
KRR KRR A XX XK XXX AHR X KKK XXX XXX XK XX XAXKKK

KR XXX XX X X XXX XX 000X XN XXX XX XXX XRNNINNNNKNK

KRR XXX XX XK XXX XXX XXX KKK KX KX AR K KRAXXXRKRKKKKX

XX RHXXXEXX XXX XX XXX XXX XX XXX IOOOXR KKK AR XXX KKK

X

XXX

XXXXX

KXXXXKXX

XAXXXARXXN

XAAXXXXXXXX

b$.9.0.9.8.4.¢.4.449¢4

KXAXXXAAXAXKXKXKX

KXXXXKXKXKXKXKKKXK

[000000960468.604 004

KXXXHAXXXXXXXXXKXXNKX

XXXXXXNEXKXXKXXXKXXXX XX

[0 808690060009 646640004.9¢¢]

PO ED PO ITIE 409000000000004904

P 9.0.0.0008426000090.006 000000000

DO 008069900089 ¢004008494090 9904

b O 00080080000080800 8046060600001

KXXXKUXLXXKKKK KX AARXKXAKK KKK KKK KK KK

XXXRXXXXAXKXXXAXXAXXXXXXXKXRKXXXKXIXXX

XXKXAXXX XXX XXX XXX RXXAXKXX KKK X XXX XXKXKK

PO PP0000080008000000000600 0000¢0000080 04

XXXAXXXRKXARXKLXXK XXX XRXXK XXX XX XXX X KKK AKX XXX KKK

KEXXKXKXEAXARXAXXXXXX XXX XX AR AKX XK X XKAXXX XX KK KKK

RSP OO E 0P 00000000000000 0300009008008 080 00000000

XXX

XXX

DECsystem 5800 System

vechnical User’'s Guide

Crder Number EX-S580AA TM-001

. This manua' serves as a reference on how to wnte software to this machine
and covers the information needed (o do lieid-'eve! repair or programmng

customized to the CPU It inCludes information en tnterrupts, error handing,

and detaied theory of cperation

bigh=! Cquipment Corporation

First Printing, July 1980

The in‘ormation in this document 1s subject to change without notice and shouid not

be construed as a commitment by Digial Equipment Corporation.

Digttal Equipment Corporation assumes no responsibilty for any errors that may

appear in this document.

The software. if any, described in this document s furnished under a license and may

be used or copied only in accordance with the terms of such icense. No responsibiity

1s assumed for the use or reliabilty of software or equipment that 1s not supphed by

Digtat Equipment Corporation or its affihated companies

Sopynght €1990 by Dignal Equipment Corporation

All Rights Reserved.

Pnnted in USA

The tollowing are trademarks of Digtal Equipment Corporation

DEBNA PDP VAXciuster

DEC ULTRIX VAXELN

DEC LANcontrolier UNIBUS VMS

DECnet VAX

DECUS VAXE!

MIPS 1s a registered trademark of MIPSCO. Ine

This document was prepared using VAX DOCUMENT. Version 1.1

Contents

PREFACE xix

CHAPTER1 THE DECSYSTEM 58C0 SYSTEM OVERVIEW 1-1

11 DECSYSTEM 5800 INTRODUCTION 1-2

12 DECSYSTEM 5800 CONFIGURATIONS 1-3

13 DECSYSTEM 580C SYSTEM ARCHITECTURE 1-4

14 TYPICAL SYSTEM 1-6

1.5 DECSYSTEM 5800 (FRONT VIEW) 1-8

16 DECSYSTEM 5800 (REAR VIEW) 1-9

17 SUPPORTED VAXBI ADAPTERS AND OPTIONS 1-10

1.8 XMI BACKPLANE AND CARD CAGE 1-11

19 VAXBI BACKPLANE AND CARD CAGE 1-13

1.4 VAXS: EXPANDER CABINET 1-14

111 TK70 TAPE DRIVE 1-15

112 1/O CONNECTIONS 1-16

113 POWER SYSTEM 1-17

1.14 COOLING SYSTEM 1-19

i

Contents

CHAPTER 2 THE XMi

iv

2-1

2.1 XMl OVERVIEW 2-2

211 XMI System Block Diagram Description 2-2

212 XMl Comer 2-4

2.1.3 XMl Data Trangactions 26

2.1.4 XMl interrupt Transactions 2-9

2.1.5 Arbitration 2-10

216 Bus Integrity 2-1

2.2 XM ADDRESSING 2-12

2.21 XMI Memory Space 2-13

222 XMi VO Space 2-13

2221 XM Private Space « 2-14

2222 XM! Nodespace « 2-14

2223 YO Adapter Address Spoce » 2-15

23 ARBITRATION CYCLES 2-16

24 XMi CYCLES 2-18

241 Function Codes 2-18

2.42 Command Cycles 2-19

2421 Command Fieid = 2-20

2422 Mask Field » 2-21

2423 Length Field « 2-22

2424 Address Fieid » 2-23

2425 Node Spacifier Fieid « 2-24

2.43 Write Data Cycles 2-25

244 Good Read Data (GRD) and Corrected Read Data

Response (CRD) Cyciles 2-25

245 Locked Response Cycle (LOC) 2-26

2456 Read Error Response Cycle (RER) 2-26

2.4.7 The Nuli Cycle 2-26

25 XMi TRANSACTIONS 2-27

2.5.1 Read Transactlon 2-27

25.2 interiock Read Transaction 2-28

253 Write Mask Transaction 2-29

254 Unlock Write Mask Transaction 2-30

255 Interrupt and identify Transactions 2-30

2.5.6 Implied Vector Interrupt Transactions 2-31

Contents

25.7 Transaction Examples 2-32

2571 Singie Daia Cycls Reads « 2-32

2572 Multiple Data Cycle Reads » 2-34

2573 Longword and Quadword Writes « 2-37

2574 Multiple Data Cycle Writes « 2-37

26 XMI INITIALIZATION 2-38

26.1 Causas of an Initialization 2-38

262 PowerUp 2-39

26.3 System Resget 2-40

26.4 Node Reset 2-40

2.7 KW REQISTERS 2-41

2.8 XM! ERRORS 2-42

2.8.1 Error Conditions 2-42

2811 Panty Error « 2-42

2812 inconsistent Panty Error » 242

2813 Transaction Timeout « 2—42

2814 Seguence Error » 2-43

282 Error Handling 2-44

2.8.3 Error Recovery 245

284 Error Reporting 2-45

CHAPTER 3 KNS58A/A INTERFACE MODULE 31

31 KN5BA/A INTERFACE MODULE FEATURES 3-2

3.2 PRIVATE VO ADDRESS SPACE MAP 34

a3 MAINTENANCE PROCESSOR 3-6

231 CVAY Hardwars Roetort Seauenca -8

33.2 Cilock Chip 3-6

34 SYSTEM SUPPORT CHIP (SSC) 3-7

3.4.1 SSC Funetions 3-7

35 EEPROM 3-8

Contenis

vi

3.5.1 EEPROM Arccess 3-8

36 SECOND-LEVEL CACKE 3-9

3.6.1 Second-Level Cache Description 3-10

3.6.2 Controdling the Second-Level Cache 3-14

3.7 XM CORNER.-TO-KNS8A/A INTERFACE 3-15

3.7.1 The XCPGA Chlp 3-19

3.7.2 The XCPGA Write Buffer 3-21

3.7.3 Duplicate Tag Store 3-22

3.7.4 XM Interrupt Operation 3-23

3.75 implied Vector Interrupts (IVINTR) 3-25

38 KNZBA/A INTERFACE MODULE REGISTERS 3-27
3.8.1 XMI Registers and Control and Status Register 1

Characieristics 3-27

CONTROL AND STATUS REGISTER 1 (CSR1)

SYSTEM YYPE (SYSTYPE)

SSC BASE ADDRESS REGISTER (SSCBR)

SSC CONFIGURATION REGISTER (SSCCR)

HDAL BUS TIMEOUT CONTROL REGISTER (CBTCR)

TIME OF YEAR CLOCK REGISTER (TODR)

CONSOLE SELECT REGISTER (CONSEL)

CONSOLE RECEIVER CONTROL AND STATUS

(RXCS)

CONSOLE RECEIVER DATA BUFFER (RXDB)

CONSOLE TRANSMITTER CONTROL AND STATUS

(TXCS)
CONSOLE TRANSMITTER DATA BUFFER (TXDB)

yD SYSTEM RESET REGISTER (ORESET)

TIMER CONTROL REGISTER 0 (TCRO)

TIMER INTERVAL REGISTER 0 (TIR0)

TIMER NEXT INTERVAL REGISTER 0 (TNIRO)

TIMER INTERRUPT VECTOR REGISTER 0 (TIVRO)

TIMER CONTROL REGISTER 1 (TCR1)

TIMER INTERVAL REGISTER 1 (TIR1)

TiMcH NEXT INTERVAL REGISTER 1 (TNIR1)

TIMER INTERRUPT VECTOR REGISTER 1 (TIVR1)

CSR1 BASE ADDRESS REGISTER (CSR1BADR®
Me APOMURFEAN I AMATE Ass mes

CSR+ ADDRESS GECODE MASK REGISTER

(CSR1ADMR)

EEPROM SASE ADDRESS REGISTER (E:P.UR)

EEPROM ADDRESS DECCDE MASK REGISTER

(EEADMR)

DEVICE REGISTER (XDEV)

BUS ERROR REGISTER (XBER)

FAILING ADDRESS REGISTER (XFADR;

XK GENERAL PURPOSE REGISTER (XGPR)

CONTROL AND STATUS REGISTER 2 (CSR2)

3-20

337

3-39

-4

347

3-50

351

3-53

3-55

3-56

357

360

361

3-862

3-83

558

67

3-69

” 40

oV

3-72

3-73

3-75

3-85

Centents

3.9 INITIALIZATICn, SELF-TEST, AND BOOTING

3.9.1 Inktiglization Overview

3.9.2 inkialization Details

3921 Restan Sequence « 3~-98

3022 Node Reset + 3-100

3923 Halt Interrupt » 3-101

3924 Emrors » 3-101

39.3 WMemory Configuration 3-107

3831 Selection of Interleave « 3-102

3932 Memory Testing and the Bitmap * 3-103

3
3

39.4 DWMBA Configurstion 3-104

3.8.5 inkialized State 3-105

39.6 Resterting or Bootstrapping the Operating System _______ 3-106

3961 Operating System Restart « 3-106

. 3962 Operating System Bootswap + 3-107
39621 Bootstrap Support Routines in the Console » 3-108

3.9.7 Console Use of Address Space 3-108

39.8 Booistrap of the VAX Diegnostic Supervisor (VAX/DS) __ 3-110

3981 Parameters Passed to the Boot Primitive « 3-110

3982 Parameters Passed to the Bootblock Program « 3-112

3983 Parameters Required by the Boot Primitive » 3-112

3884 Considerations for Tape Drives « 3-112

‘ 3.10 INTERPROCESSOR COMMUNICATION THROUGH THE CONSOLE
PROGRAPR 313

3.10.1 Required Communications Paths 3-113

3.10.2 Console Communications Area 3-115

3.10.3 Send!ng & Message o Another Processor 3-123

3.1 KNSBA/A INTERFACE MODULE ERROR HANDLING 3-125

Q 3.11.1 Parity Generation and Checking for Error Detection 3-126
3.11.2 Error Interrupt Service Routines 3-126

3.11.3 KNSSBA/A Interface Module Error Matrix 3-128

CHAPTER 4 KNSBA/B CPUMODULE 4-1

4.1 KN58A/B CPU MODULE FEATURES 4-2

4.2 R3000 CPU 4-4

4.2.1 R3000 Registers 44

vil

Contents

viil

4.22

423

424

425

4.2.6

427

428

4.29

Coprocessor 0 (CP0) Registers 45

TLB ENTRYHI REGISTER (ENTRYHI) 8

TLB ENTAVLO REGISTER (ENTRYLO) &7

TLB INDEX REGISTER (INDEX) &9

TL8 RANDOM REGISTER (RANDOM) 4-10

R3000 STATUS REGISTER (STATUS) &1

CAUSE REGISTER (CAUSE) 415

EXCEPTION PROGRAM COUNTER REGISTER (EPC) 4-18

CONTEXT REGISTER (CONTEXT) 419

RAD VIRTUAL ADDRESS REGISTER (BADVADDR) &-20

PROCESSOR REVISION IDENTIFIER REGISTER

(PRID) &1

R3000 Pipetine Architecture 4-22

Data Types 4-22

instruction Set 4-23

4251 Load and Store Instructions « 4-24

4252 Computationa! Instructions * 4-24

4253 Jump and Branch Instructions » 4-25

4254 Coprocessor instructions « 4-25

4255 Special Instructions « 4-25

Memory Management 4-26

4261 Translation Lookaside Bufter « 4-26

4262 R3000 Operating Modes * 4-25

Memory Mapping 4-28

4271 R3000 Boot PROM Mapping * 4-29

4272 YO Mapping Example. Reading a Register Associated with 11O

Adapter 7 » 4-29

Interrupts 4-30

Exceptions 4-31

4.3 R3010 FPA 4-33

4.3.1

4.3.2

433

434

4.3.5

FPA Registers 4-33

4311 Floating-Point Genera! Registers (FGRs) = 4-34

4312 Floating-Point Registers (FPRs) « 4-34

4313 Floating-Point Contro! Registers (FCRs) « 4-34

FPA CONTROL/STATUS REGISTER (FCR31) 4-35

FPA WAPLEMENTATION/REVISION REGISTER (FCRO0) 4-37

FPA Formsts 4-38

Coprocessor Operation 4-38

4331 Load, Store, and Move Operations « 4-39

4332 Floating-Point Operations * 4-39

4333 Exceptions » 4-39

instruction Set Ovarview 4-39

R3010 Pipeiine Architecture 4-40

4.4 R3020 WRITE BUFFERS 4-41

Contents

4.4.1 Write Butier Flugh 4-41

44.2 Write Buffer Byte Gathering 4-42

4.4.3 Write Butier Parity 4-42

4.5 FIRST-LEVEL CACHE MEMORY 4-43

4.5.1 Firet-Leve! Cachable References 4-43

45.2 First-Level Cache Organlzetion 4-44

4.5.3 Iniilalizing the Firgt-Level Cache 4-45

454 First-Level Cache Address Translation 4-46

4.5.5 First-Level Cache Data Block Allocation 4-47

456 First-Level Cache Behavior on Writes 4-47

4.5.7 Firgt-Level Cache Coharency 4-48

458 First-Level Cache Error Detection 4-48

4.6 INTERFACE LOGIC 4-49

4.6.1 The IIDAL Bus 4-49

46.2 Read Operation 4-49

46.3 Write Operation 4-49

46.4 Interrupt Acknowiledge Operation 4-50

4.6.5 Lock Transactions 4-50

4.6.6 DMA on the IIDAL Bus 4-50

46.7 idle 4-51

CHAPTER S5 MS62A MEMORY MODULE 5-1

5.1 MODULE FEATURES 5-2

52 TECHNICAL DESCRIPTION 5-3

53 SELF-TEST AND INITIALIZATION 5-4

54 STARTING ADDRESS AND INTERLEAVING 5-5

5.4.1 Starting and Ending Addresses 5-5

54.2 interieaving 55

Contents

55 CONTROL AND STATUS REGISTERS 5-¢

DEVICE REGISTER (XDEV) 58

BUS ERROR REGISTER (XBER) 5-9

STARTING AND ENDING ADDRESS REGISTER

(SEADR) 8-12
MEMORY CONTROL REGISTER 1 (MCTL1) 5-14

MEMORY ECC ERROR REGISTER (MECER) 3-18

MEMORY ECC ERROR ADDRESS REGISTER

(MECEA) 8-21
MEMORY CONTROL REGISTER 2 (MCTL2) 5-22

TCY TESTER REGISTER (TCY) 5-24

INTERLOCK FLAG REGISTER (IFLGN) 5-25

5.6 ERROR HANDLING AND COMMAND RESPONSES 5-27

5.6.1 Read Errors 5-27

562 Full Write Errors 5-27

5.6.3 Partial Write Errors 5-28

CHAPTER6 DWMBA XMI-TO-VAXBI ADAPTER 6-1

6.1 DWMBA OVERVIEW 6-2

6.2 CPU TRANSACTIONS 64

6.2.1 General Operation 6-5

6.2.2 VAXBI VO Space Reads 6-5

6.2.3 VAXBI VO Space Writes 6-6

6.2.4 interrupts 6-7

6241 XM! IDENT to VAXB! IDENT « 6-7

6242 XM! IDENT with DWMBA Adapter Pending Interrupt « 6-7

6243 Passive Release of VAXBI Interrupts « 6-7

6.3 DMA TRANSACTIONS 6-8

6.3.1 VAXBI-to-XMI Memory Space Reads 6-9

6.3.2 VAXBI-to-XMI Memory Space interlock Reads 6-10

6.3.3 VAXBI-to-Xhl Memory Writes 6-10

6.3.4 VAXBI-Generated interrupts 6-10

Contents

6.4 DWMBA XHMI-TO-VAXBI ADAPTER RERISTERS 6-11

DEVICE REGISTER (XDEV) 6-14

BUS ERROR REGISTER (XBER) 615

FAILING ADDRESS REGISTER (XFADR) 6-2%

RESPONDER ERROR ADDRESS REGISTER (AREAR) 6-22

ERROR SUMMARY REGISTER (AESR) 6-23

INTERRUPT MASK REGISTER (AlAR) 6-28

WAPLIED VECTOR INTERRUPT

DESTINATION/DIAGNOSTIC REGISTER (AIVINTR) 6-33

DIAG 1 REGISTER (ADGY) 6-34

CONTROL AND STATUS REGISTER (BCSR) 6-37

ERROR SULIARY REGISTER (BESR) 640

INTERRUPT DESTINATION REGISTER (BIDR) 6-45

TEOUT ADDRESS REGISTER (BTIM) 646

VECTOR OFFSET REGISTER (BVOR) 647

VECTOR REGISTER (BVR) 648

DIAGNOSTIC CONTROL REGISTER 1 (EDCR1) 649

RESERVED REGISTER 6-51

DEVICE REGISTER (DTYPE) 6-52

6.5 INTERRUPTS 6-83

6.5.1 DWMBA XMi-t0-VAXBI Adapter Vactor Formats and

Requirements 6-54

6511 XMI Bus Vector Format « 6-55

6512 Ofisettable Bus Vectors « 6-55

6513 VAXBI Node Vectors » 5-55

6.5.2 interrupt Levels and Vectors 6-56

6.5.3 Types of Interrupts 6-56

6531 DWMBA-Generated Interrupts « 6-56

6532 VAXBI-Generated Intermupts = 6-57

6.5.4 XM! IDENT to VAXDB! IDENT 6-58

6541 XMI to VAXBI IDENT « 6-58

6542 XM! to VAXB! IDENT (DWMBA Interrupt Pending) » 6-58

6.6 ERROR REPORTING 6-59

6.6.1 VAXBI Errors 6-59

6.6.2 DWMBA Errors 6-59

6.6.3 DWMBA XMI-to-VAXB! Adapter Error Response Matrix ___ 6-60

6.7 DWMBA INITIALIZATION, SELF-TEST, AND BOOTING 6-67

6.7.1 DWMBA inRialization 667

6.7.2 DWMBA Self-Test and Diagnostics 6-68

6721 Loopback » 668

6722 Self-Test » 6-68

Contents

CHAPTER 7 POWER AND COOLING SYSTEMS 7-1

7.1 POWER SYSTEM 7-1

7.1.1 Input Power 7-2

7.1.2 H7206 Power and Logic Unit 7-2

7.1.3 H7214 Power Ragulator 7-2

7.1.4 H7215 Power Regulator 7-3

7.1.5 XTC Power Sequencer 7-3

7151 XMI Resst Timing Control Logic « 7-3

7152 TOY Circuits » 7-3

71453 Console Line Driver and Receiver = 7-3

7.1.6 Power System Signals 7-4

7.2 CODLING SYSTEM 7-5

APPENDIX A CONSOLE ENTRY POINTS A-1

AA RESET - POWER-UP CONSOLE ENTRY - ENTRY 0 A-1

Az PROMEXEC - EXEC NEW PROGRAM - ENTRY 1 A-1

A3 EXIT - REENTER CONSOLE - ENTRY 2 A-1

A4 REINIT_CONSOLE - REINITIALIZE THE COMSOLE - ENTRY 3 A-1

AS CONDITIONAL_BOOT - INVOKE POWER-UP ACTION - ENTRY 4 A-2

A6 REBOOT - REBOOT THE SYSTEM - ENTRY S A-2

AT OPEN - OPEN A FILE - ENTRY 6 A-2

A7.1 filename A-2

A7.2 flags A-3

AB READ - READ FROM A FILE - ENTRY 7 A-3

A9 WRITE - WRITE TO A FILE - ENTRY 8 A-3

Contents

A10 IOCTL - DEVICE-SPECIFIC 1/0 OPERATION - ENTRY 9 A4

A1l CLOSE - CLOSE AN OPEN FILE - ENTRY 10 A-4

A12 LSEEK - POSITION WITHIN A FILE - ENTRY 11 A4

A13 GETCHAR - INPUT A SINGLE CHARACTER - ENTRY 12 A4

A4 PUTCHAR - OUTPUT A SINGLE CHARACTER - ENTRY 13 A-C

A15 SHOWCHAR - OUTPUT A SINGLE CHARACTER - ENTRY 14 A-5

A16 GETS - GET LINE OF INPUT - ENTRY 15 A-5

A17 PUTS - DISPLAY A LINE OF OUTRUT - ENTRY 16 A-5

A18 PRINTF - PRINT FORMATTE! VALUES - ENTRY 17 A6

A19 FLUSH_CACHE - FLUSH PROCESSOR CACHE - ENTRY 28 A6

A20 CLEAR_CACHE - CLEAR PART OF THE PROCESSOR CACHE -

ENTRY 29 A5

A21 SET.MP - SAVE PROGRAM CONTEXT - ENTRY 30 A6

A22 LONGJMP - RESTORE PROGRAM CONTEXT - ENTRY 31 A-7

A23 UTLBMISS_EXCEPT . CONSOLE UTLB MiSS VECTOR - ENTRY 32 A-7

A24 GETENV - GET VALUE OF AN ENVIRONMENT VARIABLE - ENTRY
23 A-7

A25 SETENV - SET VALUE OF AN ENVIRONMENT VARIABLE - ENTRY

34 A-7

Contents

xiv

A26 ATOB . CONVERT ASCH TO BINARY - ENTRY 35 A-7

A27 STRCMP - COMPARE TWO STRINGS - ENTRY 36 A-8

A28 STRLEN - FIND STRING LENGTH - ENTRY 37 A-8

A29 STRCPY - COPY A STRING - ENTRY 38 A-8

A3" STRCAT - CONCATENATE TWO STRINGS - ENTRY 39 A-8

A.31 PARSE - PARSE A SIMPLE COMMAND - ENTRY 40 A-9

A32 PARSE_RANGE - PARSE AN ADDRESS RANGE - ENTRY 41 A-9

827 ARGVIZE . PARSE STRING INTO TOXENS - ENTRY 42 A-9

A4 HELP - PRINT HELP FROM A COMMAND TABLE - ENTRY 43 A-10

A35 DUMPCMD - INVOKE CONSOLE DUMP COMMAND - ENTRY 44 A-10

A36 SETENVCMO - iNVOKE CONSOLE SETENV COMMAND - ENTRY 45 A-10

A37 UNSETENVCMD - INVOKE CONSOLE SETENYV COMMAND - ENTRY

a6 A-11

A38 PRINTENVCMD - INVOKE CONSOLE PRINTENV COMMAND -

ENTRY 47 A-11

A39 GENERAL_EXCEPT - CONSOLE GENERAL EXCEPTION VECTOR -

ENTRY 48 A-11

A40 CLEAR_NOFAULT - CLEAR CONSOLE FAULT HANDLERS - ENTRY

51 A-11

A41 NOT_IMPLEMENTED - UNIMPLEMENTED FUNCTICN - ENTRY 52 aA-11

SEn

&

Contents

A42 HALT_INTERRUPT - SERVICE HALT INTERRUPT - ENTRY 54 A-12

A43 ENTER_MAINTMODE - ENTER MAINTENANCE MODE - ENTRY 86 A-12

A44 START_MAINT - START CODE ON THE MAINTENANCE

PROCESSOR - ENTRY 97 A-12

A.45 PROM DEVICE DRIVERS A-13

A.45.1 bootp - BOOTP protocol Ethernet driver A-13

A.45.2 ra- MSCP disk driver A-13

A.45.3 mop - BOP protocol Ethernat driver . A-13

A.85.4 (ims - MS5CF tape anver A-13

A.85.5 tty - conscle terminal pont A-14

R - P e R T Y R P S

INDEX

EXAMPLES

31 Flushing Second-Level Cache 3-14

&1 1O Raapping 4-29

L i i i S i e i i e]

FIGURES

1-1 DECsystem 5801 System Architecture 1-4

1-2 Typical DECsystem 5800 System 1-6

13 DECsystem 5800 (Fromt View) 1-8

14 DECsys'em 5800 Syste«’ (Rear View) 1-9

1-5 VAXBI! Adapters 1-10

i-6 DECsyeotem 5800°2 ¥A2! -1

1-7 DECsystem 5800's VAXBI 1-13

1-8 VAXBI Expander Cabinet 1-14

1-9 TK70 Tape Drive 1-15

1-10 Consoie and Terminal Connectors 1-16

-1 Power System (Rear View) 1-17

i-12 Alrflow Pattern 1-19

2-1 XMl System Block Diagram 2-2

2-2 XMI Node Block Diagram Showing the XMI Corner 2-4

2-3 XMI Memory and /O Address Space 2-12

2-4 XMI 110 Space Address Allocation 2-13

2-5 XMI Arbitration Block Diagram 2-16

2-6 Data Transaction Command Cycle Format 2-19

Contents

nvi

2-7

2-8

2-8

2-10

2-11

2-12

2-13

2-14

2-15

2-16

2-17

2-18

2-19

2-20

r
r
L
r
i
s

3-7

3-9

3-10

31

3-12

3-13

3-14

3-15

Interrupt Trangaction Command Cycle Format

Pask Fleld Bit Assignments

Node Specifier Fletd

Read Transaction

interiock Read Transaction to & Locked Location

Multiple Deta Cycls Reads Command Cycle

ReadData Cycles

Read Data Cycles with HOLD

Hexword Read with Single Correctable Read Error

Hexword Data Return with Uncorrectiable Read Error

Longword anc Quadword Writes

Multipte Dain Cycle Writes

XMI Initiatization Flowchan

Falled Octaword Write Trangaction

KNS8AA Intertace Module Block Diagram

Private 1/0 Address Space Map

Second-Level Cache Block Diagram

Cache Address Line Contemtg DuringaCacheReed

Cache Address Line Contents During a Second-Level Cache Fili __

Second-Level Cache Addressing

XMi Corner-t0-iNSB8A/A Interiace

XCPGA Block Diagram

interprocessor (VINTR Generation Address Example

Initialization Flowchart

Restan Parameter Block Format

Bootblock Format

CCA Layout, Part 1

CCA Layout, Pant 2

Lavout of Xkl Node Butfers

K N58A/B CPU Module Block Diagram

R3000 Registers

instruction Formats

Virtual Memory for Kernel and User Modes

R3000 Memory Mapping

FPA General-Purpoge Registers

Single-Precision Floating-Point Foimiat

Double-Precision Floating-Point Format

Cache Organization

First-Level Cache Organization

Cache Entry

Cache Address Transiation

DWMBA XMli-to-VAXBI Adapter Block Diagram

XMl Bus Vector Format

UNIBUS Vector Format

VAXBI Node Bus Vector Format

2-19

2-21

2-24

2-32

2-33

2-34

2-34

2-35

2-36

2-36

2-37

2-37

Contents

TABLES

1-1

1-2

1-3

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

3-10

3-11

312

3-13

3-14

315

3-16

3-17

T
S
I
L
L
L
L
Y
XMi Slots

input Voltage

Power Supply Avalieble for VAXBI Options

Usable XMI Bandwidth

Data Transactions Supponed by ihe XMl

XA Terms

XM Interrupt Transactions

XMI Arbitration Lines

XM| Nodespace Addresses

XM Functiun Codes

XMl Command Codes

X! Transaction Lengin Codes

XMI Transactions

XM! Registers

Mapping of CPU Operations 1o XMi Transactions

Datalled CPU Read Oparation to XM! Man

Mapping of XMI Trangactions to KNSBA/A Intertace Module

Operations

XM! Regisiers iof ihe KNSBAVA imteriace Module

Abbreviaticns for Bit Type

Registers in XMI Private Space

KNSBA/A Interface Module Initisl Register States

Boot Parameters Loaded into GPRs

input Parameters Required by the Boot PrimRive

Output Parameters Required by the Boot Primitive

CCA Fields

Buffer Fields

Second-Level Cache Data Parity Errors

Second-Level Cache Tag/Valid Bit Parity Errors

XMi Bus Timeout Errors

XM| Bus Parity Errors

Maln Memory Correctable Errors

#main Memory Uncorrectable Errors

Coprocessor 0 Registers

Byte Speclfications for Load and Store Instructions

R30C0 External Hardware inierrupis

Iinterrupt Acknowledge Vectors

R3000 interrupt Levels 3, 4, and 5

Cache Entry Flelds

M3S62ZA RMemory Module Control and Status Registers

XMi-to-vAXBI Command Transiations

1-12

1-17

1-18

Contents

xvili

R
)
 D
A

6-9

6-10

6-1

6-12

7-1

VAXBI-to-XM!I Command Translations

XMl Registers on the DWMBA/A Moduie

XM! Registers on the OWMBA/B Module

VAXBI Registers

DWRMBA Adapter Interrupt Levels and Vectors

Xl Errors During DMA Trangactions (VAXBI to XMI Memory)

Xadi Errorg During CPU 1/0 Transactions (XMI to VAXBI)

DWWMBA Errors During DMA Transactiong (VAXBI to XMl Memory) .

DWMBA Errorg During CPU I/0 Transactions (XMI to VAXBI)

VAXBI Errors During DA Transactions (VAXBI to XMi Memory)

VAXBI Errors During CPU VO Trangactionsg (X#MI TO VAXBI)

Power System Signals

611

6-12

6-13

6-66

6-61

6-62

6-64

6-65

7-4

Preface

intended Audience

This manual is written for Digital customer service engineers installing

and repairing in the field and for OEMs who are writing specialized

applications, such as their own operating systems.

Document Structure

This manual has seven chapters.

Chapter 1 gives vou a basic introduction to the DECsystem 5800

system and its parts.

Chapter 2 tells you about the XMI bus and protocol.

Chapter 3 explains the KNSEA/A interface module, and Chapter 4

explains the KNS58A/B CPU module, the two modules that comprise a

DECsystem 5800 processor.

Chapter 5§ explains the MS62A memory module.

Chapter 6 tells you about the DWMBA and its DWMBA/A module

and DWMBA/B module

Chapter 7 explains the components of the power system and the

cooling system.

The Index= provides additional reference support.

Preface

Associated Documents

XX

Other documents in the DECsyst-m 5800 documentation set include:

Title

DECsystem 5800 Installation Guide

DECsystem 5800 Owner's Manual

DECsystem 5800 Optrons and Me. "~ tnce

Order Number

E£K-580AA-IN

EK-580AA-OM

EK-580AA-MG

You may also find the following documents useful:

Title

CIBCA User Guide

DEBNI installation Guide

Guue to Ethernet Communication Services

Guida to Languages and Programming for

RISC Processors

Gudde to Networking for RISC Processors

Guide to System Environment Setup

H3000 DIGITAL Ethernet Transceiver

installation Manual

H9657-EU installaton Guide

HSC Instakiation Manual

introduction to System and Network

Management for RISC Processors

KDB5S0 Disk Controller User's Guide

RAB82 Disk Drive User's Gude

RA90 Disk Drive User's Guide

SA70 Enclosure User Guide

5C008 Star Coupler User's Guide

Technical Summary for RISC Processors

TK70 Streaming Tape Drive Owner's Manual

TU8B1/TA81 and TUB1 PLUS Subsystem

User's Guide

VAXB! Optioris Handbook

VAX Diagnostic Architecture Reference

Manual

VAX Diagnostic Supervisor User's Guide

VAX Systems/DECsystems Systems and

Options Catalog

Order Number

EK-CIBCA.UG

EK-DEBNI-IN

AA-NL22A-TE

AA-MLO4A-TE

AA-MLBBA-TE

AA-NL1BA-TE

EK-H4000-IN

EK-VBIEU-IN

EK-HSCMN-IN

AA-MLBOA.TE

EK-KDBS0-UG

EK-ORAB2-UG

EK-ORA90-UG

EK-SA70E-UG

EK-SC008-UG

AA-MM35A-TE

EK-OTK70-OM

EK-TUAB1-UG

EB-32255-46

EY-3459E-DP

AA-FK66A-TE

£C-10413.46

EXEXXXOOOO X XK KU XXX KA KR XK KX KX KX RO KA XXX

O R R R A K E KR R KRR OO XXX ORI

KK XK OGO XXONN0OUOOONDIX XX XXX XX

b0 6. 99.6.60¢.¢.066¢00¢600¢6¢646960000¢000060¢¢¢494]

P OGO RE LSSEIINEEITEDCECEL L0000 e tod

HHHXXKNGBOOGGERGO KKGGOOOOGOTRR RN

BP0 00000810080 0 Eeeesseesessdeseeossel

HES A G000 00 e 0000400009090900¢8004]

FOEP SN0 0000009000008 048000808000 0481

MKK KKK K KK IO KOO0

XMXX KK E RN NURO000DIYYY

DO 80 ERE 0000900.0.6.6000840408.04

KKKVOO X K XK XK KR AAKX

p.0.9.0.06.0.6.600.60.046.00¢0¢4¢00¢

F0.0.0.0.6.00.010.0.0.¢.¢.6.8.0.6666606]

p8.8.6.6.6.0.6.6.00.¢.6¢09¢¢0¢4¢06]

RREKEX KRGO IR

}6.9.9.0.0.4.4.6.9.4.6.0.4.0.6¢9

10.4.9.0.6.5.0.4.0.5.6.0.4.¢4

h05.9.€.8.9.4.0.¢.0.4.¢9

§8.0.9.8.0.6.9.0.¢94

KXXAXKXKX

HXXXXXX

XXAXK

XXX

X

X

XXX

XXXXX

XXAXXXX

XXAUAXXAX

AXARXAAXRXARXX

XAXAAXAXXXKXX

XXXXXXXXXXXXXXX

XAXAXXUXXXXAXAXXX

},8,9.0.6:6.0.9.8.9.8.9.9.9.6.¢..¢¢4

1,0.0.8.9.94.9.9.6.0.6.9¢.4.9.6.6¢464

KXXXAXKUXELXXKKXXXXXAAXXX

XAXAXXAXARXXXX XXX XXXAAKXXXK

09.0.0.9.0.6,60.¢00.98¢8000¢60608¢$44

P800 00000890060080896886406¢4¢4

p0.0.0.0.600080060.6¢¢66.06800966046.844

HAXXXXKXXXAXXX XXX XX KRR NA XXX AL

PO240000480080000 064060606080 848¢444

XARAXK XXX KK UXAKAKARX XXX K XXX XK XKXAXXAX

D 30808000869 80906000408¢0 8608808045 0¢04]

AAKEXAXKXXLAN HXK AR XXX KX KKK KKK XAXX KKK AXKX

XEXXXAUKX KX KKXEAAX XXX KXK XK AXXXKA AR KX KX XXX KX KKKANX

P0G 08800000608000608080080600004600.0586466890080]

20000600600004006 80000008 000000888 0809880900080

[00.0.8.0.8.00 00409069690¢66438806858864099080466900460084

DS 000000480080 00008880.08068¢090906969¢46060048¢99801

1 The DECsystem 5800 System Overview

This chapter describes the system packages and system components and

notes the 'ocation of components in the cabinet.

This chapter includes the following sectionr

DECsystem 5800 Introduction

DECsvstem 5800 Configurations

DECsystem 5800 System Architecture

Tvpical System

DECsystem 5800 (Front View:

DECsystem 5500 (Rear View)

Supported YAXBI Adapters and Options

XMI Backplane and Card Cage

VAXBI! Backplane and Card Cage

VAXBI Expander Cabinet

TR70 Tape Dnive

'O Connections

Power System

Cooling System

The DECsystem 5800 System Overview

1.1 DECsystem 5800 introduction

The DECsystem 5800, a general purpose computer system based
on a reduced instruction set computer (RISC) CPU, is designed

for growth and can be configured for many different applications.

The DECsystem 5800 can support many users ia a time-sharing

environment.

The DECsystem 5800 does the following:

* Supports a full set of ULTRIX-32 applications

e Functions as a stand-alone system or as the node of a network

e Allows for expansion of processors, memory, and 'O

e Implements multiprocessing where all processors have equal access to

memory

¢ Uses the VAXBI bus as the IYO interconnect

e Uses a high-bandwidth internal system bus (XMD) designed for

multiprocessing

* Interleaves memory bank accesses in a user-definable sequence

o Performs automatic self-test on power-up, reset, reboot, or system

initialization

The DECsystem 5800 System Overview

1.2 DECsystem 5800 Configurations

The DECsystem 5800 system family has configuration packages

that differ in the number of processors and amount of memory.

Refer to the VAX Svstems/DECsystems Systems and Options Catalog for

the available configurations.

Each configuration has a 60-inch system cabinet that includes one 14-slot

high-bandwidth internal system bus backplane (XMD) and one 12-slot

VAXBI backplane.

1-3

The DECsystem 5800 System Overview

DECsystem 5800 System Architecture

The DECsystem 8800 system supports multiprocessing with up

to four KNSSA processors. The system uses a high-speed system

bus called the XMI bus to interconnect its KNSSA processors end
its MS82A memory modules. All VO devices connect to the VAXBI

bus.

Figure 1-1 DECsystem 5800 System Architecture

CPy ~ooue

l": Varony

- lmMo~ace

"""’“" Up 10 4 Proosascns | Up o 2% Moyles

w | wioSvAXEs VAXE: £ xpance’ Cap '

OWMBA'B

DWVEAR { —-

. vAX8

VAXS)
A e

Q g i A AN T >
i — i i o

TBXTO-M| [DEBN: M| 1DWwBI2 o 21k vd x08a8s-C| |CBCA BA K. ES B

Al 1) e

o ‘ o
! P \! / !

(=) | é? : bé ©
TERMINA, S Disks STAR

COUPRLER

EYHERNE meb 0883 9C

1-4

©
The DECsysten: 5800 System Overview

The XMI bus is the DECsystem 5800 system bus; the VAXBI bus supports

the /O subsystem. The XMI bus is a 64-bit system bus' that interconnects
the central processors, memory modules, and VAXBI /O adapters.

The VAXBI and XMI buses share similar but incompatible connector and

module architecture. Both the VAXBI and XMI buses use the concept of

a node. A node is a single functicnal unit that consists of one or more

modules.

The XMI bus has three types of nodes: processor nodes (KNG8A), memory

nodes (MS62A memory modules), and the XMl-to-VAXBI L'C sdapters

(DWMBA).

A processor node, called a KN58A, is a two-board set. It consists of a

KNS8A/A interface module and a KNS8A/B CPU module. The KN58A/B

CPU module is the processor's computational engine and contains a MIPS?
R3000 CPU chip, an R3010 floating-point chip, R302u . "te buffers, and
primary cache. The KN58BA/A interface module provides ¢ means by

which the KN58A/B CPU module accesses the XMI bus & :d contains a

CVAX chip, a second-level cache, a system support chip (. 3C), and XMI

interface logic. The module also participates in the system self-test.

Processors communicate with main memory over the XMI bus. The system

supports multiprocessing with up to four processors. One processor is

designated as the boot processor according to its physical location in the

card cage and that processor handles all system communication. The other

processors (if any? are called secondary processors. The processor node

number corresponds to the number of the XMI slot holding the KN58A/A

interface module.

A memory node is an MS62A memory module. Memory is a global

resource equally accessible by all processors on the XMI bus. Each MS62A

memory module has 32 Mbytes of memory, consisting of MOS 1-Mbit

dynamic RAMs, ECC logic, and control logic. The system supports up to

eight MS62A memory modules (256 Mbytes of memory). The memonies

are interleaved by the console on power-up. The default can be changed by

console command.

An XMI-to-VAXBI adapter, called a DWMRBA, is a two-board adapter

that transfers data between these two buses. The DWMBA/A module is

installed on the XMI bus; it is cabled to the DWMBA/B module on the

VAXBI bus. The system supports up to five VAXBI buses. Every VAXBI

bus on this system must have a DWMBA adapter. Therefore, systems with

two VAXBI channels have two DWMBA/A modules on the XMI bus, and

each VAXBI channel has a DWMBA/B module. Systems with more than

one VAXBI require a VAXBI expander cabinet. System error messages ana

self-test results refer to the pair of DWMBA niodules as XBI.

! The XMI bus has a 64-nanosecond bus cycle, with 8 maximum throughput of 100 Mbytes per second.

2 MIPS 1s 8 registered trademark of MIPSCO, Inc

1-5

The DECsystem 5800 System Overview

1.4 Typical System ‘
A typical DECsystem 5800 system has & main cabinet with a TK70
:ape drive and optional RA disks, a console terminal and printer,
an accessories kit, and a set of documentation. The system may

have additional tape or disk drives.

Figure 1-2 Typical DECsystem $800 System

SYSTEM OPTIONAL

CABINET STORAGE
DEVICE

VT300 SERIES
TERMINAL

LA7S

PRINTER

msb-025° 80

-6

The DECsystem 5800 System Overview

Figure 1-2 shows a typical system.

The main cabinet houses a TK70 tape drive, up to eight RA disks

(optional), the XMI card cage (which contains the nrocessors and

memories), VAXBI card cages, the control panel s itches, status

indicators, and restart controls.

The TK70 tape drive in the main cabinet is used for installing

operating systems, software, and some diagnostic:.

The optional RA disk drive(s) in the main cabinet are used for

installing operating systems and software and are used for local
storage and archiving.

The optional disk drive cabinet provides additional local storage

and archiving.

The console terminal is used for console and system management

operations.

DECsystem 5800 hardware information kit that ships with the

system includes:

— DECsystem 5800 Installation Guide

— DECsvstem 5800 Ouner’s Manual

— DECsystem 5800 Console Patch TK50 (tape)

— DECsystem 5800 Console TK50 (tape)

See the Preface for a complete list of system documentation and

associated documents.

-7

15

The DECsystem 5800 System Overview

DECsystem 5800 (Front View) .

1-8

The TK70 tape drive and conirol panel are on the front of the
system cabinet, accessible with the doore closed. With the front

door open, Digital customer service engineers can access the

VAXBI and XMI card cages, the cooling system, the RA disk(e), if

present, and power regulators.

Figure 1-3 DECsystem 5800 (Front View)

T0 TAPE DRIVE o {
POWER REGULATORS

CONTROL PANs. —]

VAXB!

GARD CAGES

COOL NG

SYSTEM

POWEB ENT j

XMk CARD CAGE

LOGIC BON =208

TRANSK ORME B L Diss
130+ SYSTEMS (OPTIONA,©

mad 0833 9C

These components are visible from the inside front of the cabinet (see

Figure 1-3 for their location).

TK70 tape drive

Control panel

Power regulators

Two VAXBI card cages hardwired together to form a single VAXBI
channel. Only one VAXBI is perniitted in the main cabinet. Additional
VAXBIs require an expander cabinet.

XMI card cage

Cooling system (one of the two blowers is visible)

Transformer (on 50 Hz systems only)

Power and logic box (H7206)

RA disks (if installed)

The DECsystem 5800 System Overview

1.6 DECsystem 5800 (Rear View)

With the rear door open, Digital customer service eugineers can

access the power regulators; powor sequencer module (XTC);
cooling system; power and logic box; RA disk(s), if present; AC

power controller; Ethernet and console terminal connectors; and
the VO bulkhead space.

Figure 1-4 DECgystem 5800 System (Rear View)

—-"—fi H-- xicPOwER
. — SEQUENCE R MODULE

A; l l POWER _§iREGULATORS L————J
o vas

XM - CARD CAGES

CARD CAGE

AL AR —
£ THEANE 1 AND

CONSOLE TE RMINAL
cooms | CONNEC TORS

SvSTtim

—fj{— POWER aND

LOGIC BOX (MT206

— AC POWER

DISKS I conTROuER
(OPTIONAL L] (ha0s,

raly D6 §

These components are visible from the rear of the cabinet tsee Figure 1-4):

* Fuve field-replaceable power regulators

e Power sequencer module (XTC) located on the back of the TK70 tape

drive and control panel unit

e 1/Q bulkhead space

The panel covering the XMI and VAXBI areas is the /O bulkhead

panel and provides space for additional VO connections.

¢ Cooling system, with open gnid over a blower

* VAXBI and XMI adapter bulkhead cables

o Ethernct and console terminal connectors

» Power and logic box (H7206)

* RA diskis) (if installed)

¢ AC power controller (H405)

The DECsystem 5800 System Overview

1.7 Supported VAXBI Adapters and Options

The system supports the use of the following VAXBI adapters:
CIBCA, DEBNI, DHB32, DMB3S2, KDBSO0, TBK70, TUSIE, and

DWMBA.

Figure 1-5 VAXBI Adapters

VAXBI Expander Cabinet

DWWEAB

‘ A - .

<rwmsv
v

-

\ v
N i _ |] |)|

TOK70M oeau:-fl omax | |owaae wopsoc|jcacasa) | kiESI8

fn E§
@ food, B

TEAMINA. S S§TAR
l DSKS 2oupien

—r—
ETHERNET ~b.0252.89

See the VAX Systems/DECsysterns Systems and Options Catalog for a

complete list of VAXBI adapters available for the DECsystem 5800 and the

VAXBI Options Handbook for detailed information on each VAXBI adapter.

1-10

The DECsystem 5800 System Overview

1.8 XM! Backplane and Card Cage

The XMI high-speed system bus interconnects processors and

memory modules. It has a maximum bandwidth of 100 Mbytes per

second and supports up to four processore. The 14-slot XMI card

cage houses XMl-to-VAXBI adapters, processors, and memories.

Figure 1-6 DECsystem 5800's XMi

XM CARD CAGE

f\\ o}

CPu modue CPU modue

TM :u Mooy
werace wrigtace v

mod. e MO0 % ;

o " =
v

mab-0254 80

1-11

The DECsystem 5800 System Overview

1-12

The XMl is a limited-length, pended synchronou= bus with centralized

arbitration. The XMI bus can procesas several transactions simulianecusly,

makiug efficient use of the bus bandwidth. The bus includes the XMl

backplane, the electrical environment of the bus, the protocol that nodes

use on the bus, and the logic to impiement this protocol.

The XMI backplane and 14-slot (nodes 1 through E) card cage are located

in the upper third of the cabinet on the right s'de, as viewed from the front

of the cabinet. A clea: latched door protects the componenis housed in the

XMI card cage and helps to direct the airflow « ver the modules. Indicator

lights on the XMI modules can be viewed throv ¢h this clear front door.

Each slot of the XMI ecard cage is hardwired to a 4-bit node 1D code that

corresponds to tne physical slot number in th> card cage. The nodz ID

number of the module is its slot position. The nodes are numbered 1

through E (hex) from right to loft, as you view the card cage from the front

of the cabinet.

For information on installing modules in the XMI card cage, see the

DECsys:em 5800 Options and Maintenance manual. For in-depth technical

informaticn, see the appropriate chapter of this manual.

Table i-1 XMI Slots

Slot Node Permissible Modules’

KNSBAVA, 110, Mem

KNSSA'A, KNSBA/B, 11O, Mem

KNSBA/A KN5BA/B, 1O, Mem

KNSBA/A, KNSBA/B, 110, Mem

KNS8A/B, Mem

Mem

Mem

o

N

W

N

Mem

Mem

KNSBA'A, Mem

KNS8A/B, 110, Mem

KNSBAVA, 1/0, Mem

KNS8A/B, 1D, Mem

110, Mam

-

b

e
k

N
-

o

13

14

0

M
O

O

D
>

©

0

~
N

O

O

b

W

=

'Key to permissible medules:

KNSEA/A = Interfar, ~aodule

KNSBAB = CPU Module

Mem = MS62A Memaory Module

IO = DWMBA

The DECsystem S800 System Overview

VAXBI Backplane and Card Cage

The VAXBI is the 1’0 interface. The VAXBI card cages house

modules that connect the system to the Ethernet, multiple

terminals, and other peripherals.

Figure 1-7 DECsystem 5800's VAXBI

vAXa

< = - —

TRT W 1 DEBN wmvaR |l | o-Bx DBC) {cBCABAL| m.ESB

' ‘]] i

Q@ Lo, =j O
' TERMNA.S Oisks STAR
' COULP.ER

ScmyW

£ THEANE " mab025s89

The VAXB! bus is a high-performance 32-bit bus that is the system’s

VO interface. The system cabinet contains one logical VAXBI chanrel,

comprised of two 6-slot card cages. The VAXBI card cages are located in

the upper third of the cabinet on the left side, as viewed from the front

of the cabinet. A clear latched door (closed for normal operation) protects

the componentis housed in the VAXBI card cages and helps to direct the

airflow over the modules. A VAXBI expander cabinet can also be added to

the system as described in Section 1.10. See the DECsystem 56800 Options

and Maintenance manual for more information on the VAXBI card cages.

1-13

The DECsystem 5800 System Overview

110 VAXBI Expander Cabinet

A VAXBI expander cabinet can be ordered to increase ihe system's

VAXBI /O slots. One to four VAXBI cages can be added (o a system.

Figure 1-8 VAXBI Expander Cabinet

o

—31COOLING
ASSEMBLY

17O 4 POWER

—g—— SUPPLY UNITS

154 CM
(60 5 W) 1 TO 4 VAXB!

CARD CAGES

AC POWER

SuPPLY

L— 786CM ——
(30 IN) mab016188

A VAXBI expander cabinet (see Figure 1-8! allows you to attach additional

VAXBI channels, each with its required DWMBA/B.

The cabinet holds one to four VAXBI card cages, each with its own

power supply. Two blowers cocl the cabinet, and an AC power controller

completes the power system.

1-14

The DECsystem 5800 System Overview

1.11 TK70 Tape Drive

The TK70 tape drive is mounted at the front of the system oabinet

in the upper left corner.

Figure 1-8 TK70 Tape Drive

FRONT

map-0°7568

The TK70 tape drive is used for:

* Installing or updating software

* Loading diagnostics

* Interchanging user data

¢ Updating the contents of the EEPROM

1-15

1.12

The DECsystem 5800 System Overview

/0 Connections

1-16

VO connections are installed on the bulkhead connections tray and
the /0 conneciion pancl. The V0 tray is located in the rear of the

cabinet, above the cooling eystem and below the power reguliators,
and covers the XMl and VAXBI backplanes. The VO panel is just

below the right-hend side of the VO tray and houses the Ethernet

and console terminal ports.

Figure 1-10 Console and Terminal Connectors

= ; g : ! !

L o e i

REAR , 1

\! Lo
BULKHEAD
TRAY

|

i i | i i

==l
Y T 1
: | | H 110 PANEL

5| l L
4 i

CONSOLE <> —&TM+¢ gg&gnner
TERMINAL &

PORT

mgD-025%689

The DECeystem 3800 System Overview

1.13 Power System

The power system consists of an AC power controller (H405E/F)
with circuit breaker, the power and logic boz (H7208), and five

power regulators for the XMl and VAXBI backplanes.

Figure 1-11 Power System (Rear View)

POWER __
REGULATORS

— POWER AND

LOGIC BOX (HT206!

AC POWER

CONTROLLER
{HGO5EF)

med 0253 89

Table 1-2 input Voitage

tAodel No. [] Nominal Phase

H405-E 60 208V 3

H405-F* S0 380V a

H405-F 50 416V 3

*Change tap for 380V (nominal} aparation

1-17

The DECsystem 5800 System Overview

1-18

Most of the power system is visible from the rear of the cabinet. An AC

power controller with circuit breaker is in the lower right corner. The

power and logic box is just above the AC power controller. Across the top

of the cabinet are the power regulators for the XMl and VAXBI card cages.

Power is supplied by two H7215 power regulators and three F'7214 power

regulators. One H7215 and one H7214 supply the power to the VAXBI,

one H7215 and two H7214s supply the power to the XMI. See Table 1-3.

Table 1-3 Power Supply Avallable for VAXBI Oplions

DC Voltags Avaliable VAXBI Current Note

+5V B60 A Main logic

+5VBB Connected 10 +5V Not battery backed up

+12V 40A RS-232

i 24 A RS-232

=52V 200A ECL logic

~2V 70A ECL fogic

Two power connections are on the back face of the power controller and are

fuse-protecied. When the system is powered down, the de"ices e*tached at

these switches are also powered down. Three reon lights on the H405-E

AC power controller (60 Hz systems only) indicate the presence of the

3-phase voltages at the input to the power controller.

1.14

The DECsystem 5800 System Cverview

Cooling System

The cooling system consists of two ble ~ers, an airflow eensor, a

tomperature sensor, and an airflow path through the card cages

and up to the power regulators.

Figure 1-12 Alrfiow Pattermn

L POWER
REGULATORS

CARD CAGES

BLOWERS

FRONT REAR

EXTERNAL INTERNAL
FRONT VIEW SIDE VIEW

meb-0008-89

The cooling system is designed to keep system components at an optimal

operating temperature. It is important to keep the front and rear doors

free of obstructions, leaving a clear space of 39.4 inches (1 meter) from the

cabinet, to maximize air intake.

The blowers, located in the lower half of the cubinet, draw air in through
the doors and push air up through the VAXBI and XMI card cages. The
airflow continues through the top of the card cages, through the power

regulators, and out the top of the front and rea: doors. A fan cools the
power and logic box.

The system has safety detectors for the cooling system: an airflow sensor

and a temperature sensor installed above the power regulators in the

top of the cabinet. Extreme conditions activate theie detectors. The
temperature sensor shuts off the power at the AC power controller if the
unit experiences extreme temperatures. If the system has airflow seriously

blocked for an extended period of time, then the airflow sensor will shut

off power.

1-19

WO XN KR XK KOO0 KK KOO0 OO KN KK

KN000ONOGOONNTHK NGOBGENNNOMNICRNOONIX KX KX

1 0000.0700000.000000¢800000000 0860000880t e e e

HRHXHEX KK HH K IOOOHER KGR KGO X KKICON YRR H

Pttt Pttt Nt TR TR00090040000080004¢4

e 8000 IGO0 RN KEXY

PO S0 E SO00000000008 000604l o0

PSS 0000086000006 6000000008 00808 064001

XXX KOOSO KUK KRR XKRELRKRKNNK

OO XICOOCOO T KR ERXRKIC00KX

fAL L00004000000088086890099 080,

SERAAEG 53 FAFLI LIS U WF UL PRI
. RREKOGGOUOUREGoannnyY -~

FEDOCGGOONNNNOMROO KR

p O 000000 EE R 000060000041

b $.0.6.00.60.00 4000860668004

b0.6.90:0.0.8:0.0.0.5.64.0.00:060694

PS04 ¢8.0.0.04,646.0308.084

X

XXX

h.9.4.9.9.¢

XUKAXXX

KXXAXARKXX

h.0.0.9.4.9.444.944

UEXRXXKXEXKAKXXK

KEHKXAKAKAXKLXXX

r 0. 0.6.6.8.6.6.98.044¢8444

PG 8068080800 900804]

pO.8.8.0.6.0.6.4.6.9068504098¢44

XXX AKX KKK KX XXX RAKKX KKK KK

XAAREXAXKKXXHXX XXX KKK LARKKK

D080°04.9.8.0.90.0.0.06.¢.9.06¢0¢4004

09.9.0.84.8496,06060.000080804500083

)670.0.0.8.0.004.640¢540¢8.06096980300]

D0.0:0:4.00.900.0096960004 66¢9.090400¢0800

P .0:0.06.¢.00.60.86.0$68450399 6834884802404

AR AKXAK UK LUK LK XX KER A XK UK UK K XU AKX AKKK

HAKRXKXHKHLHEXX AKX ALK XA XK UK KR KUK AR AU KXXANAX

P 0T84 06080000008000000098008 0088080 1004800¢01

KHEKKODUK KUK KA UK AKX R XKL KKK AKX XK KKK AKX KARAK

P 0608808000 6006 8000080008 80¢90680388800e444]

P 0.8.6.0.0.60 00000800040 ¢0009908880000480808 0800004

PO 4408000000008 08006.000080686098¢8000882488080048804]

P 8.500.0000.400 040666440988 ¢86480000008.004000808¢008104

2 The XMl

Thie chapter describes the XMI, which includes a backplane and bus

interconnect, protocol, and logic.

This chapter includes the following sections:

e XMI Overview

¢ XMI Addressing

e Arbitration Cycles

‘ ¢« XMI Cycles
e XMI Transactions

e XMI Initislization

¢ XMl Registers

e XMI Errors

The XM

2.1 XM Overview

The XRI is the primary interconnect for the DECsystem 8800

eystem. The XMI supporis muitiple processors, multiple memory

modules, and multiple /0 adapters. Figure 2-1 shows a four-

processor DECsyetem 6800 system.

2.1.1 XMl System Block Diagram Description

Flgure 2-1 XM System Block Dlagram

r‘—_!?l
CPL ~oo.@

= Vamony

xw

mMIrae i

0@ [~ Upro4 Processe's | up102% Moyes

xw ; UCT0 S VARR s

—
rreb 0688 9C

2-2

The XMI

The XMI consists of the electrical environment of the XM1 bus, the pretocol

observed by a node on the bus, the backplane, and the logic used to

implement the protocol.

The XMI bus is limited length, pended, and synchronous with centrakized

arbitration. Several transactions can be in progress at a given time,

allowing highly efficient use of the bus bandwidth. Arbitration and data

transfers can occur simultaneously. The bus supports:

¢ Quadword-, octaword-, and hexword-length reads to memory

¢ Quadword- and octaword-length memory writes

e Longword-length read and write operations to L/O space

The longword operations implement byte and word modes required by

certain IO devices. The XMI has a 64 ns bus cycle. The XMl has a

bandwidth of 100 Mbytes per second; however, the usable bandwidth

depends on transaction length (see Table 2-1).

Table 2-1 Usable XMI Bandwidth

Oporstion Bandwidth (Mbytss/seconds)

Longword (4 bytes) Read 3125

Quadword (8 bytes) Read 62.50

Octaword (16 bytes) Read 83.30

Hexword (32 bytes) Read 100 00

Longword Write 3125

Quadword Write 6250

Octaword Write 8330

2.1.2

The XM

XMt Corner

2-4

The XMl uges similar, but incompatible, connector and module

technology as the VAXBI bus and, like the VAXBI, XMl modules

have an area wiih predefined etch with custom components, which

serves as the interface between the module and the XMI bus. This

predefined etch and components is called the XMI1 Corner.

Figure 2-2 XMi Node Block Diagram Showing the XMl Corner

XM AN
Corner

XCi XMI

GiRE

[

¢oocks iNode- lg— X
Specific xC.0Cx

ogic conTRC. .

——

mab-0374-89

e

The XMi

The XMI Corner has a predefined etch and parts placement. The custom

components in the XMI Corner are called XLATCH and XCLOCK. Both

components are implemented in CMOS and interface node-specific logic to

the XMI Corner components over the XMI Corner interface (XCI) bus. The

XMl Corner, in turn, interfaces directly to the XMI bus. (See Figure 2-2.)

Each node has a set of three clock signals, which are distributed radially

te each node from a central source on the backplane. These clocks

are received by the XCLOCK chip, which then provides a set of clock

waveforms (XCI clocks) to the node-specific logic and the required control

lines (XL lines) for the seven XLATCH chips. The XLATCH chips provide

the interface to all the XM! lines except those directly interfaced to the

XCLOCK chip.

&

The XMi

2.1.3 XMiData Transactions

The XMI supports various data transactions, as shown in Table 2-2.

Tebie 2-2 Data Trengactions Supporied by the X

Traneaction Langth VO Space kormory Spaceo

Read Longword X

Quadword X

Octaword X

Hexword X

imeriock Read Longword X

Quadword X

Octaword X

Hexword X

Write Masked Longword X

Quadword X

Octaword X

Unilock Write Longword X

Quadword X

Octaword X

2-6

The XMI

The following terms are used to describe XMI transactions:

Teble 2-3 XM! Terms

Term Description

Node

Transter

Transaction

Commander

Responder

Transmter

Recewar

Naturally aligned

Wraparound read

A hardware device that connects to the XM! backplane.

The smallest quantum of work that occurs an the XMI. Typical

examples of transters are the command cycle of a read and the

command cyies with the following data cycles of a write.

The logical task baing parformed (such as a read) A transaction

18 composed of one or more transfers. As an example o! a

transaction, the read consists of a8 command transter followed,

some time later, by a return data transier.

The node tha! initiated the transaction in progress. For example,

the commander nitiates & read transaction while th» responder

(data source) intiates the read data transter. The responder

1s not the commander for the read data transter because the

transter was requested by the commander node

The node that responds 10 the commander n a transaction.

The node that 18 sourcing the information on the bus. For

example. dunng a read transaction the commander 1s the

transmater during the command transfer but i1s the recever

during the return data transfer.

The node that ts the target dunng a transfer

Describes a daia quanity whose address could ba speciied &s

an ofiset, from the beginning of memory, of an integral number

of dala glements of the same size The lower bits of a naturally

aligned data dem are zerou. All XMI wrtes transfer a naturally

algned block of data

An octaword or hexword read whers read data 1s returned

with the specifically addressed quadword first, sndependent of

atignment The remaining data in the naturally aligned block

of gata containing the addressed quadword 1S returned in

subsequent transfars

2-7

The XMI

2-8

Reads cause the transfer of data froin the responder to the commander.
Writes cause the transfer of data from the commander to the responder.

Longword commands transfer 4 bytes while quadword, octaword, and

hexword commands transfer 8, 16, and 32 bytes, respectively.

Interlocked variations of read commands are intended to do the same thing
as the regular reads, but they also invoke a mutual exclusion mechanism

where a lock flag associated with the location is set. Unlock writes

cause the clearing of the lock flag. During periods when a location is

locked, subsequent interlock reads to that location result in the responder

returning a "locked" response instead of read data.

All writes are masked and are accompanied by a set of mask bits that

specify which bytes of dats are to be written. Any arbitrary pattern of

bytes can be written with a write mask.

Longword-length transactions may only be used in IO space (A<29> = 1).

Quadword-, octaword-, and hexword-length transactions may only be used

in memory space (A<29> = 0).

Addresses for memory and /O space are given in Section 2.2.1 and

Section 2.2.2.

