatically disables the second-level
cache following a cache error that has the potential to leave the second-
level cache incoherent, such as tag or valid bit parity errors on a write-
through.

All XMI memory reads are “connected”; the CPU waits for all demand-
requested data to be returned and, if it cannot be delivered from the XMI,
it signals with ERR, resulting in a machine check. Failures on delivery
of non-demand data (such as cache fill data) results in a "soft” error. A
memory read "hit” in the active WB causes the WB to be purged. If the
purge results in an XMI memory write failure, the read is suppressed and
an ERR response is returned to the CVAX.

All XMI memory writes are “disconnects.” They are acknowledged by the
XMI interface and data is placed in the write buffer to be written later.
If a subsequent WB unload or purge results in an XMI write failure, it is
signaled to the CPU by posting a MEMERR interrupt.

All XMI I/O reads and writes are "connected”; they cause purging of the
WB prior to their initiation on the XMI and they are not acknowledged until
all XMI transactions are successfully completed. If the WB purge results in
an XMI memory write failure, the I/O transaction is suppressed and an ERR
response is returned to the CVAX chip.

For error handling purposes, XMI IVINTR transactions are treated as 1/O
writes.

For error handling purposes, XMI IDENT transactions are treated as [/O
reads except that errors are reported with a MEMERR interrupt, since an
ERR assertion during a CVAX Interrupt Acknowledge cycle is interpreted
as a passive release.

The XMI interface maintains complete error status on a failed XMI
transaction that was initiated by its node. This status includes the failed
command, commander ID, address, and an error bit that indicates the type
of error that had occurred. This status remains locked-up until software
resets the error bit(s).

KAG62A CPU Module

3.9.1 Parity Generation and Checking for Error Detection

Parity generation and check characteristics of the KA62A CPU module

follows:

The CVAX chip’s CPU generates parity on write data and checks

parity on read data. The CVAX does not generate parity on

command/address data.

The first-level cache, contained in the CVAX chip, supports parity on

both the tag and data store.

The second-level cache supports parity on the tag bits, valid bits, and

data store. On cache fills and writes, parity is stored and then checked

by the CVAX chip’s CPU on reads.

The XCPGA detects CDAL parity errors on writes.

The XMI supports three parity bits covering both data and command

information. The KA62A CPU module generates and checks XMI

parity.

The CFPA does not generate or check parity.

Since the SSC does not support parity, the internal battery-backed-up

1 Kbyte of RAM and the internal registers are not protected.

KA62A CPU module CSR1 and CSR2 are not parity protected.

3.9.2 Errorinterrupt Service Routines

Interrupt service routines use the following sequence when an error occurs:

1

2

Read XBER to determine the type of error.

If XBER<ES> is set, then find more specific error information in

CSR2.

Service the error condition. In many cases, the second-level cache

must be flushed by setting and then clearing CSR1<FCI>.

Clear only the individual error bits that were serviced after the error

condition has been handled. All error bits are write-one-to-clear.

Read XBER to ensure that no new errors have been detected. A new

error condition cannot generate a new interrupt unless all other error

bits are clear, since the MEMERR and CRD interrupt lines are edge-

sensitive. If this read indicates that no error bits are set, then exit the

interrupt service routine; else loop to step 1.

3-149

3.9.3

KA62A CPU Module

KA62A CPU Module Error Matrix

Table 3-16 CDAL Bus Parity Errors'

Effect Effect on Effect on Effect
Reference on CPU Effect on 1st-Level 2nd-Lavel on Main State Captured
Type Execution Prefetcher Cache Cache Memory on Error Notes

Demand Abort Cycle, - - Store Bad - MSER<5> set; Machine Check Routine
D-Stream Read Machine Check Data? MSER<6> set Must Flush 2nd-

80 or 81
Level Cache. Use

CSR1<FCl>

Request - - - Store Bad - MSER<6> set
D-Stream Read Data?
(Fill)

Request - Abort Prefetch Invalidate Row Store Bad - MSER<6> set
I-Stream Read Data?
(Prefetch}

Request - - Invalidate Row, Store Bad - MSER<6> set
I-Stream Read Abort Fill Data?
(Filt)

Read-Lock Abort Cycle, - - - - CSR2<UWP> Failed address in FADR.
Machine Check set,MSER <6 > Memory CSR can be
80 or 81 set used to unlock location.

Masked Write Interrupt - - Store Bad XMI write CSR2 <WDPE > MEMERR interrupt
at IPL1D Data suppressed, set routine must fiush
{MEMERR) memory not 2nd-level cache
Vector of 60 updated. CSR1<FCI>
{next cycle)

Unmasked Interrupt - - Store Bad XMI write CSR2<WDPE > MEMERR interrupt
Write at IPL1D Data? suppressed. set routine must flush

(MEMERR) memory not 2nd-tevel cache
Vector of 60 updated. CSR1<FCi>
(next cycle)

Unlock Write interrupt - - Store Bad XMl write CSR2 <WDPE > MEMERR interrupt
at IPL1D Data’ suppressed, set routine must fiush
(MEMERR) memory not 2nd-level cache
Vector of 60 updated. CSR1<FCl>

{next cycle)

DMA Reed L L - Never Performed on CDAL — — — — — — —

DMA Write - - - Store Bad - - Parity not checked.
(External Data

Cache Fill)

'CDAL parity is only checked on transfers between the CPU and XCPGA.

20n cachable miss references only (that is, when second-level cache allocates a block).

0n second-level cache hits only.

3-150

Table 3-17 First-Level Cache Parity Errors’

KA62A CPU Module

Effect Effect on Effect

Reference on CPU Effect on Effect on 2nd-Level on Main State Captured

Type Execution Prefetcher 1st-Level Cache Cache Memory on Error Notes

Demand - - - - - - D-Stream references

D-Stream Read are forced to miss

the 1st-level cachec

{l-stream only mode}.

Request - - - - - - Same

D-Stream Read

(Fill)

Request - Abort Prefetch Flushes Cache? - - MSER<3> set if data error in set 2
|-Stream Read MSER<2> set it data error in set 1

(Prefetch) MSER<1> set if data error

MSER<O> set if tag error

Request - - - - - - Reference type never

|-Stream Read "seen” by tst-level

(Fil cache

Read-Lock - - - - - - Parity not checked

Masked Write - - Flushes Cache? - - MSER<0O> set Only tag parity is
checked on writes

that hit tst-level

cache

Unmasked - - Flushes Cache? - - MSER<0O> set Only tag parity is
Write checked on writes

that hit ist-leve!

cache

Unlock Write - - Flushes Cache? - - MSER<0> set Only tag parity is
checked on writes

that hit 1st-level

cache

DMARead = e e - - = Mever Periormed on CDAL — — — — — — — —

DMA Write - - - - - - -

(External

Cache Fill)

'First-level cache parity errors can be detected only on references that hit the cache.

2The first-level cache is flushed only if CADR<0> (Diagnostic Mode) is cleared.

3-151

KA62A CPU Module

Table 3-18 Second-Level Cache Data Parity Errors’

Effect Effect on Effect on Eftect

Reference on CPU Effect on 1st-Level 2nd-Level on Main State Captured

Type Execution Prefetcher Cache Cache Memory on Error Notes

Demand Abort Cycle, - - Bad Data - MSER <S> set; Machine Check Routine

D-Stream Read Machine Check Unaltered MSER<6> set Must Flush 2nd-

80 or 81 Level Cache. Use

CSR1<FCl>

Request - - - Bad Data - MSER<6> set

D-Stream Read Unaltered

(Fill)

Request - Abort prefetch Invalidate Row Bad Data - MSER«<6> set

|-Stream Read Unaitered

(Prefetch)

Request - - invalidate Row, Bad Data - MSER<6> set

|-Stream Read Abort Fill Unaltered

(Fiy

Read-Lock

Masked Write

Unmasked

Write

Unlock Write

DMA Read

DMA Write

(External

Cache Fill)

Read-locks are forced to

miss the cache.

Parity not checked. entry

updated on all CPU

writes that hit cache.

Parity not checked. entry

updated on all CPU

writes that hit cache.

Parity not checked, entry

updated on all CPU

writes that hit cache.

Parity not checked.

'Second-level cache data parity errors can be detected only on references that hit the cache. These errors
look like CDAL parity errors.

3-152

Table 3-19 Second-Level Cache Tag Parity Errors’

KA62A CPU Module

Effect Effect on Effect on Effect

Reference on CPU Effect on 1st-Level 2nd-Level on Main State Captured

Type Execution Prefetcher Cache Cache Memory on Error Notes

Demand Interrupt at - - Force Cache - CSR2<TPE> or CRD Interrupt

D-Stream Read

Request

D-Stream Read

{Filt)

Request

I-Stream Read

(Prefetch)

Request

-Stream Read

(Fitl)

Read-Lock

Masked Write

Unmasked

Write

Unlock Write

DMA Read

DMA Write

(Externat

Cache Fill}

DMA Write

{Invalidate)

IPL1A (CRD)

Vector of 54

Miss, Disable

Cache with

CSR1 <FMISS>

Same Behavior

Same Behavior

Same Behavior

Same Behavior

Same Behavior

D-Stream

D-Stream

D-Stream

D-Stream

D-Stream

Same Behavior as Demand D-Stream

Same Behavior as Demand D-Stream

Read

Read

Read

Read

Read

Read

CSR2<VPE>

Read-Locks are forced

to bypass the cache

Parity not checked

during cache full

'Second-level cache tag parity errors can be detected on all I- and D-stream references to VAX memory space

except read-lock.

3-153

KA62A CPU Module

Table 3-20 XMI Bus Timeout Errors

Effect Effect on Effect on Effect

Reference on CPU Effect on ~ 1st-Level 2nd-Leve! on Main State Captured on
Type Execution Prefetcher Cache Cache Memory Error Notes

Demand Abort Cycle, - - - - XBER<NRR> set 16.7ms Timer - NXM
D-Stream Read Machine Check XBER<TTO> set Reattempt T/O

80 or 81
XFADR<31:0> XMl Failing Adr/Len

Request |- or Abort Cycle, - - - - XBER<MNRR> set 16.7ms Timer - NXM
D-Stream Read Machine Check XBER<TTO> set Reattempt T/O
(Fill) 80 or 81 XFADR<31:0> XMt Failing AdrfLen

Request - Abort Prefetch Invalidate Row - - - 16.7ms Timer - NXM
|-Stream Read

{Prefetch)

Read-Lock Abort Cycle. - - - - XBER<NRR> set 16.7ms Timer - NXM
Machine Check XBER<TTO> set Reattempt T/0
80 or 81

XFADR<31:0> XMI Failing Adr/Len

Masked Write Interrupt - - - - XBER<TTO> set Reattempt T/O
at IPLID XFADR<31:0> XMt Failing Adr/Len
{(MEMERR)

Unmasked

Write

Unlock Write

DMA Read

DMA Write

Interrupt

Acknowledge

(IDENT)

Vector of 60

(next cycle)

Interrupt

at IPLID

{MEMERR)

Vector of 60

{next cycle)

Interrupt

at IPLID

(MEMERR)

Vector of 60

{next cycle)

Interrupt

at IPL1D

(MEMERR)

Vector of 60

Mever Performed on

Never Performed on

XBER<TTO> set

XFADR<31:0>

XBER<TTO> set

XFADR<31:0>

XBER<NRR> set

XBER<TTO> set

XFADR<31:0>

Reattempt T/O

XMI Failing Adr/Len

Reattempt T/0

XMt Failing Adr/Len

16.7ms Timer - NXM

Reattempt T/O XM

Falling Adr/Len

3-154

Table 3-21 XMI Bus Parity Errors

KA62A CPU Module

Effect

on Effect

Effect Effect on 2nd- on

Reference on CPU Effect on 1st-Level Level Main State Captured

Type Execution Prefetcher Cache Cache Memory on Error Notes

Demand Abort Cycle. - - HW not - XBER<PE> set NRR. Seq Err could also set

D-Stream Read Machine Check cached XFADR<31:0> XM! Failing Adr/Len

80 or 81

Request |- or - - - HW not - XBER<PE> set NRR. Seq Err could also set

D-Stream Read cached XFADR<31:0> XMi Failing AdriLen

(Fily

Request - Abort Prefetch Invalidate Row HW not - XBER<PE> set NRR, Seq Err could also set

-Stream Read cached XFADR <31:0> XMI Failing AdriLen

{Prefetch)

Read-Lock Abort Cycle, - - - - XBER<PE> set NRR, Seq Err could also set

Machine Check XFADR<31:0> XMI Failing AdriLen

80 or 81

Masked or - - - - - -~ Parity not checked

Unmasked

Write

DMARead e e e = = - Never Performed on XMI — — — — — — — —

DMA Write = e e = - - Never Performed on XM| — — —¢— — — — —

interrupt Interrupt - - - - XBER<PE> set NRR. Seq Err could also set

Acknowledge at IPL1D XFADR<31:0> XM! Failing Adr/Len

{IDENT) (MEMERR})

Vector of 60

3-155

KA62A CPU Module

Table 3-22 CDAL Bus Timeout Errors

Effect Effect on Effect on Effect

Reference on CPU Effect on 1st-Level 2nd-Level on Main State Captured

Type Execution Prefetcher Cache Cache Memory on Error Notes

Demand Abort Cycle, - - - - BTCR<3t> set 36.9ms Timer - NXM
D-Stream Read Machine Check

80 or 81

Request |- or - - Invalidate Row, - - BTCR<31> set 36.9ms Timer - NXM
D-Stream Read Abort Fill

(Fi)

Request - Abort Prefetch Invalidate Row - - BTCR<31> set 36.9ms Timer - NXM

|-Stream Read

(Prefetch)

Read-Lock Abort Cycle, - - - - BTCR< 31> set 36.9ms Timer - NXM
Machine Check

80 or 8t

Masked or Abort Cycle. - - - - BTCR<31> set 36.9ms Timer - NXM
Unmasked Machine Check

Write 80 or 81

DMA Read O~= Never Performed on CDAL — — — — — — — —

DMA Write - - - Cache Fili or - - No Timer

Invalidate

Interrupt Abort Cycle - - - - BTCR< 31> set 36.9ms Timer - NXM
Acknowledge

(IDENT)

DMA Grant Hangs - - - - - No Timer

3-156

KA62A CPU Module

Table 3-23 Main Memory Correctable Errors

Effect Effect

Etfect Effect on on 2nd-

Reference on CPU on 1st-Level Level Effect on Main State Captured on

Type Execution Pretetcher Cache Cache Memory Error Notes

Demand Interrupt at - - - Read & Correct MEMCSR4 <29> set

D-Stream IPL1A (CRD) Data, Bad Data in MEMCSR4 <28:9> set Maln Memory Page Adr.

Read Vector of 54 Memoty Unaltered MEMCSR4<7:0> set Identity Bit Position

CRD Interrupt Routine
Must Flush Main Memory Page

Request Same Behavior as Demand D-Stream Read

D-Stream

Read (Fill)

Request Same Behavior as Demand D-Stream Read

|-Stream

Read

(Prafetch)

Request Same Behavior as Demand D-Stream Read

|-Stream

Read (Fill)

Rsad-Lock Same Behavior as Demand D-Stream Read

Masked - - - - - - CRD Logged in

Write MEMCSR4 <29>

Unmasked - - - - - - ECC Not Checked

Write

3-157

KA62A CPU Module

Table 3-24 Main Memory Uncorrectable Errors

Effect

Effect Effect on on 2nd- Effect

Reference on CPU Etfect on 1st-Level Level on Main

Type Execution Prefetcher Cache Cache Memory State Captured on Error Notes

Demand Abort Cycle, - - HW not - MEMCSR4 <31> set

D-Stream Read Machine Check cached MEMCSR4 <28:9> set Main Memory Page Adr.
80 or 81 MEMCSR4 <7:0> set Identity Bit Position

Request [- or - - Invalidate HW not - MEMCSR4<31> set

D-Stream Read Row, Abort cached MEMCSR4<28:9> set Main Memory Page Adr.

(Fil Fill MEMCSR4 <7:0> set Identity Bit Position

Request - Abort Invalidate HW not - MEMCSR4 <31> set

|-Stream Read Prefetch Row cached MEMCSR4 <28:9> set Main Memory Page Adr.
(Prefetch) MEMCSR4 <7:0> set ldentity Bit Position

Read-Lock Abort Cycle, - - - - MEMCSR4< 31> set
Machine Check MEMCSR4 <28:9> set Main Memory Page Adr.
80 or 81 MEMCSR4<7:0> set identity Bit Posltion

Masked Write

Unmasked

Write

MEMCSR4<31> set

MEMCSR4 <28:9> set

MEMCSR4 <7:0> set

Main Memory Page Adr.

Identity Bit Position

ECC Not Checked

3-158

4 MS62A Memory Module

The MS62A memory module is a metal-oxide semiconductor (MOS),
dynamic random access memory (DRAM), that provides 32 Mbytes of data
storage. The memory array is designed for use in the VAX 6200 system
and communicates over the XMI bus.

This chapter contains the following sections:

9

Features

Technical Description

Self-Test and Initialization

Starting Address and Interleaving

Control and Status Registers

Error Handling and Command Responses

MS62A Memory Module

4.1 Module Features

4-2

The MS62A memory module is a dynamic random access memory (DRAM)

that communicates through the XMI bus to provide VAX 6200 system

memory.

The MS62A memory module has the following features:

The memory module contains MOS dynamic RAM (DRAM) arrays, a

CMOS gate array (that contains error correction code (ECC) logic and

control logic), and an XMI interface (the XMI Corner).

Storage arrays are made up of four banks of 72 DRAMs.

ECC logic detects single-bit and double-bit errors and corrects single-bit

errors.

Memory self-test checks all RAMS, the data path, and control logic on

power-up.

Quadwords, octawords, and hexwords can be read from memory.

Quadwords and octawords can be written to memory.

The memory can be configured by the system for 1-, 2-, 4-, 8-way or no

interleaving.

MS62A Memory Module

Technical Description

The MS62A memory module uses XMA logic, DRAM arrays, and a PROM

to provide 32-Mbytes of memory to the VAX 6200 system.

The MS62A memory module consists of the following major components:

e XMI Corner

e XMA gate array

o Address and control logic

e DRAMs

The XMI Corner is the module’s interface to the XMI bus and contains

CMOS gate arrays and interface logic. Its primary purpose is to transfer

data between the MS62A memory module and the KA62A CPU module.

The XMA gate array transfers data between the XMI Corner and the

DRAMs. The gate array also controls address multiplexing, command

decoding, arbitration, and CSR logic functions.

Address and control logic modifies address bits received from the XMI

Corner. These modified address bits are used to control the selection of

the DRAMs during reading and writing.

All power for the XMI memory array is supplied from +5VBB. If the
optional battery backup unit (BBU) is not installed and VAX 6200 system

power is lost, memory is lost as well.

If the optional BBU is installed, it takes over, ensuring that no data is lost

during the power interruption. The BBU supplies power to memory for

approximately 10 minutes.

4.3

MS62A Memory Module

Self-Test and Initialization

The MS62A memory module performs an initialization and self-test
sequence on a cold power-up or when the sequence is requested by a
console command.

During a cold power-up the gate array chip is initialized, all memory
locations are tested, and the control and status registers are initialized.

A warm power-up occurs when the system (excluding memory if a battery
backup unit (BBU) is present) looses power. During a warm power-up,
self-test is not run and memory contents are unmodified. However, any
data in the data path is lost.

Memory self-test takes about 60 seconds to run. While self-test runs, the
Fault light on the system front panel is on. When self-test completes, the
Fault light goes off and the console printout of self-test begins. For details
on the self-test console printout, refer to chapter 6 in the VAX 6200 Owner’s
Manual,

4.4

MS62A Memory Module

Starting Address and Interleaving

On power-up the VAX 6200 console firmware loads the Starting and

Ending Address Register (SEADR) with the starting address, the interleave

mode, and the ending address. The following paragraphs describe

how to set the SEADR for proper system operation. Section 4.5 gives

a description of the SEADR.

4.4.1 Starting and Ending Addresses

4.4.2

The memory responds to starting addresses on any 2-Mbyte boundary.

