
VAX 6000 Series
Vector Processor Owner’s Manual

Order Number EK–60VAA–OM–001

This manual is for the system manager or system
operator of a VAX 6000 system with a vector processor.
The manual expands upon information found in
the VAX 6000–400 Owner’s Manual and the Mini-
Reference.

digital equipment corporation
maynard, massachusetts

First Printing, May 1990

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation.

Digital Equipment Corporation assumes no responsibility for any errors that may appear in
this document.

The software, if any, described in this document is furnished under a license and may be used
or copied only in accordance with the terms of such license. No responsibility is assumed
for the use or reliability of software or equipment that is not supplied by Digital Equipment
Corporation or its affiliated companies.

Copyright ©1990 by Digital Equipment Corporation.

All Rights Reserved.
Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEMNA PDP VAXcluster
DEC ULTRIX VAXELN
DEC LANcontroller UNIBUS VMS
DECnet VAX XMI
DECUS VAXBI

�

FCC NOTICE: The equipment described in this manual generates, uses, and may emit
radio frequency energy. The equipment has been type tested and found to comply with the
limits for a Class A computing device pursuant to Subpart J of Part 15 of FCC Rules, which
are designed to provide reasonable protection against such radio frequency interference when
operated in a commercial environment. Operation of this equipment in a residential area
may cause interference, in which case the user at his own expense may be required to take
measures to correct the interference.

Contents

Preface vii

Chapter 1 VAX Vector Processing System

1.1 VAX 6000 System Architecture . 1–2

Chapter 2 Vector Console Commands

2.1 Console Commands . 2–3
2.2 DEPOSIT Command . 2–6
2.2.1 Syntax and Qualifiers . 2–6
2.2.2 Examples . 2–8
2.3 EXAMINE . 2–10
2.3.1 Syntax and Qualifiers . 2–10
2.3.2 Examples . 2–12
2.4 SET CPU Command . 2–14
2.4.1 Syntax and Qualifiers . 2–14
2.4.2 Examples . 2–16
2.5 Sample Console Session . 2–18

Appendix A Self-Test

Appendix B Vector Processor Error Messages

iii

Appendix C Vector Module Registers

C.1 Console Commands to Access Registers C–1
C.2 <REFERENCE>(XRP) IPRs Related to the Vector Module . . C–8
C.3 <REFERENCE>(xrv) Internal Processor Registers C–9
C.4 <REFERENCE>(xrv) Registers — Vector Indirect Registers . C–12

Index

Examples

A–1 Sample Self-Test Results, Scalar Processors Only A–2
A–2 Sample Self-Test Results with Vector Processors A–4

Figures

1–1 VAX 6000 Model 400 Vector Processing System 1–2
A–1 <REFERENCE>(XRP) LEDs After Self-Test A–5
C–1 Vector Length (VLR) and Vector Count (VCR) Registers C–2
C–2 Vector Mask Register (VMR) . C–2
C–3 Vector Interface Error Status Register (VINTSR)

IPR123 (7B hex) . C–8
C–4 Accelerator Control and Status Register (ACCS)

IPR40 (28 hex) . C–8
C–5 Vector Processor Status Register (VPSR)

IPR144 (90 hex) . C–9
C–6 Vector Arithmetic Exception Register (VAER)

IPR145 (91 hex) . C–9
C–7 Vector Memory Activity Check Register (VMAC)

IPR146 (92 hex) . C–10
C–8 Vector Translation Buffer Invalidate All Register (VTBIA)

IPR147 (93 hex) . C–10
C–9 Vector Indirect Address Register (VIADR)

IPR157 (9D hex) . C–10
C–10 Vector Indirect Data Low Register (VIDLO)

IPR158 (9E hex) . C–11
C–11 Vector Indirect Data High Register (VIDHI)

IPR159 (9F hex) . C–11
C–12 Vector Register n (VREGn)

iv

000—3FF, 16 registers . C–12
C–13 Arithmetic Exception Register (ALU_OP)

440 hex . C–12
C–14 Scalar Operand Low Register (ALU_SCOP_LO)

448 hex . C–13
C–15 Scalar Operand High Register (ALU_SCOP_HI)

44C hex . C–13
C–16 Vector Mask Low Register (ALU_MASK_LO)

450 hex . C–13
C–17 Vector Mask High Register (ALU_MASK_HI)

451 hex . C–14
C–18 Exception Summary Register (ALU_EXC)

454 hex . C–14
C–19 Diagnostic Control Register (ALU_DIAG_CTL)

45C hex . C–15
C–20 Current ALU Instruction Register (VCTL_CALU)

480 hex . C–15
C–21 Deferred ALU Instruction Register (VCTL_DALU)

481 hex . C–16
C–22 Current ALU Operand Low Register (VCTL_COP_LO)

482 hex . C–16
C–23 Current ALU Operand High Register (VCTL_COP_HI)

483 hex . C–16
C–24 Deferred ALU Operand Low Register (VCTL_DOP_LO)

484 hex . C–17
C–25 Deferred ALU Operand High Register (VCTL_DOP_HI)

485 hex . C–17
C–26 Load/Store Instruction Register (VCTL_LDST)

486 hex . C–18
C–27 Load/Store Stride Register (VCTL_STRIDE)

487 hex . C–18
C–28 Illegal Instruction (VCTL_ILL)

488 hex . C–19
C–29 Vector Controller Status (VCTL_CSR)

489 hex . C–20
C–30 Module Revision (MOD_REV)

48A hex . C–21
C–31 P0 Base Register (LSX_P0BR)

500 hex . C–21
C–32 P0 Length Register (LSX_P0LR)

v

501 hex . C–21
C–33 P1 Base Register (LSX_P1BR)

502 hex . C–22
C–34 P1 Length Register (LSX_P1LR)

503 hex . C–22
C–35 System Base Register (LSX_SBR)

504 hex . C–22
C–36 System Length Register (LSX_SLR)

505 hex . C–23
C–37 Load/Store Exception Register (LSX_EXC)

508 hex . C–23
C–38 Translation Buffer Control Register (LSX_TBCSR)

509 hex . C–23
C–39 Memory Management Enable (LSX_MAPEN)

50A hex . C–24
C–40 Translation Buffer Invalidate All Register (LSX_TBIA)

50B hex . C–24
C–41 Translation Buffer Invalidate Single Register (LSX_TBIS)

5C hex . C–24
C–42 Vector Mask Low Register (LSX_MASKLO)

510 hex . C–25
C–43 Vector Mask High Register (LSX_MASKHI)

511 hex . C–25
C–44 Load/Store Stride Register (LSX_STRIDE)

512 hex . C–25
C–45 Load/Store Instruction Register (LSX_INST)

513 hex . C–26
C–46 Cache Control Register (LSX_CCSR)

520 hex . C–27
C–47 Translation Buffer Tag Register (LSX_TBTAG)

530 hex . C–27
C–48 Translation Buffer PTE Register (LSX_PTE)

531 hex . C–28

vi

Tables

1–1 Processor Module Combinations . 1–3
2–1 Console Commands and Qualifiers . 2–3
2–2 DEPOSIT Command Qualifiers . 2–6
2–3 EXAMINE Command Qualifiers . 2–10
2–4 SET CPU Command Qualifiers . 2–14
2–5 SET CPU Command Qualifiers’ Effect After a System Reset . 2–17
B–1 Vector Error Messages . B–1
C–1 Internal Processor Registers . C–3
C–2 FV64A Registers—Vector Indirect Registers C–5

vii

Preface

Intended Audience
This manual is for the system manager or system operator of a VAX 6000
system with a vector processor. The day-to-day operations of the system are
detailed in the Owner’s Manual that ships with the system; this manual
focuses on information pertaining to systems with vector processors.

Document Structure
The manuals in the VAX 6000 series documentation set are designed using
structured documentation theory. Each topic has a boldface indented
abstract, to help you use the manual as a reference tool. Other typical
components of a topic include an illustration or example, a chart or list,
and descriptive text.

This manual has two chapters and three appendixes:

• Chapter 1, VAX Vector Processing System, gives an overview of
VAX 6000 systems with vector processors.

• Chapter 2, Vector Console Commands, describes the console
commands used with vector processors.

• Appendix A, Self-Test, describes how to interpret the console display
for self-test and the LEDs on processor modules.

• Appendix B, Vector Processor Error Messages, lists error
messages associated with the vector module.