The XMI

XMI Interrupt Transactions

The XMI supports three types of interrupt transactions, listed in

Table 2-4.

Table 2-4 XM Interrupt Transactions

Type Mnomonic

interrupt Request INTR

(dentity (interrupt Acknowledge) DENT

imphed Vector Interrupt IVINTR

The INTR and iDENT transactions implement device interrupts. An 1O

node issues an INTR transaction to a processor to interrupt the processor

at a specified interrupt priority level (IPL). The processor responds to

the INTR by issuing an IDENT transaction to the interrupting VO node,
soliciting an interrupt vector.

An INTR transaction can be broadcast to multiple processor nodes. The

first processor to respond with IDENT receives the interrupt vector. All

other processors, upon seeing the IDENT directed to the interrupting

device, cease their interrupt-pending condition. If IDENTS are issued

simultaneously by two or more processors, the first to gain the bus will

service the interrupt while the other(s) force a software passive release.

The IVINTR transaction implements single-cycle interrupt transactions

where the interrupt priority and the interrupt vector value are implied

by bits in the interrupt type field. The IVINTR transaction implements

interprocessor interrupts (IPL = 14 (hex), vector = 80 (hex)) and write

error interrupts (IPL = 1D (hex), vector = 60 (hex)). Since the value of

the interrupt vector is indicated by the value of the IPL field, IVINTR

transactions do not require a corresponding interrupt acknowledge cycle.

See Section 2.5.5 and Section 2.5.6 for more information on interrupt

transactions.

2-9

2.1.5

The XMi

Arbitration

2-10

The XMI protocol includes arbitration because, at any time, any or all of

the nodes may desire the use of the XMI. Arbitration determines

which node gains the XM] when more than one rode requests the XMl

simultaneously.

Table 2-5 XM Arbitretion Lines

Name Use

XMI CMD REQ L inittates XM! transactions

XM! RES REQL Returns data

XMl GRANT L Indicates which node has been granted the XMi buse for

the nexi cycle

The DECsystem 5800 supports an XMI bus of 14 nodes. Arbitration cycles

occur in parallel with data transfer cycles, since the XMI has a set of lines

dedicated to arbitration. These lines are listed in Table 2-5.

Whan a node desires ownership of the bus, it asserts one of its two request

iines (XMI CMD REQ L or XMI RES REQ L) that are connected to the

central arbiter The XMI CMD REQ L line i8 usec. by nodes to initiate
XMI transactions (that is, act as a commander) while the XMI RES REQ

L line is used by nodes to return data to a commander (that is, act as

a responder). The XMI arbiter maintains two independent round-robin

queues, one for each request type. The responder requests are given

higher priority than commander requests.

See Section 2.3 for more information on arbitration.

The XMI

. 2.1.6 Bus Integrity
The XMI bus contains a number of features to enhance the integrity and

reliability of the bus.

The features of the XMI that enhance bus integrity and reliability are:

¢ All bus information transfer lines are pariiy protected.

* Bus confirmation signals are ECC protected.

e XMI protocol permits detection and recovery of almost all single-bit

errors on the information transfer lines and bus confirmation signal

lines.

e XMI protocol defines timeout conditions that are used to detect

failures.

2-11

2.2

The XMi

XMI Addressing

The XMI supports memory with a gigabyte (2° bytes) of address
space. This memory space is divided into the physical memory

space and U0 space, shown ia Figure 2-3.

Figure 2-3 XM Memory and VO Address Space

Byte Address

0000 0000

Physical Memory Space

(512 Mbytes)

1FFF FFFF

2000 0000

'O Space

(512 Mbytes)

3FFF FFFF

mab-0368-89

2-12

The XMI

2.2.1 XMiMemory Space

A/D<29> selects between the memory and VO space. A/D<29> = 0 selects

physical memory space, while A/D<29> = 1 selects /O space.

The upper two bits of an XMI address are used to define transfer size.

2.2.2 XMIVO Space

XMI VO space is divided into private space, nodespace, and eight IO

adapter address space regions.

Q Figure 2-4 XMI /O Space Address Aliocation
Byte Address

Sze

2000 0000

2180 0000 XMi Private Space 24 Mbytes

2200 0000 XMi Nodespace 16 x 512 Kbytes

3 2400 0000 VO Adapter 1 Address Space 32 Mbytes
2600 0000 VO Adapter 2 Address Space 32 Mbytes

2800 0000 VO Adapter 3 Address Space 32 Mbytes

2A00 0000 VO Adapter 4 Address Space 32 Mbytes

3600 0000 Reserved 192 Mbytes

3800 0000 VO Adapter B Addrass Space 32 Mbytes

a 3A00 0000 VO Adapter C Address Space 32 Mbytes
3C00 0000 'O Adapter D Address Space 32 Mbytes

3E00 0000 VO Adapter E Address Space 32 Mbytes

3FFF FFFF Resarved 32 Mbytes
mab-036889

2-13

The XI

XeAl Private Spece

References to XiMI private space are serviced by resources local to a node,

such 25 local device CSRs and boot ROM. The references are not broadcast

on the XM]. X\l private space is a 24-Mbyte address region containing

the resc¢ address.

22241

2222 p L

The DECsystem 5800 XMI nodespace is a collection of 14 512-Kbyte

regions located from 2188 0000 to 21F7 FFFF. Each XMI node is allocated

one of the 512-Kbyte regions for its control and status registers. The

starting address of the 512-Kbyte region associated with a given node is

computed as 2180 0000 + Node 1D * 80000.

2-14

Teble 2-6 XM Nodespace Addresses

Siot Node Nodespace VO Adepter Space

1 1 2188 0000 -~ 218F FFFF 2200 0000 - 23FF FFFF

2 2 2190 0000 - 2197 FFFF 2400 0000 - 25FF FFFF

3 3 2198 0000 - 219F FFFF 2600 0000 - 27FF FFFF

4 4 21A0 0000 - 21A7 FFFF 2800 0000 - 29FF FFFF

5 5 21A8 0000 - 21AF FFFF NA

6 6 21B0 0000 - 21B7 FFFF NA

7 7 21B8 0000 - 21BF FFFF NA

8 8 21C0 0000 ~ 21C7 FFFF NA

e} E} 21C8 0000 - ZiCFFiFF NA

10 A 21D0 0600 - 21D7 FFFF NA

" 8 2iDB 0000 - 21DF FFFF 3600 0000 - 37FF FFFF

12 c 21E0 0000 - 21E7 FFFF 3800 0000 - 39FF FFFF

13 D 21EB 0000 - 21EF FFFF 3A00 0000 - 3BFF FFFF

14 E 21F0 0000 - 21F7 FFFF 3C00 0000 ~ 3DFF FFFF

The XM!

2223 VO Adapter Address Space

/O adapter address space consists of eight 32-Mbyte address regions used

to access VAXBI /O adapters. Longword cig.l. .eferences directed to a
VAXBI's O adapter address space v.ii be reissued on that VAXBI bus.

XMI transactions are translated into a corresponding VAXBI transaction.

The VAXBI address of the transaction is computed from XMI addresses as

2000 0000 + offset, where offset is the difference between the XMI address

and the start of the appropriate DWMBA/A module's address space. XMI

devices can only access VAXBI O space, as VAXBI memory space is not

accessible to nodes on the XML

To calculate the address of the first register in nodespace (the DTYPE

register):

o The base address of 'O space is 2000 0000 (hex).

¢ Bits<28:25> correspond to the XM! node number, which is the same as

the slot number except that node numbers are in hexadecimal while

slot numbers are in decimal. The XMI nodes typically allocated to

DWMBA adapters are as follows:

- the VAXBI in the system cabinet

- the first VAXBI in an expander cabinet; usually leftmost

- the second VAXBI in an expander cabinet; usually center-left

- the third VAXBI in an expander cabinet; usually center-right

- the fourth VAXBI in an expander cabinet, usually rightmost

* PBits<l€:13> correspond to the VAXBI node number. For the VAXBI

inside the system cabinet, the nodes are usually numbered 1 to 12. For

the VAXBIs in a VAXBI expander cabinet, consult the system-specific

configuration chart.

~
m
a
o
m

For example, the leftmost slot in the VAXBI in the system cabinet, usually

VAXBI node 12 would be connected to XMI node E. The DTYPE register

for the VAXBI option in that slot would be addressed as 3C01 8000.

'O addresses associated with /O adapters 0, 1, 2, and 3 are accessed

via ksegl. /O addresses associated with 1O adapters 4, 5, 6, and 7 are

accessed via kseg2. See Section 4.2.7.2 for more information and an

example.

2-15

2.3

The XMi

Arbitration Cycles

2-16

The XMI protocol includes arbitration because, at any time, any
or all of the nodes may desire the use of the XMI. Arbitration

determines which node gains the XMI when more than one node
requests the XMI simultaneously. Arbitration cycles occur in

parallel with data transfer cycles, since the XMI has a set of

arbitration-dedicated lines.

Figure 2-5 XMl Arbliration Block Diagram

XKMLHOLDL

XM SUP L

XM CMD REQ|IIL

_ NODE XMI RES REQ|1)L

XMi GRANT{1] L

= ——4

@<

L]

: ‘ B CENTRAL
- ARBITER

- ‘

L

XMi CMD REQ{14] L

4 NODE XMI RES REO{14) L
oF

XM! GRANT{14] L

meb-0367-83

The XAt

The XMI protocol architecturally supports up to 16 XMI nodes. However,

the DECsystem 5800 implementation supports 14 nodes. Each node on

the XMI bus has a hexadecimal identification number (1 through E) called

the node ID, which is provided by the node's hard-wired XMI NODE

ID<3:0> H lines. The physical slot number equals the node ID. Slot 1 is

the rightmost slot in the XMl card cage when viewed from the front of the

cabinet.

Any or all nodes may desire the use of the XMI at any given time.

Arbitration cycles occur in parallel with data transfer cycles by using

a set of lines dedicated to arbitration. The XMI CMD REQ L line, the

XMI RES REQ L line, and the XMI GRANT L line go between the central

arbiter and each node. The XMI CMD REQ L line is used by nodes to

initiate XMI transactions (to act as a commander), while the XMI RES

REQ L line is used to return data to a commander (to act as a responder).

The XMI arbiter maintains two independen*, round-robin queues, one for

each of the request types. The responder requests have a higher priority

than commander requests.

During any given cycle, all nodes have the opportunity to request the bus.

The arbiter receives all the requests, decides which node will be granted

the bus, and uses that node’s XMI GRANT L line to tell the node that it

has been selected. In the next cycle, the selected node begins its transfer.

The XMI has two additional arbitration control signals, XM! HOLD L

and XMl SUP L. XMI SUP L suppresses all commander requests but

allows responder requests to continue to be serviced. Assertion of XMI

HOLD L guarantees that the current XMI transmitter will be granted

ownership of the bus in the next cycle, independent of the value of any

other outstanding requests. The XMI HOLD L signa!l is used for multicycle

transfers, allowing the current transmitter to keep ownership of the bus

for consecutive cycles.

A node can temporarily blnck the start of additional XM transactions by

asserting the XMI SUP L signal should it have difficulties in keeping up

with bus traffic, such as a memory queue becoming full or a CPU backing

up on cache invalidate operations due to XMI writes.

The XMI arbitration scheme consists of three priority classes:

¢ Hold, which has the highest priority and guarantees that the current

transmitter will be granted the bus in the next cycle.

° Responder requests, the next highest priority.

e Comniander requests, the lowest priority.

Within the responder and commander classes, priority is distributed in a

round-robin manner.

2-17

The XMl

2.4 Kl Cycles

The purpose of an XMI cycle ie determined by four cignal lines on

the XMI backplane, XRMI F<3:0> L.

2.4.1 Function Codes

The XMI uses four | nes to encode the function being performed on the

bus. Table 2-7 lists the function codes.

Tabile 2-7 X0 Function Codes

XAl Fe3:05 L

Logic Levele

3 2 1 0 Function Mnemonic

0 0 0 0 NULL cycle NULL

0 0 0 1 Command cycle CcMD

0 o 1 0 Write Data cycle WDAT

o} 0 1 1 Reserved (decoded as NULL)

0 1 0 0 Lock Response LOC

0 1 0 1 Read Error Response RER

0 1 1 o} Reserved {decoded as NULL)

0 1 1 1 Reserved (decoded as NULL)

i 0 0 o Good Read Data 0 GRDO

1 0 0 1 Good Read Data 1 GRD1

1 0 1 0 Good Read Data 2 GRD2

1 0 1 1 Good Read Data 3 GRD3

1 1 0 0 Corrected Read Data 0 CRDO

1 1 0 1 Corrected Read Data 1 CRD1

1 1 1 0 Corrected Read Data 2 CRD2

1 1 1 1 Corrected Read Data 3 CRD3

2-18

24.2 Command Cycles

The Xl

During XMI command cycles, commander nodes initiate XMl

transactions. The commander drives ita commander ID on XMl
[D<5:0> L. and drives command information on D<83:0> L, as shown

in Figure 2-8 and Figure 2-7.

Figure 2-6 Data Trangsaction Command Cycle Format

8 o 29 48 4 PN

MBZ Mask Address

L—- Command L_. Length
mob-0383&

Figure 2-7 interrupt Transaction Command Cycle Format

T 6 18 4}

Must Be Zero (MB2, PL Node Specifier

L—— Command
036488

The command cycle has the command fields discussed in the following

subsections:

Command field

Mask field

Length field

Address field

Node Specifier field

2-19

The XMI

24.2.1 Command Fleld
The Command field is XMI D<63:60> L. The Com.nand field specifies the
transaction being initiated in the command cycle. (See Table 2-8.)

Table 2-8 XMI Command Codes

HeA D<«63:60>L

Logic Levels

63 62 61 80 Commend nemontc

1] 0 0 0 Resersed

0 0 0 1 Read READ

4] 0 1 0 Interiock Read IREAD

0 0 1 1 Reserved

0 1 0 0 Reserved

0 1 0 1 Reserved

0 1 1 0 Uniock Wrte Mask UWMASK

0 1 1 1 Write Mask WMASK

1 0 0 0 Interrupt iINTR

1 0 0 1 identdy IDENT

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 o] o Reserved

1 1 0 1 Reservad

1 1 1 0 Reserved

1 1 1 1 Implied Vector Interrupt IVINTR

2-20

The XMI

24.2.2 kagk Fleld

The Mask field is XMI D<47:43> L. The Mask field supplies byte-level

mask information for the XMl Write Mask and Unlock Write Mask

transactions. During nonwrite transactions this field is a "don't care,”

but proper parity is still generated. (See Figure 2-8.)

The maximum length of a write transaction is an octaword, which requires

16 mask bits in the upper longword of the command. The mask bits define

which bytes of the following write data cycles are to be written to the

specified locations. For longword- and quadword-length writes, the unused
mask bits (D<47:36> L and D<47:40> L, respectively) are unspecified and

are ignored by responders, other than to check parity.

Flgure 2-8 #aask Fisld Bit Assignments

47 46 45 44 43 42 41 40 39 38 37 I 3I5 M4 3 RN

1511413121019

63 0 First QW

71 b8 ‘ 1 Second QW
° oS l o4 | b3 J b2 A b b0 (# octaword transaction) maby 0266 89

2-21

The XMI

2-22

24.23 Length Fleid

The Length field is XMI D<31:30> L. The Length field is used to define the

number of words in the XMI data transfer. Table 2-9 shows the Length

field coding. Longword-length transactions are only used in /O space.

Quadword-, octaword-, and hexword-length transactions are only used in

memory space. Hexword lengths are only used for Read or Interlock Read
transactions.

Table 2-9 XMi Transaction Length Codes

(-]

0<31:30> L

Logic Levels

a1 30 Size

0 0 Hexword

0 1 Longword

1 0 Quadword

1 1 Octaword

The XMi

2424 Addrees Fleld

The Address field, XMI D<29:0> L, defines the address of an XMI read or

write transaction. The number of significant bits in the address d>pends

on the transaction type and length.

Quadword and octaword write transactions are assumed to be naturally

aligned, allowi.g the lower bits of the address to be "don’t care.” Reads

require that the lower bits be significant because memory does wraparound
reads. All wrapped reads need to identify the quadword to be transferred

first.

For longword-length transactions, XMI D<1:0> L are only significant for a

VAXBI word-mode or byte-mode transaction in VO space. XMI D<1> L is

required for word mode and bits<1:0> are required for byte mode.

The relationship between the high and low words, the state of bit<1>, and

the data bits is:

XMI D<1> = 1 = high word = D<31:16>

XMI D<1> = 0 => low word = D<15:0>

The data returned on the opposite word of the one specified will have

correct parity, but its data is unspecified.

For a longword-oriented device, bitc1> is ignhored as an address bit and s

full longword of data is returned for a read operation.

2-23

The XM

2425 Node Specitier Fleld .
The Node Specifier field is XMI D<15:0> L. During command cycle

interrupt transactions (INTR, IDENT, IVINTR), the Node Specifer

field is used to specify the source or destingtion of an interrupt. (See

Figure 2-7.) The relationship between bits in the Node Specifer field and

the source/destination of an interrept transaction is shown in Figure 2-9.

The DECsystem 5800 uses nodes 1 through E.

Figure 2-9 Node Specifier Fleld

15 164 13 12 M1 100 8 7 6 & &4 3 2 V0

I L Node 0
Nods 1

Node 2

Node 3

Node &

e. Node 5

Node 6

Node 7

Node 8

Node 9

Node A

Node B

Node C

Node D

Node E

Node F msd 0365 89

2-24

The XM

243 Write Data Cycles

A function code of 0010 identifies an XMI write data cycle. Write data

cycles immediately follow the XMI command cycle during an XMI write

transfer. Duning this cycle, the commander drives its ID ¢n XM! ID<5:0>

L and drives write data on D<63:0> L. The full 64 bits of data are used

during quadword-length or larger writes. For longword-length writes, only

the lower longword D<31:0> L is used and the value of the upper longword

is unspecified. In either caie, the full 64 bits are used when checking XMl

P<2:0> L

24.4 Good Read Data (GRD) and Corrected Read Data Response (CRD)

Cycles

Function codes 1000 through 1111 are used to identify return data in

response to & Read. Interlock Read, or IDENT transaction. The Good Read

Data response (GRDn, codes 1000-1011) indicates that the quadword of

data is error-free. The Corrected Read Data response, CRDn, codes 1100~

1111) indicate that the corresponding quadword of data stored in memory

contained a single-bit error which was successfully corrected using ECC

prior to shipment on the XMI Bot* types of read data responses contain

a sequence ID l.cated in XMI F<1:0> L, which is used to identify when a

read data cyvcle has been lost due to an XM parity error.

During a read data response cycle, the responder drives the commander’s

ID on XMI ID<50> L and read data on D<63.0> L. All 64 bits of data are

used during quadword- and octaword-length reads. For longword-length

reads. only the lower longword (D<31:0> L) is used. In this case, the value

of the upper longword is unspecified In either case, the full 64 bits are

used when checking XMI P<2:0> L.

2-25

2.4.5

2.4.6

2.4.7

The XM

Locked Response Cycle (LOC)

The Locked Response indicates that the location specified in an Interlock

Read transaction was already locked. During this cycle the responder

drives 0100 on XMI F<3:0> L and the commander's ID on XMI 1D<5:0>

L. The value of the data bits, D<63.0> L, is unspecified but must be

consistent with P<2:0> L. A Locked Response signals the termination of

an Interlock Read transaction. When issued, it is alweys the first and only

read response to the transaction.

Read Error Response Cycle (RER)

The Read Error Response indicates that a Read, Interlock Read, or IDENT

transaction completed unsuccessfully due to an error condition at the

responder node. The Read Error Response is used for an uncorrectable

memory error or a reference to a nonexistent location on the VAXBI.

During this cycle the respender drnves 0101 on XMI F<3:0> L and the

commander’s 1D on XMI 1D<5.0> L. The value of the data bits, D<63:0>

L. is unspecified but must be consistent with XMI P<2:0> L.. A Read Error

Response signals the termination of the transactio., and no further read

responses are provided.

The Null Cycle

2-26

A null cycle is an unused XMI cvele as no node has requested the bus. The

null cycle is ignored by all XMI responders.

The XMi

2.5 XM Transactions

XM! transactions are listed in Table 2-10.

Table 2-10 XM Transactions

Name nemonic

Read READ

interlock Read IREAD

Write Mask WMASK

Uniock Write Mask UWMASK

Interrupt INTR

identiy IDENT

implied Vector Interrupt IVINTR

25.1 Read Transaction

The Read transactions (READ) are used to transfer a longword, quadword,

octaword, or hexword of data from the responder to the commander. A

Read transaction is initiated by a commander dnving the XMI address and
function lines to represent a longword read, quadword read, octaword read,

or hexword read. The Read command cycle is decoded by all responder

nodes. The node that recognizes its own address latches that address and

command. This node is the responder.

When the responder has the requested data, it initiates a return

data transfer. Multiple transfers may he necessary to transfer all the
quadwords in a given cctaword or hexword transaction. The commander

monitors the bus traffic waiting for its return data, and then latches the

information. The commander issues its own ID in the ID field during the

command cycle. The responder returns this same ID with the return read

data so that the commander can recognize the return read data it had
requested.

Longword-length transactior.s can only be used in YO space while

quadword-, octaword-, and hexword-length transactions can only be used

in memory space.

2-27

2.5.2

The XM

interlock Read Transaction

2-28

An Interlock Read (IREAD) transaction, combined with a corresponding

Unlock Write transaction, permits mutually exclusive access to memory

space locations.

The IREAD transaction works in memory space. This transaction gains

access to a shared object in memory. The exact effect of the Interlock Read

depends on the state of the memory’s lock bit. Quadword-, octaword-, and

hexword-length transactions are used in memory space.

If the memory is already locked, memory responds to IREAD with a

Locked Response, and no data is returned. This tells the commander that

the shared memory structure is not available at this time. The commander

respotids to the locked response by repeating the IREAD.

If the memory is not locked, memory locks itself to further IREADs upon

receipt of an IREAD and provides the data contained in the addressed

locations(s) to the commander. Unlocking the memory requires an

UWMASK transaction.

The use of Interlock Read transactions in YO space is implementation

dependent. Most 'O locations treat an Interlock Read like a regular

READ. Only longword-length transactions can be used in 'O space.

The XMI

2.5.3 Write Mask Transaction

Write Mask (WMASK) transactions transfer data from the commander to

the responder.

WMASK transactions transfer quadwords or octawords from the

commander to the memory-space responder, such as the MS62A memory

module. The commander gains the XMI and sends a command cycle

specifying the type of transaction (a longword Write Mask, quadword

Write Mask, or an octaword Write Mask), a byte Write Mask, and the

desired address. The commander immediately follows this with one or two

cycles of write data. All nodes on the XMI decode the address, and the

node that recognizes the address becomes the responder.

The responder accepts the command, address, and data and performs

the requested write. The mask field that accompanies each command

and address has 16 bits. Each bit corresponds to a byte of data in the

associated one or two quadwords. If the bit is zero, then that byte is not

written; if the bit is one, then that byte is written.

All cache-resident nodes on the XMI are required to monitor write traffic

and perform cache invalidates if the XMI write "hits" a block stored in

cache.

The XMI has the concept of a “cache invalidate” transaction that does

not result in an update of main memory. A commander can perform an

. invalidate operation by issuing either a quadword Write Mask or octaword
Write Mask command with the mask field equal to all zeros. The size

of the region to be invalidated is specified in the Length field. Since an

invalidate operation is a degenerate ca.e of 8 Write Mask transaction, it

obeys all the Write Mask transaction requirements, including supplying

the appropriate write data cycles consistent with the transaction length.

As the write data will be discarded by the responder. the value of XMI

D<63:0> L during these cycles is unspecified but is consistent with XMl

P<1:0> L.

2-29

The XM!

2.5.4 Unlock Write Mask Transaction

The Unlock Write Mask (UWMASK) transaction, combined with a

corresponding Interlock Read transaction, is used to relinquish the locked

memory location after an interlock read.

After a node successfully gains the lock in memory and finishes the

required access to the shared structure, it then relinquishes the lock by

performing 8 UWMASK transaction to the memory with appropriate data.

The memory, which has been monitoring the bus traffic, reacts to the

Unlock Write by unlocking memory and writing the data in the request.

If an Unlock Write Mask transaction is directed to a location that is not

currently locked, the responder performs the - “te operation.

Unlock Write Mask transactions to /0 space .-e implementation

dependent and can only be longword length.

2.5.5 interrupt and ldentify Transactions

2-30

Ar.. /O device can send an interrupt to one or more processor nodes. A

processor eventually issues an ldentify and then performs the necessary

gervice routine.

Any of the YO adapters on the XMI can send out an Interrupt (INTR)

transaction to one or more CPU nodes, as designated by a destination

mask. One of the processors eventually issues an Identify (IDENT) at a

selected level <7:4> and chooses one interrupting node to send it to. That

processor then clears the /O interrupt but other I/O interrupts (if any)

remain in parallel to maintain the CPU interrupt request. An interrupt

vector is eventually sent to the CPU, which then performs the necessary

service routine and then sends out another IDENT or other transaction.

Interrupting nodes do not need to reissue their interrupts after one

node/level is serviced. Each CPU monitors the XMI for IDENTS issued

by another node. An IDENT issued by ~ne CPU to an interrupting device

causes the other processor nodes to clear their corresponding interrupt-

pending flag. An interrupting node is not allowed to have more than one

interrupt Jutstanding at a given level.

If more than one processor issues an IDENT for the same interrupt, the

first processor node to win the XMI processes the interrupt and the other

CPUs clear their corresponding interrupt-pending flags and abort the

IDENT by taking a software passive release.

The XMi

2.5.6 Implied Vector Interrupt Transactions

The Implied Vector Interrupt (IVINTR) is a single-cycle transfer used

to implement VAX interprocessor interrupts and write error interrupts

where the interrupt priority and interrupt vector are implied by the type

of interrupt.

Interprocessor interrupts are issued at IPL 16 (hex) with a vector of 80

(hex). Write error interrupts are issued at IPL 1D (hex) with a vector of G0

(hex). Since the value of the interrupt vector is indicated by the value of

the Type field, IVINTR transactions do not require a corresponding IDENT

(identify or interrupt acknowledge cycle).

The IVINTR transaction contains a 4-bit Type field used to specify the

. type of interrupt. Only two bits are used: <16> specifies an interprocessor
interrupt, while <17> specifies a write error interrupt. The IVINTR

transaction also contains a 16-bit Node Specifier field {one bit per node)

indicating which nodes are to be interrupted. Interprocessor interrupt

transactions can be directed to more than one node. Write error interrupt

transactions are directed to only one node.

2-31

The XiMI

2.5.7 Transaction Examples

2-32

Examples are found in the following subsections:

¢ Single Data Cycle Reads

e Multiple Data Cycle Reads

e Longword and Quadword Writes

¢ Multiple Data Cycle Writes

25.71 Single Data Cycle Reads

The four types of single data cycle reads are:

¢ Longword Read

¢ Longword Interlock Read

¢ Quadword Read

¢ Quadword Interlock Read

The following symbol conventions are used in the transaction figures that

follow.

ACK = acknowledge: ARB = arbitration winner; DATN = data n, CMD =

command; CMDR = commander; CRDN = corrected read data n; FUNCT

= function; GRDN = good read data n; RESP = responder; WDAT = write

data; WRTM = write mask.

Figure 2-10 Read Transaction

0 1 2 3 4 5 6 7

FUNCT CMD GRDO

DATA READ DATA

1D CMDR T : CMDR

CONF ACK - ACK

ARB CMDR RESP

mab-0850-90

The Read transactions consist of a command transfer foiiowed by a

return data transfer, as shown in Figure 2-10. The two transfers are

the command (FUNCT = CMD) and the read data response (FUNCT =

GRD0). The commander arbitrates for the bus in cycle 0 and wins. In

cycle 1, it drives the function, command, address of the read, and its own

The XMl

Figure 2-11 interiock Read Transaction to @ Locked Location

0 1 2 3 4 5 6 7

FUNCT ,CMD - Loc |

DATA | READ ' i , ’ : i

D | ' CMDR : B | CMDR :

CONF 5 . ACK ‘ : : ACK
ARB i CMDR. ' RESP -

mab-08580

ID (for later use to identify the returning data). In ¢ cle 3, the responder

confirms receipt of the information.

Some variable time later, in this example at cycle 4, the return data

transfer begins with the responder arbitration for the bus. Having won it,

the responder drives the function, the date, and the commander’s ID i

cycle 5. The status of the returning data is specified in the read response

function code, either Good Read Data, Corrected Read Data, or Read Error

Response. The commander monitors the bus, checking for an 1D match

during read data cycles to indicate that the read data is meant for that

commander.

If the particular transaction requested had been an Interlock Read, and if

the memory was already interlocked, the commander would have provided

a Locked Respor:se in place of the returned data. (See Figure 2-11.)

2-33

The XM

2-34

2572 RMultiple Date Cycle Reads

The four types of multiple data cycle reeds are:

¢ Octaword Read

* Octaword Interlock Read

* Hexword Read

e Hexword Interlock Recd

Figure 2-12 Multipie Deta Cycle Reaos Command Cycle

0 1 2 3

FUNCT CMD

DATA READ

D CMDR

CONF ACK

ARB CMDR

rrab> 0842 90

Figure 2-13 Read Data Cycles

0 1 2 3 4 5 6

FUNCT GRDO GRD!

DATA DATO DAT!

1D CMDR CMDR

CONF ACK ACK

ARB RESP RESP

med-0853-00

The four multiple data cycle read transactions move either 16 bytes

(octaword) or 32 bytes (hexword) of data from the responder to the

commander. Figure 2-12 is the command transfer of the transaction.

The Interlock Read checks the state of the lock bit in the memory and

qualifies the request, based on its state. This illustration applies to both

octaword and hexword reads.

The XMI

Figure 2-14 Read Data Cycles with HHOLD

0 1 2 3 4

FUNCT ' GRDO | GRD?| | |

DATA | DATO | DATY . | i
1D | { CMDR' CMDR. | ;

CONF 3 i ACK ' ACK

ARB RESP HOLD'

Figure 2-13 is a diagram of the return data transfer applicable to octaword

reads, moving four longwords of data. The function field of the bus in cycle

1 indicates "good read data 0" with the 1D field identifying the intended

receiver (the transaction commander). Cycle 4 is a Good Read Data 1

cycle. Each eycle provides a new quadword of read data wkile the 1D

remains unchanged.

Read data may be returned in consecutive cycles through the use of HOLD,

as shown in Figure 2-14. The transmitter asserts HOLD in cycle one to

ensure tiiat it maintains the use of the bus until it completes the transfer.

HOLD is the highest priority arbitration line and guarantees use for a

maximum of four consecutive cycles. The confirmation is returned to the

responder two cycles after the command cycle.

Bus usage during a hexword read with a single correctable read error is

st vn in Figure 2-15.

Figure 2-16 illustrates the events during a return data of hexword length

containing an uncorrectable read error. When memory encounters an

uncorrectable read error, it returns 8 Read Error Response and suppresses

further read responses for that transaction.

2-35

The XMi

Figure 2-15 Hexword Read with Single Correctable Read Error

o 1 2 3 & & & 7

FUNCT ‘ | GRDO | GRD: | GRD2| GRD3 | . '

DATA | DATO | DATY |oat2 | |DAT3 |
iD { CMDR! CMDR| CMDR; CMOR |
CONF | | | ACK |ACK |ACK | | ACK |
ARB | RESP HOLD | KOLD | RESP | i | |

meb 0655 80

Figure 2-16 Hexword Data Return with Uncorrectable Read Error

0 1 2 3 4 5

CUNCT GRDO GRDY RER

DATA 'DATO DAT1

o) 'CMDR CMDR CMDR ‘ :

CONF " ACK ACK ACK

ARB RESP HOLD HOLD

2-36

The XMi

2573 Longword and Quadword Writes

Longword and quadword writes can be either Write Mask or Unlock Write

Mask transactions.

Figure 2-17 Longword and Quadword Writee

0 1 2 3 4

FUNCT CMD WDAY

DATA WRTM DATA

iD CWDR

CONF ACK ACK

ARB CMDR HOLD

Longword and quadword writes move the number of bytes specified by the

Mask field The commander arbitrates for the XMl bus and, upon winning

it, drives the appropriate write command, the intended address, the data

mask, its own ID, and asserts HOLD to signal that it will need the next

cycle as a Write Data cycle. It then provides the write data but no ID field,

having identified itself in the command cycle. Cycles 3 and 4 show the

confirmation from the responder.

2574 MuRipie Date Cycle Writes

The multiple data cycle writes are the octaword Write Mask and the

octaword Unlock Wnite Mask transactions.

Figure 2-18 RMuiciple Data Cycle Writes

1 2 3 4 5

FUNCT CMD WDAT WDAT

DATA WRTM DATO DATY

D CMDR

CONF ACK ACK ACK

ARB CMOR HOLD HOLD

NOTE: The write data mus! immediately follow the command
cycle with no intervaming null cycles. ab-088880

Multiple data cycle writes identify the first cycle of the transfer with the

desired write length. HOLD is asserted while successive cyles provide new

data.

2-37

2-
38

Figure2-19XMInitializationFlowchart
DCLOasseried

XMiBADLasserted.XBER<STF>se!.Nodeseff-testruns|

Seif-testLEDstaysoff.XBER<STF>staysse!.XBADLstaysasserted

XBER<STF>clears;
allnodesaregood.XDEVloadedwithDTYPE;

2.6.1

2.6.2

The XAl

Causes of an Initialization

Three causes of XMl initialization are:

¢ Power-down/power-up

e System reset

¢ Node reset

Power-Up

On power-up, the XM!I AC LO L, XMI DC LO L, and XMI RESET L lines

are sequenced to provide initialization of all nodes in the system (see

Figure 2-19).

During normal power-up, 8 node cannot access XMI-accessible memory

space locations until the deassertion of XMl AC LO L. However, memory

nodes clear memory lecations following the deassertion of XMI DC LO L

if a cold start is indicated. During a system reset sequence, it is possible

for the resetting node to access memory prior to the deassertion of XMl

AC LO L, but no other node can access memory prior to the deassertion of

XMIACLOL.

During brownout power conditions, XMI AC LO may essert and later

deassert without an assertion of XMI DC LO L. XMl AC LO L remains

asserted for a period of time after the deassertion of XMI DC LO L,

allowing a node's internal initialization signals to be removed before a

power restart interrupt is raised.

XMI DC LO L warns of the impending loss of DC power and is used for

initialization on power-up. DC power and the XMI clock become valid

before the deassertion of XMI DC LO L. XMI DC LO L is asserted after

the assertion of XM1 AC LO L, allowing the power-fail routine to save

processor state in memory and to hait. The result of any XMi transaction

in progress when XMI DC LO L asscrts is indeterminate.

XMI DC LO L asserts before the loss of DC power so that nodes such as

disk controllers can stop certain activities before the removal of power.

In a power outage, first AC power is lost, then (if not restored quickly), DC

power falls below acceptable levels, asserting first XMI AC LO L and then

XMIDCLOL

2.6.3

2.6.4

The XMI

System Reset

A power-down/power-up sequence can be emulated through the use of

the XMI RESET L line, which causes the sequencing of XMl AC LO

L and XMI DC LO L in the same way as a true power-down/power-up

sequence. This allows all nodes in the system to be returned (or "reset”) to

their power-up state without cycling the power supplies. The XTC power

sequencer is also used to carry out the reset sequence.

The XTC power sequencer monitors the XMI RESET L line and drives the

XMI AC LO L, XMI DC LO L, and XMI RESET L lines. Upon detection

of an asserted XMI RESET L line, the XTC begins the reset sequence. If
XM! RESET L is asserted while XMl AC LO L and XMI DC LO L are

deasserted, the XTC asserts XMI AC LO L first, then XMI DC LO L,

and finally deasserts XMI DC LO L. In response, all XMI nodes perform

self-test and initialization. When the RESET line is deasserted, the

reset module deasserts XMI AC LO L, completing the emulation of the

power-dowrn/power-up sequence.

Node Reset

2-40

A single node in a system can be reset without resetting the entire system

by writing a one to the Node Reset bit (NRST) in the XMI Bus Error

Register of that particular node. The node is inaccessible for the duration
of its initialization and XMI BAD L is asserted. Accessing the node during

self-test may cause a self-test failure. Software drivers that share a node

must agree in advance that a node needs to be reset and lock the selection

of that node.

The XM

2.7 XMI REGISTERS

This section summarizes the registers required for all XMI nodes.

Each XMI node is required to have a set of two or three registers in a

specified location within the node's nodespace, as shown in Teble 2-11.

Descriptions of the XMI registers for the CPU are given in Chapter 3, and

other module-specific XM1 register descriptions are given in the chapters

on the XM! options.

Table 2-11 X0Al Registers

Raglater fdnemonic Addrese Kode Requiremante

Device Register XDEV ' 88 ? + 0000 0000 Ali nodes

Bus Error XBER 88 + 0000 0004 All nodes

Register

Failing Address XFADR B8 + 0000 0008 Commanders only

Regsster

'X in the mnemonic indicates that this s an XMI register.

?BR = base address of a node, which is the address of the first location in nodespace

2-41

2.8 XM Errors

The XMI bus detects all single-bit transmission-related ervors

on XMI D, XMI F, XMI ID, XMI P, and XMI CNF lines. The XMI

protocol permits XMI commanders to recover from all traneient

memory epace read/write ronsaction errors ac well as firom most

/O space read/write transaction errors.

2.8.1 Error Conditions

28144 Pariy Emor

To detect single-bit errors, all nodes monitor parity of the bus. Any XMI

receiver detecting bad parity ignores the cycle and returns a NO ACK

confirmation.

28.1.2 inconglstent Parity Error

Under certain error conditions, some nodes might detect bad parity while

others compute proper parity. If the intended target of the transaction

computes good parity, then the cycle may be ACKed (and assumed good

by the commander), even if other nodes ignore the cycle due to bad panity.

For XMI memory-space write transactions, this class of error may result

in cache coherency problems due to cached processors failing to perform

cache invalidates. For XMI IVINTR transactions, some destinations of

the IVINTR transaction may not receive the interrupt. All other XMI

transactions are insensitive to this class of error.

28.1.3 Trangaction Timgout

The XMI protocol specifies that a timeout of 16 milliseconds be used

by commanders to detect transaction feilure. Responders ensure that

transactions do not exceed these timeout values.

¢ Response Timeout—During an XMI Read, Interlock Read, or IDENT

transaction, if 8 commander does not receive all read responses

within a certain number of cycles after the transaction is issued,

the transaction is considered to have failed. This does not imply that a

responder has "died” since XMI receivers ignore cycles with bad parity

and response timeouts can occur as a result of ignored cycles.

® Retry Timeout—An XM] commander needs to reissue an XMI

transaction if it receives a NO ACK or a Locked Response. If the

commander has not successfully completed the transactien within the

timeout period, the transaction has failed.

2-42

The XMI

28.1.4 Sequence Ervor

Many transactions require that XMI cycles occur in a certain sequence.

When the cycles occur out of sequence, the transaction is in error.

Read, Interlock Read, and IDENT transactions use sequence IDs

embedded in the read data responses (GRDn, CRDn, RER—the sequence

ID for RER is implicitly 0). The required order for read responses is 0, 0,

0...1, and 0...3 for longword (including IDENT), quadword, octaword, and

hexword length transactions, respectively. For example, if the commander

detects data returned out of sequence (such as GRD0, GRD2, GRD3), then

it NO ACKs the out-of-order read response (GRD2) and the additional read
response (GRD3) for that transaction.

Correct sequencing of write transactions is determined by the location

of the write data cycles relative to the write command cycle rather than

using sequence IDs. The write command cycle and associated write data

cycles must occur in contiguous timeslots. If a responder detects missing

data cycles in a write transaction, the incorrect cycle (and subsequent

write data cycles) are NO ACKed. Figure 2-20 shows examples of failing

octaword write transactions.

Figure 2-20 Falied Octaword Write Transaction

tdiasing Firat Deta Cycle:

FUNCT CMD XXXX WDAT

DATA WRTM XXXX

CONF ACK NOACK NOACK

Missing Second Data Cycle:

FUNCT CMD WDAT XXXX

DATA WRTM DATA XXXX

CONF ACK ACK NOACK

eb-055080

2-43

2.8.2

The XMI

Error Handling

2-44

XMI commanders and responders react to error conditons as follows:

Receivers that detect bad parity ignore the cycle.

Responders suppress any write trangactions containing a sequence

or parity error; that is, none of the date at the re‘erenced location is

modified as the entire write transaction is ignured.

Responders receiving a NO ACK confirmation to a read response do

not transmit further read respanses associated with that transaction

within 10 XMI cycles of the NO ACK.

Memory nodes do not set a lock bit unless all read responses associated

with an Interlock Read transaction receive an ACK confirmation.

Me.nory nodes do not clear a lock bit unless all write data cycles

associated with the Unlock Write Mask transaction are properly

received.

Cached processors detecting an inconsistent parity error either flush

their caches or perform a machine check.

2.8.3

2.8.4

The XMI

Error Recovery

Error recovery involves one or more reattempts of the failed transaction

before reporting @ hard error. A failed XMI transaction is retried under

the following circumstances:

e All transactions receiving a NO ACK confirmation for the command

cycle are retried. The NO ACK can result from either a reference

to nonexistent memory locations (NXM) or from bus parity errors.

Transactions failing the retry are assumed to be to an NXM.

¢ Failing XMI Write transactions are retried.

e XMI IDENT transactions receiving a response timeout are retried.

Since this may result in a8 lost interript vector, the consequences are

implemented by software.

e Failing XMI VYO space Write Mask or ‘Jnlock Wnte Mask transactions

are retried.

° Failing DWMBA LI/O space Read or Interlock Read transactions

receiving a response timeout are NOT retried since some /O devices

might have read side effects.

Error Reporting

The XMI bus prctocol supports two mechanisms that signal error

conditions to processors if normal transaction-level error reportng cannot

be used.

Normal transaction-level error reporting mechanisms include NO ACK,

Read Error Response (RER), and timeout. The mechanisms that signal

error conditions to processors if normal transaction-level error reporting

cannot be used are:

¢ Write error interrupt—This transaction is directed to one or more

CPU nodes, resulting in each targeted CPU taking an INT 3 to

R3000 (XCPGA asserts MEMERR_L) error interrupt. The CPU then

identifies the source of the write error interrupt.

e XMI FAULT—When XMI FAULT is asserted, all XMI CPUs take an

INT 3 to R3000 (XCPGA asserts MEMERR_L) error interrupt .

An example of a write error interrupt is if the DWMBA is unable %

complete either an XMI-to-VAXB! windowed write operation or a VAXBI-

to-XMI windowed write operation. Then the DWMBA issues a write error

IVINTR transaction to the nodes designated in the DWMBA AIVINTR

destination register.

2-45

XxXXXXXXfiKXXXXXXXXXXXXXXXXXXXKXXXXKXXXKXXXKXXXRXXXX

XXXKXXXKXXXXXXXXXXXKXXXXXXXXXRXXXXXXXXXKXXXXXXXXX

OGOOGCOOOKXX XXX O XA XXX KKK KKK

VRN X R KIOKK KX XK OO0 XKL RE XA XX KKXR

X

XXX

XXXXX

ho000404

. 4.6.9.9.6.9.¢9.4

XUXXXXXXXXK

KUXHHXKXXXXXXK

P86904096969690

KAARAAXLXHXAXAKKAK

1 $.0:3.0.6.0.9.2.0.9.08 969994

P4.6.0.0.0.9.64.0.8:¢.4.0.08.9008¢

HAXXXXXXXKXKEXKEXKXKAXKXK

D010:6.0.990.000.998.08500868884

WA X KKK ARRARK AKX XX AXAALK

KEKUKX KK KA KARKEXR KK XK EXAKKHRKKK

WROOEH KUK HRA XK A KKK KA KK KX UKAKAXK

PTO 016 0.60000800006bbe e e s betod sl

XXX KKKXXXARKXXX KKK KK KHXEXXAXAAXKK

o0 9040000000080 800000ttt ehd

PO 009000000090006 000896000080 80e08803

AXEAXKXAKKIOCEHXXX AR KX XXX KKK KK KX X KKEXKKKKXX

O 000 00004000000t eoettdsbissss et s sty

Y0 070109700090000000000000te et et s et res

D900 001997009909 0008 0000000080800 000008e08000 000

1010701070'07010107070 0.4 009 4.0.9000000990to0seee e el

OO0 PSP 080000008000000800e8 88000020208

3 KN5S8A/A Interface Module

This chapter describes the KN38A/A interface module, the module that

provides the interface between the KNS8A/B CPU module and the XMl
bus. It describes the operation of the major components of the KN58A/A

interface modu'e such as the CVAX, the second-level cache, and the XMl
interface. Topics on overall KN58A/A interface module operation such as

initialization and error handling are also discussed.

This chapter includes the following sections:

Module Features

Private O Address Space Map

Maintenance Processor

System Support Chip (SSC)

EEPROM

Second-Level Cache

XMI Comner-to-KN5S8A/A Interface

Module Registers

Initialization, Self-Test, and Booting

Interprocessor Communication through the Console Program

Error Handling

3-1

KNSSA/A Interface Module

KNS58A/A Interface Module Features

The KNBSA/A interface module has four functional sections (see
Figure 3-1): the maintenance processor section, the second-level

cache, the XMI interface, and support logic for the KNSSA/B CPU
module.

Figure 3-1 KNSBA/A Interface Module Block Diagram

2NDCVAX LEVEL Lw«
CACHE .258 B Tc:.;rom KN&S:‘B

& Connectors

i

LATBUF fi

" CVAX CDAL -p 2 7 N

i X | R

XM anos |A<310> |

L]
| ..

DUP RF

Is;gc;E oreRract | | ssc lescnou
'3 l S—

- : Q !

: i ? ToFrom
S XCi @ . —_— System Console

/

« F: & v

{

X XM
XCLOCK XLATCH x 7 CORNER

& i
1

wh s

—X MY :> meb-050"89

3-2

KNSSA/A interface Module

The maintenance processor section includes:

A CVAX processor chip that handles the maintenance and diagnostic

functions of the KN58A/A interface module. It is disabled whenever

the KN58A/B CPU module is running.

A clock chip that synchronizes the RDY, ERR, and RESET signals for

the KN58A/A interface module.

The second-level cache is for instruction and data storage for the KN58A/B

CPU module. The second-level cache is 256 Kbytes, organized with 4096

tags. The cache is write-through and direct-mapped. If a processor read

misses an entry in the cache, or if the entry is invalid, the XMI interface

gate array reads the data from main memory. The cache is filled 32 bytes

at a time; the first longword read satisfies the processor’s read request.

The XMI interface includes:

Two octaword write buffers that decrease bus and memory controller

bandwidth needs by packing writes into larger, more efficient blocks

prior to sending them to main memory.

Cache fill logic that loads the second-level cache with one hexword of

data for each memory read that misses cache.

XMI write monitoring logic that uses a duplicate tag store to detect

when another XMI node writes a8 memory location that is cached on

this processor. Then the XMI interface gate array invalidates the

corresponding entry in the cache.

Full set of error recovery and logging capabilities

Support logic for the KN58A/B CPU module includes:

A maintenance read-only memory {(ROM) that contains the code

for imtialization, executing maintenance mode commands, and

bootstrapping the system.

An electrically-erasable, programmable ROM (EEPROM) that

contains system parameters and console patches. You can modify

the parameters with the set-nv console command. Patching console

and diagnostic code in the ROMs is accomplished by reading the

patches into a special area of the EEPROM.

A system support chip (SSC) that includes support for external ROM.

EEPROM, console terminal UARTS, bus reset logic, interval timer,

programmable timers, time-of-year (TOY) clock, bus timeout, and halt

arbitration logic.

KNSSA/A Interface Module

Figure 3-2 Private /O Addiess Space Map

BYTE ADDRESS

2000 0000

2000 0004

2000 3FFF

2004 0000

2007 FFFF

2008 0000

2008 FFFF

2009 0000

2009 FFFF

200A 0000

2008 FFFF

200C 0000

200F FFFF

2010 1000

2010 FFFF

2011 0000

2011 0004

2102 FFFF

2013 0000

20130004

2013 FFFF

2014 0000

2014 Q3FF

2014 0400

2014 O7FF

2014 0800

2100 FFFF

2101 0000

2101 FFFF

2102 0000

2102 FFFF

2103 0000

217F FFFF

CSR1

RESERVED

SELF-TEST/CONSOLE/BOOT CODE
IMPLEMENTED IN

TWO (2) 128KB X 8 PROMS

CONSOLE PATCHES/BOOT CODE
IMPLEMENTED IN

TWO (2) 32KB X 8 EEPROMS

RESERVED

R3000 CONSOLE ROM

NON-HALT PROTECTED
SELF TEST/CONSOLE/BOOT CODE

(DOUBLE-MAPPED ADDRESSES - SAME ROMS
AS ACCESSED BY 2004 000D to 2008 FFFF)

RESERVED

iINTERLOCK REGISTER (KNSBA/B)

RESERVED

INTERLOCK ADDRESS REGISTER (KN58A/B)

RESERVED

$SC CSRS

SSC BATTERY BACKED UP RAM

RESERVED

INTERPROCESSOR

IVINTR GENERATION “VIRTUAL" REGISTERS

WRITE ERROR
IVINTR GENERATION "VIRTUAL® REGISTERS

RESERVED

SIZE

4 BYTES

APPROX
258 KBYTES

258 KBYTES

64 KBYTES

86 KBYTES

128 KBYTES

512 KBYTES

32 KBYTES

4 BYTES

APPROX
128 KBYTES

4 BYTES

APPROX

1206 KBYTES

1 KBYTE

1 K8YTE

APPROX
14 8 MBYTES

64 KBYTES

64 KBYTES

APPROX
775 MBYTES

msb-0570-80

3.3

3.3.1

3.3.2

KNSRA/A Interface Module

Maintenance Processor

The maintenance processor section consists of a CVAX chip and &

clock chip. The CVAX supports a subset of the VAX instruction set

and data types. It also supports VAX memory management.

CVAX Hardware Restart Sequence

The CVAX enters the hardware restart process upon the occurrence of one

of several events:

* Following an XMI power-up sequence.

¢ Following an XMI system reset sequence, an “emulated’ power-up

sequence that is initiated by asserting the XMI RESET L line. This

can be accomphshed by writing to IPR55 (IORESET).

e When node reset (XBER<30>) is set from the XMI.

¢ When HALTs are enabled and a CTRL/P is generated by the console or

node HALT (XBFR<29>) is set from the XMI.

¢ When the hardware or kernei sot ware environment becomes severely
P e A ALL N T T i 3corrupted and the CVAX cannct zentinue normal processing.

e When a HALT instruction is executed in kerne! mode.

When the hardware restart process begins, the CVAX executes a microcode

restart sequence and passes control to console code beginning at physical

address 2004 0000 (hex). The current value of the PC is stored in IPR42

(SAVPC). The PSL, MAPEN<0>, and the restart code are saved in IPR43

{SAVPSL). The current atack pointer is saved in the appropriate internal

register. The PSL is set to 041F 0000 (hex), and the current stack pointer

is loaded from the interrupt stack pointer. The restart process sets the

initial state of the CVAX. Section 3.9 contains more detailed information

on initialization.

Clock Chip

The clock chip handles the synchronization of RDY, ERR, and RESET for

the KN58A/A interface module.

K
N
S
B
A
/
A

 interface M
o
d
u
l
e

€
S

 Functions

KNSBA/A Interface Module

3.5 EEPROM

The EEPROM stores parameters for initialization of the KNB8A/A

interface module and patches to the ROM code, which does console

emulation, module eelf-tests, and boot code.

3.5.1 EEPROM Access

The EEPROM can be read with byte, word, or longword references and is

coordinated by the SSC. If the READ is word or longword, the SSC reads a

byte at a time from the EEPROM and returns the full word or longword to

the CVAX chip. All the ROM and EEPROM can be accessed by the R3000,

but the CVAX cannot access the one 128K x 8 ROM on the KNS8A/B CPU

module.

Console (initialization) code sets the ROM Size field in the SSC

Configuration Register (SSCR<22:205) to the 1-Mbyte block 2004 0000

to 2012 FFFF (hex). The halt protect field (SSCR<18:16>) is set to map

the 512-Kbyte block from 2004 0000 to 200B FFFF (hex). This double

maps the ROM and EEPROM to provide halt-protected and unprotected

images of the contents. Writes to the ROM portion of this address space

result in a machine check.

Console code also sets the EEPROM Address Deccde Mask Register

(EEADMR) and the EEPROM Base Address Register (EEBADR).

Writes to the remainder of the EEPROM address space must follow these

rules:

e Write only a byte of data at a time. The write data must be driven on

CDAL<7:0>.

¢ The two low address bits for the EEPROM are provided by CSR1<1:0>

(EEALR). These bits must be set to the proper state before the

EEPROM write is issued.

e A front panel switch provides write enable protection for the EEPROM

by controlling the XMI UPDATE EN H line. The state of this line is

read as SSCCR<5> (FPEEUE). Console code confirms that this bit is

set before updating the EEPROM.

e EEPROM updates are controlled by console software. Console code

sets SSCCR<6:4>, the EEPROM enable field, to 101 just before th.

write and then clears the ficld immed:ate. / following the update.

¢ Console code delays the return prompt until an internal counter

expires o prevent accesses immediately after a write.

KNSSA/A interface Module

3.6 Second-Level Cache .

The second-level cache is a 258-Kbyte, direct-mapped, write-

through cache with a 180-ns cycle time. All memory space read
references made by the R3000 chip except Interlock Reads are

stored in the second-level cache.

Flgure 3-3 Second-Level Cache Block Diagram

SECONT LEVEL CACHE SECOND-LEVEL CACHE
DATA STORE (RAM) TAG STORE (RAM and 2154)

256 KBytes 64 BYTE BLOCK. 32 BYTE SUB-BLOCK

PARITY 64K 1 Y {4} BLOCK

[

35 3z 2T 26 25 AL B AR) e 8 7 ¢ 1% 4y @ 68 7 +)

Mivi TAG |PC TAG

P IBYYEd | P) BYTE2 | P} BYTEY | P| BYTEC

M9 wud

B4k 2 4 64k 2 8 64n 1 4 (TR .
(2: % @ @ 2 Privi TAG POl TAG :

MO axx®
. INDE X SUB

[roa}—{ctab— me e
TAG T ‘

Ac17 5> Acd 2> Ac28 18> Ac1?86» A

DATA(3 05

PAH<3 0>

< DAL <21 0> >

msb-0500-89

3.6.1

KNSSBA/A Interface Module

Second-Level Cache Description

3-10

The 256-Kbyte, direct-mapped, second-level cache supplements the 128-

Kbyte first-level cache on the KNS8A/B CPU module. The second-level

cache is located on the IIDAL bus and is partitioned into 64-byte blocks

that are subdivided into two 32-byte (hexword) sub-blocks. Both the

data and tag stores are protected with parity. An entire 64-byte block

is invalidatzd on a device write to memory. A duplicate tag store is

maintained by the XCPGA interface to reduce unnecessary IIDAL bus

invalidate traffic.

The second-level cache memory array is & direct mapped 64K x 36-bit

array that stores up to 256 Kbytes of data. The data is physically stored

in eight 64K x 4-bit and four 64K x 1-bit static MOS RAM chips. A parity

bit is included with each byte.

The cache tags are stored in four 2K x 9 cache address comparator chips

that contain 4096 tag entries. This write-through cache is updated if there

is a cache hit during a write transaction. If the longword being wri.ten

into memory has not been cached, only main memory is written; that ‘s,

there is no “allocate on write.”

Each of the 4096 tag entries maps two hexwords in the cache. There is

one valid bit for the entire 64-byte block and one valid bit for each 32-byte

sub-block.

Whenever an Invalidate transactiun occurs on the XMI, or when an XMl

memory write transaction is iniliated by another node, the duplicute tag

store performs a tag lookup. If the data for that location is cached. then

the duplicate tag store logic immediately clears the appropriate valid bit

of the cache tag and generates a second-level cache invalidate request. An

XMI quadword write to a cached location in XMI memory results in an

entire 64-byte block being invalidated in the cache.

The 16-bit second-level data cache address lines directly address the

data within the cache memory array. The data cache address lines are

driven with the address latched for the DAL lines as shown in Figure 3—4.

During cache fill operations, they are driven by latched DAL lines as

shown in Figure 3-5.

Figure 3-4 Cache Address Line Contents During 2 Cache Read

LATCHED DAL <17 2>

med-0497-89

KNSSA/A interface Module

Figure 3-5 Cache Address Line Contents During a Second-Level Cache

Fill

LATCHED DAL <17 5> <4 >

Bits<2:0> are XORed with a straight 3-bit up counter to select the

longword within the eight-longword cache allocate block. These bits

always start with the addressed longword. They are wrapped within a

quadword, and the quadwords wrapped within an octaword to fill the

hexword sub-block. For example, if the bits initially address 0228, they

will wrap around in the foliowing order: 0228, 022C, 0220, 0224, 0238,

023C, 0230, 0234.

311

KNSBA/A Interface Module

3-12

Figure 3-6 shows how the lower bits of the DAL physical address are used

to access the cache tag addresses that are compared with the physical

address on the DAL. The DAL address bits arc also used to drive the data

store address lines for addressing the data cache RAMs.

Figure 3-6 Second.-Level Cache Addressing

1IDAL Physical Address

28 18 17 2

i T | oaes

¢ tag :Bw'm Index

9

4086 Cache Tags

[A<176>|-+ 28 Tag Address Bits 18}vilve

Tag Array
Address

|

64 Byte Cache Block Two vaid

| Ac17 2>|— HW @1 bis
Data Cache HW 82

Adaress msb 0499 89

Each of the 4096 entnies in the tag store contains an 11-bit tag address, a

valid bit, and a parity bit, combined with a separate RAM containing two

valid bits. There is a tag address {or each 64-byte block within the cache

data RAMS, and a (logical) valid bit that is actually two bits to support

single-bit error detection for each 32-byte hexword within the block. The

cache tag arr-v is addressed by the physical address from the IIDAL. A

comparator generates a hit signal if the data is both resident and valid

within the cache data RAMs.

KNS8A/A Interface Module

An R3000 read that results in a second-level cache miss will cause the
1IDAL/XMI interface to begin a hexword read transaction to update the

cache The first quadword fetched contains the longword requested by
the CPU'; the remaining seven longwords comprise the cache fiii of the

second-level cache only. During memory writes, a cache hit results in

both the cache and the main memory being written. This is controiled by
the second-level cache logic which inhibits the write enables to the cache

RAMs if the write location was not cached.

313

KNSSA/A Intertace Module

3.6.2 Controlling the Second-Level Cache

The second-level cache is controlled by the Control and Status Register 1

(CSR1).

The second-level cache is flushed by the following sequence:

1 Read and store the contents of CSR1 in a temporary memory location

(TEMP).

2 Perform back-to-back store operations to CSR1 so that the first

longword write writes back TEMP to CSR1 with FMISS (CSK1<18>)

and FCI (CSR1<20>) set and the second longword write writes back
TEMP with FMISS and FCI cleared.

The second-level cache is enabled by first flushing the cache (above) and
then performing BIT CLEAR of FMISS (CSR1<18>).

CAUTION: The second-level cz.che must always be flushed immediately before
enabling.

1t is disabled by performing BIT SET of FMISS (CSR1<18>).

Exampie 3-1 Flushing Second-Leve! Cache

#include <regdefh>

/*.

/* define CSR.1 address and MASK with CSR1< CI> and CSRI«FMISS> =gt

AR

#define CSR1 Jxp120COQCC

¢define MASK Gx0Ci4GCOC

flush_scCache:

.set norecrder

lw sC, (CSRl) 4 read CSRI

14 81, MASK ¢ load FCI-FMISS mask

or sC, sl # set FCI and FMISS bits

not sl, sl

and sl, 80 ¢ clear FCI and FMISS bits

sw 80, (CSR1) ¢ flush second-level cache

lw zerc, (CSR1) ¢ purges previous ‘sw’ from R3020 write buffer

sw sl, (CSR1l} ¢ reenable second-level cache

4 ra

nop

.set recrder

3-14

KNS8A/A Interface Module

3.7 XiMi Corner-to-iKN58A/A Interface

The KN5BA/A interface module’s XMI Corner is a predefined

interface to the XMI bus. Refer to Chapter 2 for a discussion of

the XMI.

Figure 3-7 XaAl Corner-to-KNSBA/A Interiace

HIDAL

A >

".‘ ‘ ‘/

|

_ v

‘ — | g

" DUPLICATE i !o TLA% £ > XCPGA i
STORE i |

.____‘.__. : {

4
‘ XC!

T &

v ml
XM! CORNER ;

1 XCLOCK and !

7 XLATCHES {

meb 050460

|7
v

3-15

KNS8A/A interface Module

3-16

The KN58A/A interface module generates the following XMI transaction

types:

¢ Hexword memory reads

¢ Quadword memory interlock reads

¢ Quadword memory write masks

¢ QOctaword memory write masks

¢ Quadword memory unlock write masks

e Longword /O reads

* Longword l/O write masks

e Longword I/O unlock write masks

o Write error IVINTRs

o Interprocessor IVINTRs

¢ IDENTS (in response to R3000 interrupt acknowlege)

The KN58A/A interface module responds to the following XMI

transactions:

¢ Longword nodespace reads

¢ Longword nodespace write masks

¢ Interrupts

In addition, the KN58A/A interface module monitors all memory writes for

cache invalidates.

The duplicate tag store logic and the XCPGA chip provide the functionality

required to interface the R3000 CPU to the XMI Corner.

KNSSA/A Interface Module

Table 3-1 WMapping of CPU Operations to X Transactions

CPU Operation Resulting X2l Transaction

Memory Space Relerences

Read (misses both caches) Hexword Read

interiock Read (forced to miss both caches)

Write Mask

Unlock Write Mask (forced to miss the

XCPGA write buffer)

1O Space Relerences

Read (forced to miss both caches)

Interiock Read (forced to miss both caches)

Write Mask (forced 10 miss the XCPGA write

bufter)

Unlock Wrte Mashk (forced 1o miss the

XCPGA write bufter)

Miscellaneous References

interrupt Acknowiedge

10 Space Write 10 IVINTR Generation

Space

Quadword Interlock Read

No XM transaction generated Data is loaded in the

XCPGA write bufter. # this is an XCPGA write bufier miss,

then the "oki* XCPGA write butfer date is flushed to mawn

memory with etther a Quadword or an Octaword Write

Mask.

