
PDP-11 FORTRAN-77
Language Reference Manual

Order No. AA-V193A-TK

July 1983

This document describes the syntax and semantics of the FORTRAN-77

implementation of PDP-11 FORTRAN. It does not, however, present infor-

mation specific to any operating system.

SUPERSESSION/UPDATE INFORMATION: This is a new manual for this

release.

OPERATING SYSTEM AND VERSION: RSX-11M V41

RSX-11M-PLUS V2.1

RSTS/E V8.0

VAX/VMS V3.2

SOFTWARE VERSION: FORTRAN-77 V5.0

digital equipment corporation - maynard, massachusetts

First Printing, July 1983

The information in this document is subject to change without notice

and should not be <construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a 1license

and may be wused or copied only in accordance with the terms of such

license,.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its
affiliated companies.

Copyright (:) 1983 by Digital Equipment Corporation
All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document

requests the user's critical evaluation to assist in preparing future

documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX

DEC/CMS EduSystem UNIBUS

DEC/MMS IAS VAX

DECnet MASSBUS VMS

DECsystem—-10 PDP VT

DECSYSTEM=-20 PDT

DECUS RSTS mfl@flflan
DECwriter ZK2402

HOW TO ORDER ADDITIONAL DOCUMENTATION

in Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)

In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digital Equipment of Canada Ltd.
940 Belfast Road

In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2

800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS2008 A&SG Business Manager

Nashua, New Hampshire 03061 c¢/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed

with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment

Corporation, Northboro, Massachusetts 01532

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

I

e

T

S

o

=

S

W
y

[
\

N
N
N
M
N
N
N
N
N
O
N
M
D
N
N
N
N
N
N
O
M
D
N
N
M
D
O
D
M
O
D
N
D
N
N
D
N
N
N
D
N
D
N
D
N
D
N
D
N
D

w
w
W

M
d
b
w
w
w
w
w
w
w
w
w
h
p
h
d
D
d-

N
S
N
N
N
N
N
N
O
O
M

O
O

N
a

e

R
W
W
W
W
W
W
W
w
W

W
N

-

N

-

[N
S

w
W
N
-

A
U
V

W
w
W
w
w
W
w

R
N

W

A
U
W

N

. N

=

CONTENTS

INTRODUCTION TO PDP-11 FORTRAN=-77

LANGUAGE OVERVIEW .

PROGRAM ELEMENTS . .

Statements

Comments

Character Set

FORMATTING A FORTRAN LINE .

a tinCharacter-per-Column Formatting

Tab-Character Formatting . . .

Statement Label Field

Comment Indicators

Debugging-Statement Indicator

Continuation Field . .

Statement Field . . .

Sequence Number Field

PROGRAM UNIT STRUCTURE .

INCLUDE STATEMENT

e

o

o

[]

L
[

[)

'Y

.

L

.

[

.

L

°

[

STATEMENT COMPONENTS

SYMBOLIC NAMES

DATA TYPES+ .

CONSTANTS . ¢ & o o o o

Integer Constants . .

Real Constants

Double-Precision Constant

Complex Constants

Octal and Hexadecimal Const

Logical Constants . .

Character Constants ..

Hollerith Constants .

VARIABLES . & ¢ &« o o o &

Data Typing by Specificatio

Data Typing by Implication

ARRAYS . . + « ¢ « o &

Array Declarators .

Subscripts

[L)

L] L 4

nts

(
T
e

o
o

o
2

o

a n

Array Storage

Data Type of an Array .

Array References Without

Adjustable Arrays . . .

CHARACTER SUBSTRINGS . . .

EXPRESSIONS . ¢ ¢« o o o o

Arithmetic Expressions .

Use of Parentheses . .

Data Type of an Arithme

Q

s
©

¢
o

o
o

o
o

o
o

o

T

e
o

o
0o

o
o

J

e
o

o
o

=
~

=1 n

i

Character Expressions

Relational Expressions

Logical Expressions . e
¢

o
(
T

e

o
o

o
o

[
N
N
e

o
o

s
o

o
¢

o
(
D

o

e
o

o
o

e
o

¢
[
T
l
e

e
o

o
o

ASSIGNMENT STATEMENTS

ARITHMETIC ASSIGNMENT STATEMENT

LOGICAL ASSIGNMENT STATEMENT . .

iii

x

o
'
o
"
O
.
‘
-
o
.

o

&

o

&

4

o
e

o

[2

Y
[)

*
L 3

'Y

.
*

°
s

e (
T

o

%
o

®
&

®
o

©
o

o
o

&

o
o

o

n

e
o

o
(
D
e

o
o

o
o

0

e
¢

o
[

o
o

o
o

[
*

.
[)

.
[

[
N

o
o

o
O

e
o

o
e

o
o

4
o

*

¢

®

o

®

¢

e

®

o

®

o

®

o

o

4

@

®

®

¢

¢

¢

6

¢

&

¢

O

g

©

o

P

g

O

¢

&

o

€

¢

®

¢

v

g

*

o

°

o

®

o

©

o

©

¢

6

o

8

o

Page

ix

=

b

e

e

b

e

b

b
t

b

s

e

|

W
O
O
O
O
N
J
I
J
J
A
A
U
N
H
D
W
W
W

N
t
o
h
J
N
t
c
h
N
t
o
h
)
N

|
1

H
F
O
W
W
O
U
N
N
A
U
d
W
W
N

CHAPTER

CHAPTER

CHAPTER

CONTENTS

3.3 CHARACTER ASSIGNMENT STATEMEN

3.4 ASSIGNING STATEMENT LABELS .

[
~ CONTROL STATEMENTS

GO TO STATEMENTS .+« « ¢« o o

Unconditional GO TO Stateme

Computed GO TO Statement .

Assigned GO TO Statement .

IF STATEMENTS . « ¢« o ¢ o o

Arithmetic IF Statemen .

Logical IF Statement . . .

Block IF Statements . . .

Statement Blocks

Block IF Examples . . .

Nested Block IF Consructs

DO STATEMENT . . « « .«

DO Iteration Control .

Nested DO LoopsS . « « + o

Control Transfers in DO Lo

®

8

o

s

o

s

e

®

.

s

*

o

W
W
w
w
w
N

=

W

N

s

o

o

W

N

-

Extended Range .

CONTINUE STATEMENT

CALL STATEMENT . .

L
C
O
N
O
A
U
T
B
W
W
W
W
W
R
N
N
O
N
N
D
N
D
D
N
D
N
D
O
N
D
R

RETURN STATEMENT .

PAUSE STATEMENT .

STOP STATEMENT . .

END STATEMENT . « « « + ¢« &O

R
R
I

N

S
Y
-

N

T

i
t
~

T
w
n SPECIFICATION STATEMENTS

IMPLICIT STATEMENT

TYPE DECLARATION STATEMENTS

Numeric Type Declaration St

. N

DIMENSION STATEMENT

COMMON STATEMENT

VIRTUAL STATEMENT

. N

EQUIVALENCE STATEMENT . . .

Making Arrays Equivalent .

Making Substrings Equivalen

Extending Common Blocks .

SAVE STATEMENT . + « ¢« « o &

EXTERNAL STATEMENT

INTRINSIC STATEMENT

DATA STATEMENT

PARAMETER STATEMENT

PROGRAM STATEMENT . . .« . &

BLOCK DATA STATEMENT

«

o

«

s

o

W
N
-

H
E
F
R
F
F
R
F
O
O
J
O
A
S
T
A
A
N
N
U
V
T
U
N
T
U
T
E

W
N

N
N

K
K

w
N
=

O

o
o
t
t
t
y

n
*
»

o

&

9

2
)
]

SUBPROGRAMS

SUBPROGRAM ARGUMENTS

Rules Governing Subprogram

Adjustable Arrays

Assumed-Size Dummy Arrays

USER-WRITTEN SUBPROGRAMS .

1 Statement Functions . .

2 Function Subprograms . .

3 Subroutine Subprograms .

4

4

.

W

N

=

ENTRY Statement &

.1 ENTRY in Function Subprog(o
)W

 e

W
e

M
o

M
o

W
e
)
 W
e
)
 M
o

W
e
)
W
e
)
)

e

o

o

e

o

N
N

N
D
N
D
N
E

iv

T . L] L] .

L) - L4 . Ld

nt ® L .

pPs

atements

Character Type Declaration Statements

Restrictions on Using Virtual Arrays

Virtual Array References in Subprogra

t

Arguments

¢«

©

o

*

o

&

o

.
3

L4

L]

A4

[]

L4

[)

L]

.
L

£
L4

L]

L4

L]

ramams

L)

L
.

[
°

[}

.
»

.
[

.
e

o
[

ms
.

L]
L4

.
L]

[
L]

.
.

°
[]

PY
L]

Y
®

Py
[

Py
L]

¢

o

O

o

&

¢

8

o

&

o

I
O
~

G
N

O
L

I
S

i
H
O
W
L
W
O
A
U
M
d

L
S

W
N
D
N
D
N

i
[
y

L

A

A

-

Y

i
| >

i

=

O
W
O
N
W
U
M

D

W
W
N

a
u
o
o
n
o
n
n
n
gG
,y

1
|

I
I

N
H
E
O
J
A
U
T
H

N

A
N

i

i

(
o
)

 W
0

)

i
P

CHAPTER

CONTENTS

ENTRY in Subroutine Subprograms

INTRINSIC AND OTHER LIBRARY FUNCTIONS

Intrinsic Function References . .

Generic Function References . . .

Functions L] L] L . L * - L L ® L4 Ll

~
J INPUT/OUTPUT STATEMENTS

I/0 STATEMENT COMPONENTS

The Control List

Logical Unit Specifier

Internal File Specifier

Format Specifier

Record Specifier

Key Specifier

*

@

®

o

&

¢

¢

¢

o

4

@

. .

°«

o

A
N

D

W
N

-

. °

I/O List . . + + ¢ o & « &

Simple List

Implied DO List

SYNTACTICAL RULES &

THE READ STATEMENTS

The Sequential READ Statements

. [
\

L}

N
N

e

L]

N
N

N
U
N
N
N
S
N
N
N
S
N
N
N
N
N
S
N
N
N
N
N
N
E
N

N

N
N
N
N
N
N
N
S

L
]

L]

[
]

L]

B
B

B

S

W
N
N
O
N
N
N
N
N
N
N
N

R

e

b

*

L
]

[]

[]

e w
N

-

The Unformatted

Statement e o . e o & s e

. N
~

The Unformatted

The Indexed READ Statements .

N

g

*

D
D

.

N

N
N

°

.

o
W
w

W

. N

=

The Internal READ Statement .

THE WRITE STATEMENTS . . ¢« .« « &

The Sequential WRITE Statements

Transfer-of-Control Spe01f1ers

.
»

L)

L4

[
.

The Direct Access READ Statements

The Formatted Direct Access READ Statement

Direct Access

1

2

3 Intrinsic and Generic Function Usage

4 Character and Lexical Comparison Library

L
L)

L4

[
.

.
[}

L]
s

o

©

o

The Formatted Indexed READ Statement

The Unformatted Indexed READ Statement

RE

1.1 Records . « o o o o o o o o o o o o o o o

1.2 Files . & ¢ & o o o o o o o o o o o o o &

.1.2.1 Sequential Organization . . .« . « « « .

1.2.2 Relative Organization . . .« ¢« ¢ ¢ o « &

.1.2.3 Indexed Organization « &« « .« .

.1.3 Internal Files . . & ¢ ¢« ¢« ¢ o o o o o o o

.1.4 Access Modes o o .

4.1 Sequential Access

4.2 Direct Access

4.3 Keyed Access

[)

.
.

.
L)

.
L]

The Formatted Sequential READ Statement

The List-Directed READ Statement

Sequential AD

READ

The Formatted Sequential WRITE Statement

The List-Directed WRITE Statement

«

s

o

e

¢

e

o

e

o

o

W

N

The Direct Access WRITE Statements

®

[
]

*

L]

N
N

B

*

N
A
N
S
N
N
N
N
N
N
N
N
S

L) N

-

The UnformattedL
A
a
u
u
u
o
n
o
o
g
.
b

&
b

Statement .

The Indexed WRITE Statements .

The Internal WRITE Statement .

THE REWRITE STATEMENT . . .

The Indexed REWRITE Statement

N
N
N
N
N
N
N
A
G
N

e

o

o

o

o

9

o

o

o

~
N
S
N
o
o
o
o
o
o
m
u
i
o
a
h
a
n

THE ACCEPT STATEMENT« &

1 The Formatted Indexed WRITE Statement

2 The Unformatted Indexed WRITE Statement

The Unformatted Sequential WRITE Statemen

WRITE

The Formatted Indexed REWRITE Statement

The Unformatted Indexed REWRITE Statement

t

The Formatted Direct Access WRITE Statement

Direct Access

6-13

6-13

6-13

6-14

6-15

{
(S

N
A

N
N

N
H
F
O
N
N
N
O
O
O
V
I
U
U
U
b
a
D
d
W
W
W
W
H
N
N

I
N
N

N
N
N
S
N
N
S
N
N
N

N
N

1
=

N
N

N
N

1
|

=

e

e

e

W
N

7-15

7-15

7-17

7-18

7-18

7-19

7-19

7-20

7-21

7-21

7-23

7-23

1-24

7-24

7-25

7-26

7-27

7-27

7-27

7-28

7-28

7-29

7-29

7-30

7-30

7-30

7-31

CONTENTS

7-31THE TYPE AND PRINT STATEMENTS7.8

FORMAT STATEMENTSCHAPTER 8

-

L

L

L

*

L]

*

L)

*

L

L

L

Ll

L]

L

L]

»

L]

*

L

L]

.

*

L2

.

L

*

L4

*

L]

L 4

E>[«F]=s}]

4+Xg
btoLCONEE<«<QPP TT T T TTT T TO R c3 I PR & u Oo(SIPRPPCTRTPOPRPRPRPR55etMEOHC@<

—
.

CLOXDO
e&o@L4

Oor~r
r~oo0OOOO00elo¢o

=

e2eoo
=]

eeoo
3]

o4ooo
<C

oE+ooo
1951)

e,o*o
=

e(i&°o
@)

e[,o*o
oey¢oo=

w
o1O163]D
=

0o
e3O~B Re

o[
Jmmo
30

L=(SRd)]

~NM

o000W

AUXILIARY INPUT/OUTPUT STATEMENTSCHAPTER 9

Ll

L4

.

L

®

L 2

*

L]

*

L3

L]

L

L 4

*

[J

L3

.

.

L]

=3

ovoooOo'.o-.oooo-

=
24

O

vi

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

9.

APPENDIX A

A.

A.

A.

A.

A.

A.

APPENDIX B

B.

B.

B.

APPENDIX C

C.

cC.

C.

INDEX

FIGURE 1-

1-

1-

2~

4-

4~

4-

55—

5

5

5

6—

6—

8-

W

N
+
~

S
N

b

W
N

S
N
A
V
T
U
N
T

T
S

W
N

R

e

b

s

W
I
N
=

H
F

N

W
D

W
D

R

W
N
D

-

®*

o
e

L]

N
N

-

S
S
N
d

W
O

W

N

=

CONTENTS

RECL 4+ ¢ ¢ o o o o o o o o o o

RECORDSIZE . ¢ ¢ ¢ « o o o o o

RECORDTYPE

SHARED . .

STATUS . .

TYPE . . .

UNIT

USEROPEN

CLOSE STATEMENT o o .

REWIND STATEMENT o o .

BACKSPACE STATEMENT . .

DELETE STATEMENT

Sequential DELETE Statement

Direct DELETE Statement . . .

UNLOCK STATEMENT . . ¢ ¢ o o o o

ENDFILE STATEMENT . ¢« ¢ ¢ « o o

ADDITIONAL LANGUAGE ELEMENTS

THE ENCODE AND DECODE STATEMENTS

DEFINE FILE STATEMENT

FIND STATEMENT . . « « « o« o &

PARAMETER STATEMENT

OCTAL FORMS OF INTEGER CONSTANTS

/NOF77 INTERPRETATION OF THE EXTERNAL STATEMENT

CHARACTER SETS

FORTRAN CHARACTER SET

ASCII CHARACTER SET

RADIX-50 CONSTANTS AND CHARACTER

LANGUAGE SUMMARY

EXPRESSION OPERATORS

STATEMENTS . . ¢ ¢ ¢ ¢ o o o o &

LIBRARY FUNCTIONS

FIGURES

FORTRAN Coding Form

Line Formatting Example

Required Order of Statements and

Array Storage . « ¢ o o o o o

Examples of Block IF Constructs

Nested DO LooOpsS . o o o o o o o

SET .

Control Transfers and Extended Range .

Equivalence of Array Storage . .

Equivalence of Arrays with Nonunity Lower Bounds

Equivalence of Substrings . . .

Equivalence of Character Arrays

Multiple Functions in a Function Subprogram

Multiple Function Name Usage . .

Variable Format Expression Example . .

vii

»

9-12

9-12

9-13

9-13

9-14

9-14

9-14

9-15

9-15

9-16

9-17

9-17

9-18

9-18

9-18

9-19

[
Y

Y
Y

Y
U

Y
Y

N
A

N
I

N
N

B
N
H
F
F
W
N
H
E
B
W
N
H
F
W
N
E
N
E
F
W
N
D
-

Q
O
Q
P
D
O
W
O
U
O
W
O
O
O
O
I
I
I
O
A
T
W
N
N
D
D
N
D

CONTENTS

TABLES

Entities Identified by Symbolic Names . .

Data Type Storage Requirements

Exponentiation Data Types . .« .« « o o « o

Conversion Rules for Assignment Statements

Types of User-Written Subprograms

Generic Function Name Summary .« « « ¢ « &

Available I/0 Statements . . « ¢ ¢ &+ ¢ o &

Access Modes for Each File Organization .

List-Directed Output Formats &

Effect of Data Magnitude on G Formats .

Default Field Widths

Carriage Control Characters . .

Summary of FORMAT Codes

OPEN Statement ‘Keyword Values

Allowed Combinations of ACCESS Values . .

Valid Access Modes for ORGANIZATION Keyword

ASCII Character Set . . « ¢ ¢ ¢ o o ¢ o @

Expression Operators . « « o o o o o o o« &

Generic and Intrinsic Functions

viii

N [

o
)
)

I
N
S
l

o
w

il

o

I
=

O
F
N
N
A
W
W
D
W
H
F
E
R
F
O
M
A
L
A
E
N
V
I
O
N

W

L
N

e

@

|

N
N

0

0

e

®

o

©®

o

o

e

o

o

o

.

)
O

Q
O
w
l

0
w
l

|

@
]

N

PREFACE

MANUAL OBJECTIVES

This manual describes the elements of PDP-11 FORTRAN-77 and serves as

the PDP-11 FORTRAN-77 language reference manual for several operating

systems that run on the PDP-11 family of computers. No information

specific to any operating system is presented here. For information

on a particular operating system, refer to the user's guide for that

system or the PDP-11 FORTRAN-77 User's Guide.

INTENDED AUDIENCE

Readers who have a basic understanding of the FORTRAN programming

language will derive maximum benefit from this manual.

STRUCTURE OF THIS DOCUMENT

This manual contains nine chapters and three appendixes.

e Chapter 1 consists of general information concerning PDP-11

FORTRAN-77 and introduces basic facts needed for writing

PDP-11 FORTRAN-77 programs.

® Chapter 2 describes the components of PDP-11 FORTRAN-77

statements, including symbolic names, constants, and

variables.

e Chapter 3 describes assignment statements, which define values

used in a program.

e Chapter 4 discusses control statements, which transfer control

from one point in the program to another,

e Chapter 5 describes specification statements, which define the

characteristics of symbols used 1in a program, such as data

type and array dimensions.

e Chapter 6 discusses subprograms, both user-written and those

supplied with PDP-11 FORTRAN-77.

e Chapter 7 discusses PDP-11 FORTRAN-77 input and output (1/0).

e Chapter 8 describes the FORMAT statements used in conjunction

with formatted I/0O statements.

e Chapter 9 contains information on auxiliary I/0 statements,

such as OPEN, CLOSE, and ENDFILE.

e Appendix A describes some statements and language features

that provide compatible support for programs written in older

versions of PDP-11 FORTRAN.

ix

PREFACE

e Appendix B summarizes the character sets supported by PDP-11

FORTRAN-77.

e Appendix C summarizes the language elements of PDP-11

FORTRAN-77.

ASSOCIATED DOCUMENTS

The following documents are of interest to PDP-11 FORTRAN-77

programmers:

e PDP-11 FORTRAN-77 User's Guide

e PDP-11 FORTRAN-77 Object Time System Reference Manual

® PDP—ll_FORTRAN—77 Installation Guide/Release Notes

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this manual:

e VUppercase words and letters used in examples indicate that you

should type the words and letters as shown.

e Lowercase words and letters used in examples indicate that you

are to substitute a word or value of your choice.

e Brackets ([]) enclose optional elements.

e Braces ({}) enclose lists from which one element is to be

chosen.

e An ellipsis (...) indicates that the preceding item can be

repeated one or more times.

In addition, the following characters denote special nonprinting

characters:

Tab character(@B

Space character A

CHAPTER 1

INTRODUCTION TO PDP-11 FORTRAN-77

1.1 LANGUAGE OVERVIEW

The PDP-11 FORTRAN-77 1language comprises the American National

Standard FORTRAN-77 subset lanquage (ANSI X3.9-1978), DIGITAL-supplied

enhancements to the FORTRAN-77 subset standard, and certain features

of full-language FORTRAN as defined by the ANSI Standard. For

information on how to obtain a copy of the ANSI standard, write to the

American National Standards Institute, Inc., 1430 Broadway, New York,

New York 10018.

The DIGITAL-supplied enhancements to the FORTRAN-77 subset standard

follow:

e You can use any arithmetic expression as an array subscript.

If the expression is not an integer type, it is converted to

integer type.

e Mixed-mode expressions can contain elements of any data type

except character.

e The LOGICAL*1 and LOGICAL*2 data types have been added.

e The IMPLICIT statement redefines the implied data type of

symbolic names.

e The following input/output (I/0) statements have been added:

ACCEPT

TYPE _ Device-oriented I/0

PRINT

READ (u'r)

WRITE (u'r)

FIND (u'r)

Unformatted direct—-access 1I/0

READ (u'r,fmt)

WRITE (u'r,fmt) Formatted direct-access I/0

DEFINE FILE File control and attribute

specification

ENCODE

DECODE

READ (u,f,key)

READ (u,key)

REWRITE

DELETE

UNLOCK

Formatted data conversion

in memory

Indexed 1/0

Record control

and update

INTRODUCTION TO PDP-11 FCRTRAN-77

You can include an explanatory comment on the same line as any

statement. These comments begin with an exclamation point

().

You can include debugging statements in a program by placing

the 1letter D in column 1. These statements are compiled only

when you specify a compiler command qualifier; otherwise,

they are treated as comments.

You can use any arithmetic expression as the control parameter

in the computed GO TO statement.

Virtual arrays provide large data areas outside of normal
program address space.

You can include the specification ERR=s in any OPEN, CLOSE,
FIND, DELETE, UNLOCK, BACKSPACE, REWIND, or ENDFILE statement

to transfer control to the statement specified by s when an
error condition occurs.

The INCLUDE statement incorporates FORTRAN statements from a
separate file into a FORTRAN program during compilation.

The INTEGER*4 data type provides a sign bit and 31 data bits.

You can use octal and hexadecimal constants in place of any

numeric constants.

You can use character substrings and all the character

intrinsic functions defined in the full language except CHAR.

