
Technical Volume Group

¥ Introduction to
B MicroPower/Pascal

dlilgliltlall

Introduction

to

MicroPower/Pascal”

AA-M388A-TC

January 1982

This document introduces the MicroPower/Pascal microcomputer software develop-

ment toolset. It is intended to be used by programmers new to MicroPower/Pascal and

anyone who requires a high-level overview of the product.

Operating System: RT-11 Version 4.0

Software: MicroPower/Pascal Version 1.0

To order additional copies of this document, contact the Software Distribution Center,

Digital Equipment Corporation, Northboro, Massachusetts 01532

digital equipment corporation - maynard, massachusetts

First Printing, January 1982

The information in this document is subject to change without notice and should not be

construed as a commitment by Digital Equipment Corporation. Digital Equipment

Corporation assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used

or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is

not supplied by DIGITAL or its affiliated companies.

Copyright © 1982 by Digital Equipment Corporation.

All Rights Reserved.

Printed in U.S.A.

A postage-paid READER’S COMMENTS form is included on the last page of this

document. Your comments will assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC dlilgliltall RSTS
DECnet Edusystem RSX

DECsystem-10 IAS UNIBUS

DECSYSTEM-20 MASSBUS VAX

DECUS MicroPower/Pascal VMS

DECwriter PDP VT

DIBOL PDT

M15900

Contents

Preface

Chapter 2

Chapter 3

Page

vii

Chapter 1 This Is MicroPower/Pascal

1.1 Introducing MicroPower/Pascal 1-1

1.1.1 High-level Programming Language. 1-1

1.1.2 Concurrent Programming Capability. 1-2

1.1.3 Development Tools 1-2

1.1.4 Symbolic Debugger.00 1-2

1.1.5 Device and File Support00 1-2

1.2 MicroPower/Pascal Software Product 1-3

1.3 Concurrent Application Design 1-3

14 KeyTerms« o v oo e e e e e e e e 1-6

Host and Target

2.1 The Host System (RT-11) v o v v v v 2-1

2.2 Target Systemso 2-2

2.21 T/ODevices. v v v i e e e e e e e e e e e e e e e 2-4

2.2.2 The Configuration File 2-5

Real-Time Application Development

3.1 Development Cycle oo 3-1

3.1.1 Step 1: Design and Code Source Programs 3-2

3.1.2 Step 2: Compile Source Code 3-2

3.1.3 Step 3: Build the Application 3-2

3.1.3.1 MERGE.o e 3-5

3.1.32 RELOC. i v v i e i e e 3-5

3.1.3.3 MIB e e e e e e e e e e e 3-6

3.1.4 Step 4: Load the Application into the Target. 3-6

3.1.5 Step 5: Test and Debug the Application 3-6

1l

Chapter 4 Processes

Chapter 5

Chapter 6

v

4.1

4.2

4.3

4.4

4.5

4.6

Makeup of a Process.00

4.1.1 Process Control Blocks

4.1.2 Process Data Areas and Structures

4.1.3 Process Names and Process Descriptor Blocks

Process Scheduling and Synchronizing

421 Kemel'sRole.o

4.2.2 Process States,

Process Families.

4.3.1 Static Versus Dynamic Processes

4.3.2 Mapped Memory Processes

4.3.3 Process Typeso

4.3.4 Initializing and Terminating Components of the

Application. Lo

Connecting Processes to Interrupts

Exception-Handling Processes and Procedures.

System Processeso e e e

MicroPower/Pascal and Concurrent Programming

5.1

5.2

5.3

Pascal and MACRO-11 Languages

Concurrency Concepts o oo

5.2.1 Processes Manage Shared Resources

5.2.2 Semaphores Synchronize Concurrent Processes

5.2.2.1 Processes Use Semaphores to Send Packets,

Messages0

5.2.2.2 Race Conditions

5.2.2.3 Critical Sections.

5.2.3 Process Priorities Affect Concurrency

5.2.4 SUSPEND and RESUME Affect Other Processes

Concurrency in Designing a Sample Application.

5.3.1 The Target Hardware.

5.3.2 Operating Characteristics

5.3.3 Designing a Concurrent Solution.

Application-Development Example

6.1

6.2

OVEIVIEW . . v v o e e e e e e e e e e e e e e e e e

6.1.1 Requirements.o0000

6.1.2 Steps e e e e e e e

Application Example: The Shooting Gallery.

6.2.1 The Concurrent Program .-.

6.2.1.1 Main Program Declarations

6.2.1.2 Initialization Procedure (Dofirst)

6.2.1.3 Setup Procedure.00

6.2.1.4 Main Program’s Executable Block 6-4

6.2.1.5 Dynamic Process (Entry). 6-8

6.2.2 A Potential Problem: Character Echoes 6-9

6.2.3 Escape Sequences.o e e 6-10

6.3 Creating the Application Example from Source Code 6-10

6.3.1 Configuring the Hardware. 6-10

6.3.2 Completing the Configuration Worksheet. 6-10

6.3.3 Editing the Configuration File. 6-12

6.3.4 Compiling the Source Code 6-13

6.3.5 Building the Application 6-14

6.3.6 Loading and Running the Application 6-17

6.3.7 Using DLLOAD 6-17

6.3.8 Debugging the Application 6-18

Appendix A Source Program for Application Example

Glossary

Index

Figures

1-1 Constructing a MicroPower/Pascal Application 1-2

2-1 Transferring Application to Target System Memory 2-1

2-2 RT-11 Utilities o o o e e e e e e 2-3

2-3 Interfacesto LSI-11 Buso 2-5

2-4 A MicroPower/Pascal Configuration Worksheet 2-6

3-1 MicroPower/Pascal Application Development 3-1

3-2 MicroPower/Pascal Utilities 3-4

3-3 MicroPower/Pascal Debugger Features 3-7

4-1 The Kernel and Interprocess Communication 4-1

4-2 State Changes that May Affect Control of the CPU 4-6

4-3 State Changes Involving the Run State 4-6

4-4 Summary of All State Changes 4-7

4-5 Address Spaces oo oo e e 4-8

5-1 Tasks Comprising the Concurrent Solution 5-10

5-2 The Messenger Process. 5-11

6-1 Example of Array Positions on Terminal Screen. 6-6

6-2 Critical Sections in Example and Entry. 6-6

6-3 Configuration Worksheet00 6-11

Preface

Objectives and Assumptions

This manual introduces the basic concepts and components of

MicroPower/Pascal. After reading this book, you will know the capabilities of

the product and its uses. This introduction provides you with an overall per-

spective; the other books in the manual set describe each aspect of

MicroPower/Pascal.

We assume that you are familiar with the programming language Pascal or

with MACRO-11. We also assume that you are acquainted with the RT-11

operating system. The MicroPower/Pascal manual set does not describe

RT-11 in detail; nor does it present a tutorial on programming in Pascal.

Structure of this Manual

This Introduction to MicroPower/Pascal comprises six chapters and a glos-

sary:

e Chapter 1 sketches a general description of MicroPower/Pascal and intro-

duces concurrent programming concepts.

e Chapter 2 describes the two computer systems involved with

MicroPower/Pascal: the host and the target.

e Chapter 3 presents the five steps involved in using MicroPower/Pascal.

e Chapter 4 describes MicroPower/Pascal processes.

e Chapter 5 illustrates some specifics of concurrent programming with

MicroPower/Pascal.

e Chapter 6 demonstrates how to create and run a concurrent sample pro-

gram.

The Glossary lists MicroPower/Pascal terms that appear throughout the man-

ual set and is a valuable aid to understanding MicroPower/Pascal. Use the

Glossary whenever you are in doubt about the meaning of a term.

vil

The Rest of the Manual Set

viil

In addition to this manual, the MicroPower/Pascal documentation set con-

sists of the manuals shown in the following figure:

Language Guide

APPLICATION

PROGRAMMING

Runtime Services

Manual

Messages

Manual

System User’s Guide

Debugger User’s

Guide APPLICATION
BUILDING

Installation

Guide

ML-099-81

MicroPower/Pascal

System User’s Guide

This manual describes the operation of MicroPower/Pascal utility programs in

detail, including writing and creating target system applications and loading

the application into the target microcomputer. Chapter 2 presents a brief

overview of the RT-11 operating system used as the host system. Chapter 3

covers RT-11 text editors. Chapter 4 explains how to invoke the Pascal com-

piler and use its options. Chapters 5 to 9 describe the utility programs and

explain how they create target system applications. Chapter 10 covers creat-

ing and maintaining libraries of macros and object modules. Chapters 11 to 14

present three methods of loading an application program into the iarget

system.

Refer to the MicroPower/Pascal System User’s Guide for a description of the

utility programs used to develop the application. The MicroPower/Pascal Sys-

tem User’s Guide contains detailed information on linking, loading, and de-

bugging a MicroPower/Pascal application.

MicroPower/Pascal

Language Guide

This manual presents the programming language Pascal and its special exten-

sions for use in microprocessor application programming. The manual covers

Pascal’s format and structure, basic concepts, data types, statements, proce-

dures, and functions, as well as specific MicroPower/Pascal compile-time aids

and error handling.

As a MicroPower/Pascal programmer, you must understand the real-time

extensions of the MicroPower/Pascal language in order to design and code a

successful application. Refer to the MicroPower/Pascal Language Guide for

keywords and Pascal statements that have been added by MicroPower/Pascal

specifically for programming concurrent processes in a real-time application.

Chapters 5 and 6 of this Introduction to MicroPower/Pascal present a brief

overview of concurrent programming.

MicroPower/Pascal

Runtime Services Manual

This manual describes the services and functions supplied by the

MicroPower/Pascal runtime system. The manual describes the kernel services

and services provided by system processes such as device drivers and the clock

process. Also included is a guide to writing a device driver. The

MicroPower/Pascal Runtime Services Manual covers MACRO-11 program-

ming for MicroPower/Pascal applications.

Refer to the MicroPower/Pascal Runtime Services Manual for details of the

system services provided by the MicroPower/Pascal runtime system (whose

modules will make up a part of your application). This manual explains how

the MicroPower/Pascal application program supplies basic functions such as

interrupt dispatching and process scheduling, as well as how applications

handle concurrent processes.

MicroPower/Pascal

Debugger User’s Guide

This manual describes the MicroPower/Pascal symbolic debugger, PASDBG.

Chapter 1, an overview of PASDBG’s features, describes the target system

hardware and software environment necessary to use PASDBG. Chapter 2

presents general techniques for using PASDBG and specifics on debugging

MicroPower/Pascal programs. Chapter 3 lists PASDBG commands, organized

by function. Each command is explained with illustrations.

MicroPower/Pascal

Messages Manual

This manual lists and describes the MicroPower/Pascal utility program mes-

sages and the Pascal messages. Chapter 2 covers the utility programs included

in the MicroPower/Pascal distribution kit. It lists messages for COPYB,

X

DLLOAD, MERGE, RELOC, MIB, and PASDBG. In addition, Chapter 2

describes the cause of the error and the most likely recovery procedure. Chap-

ter 3 details the Pascal command line, compile-time, runtime, and compiler

malfunction error messages. The command line messages are described in the

same way as utility program messages.

MicroPower/Pascal

Installation Guide

The MicroPower/Pascal Installation Guide covers installing MicroPower/Pas-

cal software on the RT-11 V4.0 system to be used for developing

MicroPower/Pascal application software.

MicroPower/Pascal

Reference Card

The MicroPower/Pascal Reference Card contains tables of kernel service re-

quests, system process requests, start-up commands, utility program com-

mands, PASDBG symbolic debugger commands, and other useful reference

information.

Chapter 1

This Is MicroPower/Pascal

1.1 Introducing MicroPower/Pascal

MicroPower/Pascal is a package of software used to create concurrent real-

time application programs. You develop these programs, or applications, on a

bounded RT-11 XM host system. These applications execute on a separate

target microcomputer — an LSI-11 or SBC-11/21 processor in a dedicated

computing environment.

HOST TARGET

ML-065-81

Each application is constructed especially for its target system, with the exact

set of operating system services needed. All code is optimized to execute

efficiently and to minimize the amount of memory required. In addition,

portions of the application that do not change value during the operation can

be placed in read-only memory (ROM) in the target.

1.1.1 High-Level Programming Language

You can write MicroPower applications by using an extended version of the

Pascal language. MACRO-11 assembly language can also be used; this man-

ual, however, emphasizes Pascal as the programming language appropriate

for most applications. MicroPower/Pascal is a superset of standard Pascal,

with added data types, functions, and language constructs especially suited to

microcomputer programming.

1-1

1.1.2 Concurrent Programming Capability

Concurrent programming is the structuring of your application into pieces, or

processes, that appear to execute simultaneously. Concurrent processes make

efficient use of the target microcomputer. MicroPower/Pascal processes are

not supported by a conventional operating system; instead, every application

contains its own customized set of supporting routines, called the kernel.

1.1.3 Development Tools

The MicroPower/Pascal compiler transforms your source code into a set of

optimized machine instructions. Utility programs link the compiled code with

a customized kernel to create the application. The kernel contains only those

operating system services needed to execute your application.

The MicroPower/Pascal utility programs construct your application one piece

at a time (see Figure 1-1). This modular approach makes testing and debug-

ging easier and simplifies the job of updating and expanding applications.

The resulting application can be placed into the target system by one of

several different loading methods, including PROM chip transfer.

MicroPower/ Application

Pascal

Compiler

Programs o
Utilities

Processes RT-11 Process | Process | Process

Program

Procedures module

Functions library

Kernel
Debugger erne

Source Host Target

code ML-066-81

Figure 1-1: Constructing a MicroPower/Pascal Application

1.1.4 Symbolic Debugger

You can debug the application interactively over a communication link by

using the MicroPower/Pascal symbolic debugger software running under

RT-11 in the host. An application constructed for debugging does not contain

optimized code. After debugging, you can redevelop the code into an opti-

mized application of greater efficiency and smaller size.

1.1.5 Device and File Support

MicroPower/Pascal provides precompiled driver processes that act as inter-

faces between your application and various DIGITAL devices (such as the

RXO02 floppy disk drive). You can also include a file system process and

modules that allow you to create, access, and maintain data on target mass

storage devices in RT-11-compatible format.

1-2 This Is MicroPower/Pascal

Driver processes and the file system, which are fully accessible from your

Pascal source code, greatly simplify I/O operations.

1.2 MicroPower/Pascal Software Product

MicroPower/Pascal is shipped as files on either RL02 disks or RX02 floppy

diskettes, to be installed in the host RT-11 operating system. The

MicroPower/Pascal Installation Guide explains how to copy these files and set

the host system to begin application development.

The MicroPower/Pascal software product consists of the following:

1. A Pascal compiler that operates on a superset of the standard Pascal

language to produce optimized machine code. (MicroPower/Pascal adds

extra data types and functions to standard Pascal as well as special lan-

guage constructs that support concurrent programming.)

2. Several utility programs that construct the MicroPower/Pascal applica-

tion and load it into target system memory. These utilities run on the

RT-11 operating system in the host.

3. A library of object (program) modules, some or all of which will be in-

cluded in a software kernel in each application. This ROMable kernel

supports the many features and extensions of MicroPower/Pascal and sup-

plies the target system with basic services.

4. A symbolic debugger for testing and correcting the installed application,

using source code scopes, labels, and identifiers.

5. A subset of the RT-11 operating system, supplied as a pre-SYSGENed

RT-11 XM monitor and utility programs for use as the host operating

system.

PASCAL

COMPILER

DLLOAD

ML-067-81

1.3 Concurrent Application Design

The efficiency and compactness of MicroPower/Pascal applications result

from a concurrent program design that eliminates the need for a traditional

operating system in the target. Concurrent programming structures an appli-

cation into independent parts designed to execute simultaneously. These

parts compete for control of the target CPU and other target system resources.

This Is MicroPower/Pascal 1-3

The following questions and answers introduce basic concepts of concurrent

programming in MicroPower/Pascal.

Question: What is a concurrent program?

Answer: A MicroPower/Pascal application program contains separate

sequences of instructions, called processes, which perform distinct tasks.

These independent activities are carried out in parallel (concurrently) by a

single processor. Thus, the application is organized as if to perform many

activities at once; you treat each activity separately in your source code.

Chapter 4 describes MicroPower/Pascal application processes.

Key to this compartmentalized application design is the way in which pro-

cesses share control of the CPU and other common resources (data areas and

peripheral devices, for example). The MicroPower/Pascal language contains

mechanisms for synchronizing executing processes and mutually excluding

processes from shared resources. These mechanisms, called semaphores, are

described in Chapter 5.

In summary, MicroPower/Pascal processes can be thought of as running si-

multaneously, even though there is only one target system CPU. (The

lifespans of processes overlap, but only one process controls the CPU at a

time.) The size of the application is kept to a minimum, since no general-

purpose operating system is required to referee processes; instead, your con-

current design coordinates them.

Question: How do I plan and write concurrent programs?

Answer: Chapters 5 and 6 give examples of the concurrent approach to pro-

gram design. A programmer usually constructs a program from a flowchart of

sequential activities. By contrast, a programmer constructs a concurrent pro-

gram from several parallel flowcharts, each of which communicates with the

others to synchronize execution. The most important part of concurrent pro-

gramming is coordinating processes to avoid interference.

Question: How do I coordinate my processes?

Answer: MicroPower/Pascal provides several mechanisms, called sema-

phores, for process synchronization and communication. A semaphore is a

global data structure that is manipulated by two or more processes. A sema-

phore is used to halt execution of one process until another process sends a

signal to proceed. There are many variations on this basic wait/signal concept,

as described in Chapter 5.

You set up semaphores in the source program so that their states at any given

time correctly guide the responses of the entire application to external real-

time events. For instance, if more than one process must access a data area or

other system resource, a point of communication among the processes (sema-

phore) should be created to guard that resource by ensuring sequential access.

In this case, the semaphore acts like a garden gate; the semaphore (gate)

protects the resource (garden). When a process accesses the resource, it will

close the gate, resetting the semaphore to prohibit access by another process.