• Appendix C, Vector Module Registers, gives the registers associated
with the vector module.

vii

<REFERENCE>(VAX_XXXX) Documents
Documents in the <REFERENCE>(VAX_XXXX) documentation set include:

Title Order Number

<REFERENCE>(VAX_XXXX) Installation Guide EK–640EA–IN

<REFERENCE>(VAX_XXXX) Owner’s Manual EK–640EA–OM

<REFERENCE>(VAX_XXXX) Mini-Reference EK–640EA–HR

<REFERENCE>(VAX_XXXX) System Technical User’s Guide EK–640EB–TM

<REFERENCE>(VAX_XXXX) Options and Maintenance EK–640EB–MG

VAX 6000 Series Upgrade Manual EK–600EB–UP

VAX 6000 Series Vector Processor Owner’s Manual EK–60VAA–OM

VAX 6000 Series Vector Processor Programmer’s Guide EK–60VAA–PG

Associated Documents
Other documents that you may find useful include:

Title Order Number

CIBCA User Guide EK–CIBCA–UG

DEBNI Installation Guide EK–DEBNI–IN

Guide to Maintaining a VMS System AA–LA34A–TE

Guide to Setting Up a VMS System AA–LA25A–TE

HSC Installation Manual EK–HSCMN–IN

H4000 DIGITAL Ethernet Transceiver Installation
Manual

EK–H4000–IN

H7231 Battery Backup Unit User’s Guide EK–H7231–UG

Installing and Using the VT320 Video Terminal EK–VT320–UG

Introduction to VMS System Management AA–LA24A–TE

KDB50 Disk Controller User’s Guide EK–KDB50–UG

RA90 Disk Drive User Guide EK–ORA90–UG

viii

Title Order Number

RV20 Optical Disk Owner’s Manual EK–ORV20–OM

SC008 Star Coupler User’s Guide EK–SC008–UG

TK70 Streaming Tape Drive Owner’s Manual EK–OTK70–OM

TU81/TA81 and TU81 PLUS Subsystem User’s Guide EK–TUA81–UG

ULTRIX–32 Guide to System Exercisers AA–KS95B–TE

VAX Architecture Reference Manual EY–3459E–DP

VAX Systems Hardware Handbook — VAXBI Systems EB–31692–46

VAX Vector Processing Handbook EC–H0419–46

VAXBI Expander Cabinet Installation Guide EK–VBIEA–IN

VAXBI Options Handbook EB–32255–46

VMS Installation and Operations: VAX 6000 Series AA–LB36B–TE

VMS Networking Manual AA–LA48A–TE

VMS System Manager’s Manual AA–LA00A–TE

VMS VAXcluster Manual AA–LA27A–TE

VMS Version 5.4 New and Changed Features
Manual

AA–MG29C–TE

ix

Chapter 1

VAX Vector Processing System

This chapter describes the architecture for the VAX 6000 Model 400 systems
that support attached vector processors. Earlier models of the 6000 series
do not support vector processing.

VAX Vector Processing System 1–1

1.1 VAX 6000 System Architecture

The VAX 6000 computer systems use the high-speed system
bus, the XMI, to interconnect processors and memory
modules. The VAX 6000 Model 400 series supports
multiprocessing with up to six scalar processors or one or
two scalar/vector pairs. In Figure 1–1 the DWMBA adapter
serves as the interface to I/O devices on the VAXBI bus.

Figure 1–1: VAX 6000 Model 400 Vector Processing System
MEMORY

msb-0526-90

SCALAR
CPU

VECTOR
CPU

VECTOR
CPU

SCALAR
CPU

VIB

XMI

DWMBA
I/O

INTERFACE

VIB

MEMORYMEMORY

1–2 VAX 6000 Series Vector Processor Owner’s Manual

VAX 6000 Model 400 systems support vector processing. The FV64A vector
processor is an integrated vector processor; that is, the vector processor
module performs as a coprocessor that is tightly coupled with a host scalar
processor. To an executing program, the scalar/vector pair of modules
appear as one processor.

The two processor modules are physically connected by an intermodule
cable, the VIB. The scalar processor is specifically designed to support its
vector coprocessor, and the VAX vector instruction set is implemented as
part of the host native instruction set. Both the scalar and vector processors
are on the XMI bus, and they both access a common memory.

A VAX 6000 Model 400 system can have one or two scalar/vector pairs.
If the system has only one pair, it can also have up to three additional
scalar processors. Table 1–1 lists the maximum number of scalar and vector
processor modules allowed.

Table 1–1: Processor Module Combinations

Maximum
CPUs

Maximum
Vectors

Configuration
(Slot 1 at Right)

6 0 P P P P P P

4 1 M V P P P P

2 2 M V P M V P

For performance reasons, the scalar processor of a scalar/vector pair should
not be made the primary processor when other scalar processors are in the
system. For optimal performance, two memory modules are required for one
scalar/vector pair, and four memory modules are required for two scalar/
vector pairs.

NOTE: Installation of an <REFERENCE>(xrv) vector processor requires
that the attached <REFERENCE>(xrp) module (T2015) be at a
minimum revision of K. In addition, the ROMs on any additional
<REFERENCE>(xrp) modules must be at a minimum revision of V2.0 (ROM
0 and ROM 1).

VAX Vector Processing System 1–3

Chapter 2

Vector Console Commands

This chapter describes the console commands that allow communication
with a vector processor module.

Individual sections include:

• Console commands

• DEPOSIT command

• EXAMINE command

• SET CPU command

• Sample console session

A sample console session (see Section 2.5) shows the system response to the
SHOW CPU and SHOW CONFIGURATION console commands.

Vector Console Commands 2–1

2.1 Console Commands

Using the console program, you can examine and modify the
system memory and registers, boot or restart an operating
system, designate a primary processor, disable a vector
processor, and return to program mode.

Section 2.2 through Section 2.4 give details on the console
commands that are used with a vector processor; these are
the DEPOSIT, EXAMINE, and SET CPU commands. For
details on all console commands in Table 2–1, see your
system Owner’s Manual.

Table 2–1: Console Commands and Qualifiers

Command and
Qualifiers Function

BOOT
/R3:n /R5:n
/XMI:n /BI:m
/NODE:n

Initializes the system, causing a self-test, and be-
gins the boot program.

CLEAR EXCEPTION Cleans up error state in XBER and RCSR regis-
ters.

CONTINUE Begins processing at the address where processing was in-
terrupted by a CTRL/P console command.

DEPOSIT
/B /G /I /L /M /

N
/P /Q /V /VE /W

Stores data in a specified address.

EXAMINE
/B /G /I /L /M /

N
/P /Q /V /VE /W

Displays the contents of a specified address.

FIND
/MEMORY
/RPB

Searches main memory for a page-aligned 256-Kbyte block
of good memory or for a restart parameter block.

HALT Null command; no action is taken since the pro-
cessor has already halted in order to enter con-
sole mode.

HELP Prints explanation of console commands.

Vector Console Commands 2–3

Table 2–1 (Cont.): Console Commands and Qualifiers

Command and
Qualifiers Function

INITIALIZE [n]
/BI:n

Performs a system reset, including self-test.

REPEAT Executes the command passed as its argument.

RESTORE EEPROM Copies the TK tape’s EEPROM contents to the EEP-
ROM of the processor executing the command.

SAVE EEPROM Copies to the TK tape the contents of the EEP-
ROM of the processor executing the command.

SET BOOT Stores a boot command by a nickname.

SET CPU [n]
/ENABLED

/ALL
/NOENABLED
/NEXT_PRIMARY
/PRIMARY

/ALL
/NOPRIMARY

Specifies eligibility of processors to become the boot pro-
cessor.

/VECTOR_ENABLED
/NOVECTOR_ENABLED

Specifies whether the vector processor is to be in-
cluded in the system configuration.

SET LANGUAGE
ENGLISH
INTERNATIONAL

Changes the output of the console error messages between
numeric code only (international mode) and code plus expla-
nation (English mode).

SET MEMORY
/CONSOLE_LIMIT:n
/INTERLEAVE:(n+n...)
/INTERLEAVE:DEFAULT
/INTERLEAVE:NONE

Designates the method of interleaving the memory mod-
ules; supersedes the console program’s default interleav-
ing.

SET TERMINAL
/BREAK
/NOBREAK
/HARDCOPY
/NOHARDCOPY
/SCOPE
/NOSCOPE
/SPEED:n

Sets console terminal characteristics.

SHOW ALL Displays the current value of parameters set.

SHOW BOOT Displays all boot commands and nicknames that have been
saved using SET BOOT.

2–4 VAX 6000 Series Vector Processor Owner’s Manual

Table 2–1 (Cont.): Console Commands and Qualifiers

Command and
Qualifiers Function

SHOW CONFIGURATION Displays the hardware device type and revision level for
each XMI and VAXBI node and indicates self-test sta-
tus.

SHOW CPU Identifies the primary processor and the status of other pro-
cessors.

SHOW ETHERNET Locates all Ethernet adapters on the system and dis-
plays their addresses.

SHOW LANGUAGE Displays the mode currently set for console error mes-
sages, international or English.