In addition, PDP-11 FORTRAN-77 includes the following £features of

full-language FORTRAN as defined by the ANSI Standard:

Double-precision and complex data types

Function subprograms, including LEN, ICHAR, and INDEX

Exponentiation forms, including double-precision

Format edit descriptors, including S§,SP,SS,T,TL, and TR

Generic function selection based on argument data type for

FORTRAN-defined functions

Use of a real or double-precision variable as a DO statement

control variable

Use of any arithmetic expression as the 1initial wvalue,

increment, or final value in a DO statement.

CLOSE and OPEN statements

Use of the specification ERR=s in READ or WRITE statements to

transfer control to the statement specified by s when an error

occurs

Use of list-directed 1/0 to perform formatted 1I/0 without a

format specification

Use of constants and expressions in the I/0 1lists of WRITE,

REWRITE, TYPE, and PRINT statements

INTRODUCTION TO PDP-11 FORTRAN-77

e Specification of lower bounds for array dimensions in array

declarators

e Use of ENTRY statements in SUBROUTINE and FUNCTION subprograms

to define multiple entry points

e Use of PARAMETER statements to assign symbolic names to

constant values

1.2 PROGRAM ELEMENTS

All FORTRAN programs consist of statements and optional comments. The

statements are organized into program wunits. A program unit is a

sequence of statements that defines a computing procedure and

terminates with an END statement. A program unit can be either a main

program or a subprogram. An executable program consists of one main

program and one or more optional subprograms.

1.2.1 §Statements

Statements are grouped into two general classes: executable and

nonexecutable, Executable statements specify the actions of a

program; nonexecutable statements describe data arrangement and

characteristics, and provide editing and data-conversion information.

Statements are divided into physical sections called lines. A line is

a string of up to 80 characters. If a statement is too long to fit on

one line, it can be continued on one or more additional lines, called

continuation lines. A continuation 1line 1is identified by a

continuation character in the sixth column of that line. (For further

information on continuation characters, see Section 1.3.4.)

You can identify a statement with a label to enable other statements

to reference it: that 1is, either to transfer control to it or to

obtain the information it contains. A statement label is an integer

number placed in the first five columns of a statement's initial line.

Any statement can have a label; however, only executable and FORMAT

statements can be referenced with a label.

l1.2.2 Comments

Comments do not affect program processing in any way; they are merely

a documentation aid. You can, and are encouraged to, use comments

freely to describe the actions of a program, to identify program

sections and processes, and to facilitate the reading of

source-program listings. The letter C or an asterisk (*) in the first

column of a source 1line identifies that 1line as a comment. 1In

addition, if you place an exc¢lamation point (!) in any column of a

line except column 6, the rest of that line is treated as a comment.

(However, if you place an exclamation point in column 6 of a line,

that line will be treated as a continuation line.)

Any printable character can appear in a comment.

INTRODUCTION TO PDP-11 FORTRAN-77

1.2.3 Character Set

The PDP-11 FORTRAN-77 character set consists of:

1. All uppercase and lowercase letters (A through Z, a through

z)

2. The numerals 0 through 9

3. The special characters listed below:

Character Name

A or (A8 Space or tab

= Equal sign

+ Plus sign

- Minus sign

* Asterisk

/ Slash

(Left parenthesis

) Right parenthesis

v Comma

. Period

! Apostrophe

Quotation mark

S Dollar sign

Exclamation point

: Colon

< Left angle bracket

> Right angle bracket

Other printable ASCII characters can appear in a FORTRAN statement

only as part of a character or Hollerith constant (see Appendix B for

a list of printable characters).

Except in character and Hollerith constants, the compiler makes no

distinction between uppercase and lowercase letters.

1.3 FORMATTING A FORTRAN LINE

Every FORTRAN line has four fields:

e A statement label field

e A continuation-indicator field

INTRODUCTION TO PDP-11 FORTRAN-77

e A statement field

®¢ A sequence number field

You can format a FORTRAN line in two ways: 1) by typing one character

per column (character-per-column formatting); or 2) by using, in

conjunction with character-per-column formatting, the tab character
(tab-character formatting) to get from field to field. You can use

character-per-column formatting when punching cards, writing on a
coding form, or typing on a terminal keyboard; you can use
tab-character formatting, however, only when you are typing at a
terminal keyboard.

l.3.1 Character-per-Column Formatting

As shown in Figure 1-1, a FORTRAN line is divided into four separate
fields: a statement label, a continuation indicator, statement text,
and a sequence number. (Sections 1.3.3 through 1.3.6 describe the use
of each field.)

Each column represents a single space, into which can be placed a
single character. To get from one field to another, you type each
space individually until you arrive at the correct position. For
example, in Figure 1-1, to enter the comment, after typing 'C' you
press the space bar five times and then begin typing the comment.

FO RTRAN) CODEr Oate PAGE

CODING FORM PROBLEM

C Comment

FORTRAN STATEMENT IDENTIFICATION

€

2

H
STATEME{NT ¢

e |
&t2343 7891011 121314150617101920212223242520272029303132333435363738394041424344454647 4849505152515455365750506006162636465660676809 70N T2[7374757677 78798

C + TéHel es‘ +P4R.O+QRAM ‘CA.LS:*U‘LAJ‘E ‘54 ffi’l‘ME. »N%Mthgéo +F+R—+00M 4-‘&‘+-rT.oQ¢ 45+O¢ R T I SR R S VTSR S S
DQ 10, =11, .50, .2eST B LA STRSLIELT W e R R I T I N B I B R AR O I T S S R T T Tk U I O S ararey e

+ Jc—_kl—vvooowo—+4oofoo—+oo-q—*»o+o+++oa»oooo&»r—+¢—v—0<+wooroo'frv—o¢¢o¢4‘oq—4+—o P
4 =Jr2+—+ 44 L e i R R T A e e e e o S e e SB R T I S N R RN N N ey Gy

| + + e pe—y b +

:JM—++ R e I i e T st bl S R I S S S S S T T T IR T T U S S e DR S e

—— 2Ll e e e e e e 4 e e e e e e e e e e e e e e e e b e e]

b+t 8 L§¢4+700<1-00—>f+k¢7f'00‘*—«00900'¢§0'-0<400‘0t"¢4'rroro—’¢0v90v-0¢~o»+—0A—4¢—4——+—0—|

»——0——&—«4—--'—«50—0-(49—02-&-4—54-‘&4—1¢00h+5r0 L ee A e e e R B e i S eS R SS S A A = S T) P L =)
S ., LF (J,-LY. SQRT (FLOAT (1))) GQ 1O 4

+ bt oot Aeeornsle . -

v TYPE f‘vo‘.sv‘ 4100"—'»'&—*4-—0-44v¢4'0'0040—71—f'oofl—rvq—fflvvvv"otfo000'0¢vf!00~v?r0 S R R e

‘0 :O‘NTIAU+E—+¢‘k»+—$+++—0v¢+¢-4~¢oaf—r¢7—44»+o B O e e e S Sl S e S ST S SHD I A SP S ST ST S S S T T T S TRT R S R I e

+ AR e e i e B i R B S i e e R S etTR I IS I A 2 T T S S S epr ep e e O SO S

1,05 FORMAT, LA LS, PR M) e e e et e

ND,

R e e T B I e BT e e e ee o oo IR SR N A A I RLTT PGSR PP UL TEFOEPRPS PO

R e R R Tk T S S S T . (R SN etP S S S Y

L i e o e e T L e i I o TR S ee S P U U U PRSP

44—+ M O S S e S S S S e e e S i o R I o R A B e I S e T o S e B e e S o e R S S e e ok T =SB SY JHE SRS SUT ST RN SN SRSSRS SR S

— oot dpmpredmedeoreeormeedbepored + bbbt bbbttt + et o b e

+ ilB ot S o S S o o e Sl e e i e e i e i S ii I e e e i I I eS S R e I i e et i S S S e e e e 2 = TR T B SRS SR

+—44+-+ R e e e e e e i e e e e e T e B e e e R e sk o i Be RR

—— + I S e e e e e e e D e i S I N T A R B e e e e S e T ik = ot JE T S S S S S S S S Sy S S S S T e =

44— b R e e e B e B o e B S i I e S i e i I e i T T e e e e S S S S S S S e o o = T == S o SO S o N R R S

S W Y A b4 .4 A A 4 b A A& A 2 4 A i A 4 42b b A 4 A 4 4 W U W U W Y W G W Y W W W W U Wy W W G W U W U G G G G G G U U i G W W SR Y G U VD W S Y Y W ¢

V234 316170910010 12131413101710192021222324232627202930313233341330)70D940414243644540 47484930315233134533437383960010703040308 07080270 N 1M 7aTs77 PUPR

PG-3 DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

ZK-203-81

Figure 1-1: FORTRAN Coding Form

INTRODUCTION TO PDP-11 FORTRAN-77

Field Column(s)

Statement label 1 through 5

Continuation indicator 6

Statement 7 through 72

Sequence number 73 through 80

l1.3.2 Tab-Character Formatting

You can press the tab character to move to the continuation-indicator

field from the statement label field, or to the statement field from

the continuation-character field; however, you cannot move to the

sequence-number field by using the tab. Figure 1-2 compares

keystrokes in lines typed with tab-character formatting with those in

lines typed with character-per-column formatting,

Format Using TAB Character Character-per-Column Format

12 3 4 5|6}7 8 9 10|11 12 13 14 15616 1718 19 20

C @8 FIRST VALUE C FIHIR|S|T VIA|L |UI|E

0@| = J + 5«K+ 1]0 I = J + 5[+ |K +

1 L*M 1 Lf=IM

@B IVAL = I+2 I |[V]A]|L = I |+12

ZK-204-81

Figure 1-2: Line Formatting Example

In tab-character formatting, the statement-label field consists of the

characters you type before you type the first tab character; however,

the statement-label field cannot have more than five characters,

After you type the first tab character, you <can enter either a

continuation-indicator field or a statement field.

To enter a continuation-indicator field, you type any digit; the

statement field then consists of all the characters you type after

this digit, to the end of the line.

To enter a statement field without entering a continuation-indicator

field, you simply type the statement immediately after the first tab.

(No FORTRAN statement can start with a digit.)

INTRODUCTION TO PDP-11 FORTRAN-77

Many text editors and terminals advance the terminal print carriage to

a predefined print position when you type the TAB key. However, this

action is not related to the PDP-11 FORTRAN-77 compiler's

interpretation of the tab character described above.

If you use the tab character to improve the legibility of a FORTRAN

statement, the spaces introduced into the statement are ignored by the

compiler but are printed in a source listing. Tab characters in a

statement field are ignored by the compiler as well. 1In a source

listing, a tab causes the character following the tab to be printed at

the next tab stop (which is located at columns 9, 17, 25, 33, and so

forth).

l1.3.3 Statement Label Field

A statement label, or number, consists of up to five decimal digits in

the statement-label field of a statement's initial line. Spaces and

leading 0s are ignored. (An all-zero statement label is invalid.)

Any statement referenced by another statement must have a 1label. No

two statements within a program unit can have the same label.

You can use two special indicators in the £first column of a 1label

field: the comment indicator and the debugging-statement indicator.

These indicators are described in Sections 1.3.3.1 and 1.3.3.2.

The statement label field of a continuation line must be blank.

1.3.3.1 Comment Indicators - The letter C or an asterisk (*) 1in

column 1 of a line indicates that the entire line is a comment. An

exclamation point (!) in any column of a 1line except column 6

indicates that the remainder of the line is a comment. All blanks

indicate a blank comment.

The compiler prints a comment line in a source-—-program 1listing and

then ignores it.

1.3.3.2 Debugging-Statement Indicator - The letter D in column 1 of a

line designates the contents of the statement field as a debugging

statement. A debugging-statement line can have a statement 1label in

the four remaining columns of the 1label field. If a debugging

statement is continued tc one or more other lines, every continuation

line must have a D in column 1 and a continuation indicator in column

6.

Debugging statements are not compiled wunless you use a compiler

command to specify that they be compiled. 1If you do not specify

debugging-statement compilation, any debugging statements are treated

as comments. For a description of the available compilation commands,

refer to the PDP-11 FORTRAN-77 User's Guide.

1.3.4 Continuation Field

A continuation indicator is any character (except 0 or space) in

column 6 of a line, or any digit (except 0) after the first tab.

A statement can be divided into continuation lines at any point.

INTRODUCTION TO PDP-11 FORTRAN-77

The compiler considers the characters after the continuation character

to follow the last character of the previous line, as if there were no

physical breaks at that point. If a continuation indicator is 0, the

compiler considers the 1line containing it to be the first line of a

statement.

Comment lines cannot be continued. They can, however, occur between a

statement's initial 1line and 1its continuation 1line or lines, and

between successive continuation lines.

1.3.5 Statement Field

The text of a statement is placed in a statement field. Because the

compiler ignores all tab characters and spaces in a statement field

except those in Hollerith constants and alphanumeric literals, you can

space the text in a statement field in any way you desire to maximize

legibility. The use of tabs for spacing 1is discussed 1in Section

1.3.2.

NOTE

If a 1line extends beyond character

position 72, the text following position

72 is ignored; no warning message 1is

printed.

1.3.6 Sequence Number Field

A sequence number or other identifying information can appear in

columns 73 through 80 of any line; the compiler ignores characters in

this field.

Remember that you cannot move to the sequence-number field by

tab--character formatting.

1.4 PROGRAM UNIT STRUCTURE

Figure 1-3 shows the allowed order of statements in a PDP-11

FORTRAN-77 program unit. In this figure, vertical lines separate

statement types that may be interspersed with one another -- that is,

occur in any order relative to each other. For example, comment lines

and FORMAT statements may occur before, between, or after DATA

statements and executable statements (see next paragraph) in the body

of a program. Horizontal lines indicate statement types that cannot

be interspersed but must occur in a prescribed order within a program.

For example, an IMPLICIT statement cannot occur before a PROGRAM

statement or after an END statement.

The "executable" statements mentioned in Figure 1-3 include:

assignment, ASSIGN, GOTO, arithmetic IF, logical IF, block IF, ELSE

IF, ELSE, ENDIF, CONTINUE, STOP, PAUSE, DO, READ, WRITE, PRINT, TYPE,

ACCEPT, FIND, DELETE, REWRITE, BACKSPACE, ENDFILE, REWIND, UNLOCK,

OPEN, CLOSE, CALL, RETURN, and END.

The ‘"specification" statements mentioned in Figure 1-3 include:

DIMENSION, COMMON, EQUIVALENCE, EXTERNAL, INTRINSIC, SAVE, and type

declaration.

INTRODUCTION TO PDP-11 FORTRAN-77

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA Statements

IMPLICIT

Statements

PARAMETER

Other Statements

Comment Specification
Li

tnes FORMAT Statements

and

INCLUDE and
Statements ENTRY Statement Function

Statements DATA Definitions
Statements

Executable

Statements

END Line

ZK-205-81

Figure 1-3: Required Order of Statements and Lines

1.5 INCLUDE STATEMENT

The INCLUDE statement specifies that the contents of a designated file
are to be incorporated into a compilation directly following the
statement. INCLUDE has no effect on program execution.

The INCLUDE statement has the form:

INCLUDE 'filespec[/[NO]JLIST]'

filespec

A file specification in the form of a character constant string
that represents the file to be included in a compilation. This
file specification must be acceptable to the operating system.
(See the PDP-11 FORTRAN-77 User's Guide for the form of a file
specification.)

The /LIST qualifier specifies that the statements in the designated
file are to be included in the compilation source listing; an
asterisk (*) precedes each statement included. The /NOLIST qualifier
specifies that the statements 1in the designated file are not to be
included in the compilation source listing. The default 1is /LIST;
that 1is, the compiler assumes /LIST if you do not specify either
qualifier,

When the compiler encounters an INCLUDE statement, it stops reading
statements from the current file and begins reading statements from
the designated, or included, file. When it reaches the end of this
file, the compiler reads the next statement after the INCLUDE
statement,

INTRODUCTION TO PDP-11 FORTRAN-77

An INCLUDE statement can be contained in an included file.

An included file cannot begin with a continuation 1line; each

statement included must be completely contained within a single file.

The INCLUDE statement can appear anywhere that a comment 1line can

appear.
:

Any PDP-11 FORTRAN-77 statement can appear in an included file;

however, all the statements in an included file, when combined with

the other statements in a compilation, must satisfy the requirements

shown in Figure 1-3.

In the following example, the included file COMMON.FTN defines the

size of the blank COMMON block and the size of the arrays X, Y, and Z.

Main Program File File COMMON.FTN

INCLUDE 'COMMON.FTN' ' PARAMETER (M = 100)
DIMENSION Z (M) COMMON X (M),Y (M)

CALL CUBE

DO 5, I=1,M

5 Z(I) X(I)+SQRT(Y(I))

SUBROUTINE CUBE

INCLUDE 'COMMON.FTN'

po 10, I=1,M

10 X(I) = Y(I)**3

RETURN

END

PDP-11

CHAPTER 2

STATEMENT COMPONENTS

FORTRAN-77 statements are composed of five basic components:

Constants -- fixed values, such as numbers. These values
cannot be changed by program statements.

Variables -- symbolic names that represent stored values.
These values can be changed by program statements.

Arrays -- groups of values that are stored contiguously and
can be referenced individually by a symbolic name with a
subscript, or collectively by a symbolic name only.
Individual values are called array elements.

Function references -- function names optionally followed by
lists of arguments. A function 1is a program unit that
performs a specified computation (for example, computing a
trigonometric sine) wusing arguments supplied by a function
reference; the resulting value is then used in place of the
function reference.

Expressions -- combinations of constants, variables, array
elements, function references, and operators. An operator is
a unique symbol for a particular operation (such as
multiplication) that obtains a single result,

Variables, arrays, and functions have symbolic names. A symbolic name
is a string of characters that identifies an entity in a program,

Constants, variables, arrays, expressions, and functions can have the
following data types:

Logical

Integer

Real

Double-precision

Complex

Character (except for functions)

Symbolic names, data types, and all the statement components except
function references are discussed in this chapter; function
references are discussed in Chapter 6.

STATEMENT COMPONENTS

2.1 SYMBOLIC NAMES

Symbolic names identify the entities that can appear in a program

unit. The entities that symbolic names identify are listed in Table

2-1, where the column labelled "Typed" indicates whether an entity has

a data type (such as real or integer). (Data types are discussed in

Section 2.2.)

‘Table 2-1: Entities Identified by Symbolic Names

Entity Typed

Variables Yes

Arrays Yes

Statement functions Yes

Intrinsic functions Yes

Function subprograms Yes

Subroutine subprograms No

Common blocks No

Main programs No

Block data subprograms No

Dummy arguments Yes

Function entry points Yes

‘Subroutine entry points No

Parameter constants Yes

A symbolic name is a string of characters (letters and digits)

totaling a maximum of six; the first character must be a letter. If

more than six characters are used, the system will automatically

truncate the name to six characters during compilation.

Examples of valid and invalid symbolic names are:

valid Invalid

NUMBER 5Q (begins with a numeral)

K9 B.4 (contains a special character)

Symbolic names must be unique within a program unit -- that is, the

same symbolic name cannot be used to identify two or more entities in

the same program unit.

In executable programs consisting of two or more program units, a

symbolic name for any of the following entities must be unique

throughout all the program units:

e Intrinsic functions

e Function subprograms

e Subroutine subprograms

e Common blocks

® Main programs

® Block data subprograms

e Function entries

® Subroutine entries

STATEMENT COMPONENTS

Therefore if, for example, one of your program units contains a

function named UMP, you cannot use UMP as the symbolic name for any

other entity anywhere else in your program, even 1in a completely

separate program unit.

2.2 DATA TYPES

Each basic statement component in a PDP-11 FORTRAN-77 program

(constant, variable, array, function reference, or expression) has

assigned to it one of six data types that specifies the kind of wvalue

it can represent. The data types and the values they represent are:

e Integer -- for a whole number

e Real -- for a decimal number: that 1is, a whole number, a

decimal fraction, or a combination of a whole number and a

decimal fraction

e Double precision -- for a real number with more than twice as

many maximum significant digits as real

e Complex —-—- for a pair of real numbers representing a complex

number: the ‘first value representing the real part, the

second representing the imaginary part

e Logical -- for the value true or the value false

e Character -- for a sequence of characters

The data type of a basic component can be assigned in one of three

ways: it can be inherent in the component's construction (as in

constants); it can be implied by a naming convention (with or without

an IMPLICIT statement); or it can be explicitly declared.

Whenever a value of one data type is converted to a value of another

type, the conversion is performed according to the rules for

assignment statements (see Table 3-1).

For the purpose of facilitating control of processing performance and

memory requirements, PDP-11 FORTRAN-77 provides several data types (or

data type variations) in addition to the six basic data types 1listed

above, These data types are included in Table 2-2, which lists all

PDP-11 FORTRAN-77 data types, as well as the amount of memory each

data type requires for storage.

The form *n appended to a data type name is called a data-type length

specifier.

2.3 CONSTANTS

A constant represents a fixed value and can be a number, the 1logical

values true or false, or a character string.

Octal, hexadecimal, and Hollerith constants have no data type; these

constants assume the data type prescribed by the context in which they

appear (see Section 2.3.8).

STATEMENT COMPONENTS

Table 2-2: Data Type Storage Requirements

Data Type Storage Requirements
(Bytes)

BYTE la

LOGICAL 2 or 4b

LOGICAL*1 la

LOGICAL*2 2

LOGICAL*4 : 4

INTEGER 2 or 4b

INTEGER*2 2

INTEGER*4 4

REAL 4

REAL*4 4

REAL*8 8

DOUBLE PRECISION 8

COMPLEX 8

COMPLEX*8 8

CHARACTER*1len len ¢ .

a: The l-byte storage area can contain the 1logical

values true or false, a single character, or

integers in the range -128 to +127.

b: Either two or four bytes are allocated depending on

the compiler command qualifier specified. The
default allocation is two bytes. When four bytes

are allocated, all four bytes are used for

computation.

c: The value of 1len 1is the number of characters

specified; this number can be any integer within

the range 1 to 255.

BYTE and LOGICAL*1 are synonymous.

2.3.1 Integer Constants

An integer constant is a whole number with no decimal point. It can
have a 1leading sign and 1is interpreted as a decimal number. An
integer constant has the form:

snn

An optional sign.

nn

A string of numeric characters.

Leading 0s, if any, are ignored.

STATEMENT COMPONENTS

A minus sign must appear before a negative integer constant; a plus

sign 1is optional before a positive constant (an unsigned constant is

assumed to be positive).

Except for the sign, an integer constant cannot contain a character

other than the numerals 0 through 9.

The absolute value of an integer constant cannot be greater than

2147483647.

Examples of valid and invalid integer constants are:

valid Invalid

0 99999999999 (too large)

-127 3.14 (decimal point and

+32123 32,767 comma hot allowed)
-~

If the value of a constant is within the range -32768 to +32767, this

value represents a 2-byte signed quantity and 1is treated as an

INTEGER*2 data type; if a value is outside this range, it represents

a 4-byte signed quantity and is treated as an INTEGER*4 data type.

2.3.2 Real Constants

A real constant is a number with a decimal point and can occur in any

one of three forms:

e As a basic real constant

® As a basic real constant followed by a decimal exponent

e As an integer constant followed by a decimal exponent

A basic real constant is a string of decimal digits in one of three

formats:

S.nn

snn.nn

snn.

s

An optional sign.

nn

A string of decimal digits.

The decimal point can appear anywhere in the string. The number of

digits is not limited, but only the leftmost 7 digits are significant.