Quadword Unlock Wrte Mask

Longword Read

Longword Interlock Read

Longword Write

Longword Unlock Write Mask

XMI IDENT (assuming that an XMI interrup! 1s pending and

no SSC (only for R3000 IRQ 1) or IP IVINTR (R3000 IRQ

2) interrupts are panding)

XMi IVINTR

3-17

KNSSA/A Interface Module

Teble 3-2 Detalled CPU Read Operation to XMI Mep

Second-

DAL Lavel Xl

Command Length Ceche Tranzection Caches

Read LW Hi None Fill

Read tw Miss HW Read Fill

Read-Lock w Force QW Read No Fil

Miss Lock

Teble 3-3 Mapping of Xl Transactions to KNSSA/A interface Module Operations

XMi Operation Resulting KNSSA/A interface Module Operation

XMI Wrntes (all typas) from other nodes Perform duplicate tag store lookup. Hf & hit, load invahdate queue

and perform an invaliate on the HDAL at the next opportunity

XMI Wrntes (ail types) from the same node ft CSR2<10> i set, perform duphcate tag store lookup H a hit,

oad invaldate queue and perform an invalidate on the HIDAL at the

next opportunity.

XMI Writes to XMi Private Nodespace Write the appropriate CSR.

XMI Reads to XM! Private Nodespace Respond with the appropnate CSR data

XM! interrupt Set the appropriate interrupt pending bit and post interrupt request

to tha R3000 on IRQ<3.0> lines

XM Interprocessor IVINTR Set the IP IVINTR pending bt and post an R3000 IRQ 2 interrupt
request

XMI Write Error IVINTR Set XBER<25> and post a hard error INT3 interrypt

XMI Partty Error Detected Set XBER«<23> and post a soft error interrup! at leve! 3 I

inconsistent, also set XBER<24> and disable the second-leve!

cache

XMI IDENT Ciear the appropriate INTR pending bnt

XMi Fautt Asserted Set XBER<25> and post a hard error INT3 interrupt

3-18

KN58A/A Interface Module

371 The XCPGA Chip

The XCPGA is a gate array that eerves as the interface between

the XMI bus and the KNSS8A/A interface module's IIDAL bus.

Figure 3-8 XCPGA Biock Diagram

;L ¥

o1 HOAL DAL
, — INTERCHIP

N XM i INTERCONNECT|
% COMMANDER v @ CONTROLLER
o CONTROLLER {iC)
i (XCC) WRITE

O BUFFER ¢
b ‘ (WB) ; T

: g— e

D XMi READ ! !
| a—p| NTERFACE |ol QUEUE INTERFACE |@—b
Cy LOGIC (RO :

[f | i |
! i INVALIDATE ? |
L P QUEUE - \

(1Qy [
XM .

P RESPONDEFI :
« > CONTROLLER <)

(XRC)

. msb-0503 8¢

3-19

KNSSA/A Interface Module

3-20

Figure 3-8 is a block diagram of the XCPGA chip. The following is a

description of each block:

The XMI Commander Controller (XCC) performs the control functions

of the XMI commander. These consist of bus arbitration, issuance of

command/address and data, and control of retumning read data.

The XMI Interface Logic (XL) is the date path logic needed to interface
to the XMI. It contains the 64-bit input and output registers and

multiplexers. It also contains all XMl registers and the XMl inter. :pt

and invalidate support logic.

The XMI Responder Controller ({RC) performs the control functions of

the XMI responder. These consist of CSR reads and writes.

The XCPGA Write Buffer (WB) is used to combine longword writes from

the IIDAL to octaword XMI write transactions, reducing XMl bus traffic.

The Read Queue (RQ) stores up to four quadwords from each read
command issued to tae XMI. The queue is unloaded, one longword at a
time, for placement on the 11DAL bus.

The Invalidate Queue (IQ) stores up tc eight invalidate addresses to be

sent to the second-level cache located on the HIDAL bus.

The DAL Interchip Interconnect Controller (IC) performs the
control functions of tne interface to the i\DAL. It handles both master and

slave functions.

The IIDAL Interchip Interface Logic (IL) is the data path logic needed

to interface to the I1IDAL bus. It also implements the 32 interrupt-pending
bits.

KNSSA/A interface Module

3.7.2 The XCPGA Write Buffer

The XCPGA Write Buffer (WB) contains two octaword write buffers used

to gather writes from the R3000, reducing XMl bus traffic. The XCPGA

write buffer also causes fewer bytes to be written to memory by allowing

the most recent write reference to the same location to overwrite earlier

ones. Read requests bypass the XCPGA write buffer if the address does

not fall within the hexword boundary of the presently active octaword.

The XCPGA write buffer accumulates data in one octaword buffer until a

memory write address falls outside the natural octaword boundary. Then

the second octaword buffer starts to fill while the first is emptied with an

XMI write transaction.

The KN58A/A interface module automatically flushes the XCPGA write

‘ buffer in response to the following conditions:
1 In response to a write that misses the currently active write buffer.

The current write buffer is flushed while the new write is accepted by

the alternate buffer.

2 Before performing an XMI /O space read or write reference, except for

XMI private space references. However, writes to IVINTR generation

space do cause a flush of the write buffer.

. 3 Before performing an Interlock Read or Unlock Write reference.

4 Before issuing an XMI read to a hexword location that includes the

data contained in the write buffer. The write buffer contents are

flushed to main memory and then the XMI read is issued. Reads that

“miss” the write buffer do not force a write buffer flush.

3-21

KNS58A/A Interface Moduls

3.7.3 Duplicate Tag Store

3-22

A duplicate tag store is located on the multiplexed XCI bus. It contains

a duplicate copy of the 4096 tag entries in the second-level cache located
on the IIDAL bus. The duplicate tag store tracks the primary tag store on

allocates by monitoring XMI read transactions. Whenever an XMI memory

space read is initiated by this node (an XMI read has to occur whenever

a second-level cache fill is performed), it allocates the cache block that

corresponds to the read address.

The duplicate tag store also monitors all XMI write transactions and

performs a duplicate tag store lookup. 1f a "hit" occurs and the write

was not from this node, then the tag is invalidated and the address is

loaded into an 8-entry invalidate queue implemented in the XCPGA.

Cache invalidates are not performed in response to a KN58A/A interface

module’s own writes since the write-through -econd-level cache always

contains the most recent data. A KN58A/A interface module can be forced

to look up and conditionally invalidate data on all XMI memory writes

(including those generated by itself) by setting CSR2<10>, the Enable

Self-Invalidates (ESI) bit.

When an entry has been loaded into the invalidate queue, the 1IDAL

interface logic arbitrates for the 1IDAL bus and performs an invalidate

of the full 64-byte block in which the write address was located. The use

of a duplicate tag store reduces 1IDAL traffic to on:ly necessary invalidate

transactions. After performing an invalidate, the XCPGA checks for any

additional invalidates that may have accumulated while the previous

invalidate was being serviced. If another invalidate request exists, then

the XCPGA services it prior to releasing the 1IDAL bus.

The KN58A/B CPU module provides the KN58A/A interface inodule an

opportunity to be granted the 1IDAL bus between every bus operation

to perform an invalidate, ensuring a "no stale data” race condition with
the invalidate logic. Since it is possibie for the XMI bus to issue writes

quickly enough to overflow the KNS8A/A interface module’s invalidate

queue, the second-level cache is disabled (CRS1<18> (FMISS) is set), an

error bit (CSR2<29> (1QG)) is set, and £ soft-error interrupt {Level 1A) is

generated. While the IQO bit is set, the invalidate queue is held cleared

and FMISS stays set. Cache Disable is also generated by CRS2<31,30,26>

(VPE, TPE, and DTPE) and XBER<4> (IPE).

The soft-error interrupt routine that handles the 1QO error must do the

following to return the system to normal operation:

1 Flush both caches.

2 Clear the IQO bit.

3 Enecble the second-level cache.

KNSB8A/A Interface Module

3.74 XMI interrupt Operation

The XMI has an INTR and an IDENT command. Only /0 devices cen

generate interrupts to interrupt one or more CPU nodes, as designated by

a destination mask.

The KNS58A/A interface module’s XMI receiver logic monitors each XMi

cycle. If it detects an interrupt command targeted to its node 1D, it sets

the interrupt-pending bit corresponding to the interrupt level (IPL 17,

16, 15, or 14) and the interrupting node's node ID (E, D, C, B, 4, 3, 2, or

1). The interrupt logic then posts an interrupt request at the appropriate

level. Since the XCPGA has only four interrupt request lines (one for each

level). the eight interrupt-pending bits at each level are ORed together to

form a set of four composite interrupt requests, one for each level.

Eventually the R3000 drops its IPL low enough to recognize the interrupt.

The R3000 then issues an interrupt acknowledge which is translated by

the XCPGA into an XMI IDENT. There can be up to eight outstanding

XMI interrupts at any given level (one from each of the maximum of eight

devices that can interrupt). The KN58A/A interface module gives priority

to the highest node ID request within a given level.

Each CPU monitors the XMI for IDENT transactions. When an IDENT is

detected, the interrupt-pending bit at the corresponding level and node is

’ cleared, assuring that multiple interrupt-fielding nodes will not attempt to
service the same interrupt. Once the first CPU sends an IDENT to a given

node at a given level, all nodes clear the corresponding interrupt-pending

bit. After the transmission of the IDENT, the interrupting device returns

an interrupt vector to the CPU. The CPU then executes the appropriate

interrupt service routine.

3-23

KNSBA/A Interface Module

3-24

The interrupt-pending bits are controlled as follows:

All KN58A/A interface modules targeted by an XMI interrupt

unconditionally set the corresponding interrupt-pending bits.

All KN58A/A interface modules unconditonally reset the corresponding

interrpt-pending bit whenever an IDENT is transmitted on the

XMi. For the KN58A/A interface module generating the IDENT,

the interrupt-pending state is cleared before the KN58A/A interface

module knows that it has successfully transmiited the IDENT to

the irterrupting node as it takes two cycles after the IDENT for

the confirmation to be returned. The XMI interface stores the

IDENT command so that, if the IDENT transmission fails, it can

be reattemp:ed. The interrupt-nending bits are not reexamined after a

failed IDENT.

The XMl interface arbitrates for the bus and, when granted, drives

several null eycles to ensure that the interrupt-pending bits are

quiesent during generation of the IDENT command. These null cycles

are used to allow the interrupt-pending bits to becomsz stable since the

bits can only change state in response to an XMI transaction. After

the required number of null cycles, the interrupt-pending bits are

sampled and used to generate the proper IDENT destination field.

It is possible that two nodes will attempt to service an interrupt at

about the same time, as more than one CPU can be interrupted for

a single interrupt condition. Cnly one processor wirns the bus and

transmits the IDENT. In response to the IDENT, all processors reset

their corresponding interrup:-pending bits. It is possible, however,

that a second CPU will issue an interrupt acknowledgment befcre its

interrupt-pending bit resets. The second CPU module, once granted

the XMI, drives che required number of null cycles, samples the

interrupt-pending bits, finds rone set, releases the bus, and issues an

ERR response to the CPU. The operating system should dismiss the

ERR assertion as a passive release. ULTRIX uses a "read nofault’

function to read the interrupt vector.

It is possible that during the time between receipt of an R3000 IRQ

2 XMl interrupt and the generation of the corresponding IDENT

that an interprocessor interrupt (IP) IVINTR could be received, as IP

IVINTRs interrupt et R2000 IRQ 2 Then the XMl logic performs the

same XMI arbitration/null procezs in response to the CPU’s interrupt

acknowledge except, when the interrupt-pending bits are sampled, it

will find the [? IVINTR bit set. Instead of sending an XMI IDENT

1t returns a vector of 80 (hex) to the CPU. Since no IDENT was

transmitted, the interrupt-pending bit at R3600 IRQ 2 is still set, and

after servicing the IP IVINTR, the CPU services the XMl dewice

3.7.5

KNSSA/A Interface Module

implied Vector interrupts (IVINTR)

The IVINTR is & single-cycle XMl transaction used to implement

interproceseor interrupts (IP) and write error (WE) interrupts.

For both WE and IP iaterrupte, the interrupt priority level and

interrupt vector are implied by the type of interrupt.

Figure 3-8 Interprocessor IVINTR Generation Address Example

DESTINATION MASK

1514 1312 1110 9 8 7 6 5 4 3 2 1 0

2101 001" 00 O0O0O0CGCTYT OO 10 CO0 C

N, NSNS\S
2101

2101 2090 ('O address for IP IVINTR that targets nodes D. 7. and 4)

msd 0616 80

3-25

KNSSA/A Interface Module

3-26

The KN58A/A interface module can generate and respond to IP and

WE IVINTRs. WE IVINTRs are issued by YO nodes that are unable to

complete an I/O write transaction ("disconnected’ transfers on the XMI).

The KN58A,\ interface module has a fixed range of 'O space addesses in

XMI private space that, when written to, cause the generation of an XMI

IVINTR transaction. The XMI interface handles the tranaction as if it

were a write for error reporting.

NOTE: The write that generates the IVINTR must be generated by a store
byte-type instruction. 8B (Store Byte) is recommended.

The IVINTR generation address ranges are:

e 2101 0000 to 2101 FFFF for IP IVINTR

e 2102 0000 to 2102 FFFF for WE IVINTR

For both types of IVINTRs, A<15:0> are used as the XMI destination mask
to indicate which nodes(s) are targeted by the IVINTR. Figure 3-9 gives

an example of the address needed to send an IP IVINTR to XMI nodes 4,

7.and D.

The receipt of an 1P IVINTR with a destination mask that has the

corresponding node ID bit set causes the XMI interface logic to set an

internal IP IVINTR pending bit and generate an IRQ 2 device interrupt

to the CPL. When the CPU acknowledges an IRQ 2 interrupt, the XMI

interface checks the IP IVINTR pending bit and, if set, returns a vector

of 80 (hex) The XMI interface logic resets the IP IVINTR pending bit

during the XMi null eycles that precede each IDENT to ensure that no IP
IVINTRs are “lost.”

The receipt of a WE IVINTR with a destination mask that has the

corresponding node ID bit set causes the XMI interface logic to set

XBER«<25> (WED and generate an INT3 interrupt to the CPU. The CPU

vectors directly to 60 (hex) in the SCB for the interrupt. XBER<25> is

cleared by an interrupt service routine prior to servicing the write error

interrupt. Software then polls all XMI devices to determine which device

sent the WE IVINTR.

e, KNSSA/A interface Module

3.8 KN58A/A Interface Module Registers

The KNSBA/A interface module registers consiet of registers

in XMI private space and XMI required registers.

3.8.1 XMi Registers and Control and Status Register 1 Characteristics

The KN58A/A interface module’'s XMI registers have the following

characteristics:

1 The Mask bits are ignored on writes to the KN58A'A interface

module’s Control and Status Registers 1 and 2. The CPU always

performs a full longword write.

2 Interlocks are supported. The interlock mechanism is explained in

Section 4.6.5.

3 The XMl responder queue is r 'ly one deep so the KN58A/A interface

module will NO ACK subseg' :nt CSR refcrences until the read data

‘ for the queued CSR read has seen returned.

Table 3-4 XMI Registers for the KNSSA'A interface Module

Register éAnemonic Address

XM Device XDEV BB+ 00

XMi Bus Error XBER 8B + 04

XWMI Faiing Address XFADR BB + 08

XMI GPR XGPR BB + 0C

e Contro! and Status #2 CSR2 BB + 10

Note: "BB’ = base address of a node, which is the address of the first

location in nodespace (2180 0000 + (80000 x NODEID)).

Table 3-5 Abbrevistiona for BR Type

Abbraviation Dafinkion

0 inmalized to logic level zero

1 intialized to logic leve! one

X inmalized to either logic stale

RO Raad only

RW Readmrtte

RW1C Read/cleared by writing a 1

3-27

KNSSA/A Interface Module

Table 3-6 Registers in X Private Spece

Register Mnemonic Address' Location

KNSSA/A Interface Module CSA1 2000 00007
Control/Status #1

R3000 Console ROM 200C 0000 to 2008 FFFF

KN58A/A ROM 2004 0000 to 200F FFFF

KNSSA/A EEPROM 2008 0000 1o 2008 FFFF?

Interlock Register INTREG 2011 0000 KNSBA/B CFU module®

interiock Address INTADR 2013 0000 KN58A/B CPU module’

SSC Base Address SSCBR 2014 0000 SSC

SSC Conhiguration SSCCR 2014 0010 SSC

iDAL Bus Timeout Control CBTCR 2014 0020 SSC

Console Select CONSEL 2014 0030 SsC

Time of Year TODR 2014 006C §sC

Console Recewer Control Status RXCS 2014 0080 SsC

Console Recewe: Data Buffer RXD8 2014 0084 SSC

Console Transminter Control Status TXCS 2014 0088 SSsC

Conscle Transmitter Data Buffer TXDB 2014 008C SsC

1O System Reset IORESET 2014 00DC SsC

Timer Controtl Register 0 TCRo 2014 0100 SsC

Timer interval Register 0 TIRO 2014 0104 SSC

Timer Next Interval Register O TNiIRO 2014 0108 SsC

Timer interrupt Vector Register 0 TIVRO 2014 010C SsC

Timer Controi Register 1 TCR1 2014 0110 8SSC

Timer Interval Register 1 TIR1 2014 0114 SSC

Timer Next Interval Register 1 TNIR1 2014 0118 SSC

Timer Interrupt Vactor Register 1 TIVR1 2014 011C SSC

CSR1 Base Address CSR1BADR 2014 0130 SSC

CSR1 Address Decode Mask CSR1ADMR 2014 0134 SSC

EEPROM Base Address EEBADR 2014 0140 SSC

EEPROM Address Decode Mask EEADMR 2014 0144 SSC

SSC internal RAM 2014 0400 to 2014 O7FF

IP IVINTR Generation IPIVINTRGEN 2101 0000 to 2101 FFFF

WE IVINTR Generation WEIVINTRGEN 2102 0000 to 2102 FFFF

'Addresses shown are IDAL physical addresses. To convert these to R3000 virtua! addresses, substiute the

leading "2" with a "d". For example, address 2000 0000 in IIDAL physical space becomes b000 0000 1n R3000

virtual address space.

Address and range are determined during processor initiahization by using CSR1BADR, CSR1ADMR, EEBADR,

and EEADMR.

3Sae Section 4.6.5.

3-28

KNSBA/A Interfacs Module Registers

Control end Status Register 1 (CSR1)

Control and Status Register 1 (CSR1)

CSR1 provides KNSBA/A interface module and KN58A/B CPU module control

and status. Since most bits in CSR1 power up in an indeterminate state,

console code initializes CSR1 very early in the power-up sequence.

ADDRESS 2000 0000 (External logic)

3' 30D MW 2N ANJ{RXNW WIS G300 T 6% e D [

NOODE iID

L Front Pane! Boot Disable

Front Panel EEPROM Update Enable

XMI ACLO

Sel-Test Loop

EEPROM Write Adr<0>

FEPROM Wnte Adr<1>

Delayed Lockout Enable (DLCKOUTEN)

L— KNS8A/A Sell-Test Passed

L— Reserved
L KN58AB Timeout Enable - LED D5 (TIMOTE)

L. KN582 B Self-Test Passed - LED D4

L L— Enable intc o Timer - LED D3 (EINTMR)

Reset Invahgate FIFOs - LED D2 (RINVAL)

L Force Second-Lavel Cache Hit (FHIT)
L— Force Second-Level Cache Miss (FMISS)

| Force Bad Second-Level Tag Partty (FBTP)

— Force Cache Invaidate (FCI)

— Second-Level Cache Panty Update Disable (CPUD)

L Force Party Select (FPSEL)
i Force Cache Eneble (FCACHEEN)

- R3000 Enable - LED D1 (R3000E)

L. Reserved

. KN5B8A/B inval FIFO Fuli (IFIFOFL)

L KNSBA/B Timeout (TIMOT)
L Interrupt Leval Ona (INTR1)

L- interval Timer (INTMR)

'~ Second-Level Cache Hit Status (LATHIT)

“— Console Not Secure (CNS)

3~-2%

KMS58A/A Interface Module Registers

Control and Status Register 1 (CSR1)

—
bit<31>

Name: Console Not Secure

Mnemonic: None

Type. RO, 1

Console Not Secure reflects the received state of the XM1 CON

SECURE L line that is driven frem the Xhi backplane. When this

bit is deasserted (reads as a 1), the console is not securc.

bit<30>
Name: Second-Level Ceche Hit Status

Mnemonic. LATHIT

Type: RO, X

LATHIT is used by cache coherency diagnostics running out of 'O

space (that is, the on-board ROM) to determine if a cache hit has

occurred. LATHIT is first cleared by writing a zero to CSR1<10>

(DLCKOUTEN) and then releasing the clear by writing a one to the

same location. The next cache hit (meaning TAG address and VALID

bit match) causes LATHIT to be set. Once set, this bit remains set

until explicitly cleared by writing a zero to CSR1<10>.

bit<29>
Name interval Timer

Mnemonic. INTMR

Type RO. X

INTMR reflects the state of the SSC's Intervai Timer Interrupt pin.

When clear, indicates that the interval timer is disabled.

bit<28>
Name: interrupt Level One

Mnemonic. INTR1

Type: RO. 1

INTR] reflects the state of Interrupt Level One. When clear, indicates

that an interrupt is pending on the I1 IRQ 1 line.

bit<27>
Name: KN58A/B Timsou!

Mnemonic. TIMOT

Type. RO, X

When set, indicates that the KN58A/B CPU module diagnostics have

not disabled the timeout logic within the timeout period.

bit<26>

bit<25>

bit<24>

KNSBA/A interface Module Registers

Control and Status Reglster 1 (CSR1)

MName invalidate FIFO Fu!!

Mnemonic: IFIFOFL

Type: RO, 1

When set, indicates that the first-level cache invalidate FIFO has

overflowed.

Error Flag Aseerted: R3000 INT4

Additional Status Stored: None

Action: DECsystem 5800 hardware disables the first-level cache

invalidate FIFO. To assure cache coherency, the first-level cache is

flushed by software. Software then clears the Invalidate FIFO Full

status flag.

Name. Read/Write CNTRL P Pending

Mnemonic. CNTAPP

Type AW, X

Set when a console CTRL/P command (halt interrrupt) is issued. The

KN58AB CPU module services the interrupt.

Name R3000 Enable - LED D1

Mnemonic. R3000E

Type RW.0

This bit controls communication between the CVAX and the R3000.

When clear, the CVAX is enabled and the R3000 is disabled. When set,

control is passed to the R3000, disabling the CVAX. When set, this bit

also illuminates status LED D1 on the KN58A/A interface module. See

CSR1 <16:12> for descriptions of the bits associated with status LEDs

D2 through D6.

KNS8A/A Interface Module Registers

Contral and Status Register 1 (CSR1)

bit<23>

bit<22>

bit<21>

bit<20>

Name: Force Cache Enable

Mnemonic. FCACHEEN

Type: RW. X

Setting FCACHEEN causes the second-level cache to remain active

after error conditions. When cleared, certain errors will disable the

cache.

Name: Force Party Select

Mnemonic: FPSEL

Type RW, X

When FPSEL is set, the KN58A/A interface module does not generate

parity for the XMI P<2:0> L lines but, instead, drives Force Parity

<2:0> (CSR2<6:4>). FPSEL is used only during diagnostic testing;

remains cleared during normal system operation.

Name: Second-Leve! Cacha Party Update Disable

Mnemonc. CPUD

Type RW. X

When CPUD is set, the second-level cache does not update its fata

parity RAMs. Bad parity can be forced by first writing cache while

CPUD is set. Then, after clearing CPUD, subsequent writes to cache

have correct/incorrect parity, depending on the data pattern written.

When CPUD is set, IIDAL parity checking is disabled for second-level

cache references, allowing operating system and diagnostic software to

capture data from a second-level cache location that contains a parity

error.

Hame: Force Cache Invalidate

Mnemonic: FCI

Type AW, X

When FCI is set, the entire second-level cache and duplicate tag store

are held invalidated. The cache should be first disabled by setting

Force Miss, bit <18>, before setting FCI. See Section 3.6.2 for more

information on controlling the second-level cache.

bit<19>

bit<i8>

bite<17>

KNS8A/A Interface Module Registers

Control end Stetus Register 1 (CSR1)

Name. Force Bad Second-Leve! Tag Party

Mnemon: FBTP

Type: RW, X

When FBTP is set, the parity enable (PE) line on each of the second-

level cache tag chips is asserted during operations that write the tag,

forcing bad parity to be written by the tag chips for the current tag

entry. Subsequent reads of the tag entry cause parity errors.

Name: Force Second-Level Cache Miss

Mnemonic. FMISS

Type: RW. 0

When FMISS is set, the second-level cache and XMI interface behave

as though a cache miss occurred, regardless of the state of the tag and

valid bits. Setting both FHIT CSR1<17> (FHIT) and FMISS results in

the disabling of both cache and XCPGA, which should be avoided.

FMISS is also set by various error conditions that generate cache

disable. The error conditions must be removed before FMISS can be

cleared. Cache disable is inhibited when CSR1<23>=1 (FCACHEEN),

as this is used for diagnostic purposes only (that is, cache remains

active after error conditions).

Operating system software is required to flush the second-level cache

(CSR1<FCI>) before resetting FMISS to ensure that the cache state

is consistent when the cache is reenabled. This is required since

the KN58A/A interface module performs cache fills while FMISS is

asserted but does not update the cache on CVAX writes that "hit"

(that is, write-throughs are disabled), which could cause the state

of the cache to become inconsistent while FMISS is asserted. See

Section 3.6.2 for more information on controlling the second-level

cache.

Name: Force Second-Level Cache Ha

Mnemonic: FHIT

Type. RW, X

When FHIT is set, the second-level cache and XMI interface behave as

though a cache hit occurs for each memory-space reference regardless

of the state of the tag and valid bits. Associated XMI writes are

suppressed and only the cache location will be updated. /O space

references are disabled as FHIT causes the XCPGA chip to ignore

CVAX transactions. To maintain the FHIT functionality regardless of

errors, the CSR1<23> (FCACHEEN) is also set. Setting both FMISS

and FHIT results in the disabling of both cache and XCPGA, which

shouid be avoided.

KNS58A/A Interface Modu.. Registers

Control and Status Register 1 (CSR1)

bit<16>
Name: Resat Invalidate FIFOs - LED D2

fnemonic: RINVAL

Type: W, X

Whenever IFIFOFL (CSR1<26>) is set, software resets the KN5S8A/B

CPU module invalidate FIFOs by clearing and then setting RINVAL.

RINVAL is also used to hold the invalidate FIFO3 reset while a first-

evel instruction cache flush is in progress. Software sets RINVAL

just before a first-level cache flush and clears it just after the flush is

complete. When set, this bit also illuminates status LED D2 on the

KN58A/A interface module.

bit<15>
Name- Enadle Interval Timer - LED D3

Mnemonic: EINTMR

Type AW, K

Wken set, allows the R3000 interval timer to interrupt the R3000.

When clear, disables the R3000 interval timer. When set, this bit also

illuminates status LED D3 on the KN58A/A interface module.

bitc14>
Name: KNS8A/A Self-Test Passed - LED D4

Mnemonic. None

Type RW, X

When set, indicates the successful completion of the KN5BA/A self-

test diagnostics. When set, iliuminates the self-test pass LED on the

KN58A/B module and status LED D4 on the KN58A/A module.

bit<13>
Name: KNS58A’A Timeout Enable - LED D5

pMramonic: TIMOTE

Type: AW, X

When set, enables the KN58A/B CPU module timeout logic. When

clear, disables the KN58A/B CPU module timeout logic. TIMOTE

must be set for proper operation of the KN58A/B CPU module

DMA mechanism. Before control is passed to the KN58A/B CPU

module, software enables the timeout logic by first setting EINTMR

(CSR1<155), and then TIMOTE. Diagnostics clear this bit during

power-up routines to prevent timeouts. When set, this bit also

illuminates status LED D5 on the KN58A/A interface module,

bit<i2>

bit<i1>

bit<10>

bits<9:8>

KNSBA/A Interface Mocule Registers

Control and Status Register 1 (CSR1)

Name. Resarved

Mnemonic. None

Type. RW, X

Name: Sel-Test Pass LED

Mnemonic: STPLED

Type RW. 0

STPLED drives the seif-test pass LED (D8) on the KN58A/A interface

module. 1t is set following the successful completion of self-test.

Name Delayed Lockout Enable

Mnemonic. DLCKOUTEN

Tyoe RW, X

DLCKOUTEN enables an optional delay between the time that the

XCPGA chip asserts LOCKOUT until XMI LOCKOUT is asserted.

DLCKOUTEN is also used to clear the LATHIT latch (CSR1<30>)

dunng ce-he testing. The two functions of DLCKOUTEN are never

used at the same time.

Name EEPROM Write Address <1 0>

Mnemonic EEWADR

Type RW, X

The KN58A/B CPU module provides write data on 1IDAL<7:0>.

EEWADR gives the prograramer the ability to write the data to any

byte address within the EEPROM since the EEPROM data path is a

byte wide.

Before updating an EEPROM location, the software must first load

the correct byte address into EEWADR<1:0>. Ther the write to the

EEPROM can be started.

KN58A/A Interface Module Registers

Control and Status Register 1 (CSR1)

bit<7>

bit<6>

bit<5s

bit<d>

bits<3:0>

3-3%

Name: Sell-Test Loop

Mnemonic: STL

Type: RO

When STL is set, the ¥N58A continually reruns its self-test sequence.

STL is driven by an /O pin and can be used to implement a

manufacturing "burn-in" test. This bit is "low true.”

o

Name: XMI AC LO

Mnemonic: XACLO

Type: RO

XACLO shows the state of the XMI AC LO L line. The KN58A should

not access main memory until the bit is a one, indicating that XMl AC

LO L is deasserted.

Name: Front Panel EEROM Update Enable

pdnemonc: FPEEUE

Type RO

FPEEUE shows the received state of the XMI BOOT EN L line that is

driv_n by the front panel switch.

Name Front Panei Boot Disable

Mnemonc. FPBD

Type RO

FPBD shows the received state of the XMI BOOT EN L line that is

driven by tne front panel switch.

TR

Name Node ID

Mnomone NID

Type RO

NID contains the node ID as received from the XM! backplane

KNSBA/A Interface Module Registers

System Type (SYSTYPE)

System Type (SYSTYPE)

SYSTYPE s a 32-bit register imp mented in the KNS8A/A interface module

ROM. It can only be accessec locally Other devices on the XMI determune

the nature ot a node by reading its XM! Device Register (XDEV).

ADDRESS 2004 0004 (EEPROM)

3 4 16 % [3B [}

SYS TYPE AEV LEVEL RESEAVED LICENSE 10

med-0581 @&

bits<31:24>
Name Syster. T, v

Mremonc SYS TYPE

Typx RC

SYS TYPE is 05 (hex: for the KN58A/A interface module.

bits<23:16>
Name Revision Levs'

Mnemonic REV LEVEL

Type RO

REV LEVEL shows the revision level of the KN58A/A interface module

console code. REV LEVEL is enceded in the form x.¥ where x is

encoded into <23:20> and v is encoded into <19:16>. Therefore, a

console revision of 2.1 would be encoded as 21 (hex) while & console

revision of 2.10 would be 2A (hex).

bits<15:8>
Name Reserved

Mnemonic None

Type RO

Reserved

KNSBA/A Interface Module Registers

System Type (SYSTYPE)

bits<7:0>
Name License 'danthier

Mnemomc. LICENSE 10

Type: RO

LICENSE ID is set to 01 (hex) to allow the processor to be part of a

timeshuring system. LICENSE 1D is set to 02 (hex) to be part of a

fileserver system.

KNSBA/A Interface Module Registers

SSC Base Address Register (SSCBR)

SSC Base Address Register (SSCBR)

SSCBR controls the base address of a 2-Kbyte block of the local VO space

that includes the baftery-backed-up RAM, the registers for the programmable

timers, the CSR1 and EEPROM Address Decode Match and Mask Registers,
the Diagnostic LED Register, the IDAL Bus Timeout Register, and diagnostic
registers that aliow several IPRs lo be accessed by means of VO page

addresses.

ADCDRESS 2014 0000 (SSC)
3130 .928 [TIKT:) »

MB2ZE SSC Base Address (SSCbA! WMUST 8E ZERD (MBD) .!

med-0808-90

bits<31:30>
Name: Reserved

Mnemonic. None

Type: RW. 0

Reserved; must be zero.

bit<29>
Nama: Reserved

Mnemonic. None

Type: RW, 1

Reserved; must be one.

bits<28:11>
Name: SSC Base Address

Mnemonic: SSCBA

Type: RW

SSCBA controls the base address of the 2-Kbyte block and is set to

2014 6000 (hex) by console code during processor initialization.

KNSBA/A Interface Module Registers

SSC Base Address Reglster (SSCBR)

bits<10:0>
Name: Resarved

Mnemonc: None

Typs: RW. 0

Reserved; must be zero.

KNSBA/A Interface Module Reglsters

8SC Ceontfiguration Register (SSCCR)

SSC Contiguration Register (SSCCR)

bit<31>

bits<30:28>

ADDRESS 2014 0010 (SSC)

SSCCR controls the initialization parameters for the console serial line,

programmable timers, ROM, EEPROM, TOY clocks, and CSR1. Its finvware

initialized conterds are 0160 A007 (hex).

N RNITRBIMNDIW WNWWR e 1w 6?6 a3 2 0

B2 0 0 0 0 0

L CSA
Enebel- ({CSR1 EN)

EEPROM Enable
(EEPROM EN)

Auxisary Baud Select

Console Terminal Baud Rate Selec!
(CYBAUD SELECT)

= Control/P Enatre (CTP)

L. ROM Hait Protect Adoress Space Suze Seec

{HALT PROT SPACE;

—— ROM Aduress Space S:ze Seict (ROM SIZE SEL)

L— ROM Speed (RSP)
interrupt Prorty Love: Select (IPL LVL SEL)

interrupt Vector Disabie (VD)

Banery Low (BLO) vb-0%0-80

Name Battery Low

Mnemonc: BLO

Type: RW1C

BLO is set if the battery voltage goes below threshold while the module

is powered down. Once set, BLO can only be cleared by software

writing a zero to it. If set, the TOY clocks are cleared on KN5SSA/A

interface module reset.

Name: Reserved

Mnemonic:. None

Type: RW, 0

Reserved; must be zero.

KNS8A/A Interface Module Registers

§SC Configuration Register (SSCCR)

bit<27>

bit<26>

bits<25:24>

bit<23>

bits<22:20>

Name Interrupt Vecior Disable

Mnemonic: VD

Type: RW. 0

When IVD is set, the conscie serial line and programmable timers do

not respond to interrupt acknowledge cycles.

Name: Reserved

dnemonic: None

Type: RW, ¢

Reserved; must be zero.

Name. interrupt Prority Level Select

Mnemonic: IPL LVL SEL

Type: RW. 0

IPL LVL SEL specify the IPL level of interrupt acknowledge cycles

that the console serial line and programmable timers respond to. On

the KN58A/A interface module, this field is set to 01 (R3000 IRQ 1) by

console code.

Name ROM Speed

Mnemonic. RSP

Type. RW. 0

RSP selects the ROM access time. 0=350 ns; 1=250 ns. This bit is

normally cleared.

Name: ROM Address Space Size Select

Mnemonic. ROM SIZE SEL

Type: AW, 0

ROM GIZE SEL controls the size of the range of addresses to which

the ROM responds. ROM SIZE SEL is always 111, yielding an address

range of 1 Mbyte (2004 0000 to 2013 FFFF),

bit<19>

blite<18:16>

KNSSA/A Interface Module Registers

SSC Configurstion Register (SSCCR)

Name: Reserved

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

o Re O T)

Name: ROM Hah Protect Address Space Size Select

Mnemonic: HALT PROT Space

Type: RW

During processor initialization, the console code sets this field to 110.

This sets the halt protect address space to 512 Kbytes (addresses 2004

0000 to 200B FFFF).

KNSBA/A Interface Module Registers

§SC Configuration Reglster (SSCCR)

bit<15>

TR i]

Name: Control/® Enable

fdnemonic. CTP

Type: RW, 0

When CTP is set and halts are enabled (XMI CON SECURE reset),

a CTRL/P typed at the console causes the CVAX to be halted if it is

enabled and the R3000 to be interrupted at INT 5 if it is enasbled.

When CTP is clear and halts are enabled (XMI CON SECURE reset),

& BREAK typed at the console causes the CVAX to be halted if it is

enabled and the R3000 to be interrupted at INT 5 if it is enabled.

Name: Console Terminal Baud Rate Select

Mnemonic:. CT BAUD SELECT

Type. RW, 0

CT BAUD SELECT use the following codes to select the console baud

rate:

CT BAUD SELECT<14:12>

14 13 12 Baud Rato

0 0 0 300

0 o 1 600

0 1 0 1200

0 1 1 2400

1 o o 4800

1 0 1 9600

1 1 0 19200

1 1 1 38400

bit<11>

bits<10:8>

bit<7>

bits<6:4>

bit<3>

bits<2:0>

KNSBA/A Interface Module Reglsters

SSC Configuretion Register (SSCCR)

i R Rt

Name: Resarved

Mnemonic. None

Type: RW, 0

Reserved; must be zero.

I .

Name: Auniliary Baud Select

Mnemonic: None

Type: AW, 0

Unused; read as written.

Name: Reserved

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

Name: EEPROM Enable

Mnemonicc EEPROM EN

Type: AW, 0

EEPROM EN is set to 000 (binary) by console code during processor

initialization. *Vhen set to 101 (binary), updates to the EEPROM are

enabled.

Name: Reserved

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

Namae: CSR1 Enable

Mnemonic. CSR1EN

Type: RW. 0

CSR1 EN enables CSit1 when set to 111 (binary) by a processor

initialization.

KNS8A/A Interface Module Registers

HDAL Bus Timeout Control Register (CBTCR)

IIDAL Bus Timeout Control Register (CBTCR)

CBTCR controls the amount of time (timeout) allowed 10 elapse before an

HDAL bus cycle is aborted. This prevents unanswered CVAX read o7 write

accesses or interrupt acknowiedge cycles (IDENT) from hanging the system
longer than the timeout interval.

ADDRESS 2014 0020 (SSC)

wmBz BUS TIMEOUT INTERVAL

I-— DAL Bus Timeout (BTO) mab-0509-90

bit<31>
Name DAL Bus Timeout

Mnemonc: BTO

Type: RCigared on W, 0

BTO is set when the bus ti'neout interval (CBTCR<23:0>) has expired

during a CPU read, write, cr interrupt acknowledge cycle.

bits<30:24>
Name: Reserved

Mnemonic: None

Type: RW. 0

Reserved; must be zero.

bits<23:0>
Name: Bus Timeout interval

Mnemonic: None

Type: RW, 0

Bus Timeout Interval gives the desired timeout period. The available

range of 1 to FFFFFF (hex) corresponds to a selectable timeout

range of 1 microsecond to 16.77 seconds in 1 microsecond increments.

Writing a zerc to this field disables the bus timeout function.

KNSBA/A Interface Module Registers

Time of Year Clock Reglster (TODR)

Time of Year Clock Register (TODR)

TODR is uscd to measure the duration of power failures.

ADDRESS 2014 0020 (SSC)

» 0

Tima of Year

G- 086260

bits<31:0>
Name: Time of Year Since Setting

Mnemonic:. TODR

Type: W

TODR contains an unsigned 32-bit integer that specifies the number

of 10 ms intervals that have elapsed since the last setting. TODR is

maintained during a power failure by the XMI TOY BBU PWR line on

the XMl kackplane.

KNS8A/A Interface Module Reglsters

Console Select Register (CONSEL)

Console Select Register (CONSEL)

The CONSEL register is used to select which console lines are attached to

the console transmit and receive register.

ADDRESS 2014 0030 (SSC)

3 e3 210

MUSTBE ZERO (MBZ)

Console Select <2> (CONSEL<2>) —J
Swutus LED D7 (SLED?)

Consola Ssisct <1> (CONSEL<1>)

Consola Select <0> (CONSELD>)

met-G511.60

bits<31:4> '
Name Reserved

Mnemonic. hone

Type. -

Reserved. must be zero.

P,

bit<2> .
Name Status LED D7

tnemonc: SLED7

Type AW, 0

SLED7 powers up cleared, which causes LED D7 to be off. Writing a

one to this bit turns LED D7 on.

bite<3I>» and <1:0>

KNSBA/A Interface Module Reglisters

Console Select Register (CONSEL)

Name Console Select<2:0»

Mnamonic:. CONSEL<2:0>»

Type: RW, 0

The CONSEL field selects the operational mode for the console

attached to the congole transmit and receive register. The modes

are as follows:

CONSEL<2:0> RECY

2 1 Ditve 04 Oate tlode

0 0 0 No AUX AUX Power-up state

0 0 | No XAl AUX All 12il on power-up state

0 1 0 No LB AUX Loopback at XMI XMIT

driver input

0 1 1 No XMVAUX Unused

1 0 0 Yeos AUX XMVAUX Unused

1 0 1 Yes XMl XMIAUX Boot processor state

1 1 0 Yes L8 XMUVAUX Unused

1 1 1 Yes 8 XMUAUX Loopback on XMI

It is possible to receive data on XMI CON RECV without having the

XMI CON XMIT driver enabled. This mode is used when no CPU

becomes the boot processor on power-up. all nodes monitor the XMl

console lines for further commands.

KNSBA/A Interface Module Registers

Console Recelver Control and Status (RXCS)

Console Receiver Control and Status (RXCS)

The RXCS controls and reports the status of incoming data on the console

senal line.

2014 0080 (SSC)

EN 67 e¢3 0

WMUST BE ZERO (MB2) 0 MBZ

Reostver Done (RX DONE) -J l
Recaiver Interrupt Engbie (AX IE) .

ADDRESS

mab 0505 &0

bits<31:8>
Name: Reserved

Mnemonic. None

Type -

Reserved; must be zero. e

Name Recaiver Done

Mnemonic. RX DONE

Type RO.0

RX DONE is set when an entire character has been received and is

ready to be read from RXDB<7:0> (RBUF). RX DONE is automatically

cleared when RXDB<7:0> is read. .

vite7>

bit<6>
Name: Receiver Interrupt Enable

Mnemonic: RX IE

Type: RW. 0

If RX DONE and RX IE are both set, a program interrupt is requested.

bits<5:0>
Name: Reserved

Mnemonic. None

Type -

Reserved; must be zero.

KNS8A/A Interface Module Registers

Console Recelver Data Bufter (RXDB)

Console Receiver Daia Buifer (RXDB)

bits<31:16>

bit<15>

biteid>

ADDRESS

RXDB butters incoming serial-line data and captures error information. Emor

conditions remain until the next character is received, at which point the arror

bits are updated.

2014 0084 (SSC)

16 18 14 15 12 V1 O 7 /]

MUST BE ZERO (MB2) 0 Bz

Error (ERR) _.| l

Overrun Ermor (OVR ERA)

Framing Error (FRM)

Reocsived Break (RCV BRK)

Recerved Data Bits (RBUF)

mab 0506 80

Name Resarved

Mnemonic. None

Type -

Reserved; must be zero.

Name' Error

pramonec: ERR

Tyvpe: RO. 0

ERR is set if either bit<14> or <13> is set. ERR is clear if both bits

are clear. ERR does not generate a program interrupt.

Name Owverrun Emror

Mnemontc: OVR ERR

Type: RO, 0

OVR ERR is set if a previously received character was not read before
being overwritten by the present character.

3-51

KNSBA/A Interface Module Registers

Console Recelver Data Butfer (RXDB)

bit<13>
Name: Framing Eror

Mnemonic: FRM ERR

Typa: RO, 0

FRM ERR is set if the present character did not have a valid stop bit.

R EERETRORTS

bit<12>
Name: Reserved

Mnemonc: None

Type: -

Reserved; must be zero. .

Name: Received Broagk

Mnemonic. RCV BRK

Type: RO. 0

RCV BRK is set following the receipt of a CTRL/F character and

remains set until the register is read.

bits<10:8> l
Name Reserved

bit<ii>

Mnemonc. None

Ty » -

Reserved; must be zero.

bits<7:0>
Namae: Received Data Bis

Mnemonic: RBUF

Type: RO

The RBUF field contains the last character received from the console.

3-52

KNSSA/A interface Module Registers

Congole Transmitter Control and Status (TXCS)

Console Transmitter Control and Status (TXCS)

TXCS controls and reports the status of outgoing data on the console sénial

line.

ADDRESS 2014 0088 (SSC)

9 e788 3210

MUST BE ZERO (MBZ) 0¥ vd

Trargmitter Raady (TX RDY) -—j l
Transmutiar intsrrupt Enable (TX IE)

Matintenancs (MAINT)

Transrmit Break (XMIT BRK) ’

mab- 0607-80

bits<31:8>
Name Reserved

Mnemonic: MNone

Type: -~

Reserved; must be zero.

bit<7>
Name Transmitter Ready

Mnemonic. TX RDY

Type: RO.1

TX RDY is cleared when TXDB<7:0> (TBUF) is loaded and is set when

TBUF can receive another character.

bit<6>
Name Transmitter Interrupt Enable

Mnemonc: TX IE

Type: RAY

If both TX RDY and TX IE are set, a program interrupt is requested.

3-53

KNS8A/A Interface Module Regyisters

Console Transmitter Control and Status (TXCS)

bits<5:3>

blit<2>

bitei>

bit<D>

Name: Reserved

dnemonic: None

Type: -

Reserved; must be zero.

Name: Maintenance

Mnemonc: BMAINT

Type: RW.,0

MAINT facilitates a maintenance self-test. When MAINT is set, tiie

external serial output is set to MARK and the serial output is used as

the serial input (a loopback).

e T

Name: Reserved

Mnemonic: None

Type: -

Reserved; must be zero.

Name Transmit Break

Mnemonic. XMIT BRK

Type: RW.0

When XMIT BRK is set, the serial output is forced to the SPACE

condition. While XMIT BRK is set, the transmitter cperates normally,

but the output line remains lew so that software can transmit dummy

characters to time the break.

KNSBA/A Interface Module Reglsters

Console Transmitter Date Buffer (TXDB)

Console Transmitter Data Buffer (TXDB)

TXOB bufters outgoing data on the console serial line.

2014 008C (SSC)

MUST BE ZERO (MB2)

Tranamit Data Bis (TBLIF) ———l
maR-0500-€0

ADDRESS

blte<31:8>
Name: Researved

Mnemonic. None

Type -

Reserved; must be zero.

bits<7:0>
Name Transmit Data Bits

Mnemonic: TBUF

Type wOo

TBUF loads the character to be transmitted on the console sernal line.

KN58A/A Interface Module Registars

VO System Reset Register (IORESET)

/O System Reset Register (IORESET)

IORESET forces a system reset.

ADDRESS 2014 00DC (SSC)

3 0

1ORESET

mad- 030160

bits<31:0>
Name: VO Reset

Mremonic: IORESET

Type: WO

When IORESET is written, the SSC asserts IORESET L which forces

a system hardware reset.

KNSBA/A Interface Module Reglsters

Timer Control Register 0 (TCRO)

Timer Control Register 0 (TCRO)

TCRO controls timer 0.

ADDRESS 2014 0100 (5SC)

» 676643210

MUST BE ZERO (MB2) o |o

I-— Error (ERR) nterrupt (INT) —j |
interrupt Enabile (IE)

Single (SGL)

Tranater (XFR)

Stop (STP)

Run {RUN)

ma>-0812.60

bit<31>
Name: Error

Mnemonic: ERR

Type. RW1C 0

ERR is set whenever the Timer Interval Register overflows and INT is

already set, indicating a missed overflow. Writing a 1 to this bit clears

it.

bits<30:8>
Name: Reserved

Mnemonic: None

Type: RW

Reserved; must be zero.

bit<7>
Name: interrupt

Mnemonic: INT

Type: RAWIC, 0

INT is set whenever the Timer Interval Register overflows. If IE is set

when INT is set, an interrupt is posted at R3000 IRQ 0. Writinga 1 to

this bit clears it.

KN58A/A Interface Module Regislers

Time: Control Register 0 (TCRO)

bit<6>

bit<5>

bli<d>

bit<3>

bit<2>

Name. interrupt Enable

Mnemonic: IE

Tyvpe: RAN, O

When IE is set, the timer interrupts at R3000 IRQ 0 when INT is set.

Name: Single

Mnemonic: SGL

Type: RW, 0

Setting SGL causes the Timer Interval Register to increment by one if

the RUN bit is cleared. If RUN is set, then writes to SGL are ignored.

SGL is always read as zero.

Name: Transfer

Mnemonic: XFR

Type: RW., 0

Setting XFR causes the Timer Next Interval Register to be copiea into

the Timer Interval Register. Always read as zero.

Name: Resarved

Mnemonic: None

Type: AW

Reserved; must be zero.

Name: Stop

Mrnemonic: STP

Type: AW, 0

STP determines whether the timer stops after an overflow. If STP

is set at overflow, RUN is cleared by the hardware at overflow and

counting stops.

bit<i>

bit<0>

KN3BA/A Interface Module Registers

Timer Contro! Reglster 6 (TCRO)

Name: Reserved

Mnemonic: None

Type: RW

Reserved; must be zero.

Name: Run

Mnemonic:. RUN

Type: AW, 0

When RUN is set, the Timer Interval Register is incremented once

every microsecond. INT is set when the timer overflows. If STP is

set at overflow, RUN is cleared by the hardware at overflow and

counting stops. When RUN is clear, the Timer Interval Register is not

incremented automatically.

KNS8A/A Interface Module Registers

Timer Interval Register 0 (TIRO)

Timer Interval Register 0 (TIRO)

TIR0 contains the ilerval coumt for timer 0.

ADDRESS 2014 0104 (SSC)

3

Tner Intervel Regmter

mzd-0513-80

bits<31:0>
Name: Timer interval Register 0

Mnemonic: TIRO

Type: RO. 0

When TCR0<0> (RUN) is one, the register is incremented once every

microsecond. When the counter overflows, TCR0<7> is set, and

an interrupt is posted at R3000 IRQ 0 if TCRO0<6> is set. Then, if

TCRO0<2> is zero, TCR0<0> is cleared and counting stops.

KNSSA/A interface Module Reglsters

Timer Next interval Reglster 0 (TNIRO)

Timer Next Interval Register 0 (TNIRO)

TNIRO is for timer 0.

ADDRESS 2014 0108 (SSC)

»]

Timar Next intarval Ragrater

b 0514 80

bits<31:0>
Name: Timer Next Interval Register 0

Mnemonic. TNIRO

Type AW, 0

TNIRO contains the value that is written into TIRO after an overflow

or in response to TCR0<4> (XFR).

3-61

KNS8A/A Interface Module Registers

Timer Interrupt Vector Register 0 (TIVRO)

Timer Interrupt Vector Register 0 (TIVRO)

TIVRO is used by timer 0. Although they ail occur at the same IPL, interrupts

from the console sgrial line have prorty over imerrupts from the timers, and

timer 0 has priority over timar 1.

ADDRESS 2014 010C (8SC)

3 109 21v0

MUST BE ZERO (MB2) interrupt Vector sz

mab 081880

bits<31:10>
Name: Reserved

Mnemonic. None

Type RW. 0

Reserved; must be zero.

bits<9:2>
Name: Interrupt Vector

Mnemon IV

Type AW, 0

When TCR0<6> (1E) and TCRO0<7> (INT) transition to a one, an

interrupt is posted at R300C IRQ 0. When a timer's interrupt

is acknowledged, the contents of IV are passed to the CVAX and

TCRO<7> is cleared. Interrupt requests are also cleared by clearing

TCRO0<6> or TCR0<7>.

bits<1:0>
Name. Resarved

Mnemonic: None

Type: AW, 0

Reserved; must be zero.

KNSBA/A interface Module Registers

Timer Control Register 1 (TCR1)

Timer Control Register 1 (TCR1)

TCR1 controls timer 1, which is used by the congole code.

ADDRESS

bit<31>

bits<30:8>

bit<7>

2014 0110 (SSC)

N e 786886 & 3210

MUST BE ZERO (MB2) o} |0

L— Error (ERR) Interrupt (INT) i-l
Iniarrupt Enabie (IE)

Singis (SGL)

Trangter (XFR)

Stop (STP)

Run (RUN)

mab-051280

Name. Error

Mnemonic:. ERR

Type. RWI1C, 0

ERR is set whenever the Timer Interval Register overflows and INT is

already set, indicating a missed overflow. Writing a 1 to this bit clears

it.

Name: Resarved

Mnemonic: None

Typs AW

Reserved; must be zero.

Name: Interrupt

Mnemonic. INT

Type: RWIC 0

INT is set whenever the Timer Interval Register overflows. If IE is set

when INT is set, an interrupt is posted at E3000 IRQ 0. Writinga 1 to

this bit clears it.

KNSBA/A Interface Module Registers

Timer Control Register 1 (TCR1)

bit

bit<S>

bited>

bit<3>

bit<2>

MName: Intariupt Enable

Mnemonic: {E

Type: AW, 0

When IE is set, the timer interrupts st R3000 IRQ 0 when INT is set.

RN

Name: Single

Mnemomc. SGL

Type: RW, 0

Setting SGL causes the Timer Interval Register to increment by one if

the RUN bit is cleared. If RUN is set, then writes to SGL are ignored.

SGL is always read as zero.

Name Transter

Mnemonic. XFR

Type AW, 0

Setting XFR causes the Timer Next Interval Register to be copied into

the Timer Interval Register. Always read as zero.

Name Raserved

Mnemonic. None

Type RW

Reserved; must be zero.

Name: Stop

Mnemonic: STP

Type: RW, 0

STP determines whether the timer stops after an overflow. If STP

is set at overflow, RUN is cleared by the hardware at overflow and

counting stops.

bit<i>

bit<0>

KNSBA/A Interface Module Registers

Timer Control Register 1 (TCR1)

— Pp—

Name: Reserved

iMnemonic: None

Type: RW

Reserved; must be zero.

P —— e

Name: Run

Mnemonic:. RUN

Type: RW. 0

When RUN is set, the Timer Interval Register is incremented once
every microsecond. INT is set when the timer overflows. If STP is

set at overflow, RUN is cleared by the hardware at overflow and

counting stops. When RUN is clear, the Timer Interval Register is not

incremented automatically.

KN58//A Interface Module Registers

Timer Interval Reglster 1 (TIR1)

Timer Interval Register 1 (TIR1)

TIR1 contains the interval count for timer 1, which is used by console code.

ADDRESS 2014 0114 (SSC)

» [}

Timar Interval Regmter

med-05613-90

bits<31:0>
Name: Timer interval Regrster 1

Mnemonic. TIR1

Type: RO. 0

When TCR1<0> (RUN) is one, the register is incremented once every

microsecond. When the counter overflows, TCR1<7> is set, and

an interrupt is posted at R3000 IRQ 1 if TCR1<6> is set. Then, if

TCR1<2> is zero, TCR1<0> is cleared and counting stops. .

KNSBA/A Interface Module Registers

Timer Noxt Interval Reglater 1 (TNIRY)

Timer Next Interval Register 1 (TNIR1)

TNIR1 is for timer 1, which is used by conso'e code.

ADDRESS 2014 0118 (SSC)

3 o

Tunar Next irterval Regietsr

meh-0514.80

bits<31:0>
Mame: Timer Naxt Interval Register 1

Mnemonic. TNIRO

Type: AW, 0

TNIR1 contains the value that is written into TIR1 after an overflow

or in response to TCR1<4> (XFR).

KNSBA/A Interface Module Registers

Timer interrupt Vector Reglster 1 (TIVR1)

Timer Interrupt Vector Register 1 (TIVR1)

TIVR1 is usedby timer 1, which is used by console code.

ADDRESS 2014 011C (SSC)

MUST BE ZERO (MB2) inerrupt Vecior MB2

bits<31:10>
Name: Reserved

Mnemonic: Nona

Type: RAW. 0

Reserved; must be zero.

bits<9:2>
Name: Interrupt Vector

Mnemonc: IV

Type: AW, 0

When TCR1<6> (IE) and TCR1<7> (INT) transition to a one, an

interrupt is posted at R3000 IRQ 0. When a timer’s interrupt

is acknowledged, the contents of IV are passed to the CVAX and

TCR1<7> is cleared. Interrupt requests are also cleared by clearing

TCR1<6> or TCR1<7>.

bits<1:0>
Name: Reserved

dMuemonc: None

Type: RW, 0

Reserved; must be zero.

KNS8A/A Interface Module Registers

CSR1 Base Address Register (CSR1BADR)

CSR1 Base Address Register (CSR1BADR)

bits<31:30>

bits<29:2>

bits<1:0>

ADDRESS 2014 0130 (SSC)

CSR1BADR controls the address of CSR1.

NWH 210

mez CSR1 Base Address Register (CSR1BADR) jmez

mah-0516-60

Namae: Reserved

Mnemonic. None

Type. RW, 0

Reserved; must be zero.

“REEERTEE

Name CSR1 Base Address Register

Mnemonic. CSR1BADR

Type: RW, 0

CSR1BADR controls the address of CSR1 and is set to 2000 0000 (hex)

by console code during processor initialization.

Name: Reserved

Mnemonic: None

Type RW. 0

Reserved; must be zero.

KNSBA/A interface Module Registers

CSR1 Address Decode Mask Reglster (CSR1ADMR)

CSR1 Address Decode Mask Register (CSR1ADMR)

CSR1ADMR controls the addresses that select CSR1.

ADDRESS 2014 0134 (§5C)

313028 210

Imaz CSR1 Address Decode Mask Register (CSR1ADMR) Jfiaz

mad0817-80

bits<31:30>
Name: Reserved

Mnemonc: None

Type: AW, 0

Reserved; must be zero.

bits<29:2> .
Name. CSR1 Address Decode Mask Register

Mnemonic. CSR1ADMR

Type RW, 0

CSRI1ADMR controls the addresses that select CSR1 and is set to 0000

0000 (hex) by console code during processor initialization.

bits<1:0>
Name: Reservad

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

3-70

KN58A/A Interface Module Reglsters

EEPROM Base Address Register (EEBADR)

EEPROM Base Address Register (EEBADR)

EEBADR spacifies the base address of the EEPROM.

ADDRESS 2014 0140 (SSC)

|mez EEPROM Base Address Register (EEBADR) jmez

bits<31:30>
Name Reserved

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

bits<29:2>
Name: EEPROM Base Address Registcr

Mnemonic. EEBADR

Type. RW. 0

EEBADR specifies the base address of the EEPROM &nd is set to 2008

0000 (hex) by console code during processor initislization.

bits<1:0>
Name: Reserved

Mnemonic. HNone

Type: RW,0

Reserved; must be zero.

3-7

KN58A/A Interface Module Registers

EEPROM Address Decode Mask Regleter (EEADMR)

EEPROM Address Decode Mask Register (EEADMR)

EEADMR specifies the addresses that select the EEPROM.

ADDRESS 2014 0144 (SSC)

{mez EEPROM Address Decode Mask Regster (EEADMR) ez

mab-0519-60

bits<31:30>
Name: Reserved

Mnemonic: None

Type: RW, 0

Reserved. must be zero.

bltg<29:2> ‘
Name. EEPROM Address Decode Mask Register

Mnemonic. EEADMR

Type. RW. 0

EEADMR specifies the addresses that select the EEPROM and is set

to 0000 7FFF (hex) by console code during processor initialization.

bits<1:0>
Name Reserved .
Mnemonc None

Type RW. 0

Reserved; must be zero.

3-72

KNSSA/A Interface Module Reglsters

Device Regilster (XDEV)

Device Reygister (XDEV)

The Device Regisier con‘aing information to idertify the noge. Both fiaids are

loaded dunng node initialization. A zero value indicates an uninitialized node.

ADDRESS Nodespace base address + 0000 0000 (XCPGA)

3 "W 15

Device Revision Device Type

18 8 ?

Class iD

| | L—-—-—-—-— 0 Device
Memory Device

o8 L—— cPu Devce

bits«<31:16>
Name Device Revision

Mnemonc DREV

Type RW 0

Identifies the functional revision level of the module in hexadecimal.

The DREYV field always reflects the letter revision of the module as

follows:

KHSSA/A interface Module

Rovision DREV (dacimel) DREV (hen)

AD 1 0001

A1 1 0001

80 2 0002

81 2 0002

Z0 26 001A

3-73

KNS8A/A Interface Module Registers

Device Register (XDEV)

bits<15:0>
Name: Device Type

#nemonic: DTYPE

Type: AW, 0

Identifies the type of node. The Device Type field is broken intc two

subfields: Class and ID. The Class field indicates the major category of

the node. The ID feld uniquely identifies a particuler device within a

specified class. DTYPE contains 83081 (hex) for the KN58A/A interface

module.

3-74

KNSBA/A interface Module Registers

Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Registar contains error status on a failed XMI transaction. This

status includes the failed command, commander (D, and an error bit that

indicates the type of eror that occurred. This status remains locked up until

software resets the error bit(s).

ADDRESS Nodespace base address + 0000 0004 (XCPGA)

3| W R DTEIDMNDXR N G WD 17 1815 1413 1211109 4 3 0

1

L L Faiing Command (FCMD)
Faiing Commander D (FCID)

Sel-Test Fail (STF)

Extended Teost Fall (ETF)

Node-Speciic Error Summary (NSES)

Commander Errore

— Transaction Timeou! (TTO)

.- Resarved. must be zero

. Command NO ACK (CNAK)

— Read Error Response (RER)

- Read Sequence Ermor (RSE)

- No Read Response (NRR)

L Corrected Read Data (CRD)

- Write Data MO ACK (WDNAK)

Responder Errors

i~ READADENT Deata NO ACK (RIDNAK)

— Write Sequencae Error (WSE)

L— Parity Error (PE)

L~ inconsistent Parity (IPE)

idlacotiancous

L Write Error Interrupt (WEH1)

L L. XM Fault (XFAULT)

Corrected Confirmz ion (CC)

— XM BAD (XBAD)

L Node HALT (NHALT)

L — Node Reset (NRST)
Error Summary (ES)

olotjoji1|ojocjojojojolojojojojol0jOj0|0}0}1

3-75

KNS8A/A Interface Module Registers

Bus Error Reglster (XBER)

Dil<3i>

bit<30>

bit<29>

bit<28>

3-76

Name: Eror Summary

Mnemonic: ES

Type: RO, 0

The state of ES represents the logical-OR of the error bits in this

register. Therefore, ES is asserted if any error bit is asserted.

NOTE:

Name: Node Reset

Mnemonc: NRST

Type: AW, 0

Writing a one to NRST initiates a complete power-up reset similar

to the assertion and deassertion of XMI DC LO L (see note below),

the node performs self-test and asserts XMI BAD L until self-test is

successfully completed. Like power-up reset, nodes are precluded from

accessing the node from the time it is node reset until it completes

self-test (or the maximum self-test time is exceeded).