SHOW MEMORY Displays the memory lines from the system self-test, show-
ing interleave and memory size.

SHOW TERMINAL Displays the baud rate and terminal characteristics func-
tioning on the console terminal.

START Begins execution of an instruction at the address speci-
fied in the command string.

STOP
/BI:n

Halts the specified node.

TEST
/RBD

Passes control to the self-test diagnostics.

UPDATE Copies contents of the EEPROM on the processor exe-
cuting the command to the EEPROM of another proces-
sor.

Z
/BI:n

Logically connects the console terminal to another proces-
sor on the XMI bus or to a VAXBI node.

! Introduces a comment.

Vector Console Commands 2–5

2.2 DEPOSIT Command

The DEPOSIT command stores data in a specified address.
Various qualifiers provide access to the vector data registers
(/VE), IPRs (/I), and vector indirect registers (/M). No
qualifier is needed to deposit to VMR, VCR, and VLR.

2.2.1 Syntax and Qualifiers

Table 2–2: DEPOSIT Command Qualifiers

Qualifier Meaning

/B Defines data size as a byte.

/G Defines the address space as the general register set, R0 through R15.

/I Defines the address space as the internal processor registers, ac-
cessed through MTPR and MFPR instructions.

/L Defines data size as a longword; initial default.

/M Defines the address space as a vector indirect register; accesses ad-
dresses 400 and higher.

/N:<count> Defines the address space as the first of a range.1 <count> is a re-
quired value with /N.

/P Defines the address space as physical memory; initial default.

/Q Defines data size as a quadword; initial default for vector registers (ex-
cept for VCR and VLR).

/V Defines the address space as virtual memory. All access and protec-
tion checking occur. Use when your operating system has been run-
ning prior to system halt.2

/VE Defines the address space as the vector register set.

/W Defines data size as a word.

1The console deposits to the first address, then to the specified number of succeed-
ing addresses. Even if the address is ’–’, the succeeding addresses are at higher ad-
dresses (that is, the symbol specifies only the starting address, not the direction).
2If memory management has not been enabled, virtual addresses are equal to physi-
cal addresses. If access is not allowed to a program running with the current pro-
cessor status longword (PSL), the console issues an error message. Virtual space de-
posits cause the PTE<M> bit to be set in the mapping PTE and force the proces-
sor write buffer to be flushed.

2–6 VAX 6000 Series Vector Processor Owner’s Manual

The DEPOSIT command syntax is:

D[EPOSIT] [/qualifier] <address> <data>

where /qualifier is a value from Table 2–2, and the variable <data> is a
hexadecimal value to be stored. The value must fit in the data size to be
deposited. The variable <address> is a 1- to 8-digit hexadecimal value or
one of the following:

• PSL, the processor status longword. You cannot use any address space
qualifier with PSL.

• PC, the program counter. The address space is set to /G.

• SP, the stack pointer. The address space is set to /G.

• Rn, the general purpose register n. The register number is in decimal.
The address space is set to /G.

• VCR, 7-bit Vector Count Register. No address qualifier is permitted.

• VLR, 7-bit Vector Length Register. No address qualifier is permitted.

• VMR, 64-bit Vector Mask Register. No address qualifier is permitted.

• V0–V15, vector registers. Elements of a vector register are specified
Vn:mm, where n is a decimal number 0–15 specifying the vector
register, and mm is a hex number 0–3F specifying the element within
the vector register. The address qualifier must be set to /VE.

• +, the location immediately following the last location you referenced in
an EXAMINE or DEPOSIT command. For physical and virtual memory,
the referenced location is the last location plus the size of the reference
(1 for byte, 2 for word, 4 for longword). For other address spaces, the
address is the last referenced address plus one.

• –, the location immediately preceding the last location you referenced
in an EXAMINE or DEPOSIT command. For physical and virtual
memory, the referenced location is the last location minus the size of
the reference (1 for byte, 2 for word, 4 for longword). For other address
spaces, the address is the last referenced address minus one.

• *, the last location you referenced in an EXAMINE or DEPOSIT
command.

• @, the location addressed by the last location you referenced in an
EXAMINE or DEPOSIT command.

If no qualifiers are given with subsequent commands, the system uses
the qualifiers from the preceding command as the defaults. With the /
M qualifier, the address is a 3-digit hex number (400 or above).

Vector Console Commands 2–7

2.2.2 Examples

Examples

1. >>> DEPOSIT/VE V12 0 ! Deposits zero into all 64 elements
! of vector register V12.

2. >>> DEPOSIT V6:2C/n:2 0 ! Deposits zero into V6 beginning at
! element 2C (hex) and also in the next
! two elements.

3. >>> DEPOSIT VLR 1 ! Deposits one in the Vector Length
! Register.

4. >>> DEPOSIT/Q/P 200 FFFFFFFF45370201
! Deposits FFFFFFFF45370201, a quadword
! of data into physical memory at address
! 200.

5. >>> DEPOSIT/M 440 0 ! Deposits zeros to vector indirect
! register with address 440 (hex).

2–8 VAX 6000 Series Vector Processor Owner’s Manual

The DEPOSIT command directs data into the specified address. If you do
not specify any address space or data size qualifiers, the defaults are the last
address space or data size specified in a DEPOSIT or EXAMINE command.
After processor initialization, the default address space is physical memory,
the default data size is longword, and the default address is zero.

If the specified value is too large to fit in the data size, the console program
ignores the command and issues an error message. If the specified value
is smaller than the data size to be deposited, the console program fills the
high order data positions with zeros. If you specify conflicting data sizes or
address spaces, the console program ignores the command and issues an
error message.

Vector Console Commands 2–9

2.3 EXAMINE

The EXAMINE command displays the contents of a specified
address. Various qualifiers provide access to the vector data
registers (/VE), IPRs (/I), and vector indirect registers (/M).
No qualifier is needed to examine VMR, VCR, and VLR.

2.3.1 Syntax and Qualifiers

Table 2–3: EXAMINE Command Qualifiers

Qualifier Meaning

/B Defines data size as a byte.

/G Defines the address space as the general register set, R0 through R15.

/I Defines the address space as the internal processor registers, ac-
cessed through MTPR and MFPR instructions.

/L Defines data size as a longword; initial default.

/M Defines the address space as a vector indirect register; accesses ad-
dresses 400 and higher.

/N:<count> Defines the address space as the first of a range.1 <count> is a re-
quired value with /N.

/P Defines the address space as physical memory; initial default.

/Q Defines data size as a quadword; initial default for vector registers (ex-
cept for VCR and VLR).

/V Defines the address space as virtual memory. All access and protection check-
ing occur.2

/VE Defines the address space as the vector register set.

/W Defines data size as a word.

1The console examines the first address, then the specified number of succeeding ad-
dresses. Even if the address is ’–’, the succeeding addresses are at higher ad-
dresses; that is, the symbol specifies only the starting address, not the direction.
2If memory management has not been enabled, virtual addresses are equal to physi-
cal addresses. If access is not allowed to a program running with the current pro-
cessor status longword (PSL), the console issues an error message. Virtual space de-
posits cause the PTE<M> bit to be set in the mapping PTE and force the proces-
sor write buffer to be flushed.

2–10 VAX 6000 Series Vector Processor Owner’s Manual

The EXAMINE command syntax is:

E[XAMINE] [/qualifier] [<address>]

where /qualifier is a value from Table 2–3, and <address> is a 1- to 8-digit
hexadecimal value or one of the following:

• PSL, the processor status longword. You cannot use any address space
qualifier with PSL.

• PC, the program counter. The address space is set to /G.

• SP, the stack pointer. The address space is set to /G.

• Rn, the general purpose register n. The register number is in decimal.
The address space is set to /G.

• VCR, 7-bit Vector Count Register. No address qualifier is permitted.

• VLR, 7-bit Vector Length Register. No address qualifier is permitted.

• VMR, 64-bit Vector Mask Register. No address qualifier is permitted.

• V0–V15, vector registers. Elements of a vector register are specified
Vn:mm, where n is a decimal number 0–15 specifying the vector
register, and mm is a hex number 0–3F specifying the element within
the vector register. The address qualifier must be set to /VE.

• +, the location immediately following the last location you referenced in
an EXAMINE or DEPOSIT command. For physical and virtual memory,
the referenced location is the last location plus the size of the reference
(1 for byte, 2 for word, 4 for longword). For other address spaces, the
address is the last referenced address plus one.

• –, the location immediately preceding the last location you referenced
in an EXAMINE or DEPOSIT command. For physical and virtual
memory, the referenced location is the last location minus the size of
the reference (1 for byte, 2 for word, 4 for longword). For other address
spaces, the address is the last referenced address minus one.

• *, the last location you referenced in an EXAMINE or DEPOSIT
command.

• @, the location addressed by the last location you referenced in an
EXAMINE or DEPOSIT command.