Leading 0s (0s to the left of the first nonzero digit) are ignored in

counting the leftmost 7 digits; therefore, 1in the constant

0.00001234567, all of the nonzero digits are significant, but none of

the 0s is significant.

A decimal exponent has the form:

Esnn

STATEMENT COMPONENTS

An optional sign.

nn

An integer constant.

The exponent represents a power of 10 by which the preceding real or

integer constant is to be multiplied; for example, 1.0E6 represents

the value 1.0 * 10 ** 6.

A real constant occupies four bytes and 1is interpreted as a real
number with a precision, typically, of seven decimal digits.

A minus sign must appear between the letter E and a negative exponent;
a plus sign is optional between the letter E and a positive exponent.

Except for algebraic signs and a decimal point, and the letter E if
used, a real constant cannot contain a character other than the
numerals 0 through 9.

If the letter E appears in a real constant, an integer constant

exponent must follow it. The exponent cannot be omitted; however, it
can be 0.

The magnitude of a nonzero real constant cannot be smaller than

approximately 0.29E-38 or greater than approximately 1.7E38.

Examples of valid and invalid real constants are:

valid Invalid

3.14159 1,234,567 (commas not allowed)

621712. 325E-45 (too small)

-.00127 ~-47.E47 (too large)

+5.0E3 100 (decimal point missing)

2E-3 $25.00 (special character
not allowed)

2.3.3 Double-Precision Constants

A double-precision constant is a basic real constant or an integer

constant followed by a decimal exponent of the form:

Dsnn

An optional sign.

nn

An integer constant.

A double-precision constant occupies eight bytes and is interpreted as

a real number with a precision, typically, of 16 decimal digits. The

number of digits that precede the exponent is not 1limited, but only

the leftmost 16 digits are significant.

A minus sign must appear before a negative double-precision constant;

a plus sign is optional before a positive constant. A minus sign must

appear between the letter D and a negative exponent; a plus sign 1is

optional between the letter D and a positive exponent.

2-6

STATEMENT COMPONENTS

The exponent following the letter D cannot be omitted; however, it
can be 0.

The magnitude of a nonzero double-precision constant cannot be smaller
than approximately 0.29D-38 or greater than approximately 1.7D38.

Examples of valid and invalid double-precision constants are:

valid Invalid

1234567890D+5 1234567890D45 (too large)
+2.71828182846182D00 1234567890.0D~-89 (too small)
-72.5D-15 +2.7182812846182 (no Dsnn present;

1DO this is a valid

real constant)

2.3.4 Complex Constants

A complex constant is a pair of integer or real constants separated by
a comma and enclosed in parentheses. The first constant represents

the real part of a complex number, the second constant the imaginary
part. :

A complex constant has the form:

(rc,rc)

rc.

A real constant.

The parentheses and comma are part of the complex constant and are
required. See Section 2.3.2 for the rules for forming real constants.

A complex constant occupies eight bytes and is interpreted as a
complex number.

Examples of valid and invalid complex constants are:

valiad Invaliad

(1.70391,-1.70391) (1.23,) (second real constant is
(+12739E3,0.) : missing)

(1.0,1.0D0) (double-precision

constants are not allowed)

2.3.5 Octal and Hexadecimal Constants

Octal and hexadecimal constants are alternative ways to represent

numeric constants; you can use them wherever numeric constants are

allowed.

An octal constantis an unsigned string of octal digits enclosed by
apostrophes and followed by the alphabetic character 0. An octal

constant has the form:

'clc2c3...cn'0

A digit in the range 0 to 7.

STATEMENT COMPONENTS

A hexadecimal constant is an unsigned string of hexadecimal digits

enclosed by apostrophes and followed by the alphabetic character X. A

hexadecimal constant has the form:

'‘clc2c3...cn'X

A hexadecimal digit in the range 0 to 9, or a letter in the range

A to F or a to £.

Leading zeros are ignored in octal and hexadecimal constants. You can

specify up to 32 bits (11 octal digits, 8 hexadecimal digits).

Examples of valid and invalid octal constants are:

valid Invalid

'07737'0 '7782'0 (invalid character)

'1'0 7772'0 (no initial apostrophe)

'0737" (no 0 after second apostrophe)

'-4367" (signed)

Examples of valid and invalid hexadecimal constants are:

valid Invaliad

'AF9730'X '999.,'X (invalid character)

'FFABC'X 'FOX (no apostrophe before
the X)

'-ACF4! (signed)

Octal and hexadecimal constants are typeless numeric constants; they
assume data types that are based on the way they are used (and thus
they are not converted before use), as follows:

® When the constant is used with a binary operator, including
the assignment operator, the data type of the constant is the

data type of the other operand. For example:

Data Type Length of

Statement of Constant Constant

REAL*8 DOUBLE

INTEGER*4 N

RAPHA = '99AF2'X REAL*4 4

JCOUNT = ICOUNT + '777'0 INTEGER*2 2

DOUBLE = 'FFF99A'X REAL*8 8

IF(N.EQ.'123'0) GO TO 10 INTEGER*4 4

e When a specific data type —-- generally integer -- is required,
this type is assumed for the constant. For example:

Data Type Length of

Statement of Constant Constant

Y(IX)=Y('15'0)+3. INTEGER*2 2

e When the constant is used as an actual argument, no data type
is assumed; however, a length of two bytes is always used.

For example:

Data Type Length of

Statement of Constant Constant

CALL APAC('34BC'x) None 2

STATEMENT COMPONENTS

e When the constant is used in any other context, INTEGER*2 data

type is assumed. For example:

Data Type Length of

Statement ~ of Constant Constant

IF('AF77'X) 1,2,3 INTEGER*2 2
I = '7777'0 - 'A39'X INTEGER*2 2

J = .NOT.'73777'0 INTEGER*2 2

An octal or hexadecimal constant actually specifies as much as 4 bytes

of data. When the data type implies that the length of the constant

is more than the number of digits specified, the leftmost digits have

a value of zero. When the data type implies that the length of the

constant is less than the number of digits specified, the constant is

truncated on the left. An error results if any nonzero digits are

truncated. Table 2-2 lists the number of bytes that each data type

requires.

2.3.6 Logical Constants

A logical constant specifies true or false; therefore, only the

following two logical constants are possible:

.TRUE.

.FALSE.

The delimiting periods are a required part of each constant.

2.3.7 Character Constants

A character constant 1is a string of printable ASCII characters

enclosed by apostrophes.

A character constant has the form:

'clc2c3...Cn’

A printable character.

Both delimiting apostrophes must be present.

The value of a character constant is the string of characters between

the delimiting apostrophes. The value does not include the delimiting

apostrophes, but does include all spaces or tabs within the

apostrophes.

Within a character constant, the apostrophe character 1is represented

by two consecutive apostrophes (with no space or other character

between them).

The length of the character constant 'is the number of characters

between the delimiting apostrophes (two consecutive internal

apostrophes counting as one character). The 1length of a character

constant must be in the range 1 through 255.

STATEMENT COMPONENTS

Examples of valid and invalid character constants are:

valid Invalid

'"WHAT?' 'HEADINGS (no trailing

' apostrophe)

'TODAY''S DATE 1S:' vy (character constant

must contain at least

one character)

'HE SAID, "HELLO"' "NOW OR NEVER" (quotation marks

cannot be used in

place of apostrophes)

If a character constant appears in a numeric context (for example, as
the expression on the right side of an arithmetic assignment
statement), it 1is considered a Hollerith constant (see Section
203.8.) [

2.3.8 Hollerith Constants

A Hollerith constant is a string of printable characters preceded by a

character count and the letter H.

A Hollerith constant has the form:

nHclc2c3...Cn

An unsigned, nonzero integer constant stating the number of

characters in the string (including spaces and tabs).

A printable character.

The maximum number of characters is 255.

Hollerith constants are stored as byte strings, one character per

byte.

Hollerith constants have no data type; they assume a numeric data
type according to the context in which they are used. Hollerith

constants cannot assume a character data type and cannot be used where

a character value is expected.

Examples of valid and invalid Hollerith constants are:

valid Invalid

16HTODAY'S DATE 1IS: 3HABCD (wrong number of characters)

1HB

When Hollerith constants are used in numeric expressions, they assume

a data type according to the following rules:

® When the constant is used with a binary operator, including
the assignment operator, the data type of the constant is the

data type of the other operand. For example:

STATEMENT COMPONENTS

Data Type Length of

Statement of Constant Constant

INTEGER*2 ICOUNT

REAL*8 DOUBLE

RALPHA = 4HABCD REAL*4 4

JCOUNT = ICOUNT +2HXY INTEGER*2 2

DOUBLE = 8HABCDEFGH REAL*8 8

) When a specific data type is required, this type is assumed
for the constant. For example:

Data Type Length of
Statement of Constant Constant

X=Y (1HA) INTEGER*2 2

) When the constant is used

is assumed. For example:

as an actual argument, no data type

Data Type Length of

Statement of Constant Constant

CALL APAC (9HABCDEFGHI) None 9

° When the constant is used in any other context, INTEGER*2
data type is assumed. For example:

Data Type Length of

Statement of Constant Constant

IF (2HAB) 1,2,3 INTEGER*2 2

I= 1HC-1HA INTEGER*2 2

J= .NOT. 1lHB INTEGER*2 2

When the length of the constant is

data type, spaces are appended to the constant on the right;
length of the constant is greater than the length implied by the
type, the constant is truncated on

nonblank characters are truncated.

Table 2-2 lists the number of characters required for each data

less than the length implied by the

when the

data

the right. An error results if any

type.

Each character occupies one byte of storage.

2.4 VARIABLES

A variable is a symbolic name associated with a storage location

a

variable is the value currently stored in that location;

Section 2.1 for the form of
(see

The value of the

however, you

symbolic name).

can change that value by assigning a new value to the variable.

Like constants, variables are classified by data type.

of

assigned to

data type of the variable.

variable

The data type

a variable indicates the type of data the variable represents, its

precision, and its storage requirements.

a variable, this data is converted,

You can

by using type declaration statements or IMPLICIT statements,

When data of any type is

if necessary, to the

establish the data type of a

or by choosing names that begin with certain letters (I-N for integer;

any other for real).

STATEMENT COMPONENTS

Two or more variables are associated with each other when they refer

to the same memory location. They are partially assocliated when part
of the location to which one variable refers is the same as part or

all of the location to which the other variable refers. Association

and partial association occur when you use COMMON statements,

EQUIVALENCE statements, and actual and dummy arguments in subprogram
references,

A variable is considered defined if the storage location associated
with it contains data of the same type as the variable name. A
variable can be defined before program execution by a DATA statement,

or during execution by an assignment or input statement.

If variables of different data types are associated (or partially
associated) with the same storage location, and if the value of one
variable is defined (for example, by assignment), the wvalue of the

other variable becomes undefined; that 1is, 1its wvalue cannot be
predicted.

2.4.1 Data Typing by Specification

To specify the data types of variables, you use type declaration

statements (see Section 5.2). For example, the statements

COMPLEX VAR1

DOUBLE PRECISION VAR2

assign the COMPLEX data type to the wvariable VARl and the DOUBLE

PRECISION data type to the variable VAR2: that is, they cause the

variable VARl to be associated with an 8-byte storage 1location that

will contain complex data, and the variable VAR2 to be associated with

an 8-byte double-precision storage location.

Character type declaration statements assign the character data type

and a value length to specified variables. For example, the

statements

CHARACTER*72 INLINE

CHARACTER NAME*12, NUMBER*9

cause the variables INLINE, NAME, and NUMBER to be associated with
storage locations containing character data of lengths 72, 12, and 9,

respectively.

The IMPLICIT statement (see Section 5.1) has a more general effect:

it assigns, in the absence of an explicit type declaration, a

specified data type to any variable beginning with a specified letter

or any letter within a specified range.

You can explicitly declare the data type of a variable only once. An

explicit declaration takes precedence over an IMPLICIT statement.

2.4.2 Data Typing by Implication

In the absence of either IMPLICIT statements or type declaration

statements, all variables you use that have names beginning with I, J,

K, L, M, or N are assumed to be integer variables, and those that have

names beginning with any other letter are assumed to be real
variables. For example:

STATEMENT COMPONENTS

Real Variables Integer Variables

ALPHA JCOUNT

BETA ITEM

TOTAL NTOTAL

2.5 ARRAYS

An array is a group of contiguous storage locations associated with a

single symbolic name (the array name). The individual storage

locations, called array elements, are referred to by a subscript

appended to the array name. (Section 2.5.2 discusses subscripts.)

In PDP-11 FORTRAN-77, an array can have from one to seven dimensions.

A single column of figures, for example, is an array having only one

dimension -- or a one-dimensional array; to refer to a value in this

array, Yyou need only specify the value's row number. Similarly a

table of more than one column of figures is a two-dimensional array;

to refer to a value in this array, you must specify both the value's

row number and its column number. And a table of figures that covers

several pages 1is a three-dimensional array; to refer to a value in

this array, you must specify the value's row number, its column

number, and its page number.

The following PDP-11 FORTRAN-77 statements establish arrays:

e Type declaration statements (see Section 5.2)

e The DIMENSION statement (see Section 5.3)

e The COMMON statement (see Section 5.4)

e The VIRTUAL statement (see Section 5.5)

These statements may contain array declarators (see Section 2.5.1)

that define the name of the array, the number of dimensions in the

array, and the number of elements in each dimension.

An element of an array is considered defined if the storage 1location

associated with it contains data of the same type as the array name

(see Section 2.5.4). An array element or an entire array can be

defined before program execution by a DATA statement. An array

element can be defined during program execution by an assignment or

input statement; an entire array can be defined during program

execution by an input statement.

2,5.1 Array Declarators

An array declarator specifies the symbolic name that is to identify an

array within a program unit, and it specifies the properties of this

array. '

An array declarator has the form:

a (d[,d] ...)

STATEMENT COMPONENTS

The symbolic name of the array -- that 1is, the array name.

(Section 2.1 gives the form of a symbolic name.) :

A dimension declarator.

The number of dimension declarators indicates the number of dimensions

in the array; the number of dimensions can range from one to seven.

For example, in

DIMENSION IUNIT (10,10,10)

IUNIT is a three-dimensional array.

The value of a dimension declarator specifies the number of elements

in that dimension: in the example above, each dimension of IUNIT

consists of 10 elements.

The number of elements in an array is equal to the product of the

values of the dimension declarators; IUNIT above contains 1000

elements (10 X 10 X 10).

An array name can appear in only one array declarator within a program

unit.

Dimension declarators that vary in value are not permitted in a main

program, but they are permitted in a subprogram in order to define

adjustable arrays. You can use adjustable arrays within a single

subprogram--to process arrays with different dimension declarators--by

specifying the declarators as well as the array name as subprogram

arguments. (See Section 6.1.2 for more information.)

A dimension declarator in PDP-11 FORTRAN-77 can specify both a lower

bound and an upper bound, as follows:

[dl:] du

dl

The lower bound of the dimension.

du

The upper bound of the dimension. (Can be an asterisk (*); see

below.)

The number of elements specified by a dimension with upper and 1lower

bounds is du-dl+1l.

Specifying the lower bound of an array allows you to use a range of

subscripts that does not begin with 1. For example, to reference an

array storing data for the years 1964 to 1974, you could specify an

upper bound of 74 and a lower bound of 64 as follows:

DIMENSION KYEAR (64:74)

The value of the lower bound, dl, can be negative, 0, or positive.
The value of the upper bound, du, must be greater than or equal to the

corresponding lower bound. If a lower bound is not specified, it |is

assumed that the 1lower bound 1is 1 and that the value of the upper

bound is the number of elements in the dimension.

STATEMENT COMPONENTS

For example, in the statement

DIMENSION NUM (0:9,-1:1)

NUM contains 30 elements.

The upper bound in the last dimension declarator 1in a 1list of

dimension declarators may be an asterisk; an asterisk marks the

declarator as an assumed-size array declarator (see Section 6.1.3).

Each dimension bound is an integer arithmetic expression in which:

e Each operand 1is an integer constant, an integer dummy

argument, or an integer variable in a COMMON block

e Each operator is a +, -, *, /, or ** operator

Array references and function references are not allowed in dimension

bounds expressions.

2.5.2 Subscripts

A subscript is a list of expressions, called subscript expressions,

enclosed 1in parentheses, that specify, or reference, a particular

element in an array; a subscript is said to "qualify" an array name.

A subscript is appended to the array name it qualifies.

A subscript has the form:

(sl,s]...)

A subscript expression.

A subscript expression can be a constant, a variable, or an arithmetic

expression. If the value of a subscript is not of type integer, it is

converted to integer by truncating any fractional part.

A subscripted array reference must contain one subscript expression

for each dimension defined for the array being referenced (one for

each dimension declarator).

2.5.3 Array Storage

As suggested earlier in Section 2.5, you can think of an array as an

arrangement of values in rows, columns, and pages (or planes) -- that

is, as an arrangment of wvalues in other than a strictly 1linear

sequence, An array of any size is always stored in memory, however,

as a linear sequence of values: A one-dimensional array 1is stored

with 1its first element 1in the first storage location, and its last

element 1in the 1last storage location of the sequence; a

multidimensional array is stored so that the leftmost subscripts vary

most rapidly. This storage arrangement for arrays 1is called the

"order of subscript progression." Figure 2-1 shows array storage in

one, two, and three dimensions.

STATEMENT COMPONENTS

One-Dimensional Array BRC(6)

LIIBRC(I) 2|BRC(2)]3|BRC(3) 4lBRC(4)[SIBRC(S)IGIBRC(G)]

A)
Memory Positions

Two-Dimensional Array BAN(3,4)

BAN(1,1)|4|BAN(1,2)|7|BAN(1,3)|10}{BAN(1,4)

BAN(2,1) |{S|BAN(2,2) |8 |BAN(2,3)|11|BAN(2,4)

BAN(3,1) |6 |[BAN(3,2)|9 [BAN(3,3) |12 |{BAN(3,4)

-
W

N

=

Memory Positions

Three-Dimensional Array BO0S(3,3,3)

19{B0OS(1,1,3)]|22|B0S(1,2,3) [25|B0S(1,3,3)}
20]B0OS(2,1,3)[23|B0S(2,2,3) [26]/B0s(2,3,3)1}

10/BOS(1,1,2)]|13|B0OS(1,2,2)]16|B0S(1,3,2)§27[B0S(3,3,3)1

11/B0S(2,1,2)[14]B0S(2,2,2)[17[B0S(2,3,2)]

BOS(1,1,1)]4[B0S(1,2,1)[7[B0S(1,3,1)} 18 |B0S(3,3,2)}

L
o

BOS (2,1,1) BOS(2,2,1) BOS(2,3,1)]

=
3
1

L
Y

N
[
+

5 8

Bos(3,1,1)[6[BOS(3,2,1){9]BOS(3,3,1)]

Memory Positions

Figure 2-1: Array Storage

2.5.4 Data Type of an Array

The data type of an array is specified in the same way that the data

type of any other variable is specified -- that is, implicitly by the

initial letter of the name, or explicitly by a type declaration

statement.

All the values in an array have the same data type. Any value

assigned to an array element 1is converted to the data type of the

array. 1If an array is named in a DOUBLE PRECISION statement, for

example, the compiler allocates an 8-byte storage location for each

element of the array. When a value of any type 1is assigned to any

element of this array, it is converted to double precision.

2.5.5 Array References Without Subscripts

In the following types of statements, you can indicate that .an entire

array 1is to be used (or defined) simply by specifying the array name

without its subscript:

e Type declaration statements

e COMMON statement

e DATA statement

STATEMENT COMPONENTS

e EQUIVALENCE statement

e FUNCTION statement

® SUBROUTINE statement

e Input/output statements

@ ENTRY statement

® SAVE statement

You can also use unsubscripted array names as actual arguments 1in

references to external procedures. Unsubscripted array names are not

permitted in any other type of statement.

2.5.6 Adjustable Arrays

Adjustable arrays allow subprograms to manipulate arrays of variable
dimensions. To wuse an adjustable array in a subprogram, you specify

the array bounds and the array name as subprogram arguments. (See

Chapter 6 for more information.)

2.6 CHARACTER SUBSTRINGS

A character substring is a contiguous segment of a character variable

or character array element.

A character substring reference has one of the forms:

v([el]l:[e2])

a(sf,sl...) ([el]l:[e2])

v

A character variable name.

a

A character array name.

s

A subscript expression.

el

A numeric expression that specifies the 1leftmost character

position of a substring.

e2

A numeric expression that specifies the rightmost character

position of a substring.

Character positions within a character variable or array element are

numbered from 1left to right, beginning with 1. For example, LABEL

(2:7) specifies the substring beginning with the second character

position and ending with the seventh character position of the

STATEMENT COMPONENTS

character variable LABEL. If the CHARACTER*8 variable LABEL has a

value of XVERSUSY, then the substring LABEL(2:7) has a value of

VERSUS.

If the value of the numeric expression el or e2 1is not of type
integer, it is converted to an integer value before use by truncating
any fractional part.

The values of the numeric expressions el and e2 must meet the
following conditions:

1 .LE. el .LE. e2 .LE. len

len

The length of the character variable or array element.

If el is omitted, FORTRAN-77 assumes that el -equals 1; if e2 s
omitted, FORTRAN-77 assumes that e2 equals len.

For example, NAMES(1,3)(:7) specifies the substring starting with the

first character position and ending with the seventh character

position of the character array element NAMES(1,3).

2.7 EXPRESSIONS

An expression consists of a single basic component (such as a constant

or a variable) or a combination of basic components with one or more
operators that represents a single value, Operators specify
computations to be performed on the values of the basic components.

Expressions are classified as arithmetic, character, relational, or

logical. Arithmetic expressions produce numeric values, character
expressions produce character values, and relational and logical

expressions produce logical values.

2.7.1 Arithmetic Expressions

Arithmetic expressions are expressions that are formed with arithmetic

elements and arithmetic operators. The evaluation of an arithmetic
expression yields a single numeric value.

An arithmetic element can be any of the following:

) A numeric, Hollerith, octal, or hexadecimal constant

) A numeric variable

° A numeric array element

) An arithmetic expression enclosed in parentheses

° An arithmetic function reference

The term "numeric," as used above, includes 1logical data, because

logical data 1is treated as integer data when used in an arithmetic
context.

STATEMENT COMPONENTS

Arithmetic operators specify a computation that is to be performed on
the values of arithmetic elements to produce a numeric value as a
result., The operators and their meanings are:

Operator Function

* % Exponentiation

* Multiplication

/ Division

+ Addition and unary plus

- Subtraction and unary minus

These operators are called binary operators because each is used with
two elements, When written immediately preceding an arithmetic
element, to denote a positive or negative wvalue, the plus (+) and
minus (-) symbols are unary operators.,

You can use any arithmetic operator with any valid arithmetic element,
except as noted in Table 2-3.

A variable or array element must have a defined value before it can be
used in an arithmetic expression.

Table 2-3 shows the allowed combinations of base and exponent data
types, and also shows the data type of the result of exponentiation.

Table 2-3: Exponentiation Data Types

Exponent Type

Base

Type Integer Real Double Complex

Integer Integer Real Double Complex

Real Real Real Double Complex

Double Double Double Double No

Complex Complex Complex No Complex

Note: A negative element can be exponentiated

only by an integer element; and an element with a

0 value cannot be exponentiated by another 0-value

element.

In any valid exponentiation, the result has the same data type as the

base element, except in two cases: (1) a real base and a

double-precision exponent produces a double-precision result; and (2)

a base of any type and a complex exponent produces a complex result.