Any process seeking access will have to wait until the resource becomes avail-

able. The resource is freed by signaling the proper semaphore, opening the

1-4 This Is MicroPower/Pascal

gate to other processes. Without this protection, several concurrent processes

might have access to a resource at the same time, interrupting one another to

modify the resource unpredictably. Simultaneous access could destroy the

integrity of the shared resource.

Process

execution ML-068-81

There are three types of semaphores: binary, counting, and queue. The binary
semaphore represents the open/closed garden gate. The counting semaphore

acts like a gate that stays open until a number of processes have passed, then

prevents any more from entering. The queue semaphore can pass information

to a waiting process, as if the garden gate had a mailbox with a message from

the process responsible for opening the gate.

Wait until gate

opens and

message arrives

Process / ~
execution ML-069-81

Process

execution ML-070-81

Another communication structure that can be shared among processes is the

ring buffer. A ring buffer can be thought of as a circle of compartments filled

clockwise with data by one process. The series of filled compartments can be

emptied by another process in the same sequence: first in, first out. (See

Chapter 5.)

This Is MicroPower/Pascal 1-5

_OUTI —

ML-071-81

Question: How does a concurrent program deal with real-time events?

Answer: The occurrence of a real-time event, such as a signal from an exter-

nal monitoring device, causes the target system hardware to interrupt the

microprocessor. The microprocessor stops work and notifies the device-

handler process. This process becomes ready to compete for control of the

CPU in response to the interrupt.

The order in which processes act in response to external events can be modi-

fied by assigning a priority to each process. Processes that respond to impor-

tant events receive higher priorities.

1.4 Key Terms

Some important terms introduced in Chapter 1 are defined below, in the order

in which they appear in the text.

Host

Target

Real time

Process

Concurrency

Synchronization

Semaphore

Interrupt

1-6 This Is MicroPower/Pascal

The RT-11 V4 operating system on which

MicroPower/Pascal applications are developed.

The LSI-11 or SBC-11 system on which

MicroPower/Pascal applications run.

Related to a physical activity as it happens.

One task-performing piece of an application.

Parallel design of processes that execute in a single

CPU.

Coordination of processes.

A MicroPower/Pascal data structure; the basic

mechanism for synchronizing processes.

A signal that alters the sequence of instruction exe-

cution in the processor.

Chapter 2

Host and Target

We call the two systems involved in MicroPower/Pascal application develop-

ment the host system and the target system. You use the facilities of the host

system to develop your application program, which is designed to run in the

target system. A serial data link between target and host enables you to install

the target system processor in its workplace (lab or workshop, for example),

then load, test, and debug the application program there. (Three other means

of transferring the application to target system memory are: PROM chip,

RX02 diskette, and DECtape II.) See Figure 2-1.

PROM

Serial

HOST line TARGET

RX02

DECTAPE1l

ML-072-81

Figure 2-1: Transferring Application to Target System Memory

2.1 The Host System (RT-11)

The host system hardware generally consists of an LSI-11 or PDP-11 proces-

sor with memory-management hardware, a console terminal (which allows the

user to communicate with the system), mass storage devices, peripheral de-

vices such as printers, as well as the RT-11 extended-memory operating sys-

tem to control this hardware. The RT-11 XM operating system includes an

extended-memory (XM) monitor, several device-handling programs (one for

each supported hardware device), and utility programs for data entry and

manipulation.

MicroPower/Pascal software is added to the RT-11 operating system. This

software includes a compiler that recognizes an extended version of Pascal

and utility programs that construct the application.

To write MicroPower/Pascal applications, you use either the Pascal language

or the MACRO-11 language. You can mix modules containing Pascal and

MACRO-11 instructions as sources in your MicroPower/Pascal application

program.

For MicroPower/Pascal application development, the host system must in-

clude the following:

¢ Clock option

¢ Memory-management unit

e 128KB of main memory

e Serial line to system console device

e Serial line to target system (for debugging)

During application development, you use RT-11 utility programs to create

files of source code and to manipulate other files created by the

MicroPower/Pascal utilities while building an application. The RT-11 utility

programs needed to create a MicroPower/Pascal application program are:

e DIRectory — lists the files on the RT-11 system and lets you view their

status.

e KED (Keypad EDitor) or EDIT program — provides a facility for entering

information in a new file or changing information in an existing file.

e LIBR — creates and modifies files to contain macros (definitions of addi-

tional MACRO-11 source statements) or object modules (compiled sub-

routines) that will be used often in the application program.

e PIP (Peripheral Interchange Program) — provides commands so that you

can copy files from one area of the system to another or delete files.

See Figure 2-2.

The RT-11 system documentation fully describes RT-11 utilities. Refer to the

RT-11 Documentation Directory for information on these manuals. Note,

however, that Chapter 3 of the MicroPower/Pascal System User’s Guide intro-

duces the RT-11 editing utility (helpful for new users).

2.2 Target Systems

MicroPower/Pascal target systems usually function as controllers in dedicated

real-time environments such as:

e Computer-assisted manufacture

2-2 Host and Target

KED or
LIBR EDIT PIP DIR

(i
Store Create or Copy or Check

frequently modify delete current

used files files status

modules of files

L\BRARY
ceaders
welcome /

ML-073-81

Figure 2-2: RT-11 Utilities

e Materials handling

e Monitoring and testing

* Process control

e Robotics

A MicroPower/Pascal target system consists of:

¢ Interface hardware for your own target devices

e An LSI-11/2, LSI-11/23, or SBC-11/21 microcomputer

e Main memory consisting of RAM and optional ROM large enough for the

application; more memory is required during debugging

In addition, a target system may include the following:

e Clock

e Mass storage for reading and writing files

¢ Parallel line units

e Serial line units for terminals and other data transfer requirements

Host and Target 2-3

If the application is not transferred from host to target via PROM chip, one of

the following is required to load the application:

e RXO02 floppy disk drive

¢ Serial communication line

e TU58 DECtape II drive

The LSI-11/2, LSI-11/23, or SBC-11/21 microcomputer plus memory, I/0

devices, and interconnection hardware form a powerful computer system. You

specify the configuration of this system as one step in creating a working

application. Following are some of the features of the target system to be

configured:

e LLSI-11 microprocessor — The target system CPU is one of three micropro-

cessors: LLSI-11/2, LSI-11/23, or SBC-11/21. Depending on the type of mi-

crocomputer, an extended instruction set (KEV11 for the LSI-11/2) or float-

ing-point hardware option may be configured into the target. (More infor-

mation on these processors can be found in the Microcomputer Processor

Handbook.)

e Memory — The target system can contain up to 248K bytes of physical

memory in 18-bit mode or 252K bytes when optionally expanded with any of

the MSV11-Ex or MSV11-Dx memory cards.

Microcomputer

LSI-11/2

LSI-11/23

SBC-11/21

Maximum Memory

16-bit 18-bit 22-bit

60KB — —

60KB 248KB 4MB

60KB — —

System memory sizes of more than 60K bytes require special memory map-

ping hardware on the LSI-11/23. Furthermore, the

MicroPower/Pascal target system can contain both random-access memory

(read/write, or RAM), and read-only memory (ROM).

2.2.1 1/0 Devices

The following Digital Equipment Corporation I/O devices and interfaces are

supported by device-handler software supplied with MicroPower/Pascal:

e DLV11/MXV11 serial device interface

e DRV11, DRV11-J parallel device interfaces

e RX02 floppy disk drive

e TU5S8 DECtape II

All devices and the processor attach to the LSI-11 bus. Digital Equipment

Corporation offers different interfaces for attaching devices to the LSI-11 bus,

including interfaces with added memory and multiport interfaces (Figure

2-3).

2-4 Host and Target

Micro- Device Memory

computer module

Interface

LSI-11 BUS

Interface Interface

'
Communication

Device Device line to device

ML-074-81

Figure 2-3: Interfaces to LSI-11 Bus

2.2.2 The Configuration File

One of the first steps in creating a MicroPower/Pascal application is editing

and assembling the configuration file. The configuration file, which describes

the target system, comprises a series of macro calls. You modify (edit) the

parameters of these macro calls to describe the characteristics of your target

system hardware. The RT-11 utilities use the resulting object module to tailor

both the memory image in general and the kernel in particular to your specifi-

cations.

For example, one of the macros in the configuration file is the processor

macro. To specify that the target contains memory-management hardware,

but does not have floating-point capability or the memory-parity option, you

would modify one particular line of the configuration file to read:

PROCESSOR mmu = YESs fepp = NO

The configuration file is described in detail in the M. icroPower/Pascal System

User’s Guide.

Figure 2-4 is a configuration worksheet listing the items in a MicroPower/Pas-

cal configuration. Chapter 6 discusses the configuration worksheet in detail

and shows how to use it for editing configuration files.

Host and Target 2-5

Configuration name

SYSTEM: Debugger support Y N (No]

Optimize Y N [No])

INCLUDE ONLY IF SYSTEM OPTIMIZE = Y

RESOURCES: Kernel stack size bytes RAM

(predefined minimum]

Number of system packets

{20.]

Kernel pool for system data structures bytes RAM

Free RAM table size bytes

(20.]

TRAPS: e

{Al11)

All = LST | SBC-11/21 T19 EMT TRP |

{ TRY BRK]

Other traps: FIS FPP MMU MPT

PROCESSOR:

Memory-management unit Y N No

Floating-point unit None FP11 FIS None

Type T11 L112 L1123 L1123

Vector 1000 (octal)

(4@0octal

SBC-11/21)

KXT11

(for SBC-11/21)

nxm break syshalt level?

__HALT TRAP HANG| ODT __

___TRAP HALT ODT __ | TRAP __
level7 only if

nxm = HALT

[HALT] [TRAP] ODT oDT break = TRAP

ROM ROM syshalt = HANG

USER__ | IGNORE__

[ODTROM] {TRAP]

MEMORY: Base Size Type Parity Parity Volatile

address (64-byte controller

segment) CSR

Segment 1 RO RW Y N Y N

Segment 2 RO RW Y N Y N

Segment 3 RO RW Y N Y N

Segment 4 RO RW Y N Y N

[RW] {No] (2] [Yes]

DEVICES:

Figure 2-4:

2-6 Host and Target

A MicroPower/Pascal Configuration Worksheet

Chapter 3

Real-Time Application Development

There are five steps in developing a MicroPower/Pascal application,

as follows:

1. Design the application and write Pascal source programs and procedures.

2. Compile the source program statements into machine instructions. (This

work is done on a host operating system, the RT-11 system.)

3. Build the full application program by linking the output from step 2 with

kernel functions and services (using MicroPower/Pascal utility programs

in the host).

4. Load the completed application program into the target microprocessor.

5. Test and debug the application in the microprocessor under control of a

debugger program residing in the host system.

3.1 Development Cycle

Figure 3-1 shows the development cycle of a MicroPower/Pascal application.

Create Compile Build

source code source code application

Load

application

into target

Debug

application |

application

ML-076-81

Figure 3-1: MicroPower/Pascal Application Development

The following sections explain the development steps.

3.1.1 Step 1: Design and Code Source Programs

First, you define precisely the functions of your application system, software

requirements, and function priorities. Written specifications and/or

flowcharts help you keep the functions in perspective. See Chapter 5 for an

example of designing a concurrent application.

After setting the design, you write source code for the application by using a

text editor and the file-management facilities of the host. Both the Pascal and

MACRO-11 languages can be used to write parts of a MicroPower/Pascal

application. Information for MACRO-11 programmers is contained in the

MicroPower/Pascal Runtime Services Manual. Pascal programming is cov-

ered in the MicroPower/Pascal Language Guide.

3.1.2 Step 2: Compile Source Code

Each Pascal program statement expands into many machine instructions.

The MicroPower/Pascal compiler translates your code into machine language

and checks for program syntax errors and improperly declared or mismatched

program variables. The result of compilation (or assembly, for MACRO-11

code) is a machine language code module, called an object module. The

MicroPower/Pascal utilities link object modules for inclusion in the applica-

tion. MicroPower/Pascal allows you to construct application programs indi-

vidually, compiling (or assembling) portions of source code and building a

subset of your planned application program for debugging and testing.

a ML-077-81

3.1.3 Step 3: Build the Application

The MicroPower/Pascal utilities need more than object modules to construct

a proper application. The utilities require information describing the hard-

ware of the target system and its memory characteristics. You provide this

information in a configuration file.

3-2 Real-Time Application Development

A prototype configuration file already exists as part of your software distribu-

tion package. You edit a copy of this file and then use it as preliminary input

to the MicroPower/Pascal utilities with the object modules produced in step 2.

(This configuration file, like files of source code written in the MACRO-11

language, must be assembled rather than compiled, to be proper input for the

utilities. The output of the assembler program is a file of object code, ready for

MicroPower/Pascal utilities.)

BeroRe wWo Buwd TOuR

SUALIARL, DESCREE THE TARGEA

SIsten 1 us !

——

% {UITIES]

.
ML-078-81

As input, MicroPower/Pascal utilities accept object modules of compiled or

assembled source code contained in files. (You identify the appropriate files

by name when you invoke the utility programs.)

MicroPower/Pascal utilities perform several functions, as follows:

1. Resolve references from one input module to another or to program mod-

ules contained in module libraries

9. Combine the object modules into an executable unit

3. Relocate the addresses of separate sections of code in the object modules

and allocate sufficient target system memory to each part of the applica-

tion

Object modules come from:

Compiler Assembler Library

ML-079-81

Real-Time Application Development 3-3

4. Set up debugging information (names, addresses, and relationships of

program variables) in the host and target for later use

5. Produce listings and maps

Together, the MicroPower/Pascal utilities MERGE, RELOC, and MIB per-

form the same function as the linker in a traditional development system. As

separate utilities, MERGE, RELOC, and MIB allow you to develop your

application module by module. See Figure 3-2.

From a module library

A.0OBJ B.OBJ Cc.0BJ D.OBJ

‘—; ‘ ; ‘ ‘ ' ; = Reference to another module
cBC ACD C

—
-

MERGE -

\

ABCD.OBJ

—' _—]
RELOC - addresses

Y

ABCD.PIM

-"= 1
] |
| |

L
MIB ABCD |

Data (

Kernel RAM

ABCD ROM

Static

process

Kernel

Memory

image ML-080-81

Figure 3-2: MicroPower/Pascal Utilities

3-4 Real-Time Application Development

3.1.3.1 MERGE — The MERGE utility accepts multiple object modules con-

taining compiled/assembled source code and data as input. Each object mod-

ule contains program sections (p-sects) created automatically by the

MicroPower/Pascal compiler or specified by the MACRO-11 programmer.

These p-sects contain all code and data. MERGE combines p-sects of identi-

cal names from all input object modules. The output of MERGE is a merged

object module (.MOB).

MERGE also uses the symbol tables created in each object module during

compilation to resolve intermodule references. For every reference to a de-

clared external name, MERGE looks for a declared global definition in the

other object modules. MERGE flags references that cannot be resolved be-

cause the referenced symbol is not defined.

The first component of the application constructed by MERGE is the kernel

of basic services required to support your processes. In this case, inputs to

MERGE are the object module containing the configuration information and

the system libraries of object modules. References to these modules made in

the configuration file are resolved, and the selected kernel becomes ready for

relocating.

ML-081-81

3.1.3.2 RELOC — The RELOC utility assigns addresses to program sections

within a merged object module. The result is a process image module (PIM).

You can use RELOC to assign base addresses to individual program sections.

RELOC separates program sections according to their read-only/read-write

attributes and modifies them to execute properly at their assigned addresses.

RELOC optionally creates a symbol table file containing debugging infor-

mation.

Real-Time Application Development 3-5

3.1.3.3 MIB — The MIB (memory image builder) utility creates the execut-

able application by placing all its components into one structure, called the

memory image file. You use MIB to insert each process image module into the

memory image.

Input to MIB is a process image module (PIM). One process image module is

the kernel of basic services, or “kernel.” Other process image modules result

from Pascal main programs or MACRO-11 programs.

You first invoke MIB to create a memory image file and install in it the kernel

process image (PIM) file. You signify this invocation of the MIB utility with a

/K in the command. Once the new memory image is created with the kernel in

place, you invoke MIB to include each successive process image module in the

application.

MIB allows you to control the placement of process images in memory. MIB

can also create an optional symbol file used by the debugger program and/or

include a bootstrap program for leading the application into the target

system.

3.1.4 Step 4: Load the Application into the Target

There are three ways to transfer the application to the target system proces-

sor, as follows:

1. Down-line load if a communication link exists between the two systems

2. Media and hardware-boot on the target system

3. Program into a PROM chip for installation into the target

ML-082-81

3.1.5 Step 5: Test and Debug the Application

Debugging is done from the host over a serial communication line to the

application running in the target system. You can create the application one

piece at a time, debugging each portion separately in the target system, then

recreating the entire application as each piece is tested.

3-6 Real-Time Application Development

The MicroPower/Pascal debugger is symbolic; it recognizes the names of enti-

ties in the application. Using the debugger program in the RT-11 system, you

can down-line load the application into the target, then control its execution

using debugger commands. These commands will:

® Deposit values into memory locations

e Determine the scope of a process or a variable

e Examine the contents of memory locations

e Reveal the location and value of named data structures

e Set breakpoints, or numbered ‘‘stop signs,” throughout the program

e Step through program execution one statement at a time

The Pascal symbolic debugger uses a symbol table created by MIB. The

symbol table contains the names defined in the original MicroPower/Pascal

code for the application. This table represents the relationships among all

symbols as well as their addresses. The MicroPower/Pascal debugger features

are shown in Figure 3-3.

BREAK TRACE WATCH

POINT POINT POINT

|

RT’pO
RE@="address” @

At a

certain

location

Stop and

look at a

location’s

old and new

certain

location

but don't

@ 77 3600 stop!! contents

\

. ITEM.COUNT
ocation?
m

What does

this variable

contain?
PROCESS “COUNTRY”

PROCESS “STATE”

PROCESS “TOWN’]

VAR

I:PERSON

ML-083-81

Figure 3-3: MicroPower/Pascal Debugger Features

Real-Time Application Development 3-7

Chapter 4

Processes

Every MicroPower/Pascal application comprises many independent, but coor-

dinated, processes. These processes are supported by a software kernel sup-

plying basic system services such as:

e Interprocess communication, including functions required to create, operate

on, and destroy semaphores, ring buffers, and message packets

¢ Interrupt dispatching

e Process creation and deletion

e Process scheduling, to enforce the order of execution of processes

e Responding to certain conditions, called exceptions, detected during normal

operation of the system

This chapter focuses on processes and mentions the kernel in relation to

processes. Services provided by the kernel are described in the

MicroPower/Pascal Runtime Services Manual.