During the time that a node is reeponding to node reset, the

node does not access other nodes on the XML, In response to a

real power-up sequence (caused by XMI DC LO L), the NRST

bit resets. Following a node reset sequence, NRST remains set,

allowing the processor to recognize that it should not attempi

to go through the normal boot process.

Name: Node HALT

Mnemonic NHALT

Type: RW. 0

Writing a one to NHALT forces the node to go into a "quiet” state while

retaining as much state as possible. The KN568A/A interface module

will send an INT4 interrupt to the R3000, causing the R3000 to enter

console mode.

Name: XMI BAD

Mnemonic: XBAD

Type. RW, 1

On reads, XBAD ir...cates :he state of the XMI BAD signal. A one

indicates that BAD is asserted. Writes to XBAD cause the state to be

driven on the wired-OR XMI BAD L line by this node; writing a one

asserts XMI BAD L, while writing a zero releases it.

bit<27>

bit<26>

bit<25>

KNSBA/A Interface Module Regilsters

Bus Error Regleter (XBER)

Name Corrected Confirmation

Mnemonic:. CC

Type: RMWiC, 0

CC sets when the node detects a single-bit CNF error. Single-bit CNF

errors are automatically corrected by the XCLOCK chip.

Ervor Flag Asseried: INT3

Additicnal Status Btored: None

Action: Since the ACK/NAK is usable, no further action is needed.

MR

Name: XM FAULTY

Mnemonic: XFAULT

Type: RWIC. 0

When set, XFAULT indicates that the XMI FAULT signal has been

asserted for at least one cycle. An XMI node asserts FAULT to indicate

that it has sensed a Transmit Error (dete transmitted onto the XMI

does not compare with data received during the same cycle) on a cycle
that was ACKed.

Ervor Flag Asserted: INT3

Additional Status Stored: None

Action: An INT3 is also generated if XFAULT is asserted by another

XMI node, providing systemwide coverage of a connector or multiple

transmitter failure.

Name Write Enar Interrupt

Mnemonic. WEI

Type: RW1C, 0

When set, WEI indicates that the node has received a write error

interrupt transaction (IVINTR).

Error Flag Asseried: INT3

Additional Status Stored: None

Action: R3000 polls nodes to determine source and cause.

3-77

KNSRA/A Interface Module Registers

Bus Error Reglster (XBER)

bit<24>
Namae. Inconsistent Party Error

Mnramonic: IPE

Type: RW1C, 0

When set, IPE indicates that the node has detected a parity error on

an XMI cycle and the confirmation for the errored cycle was ACK. This

indicates that at least one node (the responder) detected good parity

during the cycle time that this node detected a parity error. If this

was a successful write to memory, it could leave the second-level cache

incoherent.

Ervor Flag Asserted: INT3

Additional Status Stored: None

Actinn: KN58A/A interface module hardware disables the second-level

cache by asserting CSR1<18> (Force Miss, FMISS). Software flushes

the second-level cache by writing a one, then a zero, to CSR1<20>

(Force Cache Invalidate, FCI)

bit<23>
Nama: Party Error

Mnemonic: PE

Type HWIC. 0

When set, PE indicates that the node has detected a parity error on an

XMI cycle.

Error Flag Asserted: INT3

Additional Status 8tored: None

Action: Appropriate error recovery is initiated when PE is set.

bit<22>
Namae: Write Sequence Error

Mnemonic: WSE

Type RWIC, 0

Node aborted write transaction due to missing data cycles.

Error Flag Asserted: No Interrupt

Additional Status Stored: None

Action: Write to CSh is not performed. WSE bit sets but the

commander of the issuing node is responsible for error recovery.

3-78

bit<21>»

bit<20>

bit<19>

KNSBA/A Interface Modul» Registers

Bus Error Register (XBER)

Name: READADENT Date NO ACK

fMnemonic. RIDNAK

Type: RW1C, 0

When set, RIDNAK indicates that a read data cycle (GRDn, CRDn,

LOC, RER) transmitted by the node has received 8 NO ACK

confirmation. The KN5S8A/A interface module does not respond to

IDENT transactions.

Error Flag Asserted: No Interrupt

Additionai Status Stored: None

Action: When read data sent by the responder does not get ACKed,

the responder causes RIDNAK to set; hut it is the commander of the

issuing node that is responsible for error recovery.

Name: Write Data No Ack

Mnemonic. WDNAK

Type: RW1C. 0

When set, WDNAK indicates that a write data cycle transmitted by

the node has received a NO ACK confirmation. WDNAK sets only if

the reattempt fails.

Error Flag Asserted: INT3

Additional Status Stored: Failing Address (XFADR), Commander

1D, and Command.

Action: The transaction is reattempted until a timeout occurs. Failed

address is saved.

Name: Corrected Read Data

Mnemonec: CRD

Type: RW1C, 0

When set, CRD indicates that the node has received a CRDn read

response, meaning that the read transaction was received by memory

with bad parity but memory corrected it.

Error Flag Asgerted: INT3

Additional Status Stored: None

Action: Since the data is usable, no further action is necessary.

3-79

KNSSA/A interface Module Registers

Bus Error Register (XBER)

bit<18>
Name: No Read Responsa

Mnemonic:. NRR

Type: RWiC, 0

When set, NRR indicates that a transaction initiated by the node failed

due to a read response timeout.

Error Flag Asserted (READ): BUS ERR if during the first

quadword, INT3 (due to CFE) during second-level cache fill.

Error Flag Asserted (READ/IDENT): INT3

Additional Status Stored: Failing Address (XFADR), Command ID,

and Command.

Action: No retry is attempted. If error flag, the R3000 takes a bus

error exception. If CFE, the R3000 takes an INT3 interrupt. Failed

address is saved.

bitc17>
Name: Read Sequence Error

Mnemonic: RSE

Type: RWIC. 0

When set, RSE indicates that a transaction ini.iated by the node

failed due to a read sequence error, meaning that data which is

returned as the result of a read transaction or an interrupt vector

which is returned in an IDENT transaction is identified as being out of

sequence.

Error Flag Asserted (READ): BUS ERR if during the first

quadword, INT3 (due to CFE) during second-level cache fill.

Error Flag Asserted (READ/IDENT): INT3

Additional Status Stored: Failing Address (XFADR), Commander

ID, and Command.

Action: No retry is attempted. If error flag, the R3000 takes a

bus error exception. If second-level cache fill, then CFE is asserted,

causing an INT3 interrupt to the R3000 and the sub-block in cache is

not validated. Failed address is saved.

bit<16>

bit<15>

KNSS8A/A Interface Module Registers

Bus Error Register (XBER)

Name: Read Emor Response

Mnemonic:. RER

Type: RW1C, 0

When set, RER indicates that a node has received a Read Error

Response, meaning that the result of a read transaction or an interrupt

vector returned in an IDENT transaction is uncorrectable.

Error Flag Asserted (READ): BUS ERR if during the first

quadword, INT3 (due to CFE) during second-level cache fill.

Ervor Flag Asserted (READ/IDENT): INT3

Additional Status Stored: Failing Address (XFADR), Command 1D,

and Command.

Action: No retry is attempted. If error flag, the R3000 takes a

bus error exception. If second-level cache fill, then CFFE is asserted,

causing an INT3 interrupt to the R3000 and the sub-block in cache is

not validated. Failed addrese is saved.

Name Command NO ACK

Mnemonk: CNAK

Type: RW1C. 0

When set, CNAK indicates that a command cycle transmitted by the

node has received a NO ACK confi:. .ition caused by either a reference

to a nonexistent memory location or a command cycle parity error.

This bit is set only if the error recovery reattempts fail.

Ervor Flag Asserted (READ): BUS ERR

Error Flag Aseerted (WRITE/IDENT): INT3

Additional Status Stored: Failing Address (XFADR), Commander

ID, and Command.

KNSBA/A Interface Module Registers

Bus Error Reglster (XBER)

bit<id>

bitc13>

bit<12>

bit<1i>

Name: Reserved

tdnemonic: None

Type: AW, 0

Reserved; must be zero.

Name: Transaction Timeout

Mnemonic: TTO

Type: RWIC, 0

When set, TTO indicates that a transaction initiated by the node failed

due to a transaction timeout. This bit is set only if the error recovery

reattempt fails.

Error Flag Asserted: Varies, depends on the transaction causing the

error.

Additional Status Stored: Failing Address (XFADR), Command 1D,

and Command.

Action: Depends on whether a read or write error caused TTO to set.

TTO always sets in conjunction with another error, and the other error

bit determines the appropriate action.

Name: Node-Specitic Error Summary

Bnemonic. NSES

Type RO. 0

When set, NSES indicates that a node-specific error condition has been

detected. The exact nature of the error is contained in node-specific

registers.

Name: Extended Test Fail

Mnemonic. ETF

Typs: RW1C, 1

When set, ETF indicates that the node has not yet passed its extended

test. This bit clears when the node passes its extended test.

KNS58A/A Interface Module Reglsters

Bus Error Register (XBER)

bit<10>
Name: Seli-Test Fail

Mnemonic: STF

Type: RAWIC, §

When set, STF indicates that the node has not yet passed its self-test.

This bit is cleared by the user interface when the node passes its

self-test.

bits<9:4>
Name: Failing Commander ID

fMnemonic: FCID

Type: RO

FCID logs the commander ID of a failing transaction.

bits<3:0>
Name: Failing Command

Mnemonic:. FCMD

Type: RO

FCMD logs the command code of a failing trav:saction.

KN58A/A Interface Module Registers

Falling Address Register (XFADR)

Failing Address Register (XFADR)

The Failing Address Register logs address and length information associated

with a failing transaction. The XFADR has an undetermined value on power-

up.

ADDRESS Nodespace base address + 0000 0008 (SSC)

3t N 2 [}

Failing Address

l Failing Length (FLN)
~ad-0360-89

bits<31:30>
Name: Failing Length

Mnamonic: FLN

Type: RO

FLN logs the value of XMI D<31:30> during the command cycle of a

failing transaction.

bits<29:0>
Name Faiing Address

Mnemonic: Nons

Type: 1218

The Failing Address field logs the value of XMI D<29:0> during the

command cycle of a failing transaction.

KNSSA/A Interface Module Registers

XMi General Purpose Reglster (XGPR)

XMI General Purpose Register (XGPR)

The XGPR is a genaral purpose register that is visible 1o the XMI. This register

is used dunng self-test and by the ROM-based diagnostics.

ADDRESS Nodespace base address + 0000 000C (XCPGA)

NPANTHBIWRDV222720WW0T8 1413121100 8 7 6 6 4 3 2 1 0

ojojojoiojogojojojojojoiojojoioiojojojoljojojojoiojojojojojojojo

met- 0520 60

bits<31:0>
Name XMi Gonera! Pumpose Register

Mnemonic:. XGPR

Type. RW 0

The general purpose register is used by self-test and during ROM-

based diagnostics.

KN5BA/A Interface Module Registers

Control and Status Register 2 (CSR2)

Control and Status Register 2 (CSR2)

CSR2 provides KNSSA/A interlace module control and status to the XMi.

ADDRESS Nodespace base address + 0000 0610 (SSC)

3B BITWHMDNNI WL YT I 121110 6 8 7 & 5 & I]

o fojololojolojojolojojo]ojojojojojo]jojojojojojojolo]o]GAREV

L FP<O>

FP<ct>

FP<2>

Reserved

Control
Wrde Buffer Disable (WBD)

L— Auio Retry Disable (ARD)

—— Enable Seif-invalidates (ES!)
. Read Upper (RUP)

—— Timaout Select (TOS)

——— Reserved

CROD Interrupt Disable (CRDID)

CC Interrupt Disable (CCID)

Status

Reserved

e B0OO1 Processor Disable (BPD)

Boot Processor (BP)

Commander NO ACK Received (CNAKR)

Uniock Write Pending (UWP)

Lockout<0>

Lockoutc1>

Reserved

Emors

el & U111

Reserved

Duplicate Tag Parity Error (DTPE)

Cache Fill Error (CFE)

Write Data Partty Error (WDPE)

INVAL Quaeue Overfiow (KQ0)

Second-Leve! Cache Partty Error (SCPE) eb-0809-90

bits<31:30>

bit<29>

bit<28>

KNSBA/A Interface Module Reglsters

Control and Stetus Register 2 (C8R2)

Name Second-Level Cache Parity Errors

Mnemonic SCPE

Typa: RW1C, 0

These bits indicate second-level cache parity errors as shown:

Ble<31:30: Erver Type

00 None

01 Tag Parity Eror (TPE)

10 Vaid Bit Parity Error (VPE)

1 Cache Data Panty Error (CDPE)

TPE is a parity error in the Tag Buffer RAMs. VPE is a parity error in

the Valid Bit RAMs. CDPE indicates a parity error in the data stored

in the second-level cache.

Error Flag Asserted: INT3

Additiong! Status Stored: None

Action: TPE, VPE, or CDPE cause a cache miss and disable second-
level cache by setting FMISS (CSR1<18>). On a write, the occurrence

of any of these errors results in a failure to update the cache. Second-

level cache should be flushed as described in Section 3.6.2.

Name INVAL Queue Overflow

Mnegmonic: 1QO

Type RW1C. 0

1Q0 is set whenever the INVAL queue overflows. The second-level

cache is flushed when this error occurs to ensure cache coherency.
When 1QO is set, the INVAL queue in the processor is held clear.

Ervor Flag Asserted: INT3

Additions] Statue Stored: None

Actions: Second-level cache is flushed as described in Section 3.6.2.

Name: Wite Data Parity Error

Mnemonic. WDPE

Type: RWIC, 0

WDPE is set whenever a parity error is detected on write data driven

by the processor on the 1IDAL bus.

Error Flag Asserted: INT3

Additional Status Stored: None

KNS8A/A Interface Module Registers

Control end Status Reglster 2 (CSR2)

bit<27>

bit<26>

bits<25:23>

Actions: The write transaction is not allowed to proceed onto the

XML If a XCPGA write buffer hit, then data is not loaded into the

XCPGA write buffer. The failing address is not saved by the pinout

error logic.

Name: Cache Fill Ervor

Mnemonic. CFE

Type: RWIC, O

CFE is set whenever a second-level cache fill error occurs. Second-

level cache fill errors are soft errors that occur on the 2nd, 3rd, or

4th quadword of the second-level cache fills. CFE is always set in

conjunction with other error bits.

Whenever an error occurs on the data being returned to the CVAX, the

second-level cache is disabled because CSR1<FMISS> asserts.

Error Flag Aseerted: INT3

Additional Status Stored: Failing Address (XFADR), Command 1D,

and Command (XBER)

Action: The Valid bit is not set at the completion of 8 hexword read.

The resulting invalid sub-block causes a cache miss when addressed.

Name Duplicate Tag Party Error

Mnemonwe. DTPE

Type RWIC. 0

DTPE is set whenever the duplicate tag store detects a parity error on

lookup. Since this error could result in a second-level cache coherency

prablem (the write might have hit if the parity error had not occurred

and resulted in the generation of an invalidate) the KN58A/A interface

module hardware disables the second-level cache when this error

occurs and posts a soft error interrupt.

Error Flag Asserted: INT3

Additional Status Stored: None

Action: DTPE causes a miss, which if 8 memory write, results in a

potential second-level cache coherency problem. Second-level cache is

flushed as described in Section 3.6.2.

Name: Reserved

Mnemonic. None

Type. -

Reserved.

blis<22:21>

bit<20>

bit<i19»

KNSSBA/A interface Module Registers

Control and Status Register 2 (CSR2)

Name Leckout<t:0>

Mnemonc. None

Type: RW, 01

The KNSSA/A interface module supports a lockout avoidance
mechanism that assures access to interlock varisbles. Lockout<l:0>

controls these mechaniems as follows:

Bhe<22:21»

22 21 Doceription

0 0 Interiock lockout avoidance » disabled but XMI LOCKOUT L s still

asseried as defined for Lockout<1.0> » 01

0 1 interiock lockout avowdance is enabled.

0 Resarved

1 1 Reserved

Name Unlock Write Pending

Mnemonic UWP

Type RW1IC, 0

UWP is set whenever an Interlock Read is generated and is cleared
on the subsequent Unlock Write from the same node. The setting and
clearing of this bit is not gated by the successful transmission of the

XMI transaction.

Name Commander NO ACK Received

Mnemonic. CNAKR

Type. RWIC, O

CNAKR is set whenever a command/address NO ACK is received to

an XMl commander transfer. A NO ACK is not necessarily an error

on the XMI as it is used for retries, but this status bit is used by

diagnostics that wish to know whether a transfer was NO ACKed. The
KNS8A/A interface module automatically reeitempte all XMI transfers
that are NO ACKed until a timeout occurs, unless CSR2<9> (ARD) is
aet.

KNSSA/A interface Module Registers

Control and Status Reglster 2 (CSR2)

bit<18>

bite17>

bit<16>

bite15>

3-80

Name Boot Procassor

Mnemunic: BP

Tvpe: AW, 0

BP is used to indicate that this KNS8A/A is associated with the boot

processor. The console code sets this bit after self-test if it determines

that this KN58A is associated with the CPU with the lowest node ID

number with its CSR2:BPD bit clear.

Name Boot Processor Disable

Mnemcivic. BPD

Type RW. 0

BPD is used to indicate that this KNS8A is diabled from becoming the

boot processor. It is loaded by console code on power-up with a state

stored in EEPROM.

Name Reserved

Mnemonic: None

Type -

Reserved.

Name CC Inerrupt Disable

Mnemonc: CCID

Type. RW, 0

CCID disables the generation of error interrupts to the KN58A/A

interface medule in response to corrected confirmation indications from

the XMI. While CCID is set, XBER<27> (CC) bit will still be set on

the receipt of a corrected confirmation code but the processor will not

be interrupted. When reset, the INT3 line asserts when a corrected

confirmation code is received from the XMI (XBER <27> also sets).

biteid>

bit<13>

bit«12>

biteii>

KNSBA/A Interface Module Registers

Control and Status Register 2 (CSR2)

R T gi

Name: CRD interrupt Diseble

Mnemonic. CRDID

Type: RW, 0

CRDID disables the generation of error interrupts to the processor

in response to Corrected Read Data responses from memory. While

CRDID is set, the XBER<19> (CRD) bit will still be set on the receipt

of a Corrected Read Data response but the processor will not be

interrupted. When reset, the CRD line will assert when a Corrected

Read Data response is received from the XMI (XBER<19> (CRD)

bit will also be set). Software should clear XBER<19> (CRD) before

clearing CRDID to ensure that only newly generated CRD responses

cause interrupts.

Name: Roserved

Mnemonic:. None

Type: -

Reserved.

mE—

Name Timeout Select

Mnemonic TOS

Type: RW., 0

TOS selects one of two timeout values (0 selects =16.77 ms, 1 selects

#16.38 us). This timeout value is used to detect both Response and

Reattempt Timeout conditiens. This bit remains clear during normal

system operatiof:.

Namae: Enable Read Upper

Mnemonic:. ERUP

Type: RW. 0

When ERUP is set, the upper longword of the data driven on the XMl

is returned in response to an IO gpace read. Normally, the lower

longword is returned. ERUP is used during self-test to test the logic

and pins associated with the upper longword of the XMI data path.

KNSBA/A Interface Module Reglsters

Control and Status Register 2 (CSR2)

bit< 10>

bit<9>

bit<8>

bit<7>

bite<b:4>

3-92

Name Enable Seli-invahdates

Mnemonic: ESI

Type: RW. 0

When ESI is set, the processor will invalidate cache entries matching

its own XMl write addresses. Normally, since the cache is write

through, only writes from other XMI nodes generate invalidates. ESI

is used for testing because it permits a single processor, in conjunction

with XMI memory, to verify the operation of its invalidate logic.

Name: Av 0 Ratry Disable

Mnemonic: ARD

Type: RW, 0

ARD disables auto retry of NO ACKed XM] commander transfers and

causes the immediate return of an error response after the receipt of a

NO ACK confirmation to a commander transfer. ARD is only used by

diagnostics and must be clear during normal operation.

RN EA

Name: XCPGA Write Bufter Disable

Mnemonic. WBD

Type: RW, 0

WBD disables the XCPGA write buffer so that all writes are written

directly to main memory. Logically, the write logic is forced to assume

that all writes are to /O space and this automatically forces the

XCPGA write buffer function to be bypassed.

Name: Reserved

Mnemonic. None

Type: -

Reserved.

Name: Force Parity <2:0>

Mnemonic. FP

Type. AW, 0

FP is used to provide the parity states for XMI P<2:0> when

CSR1<22> (Force Farity Select) is set.

bite<3:0>

KNSBA/A Interface Module Registers

Control and Status Reglster 2 (CSR2)

Name: Gate Array Revision

Mnemonic. GAREV

Type: RO

GAREYV contains the revision level of the XCPGA.

KNSSA/A Interface Module

3.9 initialization, Self-Test, and Booting

This section gives the KNBBA/A interface module initialization
overview; describes the results of initialization; and then discusses

the bootstrapping or restarting of the operating syetem.

3.9.1 Initialization Overview

The three ways to reset the KN58A/A interface module are:

¢ Power-Up Sequence—When the DECsystem 5800 is powered up, XMI

AC LO L and XM!I DC LO L are sequenced so that all XMI nodes are

reset.

e System Reset—The XMI emulates 8 power-up sequence by asserting

the XMI RESET L line, causing the power supply to sequence XMI AC

LO L and XM!I DC LO L as in a "real” power-up. The XMI does not
differentiate between a "real’ power-up and a system reset. A system

reset is caused by:

— Software that asserts XMI RESET L by writing to address 2014

00DC (IORESET). For example, the console initialize command

generates a system reset if no argument is given by using this

mechanism. Note that I/C addresses associated with 1/O adapters

0, 1, 2, and 3 are accessed via ksegl. IO addresses associated
with 'O adapters 4, 5, 6, and 7 are accessed via kseg2. See

Section 4.2.7.2 for more information and an example.

— The XTC power sequencer asserts the XMl RESET L line when

the control panel Restart button is pushed.

e Node Reset—-Any KN58A/A interface module can be "node reset”

by setting its XBER<NRST> bit. The console initialize command

generates a node reset if a node ID argument is provided. The

difference between the node reset and a system reset is that XMI

AC LO L is not sequenced during a node reset.

3-94

KNSBA/A interface Module

In response to a "cold” power-up or system reset, the KNS8A/A interface

module(s) participate in the following general initialization sequence:

1 Reset(s) to a known state. (Refer to Table 3-7 for the initialized states

of KN58A/A interface module registers on reset and after self-test

completes.) The KNSSA/B CPU module(s) are held in a reset state

during this portion of the initialization sequence.

2 The CVAX(es) start executing the consol? program at 2004 0000 in

ROM. The console program (firmware) initializes the registers and
executes a partial ROM-based diagnostic (RBD) self-test.

3 The KN58A/A interface module associated with the boot processor

prints the results of the gelf-test.

4 All KNSBA/A interface modules execute & memory interaction test.

5 The CVAX(es) are disabled, and the KN5SA/B CPU module(s) are

initialized.

6 The R3000(s) start execution at IIDAL physical address 200A 0000.
The R3000 portion of the console program executes a self-test for the

KN58A/B CPU module. When self-test is complete, the K3000(s) are

disabled and the CVAX(es) are enabled.

7 The KN58A/A interface module associated with the boot processor

prints the results of the memory interaction test and KN58A/B CPU

module self-test.

8 The CVAX(es) run the DWMBA/VAXBI self-tests.

9 The KN5BA/A interface module associated with the boot processor

prints the resuits of the DWMBA/VAXBI self-tests.

10 The KN58BA/A intefece module associated with the boot processor

configures memory.

11 If maintenance inode 18 not selected, the KN58A/A interface module

associated with the boot processor is disabled, the R3000 starts

execution at 200A 0000, and the KN58A/B CPU module passes control

to the operating system.

12 The operating system initialization code performs the final system

initialization.

KNSBA/A intertuce Module

3.9.2 initialization Details

The following is a flowchart and summary of the initialization process.
The sections that follow explain in some detail the process outlined by the
flowchart.

Figure 3-10 Inktislization Flowchant

Power-up orsy= 18881 (CON)

i L
CPU 1 cPyY2 flamory

KNSBA A KNSSA'A MS82A

Solt-Tex Sait-Tost Soit-Tes!

8o0ot Procagsor pnnts

8!t to5t resuits

J. .
CPU cPy?

MEM inaracton Tess WAEM Interaczon Yosts

| ‘ i
- . N 4

cPu CPu 2
®NSBAB
Soit Tas' St Tes

i |
T

Prnt

Tes®

Hesu"s
1

m meb-0203-§9

Figure 3-10 Cont'd. on next page

3-96

KNSSA/A Interface Module

Figure 3-10 (Comt.) inttlalization Fiowcharn

-
Ezscute DWLADA Soft- Tea:

rY
Prrt DRAMBANVARE!

Yeat Ragvin

r
Contigure Momory

| ewnccasusme |

=
Pri blgrmory
Contgurgton

B
X .

Promp:. Resten. o
Comtinug Boor Fracca

2 =
Operat: War

wsyn.o- % Mamenance WMone

! !
e .

mss«sm Sats Reve CCA
ry Proceasor Massage

1 =

H

= _L
CPU ' Rurning CPU 2 Running

KNS8A/A Interface Module

3921 Restarn Seguence

Initialization typically begins with a CVAX processor restart. The most
common of these is a 03 reset, whih occurs on system power-up or reset.

The R3000 is blocked from executing during CVAX initialization.

The first objectives of the console code during a restart sequence are to

establish its data area and stack, indicate that it is executing, and save
the interrupted machine state, if any. All restarts have the following

sequence in common:

1 The SSC Configuration Register (SSCCR) is temporarily set to 0076

0000 to select the ROM size and halt protect region.

2 The T1 interval timer is started.

3 If the self-test ROM is present, the KN58A/A interface module and
KN58A/B CPU module self-tests are started.

4 The KN58A/A interface module self-test returns the value of the

XBER<NRST> bit, and this value is stored in SSC RAM.

5 The signature longword in SSC RAM is checked and, if valid, its value

is changed. This step is then skipped in the future.

6 The SSC address decode registers CSR1BADR and CSR1ADMR are

initialized to allow access to CSR1.

7 The SSC address decode registers EEBADR and EEADMR are

initialized.

8 The SSC Configuration Register (SSCCR) is loaded with the value

8176 5007, which specifies the following configuration:

Bit(s) Setting(s) Description

n 1 Clears any prev:ous battery low condrion to prevent

the time of year clock frcm being reinitialized by

subsequent resets.

30.28 000 Must be zero.

27 0 Enable interrupt vectors for console ines and

programmabie timers.

26 0 Must be zero.

25:24 01 Select IPL15 interrupts for console hines and
programmabie timers.

23 0 Select 350 ns ROM spesd.

22:20 1M Select ROM size of 1024K. This maps the ROM and
EEPROM address space 1o appear at beth 2004 0000

through 200B FFFF and 200C 0000 through 2012

FFFF.

19 0 Must be zero.

18:16 10 Select hah protect region of 512K. The first image of

the ROMEEPROM address space s halt protected.

The second image is hatt enabled and used to leave

console mode and to run CVAX based boot code.

10

7

12

13

KNS8A/A interface Module

Bi(s) Setting(s) Descripiion

15 1 Select CTRL/P as the console interrupt character.

14:12 101 Select datault baud rate of 9800.

117 0000 fMust be zero.

64 000 Diseble address decode for EEPROM wriles.

3 0 fus! bs 2ero.

20 " Enable eddress decode for CSA1 reeds and writes.

The IIDAL Bus Timeout Register (CBTCR) is set to 0000 9000.

The interrupt vectors for the programmable timers are set to 78 for

timer 0 and 7C for timer 1.

The internal and external caches are disabled.

Additional initislization of the console data area in SSC RAM is

performed, as described below.

The maintenance mode dispatch routine is called with a CALLG

instruction, which causes the remaining CVAX GPRs to be saved in

SSC RAM.

The additional initialization of the console data area in SSC RAM consists

of the following for a "cold” restart:

1 The Device Revision field (bits<31:16>) of the XDEV Register is

set according to the module revision value stored in EEPROM. If

EEPROM is unusable, the Device Revision field is left as zero.

If self-test passed, XKBER<XBAD> is cleared, which deasserts the XMI

BAD signal.

If this is the KN58A/A interface module associated with the primary

processor, the primary sets the console terminal baud rate according

to the value stored in EEPROM. If EEPROM is unusable, the primary

sets its baud rate to 1200.

All processors in the system scan the XMI node space to locate the
processor with the lowest XMI number—the primary processor. The

primary processor prints initial self-test resulits on the console terminal

and sets CSR2<BP>. If the KN58A/A interface module associated with

the primary processor fails self-test, it bypasses further testing and

memory configuration and attempts to enter maintenance mode.

All KN58A/A interface modules that pass the initial self-test execute

an extended test, also referred to as the memory interaction test. If

the KN58A/A interface module associated with the primary processor

fails the extended test, it bypasses further testing and memory

configuration and attempts to enter maintenance mode.

Each KN58A/A interface module sets the "R3000 self-test” request code

in SSC RAM and passes control to the R3000 portion of the console

program, which initiates the KN5S8A/B CPU module self-test. R3000

code stores the results of the KN58A/B CPU module self-test in SSC

RAM and returns control to the CVAX portion of the console. If the

3-99

KNS8A/A interface Module

3~-100

10

"

12

13

14

KN58A/B CPU module associated with the primary processor fails self-

test, it enters maintenance mode after completing the DWMBA/VAXBI

self-test.

If a processor passes its extended test and KNSSA/B CPU module

gelf-test, it again clears XBER<XBAD> and CSR2<BP> and clears

XBER<ETF>.

The KN58A/A interface module associated with the primary processor

prints the self-test results on the console terminal.

The primary processor runs the DWMBA/VAXBI self-test and prints

the results. The DWMBA/VAXBI gelf-test ensures that all DWMBAs

have powered up and completed their self-tests before returning to the

console.

The primary processor configures memory as described in Section 3.9.3.

If sufficient memory is found, it builds the console communications

area (CCA) in the highest addressed pages of memory.

Once the total size of configured memory is known, the primary

processor completes initialization of each DWMBA as described in

Section 3.9.4.

The primary processor once again sets its CSR2<BP> bit to indicate

to secondary processors that they should idle in maintenance mode.

Secondary processors poll their CCA receive buffers for 8 command to

start R3000 execution.

The primary processor checks the ROM and EEPROM revisions posted

in the CCA by secondary proceszors. The primary processor prints a

revision banner along with any mismatches that may have been found.

‘The primary processor displays the maintenance mode prompt if

maintenance mode is selected. If maintenance mode is not selected,

the primary processor loads an "R3000 console mode” request in SSC

RAM and passes control to the R3000 portion of the console program.

3922 Nodo Reset

Some of the initialization steps are inappropriate with a node reset since

the remainder of the system must continue to function. The sequence is

modified as follows:

Self-test results are not displayed.

Extended tests are not run. Instead, the XBER<ETF> and

XBER<XBAD> bits are cleared.

DWMBA self-test is not run. No initialization of the DWMBA is

performed and, therefore, no test results are printed.

No memory configuration is performed. The processor searches for the

CCA. If the CCA connot be found, the processor hangs.

The XBER<NRST> bit has its initial value stored in console scratch

memory and is then cleared by self-test. The stored value is used by

the console program to detect a node reset.

KNSSA/A Interface Module

3923 Halt Imerrupt

A halt interrupt entry to the console program occurs when CTRL/P is

entered on the congole terminal (and the front panel key switch ie not in
the Secure position) or whenever the XBEK<NHALT> bit is set. A halt
interrupt produces a halt interrupt signal which is gated to whichever

processor chip (CVAX or R3000) is currently controlling the system.

If the CVAX is executing, the halt signal causes a CVAX restart with a

code of 02. The console program performs its initialization sequence and
displays the maintenance mode prompt.

If the R3000 is executing, the halt signal causes & level 4 interrupt to

the R3000. If interrupts are enabled, the operating system handles
the interrupt and calls the console program. The console program then

displays the console prompt.

3924 Errors

An error entry into the console program occurs wihen the CVAX encounters

any restart condition other than reset (03) or halt {02). This occurs when

a CVAX HALT instruction is executed or some other catastrophic processor

event occurs. The console program performs the common initialization

sequence and displays the maintenance prompt.

Errors do not cause entry into the console program while the R3000 is

executing. The operating system handles the error and typically calls back
to the console program to request a system reboot.

3.9.3 Memory Configuration

The CVAX portion of the console program configures memory by setting

the interleave and starting address for each array. The console program

controls the memory configuration because the console uses a portion of
the main memory to hold the console communications area (CCA) and
the R3000 console program state. The console also builds a physical
memory bitmap showing all usable and unusable pages. The results of the

CPU/memory interaction test are used to determine the defective pages.

The memory configuration process verifies that 8 minimum of 256 Kbytes

of usable memory per processor is available plus the space used by the
CCA and bitmap. The location of the CCA is determined and marked as

unusable in the bitmap.

If the primary processor is unable to find the minimum required memory,
it displays an error message and enters maintenance mode. Some

maintenance functions may not be available due to lack of memory.

Console mode is unavailable.

3-101

KNSSA/A Interface Module

3-102

3931 Selaction of inerieave

The interleave is specified by the value of the interleave environment

variable. There are three types of interleave:

¢ DEFAULT - The congole program makes all interleave decisions.

o EXPLICIT ~ The user supplies configuration data.

o NONE -~ No arrays will be interleaved.

If the interleave environment variable is set to the string default, the
console program attempts to form interleave sets. The largest ‘nterleave
factor is obtained for each group of like-sized arrays. If there are more

arrays than can be evenly interleaved, the criteria is repeated for the
remaining arrays until only single arrays remain. The array with the
lowest XMI node ID is assigned to the lowest physical address. All arrays

of the same size are configured before arrays of a different size.

Any array containing hard (unrecoverable) errors is not included in a

default interleave set. Instead, it is configured as uninterleaved. The

remaining arrays that would have formed the set are freed up for inclusion
in another interleave set, if one can be formed. Arrays with hard errors

are configured at the top of physical address space, because ULTRIX
requires contiguous physical memory.

If the environment variable specifies EXPLICIT interleave sets, the console

program interleaves and configures the arrays in the order specified.
When an array in the set has unrecoverable errors, all arrays in the set

are configured without interleaving. If a set specifies a nonexistent array

or is otherwise inconsistent, all arrays in the set are configured without
interleaving.

If the environment vaiable contains the string none, the arrays are

configured uninterleaved, in order by node ID, with the lowest numbered
array at the lowest physical address.

If the environment variable is undefined, contains an invalid value, or if

EEPROM is corrupt, memory is configured as if the environment variable

were default.

KNSSA/A inter’ace Module

3932 tlemory Testing and the Bikmap

Memory self-test indicates that an array has no unrecoverable (hard)

ervors, one hard error, or multiple hard errors. Self-test executes on all

arrays in parallel end is faster then sofRtware testing of memory. An

attempt is made to use the regults of self-test and avoid performing

goftware testing of memory.

A hard (unrecoverable) error is called an RDS ervor and is defined as

one that is an uncorrectable double-bit error by memory hardware.

A correctable (CRD) error is not considered & hard ervor, and pages

containing CRD ervors are marked as usable.

If self-test indicates that an interleave set contains no hard errors, the set

never undergoes software testing. If an array in an interleave set contains

one or more hard errors, that set is uninterleaved and the failing array is

software tested.

Software testing is performed, one page at a time, beginning with the

lowest addressed page in the array. If required, this testing takes about 7

seconds per megabyte. All locations in the page are written with patterns.

The locations are then read. If the value read from any location does not

match the pattern, or if a machine check occurs reading any location, that

page is marked as unusable, and testing resumes with the next page. The

testing patterns are in this order:

© All ones

¢ All zeros

e Alternating one/zero/one

¢ Alternating one/zero/one with ECC bits complemented

® The address of each longword

¢ The complement of the address of each longword

The memory bitmap it initially built in the first block of memory large

enough to hold it. When the bitmap has been configured, it is then moved

to a page-aligned location below the CCA.

If pages must be marked as bad before enough memory has been found to

hold the bitmap, some pages are retested after the bitmap has been built.
The bitmap shows, in addition to pages marked with hard errors, pages

marked as unusable because they are either the bitmap'’s own nages or

are CCA pages. A page is marked as unavailable when its corresponding
bitmap bit is cleared.

3-103

KNSSA/A interface Module

3.94 DWMBA Configuration

The console program performs minimal initialization of the DWMBAs
following self-test. The initialization performed for each DWMBA is:

1 The BI Starting Address Register (bb+20) and the Bl Ending Address

Register (bb+24) are initialized to the starting and ending limits of

XMI memory.

2 The BICSR (bb+04) has its Bl Broke bit cleared.

3 The DMA-B Transmit Buffer is disabled under thesz conditions:

° The DWMBA/A module Device Register shows a revision less than

2

The system -ontains five or more XMI commanders and the

DWMBA/B module Device Register shows a revision of less than

0A (hex).

If a DWMBA/A module fails its self-test (us indicated by XBER<STF>), the
BP asserts its own XBER<XBAD5 bit to drive the XMI BAD L line.

3-104

KNSBA/A Interteace Module

3.9.5 Initialized State

In response to a reset, the KN58A/A interface tnodule is initialized to a

known hardware initialized state by external reset signals. If zelf-test

runs successfully, the state of the KNS8SA/A interface module is revised to

a firmware initialized state by the firmware. The firmware initislized state

is what the operating system uses as the initial state of the KINSSA/A

interface module when it starts. The hardware and firmware initial values

for the registers of the KN58A/A interface module are summarized in

Table 3-7.

Table 3-7 KNSBA/A Intertace Module inklal Regleter States

Register Address Hardware init Flrenwsare inh Kotz

CSR1 2000 0000 : 0000 0000 See footnote’

SSCBR 2014 0000 2014 0000 2014 0000

3€GCR 2014 0010 0000 0000 0160 A007 Bt<31> may be 1

CL .CR 2014 0020 0000 0000 0000 9000 {DAL timeout « 36.8 ms

CONSEL 2014 0030 0000 0000 0000 000C ¥ not boot processor

0000 000D i boot processor

CSR1BADR 2014 0130 0000 0000 2000 0000

CSR1ADMR 2014 0134 0000 0000 0000 0000

EEBADR 2014 0140 0000 0000 2008 0000

EEADMR 2014 0144 0000 0000 0000 7FFC

XDEV 2180 0000 0000 0000 0000 8001

XBER 2180 0004 1000 0C"* 0000 00** B1s<9:0> always contains the

tast commander ID and command

unigss an error occurs

XFADR 2180 0008 0000 0000 sree gnee Aweays contains the last commande:

address unless an error occurs

XGPR 2180 000C 0000 0000 0000 0000

CSR2 2180 0010 0000 0000 0000 0000

'The state of CSR1 after power-up but before selt-iest s (in binary):

T11X0 XOX0 3OOUX XOXX XXXK OXXX 1°°° ****

An astensk in a bit position indicates the state is determined by a signal from the backplane, such as the node

iD lines.

3-105

KNSSA/A Interface Module

3.9.6 Restarting or Bootstrapping the Operating System

The console can bootstrap a copy of the operating system for the R3000

from a tape or disk device. In maintenance mode, the console can also

bootstrap a copy of the VAX Diagnostic Supervisor (VAX/DS) from & VAX

formatted tape or ULTRIX formatted disk.

Only the primary processor can initiate a bootstrap. A secondary processor

never attempts to restart the operating system, but rather waits in a

halted state until the operating system passes a START command via the

console communications area (CCA).

396.1

3-106

Opereting Sysiem Restart

The primary processor attempts to start/restart the operating system

following a system reset, provided:

° The front panel key switches are not set to the combination of Enable

and Halt.

e The CVAX chip was not running when a power failure occurred.

If the "last chip” flag in SSC RAM indicates that the CVAX was running

when a power failure occurred, meintenance mode is entered. Otherwise,

the console places an “operating system restart” request code into SSC

RAM and passes control to the R3000 portion of the console program.

The R3000 portion of the console program controls the restart of the

operating system via a memory data structure called the restart parameter

block (RPB). The RPB, located at IIDAL physical address 0000 0400

(R3000 virtual address a000 0400), has the format shown in Figure 3-11.

Flgure 3-11 Restart Parameter Block Fermat

SIGNATURE " ATTERN (FEED FACE) 0000 0400

ADDRESS OF RESTART wOUTINE 0000 0404

RESTART OCCURRED FLAG 0000 0408

CHECKSUM OF 1ST 32 WORDS OF RESTART 0000 040C

START ADDRESS OF CONSOLE DATA 0000 0410

END ADDRESS OF CONSOLE DATA 0000 0414

meb-0567-90

KNSSA/A interface Module

The restart attempt will fail if the RPB is not valid or if the RPB's "restart

occurred” flag is already set. If a restart attempt fails, the system is
rebooted as specified by the default boot path.

39.6.2 Opereating System Bootstrap
The R3000 portion of the console code atiempts to bootstrap the operating

system whenever one of the following events occurs:

¢ ‘The frout pcnel key switch is in the Enabled position and the boot

command is typed on the console terminal.

* The system is reset and the front panel key switch is in the Autostart
position.

e A rostart is attempted and fails.

The console brings an operating system loader into memory using a

bootblock scheme and then assists the loader through use of the support

routines describec in Section 3.9.6.2.1 and Appendix A.

The boot devices supported are the KDB50 VAXBI disk adapter, the

TBK70 tape adapter, and the CIBCA-B VAXBI CI adapters.

The operating system boot process is as follows:

1 Determine the device to be booted from the boot command or take the

default boot device from the bootpath environment variable. Store

the information in SSC RAM.

2 If the boot was initiated by a boot command, set a "reset due to

bootstrap” flag in SSC RAM and reset the system. This causes an

initialization and self-test of all modules.

3 Open the boot device and read block zero. This is the bootblock and it

specifies the location of the operating system .oader. The format of the

bootblock is shown in Figure 3-12.

4 Read the sequence of blocks described by the bootblock into memory.

5 Call the loaded code at the start address found in the bootblock. Any

arguments supplied by the boot command are passed using the C-

language argc/argv conventions. A pointer to the current environment

is also passed.

6 If any step in this process cannot be completed, the bootstrap fails and

the console prompt is displayed.

3-107

KN58A/A Interface Module

Figure 3-12 Bootblock Format

RESERVED

RESERVED

SIGNATURE PATTERN (FEED FACE)

BOOT BLOCK TYPE

PROGRAM LOAD ADDRESS

PROGRAM START ADDRESS

PROGRAM BLOCK COUNT

PROGRAM STARTING BLOCK ADDRESS

mab-056890

396.2.1 Bootstrap Support Routines In the Console
The ULTRIX bootstrap loader contains no code for performing 'O or

machine dependent operations ‘such as flushing cache). Instead, the

loader calls a set of routines provided by the console. The addresses of

these routines are obtained in a transfer vector located in console ROM at

address BOOA 0000. All routines are called as C-language routines using

standard R3000 eslling conventions.

The routines are of several types:

¢ console - Invokes console programs for functions such as restarts and

reboots.

¢ gaio - Provides basic IO support for stand-alone programs. Does not

support file structure processing or O to buffers in kuseg or kseg2.

Only one /0 adapter of each type can be active at a time

e machine - Provides machine-specific functions such as interlocked

memory access and cache flushes.

¢ libc - Provides a subset of standerd C-language library functions

{getenv, gsetjump, etc.’

e parser - Provides access to console command parser.

o command - Pr vides access to a subset of console commands.

The list of supported routines and their calling sequences is previded in

Appendix A

3-108

KNSSA/A interface Module

3.9.7 Console Use of Address Space

The R3000 portion of the console program reserves memory from physical

address 0000 0500 through 0000 FFFF (vigible via keegl as addresses

A0G00 0500 through A000 FFFF) for its own use. This space holds the

console program stack and static data structures.

Memory from physical address 0000 0000 through 0000 O4FF is shared

with the operating system and holds the restart parameter block and the

current exception handling code.

The console generally uses kseg2 addresses starting from address 0000

0000 to access physical addresses not visible from ksegl. These include all

addresses beyond 256 Mbytes of memory and all XMI YO adapter address

spaces. The console establishes translation lookaside buffer (TLB) entries

for the addresses it needs to map and restores the original contents of the

TLB entnes upon console exit.

3-109

KNSSA/A Interface Module

3.9.8 Bootstrap of the VAX Diagnostic Supervisor (VAX/DS)

3~-110

The VAX Diagnostic Supervisor (VAX/DS) is booted by typing the KOOT

command at the maintenance mode prompt. The boot device must be in

VMS format or have a VMS format bootblock. The CVAX portion of the

console code handles all aspects of booting VAX/DS. Only the primary

processor can boot VAX/DS.

The console's first goal in booting VAX/DS is to load the primary bootstrap

program, VMB, into memory and begin its execution. VMB is loaded from

the device specified by the BOOT command. A set of minimal device

handler routines, called boot primitives, are used to read VMB from the

boot device, a technique called "bootblock” booting.

The console searches tables in EEPROM and ROM, in that order, to

locate a boot primitive that matches the specified device as the first

phase of bootstrap. If a suitable primitive is found, the target device

information is stored in SSC RAM. Then the console forces a system reset.

The system reset causes all processors, memories, and /O adapters to

perform self-test.

The second phase of bootstrap then begins. The console program is

reentered and determines (from values in SSC RAM) that the reentry

is part of a bootstrap operation. Boot parameters are passed from SSC

RAM to the CVAX GPRs, the boot primitive is again loaded, and control
passes to the boot primitive.

The boot devices supported are determined by the boot primitives stored

in EEPROM and ROM, and by devices supported in VMB. The KDB50

VAXBI disk adapter, the TBK70 tape adapter, and the CIBCA-B VAXBI CI

adapters are supported. The table in EEPROM allows new primitives to

be added as new devices are developed.

If the target device is a disk, the boot primitive loads logical block zero

(also called the bootblock) into memory and transfers control to it. The
bootblock contains code that specifies the location and size of the VMB

image on disk. If the target device is tape, the boot primitive skips any

tape labels and reads the first file from the tape into memory. Once VMB

has been loaded, the bootblock passes control to it. The boot primitive

must preserve the boot parameters stored in the GPRs.

The register conventions used by the bootblock program and the

conventions for passing parameters to VMB are described in the
paragraphs that follow.

3.9.8.1 Parameoters Pagsed to the Boot Primitive

The console code passes parameters to the boot primitive through the

GPRs. The boot primitive must preserve all the nonreserved registers

so that they can be passed to VMB. These parameters describe the boot

device and any bootstrap options to be used.

KNSSAVA Interface Module

Teble 3-8 show how the registers are used.

Tebie 3-8 Boot Parameters Loaded into GPRe

Regloter Bhe Daeeription

GPRO <7:0> VIMB dovice type codae. supplied by the boot primitive

GPR1 <74> Xl node number of the desired DWIMBA

<3:0» VAXBI node number

<31:28> When loading VIMB trom the system TK tape drive, the XMI

node aumbar of the DWIMBA controling the tape drve

<2724> When kading VMB from the system TK tape drve, the

VAXBI node number of the tape adapter

GPR2 <150> The remote (HSC) node numbars, the BoovNoda qualter

was specihed

GPR3 Boot device unit nurmber

GPR4 Reservad, the LBN of the secondary bootstrap

GPR5 Software boot control tlags

GPR6 Used by the boot pnmave 1o pass information to the

bootblock program

GRP? Physical address of the CCA

GPR8 Reserved

GPR9 Reserved

GPR10 The hatt PC

GPR11 The hah PSL

AP The hatt code

FP Used by boot primitive 1o pass information 1o the bootblock

program

SP The address of the 256-Kbyte block of good memory + 512

3111

KNSSA/A interface Module

3-112

398.2 Parameters Pagsed to the Bootblock Program

The parameters passed to the bootblock program are the same as those

passed to the boot primitive plus the contents of GPR6. GPRS has the

physical eddress of the read-block routine provided by the primitive. The

bootblock program must preserve all parameters except GPR6 so that they

can be passed to VMB.

39883 Paremeters Reguired by the Boot Primitive

When the bootblock pregram calls the read-block routine in the boot

primitive, it must supply the input parameters shown in Table 3-8 and

the output parameters shown in Table 3-10.

Table 3-2 Input Peramaters Required by the Boot Primitive

Register Bie

GPR1 XMi and VAXBI node numbers of the boot device, as passed by the

console code

GPR) Unit number of the boot device. as passed by the console code

GPR8 LBN to be read or, d a tape drive using non-ANSI labeled tape. the length

of the black that was jus! read

FP Address of the data structures set in memory by the boot pnmitive when

a8 lirst invoked

sP Physical address to receive the transter

Table 3-10 Output Parameters Required by the Boot Primitive

Register Bits

GPRO SS_NORMAL d successtul, the low ba clears on etror

GPR7 through GPR10 May be modified

3984 Conegliderations for Tape Drives

The boot primitive rewinds the tape before it performs the first read and

before transterring control to the loaded image.

The boot primitive checks the length of the first block read from the tape

If the block is 80 bytes long, the tape is assumed to be ANSI labeled

and VMB is assumed to be the first file on the tape. The boot primitive

then skips to the first tapemark, reads blocks into memory by storing

them, beginning at the address passed in the SP. Blocks are loaded until

a tapemark is encountered, and then control is passed to the first byte in

the loaded image.

If the first block of the tape is not 80 bytes long, the remaining contents of

the first file are loaded and control is transferred to the loaded image at

offset 12 from the base of good memory.

The read-block reutine also supports rewinding the tape. GPRO must

contain 10$_READPBLK for a read operation or IO$_REWIND for a

rewind. The read-block routine always reads the next block from the

tape and ignores any logical block number (LBN) passed in GPR8. GPR8

returns the length of the block just read.

KNSSA/A Interface Module

3.10 (Interprocessor Communication through the Console Program

Each CPU of a multiprocessor system must communiocate with

the other CPUs and the operating oystem. In the DECoystem

6800, interprocessor communication is handied by the KNEBA/A

interface module. This section describes interprocessor

communication.

The CVAX portion of the console program runs on each processor of a

multiprocessor DECaystem 5800. Thes2 copies of the console program

must be able to communicate with each other and with the operating

system.

When two processors needing to communicate are running, that is, not in

console mode, the communications take place using mechanisms provided

by the operating system. When one, or both, of the processors is in console

mode, communications take place using a shared data structure called the

console communications area (CCA).

There is no requirement for communication between multiple copies of

the R3000 portion of the console program, since the R3000 portion of the

console program runs on the primary processor only. The R3000 portion

of the console program, however, uses the CCA to communicate with the

CVAX portion of the console program running on a secondary processor. It

also uses the CCA to communicate with the operating system.

The primary processor controls the console terminal and, therefore, most

of the communication in the DECsystem 5800. There is no communication

between secondary processors.

3.10.1 Required Communications Paths

A processor can be in one of four communication states: a running primary

processor, a primary processor in console mode, a running secondary

processor, or a secondary processor in console mode. The following

communication paths are provided.

1 Running primary console to/from secondary console.

The operating system on the primary processor must send complete

console commands to the CVAX portion of the secondary console, such

as to start or stop the secondary processor. The secondary console

program must be able Lo zend responses (human readsble messages)

to the operating system on the primary, such as when the secondary

processor encounters an error halt. The secondary processor can send

these responses at any time.

The secondary processor does not send commands to the primary

processor, and the primary processor does not send responses to the

secondary processor.

3~113

KNSSA/A Interface Module

2 Primary console to/from secondary console requires two different types

of communication.

The CVAX or R3000 portion of the primary console sends complete

commands to the CVAX portion of the secondary, allowing the primary

console to update the copy of 8 parameter stored on a secondary
processor. An example of this type of communication is to synchronize

the console terminal baud rate whenever it is changed on the primary.

The CVAX portion of the secondary console sends complete responses

to the CVAX or R3000 portions of the primary console to report, for

example, a processor halt. Since responses arrive complete, there
are no interleavi ;g messages on the console terminal. The secondary

processor does not send commands, and the primary processor does not

send responses.

For intelligent 'O adapters only, the consoles support character-at-a-

time communications to implement the "Z" command, which transfers

characters to and from a secondary node so that the secondary

processor appears to be directly connected to the console terminal.

The primary processor gends single characters of 8 command to the

secondary processor. The receiving secondary processor performs all

the processing of the input characters, including echoing and line
editing. The secondary processor sends single characters of a response

to the primary processor for immediate display on the console terminal.

The "Z" command also extends to communication with VAXBI devices

and, potentially, to non-precessor XMI nodes.

3 Console mode primary processor to/from running secondary processor.

This path exists as a side effect of supporting responses from a

secondary console, but its use is reserved.

3-114

KNS8A/A interface Module

3.10.2 Console Communications Area

The Console Communications Area (CCA) is the shared data structure in

high physical memory used for communications between console programs.

It consists of a one-page header followed by a variable number of pages

containing buffers. The header contains status information that must

be visible systemwide. The buffers, used for passing messages between

processors, are allocated one set for each XMl node that could be in the

system.

The CCA is initialized by the primary (boot) processor at system reset.

It is allocated beginning on a page boundary from the highest addressed

page of system memory that can be located by the primary processor. The
header lies in the lowest addressed page of the CCA, followed by buffers.

The CCA is not initialized under any other console entry conditions (node

reset or halts). The address of the CCA is obtained from the console state

remaining in SSC RAM.

Diagnostic tests that must test or reconfigure memory could overwrite

the CCA. If this should happen, the diagnostic tesis must observe the

following conventions:

® The diagnostic tests can only be run from the primary processor.

The diagnostic tests must force the secondary processors to stop polling

the CCA.

* The diagnostic tests must rebuild the CCA after completing testing.

The secondary processors must wait for a signal passed through the

XGPR register before locating the new CCA.

3-115

KNSSA/A Interface Module

The location of the CCA is passed to CVAX code at bootstrap time through

VAX GPR?. The location of the CCA is passed to R3000 code at bootstrap

time via the cra environment variable.

During system initialization, each processor is triggered to search for the

CCA. This search starts at the highest addressed memory that can be

located by each processor and then works backward. If a processor cannot

locate the CCA, it enters an endless loop and cannot participate in the

system. The algorithm used by the console code to locate the existing CCA

is as follows:

1 Next = highest memory address in system + 1 - 512.

If next < 0, then "Failed to find CCA."

If (next + CCASL_BASZ) <> next, then goto Step 7.

If (next + CCA$W _IDENT) <> "CC", then goto Step 7. .

Compute sum of bytes at (next) through (next + CCA$B_CHKSUM - 1)

ignoring overflow.

6 If sum = (next + CCA$B_CHKSUM), then "Exit with CCA found at
next.”

7 Next = next - 512.

8 Goto Step 2.

R

&

&

&

The overall layout of the CCA is shown in Figure 3-13 and Figure 3-14. .
The contents of the fields are described in Table 3-11.

3-116

Flgure 3-13 CCA Layout, Pent 1

KNS8A/A Interface Module

CCASL_BASE

C° $W_IDENT CCASW_SIZE

REVISION| HFLAG CHKSUM | WNPROC

CCASQ_READY

CCA%Q_CONSOLE

CCASQ_ENABLED

CCASL_BITMAP_SZ

CCASL_BITMAP

CCASL_BITMAP_CKSUM

RESERVED CCASW SERIALNUM® | TKS0_NODE

CCASQ_SECSTART

CCASQ_RESTARTIP

RESERVED BAUD RATE

RESERVED

CCASQ_USER_HALTED

CCASQ_SERIALNUM

CCASQ_HW_REVISION

(16 QUADWORDS)

OFFSET

(HEX)

2

2
8

&

¢

8

¢

8

3§

@

msb-0576-80

3117

KNSBA/A Interface Module

3-118

Figure 3-14 CCA Layout, Part 2

CCASQ_HW_REVISION1

{16 QUADWORDS)

RESERVED

CCASQ BUFFERO

(BUFFERS FOR PROCESSOR AT XMi NODE 0)

CCASQ BUFFER?2
(BUFFERS FOR PROCESSOR AT XMI NODE 2)

OFFSET

(HEX)

E4

164

1FC

msb-0577-80

Table 3-11 CCA Flsids

KNSSA/A interface Module

Flatd Dosoription

CCASL_BASE Physical address of the base of the CCA.

CCASW_SIZE The size, in bytes, of the CCA, usually 3200.

CCAjW_IDENT The ASCH characters “CC".

CCA$B_NPROC The number of procassors suppored by the CCA, usually 16.

CGASB_CHKSUM

CCASB_HFLAGS

CCA$B_REVISION

CCA$Q_READY

C:CASQ_CONS(E

CCA$Q_ENABLED

CCASL_BITMAP_SZ

Checksum of the first CCASB_CHKSUM-1 bytes of the CCA. Computed by doing

signed, byte addition, ignoring any overtiow.

Systemwide status flags:

! | L— ccasv_sooTmie
CCASV_USE_ICACHE

CCA3V_USE_ECACHE

CCASV_ECACHE_CLEARABLE

RESERVED

CCASV_REPROMPT

CCASV_TERM_CRT

CCASV_BOOTIP

CCA$V_USE_

ICACHE

CCASV_USE_

ECACHE

CCASV_ECACHE_

CLEARABLE

CCASV_REPROMPT

CCASV_TERM_CRT

RESERVED 478 50

Whaen set, a bootstrap is being atterapted. This prevents

repeated attempts to bootsirap after a tailure

Whaen set, the CVAX chip interna! cache 15 1o be enabied by

the oparating system.

When se!, the second-leve! cache 15 {0 be enabled by the

oparatng system

When sel, the second-level cache clear operation can be

used successfully. Some operaling System error recovery is

ngede to clgar the cache

This bit 1s used internally by the consolg to sugport the SET

CPU command.

When sst, the console terminal is a CRY.

The revision number for the CCA.

A bitmask of the procassors thal have data posted in their transmit bufter for

processing by the primary processor. The bis and nodes are numbered, slaming

with 2er0.

A bitmask ndicating the processors known to ba in console mode. The appropnate bnt

is set and cleared by each processor as ¢ enters and isavaes console mode.

A bimask indicating which processors are enabled to leave console mode. A

processor sels or clears s bit duning console intialization, based on a bit stored

in EEPROM.

Tra size, in bytes, of the physical memory bitmap. The bitmap is alwavs an even

number of longwords in length.

3-119

KNSSA/A interface Module

Tabls 3-11 (Cont.) CCA Figids

rlold Daseription

CCASL_BITMAP The physical address of the physical memory bémay. The bitmap contains one bit
for @ach page of physical memory present on the system. The bit is clear if the page

contains a hard error or it the page is in use by the bitmap or CCA. The bitmap is

glways page aligned.

CCASL_BITMAP_ Reserved; not used.
CKSUM

CCASW_SERIALMUM1 First two characters of the system serial number. Concatenated with CCASQ_
SERIALNUM.

CCA$B_TKS50_NODE Reserved. not used.

CCA$Q_SECSTART Reserved; not used.

CCA$Q_RESTARTIP Reserved; not used.

CCASB_BAUD_RATE The SSC b1t value for the current console b~vJ rate.

CCA$Q_USER_HALTED A bitmask indicating which processors enterea corsole mode as a result of user

intervention (CTRLP or STOP command). This information aliows the operating sytem

to make decisions about timeouts in @ symmetric multiprocessing configuration.

CCASQ_SERIALNUM The last eight characters of the system serial number. Concatenated with CCASW_
SERIALNUM?Y.

CCASQ_HW_REVISION Conssts of a 16-quadword array contamming the chip and module revision iormation

for the processors. Module revisions are an ASCIl string; chip revisions onsist of two

digts with an imphed decimal point. The layout of this quadwor? s

OFFSET
(HEX)

COM_GRP |RESERVED] SSC REV CVAX REV 00

MODULE REVISION 04

mgp-058280

The layout of the COM_GRP byte s

76 5 4 3 0

082

| l———— CCASV_COM_GRP
. CCA$V_COPR

CCASV_WDIE
D05780

CCASV_MDIE Whan set. this non-boo! Processor receives imerrupts i this

b s Jear, merrupis are directed only to the boot processor

3-120

KNSSA/A Interface Module

Teble 3-11 (Cont.) CCA Fleide

Flatg Deucription

CCASV_COPR Whaen set, this b indicates that the procsasor can cotrectly
periorm a passive release on an inferupt acknowiadge cycle.

H tius bit 18 cloar, data corrupton reavits from perormming a

pasuve release.

CCASY_COM_GRP This binary held is used by the oparating system 10 determine
@ all processors in the gystem are hardware compatible. Any

processorsnot in the same group as the boot processot are

nhibitad {rom slarting.

CCaSQ_HW_ Consists of an array of 16 quadwords, one for each system node. For nodes with

REVISION1 processors, the first longword contains the contents of the R3000 Processor Revison
ID register The second longword contans the console ROM version (ngh word) and

consoie EEPROM patch lgvel (loft word)

The CCA contains a buffer area for each possible XMI node. Each buffer

area contains fields to support both message oriented and character-at-a-

time corimunications.

The address of the buffer erea for XMI node n is given by:

Buffern = Base address of CCA + 512 + (n ® 168)

The layout of the buffer area is shown in Figure 3-15, and the contents of

the field are described in Table 3-12.

Figure 3-15 Layout of XM Node Buffers

OFFSET

(HEX)

RESERVED | RESERVED| CCA$8 ZDEST| CCASB FLAGS 00

RESERVED CCASB RXLEN| CCAYD THLEN 04

o8

86BVTES)

58

(86BVTES

AB

meb-0581.60

3-121

KNSBA/A Interface Module

Table 3-12 Butfer Flglds

Flold Dascription

CCASB_FLAGS Status flags:

L: CCASV_RXRDY
CCASV_ZDEST

RESERVED

CCASV_2ALT

RESERVED 0580.60

CCASV_RXRDY When set, there 1s a complete message in the CCAST_RX

buffer. The equivalent bit for CCAST_TX is in CCASQ_READY

of the CCA header.

CCAS$V_ZDEST When sat, this node 1s serding “Z° command data to the node
hsted in CCA$B_ZDEST.

CCASV_ZALT When sat, the target of the current *Z" command cannot

CCA$B_ZDEST

CCASB_TXLEN

CCASB_RXLEN

CCAST_TX

CCAST_RX

commuricate through the CCA. The target 15 ether a non-

procassor XMI node or a VAXBI node and must be accessed

using alternate RXCD protocol, as descrbed in the VAXB/

System Reference Manual.

Whan CCASV_ZDEST 15 set. this fisld contains the XM! node number of the node

recewing the “Z° command daia that this node 1s sending H the low four bis of this fieid

dentity a node that is a DWMBA. the high order four bits contain the destination VAXBI

nogde number

#f the b corresponding to this node is set n CCASQ_READY, then this field contains the

length, 1n bytes, of the message in CCAST_TX

CCASV_RXRDY 15 set n CCASQ_READY, then this field contains the length, in bytes,

of the message in CCAST_RX.