Arithmetic expressions are evaluated in an order that is determined by

the operators involved. The five operators in FORTRAN are performed

in the following order of precedence:

STATEMENT COMPONENTS

Operator Precedence

* %
First

“* and /- Second

+ and - Third

When two or more operators of equal precedence (such as + and -)

appear, they are evaluated by the compiler in any order that is

algebraically equivalent to a left-to-right order of evaluation. For

example, in 3+4-1, the addition is performed before the subtraction.

Exponentiation, however, is evaluated right to left. For example, 1in

the expression A**B**C, B**C is evaluated first, and then A is raised

to the result of B**(C.

2.7.1.1 Use of Parentheses - You can use parentheses to force a

particular order of evaluation. When part of an expression is

enclosed in parentheses, this part is evaluated first, and then the

result is wused in the evaluation of the remainder of the expression.

In the following examples, the numbers below the operators indicate

the order of evaluation:

4+3*%2-6/2=7

b
2 1 4 3

(443) * 2 =6 / 2 = 11

b
a 3

(4+3*2-6)/2=2

O SR
2 1 3 4

((4+3)*2—6)12=4

1 2 4

As shown in the third and fourth examples above, expressions within

parentheses are evaluated according to the normal order of precedence,

unless you override the order by using parentheses within parentheses.

Using parentheses to specify evaluation order is often important in

high-accuracy computations because rounding and normalizations may

cause algebraically equivalent evaluation orders not to be

computationally equivalent.

Using parentheses to specify evaluation order 1is also important in

complex expressions, where it is difficult during the process of

writing a program to analyze visually what is to happen to what. If

you have any doubt about accuracy, use parentheses.

2,7.1.2 Data Type of an Arithmetic Expression - If every element in

an arithmetic expression is of the same data type, the value produced

by the expression is also of this data type. If elements of different

data types are combined in an expression, the data type of the result

of each operation is determined by a rank associated with each data

type. The data types are ranked as follows:

STATEMENT COMPONENTS

Data Type Rank

Logicai 1l (Low)

Integer 2

Real 3

Double Precision 4

Complex 5 (High)

The data type of the value produced by an operation on two arithmetic

elements of different data types 1is the data type of the

highest-ranked element in the operation. For example, the wvalue

resulting from an operation on an integer and a real element is real.

The data type of an expression is the data type of the result of the

last operation performed in that expression.

Operations are classified by data type as follows:

) Integer operations —-- Integer operations are performed only

on integer elements. (Logical entities used in an arithmetic

context are treated as integers.) In integer arithmetic, any

fraction that results from division 1is truncated, not

rounded. For example:

1/3 + 1/3 + 1/3

The value of this expression is 0, not 1.

In PDP-11 FORTRAN-77, an operation involving an INTEGER%*2

element and an INTEGER*4 element 1is carried out as an

INTEGER*4 operation and produces an INTEGER*4 result.

® Real operations -- Real operations are performed only on real

elements or combinations of real, integer, and logical

elements., Any integer elements present are converted to real

data type by giving each integer element a fractional part

equal to 0. The expression 1is then evaluated wusing real

arithmetic. Note, however, that in the statement Y = (I/J)*X

an integer division operation is performed on I and J, and

then a real multiplication is performed on the result and X.

) Double-precision operations -- Any real or integer element in

a double-precision operation is converted to double

precision, by making the real or integer element the most

significant portion of a double-precision element; the least

significant portion is given the value 0. The expression Iis

then evaluated in double-precision arithmetic.

Converting a real element to a double-precision element does

not increase its accuracy. For example, the real number

0.3333333

is converted to (approximately):

0.3333333134651184D0

STATEMENT COMPONENTS

not to either:

0.3333333000000000D0

or:

0.3333333333333333D0

) Complex operations -- In an operation on an expression

containing a complex element, integer elements are converted

to real data type, as previously described, and

double-precision elements are converted to real data type, by

rounding the least-significant portion. The real element

obtained 1is designated as the real part of a complex number;

the imaginary part is given the value 0. The expression Iis

then evaluated with complex arithmetic, and the resulting

value is complex.

2.7.2 Character Expressions

Character expressions consist of character elements. The evaluation

of a character expression yields a single value of character data

type.

A character element can be any one of the following:

e A character constant

e A character variable

e A character array element

e A character substring

A character expression has the form:

character element

and can be enclosed with parentheses.

2.7.3 Relational Expressions

A relational expression consists of two arithmetic expressions
separated by a relational operator. The value of the expression is

true if the stated relationship exists, false if it does not.

A relational operator tests for a relationship between two arithmetic

expressions. These operators are:

Operator Relationship

.LT. ~Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE, Greater than or equal to

2-22

STATEMENT COMPONENTS

The delimiting periods are a required part of each operator.

Complex expressions can be related only by the .EQ. and .NE.

operators. Complex entities are equal if their corresponding real and

imaginary parts are both equal.

In an arithmetic relational expression, the arithmetic expressions are

evaluated and then the resulting values are compared with each other

to determine whether the relationship stated by the - operator exists.

For example, the expression

APPLE+PEACH .GT. PEAR+ORANGE

states the relationship: "The sum of the real variables APPLE and

PEACH 1is greater than the sum of the real variables PEAR and ORANGE."

if this relationship exists, the value of the expression is true; if

not, the value of the expression is false,

In a character relational expression, the character expressions are

evaluated and then the resulting values are compared with each other

to determine whether the relationship stated by the operator exists;

PDP-11 FORTRAN-77 uses the ASCII <collating sequence in comparing

character values., 1In character relational expressions, "less than"

means "precedes 1in the ASCII collating sequence," and "greater than"

means "follows in the ASCII collating sequence."TM For example, the

expression

'ABZZZ' .LT. 'cCcccc'!

states that 'ABZZZ' is less than 'CCCCC'. Because this relationship

does exist, the value of the expression is true. If the relationship

stated did not exist, the value of the expression would be false.

If the two character expressions in a relational expression are not

the same 1length, the shorter of the two is padded on the right with

spaces until the lengths are equal. For example, in the relational

expressions

'ABC' L.EQ. 'ABC '

'AB! LT 'C

the first has a value of true, even though the 1lengths of the

expressions are not -equal; and the second has a value of true even

though 'AB' is longer than 'C'.

All relational operators have the same precedence; however, the

arithmetic operators have a higher precedence than the relational

operators.

You can use parentheses to alter the order of evaluation of arithmetic

expressions 1in a relational expression; however, because arithmetic

operators are evaluated before relational operators, you need. not

enclose the whole of an arithmetic expression in parentheses.

You can compare two numeric expressions of different data types in a

relational expression. To make such a comparison, the system converts

the value of the expression with the lower-ranked data type to the

data type of the expression with the higher-ranked data type.

STATEMENT COMPONENTS

2.7.4 Logical Expressions

Logical expressions are formed with logical

operators. A logical expression yields a

either true or false.

A logical element can be any of the following:

) An integer or logical constant

° An integer or logical variable

® An integer or logical array element

) A relational expression

elements and logical

single logical value--

) A logical expression enclosed in parentheses

® An integer or logical function reference

The logical operators are:

Operator Example

+AND. A .AND. B

true

true.

Logical

The expression

B, or both,

.OR. .OR. B

«XOR. .XOR. B

is true if A is

vice versa;

false 1if both

value.

Logical conjunction:

if, and only if, both A and B are

disjunction

Logical exclusive OR:

but

Meaning

The expression is

(inclusive OR):

is true if either A or

is true.

The expression

true and B is false, or

the expression is

elements have the same

.NEQV.

.EQV.

. NOT.

> .NEQV.

.EQV.

NOT. A

B

B Same as .XOR.

Logical equivalence: The expression is

true if, and only if, both A and B have

the same logical value, whether true or

false.

Logical negation: The expression 1is

true if, and only if, A is false.

The delimiting periods of logical operators are required.

A logical expression is evaluated in accordance with the precedence of

the arithmetic, relational, and logical operators.

gives the order in which the operators in

evaluated:

Operator

* %

* and /

+ and -

The following list

a logical expression are

Precedence

First (Highest)

Second

Third

STATEMENT COMPONENTS

Operator Precedence

'"The relational

operators Fourth

«NOT. Fifth

«AND., Sixth

.OR. Seventh

.XOR., .EQV., .NEQV. Eighth

Operators of equal rank are evaluated from 1left to right. For

example, in the expression

A*B+C*ABC .EQ. X*Y+DM/ZZ .AND. .NOT. K*B .GT. TT

the sequence in which evaluation occurs is:

(((A*B)+ (C*ABC)) .EQ. ((X*Y)+(DM/ZZ))} .AND.(.NOT. ((K*B) .GT.TT))

As in arithmetic expressions, you can use parentheses to alter the

normal sequence of evaluation.,

Two consecutive logical operators are not allowed unless the second is

.NOT.

Some logical expressions are evaluated before all their subexpressions

are evaluated. For example, if A is .FALSE. 1in the expression

A .AND. (F(X,Y) .GT. 2.0) .AND. B

the value of the expression can be determined by testing A without

evaluating F(X,Y); therefore, the function subprogram F is not called

and consequences resulting from a call, such as changing variables 1in

COMMON, do not occur.

When a logical operator operates on logical elements, the resulting

data type 1is logical. When a logical operator operates on integer

elements, the logical operation 1is carried out bit-by-bit on the

corresponding bits of the internal (binary) representation of the

integer elements; the resulting data type is integer. When a logical

operator combines integer and 1logical values, the logical value is

first converted to an integer value and then the operation is carried

out as it would be for any two integer elements; the resulting data

type is integer. '

For example, in the sequence

INTEGER I, J, K

I ="'65'0

J = I.OR.'100'0

K = I.AND.'23'0

J has the value '165'0 and K has the value '21'0.

CHAPTER3

ASSIGNMENT STATEMENTS

Assignment statements assign a value to (or "define") a variable, an
array element, or a character substring; that 1is, assignment

statements evaluate an expression and assign the resulting value to a

specified variable, array element, or character substring.

The four kinds of assignment statements are:

e Arithmetic

e Logical

e Character

ASSIGN

3.1 ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement assigns an arithmetic value to a

variable or array element.

The arithmetic assignment statement has the form:

v = e

A numeric variable or array element.

An arithmetic expression.

The equal sign does not mean "is equal to," as 1in mathematics;

rather, it means "is replaced by." For example, the assignment

statement

KOUNT = KOUNT + 1

means "Replace the current value of the integer wvariable KOUNT with

the sum of the current value of KOUNT and the integer constant 1."

Although the symbolic name to the 1left of the equal sign can be

undefined, values must have been previously assigned to all symbolic

references in the expression to the right of the equal sign.

ASSIGNMENT STATEMENTS

The expression must yield a value of the proper size.

real expression that produces

the entity to the left of the

If v and e have the same data

directly to v.

is converted to the data type

of e If the

types, the statement assigns

data types are different, the value of e

of v before it is assigned.

For example, a

a value greater than 32767 is invalid if

equal sign is an INTEGER*2 variable.

the value

Table 3-1

summarizes the data conversion rules for assignment statements.

A character element cannot be assigned to a numeric entity.

Table 3-1: Conversion Rules for Assignment Statements

Expression (E)

Variable Integer or Real Double Complex

or Array Logical Precision

Element :

(V)

Truncate real

part of E to

Truncate E to Truncate E to integer and

Integer Assign E to V integer and integer and assign to V;

or assign to V assign to V imaginary part

Logical of E is not used

Assign msl Assign real

Append fraction portion of E to part of E to V;

Real (.0) to E and Assign E to V v; LSl portion imaginary part
assign to V of E is rounded of E is not used

Append fraction Assign real

(.0) to E and Assign E to Msl part of E to
Double assign to MS portion of V; Msl portion of
Precision portion of V; LSl portion of Assign E to V Vv; LSl portion

LSl portion of V is 0 of V is 0,

Vis 0 imaginary part

of E is not used

Append fraction Assign Ms 1
(.0) to E and Assign E to portion of E

assign to real real part of V; to real part of

Complex part of V; imaginary part v; Lsl portion Assign E to V
imaginary part of V is 0.0 of E is rounded;
of v is 0.0 imaginary part

of V is 0.0

1. MS = most significant (high order); LS least significant (low order).

ASSIGNMENT STATEMENTS

Examples of valid and invalid assignment statements are:

Valid

BETA = -1./(2.*X)+A*A/(4.%(X*X))

PI = 3.14159

SUM= SUM+1.

Invalid

3.14 = A-B (entity on the left must be a

variable or array element)

-J = I%*%4 (entity on the left must be a variable

or array element)

ALPHA = ((X+6)*B*B/(X-Y) (entity on the right is an invalid

expression because the parentheses are

not balanced)

3.2 LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement assigns a logical value (true or

false) to a variable or array element.

The logical assignment statement has the form:

v = e

A logical variable or array element.

A logical expression.

V must be of logical data type and e must yield a logical wvalue;

otherwise, conversions will be made according to Table 3-1 and the

resultant values will not be meaningful.

Values, either numeric or logical, must have been previously assigned

to all variables or array elements in e,

Examples of logical assignment statements are:

Valid

LOGICAL PAGEND, PRNTOK, ABIG

PAGEND = ,FALSE.

PRNTOK LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A .GT. C .AND. A .GT. D

Invalid

X=.TRUE. (entity on the left must be logical)

ASSIGNMENT STATEMENTS

3.3 CHARACTER ASSIGNMENT STATEMENT

The character assignment statement assigns the value of a character

expression to a character variable, array element, or substring.

The character assignment statement has the form:

v= e

A character variable, array element, or substring.

A character expression.

If the length of the character expression is greater than the 1length

of the character variable, array element, or substring, the character

expression is truncated on the right.

If the length of the character expression is less than the length of

the character variable, array element, or substring, the character

expression is filled on the right with spaces.

The expression must be of character data type: you cannot assign a

numeric value to a character variable, array element, or substring.

Note that assigning a value to a character substring does not affect

character positions 1in the character variable or array element not
included in the substring. 1If a character position outside of the

substring has a value previously assigned, it remains unchanged; and
if the character position is undefined, it remains undefined.

Examples of valid and invalid character assignment statements follow.
(All wvariables and arrays in these examples are assumed to be of

character data type.)

valid

FILE = 'PROG2'

REVOL (1) = 'MARCIA'

LOCA(3:8) = 'PLANTS'

TEXT(I,J+1) (2:N-1) = 'NAMEX'

Invalid

'"ABC' = CHARS (element on the left must be a character variable,

array element, or substring reference)

CHARS = 25 (ixprission on the right must be of character data

ype

ASSIGNMENT STATEMENTS

ASSIGN

3.4 ASSIGNING STATEMENT LABELS

The ASSIGN statement assigns a statement label value to an integer

variable. The variable can then be wused to specify a transfer

destination in a subsequent assigned GO TO statement (see Section

4.1.3).

The ASSIGN statement has the form:

ASSIGN s TO v

A label of an executable statement or a FORMAT statement in the

same program unit as the ASSIGN statement.

An integer variable.

The ASSIGN statement assigns a statement label to a variable. The

ASSIGN statement 1is similar to an arithmetic assignment statement in

that it assigns a value to a variable, but differs in that the

variable becomes defined for use as a statement-label reference and

undefined as a variable; that is, the assigned value cannot be used

for output or arithmetic computations.

The statement label must refer to an executable statement or a FORMAT

statement in the same program unit.

The ASSIGN statement must be executed before the assigned GO TO

statement or statements in which the assigned variable is to be used

are executed. The ASSIGN statement and the assigned GO TO statements

must occur in the same program unit.

For example, the statement

ASSIGN 100 TO NUMBER

associates the wvariable NUMBER with the statement label 100;

arithmetic operations on the variable are now invalid. For example,

the variable NUMBER in the statement

NUMBER = NUMBER+1

is undefined and does not result in a value of 101 being stored in

NUMBER.

An associated variable can become defined again with an assignment

statement. For example, assigning NUMBER a value with an arithmetic

assignment statement as follows:

NUMBER=10

dissociates the variable from statement 100. The variable now has the

arithmetic wvalue 10 and can no longer be used in an assigned GO TO

statement, but can be used for output and arithmetic computations.

ASSIGNMENT STATEMENTS

Examples:

valid Invalid

ASSIGN 10 TO NSTART ASSIGN 250 TO ERROR (variable must be integer)

ASSIGN 99999 TO KSTOP

CHAPTER 4

CONTROL STATEMENTS

Statements are normally exected in the order in which they are

written. However, you may use control statements to transfer control

to another point within the same program unit or to another program

unit. You can also use control statements to govern iterative

processing, suspension of program execution, and program termination.

The control statements are as follows:

The foll

GO TO statement -- transfers control within a program unit

IF statement -- conditionally transfers control or

conditionally executes a statement

IF THEN, ELSE IF THEN, ELSE, and END IF statements --

conditionally execute blocks of statements

DO statement -- specifies iterative processing of a specified

group of statements a specified number of times.

CONTINUE statement -- transfers control to the next executable

statement

CALL statement -- transfers control to a subprogram

RETURN statement -- returns control from a subprogram to the

calling program unit

PAUSE statement -- temporarily suspends program execution

STOP statement -- terminates program execution

END statement ~-- marks the end of a program unit

owing sections describe these statements.

CONTROL STATEMENTS

GO TO

4.1 GO TO STATEMENTS

GO TO statements transfer control to a point within the program unit

containing the GO TO statement. The three types of GO TO statements

are:

e Unconditional

e Computed

® Assigned

4.1.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control ¢to the same

statement every time it is executed.

The unconditional GO TO statement has the form:

GO TO s

A statement label.

The statement identified by s must be an executable statement 1in the

same program unit as the GO TO statement.

Examples:

GO TO 7734

GO TO 99999

4.1.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement

specified by the value of an arithmetic expression.

The computed GO TO statement has the form:

GO TO (slist)[,] e

slist

A list, called the transfer 1list, of one or more 1labels of

executable statements, separated by commas.

An arithmetic expression whose value is in the range 1 to n,

where n is the number of statement labels in the transfer list.

CONTROL STATEMENTS

The computed GO TO statement evaluates e and, if necessary, converts

the result to integer data type. Control 1is transferred to the

statement label in position e in the transfer list.

If the value of e is less than 1 or greater than the number of labels

in the transfer list, control is transferred to the first executable

statement after the computed GO TO.

Examples:

GO TO (12,24,36),INDEX

Go TO (320,330,340,350,360), SITU(J,K)+1

In the first example, if INDEX has a value of 2, execution is

transferred to statement 24. In the second example, if SITU(J,K)+1

has a value of 3, execution is transferred to statement 340.

4.1.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement whose
label has been placed in a variable by an ASSIGN statement.

Therefore, the transfer destination may depend on the most recently
executed ASSIGN statement.

The assigned GO TO statement has the form:

GO TO v[[,](slist)]

An integer variable.

slist

A list of one or more labels of executable statements separated

by commas.

The assigned GO TO statement transfers control to the statement whose

label was most recently assigned to the variable v. (See Section 3.4

on the ASSIGN statement.)

The GO TO statement, the associated ASSIGN statement or statements,

and the statements to which control is transferred must be executable

statements in the same program unit. If slist is used, the assigned

value of v must be a member of slist.

In PDP-11 FORTRAN-77, if the statement label value of v is not present

in slist (if slist is specified), control is transferred to the next

executable statement following the assigned GO TO statement.

Examples of assigned GO TO statements are:

ASSIGN 200 TO IGO

GO TO IGO

(This example is equivalent to GO TO 200.)

ASSIGN 450 TO IBEG

GO TO IBEG, (300,450,1000,25)

(This example is equivalent to GO TO 450.)

CONTROL STATEMENTS

IF

4.2 IF STATEMENTS

An IF statement transfers control or executes a statement (or a block

of statements) if a specified condition is met. The three types of IF

statements are:

@ Arithmetic IF statement

e Logical IF statement

e Block IF statement

The decision to transfer control or to execute a statement is based on

the evaluation of an expression contained in the IF statement.

4.2,1 Arithmetic IF Statement

The arithmetic 1IF statement transfers control to one of three

statements, on the basis of the value of an arithmetic expression.

The arithmetic IF statement has the form:

IF (e) sl, s2, s3

e

An arithmetic expression.

sl,s2,s3

Labels of executable statements in the same program unit.

All three labels (sl,s2,s3) are required; however, they need not

refer to three different statements.

The arithmetic IF statement evaluates expression e. If e is less than

zero, control passes to label sl; 1if e is equal to zero, control

passes to label s2; if e is greater than zero, control passes to

label s3.

Some examples:

This statement transfers control to statement 50 if the real variable

THETA is less than or equal to the real variable CHI, to statement 100

if THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40,20

This statement transfers control to statement 40 if the value of the

integer variable NUMBER is even, to statement 20 if the value is odd.

4.2.2 Logical IF Statement

The logical IF statement conditionally executes a single FORTRAN

statement on the basis of the evaluation of a logical expression.

4-4

CONTROL STATEMENTS

The logical IF statement has the form:

IF (e) st

A logical expression.

st

A complete FORTRAN statement. The statement can be any

executable statement except a DO statement, an END statement, a

block IF statement, or another logical IF statement.

The logical IF statement first evaluates logical expression e. If the

value of the expression 1is true, statement st is executed. 1If the

value of the expression 1is false, control transfers to the next

executable statement after the 1logical IF, and statement st is not

executed. Note that e must yield a logical value.

Examples of logical IF statements:

IF (J .GT. 4 .OR. J .LT. 1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*(-1.5D0)

LOGICAL ENDRUN

IF (ENDRUN) CALL EXIT

4.2.3 Block IF Statements

Block IF statements conditionally execute blocks (or groups) of

statements.

The four block IF statements are:

e IF THEN

e ELSE IF THEN

e ELSE

e END IF

These statements are used 1in block IF constructs. The block IF

construct has the form:

IF (e) THEN

block

ELSE IF (e) THEN

block

ELSE

block

END IF

CONTROL STATEMENTS

A logical expression.

block

A sequence of zero or more <complete FORTRAN statements. This

sequence is called a statement block.

Figure 4-1 describes the flow of control for four examples of block IF

constructs.

Each block IF statement, except the END IF statement, has an

associated statement block. The statement block consists of all the
statements following the block IF statement up to (but not including)

the next block IF statement in the block IF construct. The statement
block is conditionally executed based on the values of logical

expressions in the preceding block IF statements.

The IF THEN statement begins a block IF construct. The block

following it is executed if the value of the logical expression in the

IF THEN statement is true.

The ELSE IF THEN statement is an optional statement within a block IF

construct that specifies a statement block to be executed if the
following conditions exist: The value of the 1logical expression in

the ELSE 1IF THEN statement is true, and no preceding statement block
in the block IF construct was executed. A block IF construct can

contain any number of ELSE IF THEN statements.

The ELSE statement 1is an optional statement within a block IF

construct that specifies a statement block to be executed if no

preceding statement block in the block IF construct was executed.

Except for the END IF statement, no block IF statement can follow the
ELSE statement.

The END IF statement terminates the block IF construct.

After the last statement in a statement block 1is executed, control

passes to the next executable statement following the END IF

statement. Consequently, only one statement block in a block IF

construct can be executed each time an IF THEN statement is executed.

ELSE IF THEN and ELSE statements can have statement labels, but these

labels cannot be referenced. The END IF statement c¢an have a

statement label to which control can be transferred, but control can
be transferred only from within the block IF construct.

Section 4.2.3.1 describes restrictions on statements in a statement

block. Section 4.2.3.2 describes examples of block IF constructs.

Section 4.2.3.3 describes nested block IF constructs.