All process synchronization in MicroPower/Pascal programming is performed

by the kernel in response to requests by processes. Thus, the kernel responds

to all demands for services according to strict guidelines, but makes no deci-

sions. For instance, a process may request the kernel to assign it a packet of

kernel-controlled memory or to change the value of a semaphore. The kernel

will comply if conditions allow, but responsibility for these resources is with

the process. In short, the kernel is an indispensable body of software that

provides rudimentary services on demand. See Figure 4-1.

Static Static

process Dynamic Dynamic process Dynamic
process process process

ML-084-81

Figure 4-1: The Kernel and Interprocess Communication

4-1

4.1 Makeup of a Process

4-2 Processes

A process is a program unit that may operate in parallel with other program

units. Each process within the MicroPower/Pascal application consists of:

1. A process control block (PCB)

2. Associated data structures

3. A named sequence of instructions

The following sections describe these three parts of a process.

4.1.1 Process Control Blocks

A process control block (PCB) is a small block of memory that contains

information about one process called the context. Understanding the use of

PCBs will help you create an application.

Each PCB consists of from 24 to 79 words of memory, depending on the type

of process and memory configuration of the target system. Each PCB contains

the following:

¢ Process name

¢ Process priority _ _ .
(Described later in this chapter.)

® Process state

¢ Process type

e Saved process context (Described in the MicroPower/Pascal Runtime Ser-

vices Manual.)

This information describes a process completely. By manipulating the process

control block, you effectively control the execution of the process.

4.1.2 Process Data Areas and Structures

Process data structures (arrays, constants, and variables) for each process are

allocated in data areas associated with the process. To provide these data

areas, each process must have an amount of memory associated with it for the

creation of structures. Two Pascal keywords, STACK_SIZE and DATA__

SPACE, are associated with the allocation of data areas.

Each process, including the main program, may have a STACK__SIZE at-

tribute included in its Pascal process or program header. Stack size defines

the amount of memory allocated to the process stack.

DATA__SPACE is a keyword included in the Pascal main program header.

All process stacks, including the main program’s stack, are allocated from the

data space associated with the main program. Therefore, the DATA__SPACE

size must be as large as the sum of the greatest number of stack sizes that can

exist at any time. The data space also includes the heap, an area in which

memory is allocated via the Pascal NEW procedure during execution for

temporary data structures.

Semaphores, PCBs, and other system data structures are created out of the

kernel’s data area. You specify the size of this area in the target system

configuration file.

4.1.3 Process Names and Process Descriptor Blocks

In the MicroPower/Pascal source program, the code for a process is called the

process body and defines the instructions to be executed by the process. Each

process body in the MicroPower/Pascal source code is headed by a name in

the PROCESS declaration statement:

PROCESS Harcourts

BEGIN

WRITELN (‘This is the process Harcourt’):

END

Multiple references in the source code to the name Harcourt will cause several

processes to be created, each using the process body named

Harcourts

If a specific invocation of Harcourt is to be referenced, however, the process

body name will not work, since Harcourt can be invoked from the source code

any number of times (creating a new process each time). There must be an

individual identifier for every process.

Within the application, an identification number is used for this purpose. The

number for each new process can be copied into a separate variable in the

creating process, called a process descriptor block (PDB).

Processes 4-3

A process descriptor block is declared in the source code as follows:

VAR

Mudd: PROCESS_DESCS

A process descriptor block named Mudd can be filled in with the identifica-

tion number of process Harcourt when the process is created, as follows:

Harcourt (DESC := Muddl};s

The application’s kernel also associates a unique runtime name with each

process identification number. Runtime names can be used by other processes

to unambiguously select any invocation of the process body named Harcourt.

Runtime names are specified in the source code when a process is created.

(Remember, processes are created by reference to a process body name.) For

example:

Harcourt (NAME := ‘FENTON')S

The process body is named Harcourt, and the runtime name for a particular

invocation of Harcourt is named FENTON.

Finally, both a runtime name and a process descriptor block can be specified

during process creation:

Harcourt (NAME := ‘FENTON’: DESC := Mudd)s

When both a name and a process descriptor block are given in the statement,

the name is included in the PDB, along with the identification number. The

process created in the statement above can be referenced by its name (FEN-

TON), which is unique and valid throughout the application, or, in the creat-

ing process, by its process descriptor block (Mudd).

4.2 Process Scheduling and Synchronizing

4-4 Processes

The key to efficiency in MicroPower/Pascal applications is coordinated execu-

tion of processes. Chapter 5 explains how semaphores in the Pascal source

code determine the flow of control among different processes. To fully under-

stand the concurrent organization of an application, however, it is helpful to

know how process scheduling and synchronizing are implemented during

execution.

4.2.1 Kernel’s Role

Process scheduling is a service provided by software routines in the kernel.

The kernel manipulates process control blocks (and therefore processes) in

response to requests by processes. Scheduling is invoked by certain process

state changes.

4.2.2 Process States

Processes are scheduled to control the CPU, and their execution is synchro-

nized by means of seven process states. Every process is considered to be in

one of these states at any time. The state of a process indicates its execution

status:

e Executing (only one process can be in this state at a time)

¢ Ready for execution, but not currently running

e Suspended by another process, but ready

¢ Blocked from execution because of the value of a semaphore

e Blocked and suspended

e Waiting for resolution of an exception condition

e Waiting for resolution of an exception and suspended

These seven states reflect the execution statuses for any process, as deter-

mined by the values of semaphores. For instance, all processes disabled from

execution by semaphores are in either the wait-active or wait-suspended state.

Processes waiting for the assistance of an exception-handler process are either

exception wait active or exception wait suspended.

The first three process states above are represented by specific queues, as

follows:

e Run

e Ready active

e Ready suspended

The run queue consists of at most one element, the process in control of the

CPU.

Two ready queues reflect the states of processes that are not blocked from

execution because of semaphores, but must still wait for control of the CPU.

The kernel schedules these processes according to priorities individually as-

signed to them in the source code. Processes of the same priority are scheduled

on a first-come, first-served basis.

MicroPower/Pascal allows the process in control of the CPU to affect the state

of another process by altering a semaphore; or, an external interrupt may

cause a state change. A state change is called an event. Whenever a process is

eligible to take control of the CPU (joins the ready-active queue) or whenever

the running process becomes ineligible (leaves the run queue), the kernel

scheduler takes control. Any movement, either into the ready-active state or

out of the run state, invokes the scheduler. The scheduler compares the prior-

ity of the running process (if there is one) with that of the highest-priority

ready-active process. The winner moves into the run state and gains control of

the CPU.

Processes 4-5

4-6 Processes

In summary, process states will be updated to reflect any changes whenever a

process:

e Cannot continue execution because of a semaphore

e Enables another process by means of a semaphore

e Enables a suspended process

Figure 4-2 shows state changes that may cause control of the CPU to shift

from one process to another.

READY

SUSPENDED

EXCEPTION READY EXCEPTION

WAIT ACTIVE WAIT

ACTIVE ACTIVE

ML-087-81

Figure 4-2: State Changes that May Affect Control of the CPU

Figure 4-3 shows changes into and out of the run state.

ML-088-81

Figure 4-3: State Changes Involving the Run State

Figure 4-4 shows all possible state changes.

ML-088-81

Figure 4-4: Summary of All State Changes

4.3 Process Families

Inside the application, processes are gathered into groups, or families. Each

family consists of one static process and one or more dynamic processes.

4.3.1 Static Versus Dynamic Processes

Static processes derive from MicroPower/Pascal main programs, the basic

units operated on by MicroPower/Pascal utilities. A static process — that is,

a static process control block — exists from the moment the application

starts in the target system. Dynamic processes are created by other processes

during execution, and their data areas are allocated as they are created.

Static processes also differ from dynamic processes in that only one static

process results from a MicroPower/Pascal main program. By contrast, several

dynamic processes can result from one MicroPower/Pascal process body.

Each process family in the application contains one static process and all

dynamic process descendants created during the lifespan of the static process.

The scopes of nested process bodies, procedures, and functions in source code

are defined by the standard Pascal scope rules. No process, static or dynamic,

can be deleted from the application until all processes it spawned have first

been deleted.

Processes 4-7

4-8 Processes

4.3.2 Mapped Memory Processes

In a target system with memory-mapping hardware, memory can be split into
independent sections (address spaces) in order to use a larger total amount of

physical memory. (The largest possible address space is 64KB.) Details of
memory mapping are presented in the MicroPower/Pascal Runtime Services

Manual and the Microcomputer Processor Handbook.

Each address space in the mapped target system contains one process
family — one static process and its dynamic process descendants. In addi-

tion, there is a kernel address space containing the kernel and its related data

areas. Figure 4-5 shows process families in address spaces.

process Dynamic
process

process Dynamic Dynamic

process process

|

|

|
Static | Static

I

I

|

KERNEL

Kernel space

ML-085-81

Figure 4-5: Address Spaces

4.3.3 Process Types

In mapped target systems, processes can differ as to which areas of memory

they have access to. (In unmapped systems, the entire application exists in a

mutually accessible address space.)

There are four process types, as follows:

® Device access

¢ Privileged

e Driver

¢ General

Device-access processes have access to the portion of target system memory

containing I/O device addresses. A device-access process can manipulate the

control and status registers (CSR) and data buffers of target devices.

Memory for target system data structures, such as semaphores and process

control blocks, comes from an area associated with the kernel called system-
common memory. Privileged processes have access to this kernel data area as

well as the I/0 addresses section of memory.

Driver processes, like privileged processes, have access to both kernel data

and I/O addresses. Driver processes generally contain independent sections of

code (called interrupt service routines), designed to execute quickly in re-

sponse to interrupts from target devices.

General processes do not access I/O addresses or kernel data directly.

Each process family belongs to one of the four types above.

4.3.4 Initializing and Terminating Components of the

Application

When power is on in the target system and when the application is loaded into

memory, a sequence of steps readies the static processes for execution. As part

of this sequence, a special initializing procedure runs for each static process;

named system data structures, such as semaphores and ring buffers, can be

created in this initialization procedure. You provide this procedure in the

source code by using the INITIALIZE attribute:

[INITIALIZE]l PROCEDURE Dofirst?

This procedure can be included in the Pascal main program, just like any

other procedure.

After the initializing procedure is executed, control for every static process

shifts to that static process’s transfer address (usually the beginning of its

Pascal main program). However, the static process does not begin running

immediately. Instead, execution begins in the next static process’s initializing

procedure.

Each static process executes its initializing procedure and becomes ready to

run before beginning to work. This ensures that all needed semaphores and

other structures can be created and initialized before concurrent execution

starts.

The static processes of the application vie for control of the CPU. If initializa-

tion has been done correctly, it does not matter which static process takes

control first, since the necessary synchronization mechanisms are set.

NOTE

Normally, you create named synchronization mechanisms for

processes during initialization.

Each process can have a termination point. Execution shifts to this termina-

tion point when the process is stopped. (A process can be stopped by the

STOP request — issued by it or by another process — or as the result of an

exception condition being detected. See Section 4.5.)

The termination point of a process is a nested procedure with the [TERMI-

NATE] attribute. After a process executes its termination procedure, it is

destroyed.

A destroyed process no longer exists in any state. Dynamic processes created

by this defunct process are independent and can continue, and data struc-

tures declared in a defunct process are still accessible to them. To fully delete

a process — including its stack of data structures — its dynamic process

descendants must also be terminated.

Processes 4-9

4.4 Connecting Processes to Interrupts

An interrupt, or signal from a device, automatically causes a change in the

flow of instruction execution within the processor. In a MicroPower/Pascal

target system, interrupts can arrive at unpredictable moments and therefore

are called asynchronous. When an interrupt occurs, control of the CPU auto-

matically transfers to an appropriate interrupt service routine (ISR). Inter-

rupt service routines are a part of any process written to handle devices,

usually of type DRIVER. ISRs immediately respond to interrupts. After the

ISR has run, the kernel intervenes and assigns control of the CPU to the most

appropriate eligible process. This process may or may not be the same one

that was in control when the interrupt occurred. (Actions taken by the ISR

responding to the interrupt may have enabled a waiting process or affected

the eligibility of processes in some other way.)

A process can most easily be alerted to the occurrence of a pertinent interrupt

by creating a semaphore to be signaled by the kernel when such an interrupt

is detected. This is accomplished by using the CONNECT_SEMAPHORE

statement. When CONNECT_SEMAPHORE is included in a process, the

kernel automatically signals a specified semaphore in response to interrupts

from a certain device or devices.

4.5 Exception-Handling Processes and Procedures

The target system hardware and software can detect 16 types of exceptions to

normal application execution. Two examples of exception conditions are:

1. Accessing an I/O device where none exists

2. Executing an illegal instruction

An exception condition may or may not represent a fatal execution error in the

application.

Processes can be set up to take control whenever the CPU detects one of these

exception conditions. Each exception-handling process can be designed to

respond to exceptions of certain types. In addition, one process can be speci-

fied to handle the exceptions of a group of processes.

Alternatively, exceptions for processes in one address space can be handled by

procedures nested directly inside the Pascal main program (static process) for

that address space. Such a procedure is associated with its client process by

an ESTABLISH statement in that process. This statement has the form:

ESTABLISH(EXC_PROCEDURE := ohoh » EXC_TYPE := [resourcel);

In this case, the Pascal procedure named ohoh is designated to handle excep-

tions of type [resource] that arise during execution.

An exception can be artificially provoked by using the REPORT statement.

This statement has the form:

REPORT(EXC_.TYPE := [resourcel ,EXC_CODE := ES$NMP)3

Exception code ESSNMP of type [resource] is generated wherever this state-

ment is included in the process.

4-10 Processes

4.6 System Processes

Finally, the application may contain several processes supplied directly by

the MicroPower/Pascal utilities in the host during creation of the application.

Unlike user-created application processes, these system processes:

e Are provided as part of the MicroPower/Pascal package

e Furnish commonly required services

e Are (in general) privileged processes

Services provided by system processes include interfacing with the clock to

provide timings, as well as driving (handling) certain devices and interfaces,

including TU58, RX02, DRV11, and DLV11.

A system process called the directory structure process (DSP) is part of the

MicroPower/Pascal file system. The DSP allows any process to create, main-

tain, and delete file directory entries on target mass storage devices.

Processes 4-11

Chapter 5

MicroPower/Pascal and Concurrent Programming

5.1 Pascal and MACRO-11 Languages

MicroPower/Pascal applications can be written in two programming lan-

guages: Pascal and/or MACRO-11. Pascal was developed in the late 1960s as

a teaching tool and is used in schools and industry. A versatile, readable

programming language, Pascal encourages a straightforward logical structure.

MACRO-11 is an assembly language; each symbolic MACRO-11 instruction

corresponds to one LSI-11 machine instruction. In MACRO-11, symbols are

used in place of numerical machine code. These MACRO-11 symbols consist

of names for instructions and memory locations as well as special characters

for indicating addressing modes. MACRO-11 instructions can evoke every

function of the LSI-11 processor.

Each Pascal statement is translated by the compiler program into several

L.SI-11 machine instructions. Translation limits slightly the dexterity of Pas-

cal, but makes programming faster and easier. Indeed, you rarely need the

extra range and control of MACRO-11. For instance, small portions of

MicroPower/Pascal device handlers must be written in MACRO-11, although

most of the driver is written in Pascal.

This manual set does not teach Pascal or MACRO-11 programming. Once you

are familiar with the Pascal language, you can use the MicroPower/Pascal

Language Guide to learn DIGITAL’s version of Pascal and the real-time ex-

tensions required for concurrent application development. MACRO-11 pro-

gramming extensions are documented in the MicroPower/Pascal Runtime

Services Manual. This chapter explains the basic concepts of concurrent pro-

gramming with MicroPower/Pascal.

5.2 Concurrency Concepts

We will use an analogy — The Simultaneous Chef — to illustrate concur-

rency. In this analogy, we will present concurrent directions for preparing

spaghetti sauce with meat. To make spaghetti sauce with meat, you must add

browned hamburger to simmering tomato sauce.

The meat and the sauce can be cooked at the same time. Therefore, we can

write this recipe concurrently — as two separate but related tasks — rather

than as one complex sequential procedure. A concurrent design is both more

efficient and easier to understand.

ML-090-81

To write this recipe concurrently, we prepare separate directions for perform-

ing each task: sauce steps and meat steps, as follows:

Sauce Meat

1. Start simmering the sauce. 1. Start browning some meat.

2. After a minute, stir the sauce.

3. Add salt to the sauce.

2. After a couple of minutes, add

a pinch of salt to the meat.

4. Stir the sauce every minute or

so until it is time to add the

meat.

3. When the meat looks brown-

ish, add it to the sauce.

5. After adding the meat, stir the

meat sauce every minute or so

until it is hot and tasty. Then

remove it from the heat and

serve.

The two independent recipes, or processes, of five and three steps, respec-

tively, create an efficient program for cooking spaghetti sauce with meat. The

two processes communicate at one critical point; both direction sets specify

that we wait for the arrival of the browned meat before finishing up the sauce.

5-2 MicroPower/Pascal and Concurrent Programming

By contrast, if we wrote our directions as a sequential procedure, they might

look as follows:

1. Start simmering the sauce.

Start browning some meat.

After a minute, stir the sauce.

Add salt to the meat.

2

3

4

5. After a couple of minutes, stir the sauce.

6. After a minute, add salt to the sauce.

7 Continue to stir the sauce every minute or so until the meat looks

brownish.

Add the browned meat to the sauce.@

9. Continue to stir the sauce occasionally until it is hot and tasty; then

remove it from the heat and serve.