The ending address is also on any 2-Mbyte boundary. The ending address

must be greater than the starting address to ensure that data will not

be overwritten. The ending address minus the starting address must be

equal to or less than the memory size multiplied by the number of ways

interleaved.

EA - SA = Memory Size X (# of ways interleaved)

Starting addresses for memory can be in the range from 0 to 510 Mbytes

and ending addresses in the range from 0 to 512 Mbytes. Ending addresses

greater than 512 Mbytes are not permitted. The area above 512 Mbytes is

reserved for CSR addresses.

Interleaving

Interleaving achieves greater throughput to memory by optimizing memory

access time and increasing the effective memory transfer rate. This is done

by operating memory modules in parallel.

The memory array supports 1-way, 2-way, 4-way, 8-way or no interleaving

at the system level. Up to eight memory array modules can be interleaved.

Interleaving is done on hexword boundaries.

4-5

4.5

MS62A Memory Module

Control and Status Registers

The CSR names and their relative addresses are shown in Table 4-1.

Descriptions of the CSRs are also included in this section.

Table 4-1 MS62A Memory Module Control and Status Registers

CSR Name Mnemonic Address

Device Register XDEV BB'+ 0000 0000

Bus Error Register XBER BB + 0000 0004

Starting and Ending Address Register SEADR BB + 0000 0010

Memory Control Register 1 MCTL1 BB + 0000 0014

Memory ECC Error Register MECER BB + 0000 0018

Memory ECC Error Address Register MECEA BB + 0000 001C

Memory Control Register 2 MCTL2 BB + 0000 0030

TCY Register TCY BB + 0000 0034

Interlock Flag Status Registers IFLGn BB + 0000 000n?

'"BB” refers to the base address of an XMl node (2180 0000 + (node ID x 8000)).

Refer to the Interlock Flag Status Register description for the relative address of
the Interlock Flag Status Registers.

The memory contains 24 control and status registers (CSRs) to control the
memory and log errors. All CSRs are 32 bits long and respond only to

longword read and write transactions. When writing to the CSRs, only full
writes are performed. If a parity error occurs during a write operation, the
operation is aborted and the contents of the CSRs are unchanged.

Some bits in the registers are cleared on power-up, while others need a one

written to them to clear. Only the Interlock Flag Status Registers initialize
on a warm start.

The CSRs start at an address dependent upon the node ID. All CSR
addresses are designated as BB + n, where n is the relative offset of the
register.

MS62A Memory Module

The following definitions apply to the descriptions of the control and status

registers.

CRD error - A correctable single-bit error.

RDS error - An uncorrectable double-bit error that occurs when the

syndrome bits represent an unused ECC code.

RER error - A generai uncorrectabie double-bit error indicator that inciudes
an RDS error, a row parity error, a column parity error, or a byte write
error.

RO - Indicates a read-only register.

RO, 0 - Indicates a read-only register, cleared on power-up.

R/W - Indicates a read and write register.

R/W, 0 - Indicates a read and write register, cleared on power-up.

R/W1C - Indicates a read and write register, write a one to clear.

R/W1C, 0 - Indicates a read and write register, write a one to clear, and

cleared on power-up.

R/W1C, 1 - Indicates a read and write register, set on power-up.

W/O, 0 - Indicates a write only register, cleared on power-up.

4-7

MS62A Memory Module Registers

Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register records error and status information about the XM
bus.

Y

ADDRESS

3

1

32222 2

09876 4 N

N 111

321 Q
O

=

Nodespace base address + 0000 0004

9 0

o 0 MBZ MUST BE ZERO 0 MUST BE ZERO

[— Self-Test Fail
(STF)

Node-Specific

Error Summary

(NSES)

Read Data NO ACK (RDNAK)

Write Sequence Error (WSE)

Parity Error (PE)

Node Reset (NRST)

Error Summary (ES)

Corrected Confirmation (CC)

bit<31>
Name:

Mnemonic:

Type:

Error Summary

This bit state represents the logical OR of the error bits in this register.

bit<30>
Name:

Mnemonic:

Type: W/0,0

Node Reset

Writing a one to this location initiates a complete node reset, including

self-test.

bits <29:28>

bit<27>

bits <26:24>

bit<23>

bit<22>

bit<21>

MS62A Memory Module Registers

Bus Error Register (XBER)

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Corrected Confirmation

Mnemonic: CC

Type: R/W1C, 0

This bit is set when the XMI Corner interface (XCI) bus detects a

single-bit error on the XMI CNF bits.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Parity Error

Mnemonic: PE

Type: R/WIC, 0

This bit is set when the node detects a parity error on an XMI cycle.

Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, O

When set, indicates that the node aborted a write transaction due to

one or more missing data cycles.

Name: Read Data NO ACK

Mnemonic: RDNAK

Type: R/W1C, 0

When set, indicates that the node received a NO ACK confirmation for

a data cycle it transmitted.

MS62A Memory Module Registers

Bus Error Register (XBER)

bits <20:13>

bit<12>

bit<11>

bit<10>

bits<9:0>

4-10

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Node-Specific Error Summary

Mnemonic: NSES

Type: RO, 0

When set, this bit indicates that a node-specific error condition has

been detected. The exact nature of the error is located in the memory

error status registers.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Self-Test Fail

Mnemonic: STF

Type: R/WI1C, 1

While set, this bit indicates that the node has not yet passed its self-

test. This bit is cleared when self-test successfully completes. This bit
also drives XMI BAD (an XMI bus signal that reports node failures).

Clearing this bit also clears XMI BAD.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

MS62A Memory Module Registers

Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the MS62A memory

module. Both fields are loaded during node initialization. A zero value
indicates an uninitialized node.

ADDRESS Nodespace base address + 00000 0000

3 21 11

1 09 6 5 0

MUST BE ZERO Device Type (DTYPE)

|— Device Revision (DREV)

bits <31:20>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<19:16>
Name: Device Revision

Mnemonic: DREV

Type: RO

Identifies the revision level of the MS62A memory module. The use of
the Device Revision field is implementation dependent. The field does

not indicate the hardware revison level, only the functional level.

bits<15:0>
Name: Device Type

Mnemonic: DTYPE

Type: RO

Identifies the type of node. The device type for an MS62A memory

module is 4001 (hex). This value is hardwired in the Device Register.

4-11

MS62A Memory Module Registers

Interlock Flag Register (IFLGn)

Interlock Flag Register (IFLGn)

The Interlock Flag n Register (IFLGn) (where n is 0 to 15) holds the
address and ID of the last interlock flag only if all lower interlock flags are
set. The locations of IFLGn flags are shown in the relative address table.

ADDRESS Nodespace base address + (relative address)

3322

1098 5 4 0

0 Interlock Address (IADR)

Lower Interlock ID Bits <4:0> (LIID) ——J
Interlock ID Bit <5> (IIDB)

Interlock Flag n (IFLG)

where n is the number of the Interlock Flag Register

Number (0-15)

Interlock Flag Register Relative Address

Interlock Flag O Status Register BB + 20

interlock Flag 1 Status Register BB + 24

Interlock Flag 2 Status Register BB + 28

Interlock Flag 3 Status Register BB + 2C

Interlock Flag 4 Status Register BB + 40

Interlock Flag 5 Status Register BB + 44

Interlock Flag 6 Status Register BB + 48

Interlock Flag 7 Status Register BB + 4C

Interlock Flag 8 Status Register BB + 80

Interlock Flag 9 Status Register BB + 84

Interlock Flag 10 Status Register BB + 88

Interiock Flag 11 Status Register BB + 8C

Interlock Flag 12 Status Register BB + 100

Interlock Flag 13 Status Register BB + 104

Interlock Flag 14 Status Register BB + 108

Interlock Flag 15 Status Register BB + 10C

bit<31>

bit<30>

bit<29>

bits <28:5>

bits<4:0>

MS62A Memory Module Registers

Interlock Flag Register (IFLGn)

Name: Interlock Flag n

Mnemonic: IFLGn

Type: R/W1C, O

This bit is Interlock Flag n, where n = (0-15). If asserted, the Interlock

Address and Interlock ID are valid and the lock is set. The lock cannot

be set by writing directly to IFLGn. Writing a one to IFLGn clears the

lock.

Name: Interlock ID <6>

Mnemonic: [IDB

Type: RO, 0

IIDB is the most significant ID bit of the Interlock Read transaction.

This bit is valid only if Interlock Flag n is set.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Interlock Address

Mnemonic: IADR

Type: RO, 0

IADR gives the address of the Interlock Read transaction. It is valid

only if Interlock Flag n is set.

Name: Lower Interlock ID <4:0>

Mnemonic: LIID

Type: RO, 0

LIID are the lower four ID bits of the Interlock Read transaction. These

bits are valid only if Interlock Flag n is set.

4-13

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

Memory Control Register 1 (MCTL1)

The Memory Control Register 1 along with the Memory Control Register
2 contains memory-specific control, status, and error bits. The MCTL1
Register also controls the diagnostic modes of the memory module.

“

ADDRESS Nodespace base address + 0000 00714

3 111111

1 5432109876543210~

-

o

=322 1

098 8

MBZ

(DIAGCK)
— MW Write Error

(MWRER)
— Unlock Sequence Error

(UNSEQ)

— Lock Queue Error (LQERR)

— Enable Protection Mode

(EPM)
—— Memory Valid (MEMVAL)

Inhibit CRD Status (ICRD)

RAM Type (RAMTYP)

Memory Size (MEMSIZ)

— ECC Disable (ECCDIS)

—— ECC Diagnostic (ECCDIAG)

Error Summary (ERRSUM)

bit<31>
Name: Error Summary

Mnemonic: ERRSUM

Type: RO

This bit contains the ORed sum of error bits in MCTL1, MCTL2, and
Memory ECC Error Registers.

4-14

bit<30>

bit<29>

bits <28:18 >

bits<17:16>

bit<15>

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

Name: ECC Diagnostic

Mnemonic: ECCDIAG

Type: R/W, 0

This bit is used for diagnostic purposes.

Name: ECC Disable

Mnemonic: ECCDIS

Type: R/W, 0

This bit is used for diagnostic purposes.

Name: Memory Size

Mnemonic: MEMSIZ ‘

Type: RO

These bits contain the memory module size in 256-Kbyte increments,

where 00000011000=6 Mbytes, 00000100000=8 Mbytes, and

00010000000 =32 Mbytes.

Name: RAM Type

Mnemonic: RAMTYP

Type: RO

These bits contain the size of the RAM.

Name: Inhibit CRD Status

Mnemonic: ICRD

Type: R/W, O

This bit inhibits the reporting of CRD status to the commander on read

cycles. When this bit is set, any CRD response is changed to a GRD

response. The CRD errors are still logged and RER errors are logged

and reported normally.

4-15

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

bit<14>

bit<13>

bit<12>

bit<11>

bit<10>

4-16

Name: Memory Valid

Mnemonic: MEMVAL

Type: RO, 0

This bit indicates that valid data is stored in memory. The bit is set on
the first write to the module memory space.

Name: Enable Protection Mode

Mnemonic: EPM

Type: R/W, 0

When this bit is set, the operation of the ECC Diagnostic<30> and

ECC Disable <29> bits are inhibited in the first 2 Mbytes of memory

space, starting address to starting address plus 2 Mbytes.

Name: Lock Queue Error

Mnemonic: LQERR

Type: R/W1C, 0

This bit is set if a data word is sent as a response to an Interlock Read

and no lock is pending in the memory.

Name: Unlock Sequence Error

Mnemonic: UNSEQ

Type: R/W1C, 0

This bit is set if an Unlock Write transaction is accepted and no

corresponding matching location is marked as locked. Either an

Interlock Read was never performed to this location, the lock did

not set, or the lock might have been cleared by another source.

Name: MWrite Error

Mnemonic: MWRER

Type: R/W1C, 0

This bit is set on an RDS error during a partial write cycle.

bits<9:8>

bits<7:0>

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Diagnostic Check

Mnemonic: DIAGCK

Type: R/W, 0

These bits are used during ECC diagnostic mode as substitute check

bits.

MS62A Memory Module Registers

Memory Control Register 2 (MCTL2)

Memory Control Register 2 (MCTL2)

The second memory control register contains additional control and error
status information.

ADDRESS Nodespace base address + 0000 0030

3 111

1 765 6543210

MUST BE ZERO MUST BE ZERO

Refresh Error (RERR) ———J
Disable Hold (DISH)

Refresh Rate<2> (RRB1)

Refresh Rate<i> (RRB2)

Refresh Rate<0> (RRBO)

Arbitration Suppression Control<i> (ARBSC1)

Arbitration Suppression Control<0> (ARBSCO)

bits <31:17>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<16>
Name: Refresh Error

Mnemonic: RERR

Type: R/W1C, 0

This bit is set if a refresh request is set, and a second refresh request
is asserted before the first one is implemented, meaning that a refresh
was missed.

bits<15:6>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<5>

bits<4:2>

bits<1:0>

MS62A Memory Module Registers

Memory Control Register 2 (MCTL2)

Name: Disable Hold

Mnemonic: DISH

Type: R/W, 0

This bit is used by memory arbitration logic to disable the use of XMI

HOLD L.

Name: Refresh Rate

Mnemonic: RRB

Type: R/W

This bit controls the module’s DRAM refresh rate.

Name: Arbitration Supression Control

Mnemonic: ARBSCn

Type: R/W, 0

These bits control the Arbitration Supression mode.

MS62A Memory Module Registers

Memory ECC Error Address Register (MECEA)

Memory ECC Error Address Register (MECEA)

The Memory ECC Error Address Register logs the address of correctable
and uncorrectable errors logged in the Memory ECC Error Register.

For read accesses, this register logs the address of the first corrected
read data (CRD) error and holds it until a double-bit uncorrectable error
(RER) occurs or the error is cleared. An RER error causes a logged CRD
error address to be overwritten. A CRD will not overwrite a logged RER
error address. If multiple RER errors occur, only the first error address is
logged.

This register logs errors during self-test.

—

ADDRESS Nodespace base address + 0000 001C

332

1009 3 2 0

MBZ ERROR ADDRESS (ERRAD) MBZ

bits <31:30>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<29:3>
Name: Error Address

Mnemonic: ERRAD

Type: RO, 0

The error address of the RER or CRD error logged in the Memory ECC
Error Register. This register is valid only if the RER or CRD Error log
bits are set in the Memory ECC Error Register. This address is the bus
address of the cycle that was being performed at the time of the error.

bits <2:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

4-20

MS62A Memory Module Registers

Memory ECC Error Register (MECER)

Memory ECC Error Register (MECER)

The Memory ECC Error Register logs ECC error status. The MECER also
logs uncorrectable error codes for row parity error, column parity errors,
and byte write errors. The MECER logs ECC error information during

read cycies oniy. if an RER error occurs during a Write Mask cycie, the

MWRITE error bit in the MCTL1 Register is set.

This register logs ECC error type and error syndrome information when

correctable and uncorrectable errors occur during Read transactions.

During a Write Mask transaction, only the MWRITE error bit logs the fact

that the ECC error occurred.

For read accesses, the register logs the first correctable error and holds it

until either an uncorrectable error occurs or the error is cleared. Additional

correctable errors are only reported and are not logged. An uncorrectable

error will overwrite a logged correctable error. A correctable error will not

overwrite a logged uncorrectable error or a previously logged correctable

error until the error has been cleared.

This register logs errors during module self-test.

ADDRESS

bit<31>

Nodespace base address + 0000 0018

33222222

1090876514 87 0

0 MUST BE ZERO

Error Syndrome (ERSYN) -—J
Column Parity Error (CPER)

Row Parity Error (RPER)

Byte Write Error (BWERR)

CRD Error (CRDER)

High Error Rate (HIERR)

RER Error (RERER)

Name: Uncorrectable Double-Bit (RER) Error

Mnemonic: RERER

Type: R/W1C, 0

This bit indicates that an uncorrectable error occurred during a read

transaction. The Error Address and Error Syndrome are valid for the

uncorrectable double-bit error. If the Column Parity Error bit, the Row

Parity Error bit, and the Byte Write Error bit are not all set, then the

uncorrectable double-bit error is an RDS error.

4-21

MS62A Memory Module Registers

Memory ECC Error Register (MECER)

bit<30>

bit<29>

bit<28>

bit<27>

bit<26>

4-22

Name: High Error Rate

Mnemonic: HIERR

Type: R/WI1C, 0

This bit indicates that another error, RER or CRD, occurred before the

previous one was cleared from the register.

Name: CRD Error

Mnemonic: CRDER

Type: R/W1C, 0

This bit indicates that a CRD error occurred during a read transaction.
This includes a single-bit error in the check bits, even though no
correction is done on the data bits. The error address and error

syndrome are valid if no RER error log exists.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Byte Write Error

Mnemonic: BWERR

Type: RO, 0

This bit indicates that the RER error was due to reading a location
that was marked bad during a partial write cycle that had previously

detected an RER error. Cleared when MECER< 31> is cleared.

Name: Row Parity Error

Mnemonic: RPER

Type: RO, 0

This bit indicates that the RER error is due to a row address parity

error. Cleared when MECER< 31> is cleared.

bit<25>

bits<24:8>

bits<7:0>

MS62A Memory Module Registers

Memory ECC Error Register (MECER)

Name: Column Parity Error

Mnemonic: CPER

Type: RO, 0

This bit indicates that the RER error is due to

error. Cleared when MECER <31 > is cleared.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Error Syndrome

Mnemonic: ERSYN

Type: RO, 0

These bits are the syndrome bits of the location in an RER or CRD

error.

4-23

MS62A Memory Module Registers

Starting and Ending Address Register (SEADR)

Starting and Ending Address Register (SEADR)

The Starting and Ending Address Register contains the memory starting
and ending addresses. See Section 4.4.1 for a description of the rules

that must be followed when setting these addresses. This register also
sets the interleave mode.

ADDRESS Nodespace base address + 0000 0010

332 2 2 11

1009 10 6 5 87654 210

MBZ MBZ MBZ

l— Ending Address (ENADR)_I '
Starting Address (STRADR)

Interleave Address 2 (INAD2)

Interleave Address 1 (INADR1)

Interleave Address O (INADRO)

Interleave Mode 1 (INTM1)

Interleave Mode O (INTMO)

bits <31:30>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits <29:21>
Name: Ending Address

Mnemonic: ENDADR

Type: R/W, 0

The Ending Address for the memory on 2-Mbyte boundaries. The
memory is enabled if the ending address is greater than the starting

address. The ending address range is from 0 to (510 Mbytes + 2

Mbytes).

4-24

bits <20:16>

bits<15:8>

bits<7:5>

bits<4:2>

bits<1:0>

MS62A Memory Module Registers

Starting and Ending Address Register (SEADR)

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Starting Address

Mnemonic: STRADR

Type: R/W, 0

The Starting Address for the memory on 2-Mbyte boundaries. The

starting address range is from 0 to 510 Mbytes.

Name: Interleave Address

Mnemonic: INADnN

Type: R/W, 0

The address bits used for interleaving. This address determines to

what address the module will respond.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Interleave Mode

Mnemonic: INTLMn

Type: R/W, 0

These bits show how many ways the module is being interleaved and

are used to determine the addresses that the module will respond to.

4-25

MS62A Memory Module Registers

TCY Tester Register (TCY)

TCY Tester Register (TCY)

The TCY Tester Register contains control bits to implement manufacturing
tests.

ADDRESS Nodespace base address + 0000 0034

33

10

MUST BE ZERO

ECC Test (ECCT) —-J l
TCY Refresh Request (TRR)

TCY Mode (TCYM)

4-26

MS62A Memory Module

4.6 Error Handling and Command Responses

The following paragraphs describe how the memory responds to an error

condition. The memory performs single-bit correction and double-bit

detection on the data stored.

4.6.1 ReadErrors

If no errors occur during a read operation, a Good Data (GRDn) function
code is returned with the data. If a correctable error occurs during the read

operation, a Corrected Read Data (CRDn) function code is returned. If

an uncorrectable error occurs, a Read Error Response (RER) is returned in

place of the data.

The lock bit is not set if:

* An RER error occurs during an Interlock Read transaction.

e The confirmation of Interlock Read data is missing or bad.

A locked response is sent if:

e The address of an Interlock Read transaction matches a locked

hexword.

e All locks are set and memory receives an Interlock Read request.