4.2.3.1 Statement Blocks - A statement Dblock can contain any

executable FORTRAN statement except an END statement. You <can

transfer control out of a statement block, but you cannot transfer

control back into the block. You cannot transfer control from one
statement block to another. '

DO loops cannot partially overlap statement blocks. When a statement

block contains a DO statement, it must also contain the DO loop's
terminal statement, and vice versa. If you wuse DO 1loops with

statement blocks, each 1loop must be wholly contained within one
statement block.

CONTROL STATEMENTS

Construct Flow of Control

False

IF (e) THEN

block True
END IF

Execute

block

Te& False
e

IF(e}) THEN

block, True

block,

END IF

Execute Execute

blOCk1 blOCk2

IF (e,) THEN

Block,
ELSE IF (e;) THEN

block,

END IF

Execute Execute

block blocks,

IF (1) THEN -
blOCk1

ELSE IF (e;) THEN

blocky

ELSE IF (e3) THEN

blocks

ELSE

block
END IF 4 Execute Execute Execute Execute

block, block, block, block,

ZK-206-81

Figure 4-1: Examples of Block IF Constructs

CONTROL STATEMENTS

4.2.3.2 Block IF Examples - The simplest block IF construct

IF THEN and END IF statements;of the

executes one statement block.

Form

IF (e) THEN

block

consists

this construct conditionally

An example follows:

Example

IF (ABS(ADJU).GE.1.0E-6) THEN

TOTERR=TOTERR+ABS(ADJU)

QUEST=ADJU/FNDVAL

END IF END IF

The statement block consists of all the statements between the IF THEN

and the END IF statements.

The IF THEN statement

ABS (ADJU) .GE.1:0E-6. If

is executed. If the value of e is

next executable statement after

not executed.

first evaluates

the value of e is true,

logical expression e,

the statement block

false, control transfers to the

the END IF statement; the block is

The following example shows a block IF construct with an ELSE IF THEN

statement:

Form Example

IF (el) THEN IF (A .GT. B) THEN

blockl D =B

F=A-8B

ELSE IF (e2) THEN ELSZ IF (A .GT. B/2.) THEN

block?2 D = B/2.

END IF END IF

Blockl consists of all the statements between the IF THEN and the ELSE

IF THEN statements; block2 consists of all the statements between the

ELSE IF THEN and the END IF statements.

If A is greater than B blockl is executed.

If A is not greater than B but A is greater than B/2, block2 is

executed.

If A is not greater than B and A is not greater than B/2, neither

blockl nor block2 is executed; control transfers directly to the next

executable statement after the END IF statement.

The following example shows a block IF construct with an ELSE
statement:

Form Example

IF (e) THEN IF (NAME .LT. 'N') THEN
blockl IFRONT = IFRONT + 1

FRLET (IFRONT)=NAME (1:2)

ELSE ELSE

block?2 IBACK=IBACK + 1

END IF END IF

Blockl consists of all the statements between the IF THEN and ELSE

statements; block2 consists of all the statements between the ELSE
and the END IF statements.

If the value of the character variable NAME is less than 'N', blockl

is executed.

CONTROL STATEMENTS

If the value of NAME is greater than or equal to 'N', block2 is

executed. _

The following example shows a block IF construct with several ELSE IF

THEN statements and an ELSE statement:

Form Example

IF (el) THEN IF (A .GT. B) THEN

blockl D =B

F=A-B

ELSE IF (E2) THEN ELSE IF (A .GT. C) THEN

block2 D =C

F=A -2 _

ELSE IF (e3) THEN ELSE IF (A .GT. Z) THEN

block3 D =12

F=A-12

ELSE ELSE

block4 D = 0.0

F = A

END IF END IF

The above example contains four statement blocks. Each block consists
of all the statements between the block IF statements listed below.

Block Delimiting Block IF Statements

blockl IF THEN and first ELSE IF THEN

block?2 First ELSE IF THEN and second ELSE IF THEN

block3 Second ELSE IF THEN and ELSE

block4 ELSE and END IF

If A is greater than B, blockl is executed.

If A is not greater than B but is greater than C, block2 is executed.

If A is not greater than B or C but 1is greater than Z, block3 is

executed.

If A is not greater than B, C, or Z, block4 is executed.

4.2.3.3 Nested Block IF Consructs - A block IF construct can be

included 1in a statement block of another block IF construct. But the

nested block IF construct must be completely contained within a

statement block; it must not overlap statement blocks.

The following example contains a nested block IF construct:

Form Example

IF (e) THEN IF (A .LT. 100) THEN

INRAN=INRAN + 1

IF (e) THEN IF (ABS (A-AVG) .LE. 5.) THEN

- blocka INAVG = INAVG + 1

blockl ELSE ELSE

blockb OUTAVG = OUTAVG + 1

END IF END IF

ELSE ELSE,

block2 OUTRAN = OUTRAN + 1
END IF END IF

CONTROL STATEMENTS

If A is less than 100, blockl is executed. Blockl contains a nested

block IF construct. If the absolute value of A minus AVG is less than

or equal to 5, blocka is executed. If the absolute value of A nminus

AVG is greater than 5, blockb is executed. If A is greater than or

equal to 100, block2 is executed; the nested IF construct is not

executed because it is not in block2.

DO

4.3 DO STATEMENT

The DO statement specifies iterative processing of a sequence of

statements. The sequence of statements is called the range of the DO

statement, and the DO statement together with its range is called a DO

loop.

The DO statement has the form:

DO sf{,] v=el,e2[,e3]

s

The label of an executable statement. This executable statement

must physically follow the DO statement, in the same program

unit.

\Y

Usually an integer variable but may be a real or double-precision

variable.

el,e2,e3

Usually integer expressions but may be real or double-precision

expressions.

The variable v is called the control variable; el, e2, and e3 are the

initial, terminal, and increment parameters, respectively. If you
omit the increment parameter, a default increment value of 1 is used.

In FORTRAN-77, v can be a real or double-precision variable, and el,

e2, and e3 can be any arithmetic expressions. 1If necessary, evaluated

expressions are converted to the data type of the control variable

before they are used. If the data type of the control variable |is

real or double-precision, the number of iterations of the DO range

might not be what is expected because of the effects of floating-point
rounding.

The label s identifies the terminal statement of the DO 1loop. The

terminal statement must not be:

e A GO TO statement

e An arithmetic IF statement

e Any block IF statement

e An END statement

e A RETURN statement

@ A DO statement

CONTROL STATEMENTS

The range of the DO statement consists of all the statements that
follow the DO statement, up to and including the terminal statement.

The DO statement first evaluates the expressions el, e2, and e3 to
determine values for the initial, terminal, and increment parameters,
respectively. The value of the initial parameter is assigned to the
control wvariable. The executable statements in the range of the DO
loop are then executed repeatedly. The exact mechanism is explained
in Section 4.3.1.

The number of executions of the DO range, called the iteration count,
is given by:

[(e2 - el + e3)/e3]

where, letting X represent the above expression, [X] is the largest
integer whose magnitude does not exceed the magnitude of X and whose
sign is the same as the sign of X (for example, [-3.5] = =3). The
increment parameter, e3, cannot be zero.

If the iteration count is zero or negative, the body of the 1loop is
not executed. If the /NOF77 compiler qualifier is specified and the
iteration count is zero or negative, the body of the loop is executed
once,

4.3.1 DO Iteration Control

After each execution of the DO range, the following actions are taken:

1. The value of the increment parameter is algebraically added
to the control variable.

2. The iteration count is decremented by 1.

3. If the iteration count is greater than 0, control is
transferred to the first executable statement after the DO
statement, for another iteration of the range.

4. If the iteration count is 0, execution of the DO statement is
terminated.

You can also cause execution of a DO statement to be terminated by
using a statement within the range that transfers control outside the
loop. If «control 1is transferred outside the 1loop, the control
variable of the DO statement remains defined with its current value.

When execution of a DO loop terminates, but other DO loops share this
loop's terminal statement, control transfers outward to the next DO
loop in the nesting structure (see Section 4.3.2). If no other DO
loop shares a DO loop's terminal statement, or if a DO loop is
outermost, control transfers to the first executable statement after
the terminal statement.

You cannot alter the value of the control variable within the range of
the DO 1loop; however, you can reference it for purposes other than
altering it.

The range of a DO statement can contain other DO statements (nested DO
loops), as long as these DO statements meet certain requirements. See
Section 4.3.2.

You cannot transfer control into the range of a DO loop. Exceptions
to this rule are described in Sections 4.3.3 and 4.3.4.

CONTROL STATEMENTS

You can modify variables holding the initial, terminal, or increment

parameters within the loop without affecting the iteration count.

Examples of DO statements follow.

valid

DO 100 K=1,50,2

This statement specifies 25 iterations; K=49 during the final

iteration.

Do 350 J=50,-2,-2

This statement specifies 27 iterations; J=-2 during the final

iteration.

DO 25 IVAR=1,5

This statement specifies 5 1iterations; IVAR=5 during the final

iteration.

Invalid

DO NUMBER=5,40,4 (the statement label is missing)

DO 40 M=2.10 (a decimal point has been typed for a comma)

Note that in the last invalid example, the statement

DO40OM = 2,10

is an unintentionally valid arithmetic assignment statement.

4.3.2 Nested DO Loops

A DO loop can include one or more complete DO loops called nested DO

loops. The range of a nested DO loop must lie completely within the

range of the next outer loop. Nested loops can share a terminal

statement. Fiqure 4-2 illustrates nested loops.

Correctly Nested Incorrectly Nested

DO Loops DO Loops

— DO 45 K=1,10 DO 15 K=1,10

Dé 35 L=2,50,2 — Dé 25 L=1,20

li:35 CéNTINUE 15 CéNTINUE
Dé 45 M=1,20 N Dé 30 M=1,15

L 45 CONTINUE B
25 CONTINUE

L*30 CéNTINUE
Figure 4-2: Nested DO Loops

4-12

CONTROL STATEMENTS

4.3.3 Control Transfers in DO Loops

Within a nested DO loop, you can transfer control from an inner loop

to an outer loop; however, you cannot transfer control from an outer

loop to an inner loop.

If two or more nested DO loops share the same terminal statement, you

can transfer «control to this shared terminal statement only from

within the range of the innermost loop. Because this shared terminal

statement is part of the innermost loop, any transfer to it from an

outer loop is a transfer from an outer loop to an inner loop, and is

therefore invalid.

4.3.4 Extended Range

A DO loop has an extended range 1if a control statement transfers

control out of the 1loop and then, after execution of one or more

statements, another control statement returns control into the 1loop.

The range of this DO loop includes all executable statements between

the destination statement of the first transfer and the statement that

returns control to the loop.

The following rules govern the use of a DO statement with an extended

range:

e A transfer into the range of a DO statement is permitted only

from its extended range.

® Statements in the extended range must not change the control

variable.

Figure 4-3 illustrates valid and 1invalid extended range control

transfers.

vValid Invalid

Control Transfers Control Transfers

— DO 35 K=1,10 GO TO 20

DO 15 L=2,20 - DO 50 K=1,10

Gé TO 20 20 A;B+C

15 CONTINUE DO 35 L=2,20

20 A=B+C 30 D=E/F

- DO 35 M=],15 35 CONTINUE

GO TO 50 GO TO 40

DO 30 X=A*D DO 45 M=1,15

Loop . .

35 CONTINUE 40 X=A*D

: 45 CONTINUE
50 D=E/F .

Extended R | 50 CONTINUE

Range . .

GO TO 30

GO TO 30

Figure 4-3: Control Transfers and Extended Range

4-13

CONTROL STATEMENTS

CONTINUE

4.4 CONTINUE STATEMENT

The CONTINUE statement transfers control to the next executable

statement. It is primarily used as the terminal statement of a DO

loop that would otherwise end with a prohibited control statement such
as a GO TO or an arithmetic IF.

The CONTINUE statement has the form:

CONTINUE

CALL

4.5 CALL STATEMENT

The CALL statement executes a SUBROUTINE subprogram or other external

procedure. It can also specify an argument list for the subroutine.

(See Chapter 6 for detail on the definition and use of a subroutine).

The CALL statement has the following form:

CALL s[([all,[al]l...)]

s

The name of a SUBROUTINE subprogram or other external procedure,

or a dummy argument associated with a SUBROUTINE subprogram or

other external procedure.

a

An actual argument. (Section 6.1 describes actual arguments.)

If you specify an argument list, the CALL statement associates the
values in the 1list with the dummy arguments in the subroutine. It
then transfers control to the first executable statement of the

subroutine,

The arguments in the CALL statement must agree in number, order, and

data type with the dummy arguments in the subroutine. These arguments
can be variables, arrays, array elements, substring references,

constants, expressions, Hollerith constants, character constants, or

subprogram names. An unsubscripted array name in the argument list

refers to the entire array.

Examples of CALL statements are:

CALL CURVE (BASE,3.14159+X,Y,LIMIT,R(LT+2))

CALL PNTOUT (A,N,'ABCD')

CALL EXIT

CONTROL STATEMENTS

RETURN

4.6 RETURN STATEMENT

The RETURN statement is used to return control from a subprogram to
the calling program. It has the form:

RETURN

When a RETURN statement is executed in a function subprogram, control
is returned to the statement that contains the function reference (see
Chapter 6). When a RETURN statement 1is executed in a subroutine
subprogram, control 1is returned to the first executable statement
following the CALL statement.

RETURN statement example:

SUBROUTINE SIZCHK (N,K)

IF (N) 10,20,30

10 K=-1

RETURN

20 K=0

RETURN

30 K=+1

RETURN

END

PAUSE

4.7 PAUSE STATEMENT

The PAUSE statement temporarily suspends program execution and
displays a message on the terminal to permit you to take some action.

The PAUSE statement has the form:

PAUSE ([disp]

disp

An alphanumeric literal, a decimal digit string of one to five

digits, or an octal constant.

The disp argument is optional. The effect of a PAUSE statement

depends on how your program is being executed. If it is running as a

batch job, the contents of disp are written to the system output file,
and the program is not suspended.

If the program is running in interactive mode, the contents of disp

are displayed at your terminal, followed by a prompt sequence

indicating that the program is suspended. After you then enter the
proper control command, execution resumes with the first executable

statement following the PAUSE. The proper control command is specific

to the operating system (refer to the PDP-11 FORTRAN-77 User's Guide).

Some examples of PAUSE statements are:

PAUSE 999

PAUSE 'MOUNT NEXT TAPE'

" CONTROL STATEMENTS

STOP

4.8 STOP STATEMENT

The STOP statement terminates program execution and returns control to

the operating system.

The STOP statement has the form:

STOP [disp]

disp

A character constant, a decimal digit string of one to five

digits, or an octal constant.

The disp argument, if present, specifies a message to be displayed

when execution stops.

Examples of STOP statements are:

STOP 98

STOP 'END OF RUN'

STOP

END

4.9 END STATEMENT

The END statement marks the end of a program unit. It must be the

last source line of every program unit.

The END statement has the form:

END

The END statement must not occur on a continuation line and must not

itself be continued.

In a main program, if no STOP statement prevents execution from

reaching the END statement, program execution terminates; in a
subprogram, a RETURN statement is implicitly executed.

CHAPTER 5

SPECIFICATION STATEMENTS

Specification statements are nonexecutable statements that 1let you
allocate and initialize variables and arrays, and define other

characteristics of the symbolic names used in the program.

The specification statements are:

e IMPLICIT statement -- specifies the implied data type of

symbolic names

e Type declaration statement -- explicitly declares the data

type of specified symbolic names

e DIMENSION statement -- declares the number of dimensions in an

array, and the number of elements in each dimension

e COMMON statement -- reserves one or more contiguous areas of

storage

e VIRTUAL statement -- reserves space for one or more arrays to

be located outside normal program storage

e EQUIVALENCE statement -- associates the same storage 1location

with two or more entities

e OAVE statement -- retains the definition status of an entity

after execution of a RETURN statement in a subprogram

e EXTERNAL statement -- declares the specified symbolic names to

be external procedure names

e INTRINSIC statement -- declares one or more symbolic names to

be FORTRAN intrinsic functions

e DATA statement -- assigns initial values to variables, arrays,

and array elements before program execution

e PARAMETER statement -- assigns a symbolic name to a constant

value

e PROGRAM statement -- assigns a symbolic name to a main program

unit

® BLOCK DATA statement -- establishes a BLOCK DATA program unit

in which initial values may be assigned to entities contained

in common blocks

The following sections describe these statements.

SPECIFICATION STATEMENTS

IMPLICIT

5.1 IMPLICIT STATEMENT

The IMPLICIT statement permits you to change the default data-typing
rules. By default, all names beginning with the letters I through N

are interpreted to be of integer data type, and all names beginning

with any other letter are interpreted to be of real data type; the

IMPLICIT statement allows you to alter these interpretations.

The IMPLICIT statement has the form:

IMPLICIT typ(al,al...)[,typ(al,al...)]...

typ

One of the data-type specifiers. (See Table 2-2.)

An alphabetic specification in one of two forms: ¢ or cl-c2,

where ¢ is an alphabetic character. The cl-c2 form specifies a

range of letters (from ¢l through <¢2), that must occur in

alphabetical order.

The IMPLICIT statement assigns the specified data type to all symbolic
names that begin with any of the specified letters and that have no

explicit data-type declaration. Explicit declarations take precedence

over implicit declarations.

The IMPLICIT statement also affects symbolic names defined in a

PARAMETER statement (see Section 5.11).

For example, the statements

IMPLICIT INTEGER (I,J,K,L,M,N)

IMPLICIT REAL (A-H, 0O-Z)

specify the default in the absence of any explicit statement.

IMPLICIT statements must precede all other specification statements

except PARAMETER statements, and they must precede all executable

statements.

You can use the IMPLICIT statement to set a default 1length for the

character data type; simply specify typ as CHARACTER*len, where len
is the default length. Typ must be an unsigned integer constant or a

positive integer constant in parentheses, in the range 1 through 255.

Any data type can be specified in an IMPLICIT statement, as the

following examples demonstrate:

IMPLICIT DOUBLE PRECISION (D)

IMPLICIT COMPLEX (S,Y), LOGICAL*1 (L,A-C)

SPECIFICATION STATEMENTS

TYPE DECLARATION

5.2 TYPE DECLARATION STATEMENTS

Type declaration statements explicitly define the data type of

specified symbolic names. There are two forms of type declaration

statements: numeric type declarations (see Section 5.2.1) and

character type declarations (see Section 5.2.2).

The following rules apply to type declaration statements:

e Type declaration statements must precede all executable

statements.

e The data type of a symbolic name can be declared only once.

e You can use a type declaration statement to declare an array

by appending an array declarator (see Section 2.5.1) to an

array name.

5.2.1 Numeric Type Declaration Statements

The numeric type declaration statement has the form:

typ v([,v]

typ

Any data type specifier (see Table 2-2) except CHARACTER

The symbolic name of a wvariable, array, statement function,

function subprogram, or an array declarator.

A symbolic name can be followed by a data-type length specifier of the

form *s, where s is one of the acceptable lengths for the data type

being declared (see Table 2-2). ©Such a specification overrides the

length attribute that the statement implies, and assigns a new length

to the specified item. If you specify both a data-type 1length

specifier and an array declarator, the data type length specifier goes

first. Examples of type declaration statements are:

INTEGER COUNT, MATRIX(4,4), SUM

REAL MAN, IABS

LOGICAL SWITCH

INTEGER*2 Q, M12%*4, IVEC*4(10)

REAL*8 WX1l, WX3*4, WXS5, WX6*8

5~3

SPECIFICATION STATEMENTS

5.2.2 Character Type Declaration Statements

Character type declaration statements have the form:

CHARACTER[*1len[,]] v[*len][,v[*1len]]...

v

The symbolic name of a constant, variable, array, or array

declarator. (You cannot declare a function subprogram, a
statement function, or a virtual-array name to be of character

data type.)

len

An unsigned integer constant or an integer-constant expression

enclosed 1in parentheses. The value of len specifies the length
of the character data elements.

If you specify CHARACTER*len, len becomes the default length

specification for the specified list., If an item in this list does

not have its own length specification, the item's 1length is len.
However, if an item does have 1its own length specification, this

specification overrides the default length specified in CHARACTER*len.

If you do not specify a length, a length of 1 is assumed. The 1length

specification must be in the range 1 to 255; a length specification
of zero 1is 1invalid. You can use a character type declaration

statement to define arrays by including array declarators (see Section

2.5.1) in the list. If you specify both an array declarator and a

length, the array declarator goes first (the reverse of the rule for
numeric type declarations).

Examples of character type declaration statements follow:

CHARACTER*32 NAMES (100), SOCSEC (100)*9, NAMETY*10

This statement specifies an array NAMES comprising one hundred

32-character elements, an array SOCSEC comprising one hundred
9-character elements, and a variable NAMETY, which 1is 10 characters
long.

PARAMETER (LENGTH=4)

CHARACTER®* (4+LENGTH) LAST, FIRST

The latter statement specifies two 8-character wvariables, LAST and

FIRST. (The PARAMETER statement is described in Section 5.11.)

CHARACTER LETTER(26)

This statement specifies an array LETTER comprising twenty-six

l-character elements.

CHARACTER*16 BIGCHR*(30000*2) ,QUEST*(5*INT (A))

This statement is invalid; the value specified for BIGCHR 1is too
large, and the length specifier for QUEST is not an integer constant

expression.

SPECIFICATION STATEMENTS

DIMENSION

5.3 DIMENSION STATEMENT

The DIMENSION statement specifies the number of dimensions in an array
and the number of elements in each dimension.

The DIMENSION statement has the form:

DIMENSION a(d)[,a(d)]...

a(d)

An array declarator (see Section 2.5.1).

a

The symbolic name of an array.

d

A dimension declarator.

The DIMENSION statement allocates one storage element to each element

in each dimension of an array. The data type of the array determines

the length of the storage element.

The total number of storage elements assigned to an array is equal to

the product of the array's individual dimension declarators. For

example, the statement

DIMENSION ARRAY (4,4), MATRIX(5,5,5)

defines ARRAY as having 16 (4x4) real elements of 4 bytes each and

defines MATRIX as having 125 (5x5x5) integer elements of 2 bytes each.

In addition to DIMENSION statements, you can use array declarators in

type declaration, COMMON, and VIRTUAL statements. However, within a

program unit, you can use an array name in only one array declarator.

Examples of DIMENSION statements are:

DIMENSION BUD(12,24,10)

DIMENSION X(5,5,5),Y(4,85),2(100)

DIMENSION MARK(4,4,4,4)

For further information on arrays and on storing array elements, see

Section 2.5.

SPECIFICATION STATEMENTS

COMMON

5.4 COMMON STATEMENT

A COMMON statement reserves one or more contiguous blocks of storage.

A symbolic name is used to identify each contiguous block; however,

you can omit a symbolic name for a blank common block in a program

unit, COMMON statements also specify the order of variables and

arrays in each common block.

The COMMON statement has the form:

COMMON [/[cb]l/] nlist[[,]1/[cb]l/ nlist]...

cb

A symbolic name, called a common block name; <c¢b can be blank.

(If the first c¢cb 1is blank, you can omit the first pair of

slashes.)

nlist

A list of variable names, array names, and array declarators

separated by commas. (You cannot use a virtual-array name in a

COMMON statement.)

A common block can have the same name as a variable or an array in the

same executable program. However, it cannot have the same name as a

function, subroutine, or entry in the same executable program (see

Section 2.1).