When the tasks of cooking sauce and meat are combined, the additional steps

and ingredients make the directions more difficult to follow.

In addition to being easier to follow, the concurrent design is easier to expand.

Assume, for instance, that we want to guard against possible kitchen fires

while making our sauce. We can do this by equipping our kitchen with a

smoke detector and a fire extinguisher. We will also add a set of instructions

telling us what to do when the smoke alarm rings. The directions for fire

fighting will have a higher priority than those for cooking. If a fire starts, we

will immediately stop cooking and extinguish the flames.

Adding such instructions to our sequential recipe would make it more difficult

to understand how the cooking tasks are accomplished. Our concurrent design

accommodates such expansion, however.

The Simultaneous Chef highlights three features that must be a part of any

system of concurrent processes and real-time interrupts:

1. Important processes should have priority over less important processes.

2 Processes that work on related tasks must not interfere with one another

when manipulating shared resources such as devices and data.

3. Real-time interrupts must be handled immediately. Interrupted processes

must be guaranteed safe storage until they resume later.

5.2.1 Processes Manage Shared Resources

Note that both sets of directions above use salt. We can assume that salt is a

shared resource in our cooking application. A hurried chef who tries to follow

several sets of cooking directions at once may prematurely stop salting one

food in favor of another. In other words, the chef may allow one set of direc-

tions to steal the salt resource from another set of directions. The chef who

does not deliberately salt one food at a time may become confused and may

lose track of how much salt has been added to the dish.

MicroPower/Pascal and Concurrent Programming 5-3

In a MicroPower/Pascal application, processes must manage shared resources

carefully. Processes can be interrupted by external events and be superseded

by other processes because of the interruption. In this case, control of shared

resources could pass haphazardly from process to process, with unpredictable

results.

To avoid this problem, access to each shared resource in the application must

be mutually excluded from competing processes. (For instance, we must finish

salting the meat before we salt the sauce.)

Semaphores establish mutual exclusion between processes. When access to

more than one resource is mutually excluded, the concurrent design must be

sophisticated enough to avoid deadlock, which is an infinite stalemate be-

tween two processes that exclude each other from a needed resource.

5.2.2 Semaphores Synchronize Concurrent Processes

Operations on semaphores control the execution of concurrent processes. A

semaphore is a data structure in kernel address space that is operated on by

MicroPower/Pascal routines such as WAIT and SIGNAL. Any process can

create a semaphore by a request to the kernel.

In MicroPower/Pascal, you use built-in functions to create the three types of

semaphores (binary, counting, and queue) and ring buffers. The following is a

statement for creating a binary semaphore:

Result := CREATE_BINARY_SEMAPHORE (NAME := ’ RENE '+ DESC := artes):

This statement returns a true or false value for the Boolean variable Result.

The following is also a legal statement:

IF CREATE_BINARY_SEMAPHORE (NAME := * RENE *» DESC := artes: THENS

Conversely, the order to destroy this semaphore is:

DESTROY (DESC := artes)?

This order is not a function call and need not have the form of an assignment

or logic statement.

When a process waits on a semaphore, the value associated with the sema-

phore is checked. If the semaphore value is 0, the process blocks (waits) and is

placed in the wait-active state. If the semaphore value is nonzero when

checked, it is decremented, and the process continues.

As long as the semaphore is 0, any process that executes a WAIT on the

semaphore will enter the wait-active state. Each semaphore has a list of

waiting processes.

A process that has blocked by waiting on a semaphore is placed in the sema-

phore’s list and enters the wait-active state. When the process reaches the top

of the semaphore’s list and another process signals the semaphore, the first

process changes state to ready active and is eligible to resume execution

according to its priority.

5-4 MicroPower/Pascal and Concurrent Programming

Processes can wait for specific events, such as the ringing of alarms, by wait-

ing on a semaphore that is signaled by the key event. In addition, you can use

a semaphore to ensure that access to a data area by more than one process is

sequential. In this case, two or more processes wait on the same semaphore,

ensuring that only one process at a time will execute its section of code.

(When a process has finished its section, it signals the semaphore, enabling

another waiting process to continue according to its priority.)

A counting semaphore may keep track of the number of resources available to

any requesting process. As resources are accessed and released, the counting

semaphore is incremented and decremented. A process attempting to access

the controlled resources will be forced to wait on the counting semaphore only

when the semaphore is 0. As long as at least one resource is available, there

will be no waiting.

A queue semaphore is a counting semaphore with an associated queue of data

elements; the value of the semaphore indicates the number of queue elements.

When a process waits on the semaphore, it will either gain access to the next

queue element (semaphore > 0) or block itself until an element is present.

When the semaphore is signaled (attains a value greater than 0), a data

element is present. Three things happen, as follows:

1. The waiting process gains access to the element.

2. The semaphore is decreased by 1.

3. The waiting process becomes eligible to run again.

The kernel is in charge of associating data elements with queue semaphores.

The kernel also increments and decrements the semaphores in response to

requests from processes.

We can use an analogy — The Doctor’s Waiting Room — to explain how

semaphores can protect shared resources. Suppose that several patients are in

a doctor’s waiting room. These patients represent processes in the application;

the doctor is a resource they share. The doctor resource is protected by a

binary semaphore — the office door, which may be open or closed. The doc-

tor's receptionist acts as the kernel, managing business by responding to

requests from the patients.

Each patient in the waiting room has stopped other activity to wait for access

to the doctor. Each of these individuals requires access to a shared resource;

each has asked the receptionist for access to the doctor. At the beginning of

the day, the doctor’s door was open, and the receptionist allowed the first

patient to go right in, then shut the door. As subsequent patients enter and

ask to see the doctor, the receptionist tells them to wait and adds their names

to the list of waiting patients.

After consulting with the doctor, the first patient asks the receptionist to open

the door. The receptionist does so, and the patient leaves.

The opening of the door makes the next waiting patient eligible for access to

the doctor. The receptionist responds by granting the patient access to the

shared resource and closing the door.

MicroPower/Pascal and Concurrent Programming 5-5

NOTE

This doctor sees patients on a first-come, first-served basis.

Alternatively, the doctor might have decided to see patients on

a highest-priority, first-served basis.

Patients / Processes Patients / Processes

® ® ® ®
® oY ® O

'n/

/

Receptionist / Kernel // _Eecflt_ioist /firrle_l_
123465 / 2 345

Door / Semaphore /

- ¢) 'I f-

Doctor/ Resource Doctor/ Resource

ML-100-81

We can expand our analogy — The Medical Center Waiting Room — to ex-

plain how a counting semaphore works. Now we have a clinic, with one recep-

tionist and one waiting room serving a dozen doctors. A set of flip cards is on

the receptionist’s desk. The cards, numbered 1 to 12, indicate the number of

doctors free. As many as 12 patients can go into doctors’ offices before anyone

has to wait.

When more than 12 patients desire access to doctors, they are listed on either

a first-come, first-served or a priority basis. When finished with a doctor, the

patient asks the receptionist to open the door. The receptionist does so and

flips a card to indicate that another doctor is free. If there are waiting pa-

tients, the receptionist opens the door for the next patient on the list.

5.2.2.1 Processes Use Semaphores to Send Packets, Messages — Sema-

phores can transmit data from one process to another. Processes, both static

and dynamic, send data back and forth by using chunks, or packets, of mem-

ory managed by the kernel rather than by altering a shared data structure.

The sender places a message in a packet; the receiver removes the message;

the kernel acts as the go-between.

This type of transmittal is like two excited college professors who communi-

cate with written notes (packets) instead of the blackboard (shared data area)

in their office. They pass notes because one professor is a slow reader and the

other is a fast writer. The blackboard is an unacceptable communication

medium for them; once it is full, the fast writer must stand idle while the slow

reader laboriously studies the chalk symbols. Instead, the fast writer stacks

notes in a pile beside the slow reader. Each note in the stack is a message

analogous to a MicroPower/Pascal packet.

5-6 MicroPower/Pascal and Concurrent Programming

Another advantage of passing notes is that the fast reader can dynamically

allocate just enough paper to hold the information to be passed to the slow

writer. This action is analogous to the dynamic allocation of packets by the

MicroPower/Pascal kernel. Any shared data area declared in the source code

must be large enough to hold the largest single piece of data sent among

processes. Waste is avoided by allocating (via packets) just enough memory

during execution to handle the communication needs. Packets of messages are

the only way to transfer data between processes of different scopes, since no

shared data areas exist between them.

In MicroPower/Pascal, the kernel allocates packets in response to requests

from running processes. The configuration of each message is spelled out

during the request.

A packet is requested from the kernel as follows. A process can issue a

GET__PACKET request specifically, or it can ask for a packet by the SEND

command. The SEND statement (with its numerous arguments) asks the

kernel to allocate a packet, fill it with certain data, and signal a queue sema-

phore. The receiving process will issue the RECEIVE command, naming the

same queue semaphore. When that semaphore is signaled (by the sender), the

receiver gathers the data in the packet.

Both the sender and the receiver must specify the size and configuration of the

message and can designate optional reply (acknowledgment) semaphores to

report successful transmission. It is important to note that SEND and RE-

CEIVE protect the integrity of processes by filtering messages through a third

party, the kernel.

5.2.2.2 Race Conditions — A race condition arises when the relative speeds of

execution of processes affect the behavior of an application. Race conditions

among interdependent processes usually result from insufficient communica-

tion and can be disastrous. For instance, two device-access processes racing to

set up registers in a peripheral device for subsequent I/O operations are likely

to produce bizarre results. If the execution speeds of the processes vary each

time they run, the results may appear different each time. The remedy for

unwanted race conditions is prudent use of semaphores to eliminate the ef-

fects of unequal speeds of execution.

5.2.2.3 Critical Sections — A critical section is a sequence of instructions in

one process that must finish executing before a particular section of another

process can execute. In mutual exclusion, for example, the portion of each

process concerned with accessing a shared resource must execute uninter-

rupted by similar portions of other processes. These critical sections can be

prevented from interfering with each other by using WAIT and SIGNAL

operations in the source code.

It is possible to serialize the execution of critical sections according to the

ordering of semaphore waiting lists (process priority or first in, first out). This

procedure is called establishing precedence. You can also design your own

precedence mechanisms by using multiple semaphores.

MicroPower/Pascal and Concurrent Programming 5-7

5.2.3 Process Priorities Affect Concurrency

You can specify the importance of MicroPower/Pascal processes by assigning

process priorities. A process priority can be any integer between 0 and 255; the

higher the number, the higher the priority. Whenever two processes of differ-

ent priorities are eligible to control the target CPU, the higher-priority process

takes precedence.

You can assign process priorities to synchronize concurrent processes. How-

ever, priorities will not solve most synchronization problems, because priority

assignments are a relatively inflexible mechanism, not a shortcut to process

synchronization. Assignments of process priority should be used to fine-tune

an application whose processes already cooperate at the same priority.

NOTE

Be wary of using assignments of process priority to solve con-

current synchronization problems. Priorities should be assigned

to processes only to make the application more efficient.

5.2.4 SUSPEND and RESUME Affect Other Processes

Semaphore-based synchronization mechanisms are passive; that is, a process

waiting on a semaphore may only stop itself from executing. SUSPEND and

RESUME, on the other hand, give the running process power over those

processes waiting for control of the CPU. These active instructions can be

used to block execution of another process directly. Blocking may occur any-

where in the course of execution, not just at clearly defined WAIT instruc-

tions.

NOTE

SUSPEND and RESUME are not alternatives to the use of

semaphores for synchronizing processes. Instead, SUSPEND

and RESUME should be used only when a particular process

must be disabled for some time, regardless of its progress.

5.3 Concurrency in Designing a Sample Application

We can use an example — The Bottle Corker Machine — to explain the

synchronization of processes in concurrent application design. In this exam-

ple, a high-speed bottling plant uses conveyors to transport bottles among

automated workstations. These stations clean, fill, cork, and package bottles.

Our hypothetical corking machine is controlled by a MicroPower/Pascal ap-

plication.

5.3.1 The Target Hardware

The corking machine consists of a vertical, rotating drum with a rounded

ledge on which the bottles sit in discrete slots. A cork inserter assembly is

above each slot, attached to the drum. As bottles move around the drum, they

5-8 MicroPower/Pascal and Concurrent Programming

are corked by inserters positioned above them. The inserters are reloaded from

a cork supply in a hopper at the top of the machine

Two conveyor belts, 180° apart, service the machine. The input belt brings

bottles to the machine, and the output belt takes away bottles. These two

belts run at the same constant speed as the drum, preventing the bottles from

jamming as they enter or leave the workspace.

An electric eye, positioned near the input conveyor, senses the filled bottles as

they occupy slots on the drum. This eye detects vacant slots and slots contain-

ing broken or unfilled bottles.

A large bin for bad bottles is in front of the drum. Slots with bad bottles are

emptied into this rejects bin. This arrangement allows glass to be recycled and

purges the line of bad bottles.

Control Cork
panel Corks inserters

Input Evye Rejects Output
conveyor bin conveyor

ML-091-81

5.3.2 Operating Characteristics

The bottle corker workstation performs the following tasks:

1. Inserts corks into bottles, ignoring any slots that do not contain bottles, so

as not to waste corks

2. Rejects broken or unfilled bottles from the line

3. Senses when the cork supply is low and notifies the operator

4. Senses when the cork supply is depleted and rejects bottles until the corks

are restored

5. Senses when the input conveyor breaks and shuts down the workstation

when bottles are corked

6. Senses when the input conveyor starts and immediately starts the work-

station

MicroPower/Pascal and Concurrent Programming 5-9

7. Senses when the output conveyor breaks and rejects bottles (uncorked)

until the output conveyor restarts or the input conveyor stops

We will design a concurrent MicroPower/Pascal application to run this work-

station.

5.3.3 Designing a Concurrent Solution

Concurrent design allows us to divide the problem into separate, smaller

tasks. We will define six parallel tasks to run the machine and a process for

each task. Three processes handle I/O between the application and the ma-

chine. Another process, the commander, sends normal, repetitive operating

commands to the machine. The error-checker process receives notice of abnor-

mal conditions from the machine. (This process may transmit a message to

the commander, which in turn alters the command sequence.) Finally, the

sixth process interfaces with the system clock to provide timings.

Figure 5-1 shows how the processes are related. There are six boxes (pro-

cesses) and five points of communication (queue semaphores), denoted by

circles.

Normal c Abnormali

input ommand input
messenger messenger messenger

1 > 2)=]

Time- Error

keeper <—®<— Commander <——@<— rro
checker

(clock)

ML-092-81

Figure 5-1: Tasks Comprising the Concurrent Solution

NOTE

When signaling and waiting on queue semaphores to pass mes-

sages between processes, remember to use MicroPower/Pascal

SEND and RECEIVE statements, not SIGNAL and WAIT.

Serial lines with three device-access processes to handle the lines bring electri-

cal signals to and from the machine. Incoming signals must be translated into

symbolic codes and passed on to the commander and error-checker processes.

On the output side, one coded command must be translated into line signals

for the outgoing wire.

The application must not miss any incoming signals and should send outgoing

signals without long gaps. Ideally, part of the application should attend to the

5-10 MicroPower/Pascal and Concurrent Programming

I/O lines regardless of coding and decoding operations. Therefore, each mes-

senger is composed of two independent parts: the process and an interrupt

service routine (ISR). (Interrupt service routines and device-handler processes

are described in detail in the MicroPower/Pascal Runtime Services Manual,

with a complete guide to writing device handlers.)

From

machine

[1srR|
N

Abnormal

input

/ messenger

Ring

buffer

é ML-093-81
Figure 5-2: The Messenger Process

[Messenger J

Associated with each messenger process is a ring buffer, used to pass informa-

tion between the independent interrupt service routine and the rest of the

device-handler process (messenger). Upon receipt of a line signal, the ISR uses

the PUT_ELEMENT statement to put an element into the ring buffer. As a

clump of signals arrives, the ISR may do several PUT_ELEMENT opera-

tions in a short time. The ISR then waits for more signals while the messenger

process removes each element in turn from the ring buffer (with the

GET_ELEMENT statement) and performs the encoding operation.

Responding promptly to signals from the real-time environment is so critical

that MicroPower/Pascal interrupt service routines automatically run at priori-

ties higher than those of normal processes (although priorities may vary

among ISRs). Because quick response is so important, ISRs usually are re-

sponsible for little more than attending to the I/O lines. Thus, ISRs pluck

information from or put information on the lines and interact with temporary

buffer storage, such as a ring buffer.

For instance, on the input side, the interrupt service routine is ready to re-

spond to an interrupt from the hardware, grabbing signals off the wire and

storing them for the encoder part of the messenger process. At the lower

process priority, the messenger translates the messages into codes to be sent to

the error-handler process.

We will name the three device-handler processes according to the type of

information they convey: abnormal input messenger, command output mes-

senger, and normal input messenger. The three processes can be described as

follows:

1. The abnormal input messenger encodes messages from the error sensors in

the workstation and passes codes to the error-handler process.

MicroPower/Pascal and Concurrent Programming 5-11

2. The command output messenger decodes messages from the commander

and places appropriate signals on the output line to the machine. The

command output messenger can receive input from two sources: the com-

mander and the error-handler process. Under normal operation, only the

commander sends messages to this process.

3. The normal input messenger encodes signals received during the work-

station operation. The normal input messenger performs one other task.

Before it sends each code from the hardware to the commander, it sends a

message that cancels the countdown.

As shown in Figure 5-1, each arrow entering a box marks a waiting point for

the process represented by that box. One box, the commander, has two arrows

leading into it. The commander process must pay attention to acknowledg-

ments from the machine and messages passed from the error-checker process.

If the commander is made to wait for input from the error-checker process, the

commander cannot run the machine. Ideally, the commander should pay

attention to the error checker if a message is forthcoming immediately. This

situation calls for use of a conditional receive, specified with the

COND_RECEIVE statement. If there is a message, the commander will

receive it; if not, the commander will continue without waiting. A process

performing a conditional receive will never block its own execution because of

the semaphore.