4.6.2 Full Write Errors

A full write is performed on a quadword or octaword, dependent on

the number of mask bits that are set. If mask bits <47:32> are set, an
octaword write transaction takes place. If mask bits <39:32> are set, a

quadword write transaction takes place. Write data is written into memory

with the generated ECC check bits. The write transaction does not begin

until all the write data is received from the XMI bus and checked for parity.

If an XMI parity error occurs on one or more quadwords of received data,

the write will not begin and a NO ACK response is returned.

4-27

4.6.3

MS62A Memory Module

Partial Write Errors

4-28

If the mask bits for a quadword or octaword are not all set, a partial write
is performed. After write data is merged with read data, the write data is
written into memory. If the read data is correct, the write is completed. If
a correctable read error occurs, the write continues to completion with the
corrected data. Uncorrectable read data causes the old data to be rewritten
with a Byte Write Error ECC code to mark the location defective. If the
cycle is an Unlock Write cycle, an uncorrectable error causes the location
to be marked bad and the interlock flag cleared.

If an XMI parity error occurs on one or more quadwords of received data,
the write does not begin. If the parity error occurs during an Unlock Write
command or data cycle, the lock is not reset.

5 DWMBA XMIi-to-VAXBI Adapter

The DWMBA XMI-to-VAXBI adapter provides an information path between

the XMI bus and I/O devices on the VAXBI bus.

This chapter contains the following sections:

e DWMBA Overview

¢ (CPU Transactions

e DMA Transactions

e DWMBA Registers

¢ Interrupts

e Error Reporting

e DWMBA Initializatiqn, Self-Test, and Booting

5.1

DWMBA XMi-to-VAXBI Adapter

DWMBA Overview

5-2

The DWMBA XMI-to-VAXBI adapter provides an information path

between the XMI bus and 1/O devices on the VAXBI bus. The DWMBA

consists of two modules: the DWMBA/A XMI module and the DWMBA/B

VAXBI module. The IBUS connects the two modules.

Figure 5-1 DWMBA XMi-to-VAXBI Adapter Block Diagram

Y

H

X

4

=
0

MODULE

LOGIC

IBUS

DWMBA/A MODULE

VAXBI

CORNER

(BIIC)

MODULE

LOGIC

DWMBA/B MODULE

DWMBA XMi-to-VAXBI Adapter

The DWMBA/A module contains an XMI Corner, register files, XMI

required registers, DWMBA-specific registers, and control sequencers
for the XMI interface.

The DWMBA/B module contains a BIIC, interconnect drivers, control
sequencers to handle the control of the data transfer, status bits to/from
the DWMBA/A module’s register files and the BIIC, DWMBA/B module
specific registers, decode logic for DMA operations, and VAXBI clock-
generation circuitry.

These two modules are connected by four cables of 30 wires each. The

120 wires make up the IBUS, which transfers data and control information

between the two modules.

The DWMBA uses CPU and DMA transactions to exchange information.

CPU transactions originate from the KA62A CPU module(s) and are

presented to the DWMBA from the XMI bus with the CPU as the XMI

commander and the DWMBA as the XMI responder.

DMA transactions originate from VAXBI nodes that select the DWMBA
as the VAXBI slave. These are read or write transactions targeted to XMI

memory space or are VAXBI-generated interrupt transactions that target

a KA62A CPU module. For DMA transactions, the DWMBA is the XMI

commander and the MS62A memory module is the XMI responder.

Write transactions, whether DMA or CPU, are always disconnected. This

means that as soon as either the CPU or the VAXBI master issues the write,

it waits for an ACK confirmation that the command and write data was

accepted but not necessarily completed at the destination. If the write fails,
an IVINTR is returned.

The VAX 6200 system uses a 30-bit physical address. Chapter 2 describes

the XMI address space. The VAXBI Options Handbook describes the VAXBI

address space. The DWMBA can be both a master and a slave on the

VAXBI. As a master, it carries out transactions requested by its XMI

devices. As a slave, it responds to VAXBI transactions that select its node.

5-3

DWMBA XMi-to-VAXBI Adapter

5.2 CPU Transactions

5-4

The DWMBA XMI-to-VAXBI adapter translates XMI transactions into

equivalent VAXBI transactions. Regardless of whether the transaction is a

read, write, or IDENT, software need not concern itself with the details,

as the XMI transaction behaves as it would if it were directed to memory

or other XMI devices.

Table 5-1 XMiIl-to-VAXBI Command Translations

XMi VAXBI

Longword Read

Quadword Read

Octaword Read

Hexword Read

Longword Interlock Read

Quadword Interlock Read

Octaword Interlock Read

Hexword Interlock Read

Longword Mask Write

Quadword Mask Write

Octaword Unlock Write Mask

Longword Unlock Write Mask

Quadword Unlock Write Mask

Octaword Unlock Write Mask

Interrupt Request (INTR)

Indentify (IDENT)

Implied Vector Interrupt (IVINTR)

Longword Read

llegal

lllegal

lllegal

Longword Interlock Read (IRCI)

lllegal

lllegal

legal”

Longword Write Mask (WMCI)

lllegal

tilegal

Longword Unlock Write Mask (UWMCI)

lllegal

lilegal

lllegal

IDENT

lllegal

DWMBA XMI-to-VAXBI Adapter

5.2.1 General Operation

The DWMBA responds to XMI longword transactions. When an XMI

commander issues a Read, Interlock Read, Write Mask, Unlock Write

Mask, or IDENT targeting the DWMBA, the XMI commander arbitrates for

the XMI bus, wins the bus, sends out the function, command, address,

ID, and parity. The targeted DWMBA recognizes its ID and returns ACK

or NO ACK (for busy, an error, or illegal transaction). Once the DWMBA

accepts a CPU transaction from an XMI commander, it asserts the NO

ACK confirmation code to all subsequent XMI commanders that attempt a

CPU transaction until the current transaction completes.

For Read transactions, the DWMBA decodes the XMI command and

determines if the address references VAXBI 1/O space or a DWMBA

register. If VAXBI address space is referenced, the DWMBA generates

a VAXBI Read transaction and waits for the return of read data from the

VAXBI. Upon receiving the read data from either the VAXBI or a DWMBA

register, the DWMBA arbitrates for the XMI bus as a responder and

returns the requested data to the commander. The XMI commander sends

confirmation of the receipt of data back to the DWMBA. If the Read fails,

the XMI commander retries the Read.

Interlock Read transactions are handled the same as Reads except:

e DWMBA registers do not support Interlock Reads and handle them the

same as Reads.

e If the Interlock Read command that targets the VAXBI bus gets a

RETRY CNF from the VAXBI, the DWMBA returns the Lock Response

back to the XMI commander.

Write transactions to the VAXBI are disconnected. The CPU continues

on after the DWMBA/A ACKs the Mask Write and Unlock Write Mask

transaction if the command/address (C/A) and data received from the XMI

bus is error free. The DWMBA decodes the XMI command and determines

if the address references VAXBI 1/O space or a DWMBA register. If VAXBI

address space is referenced, the DWMBA generates the corresponding

VAXBI write transaction. If a DWMBA register is referenced, it is written

with the write data. Write errors cause an IVINTR to be returned to the

CPU.

5-5

DWMBA XMi-to-VAXBI Adapter

5.2.2 VAXBII/O Space Reads

The two XMI read transactions are Read and Interlock Read. The XMI

Interlock Read is translated to a VAXBI IRCI transaction while the XMI

Read is translated to a VAXBI Read transaction.

The length of the generated VAXBI transaction must be a longword

(D<31:30> = 01 in the VAXBI command/address cycle). XMI address

bits <28:25> are forced to zero to map XMI addresses to VAXBI addresses
and passed onto the VAXBI. The DWMBA ignores with a NO ACK
confirmation any targeted transaction longer than a longword.

If the VAXBI issues a RETRY on an XMI Interlock Read request to
VAXBI I/O address space due to the resource being locked by a previous
Interlock Read request, the DWMBA issues a Locked Response to the XMI

commander.

5.2.3 VAXBI /O Space Writes

5-6

The two XMI writes are Mask Write and Unlock Write Mask. The Mask
Write is translated to a VAXBI Write Mask with Cache Intent (WMCI),
while the Unlock Write Mask is translated to a VAXBI Unlock Write Mask
with Cache Intent (UWMCI).

The length of the generated VAXBI transaction must be a longword
(D<31:30> = 01 in the VAXBI command/address cycle). XMI address
bits <28:25> are forced to zero and passed onto the VAXBI. The DWMBA
ignores with a NO ACK confirmation any targeted XMI transaction longer
than a longword. The DWMBA supports interlocked instructions even
though the KA62A CPU module never issues interlocked instructions to
I/O space.

5.2.4

DWMBA XMI-to-VAXBI Adapter

Interrupts

5.2.4.1 XMI IDENT to VAXBI IDENT

When an XMI CPU issues an XMI IDENT, the DWMBA issues a VAXBI

IDENT if the DIWMBA does not have a pending interrupt at the IDENT
level. The DWMBA/B module fetches the IDENT command from the

DWMBAJ/A module’s register file and clears the corresponding level and

interrupt sent flip-flops that were previously set by the VAXBI-initiated
interrupt, providing that no IBUS parity errors are detected.

The DWMBA/B module writes the received vector data into the CPU read

data buffer and notifies the DWMBA/A module that the vector is available.
The DWMBA/A module then issues an IDENT response cycle on the XMI

(with a Good Read Data response where the function code = 100 and the

vector is in bits<15:2>).

5.2.4.2 XMI IDENT with DWMBA Adapter Pending Interrupt

If an XMI IDENT is decoded with an IPL matched by the DWMBA/B

module while the DWMBA's interrupt-pending flip-flop is set, the interrupt
vector of the DWMBA is issued to the XMI. The IDENT clears both the

IPL level 17 sent flip-flop and the DWMBA interrupt-pending flip-flop. The
corresponding level 17 VAXBI interrupt-pending flip-flop, if also set, is not
cleared, resulting in the DWMBA issuing an XMI INTR transaction.

5.2.4.3 Passive Release of VAXBI Interrupts

If the requesting VAXBI node aborts its interrupt request before the XMI
CPU generates an IDENT transaction at that level, the resulting IDENT

on the VAXBI gets NO ACKed. The DWMBA then issues a Read Error

Response (RER) to the XMI commander.

If an XMI CPU issues an IDENT to the VAXBI and the DWMBA has no

pending flip-flops set, the DWMBA issues the IDENT to the VAXBI. The

resulting IDENT on the VAXBI gets NO ACKed. The DWMBA then issues

a Read Error Response (RER) to the XMI commander and sets the IDENT

Error bit in the DWMBA/B module’s Error Summary Register (BESR<1>).

5.3

DWMBA XMi-to-VAXBI Adapter

DMA Transactions

The DWMBA XMI-to-VAXBI adapter translates a VAXBI transaction into

an XMI bus transaction when a VAXBI node selects the DWMBA as the

slave node for a VAXBI transaction. The XMI bus transaction is serviced

by a memory node, and the requested data is then read from or written to

XMI memory.

Table 5-2 VAXBI-to-XMI Command Translations

VAXBI Xmi

Read Read

Interlock Read with Cache Intent Interlock Read

Read with Cache Intent Read

Write (LW)

Write (QW)

Write (OW)

Write with Cache Intent (LW)

Write with Cache Intent (QW)

Write with Cache intent (OW)

Unlock Write Mask with Cache Intent (LW)

Unlock Write Mask with Cache Intent (QW)

Unlock Write Mask with Cache Intent (OW)

Write Mask with Cache Intent (LW)

Write Mask with Cache Intent (QW)

Write Mask with Cache Intent (OW)

Interrupt (INTR)

Identify (IDENT)

Invalidate (INVAL)

Broadcast (BDCST)

Interprocessor Interrupt (IPINTR)?

Stop

Write Mask on the unused longword

within the XMI quadword

Write Mask (QW)

Write Mask (OW)

Write Mask on the unused longword

within the XMI quadword

Write Mask

Write Mask

Unlock Write Mask

Unlock Write Mask

Unlock Write Mask

Write Mask on the unused longword

within the XMI quadword

Write Mask (QW)

Write Mask (OW)

Interrupt

Not supported (NO ACK to VAXBI)'

Not supported (NO ACK to VAXBI)

Not supported (NO ACK to VAXBI)

Interrupt at IPL 16

Not supported (NO ACK to VAXBI)

'"The DWMBA does not process VAXBI IDENTs onto the XMI bus but the DWMBA's
BIIC responds to VAXBI IDENTSs that are directed to it if:

- The BIIC detects an error condition that results in a generated interrupt.

- The user sets the force interrupt bits in the appropriate BIIC register.

- External logic such as the IPINTR decode logic asserts the BCI INT signal

(pins<7:4> on the BIIC).

2See Section 5.3.3.

DWMBA XMi-to-VAXBI Adapter

A VAXBI transaction can reference an address between the addresses in

the Starting and Ending Address Registers in the DWMBA’s BIIC. VAXBI

transactions cannot access DWMBA-specific registers.

5.3.1 VAXBI-to-XMI Memory Space Reads

If the incoming VAXBI transaction is a read-type transaction and the

address falls between the address in the DWMBA’s BIIC Starting and

Ending Address Registers, the slave sequencer determines if a DMA buffer
is available for use. If so, the slave sequencer moves the C/A data to the
DMA(x) buffer, where x indicates either DMA-A or DMA-B, and notifies
the DWMBA/A module that VAXBI C/A data has been loaded and the
DWMBA/A module should request the XMI bus. The slave sequencer then

issues a STALL response to the VAXBI until the transaction completes.

Later, the DWMBA/A module receives a Read response cycle from

XMI memory with the requested data. The DWMBA/A module loads
the data into the DMA data buffer and notifies the slave sequencer in

the DWMBA/B module that the requested data is availabie. The siave

sequencer then moves the data to the VAXBI, completing the request.

The DWMBA does not support the caching of memory on VAXBI nodes

so VAXBI reads are always answered with the VAXBI "don’t cache” read
status.)

5.3.1.1 VAXBI-to-XMI Memory Space Interlock Reads

VAXBI interlock reads (IRCI) behave the same as reads except if a VAXBI

node references a location in XMI memory that is locked. Then the

memory returns a Locked Response (LOC) to the DWMBA, and the

DWMBA issues a RETRY confirmation code to the VAXBI commander,

which then releases the VAXBI. The DWMBA returns to idle and awaits the

next VAXBI request.

5-9

DWMBA XMi-to-VAXBI Adapter

5.3.2 VAXBI-to-XMI Memory Writes

The disconnected write mode of operation is used for VAXBI-to-XMI

memory writes, allowing use of the VAXBI by other devices while the

DWMBA completes the write on the XMI.,

The DWMBA's slave sequencer moves the C/A and write data (whether

longword, quadword, or octaword) to an available DMA buffer location

when the incoming write-type VAXBI transaction’s address falls between
the addresses in the DWMBA'’S Starting and Ending Address Registers

in its BIIC. The slave sequencer then issues an ACK confirmation to the

VAXBI.

When the buffer load completes, the slave sequencer notifies the

DWMBA/A module’s XMI transmit logic that it should request the XMI

bus. Upon receiving an XMI grant, the DWMBA transmits the write data
transaction and waits for an ACK response.

The DWMBA has two sets of register files, DMA-A and DMA-B, which

allows the DWMBA to accept either a second VAXBI write transaction or
a VAXBI read transaction before the previous XMI write completes. The
DWMBA performs the operations on the XMI in the order that the VAXBI

issues the transactions to ensure that out-of-order sequences do not occur.

If a third VAXBI write transaction occurs before the first and second XMI
writes complete, the DWMBA stalls this VAXBI transaction until the first

XMI write completes successfully.

5.3.3 VAXBI-Generated Interrupts

5-10

Interrupts can either be (1) generated by the DWMBA if there is a status

change or an error condition or (2) passed through the DWMBA to the XMI
bus if generated by various 1/0O devices on the VAXBI bus. These interrupts
are translated into the appropriate XMI interrupt transactions. If a DWMBA

and a VAXBI device interrupt are both pending at the same IPL when an
XMI IDENT transaction is issued, the DWMBA returns its vector to ensure

that DWMBA error interrupts are serviced first.

DWMBA XMI-to-VAXBI Adapter

5.4 DWMBA XMI-to-VAXBI Adapter Registers

Two sets of registers are used by the DWMBA: DWMBA registers

(residing on both modules of the DWMBA) and VAXBI registers (residing

in the BIIC) . The DWMBA registers include the XMI required registers

and DWMBA-specific registers in DWMBA private space.

Table 5-3 lists the DWMBA/A module XMI module registers. Table 5-4

lists the DWMBA/B module VAXBI module registers. Table 5-5 lists

the VAXBI registers. See Chapter 5 of the VAXBI Options Handbook for a

description of the VAXBI registers, except for the VAXBI Device Register.

The remainder of Section 5.4 gives detailed descriptions of the DWMBA

registers. The DWMBA/A module registers are presented first, followed by

the DWMBA/B module registers and the VAXBI Device Register.

See Section 2.2.2.3 for details of I/O addressing.

Table 5-3 XMI Registers on the DWMBA/A Module

Name Mnemonic' Address?

Device Register XDEV BB + 0000 0000

Bus Error Register XBER BB + 0000 0004

Failing Address Register XFADR BB+ 0000 0008

Responder Error Address Register AREAR BB+ 0000 000C

Error Summary Register AESR BB+ 0000 0010

Interrupt Mask Register AIMR BB + 0000 0014

Implied Vector Interrupt Destination/Diagnostic ~ AIVINTR BB +0000 0018

Register

Diag 1 Register ADG1 BB+ 0000 001C

'The first letter of the mnemonic indicates the following:

X=XMI register, resides on the DWMBA/A XMI module

A =Resides on the DWMBA/A XMI module

B =Resides on the DWMBA/B VAXBI module

2The abbreviation "BB” refers to the base address of an XMl node (the address of

the first location of the nodespace).

5-11

DWMBA XMI-to-VAXBI Adapter

Table 5-4 XMI Registers on the DWMBA/B Module

Name Mnemonic' Address?

Control and Status Register BCSR BB+ 0000 0040

Error Summary Register BESR BB+ 0000 0044

Interrupt Destination Register BIDR BB+ 0000 0048

Timeout Address Register BTIM BB+ 0000 004C

Vector Offset Register BVOR BB+ 0000 0050

Vector Register BVR BB + 0000 0054

Diagnostic Control Register 1 BDCR1 BB+ 0000 0058

Reserved Register : - BB+ 0000 005C

'The first letter of the mnemonic indicates the following:

X =XMI register, resides on the DWMBA/A module

A=Resides on the DWMBA/A module

B =Resides on the DWMBA/B module

*The abbreviation "BB" refers to the base address of an XMl node (the address of
the first location of the nodespace).

5-12

DWMBA XMI-to-VAXBI Adapter

Table 5-5 VAXBI Registers

Name Mnemonic Address'

Device Register DTYPE? bb + 00

VAXBI Control and Status Register VAXBICSR bb+ 04

Bus Error Register BER bb + 08

Error Interrupt Control Register EINTRSCR bb+0C

Interrupt Destination Register INTRDES bb+10

IPINTR Mask Register IPINTRMSK bb+ 14

Force-Bit IPINTR/STOP Destination Register FIPSDES bb+18

IPINTR Source Register IPINTRSRC bb+1C

Starting Address Register SADR bb+20

Ending Address Register EADR bb+24

BCl Control and Status Register BCICSR bb+28

Write Status Register WSTAT bb+2C

Force-Bit IPINTR/STOP Command Register FIPSCMD bb+30

User Interface Interrupt Control Register UINTRCSR bb +40

General Purpose Register 0 GPRO bb+F0

General Purpose Register 1 GPR1 bb+F4

General Purpose Register 2 GPR2 bb+F8

General Purpose Register 3 GPR3 bb+FC

Slave-Only Status Register SOSR bb+ 100

Receive Console Data Register RXCD bb+ 200

'The abbreviation "bb"” refers to the base address of a VAXBI node (the address of

the first location of the nodespace).

?Described in this section.