If no qualifiers are given with subsequent commands, the system uses
the qualifiers from the preceding command as the defaults. With the /
M qualifier, the address is a 3-digit hex number (400 or above).

Vector Console Commands 2–11

2.3.2 Examples

Examples

1. >>> EXAMINE VLR ! Examines the Vector Length
! Register.

M 00000001 0E

2. >>> EXAMINE/VE V0 ! Examines vector register V0; system
! displays all 64 elements of register V0.

VE V00:00 00000000 00000002 VE V00:01 00000000 00000002
VE V00:02 00000000 00000002 VE V00:03 00000000 00000002
VE V00:04 00000000 00000002 VE V00:05 00000000 00000002
VE V00:06 00000000 00000002 VE V00:07 00000000 00000002
VE V00:08 00000000 00000002 VE V00:09 00000000 00000002
VE V00:0A 00000000 00000002 VE V00:0B 00000000 00000002
VE V00:0C 00000000 00000002 VE V00:0D 00000000 00000002
VE V00:0E 00000000 00000002 VE V00:0F 00000000 00000002
VE V00:10 00000000 00000002 VE V00:11 00000000 00000002
VE V00:12 00000000 00000002 VE V00:13 00000000 00000002
VE V00:14 00000000 00000002 VE V00:15 00000000 00000002
VE V00:16 00000000 00000002 VE V00:17 00000000 00000002
VE V00:18 00000000 00000002 VE V00:19 00000000 00000002
VE V00:1A 00000000 00000002 VE V00:1B 00000000 00000002
VE V00:1C 00000000 00000002 VE V00:1D 00000000 00000002
VE V00:1E 00000000 00000002 VE V00:1F 00000000 00000002
VE V00:20 00000000 00000002 VE V00:21 00000000 00000002
VE V00:22 00000000 00000002 VE V00:23 00000000 00000002
VE V00:24 00000000 00000002 VE V00:25 00000000 00000002
VE V00:26 00000000 00000002 VE V00:27 00000000 00000002
VE V00:28 00000000 00000002 VE V00:29 00000000 00000002
VE V00:2A 00000000 00000002 VE V00:2B 00000000 00000002
VE V00:2C 00000000 00000002 VE V00:2D 00000000 00000002
VE V00:2E 00000000 00000002 VE V00:2F 00000000 00000002
VE V00:30 00000000 00000002 VE V00:31 00000000 00000002
VE V00:32 00000000 00000002 VE V00:33 00000000 00000002
VE V00:34 00000000 00000002 VE V00:35 00000000 00000002
VE V00:36 00000000 00000002 VE V00:37 00000000 00000002
VE V00:38 00000000 00000002 VE V00:39 00000000 00000002
VE V00:3A 00000000 00000002 VE V00:3B 00000000 00000002
VE V00:3C 00000000 00000002 VE V00:3D 00000000 00000002
VE V00:3E 00000000 00000002 VE V00:3F 00000000 00000002

3. >>> EXAMINE/Q/P 200 ! Examines the quadword in
! physical memory at address 200.

2–12 VAX 6000 Series Vector Processor Owner’s Manual

4. >>> EXAMINE/VE V12:2E ! Examines element 2E (hex)
! (which is 41 decimal) of vector
! data register V12.

5. >>> EXAMINE/M 440 ! Examines the vector indirect
! register at hex address 440.

M 440 FFFFFFFF 00000000 ! /M is used to access vector
! indirect registers.

The system response to the EXAMINE command is in hexadecimal
notation:

<address space identifier> <address> <data>

where <address space identifier> can be one of these values:

• P — Physical memory. When virtual memory is examined, the <address
space identifier> is P and <address> is the translated physical address.

• G — General register.

• I — Internal processor register.

• M — Vector indirect register. This identifier is also returned when the
PSL is examined.

• VE — Vector data register.

Vector Console Commands 2–13

2.4 SET CPU Command

The SET CPU command allows you to specify a particular
processor as the primary processor or designate its
eligibility to become the primary processor. You can also
disable a vector processor module.

2.4.1 Syntax and Qualifiers

Table 2–4: SET CPU Command Qualifiers

Qualifier Meaning

/E[NABLED]
/ALL

Processor is included in the system configuration and is eligi-
ble to become the boot processor. With the /ALL qualifier all pro-
cessors are eligible to become the boot processor; initial de-
fault.

/NOE[NABLED] Processor is immediately excluded from the system configu-
ration; START, BOOT, and CONTINUE commands are ig-
nored.

/NEX[T_PRIMARY] Processor will be the primary (boot) processor at the next sys-
tem reset.

/P[RIMARY]
/ALL

Processor will be eligible to be selected as the primary (boot) pro-
cessor at the next system reset. With the /ALL qualifier all pro-
cessors are eligible to become the boot processor; initial de-
fault.

/NOP[RIMARY] Processor will not be eligible to be selected as the pri-
mary (boot) processor at the next system reset.

/V[ECTOR_ENABLED] Vector processor attached to the specified scalar processor is in-
cluded in the system configuration and can be sent vector instruc-
tions; initial default.

/NOV[ECTOR_ENABLED] Vector processor attached to the specified scalar processor is ex-
cluded from the system configuration.

None Processor immediately becomes the new primary proces-
sor; the next system prompt comes from the new primary proces-
sor.

2–14 VAX 6000 Series Vector Processor Owner’s Manual

The SET CPU command syntax is:

SE[T] C[PU] [/qualifier] [<XMI-node>]

where <XMI-node> is the <REFERENCE>(XMI) node number of the
processor to be affected. If you omit <XMI-node>, the system uses the
current processor.

If you omit all qualifiers, the SET CPU command immediately causes the
specified processor to become the primary processor. The console terminal is
then connected to the new primary processor, and the next console prompt
is generated by the designated processor.

If you use qualifiers, the SET CPU command changes the processor
parameters that take effect at the next system reset. These qualifiers
modify the EEPROM (if the lower key switch is set to Update) and take
effect immediately:

• /ENABLE

• /NOENABLED

• /VECTOR_ENABLED

• /NOVECTOR_ENABLED

The /NEXT_PRIMARY qualifier acts the same as if you had issued a
SET CPU/NOPRIMARY command for all other nodes. To undo /NEXT_
PRIMARY, you can issue the SET CPU/PRIMARY/ALL command.

The /NOVECTOR_ENABLED qualifier removes the vector processor
from the system configuration. The scalar processor is not affected.
The /VECTOR_ENABLED qualifier restores the vector processor to the
configuration.

The effect of the SET CPU command qualifiers is shown on the BPD lines
of the system self-test display (see Section 2.5).

NOTE: For performance reasons, the scalar processor of a scalar/vector pair
should not be made the primary processor when other scalar processors are
in the system.

Vector Console Commands 2–15

2.4.2 Examples

Examples

1. >>> SET CPU/NOVECTOR_ENABLED 4 ! The vector processor attached
! to the scalar processor at node 4
! is disabled.

2. >>> SET CPU/VECTOR_ENABLED 4 ! The vector processor attached
! to the scalar processor at node 4
! is included in the system configur-
! ation.

2–16 VAX 6000 Series Vector Processor Owner’s Manual

Table 2–5: SET CPU Command Qualifiers’ Effect After a Sys-
tem Reset

Qualifier BPD Value at Next Reset1

/NEX[T_PRIMARY] B for boot processor; must be chosen the boot proces-
sor at the next system reset. All other CPUs show as D.

/NOE[NABLED] D for disable; processor is not included in the configura-
tion.

/NOP[RIMARY] D for disable; can be only a secondary processor.

/P[RIMARY] B if selected as the boot processor; E if it is a secondary proces-
sor.

/NOV[ECTOR_ENABLED] D for disable; vector processor is not included in the configura-
tion.

None B for boot processor.

1The key switch must be at Update when the SET CPU command is issued.