The other incoming arrow, or semaphore, passes acknowledgments from the

normal input messenger and time-out signals from the timekeeper. If the

hardware does not acknowledge orders from the commander process within a

specified interval, the clock process notifies the commander of a time-out, and

the command stream to the hardware is interrupted by a halt sequence.

Because at least one of these messages must arrive during each cycle of the

machine, this semaphore is vital to proper synchronization. The commander

process must block itself from executing and wait for a message before contin-

uing to issue orders to the machine.

The other processes wait on only one semaphore. Each semaphore is a queue

semaphore, which acts like a mailbox, holding messages from one process to

another. Queue semaphores rather than binary semaphores are used because

each semaphore may be signaled for several reasons. In every case, some

information about the reason must pass to the waiting process. Note that only

one arrow leaves each semaphore; in this application only one process will

wait on any semaphore. (This is not true for all applications, of course.)

Finally, more than one arrow may leave the boxes (processes), since one

process can signal more than one semaphore during execution.

So far, we have used the idea of concurrent execution of tasks to design our

workforce of independent processes. In our application, if each process exe-

cuted in a separate CPU, overall performance would be synchronized. In

reality, however, only one process will run at a time. We can refine our appli-

cation for greater efficiency by assigning relative priorities to workforce

members.

5-12 MicroPower/Pascal and Concurrent Programming

If an error requiring a stop-at-once command comes in from the machine, we

want it to receive prompt attention. Therefore, we give the error-checker

process higher priority than the commander. The timekeeper process needs to

work only when its clock ticks, but that work is very important, because

timings depend on it. Therefore, we may want to give the timekeeper process

a high priority.

MicroPower/Pascal and Concurrent Programming 5-13

Chapter 6

Application-Development Example

6.1 Overview

In this chapter we will describe the program for a simple application, prepare

a memory image, load it into the target system, and run it. You need only

minimal system knowledge to benefit from the following sections.

6.1.1 Requirements

In order to develop a MicroPower/Pascal application, you must be able to run

the host RT-11 operating system and manipulate and edit files. The target

system must include a DIGITAL VT100 or VT52 terminal as console device

and 16K words of RAM memory.

6.1.2 Steps

The steps in creating a MicroPower/Pascal application are as follows:

Design and code the source.

Compile the source code.

Build the memory image, using MicroPower/Pascal utilities.

-

L
=

Load the application into the target LSI-11.

5. Debug/run the application.

Our sample application will be concurrent and simple enough for you to enter

the source code and perform the steps described below. (However, source code

is also included as a file in the distribution kit and is used in the

MicroPower/Pascal Installation Guide for testing.)

6.2 Application Example: The Shooting Gallery

We will use a simple application — The Shooting Gallery Computer

Game — as our example. The program for this game spins a wheel containing

11 asterisks on the target system’s DIGITAL VT100 or VT52 terminal screen.

You, the player, try to eliminate all 11 asterisks, one by one, as they whirl by.

You accomplish this by taking potshots at one spot on the wheel. For exam-
ple, at first the wheel looks like this:

(One asterisk has been knocked out to show the rotation of the wheel.) The

wheel turns counterclockwise, and you see:

In your subsequent shots, you try to eliminate the remaining asterisks as they

pass by the arrow.

This sample program demonstrates basic concurrent programming techniques

for synchronizing processes with semaphores. It also illustrates correct lan-

guage syntax and the general format of a MicroPower/Pascal program. Fi-

nally, this program will serve as the basis for a step-by-step exploration of the

MicroPower/Pascal utilities later in the chapter. (The source code for this

application example is given in Appendix A.)

We will describe the way in which the processes communicate by using sema-

phores so as not to ruin shared data. We will also outline the general approach

used to write concurrent code.

6.2.1 The Concurrent Program

In designing the game program, we first divided the game into two concurrent

tasks to be performed by processes. The program consists of two Pascal

processes and two sequential Pascal procedures:

* Entry — a dynamic process

* Example — the main program, a static process

e Setup — a procedure

* Dofirst — the initialization procedure

6-2 Application-Development Example

The main program, called Example, creates the process called Entry. Setup

and Dofirst are nested procedures in Example. Example and Entry, the two

processes, communicate via three semaphores:

‘SHOOT!

"SCREEN

TEPINTY

These three semaphores are created within the initialization procedure, Do-

first. (Another procedure in the program, $TTYST, will be discussed later.)

6.2.1.1 Main Program Declarations — The variable declaration section (VAR)

of the main program declares an array to represent the 12 locations on the

asterisk wheel and the 3 variables, called structure descriptor blocks, that will

hold the names and identification numbers of the semaphores. Note that

because the code for Entry is nested inside Example, both processes will have

access to these structure descriptor blocks.

This section of the program also declares character and integer variables

needed throughout the program. There is one Boolean variable, Result. Some

MicroPower/Pascal functions are designed to return a true or false value

whenever called in order to notify the calling code of successful/unsuccessful

completion of the function. In our program, we will use the Boolean variable

Result to receive the value true or false when creating semaphores.

[SYSTEM{(MICROPOWER)+ PRIORITY (200D »

DATA_SPACE(

CONST

Ecscareco

VAR

SPinner:

Onoffs {

Screen {

1000) STACK_.SIZE(2001]1 PROGRAM Exameles

de = 13353

{ Semarhore for

Semarhore for ¥

Semarhore for serializing access to the screen ¥

STRUCTURE _DESC

Ar : ARRAY [0.,.111 OF CHAR:

Bullet

Plav

Esc : CHAR:?

Indx

Miss

Asterctr

Firstime

CEXTERNAL

INTEGER3

, Result : BOOLEANS { for use with MicroPower/Pascal fupctions ¥

($TTYST)1 PROCEDURE No.echo (value : INTEGER)F EXTERNALS

6.2.1.2 Initialization Procedure (Dofirst) — The initialization procedure exe-

cutes first, before any other part of the program. During initialization we

create the three needed semaphores and designate which structure descriptor

blocks in the main program will hold the name and identification number of

each semaphore. Each semaphore-creating statement in Dofirst has the form

of an assignment. The CREATE__BINARY__SEMAPHORE function is de-

signed to return a true/false value to indicate success or failure (like other

MicroPower/Pascal functions).

Application-Development Example 6-3

CINITIALIZE] PROCEDURE Dofirsts

{ Create the binary semarhores. ¥

BEGIN

Result == TRUE:

IF NOT CREATE_BINARY_SEMAPHORE (NAME = “SHOOT!7y DESC = Onoff)

THEN Result := FALSE:

IF NOT CREATE_BINARY_SEMAPHORE (NAME = "SCREEN’s DESC = SBcreen)

THEN Result := FALSGES:

IF NOT CREATE_BINARY_SEMAPHORE (NAME

THEN Result := FALSES

Ese s= CHR{Escarecode);

Firstime = TRUES

ENDS { Dofirst 3}

SFrinner)i iTSPINYYYy DESC

6.2.1.3 Setup Procedure — The sequential procedure Setup runs before the

Entry process is created and then after each round of the game. Setup fills the

wheel array with asterisks, then initializes the asterisk and miss counters.

Setup also signals each of the semaphores, so that initially all gates built into
this program are open.

PROCEDURE Setups

Yak

no s INTEGER:S

BEGIN

{ Initialize the arrav, leave tardet spot blank. 3

FOR n = 1 T0O 11 DO

Arinld = EkG

ArlO]l o= 7 73

ITrndx = ~13

{ Initialize the counters., 3

Misg o= (O3

fsterctr == 113

{ Signal all the semarhores. 3

SIGNAL (DESC == QOnoff)s

SIGNAL (DESC := Screen?’

5ICGNAL (DESC =:= Seinneri’

END 3 { Setur ¥

6.2.1.4 Main Program’s Executable Block — The main program’s executable

block spins the asterisk wheel and presides over the time between rounds of

the game. If a game player answers y (yes) to the question “Shall we begin?”,

the main program enters a loop. This loop sets up the initial conditions for the

start of a round (via Setup), creates the Entry process, and starts spinning the

asterisk wheel on the terminal screen. Keep in mind that because the main

program executes concurrently with Entry, Entry may interrupt its execution

to gain control of the CPU.

BEGIN

WRITE (Escs ‘H'’s Escs “J7)3 { Erase terminal screenr. ¥

WRITE (Escs Y7+ CHROUOYs CHR(3Z))5

WRITE (’Shall we hbedgin {(y/n) 7 33

READ (Plav)s

WMRITELNS

WHILE (Play = ‘“v7’) 0OR (Plavy = ‘%¥‘) DO

BEGIN { Main looer of Hame. ¥

Setuprs

IF Firstime

THEN Entry (NAME := ‘ENTRY!) { Create Process 1}

ELSE WRITE (Escs ¥/, CHR(4O), CHR{32))3

WRITELN (‘Press anv letter to shoot,,.Fire Auav! ‘)]

6-4 Application-Development Example

Note that the main program’s executable block includes a reference to the

Entry process and to the Setup procedure. The two references look similar,

but have different results.

When a reference to a process occurs during program execution, the kernel

readies the new process for concurrent execution in the target processor. (The

kernel places its process control block on the appropriate state queue.) Having

been created, this process will run only according to the rules for

MicroPower/Pascal processes. Its priority and the statuses of related sema-

phores will determine if and when it runs. Pascal procedures, by contrast, are

entered directly when referenced by name.

Example contains a loop that spins the asterisk wheel by incrementing the

variable Indx so that it points to each element of the array in turn. Then Indx

wraps from the eleventh element back to element zero (using the MOD func-

tion, which returns the value of the remainder of a division operation). This

loop continues as long as there are asterisks in the wheel and is the only

section of Example that competes with the Entry process for control of the

CPU. The loop contains two critical sections, protected by two separate bi-

nary semaphores. The loop ends when Asterctr attains a value less than

1 — when all the asterisks have been eliminated.

INDXr2

Ar[0] Ar[1] Ar[2] Ar[3] Ar[4] Ar[5] Ar[6]..

ML-094-81

The two critical sections are protected by the semaphores ‘SPIN!!” and

‘SCREEN.’ Example waits on the semaphore ‘SPIN!!” (named in structure

descriptor block Spinner) whenever it comes to the point of modifying the

variable Indx.

Indx is shared by Example and Entry. Example changes the value of Indx

regularly; Entry uses Indx at unpredictable intervals as a subscript of the

asterisk wheel array. When Example modifies Indx, there is a point at which

Indx briefly has a value of 12, which is outside the array range. Entry must

not cut in and try to use Indx as a subscript of the array before Example has

finished updating it.

When Example has updated the value of Indx, it signals ‘SPIN!!’, allowing

Entry to cut in (Entry may already be waiting for this chance). No harm can

be done now that Example is finished with the shared resource.

NOTE

The variable Asterctr is also shared by the processes. Like Indx,

Asterctr can be read by one process and changed by the other.

Yet it is not necessary to protect Asterctr with a mutual-exclu-

sion semaphore, because Asterctr cannot have a value that

would harm the progress of the two processes.

After Indx has been updated, Example writes the asterisk wheel array to the

terminal screen (see Figure 6-1).

Application-Development Example 6-5

Ar[INDX]

Ar[(INDX+10)MOD12] Ar[(INDX+2)MOD12]

Ar[1]

Ar[0]

Ar[11]

Ar[10]

Ar[9]

Ar[8]

Ar[7]

Figure 6-1:

Ar[2]

Ar[3]

Ar[4]

Ar[5]

Ar[6]

ML-095-81

Example of Array Positions on Terminal Screen

Since both processes write to the terminal, this shared resource is also pro-

tected by a mutual-exclusion semaphore called ‘SCREEN’. If both processes

were allowed to interrupt each other’s write statement sequences, the output

on the terminal screen would be bizarre (see Figure 6-2).

INDX :=

{INDX.1)MOD 12

Write

Ar[all]

Screen

Critical

section

INDX
Critical

Figure 6-2:

6-6 Applieation-Development Example

Read

keystroke ’

Ar[INDX] := * -

Asterctr :=

Asterctr-1

ML-096-81

Critical Sections in Example and Entry

The asterisk wheel loop in Example follows:

WHILE (Asterctr » 0) DO

BEGIN { Update the asterish wheel., 2%

WAIT (DESC == Spinner)

Ivdx 2= Indwx + 13

Indx 2= Indx MOD 123

SIGNAL (DESC := Spinner)s { Now Print out the wheel., ¥

WAIT (DESC := Screen)s

WRITE (Escsy ‘H’)3

WRITELN (7 ~=7% ArlIndx]s 7 ‘)3

WRITELN (7 fyArL(Indx + 11)YMOD 121 7 7% Arl{Indx + 1) MOD 12133

WRITELN (¢ “sArL(Indx + 10)MOD 127+ ° fy QArliIndx + 2 MOD 12113

WRITELN (ArL(Indx + 9)MOD 127+ ° fy o ArfiIndx + 3) MOD 121133

WRITELN (7 “sArL{Indx + 8)MOD 121, ° fy ArC(Indx + 4y MOD 12303

WRITELN ¢ faArl(Indx + 7YMOD 121+ 7 ‘% Arl(Indx + 53 MOD 12133

WRITELN ¢ “yArl(Indx + GIMOD 12133

WRITELN:

SIGNAL (DESC := Screen)s

END3

After Asterctr reaches 0, the main program writes an appropriate message,

asks whether the player wishes to continue, and loops or not, according to the

answer.

The remainder of the main program executable block follows:

WAIT (DESC 2= Screen):

WRITE (Escs ‘H’s Escs “J7)3 { Clean the terminal screen.?t

WRITE (Escs ‘¥’ CHR(40), CHRE32)Y)3

WRITELN (‘You shot out all the asterisks!)3

WRITELN (‘.,.while missind ‘+ misss2s ' times...,)1

CASE Miss OF

O: WRITELN (‘You are obuiously a wisitor from an alien race.’)3

2 WRITELN (‘You must work out with Gary Coorer.)3

4+ S5: WRITELN {(‘Don‘‘t do0 anvwhere near Wrvatt Earep,)3

¢+ 7+ 8y 9: WRITELN {(’Sudarfoot vyou ain’’"t.)3

12, 13, 14: WRITELN (’'You missed more than vou hit!)3

15, 16+ 17: WRITELN (‘You havue POOT s+ s s st s s timindg.)3

10, 11 202 WRITELN (‘Take some advice-stay out of the O.K.corral.)}

{

{

{

g
1

L
l

 o
+

Z1s 22+ 23: WRITELN ‘Crazy dlue in the ol’’ holster:s humTM’)3

24+ 18, 19: WRITELN ‘My horse can shoot better than that!)3

25, 26 27 WRITELN ‘Tardets moving too fast for vou:s Cowbov?7)3

ENDY { Case 2}

IF Miss » 27

THEN WRITELN (‘You can do better thaw thats can’’'t »ou TenderfootT)3

WRITELNS

WRITELN (‘Press <ret>’)3

READLNI

WRITE { “How about another round? {v/n) 7 T

READ (Plav)s

IF (Plav = ‘v) OR (Play = °“¥7}

THEN Firstime := FALSE:

WRITE (Escs ‘H’sy Escs 70703 { Frase terminal screen.

SIGNAL (DESC:= Onoff):

END s { Main dame loop,

Application-Development Example 6-7

WRITELN:

WRITELN (0K, ++Game cancelled due to lacK of interest.)3

DESTROY (DESC := 0Onoff)

{ Delete structures ¥ 3

DESTROY (DESC 2= Screen)

DESTROY (DESC := Spinner):

5TOP (NAME := ‘ENTRY! 7} 3

WRITELNS

WRITE (‘Thanks for the dames Seport.")i

END { of main Frodram example 3

6.2.1.5 Dynamic Process (Entry) — Entry is the shooting mechanism of the

game and runs concurrently with Example. Synchronization between the

processes comes from the strategically placed WAIT and SIGNAL operations

on semaphores ‘SPIN!!, ‘SHOOT!’, and ‘SCREEN’. Except for the first

statement, a procedure call to $T'TYST, Entry is an endless loop. It examines

one element of the asterisk wheel — the element pointed to by Indx. If that

element contains an asterisk, Entry makes it a blank, thereby eliminating the

asterisk. If the element is already a blank, Entry leaves it alone. Entry is

concerned only with element number Indx of the array.

The first and last statements of Entry’s loop are a wait/signal pair. This

semaphore, ‘SHOOT! (named in structure descriptor block Onoff), is sig-

naled by Setup in the main program. As long as the variable Asterctr is not

equal to 0, ‘SHOOT'!” will be signaled at the end of Entry, and the process can

continue. As soon as Asterctr equals 0, ‘SHOOT!’ will not be signaled within

Entry, and the process will enter the wait-active state unless or until

‘SHOOT"’ is signaled again by another process. This arrangement is used to

control the execution of Entry. Entry will be eligible to run in the target CPU

only if ‘SHOOT?’ is signaled regularly.

Assuming that ‘SHOOTY!’ is signaled and that Entry proceeds through the

first statement of the loop, it next encounters a READ. Entry receives a

character from the console terminal keyboard. As soon as you enter a charac-

ter at the terminal, Entry will proceed to its next statement. The next state-

ment in Entry is an order, WAIT, on the semaphore named ‘SPIN!!’. This is

the mutual-exclusion semaphore guarding the variable Indx. Entry will not

proceed until three conditions have been met:

1. The controlling semaphore ‘SHOOT!’ allows execution.

2. A character is entered from the terminal keyboard.

3. The target element of the array is free for access.

If the asterisks have been eliminated, ‘SHOOT!’ is not signaled at the bottom

of the loop, and Entry is forced to wait, relinquishing the CPU.

6-8 Application-Development Example

The Entry process follows:

[PRIORITY(205), STACK_S5IZE(200)]1 PROCESS Entry:

BEGI

No

N

—echo (2071000007) { Turvn off character echo. ¥

WHILE TRUE DO

BEGIN

WAIT (DESC := DOnoffls

READ (Bullet)s { Wait for Kevboard inFut. ¥

WAIT (DESC := Screen};i

WRITE (Escys ‘Y7 CHR(3Z2),y CHR3S)Y)

WRITE (7¥7)3

SIGNAL (DESC := Screenl?