5-13

DWMBA/A XMl Module Registers

Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the node and is
loaded during node initialization. A zero value indicates an uninitialized
node.

e

ADDRESS XMI nodespace base address + 0000 0000

3 11

1 6 5 o

Device Revision Device Type

1

5 87 0

Device Type Field Class ID

[—!_!-— I/0 Device
Memory Device

CPU Device

bits<31:16>
Name: Device Revision

Mnemonic: DREV

Type: RO,0

Identifies the functional revision level of the module in hexadecimal.

The DREV field always reflects the letter revision of the module as
follows:

DWMBA/A Adapter Revision DREV (decimal) DREV (hex)

A0

A1

BO

B1

Z0

1

1

2

2

26

0001

0001

0002

0002

001A

5-14

bits<15:0>

DWMBA/A XMI Module Registers

Device Register (XDEV)

Name: Device Type

Mnemonic: DTYPE

Type: RO, 0

Identifies the type of node. The Device Type field is broken into two

subfields: Class and ID. The Class field indicates the major category

in which the node falls. The ID field uniquely identifies a particular

device within a specified class. DTYPE is 2001 (hex) for the DWMBA/A

module.

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register contains error status on a failed XMI transaction.
This status includes the failed command, commander ID, and an error bit
that indicates the type of error that occurred. This status remains locked
up until software resets the error bit(s).

—

ADDRESS XMI nodespace base address + 0000 0004

-

W

o

w

©O
©
N

o
0

N

~

N

D
N

o

N

=
N

w

N

N
N

-

N

o

N

O

-

O

=

~

-

o

-

o
1

-

> [
J
V

N o O

=

© 4 3 0

o o o [o o o o o o o o o o o o o o o o - —

[— Failing
Commander (FCMD)

Failing Commander

ID (FCID)
— Self-Test Fail (STF)

—Extended Test Fail (ETF)

— Node-Specific Error Summary

(NSES)

Commander Errors

— Transaction Timeout (TTO)

— Reserved; must be zero

— Command NO ACK (CNAK)

— Read Error Response (RER)

— Read Sequence Error (RSE)

— No Read Response (NRR)

— Corrected Read Data (CRD)

— Write Data NO ACK (WDNAK)

Responder Errors

— Read/IDENT Data NO ACK (RIDNAK)
— Write Sequence Error (WSE)

— Parity Error (PE)

— Inconsistent Parity (IPE)

Miscellaneous

— Write Error Interrupt (WEI)

— XMI Fault (XFAULT)

— Corrected Confirmation (CC)

— XMI BAD (XBAD)

— Node HALT (NHALT)

— Node Reset (NRST)

— Error Summary (ES)

5-16

bit<31>

bit<30>

bit<29>

bit<28>

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

Name: Error Summary

Mnemonic: ES

Type: RO, 0

- -y~ o & 3 1 3 3 1ES represents the logical OR of the error bits in this register. Therefore
ES asserts whenever any error bit asserts.

Name: Node Reset

Mnemonic: NRST

Type: R/W, 0

Writing a one to NRST initiates a power-up reset of the system. Reads
to this bit location return zero. When NRST has a one written to it, the

DWMBA:

s Resets all logic on the DWMBA/A module to an initialized (power-

up) state.

e Asserts the RESET control signal to the DWMBA/B module,

sequencing the VAXBI power supply(s). The assertion of RESET

to the DWMBA/B causes the DWMBA/B to sequence BI AC LO,

and BI DC LO. The assertion of BI DC LO causes the DWMBA/B

module to reset to an initialized (power-up) state.

When NRST is set, it remains asserted for six to eight XMI cycles, after

which it is cleared by logic on the DWMBA/A module. During the time

that the DWMBA is performing its node reset, it does not affect the

operation of the XMI bus.

Name: Node HALT

Mnemonic: NHALT

Type: R/W, 0

Unused; must be zero.

Name: XMI BAD

Mnemonic: XBAD

Type: R/W, 1

Unused; must be zero.

5-17

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

bit<27 >
Name: Corrected Confirmation

Mnemonic: CC

Type: R/W1C, 0

CC sets when the DWMBA detects a single-bit CNF error. Single-bit
CNF errors are automatically corrected by the XCLOCK chip in the
XMI Corner.

bit<26>
Name: XMI FAULT

Mnemonic: XFAULT

Type: R/W1C, 0

Unused; must be zero.

bit<25>
Name: Write Error Interrupt

Mnemonic: WEI

Type: R/W1C, 0

Unused; must be zero.

bit<24 >
Name: Inconsistent Parity Error

Mnemonic: IPE

Type: R/W1C, 0

Unused; must be zero.

bit<23>
Name: Parity Error

Mnemonic: PE

Type: R/W1C, 0

When set, PE indicates that the DWMBA has detected a parity error on
an XMI cycle.

bit<22>
Name: Write Sequence Error

Mnemonic: WSE

Type: R/W1C, 0

When set, WSE indicates that the DWMBA aborted a write transaction
directed to it due to missing data cycles.

bit<21>

bit<20>

bit<19>

bit<18>

bit<17>

DWMBA/A XMl Module Registers

Bus Error Register (XBER)

Name: Read/IDENT Data NO ACK

Mnemonic: RIDNAK

Type: R/W1C, 0

When set, RIDNAK indicates that a Read or IDENT data cycle (GRDn,
CRDn, LOC, RER) transmitted by the DWMBA has received a NO

ACK confirmation.

Name: Write Data NO ACK

Mnemonic: WDNAK

Type: R/W1C, 0

When set, WDNAK indicates that a Write data cycle (GRDn, CRDn,

LOC, RER) transmitted by the DWMBA has received a NO ACK

confirmation.

Name: Corrected Read Data

Mnemonic: CRD

Type: R/W1C, 0

When set, CRD indicates that the DWMBA has received a CRDn read
response.

Name: No Read Response

Mnemonic: NRR

Type: R/W1C, 0

When set, NRR indicates that a read transaction initiated by the

DWMBA failed due to a read response timeout.

Name: Read Sequence Error

Mnemonic: RSE

Type: R/W1C, 0

When set, RSE indicates that a transaction initiated by the DWMBA

failed due to a read sequence error.

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

bit<16>

bit<15>

bit<14>

bit<13>

bit<12>

5-20

Name: Read Error Response

Mnemonic: RER

Type: R/W1C, 0

When set, RER indicates that a DWMBA has received a Read Error
Response.

Name: Command NO ACK

Mnemonic: CNAK

Type: R/W1C, 0

When set, CNAK indicates that a command cycle transmitted by the
DWMBA has received a NO ACK confirmation caused by either a
reference to a nonexistent memory location or a command cycle parity
error. This bit is set only if the reattempts fail.

Name: Reserved

Mnemonic: None

Type: R/W, O

Reserved; must be zero.

Name: Transaction Timeout

Mnemonic: TTO

Type: R/W1C, 0

When set, TTO indicates that a transaction initiated by the DWMBA
failed due to a transaction timeout. This bit is set only if the reattempts
fail.

Name: Node-Specitic Error Summary

Mnemonic: NSES

Type: RO, 0

When set, NSES indicates that a node-specific error condition has been
detected. The exact nature of the error is contained in DWMBA-specific
registers.

bit<11>

bit<10>

bits<9:4>

bits<3:0>

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

Name: Extended Test Fail

Mnemonic: ETF

Type: RWI1C, 0

. t 1
TiUsSt oc Zer- = jo 73

]

1
) a 5 ~

U

Name: Selt-Test Fail

Mnemonic: STF

Type: R/WI1C, 1

When set, STF indicates that the DWMBA has not yet passed its self-
test. This bit is cleared by the CPU node that executed the DWMBA

self-test when the DWMBA passes its self-test.

Name: Failing Commander ID

Mnemonic: FCID

Type: RO

The Failing Commander ID field logs the commander ID of a failing

transaction. FCID sets only if the retried transaction fails.

Name: Failing Command

Mnemonic: FCMD

Type: RO

The Failing Command field logs the command code of a failing

transaction. FCMD sets only if the retried transaction fails.

5-21

DWMBA/A XMI Module Registers

Failing Address Register (XFADR)

Failing Address Register (XFADR)

The Failing Address Register logs address and length information
associated with a failing transaction.

“

ADDRESS XMI nodespace base address + 0000 0008

3

1

3 2

09 0

Failing Address

L Failing Length (FLN)

bits<31:30>
Name: Failing Length

Mnemonic: FLN

Type: RO

This field logs the value of XMI D<31:30> during the command cycle
of a failing transaction.

bits <29:0>

5-22

Name: Failing Address

Mnemonic: None

Type: RO

This field logs the value of XMI D<29:0> during the command cycle
of a failing transaction.

DWMBA/A XMl Module Registers

Responder Error Address Register (AREAR)

Responder Error Address Register (AREAR)

AREAR logs the failing address received from a CPU node initializing an

IO write, read, or IDENT transaction to the DWMBA or the VAXBI. AREAR
is loaded when the DWMBA/A module ACKs the XMI’s C/A cycle.

AREAR is locked when the DWMBA is unable to complete the requested
operation, either a CPU write transaction that fails, resulting in the /O
Write Failure bit in the DWMBA/A module’s Error Summary Register being

set or a CPU read or IDENT transaction that results in the setting of the

Data NO ACK bit in the DWMBA/A module’s XBER register.

S

ADDRESS

bits <31:30>

bits <29:0>

XMI nodespace base address + 0000 000C

3

1

3 2

09 o

Responder Failing Address

|— Responder Failing Length (RFLN)

Name: Responder Failing Length

Mnemonic: RFLN

Type: RO

RFLN logs the value of XMI D<31:30> during the cycle that the

DWMBA accepts the C/A cycle for the XMI commander.

Name: Responder Failing Address

Mnemonic: None

Type: RO

The Responder Failing Address bits log the value of XMI D<29:0>

during the cycle that the DWMBA accepts the C/A cycle from the XMI

commander.

5-23

DWMBA/A XMl Module Registers

Error Summary Register (AESR)

Error Summary Register (AESR)

AESR is used to capture DWMBA/A module-related error conditions.

ADDRESS XMI nodespace base address + 0000 0010

3 3 22 21 11

10 6 5 09 6 5 876543210

MBZ MUST BE ZERO

|_ L |_ | |
XBI CABLE OK Failing Command (ECMD)

Failing Commander ID (EID)_’
XBIA INTERNAL ERROR

I/0 WRITE FAILURE

BCI AC LO

IBUS DMA-A DATA PE

IBUS DMA-A C/A PE

IBUS DMA-B DATA PE

IBUS DMA-B C/A PE

IBUS CPU DATA PE

bit<31>
Name: XBI Cable OK

Mnemonic: None

Type: RO

XBI Cable OK sets to one on initialization if the four IBUS cables are

correctly connected and if the DWMBA/B module has DC power from
the VAXBI backplane. If XBI Cable OK clears and the DWMBA/B
module has VAXBI DC power, then one or more of the cables is not
connected or is incorrectly installed.

bits <30:26>

5-24

Name: Reserved

Mnemonic: None

Type: RO, O

Reserved; must be zero.

bits <25:20 >

bits<10:16>

bits<15:8>

DWMBA/A XMI Module Registers

Error Summary Register (AESR)

Name: Failing Commander 1D

Mnemonic: EID

Type: RO

EID logs the XMI commander ID of a failed DWMBA 1/O write,

I/O read, or XMI IDENT transaction. The DWMBA will load this

register after it ACKs the XMI commander’s C/A cycle. EID locks if the

DWMBA is unable to complete the requested operation as follows:

1 A failing CPU write transaction that sets the I/O Write Failure bit in

the DWMBA/A module’s Error Summary Register.

2 A CPU read or IDENT transaction that sets the Data NO ACK bit

in the DWMBA/A module’s Bus Error Register (XBER).

The lock on EID clears when both of the locking error conditions clear.

Name: Failing Command

Mnemonic: ECMD

Type: RO

ECMD logs the XMI commander command of a failed DWMBA 1/0

write, I/O read, or XMI IDENT transaction. The DWMBA loads this

register after it ACKs the XMI commander’s C/A cycle. ECMD locks if

the DWMBA is unable to complete the requested operation as follows:

1 A failing CPU write transaction that sets the I/O Write Failure bit in

the DWMBA/A module’s Error Summary Register.

2 A CPU read or IDENT transaction that sets the Data NO ACK bit
in the DWMBA/A module’s Bus Error Register (XBER).

The lock on EID clears when the locking error conditions clear for both

ECMD and EID.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

5-25

DWMBA/A XMI Module Registers

Error Summary Register (AESR)

bit<7>

bit<6>

bit<5>

5-26

Name: XBIA Internal Error

Mnemonic: None

Type: R/W1C, 0

The XBIA Internal Error bit sets to indicate that an UNEXPLAINED

internal error to the DWMBA/A module gate array was detected,

generally a hardware problem where control logic encountered

UNDEFINED conditions. The DWMBA/A module issues an IVINTR

transaction with “memory write error” set in the Type field when XBIA

Internal Error sets.

Name: I/0O Write Failure During CPU Write Transaction

Mnemonic: /O Write Failure

Type: R/W1C, 0

I/O Write Failure During CPU Write transaction sets if the DWMBA/B

module is unable to complete a CPU write transaction to either its

register space or to VAXBI address space. Its assertion coincides with

the generation of an IVINTR transaction due to this error condition.

The DWMBA issues an IVINTR with "“mem write error” set in the Type

field when I/O Write Failure During CPU Write Transaction is asserted.

Software uses this bit and other error bits to determine the cause of a

DWMBA-generated IVINTR transaction.

When /O Write Failure During CPU Write Transaction sets, the
contents of the DWMBA/A module Responder Error Address Register,

the Failing Commander ID bits, and the Failing Command bits lock.

Name: BCI AC LO

Mnemonic: None

Type: R/WI1C, 1

The BCI AC LO bit sets when VAXBI power falls below specifications,
as indicated by an asserted BCI AC LO L signal (asserted = one). The
DWMBA issues an IVINTR with "mem write error” set in the Type field
when BCI AC LO is asserted so that software can determine the cause
of this IVINTR transaction. Software then clears BCI AC LO as part of

the interrupt service routine that executes as a result of the IVINTR.

The DWMBA self-test program clears BCI AC LO.

bit<4>

bit<3>

bit<2>

bit<1>

DWMBA/A XMI Module Registers

Error Summary Register (AESR)

Name: IBUS DMA-A Data Parity Error

Mnemonic: None

Type: RW1C, 0

IBUS DMA-A Data Parity Error sets when the DWMBA/A modiile

detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-A data buffer location. The DWMBA issues an IVINTR

with "mem write error” set in the Type field when IBUS DMA-A Data

Parity Error asserts.

Name: IBUS DMA-A C/A Parity Error

Mnemonic: None

Type: R/WI1C, ¢

IBUS DMA-A C/A Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-A C/A location. The DWMBA issues an IVINTR with

"mem write error” set in the Type field when IBUS DMA-A C/A Parity
Error asserts and the failing DMA transaction is a write or interrupt.

The DWMBA issues an error interrupt if this error bit is set and the

appropriate mask bit is also set.

Name: IBUS DMA-B Data Parity Error

Mnemonic: None

Type: R/W1C, 0

IBUS DMA-B Data Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-B data buffer location. The DWMBA issues an IVINTR

with "“mem write error” set in the Type field when IBUS DMA-B Data
Parity Error asserts.

Name: IBUS DMA-B C/A Parity Error

Mnemonic: None

Type: R/W1C, 0

IBUS DMA-B C/A Parity Error sets when the DWMBA/A module
detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-B C/A location. The DWMBA issues an IVINTR with

“mem write error” set in the Type field when IBUS DMA-B C/A Parity
Error asserts and the failing DMA transaction is a write. The DWMBA
issues an error interrupt if this error bit is set and the appropriate mask

bit is also set.

5-27

DWMBA/A XMI Module Registers

Error Summary Register (AESR)

bit<0>

5-28

Name: IBUS CPU DATA Parity Error

Mnemonic: None

Type: RW1C, 0

IBUS CPU DATA Parity Error sets when the DWMBA/A module detects

a parity error on the IBUS when the DWMBA/B module was loading

CPU DATA location during a CPU-initiated I/O read or IDENT. The
DWMBA issues a Read Error Response (RER) to the commander when
IBUS CPU DATA Parity Error asserts. The DWMBA issues an error

interrupt to the XMI if this error bit is set and the appropriate mask bit

is also set.

DWMBA/A XMl Module Registers

Interrupt Mask Register (AIMR)

Interrupt Mask Register (AIMR)

AIMR enables/disables the generation of an error interrupt transaction

when the corresponding error bit in both the DWMBA/A module’s XMI

Bus Error Register (XBER) and the DWMBA/A module’s Error Summary

Register (AESH) is set.

ADDRESS XMI nodespace base address + 0000 0074

3 2 2

1 8 3 N
N 2

1 N

=11

4 3-

3 22 2 21111

o 76 4 09876 543210

MBZ MBZ 0 MUST BE ZERO

TR _l
Diagnostic Read or Write

Diagnostic Read or Write

INTR on IBUS DMA-A C/A PE

Diagnostic Read or Write

INTR on IBUS DMA-B C/A PE

INTR on IBUS CPU DATA PE

INTR on Command NO ACK/NXM

INTR on Read Error Response

INTR on Read Sequence Error

INTR on No Read Response

INTR on Corrected Read Data

INTR on Write Data NO ACK

INTR on Read/IDENT data NO ACK

INTR on Write Sequence Error

INTR on Parity Error

INTR on Corrected Confirmation

Enable IVINTR Transactions

5-29

DWMBA/A XMI Module Registers

Interrupt Mask Register (AIMR)

bit<31>

CAUTION:

Name: Enable IVINTR Transactions

Mnemonic: None

Type: R/W, 0

When Enable IVINTR Transactions is set and the IVINTR Destination
Register is properly configured, IVINTRs are enabled and can be issued
on the XMI bus.

The Enable IVINTR Transactions bit MUST be set to ensure proper
error reporting in the case of asynchronous write failures and to report

the occurrence of a pending VAXBI power-fail not initiated by XMI AC

LO, XMI DC LO, or XBI Node Reset.

bits <30:28>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero

bit<27>
Namae: INTR on Corrected Confirmation

Mnemonic: None

Type: R/W, 0

When INTR on Corrected Confirmation sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates an
interrupt request if XBER<23> (PE) is set.

bits <26:24>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<23>

5-30

Name: INTR on Parity Error

Mnemonic: None

Type: R/W, 0

When the INTR on Parity Error bit sets, the DWMBA/A module asserts
the IR XMI ERR BIT SET L line of the IBUS, which generates an
interrupt request if XBER< 23> (PE) is set.

bit<22>

bit<21>

bit<20>

bit<19>

bit<18>

DWMBA/A XMl Module Registers

Interrupt Mask Register (AIMR)

Name: INTR on Write Sequence Error

Mnemonic: None

Type: R/W, 0

When the INTR on Write Sequence Error bit sets, the DWMBA/Aor bi

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if XBER<22> (WSE) is set.

Name: INTR on Read/IDENT NO ACK

Mnemonic: None

Type: R/W, 0

When the INTR on Read/IDENT NO ACK sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates an

interrupt request if XBER<21> (RIDNAK) is set.

Name: INTR on Write Data NO ACK

Mnemonic: None

Type: R/W, 0

When the INTR on Write Data NO ACK sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates an

interrupt request if XBER<20> (WDNAK) is set.

Name: INTR on Corrected Read Data

Mnemonic: None

Type: R/W, 0

When the INTR on Corrected Read Data bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if XBER<19> (CRD) is set.

Name: INTR on No Read Response

Mnemonic: None

Type: R/W, 0

When the INTR on No Read Response bit sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates an

interrupt request if XBER<18> (NRR) is set.

5-31

DWMBA/A XMI Module Registers
Interrupt Mask Register (AIMR)

bit<17>

bit<16>

bit<15>

bit<14>

bit<13>

5-32

Name: INTR on Read Sequence Error

Mnemonic: None

Type: R/W, 0

When the INTR on Read Sequence Error bit sets, the DWMBA/A
module asserts the IR XMI ERR BIT SET L line of the IBUS, which
generates an interrupt request if XBER<17> (RSE) is set.

Name: INTR on Read Error Response

Mnemonic: None

Type: R/W, 0

When the INTR on Read Error Response bit sets, the DWMBA/A
module asserts the IR XMI ERR BIT SET L line of the IBUS, which
generates an interrupt request if XBER<16> (RER) is set.