Vector Console Commands 2–17

2.5 Sample Console Session

#123456789 0123456789 0123456789 01234567# 1

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #
2

A A . . M M M . . M V- -P P P TYP
o o . . + + + . . + + + + + STF
. E E E B BPD
. + + + + ETF
. E E E B BPD

. XBI D -

. + . + . + + . XBI E +

. . . . A4 A3 A2 . . A1 ILV

. . . . 32 32 32 . . 32 128Mb

ROM0 = V2.00 ROM1 = V2.00 EEPROM = 2.00/2.00 SN = SG01234567

>>> SHOW CPU 3
Current Primary: 1
/NOENABLED-
/NOVECTOR_ENABLED-
/NOPRIMARY-

>>> SHOW CONFIGURATION 4

Type Rev
1+ KA64A (8082) 0007
2+ KA64A (8082) 0007
3+ KA64A (8082) 0007
4+ FV64A (0000) 0001 5
5+ MS62A (4001) 0002
8+ MS62A (4001) 0002
9+ MS62A (4001) 0002
A+ MS62A (4001) 0002
D- DWMBA/A (2001) 0002
E+ DWMBA/A (2001) 0002

XBI D
XBI E
1+ DWMBA/B (2107) 0007
3+ DRB32 (0101) 0001
4+ KDB50 (010E) 0F1C
6+ TBK70 (410B) 0307

>>> SET CPU 3 6

>>> EX/M 440 7
M 440 FFFFFFFF 00000000

2–18 VAX 6000 Series Vector Processor Owner’s Manual

>>> SET CPU/NOVECTOR 8
>>> SHOW CPU 9
Current Primary: 3
/NOENABLED-
/NOVECTOR_ENABLED-3
/NOPRIMARY-

>>> SET CPU/VEC 10

>>> SET CPU 1 11

Sections of the sample console session flagged by the numbered callouts are
explained below.

1 At power-up, the system performs self-test and displays the results.
Note that the number of tests displayed in the progress trace differs if
a vector module is attached to a CPU in node 1. See Appendix A for a
detailed explanation of self-test.

2 The TYP line in the sample self-test display indicates that a vector
processor is at node 4, and the dashes show that it is attached to the
scalar processor at node 3.

3 Enter a SHOW CPU command. Information is given about the current
primary processor and any attached vector processor. If a vector
processor were attached to the CPU at node 1, the response to the
SHOW CPU command would tell if the vector processor were enabled
or disabled (from the SET CPU command).

4 Enter a SHOW CONFIGURATION command to show the hardware
configuration. The system response indicates device node numbers,
self-test status, device types, and contents of the revision register of
the devices.

5 A vector processor, FV64A, is at node 4. A null device type appears in
the parentheses. The FV64A is an XMI module, but it has no device
type, since it functions as a coprocessor.

6 Make the scalar processor with the attached vector processor the
primary processor by issuing the SET CPU 3 command.

7 The EXAMINE/M console command provides access to vector indirect
registers. The register being read is that of the primary processor.

8 The SET CPU command can be used to disable a vector processor.

9 The vector processor attached to the CPU at node 3 has been disabled.

10 Issue SET CPU/VECTOR to return the vector processor to the
configuration.

11 Issue another SET CPU command to make the processor at node 1 the
boot processor.

Vector Console Commands 2–19

Appendix A

Self-Test

Self-test results are displayed on the console terminal and are reported by
module LEDs. Example A–1 is a sample self-test display for a VAX 6000
Model 400 system without a vector processor; the example deliberately
includes some failures to illustrate the type of information reported.
Example A–2 shows a sample self-test for a Model 400 system with two
vector processors.

Figure A–1 shows the <REFERENCE>(xrp) LEDs after self-test. If the
<REFERENCE>(xrp) has an attached vector module, the red LEDs on the
<REFERENCE>(xrp) are also used to find the failing test number for the
vector module. The vector module has a yellow self-test LED that lights
when that module passes self-test.

For a more detailed description of self-test, see your system Owner’s Manual
Chapter 6.

Self-Test A–1

Example A–1: Sample Self-Test Results, Scalar Processors Only

#123456789 0123456789 0123456789 01234567# 1

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE # 2

A A . . M M M M . . P P P P TYP 3
o o . . + + + + . . + + - + STF 4
. E B E D BPD 5
. + - - + ETF 6
. B E E D BPD 7

. XBI D - 8

. + . + . - + . XBI E +

. . . . B2 B1 A2 A1 ILV 9

. . . . 32 32 32 32 128Mb 10

ROM0 = V2.00 ROM1 = V2.00 11 EEPROM = 2.00/2.01 12 SN = SG01234567 13
>>>

1 The progress trace. This line appears when slot 1 holds a
<REFERENCE>(xrp) module. The <REFERENCE>(xrp) in slot 1
passed all 37 tests in self-test. (Note that the progress trace differs
in a system when a vector processor is attached to the CPU in slot 1;
see Example A–2).

2 Identifies the node number (NODE #).

Lines 3 through 7 refer to XMI node numbers; the XBI lines refer to
VAXBI node numbers.

3 Identifies the module type (TYP).
P = processor
M = memory
A = adapter

4 Gives self-test failure results (STF).
+ = passed
– = failed
o = not tested as part of the initial power-up test

5 Shows boot processor designation (BPD).
E = eligible to be boot processor
D = ineligible to be boot processor

A–2 VAX 6000 Series Vector Processor Owner’s Manual

B = designated as boot processor

6 Gives extended CPU/memory tests failure results (ETF). Same
interpretation as STF.

7 Shows the second boot processor designation, which may be different
from that on the first BPD line.

8 Shows DWMBA test results, node number, and self-test results of the
VAXBI nodes (XBI). The + or – at the right means that the DWMBA
passed or failed when tested by the boot processor. If the DWMBA
passed, a + or – corresponding to each VAXBI node indicates whether
that node passed or failed its own self-test.

9 Displays the memory array membership in interleave sets (ILV). Each
letter denotes a different interleave set.

10 Gives each memory array size and the total working memory size (Mb).

11 Shows the version number of the boot processor’s ROMs (ROM0 and
ROM1).

12 Gives the version number and revision number of the boot processor’s
EEPROM. The first number is the base revision of the EEPROM, which
rarely changes. The second number is the revision of console and
diagnostic patches applied to the EEPROM. This number increments
with every patch operation.

13 Lists the serial number of the system (SN).

Self-Test A–3

The self-test display in Example A–2 shows a system with two vector
processors.

Example A–2: Sample Self-Test Results with Vector Processors

#123456789 0123456789 0123456789 0123456789 0123456789 # 1

F E D C B A 9 8 7 6 5 4 3 2 1 0 NODE #

A A . . M M . . M V- -P M V- -P TYP 2
o o . . + + . . + + + + + + STF
. E E . E B BPD 3
. + + . + + ETF 4
. E E . E B BPD 3

. + + + + . + . XBI D +

. + . + . + + . XBI E +

. . . . A4 A3 . . A2 . . A1 . . ILV

. . . . 32 32 . . 32 . . 32 . . 128Mb

ROM0 = V2.00 ROM1 = V2.00 EEPROM = 2.00/2.00 SN = SG01234567 5
>>>

1 The progress trace indicates that the processor in slot 1 passed all
49 tests that comprise self-test for CPUs with vector processors. This
progress trace differs from that shown in Example A–1. In a system
where the CPU in slot 1 has no attached vector processor, self-test for
that CPU consists of 37 tests.

2 Vector processors (V) are in slots 2 and 5. The dashed lines indicate
that they are attached to the scalar processors to their right.

3 The boot processor is determined and is indicated by B. The E for the
other scalar processor indicates that it is eligible to be boot processor.

The E for the vector processor means that it is enabled. A
vector processor can be disabled with the SET CPU n /NOVECTOR_
ENABLED console command. If this command were issued, a D would
be on the BPD lines to indicate that the specified vector processor has
been disabled.

4 All processors pass the extended test.

5 Version 2 (or greater) of the ROMs and EEPROM are required for vector
processing support.

A–4 VAX 6000 Series Vector Processor Owner’s Manual

Figure A–1: <REFERENCE>(XRP) LEDs After Self-Test

NOTE: Interpretation of small red LEDs: ON is a zero, and OFF is a one.

Self-Test A–5

Appendix B

Vector Processor Error Messages

This appendix lists the error messages associated with the vector module.
See the VAX 6000–400 Owner’s Manual Appendix B for a listing of other
error messages.

Table B–1: Vector Error Messages

Error Message Meaning

?78 Vector module configuration error at
node n

The console detected a vector module config-
uration error. Problem can be that the vec-
tor node number is not one greater than the
scalar CPU or that the module to the left of a vec-
tor processor is not a memory module.

?79 Vector synchronization error. The console could not synchronize with the vec-
tor processor on a console entry. The Busy
bit in the Vector Processor Status Register re-
mained set after a timeout, or a vector proces-
sor error occurred.

?7A No vector module associated with
CPU at specified node.

No vector module is in the slot to the left of the
specified CPU, or the VIB cable either is not at-
tached or is bad.

?7B An error occurred while access-
ing the vector module.

Attempt to access VCR, VLR, or VMR regis-
ters failed.

?7D Vector module is disabled—check
KA64A revision at XMI node n

The vector module is attached to a <REFER-
ENCE>(xrp) module that is not at the revi-
sion level required.

Vector Processor Error Messages B–1

Appendix C

Vector Module Registers

The vector module registers consist of the following:

• Internal processor registers (IPRs) (see Table C–1)

• Vector indirect registers (see Table C–2)

• Vector Length, Vector Count, and Vector Mask control registers

This appendix explains how to access the registers and then shows the
registers. See your System Technical User’s Guide for complete descriptions
of the registers.