WAIT (DESC := Sepinner)s

IF Arfindx]l = "%/ { If asterisk in tardet srProOt

THEN BEGIN

ArlIvdxd == 7 73 { thern blankit. ¥

SIGNAL (DESC := Spinner?’

Asterctr := Asterctr - 13

WAIT (DESC = Seoreen)s

WRITE (Escs "Y' CHR(34)s CHREOAZY)3

WRITE (‘HITS: e 11 - Asterctriafaol

SIGNAL (DESC := Screeni’

END

ELSE BEGIN

SIGNAL (DESC := Spinnerls

Miss := Miss + 13

WAIT (DESC := Screenis

WRITE (Escysy ‘Y7 CHR(3GB), CHR{AZ))5

WRITE ('MISSES: ‘v Miss:Z)}s

SIGNAL {(DESC := Screenls

END3

IF Asterctr < O { If all asterists are done: ¥

THEN SIGNAL (DESC := Onoffii

END3

{ Entryvy %END

6.2.2 A Potential Problem: Character Echoes

The READ statement normally causes the character entered at the terminal

to automatically echo, or print immediately on the screen. However, in Entry,

we call the procedure $TTYST, which defeats character echoes during the

read operation.

The READ statement is not (and cannot be) protected by the mutual-exclu-

sion semaphore ‘SCREEN’. Enclosing the READ inside a critical section

would probably stop both processes at some point while Entry waited for a

character and Example waited for access to the terminal screen. This action

would interrupt the smooth flow of execution necessary for the game to work

properly.

Nonetheless, all write operations in Entry must be protected through mutual

exclusion; otherwise, the display would be affected adversely. Therefore, we

cannot allow this READ statement to cause an automatic write operation.

The special procedure $TTYST is necessary. After you have successfully cre-

ated this sample application and have seen it run, you might want to rebuild

the application without including the $TTYST procedure.

Application-Development Example 6-9

6.2.3 Escape Sequences

The constant Escapecode, the variable Esc, and all WRITE statements con-

taining Esc control the position of the cursor on the terminal screen. The

variable Esc is of type CHAR. The first statement in the main program block

assigns Esc the ASCII character value corresponding to a decimal 155 (the

value of our constant Escapecode). Whenever the statement WRITE (Esc) is

sent to the terminal, the next letter sent is interpreted as a command to

reposition the cursor. There are several of these letters, each interpreted as a

different command when sent to the terminal after the escape character. Esc,

‘H’, for example, immediately moves the cursor to the upper left-hand corner

of the screen.

6.3 Creating the Application Example from Source Code

Now we will set up the host and target systems and transform the source code

into an executable, concurrent application. We will then down-line load the

application from the host into the target and run it.

6.3.1 Configuring the Hardware

First, the host and target hardware must be configured for down-line loading

the application example. We need a serial line interface on both systems. In

addition, we need a second, optional, serial line on the target for a DIGITAL

VT52 terminal or VI'100 terminal set to VI52 mode. We will not need to

debug this sample application, but we will use PASDBG to load the applica-

tion over the host-to-target serial line.

The MicroPower/Pascal Installation Guide details how to configure the sys-

tem’s hardware for down-line loading using the PASDBG symbolic debugger.

That manual also contains directions for down-line loading using the

DLLOAD utility.

6.3.2 Completing the Configuration Worksheet

Once the hardware has been set up correctly, you must specify the character-

1stics of your target system to the MicroPower/Pascal utilities. You do this by

editing an existing configuration file, which consists of a number of

MACRO-11 instructions. You edit the file in order to supply configuration

information and to override any of the built-in configuration defaults that do

not suit your needs.

Refer to Figure 6-3, which contains the correct configuration information for

the sample application. We will look at each item on the worksheet.

6-10 Application-Development Example

Configuration name -E).s 60fl70
SYSTEM: Debugger support Y N [No]

Optimize Y @ [No}

INCLUDE ONLY IF SYSTEM OPTIMIZE = Y

RESOURCES: Kernel stack size bytes RAM
{predefined minimum]

Number of system packets

[28.]

Kernel pool for system data structures bytes RAM

T1000.7
Free RAM table size bytes

{20.]

TRAPS: [,

{All]

All = LSI| SBC-11/21 T1¢ EMT TRP |
TR4 BRK 1

Other traps: FIS FPP MMU MPT

PROCESSOR:

Memory-management unit Y <:::> No

Floating-point unit None FP11 FIS None

Type T11 L112 L1123 L1123

Vector 10008 (octal)
(400octal

SBC-11/21)

KXT11

(for SBC-11/21)

nxm break syshalt level?

__HALT TRAP HANG | opT

___TRAP HALT ODT __ | TRAP __
level?7 only if

nxm = HALT

[HALT] [TRAP] oDT oDnT break = TRAP

ROM | ROM __ syshalt = HANG

USER__ | IGNORE___

[ODTROM] [TRAP]

MEMORY: Base Size Type Parity Parity Volatile

address (64-byte controller

segment) CSR

Segment 1 Po S$72. RO @ Y N Y N

Segment 2 RO RW Y N Y N

Segment 3 RO RW Y N Y N

Segment 4 RO RW Y N Y N

(RW] [No] (8] [Yes]

pEvicEs: &0 ‘{M M.M__ -

Figure 6-3: Configuration Worksheet

Application-Development Example 6-11

Note the word “optimize” beside SYSTEM. Unless we optimize, the configu-

ration file will default certain values in the RESOURCES and TRAPS

macros. All the defaults in these two areas are suitable for our sample, so we

do not need to optimize. Because we will use PASDBG to load the application

into the target, we check ‘“debugger support.”

Our memory requirements are 512 64-byte segments, starting at a base ad-

dress of 0. Many memory configurations of different types, sizes, and starting

addresses are possible. You can also specify memory size with the expression

n.*32., where n. and 32. are decimal numbers. In this expression, n is the

number of kilo words of target memory. If the target has 16K words of mem-

ory, you can express the memory size as 16.*32 on the worksheet.

The directions in our example assume an unmapped target system without

floating-point capability. Therefore, these options are not checked after the

PROCESSOR macro.

Beside the DEVICES macro, we will specify five vectors: 60, 64, 100, 300, and

304. The terminal will use these vectors for I/O with the target processor.

Since we did not check “optimize” beside SYSTEM, we need not include

RESOURCES and TRAPS. Therefore, the kernel’s free data space sizes need

not be tailored for our application; defaults will suffice.

6.3.3 Editing the Configuration File

Now that we have the proper configuration outlined on the worksheet, we can

tailor the configuration file (at the host) to our needs by using one of the

available editor programs to change it. There are three editor programs (text

editors) available: EDIT, KED, and K52; they are summarized in the

MicroPower/Pascal System User’s Guide (Chapter 3). The RT-11 documenta-

tion set contains detailed instructions on the use of the editors.

NOTE

In the following sections, the symbol ®ED indicates that you

should press the return key, and the symbol indicates

that you should press the C key simultaneously with the CTRL

key. Red type is used for information you enter from the key-

board; black type indicates MicroPower/Pascal and RT-11 re-

sponses and prompts.

To call up one of the editors, you type one of the following lines at the host

system console terminal:

CEDIT/0OUTPUT:EXCONF.MAC CONFIG.MAC

LEDIT/KED/OUTPUT:EXCONF.MAC CONFIG.MAC

VEDIT/KS52/0UTPUT:EXCONF.MAC CONFIG.MAC

Note how to specify the KED and K52 editors. CONFIG.MAC is the name of

the configuration file in the distribution kit. OUTPUT:EXCONF.MAC speci-

fies that a copy of CONFIG.MAC is to be made and renamed EX-

CONF.MAC. This copy, not the original file, will be changed. EX-

6-12 Application-Development Example

CONF.MAC is the suggested name of your edited copy of the configuration

file. If you do not include OUTPUT:EXCONF.MAC, your editing commands

will affect the original file, CONFIG.MAC.

The following pages describe 12 actions you perform to fully develop the

sample program into a usable memory image.

1. Using one of the editors, access EXCONF.MAC (CONFIG.MAC) and

make the indicated changes (red type) in the following lines:

CONFIGURATION Exconf

SYSTEM debug=YESs optimize=ND

PROCESSOR i =N0

MEMORY base=0: size=31Z+,: tvpe=RAM

IRESOURCES STACK=300., + PACKETS=20.. STRUCTURES=813Z.

i TRAPS ALL

DEVICES GO.B4,100,300,304

Note how these changes to the configuration file reflect our choices on the

configuration worksheet. As you can see, several defaults — in resources and

traps — occur because we did not optimize the kernel.

2a. Enter the following command line:

JMACRD EXCONF+COMU.SML/LIBRARY

This command runs the MACRO-11 assembler program to produce an object

module called EXCONF.OBJ. COMU.SML is the name of a macro library

file containing all the macros named in EXCONF.MAC. The configuration

file is now sufficient for our example, having been edited and assembled to

produce an object module.

We will use the prefix file XLPFXE.MAC to include an XL driver in the

application. This driver is required for the target terminal.

2b. Create an object module from the prefix file XLPFXE.MAC:

JMACRO MLPFHE+COMU.SML/LIBRARY

We will now compile the Pascal source code of our sample program. Compil-

ing the source code will produce another object module containing the

program.

6.3.4 Compiling the Source Code

The MicroPower/Pascal compiler requires a minimum 128KB of memory to

run in the host system. In addition, a variable amount of mass storage (disk,

diskette) is needed, depending on the size of the compiling job and the output

options you desire.

You compile your complete application in stages. In addition, each Pascal

main program can be compiled in stages.

Input to the compiler is a maximum of six source files containing Pascal code.

The MicroPower/Pascal compiler concatenates the input files and compiles

the whole.

Application-Development Example 6-13

Output from the compiler consists of the following:

e One object module of default file type .OBJ or one optional MACRO-11

code module of default file type .MAC

® One optional listing of default file type .LST

In summary, the compiler translates Pascal source-program statements into

machine language instructions, optimized for efficiency to minimize the

amount of code generated.

3. To compile the program, enter the following command:

+R PASCAL

*Exampl=Exampl @

The MicroPower/Pascal compiler, called PASCAL, has located our sample

program source code in the file EXAMPL.PAS and has created an object

module called EXAMPL.OBJ. The next step is to take the three object mod-

ules, EXAMPL.OBJ, XLPFXE.OBJ, and EXCONF.OBJ, and use them as

input to the MicroPower/Pascal utilities. The utilities will create a memory

image of the application that can be loaded into the target system.

6.3.5 Building the Application

Now that our program has been written and successfully compiled, we can

begin creating the memory image to be loaded into the target processor.

In order to create the application, we must construct a kernel to contain the

various system services that may be called on from the object code of our

program. We will construct a full-function kernel, one that provides the maxi-

mum number of services, whether they are needed or not. Note that the size of

the application can be greatly reduced by excluding unneeded kernel services.

Building a customized kernel is covered in the MicroPower/Pascal System

User’s Guide.

The major utilities for MicroPower/Pascal are MERGE, RELOC, and MIB. A

description of each follows.

MERGE resolves references from one module to another by using symbol

table information within each module. (References to the kernel are resolved

by using the kernel symbol table file.) MERGE combines program sections of

the same name.

The input to MERGE is as follows:

e Multiple object modules, of file type .OBJ and/or file type .MOB

¢ The kernel symbol table, of file type .STB

The output is as follows:

® One object module, of file type .MOB

® One link map, of file type .MAP

¢ One auxiliary file, of type .OBJ

6-14 Application-Development Example

RELOC sorts program sections alphabetically as well as by R/O and R/W

attributes, assigns virtual base addresses for each section, and relocates the

contents of each program section. RELOC also creates a symbol table, using

the relocated addresses of all symbols present within the module.

The input to RELOC is as follows:

e One merged object module, of file type .MOB

e One optional memory image, of file type .MIM (unmapped only)

The output is as follows:

e One process image, of file type .PIM

e One memory map, of file type .MAP

e One symbol table, of file type .STB

MIB creates in one file the executable memory image of the full application,

consisting of the kernel and one or more static processes. (MIB can also install

a .PIM file in an existing memory image.) MIB creates a symbol table for use

with the MicroPower/Pascal symbolic debugger, if specified.

The input to MIB is as follows:

e One process image, of file type .PIM

e One memory image, of file type .MIM

e One symbol table, of file type .STB

The output is as follows:

e One memory image, of file type .MIM

e One map of installed processes, of file type .MAP

e One debug symbol table, of file type .DBG

4. To merge the kernel, type:

.k MERGE

*KERN,MOB=EXCONF,0BJ,PAXU.0BJ @D

% €TRLO

The files to the right of the equals sign are input files. These input files are the

configuration object module and PAXU.OBJ, the file containing a library of

modules that can be combined to form our application’s kernel.

5. Next, relocate the kernel with RELOC to create a symbol table (.STB

file) and a program image (.PIM) file:

R RELOC

*KERN,PIM, sKERN,STB=KERN.,MOB ®ED

*CTRL/

The output of step 4, KERN.MOB, is the single input file for this step. There

are two output files: KERN.STB contains a list of names to be used when

calling on kernel services, and KERN.PIM contains the kernel’s program

image.

Application-Development Example 6-15

6. Now create a memory image (.MIM file), with the kernel in place:

R MIB GED

*EXAPPL. MIM=KERN.PIM/K/s @D

*(CTRLO

At this point we have created four things:

e A memory image of the example application — including just the

kernel — in the file EXAPPL.MIM

e An object module containing the Pascal source program

e A system process that interfaces with the target terminal

¢ A symbol table containing the addresses of named entities inside our kernel

that could be referenced automatically from the source program

7. Next, install the driver process in the application. Enter the following:

R MERGE

*A AL MOB=XLPFXE.OBJ+KERN.STB DRVU.CBJ @ED

*CTRLO

8. Run RELOC:

R RELOC G@ED

#xL.PIM=XL.MOB,EXAPPL.MIM GED

*CTRUO

9. Run MIB:

R MIB GRe)

*EXAPPL MIM=X_L.PIM:;EXAPPL.MIM/s @D

*CTRLO

10. Merge the compiled sample program with the system library and the

kernel symbol table (.STB):

R MERGE

*EXAMPL .MOB=EXAMPL-0OBJKERN.,STB,,LIBNHD.O0B.J @ED)

*CRLO

The inputs to this merge step are object module files. The sample program

contains calls to routines contained in the library LIBNHD.OBJ, renamed

SYSLIB. These routines in turn request services from components of the

kernel (listed in the file KERN.STB). The file EXAMPL.MOB contains the

sample program object module, with all calls to other module libraries re-

solved.

11. Relocate the merged example object module:

R RELOC

*EXAMPL. PIM=EXAMPL .MOB ;EXAPPL.MIM @ED

*CTRLO

EXAPPL.MIM is the name of our existing memory image file. EX-

AMPL.MOB will be relocated to fit into EXAPPL.MIM.

12. Finally, insert the sample program memory image into the existing

application memory image:

R MIB @D

*EXAPPL . MIM=EXAMPL.PIM.EXAPPL.MIM/s @ED

#CTRLIC

6-16 Application-Development Example

We have built a memory image ready to be placed in the target system

memory.

6.3.6 Loading and Running the Application

Because we specified DEBUG=YES in the configuration file, we can now use

PASDBG to load the application into the target. We do this by taking two

actions, as follows:

1. Load the TD driver into the host:

,LOAD TD

2. Turn on the target system power.

Next, we run the PASDBG program at the host by typing the following:

.,k PASDBG @D

PASDBG will print out several messages and then prompt:

PASDEG: LOAD/TARGET EXAPPL G

PASDBG will print out several messages as the application is loaded and then

prompt:

PASDBG: GO G

The application will begin to execute.

The application is now running. On the target system terminal screen, you

should see the message:

Shall we hedin - v - 7

Type the letter y to begin the game.

The letter n exits from the application. To play again after entering n, you will

have to restart the application in the target by typing the following lines at

the host:

RET

PASDBC: INIT/RESTART @D

PASDBG will print out several messages and then prompt:

PASDBG: GO GED

6.3.7 Using DLLOAD

By running DLLOAD in the host, you can boot down-line the application into

a target system when power is turned on, as if from a DECtape II drive.

DLLOAD is a means of placing the application into target system RAM via a

communication link from the development system. This communication link

consists of a port connected to the target by a DLV11 serial line interface.

When power turns on in the target LSI-11 processor, a bootstrap program

already present in permanent read-only memory automatically accesses the

device connected to the processor’s DL11 serial line interface. Normally, this

device holds a secondary bootstrap program that loads the application into

main memory and starts execution. But in down-line loading with DLLOAD,

Application-Development Example 6-17

the device connected to the serial line interface is replaced by a communica-

tion link leading to the host processor. DLLOAD, running in the host, emu-

lates a DECtape II drive and sends the application over the serial line into

target memory.

To run DLLOAD at the host, enter the following:

JR DLLOAD

You will be prompted to specify the following:

® The host-system device containing the application (memory image)

* The name and type of the file that holds the application — in this case,

Exappl.mim (omit this if the device is not file-structured)

For DLLLOAD to work, the XTX device driver must be loaded into the host

memory, and the DD bootstrap must be included in the application memory

image (using the /B switch to the MIB utility). Chapter 12 of the

MicroPower/Pascal System User’s Guide explains how to use DLLOAD.

When you turn on the target system power, Exappl.mim will be booted into

target memory and will begin to run.

O

Target

system

/ ML-098-81
6.3.8 Debugging the Application

PASDBG, the symbolic debugger supplied as part of the MicroPower/Pascal

package, gives you a range of tools to use in testing your application for errors.

There are more than 30 commands. You can use the debugger to do the

following:

e Examine/modify memory locations

* Look at a process and its process control block, subordinate processes, stack

contents, and state

® Find the location of certain data in memory

¢ Proceed through execution one statement/instruction/label at a time

e Halt execution at any point, according to breakpoints or flags set in the

source code

6-18 Application-Development Example

PASDBG can treat the contents of memory locations like any of the following

data:

ASCII Octal

Binary PDP-11 instruction

Decimal RAD50

Hexadecimal

You can enter and/or display memory contents in any of these representa-

tions. This determines the mode of the debugger’s presentation of memory

contents. In addition, PASDBG can interpret data in word or byte lengths.