Name: INTR on Command NO ACK

Mnemonic: None

Type: R/W, 0

When the INTR on Command NO ACK bit sets, the DWMBA/A
module asserts the IR XMI ERR BIT SET L line of the IBUS, which
generates an interrupt request if XBER< 15> (CNAK) is set.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Diagnostic Read or Write

Mnemonic: None

Type: RO, X

Diagnostic Read or Write is used by diagnostic tests.

bits<12:5>

bit<4>

bit<3>

bit<2>

bit<1>

DWMBA/A XMI Module Registers

Interrupt Mask Register (AIMR)

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Diagnostic Read or Write

Mnemonic: None

Type: RO, X

Diagnostic Read or Write is used by diagnostic tests.

Name: INTR on IBUS DMA-A C/A PE

Mnemonic: None

Type: R/W, 0

When the INTR on IBUS DMA-A CA PE bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if a parity error was detected on the

IBUS when the DWMBA/B module was loading a DMA-A C/A location.

Name: Diagnostic Read or Write

Mnemonic: None

Type: RO, X

Diagnostic Read or Write is used by diagnostic tests.

Name: INTR on IBUS DMA-B C/A PE

Mnemonic: None

Type: R/W, 0

When the INTR on IBUS DMA-B C/A PE bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if a parity error was detected on the

IBUS when the DWMBA/B module was loading a DMA-B C/A location.

5-33

DWMBA/A XMI Module Registers

Interrupt Mask Register (AIMR)

bit<0>

5-34

Name: INTR on IBUS CPU DATA PE

Mnemonic: None

Type: R/W, 0

When the INTR on IBUS CPU DATA PE bit sets, the DWMBA/A
module asserts the IR XMI ERR BIT SET L line of the IBUS, which
generates an interrupt request if a parity error was detected on the
IBUS when the DWMBA/B module was loading the CPU data location.

DWMBA/A XMl Module Registers

Implied Vector Interrupt Destination/Diagnostic Register (AIVINTR)

Implied Vector Interrupt Destination/Diagnostic

Register (AIVINTR)

The AIVINTR is used during diagnostics and DWMBA-initiated IVINTR

transactions.

o

ADDRESS XMI nodespace base address + 0000 0018

3 11

i 6 5 0

Diagnostic Read or Write

L— IVINTR Destination —)

bits <31:0>
Name: Diagnostic Read or Write

Mnemonic: None

Type: RW

The Diagnostic Read or Write bits are used by diagnostic routines

to verify the integrity of the DWMBA/A module’s main data path

inside the DWMBA/A module gate array. When used in this manner,

diagnostics need to raise the processor’s IPL level above IPL 30 so

that, should an error occur causing the DWMBA/A module to issue an

IVINTR transaction, an unexpected interrupt will not occur.

During DWMBA-initiated IVINTR transactions, bits<15:0> are used as

IVINTR Destination bits.

bits <15:0>
Name: IVINTR Destination

Mnemonic: None

Type: R/W, 0

The IVINTR Destination bits determine which nodes on the XMI will

be targeted by the DWMBA when it issues an Implied Vector Interrupt

transaction. Each of the 16 bits corresponds to one of the 16 XMI

nodes (only 14 nodes are used in the VAX 6200). When a bit is set, the

selected node will be the target. For example, if bit<12> becomes set,

then XMI node 12 is the node that the DWMBA selects to participate in

the IVINTR transaction. Any number of bits can be set.

A second use for the IVINTR Destination bits is by diagnostics.

5-35

DWMBA/A XMI Module Registers

Diag 1 Register (ADG1)

Diag 1 Register (ADG1)

ADGH1 is used by diagnostics to test parity and other features in the
DWMBA/A module and the IBUS.

ADDRESS

bit<31>

bits <30:7>

5-36

XMI nodespace base address + 0000 001C

3

1

3

0 76543210

MUST BE ZERO (MBZ) MBZ

L Auto Retry Disable (ARD) ’
FORCE OCTAWORD XFER

FORCE DMA-A BUSY

FORCE DMA-B BUSY

GEN BAD IBUS RCV PAR

GEN BAD IBUS XMIT PAR

CAUTION:

Name: Auto Retry Disable

Mnemonic: ARD

Type: R/W, 0

Setting Auto Retry Disable disables reattempts of failed XMI
commander transfers. XMI error indications (NO ACKs) are
immediately logged in the XMI Bus Error Register, and the appropriate
action is taken.

A NO ACK confirmation is a legal response that an XMI node may
issue if it is currently unable to respond to the requested transaction
because it is busy. If the user sets Auto Retry Disable, the user
must ensure that either a "busy” NO ACK cannot be issued by the
targeted node on the XMI or the DWMBA has the capability to handle
a transaction that may not complete.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<6>

bit<&>

bit<4>

DWMBA/A XMI Module Registers

Diag 1 Register (ADG1)

CAUTION:

Name: Force Qctaword Transfers

Mnemonic: None

Type: R/W, 0

When Force Octaword Transfers is set, the DWMBA/A module

generates octaword DMA transactions regardless of the length code

that the DWMBA/B module loaded into the DMA buffer. The

Force Octaword Transfers bit is used with Force DMA-A/B Busy

(ADG1<5:4>), Flip FADR bit 1 (BDCR1<6>), and Flip Bit 29

(BDCR1<4>) to allow diagnostics to test the DWMBA’s DMA buffer

memory using CPU loopback transactions to XMI memory.

When Flip Bit 29 (BDCR1<4>) has been set to use the diagnostic

feature "DMA loopback mode,” only LEGAL addresses are permitted.

ILLEGAL addresses result in UNDEFINED data. The CPU-generated

address must be either 2xxx xxx0 or 2xxx xxx4 to be legal. The

following are ILLEGAL addresses: 2xxx xxx8 and 2xxx xxxC.

CAUTION:

Name: Force DMA-A Buffer Busy

Mnemonic: None

Type: R/W, O

When set, the Force DMA-A Buffer Busy bit forces the DMA buffer

control logic to place the DMA-A buffer into the BUSY state, forcing all

DMA traffic through the DMA-B buffer.

If both ADG1<5> and ADG1<4> are set, all DMA transactions

(VAXBI transactions that select the DWMBA as the slave and whose

address falls within the bounds of the Starting and Ending Address

Registers) will stall.

CAUTION:

Name: Force DMA-B Buffer Busy

Mnemonic: None

Type: R/W, 0

When set, the Force DMA-B Buffer Busy bit forces the DMA buffer

control logic to place the DMA-B buffer into the BUSY state, forcing all

DMA traffic through the DMA-A buffer.

If both ADG1<5> and ADG1<4> are set, all DMA transactions

(VAXBI transactions that select the DWMBA as the slave and whose

address falls within the bounds of the Starting and Ending Address

Registers) will stall.

5-37

DWMBA/A XMI Module Registers

Diag 1 Register (ADG1)

bit<3>

bit<2>

bits<1:0>

5-38

Name: General Bad IBUS Receiver Parity

Mnemonic: GEN BAD IBUS RCV PAR

Type: R/W, O

Setting GEN BAD IBUS RCV PAR causes the parity check bit on the
DWMBA/A module for IBUS parity to be a one, regardless of the
data that is loaded onto the buffer. Diagnostic routines use this bit
and specific data patterns to force IBUS parity check errors on the
DWMBA/A module when the DWMBA/B module loads the contents of
the C/A or data buffers contained in the DWMBA/A module gate array.

Name: General Bad IBUS Transmit Parity

Mnemonic: GEN BAD IBUS XMIT PAR

Type: R/W, 0

Setting GEN BAD IBUS XMIT PAR causes the parity bit sent to the
DWMBA/B module for IBUS parity to be a one, regardless of the data
that resides in the buffer. Diagnostic routines use this bit and specific
data patterns to force IBUS parity errors on the DWMBA/B module
when the DWMBA/B module fetches the contents of the C/A or data
buffers contained in the DWMBA/A module gate array.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

DWMBA/B VAXBI Module Registers

Control and Status Register (BCSR)

Control and Status Register (BCSR)

BCSR contains DWMBA/B module operational control and status bits.

ADDRESS XMI nodespace base address + 0000 0040

33

10 6543210

MUST BE ZERO o 0

IBUS P.E. INTR Mask

——Enable XBI Interrupts (to XMI processor(s))

BI BAD

BI INTLCK Read Failed Mask

bit<31>
Name: Enable XB! Interrupts

Mnemonic: None

Type: R/W, O

Setting Enable XBI Interrupts enables the DWMBA to generate XMI

interrupt requests in response to DWMBA-generated or VAXBI-

generated interrupts. The appropriate interrupt mask bits must also

be set for interrupts to be generated.

bits <30:6>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<5>
Name: LED

Mnemonic: None

Type: R/W, 0

LED powers up cleared, causing LED D1 to be off. Writing a one to

this bit turns LED D1 on.

5-39

DWMBA/B VAXBI Module Registers

Control and Status Register (BCSR)

bit<4>

bit<3>

bit<2>

bit<1>

bit<0>

5-40

Name: Bl BAD

Mnemonic: None

Type: RO

The initial state of the BI BAD bit on power-up or reset reflects the
state of the BI BAD L line on the VAXBI by monitoring the line. It is
used by console initialization software and error handling software to
detect faulty VAXBI nodes. The assertion of BI BAD L on a VAXBI

node results in the assertion of the XMI BAD line.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Bl Interlock Read Failed Mask

Mnemonic: None

Type: R/W, 0

Setting BI Interlock Read Failed Mask to a one causes the DWMBA
to generate an error interrupt request if BESR<2> (BI Interlock Read

Failed) is set.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: IBUS Parity Error Interrupt Mask

Mnemonic: None

Type: R/W, 0

Setting IBUS Parity Error Interrupt Mask to one causes the DWMBA to
generate an error interrupt request if BESR<0> (XBIB-Detected IBUS
Parity Error) is set.

DWMBA/B VAXBI Module Registers

Error Summary Register (BESR)

Error Summary Register (BESR)

The BESR contains status bits for errors detected by the DWMBA/B

module.

{55

ADDRESS

bits<31:17>

bits<16:13>

XMI nodespace base address + 0000 0044

~
3

=

O

b
=

W D
N

-

876543210

MUST BE ZERO

BI Interrupt-Pending Status

Multiple CPU Errors

Command/Address Fetch Failed —

Slave Sequencer Transaction Failed —

Master Sequencer Transaction Failed —

Illegal CPU Command —

BI Interlock Read Failed —

IDENT Error —

XBIB-Detected IBUS Parity Error —

Interrupt Sent Status —-I J
XBI Interrupt-Pending Status

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Interrupt Sent Status

Mnemonic: None

Type: RO, 0

The Interrupt Sent Status bits correspond to the 4-bit interrupt sent

flops internal to the gate array, with BESR<16> corresponding to

IPL< 17>, BESR< 15> corresponding to ILP<16>, etc. The interrupt

sent status flops and BSER<12:8> determine the current interrupt-

pending status.

5-41

DWMBA/B VAXBI Module Registers

Error Summary Register (BESR)

bit<12>

bits<11:8>

bit<7>

bit<6>

5-42

Name: XBI Interrupt-Pending Status

Mnemonic: None

Type: RO, 0

The XBI Interrupt-Pending Status bit is a direct read of the XBI
interrupt-pending flip-flop. A one indicates that a DWMBA interrupt is
pending.

Name: Bl Interrupt-Pending Status

Mnemonic: None

Type: RO, 0

The BI Interrupt-Pending Status bits set to indicate that one or more
of the VAXBI interrupt-pending flip-flops is set. When asserted, they
indicate that a VAXBI-generated interrupt targeting the DWMBA was
successfully received and that a CPU IDENT at the correct IPL has not
yet been received. These bits are a direct read of the VAXBI interrupt-
pending flip-flops, with BESR<11> corresponding to IPL<17> and
BESR<8> corresponding to IPL<14>.

Name: Multiple CPU Errors

Mnemonic: None

Type: R/W1C, 0

Multiple CPU Errors sets when BESR<4> and BESR<0> have
previously set due to a CPU transaction IBUS parity error when
C/A or data is removed from the CPU buffer. This indicates that
an error occurred on a subsequent CPU transaction before software had
acknowledged a previously failed CPU transaction. This bit does not
set on a parity error on write data accompanying the command/address
on which an error was detected since the transaction has already been
recorded as having failed.

Name: Command/Address Fetch Failed

Mnemonic: C/A Fetch Failed

Type: RO, 0

C/A Fetch Failed, when set with BESR<0> set, indicates that the
DWMBA/B module detected an IBUS parity error on the C/A fetch
from the CPU C/A buffer. C/A Fetch Failed will NOT set on a
DWMBA/B module detected IBUS parity error when write data is
fetched from the CPU Write Data buffer.

bit<5>

bit<4>

bit<3>

DWMBA/B VAXBI Module Registers

Error Summary Register (BESR)

Name: Slave Sequencer Transaction Failed

Mnemonic: None

Type: RO, 0

Slave Sequencer Transaction Failed sets with BESR<0> to indicate thatt

an IBUS parity error occurred while the slave sequencer had control of

the IBUS during a read data fetch from the DMA read buffer.

NOTE:

Name: Master Sequencer Transaction Failed

Mnemonic: None

Type: RO, 0

Master Sequencer Transaction Failed sets with BESR<0> to indicate

that an IBUS parity error occurred while the master sequencer had

control of the IBUS during a C/A or write data fetch from the CPU

buffer.

This bit will be set but NOT VALID unless bit<0> in this register is

also set.

Name: lllegal CPU Command

Mnemonic: None

Type: RO

Illegal CPU Command sets to indicate that an illegal CPU command

was decoded by the DWMBA/B module. This error occurs only if an

undetected multi-bit parity error happened during the time when the

DWMBA/B module fetches the commmand/address from the CPU

buffer. The error results in the master sequencer terminating the

transaction and signaling the DWMBA/A module that the transaction

failed.

The Tllegal CPU Command bit does NOT generate an error interrupt.

5-43

DWMBA/B VAXBI Module Registers

Error Summary Register (BESR)

bit<2>

bit<1>

5-44

Name: Bl Interlock Read Failed

Mnemonic: None

Type: R/W1C, 0

BI Interlock Read Failed sets to indicate that a VAXBI-to-XMI memory
Interlock Read operation failed to successfully complete on the VAXBI.
When this error occurs, it is highly probable that the lock set in XMI
memory will not be unlocked by the VAXBI device that issued the
Interlock Read. The contents of the Timeout Address Register and the
setting of BI Interlock Read Failed can be used to determine the locked
address in XMI memory. The operating system can clear the lock in
XMI memory by writing to a specific CSR in XMI memory.

BI Interlock Read Failed sets whenever a VAXBI Interlock Read
command has been decoded and the summary EV code Illegal CNF
Received for Slave Data (ICRSD) is decoded during a VAXBI Interlock
Read transaction. Setting BI Interlock Read Failed locks the contents
of the Timeout Address Register. Writing a one to BI Interlock Read
Failed clears both the bit and its lock on the register.

When BI Interlock Read Failed is set with its corresponding mask bit,
an error interrupt request is generated.

Name: IDENT Error

Mnemonic: None

Type: RW1C, 0

IDENT Error sets to indicate that the DWMBA received an XMI
IDENT transaction and no VAXBI nor DWMBA interrupt requests
were pending at the IDENTed IPL. A set IDENT Error indicates an
error condition on the XMI bus with multiple IDENTs being issued on
the XMI for the same interrupt transaction. (Only one XMI IDENT is
issued on the XMI if a single interrupt targets multiple CPUs.) All other
CPUs that are waiting for an XMI bus grant to issue their XMI IDENTSs
will cancel their IDENT transactions if they see an IDENT transaction
that matches the node ID and IPL of the IDENT that they are waiting to
issue.

IDENT Error sets if a CPU IDENT command is decoded and no
interrupts are pending in the DWMBA/B module gate array.

The setting of IDENT Error does NOT generate a DWMBA error
interrupt.

bit<0>

DWMBA/B VAXBI Module Registers

Error Summary Register (BESR)

Name: XBIB-Detected IBUS Parity Error

Mnemonic: None

Type: R/Wi1C, 0

XBIB-Detected IBUS Parity Error sets if the DWMBA/B module detects

an IBUS parity error on a CPU transaction’s C/A cycle, on a write data

cycle when the data is removed from the CPU buffer by the master

sequencer, or on a DMA transaction read data cycle when the read

data is removed from the DMA read buffer by the slave sequencer.

When XBIB-Detected IBUS Parity Error sets, the appropriate bit of

BESR<6:4> sets.

The Timeout Address Register also locks on IBUS parity errors detected

during DMA read data fetches from the buffer.

Writing a one to XBIB-Detected IBUS Parity Error also clears

BESR<6:4> and the lock on the Timeout Address Register.

When the XBIB-Detected IBUS Parity Error bit is set with its

corresponding mask bit, an error interrupt request is generated.

5-45

DWMBA/B VAXBI Module Registers

Interrupt Destination Register (BIDR)

Interrupt Destination Register (BIDR)

BIDR is used by the DWMBA module to determine the targeted nodes on
the XMI for an interrupt transaction. BIDR is used by both VAXBl-initiated
and DWMBA error/status-initiated interrupts.

—

ADDRESS XMI nodespace base address + 0000 0048

3 11

1 6 5 0

DIAGNOSTIC READ/WRITE INTERRUPT DESTINATION

bits<31:0>
Name: Diagnostic Read/Write

Mnemonic: None

Type: R/W

Diagnostic R/W bits are used by diagnostics to verify much of the data
path integrity of the DWMBA/B module gate array.

bits<15:0>
Name: Interrupt Destination

Mnemonic: None

Type: R/W, 0

The Interrupt Destination bits determine the nodes on the XMI that are
targeted by the DWMBA when it issues an interrupt transaction. Each
bit in the 16-bit field corresponds to one of the 16 XMI nodes (only 14
nodes are used in the VAX 6200). When a bit is set to one, the selected
node is the targeted node that the DWMBA will interrupt. Multiple bits
can be set to interrupt as many XMI nodes as the user desires.

During diagnostics, bits<15:0> are used as part of the Diagnostic
Read/Write bits<31:0>, as described above.

5-46

DWMBA/B VAXBI Module Registers

Timeout Address Register (BTIM)

Timeout Address Register (BTIM)

The Timeout Address Register is loaded each time a VAXBI

command/address is latched off the VAXBI. BTIM locks when (1) a VAXBI-
to-XMI memory Interlock Read fails, causing the Bl Interlock Read Failed
bit (BESR<2>) 10 set, or (2) a VAXBi-to-XMi memory read-type fails,
causing the XBIB-Detected IBUS Parity Error bit (BESR<0>) to set.

(0

ADDRESS XMI nodespace base address + 0000 004C

332

109 0

BI DMA ADDRESS

l— Length

bits<31:0>
Name: Bl DMA Failing Address

Mnemonic: None

Type: RO

The BI DMA Failing Address contains the longword physical address

(bits<29:0>) and length of the received VAXBI-to-XMI transaction

(bits<31:30>.) If no errors are detected, the register reads back the

last VAXBI transaction. The register logically locks upon error and

unlocks when that error clears.

5-47

DWMBA/B VAXBI Module Registers

Vector Offset Register (BVOR)

Vector Offset Register (BVOR)

BVOR contains a value that is concatenated with the VAXB! device-
supplied vector, if bits< 13:9> of the VAXBI-supplied vector are equal to
2ero.

“

ADDRESS XMI nodespace base address + 0000 0050

3 11

1 6 5 9 8 0

MUST BE ZERO MUST BE ZERO

XBI Vector Offset Register (VOR) ——l

bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<15:9>
Name: XBI Vector Offset Register

Mnemonic: VOR

Type: R/W, 0

BVOR is a 7-bit register loaded by software upon system initialization.
BVOR contains a value that is concatenated with the VAXBI device-
supplied vector, providing that bits<13:9> of the VAXBI-supplied
vector are equal to zero, ensuring that multiple DWMBA/VAXBIs with
the same devices on each bus will have a unique entry point into the
SCB.

bits<8:0>

5-48

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

DWMBA/B VAXBI Module Registers

Vector Register (BVR)

Vector Register (BVR)

BVR is loaded by software upon system initialization. BVR contains the

DWMBA vector that will be transmitted to the IDENTing XMI node when

the DWMBA has a pending interrupt request that matches the interrupt

source and iPL sent during the XMi iDENT transaction.