C.1 Console Commands to Access Registers
From the console, the EXAMINE and DEPOSIT commands are used to
read and write the IPRs and the vector indirect registers. The vector data
registers can also be accessed from the console. The qualifiers differ:

• /I — to read and write the IPRs

• /M — to read and write the vector indirect registers, except for the 16
vector data registers

• /VE — to read and write the vector data registers

From the console, the Vector Length, Vector Count, and Vector Mask control
registers can be specified as VLR, VCR, and VMR after DEPOSIT and
EXAMINE commands with no qualifiers. VLR and VCR are 7-bit registers
(Figure C–1), and VMR is a 64-bit register (Figure C–2).

Vector Module Registers C–1

Figure C–1: Vector Length (VLR) and Vector Count (VCR) Registers

6 0

msb−p320−90

Figure C–2: Vector Mask Register (VMR)

6
3

3
2

Vector Mask High

msb−p321−90

3
1

0

Vector Mask Low

C–2 VAX 6000 Series Vector Processor Owner’s Manual

Table C–1: Internal Processor Registers

Register Mnemonic
Address
decimal (hex) Type Class

Vector Copy—P0 Base P0BR 8 (8) WO 1

Vector Copy—P0 Length P0LR 9 (9) WO 1

Vector Copy—P1 Base P1BR 10 (A) WO 1

Vector Copy—P1 Length P1LR 11 (B) WO 1

Vector Copy—System Base SBR 12 (C) WO 1

Vector Copy—System Length SLR 13 (D) WO 1

Accelerator Control and Status ACCS 40 (28) R/W 2 I

Vector Copy—Memory Management
Enable

MAPEN 56 (38) WO 1

Vector Copy—Translation Buffer
Invalidate All

TBIA 57 (39) WO 1

Vector Copy—Translation Buffer
Invalidate Single

TBIS 58 (3A) WO 1

Vector Interface Error Status VINTSR 123 (7B) R/W 2

Vector Processor Status VPSR 144 (90) R/W 3

Vector Arithmetic Exception VAER 145 (91) RO 3

Vector Memory Activity Check VMAC 146 (92) RO 3

Vector Translation Buffer
Invalidate All

VTBIA 147 (93) WO 3

Vector Indirect Register Address VIADR 157 (9D) R/W 3

Vector Indirect Data Low VIDLO 158 (9E) R/W 3

Key to Types:

RO–Read only, WO–Write only, R/W–Read/write

Key to Classes:

1–Implemented by <REFERENCE>(XRP) CPU with a copy in the <REFERENCE>(xrv) vec-
tor module.
2–Implemented by <REFERENCE>(XRP) CPU module.
3–Implemented by <REFERENCE>(XRV) vector module.
I–Initialized on <REFERENCE>(XRP) reset (power-up, system reset, and node re-
set).

Vector Module Registers C–3

Table C–1 (Cont.): Internal Processor Registers

Register Mnemonic
Address
decimal (hex) Type Class

Vector Indirect Data High VIDHI 159 (9F) R/W 3

C–4 VAX 6000 Series Vector Processor Owner’s Manual

Table C–2: FV64A Registers—Vector Indirect Registers

Register Mnemonic
Register Field
Address (hex) Type

Vector Register 0 VREG0 000–03F R/W

Vector Register 1 VREG1 040–07F R/W

Vector Register 2 VREG2 080–0BF R/W

Vector Register 3 VREG3 0C0–0FF R/W

Vector Register 4 VREG4 100–13F R/W

Vector Register 5 VREG5 140–17F R/W

Vector Register 6 VREG6 180–1BF R/W

Vector Register 7 VREG7 1C0–1FF R/W

Vector Register 8 VREG8 200–23F R/W

Vector Register 9 VREG9 240–27F R/W

Vector Register 10 VREG10 280–2BF R/W

Vector Register 11 VREG11 2C0–2FF R/W

Vector Register 12 VREG12 300–33F R/W

Vector Register 13 VREG13 340–37F R/W

Vector Register 14 VREG14 380–3BF R/W

Vector Register 15 VREG15 3C0–3FF R/W

Arithmetic Instruction ALU_OP 440
�

R/BW

Scalar Operand Low ALU_SCOP_LO 448 R/BW

Scalar Operand High ALU_SCOP_HI 44C R/BW

Vector Mask Low ALU_MASK_LO 450 BR/BW

Vector Mask High ALU_MASK_HI 451 BR/BW

Exception Summary ALU_EXC 454 R/BW

Diagnostic Control ALU_DIAG_CTL 45C R/BW

Current ALU Instruction VCTL_CALU 480 R/W

Deferred ALU Instruction VCTL_DALU 481 R/W

�

Addresses from 400–45F in this column specify the address of Verse chip 0; ad-
dresses for Verse chips 1, 2, and 3 are found by adding 1, 2, and 3 to the ad-
dress given. A read must specify each Verse chip by its own address; a write to the ad-
dress given in the table (for Verse chip 0) is broadcast to all Verse chips.

Vector Module Registers C–5

Table C–2 (Cont.): FV64A Registers—Vector Indirect Registers

Register Mnemonic
Register Field
Address (hex) Type

Current ALU Operand Low VCTL_COP_LO 482 R/W

Current ALU Operand High VCTL_COP_HI 483 R/W

Deferred ALU Operand Low VCTL_DOP_LO 484 R/W

Deferred ALU Operand High VCTL_DOP_HI 485 R/W

Load/Store Instruction VCTL_LDST 486 R/W

Load/Store Stride VCTL_STRIDE 487 R/W

Illegal Instruction VCTL_ILL 488 R/W

Vector Controller Status VCTL_CSR 489 R/W

Module Revision MOD_REV 48A R

Vector Copy—P0 Base LSX_P0BR 500 WO

Vector Copy—P0 Length LSX_P0LR 501 WO

Vector Copy—P1 Base LSX_P1BR 502 WO

Vector Copy—P1 Length LSX_P1LR 503 WO

Vector Copy—System Base LSX_SBR 504 WO

Vector Copy—System Length LSX_SLR 505 R/W

Load/Store Exception LSX_EXC 508 RO

Translation Buffer Control LSX_TBCSR 509 WO

Vector Copy—Memory Man-
agement Enable

LSX_MAPEN 50A WO

Vector Copy—Translation Buffer
Invalidate All

LSX_TBIA 50B WO

Vector Copy—Translation Buffer
Invalidate Single

LSX_TBIS 50C WO

Vector Mask Low LSX_MASKLO 510 WO

Vector Mask High LSX_MASKHI 511 WO

Load/Store Stride LSX_STRIDE 512 WO

Load/Store Instruction LSX_INST 513 WO

Cache Control LSX_CCSR 520 R/W

C–6 VAX 6000 Series Vector Processor Owner’s Manual

Table C–2 (Cont.): FV64A Registers—Vector Indirect Registers

Register Mnemonic
Register Field
Address (hex) Type

Translation Buffer Tag LSX_TBTAG 530 R/W

Translation Buffer PTE LSX_PTE 531 R/W

Vector Module Registers C–7

C.2 <REFERENCE>(XRP) IPRs Related to the
Vector Module

Figure C–3: Vector Interface Error Status Register (VINTSR)
IPR123 (7B hex)

3
1

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MUST BE ZERO

Force Bad Command Parity

(DISABLE VECT INTF)

msb−p175−90

Force Bad Data Parity
Disable Vector Interface

Vector Module Reset
Bus Timeout
C−Chip VIB Hard Error (CCHIP VIB HERR)
C−Chip VIB Soft Error (CCHIP VIB SERR)
VECTL VIB Hard Error (VECTL VIB HERR)
VECTL VIB Soft Error (VECTL VIB SERR)
Vector Hard Error (VHE)
Vector Soft Error (VSE)
Vector Absent

Figure C–4: Accelerator Control and Status Register (ACCS)
IPR40 (28 hex)

3
1

3
0 2 1 0

MUST BE ZERO

Write Even Parity F−Chip Present
Vector Present

C–8 VAX 6000 Series Vector Processor Owner’s Manual

C.3 <REFERENCE>(xrv) Internal Processor
Registers

Figure C–5: Vector Processor Status Register (VPSR)
IPR144 (90 hex)

3
1

3
0

2
6

2
5

2
4

2
3 8 7 6 2 1 0

MBZ MUST BE ZERO MBZ

Vector Arithmetic
Exception (AEX)

Vector Processor Enabled/Disabled (VEN)

msb−p122−90

Reset (RST)

Implementation−Specific Hardware Error (IMP)
Illegal Vector Opcode (IVO)
Vector Processor Busy (BSY)

Figure C–6: Vector Arithmetic Exception Register (VAER)
IPR145 (91 hex)