Thes bufier 1s used by the node 1o transmit a response to the pnmary processor Only

tesponse data 1s passed through this buffer since a secondary processor does not send

commands to the primary processor

This butfer 1s used by the node to receive a command from the primary processor. Only

command data 1s passed through this bufiar since a secondary processor doss not

receive responses from the primary processor.

3-122

KNSBA/A Interface Module

3.10.3 Sending a Message to Another Processor

The following two examples show how the CCA is manipulated when a

complete message iz sent between two processors.

For the first example, the primary processor, located at XMI node 1, sends

a START command to the secondary processor, located at XMI node 3.

1 Node 1 examines the CCA$V_RXRDY bit in the CCA buffer area for

node 3. If the bit is clear, then go to Step 3.

2 Node 1 polls the bit until it clears or until a timeout of 12 seconds is

reached. If a timeout occurs, an error is reported.

3 Node 1 moves the text of the START command into the CCAS$T_RX

buffer for node 3.

4 Node 1 sets the length of the command into the CCA$B_RXLEN field

for node 3.

S Node 1 sets the CCASV_RXRDY bit for node 3 to indicate that a

command is waiting.

6 Whenever node 3 enters its main console loop, it will eventually check

for commands to execute. It will examine its local commangd buffer and

then check its CCASV_RXRDY bit for a command from another node.

7 Node 3 will now process the command contained in its CCAS$T_RX

buffer.

8 After reading the command, node 3 then clears its CCA$V_RXRDY bit,

indicating that the buffer is again available.

3-123

KNS8A/A interface Module

3-124

For the second example, the secondary processor, which is located at XMl

node 3, halts, enters console mode, and sends a "halted" measage to the

primary processor, located at XMI node 1.

1

»

&

O

N

Node 3 examines bit 3 of the CCA$Q_READY field. If the bit 1s clear,

then go to Step 3.

Node 3 polls this bit until it clears.

Node 3 moves the text of its response into its CCA$T_TX buffer.

Node 3 sets the length of the response in its CCA$SB_TXLEN field.

Node 3 sets bit 3 in CCA$Q_READY to indicates that a response is

waiting.

Node 3 issues an IVINTR interrupt to node 1. If node 1 is running,

this alerts the operating system that a response is waiting. Node 3

polls CCA$Q_READY until bit 3 clears or until a timeout of 60 seconds

expires, preventing the secondary node from performing any action

that might cause the response to be los{ before the primary can display

it.

If node 1 is running, it responds to the IVINTR and eventually checks

for console responses. If node 1 was in console mode, it would be

poling CCA$Q_READY and discover bit 3 set.

Node 1 (either the operating system or the console code) processes the

response from the CCAST_TX buffer for node 3. If the console code is

running, it displays the response on the console terminal.

Node 1 clea s bit 3 in CCA$Q_READY, indicating that the buffer is

again available.

KNSBA/A interface Module

KNS8A/A Interface Module Errofi-landllng

Thie section describes the error handling features of the KNESBAVA
interface module.

The KN58A/A interface module hardware provides automatic reattempts

of many XMI bus transfer failures:

° Ali XMl command/address transfers are resttempted until

acknowledged or a transaction timeout occurs (when XBER<13>

(TTO) asserts).

e All XMI write transactions are reattempted until scknowledged or a

transaction timeout occurs.

All second-level cache errors are "soft” and are signaled by asserting INT3

to the R3000. KN58A/A interface module hardware automatically disables
the second-level cache following a cache error that has the potential to

leave the second-level cache incoherent, such as tag or valid bit parity

errors on a write-through. Any errors that leave the second-level cache

incoherent also leave the first-level cache incoherent.

All XMI memory reads are “connected’; the R3000 waits for the data to

be returned and, if it cannot be delivered from the XMI, an error flag

is returned to the R3000 resuiting in a bus error exception. A memory

read "hit” in the active XCPGA rite buffer causes the write buffer to be

purged. If the purge results in an XMI memory write failure, the read is

suppressed and a bus error flag is returned to the R3060.

All XMI memory writes are "disconnects.” They are acknowledged by the

XMI interface and data is placed in the XCPGA write huffer to be written

later. If a subsequent write buffer unload or purge results in an XM! write

failure, it is signaled to the CPU by posting an INTS interrupt. These

ervors are considered hard.

All XMI 1O reads and writes are "connected’; they cause purging of the

XCPGA write buffer prior to their initiation on the XMl and they are not

acknowledged until all XMI transactions are successfully completed. If

the XCPGA write buffer purge results in an XMI memory write failure,

the L/O transaction is suppressed and a bus error flag is returned to the

R3000. If the XCPGA write buffer purge is successful but the sul.sequent
/O transaction fails, the R3000 is released with a bus error flag for reads

or an INT3 interrupt for writes.

For error handling purposes, XMI IVINTR transactions are treated as /O

WTites.

For error handling purposes, XMI IDENT transactions are treated as

I/O reads except that errors are reported with an INT3 interrupt, since a

bus error flag during an Interrupt Acknowledge cycle is interpreted as a
passive release.

3-125

KNSBA/A interface Module

The XMI interface maintains complete error status on a failed XMI
transaction that was initiated by its node. Thic status includes the failed

command, commander ID, address, and an error bit that indicates the type

of error that had occurred. This status remains locked-up until software
resets the error bit(s).

IIDAL parity errors cause bad data and parity to be stored in second-level

cache on cache fills. On writes, the XMI write is suppressed and the data

is discarded if a parity error is detected. An INT3 interrupt to the R3000

signals the error.

3.11.1 Psrity Generation and Checking for Error Detection

Parity generation and check characteristics of the KN58A/A interface
module follows:

o The KN5SA/B CPU module generates parity on write data. The
KN58A/B CPU module does not generate parity on command/address

data.

e The first-level cache supports parity on the tag bits, valid bits, and

data store. On cache fills and writes, parity is stored and then checked
by the processor on reads.

e The second-level cache supports parity cn the tag bits, valid bits, and
data store. On second-level cache fills and writes, parity is stored and

then checked by the KN5B8A/A interface module on reads.

¢ The XCPGA detects IIDAL parity errors on writes.

o The XMI supports three parity bits covering both data and command
information. The KN58A/A interface module generates and checks

XMl parity.

e The R3010 FPA does not generate or check parnity.

e Since the SSC does not support parity, the internal battery-backed-up

1 Kbyte of RAM and the internal registers are not protected.

e CSR1 and CSR2 are not parity protected.

3.11.2 Error interrupt Service Routines

Interrupt service routines use the following sequence when an error

occurs:

1 Read XBER to determine the type of error.

2 If XBER<ES> is set, then find more specific error information in CSR2.

3 Service the error condition. In many cases, the second-level cache
must be flushed as described in Section 3.6.2.

4 Clear only the individual error bits that were serviced after the error
condition has been handled. All error bits are write-one-to-clear.

3-126

KNSBA/A interface Module

8 Read XBER to ensure that no new ervors have been detected. A new

error condition cannot generate @ new interrupt unless all other error

bits are clear, since the INT3 interrupt line is edge-sensitive. If this

read indicates that no error bits are set, then exit the interrupt service

routine; else loop to step °.

3-127

KNSBA/A Interface Module

3.11.3 KNS8A/A interface Module Error Matrix

Teble 3-13 Second-Level Cache Date Parity Erors

ERect en Efacton ERatt en Geaet

Reforanos Re we-love Sra-loved on Wain
by Enpoution Cottw [«] oty Bver tnilipadon o)

RAeat -~ INT) - Duaabies - C8R2¢31 30> COPE
C3A1<FIAISS> oot

Wreo - - - - -

Read-Loch - - - - - Alzeys matm 2nd Leve: Cacto

Undoch Wree - - - - - Nax Appicadio

DENY - - - - - Akzays Mmeasas v Lewet Cache

g Love’ - - - - - Partly a0t chatheg Gunng 2nd-Lewe! Cache 1o

Cahe Fu

181-Love! NT3 - Daadeo - C8R2¢3' 30> COPE
Cacho Fu CS5A1cFRISS> oot

Taeble 3-14 Second-Level Cache Tag/Valid BRt Parity Erors

Efact on Eaet on Emect en ot

Retorenc 220 etdovet fnddovel "o iain
Tyee Erooudion Cogha Cecdw tmory Esver indication]

Rego NT3 - Daatied - CSR2<3' 20> TPEVPE

CSR1 «F MISS> et

Wrre NI - Distibign - CSR2¢31 30> TPENVPE

CSR1<FISS> g

Reas Locw - - - - - Aways miasss 2na Love' Cache

Unioth W te INT3 - Disatvos - CSR2<31 30> YPENPE

CSR1«FMISS» sot

IDENT - - - - - Ays mepsea 2nd-Leve! Cacne

2nd Love: - - - - - Paty creoet o Read

Cacho Fur

fe-lowval Cacne INTI - Duabiec - CS5R2<3' 30» TPENPE
Fit CSRIFMISS> s

3-128

KNS8A/A Interface Module

Teble 3-15 XAl Bus Timeowt Errors

Edocy on et on et en Erlpet

Reloronm R00 wtdlawl Engdovl en Bsin
e Emagion Cothae Catto Ezmery Emrer txizngan ke

Read BUS ERR - - - KBER«RRR> eai 16 7ma Timer - XM
KEER«TTO» c@ Reomp 10

XFADR«<3! I M Feting AdLon

wWreo INT3 - - - HEER«TTOnom 10 T Tierer - NXES
RFADA+31 O Ragsarpn 10

1 Foling AdiLen

Raxo-Loth BUS ERR - - - HBER<NRR» ot 18 Yo Timer - XN

KBER<TTOn ot Raanaerer 10

KFADR<3' 0> XM Fafing AdrLon

Unigth Wree NT3 - - - XBE R« TTOx001 16 7w Timgr - NRW
HFADR<I1 D Regtompt 10

M) Fasng AdeLen

DENT iNT3 - - - HBER<NRR> oet 18 7me Timyr NEW

HBER«TTO» eat Reamompt 10

XFADR<31 0> Xib! Fgting Adr en

29 Levd' INTI - Sub-Blooe No - CSR2CFE> ot Cacho F il Error

Cacne Fuil Vasdaleo HBER<NAR) st 10.7me Temr NXM

XBER<TTO» san Raaempt 10

NFADR<31 0> UM Fadng AdiLen

1sieweCache =000 e e e e No MM! Trgraachon Gongrited — — — — — — — —

fa

Table 3-16 XAl Bus Parity Errors

Eitect on ENpet on ERact on ERpet

Reference R2000 atdavol nd-Lovel on tan
Type Esoaution Cache Cache tzmory Emror inication Hiowo

Reao INT3 - Sub-Bcs Not - NBEAPE> 00! NAR. Sec £ coulo 880 80!

Vakaxted RFADR<I' O> X Faing A0 Len

Wrie - . . - - Party not checkes’

Rasa Locn INT3 - - - HBERPE> 0ot NRA. 8sq Err could ano cot

XFADR<3' 0> X4t Faang Adrion

Uniock Wrie - - - - - Party not chacnes’

IDEN" iNT3 - - - HBE RePE» 601 NRA SeqEr could ao oot

XFADR(I' 0> Kidi Fauing Ao

2n0- Love! INT3 - Sub-Block Not - NBER«PE> oo NRA Seq Er ooud aiso oot

Cazhe Fu vabdates EFADR<I 0> 1 Faiting AgrLon

slowiCache = =000 e e e

Fa

't 2 bus party efror oocurs on a write data cycle, the responder NOACKs all subsequent data cycles and the

commander reattempls the transaction.

3-129

KNSSA/A Interface Module

Table 3-17 Main Memory Correctable Ervors

Efoct en Bzt on ERoet on Eplpcr

Ratoranca 55 totdovel Snddlovl on Gndn
oo Ezpaaion Cadra Cacho Ciomery Gwer tnization Catzn

Reao T3 - Corvecod Ot Supplon RBE R<CRD> et Cerroneed Rozd Dae
Weitton Corecied

Dais

wrie - - - - - Mot ARDhnsdG

Rga- Lock iNT3 - - Suppims XBE R<CRD> et Comexted Ress Data
Comecied

Oate

UNOTh Wred - - - - - ot Applest

IDENT - - - - - N Agpiicabi

ond-Leve’ INT3 - Corectett Dalz Suppias HBER«CRD> e Corected Read Dmta
Cahe Fut Wrtngn Correcs

Oeta

wievw Cacde 000000 e e e e = %o X! Trarpacton Gongegh) — — — — ~ — — —

Fai

Table 3-18 Maln Memory Uncorreciable Errors

E€zet on Etoct on ERpet on Esiact

Rufe-anoe RIO00 tidoval g dovel en Mzin
Type Exscuion Coache Cache omory Emor tndizolion L]

Read BUS ERR - - Suppios KBERCRER> pot Resd Ervv Responte

Unoorr sttt KBER<RSE soa Raad Ssquence Erro’

Oaia

Wre - - - - - Not Appicide

R@ag Locn BuS ERA - - Supdios XBER<RER> oo Raso Ermy Response

Unoomeces RBER<ASE »ax Rasd Saquance Error
Oata

Uniotn Wrte - - - - Yot Appixabm

DENT NT3 - - Supnima KBERCAER> ot Road Ermy Rgsponas
Unconeoted XBERCRSE rua Road Sequance €.o

Oata

ng-L.ove NT3 - - Suppios NBERCRER> ot Reoad Erev Reaponse
Catho F o Unooneceo XBERASE rodt Resd Bequonoe Error

Data CSR2«CFE> st Cache Ful Error

wiewCache =000 e e e —m = - No X Tragaoton Gongrated
Eir

3-130

PEEHE GNPSOS EP 0 08 000800600268088080008¢8880800081

NEROOOOOONGCX XX CGGGEOOOAOGOGHN A XXX KGO KX KX

KRRXaG00C0CooO00NOO000KOECOOINKR KR KX KX KN L EXX

PO RGN0 E 0T 0000000000 000000 000080986 000868 03

PO00000060000000.068 6004088008 08000¢86848804!

[i019:¢.0.0.0008.0.609.00880800008 ¢0860¢0085880604]

0006000060000 0600000000000 688090.8808¢8,

P90.0.0.0.6.860.0.0.0.0.0.60.0.0¢.6900¢00.6 6000868684

XXXX KOG00000X

fO G0 8.80.0.6.00.0 85000008008 ¢88004844 04

b 0160880050008 88460888060¢000464044

B O.0.0.0.6.0.8.000.000 06000004000 00401

PO 000000 080006000808 +8004004

fO.48.0.6.0.0.0.8:0.0.6.0.0408080¢080¢84

1.0.6.6.6.9.00.0.0.6 6849006680404

D 9,6.6.4.0.0.80.0.4,46 88880460484

0.8:0.0:0.0/0.0.9.6.4.0.0.¢.60644

.0.60.9.0.08.0.6096.06.400¢

. 0.0.4.9.:8.0.6.0.0.0,9.0.¢.4

p.6.9:0.:0.9.9.8.4.0.0.¢4.84

h0.9.8.9.3.0,6:0.66.4

.4.0.9.9.9.9,0.9.4

b18.0.4.4.0.04

HWUUXK

XX

X

X

UXX

AXAKK

HXAXKXXK

XHAAKUXKRX

XUXEXKXXXAUX

19.$.0.9.0.9.4.0.994¢4

1 9. 4.9.4.0.8.49.¢64¢8¢4

EXXHKARKEXXKAXKAXK

pO.9.5.950.0.466 408840404

b00.6.0.0.0.0.9.6.48:4.04¢908.84

HAXAARKKKK HHXKHANKANKAK

KAXAXRXKURKUK A KA KR UK KX LXK

p 840008809000.88844890940¢044

PO 0 0060800080088808 08008400401

b0.9.4.0.4.0.6.0.6.0.40.4,6.0.6.0.90 008085064844

P06 06008 0004008048600.8800060:040¢804

DOV F DI 00430000 800.00484848080040044

P O.0.0.0 0000008 6.9 0068084 8480.0006089¢0494

P90 0000000008 00000080084606808800400¢40

DO9008694000800600 000008040068 980800898940:

P00 484008208600 9809060960900.406806480604¢8¢874

PO S 000004080040080008900000 08860098980¢04¢8¢044

1 9.9.0.6.085086404.9008.000060986800008¢9 8989008809028

§000099866800880088008 808600888 8889.994880¢890.9904

1 9.9.9.0.0.0.69.981080080000860000800090800080 8048065887 ¢810909

4 KN58A/B CPU Module

This chapter describes the KN58A/B CPU module, the module ihat

provides the computational power of the KN58A processor. The KN68A/B
CPU module is based on the MIPS! R3000: a 32-bit, virtusl memory
Reduced Instruction Set Computer (RISC) microprocessor.

This chapter includes the following sections:

e Module Features

¢ R3000 CPU

o R3010 FPA

¢ R3020 Write Buffers

o First-Level Cache Memory

o Interface Logic

! MIPS 1s a registered trademark of MIPSCO, Inc

4-1

KNSSA/B CPU Module

41 KN58A/B CPU Module Features

The KNSSA/B CPU module is based on the 32-bit, virtual memory

MIPS R3000 RISC microprocessor and ita R3010 floating-point

coprocessor. Up to four KN6SA/B CPU modules can be installed

in a DECsystem 5800, each of which must be accompanied by a

KNBGSA/A interface module.

Figure 4-1 KNSBA/B CPU Module Block Diagram

RDAL<31 00>, RDALP<03 00>

R3000 R3010 Data ingtruchon
CPU FPA Cache Ceche

Tag and Address Bus

Write
Read Adgdress Bu;tem Read Data

Data Address

inlgrtace Logic

< ToFrom HDAL bus on KNSSA/A intartace Module >
Via Backplane Connectors mud-088090

4-2

KNS8A/B CPU Module

The KN58A/B CPU module includes the following:

e The MIPS R3000 CPU chip, which features:

— Full 32-bit operation. The R3000 contains thirty-two 32-bit
registers. All instructions and addresses are 32 bits in length.

- Efficient pipelining. The R3000 5-stage pipeline helps achieve an

execution rate of close to one instruction per cycle. Pipeline stalis

and exceptional events are handled efficiently.

- On-chip cache control. The R3000 contains a high bandwidth cache
memory interface that handles transactions with the external
Instruction and Data caches. Both Instruction and Data caches are
accessed during a single CPU cycle.

- On-chip memory management. The R3000 contains a memory

management unit (MMU) that supports a 4-Gbyte virtual address

space. The MMU has a fully associative 64-entry Translation

Lookaside Buffer (TLB) designed for multitasking operating

system environments and provides fast virtual-to-physical addres-

translation.

-~ Coprocessor interface. The R3000 generates al! addresses and
handles memory interface control for the R3010 FPA coprocessor.

¢ The MIPS R3010 FPA coprocessor, which adds floating-point
instructions to the CPU’s base instruction set. It has sixteen 64-bit

registers dedicated to floating-point operations and conforms to the

IEEE 754-1985 standard. It supports single- (32-bit) and double-

(64-bit) precision floating-point operations.

o A firet-level cache, which consists of a 64-Kbyte instruction cache

and a 64-Kbyte data cache, implemented as an array of 28 16-Kbyte
x 4 data RAMs. Both caches are direct-mapped. The data cache is

"allocate on write.” Both caches are filled in increments of 8-word

blocks and have as a line size one 32-bit word. Both caches contain tag

and parity information. An invalidate FIFO for the data cache aids in

the maintenance of first-level cache coherency.

e Write buffers, which enhance the performance of the R3000 CPU

chip by allowing the chip to perform write operations during CPU run
cycles. There is one write buffer implemented in four R3020 write

buffer chips. This provides four-deep buffering of 32 bits of address
and 36 bits of data and panity.

* Interface logic (including a read buffer for data from the module),
which provides the means by which the KN58A/B CPU module

communicates with the KN58A/A interface module. The interface
logic provides the KN58A/B CPU module access to the secondary

cache, the system support chip (SSC), and the XMI corner on the

KN58A/A interface module.

Each of these major portions of the KN58A/B CPU module is explained in
the secticns that follow.

KNSsA/B CPU Module

42 R3000CPU

The KNESA/B CPU module is based on the R3000 CPU chip. The
module implements the entire R3000 instruction eet, data types,

and memory management. These are outlined in the sections that

follow. Detailed information can be found in M/PS R2000 RISC

Architecture.

4.2.1 R3000 Registers

Figure -2 R3000 Registers

General- Purpose Regsters Multiply/ Divids Repistars

k3] o k3 0

RO { HI

R2 [LO |

—

<>

o

L]

Program Counter

R29 N 0

R30 PC

R31

md-0400-09 .

As shown in Figure 4-2, the R3000 registers consist of 32 32-bit general-

purpose registers, a 32-bit program counter, and two 32-bit registers that

hold the results of multiply and divide operations. The contents of these

registers define the state of the CPU.

The functions traditionally associated with a processor status word (PSW)

are provided by the Status Register and Cause Register. These registers

are part of Coprocessor 0 snd are explained in Section 4.2.2.

KNSSA/B CPU Module

4.2.2 Coprocessor 0 (CPQ0) Registers

Coprocessor 0 (CIP0) is contained on the R3000 chip. It is tightly coupled

with the R3000 and performs memory management and exception

handling. Virtual memory is implemented with a Translation Lookaside

Buffer and the group of programmable registers listed in Table 4-1 and

detailed in the pages that follow.

Teble 4-1 Coprocessor0 Reglsters

Register Doscription

EntryH

Entrylo

index

Random

Status

Cause

EPC

Context

BadVAdar

PRid

High hali of a TLB entry

Low half of a TLB entry

Programmable powster into the TLB array

Pseudo-random pointar into the TLB array

Mode, interrupt enables, and diagnostic status information

indicates nature of last exception

Exception Program Counter

Pointer into kernel's virtual Page Table Entry array

Most recent bad vinual address

Processor Revision Identifier Register

KNSS8A/B CPU Module Registers

TLB EntryHl Reglster (Entryil)

TLB EntryHi Register (EntryHi)

The EntryHi and EntryLo registers provide the data pathway through which

the TLB is accessed. When address transiation exceptions occur, these

registers are loaded with relevant information about the address that caused

the excaplion. The registers are also used to build a new TLB entry using

the tibwi and tibwr instructions. The format of an EntryHi/EmryLo register pair

is the same as that of a TLB entry. EntryHi comtains the upper halt of a TLB
entry.

EntryHi (R3000)

Virnal Page Number PiD ojojojojoi0

ADDRESS

bits<63:44>
Name Virtual Page Number

Mnemonkc VPN

Type RW

This field contains bits <31:12> of virtual address.

bits<43:38>
Mame Process ID

Mnemonc. PID

Type: RWw

This 15 an 8-bit field that lets multiple processes share the TLB while

each process has a distinct mapping of otherwise identical virtual page

numbers.

bits<37:32>
Name. Reserved

Mnemonic: None

Type RW, 0

Reserved, must be zero.

4-6

KNSSA/B CPU Module Regilsters

TLB EntryLo Register (Entrylo)

TLB EntryLo Register (EntrylLo)

The EntryHi and EntryLo regisiers provide the data pathway through which

the TLB is accessed. When addregs transiation exceplions oocur, these

registers are loaded with relevant information about the address that caused

the exception. The regisiers are aiso used to build a new TLB entry using

the tibwi and tlbwr instructions. The format of an EntryHi/EntryLo register pair

is the same as that of a TLB entry. EntryLo contains the lower half of 2 TLB

entry.

ADDRESS EntryLo (R3000)

Page Frame Number n|o|v{s|o]o[o}o]o]o]s]o

bits<31:12>
Name Page Frame Number

Mnemcnic: PFN

Type RW

This field contains bits <31:12> of the physical address. The R3000

maps a virtual page to the PFN.

bit<ii>
Name Non-cachable

Mnemonic: N

Type: RW

If this bit is set, the page is marked as non-cachable and the R3000

directly accesses main memory instead of first accessing cache.

bit<10>
Name Ourty

Mnemonc D

Type: RW

If thig bit is set, the page is marked as writahle. This is a "write

protect” bit that software can use to prevent slteration of data. If

a write is attempted on an entry with the D bit cleared, the R3000

causes a TLB Mod trap and the TLB entry is not modified.

4-7

KN58A/B CPU Module Registers

TLB EntryLo Register (EntrylLo)

Lo R R eS NS R I

bit<®>
Name- Vald

fdnemonic: V

Type: /W

If this bit is set, the TLB entry is valid. Otherwise, a TLBL or TLBS

Miss occurs.

bit<8>
Name: Global

Mnemonic. G

Type: RW

If this bit is set, the R3000 ignores the PID match requirement for ‘
velid translation. In kseg2, the Global bit lets the kernel access all

mapped data without requiring it to save or restore Process 1D values.

RS

bits<7:0>
Name: Reserved

Mnemonic: None

Type RW, 0

Reserved; must be zero. .

KNSSA/B CPU Module Registers

TLB Index Reglster (index)

TLB index Register (Index)

The TLB index Register is a 32-bit, read/write register. it contains 6 bits that

index an enry in the TLB. The high-order bit of the register ghows the success

or failure of a TLB Probe (libp) instruction. The register aiso specifies the TLB

entry that wiil be affected by the TLB Read (iibr) and TLB Write Index (tibwi)

instructions.

ADDRESS Index (R3000)

plojofofo[o]o|o]o] oo]o]o]o]o[o]ofo] msex Jofo]o]ofo]o]o]o

bit<31>
Name: Probe failure

Mnemonc: P

Type. RW

Set to one if the last TLB Probe instruction was unsuccessful.

bits<30:14>
Name: Reserved

Mnemonc: None

Type. RW

Reserved; must be zero.

bits<13:8>
Name: index

Mnemonic: Index

Type: RW

Index to the TLB entry that will be affected by the TLB Read and TLB

Write instructions.

bits<7:0>
Namy: Reserved

icainonic. None

Tvpe: AW

Reserved; must be zero.

KN58A/B8 CPU Module Reglsters

TLB Rendom Reglster (Random)

TLB Random Register (Random)

bitg<31:14>

bits<13:8>

bits<7:0>

4-10

ADDRESS

The TLB Random Register contains a 6-bit Random field that indaxes a

random entry in the TLB. The value of the fieid ranges from 8 to 63. The field
is initiglized to 63 when the R3000 is reset and is decremented eévery machine

cycle. The value of the field wraps back around to 63 when 8 is decremented.

Random (R3000)

3 " " »? 0

Name Reserved

fnemonic: None

Type: RW

Reserved; must be zero.

Name: Random

Mnemonic. Random

Type RW

A random index (with a value ranging from 8 to 63) to a TLB entry.

Name Reserved

Mnemonic: None

Type: RW

Reserved; must be zero.

KNSBA/B CPU Module Registers

R3000 Status Register (Status)

R3000 Status Register (Status)

The R3000 Status Register contains all major status bits tor the R3000.

ADDRESS Status (R3000)

3 22 DR W WS 7 8% &« 3710

cu f{ojolojojo Int Mashk ojo

Bootstrap Exception _J KernvUser Mode Oid —-l l
Vector Int Enabie Oid

TLB Shutdown
Kernv/User

Panty Error Mode Previous

Cache Mss int Enable
Pravious

Panty Zero e Kern/User

Caches Mode Current

Swap - INENADIE e
isciate Cache —J Current

Rb-OM?89

bits<31:28>
Namae Coprocessor Usabilty

Mnemonc CU

Type RW

These bits control the usability of the four possible coproc.'ssors.

Each bit corresponds to a coprocessor and when set indicat.s that a

coprocessor is usable. For example, if CU<0> is set, Coprocessor 0 is

usable.

bits<27:23>
Name Reserved

Mnemonic. None

Type Rw

Reserved; must be zero.

bit-22>
Name: Bootstrap Exception Veclor

Mnemonc. BEV

Type: RW

If set to one, causes the R3000 to use alternate, bootstrap vectors for

ULTB Miss and gencral exceptions.

4-1

KNS8A/B CPU Mcdule Registers

R3000 Status Register (Status)

bit<21>

bit<20>

bit<19>

bit<18>

bit<17>

bit<16

4-12

Nama: TLB Shutdown

Mnemonic: TS

Type: RO

Set to one if the R3000 i.as disabled TLB due to catastrophic error.

Cleared only by R3000 reset.

Name: Parity Error

Mnemonic: PE

Type: Rw

Set to one if a parity error occurs. Reset by writing a one to this bit.

Name: Cache Miss

Mnemonic. CM

Type: RW

Set to one if the most recent D-Cache load resulted in a miss (only

when the D-Cache is isolated).

Name: Party Zero

Mnemonic. PZ

Type. RW

When set to one, causes zerc to replace normal outgoing parity bits.

Name Swap Caches

édnemonic: SwC

Type RW

Controls swapping of I-Cache and D-Cache usage. When set to one,

the the l.cache is swapped with the D-cache.

Name isolate Cache

Ginemonic. 1sC

Type RwW

When set to one, isolates D-Cache from main memory system.

bits<15:8>

bits<7:6>

bit<5>»

bit<d>»

bit<3>

bit<2>

KN58A/B CPU Module Registers

R3000 Status Register (Status)

Name Interrupt Mash

Mnemonc IntMashk

Type RW

When a bit is set to one, the corresponding hardware or software

interrupt is enabled. Bits <15:10> correspond to hardware interrupts

5 through 0, and bits <9:8> correspond to software interrupts 1 and 0.

Name Reserved

Mnemonc None

Type RW

Reserved. must be zero.

Name Kern'Usar Mode Old

Mnemonic Kllo

Type RW

Set to zero if kernel, one if user

Name int Enable Ola

Mnemonic IEo

Type RW

Set to one to enable, zero to disable

Name KernUser Mode Previous

Mnemonic Klp

Type RW

Set to zero if kernel, one if user.

Name int Enabie Previous

Mnemonic IEp

Type RW

Set to one to enable, zero to disable.

4-13

KNS8A/B CPU Module Reglsters

R3000 Status Register (Status)

bitei>

bit<l>

4-14

Name: Kem/AUser Rode Current

Mnemonic. KUc

Type: W

Set to zero if kernel, one if uger.

Name- int Enable Current

Mnamone |Ec

Type. RW

Set to one to enable, zero to disable.

KN5S8A/B CPU Module Registers

Cause Reglster (Cause)

Cause Register (Cause)

The Cause Ragister contains information about the last exception

ADDRESS Cause (R3000)

3 N W e (0 T T W) 2 v 0

o] celo]ofololololo|ole|ofofo] intPenaing swu]oomcooooo

L— Branch Delay
ud 004) &

bit<31>
Name Branch Delay

Mnemonc 8D

Type RO

Set to one if the last exception was taken while executing in a branch

delay slot

bit<30>
Name Reservad

Mnamonic None

Type RO

Reserved; must be zero.

bit<29:28>
Name. Coprocessor Error

Mnemonic. CE

Type RO

Indicates the unit number referenced when a Coprocessor Unusable

exception is taken.

bits<27:16>
Name Resarved

Mnemonic' None

Type. RO

Reserved; must be zero.

4-18

KNSBA/B CPU Module Registers

Causo Reglster (Ceuse)

bit<15:10»>

bite<©:8>

bite<7:6:.

bite<5:2>

&-16

Name: interrupts Pending

#Mnemonic: IP

Tyoe: RO

Indicates the external interrupts that are pending. Bits <15:10>

correspond t¢ interrupts <5:0>.

Name. Software Interrupts

Mnemonc. Sw

Type RwW

Indicates which of the two software interrupts is pending. This field is

used to set or reset software interrupts.

Name Reserved

tMnemonic: None

Type. RO

Reserved; must be zero.

Name Exception Code

Mnemonic ExcCode

Type RO

Exception code as described in the following table:

bits<1:0>

KNS8A/B CPU Module Registers

Cause Register (Cause)

Number (Snemonic Caecription

Int

MOD

TLBL

TLB8S

AdEL

AJES

IBE

DBE

Sys

8p

Ri

CoU

Owvt

13-15 RSVD

O

@

~
N

M
!
S

W

-
~

O

-

s

.

N
o
-
O

External Interrupt

TLB modification exception

TL8 muss exception (Load or instruction fetch)

TLB miss exception (Store)

Address error exception (Load or ingtruction fetch)

Address emor exceplion (Store)

Bus error exception (for an nstructon fetch)

Bus error excephion (for a data load or store)

Syscall exception

Breakpoint exception

Reserved Instruction exceplion

Coprocessor Unusabla exception

Anthmetic Ovarfiow exception

Reserved

Name Reserved

Mnemonc None

Type RO

Reserved. must be zero.

4-17

KN58A/B CPU Module Registers

Excoption Program Counter Register (EPC)

Exception Program Counter Register (EPC)

The Exception Program Coumer Register containg the address where

processing can resume after an exception has been serviced.

ADDRESS EPC (R3000)

€ roppion Program Countan

~od-0aes59

bite<31:0>
Name: Exception Program Counter Register

Mnamonc EPC

Type RO

The Exception Program Counter Register contains the virtual

address of the instruction that caused the last exception. When

that instruction resides in a branch delay slot, the register contains

the virtual address of the immediately preceding Branch or Jump

instruction. The R3000 also sets the Cause Register's BD bit if the

exception occurred in the branch delay slot.

4-18

KN58A/B CPU Module Registers

Context Register (Context)

Context Register (Context)

The Context Register duplicates some of the information provided in the

BadVAddr Register, but provides the information in a form that may be more

usetul for a software TLB exception handler W is designed for use in a UTLB

miss handler, which loads TLB entries for normal user-mode reterences

ADDRESS Context (R3000)

3 [AN 4 L B

PTE Base 8ad VPN 0{0

mab 044300

bits<31:21>
Name Page Table Entry Base

Mnamonc PTEBase

Type AW

Holds the base for the Page Table Entry (set by software).

bits<20:2>
Name Bad Virual Page Number

Mnemonic BadVPN

Type RO

Holds the failing Virtual Page Number (set by hardware). Contains

bits <30:12> of the BadVAddr register.

bits<1:0>
Name Reserved

Mnemonic' None

Type RO

Reserved, must be zero.

4-19

KN58A/8 CPU Module Reglsters

Bed Virtual Addrese Reglster (BadVAddr)

Bad Virtual Address Register (BadVAddr)

The Bad Virtual Address Register containg the entire bad virual address tor

any address exceplion. AGEL or AdEs.

2 G e]

ADDRESS BadVAddr (R3000)

E A [

Bad Virtual Address

ed-0oas&

R

bite<31:0>
Name: Bad Vinua! Address Regster

Mnemonic. BadVAddr

Type: RO

Note that this register does not save any information for bus errors

since these are not addressing errors. .

4-20

KNSSA/B CPY Module Reglsters

Processor Revision ldentifler Reglster (PRId)

Processor Revision Identifier Register (PRIid)

The Process Revision Identiter Register comains data that speafies the

implemantation and revision lavel of the R3000

ADDRESS PRId (R3000)
3 AUIRIY [I]

ojojojoliojolojolojo|ojolojolojo] impiemenavon Revision

g 08487 &

bits<31:16>
Name Reserveu

Mnemonc None

Type RO

Reserved. must be zero

bits<15:8>
Name implementation kienthier

Mnemonic Imp

Type RO

Identifies the implementation number of the R3000

bits<7:0>
Name Revision identfier

Mnemonc Rev

Type RO

Identifies the revision level of the R3000.

421

KNSSA/B CPU Module

4.2.3 R3000 Pipeline Architecture

4.2.4

The R3000 instruction pipeline consists of five stages:.

1 I - Instruction Fetch. Fetch the instiuction. The R3000 calculates

the instruction address required to vread an instruction from the

I-cache.

2 RD - Read any required operands from the R3000 registers while

decoding the instruction.

3 ALU - Perform the required operation on instruction operands.

4 MEM - Access memory (D-Cache).

5 WB - Write back results to register file.

Each of these stages requires approximately one cycle. When the pipeline

is fcll, the R3000 can execute instructions at a rate of approximately one

instruction per cycle. The pipeline operates efficiently because different

CPU resources (address and data bus accesses, ALU operations, register

accesses, and so on) are utilized simultaneously without interfering with

one another.

Data Types

4-22

The R3000 defines a 32-bit word, a 16-bit half word, and an 8-bit byte.

Byte ordering on the KN58A is compatible with VAX architecture and is

called little endian, which means that byte 0 is the least significant and

rightmost byte.

The R3000 addresses aligned bytes for half word and word accesses;

half word accesses must be aligned on an even byte boundary, and word

accesses must be aligned on a byte boundary divisible by 4.

Special instructions are provided for addressing words not sligned on a 4-

byte (word) boundary. These instructions (load word left, load word right,

store word left, and store word right) when paired appropriately allow

unaligned words to be accessed in one cycle more than would be required

for an aligned word.

KNS8A/B CPU Module

4.2.5 Instruction Set

Every R3000 instruction consists of a single word (32 bits) aligned on a

word boundary. For simplicity in instruction decoding, there are only three

instruction formats: 1-Type, J-Type, and R-Type. These are illustrated in

Figure 4-3.

Figure 4-3 Instruction Formats

i Type (Immediate)

" n LA (LT} o

or RS RY immediate

J- Type (Jump)

3 FL] [

oP Target

. R Type (Regster)
3 n AN 1Y AL BT) wog [Y [}

opP RS RTY RD SHAMT FUNCT

#Ob-0MDM4

Where:

oP ts a 6-bnt operation code

RS 1s a 5-bnt source register specther

RT is a 5-b target (source/destinalon) register or branch congnon

immediate 1S @ 16-br immediate data, branch dizplacement, or address

displacament

Target 15 a 26-bt jump target address

RD 1S @ 5-brt destination reQister spaciier

SHAMT ts a 5-bit shft amoum

FUNCT 1s a 6-bn function field

4-23

KNSS8A/B CPU Module

8-24

4.25.4 Load and Store ingtructions

Load and store instructions move data between memory and general

registers. They are all I-type instructions, since the only addressing mode

sipported is base register plus 16-bit signed immediate offset.

Most load operations have a latancy of one instruction. That is, the

instruction immediately following & load usually cannot use the contents

of the loaded register. An exception is that the target register for the load
word left and load word right instructions may be specified as the same

register as the destination of a load instruction that immediately precedes

it.

The load or store instruction opcode specifies the access type, which also

specifies the size of the data item to be loaded or stored. The address

specifies the least significant byte. The bytes within the addressed word

that are used are determined by the access type and the two low-order

bits of the address, as shown in Table 4-2. Note that certain combinations

of access type and low-order address bits never occur (word/01/10/11,
triple-byte/10/11, and halfword/01/11).

Teble 4-2 By’ Specifications for Load and Store Ingtructions

Low-Order

Address Bytes Accossed

Access Type Bite Little Endian Format

1 1 (word) 00 3210

1 0 (triple-byte) 00 210

10 (tnple-byte) 01 321

0 i (hafiword) 00 1.0

0 1 (haliword) 10 3.2

0 0 (byte) 00 b}

0 0 (byte) 01 i

0 O (byte) 10 2

0 0 (byte) 11 3

4235.2 Computational instructions

Computational instructions perform arithmetic, logical, and shift

operations on values in registers. They occur in both R-type (botk

operands are registers) and I-type (one operand is a 16-bit immediate)

formats. There are four categories of computational instructions:

o ALU Immediate instructions such as ADD Immediate and OR
Immediate.

¢ $.Operand Register-Type instructions such as Add, Subtract, and
NOR.

o Shift instructions such as Shift Left Logical and Shift Right Logical.

o Multiply/Divide instructions such as Multiply Unsigned, Divide, and
Move from LO.

KNSSA/B CPU Module

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program.

Jumps are always to absolute 26-bit word addresses (J-type format) or

32-bit register addresses (R-type). Branches have 16-bit offsets relative to

the program counter (I-type). Jump and Link instructions save a return

All jump and branch instructions have a delay of one instruction. That is,

the instruction immediately following a jump or branch executes while the

target instruction is fetched from storage.

Since instructions must be word aligned, a jump register or jump and link

register instruction must use a register whose two low-order bits are zero.

If these low-order bits are not zero, an address exception will occur when

the target instruction is subsequently fetched.

Coprocessor instructions perform operations in the coprocessors.

Coprocessor loads and stores are I-type Coprocessor computational

instructions have coprocessor-dependent formats.

Because of the protected status of coprocessor 0, the move to/from

coprocessor instructions are the only valid mechanism for reading from

and writing to the CPO registers (see Section 4.2.2). The coprocessor

nstructions allow coprocessor 0 to directly read, write, and probe TLB

entries and to modify the operating modes in preparation for returning to

user-mode or interrupt-enabled states.

4253

address in Register 31.

4254 Coproceseor ingtructions

4255 Special Instructions

There are only two special instructions, system call and breakpoint These

insructions allow software to initiate traps. They are always R-type.

4-25

KN58A/B CPU Module

4.2.6 Memory Management

The R3000 has an addressing range of 4 Gbytes. However, since most

systems implement a physical memory smailer than 4 Gbytes, the R3000

translates addresses composed in a large virtual address space into

available physical memory addresses. Virtual memory is always enabled,

and the 4 Gbyte virtual address epace is divided into 2 Gbytes for users

and 2 Gbytes for the kernel. The physical memory space available on the
XMI to the KN58A is 256 Mbytes for memory and 512 Mbytes for 1/0.

426.1 Trangiation Lockeaside Bufier

The Translation Lookaside Buffer (TLB) reduces the overhead associated

with translating virtual addresses to physical addresses. The on-chip
TLB allows very fast virtual memory access to meet the requirements of

multitesking operating systems. The fully associative TLB contains 64

entries, each of which maps a 4-Kbyte page, with controls for read/write
access, cachability, and process identification. The TLB sllows each user to

access up to 2 Gbytes of virtual address space.

4.26.2

£-26

R3000 Operating Modes

The R3000 has two operating modes: user and kernel. The R3000

normally operates in user mode until an exception forces it into kernel

mode. The R3000 remains in kerne! mode until a Restore From Exception

(RFE) instruction is executed. The manner in which memory addresses
are mapped depends on the operating mode of the R3000. Figure 44

illustrates the virtuai address space for the two modes.

As shown in Figure 44, user mode defines a single uniform virtual

address space (kuseg) of 2 Gbytes. Each virtugl address is extended by a

6-bit process identifier to form unique virtual addresses for up to 64 user

processes. All references are mapped through the TLB. Use of first-level

cache is determined by bit settings for each page within the TLB entries.

As shown in Figure 44, kernel mode defines four virtual address

segments: kuseg, kseg0, ksegl, and kseg2.

* kuseg - Kernel mode references to kuseg are identical to those in user

mode.

e kseg0 - References to this 512-Mbyte segment use cache memory but

are not mapped through the TLB. Instead, they always map to the

first .5 Gbytes of physical memory.

e ksegl - References to this 512-Mbyte segment do not use cache

memory and are not mapped through the TLB. Instead, they always

map to the first .5 Gbytes of physical memory.

e koeg2 - References to this 1-Gbyte segment are always mapped

through the TLB and use of the cache is determined by the bit settings
of the TLB entry.

KNSSA/B CPU Module

Flgure -4 Virtual Memory for Kermnel and User Modes

Kerna! Mode

Ll

1 O Goytes
Mapped

000 0000

b fin ; 1

1% Gbytes

2000 0000 wnmapped
it it ksego

05 Gbytes User Mode

8000 0000 Unmapped
THH i 71 et

Risseg huseg
2 0 Goytes 2 0 Gbyles

Mapped Mapped

0000 000C 0000 0000

msb-04233 89

4-27

KN58A/B CPU Module

4.2.7 WMemory Mapping

4-28

Memory mapping is necegsary for the R3000 CPU to communicate with

VAX-based hardware on the IIDAL. Figure 4-8 illustrates the relationship

between R3000 virtual addresses, R3000 physical addresses, and IIDAL

(VAX) physical addresses.

Flgure 4-5 R3000 Memory Mapping

R3000 Virnal R3000 Pryuca: DAL Pryucal

51 3 fR IFFF FFFF

2

(\num-:r-n ——p

000 G000 3000 0000 2000 0000

D e 2 'R 2FFF FFFF

\ 2008 FFFF

(memrw-d) (R3000 ROM)

«D00 0000 000 0000 2000 0000

o 1TM » ‘O AFFF FFFF

1060 11

(Urvmmd-o D (R300D ROM)
100a 0000

8000 000U 1000 0000 1000 0000

T e 01 1 OFFF FFFF

tfemory

wsey

(apped Cachad) _._’

0000 0000 _| 0000 00CO 0000 0000

mub-0619-60

The R3000 does not have the same concept of 'O space as a8 VAX-based

CPU, but since the R3000 must operate on a VAX bus, the design of

the KN58A/B CPU module implements & 256-Mbyte 1/O space separate

from the memory space. Physica! address bits 28 and 29 are swapped

between the KN58A/A interface module and KN58A/B CPU module. This

effectively divides the R3000 physical address range into 256 Mbytes of

/O space and 256 Mbytes of memory space and allows kseg0 and ksegl to

map the first 256 Mbytes of XMI I/O space without the use of translation

buffers.

ksegO and keegl both map to the first 512 Mbytes of R3000 physical

memory. kseg0 maps through the cache, and ksegl maps around the

cache. When these address ranges are accessed, the R3000 clears physical

address bits 31, 30, and 29 and uses the remaining ~ddress as the physica)

KNSSA/B CPU Module

address. kuseg and kseg2 require that translation buffer entries be valid

for the R3000.

4271 R3000 Boot PROM

The R3000 boot PROM is located in keegl (unmapped, uncached space)

at R3000 virtual address b0Oa 0000 through b0Ob fiif. When the RESET
line is deasserted, the first address that the R3000 accesses is 1fc0 0000.

Hardware translates that address directly to 200A 0000, locating the

PROM space on the XMl from 200A 0000 to 200B FFFF.

42.7.2 VO Mapping Exampie: Reading a Register Associated with VO Adapter 7

All XMI node spaces and XM1 /O adapters 0 through 3 exist in XMI

physical address space 2000 0000 through 2FFF FFFF. This range is

typically accessed directly via ksegl using R3000 virtual addresses 0xb000

0000 through Oxbfff fiT. O adapters 4 through 7 exist at XMI physical

address 3600 0000 through 3DFF FFFF. The TLB must be used to map

R3000 virtual addresses to XMI addresses in this range. kseg?2 is used to

map these addresses in system space.

Example 4—1 ma;s the VAXBI base address of the DWMBA/B module at

XMI node E Bl node 1, then reads the DWMBA/B Bus Error Register, and

then unmaps the address.

Example 4-1 VO Mapping

11 tC, Ox8CC

mecl t0, INDEX

11 tC, Ox3cQC2fCC

mtcl tC, ENTRYLC

11 tC. Oxfcll2C0C

mecC tC, ENTRYH]

nog

tibw:

neg

lw vC, 8¢tl)

nop

mtcC zaro, ENTRYLC

nog

tlbwi

use Bir TLP entry

load index register

load DTYPE reg physical address « RDVG Dbits

load LC raif of PTE

map DTYFE reg virtua. address via kseg?

load HI half of PTE

write PTE intc TLB

read BER register of DWMBA'B

invalidate PTE (clearing V bit)

write invalid PTE tc TLB

KNS8A/B CPU Module

4.2.8 Interrupts

The R3000 has six external hardware interrupt levels and two software

interrupt levels. Table 4-3 summarizes the types and levels of hardware

interrupts.

Table 4-3 R3000 Exmemal Hordware Inteitupts

Level CondRion

5 R3010 fioating-point inerrupt

4 CTRL/P genarated by congole

dode Hahl bn (XBER<29>) writen

3 KNS8A Hard Errors:

Xt AC LO (CSR1<6>)

DAL Write Data Panty Eror (CSR2<28>)

XBAl Write Error IVINTR (XBER«25>)

M1 FAULT (XBER<26>)

XMI Wrie Errors (XBER<20>. XBER<15>)

XM IDENT Errors (XBER<18:155)

HNS5B8A Soft Errors:

Invatidate FIFO Full (CSR1<26>)

Second-Level Cache Partty Errors (CSR2<31:30>)

(disables second-level cache)

invalidate Queue Overflow (CSR2<29>)

(cisables second-isvel cache)

Second-Leve! Cache Fill Error (CSR2«<27>)

Duplicate Tag Parity Error (CSR2<26>)

(disables second-level cache)

XMI Corrected Contirmation (XBER<27>)

(imterrupt can be disabled)

XM inconsistant Parity Error (XBER<24>)

(disables second-level cache)

XM Parity Error (XBER<23>)

XMl Corracted Road Data (XBER<19>)

{interrupt can be disabied)

2 XMl leve! 7 interrupt transaction

1 XM! interpracessar IVINTR

XMI level § interrupt transaction

Imterval timer interrupt

0 XMl leve! 5 interrupt transaction

Console terminal interrup!

4.2.9

KNSSA/B CPU Module

Tabie ¢-3 (Cont.) R3I000 External Hardware interrupis

Level CondRion

Programmable timer interrupt

XMI leve! 4 interrupt transaction

When one of the external hardware interrupts from Table 4-3 is recognized

by the R3000, the R3000 branches to the general exception vector (0x8000

0080). The R3000 sets bits <5:2> of the Cause Register to zero and

sets bits <15:10> with the level of the interrupt. Software obtains the

appropriate interrupt vector by reading the addresses shown in Table 44.

Table 4-4 interrupt Acknowledge Vectors

R3000 HDAL

interrupt interrupt

Line XAl interrupt Lavel Lovel Address

o XM! 4 0 4000 0050

0 XMI 5 1 4000 0054

1 IVINTR XM! 6 2 4000 0058

2 XM 7 3 4000 005C

No vector is supplied for R3000 interrupt levels 3, 4, or 5. These interrupts

are used as shown in Table 4-5.

Taeble 4-5 R3I000 Interrupt Levels 3, 4, and 5

R3000 interrupt Leval Purpoge

3 Corrected read data

First-level invahdate FIFO overfiow

Mamory error

Power fail

Han

5 Floating-point unit

Exceptions

When the R3000 detects an exception, the normal sequence of instruction

execution is suspended. The processor exits user mode and is forced into

kernel mode where it can respond to the abnormal or asynchronous event.

Events that initiate exception processing are described in detail in the

R3000 RISC Architecture manual. In summary, they are:

&-31

KNS8A/B CPU Module

Reset - Assertion and deassertion of the R3000's RESET signal causes

an exception that transfers control to the vector at virtual address

Oxbfc0 0000.

UTLB mies - User TLB miss. A reference is made {in either user or

kernel mode) to a page in kuseg that has no matching TLB entry.

TLB mies - A referenced TLB entry's Valid bit is not set, or there is a

reference to @ kseg2 page that has no matching TLB entry.

TLB modified - During a store instruction, the Velid bit is set but th»

Dirty bit 1s not set.

Bus error - Assertion of the R3000’s BUS ERR signal, which occurs

as a result of a nonexistent memory read. IIERR on the IIDAL bus is

asserted by the SSC and in response to that, BUS ERR is asserted to

the R3000.

Address ervor - A‘tempt to load, fetch, or store an unaligned word,

that is, a word or halfword at an address not evenly divisible by 4 or

2 respectively. Also caused by reference to a virtual address with most

significant bit set while in user mode.

Overflow - Two's complement overflow during add or subtract.

System call - Execution of the SYSCALL instruction.

Breakpoint - Execution of the BREAK instruction.

Reserved instruction - Execution of an instruction with an

undefined or reserved major operation code (bits <31:26>) or a special

instruction whose minor opcode (bits <5:0>) is undefined.

Coprocessor unusable - Execution of a coprocessor instruction when

the CU (Coprocessor Unusable) bit is not set for the target coprocessor.

Laterrupt - Assertion of one of the R3000's six hardware interrupt

inputs or setting of one of the two software interrupt bits in the Cause

Register.

4.3

4.3.1

KNS8A/B CPU Module

R3010 FPA

The R3010 ficating-point accelerator (FPA) operates in conjunction

with the R3000 CPU and extends the R3000% instruction

eet to perform arithmetic operations on values in floating-

point repregentations. The RS010 FPA fully conforms to the

requirements of ANSVIEEE Standard 764-18€8, "IEEE Standard

for Binary Floating-Point Arithmetic."

Features of the FPA include:

o Full 84-bit operation. The FPA provides 16 64-bit registers that can

be used to hold single-precision or double-precision values. The FPA

also includes a 32-bit contro/status register that provides access to all

IEEE-Standard exception handling capabilities.

° Load’/store instruction set. Like the R3000 processor, the FPA uses

load/store instructions with single-cycle loads and stores. Floating

point operations are started in a single cycle and overlapped with

other fixed-point or floating-point operations.

¢ Tightly coupled coprocessor interface. The FPA connects with the

R3000 to form a tightly coupled unit with a seamless integration of

floating-point and fixed-point operations. Since the FPA can receive

and execute instructions in parallel, some floating-point instructions

can execute at the same single-cycle rate as integer instructions.

FPA Registers

As shown in Figure 4-6, the FPA has 32 general-purpose 32-bit registers,

a control/status register, and an implementation/revision register.

Floating-point coprocessor operations (that is, operations involving

Coprocessor 1) reference three types of registers:

¢ Floating-point general registers (FGRs)

o Floating-point registers (FPRs)

¢ Floating-point control registers (FCRs)

The sections that follow provide a brief description of these types of

registers.

KNS8A/B CPU Module

Figure 4-6 FPA Gensral-Purpose Reglaters

%) 32 3 °

| FGA1] FGRO | rero

| FGR3 1 FGR2 | FPR2

| FGRS | FGR4 | rPRa

[

<=

<=

1 FGR2?] FGR26 | FrR2s

FGR29 | FGR28 | erR2e

[FGR | FGR30 | FPR0

3 0

| ControuStatus Register |

[impRevRegater |

el 0409 60

43.1.1 Floating-Point General Registers (FGRs)

The FPA contains 32 32-bit floating-point general registers (FGRs).

They are directly addressable and are accessed by load, store, or move

operations.

43.1.2 Floaiing-Point Registers (FPRS)

As shown in Figure 4-6, the 32 FGRs are logically configured as 16 64-bit

fleating-point registers (FPRs). FGR1 and FGRO, for example, are the

upper and lower halves (respectively) of FPRO.

Only even-numbered addresses are used to access FPRs: odd-numbered

addresses are invalid. The FPRs contain data in either single- or double-

precision floating-point format. During single-precision operations only the

even-numbered FGRs are used. Double-precision operations access FGRs

in pairs.

4313 Flogting-Point Contro! Registers (FCRs)

The FPA has two floating-point control registers (FCRs), which are

accessed only by move operations. These are the control/status register

(FCR31) and the implementation/revision register (FCRO).

KNS8A/B CPU Module Registers

FPA Control/Status Register (FCR31)

FPA Control/Status Register (FCR31)

The Control/Status Register is used to control and monitor @xceplions,

operating modes. and rounding modes. it is written with a Move Control

to Coprocessor 1 (CTC1) instruction.

ADDRESS FCR31 (R3C10)

»n TM 2 2 [L 12 v T e g v0

E) Trap Enabie | Shcky Bof{o|o]o]o]ofo{o|c|ojofojofo] Excsetone :IlOUI V£{3%"f RM

Mob-046 89

bits<31:24>
Name- Reserved

Mnemonic: None

Type RO

Reserved, must be zero.

bit<23»
Name Condition

Mnamonc. C

Type R'W

Set/cleared to reflect the result of a Compare instructior: and drives

the FPAs CpCond output signal.

bits<22:18>
Name: Researved

Mnamonic. None

Type RO

Reserved; must be zero.

bits<17:12>
Name Exceptions

tinemoncs' E, V. 2. 0. U, |

Type RW

These bits are set to indicate any exceptions that occurred during the

most recent instruction. E indicates an unimplemented operation, V

indicates an invalid operation, Z indicates division by zero, O indicates

overflow, U indicates underflow, and I indicates an inexact operation.

3-35

KNSBA/B CPU Module Registers

FPA Contrel/Status Register (FCR31)

bits<11:7>
Name: Trap Enable

Mnemonics: V, 2,0, U, |

Type: RW

These bits enable assertion of the FPA's Cplnt signai if the

corresponding Exception bit is set during a floating-point operation. V

is for an invalid operation, Z is for division by zero, O is for overflow, U

i8 for underflow, and I is for an inexact operation.

bits<6:2>
Name: Sticky bits

Mnemonics: V, 2,0, U, § .
Type: PW

These bits are set if an exception occurs and are reset only by expliutly

loading new settings into this register with a Move instruction. V s

for an invalid operation, Z is for division by zero, O is for overflow, U is

for underflow, and 1 is for an inexact operation.

bits<2:0>
Name: Rounding Mode o
Mnemonic: RM

Type: RW

Specify whick of the four rounding modes is to be used by the FPA.

KN58A/B CPU Module Registers

FPA implementation/Revision Register (FCRO)

FPA Implementation/Revision Register (FCRO)

The ImplementatiorvRevision Register is used by diagnostic software to

determine the FPA revision level.

ADDRESS FCRO (R3010)

ojojojojojojojojojojojojojoioio impigmentaton Revision

bits<31:16>
Name Ressrved

Mnemonic None

Type RO

Reserved. must be zero

bits<15:8>
Name Implementation identher

Mnemonc Imp

Type RO

Identifies the implementation namber of the R3010.

bits<7:0>
Name Revision identit.ar

Mnemonic Rev

Type RO

ldentifies the revision level of the R3010.

437

KNSBA/B CPU Module

4.3.2 FPA Formats

The R3010 FPA performs both 32-bit (single-precision) and 64-bit (double-

precision) IEEE standard floating-point operations. The 32-bit format has

a 24-bit signed-magnitude fraction field and an 8-bit exponent as shown in

Figure 4-1.

Figure 4-7 Single-Precision Floating-Poim Format

S Exponent Frachon

The 64-bit format has a 53-bit signed-magnitude fraction field and an

11-bit exponent as shown in Figure 4-8.

Figure 48 Double-Precision Floating-Point Format

) Exponent Frachon

~n-0d70-85

4.3.3 Coprocessor Operation

As an R3000 coprocessor, the FPA continually monitors the R3000's

instruction stream, ignoring non-FPA instructions. When it detecis an FPA

instruction, the FPA executes it and transfers the results and necessary

exception data synchronously to the R3000. The FPA can perform the

following types of operations:

¢ Load and store operations

s Moves

° Two and three register floating-point operations

KNSSA/B CPU Module

433.1 Load, Store, and Rove Operations

Load, store, and move operations move data between memory or the

R3000 registers and the FPA registers. These operations perform no

format conversions and cause no floating-point exceptions. Load, store,

and move operations reference a single 32-bit word of either the FGRs or

the FCRs.

4332 Floating-Point Operations

The FPA supports the following single- and double-precision format

floating-point operations:

e Add

e Subtract

e Multply

¢ Divide

° Absolute Velue

s Move

e Negate

¢ Compare

In addition, the FPA supports conversion between single- and double-

precision floating-point formats and fixed-point formats.

4333 Exceptions

The FPA supports all five IEEE standard exceptions:

e Invahd Operation

¢ [Inexact Operation

e Division by Zero

¢ Qverflow

e Underflow

instruction Set Overview

The R3010 FPA instructions are 32 bits long and can be divided into the

following groups:

¢ Load, store, and move instructions move data between memory, the

R3000, and the FPA general registers.

¢ Computational instructions perform arithmetic operations on

floating-point values in the FPA registers.

s Conversion instructions perform conversion operations between the

various data formats.

KNSSA/B TPU Module

o Compare instructions perform comparisons of the contents of registers

and set a condition bit based on the results.

4.3.5 R3010 Pipeline Architecture

The R3010 FPA provides an instruction pipeline that parallels that of the

R3000 processor. The FPA, however, has a 6-stage pipeline instead of the
5-stage pipeline of the R3000: the additional FPA pipe stage is used to

provide efficient coordination of exception responses between the FPA and

the R3000. The pipeline for the FPA has the following stages:

¢ [F - Instruction Fetch. The R3000 calculates the instruction address
required to read an instruction from the I-cache. No action is required

of the FPA during this stage since the R3000 is responsible for address
generation.

o RD - The instruction is present on the data bus during pha:- 1 of this

stage, and the FPA decodes the data on the bus to determine if it is an

instruction for the FPA.

o ALU - If the instruction is an FPA instruction, instruction execution

begins during this stage.

e MEM - If this is a coprocessor load or store instruction, the FPA .
presents or captures the data during phase 2 of this stage.

* WB - The FPA uses this stage solely to deal with exceptions.

e FWB - The FPA uses this stage to write back arithmetic results to its

register file. This stage is the equivalent of the WB stage in the R3000

processor.

KNSSA/B CPU Module

4.4 R3020 Write Buffers

All R3000 write references are simultancously written into the

first-level cache (see Section 4.6) and the R3020 write bufiers. The

paragraphs that follow describe the operation of the write buffers.

The KN58A/B CPU module has four R3020 write buffer chips that buffer

R3000 write references before they appear on the I[IDAL bus. The write

buffers enhance R3000 performance because they allow the R3000 to

perform write operations duning run cycles, which would ctherwise stall

the pipeline. Each write buffer handles an 8-bit slice of address and an

8-bit slice of data As a unit, the four buffers allow four-deep buffering of

32 bits of address and 32 bits of data and parity.

When the R3000 performs a write operation, the write buffers capture the

output data and its address (including the bits that indicate the access

type). The write buffers can hold up to four such data/address sets (or

pairs) while waiting to drive the IIDAL bus. Transfers from the R3000 to

the write buffers occur synchronously at a cycle rate of 25 MHz, and the

write buffers stall the R3000 if they are unable to accept write data. The

write buffers communicate asynchronously with the IIDAL control logic to

coordinate the transfer of write data over the IIDAL bus

4.4.1 Write Buffer Flush

The write buffers are flushed by the IIDAL control logic under any of the

following conditions:

e /O Read - An R3000 read reference with address bit <28> set. This

corresponds to an HIDAL reference with address bit <29> set.

e Interrupt Acknowledge Transaction - An R3000 read reference with

address bit <30> set.

¢ Read Lock Reference - See Section 4.6.5.

°* Main Memory Read Reference

In general, the CPU gives write operations priority over read operations.

Refer to Section 4.6 for more information on the IIDAL control logic.

KNS8A/B CPU Module

44.2 Write Buffer Byte Gathering

4.4.3

The write buffers perform byte, half-byte, tri-byte, and word gathering

to decrease the number of write transfers to the same longword location.

Byte gathering allows bytes or half-words to be collected and written

to main memory. Without byte gathering, the write buffers present

address/data sets individually to the IIDAL controi logic in the sequence in

which they were received from the R3000.

During byte gathering, sequential writes to the same longword address

have their data gathered into the same address/data set in the write

buffers. Writes to the same byte location are overwritten in the write

buffers.