—

ADDRESS XM!I nodespace base address + 0000 0054

3 11

1 6 5 210

MUST BE ZERO XBI VECTOR MBZ

bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<15:2>
Name: XBI Vector

Mnemonic: None

Type: R/W, 0

The XBI vector is transmitted to the IDENTing XMI node when the

DWMBA has a pending interrupt request that matches the interrupt

source and IPL sent during the XMI IDENT transaction. This vector is

NOT sent for any VAXBI-generated interrupts or BIIC interrupts due to

error conditions.

bits<1:0>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

5-49

DWMBA/B VAXBI Module Registers

Diagnostic Control Register 1 (BDCR1)

Diagnostic Control Register 1 (BDCR1)

The BDCR1 is used by diagnostics to perform various diagnostic functions
on the DWMBA/B module, ensuring that its hardware operates properly.

ADDRESS XMI nodespace base address + 0000 0058

3

1 _ 76543210

MUST BE ZERO 0 MBZ

Flip FADDR Bit 1 -——J l
Flip Bit 29

BIIC Loopback Mode

Force BCI Bad Parity

bits<31:7>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bit<6>
Name: Flip FADDR Address Bit 1

Mnemonic: None

Type: R/W, O

The Flip FADDR Address Bit 1, used with Force DMA-A/B Busy
bits (ADG1<5:4>) and Flip Bit 29, enables diagnostics to test the
DWMBA’s DMA buffer memory using CPU loopback transactions to
XMI memory. When Flip FADDR Address Bit 1 is set, the invert state
of FADDR Address Bit 1 is used to address the data words in the
buffer, allowing diagnostics to use the buffer locations that normally
would only be used for transfers greater than a quadword.

Setting Flip FADDR Address Bit 1 only affects FADDR address bit 1
when the DWMBA/B module logic accesses data locations in the buffer.
During the cycle when the C/A is addressed in the buffer, the setting of
Flip FADDR Address Bit 1 has no effect on the buffer address.

5-50

bit<5>

bit<4>

bit<3>

bit<2>

DWMBA/B VAXBI Module Registers

Diagnostic Control Register 1 (BDCR1)

Name: Reserved

Mnemonic: None

Type: RO, 0

Name: Flip Bit 29

Mnemonic: None

Type: R/W, 0

Setting Flip Bit 29 inverts the state of bit 29 and BCI parity after the

CPU C/A has been fetched and decoded by the master sequencer.

The new address, which now resides in XMI memory space, is issued

to the VAXBI. The DWMBA is the selected slave for the transaction,

which processes this transaction like any other VAXBL-initiated DMA

longword transaction, allowing diagnostic programs executing on the

XMI to issue a CPU transaction to the DWMBA, which then converts it

into a DMA transaction.

Name: BIIC Loopback Mode

Mnemonic: None

Type: R/W, 0

All requests to the master port of the BIIC become loopback requests

whenever BIIC loopback mode is set, allowing the master sequencer

to make loopback requests to access BIIC registers. The loopback

mode prevents the BIIC from initiating VAXBI cycles to access the BIIC

registers. When the BIIC is in loopback mode, it ignores the node ID

portion of the address presented to it.

Name: Force BCI Bad Parity

Mnemonic: None

Type: R/W, 0

When Force BCI Bad Parity is set, bad parity is forced onto the BCI bus

to the VAXBI during CPU C/A, CPU data cycles, and DMA read data

cycles.

5-51

DWMBA/B VAXBI Module Registers
Diagnostic Control Register 1 (BDCR1)

bits<1:0>

5-52

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

DWMBA/B VAXBI Module Registers

Reserved Register

Reserved Register

The Reserved Register is an undefined register that is reserved for future

use. Reads to this register return UNDEFINED data with correct parity.

Writes to this register appear to complete successfully.

—

ADDRESS XM nodespace base address + 0000 005C

3

1 0

RESERVED

bits<31:0>
Name: Reserved Register

Mnemonic: None

Type: Undefined

The reserved register bits are reserved for future use.

5-53

VAXBI Registers

Device Register (DTYPE)

Device Register (DTYPE)

The VAXBI Device Register is loaded during self-test by console code with
the DWMBA VAXBI device type and by the revision select logic with the
revision level.

“

ADDRESS VAXBI nodespace base address + 0000 0000

3 11

1 6 5 0

Device Revision Device Type

bits<31:16 >
Name: Device Revision

Mnemonic: DREV

Type: R/W, 0

Identifies the revision level of the device. The revision level is loaded
by hardware during BCI DC LO. For revision H, the DREV field
contains 7 (hex). There is no revision I. Starting with revision J, the
DREV field reflects the letter revision of the module as follows:

bits<15:0>

5-54

DWMBA/B Revision DREV (decimal) DREV (hex)

JO 10 000A

J1 10 000A

KO 11 000B

K1 11 000B

20 26 001A

Name: Device Type

Mnemonic: DTYPE

Type: R/W, 0

Identifies the type of VAXBI node. The processor’s console code loads
DTYPE with 2107 (hex) after successful completion of self-test.

5.5

DWMBA XMi-to-VAXBI Adapter

Interrupts

The DWMBA XMI-to-VAXBI adapter implements two mechanisms for

generating interrupts to XMI CPUs. One is in response to interrupts from

the VAXBI bus and one in response to errors detected on the XMI bus.

The BIiT aiso generates error interrupts on the VAXBI in response to

errors on the VAXBI.

5-55

DWMBA XMI-to-VAXBI Adapter

5.5.1 DWMBA XMi-to-VAXBI Adapter Vector Formats and Requirements

Interrupt vectors returned by VAXBI nodes, as seen by the XMI IDENT
transactions, fall into three categories:

* XMI bus device interrupt vectors

* UNIBUS device interrupt vectors

* VAXBI bus device interrupt vectors

Figure 5-2 XMI Bus Vector Format

XMI VECTOR MBZ

Figure 5-3 UNIBUS Vector Format

[
l

(
=

W 9 8 210

MBZ UNIBUS Vector |MBZ

I—Start ing Address Offset

Figure 5-4 VAXBI Node Bus Vector Format

11 1

5 4 8765 210 5 9 8 0

MBZ S |Node ID{MBZ XBI VOR VAXBI VECTOR<8:0>

f——— VAXBI VECTOR —)

if <13:9> of BI VECTOR = O

5-56

DWMBA XMi-to-VAXBI Adapter

XMI device-initiated interrupts return vectors in the format shown

in Figure 5-2 as a response to an XMI IDENT transaction. It is the

responsibility of the operating system software to assign vector values

to any vector register(s) that may exist on XMI devices that are capable of

generating interrupt requests.

There are several interrupt vectors returned by offsettable devices,

including the BUA (VAXBI to UNIBUS Adapter) and the BI-LESI (VAXBI

to Low-End Storage Interconnect). These other buses support devices that

generate interrupts that must be differentiated from vectors generated by

VAXBI devices. Figure 5-3 shows an example of the UNIBUS vector.

The UNIBUS vector field is an architecturally fixed vector returned by

UNIBUS devices. Bits<8:0> cannot be modified by software. The SAO

field must be a non-zero software assemble offset value to be used to index

into the SCB with a unique vector.

5.5.1.1 XMI Bus Vector Format

5.5.1.2 Offsettable Bus Vectors

5.5.1.3 VAXBI Node Vectors

The VAXBI node vector format has bits<15:9> as non-zero and are

assigned a value by the operating system during initialization. The offset
value, contained in XBI VOR (Vector Offset Register or BVOR) on the

DWMBA/B module is concatenated with the vector value returned by a

VAXBI node, bits<8:2>, providing that bits<13:9> of the VAXBI vector

are zero. This new value is returned to the XMI commander during XMI

IDENT cycles when a VAXBI node generates the interrupt request. If

bits<13:9> of the VAXBI vector are non-zero, the vector will not be
concatenated with the BVOR and will be passed to the XMI commander

unchanged.

VAXBI device-initiated interrupts return vectors in the format shown in
Figure 5-4 as a response to an XMI IDENT transaction. Node ID is the

VAXBI node ID of the interrupt node. S is the interrupt vector number,

which can be one of four possible interrupt vectors per node. BVOR must
be a non-zero software assemble offset value to be used to index into the

SCB with a unique vector for multiple VAXBI devices. BVOR bits<15:9>

may be supplied by the DWMBA. The BVOR is necessary as the XMI is

capable of supporting multiple DWMBA nodes, where the same device

may exist on multiple VAXBIs. Since some VAXBI nodes might have fixed

vectors that are unchangeable by software, the BVOR is used to ensure that
multiple VAXBI devices with fixed vectors have a unique entry point into

the SCB.

5-57

DWMBA XMI-to-VAXBI Adapter

5.5.2 Interrupt Levels and Vectors

Table 5-6 lists the interrupt conditions used by the DWMBA adapter.

Table 5-6 DWMBA Adapter Interrupt Levels and Vectors

IPL (hex) Name Vector (hex)

17 DWMBA VAXBI Error/Status XMI-7

Change

17 VAXBI Level 7 Interrupt VAXBI-7

16 VAXBI IPINTR 6 Interrupt BIIC UINTRCSR REG-6'

16 VAXBI Level 6 Interrupt VAXBI-6

15 VAXBI Level 5 Interrupt VAXBI-5

14 VAXBI Level 4 Interrupt VAXBI-4

'"The DWMBA treats IPINTR as an error. The IPINTR value is written in the
UINTRCSR as a generic VAXBI interrupt. For example, if bits<13:0> of the vector

value equals zero, then the DWMBA will logically "OR" the contents of the BVOR

(Vector Offset Register) with the value contained in bits<8:0> of the vector.

5.5.3 Types of Interrupts

5-58

Two types of interrupts are generated or passed through the DWMBA to
the XMI bus. They are the interrupts generated by the DWMBA due to
a status change or error condition and those interrupts generated on the

VAXBI bus by 1/0O devices. The VAXBI interrupts are translated into XMI
interrupt transactions.

5.5.3.1 DWMBA-Generated Interrupts

The DWMBA generates two types of interrupts: error interrupts and
power-fail interrupts.

Errors detected by the DWMBA logic set bits in the DWMBA/A module
and DWMBA/B module error summary registers. If the corresponding
interrupt mask bit is enabled, an interrupt at level 7 (IPL 17) is requested

by the DWMBA. A DWMBA error interrupt request is cleared when an
XMI IDENT transaction is received at IPL 17.

The DWMBA generates an IVINTR transaction when it detects that a power
failure is about to take place on the VAXBI. When BCI AC LO is asserted,
the DWMBA/A module generates an IVINTR transaction with “mem write
error” set in the Type field that targets the XMI node(s) specified in the

Destination field of the command. During power-up and initialization, the
DWMBA does not issue IVINTR transactions.

DWMBA XMI-to-VAXBI Adapter

5.5.3.2 VAXBI-Generated Interrupts

Interrupts directed at the DWMBA node are passed on to the XMI bus.

The BIIC handles INTR transactions directed at the DWMBA node and sets

one of four interrupt level flip-flops, which store the acceptance of an INTR

transaction at the given level. The INTR transaction causes the DWMBA/B

module to issue an XMI interrupt command, at the corresponding IPL, to

be posted on the XML

The BIIC generates INTR transactions on the VAXBI in response to errors

detected on the VAXBI. The user has control of this mechanism via the

BIIC Error Interrupt Control Register. The DWMBA's BIIC is configured to

select itself as a destination node for INTR transactions, thereby informing

an XMI CPU of VAXBI-related errors.

Interprocessor interrupts generated by VAXBI nodes targeting the DWMBA

are supported. For the DWMBA to receive interprocessor interrupts, the

software must set the DWMBA/B module’s IPINTR Mask Register and

enable the IPINTREN bit in the DWMBA/B module’s BCI Control and

Status Register.

The DWMBA handles interprocessor interrupts by asserting the BCI INT

6 signal on the DWMBA/B module’s BIIC, causing the BIIC to generate an

IPL 16 interrupt. The DWMBA/B module’s BIIC Interrupt Destination

Register configures to select itself as the destination of the interrupt

transaction, thus causing this interrupt to be received by the DWMBA/B

module as a generic VAXBI IPL 16 interrupt. When the DWMBA/B module

receives an IDENT transaction from the XM, it issues the IDENT onto the

VAXBL. If no other interrupts are pending on the VAXBI, the DWMBA/B

module’s BIIC issues the vector that had been previously written by

software during initialization onto the BIIC’s UINTRCSR register.

The interprocessor interrupt vector value written in the UINTRCSR

is treated by the DWMBA hardware as a generic VAXBI interrupt. If

bits<13:9> of the vector value are zero, then the DWMBA logically ORs

the contents of the BVOR with the value contained in bits<8:0> of the

vector.

5-59

DWMBA XMi-to-VAXBI Adapter

5.5.4 XMIIDENT to VAXBI IDENT

5-60

There are two XMI to VAXBI IDENT transactions for the DWMBA: one
when the DWMBA has no interrupts pending and one when the DWMBA
has an interrupt pending.

5.5.4.1 XMI to VAXBI IDENT

The DWMBA issues a VAXBI IDENT when an XMI CPU issues an XMI
IDENT unless the DWMBA has a pending interrupt at the IDENTed level.

The DWMBA issues an IDENT response cycle on the XMI (Good Read
Data response—function code = 1000 with the vector in bits<15:2> of the
data field) upon receiving a vector from the VAXBI.

The VAXBI interrupt-pending flip-flop(s) and the INTR Sent Flip-Flop(s)
that correspond to the IDENTed IPL are cleared when BCI RAK L is
asserted, after the DWMBA/B module makes a VAXBI request.

If the requesting VAXBI node aborts its interrupt request before the XMI
CPU generates an IDENT transaction at that level, the resulting IDENT
on the VAXBI gets NOACKed. The DWMBA then issues a Read Error
Response (RER) to the XMI commander and sets the IDENT Error bit in the
DWMBA/B module’s Error Summary Register.

5.5.4.2 XMl to VAXBI IDENT (DWMBA Interrupt Pending)

If the DWMBA has its interrupt-pending flip-flop set and it decodes an XMI
IDENT transaction with IPL 17 set in D<19:16> of the IDENT command,
it responds by issuing the DWMBA'’s vector that is located in BVOR. When
the vector has been written into the DWMBA/A module’s register file by
the DWMBA/B module’s master sequencer (state machine controller), the
DWMBA'’s interrupt-pending and sent flip-flops clear.

If an XMI CPU issues an IDENT to the DWMBA and the DWMBA has
no interrupt-pending flip-flops set, the DWMBA issues the IDENT on the
VAXBI. There is a direct mapping of the XMI IDENT IPL (D<19:16> to
that of the VAXBI D<19:16>). No remapping is required.

5.6

5.6.1

5.6.2

DWMBA XMi-to-VAXBI Adapter

Error Reporting

The DWMBA adapter uses two mechanisms for detecting and reporting

errors. One mechanism is the BIIC for VAXBI-related errors and the other

mechanism deals with DWMBA-internal and XMI-related errors.

VAXBI Errors

The BIIC implements error checking and reporting features that deal with

the VAXBI. These errors are reported to an XMI CPU via BIIC registers

where bus errors are reported: the Bus Error Register, Error Interrupt

Control Register, and the Interrupt Destination Register.

DWMBA Errors

Error generation and checking is performed on the DWMBA, both ports
of the CPU, DMA-A and DMA-B register files, and the IBUS data path

between the modules.

A specific error is flagged in one of the two Error Summary Registers

(AESR and BESR) so that errors can be traced by software and diagnostics.

When an error occurs, the DWMBA locks its error and address registers

to ensure that a subsequent transaction will not change any states in the

DWMBA until software services the error condition(s).

Even though an error causes the DWMBA/A module to assert IVINTR, any

pending DMA or CPU transactions that are error free are processed to

completion, even if a previous transaction was halted due to an error.

5.6.3

DWMBA XMi-to-VAXBI Adapter

DWMBA XMI-to-VAXBI Adapter Error Response Matrix

Table 5-7 XMI Errors During DMA Transactions (VAXBI to XMI Memory)

XMl Error Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

XMI Fault

Corrected Read

Data

Corrected

Confirmation

Read Error

Response

Inconsistent Parity

Parity Error

Write Data NO ACK

Command NO ACK

Write Sequence

Error

Read Sequence

Error

Transaction

Timeout

No Read Response

Write Error Interrupt

Read/IDENT Data

NO ACK

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt

DWMBA generates

interrupt (NO ACK

to VAXBI)

DWMBA generates

interrupt

—

DWMBA generates

interrupt (NO ACK

to VAXBI)

DWMBA generates

interrupt (NO ACK

to VAXBI)

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA/A module

generates IVINTR

5-62

DWMBA XMI-to-VAXBI Adapter

Table 5-8 XMI Errors During CPU I/O Transactions (XMl to VAXBI)

XMt Error Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

XMI Fault

Corrected Read

Data

Corrected

Confirmation

Read Error

Response

Inconsistent Parity

Parity Error

Write Data NO ACK

Command NO ACK

Write Sequence

Error

Read Sequence

Error

Transaction

Timeout

No Read Response

Write Error Interrupt

Read/IDENT Data

NO ACK

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

5-63

DWMBA XMI-to-VAXBI Adapter

Table 5-9 DWMBA Errors During DMA Transactions (VAXBI to XMI Memory)

DWMBA Error Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

——— e m— —— —— — — —— — —

1O Write Failure

BCI AC LO

IBUS DMA-A Data

Parity Error

IBUS DMA-A C/A

Parity Error

IBUS DMA-B Data

Parity Error

IBUS DMA-B C/A

Parity Error

IBUS CPU Data

Parity Error

Multi-CPU Errors

Interlock Read Error

IDENT Error

IBUS Data Parity

Error

Ilegal CPU

Command

DWMBA/A module

generates IVINTR

DWMBA/A module

generates interrupt

(NO ACK to VAXBI)

DWMBA/A module

generates interrupt

(NO ACK to VAXBI)

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt Lock Time

Register

DWMBA generates

interrupt. Bad

Data/Parity to

VAXBI.

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

5-64

DWMBA XMI-to-VAXBI Adapter

Table 5-10 DWMBA Errors During CPU I/O Transactions (XMi to VAXBI)

DWMBA Error Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

IO Write Failure

BCI AC LO

IBUS DMA-A Data

Parity Error

IBUS DMA-A C/A

Parity Error

IBUS DMA-B Data

Parity Error

IBUS DMA-B C/A

Parity Error

iBUS CPU Data

Parity Error

Multi-CPU Errors

interlock Read Error

IDENT Error

IBUS Data Parity

Error

ltegal CPU

Command

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt. RER to

XMmi

DWMBA generates

interrupt. RER to

XMI.

DWMBA generates

interrupt. RER to

XMI

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt. RER to

XML.

RER to XMI

DWMBA/A module

generates iVINTH

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBAJ/A module

generates IVINTR

DWMBA/A module

generaies iVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

DWMBA/A module

generates IVINTR

5-65

DWMBA XMi-to-VAXBI Adapter

Table 5-11 VAXBI Errors During DMA Transactions (VAXBI to XMI Memory)

VAXBI Error

(DWMBA/B

module’s BIIC) Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

NO ACK to Multi-

responses

Master Xmit Error

Control Xmit Error

Master Parity Error

Interlock Sequence

Error

Transmitter During

Fault

IDENT Vector Error

Command Parity

Error

Slave Parity Error

Read Data

Substitute

Retry Timeout

Stall Timeout

Bus Timeout

Nonexistent

Address

lllegal Confirmation

Error

ID Parity Error

Corrected Read

Data

Null Bus Parity

Error

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA generates

interrupt

DWMBA generates

interrupt

5-66

DWMBA XMIl-to-VAXBI Adapter

Table 5-12 VAXBI Errors During CPU I/O Transactions (XMl TO VAXBI)

VAXBI Error

(DWMBA/B

module’s BIIC) Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

NO ACK to Multi-

P

Master Xmit Error

Control Xmit Error

Master Parity Error

Interlock Sequence

Error

Transmitter During

Fault

IDENT Vector Error

Command Parity

Error

Slave Parity Error

Read Data

Substitute

Retry Timeout

Stall Timeout

Bus Timeout

Nonexistent

Address

lilegal Confirmation

Error

ID Parity Error

DWMBA generates

interrupt

DWMBA generates

interrupt. RER to

XMI

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt. RER to

XMI

DWMBA generates

interrupt. RER to

XMI

DWMBA generates

interrupt. RER to

XMi

DWMBA generates

interrupt. RER to

XMI

DWMBA generates

interrupt

DWMBA generates

interrupt. RER to

XMI

DWMBA generates

interrupt

DWMBA generates

interrupt. RER to

XMi

DWMBA generates

interrupt. RER to

XMl

DWMBA generates

interrupt.