Any symbol used in the source code can potentially apply to more than one

location in memory, because of duplicate naming or multiple uses of the same

section of code during execution. As a result, for debugging, each instance of a

symbol must be distinguished from all other references to that name. This is

done by using a pathname, which looks like the following:

system \ process \ procedure \ function \ symbol

Each part of the pathname leads to the next part, narrowing the scope, until

the symbol has been identified. (Pathnames may contain more than one

process or procedure.)

When the scope of symbols and the mode of data interpretation are clear, you

can easily use the other PASDBG commands to check on the behavior of a

misbehaving application. To use PASDBG, /D options must be included in

the command lines when you run MERGE, RELOC, MIB, and the compiler.

See the MicroPower/Pascal System User’s Guide for the correct use of /D. The

MicroPower/Pascal Debugger User’s Guide contains a complete description of

the PASDBG symbolic debugger, as well as some sample debugging sessions.

Application-Development Example 6-19

Appendix A

Source Program for Application Example

[SYSTEM(MICROPOWER)» PRIORITY(ZOO)s

DATA_SPACE(1000)sy STACK_SIZE (200)1 PROGRAM Example}

CONST

Escaprecode = 1553

VAR

Spinver:s { Semaphore for ¥

Dwoffs:s { Semarhore for

Screen { Semarphore for serializing access to the screen 1}

STRUCTURE _DESC S

Ar : ARRAY [0O..111 OF CHAR:

Bullets

Play

Esec : CHARS

Indx

Miss

Asterctr = INTEGER?

Firstimes Result : BOOLEANS { for use with MicroPower/Pascal functions %

[EXTERNAL ($TTYST)1 PRDOCEDURE No_echo (value : INTEGER)F EXTERNALS

[INITIALIZE] PROCEDURE Dofirst:

{ Create the bivary semarhores., ¥

BEGIN

Result == TRUE:

IF NOT CREATE_BINARY_SEMAPHORE (NAME := ‘SHOOT!’, DESC == Onoffl

THEN Result := FALSE?S

IF NOT CREATE_BINARY _SEMAPHORE (NAME := ‘SCREEN’. DESC := Soreend

THEN Result := FALSBE:

IF NOT CREATE_BINARY_SEMAPHORE (NAME := ‘SPIN!!7, DESC = Sepinner)

THEN Result := FALSE:

Fsc 2= CHR(Escarpecode)’

Firstime = TRUES?

ENDY { Dofirst %

PROCEDURE Seturi

Uak

i ¢+ INTEGERS:

BEGIN

{ Initialize the arravs leave tardet spot blank. ¥

FOR n == 1 T0 11 DO

Arlnl == ‘%73

ArfO01 == 73

Indx = ~13%

{ Inmitialize the counters, 3

Miss 1= 03

Asterctr := 113

{ Sidgnal all the semarphores, I}

SIGNAL (DESC := 0Onoff)s

S5IGNAL (DESC Screen)

SIGNAL (DESC Spinner)i

ENDF £ Setup }

H

[PRIORITY (Z205)y STACK_SIZE(Z00)] PROCESS Entrys

BEGIN

No_echo (407100000735 { Turn off character echo. ¥

WHILE TRUE DO

BEGIN

WAIT (DESC 2= 0Onoff)s

READ (Bullet)s { Wait for Kevboard ineut., ¥

WAIT (DESC 2= Screen’s

WRITE (Esc Y7y CHR(32), CHR(35))3

WRITE (7X7)3

SIGNAL (DESC := Screen)s

WAIT (DESC := Spinner)s

IF Arfindx] ‘#*7 { If asteriskK in tardet spots

THEN BEGIN

Ar [Indxd 2= * % { then blank it., ¥

SIGNAL (DESC := Spinvner?:

Asterctr := Asterctr - 13

WAIT (DESC == Screen)

WRITE (Escs ‘Y7 CHR{34): CHR(AZ2))3

WRITE (‘HITS : ‘4 (11 - Asterctr):2)3

S5IGNAL (DESC = Screen)i

END

ELSE BEGIN

SIGNAL (DESC := Spinwvner):

Misgs 1= Miss + 13

WAIT (DESC := Screen)

WRITE (Escs ‘%' CHR(ZB), CHR(421)3

WRITE('MISSES = '+ Missg:=:2)3

SIGNAL (DESC := Screen):

END3

IF Asterctr <> 0 £ If all asteriskKs are dones ¥

THEN SIGNAL (DESC =:= Onoff}s

END3

ENDs { Evntry ¥

BEGIN

WRITE (Escs ‘H'y Esesy “J')% { Erase terminal screen., ¥

WRITE {(Escs "Y'y CHRC4O)Ys CHR{(Z32)13

WRITE (’Shall we bedin (v/n) 7)3

READ (Plav)s

WRITELNS

WHILE(Play = “v’) OR (Plav = ‘¥’ DO

BEGIN { Main loor of dame, I

Seturs

IF Firstime

THEN Entry (NAME := ‘ENTRY!‘) { Create process

ELSE WRITE (Escs Y7 CHRO40)Yy CHR{3Z)13

WRITELN (“Press any lettear to shoot...Fire Awav! ‘)i

WHILE (Asterctr > 0) D0

BEGIN { Update the asterisk wheel, }

WAIT (DESC =:= Seinner):

A-2 Source Program for Application Example

Indx 2= Indx + 13

Indx == Indx MOD 123

SIGNAL (DESC := Spinner) { Now Print out the wheel, %

WAIT (DESC :2= Screen):

WRITE (Escs ‘H7):

WRITELN (7 =74 ArlIndxls ° 3

WRITELN (° fuArC(Indx + 11)YMOD 121 7 ‘4 ArLiIndx + 1) MOD 1Z21)3

WRITELN ¢/ “sArC{Indx + 10)MOD 121, ° fe o ArfiIndx + 23 MOD 12133

WRITELN (ArL(Indx + 9)MOD 1213, ° fy ArC{Indx + 33 MOD 121)s

WRITELN (¢ “Ar[(Indx + 8)MOD 123, ° Sy ArliIndxy + 43 MOD 12133

WRITELN (7 f,AarC(Indx + 7)MOD 121+ ¢ “» ArLi{Indx + S5y MOD 121)5

WRITELN “yarl{Indx + BIMDD 127}

WRITELNGS

SIGNAL (DESC := Screemnl:

END3

WAIT (DESC := Screen):

WRITE (Escs ‘H’y Escsy “Jd7)13 { Clean the terminal screen. I

WRITE (Escs+ 'Y+ CHR(40),y CHR(32))3

WRITELN (‘You shot out all the asterisKs!)3

WRITELN (‘...while missind “» misszZs ' Limess .. 11

CASE Miss OF

0: WRITELN {(’You are obuviously a visitor from an alien race.’}?

1+ ?: WRITELN (’%¥ou must work out with Garv Coorper. 13

3, 4 5: WRITELN (‘Don’’t do0 anvwhere near Wvatt Earr.)3

B, 7+ 8 9: WRITELN (‘Sudarfoot vou ain’ ‘L)

1?2, 13, 14: WRITELN (‘You missed more than vou ittt 13

15, 16, 17: WRITELN (‘You have PODOT ¢+ ¢t sttt st ssrsresstiming.)3

10+ 11 202 WRITELN ‘Take some advice--stay out of the O.K. corral.)

1y 22, 23: WRITELN ‘Crazy dlue in the ol’’ holsters hum?’)}

24 18y 19: WRITELN ‘My horse ncan shoot better than that! ')}

?%, 26y 27: WRITELN ‘Tardets moving too fast for vous Cowboy?’)3

ENDY { Case ¥

IF Miss = 27

THEN WRITELN (‘You can do better than thats can’'‘t vous Tenderfoot?’)3

N

WRITELNS:

WRITELN (‘Press <retx’)3

READLNS

WRITE (‘How about another round {(v/n)

READ (Plav)s

IF (Play = ‘v¥‘) DR {(Plav = ‘Y¥7')

THEN Firstime := FALSES?

WRITE (Escs ‘H’y Escs ‘J7)3i { Erase teriminal screen. ¥

SIGNAL (DESC := Ornoffls

END 3 { Main dame loor. %

T

WRITELN?

WRITELN (’0OK.,+.Game cancelled due to lack of interest,13

{ Delete structures ¥

DESTROY (DESC := 0Onoff)s

DESTRDY (DESC := Screen):?

DESTROY (DESC := Spinner):

STOP (NAME := ‘ENTRY! 7))

WRITELNS

WRITE (‘Thanks for the dames SPort.,’)i

END.

Source Program for Application Example A-3

Glossary

Terms in the Glossary are used throughout the documentation set.

Absolute section

A section of code that must reside in specific memory locations; it is not

relocatable.

Actual parameter

A value or variable that is passed in a procedure or function call, used

during execution of the subprogram.

Actual parameter list

In MicroPower/Pascal, the list of parameters specified in a subprogram

call. The actual parameters must be in a specific sequence, separated by

commas, and the list enclosed in parentheses.

Application program

In MicroPower/Pascal, a program developed on a host RT-11 operating

system that runs on a stand-alone target system.

ASECT

An absolute-addressed section of a program that is not relocatable.

ASECTs (usually used for symbols) must reside in specified memory loca-

tions.

Asynchronous

Not operating in exact time coincidence; asynchronous events occur un-

predictably in relation to instruction execution.

Base type

1. For a subrange, the scalar type of which it is a subset. For example,

the subrange 0...123 has the base type INTEGER.

2. For a set, the nonreal scalar type from which the elements of the set

are chosen.

Glossary-1

Glossary-2

Binary semaphore

A global variable whose value varies from 0 to 1. Binary semaphores are

managed by the kernel in response to requests from processes and inter-

rupt service routines. Each binary semaphore can have a queue of waiting

processes.

Block

1. A predefined extent of data. On mass storage devices, a block is a

group of logically adjacent words or bytes. The block size for most

DIGITAL mass storage devices is 512 bytes. A block of data is nor-

mally the smallest system-addressable segment from a mass storage

device involved in 1/0.

2. In Pascal, a statement sequence delimited by the keywords BEGIN

and END; can be used anywhere a statement is used.

3. As a verb in MicroPower/Pascal, to inhibit the execution of a process

until a condition is met.

Blocked (process)

A process waiting for an event to occur (a specific semaphore signaled)

before continuing execution. A blocked process is in the wait-active, wait-

suspended, exception-wait-active, or exception-wait-suspended state.

Block I/0

The transfer of a predefined amount (block) of data to or from a peripheral

device. In block data transfers, bytes are loaded into consecutive storage

locations. Only the address of the first byte need be specified.

Bootstrap

A short program or routine whose first instructions are sufficient to start a

more complex system of programs. Bootstraps are generally used to load

programs into memory from I/O devices.

Breakpoint

A location within a MicroPower/Pascal program marked for debugging

with the PASDBG symbolic debugger. When a breakpoint is reached,

program execution stops, and the debugger displays a program status

message.

Communication link

A physical connection between two or more processors used for transfer-

ring data. For example, a serial I/O interface is a communication link

through which data is sent one bit at a time. The bit sequence is organized

by prearranged protocol rules.

Concurrent

Occurring during the same time period. In MicroPower/Pascal, concur-

rency indicates the sharing of the CPU resource by cooperating processes

whose lifespans overlap. Processes appear to execute simultaneously.

Context

The set of data defining the environment, both hardware and software, in

which a process executes. Hardware context includes the contents of the

general registers, memory-mapping registers, floating-point registers, and

processor status word. Software context includes the contents of various

flags and pointers maintained by the kernel.

Context switching

Saving the hardware and software environment of a process that has lost

control of the CPU and establishing similar information for a new process.

Control and status register (CSR)

A single interface register that monitors the status of an I/O device and

controls its operation. Some devices have more than one CSR.

COPYB

A MicroPower/Pascal utility program that prepares a memory image for

bootstrapping into the target system memory.

Counting semaphore

A global variable whose value varies between 0 and some number greater

than 1. Counting semaphores are managed by the kernel in response to

requests from processes. Each counting semaphore can have a queue of

waiting processes.

Critical section

A portion of a process that must complete before a specific portion of

another process can execute.

CSR

See Control and status register.

Deadlock

The condition of two or more processes preventing each other from access-

ing needed resources. Deadlocked processes block themselves, waiting for

resources that will never be available.

Debugger

See Symbolic debugger.

Declaration (section/entry)

A program specification that lists one or more labels or associates an

identifier with the class of data types it represents. In Pascal, labels and

identifiers for constants, functions, procedures, types, and variables must

be declared. The part of a program or subprogram block that contains the

declarations is called the declaration section.

Device handler

A process that drives or services an I/O device and controls the operation

of the device.

Glossary-3

Glossary-4

Device register

A register associated with one particular hardware device. Device registers

store information about the status and control of the associated device or

exchange data with a device.

Dispatcher

The kernel routines that allocate the processor resource to an eligible

process and save and restore the process’s context. (The system scheduler

is part of the dispatcher.)

DLLOAD

A MicroPower/Pascal utility program that down-line loads a memory im-

age from the host to the target system.

Down-line loading

Loading a program into the target processor’s memory over a serial-line

communications link from the host RT-11 operating system.

Driver

See Device handler.

Dynamic allocation

The granting to a process of a resource during execution. In dynamic

allocation, the needed resource comes from a pool and may not be avail-

able when requested. In static allocation, access is established during

system start-up.

Dynamic process

A process not defined during target system initialization, but created by

action of another process during operation of the application.

EPROM (Eraseable programmable read-only memory)

A kind of PROM that can be erased, thereby returning the device to a

blank state.

Exception condition

An event, detected by hardware or software, that causes a change in the

flow of instruction execution (caused by a condition other than an inter-

rupt or execution of a jump, branch, case, or call instruction). An excep-

tion condition is associated with the execution of an instruction and occurs

synchronously with process execution. Examples are arithmetic overflow

or underflow, illegal address references, and trace traps.

Executable image

See Memory image.

Extended address

Memory or device addresses in excess of 16 bits. Mapped memory systems

use extended addresses in order to address more than 64KB address space.

External symbol

A link between independently compiled or assembled program modules.

An external symbol in one module represents a symbol globally defined in

another module(s).

Flag

1. A variable or register used to record the status of a program or device.

2. Noting an error condition.

Fork process

A process on the fork queue. A fork process is created with the FORK

request by an interrupt service routine. See Fork queue.

Fork queue

A queue set up in the kernel to allow processes special sequential access to

the processor. Although lower than interrupt priorities, the fork queue

priority is higher than any process priority, expediting the execution of

processes placed on the fork queue. For example, interrupt-handling

routines placed on the fork queue will execute before other processes in the

application. This method ensures quick attention to interrupts.

Formal parameter

A name, declared in the heading of a procedure or function, that repre-

sents an actual parameter to be passed when that procedure or function is

invoked. Variables declared as formal parameters are not stored.

General process

In mapped target systems, a process without special access to kernel or

device register areas of memory.

Global symbol

A link between independently compiled or assembled program modules. A

global symbol is defined in one module and can be referenced from other

modules. An identifier is an example of a global symbol.

Handler

See Device handler.

Heap

An area of memory in the MicroPower/Pascal application for dynamic

allocation of pointer objects. Processes’ stacks are allocated from the heap.

Host processor

A computer, running an RT-11 operating system, on which

MicroPower/Pascal application programs are developed.

Intermodule reference

A reference made in one module to a symbol defined in another module.

Glossary-5

Interrupt

A signal from a device to the processor that changes the flow of instruction

execution on the interrupted processor. Interrupts occur asynchronously

with respect to the execution of processes.

Interrupt service routine (ISR)

A routine designed to execute when a particular device signals the proces-

sor with an interrupt. The processor locates ISRs in memory, using an

address vector supplied by (or elicited from) the interrupting device. ISRs

are also called interrupt-handling routines or interrupt handlers.

ISR

See Interrupt service routine.

Kernel

A set of software modules supplied by DIGITAL for inclusion in the

MicroPower/Pascal target system. The kernel provides basic real-time

control and service functions for all processes in the target system. Kernel

components include the system scheduler and dispatcher and a large

number of service functions that can be invoked by the user. The kernal

services fall into these catagories:

e Creating/deleting processes

¢ Dispatching exceptions

* Dispatching interrupts to the appropriate interrupt service routines

* Managing (allocating) resources

¢ Scheduling processes

¢ Synchronizing processes

Library file

A file containing one or more relocatable object modules used to incorpo-

rate other programs. These program modules might be used repeatedly in

a program or by more than one program. Library files are merged or linked

with source program modules during MicroPower/Pascal development.

Library module

A program module from a library file.

Linking

Converting object modules to a format suitable for loading and executing.

Linking object modules:

1. Assigns absolute addresses

2. Produces a load map and creates a symbol table

3. Relocates the program sections within the object modules

Glossary-6

4. Resolves global symbols that are defined in one module and referenced

by external symbols in another

5. Searches library files to locate unresolved global symbols

In MicroPower/Pascal development, the linking functions are performed

by executing the MERGE, RELOC, and MIB utilities.

Load map

A table, produced during creation of a MicroPower/Pascal application

program, that provides information about the load module’s (memory

image’s) characteristics; for example, the transfer address, the global sym-

bol values, and the low and high address limits of the relocated code.

Load module

A program in a format ready for loading and executing (relocated, with

references to labels and identifiers resolved). A completed memory image

file is the load module for an application.

Mapped memory

Memory that is divided into segments, or pages, each located separately in

(mapped into) physical storage. Mapping translates the 16-bit addresses

used with LSI-11 processors into a physical memory space of 18- or 22-bit

address size. Specifically in the LSI-11/23, up to the equivalent of four

64K byte virtual address spaces can be mapped into noncontiguous 8K-

byte segments (18-bit mode) or 64 different spaces (22-bit mode).