When common blocks having the same name but 1located 1in separate

programs are made part of the same executable program, the individual

names become associated with the same storage area. Consider the

following example:

PROGRAM MAIN

COMMON/BLOCK1/ICOUN, IHOL/BLOCK2/ICHK (10)

CALL GSUB

END

SUBROUTINE GSUB

COMMON/BLOCK2/JCHK(10) /BLOCK1/JCOUN, JHOL

END

In this example, BLOCK1l in MAIN and BLOCKl in GSUB are associated with

the same storage area; likewise, the two BLOCK2s are associated with

a single storage area.

You can have only one blank common block in an executable program, but

you can have up to 250 named common blocks.

SPECIFICATION STATEMENTS

Entities are assigned storage in common blocks on a one-for-one basis.
In the above example, ICOUN and JCOUN are associated with the same
storage space in BLOCKl, because each entity occurs first in its

respective list.

Entities placed in a one-to-one correspondence in the same common
block should agree in data type. For example, if one program unit
contains the statement

COMMON CENTS

and another program unit contains the statement

INTEGER*2 MONEY

COMMON MONEY

incorrect results may occur when these program units are combined,
because the 2-byte integer variable MONEY is made to correspond to the
high-order 2 bytes of the real variable CENTS.

You must not assign LOGICAL*1 (BYTE) or character variables or arrays

to a common block in such a way that subsequent data of any other type
is allocated on an odd byte boundary. The compiler supplies no filler
space for common blocks; however, all common blocks are begun on a

word (even byte) boundary. In addition, you must not mix character

and numeric data in COMMON blocks: The data in a COMMON block must be
entirely of numeric data type or entirely of character data type.

Examples of COMMON statements follow.

Main Program Subprogram

COMMON HEAT,X/BLK1/KILO,Q SUBROUTINE FIGURE

. COMMON /BLK1/LIMA,R/ /ALFA,BET

CALL FIGURE .

. RETURN

. END

The COMMON statement in the main program puts HEAT and X in a blank
common block, and puts KILO and Q in a named common block, BLKl. The

COMMON statement in the subroutine makes ALFA and BET correspond to
HEAT and X in the blank common block, and makes LIMA and R correspond

to KILO and Q in BLK1.

valid Invalid

INTEGER CHARS (9) CHARACTER CHARS (9)

COMMON/STRING/ILEN, CHARS COMMON/STRING/CHARS, ILEN

In this example, the integer variable ILEN is allocated on the same

block as a character variable.

BYTE BO,Bl

COMMON/STRING/BO, ILEN,B1

In this example, the integer variable ILEN is allocated on an odd byte

address.

SPECIFICATION STATEMENTS

VIRTUAL

5.5 VIRTUAL STATEMENT

A virtual array is an array whose storage 1is allocated in physical

main memory outside of the program's directly addressable main memory.

The use of virtual arrays in a program frees directly addressable

memory for executable code and other data storage.

The VIRTUAL statement names a virtual array and specifies the number

of dimensions and the number of elements in each dimension. The

VIRTUAL statement has the form:

VIRTUAL a(d) [,a(d)]...

a(d)

An array declarator (see Section 2.5.1).

a

The symbolic name of an array.

d

A dimension declarator.

The maximum total directly addra2ssable memory available to user

programs executing on a computer in the PDP-1l1 family is 64K, or

65,536 bytes. In light of the allowable sizes of PDP-11 FORTRAN-77

arrays, it is easy to see how quickly directly addressable main memory

can be used up. A numeric array, for instance, can have a maximum of

32,767 elements of from 1 to 8 bytes in length. Therefore, a maximum

LOGICAL*]1 array of 1 byte per element would require 32,767 bytes of

storage space, and a maximum COMPLEX array of 8 bytes per element

would require 262,136 bytes of storage space, a requirement far beyond

the 64K limit on directly addressable memory.

NOTE

Virtual arrays are not supported on

RSTS/E operating systems.

The data type of a virtual array is specified in the same way that the

data type of any other array is specified, that is, either implicitly

by the first letter of the name, or explicitly, by a type declaration

statement.

An example of a VIRTUAL statement follows:

VIRTUAL A(1000), LARG(180,180), Mult (4,4,4,4,4,4,4)

This statement defines a one-dimensional array named A of 1000

elements, a two-dimensional array named LARG of 32400 elements, and a

SPECIFICATION STATEMENTS

seven-dimensional array named MULT of 16384 elements. These arrays
are placed in external main memory and therefore do not significantly

diminish the 64K of directly addressable memory.

For further information concerning arrays and their storage, see

Section 2.5.

5.5.1 Restrictions on Using Virtual Arrays

Virtual arrays and virtual array elements are subject to the following

limitations:

A virtual array name must not be used in a COMMON statement

(see Section 5.4).

The name of a virtual array or virtual array element must not

be used in an EQUIVALENCE statement (see Section 5.6).

A virtual array or virtual array element cannot be assigned an

initial value by a DATA statement (see Section 5.10).

Virtual arrays cannot be used to contain run-time format

specifications (see Section 8.6). The name of a virtual array

or virtual array element must not appear as a format specifier

in an I/0 statement.

The name of a virtual array or virtual array element must not

be specified as the buffer argument (third argument inside

parentheses) of an ENCODE or DECODE statement (see Section
Anl) [

The name of a virtual array element must not be used as an

actual argument to a subprogram if the subprogram assigns a

value to the corresponding dummy argument (see Section 6.1).

The name of a virtual array or virtual array element cannot be

used to specify the FILE keyword in an OPEN statement (see

Section 9.1.10).

The name of a virtual array cannot be used to specify a key

expression in a keyed I/0 statement.

A virtual array name must not be of data type character.

Below are examples of valid and invalid use of virtual arrays:

10

valid

VIRTUAL A(1000),B(2000)

READ (1,*) A

DO 10,I=1,1000

B(I)=-A(I)*2

WRITE (2,*) (A(I),I=1,1000)

CALL SUB (A,B)

SPECIFICATION STATEMENTS

Invalid

VIRTUAL A(10)

CHARACTER A (declared as type character)

DATA A(l1)/2.5/ (used in DATA statement)

COMMON /X/ A (used in COMMON statement)

EQUIVALENCE (A(1l),Y) (used in EQUIVALENCE statement)
WRITE (1,A) X,Y (used as format specifier)

ENCODE (4,100,A(3)) X,Y (used as ENCODE output buffer)

5.5.2 Virtual Array References in Subprograms

A dummy argument that is the name of a wvirtual array can become

associated with an actual argument that is also the name of a virtual

array.

An actual argument that is a reference to a virtual array element can

become associated only with a dummy argument that is a simple variable

(see Section 2.4). 1In effect, an actual argument that is a wvirtual

array element is treated as if it were an expression.

Furthermore, a value must be assigned to a virtual array element

before this element is used as an actual argument and the subprogram

must not alter the value of the corresponding dummy argument.

Below are examples of valid and invalid virtual array references in
subprograms:

Valid Usage

VIRTUAL A(1000),B(1000)

B(3)=0.5

CALL SCALE (A,1000,B(3))

END

SUBROUTINE SCALE (X,N,W)

VIRTUAL X (N)

5=0

po 10, I=1,N

10 S=S+X(I)*W

TYPE *,S

END

Invalid Usage

VIRTUAL A(1000)

REAL B(4000)

CALL ABC(A,B,A(3))

END

SUBROUTINE ABC(X,Y,2)

REAL X (1000) (actual argument is virtual)
VIRTUAL Y (4000) (actual argument is nonvirtual)

Z=2.3 (actual argument is virtual array

END element)

SPECIFICATION STATEMENTS

EQUIVALENCE

5.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement partially or totally associates two or more
entities in the same program unit with the same storage location.

The EQUIVALENCE statement has the form:

EQUIVALENCE (nlist) [,(nlist)]...

nlist

A 1list of variables, array elements, arrays, or character
substring references, separated by commas. You must specify at
least two of these entities in each list.

The EQUIVALENCE statement allocates storage that begins at the same
location to all of the entities in its list.

In an EQUIVALENCE statement, each expression in a subscript or

substring reference must be an integer constant or integer constant
expression.

Dummy arguments, virtual arrays, and virtual array elements may not be
used in an EQUIVALENCE statement.

The entities in nlist must be either entirely of numeric data type or
entirely of character data type: you cannot make numeric entities and
character entities equivalent.

You must not equivalence LOGICAL*1 arrays with other elements in such

a way that subsequent data of any other type is allocated on an odd

byte boundary.

An array name used in an EQUIVALENCE statement refers to the first

element of the array.

You can equivalence variables of different numeric data types; that

is, you can store them such that each entity begins at the same

address. Furthermore, you can store multiple components of one data
type with a single component of a higher-ranked data type. For

example, if you make an integer variable equivalent to a complex

variable, the integer variable shares storage with the real part of

the complex variable.

Examples of valid and invalid EQUIVALENCE statements are:

valid

DOUBLE PRECISION DVAR

INTEGER*2 IARR(4)

EQUIVALENCE (DVAR,IARR(1))

This EQUIVALENCE statement makes the four elements of the integer

array IARR occupy the same storage as the double-precision variable

DVAR.

CHARACTER KEY*16, STAR*10

EQUIVALENCE (KEY,STAR)

5-11

SPECIFICATION STATEMENTS

This EQUIVALENCE statement makes the first character of the character

variables KEY and STAR share the same storage location. The character

variable STAR is equivalent to the substring KEY (1:10).

Invalid

LOGICAL*1 BYTES(10)

EQUIVALENCE (ILEN, BYTES(8))

In the above example, the integer variable ILEN is allocated on an odd

byte address.

5.6.1 Making Arrays Equivalent

When you make an element of one array equivalent to an element of

another array, the EQUIVALENCE statement also sets equivalences

between corresponding elements of the two arrays. Therefore, 1f the

first elements of two equal-sized arrays are made equivalent, both

arrays share the same storage space. And, for example, if the third

element of a 7-element array is made equivalent to the first element

of another array, the last five elements of the first array overlap

the first five elements of the second array.

You must not use the EQUIVALENCE statement to assign the same storage

location to two or more elements of the same array. You also must not

attempt to assign memory locations in a way that is inconsistent with

the normal linear storage of array elements. For example, you cannot

make the first element of one arrav equivalent to the first element of

another array and then attempt to set an equivalence between the

second element of the first array and the sixth element of the other

array.

Some examples of the use of the EQUIVALENCE statement follow:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE (TABLE(2,2), TRIPLE(1,2,2))

As a result of these statements, the entire array TABLE shares part of

the storage space allocated to array TRIPLE. Figure 5-1 shows how

these statements align the arrays.

Array TRIPLE Array TABLE

Array Element Array Element

Element Number Element Number

TRIPLE (1,1,1)

TRIPLE(2,1,1)

TRIPLE (1,2,1)

TRIPLE(2,2,1)

TRIPLE(1,1,2)

TRIPLE (2,1,2)

TRIPLE (1,2,2)

TRIPLE (2,2,2)

TABLE (1,1)

TABLE (2,1)

TABLE(1, 2)

TABLE (2,2)

O
C
~
J
a
u
n

b

W
N

W

N

Figure 5-1: Equivalence of Array Storage

SPECIFICATION STATEMENTS

Each of the following statements also aligns the two arrays as shown

in Figure 5-1:

EQUIVALENCE (TABLE,TRIPLE(2,2,1))

EQUIVALENCE (TRIPLE(1,1,2), TABLE(2,1))

You can identify an array element in an EQUIVALENCE statement with a

single subscript (that 1is, with the 1linear element number), even

though the array is multidimensional. For example, the following

statement aligns arrays TRIPLE and TABLE as they are aligned in Figure

5-1:

EQUIVALENCE (TABLE(4), TRIPLE(7))

Similarly, you can make arrays equivalent with nonunity lower bounds.

For example, an array defined as A(2:3,4) is a sequence of eight

values. A reference to A(2,2) refers to the third element in the
sequence, To make array A(2:3,4) share storage with array B(2:4,4),

you can use the statement ‘

EQUIVALENCE (A(3,4), B(2,4))

The whole of array A now shares part of the storage space allocated to

array B. Figure 5-2 shows how the above statement aligns the arrays.

Array B Array A

Array Element Array Element

Element Number Element Number

B(2,1) 1

B(3,1) 2

B(4,1) 3 A(2,1) 1

B(2,2) 4 A(3,1) 2

B(3,2) 5 A(2,2) 3
B(4,2) 6 A(3,2) 4

B(2,3) 7 A(2,3) 5
B(3,3) 8 A(3,3) 6

B(4,3) 9 A(2,4) 7

B(2,4) 10 A(3,4) 8

B(3,4) 11

B(4,4) 12

Figure 5-2: Equivalence of Arrays with Nonunity Lower Bounds

5.6.2 Making Substrings Equivalent

When you make one character substring equivalent to another character

substring, the EQUIVALENCE statement also sets equivalences between

the other corresponding characters in the character entities.

For example, as a result of statements

CHARACTER NAME*16, ID*9

EQUIVALENCE (NAME (10:13), ID(2:5))

the character variables NAME and ID share space as illustrated in

Figure 5-3.

SPECIFICATION STATEMENTS

The following statement also aligns arrays NAME and ID as they are

aligned in Figure 5-3:

EQUIVALENCE (NAME(9:9),ID(1:1))

If the character substring references are array elements, the
EQUIVALENCE statement sets equivalences between the other

corresponding characters in the complete arrays.

Character elements of arrays can overlap at any character ©position.

For example, as a result of statements

CHARACTER FIELDS(100)*4, STAR(5)*5

EQUIVALENCE (FIELDS(l) (2:4), STAR(2) (3:5))

the character arrays FIELDS and STAR share storage space as shown in

Figure 5-4.

NAME

Character

Position

1

2

3

4

5

6

7 ID

Character

8 Position

9

-

10

11

12

13

14

15

16

o
l
j
l
o
|
l
~
N
j
]
O
O
]
j
O
]
I
s
»
x
]
l
W
I
M
N

ZK-207-81

Figqure 5-3: Equivalence of Substrings

You cannot use the EQUIVALENCE statement to assign the same storage

location to two or more substrings that start at different character

positions in the same character variable or character array.

You also cannot use the EQUIVALENCE statement to assign memory

locations in a way that is inconsistent with the normal linear storage

of character variables and arrays.

The following statements also align the arrays as shown in Figure 5-2:

EQUIVALENCE (A,B(4,1))

EQUIVALENCE (B(3,2), A(2,2))

SPECIFICATION STATEMENTS

STAR

Character

Position Subscript

1 1

2

3

FIELDS :

Subscript C;:sriaticc}r?r 1 2
1 1 2

2 3

3 4

4 5

2 1 1 3

2 2

3 3

4 4

3 1 5

2 1 4

3 2

4 3

4 1 4

2 5

3 1 5

4 2

5 1 3

2 4

3 5

4

6 1

2

3

4

7 1

2

AAYA

100 1

2

3

4

ZK-208-81

Figure 5-4: Equivalence of Character Arrays

5-15

SPECIFICATION STATEMENTS

5.6.3 Extending Common Blocks

When you make entities equivalent to entities stored in a common

block, the common block can be extended beyond its original boundaries

to include the entities specified in the EQUIVALENCE statement.

However, you can extend the common block in only one direction, That
is, you can only extend it beyond the last element of the previously

established common block. You cannot place the extended portion

before the first element of the existing common block. The following

examples show valid and invalid extensions of the common block:

valid

DIMENSION A(4),B(6) A(l)]| A(2) | A(3) | A(4)

COMMON A

EQUIVALENCE (A(2),B(1)) B(1) | B(2) | B(3) | B(4) | B(5) | B(6)

. __J\ J
T NS

Existing Extended

Common Portion

Invalid

DIMENSION A(4),B(6) A(l) | A(2) | A(3)| A(4)

COMMON A

EQUIVALENCE (A(2),B(3)) B(1)| B(2)| B(3)| B(4)| B(5) | B(6)

e —— D N

Extended Existing Common Extended

Portion Portion

If you assign two entities to common blocks, you cannot make them

equivalent to each other.

SAVE

5.7 SAVE STATEMENT

The SAVE statement retains the definition status of an entity after

execution of a RETURN or END statement in a subprogram.

The SAVE statement has the form:

SAVE [a[,al...]

A unique common-block name (preceded and followed by a slash), a

variable name, or an array name.

Dummy argument names, procedure names, and names of entities contained

in common blocks must not appear in a SAVE statement. If you violate

these restrictions, a multiple definition of the name wused illegally

occurs.

An entity contained in a common block specified in a SAVE statement

does not become undefined upon execution of a RETURN or END statement

contained in the same program unit. However, it may become undefined

(or redefined) in another program unit.

SPECIFICATION STATEMENTS

Because a variable, an array element, or a common block contained in
one overlay segment can become undefined when this segment is replaced
by another overlay segment, the SAVE statement can be especially
useful in overlaid programs. To retain the definition of an entity
when you are using overlays, you can simply specify that entity in a
SAVE statement, within the proper program unit.

A SAVE statement that does not explicitly contain a list is treated as
though it contained a list consisting of all allowable items in the
program unit in which the SAVE statement resides.

If a common block name is specified in a SAVE statement within a
subprogram of an executable program, this common block name must be
specified in a SAVE statement in every subprogram in which the common
block appears.

The following example demonstrates use of the SAVE statement:

DIMENSION A(100)

COMMON /CMN2/B(100),C,D(50)

SAVE A,/CMN2/,E

The SAVE statement in this example preserves the current definitions
of the array A, the named common block CMN2, and the local variable E.

EXTERNAL

5.8 EXTERNAL STATEMENT

The EXTERNAL statement allows you to use external subprogram names as
arguments to other subprograms.

The subprograms to be used as arguments can never be FORTRAN intrinsic
functions; they can only be user-supplied functions and subroutines.
The INTRINSIC statement discussed in Section 5.9 allows intrinsic
function names to be used as arguments.

The EXTERNAL statement has the form:

EXTERNAL v([,v]...

The symbolic name of user-supplied subprogram, or the name of a
dummy argument associated with the name of a subprogram.

The EXTERNAL statement declares each symbolic name included in it to
be the name of an external procedure. This name can then be used as
an actual argument to a subprogram that can use the corresponding
dummy argument in a function reference or a CALL statement.

Note that a complete function reference used as an argument -- FUNC(B)
in CALL SUBR (A, FUNC(B), C), for example -- represents a value, not a
subprogram. A complete function reference is not, therefore, defined
in an EXTERNAL statement.

The interpretation of the EXTERNAL statement described above is
different from that of earlier versions of DIGITAL FORTRAN. See
Appendix A for the earlier interpretation.

SPECIFICATION STATEMENTS

INTRINSIC

5.9 INTRINSIC STATEMENT

The INTRINSIC statement allows you to use intrinsic function names as

arguments to subprograms. Section C.3 contains the names and

descriptions of the individual PDP-11 FORTRAN-77 intrinsic functions;

for further information on intrinsic functions, see Chapter 6.

The INTRINSIC statement has the form:

INTRINSIC v[,v]...

The symbolic name of an intrinsic function.

The INTRINSIC statement declares a symbolic name the name of an

intrinsic procedure. This symbolic name can then be passed as an

actual argument to a subprogram, which can wuse it in a function

reference or a CALL statement.

An example of the use of the INTRINSIC statement follows:

Main Program

EXTERNAL CTN

INTRINSIC SIN, COS

CALL TRIG (ANGLE, SIN, SINE)

CALL TRIG (ANGLE, COS, COSINE)

CALL TRIG (ANGLE, CTN, COTANGENT)

Subprograms

SUBROUTINE TRIG (X,F,Y)

Y=F (X)

RETURN

END

FUNCTION CTN(X)

CTN=COS (X)/SIN (X)

RETURN

END

5-18

SPECIFICATION STATEMENTS

In this example, when TRIG is called with a second argument of SIN or
CO0Ss, the function reference F(X) references the FORTRAN library
functions SIN and COS; but when TRIG is called with a second argument
of CTN, F(X) references the user function CTN.

DATA

5.10 DATA STATEMENT

The DATA statement assigns initial values to variables, arrays, and
array elements before program execution.

The DATA statement has the form:

DATA nlist/clist/[[,]lnlist/clist/]...

nlist

A list of one or more variable names, array names, array element
names, or character substring names, separated by commas.
Subscript expressions and expressions in substring references
must be integer expressions containing integer constants.

clist

A list of constants, separated by commas, to be assigned to
nlist. Clist constants have one of the following forms:

val

n * val

The number of times the same value 1is to be assigned to
successive entities 1in the associated nlist. The value of n
is a nonzero, unsigned integer constant or the symbolic name
of an integer constant.

Subscript expressions and constant values may be integer constant
expressions.

The DATA statement assigns the constant values in each «clist to the

entities in the preceding nlist. Values are assigned in the order

they appear, from left to right.

The number of constants must correspond exactly to the number of

entities in the preceding nlist.

When an unsubscripted array name appears in a DATA statement, values

are assigned to every element of that array. The associated constant

list must therefore contain enough values to £ill the array. Array
elements are filled in the order of subscript progression.

If both the constant value in the clist and the entity in the nlist

have numeric data types, the conversion is based on the following

rules:

e The constant value is converted, if necessary, to the data

type of the variable being initialized.

5-19

SPECIFICATION STATEMENTS

e When an octal or hexadecimal constant 1is assigned to a

variable or array element, the number of digits that can be
assigned depends on the data type of the component. If the

constant contains fewer digits than the capacity of the
variable or array element, the constant 1is extended on the

left with =zeroes. 1If the constant contains more digits than
can be stored, the constant is truncated on the left.

e When a Hollerith or character constant is assigned ¢to a
numeric variable or numeric array element, the number of

characters that can be assigned depends on the data type of
the component (see Table 2-2). If the Hollerith or character

constant contains fewer characters than the capacity of the
variable or array element, the constant is extended on the

right with spaces. 1If the constant contains more characters

than can be stored, the constant is truncated on the right.

If the constant value in the clist and the entity in the nlist are

both <character data type, the conversion is based on the following

rules:

e If the constant contains fewer bytes than the 1length of the

entity, the rightmost character positions of the entity are

initialized with spaces.

e If the constant contains more bytes than the 1length of the

entity, the character constant is truncated on the right.

If the constant value is numeric data type and the entity in the nlist

is character data type, the constant and the entity must conform to
these restrictions:

e The character entity must have a lengthof one character.

e The constant must be an integer, octal, or hexadecimal

constant and must have a value in the range 0 through 255.

When the constant and the entity conform to these restrictions, the

entity 1is initialized with the character that has the ASCII code

specified by the constant; a character entity, then, can be

initialized to any 8-bit ASCII code.

Dummy arguments, virtual arrays, and virtual array elements may not be
initialized in DATA statements.

In the example

INTEGER A(10)

BYTE BELL,TAB,LF,FF,ACHR,ZCHR

DATA A, BELL,TAB,LF,FF,ACHR,ZCHR /10%*0,7,9,10,12,'A"',1HZ/

the DATA statement assigns 0 to all 10 elements of array A, and ASCII

control <character codes to byte variables BELL, TAB, LF, and FF. It

assigns values 'A' and lHZ to ACHR and ZCHR, respectively.

Some other examples of the DATA statement are included 1in the

following segment:

CHARACTER*4 STRING

REAL X (5)

COMPLEX Z

DATA X/2*-3.,4.,2*0.37/,2/(1.0,-3.0)/

DATA STRING/'ABCD'/

SPECIFICATION STATEMENTS

PARAMETER

5.11 PARAMETER STATEMENT

The PARAMETER statement assigns a symbolic name to a constant.