Gathering does not occur for the address/data set that is currently

available to the [IDAL control logic. The first write into empty write

buffers will not have subsequent writes gathered. Subsequent writes are

placed in the next available buffer. Also, byte gathering does not occur for

nonsequential writes to the same address.

One result of the gathering scheme is that in some cases two IIDAL

bus write references are required to empty a single write buffer entry. For

example, if bytes 0 and 3 of a word are sequentially written, two references

are required to empty the write buffer entry.

Another result of the gathering scheme is that where order is important

in writing (such as for /O controllers), software should avoid sequential

accesses to the same word. In cases where write-read access order is

important but the reading of the written location is not desired (such as in

/0), a write followed by an 1/O read to a dummy location will ensure that

the first write has occurred before continuing.

The byte gathering mechanism is transparent and inaccessible to the user.

Its state at any particular time is not readily determined. Software should

not rely on the operation of the byte gathering mechanism.

Write Bufter Parity

The KN58A/B CPU module contains logic that generates parity for the

output of the R3020 write buffers before the output is driven onto the

IIDAL bus.

KNS8A/B CPU Module

4.5 First-Level Cache Memory

As shown in Figure 4-8, the R3000 interfaces directly with a 128-

Kbyte first-level cache. The cache is direct-mapped and write-

through with a 20 ns cycle time. The firet-level cache is nrganized

as a 84-Kbyte instruction cache (I-cache) and & 84-Kbyt data

cache (D-cache). First-level D-cache ccherency ie maintained by

hardware. First-level I-cache cocherency must be mainiained by

sofiware.

Figure -9 Cache Organization

Fus!-Level Second Level XMl Main
R3000 Cache Cache Memory

120 KB 256 KB Upto512MB

1 & D stream t & D stream 1 2 us 20c009ss

20 ns acoess 450 ns acoess assuming an
Dwect mapped Direct mapped “idie® XM!
1 worg or 64 byte block

8-word hit 32 byte hi

msd- 039780

45.1 First-Level Cachable References

Any reference stored by the first-level cache is called a “first-level

cachable reference” (FL cachable reference). For cache coherency to be

maintained, the first-level cache must be initialized properly, as explained

in Section 4.5.3.

The R3000 generates IIDAL references, depending on the reference type,

as follows:

¢ Whenever the R3000 generates a non-FL cachable reference, a single

longword reference of the same type is generated on the IIDAL bus.

¢ Whenever the R3000 generates an FL cachable read reference that is

already stored in the first-level cache, no reference is generated on the

IIDAL bus.

KNSsA/B CPU Module

o Whenever the R3000 generates an FL cachable write reference, a write

reference is generated for both the FL cache and the IIDAL bus (see

Section 4.5.7).

All R3000 writes first pass through the R3020 write buffers (see

Section 4.4) before they appeer on the IIDAL bus.

4.5.2 First-Level Cache Organization

The first-level cache is divided into two independent storage arrays called

the I-cache and the D-cache (see Figure 4-10). Each one contsins a

64K-row x 24-bit tag array and a 64K-row 36-bit data array.

Figure 4-10 First-Level Cache Orgenization

I-Cache D-Cache

6 K ;A-Bn maen t:‘asflx 3&%‘:‘
16K by 16K 1 by

Rows Tag Array Deta Aray Teg Arnray Data Array

(ERT e ¢ m“’
59 36 35 0 50 36 35 0

msb-0402-89

A row within the I-cache or D-cache corresponds to a cache entry. Each

cache entry contains a 24-bit tag portion (including valid and parity bits)

and a 36-bit data portion (including parity hits). There are 16K entries in

the I-cache and 16K entries in the D-cache. Figure 4-11 shows the format

of a cache entry. Table 4—6 -escribes the component parts of an entry.

Figure 4-11 Cache Entry

86 87 B 8 B » zn]

TAGP |V PFN DATAP DATA

mut-0403-89

KNS8A/B CPU Module

Table 4-6 Cache Eniry Flelds

Fleld Dasceiption

TAGP Teg partty. Parity over the V and PFN tie.ws. TAGPO (bit <57>) contains

party over the low byle of the PFN (bits <43.365). TAGP1 (bt <58>)

contains party over the next kowes! byte of the PFN (bids <51:44>).

TAGP2 (bit <59>) contains parity over the upper bits of the PFN (bis

<55:52>) and the V bit (b1t <565).

v Vahid bt. When set, indicates a vahd cache entry.

PFN Page frame number. Spaciies the page frame number.

DATAP Data pardy. Party over the DATA field There is one party bt for each

byte of the DATA field. DATAPO (bit <32>) comains parity aver bis

<7.0>. DATAP! contains partty over bits <15 8>, DATAP2 contains

party over bits <23 16>, and DATAP3J containg party over bits <31:24>.

4.5.3 Initializing the First-Level Cache

When the first-level cache is first powered up, the Valid bit (bit <56>) of

each cache entry has an unpredictable value. The first-level cache must

therefore be completely initialized or invalidated by the operating system

upon power-up. D-cache and I-cache are initialized differently.

D-cache is initialized by isolating and flushing it. Isolation is accomplished

by setting the ISC bit (bit <18>) in the Status Register and the RINVAL

bit (bit <16>) in CSR1. Software must then read the RINVAL bit to ensure

that it 1s set. All writes then hit the cache. Software flushes D-cache by

performing partial word stores, each of which clears the Valid bit of a

cache entry When the flush is complete, software must clear the RINVAL

bit.

I-cache is initialized by isolating, swapping, and flushing it. Swapping

(or exchanging I-cache and D-cache control signals) is required because

I-cache cannot ordinarily be written directly. Swapping 1s accomplished by

setting the SWC bit (bit <17>) in the Status Register.

Before initializing I-cache, the R3000 must be executing from uncached

space. To initialize the cache, it is isolated by the software as previously

described and then swapped. The R3000 must not execute any load/store

instructions immediately before the swap operation. Software completes

the initialization by flushing the cache with partial word stores, each of

which clears the Valid bit of a cache entry.

KNSSA/B CPU Module

454 First-Level Cache Address Translation

Whenever the R3000 requires I-stream or D-stream data, the first-level

cache is checked to determine if the referenced location is stoved there.

Figure 4-12 Cache Addreas Tranglation

' eoppca
31 RTAG 12

15 Cache Index)

|

Vaid

I-Cache 9: D-Cache

1

36-Bu! 24-81 36-But
Data Tap Data

R R TR%%‘Wmml

0 56 °

internal1o

R3000

Chup

v v

Match? Match?

Daia Mab-0604-89

KNSsA/B CPU Module

The first-level (FL) cache is checked by translating the physical address

(sce Figure 4-12) as foliows:

¢ On non-FL cachable references, the reference is never stored in the

cache, 8o a first-level "miss” orcurs and a single longword reference is

generated on the IIDAL bus.

e On FL cachable references, the physical address must be translated

to determine if the contents of the referenced location is resident in

the cache. The Cache Index field, bits <15:2> of the address, is used

to select one of the 16K rows of the cache, with each row containing

u single entry of data and tag. The RTAG field, bits <31:12> of the
physical address, is then compared to the PFN of the entry in the

selected row.

e If a match occurs with the PFN of the entry, and the Valid bit within

the entry is set, and no parity errors are encountered, the contents

of the referenced location 15 contained in the cache and a cache "hit’

occurs. No IIDAL bus transfers are initiated on R3000 references that

hit the first-level cache.

¢ If no matcn occurs, then the contents of the referenced location is not

contained in the cache and a cache miss occurs. The data must be

obtained from either the second-level cache or from XMI memory. In

either case, a single longword transfer is initiated on the IIDAL bus.

4.5.5 First-Level Cache Data Block Allocation

FL cachable references that miss the first-level cache cause a longword

read to be initiated on the 1IDAL bus. When the requested longword is in

the second-level cache, the hexword containing the requested longword is

transmitted on the IIDAL to the R3000 and stored in the FL cache.

If the read reference misses the second-level cache, a 16-word block

is deallocated in the first-level D-cache and the requested longword is

supplied by main memory. The longword is then transmitted on the

IIDAL to the R3000 and stored at the addressed location in the previously

invalidated block.

4.5.6 First-Level Cache Behavior on Writes

The first-level cache is "allocate on write." All R3000 cached write

references are written into the first-level cache regardless of whether

they hit or miss the FL cache. Write references are also latched by the

R3020 write buff:r, which stores the write until it is gated onto the IIDAL

bus.

KNS8A/B CPU Meodule

4.5.7 First-Level Cache Coherency

First-level I-cache coherency must be maintained by the operating

system software. There is no hardware on the KN58A/B CPU medule

to implament this function.

First-level D-cache coherency is maint. .ned as a subset of the second-level
cache. A read miss in the first-level cache (either I-cache or D-cache) and
the second-level cache will force the 16-longword block specified by the tag
address to be invalidated in the first-level D-cache.

The XCPGA on the KN58A/A interface nodule maintains an 8-deep

invalidate queue. When there is an entry in the invalidate queue, the

XCPGA arbitrates for the IIDAL to send an invalidate address to the

second-level cache, invalidating a 16-lengword block.

The KN58A/B CPU module contains an invalidate FIFO buffer that stores

the invalidate addresses sent to the second-level cacke. Each address in

the invalidate FIFO causes the invalidation of a 16-longword block in the
first-level D-cache. If the invalidate FIFO buffr is full and the XCPGA

generates another invalidate, an overflow is indicated in CSR1 and the

R3000 is interrupted.

Since the first-level cache is "allocate on write” and the second-level cache

is not, writes that miss the second-level cache must be marked invalid in

the first-level cache. This is necessary to maintain the first-level caclie

as a proper subset of the second-level cache. The invalidate FIFOs are

used to accomplish this write invalidate. If a write misses the second-level
cache, one word in the first-level D-cache i invahdated. If a read misses

the second-level cache, 16 words in the first-level D-cache are invalidated.

Device drivers not using an interlock instruction when reading a
semaphore must perform a "dummy” read of CSR1 after reading a

gsemaphore and before reading the data. This is required because of

the latency involved between an XMI write operation and its associated
invalidation of the first-level cache.

458 First-Level Cache Error Detection

Both the tag and data arrays in the first-level cache are protected by

parity. Each 8-bit byte of cache deta, each of the lower two bytes of the

PFN, and the Valid bit plus the upper four bits of the PFN are stored
with an associated parity bit. An even parity scheme is used. Tag and

date parity (on the entire longword) are checked on read and partia! store
references that hii the cache.

Upon Aetection of & parity error, the PE bit (bit <20>) in the Status
Register is set. No interrupt is generated. The R3000 transparently
recovers from parity errors by taking a cache miss and accessing main

memory for a good copy of the cache entry.

4.6

4.6.1

4.6.2

4.6.3

KN58A/B CPU Module

interface Logic

The interface logic controls communication between the KNSSA/B

CPU module and the KNS8A/A interface module via the IIDAL bus.
The interface logic is particularly important in performing control

functions (such as lock transactions) that cannot be performed

by the RS000 chip itself. This section discusses the IIDAL and

the types of IIDAL traneactions initiated and coordinated by the
interface logic.

The AL Bus

The protoco! for the IIDAL bus was derived from that of the CVAX CPBUS.

It is nearly identical in its timing From the perspective of the IIDAL, the

KN58AB CPU module appears as a CVAX when it is the 1IDAL bus

master.

Rezd Operation

An 1IDAL read operation is initiated whenever the R3000 misses the first-

level cache or makes an uncached read reference. The 1IDAL interface

logic can only issue longword reads on the IIDAL bus. At the beginning

of the operation, IIDAL<31.30> specifies a longword transaction and

CSDP<3:0> indicates an I-stream read request, even if data is being

fetched. Read operations typically require two cycles to complete.

A read stall 1s defined as any additional cycles occurring between the

address and data portion of the read operation. This can occur whenever

read data is not readily available. IIDAL control logic 1s stalled by

withholding the IIRDY signal. Stalls occur in increments of one cycle.

Write Operation

During an IIDAL write cycle, the R3020 write buffers output write

information onto the IIDAL bus. A write operation tekes 8 minimum

of 2 cycles and can occur every 4 cycles.

A write stall is defined as any additional cycles occurring between the

address and data portion of the write operation. This can occur any time

write data cannot be readily accepted by the target device. IIDAL control
logic is st 'led by withholding the IIRDY signal. Stalls occur in increments

of one cycle.

KNS584A/B CPU Module

4.6.4 Interrupt Acknowledge Operation

The IiDAL control logic initiates an interrupt acknowledge in response

to an R3000 interrupt acknowledge read reference. When the R3000 is

interrupted, the interrupt is vectored to a single interrupt handler. The

software performs an uncached read reference with address bit <30> set

and bit <31> clear. Address bits <6:2> indicate the IPL (in hex). The other

address bits are zero. This address is then driven onto the IIDAL bus

and CSDP<3:0> indicate an interrupt acknowledge operation. The read

data driven onto the bus in response is the desired interrupt acknowledge

vector. The software uses the vector to jump to the correct interrupt

gervice routine.

46.5 Lock Transactions

The IIDAL control logic initiates a lock transaction in response to an

R3000 read lock reference and an R3000 write unlock reference. The

transaction is initiated on the IIDAL by asserting the correct code on

CSDP<3.0>.

Software generates an R3000 read lock reference by writing the Interlock

Address Register (2013 0000) with the address of the interlock variable.

The software must then read the Interlock Register (2011 0000). This

causes the IIDAL control logic to perform a read lock transaction on the

IIDAL bus using the =ddress in the Interlock Address Register. The read

data is returned to the R3000.

Software generates a write unlock reference by writing the address of

the interiock variable to the Irierlock Address Register (2013 0000).

The software must then write the Interlock Register (2011 0000). This

causes the IIDAL control logic to perform a Write Unlock transaction

on the IIDAL bus using the address in the Interlock Address Register.

To maintain consistency between the first-level and second-level caches,

the unlock write transaction must be preceded by a cached write to the

interlock variable.

Note that only the lock transaction occurs on the IIDAL bus. The writing

of the Interlock Address Register and any reads or writes of the Interlock

Register will not appear on the IIDAL bus.

4.6.6 DMA onthellDAL Bus

The KN58A/B CPU module contains DMA logic that controls the granting

of the IIDAL bus. There are three possible masters of the IIDAL bus:

* The CVAX chip (on the KN58A/A interface module)

e The IIDAL control logic

4.6.7

KN58A/B CPU Module

¢ The XCPGA (on the KN5S8A/A interface module)

The CVAX or XCPGA is bus master only at power-up or after reset. At

power-up or after reset, bus ownership defaults to the CVAX and the

XCPGA must request the bus to gain ownership. Setting bit <24> of CSR1

allows the IIDAL control logic to gain ownership of the bus. When this bit

is set, bus ownership defaults to the IIDAL control logic and the XCPGA

must request the bus to gain ownership.

idle

The IIDAL bus is idl2 when no activity is taking place on it. During an

idle, the IIDAL lines are undefined and the control signals are deasserted.

4-51

)19 06.0.0.60006.8.0.0.004¢¢

P0:6.0.0:5.8:4:0.5.0:9,0.0.94

P00 9:0.0.0.8.0.4,6.0¢4

.0.0.:9.0:0.0.6.04.94

P484044994

XHOGHXX

XHKEK

RAX

X

X

XXX

XXXXX

XXHXXXX

£0.4.4.0.4.64.44

XXXUXXXXXXK

AXAXXKKUXKXXX

XXXYEXXXAKEKLKXAXK

f O0400644404844

XXXXAALLXKXXX AKXXKXK

P00 00400.6.000006880460

P OO0 0000800000809880404

KXEXXERXUXKKXKL LXK EXHEXKNH

XXX IO Y XA XXX XA XA XAIAXEN,

PO 00000000 ¢6890098840¢00444

PSS S E 0000080408 50800.68620040¢4

000080000000000 0884090680 ¢808004

OOCOCRONNNXXX XX KX KU KO KK HKXAEX

XXXX0GOGoOO0OONOIXXX XXX X NXKX

PO 000000000 8000008080408008 800000860004

PO 0000 iP0ee04000008080809 880008000 9080044

MS62A Memory Module

The MS52A memory module is a metal-oxide semiconductor (MOS),

dynamic random access memory (DRAM), that provides 32 Mbytes of data

storage. The memory array is designed for use in the DECsystem 5800

system and communicates over the XMI bus.

This chapter contains the following sections:

Module Features

Technica! Description

Self-Test and Initialization

Starting Address and Interleaving

Control and Status Registers

Error Handling and Command Responses

51

MS62A Memory Module

5.1 Module Features

The MSE2A memory module is 2 dynamic random access memory
(MRAM) that communicates through the XMI bus to provide

DECsystem 6800 system memory.

The MS62A memory module has the following features:

¢ 'The memory module contains MOS dynamic RAM (DRAM) arrays, a

CMOS gate array (that contains error correction code (ECC) logic and
control logic), and an XMI interface (the XMI Corner).

e Storage arrays are made up of four banks of 72 DRAMs.

e ECC logic detects single-bit and double-bit errors and corrects single-
bit errors.

e Memory self-test checks all RAMS, the data path, and control logic on

power-up.

¢ Quadwords, octawords, and hexwords can be read from memory.

¢ Quadwords and octawords can be written to memory.

o The memory can be configured by the system for 1-, 2-, 4-, 8-way, 71 no

interleaving.

5-2

MS62A Memory Module

5.2 Technical Description

The MS62A memory module uses XMA logic, DRAM arrays, and

a PROM to provide 32-Mbytes of memory to the DECsystem 5800
system.

The MS62A memory module consists of the following major components:

¢ XMI Corner

o XMA gate array

¢ Address and control logic

e DRAMs

The XMI Corner is the module’s interface to the XMI bus and contains
CMOS gate arrays and interface logic. Its primary purpose is to transfer
data between the MS62A memory module and the KNG8A processor.

The XMA gate array transfers data between the XMI Comner and the
DRAMs. The gate array also controls address multiplexing, command

decoding, arbitration, and CSR logic functions.

Address and control logic modifies address bits received from the XMI

Corner. These modified address bits are used to control the selection of the

DRAMs during reading and writing.

Ali power for the XMI memory array is supplied from +5V. If power to the

system is lost, memory is lost as well.

MSE62A Memory Moduls

53 Self-Test and Initialization

The MSS2A memory module performs an initialization and self-test

sequence on a cold power-up or when the sequence is requested by

a congole command.

During a cold power-up the gate array chip is initialized, all memory

locations are tested, and the control and status registers are initialized.

A warm power-up occurs when the system loses power. During a warm

power-up, self-test is not run and memory contents are unmodified. .
However, any data in the data path is lost.

Memory self-test takes about 60 seconds to run. While self-test runs, the

Fault light on the system front panel is on. When self-test completes, the

Fault light goes off and the console printout of self-test begins. For details

on the self-test console printout, refer to Chapter 6 of the DECsystem 5800

Owner’s Manual.

5.4

5.4.1

54.2

MS62A Memory Module

Starting Address and Interleaving

On power-up the DECsystem 6800 console firmware loads the

Starting and Ending Address Register (SEADR) with the starting

address, the interleave mode, and the ending address. The

following paragraphs describe how to set the SEADR for proper

system operation. Section 5.5 gives a description of the SEADR.

Starting and Ending Addresses

The memory responds to starting addresses on any 2-Mbyte boundary.

The ending address is also on any 2-Mbyte boundary. The ending address

must be greaier than the starting address to ensure that data will not

be overwritten. The ending address minus the starting address must be

equal to or less than tke memory size multiplied by the number of ways

interleaved.

EA - SA = Memory Size X (# of ways interleaved)

Starting addresses for memory can be in the range from 0 to 510 Mbytes

and ending addresses in the range from 0 to 512 Mbytes. Ending

addresses greater than 512 Mbytes are not permitted. The area above

512 Mbytes is reserved for CSR addresses.

Interleaving

Interleaving achieves greater throughput to memory by optimizing

memory access time and increasing the effective memory transfer rate.

This is done by operating memory modules in parallel.

The memory array supports 1-way, 2-way, 4-way, §-way, or no interleaving

at the system level. Up to eight memory array modules can be interleaved.
interleaving is done on hexword boundaries.

MS62A Memory Module

5.5 Control and Status Registers

The CSR names and their relative addresses are shown in

Table §-1. Descriptions of the CSRs are also included in this

section.

Tabie 5-1 RS62A Memory Module Control and Status Reglsters

CSR Name Mnemonic Address

Device Register XDEV BB'+ 0000 0000 .
Bus Error Register XBER 8B + 0000 0004

Starting and Ending Address Register SEADR 8B + 0000 0010

Memory Control Register 1 MCTL1 BB + 0000 0014

Memeory ECC Error Register MECER BB + 0000 0018

Memory ECC Error Address Register MECEA BB + 0000 001C

Maemory Contro! Register 2 MCTL2 BB + 0000 0030

TCY Registor TCY BB + 0000 0034

Interlock Flag Status Registers IFLGn BB + 0000 0007 ‘
'=BB" rafers to the base address of an XMI node (2180 0000 + (node 1D x 8000)).

2Refer to the Interlock Flag Status Register description for the relative address of the
Interlock Flag Status Registers.

The memory contains 24 control and status registers (CSRs) to control

the memory and log errors. All CSRs are 32 bits long and respond only to

longword read and write transactions. When writing to the CSRs, only full .
writes are performed. If a parity error occurs during a write operation, the

operation is aborted and the contents of the CSRs are unchanged.

Some bits in the registers are cleared on power-up, while others need a

one written to them to clear.

The CSRs siart at an address dependent upon the node ID. All CSR

addresses are designated as BB + n, where n is the relative offset of the

register.

MS62A Memory Module

The following definitions apply to the descriptions of the control and status

registers.

CRD error - A correctable single-bit error.

RDS error - An uncorrectable double-bit error that occurs when the
syndrome bits represent an unused ECC code.

RER error - A general uncorrectable double-bit error indicator that
includes an RDS error, a row parity error, a column parity error, or a byte

write error.

RO - Indicates a read-only register.

RO, 0 - Indicates a read-only register, cleared on power-up.

R/W - Indicates a read and write register.

R/W, 0 - Indicates a read and write register, cleared on power-up.

R/W1C - Indicates a read and write register, write a one to clear.

R/WI1C, O - Indicates a read and write register, write a one to clear, and

cleared on power-up.

R/W1C, 1 - Indicates a read and write register, set on power-up.

W/0, 0 - Indicates a write only register, cleared on power-up.

5-7

MS62A Memory Module Registers
Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the MS62A memory

module. Both fields are loaded during node initialization. A zero value

indicates an uninitialized node.

ADDRESS Nodespace base adaress + 00000 0000

n 29 18 15 -]

Must Be Zero (MB2Z) Device Type (DTYPE)

l-—— Device Revision (DREV)
mab-0377-88

bits<31:20>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<19:16>
Name: Device Revision

Mnemonic: DREV

Type: RO

Identifies the revision level of the MS62A memory module. The use of

the Device Revision field is implementation dependent. The field does

not indicate the hardware revison level, only the functional level.

bits<15:0>
Name: Device Type

Mnemonic: DTYPE

Type: RO

Identifies the type of node. The device type for an MS62A memory
module is 4001 (hex). This value is set in the Device Register.

MS62A Memory Module Registers

Bus Error Register (XBER)

Bus Error Register (XBER)

The Bus Error Register records error and status information about the XMi

bus.

ADDRESS Nodespace base address + 0000 0004

31 30 20 28 27 26 25 24 23 22 21 20 19 18 17 6 15 14 13 12 11 10 0 & 7 & S & 3 2 1 0O

0|0} [MB Must Be Zero (MB2) 0 Must Be Zero (MBZ)

I l——- Self-Test Fail (STF)
Node-Specific
Emor Summary (NSES)

L Read Data NO ACK (RDNAK)

Write Sequence Error (WSE)

I Parity Error (PE)
Corrected Confirmation (CC)

b Node Reset (NRST)

L————- Error Summary (ES) mar-0376-89

bit<31>
Name: Error Summary

Mnemonic: ES

Type: RO, 0

This bit state represents the logical OR of the error bits in this

register.

bit<30>
Name: Node Reset

Mnemonic: NRST

Type: W/0, 0

Writing a one to this location initiates a complete node reset, including

self-test.

MS62A Memory Module Registers

Bus Error Register (XBER)

bite<29:28>
Name: Reservad

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<27>
Name: Corrected Confirmation

Mnemonic: CC

Type: RW1C, 0

This bit is set when the XMI Corner interface (XCI) bus detects a °
single-bit error on the XMI CNF bits.

bits<26:24>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<23>
Name: Parity Error

Mnemonic: PE

Type: RWI1C, 0

This bit is set when the node detects a parity error on an XMI cycle.

bit<22> .
Name: Write Sequence Error

Mnemonic: WSE

Type: RWIC, 0

When set, indicates that the node aborted a write transaction due to

one or more missing data cycles.

bit<21>
Name: Read Data NO ACK

Mnemonic: RDNAK

ype: RWIC, 0

When set, indicates that the node received a NO ACK confirmation for

a data cycle it transmitted.

5-10

bits<20:13>

bit<12>

bit<ii>

bit<10>

bits<9:0>

MS62A Memory Module Registers

Bus Error Register (XBER)

Name: Resserved

Mnemonic. None

Type: RO

Reserved; must be zero.

Name: Node-Specitic Error Summary

Mnemonic: NSES

Type: RO, 0

When set, this bit indicates tha: a noede-specific error condition has

been detected. The exact nature of the error is located in the memory

error status registers.

Name: Reserved

Mnerntonic: None

Type: RO

Reserved; must be zero.

Name: Selt-Test Fail

Mnemonic: STF

Type: RW1C, 1

While set, tt is bit indicates that the nod 2 has not yet passed its self-

test. This bit is cleared when self-test suscessfully completes. This bit

also drives XMI BAD (an XMI bus signal that reports node failures).

Clearing this bit also clears XMI BAD.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

511

MS62A Memory Module Registers

Starting and Ending Address Register (SEADR)

gtarting and Ending Address Register (SEADR)

The Starting and Ending Address Register contains the memory starting

and ending addresses. See Section 5.4.1 for a description of the rules that

must be followed when setting these addresses. This register aiso sets the

inteiteave mode.

ADDRESS Nodespace base address + 0000 0010

N W0 21 20 16 15 8 7 86 5 4 2 1 0

MBZ M8z Mez

L— Ending Address (ENDADR) -J
Starting Address (STRADR;

interleave Address 2 (INAD2)

Interleave Address 1 (INAD1)

Interleave Address O {INADO)

Inteiteave Mode 1 (INTM1)

Interieave Mode G (INTMO)

mab-0664-90

bits<31:30>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<29:21>
Name: Ending Address

Mnemonic: ENDADR

Typs: RW. 0

The Ending Address for the 1iemory on 2-Mbyte boundaries. The

memory is enabled if the ending acdress is greater than the starting
address. The ending address range is from 0 to (510 Mbytes + 2

Mbytes).

5-12

bits<20:16>

bits<15:8>

bits<7:5>

bits<4:2>

bits<1:0>

MS62A Memory Module Registers

Sterting and Ending Address Ragister (SEADR)

Nama: Resen s

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Starting Addrass

Mnemonic: STRADR

Type: RW, 0

The Storting Address for the memory on 2-Mbyte boundaries. The

starting address range is from 0 to 510 Mbytes.

Name: Interleave Address

Mnemonic: INADn

Type: RW, 0

The address bits used for interleaving. This address determines to

what address the module will respond.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: interleave Mode

Mnemonic: INTLMn

Type: RW, 0

These bits show how many ways the module is being interleaved and

are used to determine the addresses that the module will respond to.

§-13

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

Memory Controi Register 1 (MCTL1)

The Memory Control Register 1 along with the Memory Control Register 2

contains memory-specific control, status, and eror bits. The MCTL1 Register

also controls the diagnostic modes of the inemory module.

ADDRESS Nodespace base address + 0000 0014

3t 30 20 28 19 17 18 15 14 13 12 1t 10 © @& 7 0

MEMSIZ MBZ

Diagnostic Check
(DIAGCK)

= ECC Diagnostic (ECCDIAG) L

= Emor Summary (ERRSUM) - m;m‘m;nxoi';;)‘umeo)
- Enable Protecticn Mode (EPM)

— Memory Valid (MEMVAL)

L Inhibit CRD Status (ICRD)

~ RAM Typo (RAMTYF) ma0860-90

bit<31>
Name: Error Summary

Mnemonic: ERRSUM

Type: RO

This bit contains the ORed sum of error bits in MCTL1, MCTL2, and

Memory ECC Error Registers.

b“e 30>
Name: ECC Diagnostic

Mnemonic:. ECCDIAG

Type: RW, 0

This bit is used for diagnostic purposes.

5-14

bit<29>

bits<28:18>

bits<17:16>

bit<15>

bit<14>

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

Name: ECC Disable

Mnemonic: ECCDIS

Type: RW, 0

This bit is used for diagnostic purposes.

Name: Memory Size

Mnemcnic: MERMS!IZ

Type: RO

These bits contain the memory module size in 256-Kbyte increments,

where 00000011000=6 Mbytes, 00000100000=8 Mbytes, and

00010000000=32 Mbytes.

Name: RAM Type

Mnemonic: RAMTYP

Type: RO

These bits contain the size of the RAM.

Name: Inhibit CRD Status

Mnemonic: ICRD

Type: RW, 0

This bit inhibits the reporting of CRD status to the commander on
read cycles. When this bit is set, any CRD response is changed to a

GRD response. The CRD errors are still logged, and RER errors are
logged and reported normally.

Name: Memory Valid

Mnemonic: MEMVAL

Type: RO, 0

This bit indicates that valid data is stored in memory. The bit is set on

the first write to the module memory space.

515

MSE2A Memory Moduls Reglsters

Memory Control Register 1 (MCTL1)

bit<13>

bit<12>

bit<ii>

bit<10>

Dits<9:8>

5-16

Name: Enable Protection Mode

Mnemonic: EPM

Type: RW, 0

When this bit is set, the operation of the ECC Diagnostic <30> and

ECC Disable <29> bits are inhibited in the first 2 Mbytes of memory

space, starting address to starting address plus 2 Mbytes.

o

Name: Lock Queue Error

Mnemonic: LQERR

Type: AWIC, 0

This bit is set if a data word is sent as a response to an Interlock Read

and no lock is pending in the memory.

Name: Unilock Sequence Error

Mnemonic: UNSEQ

Type: RAWIC, 0

This bit is set if an Unlock Write transaction is accepted and no

corresponding matching location is marked as locked. Either an

Interlock Read was never performed to this location, the lock did not

get, or the lock might have been cleared by another source.

Name: MWrite Error

Mnemonic: MWRER

Type: RW1C, 0

This bit is set on an RDS error during a partial write cycle.

Name: Ressrved

Mnemonic: None

Type: RO

Reserved; must be zero.

MS62A Memory Module Registers

Memory Control Register 1 (MCTL1)

<7:0>bits Name: Diagnostic Check
Mnamenic: DIAGCK

Type: RW, 0

These bits are used during ECC diagnostic mode as substitute check
hits.

5-17

MS62A Memory Module Registers

Memory ECC Error Register (MECER)

Memory ECC Error Register (MECER)

The Memory ECC Error Register lons ECC error status. The MECER also

icgs uncorreciable error codes for row parity error, column parity errors, and

byte write errors. The MECER logs ECC emor information during read cycles

only. if an RER error occurs during a Write Mask cycle, the MWRITE eror bit

in the MCTL1 Register is set.

This register logs ECC error type and error syndrome information when

correctable and uncorrectable errors occur during Read transactions. During

a Write Mask transaction, only the MWRITE error bit logs the fact that the

ECC error occurred.

For read accesses, the register logs the first correctable emor and holds it

until either an uncorrectable error occurs or the error is cleared. Additional

correctable errors are only reported and are not logged. An uncorrectable

error will overwrite a logged comrectable error. A correctable error will not

overwrite a logged uncorrectable error or a previously logged comectable error

until the error has baen cleared.

This register logs errors during moduie seif-iest.

ADDRESS Nodespace base address + 0000 0018

31 30 B 2027 WB M s 7

0 MUST BE ZERO

Column Parity Error (CPER)

Row Parity Error (RPER)

Byt Write Emor (BWERR)

CRD Error (CRDER)

High Error Rate (HIERR)

Uncorrecteble Double-Bit (RER) Error (RERER)

|_ Emor Syndrome (ERSYN) —l

bit<31>
Name: Uncorrectable Double-Bit (RER) Emor

Mnemonic: RERER

Type: RWiC, 0

5-18

This bit indicates that an uncorrectable error occurred during a read

transaction. The Error Address and Error Syndrome are valid for the

uncorrectable double-bit error. If the Column Parity Error bit, the Row

Parity Error bit, and the Byte Write Error bi¢ are not all set, then the ‘
uncorrectable double-bit error is an RDS error.

blt<30>

bit<29>

bit<28>

bit<27

bit<26>

MS62A Memory Module Registers

Memory ECC Error Register (MECER)

Name: High Error Rate

Mnemonic: HIERR

Type: RW1C, 0

This bit indicates that another error, RER or CRD, occurred before the

previous one was cleared from the register.

Name: CRD Error

Mnemonic: CRDER

Type: RW1C, 0

This bit indicates that a CRD error occurred during a read transaction.

This includes a single-bit error in the check bits, =ven though no

correction is done on the data bits. The error address and error

syndrome are valid if no RER error log exists.

Nama: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: Byte Wiits Ericr

Mnemonic: BWERR

Type: RO, 0

This bit indicates that the RER error was due to reading a location

that was marked bad during a partial write cycle that had previously

detected an RER error. Cleared when MECER<31> is cleared.

Name: Row Parity Error

Mnemonic: RPER

Type: RO, 0

This bit indicates that the RER error is due to a row address parity

error. Cleared when MECER<31> is cleared.

5-19

MS62A Memory Modiule Registers

Memory ECC Error Register (MECER)

bit<25>
Nams: Column Parity Error

Mnerionic: CPER

Tvoe: RO, 0

This bit indicates that the RER error is due to a column address parity

error. Cleared when MECER<315> is cleared.

bite<24:8>
Name: Reserved

Mnemonic: None

Type: RO .

Reserved; must be zero.

bits<7:0>
Name: Error Syndrome

Mnemonic: ERSYN

Type: RO, 0

These bits are the syndrome bits of the location in an RER or CRD

error. .

5-20

MS62A Memory Module Registers

Memory ECC Error Address Register (MECEA)

Memory ECC Error Address Register (MECEA)

The Memory ECC Error Address Register logs the address of correctable and

uncorrectable errors logged in the Memory ECC Error Register.

For read accesses, this register logs the address of the first corrected read

data (CRD) error and holds it until a double-bit uncorrectable error (RER)

occurs or the error is cleared. An RER error causes a logged CRD error

address to be overwritten. A CRD will not overwrite a logged RER error

address. If multiple RER emors occur, only the first error address is logged.

This register logs errors during seif-test.

ADDRESS Nodespace base addre:ss + 0000 001C

313029 210

MBZ ERROR ADDRESS (ERRAD)]MBZ

bits<31:30>
Namae: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bits<29:3>
Name: Error Address

Mnemonic: ERRAD

Type: RO, 0

The error address of the RER or CRD error logged in the Memory ECC

Error Register. This register is valid only if the RER or CRD Error log

bits are set in the Memory ECC Error Register. This address is the

bus address of the cycle that was being performed at the time of the

error.

bits<2:0>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

521

MS62A Memory Module Registers

Memory Control Register 2 (MCTL2)

Memory Control Register 2 (MCTL2)

The second memory controi reg:ster contains additional co.trol and error

status information.

ADDRESS Nodespace base address + 0000 0030

2 17 16 1§ 6 5 ¢ 3 210

MUST BE ZERO MUST BE ZERO

Refresh & or (RERR) —J Disable Hold (DISH) —-I I
Refresh Rate<2> (RRB2)

Refresh Rate<1> (RRB1)

Refresh Rate<0> (RRBO)

Arbitration Suppression Control <1> (ARBSC1)

Arbitration Suppression Control <0> (ARBSCO)

ran-0681.00

bits<31:17>
Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

bit<16> ’
Name: Refresh Error

Mnemonic: RERR

Type: AW1C, 0

This bit is set if a refresh request is set, and a second refresh request

is asserted before the first one is implemented, meaning that a refresh

was missed.

bits<15:6>
Name: Reservad

Mnemonic: None

Type: RO

Reserved; must be zero.

5-22

bit<5>

bits<4:2>

bits<1:0>

MS62A Memory Module Registers

Memory Control Register 2 (MCTL2)

Name: Disable Hold

Mnemonic: DISH

Type: RW, 0

This bit is used by memory arbitration logic to disable the use of XMI

HCLD L.

Name: Refrash Rate

Mnemonic. RRB

Type: RwW

This bit controls the module’s DRAM refresh rate.

Name: Arbitration Supression Control

Mnemonic;: ARBSCn

Type: RW, 0

These bits control the Arbitration Supression mode.

MS62A Memory Module Registers

TCY Taster Register (YCY)

TCY Tester Register (TCY)

The TCY Tester Register contains contro! bis to implement manufacturing

tests.

ADDRESS Nodespace base address + 0000 0034

31 0 2 1+ 0

MUST BE ZERO

l.__ TCY Mode (TCYM) |
ECC Test (ECCT)

TCY Refresh Request (TRR)

mab-0565-90

5-24

MS62A Memory Module Registers

Interlock Flag Register (IFLGn)

Interlock Flag Register (IFLGn)

The Interlock Flag n Register (IFLGn) (where nis 0 to 15) holds the address

and D of the last interlock flag only if all lower interlock flags are set. The
locations of IFLGn flags are shown in the relative address table.

ADDRESS Nodespace base address + (relative address)

0 Interock Address (IADR)

| Lower Interlock 1D Bits <4:0> (LIID) ——-l

Interlock 1D Bit <5> (IIDB)

Inteilock Flag n (IFLG)

(where nis the number of the
Intertock Flag Register (0-15)) mab.0378-89

interlock Flag Register Reolative Address

Interlock Flag 0 Status Register BB+ 20

Interiock Flag 1 Status Register BB + 24

Interlock Flag 2 Status Register BB + 28

interlock Flag 3 Status Register BB + 2C

Interlock Flag 4 Status Register BB + 40

Interlock Flag 5 Status Register BB + 44

intarlock Flag 6 Status Register 8B + 48

interlock Flag 7 Status Regisier BB + 4C

Interlock Flag 8 Status Register BB + 80

Interlock Flag @ Status Register BB + 84

interiock Flag 10 Status Register BB + 88

interiock Fiag 11 Status Register BB + 8C

interlock Flag 12 Status Register 88 + 100

Interlock Flag 13 Status Reqister BB + 104

interlock Flag 14 Status Register BB + 108

interlock Flag 15 Status Register 88 + 10C

MS62A Memory Module Registers

interiock Flag Reglster (IFLGn)

bit<31>

bit<30>

bit<29>

bits<28:5>

bits<4:0>

5-26

Name: interlock Flag n

Mnemonic: IFLGn

Typs: RWI1C, 0

This bit is Interlock Flag n, where n = (0-15). If asserted, the Interlock

Address and Interlock ID are valid and the lock is set. The lock cannot

be set by writing directly to IFLGn. Writing a one to IFLGn clears the

lock.

Name: Interiock IiD <5>

Mnemonic: 1IDB

Type: RO, 0

IIDB is the most significant ID bit of the Interlock Read transaction.

This bit is valid only if Interlock Flag n is set.

Name: Reserved

Mnemonic: None

Type: RO

Reserved; must be zero.

Name: interlock Address

Mnamenic: 1ADR

Tvpe: RO, 0

IADR gives the address of the Interlock Read transaction. It is valid

only if Interlock Fiag n is set.

Name: Lower Interiock ID <4:0»

Mnemonic: LIID

Type: RO, 0

LIID are the lower four ID bits of the Interlock Read transaction.

These bits are valid only if Interlock Flag n is set.

MS62A Memory Module

5.6 Error Handling and Command Responses

The following paragraphs describe how the memory responds to

an error condition. The memory performs single-bit correction

and double-bit detection on the data stored.

56.1 [Read Errors

If no errors occur during a read operation, a Good Data (GRDn) function

code is returned with the data. If a correctable error occurs during the

read operation, a Corrected Read Data (CRDn) function code is returned.

If an uncorrectable error occurs, a Read Error Response (RER) is returned

in place of the data.

The lock bit is not set if:

® An RER error occurs during an Interlock Read transaction.

® The confirmation of Interlock Read data is missing or bad.

A locked response is sent if:

* The address of an Interlock Read transaction matches a locked

hexword.

¢ All locks are set and memory receives an Interlock Read request.

5.6.2 Full Write Errors

A full write is performed on a quadword or octaword, dependent on

the number of mask bits that are set. If mask bits <47:32> are set, an

octaword write transaction takes place. If mask bits <35:32> are set,

a quadword write transaction takes place. Write data is written into

memory with the generated ECC check bits. The write transaction does

not begin until all the write data is received from the XMI bus and checked

for parity.

If an XMI parity error occurs on one or more quadwords of received data,

the write will not begin and a NO ACK response is returned.

§-27

MS62A Memory Module

5.6.3 Partial Write Errors

5-28

If the mask bits for a quadword or octaword are not all set, a partial write

is performed. After write data is merged with read data, the write data is

written into memory. If the reed data is correct, the write is completed.

If a correctable read error occurs, the write continues to completion

with the corrected data. Uncorrectable read data causes the old data

to be rewritten with a Byte Write Error ECC code to mark the location

defective. If the cycle is an Unlock Write cycle, an uncorrectable error

causes the location to be marked bad and the interlock flag cleared.

If an XMI parity error occurs on one or more quadwords of received data,

the write does not begin. If the parity error occurs during an Unlock Write

command or data cycle, the lock is not reset. .

KIOOORHRKKHANR ¥ LRI KKIGOIH XXX N Y KKK EHKKR

HHHHH KA K H KR KKK LXK ROOOCOOCONOOONGXRO

OO N MR X XA K K H KRR K XK AKX XXX XX KX

ERRHMK KX KRN X0NCCNOGONNGINNNNINKXY

PO EH PSSO O 09.00080800050800848001

FEHHHHIHOCGLRAOCHRALK ROCO0O0X

KKK EONON0GNNEINE XU XXKXKX

U XKHHRXK OO ONONOOOCHXXK

KRHHR UKRHHOOCOGOODHRAARAA

P8 000086.000006008888088450044

P16#:914.0.6.00.69.0.6.960088066088804

POV P00 00000000600 0004

HUHAX XXX KEKHA KN KRHKATKKK

PO 40006008080 86¢80¢001

PO SIS04000880009088

P8.4.4:¢.4.0.4.4:0.9.9.9.9.9¢.94

HHAAXKXKHAKKAXKK

P10 9.0.0.0.60.9 80604

AKX

P4.9.9.9.9.9.9.¢.4

1904 8.4 ¢

HUHXX

XXX

X

X

XXX

XXXXX

XXXXXXX

XXXXXHKAX

HXXXAAKXXXK

AXXXAXKXKKAXXX

HXHXLAXAXXXXXKK

XX XXXAXAXKXAXXKKK

KXXKXXXXKNKXAKXXXKXKXK

XUXHKOOOCOHHLLXX HXXKK

P8.0.0.09.400.04.840¢088860003

XXHHXAXKXXX XU XXX XK UXKAKXK

KROOIROOONOML XA KKHURAXAX

D0.0.0.0.0.050000008080086080800904

P00060000080000008 8084088888000/

B0000600040008800080066 988000004

XXX RO XX R LA XK AKX AKX AEEAKXK

FXHXXOOHRCOOLX UK AR XXX K AKX KEAKKKKX

OO KR KOO XX R AR KX R XIHA XA KX A KKXKR

PO20884600000000 800 0000000040080 000 840004

P9 900148 0000808.006.0040006000888080.90960689000]

P90 0008080000 8040 800000000000088 0080800860084

MOOH R XXX KOO XXX UK KK AKX UK UL KKK KKK

OOO0O0ONNNNOGONONNOIKKX XXX XX XXX X KK XX KX

XSO0CINO0OROGOOEN IR X XXX XX XXX KX AX KKK KK

6 DWMBA XMIi-to-VAXBI Adapter

The DWMBA XMI-to-VAXBI adapter provides an information path

between the XMI bus and I/O devices on the VAXBI bus.

This chapter contains the following sections:

DWMBA Overview

CPU Transactions

DMA Transactions

DWMBA Registers

Interrupts

Error Reporting

DWMBA Initialization, Self-Test, and Booting

6-1

6.1

DWMBA XiMi-to-YAXBI Adapter

DWMBA Overview

The DWMBA XiMI-to-VAXBI adapter provides an information path
between the XMI bus and VD devices on the VAXBI bus. The
DWHMBA consiets of tws modules: the DWRMBA/A XMI module and

the DWMBA/B VAXBI meodule. The IBUS connects the two modules.

Figure 6-1 DWMBA XRMi-to-VAXBI Adapter Block Dlagram

A

DWMBA/A

MODULE BuUsS DWMBA/B
LOGKC §@—8% MODULE

LOGIC
XMI

n—urconuen

12012 MODULE 71043 MODULE \)

vV
Hhat VAXB!

DWMBA XMi-to-VAXBI Adapter

The DWMBA/A module contains an XMI Corner, register files, XMI

required registers, DWMBA-specific registers, and control sequencers for

the XMI interface.

The DWMBA/B module contains a BIIC, iaterconnect drivers, control

sequencers to handle the control of the data transfer, status bits to/from

the DWMBA/A module's register files and the BIIC, DWNMBA/B module

specific registers, decode logic for DMA operations, and VAXBI clock-

generation circuitry.

These two modules are connected by four cables of 30 wires each. The 120

wires make up the IBUS, which transfers data and control information

between the two modules.

The DWMBA uses CPU and DMA transactions to exchange information.

CPU transactions originate from the KN58A processor(s) and are

presented to the DWMBA from the XMl bus with the CPU as the XMl

commander and the DWMBA as the XMI responder.

DMA transactions originate from VAXBI nodes that select the DWMBA

as the VAXBI slave. These are read or write transactions targeted to

XMI memory space or are VAXBI-generated interrupt transactions that

target a KN58A processor. For DMA transactions, the DWMBA is the XMl

commander and the MS62A memory module is the XMI responder.

Write transactions, whether DMA or CPU, are always disconnected. This

means that as soon as either the CPU or the VAXBI master issues the

write, it waits for an ACK confirmation that the command and write data

was accepted but not necessarily completed at the destination. If the write

faiis, an IVINTR is returned.

The DECsystem 5800 system uses a 30-bit physical address. Chapter 2

describes the XMI address space. The VAXBI Options Handbook describes

the VAXBI address space. The DWMBA can be both a master and a slave

on the VAXBI. As a master, it carries out transactions requested by its

XMI devices. As a slave, it responds to VAXBI transactions that select its

node.

DWMBA XMi-to-VAXEBI Adapter

CPU Transactionsj

The DWMBA XMI-to-VAXBI adapter translates XMI transactions

into equivalent VAXBI transactions. Regardless of whether the

transaction ie a read, write, or IDENT, scftware need not concern

itself with the details, as the XMI transaction behaves as it would
if it were directed to memory or other XMl devices.

Table 6-1 XAdl-to VAXBI Command Transiations

] VAXBI

Longword Read Longword Read

Quadword Reud liegal

Octaword Read llegal

Hexword Read llegal

Longword Interlock Read

Quadword interlock Read

Qctaword Interlock Read

Hexword Interlock Read

Longword Mask Writa

Quadword Mask Write

Octaword Unlock Write Mask

Longword Unlock Write Mask

Quadword Unlock Write Mask

Octaword Unlock Write Mask

interrupt Request (INTR)

indentify (\{DENT)

implied Vector Interrupt (IVINTR)

Longword Interiock Read {IRCI)

lllegal

llsgal

Hegal

Longword Write Mask (WMCH)

llegal

egal

Longword Unlock Write Mask (UWRCH)

llegal

{legal

Hiegal

IDENT

lliegal

DWMBA XMi-to-VAXBI Adapter

6.2.1 General Operation

The DWMBA responds to XMI longword transactions. When an XMI

commander issues a Read, Interiock Read, Write Mask, Unlock Write

Mask, or IDENT targeting the DWMBA, the XMI commander arbitrates

for the XMI bus, wins the bus, sends out the function, command, address,

ID, and parity. The targeted DWMBA recognizes its ID and returns ACK

or NO ACK (for busy, an error, or illegal transaction). Once the DWMBA

accepts a CPU transaction from an XMI commander, it asserts the NO

ACK confirmation code to all subsequent XMI conmanders that attempt a

CPU transaction until the current transaction completes.

For Read transactions, the DWMBA decodes the XMI command and

determines if the address references VAXBI I/O space or a DWMBA

register. If VAXBI address space is referenced, the DWMBA generates a

VAXBI Read transaction and waits for the return of read data from the

VAXBI. Upon receiving the read data from either the VAXBI or a DWMBA

register, the DWMBA arbitrates for the XMI bus as a responder and

returns the requested data to the commandar. The XMI commander sends

confirmation of the receipt of data back to the DWMBA. If the Read fails,

the XMI commander retries the Read.

Interlock Read transactions are handled the same as Reads except:

e DWMBA registers do not support Interlock Reads and handle them

the same as Reads.

o If the Interlock Read command that targets the VAXBI bus gets a

RETRY CNF from the VAXBI, the DWMBA returns the Lock Response

back to the XMI commander.

Write transactions to the VAXBI are disconnected. The CPU continues

on after the DWMBA/A ACKs the Mask Write and Unlock Write Mask

transaction if the command/address (C/A) and data received from the XMI

‘ bus is ervor free. The DWMBA decodes the XMI command and determines
if the address references VAXBI I/O space or a DWMBA register. If VAXBI

address space is referenced, the DWMBA generates the corresponding

VAXBI write transaction. If a DWMBA register is referenced, it is written

with the write data. Write ¢zrors cause an IVINTR to be returned to the

CPU.

DWMBA XMi-to-VAXBI Adapter

6.2.2 VAXBI VO Space Reads

The two XMI read transactions are Read and Interlock Read. The XMI

Interlock Read is translated to a VAXBI IRCI transaction while the XMl

Read is translated to a VAXBI Read transaction.

The length of the generated VAXBI transaction must be a longword

(D<31:30> = 01 in the VAXBI command/address cycle). XMI address

bits<28:25> are forced to zero to map XMI addresses to VAXBI addresses

and passed onto the VAXBI. The DWMBA ignores with a NO ACK

confirmation any targeted transaction longer than a longword.

If the VAXBI issues a RETRY on an XMI Interlock Read request to

VAXBI /O address space due to the resource being locked by a previous

Interlock Read request, the DWMBA issues a Locked Response to the XMl

commander.

6.2.3 VAXBI /O Space Writes

The two XMI writes are Mask Write and Unlock Write Mask. The Mask

Write is translated to a VAXBI Write Mask with Cache Intent (WMCI),

while the Unlock Write Mask is translated to a VAXBI Unlock Write Mask

with Cache Intent (UWMCI).

The length of the generated VAXBI transacti>n must be a longwerd

(D<31:30> = 01 in the VAXBI command/address cycle). XMI address

bits<28:25> are forced to zero and passed onto the VAXBI. The DWMBA

ignores with £ NO ACF. confirmation any targeted XMI transaction longer

than a longword. The DWMBA supports interlocked instructions even

though the KN58A processor never issues interlocked instructions to VO

space.

6-6

6.2.4

DWMBA XMi-to-VAXBI Adapter

interrupts

6.2.4.1 XAl IDENT to VAXB! IDENT

When an XMI CPU issues an XMI IDENT, the DWMBA issues a VAXBI

IDENT if the DWMBA does not have a pending interrupt at the IDENT

level. The DWMBA/B module fetches the IDENT command from the

DWMBA/A module’s register file and clears the corresponding level and

interrupt sent flip-flops that were previously set by the VAXBI-initiated

interrupt, providing that no IBUS parity errors are detected.

The DWMBA/B module writes the received vector data into the CPU read

data buffer and notifies the DWMBA/A module that the vector is available.

The DWMBA/A module then issues an IDENT response cycle on the XMI

(with a Good Read Data response where the function code = 100 and the

vector is in bits<15:25).

6.2.4.2 XMI IDENT with DWMBA Adapter Pending Interrupt

If an XMI IDENT is decoded with an IPL matched by the DWMBA/B

module while the DWMBA's interrupt-pending flip-flop is set, the interrupt

vector of the DWMBA is issued to the XMI. The IDENT clears both the

IPL level 17 sent fiip-flop and the DWMBA interrupt-pending flip-flop.

The corresponding level 17 VAXBI interrupt-pending flip-flop, if also set, is

not cleared, resulting in the DWMBA issuing an XMI INTR transaction.

6.24.3 Passive Release of VAXB! interrupts

If the requesting VAXBI node aborts its interrupt request before the XMI

CPU generates an IDENT transaction at that level, the resulting IDENT

on the VAXBI gets NO ACKed. The DWNMBA then issues a Read Error

Response (RER) to the XMI commander.

If an XMI CPU issues an IDENT to the VAXBI and the DWMBA has no

pending flip-flops set, the DWMBA issues the IDENT to the VAXBI. The

resulting IDENT on the VAXBI gets NO AUKed. The DWMBA then issues

a Read Error Response (RER) to the XMI commander and sets the IDENT

Error bit in the DWMBA/B module’s Error Summary Register (BESR<1>»).

6-7

DWMBA XMi-to-VAXBI Adapter

6.3 DMA Transactions

The DWMBA XMI-to-VAXBI adapter translates a VAXBI ¢ ransaction

into an XMI bus transaction when a VAXBI node selec’s the

DWMBA a2 the slave node for a VAXBI transaction. Tine XMI

bus transaction is serviced by a memory node, and the reqguested

data is then read from or written to XMI memory.

Table 6-2 VAXBI-to-XiM! Command Trangiations

VAXBI Xean

Read Read .
Interlock Raad with Cache Intent interiock Read

Read with Cache Intent Read

Write (LW) Write Mask on the unused longword

within the XMI quadword

Write (QW) Write Mask (QW)

Write (OW) Write Mask (OW)

Write with Cache Intent (LW) Write Mask on the unused longword

within the XMi quadword .
Wirite with Cache Intent (QW) Write Mask

Write with Cache Intent (OW) Write Mask

Unlock Write Mask with Cache intent (LW) Unlock Write Mask

Unlock Write Mask with Cache Intent (QW) Unlock Write Mask

Unlock Write Mask with Cache Intent (OW) Unlock Write Mask

Write Mask with Cache Intent (LW) Write Mask an the unused ongwoid

within the XMI quadword ’

DWMBA XMi-to-VAXBI Adapter

Table 6-2 (Cont.) VAXBI-to-XM Command Translations

VAXBI (]

Write Mask with Cache Intent (QW) Wirite Mask (QW)

Write Mask with Cache Intent (OW) Write Mask (OW)

interrupt (INTR) Interrupt

identity (IDENT) Not supported (NO ACK to VAXBI)'

Invalidate (INVAL) Not supported (NO ACK to VAXBI)

Broadcast (BDCST) Not supported (NO ACK to VAXBI)

interprocessor Iitsriupt (IPINTR)? Interrupt at IPL 16

Stop Not supported (NO ACK to VAXBI)

'The DWMBA does not procass VAXEI IDENTs onto the XM bus but the DWMBA's

BIIC responds to VAXBI IDENTs that are directed to it if:

— The BIIC detects an error condition that results in a generated interrupt.

~ The user sets the force interrupt bits in the appropriate BIIC register.

~ External logic such as the IPINTR decode logic asserts the BCI INT signal

(pins<7:4> on the BIIC).

25ee Section 6.3.4.

A VAXBI transaction can reference an address between the addresses in

the Starting and Ending Address Registers in the DWMBA's BIIC. VAXBI

transactions c...not access DWMBA-specific registers.

6.3.1 VAXBI-to-XMI Memory Space Rvads

If the incoming VAXBI transaction is a read-type transaction and the

address falls between the address in the DWMBA's BIIC Starting and

Ending Address Registers, the slave sequencer determines if a DMA buffer

is available for use. If so, the slave sequencer moves the C/A data to the

DMA(x) buffer, where x indicates either DMA-A or DMA-B, and notifies

the DWMBA/A module that VAXBI C/A data has been loaded and the

DWMBA/A module should request the XMI bus. The slave sequencer then

issues a STALL response to the VAXBI w.itil the transaction completes.

Later, the DWMBA/A module receives a Read response cycle from XMI
memory with the requested data. The DWMBA/A module loads the

data into the DMA data buffer and notifies the slave sequencer in

the DWMBA/B module that the requested data is available. The slave

sequencer then moves the data to the VAXBI, completing the request.

The DWMBA does not support the caching of memory on VAXBI nodes

8o VAXBI reads are always answered with the VAXBI "don’t cache" read

status.

-9

DWMBA XMi-to-VAXBI Adapter

6.3.2 VAXBI-to-XMI Memory Space Interlock Reads

VAXBI interlock reads (IRCI) behave the same as reads except if a VAXBI

node references a location in XMI memory that is locked. In that case, the

memory roturns a Locked Response (LOC) to the DWMBA. The DWMBA

issues a REIRY confirmation code to the VAXBI commander, releasing the

VAXBI. The DWMBA returns to idle and awaits the next VAXBI request.

6.3.3 VAXBI-to-XM! Memory Writes

The disconnected write mode of operation is used for VAXBI-to-XM!I

memory writes, allowing use of the VAXBI by other devices while the

DWMBA completes the write on the XMI.

The DWMBA's slave sequencer moves the C/A and write data (whether

longword, quadword, or octaword) to an available DMA buffer location

when the incoming write-type VAXBI transaction’s address falls between

the addresses in the DWMBA'S Starting and Ending Address Registers

in its BIIC. The slave sequencer then issues an ACK confirmation to the

VAXBI.

When the buffer load completes, the slave sequencer notifies the

DWMBA/A module’s XMI transmit logic that it should request the XMI

bus. Upon receiving an XMI grant, the DWMBA transmits the write data

transaction and waits for an ACK response.

The DWMBA has two sets of register files, DMA-A and DMA-B, which

allows the DWMBA to accept either a second VAXBI write transaction or

a VAXBI read transaction before the previous XMI write completes. The

DWMBA performs the operations on the XMI in the order that the VAXBI

issues the transactions to ensure that out-of-order sequences do not occur.

If a third VAXBI write transaction occurs before the first and second XMI

writes complete, the DWMBA stalls this VAXBI transaction until the first

XMI write completes successfully.

6.3.4 VAXBI-Generated Interrupts

6-1 LY

Interrupts can either be (1) generated by the DWMBA if there is a status

change or an error condition or (2) passed through the DWMBA to the

XMI bus if generated by various I/O devices on the VAXBI bus. These

interrupts are translated into the appropriate XM! interrupt transactions.

If a DWMBA and a VAXBI device interrupt are both pending at the same

IPL when an XMI IDENT transaction is issued, the DWMBA returns its

vector to ensure that DWMBA error interrupts are serviced first.

DWMBA XMi-to-VAXBI Adapter

6.4 DWMBA XMi-to-VAXBI Adapter Registers

Two sets of registers are used by the DWMBA: DWMBA reg sters

(residing on both modules cf the DWMBA) and VAXBI resisters
(residing in the BIIC). The DWMBA registers include the XMI

required registers and DWMBA-specific registers in D #MBA

private space.

Table 6-3 lists the DWMBA/A module XMI module registers. Table 6—4

lists the DWMBA/B module VAXBI module registers. Table 6-5 lists the

VAXBI registers. See Chapter 5 of the VAXBI Options Handbook for a

description of the VAXBI registers, except for the VAXBI Device Register.

The remainder of Section 6.4 gives detailed descriptions of the DWMBA

registers. The DWMBA/A module registers are presented first, followed b

the DWMBA/B module registers and the VAXBI Device Register.

See Section 2.2.2.3 for more information on /O addressing.

Table 6-3 XMI Ragisters on the DWMBA/A Module

Name Mnemonic' Address?

Device Register XDEV B88+0000 0000

Bus Error Register XBER BB+0000 0004

Failing Address Register XFADR B8B+0000 0008

Responder Error Address Register AREAR B8B+0000 000C

Error Summary Register AESR 88+0000 0010

Intarrupt Mask Register AIMR B8B8+0000 0014

Implied Vector Interrupt Destination/Diagnostic AIVINTR BB+0000 0218

Register

Diag 1 Register ADG1 B88+0000 001C

'The first letter of the mnemonic indicates tha folluwing:

X=XMI regisier, resides on the DWMBA/A XMI module
A=Resides on the DWMBA/A XM! module

B=Resides on the DWMBA/B VAXBI module

2The abbreviaticn *BB” refers to the base address of an XMl node (the address of the

first iocation of the nodespacs).

6~11

DWMBA XMi-to-VAXBI Adapter

Table 6-4 XMl FRegisters on the DWMBA/B Module

Name #nemonic’ Address?

Control and Status Register BCSR BB+0000 0040

Emor Summary Register BESR BB+0000 0044

Interrupt Destination Registar BIDR BB+0000 0048

Timeout Address Register BTIM BB+0000 004C

Vactor Offset Register BVOR BB+CN00 0050

Vector Register BVR B8B+0000 0054

Diagnostic Control Registor 1 BDCR1 BB+0000 0058

Reserved Ragister - B8B+0000 005C

'The first letter of the mnemonic indicates the following: ‘
Y2 XMl ragister, resides on the DWMBA/A module

<=Resides on the DWMBA/A module

BaRe..uas on the DWMBA/B module

2The abbreviaiion "BB" refers to the base address of an XMI node (the address of the

first location of the nodespace).

6-12

DWMBA XMi-to-VAXBI Adapter

&
Table 6-5 VAXS! Reglsters

Name Mnemonic Addrese’

Devica Register DTYPE? bb+00

VAXBI Control and Status Registar VAXBICSR bb+04

Bus Error Register BER bb+08

Eror Interrupt Control Register EINTRSCR bb+0C

interrupt Destination Register INTRDES bb+10

IPINTR Mask Register IPINTRMSK bb+14

Force-Bit IPINTR/STOP Destiriation Register FIPSDES bb+18

IPINTR Source Register IPINTRSRC bb+1C

Starting Address Register SADR bb+20

Ending Address Register EADR bb+24

BCI Control and Status Register BCiCSH bbe28

Wirite Status Re/ister WSTAT bb+2C

Force-Bit IPINTR/STOP Command Register FIPSCMD bb+30

User Interface Interrupt Control Register UINTRCSR bb+40

General Purpose Register 0 GPRO bb+FO0

General Purpose Register 1 GPR1 bb+F4

General Purpose Register 2 GPR2 bb+F8

General Purpose Register 3 GPR3 bb+FC

Stave-Only Status Register SOSR bb+100

Receive Console Data Register RXCD bb+200

'The abbreviation "bb" refers ‘0 the base address of a VAXBI node (the address of the
first location of the nodespace).