DWMBA/A module

generates IVINTR.

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA/A module

generates IVINTR.

DWMBA generates

interrupt.

DWMBA/A moduie

generates IVINTR.

DWMBA generates

interrupt.

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt.

DWMBA/A module

generates IVINTR

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA/A module

generates IVINTR.

DWMBA generates

interrupt

DWMBA generates

interr_upt

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA/A module

generates IVINTR

5-67

DWMBA XMi-to-VAXBI Adapter

Table 5-12 (Cont.) VAXBI Errors During CPU I/0 Transactions (XMI TO VAXBI)

VAXBI Error

(DWMBA/B

module’s BIIC) Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

Corrected Read - DWMBA generates - -
Data interrupt

Null Bus Parity - - - -
Error

5-68

DWMBA XMI-to-VAXBI Adapter

5.7 DWMBA Initialization, Self-Test, and Booting

This section discusses the DWMBA adapter initialization and diagnostics.

5.7.1 DWMBA Initialization

The three ways to reset the DWMBA are:

e Power-Up Sequence—When the VAX 6200 is powered up, XMI AC LO

L and XMI DC LO L are sequenced so that all XMI nodes are reset.

e System Reset—The XMI emulates a power-up sequence by asserting

the XMI RESET L line, causing the power supply to sequence XMI AC

LO L and XMI DC LO L as in a "real” power-up. Software asserts XMI

RESET L by writing to IPR55. The XMI does not differentiate between

a "real” power-up and a system reset. The console INITIALIZE

command generates a system reset if no argument is given.

e Node Reset—A DWMBA is "node reset” by setting its XBER<30>

(NRST) bit. The console INITIALIZE command generates a node reset

if a node ID argument is provided. For the KA62A CPU module the

differences between the node reset and a system reset are as follows:

— XMI AC LO L is not sequenced during node reset.

— VAXBI "self-test” is not run during node reset.

When initalized, the DWMBA performs as follows:

e All DWMBA logic resets to a known state.

¢ The DWMBA asserts XMI STF L until self-test completes successfully.

e The DWMBA registers are initialized to a known value by self-test.

The VAXBI subsystem of the DWMBA resets as would any VAXBI system

whenever the XMI resets. Each VAXBI backplane in a VAX 6200 is

connected to power, and each DWMBA/B module has logic that controls

the VAXBI backplane.

Setting XBER <30> (NRST) initiates a node reset, which resets both the

DWMBA/A module and DWMBA/B module as well as the corresponding

VAXBI subsystem. When NRST is written to a one, the DWMBA/B module

sequences the BI AC LO and BI DC LO signals, causing each VAXBI node

to reset its logic.

A DWMBA/B module and its VAXBI subsystem, when powered down, has

no effect on the DWMBA/A module and the XMI bus.

5-69

5.7.2

DWMBA XMi-to-VAXBI Adapter

DWMBA Self-Test and Diagnostics

5-70

The two diagnostic control registers are used to force bad parity internal
to the DWMBA, for performing a loopback in the BIIC, and to act as
temporary storage registers for diagnostic routines.

5.7.2.1 Loopback

Two diagnostic loopbacks are implemented on the DWMBA: the BIIC
loopback of the VAXBI and a transformation of a CPU transaction into a
DMA transaction.

The BIIC loopback of the VAXBI occurs when the DWMBA/B module’s
BDCR1<3> (Force BIIC Loopback Mode) sets to a one.

When BDCR1<4> (Flip Bit 29) sets to a one, the DWMBA/B module
inverts the state of address bit<29> and BCI parity when they are sent to
the BIIC, allowing a VAXBI 1/O space request to be converted into a DMA
request that targets the DWMBA as the selected slave. This causes a CPU
transaction to be transformed into a DMA transaction (longword only) that
accesses XMI memory.

5.7.2.2 Self-Test

DWMBA self-test is executed by the boot processor on the XMI using the
processor’s resident ROM.

6

6.1

Power and Cooling Systems

The VAX 6200 power system consists of an AC power controller, the power

and logic unit, five power regulators, an optional battery backup unit, and

a temperature sensor. The cooling system consists of two blower units and

an airflow sensor, with the airflow path through the XMI and VAXBI card

cages. See Chapter 2 of the VAX 6200 Options and Maintenance manual for

more on power components.

Power System

- The power system contains the following components:

e An H405-E AC power controller for 60 Hz systems; for 50 Hz, an

H405-F and a high-voltage autotransformer

e An H7206 power and logic unit (PAL)

e Two H7215 power regulators, one for the XMI card cage and one for

the VAXBI card cages

e Three H7214 power regulators, two for the XMI card cage and one for

the VAXBI card cages

e An XTC power sequencer

* A temperature sensor and an airflow sensor

e An optional H7231 battery backup unit (BBU)

6-1

Power and Cooling Systems

6.1.1 Input Power

The input power is five-wire (three-phase AC, neutral, and ground). 208V
60 Hz AC enters the H405-E AC power controller. Either 380 or 416V
50 Hz AC inputs the H405-F AC power controller and then enters the
high-voltage autotransformer, which reduces the voltage to 208.

The H405 AC power controllers suppress conducted emissions. The
AC power controller has a contactor that closes when the control panel
upper key switch is in any position except "0,” allowing AC power to the
H7206, and opens if the cabinet’s temperature sensor detects an excessive
temperature.

6.1.2 H7206 Power and Logic Unit

The H7206 PAL.

* Rectifies the three-phase power into 300V DC for the DC-to-DC power
regulators

* Develops regulated +14V DC for both internal use and the DC-to-DC
power regulators

* Develops 110 watts of 24V DC for the cooling system blowers and its
own internal fan

* Controls the interface between power regulators

* Controls the interface between the power regulators and the rest of the
VAX 6200 system

A red LED on the front face of the PAL lights to indicate that an inhibit
(shutdown) latch has been set.

Two green LEDs light to indicate the presence of the + 14V DC for internal
use and the presence of 300V DC.

6.1.3 H7214 Power Regulator

The H7214 inputs 300V DC and +14V bias. A 30 kHz clock synchronizes
this to all other power components. Outputs are 120 A of +5V DC and 0.5
A of +13.5V DC for Ethernet transceivers. A green LED lights to indicate
that the +5V output is present.

Power and Cooling Systems

6.1.4 H7215 Power Regulator

The H7215 inputs 300V DC and outputs 20 A of -5V DC, 7 A of -2V DC,

4 A of +12V DC, and 2.5 A of -12V DC. A green LED lights to indicate

that the outputs are present. An internal overtemperature switch asserts

the OVERTEMP signai when necessary.

6.1.5 XTC Power Sequencer

The XTC power sequencer contains:

e XMI reset timing control logic

¢ Time-of-year (TOY) clock power circuits

e EIA RS-232/RS-423-compatible console line driver and receiver

6.1.5.1 XMl Reset Timing Control Logic

The XMI reset timing control logic handles these sequences:

* Cold start power-up

¢ Warm start power-up

e Loss of AC power followed by a cold start power-up

* Reset, which mimics a power-down and then a cold start power-up

6.1.5.2 TOY Circuits

The TOY circuits consist of a battery charger circuit that trickle charges the

TOY clock battery and a voltage-level detection circuit that monitors the

TOY BBU battery voltage.

6.1.5.3 Console Line Driver and Receiver

The XTC power sequencer contains the system console line driver and

receiver, which are EIA RS-232/RS-423 compatible.

6-3

6.1.6

Power and Cooling Systems

Power System Signals

Power system signals are partitioned so that a failure of power supply 1
shuts down only the XMI side or a failure of power supply 2 shuts down
only the VAXBI side.

The power system signals are described in Table 6-1.

Table 6-1 Power System Signals

Name Origin Destination Description

ON SENSE L Control panel XTC Asserts when the control panel upper key switch

is in any position except "0."

PNL RESET L Control panel XTC Asserts while the control panel Restart button

is pressed. Causes the XTC to start the reset

sequence.

STANDBY CMD L Control panel H7206 Asserts when the control panel upper key switch
is in any position except "0.”

ON CMD L Control panel H7206 Asserts when the control panel upper key switch

is in either the Enable or Secure position.

Applies DC power to entire VAX 6200.

PB REQ L Control panel H7206, then Asserts when STANDBY CMD L asserts to

from H7206 close a contactor in the AC power controller,
to DEC power applying AC power to H7206 and DC power

bus and to cooling system and memory. Controls all

AC power peripherals tied to the DEC power bus.
controller

DEC Power Bus Control panel H405 Safety Extra Low Voltage (SELV) circuit that

allows the VAX 6200 to turn other equipment on

and off.

DCOK H H7206 XTC Asserts to indicate that the DC outputs from

the power regulators are OK. Used by the XTC

power sequencer to start the power-up/power-

down sequence.

ACOK H H7206 XTC Asserts to indicate that the AC input voltage
is adequate. It deasserts when the H7206’s
300V DC output level reaches a level that

guarantees 4.2 milliseconds of acceptable

300V DC prior to the deassertion of DCOK H.

Used by the XTC power sequencer during the
power-up/power-down sequence.

BBU STATUS BBU Control panel Controls the green Battery LED.

MODULE ENABLE L BBU H7206 Asserts to indicate that the BBU is supplying

300V DC to the H7206, which causes only the

memory modules to receive low voltage DC

power.

BATTERY BACKUP H7206 BBU Asserts to indicate that the memory module’s
ENABLE H (BBUE H)

6-4

power regulators are operational.

Table 6-1 (Cont.) Power System Signals

Power and Cooling Systems

Name Origin Destination Description

BATTERY BACKUP H7206 BBU Asserts when ACOK deasserts to tell the BBU

REQUEST H (BBUR H) to start supplying 300V DC.

CHANNEL n OK (CH n Power reg- H7206 Asserts to tell the H7206 that the power

OK) ulator n reguiator specified by the number i1 is OK.

OVER TEMPERATURE n H7215 H7206 Asserts to tell the H7206 that the H7215
temperature is above specification, causing an

orderly system shutdown followed by a latched

inhibit of the appropriate outputs.

INTERLOCK n INHIBIT H Cabinet H7206 Asserts to tell the H7206 that an interlock

interlock switch has been thrown, causing an orderly

switch system shutdown followed by a latched inhibit

, of the appropriate outputs.

BLOWER FAULT H Cooling H7206 Asserts to indicate an airflow sensor has
system detected a loss of airflow. When asserted

for more than 30 seconds, an orderly system

shutdown occurs followed by a latched inhibit

of the outputs.

CHANNEL n INHIBIT H7206 Power reg- Asserts to command the respective power
ulator n regulator to turn off and reset to a ready state

so that output power restores as the signai

deasserts.

SYNC H7206 Power A pulse train used to synchronize dependent
regulator power regulators.

Cooling System

The cooling system consists of two identical blowers, one for the front

of the cabinet, the other for the back. An airflow sensor signals a loss of

airflow.

The H7206 PAL unit has an internal fan.

6-5

IndeXx

A

ACLOL

See XMIAC LOL

ACOKHe5-4

AC power controller e 6-2

ADAWI instruction ¢ 3-17

ADG1 ¢ 5-36

AESR ¢ 5-24

AIMR « 5-29

AIR FAULT ¢ 6-5

AIVINTR ¢ 5-35

Arbitration ¢ 2-10, 2-16

Arbitration Supression Control bit

See ARBSC

ARBSC ¢ 4-19

ARD ¢ 3-117, 3-119, 5-36

AREAR ¢ 5-23

Auto Retry Disable bit

See ARD

Auxiliary Baud Select bits ® 3-79

Bandwidth e 2-3

Battery Backup Enable H

See BBUE H

Battery Backup Request H

See BBUR H

Battery Low bit

See BLO

BBSSI e 3-17

BBUE H » 6-4

BBUR H ¢ 6-5

BBU STATUS » 6-4

BCI AC LO bit 5-26, 5-58

BCSR ¢ 5-39

BDCR1 ¢ 5-50

BESR ¢ 5-41

Bl AC LO ¢ 5-69

Bl BAD bit « 5-40

BI DC LO ¢ 5-69

Bl DMA Failing Address bits ¢ 5-47

BIDR ¢ 5-46

BIIC Loopback Mode bit e 5-51

Bl Interlock Read Failed bit « 5-44

Bl interlock Read Failed Mask bit ¢ 5-40

Bl Interrupt-Pending Status bits « 5-42

BLO ¢ 3-76

Bootblock booting ® 3—-133

Boot Processor bit

See BP _

Boot Processor Disable bit

See BPD

Bootstrapping the operating system ¢ 3—130

BP ¢ 3-117

BPD ¢ 3-117

Branch on bit set and set interlock instruction

See BBSSI

BTIM ¢ 5-47

BTO » 3-80

Bus Error Register

See XBER

Bus Timeout Interval bits e 3-81

BVOR e 5-48, 5-57

BVR ¢ 5-49

BWERR ¢ 4-22

Byte Write Error bit

See BWERR

C

C/A Fetch Failed bit

See Command/Address Fetch Failed bit

Cache Address Comparator e 3-29

Cache Disable Register

See CADR

Cache Enable bits

See CEN

Cache Fill Error bit

See CFE

Cache Hit Status bit

See LATHIT

Cache Memory » 3-20 to 3-33

Cache Parity Update Disable bit

See CPUD

Cache-resident node ¢ 2-29

CADR » 3-59

index-1

Index

CAL Bus Timeout Control Register

See CBTCR

CBTCR » 3-80

CC ¢ 2-46, 3-104, 3-118, 4-9, 5-18

CCA « 3-128, 3-129, 3-130, 3-137,

3-139 to 3-146

CCA$B_CHKSUM ¢ 3-142

CCA$B_FLAGS » 3-145

CCA$B_HFLAGS » 3-142

CCA$B_NPROC ¢ 3-142

CCA$B_REVISION ¢ 3-142

CCA$B_RXLEN ¢ 3-145

CCA$B_TK50 ¢ 3-143

CCA$B_TXLEN » 3-145

CCAS$B_ZDATA » 3-145

CCA$B_ZDEST « 3-145

CCA$B_ZSRC ¢ 3-145

CCAS$L_BASE » 3-142

CCASL_BITMAP » 3-143

CCAS$L_BITMAP_CKSUM ¢ 3-143

CCASL_BITMAP_SZ » 3-143

CCA$Q_CONSOLE » 3-142

CCA$Q_ENABLED ¢ 3-142

CCA$Q_HW_REVISION ¢ 3-143

CCAS$Q_READY « 3-142

CCA$Q_RESTARTIP « 3-130, 3-143

CCA$Q_SECSTART ¢ 3-143

CCAS$Q_SERIALNUM » 3-143

CCA$Q_USER_HALTED ¢ 3-143

CCAST_RX ¢ 3-146

CCAST_TX » 3-146

CCAS$V_BOOTIP » 3-142

CCA$V_ECACHE_CLEARABLE » 3-142

CCA$V_REBOOT ¢ 3-142

CCA$V_REPROMPT ¢ 3-142

CCASV_RXRDY ¢ 3-145

CCA$V_USE_ECACHE ¢ 3-142

CCA$V_USE_ICACHE ¢ 3-142

CCAS$V_ZALT ¢ 3-145

CCAS$V_ZNODE « 3-146

CCA$V_ZSRC » 3-145

CCASW_IDENT 3-142

CCASW_SIZE « 3-142

CCASW_ZRXCD ¢ 3-145, 3-146

CCA$_SECSTART » 3-132

CCID ¢ 3-118

CC Interrupt Disable bit

See CCID

CDAL Bus Timeout bit

See BTO

CDAL Interchip Interconnect controller

Index-~2

CDAL Interchip Interconnect controller (cont’d.)

See IC

CEN ¢« 3-60

CFE » 3-115

CHANNEL n INHIBIT ¢ 6-5

CHANNEL n OK

See CH n OK.

CHn OK * 6-5

Clear Write Buffer

See CWB

CNAK ¢ 2-48, 3-108, 5-20

CNAKR ¢ 3-117

Column Parity Error bit

See CPER

Command ¢ 3-106, 3-107, 3-108, 3-109, 3-115

Command/Address Fetch Failed bit » 5-42

Command cycle » 2-19

Commander controller

See XCC

Commander ID » 3-107

Commander NO ACK Received bit

See CNAKR

Command ID ¢ 3-106, 3-108, 3-109, 3-115

Command NO ACK bit

See CNAK

CONSEL » 3-82

Console communications area

See CCA

Console Not Secure bit » 3-67

Console program ¢ 3-137

Console Receiver Control and Status Register

See RXCS

Console Receiver Data Buffer

See RXDB

Console Select Register

See CONSEL

Console Terminal Baud Rate Select bits

See CT BAUD SELECT

Console Transmitter Control and Status Register

See TXCS

Console Transmitter Data Buffer Register

See TXDB

Control/P Enable bit

See CTP

Control and Status Register

See BCSR

Control and Status Register 1

See CSR1

Control and Status Register 2

See CSR2

Corrected Confirmation bit

See CC

Corrected Read Data bit

See CRD

CPER » 4-23

CPUD « 3-68

CRD ¢ 2-47, 3-106, 3-118, 3-148, 5-19

CRDER ¢ 4-22

CRD Error bit

See CRDER

CRDID » 3-118

CRD Interrupt Disable bit

SEE CRDID

CSR1 « 3-66

CSR1 Address Decode Mask Register

See CSR1ADMR

CSR1ADMR e 3-97

CSR1BADR » 3-96

CSR1 Base Address Register

See CSR1BADR

CSR1 EN ¢ 3-79

CSR1 Enable bits

See CSR1 EN

CSR2 ¢ 3-113

CT BAUD SELECT ¢ 3-78

CTP ¢ 3-78

CWB e 3-40

Cycle types ¢ 2-16 to 2-26

D

Index

Demand Reads ¢ 3-17

Device Register

See DTYPE, XDEV

Device Revision bits

See DREV

Device Type bits

See DTYPE

DIA ¢ 3-61

Diag 1 Register

See ADG1

DIAGCK ¢ 4-17

Diagnostic Check bits

See DIAGCK

Diagnostic Control Register 1

See BDCR1

Diagnostic Mode bit

See DIA

Diagnostic Read/Write bits » 5-46

Diagnostic Read or Write bits ® 5-35

Disable Hold bit

See DISH

DISH ¢ 4-19

DLCKOUTEN ¢ 3-70

DREV ¢ 2-42, 3-100, 4-11, 5-14, 5-54

DTPE ¢ 3-41, 3-116

DTYPE » 2-43, 3-101, 4-11, 5-15, 5-54

Duplicate Tag Parity Error bit

See DTPE

DWMBA registers ¢ 5-11 to 5-55

D1 through D6 » 3-67, 3-70

D7 « 3-82

DAL e 3-62

DAL Parity Error bit

See DAL

DAT e« 3-27, 3-63

Data Parity Error bit

See DAT

Data-Steam Read References ¢ 3-17

Data types ¢ 3-6

DCLOL

See XMIDC LOL

DCOK He6-4

DEBNA ¢ 1-16

DEC Power Bus ¢ 6-4

Delayed Lockout Enable bit

See DLCKOUTEN

E

ECCDIAG » 4-15

ECC Diagnostic bit

See ECCDIAG

ECCDIS ¢ 4-15

ECC Disable bit

See ECCDIS

ECMD « 5-25

EEADMR « 3-99

EEBADR « 3-98

EEPROM Base Address Register

See EEBADR

EEPROM EN ¢ 3-79

EEPROM Enable bits

See EEPROM EN

EEPROM Write Address bits

See EEWADR

index-3

Index

E‘EROM Address Decode Mask Register

See EEADMR

EEWADR ¢ 3-70

EID » 5-25

Enable IVINTR Transactions bit ¢ 5-30

Enable Protection Mode bit

See EPM

Enable Read Upper bit

See ERUP

Enable Self-Invalidates bit

See ESI

Enable XBI Interrupts bit e 5-39

ENDADR ¢ 4-24

Ending Address bits

See ENDADR

EPEEUE » 3-71

EPM e 4-16

ERR ¢ 3-54, 3-84, 3-90, 3-107, 3-108

ERRAD ¢ 4-20

Error Address bit

See ERRAD

Error bit

See ERR

Error handling by CPU ¢ 3-148 to 3-158

Errors

handling 2-54

inconsistent parity e« 2-52

parity e 2-52

recovery ¢ 2-55

reporting ¢ 2-55

sequence ¢ 2-53

timeout 2-52

Error Summary bit

See ES

Error Summary bits

See ERRSUM

Error Summary Register

See AESR

See BESR

Error Syndrome bit

See ERSYN

ERRSUM ¢ 4-14

ERSYN ¢ 4-23

ERUP ¢ 3-119

ES ¢ 2-45, 3-103, 4-8, 5-17

ESl ¢ 3-41, 3-119

ETF » 2-49, 3-109, 3-126, 5-21

Ethernete 1-16

Exceptions e 3-11

Expander cabinet

index-4

Expander cabinet (cont’d.)