The PARAMETER statement has the form:

PARAMETER (p=c[,p=cl...)

A symbolic name.

Any valid FORTRAN constant, the symbolic name of any wvalid
FORTRAN constant, or an integer expression.

Each symbolic name ina PARAMETER statement becomes a constant and is
defined to be the value to which it is equated.

The data type of a symbolic name defined to be a constant is
determined by the same implicit-typing rules that determine the data
type of any other symbolic name, or by a preceding type declaration.
Therefore, MU=1.23 in a PARAMETER statement is interpreted as MU=1,
unless the PARAMETER statement is preceded by an appropriate type
declaration or IMPLICIT statement (for example, REAL*8 MU).

Once a symbolic name is defined to be a constant, it can appear any
place in a program that an ordinary constant can appear. The effect
of using a symbolic name defined to be a constant is that of using the
constant itself,.

The symbolic name of a constant cannot appear as part of another
constant; however, it can appear as either the real or imaginary part
of a complex constant.

You can use a symbolic name defined to be a constant only within the
program unit containing PARAMETER statement that defined it. Also, a
symbolic name can be defined only once within the same program unit.

The form and the interpretation of the PARAMETER statement described
above are different from the form and interpretation of the PARAMETER
statement provided in earlier versions of DIGITAL FORTRAN. However,
PDP-11 FORTRAN-77 provides both the FORTRAN-77 and the earlier form of
the PARAMETER statement; see Appendix A for information on the
earlier form and interpretation.

The following sequence demonstrates the use of the FORTRAN-77
PARAMETER statement:

INTEGER BYTS1Z, WRDS12Z

REAL*4 PI

REAL*8 DPI

LOGICAL FLAG

CHARACTER*25 LONGNAME

PARAMETER (PI=3.1415927, DPI=3,141592653589793238D0)

PARAMETER (BYTS1Z=2, WRDS1lZ=BYTS1Z/2)
PARAMETER (FLAG=,TRUE.,LNGNAM='A STRING OF 25 CHARACTERS')

SPECIFICATION STATEMENTS

PROGRAM

5.12 PROGRAM STATEMENT

The PROGRAM statement assigns a symbolic name to a main program unit.

The PRCGGRAM statement has the form:

PROGRAM nam

nam

A symbolic name.

The PROGRAM statement is optional. 1If you use 1it, it must be the

first statement in the main program. The symbolic name must not be

the name of any entity within the main program. It also must not be

the name of any subprogram, entry, or common block in the same

executable program (see Section 2.1).

BLOCK DATA

5.13 BLOCK DATA STATEMENT

The BLOCK DATA statement begins a special type of program unit that

declares common blocks and defines data in common blocks.

‘The BLOCK DATA statement has the form:

BLOCK DATA [nam]

nam

A symbolic name.

You can use only type declaration, IMPLICIT, DIMENSION, COMMON,

EQUIVALENCE, and DATA statements between a BLOCK DATA statement and
its terminal statement. The last statement in a BLOCK DATA program

unit must be an END statement.

A BLOCK DATA program unit must not contain any executable statements

and must not have a statement label.

If you initialize any entity in a common block declared in a BLOCK
DATA program unit, you must provide a complete set of data-type

specification statements for all the entities in the block, even

though some of the entities are not assigned an initial value. You

can use the same BLOCK DATA program unit to define initial values for

more than one common block.

SPECIFICATION STATEMENTS

An example of a BLOCK DATA program unit follows:

BLOCK DATA BLKDAT

INTEGER S,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREA1l/R,S,T,U/AREA2/W,X,Y

DATA R/1.0,2*2.0/,T/.FALSE./,U/0.214537D-7/,W/.TRUE./,Y/3.5/

END

In this example, enough information is provided to declare explicitly

or implicitly the data type of every variable in the common blocks

AREAl and AREA2. Not all the variables appear in the DATA statement.

5 23

CHAPTER 6

SUBPROGRAMS

A subprogram is a statement or group of statements that defines a
computing procedure. A subprogram is invoked with a referencing
statement. This referencing statement can be located either in the

same program unit as the subprogram or in a different program unit.

There are two kinds of subprograms: user written and system supplied.

User-written subprograms consist of statement functions, functions,

and subroutines; system-supplied subprograms consist of intrinsic

functions and generic functions.

In many cases, a program referencing a subprogram passes values,

called actual arguments, to that subprogram for it to use in making

computations. The subprogram specifies entities, called dummy

arguments, to receive these actual arguments.

Section 6.1 describes actual and dummy arguments; Section 6.2
describes user-written subprograms; and Section 6.3 describes

system-supplied subprograms.

6.1 SUBPROGRAM ARGUMENTS

A subprogram argument is an entity that passes a value to or from a

subprogram, There are two kinds of arguments: actual and dummy.

Actual arguments are specified in the statement referencing the

subprogram. Dummy arguments are specified in the definition of the

subprogram and, when control is transferred to the subprogram, are
associated with actual arguments on a one-to-one basis. Each dummy

argument takes on the value of the corresponding actual argument; in

turn, any value assigned to the dummy argument in the subprogram is

assigned to the corresponding actual argument. When control is
returned to the main program from the subprogram, the association of

actual and dummy arguments ends: there is no retention of argument

association from one reference of a subprogram to the next.

If (I,J3(3),4) is a 1list of actual arguments and (K,L,M) is an
associated 1list of dummy arguments, K 1is associated with I, L is

associated with J(3), and M is assigned a value of 4.

6.1.1 Rules Governing Subprogram Arguments

Actual arguments can be constants, variables, expressions, arrays,

array elements, substrings, or subprogram names. Actual arguments

must agree in order, number, and data type with the dummy arguments

with which they are associated.

Dummy arguments are symbolic names that become associated with

variables or arrays, or with subprograms defined or declared in other

6-1

SUBPROGRAMS

program units; they are not in themselves variables or arrays or

subprograms. A dummy argument 1is undefined if it is not currently

associated with an actual argument.

Although dummy arguments are not variables, arrays, or subprograms,

each dummy argument may be declared as though it were a variable,
array, or subprogram. Each dummy argument name is declared to have

the attributes of its associated actual argument.

If the actual argument is a constant, an expression, a subprogram

name, or a virtual array element reference, the corresponding dummy
argument may not be modified.

A dummy argument declared to be an array can be associated only with

an actual argument that is an array or array element of the same data

type. If the actual argument is an array, the dummy argument array

must not be larger than the actual argument array; that is, it can be
equal to or smaller than the number of elements in the actual

argument.

If an actual argument is an element of an array, this element and

succeeding elements of the array are associated with elements of the
corresponding dummy argument array. The number of actual argument

array elements associated depends on the size of the dummy argument

array. The dummy argument array must not be larger than the number of

elements in the actual argument array involved in the reference; that

is, it can be equal to or smaller than the number of elements in the

actual argument.

valid Invalid

PROGRAM MAIN PROGRAM MAIN

DIMENSION A(10), B(5,5) DIMENSION A(10), B(5,5)

CALL X (A, B(1,21)) CALL X(A,B(1,21))

END EMD

SUBROUTINE X (Y,2) SUBROUTINE X (C,D)

DIMENSION Y (10), Z(5,2) DIMENSION C(12) (dummy array must

END not be larger than

actual array)

DIMENSION D (5,5) (dummy array must

not be larger than

number of elements

of actual array

included)

6.1.2 Adjustable Arrays

An adjustable array 1is a dummy argument array, declared in a

subprogram, whose dimensions can be changed, or "adjusted," to match
the dimensions of an associated actual argument array in a referencing

program. The dimension declaration of a dummy argument array contains

one or more integer variables and, optionally, an asterisk. (See

Section 6.1.3 for information on the use of the asterisk.)

The following rules govern the use of adjustable arrays:

e An adjustable array must be a dummy argument.

e An adjustable array must become associated with an actual

argument that is an array.

6-2

SUBPROGRAMS

e The size of an adjustable array must be less than or equal to
the size of a corresponding actual array.

e Variables in an adjustable array declarator must be dummy
arguments, and the corresponding actual arguments must have a
defined value.

e Variables in an adjustable array declarator must become
defined; you can assign values to these variables through
dummy arguments or through common blocks.

e Variables in an adjustable array declarator may be of any data
type; assigned values of other than integer data type are
converted to integer data type before use.

The following examples demonstrate the use of adjustable arrays:

PROGRAM MAIN

DIMENSION Al(10,35), A2(3,56)

SUM1 = SUM(A1,10,35)

SUM2 = SUM(A2,3,56)

SUM3 = SUM(A1,10,10)

END

FUNCTION SUM(A,M,N) or FUNCTION SUM(A,M,N)
DIMENSION A(M,N) DIMENSION A(M,?*)

SUM = 0.0 SUM = 0.0

DO 10 J = 1,N DO 10 J = 1,N
DO 10 I = 1,M DO 10 I = 1,M

10 SUM = SUM + A(I,J) 10 SUM = SUM + A(I,J)

RETURN RETURN

END END

In the example, Al and A2 are actual arrays and A 1is the adjustable
array. The function subprogram computes the sum of specified sections
of Al or A2. Note that the dummy arguments M and N are used to
control the DO statement iteration as well as to specify the size of
A.

For more information on array declarators, see Section 2.5.1.

Upper- and lower-bound values can be specified for an adjustable

array. These values do not change during subprogram execution, even
if the values of variables contained in the array declaration are
changed. For example:

DIMENSION ARRAY (11,5)

L =29

M =5

CALL SUB (ARRAY,L,M)

END

SUBROUTINE SUB(X,I,J)

DIMENSION X (-I/2:1/2,J)

J =1

I =2

END

In this éxample, the adjustable array X is declared to be X(-4:4,5);
the subsequent assignments to I and J do not affect this declaration.

SUBPROGRAMS

Note that argument association is not retained in the interim between

one reference to a subprogram and the next.

REAL B

DIMENSION B(10)

CALL S(B,2,3.0)

CALL Ss1(5,B,3,2)

SUBRROUTINE S(A,I,Jd)

DIMENSION A(I)

A(I) = J

RETURN

ENTRY S1 (I,A,K,L)

A(I) = A(I) + 1

RETURN

END

In this example, B is declared to be a real array with 10 elements by

the statement

DIMENSION B(10)

The statement

CALL S(B,2,3)

sets B(2) = 3; the next statement

CALL S1(5,B,3,2)

increments B(5) by 1, but only because it provides actual argument A,

which was not retained in the subroutine after the first reference.

6.1.3 Assumed-Size Dummy Arrays

An assumed-size dummy array is a dummy array (argument) for which the

upper bound of the last dimension is specified as *. For example:

SUBROUTINE SUB(A,N)

DIMENSION A(N,*)

The size of an assumed-size array and the number of elements that can

be referenced are determined as follows:

e If the actual argument corresponding to the dummy array 1is a

noncharacter array name, the size of the dummy array is the

size of the actual argument array.

e If the actual argument corresponding to the dummy argument is
a noncharacter array element name, with a subscript value of s

in an array of size a, the size of the dummy array is a+l-s.

SUBPROGRAMS

e If the actual argument is a character array name, character
array element name, or character array element substring name,
and begins at character storage unit b of an array with n
character storage units, the size of the dummy array is
INT(n+1-b)/y, where y is the length of an element of the dummy
array.

Because the actual size of an assumed-size array 1is not known, an
assumed-size array name cannot be used as any of the following:

® An array name in the list of an I/0O statement

© A unit identifier for an internal file in an I/0 statement

® A run-time format specifier in an I1/0 statement

® A key specifier in an I/0 statement

e A buffer specifier for ENCODE/DECODE statements

6.2 USER-WRITTEN SUBPROGRAMS

A user-written subprogram is a statement or group of statements that
performs a computing procedure. A computing procedure can be a series
of either arithmetic operations or FORTRAN statements.

User-written subprograms are useful in avoiding having to duplicate
the same series of operations or statements in two or more different
locations in a single program.

There are three types of user-written subprograms. Table 6-1 1lists
each type, the statements needed to define each type, and the method
used to transfer control to each type.

Table 6-1: Types of User-Written Subprograms

Control Transfer
Subprogram Defining Statements Method

Statement Statement-function Function reference
function definition

Function subprogram FUNCTION Function reference

ENTRY

RETURN

Subroutine subprogram SUBROUTINE CALL statement
ENTRY

RETURN

A function reference (Table 6-1) consists of a function name and
function arguments, and is used in an expression. The CALL statement
is discussed in Section 4.5.

SUBPROGRAMS

Function and subroutine subprograms can change the wvalues of their
arguments, and the calling program can use these changed values.

A subprogram can refer to other subprograms but it cannot, either

directly or indirectly, refer to itself.

6.2.1 Statement Functions

A statement function is a single-statement computation specified by a

symbolic name. wWhen vyou reference a statement function name in an

expression, the computation defined by the statement function name |is

performed and the value produced is used to replace the statement

function name in the expression. Statement functions are defined and

referenced within a single program unit.
'

A statement function has the form:

£ ([pl,pPl...]1)=e

f

The name of a statement function.

P

A dummy argument.

e

An expression.

The expression (e) is an arithmetic or logical expression that defines

the computation to be performed.

A reference to a statement function has the form:

£ (lal,al...])

The name of the function.

An actual argument.

Wwhen a statement function reference appears in an expression, the

values of the actual arguments are associated with the dummy arguments

in the statement function. The expression in the statement function

is then evaluated, and the result is used to complete the evaluation
of the expression containing the reference.

The following rules govern the use of statement functions:

e A statement function may not return a value of type CHARACTER.

e Statement function names must be wunique within the same

program unit.

e A statement function reference must appear in the same program

unit as the statement function.

SUBPROGRAMS

e Statement functions <can include a reference to another

statement function (defined earlier in the same program unit).

e Statement functions must be placed before all ‘executable

statements (see Figure 1-3).

e The data type of a value computed by a statement function is
determined either by the first letter of the function name or

by a type declaration statement.

e Statement function dummy arguments serve only to indicate

order, number, and data type of arguments for the statement

function.

e Names of statement function dummy arguments must be unique

only within each statement function. Variables or arrays

having the same names as dummy arguments can be declared and
used within the same program unit.

e The data type of statement function dummy arguments is

determined either by the first letter of the argument name or

by a type declaration statement.

e A statement function cannot be used as an EXTERNAL argument in

a subroutine.

Examples of valid and invalid statement functions are:

valid

VOLUME (RADIUS) = 4.189*RADIUS**3

AVG (A,B,C) = (A+B+C)/3

SINH (X) = (EXP(X) - EXP (-X))*0.5

Invalid

AXG(A,B,C,3.) = (A+B+C)/3 (a constant cannot bea dummy argument)

The examples of statement function references below refer to the

second valid statement function above.

valid

GRADE = AVG (TEST1,TEST2,XLAB)

IF (AVG (P,D,Q).LT.AVG(X,Y,Z))GO TO 300

Invalid

FINAL = AVG (TEST3,TEST4,LAB2) (LAB2 is integer, but C is real)

6.2.2 Function Subprograms

A function subprogram consists of a FUNCTION statement followed by a

series of statements that make up a computing procedure. It is

invoked with a function reference.

The FUNCTION statement has the following form:

[typ] FUNCTION nam{*mj|[([{p[,p]..-1)]

SUBPROGRAMS

typ

Any data type specifier except CHARACTER (see Table 2-2).

nam

The name of a function.

A data type length specifier (see Table 2-2).

A dummy argument.

The function reference that 1invokes, or transfers control ¢to, a

function subprogram has the form:

nam ([a[,a)...])

nam

The symbolic name of the function.

An actual argument.

When a function reference in an expression is executed, control is

transferred to the referenced subprogram and the values of the actual
arguments (if any) in the function reference are associated with the

dummy arguments in the FUNCTION statement of the subprogram. The

statements in the subprogram are then executed and a computed value is

assigned to the function name (as if this name were a variable).
Finally, a RETURN statement is executed in the function and control is

returned to the calling program unit. (An END statement used in place
of a RETURN acts as an implied RETURN.) The value assigned to the

function name is now used to complete the evaluation of the expression
containing the name.

The following rules govern the use of function subprograms:

e A function may not return a value of type CHARACTER.

e A FUNCTION statement must be the first statement of a function

subprogram.

@ A FUNCTION statement must not have a statement label.

e A function subprogram must not contain the following

statements: SUBROUTINE, BLOCK DATA, or FUNCTION.

e A function subprogram can reference another subprogram, but it

cannot reference itself, either directly or indirectly.

e The data type of a function name can be specified either in

the FUNCTION statement or in a type declaration statement.

@ A function name must have the same data type in a subprogram

as in a referencing program, and vice versa.

e ENTRY statements can be included in a function subprogram to
provide one or more other entry points to the subprogram (see

Section 6.2.4).

SUBPROGRAMS

An example of a function subprogram is the function ROOT:

FUNCTION ROOT (A)

X =1.0

2 EX = EXP (X)

EMINX = 1./EX

ROOT = ((EX+EMINX)*,.5+COS(X)-A)/((EX - EMINX)*.5-SIN(X))

IF (ABS (X-ROOT).LT.1E-6) RETURN

X = ROOT

GO TO 2

END

The function in this example uses the Newton-Raphson iteration method

to obtain the root of the following function:

F(X) = cosh(X) + cos(X) - A =0

The value of A is passed as an argument. The iteration formula for

this root is:

cosh(Xi)+cos(Xi)-A

Xi+l = Xi -

sinh(Xi)-sin(Xi)

The calculation is repeated until the difference between Xi and Xi+l

is less than 1.0E-6.

The function uses the FORTRAN library functions EXP, SIN, COS, and ABS

(see Section 6.3).

6.2.3 Subroutine Subprograms

A subroutine subprogram is a computing procedure referenced by a

symbolic name 1in a CALL statement. A subroutine subprogram consists

of a SUBROUTINE statement followed by a series of statements.

The SUBROUTINE statement has the form:

SUBROUTINE nam [([(pl,P}...1)]

nam

The name of the subroutine.

A dummy argument.

You must use a CALL statement to transfer control to a subroutine

subprogram, and a RETURN statement to return control to the calling

program unit., Section 4.5 describes the CALL statement.

When control is transferred to a subroutine, the values of the actual

arguments (if any) in the CALL statement are associated with

corresponding dummy arguments in the SUBROUTINE statement. The

statements 1in the subprogram are then executed until a RETURN

statement returns control to the calling program. (An END statement

acts as an implied RETURN.) Unlike a function, a subroutine does not

return a value to the referencing program.

SUBPROGRAMS

The following rules govern the use of subroutine subprograms:

@ The SUBROUTINE statement must be the first statement of a

subroutine.

e A subroutine subprogram must not contain a FUNCTION, a BLOCK

DATA, or another SUBROUTINE statement.

@ A subroutine subprogram can reference another subprogram, but

it cannot reference itself, either directly or indirectly.

o ENTRY statements can be included in a subroutine subprogram to

provide one or more other entry points to the subprogram (see
Section 6.2.4).

The subroutine in the following example computes the volume of a

regular polyhedron, given the number of faces and the length of one
edge. It uses the computed GO TO statement to determine whether the

polyhedron 1is a tetrahedron, «cube, octahedron, dodecahedron, or
icosahedron. The GO TO statement also transfers control to the proper

procedure for calculating the volume. If the number of faces is not
4, 6, 8, 12, or 20, the subroutine displays an error message on the

user's terminal.

Example:

Main Program

COMMON NFACES,EDGE, VOLUME

ACCEPT *, NFACES,EDGE

CALL PLYVOL

TYPE *, 'VOLUME=',6VOLUME

STOP

END

Subroutine

SUBROUTINE PLYVOL

COMMON NFACES,EDGE, VOLUME

CUBED = EDGE**3

GoToO (6,6,6,1,6,2,6,3,6,6,6,4,6,6,6,6,6,6,6,5),NFACES

GOTO 6

1 VOLUME = CUBED * 0.11785

RETURN

2 VOLUME = CUBED

RETURN

3 VOLUME = CUBED * 0.47140

RETURN

4 VOLUME = CUBED * 7.66312

RETURN

S5 VOLUME = CUBED * 2.18170

RETURN

6 TYPE 100, NFACES

100 FORMAT(' NO REGULAR POLYHEDRON HAS ',I3, ' FACES.'/)

VOLUME=0.0

RETURN

END

SUBPROGRAMS

ENTRY

6.2.4 ENTRY Statement

The ENTRY statement is a nonexecutable statement that provides

multiple entry points to a subprogram. It can appear within a

function or subroutine subprogram after the FUNCTION or SUBROUTINE

statement. Execution 1in a subprogram containing an ENTRY statement
begins with the first executable statement following the ENTRY

statement.

The ENTRY statement has the form:

ENTRY nam [([p[,pl...]1)]

nam

The entry name.

A dummy argument.

CALL statements are used to refer to entry names within subroutine

subprograms; function references are wused to refer to entry names

within function subprograms.

The following rules govern the use of ENTRY statements:

e Within a function subprogram, an entry name can appear in a

type declaration statement.

@ You can specify an entry name in an EXTERNAL statement and

then wuse entry name as an actual argument (but not as a dummy

argument).

e You must not use an entry name in executable statements (in a

subprogram) that precede or follow an ENTRY statement.

® You can use dummy arguments in ENTRY statements that differ in

order, number, type, and name from the dummy arguments you use

in the FUNCTION, SUBROUTINE, and ENTRY statements in the same

subprogram. However, each reference to a function,

subroutine, or entry must use an actual argument 1list that

agrees in order, number, and type with the dummy argument list

in the corresponding FUNCTION, SUBROUTINE, or ENTRY statement.

¢ A dummy argument can be referred to only in the executable

statements that follow the first SUBROUTINE, FUNCTION, or

ENTRY statement in which the dummy argument is specified.

® You must not use an ENTRY statement within a DO loop.

SUBPROGRAMS

6.2.4.1 ENTRY 1in Function Subprograms - The name of a function
subprogram and all the entry names contained in the subprogram are

mutually associated; therefore, a value assigned to any one name Iis

assigned to all the names. However, only names of the same data type

can be mutually defined at any one time, because conversions between

data types are not made.

A referenced entry name must be assigned a value before control |is

transferred back to the calling program.

Figure 6-1 illustrates the use of an ENTRY statement 1in a function

subprogram that computes the hyperbolic functions sinh, cosh, and tanh
of a variable x.

PROGRAM MAIN

EXTERNAL TANH, SINH, COSH

X = 24.0
TANHX = TANH (X)

SINHX = SINH (X)

COSHX = COSH (X)

END

REAL FUNCTION TANH (X)

C

C STATEMENT FUNCTION TO COMPUTE TWICE SINH

C

TSINH(X) = EXP(X) - EXP (-X)

C

C STATEMENT FUNCTION TO COMPUTE TWICE COSH

C

TCOSH(X) = EXP(X) + EXP (-X)

C

C COMPUTE TANH

C

TANH = TSINH(X) / TCOSH(X)

RETURN

C

C COMPUTE SINH

C

ENTRY SINH (X)

SINH = TSINH(X) / 2.0

RETURN

C

C COMPUTE COSH

C

ENTRY COSH (X)

COSH = TCOSH(X) / 2.0

RETURN

END

Figure 6-1: Multiple Functions in a Function Subprogram

SUBPROGRAMS

6.2.4.2 ENTRY in Subroutine Subprograms - To reference an entry point

in a subroutine, you execute a CALL statement that includes the entry

point name. The following example demonstrates the use of the CALL

statement to reference an entry point:

Main Program

CALL SUBA(A,B,C)

Subroutine

SUBROUTINE SUB (X,Y,Z)

ENTRY SUBA(Q,R,S)

In this example, the CALL is to an entry point (SUBA) within the

subroutine (SUB). Execution begins with the first statement following

ENTRY SUBA (Q,R,S), using the actual arguments (A,B,C) passed 1in the

CALL statement.