3
1

1
6

1
5 6 5 4 3 2 1 0

MUST BE ZERO

Vector Destination Register Mask
Integer Overflow (IOV)
Floating Overflow (FOV)

msb−p123−90

0

Floating Reserved Operand (FRS)
Floating Divide by Zero (FDZ)
Floating Underflow (FUN)

Vector Module Registers C–9

Figure C–7: Vector Memory Activity Check Register (VMAC)
IPR146 (92 hex)

3
1 0

Vector Memory Activity Check Register

msb−p124−90

Figure C–8: Vector Translation Buffer Invalidate All Register (VTBIA)
IPR147 (93 hex)

.
3
1 0

Vector Translation Buffer Invalidate All Register

msb−p125−90

Figure C–9: Vector Indirect Address Register (VIADR)
IPR157 (9D hex)

3
1

1
1

1
0 0

MUST BE ZERO

Register Field Address

msb−p126−90

C–10 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–10: Vector Indirect Data Low Register (VIDLO)
IPR158 (9E hex)

3
1 0

Vector Indirect Data Low Register

msb−p127−90

Figure C–11: Vector Indirect Data High Register (VIDHI)
IPR159 (9F hex)

3
1 0

Vector Indirect Data High Register

msb−p128−90

Vector Module Registers C–11

C.4 <REFERENCE>(xrv) Registers — Vector
Indirect Registers

Figure C–12: Vector Register n (VREGn)
000—3FF, 16 registers

6
3 0

Element 0

:
:
:

.

.

.

:
:
:

msb−p138−90

Element 63

Figure C–13: Arithmetic Exception Register (ALU_OP)
440 hex

3
1

2
6

2
5

2
4

2
3

2
0

1
9

1
8

1
7

1
4

1
3 9 8 7 6 5 4 3 0

Opcode

Vector Length Bit<6> (VL<6>)
Vector Length Bit<5> (VL<5>)

Function

msb−p139r−90

Vector Register A (VRA)
Mask Operate Enable (M)

Vector Length Bit<3> (VL<3>)
Vector Length Bit<2> (VL<2>)
Vector Length Bit<1> (VL<1>)

Vector Length Bit<4> (VL<4>)

Mask Sense (S)

Vector Register B (VRB)

Vector Length Bit<0> (VL<0>)
Vector Register C (VRC)

C–12 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–14: Scalar Operand Low Register (ALU_SCOP_LO)
448 hex

3
1 0

Scalar Operand Low Register

msb−p140−90

Figure C–15: Scalar Operand High Register (ALU_SCOP_HI)
44C hex

3
1 0

Scalar Operand High Register

msb−p141−90

Figure C–16: Vector Mask Low Register (ALU_MASK_LO)
450 hex

3
1 0

Vector Mask Low Register

msb−p142−90

Vector Module Registers C–13

Figure C–17: Vector Mask High Register (ALU_MASK_HI)
451 hex

3
1 0

Vector Mask High Register

msb−p143−90

Figure C–18: Exception Summary Register (ALU_EXC)
454 hex

3
1 6 5 4 3 2 1 0

Read as Ones

Integer Overflow (IOV)
Floating Overflow (FOV)

msb−p144−90

1

Floating Reserved Operand (FRS)
Floating Divide by Zero (FDZ)
Floating Underflow (FUN)

C–14 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–19: Diagnostic Control Register (ALU_DIAG_CTL)
45C hex

3
1

1
1

1
0 9 8 7 6 5 4 3 2 1 0

Read as Ones

Illegal Favor Opcode (IFO)

C−Bus Parity (ICI)

1

msb−p145−90

C−Bus Parity Error (CPE)
AB−Bus Parity Error (ABE)
Invert Internally Generated

Invert CD−Bus Parity High (ICH)
Invert CD−Bus Parity Low (ICL)
Invert B Operand Parity High (IBH)
Invert B Operand Parity Low (IBL)
Invert Scalar Operand Parity High (ISH)
Invert Scalar Operand Parity Low (ISL)

Figure C–20: Current ALU Instruction Register (VCTL_CALU)
480 hex

3
1

2
4

2
3

2
2

1
6

1
5

1
4

1
3

1
2

1
1 8 7 4 3 0

Opcode

Masked Operations Enable (MOE)

Modify Intent (MI)
Vector Register A (VRA)
Vector Register B (VRB)
Vector Register C (VRC)

msb−p146−90

0 Vector Length 0

Match True/False (MTF)
Exception Enable (EXC) or

Vector Module Registers C–15

Figure C–21: Deferred ALU Instruction Register (VCTL_DALU)
481 hex

3
1

2
4

2
3

2
2

1
6

1
5

1
4

1
3

1
2

1
1 8 7 4 3 0

Opcode

Masked Operations Enable (MOE)

Modify Intent (MI)
Vector Register A (VRA)
Vector Register B (VRB)
Vector Register C (VRC)

msb−p146−90

0 Vector Length 0

Match True/False (MTF)
Exception Enable (EXC) or

Figure C–22: Current ALU Operand Low Register (VCTL_COP_LO)
482 hex

3
1 0

Scalar Operand Low

msb−p147−90

Figure C–23: Current ALU Operand High Register (VCTL_COP_HI)
483 hex

3
1 0

Scalar Operand High

msb−p148−90

C–16 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–24: Deferred ALU Operand Low Register (VCTL_DOP_LO)
484 hex

3
1 0

Scalar Operand Low

msb−p147−90

Figure C–25: Deferred ALU Operand High Register (VCTL_DOP_HI)
485 hex

3
1 0

Scalar Operand High

msb−p148−90

Vector Module Registers C–17

Figure C–26: Load/Store Instruction Register (VCTL_LDST)
486 hex

6
3

3
2

Load Store Base Address

2
4

2
3

2
2

1
6

1
5

1
4

1
3

1
2

1
1 8 7 4 3

Opcode

Modify Intent
(MI)

msb−p149−90

3
1 0

Vector Register A (VRA)
Vector Register B (VRB)
Vector Register C (VRC)

Vector Length

Masked Operations Enable (MOE)
Match True/False (MTF)
Current Processor Mode (CUR MOD)

Figure C–27: Load/Store Stride Register (VCTL_STRIDE)
487 hex

3
1 0

Load/Store Stride

msb−p150−90

C–18 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–28: Illegal Instruction (VCTL_ILL)
488 hex

3
1

2
4

2
3

2
2

1
6

1
5

1
4

1
3

1
2

1
1 8 7 4 3 0

Opcode

Masked Operations Enable (MOE)

Modify Intent (MI)
Vector Register A (VRA)
Vector Register B (VRB)
Vector Register C (VRC)

msb−p146−90

0 Vector Length 0

Match True/False (MTF)
Exception Enable (EXC) or

Vector Module Registers C–19

Figure C–29: Vector Controller Status (VCTL_CSR)
489 hex

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

MBZ

Load/Store Chip
Soft Error (LSS)
Load/Store Chip
Hard Error (LSH)
Soft Internal Bus
Parity Error (CDS)
Hard Internal Bus
Parity Error (CDH)
VIB−Bus Soft
Error (VIS)
VIB−Bus Hard
Error (VIH)
Illegal Sequence
Error (ISE)

Machine Check Code (MCC)

msb−p151r−90

0 0 0

Force Soft Error (FSE)
Force Bad VIB−Bus Data Parity (FVP)
Implementation−Specific Error (IMP)

1 1 1 0

Soft Error Enable (SEE)
Hard Error Enable (HEE)
Force Bad RFA Low Parity (FRL)
Force Bad RFA High Parity (FRH)
Force Bad CD−Bus Low Data Parity (FDL)
Force Bad CD−Bus High Data Parity (FDH)
Current Mode During Error (CUR MOD ERR)

Seft−Test Failed (STF)
Extended Test Failed (ETF)
Verse Hard Error (VHE)

C–20 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–30: Module Revision (MOD_REV)
48A hex

3
1

1
2

1
1 8 7 6 0

Must Be Zero

Module Revision (MOD REV)

msb−p174−90

0

VECTL Chip Revision (VECTL REV)

Figure C–31: P0 Base Register (LSX_P0BR)
500 hex

3
1

3
0

2
9 9 8 0

0 Vector Copy −− P0 Base Register MUST BE ZERO

msb−p129−90

Figure C–32: P0 Length Register (LSX_P0LR)
501 hex

3
1

2
2

2
1 0

MUST BE ZERO Vector Copy −− P0 Length Register

msb−p130−90

Vector Module Registers C–21

Figure C–33: P1 Base Register (LSX_P1BR)
502 hex

3
1

3
0

2
9 9 8 0

0 Vector Copy −− P1 Base Register MUST BE ZERO

msb−p131−90

Figure C–34: P1 Length Register (LSX_P1LR)
503 hex

3
1

2
2

2
1 0

MUST BE ZERO Vector Copy −− P1 Length Register

msb−p132−90

Figure C–35: System Base Register (LSX_SBR)
504 hex

3
1

3
0

2
9 9 8 0

0 Vector Copy −− System Base Address MUST BE ZERO

msb−p133−90

C–22 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–36: System Length Register (LSX_SLR)
505 hex