2Dasrribed in this section.

6-13

DWMBA/A XMi Module Replsiers

Device Register (XDEV)

Device Register (XDEV)

The Device Register contains information to identify the node and is loaded

during node initialization. A zero value ingicates an uninitialized node.

ADDRESS XMI nodespace base address + 0000 0000

» 1% 13]

Devics Revision Davice Typa (2001)

mob 032020

bits<31:16>
Name: Davice Ravision

Mnemonic: DREV

Type: RO, 0

Identifies the functional revision level of the module in hexadecimal.

The DREV field always reflects the letter revision of the module as
follows:

DWWMBA/A Adapter Ravigion DREV (decimal) DREV (hex)

A0 1 0001

Al 1 0001

BO 2 0002

B1 2 0002 o

20 26 001A

bite<15:0>
Name: Devica Type

Mnemonic: DTYPE

Type: RO, 0

Identifies the type of node. DTYPE is 2001 (hex) for the DWMBA/A

module.

6-14

DOWMBA/A XMl Module Registers

Bus Error Reglster (XBER)

Bus Error Register (XBER)

The Bus Error Register contairis error status on a failed XMl transaction. This

status includes the failed commarnd, commander ID, and an error bit that
indicates the type of error that occured. This status remains locked up until

software resets the error bit(s).

ADDRESS XM nodespace base address + 0000 0004

3% 30 20 28 27 28 25 24 23 22 21 20 19 18 17 W@ 15 14 13 12 11 10 ¢ 4 3 0

ojojojijojojolojojojojolojojeioi0lojGj0j1)1

L l— Failing Command (FCMD)
Failing Commander D (FCID)

Self-Test Fail (STF)

Extended Test Fail (ETF)

Node-Spacitic Error Summary (NSES)

Commander Errore

- Transaction Timsout (TTO)

— Reserved; must be zero

i L. Command NO ACK (CNAK)

Read Error Response (RER)

— Read Sequence Eror (RSE)

— No Read Respaonse (NRR)

L Corrected Read Data (CRD)

L~ Write Data NO ACK (WDNAK)

Responder Errors

— READ/IDENT Data NO ACK (RIDNAK)

- Write Sequence Error (WSE)
L- Parity Error (PE)

L Inconsistent Parity (IPE)

tizcollancous

— Write Zrror Interrupt (WEL)

L XM Fault ({FAULT)

L Corrected Confirmation (CC)
L XMi BAD (XBAD)

- Node HALT (NHALT)

— Node Reset (NRST)

— Error Summary (ES)

6-15

DWMBA/A XMI Module Registers

Bus Error Reglster (XBER)

bit<31>

bit<30>

bit<29>

bit<28>

6-16

Name: Error Summary

Mnemonic: ES

Type: RO, 0

ES represents the logical OR of the error bits in this register.

Therefore, ES asserts whenever any error bit asserts.

Name: Node Reset

Mnemornic: NRAST

Type: RW, 0

Writing a one tc NRST initiates a power-up reset of the system. Reads

to this bit location return zero. When NRST has a one written to it,

the DWMBA:

° Resets all logic on the DWMBA/A module to an initialized (power-

up) state.

o Asserts the RESET control signal to the DWMBA/B module,

sequencing the VAXBI pov/er supply(s). The assertion of RESET

to the DWMBA/B causes the DWMBA/B to sequence BI AC LO,

and BI DC LO. The assertion of Bl DC LO causes the DWMBA/B

module to reset to an initialized (power-up) state.

When NRST is set, it remains asserted for six to eight XMI cycles,

after which it is cleared by logic on the DWMBA/A module. During the

time that the DWMBA is performing its node reset, it does not affect

the operation of the XMI bus.

Name: Node HALT

Mnemonic: NHALT

Type: AW, 0

Unused; must be zero.

Name: XM BAD

Mnemonic: XBAD

Type: Aw, 0

Unused; must be zero.

bit<27>

bit<26>

bit<25>

bit<24>

bit<23>

bit<22>

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

Name: Corrected Confirmation

Mnemonic: CC

Type: RWIC, 0

CC sets when the DWMBA detects a single-bit CNF error. Single-bit

CNF errors are automatically corrected by the XCLOCK chip in the

XMI Corner.

i

Name: XMI FAULT

Mnemonic: XFAULT

Type: RWIAC, 0

Unused; must be zero.

Name: Wiite Error Interrupt

Mnemonic: WE!

Type: RAWIC, 0

Unused; must be zero.

Name: Inconsistent Parity Error

Mnemonic: IPE

Type: RWI1C, 0

Unused; must be zero.

Name: Parity Error

Mnemonic: PE

Type: RW1C, 0

When set, PE indicates that the DWMBA has detected a parity error

on an XMI cycle.

Name: Write Sequence Error

Mnemonic: WSE

Type: RW1C, 0

When set, WSE indicates that the DWMBA aborted a write transaction

directed to it due to missing data cycles.

6-17

DWMBA/A X! Module Reglsters

Bus Error Reglster (XBER)

bit<21>
Name: Read/IDENT Data NO ACK

Mnemonic: RIDNAK

Type: RW1C, 0

When set, RIDNAK indicates that a Read or IDENT data cycle (GRDn,

CRDn, LOC, RER) transmitted by the DWMBA has received a NO

ACK confirmation.

bit<20>
Name: Write Data NO ACK

Mnemonic: WODNAK

Type: RW1C, 0

When set, WDNAK indicates thata Write data cycle (GRDn, CRDn,

LOC, RER) transmitted by the DWMBA has roceived a NO ACK

confirmation.

bit<19>
Name: Comrectad Read Data

Mnemonic: CRD

Typ- RW1C, 0

When set, CRD indicates that the DWMBA has received a CRDn read
response.

bit<18>
Name: No Read Response

Mnemonic: NRR

Tvps: RW1C, 0

When set, NRR indicates that a read transaction initiated by the

DWMBA failed due to a read response timeout.

blit<i7>
Name: Read Sequence Error

Mnemonic: RSE

Type: RWI1C, 0

When set, RSE indicates that a transaction initiated by the DWMBA
failed due to a read sequence error.

6-18

bit<16>

bit<15>

bit<id>

bite13>

bit<12>

DWMBA/A XMI Module Registers

Bus Error Register (XBER)

Name: Read Error Response

Mnemonic: RER

Type: RWIC, 0

When set, RER indicates that a DWMBA has received a Read Error

Response.

R R RIAR

Name: Command NO ACK

Mnemonic: CNAK

Type: RWIC, 0

When set, CNAK indicates that a command cycle transmitted by the

DWMBA has received a NO ACK confirmation caused by either a

reference to a nonexistent memory location or a command cycle parity

error. This bit is set only if the reattempts fail.

Name: Reserved

Mnemonic: None

Type: RW, 0

Reserved; must be zero.

Name: Transaction Timeout

Mnemonic. TTO

Type: RWIC, 0

When set, TTO indicates that a transaction initiated by the DBWMBA

failed due to a transaction timeout. This bit is set only if the

reattempts fail.

Name: Node-Specific Eror Summary

Mnemonic:. NSES

Type: RO, 0

When set, NSES indicaies that 1 node-specific error condition has

been detected. The exact nature of the error is contained in DWMBA-

specific registers.

6-19

DWMBA/A XM! Module Registers

Bus Error Register (XBER)

biteti>

bit<10>»

bits<9:4>

kits<3:0>

R R CERTTEED

Name: Extended Test Fail

Mnemonic: ETF

Type: RWI1C, 0

Unused; must be zero.

Name: Seit-Test Fail

Mnemonic: STF

Type: AWIC, 1

When set, STF indicates that the DWMBA has not yet passed its self-

test. This bit is cleared by the CPU node that executed the DWMBA

self-test when the DWMBA passes its self-test.

Name: Failing Commander 1D

Mnemonic: FCID

Type: RO

The Failing Commander ID field logs the commander ID of a failing

transaction. FCID sets only if the retried transaction fails.

Name: Failing Command

Mnemonic: FCMD

Type: RO

The Failing Command field logs the command code of a failing

transaction. FCMD sets only if the retried transaction fails.

0

DWMBA/A XMI Module Registers

Falling Address Register (XFADR)

Failing Address Register (XFADR)

bits<31:30>

bits<29:0>

ADDRESS Nodespace base address + 0000 0008 (SSC)

The Failing Address Register logs address and length information &ssociated

with a failing transaction.

3N W N]

Failing Address

Failing Length (FLN)

m-0380-60

Name: Failing Length

Mnemonic: FLN

Type: RO

FLN logs the value of XMI D<31:30> during the command cycle of a

failing transaction.

Name: Failing Address

Mnemonic: None

Type: RO

The Failing Address field logs the value of XMI D<29:0> during the
command cycle of a failing transaction.

6-21

DWMBA/A XMi Moduie Hegisters

Responder Error Address Reglster (AREAR)

Responder Error Address Register (AREAR)

AREAR logs the failing address received from a CPU node initializing an 110

write, read, or IDENT transaction to the DWMBA or the VAXBI. AREAR is

loaded when the DWMBA/A module ACKs the XMl's C/A cycle.

AREAR is locked when the DWMBA is unable to compiete the requested

operation, either a CPU write transaction that fails, resulting in the VO Write
Failure bit in the DWMBA/A module's Error Summary Register being set or a

CPU read or IDENT ftransaction that results in the setting of the Data NO ACK
bit in the DWMBA/A module’'s XBER register.

ADDRESS XM nodespace base address + 0000 000C

Responder Failing Address

l—_ Responder Failing Length (RFLN) mab-0666-00

bits<31:30>
Name: Responder Failing Length

Mnemonic: RFLN

Type: RO

RFLN logs the value of XMI D<31:30> during the cycle that the

DWMBA accepts the C/A cycle for the XMI commander.

bits<29:0>
Name: Responder Failing Address

Mnemonic: None

Type: RO

The Responder Failing Address bits log the value of XMI D<29:0>

during the cycle that the DWMBA accepts the C/A cycle from the XMl

commander.

6-22

DWMBA/A XMI Module Registers

Error Summary Register (AESR)

Error Summary Register (AESR)

AESR is used to capture DWMBA/A module-related error conditions.

ADDRESS

bit«31>

bits<30:26>

XMl nodespace base address + 0000 0010

N) 22 25 20 19 16 1§ e?276543 210

mez | MUST BE ZERO

X8l Cable OK l i- Failing Comrand (ECVD)
Failing Commander ID (EID)

XBIA intemai Error

/O Write Failure During CPU Write Transaction

: BCIACLO

IBUS DMA-A Data Panity Emor

1BUS DMA-A C/A Parity Emor

1BUS DMA-B Data Panity Error

IBUS DMA-B C/A Parity Error

1BUS CPU Data Parity Eror

mad-0667-80

Name: XBI| Cable OK

Mnemonic: None

Type: RO

XBI Cable OK sets to one on initialization if the four IBUS cables are

correctly connected and if the DWMBA/B module has DC power from

the VAXBI backplane. If XBI Cable OK clears and the DWMBA/E

module has VAXBI DC power, then one or more of the cables is not
connected or is inceTrectly installed.

Name: Reserved

Mnemonic: None

Tvpe: RO, O

Reserved; must be zero.

6-23

DWMBA/A XMI Module Registers

Error Summary Regist.r (AESR)

bits<25:20>
Name: Failing Commander 1D

Mnemonic: EID

Tyne: RO

EID logs the XMI commander ID of a failed DWMBA /O write, /0

read, or XMI IDENT transaction. The DWMBA will load this register

after it ACKs the XMI commander’s C/A cycle. EID locks if the

DWMBA is unable to complete the requested operation as follows:

1 A failing CPU write transaction that sets the /O Write Failure bit

in the PDWMBA/A module’s Error Summary Register.

2 A CPU read or IDENT transaction that sets the Data NO ACK bit

in the DWMBA/A module’s Bus Error Register (XBER).

The lock on EID clears when both of the locking error conditions clear.

bits<19:16>
Name: Failing Command

Mnemonic: ECMD

Type: RO

ECMD logs the XMI commander command of a failed DWMBA 1/O

write, VO read, or XMI IDENT transaction. The DWMBA lecads this

register after it ACKs the XMI commander’s C/A cycle. ECMD locks if

the DWMBA is unable to complete the requested operation as follows:

1 A failing CPU write transaction that sets the 'O Write Failure bit

in the DWMBA/A module’s Error Summary Register.

2 A CPU read or IDENT transaction that sets the Data NO ACK bit

in the DWMBA/A module’s Bus Error Register (XBER).

The lock on EID clears when the locking error conditions clear for both

ECMD and EID. ‘

bits<15:8>
Name: Reserved

#yemonic: None

Type: RO, 0

Reserved; must be zero.

6-24

bit<7>

bit<6>

bit<5>

DWMBA/A XMI Module Registers

Error Summary Reglster (AESR)

Name: XBIA Internal Error

Mnemonic: None

Type: RW1C, 0

The XBIA Internal Error bit sets to indicate that an UNEXPLAINED

internal error to the DWMBA/A module gate array was detected,

generally a hardware problem where control logic encountered

UNDEFINED conditions. The DWMBA/A module issues an IVINTR

transaction with "mem write error” set in the Type field when XBIA

Internal Error sets.

Name: VO Wriie Failure During CPU Wiiie Transaction

Mnemonic: /O Write Failure

Type: RWi1C, 0

/O Write Failure During CPU Write transaction sets if the DWMBA/B
module is unable to complete a CPU write transaction to either its

register space or to VAXBI address space. Its assertion coincides with

the generation of an IVINTR transaction due to this error condition.
The DWMBA issues an IVINTR with "mem write error” set in the

Type field when /O Write Failure During CPU Write Transaction is

asserted. Software uses this bit and other error bits to determine the
cause of a DWMBA-generated IVINTR transaction.

When VO Write Failure During CPU Write Transaction sets, the

contents of the DWMRA/A module Responder Error Address Register,
the Failing Commander ID bits, and the Failing Command bits lock.

Name: BClACLO

Mnemonic: None

Type. RWIC, 1

The BCI AC LQ bit sets when VAXBI power falls below specifications,

as indicated by an asserted 5Ci AC LO L signal (asserted = one). The
DWMBA issues an IVINTR with "mem write error” set in the Type
field when BCI AC LO is asserted so that software can determine the

zause of this IVINTR transaction. Software then clears BCI AC LO as
part of the interrupt service routine that executes as a result of the

IVINTR.

The DWMBA self-test program clears BCI AC LO.

6-25

DWMBA/A XMl Module Registers

Error Summary Register (AESR)

bit<d>

bit<3>

bit<2>

bit<i>

6-26

Name: IBUS DMA-A Data Parity Error

Mnemonic: None

Type: RWIC, 0

IBUS DMA-A Data Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-A data buffer location. The DWMBA issues an IVINTR

with "mem write error” set in the Type field when IBUS DMA-A Data

Parity Error asserts.

Name: IBUS DMA-A C/A Parity Error

Mnemonic: None

Type: RWIC, 0

IBUS DMA-A C/A Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-A C/A location. The DWMBA issues an IVINTR with

"mem write error” set in the Type field when IBUS DMA-A C/A Parity

Error asserts and the failing DMA transaction is a write or interrupt.

The DWMBA issues an error interrupt if this error bit is set and the

appropriate mask bit is also set.

Name: IBUS DMA-B Data Parity Error

Mnemonic: None

Type: AWIC, 0

IBUS DMA-B Data Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module was

loading a DMA-B data buffer location. The DWMBA issues an IVINTR

with "mem write error” set in the Type field when IBUS DMA-B Data

Parity Error asserts.

Name: IBUS DMA-B C/A Parity Error

Mnemonic: None

Type: HWiC, 0

IBUS DMA-B C/A Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module

was loading a DMA-B C/A location. The DWMBA issues an IVINTR

with "mem write error” set in the Type field when IBUS DMA-B C/A

Parity Error asserts and the failing DMA transaction is a write. The

DWMBA issues an error interrupt if this error bit is set and the

appropriate mask bit is also set.

bit<0>

DWMBA/A XMl Module Registers

Error Summary Register (AESR)

Name:; IBUS CPU DATA Parity Error

Mnemonic: None

Type: RWIC, 0

IBUS CPU DATA Parity Error sets when the DWMBA/A module

detects a parity error on the IBUS when the DWMBA/B module was

loading CPU DATA location during a CPU-initiated IO read or IDENT.
The DWMBA issues a Read Error Response (RER) to the commander
when IBUS CPU DATA Parity Error asserts. The DWMBA issues an

error interrupt to the XMI if this ervor bit is set and the appropriate

mask bit is also set.

DWMBA'A XMI Module Regilsters

interrupt Mesk Register (AIMR)

Interrupt Mask Register (AIMR)

AIMR enables/disables the generation of an error interrupt transaction when

the corresponding error bit in both the DWMBA/A module's XMI Bus Error

Register (XBER) and the DWMBA/A module’s Error Summary Register

(AESR) is set.

ADDRESS XMI nodespace base address + 0000 0014

» 30 R W N2 N W 101817 1318 1. 13 12 $ 4 3 2 10

MBZ mBZ 0 MUST BE ZERO

L Diagnostic Read _I
or Write

INTR on 1BUS DMA-A C/A PE

Diagnostic Raad or Write

INTR on IBUS DMA-B C/A PE

INTR on IBUS CPU DATA PE

.. INTR on Command NO ACK

.- INTR on Read Error Response

- INTR on Read Sequence Eror

L L~ INTR on No Read Response

INTR on Corrected Read Data

— |INTR on Write Data NO ACK

L INTR on Read/IDENT NO ACK

= {NTR on Write Sequence Error

L INTR on Parity Emor

INTR on Corrected Confirmation

Enable IVINTR Trarsactions mab 086800

blt<31>
Name: Enable IVINTR Transactions

Mnemonic: None

Type: RW, 0

When Enable IVINTR Transactions is set and the IVINTR Lestination

Register is properly configured, IVINTRs are enabled and can be

issued on the XMI bus.

CAUTION: The Enable IVINTR Transactions bit MUST be set to ensure

proper error reporting in the case of asynchronous write

failures and to report the occurrence of a pending VAXBI

power-fail not initiated by XMI AC LO, XMI DC LO, or XBI

Node Reset.

6-28

bite<30:28>

bit<27>

bits<26:24>

bit<23>

bit<22>

DWMBA/A XMI Module Registers

interrupt Mask Register (AIMR)

Name: Reserved

Mnemonic: None

Typa: RO, 0

Reserved; must be zero

Nama: INTR on Corrected Confirmation

Mnemonic: None

Type: RW, 0

When INTR on Corrected Confirmation sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates

an interrupt request if XBER<23> (PE) is set.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: INTR on Parity Error

Mnemonic: None

Type: RW, 0

When the INTR on Parity Error bit sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates

an interrupt request if XBER<23> (PE) is set.

Name: INTR on Write Sequence Error

Mnemonic: None

Type: RW, 0

When the INTR on Write Sequence Error bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which
generates an interrupt request if XBER<22> (WSE) is set.

DWMBA/A XMi Module Registers

interruj.t Mask Register (AIMR)

bit<21>

bit<20>

bit<19=>

bit<18>

bit<17>

Name: INTR on Read/IDENT NO ACK

Mnemonic: None

Type: AW, 0

When the INTR on Read/IDENT NO ACK sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates

an interrupt request if XBER<21> (RIDNAK) is set.

Name: INTR on Write Data NO ACK

Mnemonic: None

Type: RW, 0

When the INTR on Write Data NO ACK sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates

an interrupt request if XBER<20> (WDNAK) is set.

Name: INTR on Corrected Read Data

Mnemonic: None

Type: RW, 0

When the INTR on Corrected Read Data bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if XBER<19> (CRD) is set.

Name: INTR on No Read Rasponse

Mnemanic: None

Type: RW, 0

When the INTR on No Read Response bit sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates

an interrupt request if X3ER<18> (NRR) is set.

Name: INTR on Read Sequence Error

Mnemonic: None

Type: RAW, 0

When the INTR on Read Sequence Error bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if XBER<17> (RSE) is set.

bit<16>

bit<15>

bite<id>

bit<i13>

bits<12:5>

DWMBA/A XMiI Module Registers

interrupt Mask Reglster (AIMR)

Name: INTR on Read Error Response

Mnemonic: None

Type: AW, 0

When the INTR on Read Error Response bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if XBER<16> (RER) is set.

Name: INTR on Command NO ACK

Mnemonic: None

Type: RW, 0

When the INTR on Command NO ACK bit sets, the DWMBA/A module

asserts the IR XMI ERR BIT SET L line of the IBUS, which generates

an interrupt request if XBER<15> (CNAK) is set.

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Diagnostic Read or Write

Mnemonic: Non:

Tupe: RO, X

Diagnostic Read or Write is used by diagnostic tests.

Name: Reserved

Mnemonic: None

Type: RO, 0

Keserved; must be zero.

DWMBA/A XMi Module Regilsters

interrupt Mask Registor (AIMR)

blicd>

bit<3>

bit<2>

bit<i>

bite<O>

st e e Vo i

Name: Diagnoatic Read or Write

Mnemonic: None

Type: RO, X

Diagnos*ic Read or Write is used by diagnoctic tests.

R i i e

Name: INTR on 1BUS DMA-A C/A PE

Mnemonic: None

Type: RW, 0

When the INTR on IBUS DMA-A CA PE bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if a8 parity error was deiected on the

{BUS when the DWMBA/B module was loading a DMA-A C/A location.

Name: Diagnostic Read or Write

Mnamonic: None

Type: RO, X

Diagnostic Read or Write is used by diagnostic tests.

Name: INTR on 1BUS DMA-B C/A PE

Mnemonic: None

Type: RW, 0

When the INTR on IBUS DMA-B C/A PE bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if a parity error was detecied on the

IBUS when the DWMBA/B module was loading a DMA-B C/A location.

EEERITRTE TR

Name: INTR on IBUS GPU DATA PE

Mnemonic: None

Type: RW, 0

When the INTR on IBUS CPU DATA PE bit sets, the DWMBA/A

module asserts the IR XMI ERR BIT SET L line of the IBUS, which

generates an interrupt request if a parity error was detected on the

IBUS when the DWMBA/B r .dule was loading the CPU data iocation.

DWMBA/A XMI Mcdule Regisiers

implied Vector interrupt Desgtination/Diagnostic Reglster (AIVINTR)

implied Vector Interrupt Destination/Diagnostic

Register (AIVINTR)

The AIVINTR is used during diagnostics and DWMBA-initiated IVINTR

transactions.

bits<31:0>

bits<15:0>

ADDRESS XMI nodespace base address + 0000 0018

i 18 1S [

Diagnostic Read or Wnte

!0— IVINTR Destination ——-"
wad0869-80

Name: Diagnostic Read or Write

Mnemonic: None

Type: RW

The Diagnostic Read or Write bite are used by diagnostic routines

to verify the integrity of the DWMBA/A mcdule’s main data path

inside the DWMBA/A module gate array. When used in this manner,

diagnostics need to raise the processor’s IPL level above IPL 30 so

that, should an error occur causing the DWMBA/A module to issue an

IVINTR transaction, an unexpected interrupt will not occur.

During DWMBA-initiated IVINTR transactions, bits <15:0> are used

as IVINTR Destination bits.

Name: IVINTR Destination

Mnemonic: None

Type: RW, 0

The IVINTR Destination bits determine which nodes on the XMI will

be targeted by the DWMBA when it issues an Implied Vector Interrupt

transaction. Each of the 16 bits corresponds to one of the 16 XMl

nodes (only 14 nodes are used in the DECsystem 5800). When a bit

is set, the selected node wiil be the target. For example, if bit <12>

becomes set, then XMI node 12 is the node that the DWIMBA selects to

participate in the IVINTR transaction. Any number of bits can be set.

A second use for the IVINTR Destination bits is by diagnostics.

6-33

DWMBA/A XMI Module Registers

Diag 1 Register (ADG1)

Diag 1 Register (ADG1)

ADG?1 is used by diagnostics to test parity and other f2atures in the DWMBA/A

moduie and the IBUS.

ADDRESS XMI nodespace base address + 0000 001C

N w0 76543 2110

MUST BE ZERO mez

L Auto Retry Disable (ARD) Force Octaword Transfers _—J I
Force DMA-A Buffer Busy

Force DMA-B Butfer Busy

General Bad IBUS Receiver Party

General Bad IBUS Transmit Paity

b 0870-90

bit<31>
Name: Auto Retry Disable

Mnemanic: ARD

Type: RW, 0

Settinz Auto Retry Disable disables reattempts of failed XMI

commander transfers. XMI error indications (NO ACKs) are

immediately logged in the XMI Bus Error Register, and the

appropriate action is taken.

CAUTION: A NO ACK confirmation is a legal response that an XMI node ‘
may issue if it is currently unsble to respond to the requested
transaction because it is busy. If the user sets Auto Retry

Disable, the user must ensure that either a "busy” NO ACK
cannot be issued by the targeted node or the XMI or the

DWHMBA has the capability to handle a traneaction that may

not complete.

bits<30:7>
Name: Raserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

6-34

bit<6>

bit<5>

bit<d>

DWMBA/A XM! Module Registers

Diag 1 Register (ADG1)

CAUTION:

Name: Force Octawerd Transfers

Mnemonic: None

Type: RW, 0

When Force Octaword Transfers is set, the DWMBA/A module

generates ectaword DMA transactions regardless of the length

code that the DWMBA/B module loaded into the DMA buffer.

The Force Octaword Transfers bit ie used with Force DMA-A/B

Busy (ADG1<5:4>), Flip FADR bit 1 (BDCR1<6>), and Flip Bit 29

(BDCR1<4>) to allow diagnostics to test the DWMBA's DMA buffer
memory using CPU loopback transactions to XMl memory.

When Flip Bit 286 (BDCR1<4>) has been set to use the diagnostic

feature "DMA loopback mode," only LEGAL addresses are

permitted. ILLEGAL addresses result in UNDEFINED data.

The CPU-generated address must be either 2zxxx xxx(or 2xxx

xxx4 to be legal. The following are ILLEGAL addresses: 2xxx

zxxB and 2xxx xxxC.

CAUTION:

Name: Force DMA-A Buffer Busy

Mnemonic: None

Type: RW, 0

When set, the Force DMA-A Buffer Busy bit forces the DMA buffer

control logic to place the DMA-A. buffer into the BUSY state, forcing

all DMA traffic through the DMA-B buffer.

If both ADG1<5> and ADG1<4> are set, all DMA transactions

(VAXBI transactions that select the DWMBA as the slave and

whose address falls within the bounds of the Starting and

End.ng Address Registers) will stall.

CAUTION:

tame: Force DiA-B Buffer Busy

Mnemonic: None

Type: AW, 0

When set, the Force DMA-B Buffer Busy bit forces the DMA buffer

control logic to place the DMA-B buffer into the BUSY state, forcing

all DMA traffic through the DMA-A buffer.

If both ADG1<&> and ADGl<4> are get, all DMA transactions

{(VAXRBI transactions thai select the DWMBA as the slave and
whose address falls within the bounds of the Starting and

Ending Address Registers) will stall.

DWMBA/A XMI Module Registers

Diag 7 Register (ADG1)

bit<3>

bit<2>

bits<1:0>

6-36

Name: General Bad IBUS Receiver Parity

Mnemonic: GEN BAD IBUS RCV PAR

Type: PW, 0

Setting GEN BAD IBUS RCV PAR causes the parity check bit on

the DWMBA/A module for IBUS parity to be a one, regardless of the
data that is loaded onto the buffer. Diagnostic rouiines use this bit

and specific data patterns to force IBUS parity check errors n the
DWMBA/A module when the DWMBA/B module loads the contents of

the C/A or data buffers contained in the DWMBA/A module gate array.

Name: Ceneral Bad 1BUS Transmit Parity .

Mnemonic: GEN BAD IBUS XMIT PAR

Type: AW, 0

Setting GEN BAD IBUS XMIT PAR causes the parity bit sent to the
DWMBA/B module for IBUS parity to be a one, regardless of the data

that resides in the buffer. Diagnostic routines use this bit and specific
data patterns to force IBUS parity errors on the DWMBA/B module

when the DWMBA/B module fetches the contents of the C/A or data

buffers contained in the DWMBA/A module gate array.

Name: Reserved

Mnemonic: None

Type: RC, 0

Reserved; must Lo »ero.

DWMBA/B VAXBI Module Registers

Control and Status Register (BCSR)

Control and Status Register (BCSR)

BCSR contains DWIMBA/B module operational control and status bits.

ADDRESS XMI nodespace base address + 0000 0040

31 30 9 4 3 2 10

MUST BE ZERO 0

L Enable XBl interrupts BIBAD I I
B! Interlock Read Failed Mask

Bl Seit-Test LED

1BUS Parity Error Intarrupt Mask

meb>0671-80

bit<31>
Name: Enable XBI intarrupts

Mnemonic: None

Type: AW, 0

Setting Enable XBI Interrupts enables the DWMBA to generate

XM interrupt requests in response to DWMBA-generated or VAXBI-

gencrated interrupts. The appropriate interrupt mask bits must also

be set for interrupts to be generated.

bits<30:5>
Name: Reserved

Mnemonic: MNone

Type: RO, 0

Reserved; must be zero.

DWMBA/B VAXBI Module Registers

Conirol and Status Reglster (BCSR)

bit<d>

bite3>

bit<2>

bitei>

Namae: BI BAD

Mnemonic: None

Type: RO

The initial state of the BI BAD bit on power-up or reset reflects the

state of the BI BAD L line on the VAXBI by monitoring the line. It

is used by console initialization software and error handling software

to detect faulty VAXBI nodes. The assertion of BI BAD L on a VAXBI

node results in the assertion of the XMI BAD line.

The BI BAD bit sets to logic level one when the VAXBI BI BAD L

deasserts. When the BI BAD bit sets, it indicates that all VAXBI

nodes have passed self-test, except for the DWMBA/B module, which

does not asseit BI BAD L

Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Namae: B! interlock Rez Failed Mask

Mnemonic: None

Type: RW, 0

Setting BI Interlock Read Failed Mask to a one causes the DWMBA

to generate an error interrupt request if BESR<2> (BI Interlock Read

Failed) is set.

NOTE:

R R

Name: Bl Salf-Test LED

Mnemonic: None

Type: RW, 0

The BI Self-Test LED bit is set by the XMI boot processor node when

the XBI self-test completes without error. If any portion of the XBI

self-test fails, this bit does not set. When the BI Self-Test LED bit

sets, the VAXBI Self-Test LED lights on the DWMBA/B module.

The BI Self-Test LED bit has NO EFFECT on the operation

of the XMI Self-Test LED on the DWMBA/A module. The XMI

Self-Test LED is controlled by XBER<10>, Self-Test Fatil.

bit<0>

DWWBA/B VAXBI Module Rsglsters

Control and Status Register (BCSR)

Name: IBUS Parity Error Intarrupt Mask

Mnemonic: None

Type: AW, 0

Setting IBUS Parity Error Interrupt Mask to one causes the DWMBA

to generate an error interrupt request if BESR<0> (XBIB-Detected

IBUS Parity Error) is set.

DWMBA/B VAXBI Module Reglsters

Error Summary Reglster (BESR)

Error Summary Register (BESR)

The BESR contains statiis biis for errors detected by the DWMBA/B module.

ADDRESS XMl nodespace base address + 0000 0044

n 17 1 132 v 8768843 210

MUST BE ZERO

Muttiple CPU Errors

Command/Address Fatch Failad

Slave Sequancer Transaction Failed

Master Sequencer Transaction Failed

liegal CPU Command

8! intarlock Read Failed

IDENT Emor

XB1B-Detected IBUS Parity Error

Interrupt Sent Status _I l
XBI interrupt-Panding Status

B! Intarrupt-Pending Status

mab-0872.60

bits<31:17>
Name: Reserved

#nemonic: None

Type: RO. 0

Reserved; must be zero.

bits<16:13>
Name: interrupt Sent Status

Mnemonic: None

Type: RO, 0

The Interrupt Sent Status bits correspond to the 4-bit interrupt sent

flops internal to the gate array, with BESR<16> corresponding to
IPL<17>, BESR<15> corresponding to ILP<16>, ete. The interrupt
sent status flops and BSER<12:8> determine the current interrupt-
pending status.

bit<i2>

bits<11:8>

bit<7>

blt<6>

DWMBA/B VAXBI Module Registers

Error Summary Register (BESR)

Name: XB! Interrupt-Perding Status

Mnemonic: None

Type: RO, 0

The XBI Interrupt-Pending Status bit is a direct read of the XBI

interrupt-pending flip-flop. A one indicates that a DWMBA interrupt

is pending.

Name: B! Interrupt-Pending Status

Mnemonic: None

Type: RO, 0

The Bl Interrupt-Pending Status bits set to indicate that one or more

of the VAXBI interrupt-pending flip-flops is set. When asserted, they
indicate that a VAXBI-generated interrupt targeting the DWMBA

was successfully received and that a CPU IDENT at the correct IPL

has not yet been received. These bits are a direct read of the VAXBI
interrupt-pending flip-flops, with BESR<11> corresponding to IPL<17>

and BESR<8> corresponding to IPL<14>.

Name: Muitiple CPU Errors

Mnamonic: None

Type: RW1C, 0

Multiple CPU Errors sets when BESR«<4> and BESR<0> have
previously set due to a CPU transaction IBUS parity error when

C/A or data is removed from the CPU buffer. This indicates that an

error occurred on a subsequent CPU transaction before software had
acknowledged a previously failed CPU transaction. This bit does not
gset on a parity error on write data accompanying the command/address

on which an error was detected since the transaction has already been

recorded as having failed.

Name: Command/Address Fatch Failed

Mnemonic: C/A Fetch Failed

Type: RO, 0

C/A Fetch Failed, when set with BESR<0> set, indicates that the
DWMBA/B module detected an IBUS parity error on the C/A fetch

from the CPU C/A buffer. C/A Fetch Failed will NOT set on a
DWMBA/B module detected IBUS parity error when write data is

fetched from the CPU Write Data buffer.

DWMBA/B VAXBI Module Registers

Error Summary Reglster (BESR)

bit<5»
Name: Slave Sequencer Transaction Failec

Mnemonic: None

Type: RO, 0

Slave Sequencer Transaction Failed sets with BESR<0> to indicate

that an IBUS parity error occurred while the slave sequencer had

control of the IBUS during a read data fetch from the DMA read

buffer.

bited>
Name: Master Sequencer Transaction Failed

Mnemonic: None

Type: RO, 0

Master Sequencer Transaction Failed sets with BESR<0> to indicate

that an IBUS parity error occurred while the master sequencer had

control of the IBUS during a C/A or write data fetch from the CPU

buffer.

NOTE: This bit will be set but NOT VALID w.nless bit<0> in this register

is also set.

bit<3>
Name: lllegal CPU Command

Mnemonic: None

Type: RO

Illegal CPU Command sets to indicate that an illegal CPU command

was decoded by the DWMBA/B module. This error occurs only if an

undetected multi-bit parity error happened during the time when

the DWMBA/B module fetches the commmand/address from the CPU

buffer. The error results in the master sequencer terminating the

transaction and signaling the DWMBA/A module that the transaction

failed.

The Illegal CPU Command bit does NOT generate an error interrupt.

bit<2>

bitei>

DWMBA/B VAXBI Module Registers

Error Summary Reglster (BESR)

Name: Bl Interlock Reed Failed

Mnamonic: None

Type: RWIC, 0

BI Interlock Read Failed sets to indicate that a VAXBI-to-XMI memory

Interlock Read operation failed to successfully complete on the VAXBI.

When this error occurs, it is highly probable that the lock set in XMl

memory will not be unlocked by the VAXBI device that issued the

Interlock Read. The contents of the Timeout Address Register and the

setting of BI Interlock Read Failed can be used to determine the locked

address in XMI memory. The operating system can clear the lock in

XMI memory by writing to a specific CSR in XMI memory.

BI Interlock Read Failed sets whenever 8 VAXBI Interlock Read

command has been decoded and the summary EV code Illegal CNF

Received for Slave Data (ICRSD) is decoded during a VAXBI Interlock

Read transaction. Setting Bl Interlock Read Failed locks the contents

of the Timeout Address Register. Writing a one to Bl Interlock Read

Failed clears both the bit and its lock on the register.

When BI Interlock Read Failed is set with its corresponding mask bit,

an error interrupt request is generated.

Name: IDENT Etror

Mnemonic: None

Type: RW1C, 0

IDENT Error sets to indicate that the DWMBA received an XMl

IDENT transaction and no VAXBI nor DWMBA interrupt requests

were pending at the IDENTed IPL. A set IDENT Error indicates an

error condition on the XMI bus with multiple IDENTs being izsued on

the XMI for the same interrupt transaction. (Only one XMI IDENT

is issued on the XMI if a single interrupt targets multiple CPUs.) All

other CPUs that are waiting for an XMI bus grant to issue their XMI

IDENTS will cancel their IDENT transactions if they see an IDENT

transaction that matches the node ID and IPL of the IDENT that they

are waiting to issue.

IDENT Error sets if a CPU IDENT command is decoded and ne

interrupts are pending in the DWMBA/B module gate array.

The setting of IDENT Error does NOT generate a DWMBA error

interrupt.

DWiMBA/B VAXBI Module Regicoters

Error Summary Register (BESR)

bit<0>
Name: XBIB-Detevtied IBUS Parity Error

Mnemonic: None

Type: AWiC, 0

XBIB-Detected IBUS Parity Error sets if the DWMBA/B module

detects an IBUS parity error on a CPU transaction’s C/A cycle, on a

write data cycle when the data is removed from the CPU buffer by the

master sequencer, or on a DMA transaction read data cycle when the

read data is removed from the DMA read buffer by the slave sequencer.

When XBIB-Detected IBUS Parity Error sets, the appropriate bit of

BESR<6:4> sets.

The Timeout Address Register also locks on IBUS parity errors

detected during DMA read data fetches from the buffer. .

Writing a one to XBIB-Detected IBUS Parity Error also clears

BESR«<6:4> and the lock on the Timeout Address Register.

When the XBIB-Detected IBUS Parity Error bit is set with its
corresponding mask bit, an error interrupt request is generated.

DWMBA/B VAXBI Module Registers

interrupt Desiination Register (BIDR)

interrupt Destination Register (BIDR)

BIDR is used by the DWMBA module to dsterming the targeted nodes on the

X! for an interrupt transaction. BIDR is used by both VAXBI-initiated and

DWMBA ervor/status-initiated interrupts.

XMl nodespace base address + 0000 0048

n 18 18 0

DIAGNOSTIC READAWRITE INTERRUPT DESTINATION

ADDRESS

mab0873-27

R

bite<31:0>
Name: Diagnostic Read/Write

Mnemonic: None

Type: RW

Diagnostic R’W bits are used by diagnostics to verify much of the data

path integrity of the DWMBA/B module gate array.

bits<15:0>
Name: interrupt Destination

Mnemonic: None

Type: RW, 0

The Interrupt Destination bits determine the nodes on the XMI that

are targeted by the DWMBA when it issues an interrupt transaction.
Each bit in the 16-bit field corresponds to one of the 16 XMI nodes

(only 14 nodes are used in the DECsystem 5800). When a bit is set
to one, the selected node is the targeted node that the DWMBA will
interrupt. Multiple bits can be set to interrupt as many XMI nodes as
the user desires.

During diagnostics, bits<15:0> are used as part of the Diagnostic
Read/Write bite<31:0>, as described above.

645

DWMBA/B VAXBI Module Registers

Timeout Address Reglster (BTIM)

Timeout Address Register (BTIM)

The Timeout Address Register is loaded each time a VAXBI

command/address is latchad off the VAXBI. BTIM locks when (1) a VAXBI-

to-XMI memory Interiock Read fails, causing the Bl Interlock Read Failed bit

(BESR<2>) to set, or (2) a VAXBI-to-XMI memory read-type fails, causing the

XBIB-Detected IBUS Parity Emor bit (BESR<0>) to set.

ADDRESS XMI nodespace base address + 0000 004C

3 0 ¥ 0

Bt DMA ADDRESS .

L_ Length mab-0874.20

bits<31:0>
Name: B! DMA Failing Address

Mnemonic: None

Type: RO .
The BI DMA Failing Address contains the longword physical address

(bits<29:0>) and length of the received VAXBI-to-XMI transaction

(bits<31:30>.) If no errors are detected, the register reads back the

last VAXBI! transaction. The register logically locks upon error and

unlocks when that error clears.

6-46

DWMBA/B VAXBI Module Registers

Vector Offset Register (BVOR)

Vector Offset Register (BVOR)

BVOR contains a value ihat is concatenated with the VAXBI device-supplied

vector, if bits<13:9> of the VAXBI-supplied vector are equal to zero.

ADDRESS XMI nodespace base address + 0000 0050

N 16 15 ' 0

MUST BE ZERO MUST BE ZERO l

XBI Vector Offset Register (VOR) -—I
mab-0875-00

bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

bits<15:9>
Name: XB! Vactor Offset Register

Mnemonic: VOR

Type: RW, 0

BVOR is a 7-bit register loaded by software upon system initialization.

BVOR contains a value that is concatenated with the VAXBI device-

supplied vector, providing that bits<13:9> of the VAXBI-supplied vector

are equal to zero, ensuring that multiple DWMBA/VAXBIs with the

same devices on each bus will have a unique entry point into the SCB.

bits<8:0>
Name: Reserved

Mnemonic: Ncne

Type: RO, 0

Reserved; must be zero.

6-47

DWMBA/B VAXBI Module Registers

Vector Register (BVR)

Vector Register (BVR)

BVR is loaded by software upon system initialization. BVR contains the

DWMBA vector that will be transmitted to the IDENTing XMI node when the

DWMBA has a pending interrupt request that matches the interrupt source

and IPL sent during the XMI IDENT transaction.

ADDRESS XMI nodespace base address + 0000 0054

n 16 1% 21 0

MUST BE ZERO XBI VECTOR VB2

mab-0676-90

bits<31:16>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero,

bits<15:2%
Name: XBl Vector

Mnemonic: None

Type: RW, 0

The XBI vector is transmitted to the IDEXNTing XMI node when the

DWMBA has a pending interrupt request that matches the interrupt

source and IPL sent during the XMI IDENT transaction. This vector

is NOT sent for any VAXBI-generated interrupts or BIIC interrupts

due to error conditions.

bits<1:0>
Name: Reserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

DWMBA/B VAXBI! Module Rsgisters

Diagnostic Control Register 1 (BDCR1)

Diagnostic Control Register 1 (BDCR1)

The BDCR1 is used by diagnostics to perform various diagnostic functions on

the DWMBA/B module, ensuring that its hardware operates properiy.

ADDRESS XMl nodespace base address + 0000 0058

n 768643 210

MUST BE ZERO 0 JMBz

Flip FADDR Bit 1 __I I
Flip Bit 29

BIIC Loopback Mods

Force BC| Bad Parity

mab-0377-80

bits<31:7>
Name: Reserved

Mnemonic: None

Type: RG, 0

Reserved; must be zero.

bit<6>
Name: Flip FADDR Address Bit 1

Mnemonic: None

Type: RW, 0

The Flip FADDR Address Bit 1, used with Force DMA-A/B Busy bits

(ADG1<5:4>) and Flip Bit 29, enables diagnostics to test the DWMBA's
DMA buffer memory using CPU loopback transactions to XMI memory.

When Flip FADDR Address Bit 1 is set, the invert state of FADDR

Address Bit 1 is used to address the data werds in the buffer, allowing

diagnostics to use the buffer locations that normally would only be

used for transfers greater than a quadword.

Setting Flip FADDR Address Bit 1 only affects FADDR address bit 1
when the DWMBA/B module logic accesses data locations in the buffer.
During the cycle when the C/A is addressed in the buffer, the setting

of Flip FADDR Address Bit 1 has no effect on the buffer address.

DWMBA/B VAXBI Module Registers

Diagnostic Control Register 1 (BDCR1)

bit<5>

bited>

bit<3>

bit<2>

bite<1:0>

Namas: Resserved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

Name: Flip Bit 29

Mnemonic: None

Type: RW, 0

Setting Flip Bit 29 inverts the state of bit 29 and BCI parity after

the CPU C/A has been fetched and decoded by the master sequencer.

The new address, which now resides in XMI memory space, is issued

to the VAXBI. The DWMBA is the selected slave for the transaction,

which processes this transaction like any other VAXBI-initiated DMA

longword transaction, allowing diagnostic programs executing on the

XMI to issue a CPU transaction to the DWMBA, which then converts

it into a DMA transaction.

Name: BIIC Loopback Mode

Mnemonic: None

Type: RW, 0

All reguesis to the master port of ithe BIIC become loopback reguests

whenever BIIC loopback mode is set, allowing the master sequencer to

make loopback requests to access BIIC registers. The loopback mode

prevents the BIIC from initiating VAXBI cycles to access the BIIC

registers. When the BIIC is in loopback mode, it ignores the node ID

portion of the address presented to it.

Name: Force BCI Bad Parity

Mnemonic: None

Type: RW, 0

When Force BCI Bad Parity is set, bad parity is forced onto the BCI

bus to the VAXBI during CPU C/A, CPU data cycles, and DMA read

data cycles.

Name: Ressrved

Mnemonic: None

Type: RO, 0

Reserved; must be zero.

DWMBA/B VAXBI Module Registers

Reserved Reglster

Reserved Register

The Reserved Reagister is an undefined register that is reserved for future use.

Reads to this register return UNDEFINED data with correct parity. Writes to

this register appear to complete successfully.

ADDRESS XMI nodespace base address + 0000 005C

n -]

RESERVED

med0878-00

bits<31:0>
Name: Reserved Register

Mnemonic. None

Type: Undefined

The reserved register bits are reserved for future use.

VAXBI Registers

Device Register (DTYPE)

Device Register (DTYPE)

The VAXBI Device Register is loaded during seif-test by console code with the

DWMBA VAXBI device type and by the revision select logic with the revision

level.

0 s o e 3 S S S P e o)

ADDRESS VAXBI nodespace base address + 0000 0000

n 1% 13 0

Device Ravision Device Typa (2107)

meb-0876-00

bits<31:16>
Name: Device Revision

Mnemonic. DREV

Type: RW, 0

Identifies the revision level of the device. The revision level is loaded

by hardware during BCI DC LO. For revision H, the DREV field

contains 7 (hex). There is no revision I. Starting with revision J, the
DREV field reflects the letter revision of the module as follows:

DWHMBA/B Revielon DREV (decimal) DREV (hox)

Jo 10 000A

J1 10 000A

KO 1" 0008

K1 1 000B

20 26 001A

blte<15:0>
Name: Device Type

Mnemonic: DTYPE

Type: RW, 0

Identifies the type of VAXBI node. The processor’s console code loads

DTYPE with 2107 (hex) after successful completion of self-test.

6.5

DWMBA XWMi-to-VAXBI Adapter

interrupts

The DWMBA XMI-to-VAXBI adapter implements two mechanisms

for generating interrupts to XMI CPUs. One is in responee to

interrupts from the VAXBI bus and one in response to errors

detected on the XMi bus. The BIIC also generates error interrupts

on the VAXBI in response to errors on the VAXEI.

DWMBA XMi-to-VAXBI Adapter

6.5.1 DWMBA XMi-to-VAXBI Adapter Vector Formats and Requirements

Interrupt vectors returned by VAXBI nodes, as seen by the XMI IDENT

transactions, fall into three categories:

o XMI bus device interrupt vectors

¢ UNIBUS device interrupt veciors

e VAXBI bus device interrupt vectors

Figure 6-2 XMI Bus Vector Format

19 2 10

XMI VECTOR MBZ

Figure 6-3 UNIBUS Vector Format

15 14 13 98 210

F.naz UNIBUS VECTOR [MBZ

L— Starnting Address Offset
mab-0681-80

Figure 6-4 VAXBI Node Bus Vector Format

15 ¢ 13 8 7 ¢ ¢ 21 0 15 LN] 0

L]

ez s | NODEID hnaz XBIVOR | VAXBIVECTOR <80>

k—— vaxeivector ——
it<139>0lBIVEL OR=0

DWMBA XMi-to-VAXBI Adapter

6.5.1.1 XM Bus Vector Format

XMI device-initiated interrupts return vectors in the format shown

in Figure 6-2 as a response to an XMI IDENT transaction. It is the

responsibility of the operating system software to assign vector values to

any vector register(s) that may exist on XMI devices that are capable of
generating interrupt requests.

65.1.2 Offestiable Bus Vectors

There are several interrupt vectors returned by offsettable devices,

including the BUA (VAXBI-to-UNIBUS Adapter) and the KLESI-B (VAXBI

to Low-End Storage Interconnect). These other buses suppo=t devices that

generate interrupts that must be differentiated from vectors generated by

VAXBI devices. Figure 6-3 shows an example of the UNIBUS vector.

The UNIBUS vector field is an architecturally fixed vector returned by

UNIBUS devices. Bits <8:0> cannot be modified by software. The SAO

field must be a non-zero software assemble offset value to be used to index

into the SCB with a unique vector.

65.1.3 VAXBI Node Vectors

The VAXBI node vector format has bits <15:9> as non-zero and are

assigned a value by the operating system during initialization. The

offset value, contained in XBI VOR (Vector Offset Register or BVOR) on

the DWMBA/B module is concatenated with the vector value returned

by a VAXBI node, bits <8:2>, providing that bits <13:9> of the VAXBI

vector are zero. This new value is returned to the XMI commander during

XMI IDENT cycles when a VAXBI node generates the interrupt request.

If bits <13:9> of the VAXBI vector are non-zero, the vector will not be

concatenated with the BVOR and will be passed to the XMI commander

unchanged.

VAXBI device-initiatad interrupts return vectors in the format shown in

Figure 6—4 as a response to an XMI IDENT transaction. Node ID is the

VAXBI node ID of the interrupt node. S is the interrupt vector number,
which can be one of four possible interrupt vectors per node. BVOR must

be a non-zero software assemble offset value to be used to index into the

SCB with a unique vector for multiple VAXBI devices. BVOR bits <15:9>

may be supplied by the DWMBA. The BVOR is necessary as the XMI is

capable of supporting multiple DWMBA nodes, where the same device

may exist on multiple VAXBIs. Since some VAXBI nodes might have fixed

vectors that are unchangeable by software, the RVOR is used to ensure
that multipie VAXBI devices with fixed vectors have a unique entry point
into the SCB.

DWMBA XMi-to-VAXBI Adapter

6.5.2 Interrupt Levels and Vectors

Table 6-6 lists the interrupt conditions used by the DWMBA adapter.

Table -6 DWMBA Adapter interrupt Levels end Veciors

IPL (hox) kiama Vector (hex)

17 DWMBA VAXBI Ermor/Status ~ XMI-7

Change

17 VAXB! Levei 7 interrupt VAXBI-7

16 VAXBI IPINTR 6 Interrupt BIIC UINTRCSR REG-6'

16 VAXBI Level 6 Interrupt VAXBI-6

i5 VAXBI! Leval 5 Intarrupt VAXBI-S

14 VAXBI Leve! 4 Interrupt VAXBI-4

'The DWMBA treats IPINTR as an error. The IP..:TR « alue is written in the

UINTRCSR as a generic VAXBI interrupt. For example, it bits <13:0> of the vecior

value equals zero, then the DWMBA will logically "OR" the contents of the BVOR

(Vector Offset Register) with the value cantained in bits <8:0> of the vector.

6.5.3 Types of interrupts

Two types of interrupts are generated or passed through the DWMBA to

the XMI bus. They are the interrupts generated by the DWMBA due to
a st..tus change or error condition and those interrupts generated on the
VAXBI bus by I/O devices. The VAXBI interrupts are translated into XMI

interrupt transactions.

653.1 DWMBA-Generated Interrupts

The DWMBA generates two types of interrupts: error interrupts and

power-fail interrupts.

Ervors detected by the DWMBA logic set bits in the DWMBA/A module
and DWMBA/B module error summary registers. If the corresponding
interrupt mask bit is enabled, an interrupt at level 7 (IPL 17) is requested

by the DWMBA. A DWMBA error interrupt request is cleared when an
XMI IDENT transaction is received at IPL 17.

The DWMBA generates an IVINTR transaction when it detects that a
power failure is about to take place on the VAXBI. When BCI AC LO

is asserted, the DWMBA/A module generates an IVINTR transaction

with "mem write error" set in the Type field that targets the XMI node(s)

specified in the Destination field of the command. During power-up and
initialization, the DWMBA does not issue IVINTR transactions.

DWWMBA XMi-to-VAXBI Adapter

6.5.3.2 VAXBI-Gonerated Interrupte

Interrupts directed at the DWMBA node are passed on to the XMI bus.

The BIIC handles INTR transactions directed at the DWMBA node and

sets one of four interrupt leve! flip-flops, which store the acceptance of

an INTR transaction at the given level. The INTR transaction causes

the DWMBA/B module to iszue an XMI interrupt command, at the

corresponding IPL, to be poeted on the XMI.

The BIIC generates INTR transactions on the VAXBI in response to

errors detected on the VAXBI. The user has control of this mechanism

via the BIIC Error Interrupt Control Register. The DWMBA's BIIC is

configured to select itself as a destination node for INTR transactions,

thereby informing an XMI CPU of VAXBI-related ervors.

Interprocessor interrupts generated by VAXBI nodes targeting the

DWMBA are supported. For the DWMBA to receive interprocessor

interrupts, the software must set the DWMBA/B module’s IPINTR Mask

Register and enable the IPINTREN bit in the DWMBA/B module's BCI

Control and Status Register.

The DWMBA handles intcrprocessor interrupts by asserting the BCI INT

6 signal on the DWMBA/B module’s BIIC, causing the BIIC to generate

an IPL 16 interrupt. The DWMBA/B module’s BIIC Interrupt Destination

Register configures to select itself as the destination of the interrupt

transaction, thus causing this interrupt to be received by the DWMBA/B

module as a generic VAXBI IPL 16 interrupt. When the DWMBA/B

module receives an IDENT transaction from the XMI, it issues the IDENT

onto the VAXBI. If no other interrupts are pending on the VAXBI, the

DWMBA/B module’s BIIC issues the vector that had been previously

written by software during initiglization onto the BIIC’'s UINTRCSR

rcgister.

The :nterprocessor interrupt vector value written in the UINTRCSR is

treated by the DWMBA hardware as a generic VAXBI interrupt. If bits

<13:9> of the vector value are zero, then the DWMBA logically ORs the

contents of the BVOR with the value contained in bits <8:0> of the vector.

DWMBA XMi-to-VAXBI Adapter

6.5.4 XMIIDENT to VAXBI IDENT

There are two XMI to VAXBI IDENT transactions for the DWMBA: one

when the DWMBA has no interrupts pending and one when the DWMBA

has an interrupt pending.

6.5.4.1 Xl to VAXBI IDENT

The DWMBA issues a VAXBI IDENT when an XMI CPU issues an XMl

IDENT unless the DWMBA has a pending interrupt at the IDENTed level.

The DWMBA issues an IDENT response cycle on the XMI (Good Read

Data response—funiction code = 1000 with the vector in bits <15:2> of the

data field) upon receiving a vector from the VAXBI.

The VAXBI interrupt-pending flip-flop(s) and th- INTR Sent Flip-Flop(s)

that correspond to the IDENTed IPL are cleared when BCI RAK L is

asserted, ater the DWMBA/B module makes a VAXBI request.

If the requesting VAXBI node aborts its interrupt request before the XMI

CPU generates an IDENT transaction at that level, the resulting IDENT
on the VAXBI gets NOACKed. The DWMBA then issues a Read Error

Response (RER) to the XMl commander and sets the IDENT Error bit in
the DWMBA/B module's Error Summary Register.

654.2 XA to VAXBI IDENT (DWRMBA Interrupt Pending)

If the DWMBA has its interrupt-pending flip-flop set and it decodes an
XMI IDENT transaction with IPL 17 get in D<19:16> of the IDENT

command, it responds by issuing the DWMBA's vector that is located in
BVOR. When the vector has been written into the DWMBA/A module’s

register file by the DWMBA/B module’s master sequencer (gtate machine

controller), the DWMBA's interrupt-pending and sent flip-flops clear.

If an XMI CPU issues an IDENT to the DWMBA and the DWMBA has
no interrupt-pending flip-flops set, the DWMBA issues the IDENT on the

VAXBI. There is a direct mapping of the XMI IDENT IPL (D<19:16> to

that of the VAXBI D<19:16>). No remapping is required.

6.6

6.6.1

6.6.2

SwniBA XMI-to-VAXBI Adapter

Error Reporting

The DWMBA adapter uses two mechaniems for detecting and

reporting errors. One mechaniem is the BIIC fr.r VAXBI-related
errors and the other mechanism deals with DWMBA-internal and
XMil-related errors.

VAXBI Errors

The BIIC implements error checking and reporting features that deal with
the VAXBI. These errors are reported to an XMI CPU via BIIC registers

where bus errors are reported: the Bus Error Register, Error Interrupt

Control Register, and the Interrupt Destination Register.

DWMBA Errors

Error generation and checking is performed on the DWMBA, both ports

of the CPU, DMA-A and DMA-B register files, and the IBUS data path
between the modules.

A specific error is flagged in one of the two Error Summary Registers

(AESR and BESR) so that errors can be traced by software and

diagnostics. When an error occurs, the DWMBA locks its error and
address registers to ensure that a subsequent transaction will not change
any states in the DWMBA until software services the error condition(s).

Even though an error causes the DWMBA/A module to assert IVINTR,

any pending DMA or CPU transactions that are error free are processed to
completion, even if a previous transaction was halted due to an error.

6-59

6.6.3

DWMBA XMi-to-VAXBI Adapter

DWMBA XMIi-to-VAXBI Adapter Error Responge Matrix

Table 6~-7 XMl Errors During DMA Transactions (VAXBI to XMl Memory)

Xi2l Eeror Read C/A Cycle Read Dats Cycle Write C/A Cycle Write Data Cycle

XMI Fault - - - -

Corrected Read - DWMBA generates -~ -

Data interrupt

Corrected DWMBA generates - DWMBA genaerates DWMBA generates
Confirmation interrupt interrupt intarrupt

Read Error - DWMBA generates ~ -

Response interrupt (NO ACK
to VAXBI)

inconsistent Parity - - - -

Parity Error DWMBA gonerates DWMBA generates = DWMBA generates DWMBA generates
interrupt interrupt interrupt interrupt

Write Data NO ACK -~ - - DWMBA generates
interrupt

Command NO ACK DWMBA generates - DWMBA geneiates -
interrupt interrupt

Write Ssquence - - - -

Error

Read Sequence DWMBA generates - -

Error interrupt (NO ACK
to VAXBI)

Transaction Timovut DWMBA/A module - DWMBA/A module DWMBA/A module
generates IVINTR generates, IVINTR generates IVINTR

No Read Response - DWMBA generates - -

interrupt (NO ACK

to VAXBI)

Write Error Interrupt

Read/IDENT Data

NO ACK

6-60

DWMBA XM!i-to-VAXBI Adapter

Table 6-8 XMi Errors During CPU I/C Transactions (XMl to VAXBI)

Heal Ervor Read C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

XMI Fauh

Correctad Read

Data

Corrected

Confirmation

Read Error

Responsa

Inconsisteni Parity

Parity Emor

Write Data NO ACK

Command NO ACK

Write Sequence

Error

Rsad Segusnce

Error

Transaction Timaout

No Read Responsa

Write Error Interrupt

Road/IDENT Data

NO ACK

DWMBA genaerates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generatas

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt

DWMBA XiMi-to-VAXBI Adapter

Teble 6-9 DWWMBA Errore During DMA Trangactions (VAXBI to XMI Memory)

DWBA Error Reed C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

—————————— DWMBA/A XMI Module — — — — == = = e e —

O Write Failure - - - -

BCIACLO DWMBA/A module DWMBA/A module DWMBA/A module = DWMBA/A module
genarates IVINTR genarates IVINTR generates IVINTR generates IVINTR

IBUS DMA-A Data - - - DWMBA/A module

Parity Error generates IVINTR

IBUS DMA-A C/A DWMBA/A module - DWMBA/A module —

Faiiy ciar ganeiaies nieirupi generatss IVINTR

(NO ACK to VAXBI)

{8US D¥MA-B Data - - - DWHMBA/A module

Parity Error generates IVINTR

1BUS DMA-B C/A DWMBA/A module - DWMBA/A module -

Parity Error generates interrupt genarates IVINTR

(NO ACK to VAXBI)

iBUS CPU Data - - - -

Parity Error

Multi-CPU Errors

Interlock Read Error

IDENT Error

IBUS Data Parity

Error

liegal CPU

Command

DWMBA generates

interrupt Lock Time

Register

DWMBA generates

interrupt. Bad

DatafParity to

VAXBI.

-

DWMBA XMi-to-VAXBI Adapter

Table 6-10 DWMBA Errors During CPU /O Transaciions (Xl to VAXBI)

DWBA Error Read C/A Cycle Read Data Cycie Write C/A Cycle Write Deta Cycle

———e e o e = - DWMBAVA XMI ModUI®— = e e e e — — —

O Write Failure - - DWMBA/A module DWMBA/A module

generates IVINTR generates IVINTR

BCIAC LO DWMBA/A module = DWMBA/A module = DWMBA/A module = DWMBA/A module

generates IVINTR genarates IVINTR generates IVINTR generates IVINTR

1BUS DMA-AData - - - -

Parity Error

IBUS DMA-A C/A - - - -

Parity Error

IBUS DMA-B Data - - - -

Parity Error

IBUS DMA-B C/A -~ - - -

Parity Error

IBUS CPU Data - DWMBA generates - -

Parity Error interrupt. RER to

XML

—————————— DWMBA/B VAXBI Module — — — — — —~ = — — —

Multi-CPU Errors DWMBA generates — DWMBA/A modulo DWMBA/A module

interrupt. RER to generates IVINTR generates IVINTR

XMI

Interlock Read Error - - - -

{DENT Error - RER to XMl - -

1BUS Data Parity DWMBA generates - DWMBA/A module DOWMBA/A module

Eror interrupt. RER to generates IVINTR generates IVINTR
Xhal.

lilagal CPU DWMBA generates - DWMBA/A module -

Command interrupt. RER to
XMl

generates IVINTR

DWiBA Hili-to-VAXBI Adapter

Table 6-11 VAXBI Errors During DMA Transections (VAXBI to XAl Memory)

VAXB! Erroe

(CWRiBA/B

modula's BIIC) Roed C/A Cycle Read Data Cycle Write C/A Cycle Write Data Cycle

NO ACK to Multi-

105pONSES

RMaster Xriiit Ercor

Control Xmit Error

Master Parity Error

Interlock Sequence

Error

Transmitter During

Fault

IDENT Vector Error

Command Parity

Error

Slave Parity Error

Read Data

Substitute

Retry Timeout

Stall Timeout

Bus Timeout

Nonexistent Address

lilegal Confirmation

Error

iD Parity Error

Corrected Read

Data

Null Bus Parity Error

DWMBA generates

interrup?