VAXBl e 1-14

Extended Test Fail bit

See ETF

F

Failing Address bits « 2-51, 3-111, 5-22

Failing Address Register

See XFADR

Failing Command bits

See ECMD

See FCMD

Failing Commander ID bits

See EID

See FCID

Failing Length bits

See FLN

FBTP ¢ 3-69

FCACHEEN ¢ 3-68

FCl » 3-68, 3-105, 3-114, 3-116

FCID « 2-49, 3-110, 5-21

FCMD « 2-50, 3-110, 5-21

FHIT » 3-69

First-Level Cachable References

See FL Cachable References

FL Cachable References ¢ 3-21

Flip Bit 29 bit » 5-51, 5-70

Flip FADDR Address Bit 1 bit ® 5-50

FLN « 2-51, 3-111, 5-22

Floating-Point Accelerator

See FPA

FMISS ¢ 3-41, 3-69, 3-105, 3-114, 3-116

Force Bad Tag Parity bit

See FBTP

Force BCI Bad Parity bit e 5-51

Force BIIC Loopback Mode bit ® 5-70

Force Cache Enable bit

See FCACHEEN

Force Cache Invalidate bit

See FCI

Force DMA-A Buifer Busy bit e 5-37

Force DMA-B Buffer Busy bit ¢ 5-37

Force Hit bit

See FHIT

Force Miss bit

See FMISS

Force Octaword Transfers bit » 5-37

Force Parity bits

Force Parity bits (cont’d.)

See FP

Force Parity Select bit

See FPSEL

FP ¢ 3-120

FPA »3-19

FPBD ¢ 3-71

FPSEL » 3-68, 3-120

Framing Error bit

See FRM ERR

FRM ERR ¢ 3-55

Front Panel Boot Disable bit

See FPBD

Front Panel EEROM Update Enable bit

See EPEEUE

G

GAREV » 3-120

Gate Array Revision bits

See GAREV

GEN BAD IBUS RCV PAR bit » 5-38

GEN BAD IBUS XMIT PAR bit » 5-38

H

H405 AC power controller e 6-2

H7206 power and logic unit

See PAL

HALT PROT Space » 3-78

HIERR ¢ 4-22

High Error Rate bit

See HIERR

Hit/Miss bit

See HM

HM e 3-62

IO space ¢ 2-13

IO space restrictions ¢ 2-8

/O Write Failure bit e 5-26

I/Q Write Failure During CPU Write Transaction bit

See /O Write Failure bit

IADR ¢ 4-13

Index

IBUS CPUl) DATA Parity Error bit » 5-28

IBUS DMA-A C/A Parity Error bit e 5-27

IBUS DMA-A Data Parity Error bit » 5-27

IBUS DMA-B C/A Parity Error bit ® 5-27

IBUS Parity Error Interrupt Mask bit 5-40

IC ¢ 3-39

iCCS o 3-5i

ICRD ¢ 4-15

IDENT ¢ 2-30

IDENT Error bit « 5-44

Identify transactions

See IDENT

IE ¢ 3-51, 3-85, 3-91

IFLG ¢ 4-13

IFLGn ¢ 4-12

DB ¢ 4-13

lilegal CPU Command bit e 5-43

Implied Vector Interrupt Destination/Diagnostic

Register

See AIVINTR

Implied Vector Interrupt transaction

See IVINTR

Inconsistent Parity Error bit

See IPE

Inconsistent Parity errors ¢ 2-52

Inhibit CRD Status bit

See ICRD

Initialization ® 2-38 to 2-40, 3-121 to 3-129,

5-69 to 5-70

instruction Prefetch Queue

See IPQ

Instruction Set Types ¢ 3-7

Instruction-Stream Read references ¢ 3-17

INT » 3-84, 3-90

Interchip Interconnect controller

See IC

interface logic

See XL

Interleave Address bits

See INTLVADR

Interleave Mode bits

See INTLM

Interleaving ¢ 4-5, 4-25

Interlock Address bit

See IADR

Interlocked Queue instruction ¢ 3-17

Interlock Flag bit

See IFLG

Interlock Flag Register

See IFLGn

index-5

Index

Interlock ID bit

See 1IDB

INTERLOCK n ¢ 6-5

Interlock Read transactions e 2-28

Interprocessor communication ® 3-137 to 3-147

Interprocessor Interrupt

See IP

interrupt bit

See INT

Interrupt Destination bits e 5-46

Interrupt Destination Register

See BIDR

Interrupt Enable bit

See IE

Interrupt Mask Register

See AIMR

Interrupts ¢ 3-9, 3-42 to 3-45, 5-7

Interprocessor » 2-31

Types ¢ 2-9, 5-58

VAXBI-generated » 5-10, 5-59

Vectors ¢ 5-56

Write error 2-55

Write Error ¢ 2-31

Interrupt Sent Status bits ¢ 5-41

Interrupt transaction

See INTR

Interrupt Vector bits

See IV

Interrupt Vector Disable bit

See IVD

Interval Clock Control and Status Register

See ICCS

INTLM ¢ 4-25

INTLVADR » 4-25

INTR « 2-30

INTR INTR on Command NO ACK bit » 5-32

INTR INTR on No Read Response bit ¢ 5-31

INTR INTR on Read Error Response bit ® 5-32

INTR INTR on Read Sequence Error bit 5-32

INTR on Corrected Confirmation bit » 5-30

INTR on Corrected Read Data bit s 5-31

INTR on IBUS CPU DATA PE bit » 5-34

INTR on IBUS DMA-A C/A PE bit 5-33

INTR on IBUS DMA-B C/A PE bit » 5-33

INTR on Parity Error bit 5-30

INTR on Read/IDENT NO ACK bit « 5-31

INTR on Write Data NO ACK bit ¢ 5-31

INTR on Write Sequence Error bit e 5-31

Invalidate Queue

See IQ

index-6

INVAL Queue Overflow bit

See IQO

INVINTR ¢ 2-52

Write error e 2-55

IP ¢ 3-43, 3-44

IPE » 2-46, 3-41, 3-105, 5-18

IPINTREN ¢ 5-59 -

IPL Level Select bits

See IPL LVL SEL

IPL LVL SEL » 3-77

IPQ e 3-17

1Q « 3-39

IQO 3-41, 3-114

IREAD 2-28

IV e 3-89, 3-95

IVD ¢ 3-77

IVINTR ¢ 2-31

IVINTR Destination bits e« 5-35

L

LATHIT 3-67

LCKOUTDIS « 3-67

LED « 5-39

LESI ¢ 5-57

LIID ¢ 4-13

Lockout bits ® 3-116

Lockout Disable bit

See LCKOUTDIS

Lock Queue Error bit

See LQERR

Low-End Storage Interconnect

See LESI

Lower Interlock ID bits

See LIID

LQERR ¢ 4-16

Machine check - DAL Parity Error bit

See MCD

Machine check - First-Level Cache Parity Error bit

See MCC

Machine checks » 3-12

MAINT » 3-57

Maintenance bit

See MAINT

Master Sequencer Transaction Failed bit ¢ 5-43

MCC » 3-63

MCD e« 3-27, 3-63

MCTL1 ¢ 4-14

MCTL2 ¢ 4-18

MECEA » 4-20

MECER ¢ 4-21

MEMERR ¢ 3-104, 3-107, 3-108, 3-148

Memory Control Register 1

See MCTL1

Memory Control Register 2

See MCTL?2

Memory ECC Error Address Register

See MECEA

Memory ECC Error Register

See MECER

Memory Registers ® 4-8 to 4-27

Memory Size bits

See MEMSIZ

Memory System Error Register

See MSER

Memory Valid bit

See MVAL

MEMSIZ ¢ 4-15

Microcode Revision bits ® 3-65

MODULE ENABLE L « 6-4

MSER ¢ 3-62

Multiple CPU Errors bit 5-42

MVAL » 4-16

MWRER ¢ 4-16

MWrite Error bit

See MWRER

Index

Nonexistent memory locations

See NXM

No Read Response bit

See NRR

Not Last Used algorithm e 3-8

NRR ¢ 2-47, 3-107, 5-19

NRST ¢ 2-38 to 2-40, 2-45, 3-103, 3-121, 4-8,

5-17, 5-69

NSES ¢ 2-49, 3-109, 4-10, 5-20

NXM ¢ 2-55

0,

ONCMD Le6-4

ON SENSE L » 6-4

Operating system bootstrapping or restarting ¢

3-130

Overrun Error bit

See OVR ERR

OVER TEMPERATURE n ¢ 6-5

Overtemperature switch, H7215 ¢ 6-3

OVR ERR ¢ 3-54

N

NHALT e 2-45, 3-103, 3-130, 5-17

NID ¢ 3-71

Node halt

See NHALT

Node HALT bit

See NHALT

Node ID bits

See NID

Node Reset bit

See NRST

Nodespace ¢ 2-14

Node-Specific Error Summary bit

See NSES

P

P<2:0> «3-120

Page table entry

See PTE

PAL » 6-2

Parity Error bit

See PE

Parity errors ¢ 2-52

PBREQ L *6-4

PCB e 3-17

PE ¢ 2-46, 3-105, 4-9, 5-18

PNL RESET L » 6-4

Power sequencer

See XTC

Primary system bootstrap program

See VMB

Process control block

See PCB

Processor Type bits

See TYPE

PTE ¢ 3-8, 3-17

index-7

Index

R

RAMTYP ¢ 4-15

RAM Type bits

See RAMTYP

RBUF 3-55

RCV BRK ¢ 3-55

RDNAK » 4-9

READ » 2-27

Read/IDENT Data NO ACK bit

See RIDNAK

Read/Write Bus Timeout bit

See BTO

Read Data NO ACK bit

See RDNAK

Read Error Response bit

See RER

Read Queue

See RQ

Read Sequence Error bit

See RSE

Read transactions ¢ 2-27, 2-32 to 2-36

Received Break bit

See RCV BRK

Received Data bits

See RBUF

Receiver Done bit

See RX DONE

Receiver Interrupt Enable bit

See RX IE

Refresh Error bit

See RERR

Refresh Rate bits

See RRB

Registers, KA62A CPU module » 3-46 to 3-121

Registers, VAXBI

Device Register » 5-54

Registers, XMi

Device Register

Bus Error Register « 2-44, 3-102, 4-8, 5-16

Device Register e 2-42, 3-100, 5-14

Failing Address Register ® 2-51, 3-111, 5-22

Request Reads » 3-17

RER e 2-48, 3-108, 5-20, 5-60

RERER e 4-21

RERR ¢ 4-18

Reserved Register « 5-53

Responder controller

See XRC

Index-8

Responder Error Address Register

See AREAR

Responder Failing Address bits » 5-23

Responder Failing Length bits

See RFLN

Response timeouts ¢ 2-52

Restarting the operating system ¢ 3-130

Restart parameter block

See RPB

Retry timeouts ¢ 2-52

Revision Level bits

See REV LEVEL

REV LEVEL » 3-72

RFLN ¢ 5-23

RIDNAK ¢ 2-47, 3-106, 5-19

ROM Address Space Size Select bits

See ROM SIZE SEL

ROM Halt Protect Address Space Size Select bits

See HALT PROT Space

ROM SIZE SEL « 3-77

ROM Speed bit

See RSP

Row Parity Error bit

See RPER

RPB ¢ 3-130

RPER ¢ 4-22

RQ ¢ 3-39

RRB ¢ 4-19

RSE ¢ 2-48, 3-107, 5-19

RSP ¢ 3-77

RUN ¢ 3-86, 3-92

Run bit

See RUN

RWT e 3-80

RXCS « 3-52

RXDB » 3-54

RX DONE ¢ 3-52

RX IE ¢ 3-52

S

Safety Extra Low Voltage circuit

See SELV circuit

SAQ e 5-57

SCB ¢ 3-14, 3-17, 5-57

SCBB » 3-14

SEADR « 4-24

Second-level cache » 3-3

Self-Test Fail bit

See STF

Self-Test Loop bit

See STL

Self-Test Pass LED bit

See STPLED

SELV circuit e 6-4

SEN ¢ 3-59

Sequence errors ¢ 2-53

Set Enable bits

See SEN

SGL « 3-85, 3-91

SID ¢ 3-64

Single bit

See SGL

Slave Sequencer Transaction Failed bit 5-43

SLED1 through SLED6

See D1 through D6

SLED7

See D7

SSCBA « 3-74

SSC Base Addres Register

See SSCBR

SSC Base Address bits

See SSCBA

SSCBR ¢ 3-74

SSC Configuration Register

See SSCCR

SSCCR ¢ 3-76

ST1e3-27

ST2 « 3-27

STANDBY CMD L e 6-4

Starting Address bits

See STRADR

Starting and Ending Address Register

See SEADR

Status LED bits D1 through D6

See D1 through D6

Status LED D7 bit

See D7

STF» 2-38 to 2-40, 2-49, 3-110, 3-126, 4-10,

5-21

STL » 3-71, 3-122

Stop bit

See STP

STP 3-85, 3-91

STPLED » 3-70, 3-126

STRADR » 4-25

SYNC ¢ 6-5

System control block

Index

System control block (cont’d.)

See SCB

System Control Block Register

See SCBB

System ldentification Register

See SID

System Type bits

See SYS TYPE

System Type Register

See SYSTYPE

SYS TYPE (bits) ¢ 3-72

SYSTYPE (register) e 3-72

T

TAG » 3-27, 3-63

Tag Parity Error bit

See TAG

See TPE

TB » 3-8

TBUF « 3-58

TCRO « 3-84, 3-90

TCR1 ¢ 3-84, 3-90

TCY » 4-26

TCY Tester Register

See TCY

Temperature sensor, cabinet ¢ 6-2

Timeout Address Register

See BTIM

Timeouts

Response ¢ 2-52

Retry e 2-52

Timeout Select bit

See TOS

Timer Control Registers

See TCRO and TCR1

Timer Interrupt Vector Registers

See TIVRO and TIVR1

Timer Interval Registers

See TIRO and TIR1

Timer Next Interval Registers

See TNIRO and TNIR1

TIRQ ¢ 3-87

TIR1 ¢ 3-93

TIVRO » 3-89

TIVR1 ¢ 3-95

TNIRO » 3-88

TNIR1 « 3-94

index-9

Index

TOS ¢ 3-119

TOY » 6-3

TPE ¢ 3-41, 3-114

Transaction errors ¢ 2-52

Transactions ¢ 2-27 to 2-37

identify e 2-30

Implied Vector interrupt e 2-31, 2-52

Interlock Read « 2-28

Interrupt 2-30

Read » 2-27, 2-32 to 2-36

Unlock Write e 2-30

Write Mask ¢ 2-29

Writes » 2-37

Transaction Timeout bit

See TTO

Transfer bit

See XFR

Translation Buffer

See TB

Transmit Break bit

See XMIT BRK

Transmit Data bits

See TBUF

Transmitter Interrupt Enable bit

See TX IE

Transmitter Ready bit

See TX RDY

TTO ¢ 2-49, 3-109, 3-148, 5-20

TXCS « 3-56

TXDB » 3-58

TX IE » 3-56

TX RDY 3-56

TYPE » 3-64

U

UINTRCSR ¢ 5-59

Uncorrectable Double-Bit (RER) Error

See RERER

UNIBUS ¢ 5-57

Unlock Sequence Error bit

See UNSEQ

Unlock Write Pending bit

See UWP

Unlock Write transaction » 2-30

UNSEQ » 4-16

UWMASK ¢ 2-30

UWP e 3-117

index-10

Vv

Valid Bit Parity Error bit

See VPE

VAXBI Device Register

See DTYPE

VAXBI expander cabinet e 1-14

Vector Offset Register

See BVOR

Vector Offset Register bits

See VOR

Vector Register

See BVR

Virtual Page Number

See VPN

VMB » 3-133

VOR ¢ 5-48

VPE ¢ 3-41, 3-114

VPN e 3-8

W

Warm Start bit

See WS

WB e 3-40

WBD » 3-120

WDNAK ¢ 2-47, 3-106, 5-19

WDPE » 3-115

WE « 3-44

WEI ¢ 2-46, 3-104, 5-18

WMASK e 2-29

Write Bufter

See WB

Write Buffer Disable bit

See WBD

Write Data NO ACK bit

See WDNAK

Write Data Parity Error bit

See WDPE

Write Error interrupt » 2-55

Write Error Interrupt

See WE

Write Error Interrupt bit

See WEI

Write Error INVINTR e 2-55

Write Mask transactions ¢ 2-29

Write Sequence Error bit

See WSE

Write transactions e 2-37

Write Wrong Parity bit

See WW

WS ¢ 3-118

WSE ¢ 2-47, 3-105, 4-9, 5-18

WW e 3-60

X

XACLOQ 3-71

XBAD e 2-45, 3-103, 3-126, 5-17

XBER ¢ 2-44, 3-102, 4-8, 5-16

XBIA Internal Error bit ¢ 5-26

XBIB-Detected IBUS Parity Error bit ¢ 5-45

XBI Cabie OK bit » 5-24

XBl Interrupt-Pending Status bit ® 5-42

XBI Vector bits ® 5-49

XCC » 3-39

XCIi AC LO L2-38 to 2-40

XCI DC LO L*2-38 to 2-40

XCPGA Chip » 3-38

XDEV ¢ 2-42, 3-100, 4-11, 5-14

XFADR ¢ 2-51, 3-106, 3-107, 3-108, 3-109,

3-111, 3-115, 5-22

XFAULT « 2-46, 3-104, 5-18

XFR ¢ 3-85, 3-91

XGPR ¢ 3-112

XL ¢ 3-39

XMI AC LO bit

See XACLO

XMI AC LO L »2-38 to 2-40, 3-121, 5-69

XMI BAD bit

See XBAD

XMI BAD L » 2-38 to 2-40, 3-126

XMI CMD REQ L ¢ 2-10, 2-17

XMI CND » 2-52

XMI Corner e 2-4, 3-3

XMI D e 2-52

XMI DC CL L » 5-69

XMI DC LO L »2-38 to 2-40, 3-121

XMI F » 2-52

XMI FAULT bit

See XFAULT

XMI General Purpose Register

See XGPR

XMI GRANT L » 2-10, 2-17

XMI HOLD L » 2-17

Index

XMl ID » 2-52

XMl initialization e 2-38 to 2-40

XM!I NODE ID<3:0> ¢ 2-17

XMI P ¢ 2-52

XMI RESET L » 2-38 to 2-40, 3-121

XMI Reset Timing Control Logic ® 6-3

XMi RES REQ L 2-10, 2-17

XMI STF L » 5-69

XMI SUP L e2-17

XMIT BRK ¢ 3-57

XRC » 3-39

XTC ¢ 2-39, 6-3

XTC power sequencer

See XTC

index-11

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	6-01
	6-02
	6-03
	6-04
	6-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11