3
1

2
2

2
1 0

MUST BE ZERO Vector Copy −− System Length Register

msb−p134−90

Figure C–37: Load/Store Exception Register (LSX_EXC)
508 hex

3
1 9 8 7 6 0

VA<31:9> of Faulting Reference

Fault Type (FT)

msb−p302−90

Exception Code (ECODE)

Figure C–38: Translation Buffer Control Register (LSX_TBCSR)
509 hex

3
1

3
0 2 1 0

MUST BE ZERO

Modify Exception Enable (MEE)
Diagnostic Mode Enable (DME)

msb−p303−90

Memory Management Enable (MME)

Vector Module Registers C–23

Figure C–39: Memory Management Enable (LSX_MAPEN)
50A hex

3
1 0

Memory Management Enable Register (A Pseudo Register)

msb−p135−90

Figure C–40: Translation Buffer Invalidate All Register (LSX_TBIA)
50B hex

3
1 0

Translation Buffer Invalidate All

msb−p136−90

Figure C–41: Translation Buffer Invalidate Single Register (LSX_TBIS)
5C hex

3
1 0

Translation Buffer Invalidate Single

msb−p137−90

C–24 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–42: Vector Mask Low Register (LSX_MASKLO)
510 hex

3
1 0

Vector Mask Low Register

msb−p304−90

Figure C–43: Vector Mask High Register (LSX_MASKHI)
511 hex

3
1 0

Vector Mask High Register

msb−p305−90

Figure C–44: Load/Store Stride Register (LSX_STRIDE)
512 hex

3
1 0

Load/Store Stride Register

msb−p306−90

Vector Module Registers C–25

Figure C–45: Load/Store Instruction Register (LSX_INST)
513 hex

6
3

3
2

Base Address

3
0

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6

MUST BE ZERO

Valid Bit (V)
Current CPU Mode (CUR MOD)
Mask Operate Enable (MOE)

msb−p307−90

3
1 0

Match True/False (MTF)
Offset Control (OFF)
Address Generation Mode (AGM)
Load or Store (LS)
Data Length (LQ)
Vector Length (VL)

C–26 VAX 6000 Series Vector Processor Owner’s Manual

Figure C–46: Cache Control Register (LSX_CCSR)
520 hex

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
2

1
1

1
0 9 8 5 4 1 0

0 0

Memory Activity (ACT)
Load/Store Chip Revision

Node ID (LSXREV)
Cache Parity Error (CPE)

msb−p308r−90
Duplicate Tag Check (DTC)

Invert Duplicate Tag Parity Sense (DPS)
Duplicate Tag Valid Sense (DVS)

Disable XMI Transactions (DXT)
Primary Tag Parity Sense (PPS)

Primary Tag Valid Sense (PVS)
Force Bad High Data Parity (FDH)

Force Bad Low Data Parity (FDL)
Force Bad Low RFA Parity (FRL)

Flush Cache (FLU)
Force Hit (FHT)

Cache Hit (HIT)
Cache Enable (ENA)

Soft Error Enable (SEE)

XMI Interface Hard Error (XHE)
XMI Interface Soft Error (XSE)

|

Cache Error Enable (CEE)

Figure C–47: Translation Buffer Tag Register (LSX_TBTAG)
530 hex

3
1

1
0 9 0

Address Tag Data MBZ

msb−p309−90

Vector Module Registers C–27

Figure C–48: Translation Buffer PTE Register (LSX_PTE)
531 hex

6
3

6
2

5
9

5
8

5
7

5
3

5
2

3
2

Page Frame Number (PFN)

Software Bits (SOFT)
Modify Bit (M)

Valid Bit (V)

msb−p310−90

3
1

3
0

2
7

Protection Field (PROT)

2
5

2
1

2
0 0

Page Frame Number (PFN)

Software Bits (SOFT)
Modify Bit (M)

Valid Bit (V)

2
6

Protection Field (PROT)

C–28 VAX 6000 Series Vector Processor Owner’s Manual

Index

A
Accelerator Control and Status

Register, C–8
Access to registers, C–1
ACCS register, C–8
ALU_DIAG_CTL register, C–15
ALU_EXC register, C–14
ALU_MASK_HI register, C–14
ALU_MASK_LO register, C–13
ALU_OP register, C–12
ALU_SCOP_HI register, C–13
ALU_SCOP_LO register, C–13
Architecture, 1–2
Arithmetic Exception Register, C–12

C
Cache Control Register, C–27
Console, 2–1 to A–1

sample session, 2–18 to A–1
Console commands

DEPOSIT, 2–6 to 2–9
EXAMINE, 2–10 to 2–13
SET CPU, 2–14 to 2–17

Console commands and qualifiers,
2–3 to 2–5

Current ALU Instruction Register,
C–15

Current ALU Operand High
Register, C–16

Current ALU Operand Low Register,
C–16

D
Deferred ALU Instruction Register,

C–16

Deferred ALU Operand High
Register, C–17

Deferred ALU Operand Low
Register, C–17

DEPOSIT command, 2–6 to 2–9
Diagnostic Control Register, C–15

E
EXAMINE command, 2–10 to 2–13
Exception Summary Register, C–14

I
Illegal Instruction Register, C–19
Internal processor registers, C–3 to

C–11

L
Load/Store Exception Register, C–23
Load/Store Instruction Register,

C–18, C–26
Load/Store Stride Register, C–18,

C–25
LSX_CCSR register, C–27
LSX_EXC register, C–23
LSX_INST register, C–26
LSX_MAPEN register, C–24
LSX_MASKHI register, C–25
LSX_MASKLO register, C–25
LSX_P0BR register, C–21
LSX_P0LR register, C–21
LSX_P1BR register, C–22
LSX_P1LR register, C–22
LSX_PTE register, C–28
LSX_SBR register, C–22
LSX_SLR register, C–23
LSX_STRIDE register, C–25

Index–1

LSX_TBCSR register, C–23
LSX_TBIA register, C–24
LSX_TBIS register, C–24
LSX_TBTAG register, C–27

M
Memory Management Enable

Register, C–24
Module Revision Register, C–21
MOD_REV register, C–21
/M qualifier, C–1

P
P0 Base Register, C–21
P0 Length Register, C–21
P1 Base Register, C–22
P1 Length Register, C–22
Processor

LED interpretation, A–5

R
<REFERENCE>(XRP) LEDs after

self-test, A–5
<REFERENCE>(XRP) vector

registers, C–8
Registers

internal processor, C–3 to C–11

S
Scalar Operand High Register, C–13
Scalar Operand Low Register, C–13
Self-test results, A–2 to A–4
SET CPU command, 2–14 to 2–17
System

architecture, 1–2
System Base Register, C–22
System Length Register, C–23

T
Translation Buffer Control Register,

C–23

Translation Buffer Invalidate All
Register, C–24

Translation Buffer Invalidate Single
Register, C–24

Translation Buffer PTE Register,
C–28

Translation Buffer Tag Register,
C–27

V
VAER register, C–9
VCR, C–1
VCTL_CALU register, C–15
VCTL_COP_HI register, C–16
VCTL_COP_LO register, C–16
VCTL_CSR register, C–20
VCTL_DALU register, C–16
VCTL_DOP_HI register, C–17
VCTL_DOP_LO register, C–17
VCTL_ILL register, C–19
VCTL_LDST register, C–18
VCTL_STRIDE register, C–18
Vector Arithmetic Exception

Register, C–9
Vector Controller Status Register,

C–20
Vector Count Register, C–1
Vector Indirect Address Register,

C–10
Vector Indirect Data High Register,

C–11
Vector Indirect Data Low Register,

C–11
Vector indirect registers, C–12 to

C–28
Vector Interface Error Status

Register, C–8
Vector Length Register, C–1
Vector Mask High Register, C–14,

C–25
Vector Mask Low Register, C–13,

C–25
Vector Mask Register, C–1
Vector Memory Activity Register,

C–10

Index–2

Vector Processor Status Register,
C–9

Vector Register n, C–12
Vector Translation Buffer Invalidate

All Register, C–10
/VE qualifier, C–1
VIADR register, C–10
VIDHI register, C–11

VIDLO register, C–11
VINTSR register, C–8
VLR, C–1
VMAC register, C–10
VMR, C–1
VPSR register, C–9
VREGn register, C–12
VTBIA register, C–10

Index–3