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWWMBA generates

interrupt

DWMBA genarates

interrupt

DWMBA generates

interrupt.

DWMBA generates

interrupt

DWRMBA generates

interrupt

DWMBA generates

interrupt

DWMBA generates

interrupt.

DWMBA generates

inferrupt

DWMBA generates

imerrupt

DWMBA XMi-to-VAXBI Adapter

Tabie 6-12 VAXBI Errers During CPU /O Transactions (XMI TO VAXBI)

VAXBI! Error

(OWiiBA/B

modula's BIIC) Road C/A Cycle Reed Data Cycle Write C/A Cycle Write Data Cycle

NO ACK to Mutti- DWMBA generates - - -

responses interrupt

Master Xmit Error DWWMBA generates - DWMBA generates DWMBA generates
interrupt. RER to interrupt. DWMBAV/A interrupt.

Kidi module generates DWMBA/A module
IVINTR. generates IVINTR.

Control Xmit Error DWMBA generates - DWMBA generates -
interrupt interrupt

Master Parity Error - DWMBA generates - -

interrupt. RER to

XMl

interiock Saquence - - DWMBA generates DWMBA generates

Error interrupt interrupt

Transmitter During DWMBA generates - DWMBA generates = DWMBA generates

Fault intarrupt interrupt intarrupt

IDENT Vector Error - DWMBA generates - -

interrupt

Command Parity DWMBA generates - DWMBA generates -

Error interrupt interrupt

Slave Parity Error - - - OWMBA generates

interrupt

Read Data - DWMBDA generates - -

Substitute interrupt. RER to

XMl

Retry Timeout DWMBA generates - DWMBA genarates -~

interrupt. RER to interrupt. DWMBA/A

XMI module gensrates

IVINTR.

Stall Timeout - - - -

Bus Timeout DWMBA generates — DWMBA generates -
intarrunt, AER 10 interrupt. DWMBA/A

XAl module gansrates

IVINTR.

Nonexistent Address DWMBA gensrates - DWMBA generates -

interrupt. RER to interrupt. DWMBA/A

Rl module ganerates

IVINTR

llegal Confirmation ~ DWMBA genarateas DWMBA generates = DWMBA generates = DWMBA generates

Eror interrupt. RER to interrupt. RER to interrupt. DWMBA/A interrupt.
XM XMl module generates DWMBA/A module

IVINTR generates IVINTR

iD Parity Error DWMBA generates - DWMBA generates -

interrupt interrupt

DWMBA XMi-to-VAXBI Adapter

Table 6-12 (Cont.) VAXBI Errors During CPU /O Trangactions (XA TO VAXBI)

VAXBI Error

(DWiBA/B

module's BIIC) Read C/A Cycls Read Data Cyele Writs C/A Cycle Write Date Cycle

Corrected Read - DWMBA generates -~ -
Data intarrupt

Null Bus Parity Enor -~ - - -

6-66

DWIMBA XMi-to-VAXBI Adapter

DWMBA Initialization, Self-Test, and Booting

This section discusses the DWMBA adapter initialization and
diagnostics.

DWMBA Initialization

The three ways to reset the DWMBA are:

* Power-Up Sequence—When the DECsystem 5800 is powered up, XMl

AC LO L and XMI DC LO L are sequenced so that all XMI nodes are

reset.

e System Reset—The XMI emulates a power-up sequence by asserting

the XMI RESET L line, causing the power supply to sequence XMI AC

LO L and XM!I DC LO L as in a "real” power-up. Software asserts XMI

RESET L by writing to IPR55. The XMI does not differentiate between

a "real" power-up and a system reset. The console INITIALIZE

command generates a system reset if no argument is given.

e Node Reset—A DWMBA is "node reset’ by setting its XBER<30>

(NRST) bit. The console INITIALIZE command generates a node
reset if a node ID argument is provided. For the KN58A processor the

differences between the node reset and a system reset are as follows:

— XMI AC LO L is not sequenced during node reset.

— VAXBI "self-test” is not run during i:ode reset.

When initalized, the DWMBA performs as follows:

e All DWMBA logic resets to a known state.

¢ The DWMBA asserts XMI STF L until self-test completes successfully.

o The DWMBA registers are initialized to a known value by self-test.

The VAXBI subsystem of the DWMBA resets as would any VAXBI system
whenever the XMI resets. Each VAXBI backplane in a DECsystem 5800

is connected to power, and each DWMBA/B module has logic that controls
the VAXBI backplane.

Setting XBER<30> (NRST) initiates a node reset, which resets both the
DWMBA/A module and DWMBA/B module as well as the corresponding
VAXBI subsystem. When NRST is written to a one, the DWMBA/B module

sequences the BI AC LO and BI DC LO signals, causing each VAXBI node
to reset its logic.

A DWMBA/B module and its VAXBI subsystem, when powered do..=, has
no effect on the DWMBA/A module and the XMI bus.

6.7.2

DWMBA Xii-to-VAXBI Adapter

DWMBA Seli-Test and Diagnostics

The two diagnostic control registers are used to force bad parity internal

to the DWMBA, for performing a loopback in the BIIC, and to act as
temporary storage registers for diagnostic routines.

6.72.1 Loopback

Two diagnostic loopbacks are implemented on the DWMBA: the BIIC

loopback of the VAXBI and a transformation of a CPU transaction into a

DMA transaction.

The BIIC loopback of the VAXBI occurs when the DWMBA/B module’s

BDCR1<3> (Force BIIC Loopback Mode) sets to a one.

When BDCR1<4> (Flip Bit 29) sets to a one, the DWMBA/B module

inverts the state of address bit<29> and BCI parity when they are sent to

the BIIC, allowing a VAXBI /O space request to be converted into a DMA

request that targets the DWMBA as the selected slave. This causes a CPU

transaction to be transformed into a DMA transaction (Jongword only) that
accesses XMI memory.

6.7.2.2 Self-Teat

DWMBA self-test is executed by the boot processor on the XMI using the

processor’s resident ROM.

O I R R ARKHIOGOOUN O RL S saRAR R AR AR

xxx

xxx

707010070000600060000t stttts s tesdedortdds

R Y W N OO 0000

X

XXX

XXXXX

AAXKXKX

XXXAUKKXKX

KAXXAXXKKKX

XXAXXXXAXXXKXXX

F6.0.0.40.0.04.9080444

KRXXXXAAXKKAKKKEX

KAXKXXKKKK XX KEXXKAX

AXXAXKKA AXAXLXKRAXX

KAXXXKUERXHRXXX AXAKKLKXKK

HAXKXXXARKXX KKK XA LKKAKLK

AKX KA XXX AXX AKX AEALKHKKKKX

KHAXXAXA XL L XXX XA XAK LXK AKKXKKK

BIOOEXXXX AR K E XA XK XXAXKKXXXX

KURHEXAXHXK H AKX K KXY XX KAAXAKEX KKK

KX K XXX H XX XA X AR KK KX UK KKHKKKX

XHHXH KR HEUH XK KK H AKX KKOARKAKK
LULS LIL PRSI LI UIRP LU T W WYOO GO DO XDO XX XUHAX XX KXX

7 Power and Cooling Systems

The DECsystem 5800 power system consists of an AC power controller, the
power and logic unit, five power regulators, and a temperature sensor. The
cooling system consists of two blower units and an airflow sensor, with the
airflow path through the XMI and VAXBI card cages. See Chapter 12 of
the DECsystem 5800 Options and Maintenance manual for more on power

components.

The power system contains the following components:

* An H405-E AC power controller for 60 Hz systems; for 50 Hz, an

H405-F and a high-voltage autotransformer

¢ An H7206 power and logic unit (PAL)

¢ Two H7215 power regulators, one for the XMI card cage and one for

the VAXBI card cages

° Three H7214 power regulators, two for the XMI card cage and one for
the VAXBI card cages

¢ An XTC power sequencer

e A temperature zensor and an airflow sensor

7-1

Power and Cooling Systems

7.1.1 Input Power

The input power is five-wire (three-phase AC, neutral, and ground). 208V

60 Hz AC enters the H405-E AC power controller. Either 380 or 416V

50 Hz AC inputs the H405-F AC power controller and then enters the
high-voltage autotraneformer, which reduces the voltage to 208.

The H405 AC power controllers suppress conducted einissions. The
AC power controller has a contactor that closes when the control panel
upper key switch is in any position except "0," allowing AC power to the
H7206, and opens if the cabinet’s temperature sensor detects an excessive

temperature.

7.1.2 H7206 Power and Logic Unit

The H7206 PAL:

e Rectifies the three-phase power into 300V DC for the DC-to-DC power

regulators

o Develops regulated +14V DC for both internal use and the DC-to-DC
power regulators

e Develops 110 watts of 24V DC for the cooling system blowers and its
own internal fan

e Controls the interface between power regulators

o Controls the interface between the power regulators and the rest of

the DECsystem 5800 system

A red LED on the front face of the PAL lights to indicate that an inhibit

(shutdown) latch has been set.

Two green LEDs light to indicate the presence of the +14V DC for internal

use and the presence of 300V DC.

7.1.3 H7214 Power Ragulator

The H7214 inputs 300V DC and +14V bias. A 30 kHz clock synchronizes
this to all other power components. Qutputs are 120 A of +5V DC and 0.5
A of +13.5V DC for Ethernet transeeivers. A green LED lights to indicate
that the +5V output is present.

Power and Cooling Systems

714 H7215 Power Regulator

The H7215 inputs 300V DC and outputs 20 A of -8V DC, 7 A of -2V DC, 4

A of +12V DC, and 2.5 A of -12V DC. A green LED lights to indicate that

the outputs are present. An internal overtemperature switch asserts the
OVERTEMP signal when necessary.

715 XTC Power Sequencer

The XTC power sequencer contains:

o XMI reset timing control logic

° Time-of-year (TOY) clock power circuits

e [EIA RS-232/RS-423-compatible congole line driver and receiver

7181 X Reest Timing Control Logic

The XMI reset timing control logic handles these sequences:

¢ Cold start power-up

e Loss of AC power followed by a cold start power-up

o Reset, which mimics a power-down and then a cold start power-up

7152 TOY Circuite

The TOY circuits consist of a battery charger circuit that trickle charges

the TOY clock battery and a voltage-level detection circuit that monitors

the TOY battery voltage.

7153 Conegole Line Driver and Racelver

The XTC power sequencer contains the gystem console line driver and

receiver, which are EJA RS-232/RS-423 compatible.

7-3

7.1.6

Power and Cooling Systems

Power System Signals

Power gystem signals are partitioned so that a failure of power supply 1

shuts down only the XMI! side or a failure of power supply 2 chuts down
only the VAXBI side.

The power system gignals are described in Table 7-1.

Teble 7-1 Power System Signals

Kemae Origin Daatination Beenription

ON SENSE L Control pane! XTC Asserts when the control panel upper key switch
i3 in any position except "0."

PNL RESET L Controf panel XTC Asserts while the cont:ol panel! Restart button
is pressed. Causes the XTC to start the reset

sequence.

STANDBY CMD L Control panel H7206 Asserts when the control panel upper key ewitch
is in any position except "0."

ONCMD L Control panel H7206 Asseris when the control panel upper key switch
is in eithar the Enable or Secure position. Applies

DC power to entire DECaystern 5800.

PBREQL Control panel H7206, then Asserts when STANDBY CMD L asserts to close
from H7206 a contactor in tha AC power controller, applying

to DEC power AC power to H7206 and DC power to cooling

bus and systom and memory. Controls all peripherals tied

AC power to the DEC power bus.

controlier

DEC Power Bus Control panel H405 Safety Extra Low Voitage (SELV) circuit that
allows the DECsystem 5800 io tumn Gther

equipment on and off.

DCOKH H7206 XT1C Asserts to indicato that the DC outputs from the
powser reguigiors are OK. Used by the XTC power

sequencar to start the power-up/power-down

sequenca.

ACOK H H7206 X1C Asserts 10 indicate that the AC input voliage is
adequate. i deasserts when the H7208's 300V

DC output level reachss a level that guarantees

4.2 milliseconds of acceptable 300V DC prior to

the deassertion of DCOK H. Used by the XTC

power sequencer during the power-up/power-

down SaQuUEncs.

CHANNEL nOK (CH n Power reg- H7206 Asserts t0 toll the H7208 that the power regulator
OK) ulator n specified by the number n is OK.

OVER TEMPZRATURE n H7215 H7206 Assents 1o tell the H7206 that the H7215

7-4

tamparature is above epaciiication, causing an

orderly system shutdown foliowed by a latched

inhibit of the appropriate outputs.

Power and Cooling Systems

Table 7-1 (Cont.) Power System Signals

Name Origin Deatination Dascription

INTERLOCK nINHIBITH Cabinet H72%%6 Asserts 10 tell the H7208 that an interlock switch
inmerlock has boen thrown, cauging an orderly system

switch shutdown followed by a latched inhibit of the

eppropriate oviputs.

BLOWER FAULT H Cooling H7206 Asserts to indicate an airflow sensor has detected
system @ loss of airflow. When asserted for more than

30 seconds, an orderly system shutdown occurs

followed by a latched inhibit of the outputs.

CHANNEL n INHIBIT H7206 Power reg- Asserts to command the respsctive power
ulator n regulator to turn off and reset to a ready state

80 that output power restores as the signal

deasserts.

SYNC H7206 Power A pulse train used to synchronize depandent
reguiator power regulators.

7.2 Cooling System1

The cooling system consists of two identical blowers, one for the front of
the cabinet, the other for the back. An airflow sensor signals a loss of
airflow.

The H7206 PAL unit has an internal fan.

7-5

T 07079107016/91619 0160 $.0101010.0.00 00LLLIIETTO090200000000000

RO OO D R RISONO NN R R KK KX XXX AR R EEKKR KX

THHRX K XIOCOOOK KN KRR KIOOOND 00NN XARKKXAX

KRR KOOI X KRR KRRKK KR RERY

1001601419906 00.0.0:60.9.0960060800803te o]

10100000006408.0 088 E00 000t abo bty e

RXXXKAKRXEXR KU HX AKX XXAK KK LKAKKEKKK

HXAXXRXAXKHODOARKXTXROCDOOOOEAX

01970009000000000000t b ettt ed e

PO 6400000040000 00080800840

eI 0 0108100000.0.0.00.0.00050603081

OO R EHRKHHHRHKAKAEKA

P0.9:019. 0.4 06761065 0.0. 86,0490

EXXOONOOGHOGHRKOOK

HEHRKIOOOOOOOUOXX

P6.6.0.0.014.0.6:9.0.0:0.068.8

PO 010.4.0.9.89 04000

HHHRIHAICODEOK

D0.9.0.6.00.65.95 400486801

XOAKAXKXXXKKXKAKXKXXX

ARAXXRALAKXRXXKOXAKKXKAX

HARXXXX XX KA XX KK XK ARKLXKKAR

KARLUXXXX XA HKARKAKAXKLKXKK

XAKIOOHAURKXKAKXRKKRARXKKAKKK

HHHHKHXUK UK XXX AX KR XA KAXAAXKKKK

AUHXXKK KK T UK U XK REARKKHX XA K LK KXXAK

o000 89,00 4000 0000000 eeeostesesse]

D19701919.0 9,069 4.0:0.0.0.4.00 00000000080tty]

O 00070 909 eIt reteds bt et r ettt bt ooy vt et iyl

O X OO OO X X XX XU XY KX

OO XK U KRR XXX KX AR AR KU RERKAKAXAK

Console Entry Points

The following entry points are defined by the R3000 portion of the console
program for the use of the operating system loader, operating system, and

other stand-slone programs.

All routines are called as normal C-language routines, using the normal

R3000 calling conventions. The entry points are located in a table |

beginning at address b00a 0000. The beginning of a routine is at address:

b00a 6000 + (8 * entry_nr)

where entry_nr is the entry point number shown in the routine description.

It is the responeibility of the caller to handle exceptions. The console does

not enable its own exception handlers.

A.1 reset - Power-up console entry - Entry 0

This entry point receives control when the R3000 chip is reset. It is not

normally invoked by software.

promexec - Exec new program - Entry 1

Not currently supported.

R

A3 exit - Reenter console - Entry 2

This entry point returns control of the processor to the console program,
without reinitializing the console state. The console will display a message

indicating an exit was performed with the return value status. Control
will then pass to the console prompt.

The state of the program that called exit is not preserved.

void

exit (atatus)

int status;

Ad reinit_console - Reinitialize the console - Entry 3

This entry returns contro! of the processor to the console program and

reinitializes the console’s state. It is normally called only by the cunsole

program itself to recover from unexpected error conditions.

A-1

Congoie Entry Points

A5 conditional_boot - invoke power-up aciion - Entry 4
This entry returns control of the processor to the console program, and

takes the action selected by the front panel key switches. If the key
switches are set to Halt and Enabled, the console prompt will be displayed.

If the key switches are set otherwige, the system will be rebooted as if

system power-up had occurred.

void

conditionalboot ()

A.6 reboot - Reboot the system - Entry 5

This entry unconditionally attempts to reboot the system, from the device

specified in the bootpath environment variable. If the bootpath is not set

or ig invalid, an error message is displayed and control remains with the

console program.

void

raboot()

A7 open - O;ofn a file - Entry 6
Open provides /O access to a file or device specified by filename in a

fashion similar to the Ultrix system call. The flags perameter indicate

the type of access desired. Returns an integer file descriptor that must be
supplied on cslls to routines that manipulate the file.

If an error is encountered, a message is displayed on the console terminal,

and open returns -1,

The pointer used to mark the current position within the file is set to the

beginning of the file.

A maximum of 7 files can be open simultaneously. On the first open for a

given device controller, the console may reinitialize the controller.

int

open(filename, flaqs)

char *filename;

int flags:

A71 filename

The string supplied for the filename parameter has the general form:

dev{controfler,unit,pariitionpath)

The perentheses and the dev and controller components are always

required. All the numeric portions of the filename can be given either
in decimal or in hexadecimel, by using the Ox prefix. The compcnents of

the filename string are:

¢ dev—Identifies the type of device being opened. Recognized devices

are discussed in Section A.45.

A-2

Console Entry Points

o controller—Identifies the physical path through the /O adapters to the
device being opened. The controller string is of the form “/xl/bm/cn”

where [, m, and n are the XMI node number, VAXBI node number,

and CI node numbers needed to locate the boot device. The /b and /c

components are omitted if they are not applicable.

¢ unit—lidentifies the unit number of the device. If the unit number is

omitted, it defaults to zevo.

¢ partition—ldentifies the starting logical block of the softwarc managed

partition of the device. Partition is only meaningful for disk devices. If
omitted, partition defaults to zero.

e path—Supplies the Ultrix path name of the file to be opened. For disk

devices, the path may be specified but is ignored. For Ethernet boots,

the specified path is requested from the booting system. Specifying the

path parameter is illegal on boots from tape.

A72 flags

The flags argument indicates the type of access requested. Legal values

are:

O_RDONLY = 0000

O_WRONLY = 0001

A8 read - Read from a file - Entry 7
This funciion atiempis to read cit bytes from a file into a buffer, buf. The

data is read from the current position of the file, and the number of bytes

read is returned. fd is a file desci iptor returned by an open() call.

A returned value of 0 indicates the end of the file. If an error is

encountered, a message is displayed cn the console tzrminal and -1 is

returned.

int

read(fd, buf, cnt);

int fd;

char *buf;

int cnt;

A.9 write - Write to a file - Entry 8

The write entry attempts to write cnt bytes of data from the buffer buf to

a file. The file is specified by fd, a file descriptor returned from an open()

call. The data is written at the current file position.

The number of bytes written is returned if the write was successful. If

an error occurs, & message is displayed on the console terminal, and -1 is

returned.

Console Entry Points

A.10 loctl - Device-specific /O operation - Entry 9

int

urite(iu, buf, cnt)

int £d;

char tbuf;

int cnt;

This entry performs @ device-specific operation, as specified by the

value supplied in cmd. The device is specified by fd, a file descriptor

returned from an open() call. The supported operations are discussed

in Section A 45. If an error occurs, 8 message is issued on the consgole

terminal, and -1 is returned.

int

ioctl(fd, cmd, arg)

int f£d;

int cmd;

int arg.

A.11 close - Ciose an open file - Entry 10

The close function tern.inaies access to the file associated with the file

descriptor fd. The console requires all files associated with a given device

or controller to be closed before other soRware attempts to gain contro! of

the device or controller. .

If an error is encountered, @ message is displayed on the cor:ole terminal

and a value of -1 is returned.

int

close(fd)

int f£d:

A.d2 lseek - position within a file - Entry 11

The Iseek function moves the pointer associated with a file open for

reading or writing. The file descriptor fd indicates the file to be positioned.

If how is set to zero, the file is positioned to the specified offset. If how is

set to one, off'set is added to the current file file position.

If an error cccure, an error message is written on the console terminal,

end & value of -1 is returned.

ine

lsack (£d, offsst, how)

int f£4;

unsigned offset;

int how;

A.13 getchar - Input a single character - Entry 12

aA-4

This function reads a single character from the current console input

device. Control does not return until a character is available. .
int

getchar();

Console Entry Points

A.14 putchar - Qutput a single character - Entry 13

This function writes a single character to the current consc.e output

device.

A newline character is preceded with a carriage return. A tab character is

converted to sufficient blanks to position to the next "tab stop,” where “tab

stops” occur every 8 characters.

void

putchar(c)

char ¢;

A.15 ashowchar- Output a singlc character - Entry 14
This function writes a single character to the current console output

device.

Al printing characters are displayed normally. The function displays

backspace as "\b", form feed as "\f", newline as "\ n", carriage return as

"\r", and tab as "\t". All other nonprinting characters are displayed as

"\xxx", where xxx is the octal code for the character.

void

shouchar(c)

char c.:

A.16 gets - Get line of input - Entry 15

The gets entry reads a line of input for the console terminal and places

the results into buf. Control returns when a carriage return or newline

character is received, terminating the line of input. The terminating

character is not buffered. The addres:: of buf is returned.

Line editing characters can be used when data is being read by gets.

char *

gets (buf)

char ®buf;

A.17 puts - Display a line of output - Entry 16

This entry writes a line of output pointed to by line to the console terminal.

Characters are handled as described for the pute function.

void

putsiline)

char *line;

Console Entry Polnts

A.18 printi - Print formatted values - Entry 17

The printf entry formats and displays one or more value arguments on

the console terminal. The formatting is controlled by the string passed as

fmt.

This function implements a subset of the standard C library printf

function. Consult C language documentation for datails. The following

format items are supported: %x, %d, %u, %o, %c, %b, %8s, %%, numeric

field widths with optional leading minus, and numeric field width with

leading zero.

void

printf (fmt, va_alist)

char *fmt;

va_dcl

A.19 flush_cache - Flush processor cache - Entry 28 Q
This function causes all entries in the processor’s primary instruction and

data caches to be invalidated.

void

flush_cache()

A.20 clear_cache - Clear part of mrocessor cache - Entry 29
This function causes any cache entries associated with a specific range

of addresses to be invalidated. The range begins at address base and

extends for cnt bytes. Entries are cleared from both the instruction and

data caches.

void

clear_ cache(base, cnt)

unsigned base;

int ent;

A.21 setjmp - Save program context - Entry 30
The setjmp entry point is used for dealing with exceptions and error

conditions encountered by low-level console routines. When setjmp is

called, it saves the current stack position and register contents of the

program, and returns zero. A later call to the longimp entry point will
restore this saved context and return control to the point following the call

to eetjmp.

typedef jmpbuf(ll};

int

set jmp (imp_buf);

Jmp_buf jmp_buf;

A

Console Entry Points

A.22 longjmp - Restore program context - Entry 31

This entry terminates execution in the current context and restores the

program context stored by a previous call to eeijmp. The context is

specified by supplying the jmp_buf used on the call to setjmp. When
context is restored, the setjmp call returns the value supplied in rval.

longimp (jmp_buf, rval);

struct jmp_buf *jmp_buf;

int rval;

R

A.23 utibmiss_except - Console UTLB miss vector - Entry 32

This entry corresponds to the console’s UTLP miss exception handler. The

position of this entry in the entry point table is dictated by the MIPS

processor architecture. Calls to this entry point are not supported.

A.24 getenv - Get value of an environment variable - Entry 33

This entry returns the value of the console environment variable specified

by name. If the specified name is not found, a null pointer is returned.

char *

getenv(name)

char *name;

A.25 setenv - Set value of an environment variable - Entry 34
This entry sets the value of the console environment variable specified by

name to the string supplied in value. The function always returns zero.

Certain environment variables are known to the conscle. An error message

is issued if setenv is called for a variable marked read only. Variables

not marked as "volatile" are also stored in EEPROM, efter the memory

copy of the variable has been set. An error messages is issued if the

EEPROM copy cannot be written (corrupted EEPROM, key switch not set

to "Update," etc.) Various side effects also apply (for example, changing

the variable baud changes the console terminal baud rate).

int

setenv(name, value)

char *name;

char *value;

CERRT

A.26 atob - Convert ASCIl te binary - Entry 35

Convert the ASCII string str to a binary value that is placed in the location

pointed to by intp. Conversion continues until a nonnumeric character (or

the null string terminator) is encountered. The return value is a pointer

to the unprocessed portion of str.

aA-7

A27

A.28

A.29

A.30

Console Entry Polnts

The string must be integer, with an optional minus sign. Leading blanks

are ignored. If the first digit seen is not "0", the number is considered to

be in decimal notation. A prefix of "0Ox" indicates hexadecimal notation,

"Ob" indicates binary notation, and "0" followed any other digit indicates

octal notation.

If the converted value generates an arithmetic overflow, 8 warning

message is printed on the console terminal.

char ¢

atob(str, intp)

char ®str;

int *2intp;

stremp - Compare tv/o strings - Entry 36

‘The strcmp function compares two null-terminated strings. The return
value is zero if the two strings are the same, a negative value if str! is less

than str2, or a positive value if str] is greater than sir2.

int

stremp(strl, str2)

char *strl;

char *®*str2;

strien - Find string length - Entry 37

This function returns the length in bytes of a null-terminated string.

int

strlen(str)

char *str;

strcpy - Copy a string - Entry 38

This function copies the null-terminated string str2 to str! and returns a
pointer to the next available charscter position in strl. strl must be long

enough to contain str2.

char *

strepy (strl, str2)

char *strl;

cher *gtr2;

strcat - Concatenate two strings - Entry 39

This function appends a copy of the null-terminated string str2 to the end

of the null-terminated string strl. str! must be long enough to hold the

additional characters. A pointer to strl is returned.

char *

strcat (astrl, str2)

char ®gtrl;

char *stre;

A-S

Console Entry Points

A.31 parse - Parse a simple command - Entry 40

This entry provides access to the command parser used by the console.

When this routine .8 called, it enters an endless loop executing the

following steps:

1 The string prompt is displayed on the console terminal.

2 Aline of input is read from the console terminal using ge?-

3 The argvize function is used to build an arge/argv argument list.

4 The cmd_table is searched for a command that matches the first entry

in the argv list.

8§ If a command is found, the corresponding routine is called with the

arge/argv arguments.

6 Ifthe routine returns a non-zero value, the usage string is displayed.

7 If the command is not found, an error message is printed.

struct cmd table(

char *name; /* Command name */

int (*routine)(); /* Command routine */

char tusage; /* Help or usage string */

}:

int

parser{cmd_table, prompt, reserved)

struct cmd_table *cmd table;

char *prompt;

char *reserved,

A.32 parse_range - Parse an address range - Entry 41

This entry provides access to the console routine that parses tr. - address

range syntax used in console commands. The string str is parse:... The first

component of the range is stored using basep, and the sec:nd component

of the range is stored using cntp. The function returns zero if the range is

of the form address:address, one if the range is of the form address#count,

and -1 if the range cannot be parsed. A range consisting of a single
number is treated as address#count, with a count of ope.

int

parse_rarge(str, basep, cntp)

char ®atr;

unsigned *basep;

unsigned *catp;

A.33 argvize - Parse string intc tokens - Entry 42

This entry breaks the string str into tokens and fills in a structure tlp with

a copy of each of the tokens. Tokens are delimited by spaces, which are
otherwise ignored. Text enclosed in single or double quotes is considered
as one token. The function returns the number of tokens found.

Congole Entry Points

struct token_liat(

char *strptrs [MAXSTPINGS]); /* Vector of token pointers ®/

char *atrbuf [STRINGBYTES]:; /* The token strings */

char ®*atrp; /* Ptr to next free byte in strbuf @/

G.A&r *atrent; /* Number of tokens in structure */

}:

int

argvize(str, tlp)

char ®str:

struct token_list *tilp;

A.34 help - Print help from a command table - Entry a3
This entry displays on the console terminal the help text associated with

one or more commands. The commands and help text are defined in emd_

table, as described for the command_parser entry point. An error message

is printed for any command not found in the table.

If no commands are supplied (arge=1), all help text is displayed.

int

help(arge, argv, cmd_tablea)

int argc;

char **argv;

struct cmd_table *cmd_table;

A35 dumpcmd - Invoke console dump command - Entry 44

This entry point allows access to the consoie’s dump command, for

producing formatted dumps of memory. argv points to a sequence of

character string pointers. The first string is ignored. The remaining

strings are interpreted as the tokens that would be typed on the dump

command line. Tokens are the sequences of characters delimited by spaces.

If an error is encountered, @ message is displayed on the console terminal.

void

dumpemd (arge, argv)

int argc:;

char **argv;

A.36 setenvcmd - Invoke console setenv command - Entry 45
This entry point allows access to the console’s setenv command. argv

points to three character strings, the first of which is ignored. The second

string specifies the variable to be set. The third string specifies the value
to be stored in the variable.

If an error is encountered, a message is displayed on the console terminal.

void

setenvemd (arge, argv)

int argc;

char *vargv;

A-10

Console Entry Polints

A.37 unsetenvcmd - invoke console setenv command - Entry 46

This entry point allows access to the console’s unsetenv command. argy

points to two character strings, the first of which is ignored. The second

string specifies the variable to be removed.

If an error is encountered, a meseage is displayed on the console terminal.

void

unsetenvemd (arge, argv)

int argce:

char *vargv;

A.38 printenvemd - Invoke console printemfcommand - Entry 47
This entry point allows access to the console’s printenv command. argv

points to a sequence of character string pointers, the first of which is

ignored. The remaining strings specify the variables for which the values

should be displayed. If no additional strings are supplied (argc=1), then

all known environment variables are displayed along with their values.

If an error is encountered, a message is displayed on the console terminal.

void

printenvemd(arge, argv)

int argc;

char *“argv;

A.39 general_except - Console general exception vector - Entry 48

This entry corresponds to the console’s general exception handler. The

position of this entry in the entry point table is dictated by the MIPS

processor architecture. Calls to this entry point are not supported.

A.40 clear_nofauit - Clear console fault handlers - Entry 51

Not supported.

A41 not_implemented - Unimple_rflénted function - Entry 52
This position in the entry point table does not correspond to a routine.

Instead, it is guaranteed to contain the value used in the table to represent

an unimplemented function. To determine if a particular entry point is

implemented, compare the 32-bit value in the desired entry with the

32-bit value in entry 52. If they are equal, the desired function is not

implemented.

A-11

Console Entry Points

A.42 halt_interrupt - Service hait interrupt - Entry 54

This is the entry point where tne console expects to receive control on a

halt interrupt. Halt interrupts are caused when the console hardware

detects a Control-P typed on the console terminal, or when the processors

XBE:NHALT bit is set. The R3000 is interrupted (if enabled) using

interrupt 4. Any program that establishes a general exception handler

should avoid masking this interrupt and should pass control to tkis control

entry point whenever the interrupt is received. The interrupt handler

should avoid modifying any machine state except for the kt0 general-

purpose register. If thiis is not possible, then the register contents visible

with the console examine will reflect the charges made by the interrupt

handler.

On entry to this routine, the console will save all processor registers that

can then be examined with the console e (examine) command.

The console continue command restores all saved states and returns from

this routine.

void

halt_interrupt()

A.43 enter_maintmode - Enter mainteriance mode - Entry 96

This entry point causes control of the system to be returned to the

maintenance mode command parser, executing on the CVAX portion of

the processor. The contents of memory are not altered, but all state

internal to the R3000 processor is lost.

void

enter_maintmode()

A.44 start_m~int - Start code on the maintenance prifoessor - Entry 87

A-12

This entry point causes control of the system to be returned to code

executing on the CVAX portion of the processor. The call must include a

parameter giving the CVAX physical address at which execution should

begin. All R3000 internal processor state is lost.

void

start_maint (address)

unsigned address:;

Console Entry Points

A.45 Prom device drivers

The console standard /O entry points are layered on a set of device

drivers. The following sections describe some details of the supported

device drivers:

A.45.1 bootp - BOOTP protocol Ethernet driver

Not supported.

A.45.2 ra-MSCP disk driver

The ra driver supports MSCP disks connected via a KDB50 or via a

CIBCA-B and HSC disk controller.

e Up to three KDB50 controllers can be active. A controller is active

until all the file descriptors open for it are closed. Any number of units

may be accessed, up to the open file limit.

* Only one CIBCA-B controller can be active at a time. Only one unit

can be accessed.

¢ Iseek operations must be on a 512-byte block boundary.

¢ There are no supported ioct! operations commands.

3 mop - MOP protocol Ethernet driver

Not supported.

A.45.4 tms - MSCP tape driver

The tms driver supports TMSCP tapes connected via a TBK50 or TRK70

controller.

e Only one TBKxx controller can be active.

o [lseek is not supported. The tape iz always accessed sequentially.

° The following ioct! commands are supported:

MTWEOF - Write a tape mark

MTREW - Rewind the tape

MTOFFL - Rewind the tape and unload (if unload supported by
the drive).

a-13

Congole Entry Polii)

A.45.5 ity - console terminal port

The tty driver controls the console terminal line. Only one unit, unit zero

is supported. The following ioctl commands are supported:

FIOCSCAN - Poll device for input

TIOCRAW - Disable recognition of control characters

TIOCFLUSH - Flugh all pending input

TIOCREOPEN - Reopen the device, applying the current parameters

(for example, the baud rate).

A-14

index

A

ACLOL

See XM AC LO L signal

ACOKH. 74

AC power controliers 7-2

ADG1+ 6-34

AESR. 6-23

AR 6-28

AIR FAULT. 7-5

AVINTR . 6-33

Arbitrations 2-10, 2-16

Arbitration Supression Control bit

Seo ARBSC

ARBSC- 5-23

Architectures 1-4

ARD. 3-89, 392, 6-34

AREAR. 6-22

Auto Retry Disable bit

See ARD

Auxiliary Baud Select bits « 3-45

Bad Virtual Address Register» 4-20

See BadVAddr

Bandwidth 2-3

Battery Low bit

See BLO

BCI AC LO bite 6-25, 6-56

BCSR register- 6-37

BDCR1- 6-49

BESR- 6-40

BIAC LO- 6-67

B1BAD bit- 6-38

B1 BAD L signal« 6-38

BIDC LO- 6-67

B! DMA Failing Address bits « 646

BIDR+ 6-45

BIIC Loopback Mode bite 6-50

B1 Interiock Read Failed bit» 643

Bl interlock Read Failed Mask bit« 6-38

Bl interrupt-Pending Status bits « 641

Bl SeM-Test LED bit- 6-38

BLO. 3-41

Bootblock booting+ 3-110

Boot Processor bit

See BP

Boot Processor Disable bit

See BPD

Bootstrap Exception Vector bit» 4-11

Bootstrapping the operating system+ 3-106

BP. 3-90

BPD- 3-90

BTIM - 6-46

BTO. 3-46

BUS ERR + 3-80, 3-81

Bus Emor Register

See XBER

Bus Timeout Interval bits + 3-46

BVOR- 6-47, 6-55

BVR. 6-48

BWERR- 5-19

Byte gathering « 4-42

Byte Write Error bit

See BWERR

C

C/A Fetch Failed bit

See Command/Address Fetch Failed bit

Cache Address Comparators 3—-10

Cache entry

DATAP field » 4-45

PFN field 445

TAGP figld » 4-45

Vield e 445

Cache Fill Error bit

See CFE

Cache Hit Status bit

See LATHIT

Cachs Memory, First-Levele 4-42 to 4-48

Cache Memory, Second-Levels 3-10 to 3-14

- Cache Miss bite 4-12

Cache-resident node» 2-29

Cause Register» 4-15

Ses Cause

CBTCR- 346

index-1

indox

CC- 3-77, 3-90, 5~10, 6-17

CCA+« 3-101, 3-105, 3-113, 3-115 to 3-122

CCA$B_BAUD_RATE- 3-120

CCASB_CHKSUM- 3-119

CCASB_FLAGS- 3-122

CCASB_HFLAGS-+ 3-119

CCASB_NPROC- 3-119

CCA3B_REVISION- 3-119

CCASB_RXLEN. 3-122

CCA$B_TK50_NODE - 3-120

CCASB_TXLEN+ 3-122

CCA3SB_ZDEST- 3-122

CCASL BASE- 3-119

CCASL_BITMAP« 3~120

CCASL_BITMAP_CKSUM+ 3-120

CCASL_BITMAP_SZ- 3-119

CCA$Q_CONSOLE- 3-119

CCASQ_ENABLED- 3-11¢

CCA$Q_HW_REVISION. 3-120

CCASQ_HW_REVISION » 3-121

CCASQ_READY. 3-119

CCASQ_RESTARTIP - 3-120

CCA$Q_SECSTART. 3-120

CCASQ_SERIALNUM- 3-120

CCA$Q_USER_HALTED+ 3-120

CCAS$T_RX+» 3122

CCAST_TX . 3-122

CCAS$V_BOOTIP- 3-119

CCAS$V_ECACHE_CLEARABLE - 3-119

CCA$V_REPROMPT. 3-119

CCAS$V_RXRDY. 3-122

CCASV_TERM_CRT- 3-119

CCAS$V_USE_ECACHE- 3-119

CCA$V_USE_ICACHE- 3-119

CCASV_ZALT. 3-122

CCASW_IDENT- 3-119

CCASW_SERIALNUM1 » 3-120

CCASW_SIZE- 3-119

CCiD- 3-80

CC Interrupt Disable bit

Sse CCID

CDAL Bus Timeout bit

Seg BTO

CDPE- 3-87

CFE. 3-88

CHANNEL n iNHIBIT- 7-5

CHANNEL nOK

See CH nOK,

CHnOKe 7=4

Clear Write Bufler

See CWB

index-2

CNAK- 3-81,6-19

CNAKR. 3-89

CNTRPP. 3-31

Column Parity Eror bit

See CPER

Command - 3-79, 3-80, 3-81, 3-82, 3-88

Command/Address Fetch Failed bit- 6-41

Command cycles 2-19

Commander controller

Ses XCC

Commander ID- 3-80

Commander NO ACK Received bit

See CNAKR

Command ID- 3-79, 3-81, 3-82, 3-88

Command NO ACK bit

See CNAK

CONSEL - 3-48, 3-56

Console Not Secure bite 3-30

Console program + 3-113

Console Recsiver Control and Status Register

See RXCS

Console Rece:ver Data Bufier

See RXDB

Console Select Register

See CONSEL

Console Terminal Baud Rate Select bits

See CT BAUD SELECT

Console Transmitter Control and Status Register

See TXCS

Console Transmitter Data Bufier Register

See TXDB

Context Register 4-19

See Context

Control/? Enable bit

Ses CTP

Control and Status Registsr

See BCSR

Control and Status Registcr 1

See CSR1

Control and Status Register 2

See CSR2

Control panel

locgtione 1-8

Cooling system+ 7-5

location» 1-8, 1-9

Coprocessor Usability field» 4-11

Corrected Confirmation bit

See CC

Correcied Read Data bit

See CRD

CPER- 5-20

CPUD- 3-32

CRD. 3-79, 3-91,6~18

CRD bit» 2-103

CRDER. 5-19

CRD Error bit

Sge CRDER

CRDID« 3-91

CRD interrupt Disable bit

SEE CRDID

CSR1. 3-29

CSR1 Address Decode Mask Register

See CSR1ADMR

CSR1ADMR 3-70

CSR1BADR- 3-89

CSR1 Base Address Register

See CSR1BADR

CSR1 EN. 345

CSR1 Enable bits

See CSHAY EN

CSR2. 3-86

CT BAUD SELECT» 3-44

CTP- 3-44

CwB. 3-21

Cycle types- 2-16 to 2-26

D

D7- 348

DCLOL

See XMl DC LO L signal

DCOK He 7-4

DEC Power Bus- 74

Delayed Lockout Enable bit

See DLCKOUTEN

Device Revision bits

Seo DREV

Device Typs bits

See DTYPE

Diag 7 Register

Ses ADG1

DIAGCK « 5-16

Diagnostic Check bits

See DIAGCK

Diagnostic Control Register 1

Sea BDCR1

Diagnostic Read/Writs bits » 645

Diagnostic Read or Write bits » £€-33

index

Dirty bit« -7

Disablo Hold bit

Sees DISH

DISH » 5-23

DLCKOUTEN» 3-35

DREVs 3-73, 5-8, 6-14, 8-562

DTPE. 3-22, 3-88

DYYPE . 3-74, 5-8, 6-14, 6-52

Duplicate Teg Perky Error bit

See DTPE

Duplicate Tag Store» 3-22

DWMBA adapter- 1-5

DWMBA registers - 6-11 o 6-53

ECCDIAG - 5~14

ECC Diapnostic bit

Ses ECCDIAG

ECCDIS» 5-15

ECC Disable bit

Ses ECCDIS

ECMD - 6-24

EEADMR - 3-72

EEBADR-. 3-71

EEPROM Base Address Ragister

See EEBADR

EEPROM EN+ 345

EEPROM Enghle bits

See EEPROM EN

EEPROM Write Address bits

Ses EEWADR

EEROM Address Decode hMask Register

Ses EEADMR

EEWADR» 3-35

EiD- 6-24

EINTMR » 3-34

Engble Intarval Timer - LED D3

Ses EINTMR

Eneable IVINTR Transactions bite 6-28

Enable Protection Mode bit

Ses EPM

Enable Raad Uppar bit

Ses ERUP

Enable Self-invalidates bit

Ses ES!

Enable XBI Inierrupts bit+ 6-37

ENDADR - 5-12

NPo

index-3

Ending Address bits

See ENDADR

EPEEBUE. 3-38

EPM. 5-16

ERR. 3-61, 3-57, 3-83

ERRAD. 5-21

Eror Address bit

See ERRAD

Eeror bit

Ses ERR

Ermor handling by KNSBA/A interface module « 3-125

to 3-130

Errors

handling = 2-44

incongistent parity © 2-42

parity » 2-42

recovery¢ 2-45

reporting» 2~45

gequences 2~43

timoout» 2-42

Emer Summary bit

See £S

Eror Summary bits

See ERRSUM

Error Summary Register

Ses AESR

See BESR

Error Syndrome bit

See ERSYN

ERRSUM- 5~-14

EASYN. 5-20

ERUP - 3-91

ES- 3-76, 5-9, 6-16

ESls 3-22, 3-92

ETF- 3-82, 6-20

Exception Program Counier Register» 4-18

See EPC

Expander cabinet

VAXBl. 1-14

Extended Test Fail bit

See ETF

F

Failing Address field » 3-84, 6-21

Failing Address Register

See XFADR

Failing Command bits

indexn-4

Faiting Command bits (cont'd.)

Ses ECMD

Ses FCMD

Failing Commander ID bits

See EID

Ses FCID

Failing Longth
Seo FLN tiold

FBTP. 3-33

FCACHEEN. 3-32

FCle 3-32, 3-78, 3-87, 3-88

FCiD- 3-83, 68~20

FCMD« 383, 6-20

FHIT. 3-33

First-lovel cacha+ 4~3

Flip Bt 29 bit» 6-50, 6-88

Flip FADDR Address Bit 1 bite 6-49

FLN fiold» 3-84, 6-21

FMISS » 3-22, 3-33, 3-78, 3-87, 3-88

Force Bad Second-Leve! Tag Parity bit

Ses FBTP

Force BCI Bad Parity bit« 6-50

Force BIC Loopback Mode bit - 6-68

Force Cache Enable bit

Ses FCACHEEN

Force Cache Invalidate bit

Sea FCI

Force DMA-A Butler Busy bit» 6-35

Force DOAA-B Buifer Busy bit» 6-35

Force Octaword Transfers bit« 8-35

Force Parity bits

Ses FP

Forco Parity Salect bit

Ses FPSEL

Force Second-Level Cache Hit bit

See FHIT

Force Second-Level Cache Miss bit

Seo FUAISS

FP. 3-22

FPA ControV/Status Register« 4-35

Ses FCR31

FPA implamentation/Ravision Register- 4-37

Ses FCRO

FPBD- 3-36

FPSEL - 3-32, 3-92

Framing Eror bit

Ses FRM ERR

FRM ERR. 3-82

Front Pangl Boot Disable bit

Sea FPBD

Front Pane! EEROM Update Enable bit

See EPEEUE

G
GAREV- 3-93

Gate Array Revision bits

See GAREV

GEN BAD (BUS RCV PAR bit- 6-36

GEN BAD 1BUS XMIT PAR bit» 6-36

Global bite 4-8

H

H405 AC power controller» 7-2

H7205 power and logic unit

See PAL

HALT PROT Space+ 3-43

HIERR - 5-19

High Error Rate bit

See HIERR

/O bulkhead space

locatione 1-9

/0 nodas+ 1-5

{0 space 2-13

/O space restrictions » 2-8

/O System Resst Register

See IORESET

10 Write Failure bit- 6-25

1O Write Failure During CPU Write Transaction bit

See VO Write Failure bit

{ADR« 5-26

iBUS CPU DATA Parity Error bite §-27

{5US DMA-A C/A Parity Error bit« 6-26

IBUS DMA-A Data Parity Eror bit» 6-26

1BUS DMA-B C/A Parity Error bit+ 6-26

IBUS Parity Error interrupt Mask bit- 6~39

{C- 3-20

{CRD. 5-15

IDENT. 2-30

{DENT Error bit» 6~-43

ideniify transactions

index

identity transactions (cont'd.)

Sea IDENT

IE~ 3-58, 3-84

FIFOFL. 3-31

FLG. 5-26

FLGn+ 5-25

HDAL Bus Timeout Control Register

See CBTCR

IDAL Interchip Inmerconnect controller

See IC

DB+ 5-26

tiegal CPU Coinmand bits 8-42

implied Vector interrupt Destination/Diagnostic

Register

Seo AIVINTR

implied Vector Interrupt transaction

See IVINTR

Inconeistent Parity Error bit

See IPE

inconsistent Parity errors « 2-42

Index fiekd » 4-9

inhibit CRD Status bit

See ICRD

initiglization» 2-38 to . -40, 3-84 to 3-105, 6-67

to 6-68

INT« 3-57, 3-83

INT3 interrupts 3-125

im Enable Current bit+ 4-14

int Enable Old bit+ 4-13

int Enable Previous bit- 4-13

interchip Interconnect controlier

See IC

interface togic

Seo XL

Iinterloave Address bits

Ses INTLVADR

Interleave Mode bits

See INTLM

interleaving 5-5, 5-13

Interlock Address bit

Ses IADR

interlock Address Register (NTADR)« 4-50

interlock Flag bit

See IFLG

interiock Flag Ragister

Ses IFLGn

interlock 1D bit

Ses IDB

INTERLOCK n+ 7-5

interlock Read transactions - 2-28

index-5

index

imerlock Ragister (INTREG). 4-50

interprocaasor communication e 3-113 to 3-124

interprocessor intarrupt

Seo P

imterrupt bit

See WY

interrupt Destination bite « 645

interrupt Destination Register

See BIDR

interrupt Enable bit

Ses i€

interrupt Level One bit

See INTR1

interrupt RMask fielde 4-13

interrupt Mask Register

See ABMR

interrupts » 6-7

interprocessor 2-31

Types+ 2-9, 6~56

VAXBI-generated » 8-10, §-57

Vactors » §-54

Write Errore 2-31, 2-45

interrupt Sent Status bits » 640

interrupt transaction

See INTR

interrupt Vector bits

See IV

interrupt Vector Disable bit

See VD

interval Timer bit

See INTMR

INTLM- 5-13

INTLVADR - 5-13

INTMR - 3-30

iINTR. 2-30

INTR1- 3-30

INTR INTRon Command NO ACK bite 6-31

INTR INTR on No Read Responss bit+ 6-30

INTR INTR on Resd Ewor Response bt 6-31

INTR INTR on Read Sequence Emer bite 8-30

INTR on Corrected Confirmation bite 6-29

INTR on Comrected Read Data bit» 6-20

INTR on BUS CPU DATA PE bit» 6-32

INTR on (BUS DMA-A C/A PE bit» 6-32

INTR on IBUS DMA-B C/A PE bit 6-32

INTR on Parity Ervor bit- 6-29

INTR on Read/IDENT NO ACK bit+ 6-30

INTR on Write Data NO ACK bit» 6-30

INTR on Write Sequence Error bite 6-29

Invalidate FIFO Full bit

Indaxu-6

invalidate FFO Full bit (cont'd.)

See FIFOFL

invalidate Queve

See IQ

INVAL Queus Overtiow bit

Sse QO

INVINTR - 2-42

Write emors 2-45

P 3-24, 3-25

IPE « 3-22, 3-78, 6-17

IPINTREN- 6-57

PL Leve! Select bits

Ses #PL LVL SEL

PL LVL SEL. 3-42

e 3-20

00- 3-22, 3-87

IREAD - 2-28

isolate Cache bite 4-12

iv. 3-82, 3-88

VO« 3-42

IVINTR - 2-31

WINTR Destination bits+ 8~33

K

KemAJser Mode Current bits 4-14

Kern/User Mode Old bit+ 4-13

Kerm/Ugar Mode Previous bt 4-13

KNS8A/A interiace module featurss « 3-2

KNSBA/A inmterface module registers « 3-27

KNSBA/A Seli-Test Passed - LED D4

See EINTMR

KNS8A/A Timeout Enable - LED D5

See TWAOTE

KNSSA/B CPU module festuras « 4-2

KNSBA/B CPU module registers » 44

KNSBA/R Timeout bit

See THAOT

KNS8A processor

Seo also Processor

L

LATHIT- 3-30

LED D1+ 3-31

LED D2+ 3-34

LED D3- 3-34

LED D4~ 3-34

LED D5~ 3-34

LED DS

LESI- 6-55

LiiD. 5-26

Lockout bits- 3-89

Lock Quaue Error bit

See LOERR

Lock Transactions« 4-50

Low-End Storage interconnect

See LESI

Lower Inferlock ID bits

See LID

LQERR- 5-16

MAINT« 3-54

Maintenance bit

See MAINT

PMaster Sequencer Transaction Failed bit« 6—42

MCTL1 . 5-14

MCTL2. 5-22

MECEA. 5-21

MECER- 5-18

bMemory

See MS62A memory

Memory contiguration= 3-101

tMemory Control Register 1

See MCTL1

Memory Control Register 2

See MCTL2

iMemory ECC Error Address Register

See MECEA

Memory ECC Error Register

See MECER

temory interisave« 3-102

Memory Registers 5-8 to 5-26

Memory Size bits

See MEMSIZ

Memory Valid bit

See MVAL

MEMSIZ- 5-15

AIS62A memory module- 1-5

dMuttiple CPU Emors bit+ 6-41

NHALT» 3-76, 6-16

NID+ 3-36

Node HALT bit

Seo NHALT

Node D bits

See NID

Node Reset bit

See NRST

Nodespace- 2-14

Node-Spasitic Error Summary bit

Ses NSES

Non-cachable bit« 4-7

Nonexistent memory locations

See NXM

No Read Response bit

Ses NRR

NRR. 3-80, 6-18

NAST. 2-38 to 2-40, 3-76, 5-9, 6-16, 6-67

NRST bit- 3-94

NSES. 3-82, 5-11,6-19

NXi. 2-45

0
ONCMDL. 74

ON SENSE L+ 7-4

Opsrating system bootstrapping or restarting » 3-106

Overrun Error bit

Ses OVR ERR

OVER TEMPERATURE n+ 74

Overtemperature switch, H7215 7-3

OYR ERR- 3-51

P

Page Frame Number field« 4-7

PAL. 7-2

Parity Error bite 4-12

See PE
. Patity errors » 2-42

;wfl}ERs-:m Parity Zeio bits 4-12
—_ e e BBB o o W - Wy PB REO Le 7'4

INTR on Write Sequence Error bite 6-29 LED D3- 3-34 .
invalidate FIFO Full bit LEDD4- 3-34

Indaxu-6

indox

PNL RESETL. 74

Power reguletors

location s 1-8, 1-9

Power sequencer

See XTC

Power system- 1-17 o 1-18

Primary system bootstrap program

Sae VB

Probe failure bit° 4-9

Process D figld« 4~

Processore 1-5

registers« 3-27

*bAl interace» 3-3

Procsss Revision identdier Registers 4-21

See PRI

R3000 Enable bit+ 3-31

R3000 Status Registers 4~15

See Status

RAMTYP - 5-15

RAM Type bits

See RAMTYP

Random figld . 4~10

RBUF . 3-52

ACV BRK » 3-52

RDNAK - 5-10

RDS erors« 3-103

READ. 2-27

Read/IDENT Data NO ACK bit

Seo RIDNAK

Read/Mirite CNTRL P Pending bit

Sao CNTRPP

Read Data ND ACK bit

Seo RDNAK

Read Eror Response bit

See RER

Read Queus

Seo RQ

Read Sequence Error bit

See RSE

Read transactions « 2-27, 2-32 t0 2-36

Recaived Break bit

See RCV BRK

Received Data bits

Seoe RBUF

Receiver Done bit

indox-8

Receiver Done bit (cont'd.)

See RX DONE

Recaeiver interrupt Enable bit

Seo RX IE

Refresh Emor bit

See RERR

Refresh Ratoe bits

See RRB

Registers

processors 3-27

Rogi;t_ogr:. KNSSA/A interface module+ 3-28 to

Registers, KNS8AB CPU module 4-5 to 4-21,

4-34

Registers, VAXBI

Device Register- 6-52

Registers, XMl

Device Ragister

Bus Error Register« 3-75, 59, 6-15

Dovice Register« 3-73, 6-14

RER- 3-81, 6-19, 6-58

RERER-. 5-18

RERR. 5-22

Reserved Register= 6-51

Reset Invalidate FIFOs - LED D2

Seo RINVAL

Responder controlier

Ses XRC

Responder Emor Address Register

See AREAR

Respondaer Failing Address bits « 6-22

Responder Failing Langth bits

Se¢o RFLN

Respones timeouts» 2 42

Restarting the operating system « 3-108

Restan parameter block

See RPB

Retry timgouls « 2-42

Revision Level bits

See REV LEVEL

REV LEVEL- 3-37

RFLN. 8-22

RIDNAK « 3-79, 6-18

RINVAL+ 3-34

ROM Address Space Size Seloct bits

Seo ROM SIZE SEL

ROM Malt Protect Address Space Size Select bits

Ses HALT PROT Space

ROM SEZE SEL- 3-42

ROM Speed bit

ROM Speed bit (cont'd.)

Soe RSP

Row Parity Error bit

Seo RPER

RPB- 3-105

RPER. 5~19

RQ-. 3-20

KRB+ 5-23

RSE- 3-80, 6-18

RSP. 342

RUN- 3-59, 3-65

Run bit

See RUN

RXCS. 350

RXDB. 3-51

RX DONE - 3-50

RX IE- 3-50

S

Safety Exira Low Voltage circuit

Seo SELV circuit

SAO- 6-55

SCB- 6-55

SCPE. 3-87

SEADR-. 5-12

Second-Level Cache Parity Errors

See SCPE

Second-Level Cache Parity Update Disable bit

See CPUD

Sell-Tast Fail bit

See STF

Seli-Test Loop bit

See STL

Seli-Test Pass LED bit

See STPLED

SELV cireuit. 74

Sequence errors « 2-43

SGL+ 3-58, 3-64

Single bit

See SGL

Slave Sequencer Transaction Failed bt 6-42

SLED?

See D7

8SSC- 33

SSCBA. 3-39

SSC Base Addres Register

See SSCBR

index

SSC Baso Address bits

Ses SSCBA

SSCBR- 3-39

SSC Configuration Register

Ses SSCCR

SSCCR« 3-41

STANDBY CMD L« 7-4

Starting Address bits

Ses STRADR

Stanting and Ending Address Registar

See SEADR

Status LED D7 bit

Ses D7

STF- 2-38 to 2-40, 3-83, 5-11, 6-20

STL- 3-36

Stop bit

See STP

STP. 3-58, 3-64

STPLED- 3-35

STRADR: 5-13

Swap Caches bit 4-12

SYNC. 7-5

System

architecture» 14

front views -8

rear view+ 1-9

System support chip

See SSC.

System Type bits

See SYS TYPE

System Type Register

Ses SYSTYPE

SYS TYPE (bits)s 3-37

SYSTYPE (register) 3-37

T

TBUF « 3-55

TCRO. 3-57, 3-63

TCR1. 3-57, 3-63

TCY. 5-24

TCY Tester Register

See TCY

Temperature sensor, cabinete 7-2

Time of Year Clock

See TODR

Timeout Address Register

See BTIM

Index-9

indox

Timeouls

Response » 2-42

Retry - 2-42

Timeout Selact bit

See TOS

Timer Control Registers

See TCRD and TCR1

Timer imerrupt Vactor Registers

See TIVRO and TIVR1

Timer Interval Repisters

See TIRO and TIRY

Timer Next Interval Registers

Seo TNIRO and TNIR1

TIMOT» 3-30

TiRO- 3-60

TIR1« 3-66

TIVRD - 3-62

T 58

TK70 tape drive

location 1-8

TLB EntryHi Register 4-6

Sees EntryHi

TLB EntryLo Register+ 4-7

See Enmrylo

TLB indax Register 4-9

See index

TL8 Random Register 4-10

Ses Random

TLB Shutdown bite 4-12

TNIRO- 3-89

TNIR1. 3-67

TODR. 3-47

TOS. 3-91

TOYe 7-3

TPE» 3-22, 3-87

Transaction errors « 2-42

Transactions » 2-27 to 2-37

identity- 2-30

Implied VYector interrupt 2-31, 2~42

interiock Read - 2-28

interupte 2-30

Read - 2-27,2-32 to 2-36

Unlock Write = 2-30

Write Mask » 2-29

Writes» 2-37

Transaction Timeout bit

See TTO

Tranafer bit

See XFR

Transmit Break bit

inden-10

Transmit Breek bit (cont'd.)

See XMIT BRK

Transmit Data bits

See TBUF

Tranemitier interrupt Engble bit

Seo T IE

Transmitter Roady bit

Seo TX RDY

110+ 3-82, 3-125, 6-19

TXCS» 3-53

TXDB+ 3-55

TXIEs 3-53

TX RDY- 3-53

U

UINTRCSR » 6-57

Uncorrectable Double-Bit (RER) Error

See RERER

UNIBUS - 6-55

Unilock Sequence Error bit

See UNSEQ

Uniock Write Pending bit

See UWP

Uniock Write transaction 2-30

UNSEQ- 5-16

UWMASK « 2-30

UWP. 3-89

v

Valid bits 4-8

VAXBI card cage

locations 1-8, 1-9

VAXBI Device Register

See DTYPE

VAXBI expander cebinets 1-14

Vector Offset Register

See EVOR

Vector Offsei Register bits

See VOR

Vector Register

See BVR

Virtual Page Number field+ 4-6

VOR- 647

VPE- 3-22, 3-87

W

WB- 3-20, 3-21

WBD- 3-92

WODNAK. 3-79, 6-18

WDPE . 3-87

WE - 3-25

WEl+ 3-77, 6-17

WMASK» 2-29

Write bufferz« 4-3

Write Data %O ACK bit

Seo WDONAK

Write Data Parity Error bit

See WDPE

Write Error interrupt» 2-45

Write Error Interrupt

See WE

Write Error Intarrupt bit

See WEI

Write Error INVINTR» 2-45

Write Mask transactions = 2-29

Write Sequence Error bit

See WSE

Write transactions « 2-37

WSE+ 3-78, 5-10, 6~17

X

XACLO+ 3-36

XBAD- 3-76, 6-16

XOER- 3-75, 5-9, 6-15

XBIA internal Error bits 6-25

XBIB-Detected IBUS Parity Error bit+ 6-44

XBI Cabis OK bit- 6-23

XBI Interrupt-Pending Status bite 6-41

X8I Vector bits» 6-48

uCC+ 3-20

XCGPA Write Bufier

See WB

XCIACLOL+ 2-38 to 2-40

XCIDCLOL- 2-38 to 240

XCPGA Chip+ 3-19

XCPGA Write Butfer

See WB

XCPGA Write Butfer Disable bit

Ses WBD

XDEV. 3-73, 5-8, 6~14

index

XFADR-» 3-7%, 2-§%, 3-81, s-82, 3-88

XFALR register» 3-84, §-21

XFAULT. 3-77, €~17

XFR. 3-58, 3-64

XGPRe« 3-85

XL« 3-20

XMI AC LO bit

See XACLO

XMIACLO Le 2-36 t0 2-40, 657

XMIAC LO L sigr.als 394

XMi BAD nit

Ses XBAD

XMIBAD L= 2-38 to 2-40

XMi BAD L signal« 6-38

XM card cage

{ocatione 1-8, 1-9

XMI CMD REQ L+ 2-10, 2-17

XMI CND- 242

XMI Cornere 2-4

XMI D 242

XMIDCCL L. 6-67

XMIDCLO L. 2-38 to 2-40

XMi DC LO L signale 304

XMIF. 2-42

XMI FAULT bit

See XFAULT

XM General Purpose Register

Ses XGPR

XMI GRANT L« 2-10, 2-17

XMIHOLD L 2-17

XMI D+ 2-42

XMl inftialization» 2-38 to ~-40

XM interface » 3-3

XMi interrupts = 3-23 to 3-25

XMI NODE 1ID<3:.0>+ 2-17

XMIPa 2-42

XMIRESET L= 2-38 to 2-40

XMI RESET L signale 3-84

XM Reset Timing Control Logics 7-3

XMI RES RE. L- 2-10, 2-17

XMISTFL- 667

XMISUP L. 2-17

XMIT BRK« 3-54

XMi-to-VAXB! adapter 1-5

See also DWMBA adapter

XRC. 3-20

XTC power sequencers 1-9, 2-39, 3-94, 7-3

Index-11