Memory image

The file resulting from running the MIB utility and containing the image

of the application program as it will appear in the target system memory.

This file can be down-line loaded or bootstrapped from DECtape II or

RX02, or loaded in ROM for execution in the target. The memory image

file name has the extension ‘MIM’.

Memory image builder (MIB)

The MicroPower/Pascal utility program that combines the following com-

ponents into a memory image file:

e Bootstrap loader (if necessary)

e Kernel

e Relocated process image file (file containing an image of the program

as it will appear in its portion of the target system memory)

This memory image file is loaded into the target processor. MIB optionally

creates a debug symbol table file ((DBG).

MERGE

The MicroPower/Pascal utility program that combines two or more object

modules, resolving intermodule references if possible, and updating the

relocation directories.

Glossary-7

Glossary-8

Modular programming

A method of constructing a program from many small sections, called
modules. Modular programming helps compartmentalize the program

concepts. Modular program sections can be written either as separate

parts of one source program (procedures in MicroPower/Pascal) or as dis-

tinct source programs, compiled into separate, cross-referenced object

modules to be linked into one load module.

Module

In the MicroPower/Pascal language, an attribute applied to a declaration

section of statements.

Monitor

An RT-11 overseer program that controls and tracks system business. The

monitor controls, observes, supervises, or verifies actions of the computer

system. It is a collection of routines that control the operation of user and

system programs, schedule operations, allocate resources, and perform

I/0.

Multiprocessing

The simultaneous execution of two or more parts of the same program by

two or more processors.

Multiprogramming

Apparently simultaneous execution of two or more programs or portions of

a program by a single processor. Since these programs execute instructions

alternately in the processor, more than one program is in progress at any

one time.

Object module

Primary output of an assembler or compiler, which can be linked with

other modules and loaded into memory as part of an executable program.

The object module is composed of the relocatable machine language code,

relocation information, and a global symbol table that defines the labels

and identifiers meant to be referenced by other parts of the program. The

object module may also contain an optional debug symbol table.

Object time system (OTS)

The MicroPower/Pascal library of object modules that is called by com-

piled or assembled code to perform predefined operations.

OTS

See Object time system.

Overlayed

In MicroPower/Pascal language, an attribute applied to a program data

area or module data area to be shared with another program or module

during execution.

Page address registers (PAR)

Registers containing the base addresses of one to eight 8KB blocks of

memory.

Page descriptor register (PDR)

A register containing access information about the 8KB pages of memory

whose base is described by the corresponding PAR (length, R/O versus

R/W, etc.).

PAR

See Page address registers.

PASCAL function

A Pascal program unit that returns a value when executed. A function

consists of a heading, which includes the function’s name and result varia-

ble type, and a block.

PASCAL procedure

A Pascal program unit that consists of a procedure heading and a block;

when called, the procedure is executed as a unit.

PASDBG

The Pascal symbolic debugger program.

PCB

See Process control block.

PDR

See Page descriptor register.

Physical address

The hardware address of a specific main memory location. Physical ad-

dresses in the LSI-11/23 range from 0 to 4MB (in 22-bit mode with op-

tional MSV11-L). Virtual addresses of up to 16 bits (64K bytes) can be

relocated into the larger physical address space by memory mapping. (See

Virtual address.)

Primitive

A fundamental operation performed by the kernel when requested by a

process in the application. Primitive operations are indivisible and must

complete; they do not block themselves. In the MicroPower/Pascal lan-

guage, primitives are invoked implicitly by calls to predefined real-time

procedures and by real-time extensions to the language.

Privileged process

In mapped target systems, a process with access to kernel and device

register areas of memory.

Glossary-9

Glossary-10

Procedure

See PASCAL procedure.

Process

A program unit that may operate in parallel (concurrently) with other

program units. Processes may be implemented on multiprocessors or,

through interleaved execution, on a single processor. More specifically, a

process is an independent scheduling unit, representing an asynchronous

CPU activity relative to other processes for the purposes of the

MicroPower/Pascal kernel. Synchronization among processes is achieved

by primitive operations provided by the kernel. A process is similar to a

task in other programming contexts.

Processes are the basic, logical entities of the MicroPower/Pascal applica-

tion. Rates of progress may vary, since processes execute cooperatively in

the target processor, affecting one another’s execution by operations on

semaphores. A process is defined by hardware and software context infor-

mation stored in process control blocks. There are four types of processes

in a mapped environment: general, device-access, driven, and privileged.

Process control block (PCB)

The activation record of a MicroPower/Pascal process. The process control

block preserves the software and hardware context of the process and

reflects the state of the process (see Process states). The PCB contains:

* Hardware context of the process (including general registers contents,

FPU registers contents, and PSW contents)

® Process priority

* Software context of the process (contents of associated flags and

pointers maintained by kernel operations)

e State code

e State queue pointers

Process index

A 16-bit value (identification number) that identifies a process to the

kernel and is assigned by the kernel when the process is created.

Process name

A 6-character alphanumeric string that identifies a process. When a pro-

cess is created, the user specifies its name, which is stored in the kernel’s

system name table. The process name can also be kept in a process de-

scriptor block allocated from the address space where that process resides.

Process state

Every process exists in one of the possible process states at any given point

in time. These states are:

¢ Exception Active

wait Suspended

e Ready Active

Suspended

¢ Run

.« Wait {Actlve

Suspended

Process synchronization

In MicroPower/Pascal, coordinating the execution of processes. Sema-

phores and ring buffers are basic mechanisms that synchronize

MicroPower/Pascal processes.

Program

In the MicroPower/Pascal language, an attribute applied to a code unit

composed of a declaration section and an executable section. When acted

on by the MicroPower/Pascal utilities, a program results in a static pro-

cess within the application.

Program section

One of four named units created by the MicroPower/Pascal compiler from

Pascal source code. These units are used to apportion the target system

memory into sections for:

o Executable code

e Memory space for stack and heap

e Storage for constants

e Storage for global variables

The memory for the stack and global variables is dynamically allocated

during execution and has the read/write (R/W) attribute. Others are read

only (RO).

PROM (Programmable read-only memory)

A type of read-only memory on a silicon chip that is manufactured in the

blank state (zeros or ones). You give the desired bit pattern for your

application program by formatting (programming, blasting) the chipin a

PROM formatter. The bit pattern is permanent.

P-sect

1. In MACRO-11, a contiguous section of code or data.

9 In MicroPower/Pascal, a compiler-generated structure containing pro-

gram elements to be stored in one of four separate memory types. See

Program section.

Queue elements

Areas of data managed by the kernel, allocated from the kernel pool, and

used for communication between processes.

Glossary-11

Glossary-12

Queue semaphore

A queue semaphore is an extension of counting semaphores. In addition to

its own integer value, a queue semaphore has queue elements associated

with it. The number of queue elements equals the value of the semaphore.

Whenever a process signals the queue semaphore, it increments the sema-

phore by 1 and adds one element to the queue. Whenever a process waits

on the queue semaphore, it removes one queue element and decrements

the semaphore. If the semaphore is 0 (and the associated queue is empty),

the waiting process blocks itself and cannot resume until another process

signals the semaphore and adds an element to the queue.

Radial-serial protocol

A particular prearranged sequence of signals on a communication line.

The TU58 device communicates with its device handler process using

radial-serial protocol over the serial line that connects it to the processor.

RAM (Random-access memory)

A read/write memory device. Application programs that require storage

space for variables and buffers can write data into RAM locations, as well

as read the contents of the RAM locations.

Relocate

One step in the process of linking a MicroPower/Pascal application pro-

gram. Relocation associates each program section in a merged object mod-
ule to a specific set of virtual addresses. The RELOC utility performs this

function and produces a process image file.

Ring buffer

A system data structure designed primarily for character-oriented data
communication between processes. Both input and output operations can

be performed simultaneously on the same ring buffer.

ROM (Read-only memory)

A memory device manufactured with binary values already placed in each

addressable location. The contents of ROM locations cannot be changed

after manufacture. (ROM chips are purchased from an integrated circuit

manufacturer, which places a program supplied by the purchaser on the

chips.)

Runtime module

See Memory image.

Scheduling

Determining which process will be allocated control of the processor after

a significant event. In MicroPower/Pascal applications, scheduling is per-

formed by the kernel, based on the priorities of the currently eligible

(ready-active) processes and the running process.

Scope

The portion of the program in which an identifier has a particular mean-

ing.

Semaphore

A nonnegative integer variable on which two types of operations, wait and

signal, are defined. For the semaphore variable S, the operations are:

e Signal(S): S is incremented by 1.

e Wait(S): If S is greater than 0, S is decremented by 1, and the process

continues execution. If S is 0, the process is blocked until S is greater

than 0. S is then decremented by 1, and the process continues execution.

The operations defined above are indivisible. Processes use semaphores to

coordinate their concurrent execution and to protect shared resources from

destructive alteration. A process waiting on a semaphore will be able to

resume execution only after the semaphore has been signaled to a nonzero

value by another process.

Significant event

A change in the state of a running or ready-active process that affects its

ability to take control of the CPU resource. A significant event may occur

synchronously with process execution (a primitive operation) or asynchro-

nously (an external interrupt). Examples are:

e Creating or deleting a process

e QOccurrence of clock interrupt

e A process blocking itself by waiting on a semaphore

e Resuming a suspended process

e Signaling a semaphore on which a process is waiting

e Suspending a running or ready-active process

In other words, any change in a process’s state involving either the run or

ready-active queues is a significant event.

Statement

A line of Pascal code. A statement is delimited in Pascal by a semicolon

(;). Note that a compound statement consists of more than one Pascal

statement delimited by the Pascal-reserved words BEGIN and END.

Static allocation

Dedicating a resource to the process that allocated it. Static allocation

occurs during system building (compiling and linking).

Static process

A process that exists in the application after initialization (is always pres-

ent after power is on or system-reset processing is completed). A static

process corresponds to a Pascal main program. In MACRO-11, a static

process is defined by the DFSPC$ macro.

Glossary-13

Glossary-14

Stepping

Stopping a process after each statement or instruction of the process

executes.

Stopped

A process can be forced to reenter itself at its termination sequence entry

point when it or another process performs the STOP function or the

STPC$ macro. Either action stops the subject process. Exceptions for

which no exception-handler process exists, which are not handled by the

process, also stop the process.

Structure (System data structure)

A process control block, semaphore, ring buffer, or packet.

Structure ID

A 48-bit value assigned to a structure when the structure is created. This

value consists of the structure index and structure serial number.

Structured type

A definition of a type that contains several data types. This structured

type can be attributed to a structured variable. In this way, one structured

variable may be composed of several types of data items.

Structured variable

A group of variables collected under one variable name. The parts of the

structured variable may be different data types.

Suspend, suspended

A process is suspended when it is placed in suspend state by action of the

Pascal SUSPEND function or the MACRO-11 SPND$ macro. A sus-

pended process can resume only after another process has performed the

RESUME primitive operation.

Symbol file

A file containing a symbol table.

Symbol table

A list of names that can be referenced in a particular module. Symbol

tables link calls from other sources to the named entities within a module.

Symbolic debugger

A program residing in the RT-11 host system that allows the user to

examine or deposit memory locations or Pascal variables, set breakpoints,

and examine kernel structures in application storage. PASDBG is the

symbolic debugger used with the MicroPower/Pascal application.

System process

A process supplied as part of the MicroPower/Pascal package for inclusion

in user-created applications. System processes furnish commonly needed

services and are usually privileged in mapped targets.

Target processor

A microcomputer in which the MicroPower/Pascal application program is

intended to run, once developed on the host (RT-11) processor.

Termination point

The location within a process where execution begins when that process 18

stopped. A termination point is not required for every process. The END;

statement of the process is the default. A procedure can be declared as the

termination point of a process by using the [TERMINATE] attribute.

Tracepoint

Reports when a certain program statement is executed, but does not cause

PASDBG to halt the application.

Trap

An exception condition caused by executing a specific trap instruction.

Trap instructions include the EMT, TRAP, BPT, and IOT instructions.

Trace traps (T-bit traps) are also included. The exception, which occurs

after execution of the trap instruction, is therefore synchronous with the

process.

Unmapped memory

Contiguous physical memory that is not managed by memory-manage-

ment hardware; unmapped virtual and physical addresses are identical.

Virtual address

A value in the range octal 0 to 177777; a 16-bit address within a program’s

(maximum) 64K-byte address space. In unmapped systems, virtual ad-

dresses and physical addresses have a one-to-one relationship. In mapped

systems with multiple address spaces, virtual addresses and physical ad-

dresses have a one-to-many relationship.

Wait, waiting

A process in the wait state. A process waits on a ring buffer or semaphore,

unable to change states and resume execution until the ring buffer or

semaphore has been signaled by another process.

Watchpoint

Stops execution when a certain memory location is modified.

Word

Two bytes; 16 bits.

Glossary-15

Index

Application, 1-1

Binary semaphore, 1-4, 5-4, 6-5

Blocked process, 4-5

Breakpoint, 3-7

C

Compile source code, 3-2, 6-13

Concurrent programming, 1-3, 1-6,

5-1, 5-8

COND__RECEIVE, 5-12

Configuration file, 2-5, 3-3, 6-12

worksheet, 2-6, 6-11

CONNECT_SEMAPHORE, 4-10

Control block (process), 4-2

Counting semaphore, 1-4, 5-5

CREATE__ BINARY_SEMAPHORE, 5-4, 6-3

Critical section, 5-7, 6-5

Cycle, development, 3-1

D

DATA_SPACE, 4-3, 6-3

Debug, 3-6, 6-18

Debugger, symbolic, 1-2, 3-7, 6-18

DECtape II, 2-1, 2-4, 4-11

Descriptor block (process), 4-3

Development cycle, 3-1

Device-access process, 4-8

Device macro, 2-6, 6-11

DIRectory, 2-2

DLLOAD, 6-17

DLV11 interface, 2-4, 4-11

Down-line load, 3-6, 6-17

Driver process, 4-8

DRV11 interface, 2-4, 4-11

Dynamic process, 4-1, 4-7

E

Escape sequences, 6-9

Exception handling, 4-10

File system, 1-2, 4-11

G

General process, 4-8

GET_ELEMENT, 5-11

Host, 1-6, 2-1

|

INITIALIZE procedure, 4-9, 6-3

Interrupt, 1-6, 4-10

Interrupt service routine (ISR), 5-11

K

KED, 2-2, 6-12

Kernel, 1-2, 4-4

Index-1

LIBR, 2-2

Load, down-line, 3-6, 6-17

LSI-11, 1-1, 2-4

M

MACRO-11 language, 5-1

Mapped memory processes, 4-8

Memory, 2-4

macro in configuration file, 2-6, 6-11

target system maximums, 2-4

MERGE, 3-5, 6-14

Message, 5-6

MIB (memory image builder), 3-6, 6-15

MXV11 interface, 2-4

N

Name (process), 4-3

o)

Object module, 6-13

P

Packet, 5-6

Pascal language, 5-1

main program, 6-3

PIP, 2-2

Prefix file, 6-13

Privileged process, 4-8

Process, 1-4, 1-6, 4-1

control block, 4-2

descriptor block, 4-3

name, 4-2

priority, 4-2, 5-8, 5-12

state, 4-2, 4-5

Process scheduling, 4-4

Process type, 4-8

device access, 4-8

driver, 4-8

general, 4-8

privileged, 4-8

Processor macro, 2-6, 6-11

PROM, 2-1

PUT_ELEMENT, 5-11

Index-2

Q

Queue semaphore, 1-4, 5-5, 5-10

Race condition, 5-7

Ready state, 4-5

Real time, 1-6

RECEIVE, 5-7

RELOC, 3-5, 6-15

Resource, shared, 5-3

Resources macro, 2-6, 6-11

RESUME, 5-8

Ring buffer, 1-5

Run state, 4-5

RXO02, 2-1, 2-4, 4-11

SBC-11, 1-1, 2-4

Scope, 3-7

Semaphore, 1-4, 1-6

binary, 1-4, 5-4, 6-5

counting, 1-4, 5-5

queue, 1-4, 5-5, 5-

SEND, 5-7

Serial line, 2-1, 2-4

SIGNAL, 5-4, 5-7, 6-8

STACK__SIZE, 4-3, 6-3

State (process), 4-2, 4-5

Static process, 4-1, 4-7

SUSPEND, 5-8

Suspended state, 4-6

Symbolic debugger, 1-2, 3-7, 6-18

Synchronization (of processes), 1-6,

4-4, 5-4

System processes, 4-11

10

Target, 1-6, 2-2

TERMINATE procedure, 4-9

Tools, development, 1-2

Tracepoint, 3-7

Traps macro, 2-6, 6-11

Type (of process), 4-8

Utility programs, 3-3

MERGE, 3-5, 6-14

MIB, 3-6, 6-15

RELOC, 3-5, 6-15

'}

Virtual address, 3-5, 6-15

W

WAIT, 5-4, 5-7, 6-8

Waiting (process state), 4-5

Watchpoint, 3-7

Index-3

Introduction to

MicroPower/Pascal

AA-M388A-TC

READER’S COMMENTS

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

(] Assembly language programmer

1 Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience

] Student programmer

[] Other (please specify)

Name Date

Organization

Street

City State Zip Code
or Country

dlilgliltiall

Do Not Tear — Fold Here

Do Not Tear — Fold Here and Tape

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

SMALL SYSTEMS SOFTWARE PUBLICATIONS ML5-5/E45
DIGITAL EQUIPMENT CORPORATION
146 MAIN STREET

MAYNARD, MA 01754

No Postage

Necessary

if Mailed in the

United States

C
u
t
 A
l
o
n
g
 D
o
t
t
e
d
 L
in

e

	000
	001
	002
	003
	004
	005
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	A-01
	A-02
	A-03
	Glossary-01
	Glossary-02
	Glossary-03
	Glossary-04
	Glossary-05
	Glossary-06
	Glossary-07
	Glossary-08
	Glossary-09
	Glossary-10
	Glossary-11
	Glossary-12
	Glossary-13
	Glossary-14
	Glossary-15
	Index-01
	Index-02
	Index-03
	replyA
	replyB