6.3 INTRINSIC AND OTHER LIBRARY FUNCTIONS

FORTRAN library functions consist of intrinsic functions, provided to

perform commonly used mathematical computations, and character and

lexical comparison functions. Character and 1lexical comparison

functions are discussed in Section 6.3.4.

The FORTRAN intrinsic functions are listed in Appendix C. Function

references to these functions are written in the same way function

references to user-defined functions are written. For example, as a

result of the reference to ABS in

R = 3.14159 * ABS (X-1)

the absolute value of X-1 is calculated and multiplied by the constant

3.14159, and the result is assigned to the variable R.

Appendix C gives the data type of each intrinsic function and that of

its actual arguments.

6.3.1 Intrinsic Function References

Normally, a name in the table of intrinsic function names (Table C-2)

refers to the FORTRAN library function with that name. However, the

name can refer to a user-defined function under any of the following

conditions:

e The name is used in a function reference with arguments of a

different data type from that shown in the table.

e The name appears in an EXTERNAL statement in accordance with

the rules provided in Section 5.8.

SUBPROGRAMS

Except when they are used in an EXTERNAL statement, intrinsic function

names are 1local to the program unit that refers to them. Thus, they

can be used for other purposes in other program units, In addition,

the data type of an intrinsic function does not change if you use an

IMPLICIT statement to change the implied data type rules.

You cannot have an intrinsic function and a user-defined function with

the same name in the same program unit.

6.3.2 Generic Function References

Some intrinsic functions perform the same computation but handle

different data types. These functions are referenced with the same

categorical, or generic, name. A generic function reference refers to

the category of the computation to be performed, not to a specific

function within the category. The selection of a specific function --

that is, the actual computing procedure for a specific data type -- is
left to the compiler, which chooses a specific function within a

category on the basis of the data type of the relevant actual

argument. For example, if D 1is a double-precision variable, the

generic function SIN(D) refers to the double-precision sine function,

not to the real sine function. (Therefore, you need not write

DSIN (D) .)

Generic function references are 1independent from one another.,

Therefore, you could wuse both SIN(X) and SIN(D) in the same program

unit in the example in the preceding paragraph.

Table 6-2 lists the generic function names. These names can be used

only with the argument data types shown in the table.

You cannot use the names in Table 6-2 for generic function selection

if you use them in a program unit in either of the following ways:

e As the name of a statement function

e As a dummy argument name, common block name, variable name, or

array name

Generic function selection does not apply to a generic function name

declared in an EXTERNAL statement and used as an actual argument,

because there is no argument 1list on which to base the function

selection. The name is treated according to the rules for nongeneric

FORTRAN functions described in Section 6.3.1. For example, in

EXTERNAL EXP

CALL SUB (EXP (D))

EXP (D) is a generic function reference,not a generic function name;

therefore, generic function selection applies. However, in

EXTERNAL SQRT

CALL SUB (SQRT)

SQRT is a generic function name being used as a nongeneric function;

therefore, generic function selection does not apply.

Generic function names are local to the program unit that references

them., Therefore, they can be used for other purposes in other program

units.

6-14

Table 6-2:

SUBPROGRAMS

Generic Function Name Summary

Data Type of Data Type of

Generic Name Argument Result

ABS Integer Integer

Real Real

Double Double

Complex Real

AINT, ANINT Real Real

Double Double

INT, NINT Real Integer

Double Integer

REAL Integer Real

' Real - Real

Double Real

Complex Real

DBLE Integer Double

Real Double

Double Double

MOD, MAX, MIN, SIGN, DIM Integer Integer

Real Real

Double Double

EXP, LOG, SIN, COS, SQRT Real Real

Double Double

Complex Complex

LOG10, TAN, ATAN, ATAN2, ASIN, Real Real

ACOS, SINH, COSH, TANH Double Double

6.3.3 Intrinsic and Generic Function Usage

Figure 6~-2 demonstrates the use

names.,

in four distinct ways:

Using the name in these four ways

As

As

As

As

properties of the name.

In Figure 6-2,

that follow the figure.

of

a generic function name

an intrinsic function name

a user—-defined function

the parenthetical references are

intrinsic

emphasizes

the name of a statement function

the

and generic

In this figure, a single executable program uses the name SIN

local

keyed to the

function

and global

hotes

Q
0
o

10

100

o
N
o
N
Q
]

10

SUBPROGRAMS

COMPARE WAYS OF COMPUTING SINE.

PROGRAM SINES

REAL*8 X, PI \

PARAMETER (PI = 3.141592653589793238D0)

COMMON V (3)

DEFINE SIN AS A STATEMENT FUNCTION (Note 1)

SIN(X) = COS(PI/2-X)

DO 10 X = -PI, PI, 2*PI/100

CALL COMPUT (X)

REFERENCE THE STATEMENT FUNCTION SIN (Note 2)

WRITE (6,100) X,V, SIN(X)

FORMAT (5(' '+ F10.7))

END

SUBROUTINE COMPUT (Y)

REAL*8 Y

USE INTRINSIC FUNCTION SIN AS ACTUAL ARGUMENT (Note 3)

INTRINSIC SIN

COMMON V(3)

GENERIC REFERENCE TO DOUBLE PRECISION SINE (Note 4)

V(l) = SIN(Y)

INTRINSIC FUNCTION SINE AS ACTUAL ARGUMENT (Note 5)

CALL SUB(REAL (Y), SIN)

END

SUBROUTINE SUB(A,S)

DECLARE SIN AS NAME OF USER FUNCTION (Note 6)

EXTERNAL SIN

DECLARE SIN AS TYPE REAL*8 (Note 7)

REAL*8 SIN

COMMON V (3)

EVALUATE INTRINSIC FUNCTION SIN (Note 8)

V(2) = S(A)

EVALUATE USER DEFINED SIN FUNCTION (Note 9)

V(3) = SIN(A)

END

DEFINE THE USER SIN FUNCTION (Note 10)

REAL*8 FUNCTION SIN (X)

INTEGER FACTOR

SIN = X - X**3/FACTOR(3) + X**5/FACTOR(5)

~ X**7/FACTOR(7)

END

INTEGER FUNCTION FACTOR (N)

FACTOR =1

DO 10 I=N, 1, -1

FACTOR = FACTOR * I

END

Figure 6-2: Multiple Function Name Usage

6-16

SUBPROGRAMS

l. A statement function named SIN is defined 1in terms of the

generic function name COS. Because the argument of COS is

double precision, the double-precision cosine function |is

evaluated. The statement function SIN is 1itself single

precision.

2. The statement function SIN is called.

3. The name SIN 1is declared intrinsic so that the single-

precision intrinsic sine function can be passed as an actual

argument at 5.

4. The generic function name SIN 1is wused to refer to the

double-precision sine function.

5. The single-precision intrinsic sine function is wused as an

actual argument.

6. The name SIN is declared a user-defined function name.

7. The type of SIN is declared double precision.

8. The single-precision sine function passed at 5 is evaluated.

9. The user-defined SIN function is evaluated.

10. The user—-defined SIN function is defined as a simple Taylor

series wusing user-defined function FACTOR to compute the
factorial function.

6.3.4 Character and Lexical Comparison Library Functions

Character 1library functions are functions that take character

arguments; lexical comparison 1library functions are functions that

take character arguments and return logical values.

Three character functions are provided with PDP-11 FORTRAN-77, as

follows:

e LEN

The LEN function returns the length of a character expression.

The LEN function has the form:

LEN (c)

c

A character expression. The value returned indicates how

many bytes there are in the expression.

e INDEX

The INDEX function searches for a substring (c2) in a

specified character string (cl) and, if it finds the

substring, returns the substring's starting position. If c2

occurs more than once in cl, the starting position of the

first (leftmost) occurrence is returned. If c2 does not occur

%n cl, the value zero is returned. The INDEX function has the
orm:

INDEX (cl, c2)

SUBPROGRAMS

cl

A character expression specifying the string to be

searched for the substring specified by c2.

c2

A character expression specifying the substring for which

the starting location is to be determined.

e ICHAR

The ICHAR function converts a character expression to its
equivalent ASCII code and returns the ASCII value. ICHAR has
the form:

ICHAR (c)

The character to be converted to an ASCII code. 1If ¢ is
longer than one byte, only the value of the first byte is
returned; the remainder is ignored.

An example illustrating the LEN and INDEX functions follows:

CHARACTER BUFR*80

INTEGER COMPOS, INIPOS

1 COMPOS = INDEX(BUFR(INIPOS:),',"')

IF (LEN(BUFR (INIPOS:COMPOS)) .GT. 8) THEN

TYPE *,'NAME IS TOO LONG, IT HAS BEEN TRUNCATED.'®

ENDIF

Four lexical comparison functions are provided with PDP-11 FORTRAN-77,
as follows:

e LLT, where LLT(X,Y) is equivalent to (X .LT. Y)

e LLE, where LLE (X,Y) is equivalent to (X .LE. YY)

e LGT, where LGT(X,Y) is equivalent to (X .GT. Y)

e LGE, where LGE (X,Y) is equivalent to (X .GE. Y)

The lexical functions have the form

func(c,c)

func

One of the symbolic names: .LLT, LLE, LGT, or LGE.

A character expression.

The lexical library functions are guaranteed to make comparisons

according to the ASCII collating sequence, even on non-ASCII

pProcessors. On PDP-11 systems, the 1lexical 1library functions are

identical to the corresponding character relationals.

SUBPROGRAMS

An example of the use of the lexical library functions follows:

CHARACTER*10 CH2

IF (LGT(CH2, 'SMITH')) STOP

The IF statement in this example is equivalent to:

IF (CH2 .GT. 'SMITH') STOP

6-19

CHAPTER 7

INPUT/OUTPUT STATEMENTS

FORTRAN programs use READ and ACCEPT statements for input, and WRITE,

REWRITE, TYPE, and PRINT statements for output.

Some forms of these statements are used with format specifiers that

control the translation and editing of data between internal (binary)

form and external (readable character) form.

The READ and WRITE statements reference a 1logical wunit to or from

which data 1is to be transferred. The ACCEPT, TYPE, and PRINT

statements do not reference a logical wunit; rather, they transfer

data between a program and an implicit logical unit (for example the

user's terminal). Normally the ACCEPT and TYPE statements are

connected to the user's terminal; the PRINT statement, to the system

line printer.

Input/output (I/0) statements are grouped into four categories:

e Sequential I/0 -- transfers records sequentially to and from

files, or to and from an I/0 device such as a terminal.

e Direct Access 1/0 -- transfers records selected by record

number to and from direct-access files.

e Indexed 1I/0 —- transfers records selected by data values

contained in the records to and from indexed files.

e Internal 1I/0 -~ translates and transfers data between

variables and arrays within a program.

The I/0 statement forms can be classified as formatted, list-directed,

or unformatted.

Formatted I/0 statements contain explicit format specifiers that are

used to control the translation of data from internal (binary) form
within a program to external (readable character) form in records, or

vice versa.

List-directed I/0 statements are similar to formatted statements in

function, but differ in that they use data types instead of explicit

format specifiers to control the translation of data from one form to

the other.

Unformatted I/0 statements do not contain format specifiers of any

kind and therefore are not used to translate data being transferred.

Unformatted I/0 saves execution time, by eliminating data translation;

preserves the precision of external data; and usually conserves file
storage space. Unformatted I/0 is especially useful when data to be

output is subsequently to be used as input.

Table 7-1 shows the various I/0 statements, by category, that can be

used in PDP-11 FORTRAN-77 programs.

7-1

INPUT/OUTPUT STATEMENTS

Table 7-1: Available I/O Statements

Statement Category

Statement Name

Sequential Direct Indexed Internal

F L U F U F U F

READ X X X X X X X X

WRITE X X X X X X X X

REWRITE - - - - - X X -

ACCEPT X X - - - - - -

TYPE X X - - = - - -

PRINT X X - - - - - -

F - Formatted

L - List-Directed

U - Unformatted

I/0 statements transfer data in units of records (see Section 7.1.1).

The amount of data that one of these records can contain depends on

whether unformatted or formatted I/0 is used to transfer the data.

With unformatted I1/0, the I/0 statement alone specifies the amount of

data to be transferred; with formatted I/0, the I/0 statement and its

associated format specifier jointly determine the amount of data to be

transferred.

Normally, the data transferred by an I/0 statement is read from or

written to only one record. It is possible, however, for formatted

I/0 statements to transfer data from or to more than one record.

Section 7.1 describes general FORTRAN input/output concepts. Section

7.2 describes the components of FORTRAN I/0 statements. Section 7.3

describes the syntactical rules that govern the 1I/0 statements.

Sections 7.4 through 7.8 describe the individual I/0 statements in

detail,

7.1 I/0 OVERVIEW

The following sections describe in general terms the characteristics

of FORTRAN I/0 processing: records, files, internal files, and access

modes. See the PDP-11 FORTRAN-77 User's Guide for specific detail on

FORTRAN 1/0 processing.

7.1.1 Records

A record is a collection of data items, called fields, that are

logically related and that are processed as a unit; that is, the I/0

statements transfer data to and from files and internal files in units

of records. Normally, each I/0 statement processes one record, though

formatted I/0 statements may transfer more than one record.

INPUT/OUTPUT STATEMENTS

If an input statement does not use all the data fields it reads from a

record, the remaining fields are ignored. If an input statement

requires more data fields than the record contains, either an error

condition occurs or, 1in the case of formatted input, all fields are

read as spaces.

If an output statement attempts to write more data fields than the

record can contain, an error condition occurs. If an output statement

transfers fewer data than required to fill a fixed-length record, the

record 1is filled with spaces (if a formatted record) or zeros (if an

unformatted record).

7.1.2 Files

A file is a collection of logically related records arranged in a

specific order and treated as a unit. The arrangement or organization

of a file is determined when the file is created.

A file can have one of three possible arrangements or organizations:

sequential, relative, or indexed.

Files are normally stored on disk; however, sequential files may be

stored on magnetic tape. Peripheral devices such as terminals, card

readers, and line printers are treated as sequential files.

7.1.2.1 Sequential Organization - In a sequential file, records

appear in physical sequence. The physical order in which records

appear is always identical to the order 1in which the records are

written to the file.

7.1.2,2 Relative Organization - A relative file consists of a

sequence of fixed-length cells numbered from 1 (the first) to n (the

last). A cell's number represents 1its 1location relative to the

beginning of the file. A cell can contain a single record or it can

be empty. The cell number, or record number, is used to refer to a

specific record in a relative file.

7.1.2.3 1Indexed Organization - Records 1in an indexed file are

ordered -- not necessarily in physical sequence -- by fields in the

records that have been designated to be keys.

A key is a data field that 1is contained, in the same relative

position, in all the records in an indexed file. When creating an

indexed file, you decide which data field in the file's records is to
be a key; the contents of this field in any one record are then used

to identify that record for subsequent processing. The 1length of a

key field, as well as its relative position, is the same in each of

the records in a file.

You must define at least one key for an indexed file. This mandatory

key 1is the primary key of the file. Optionally, you can define
additional keys called alternate keys. Each alternate key represents

an additional field that is contained in all the records in a file.
The key value in any one of these additional fields can be used to

identify the record containing them for retrieval. More than one

record can have the same key value.

INPUT/OUTPUT STATEMENTS

7.1.3 1Internal Files

An internal file is internal storage space that 1is manipulated to

facilitate internal I/O.

An internal file is not a real file; it consists of a character

variable, a character array element, a character array, or a character
substring. A record in an internal file consists of any of the above

except a character array.

If an internal file is a single character variable, array element, or

substring, this file comprises a single record whose length is the

same as the length of the variable, array element, or substring. If

an internal file is a character array, this file comprises a sequence

of records, with each record consisting of a single array element.

The sequence of records in an internal file is determined by the order
of subscript progression.

A record in an internal file can be read only if the character

variable, array element, or substring comprising the record has been

defined -- that is, assigned a value.

Prior to data transfer, an internal file is always positioned at the

beginning of the first record.

7.1.4 Access Modes

Access mode is the method a program uses to retrieve and store records

in a file. The access mode 1is specified as part of each 1I/0

statement. PDP-11 FORTRAN-77 supports three access modes:

sequential, direct, and keyed.

Table 7-2 shows the valid access modes for each file organization.

Table 7-2: Access Modes for Each File Organization

Access Mode

File

Organization Sequential Direct Keyed

Sequential Yes Yes 1 No

Relative Yes Yes No

Indexed Yes No Yes

l. Records must be fixed length.

7.1.4.1 Sequential Access - Sequential access means that records are

processed in physical, numerical, or chronological order. In a

sequential file, this processing order is the physical sequence of the
records; in a relative file, it is the sequence of ascending cell

numbers; and in an indexed file, it is the sequence of ascending Kkey
values.

If two records in an indexed file have the same key value, the
processing sequence is the order in which the records were inserted in
the file.

INPUT/OUTPUT STATEMENTS

7.1.4.2 Direct Access - Direct access means that the record to be
processed 1is specified by a direct access record number in an I/0
statement. For records in a sequential file to be directly accessed,

the file must consist wholly of fixed-length records.

7.1.4.3 Keyed Access - Keyed access means that the record to be
processed 1is specified by a key specification (Section 7.2.1.5) in an
I/0 statement.

You can mix in the same program keyed access and sequential access I/0

statements that reference the same file. Therefore, you can use keyed
I/0 statements to position a file to a particular place and then use
sequential I/O statements to process successive records.

The key specificaton in an I/0 statement may specify an exact match by
providing a complete key value, or it may specify a generic match by
providing a partial key value. In the case of a generic match, the
first record whose leftmost characters match the partial key value is
the record selected.

A match criterion calls for either an exact match or an approximate

match. An approximate match can be either a greater-than match or a
greater-than-or-equal-to match.

7.2 I/0 STATEMENT COMPONENTS

I/0 statements consist of three basic components: a statement
keyword, a control list, and an I/0 list,.

There are six basic statement keywords: READ, ACCEPT, WRITE, REWRITE,
TYPE, and PRINT. The first two of these represent input operations,

the remaining four output operations.

The control list and the I/0 list are discussed below.

7.2.1 The Control List

The control list of an I/0 statement is a 1list of one or more

specifiers that perform the following functions:

e Specify the logical unit to be acted upon

e Specify the internal file to be acted upon

e Specify whether formatting is to be used for data editing and,

if it is, the format specification

® Specify the number of a direct access record to be accessed

e Specify the key and key-of-reference of a keyed access record

to be accessed

e Specify where control is to be transferred in the event of an

error or end-of-file condition

The category of a statement can always be determined by the contents

of its control list. For example, the control list of a formatted I/O

statement always contains a format specifier (FMT=f or f), and the

control 1list of a 1list-directed I/0 statement always contains an

asterisk in place of a format specifier.

7-5

INPUT/OUTPUT STATEMENTS

The control list has the form:

(pl,pP}...)

A specifier of the form: keyword = value.

The control list specifiers are discussed in the following sections.

7.2.1.1 Logical Unit Specifier - The logical unit specifier specifies

the logical unit that is to be accessed. It has one of the forms:

[UNIT=]u

[UNIT=]*%*

u

An integer expression, with a value in the range 0 through 99,

that refers to a specific file or I/0 device. If necessary, the

value is converted to integer data type before being used.

*

Specifies that the default input or output unit 1is to be

accessed.

The keyword UNIT= is optional only if the logical unit specifier Iis

the first parameter in the control list.

A logical unit number is connected to a file or device in one of two

ways:

e Explicitly, by an OPEN statement (see Section 9.1).

e Implicitly, by the system. The PDP-11 FORTRAN-77 User's Guide

describes the use of implicitly connected logical unit numbers

in greater detail.

7.2.1.2 1Internal File Specifier - An internal file specifier
specifies the internal file to be used.

The internal file specifier has the form:

[UNIT=]cv

cv

The name of a character variable, character array, character

array element, or character substring.

The logical wunit specifier and the internal file specifier are

mutually exclusive. The keyword UNIT= is optional if the internal

file specifier is the first parameter in the control list.

See Section 7.1.3 for more information on internal files.

INPUT/OUTPUT STATEMENTS

7.2.1.3 Format Specifier - The format specifier specifies whether
explicit or list-directed formatting is to be used and, in the case of
explicit formatting, identifies the parameter that will control the
formatting. The format specifier has the form:

[FMT=]f

[FMT=]*

£

The statement label of a FORMAT statement, an integer variable
that has been assigned (with an ASSIGN statement) a FORMAT

statement-label value, the name of an array or array element, or

a character expression containing a run-time format.

*

Specifies list-directed formatting.

The keyword FMT= is optional only if the format specifier 1is the
second parameter in the «control 1list and the first parameter is a
logical unit or internal file specifier without the optional keyword
UNIT=.

Chapter 8 describes FORMAT statements. Section 8.7 describes the
interaction between formats and I/0 statements.

You can use an asterisk in sequential I/O statements, instead of a
format specifier, to denote list-directed formatting. See Sections
7.4.1.2 and 7.5.1.2 on list-directed I/O.

7.2.1.4 Record Specifier - The record specifier specifies the number

of the direct access record to be accessed. The record specifier has
the forms:

REC= r

'r

A numeric expression with a value that represents the position,
in a direct access file, of the record to be accessed. The value

must be greater than or equal to 1, and less than or equal to the
max imum number of record «cells allowed 1in the file. If

necessary, a record number is converted to integer data type

before being used.

7.2.1.5 Key Specifier - The key specifier specifies the key of an

indexed file record to be accessed, the index in which this key is

located, and the match criterion to be used in a key search.

An indexed file contains an index for each designated key field. In

this 1index are 1listed the keys and the locations of the records

containing them; records are ordered sequentially 1in order of

increasing key wvalue. Once supplied with the key of the desired

record, the system looks up the key in the appropriate index and finds

the 1location of the proper record. It then accesses this record.

Using a key to obtain a specific record is called keyed access (see

Section 7.1.4.3).

INPUT/OUTPUT STATEMENTS

The indexes of a file are denoted by numbers from 0 to n, where n |is
the maximum number of indexes defined for the file. The value of n

must be less than 255. 1Index number 0 is called the primary index or

primary key. The other 1indexes are called alternate indexes or

alternate keys; for example, 1index number 3 specifies the third
alternate key.

Keyed access to indexed files is specified by key specifications in

READ statements.

The key specification of a key specifier has three components:

1. A key expression, which specifies the key

2, A key-of-reference specifier, which specifies the index

3. A match criterion, which specifies the selection constraints

A key specification has the form:

KEY

Egzgg =ke [,KEYID=kn]

KEYGT

ke

A key expression.

kn

An integer expression, the value of which, called the

key-of-reference number, specifies the index to be searched.

The KEY and KEYID parameters may appear in any order, but must follow

the logical unit and format specifiers.

(1) Key Expressions - Two types of key expressions are supported:

e Character key expressions

e Integer key expressions

Character key expressions must be used with character keys and integer

key expressions must be used with integer keys. A character key

expression may be specified in one of the following forms:

e CHARACTER variable or substring

e CHARACTER array element

e CHARACTER constant

e A BYTE (LOGICAL*1) array name containing Hollerith data

For example, you can now specify keys as follows:

CHARACTER*5 CKEY

OPEN (UNIT=3, STATUS='OLD', ACCESS='KEYED'.

1 ORGANIZATION="'INDEXED', FORM='UNFORMATTED',

2 KEY=(1:5,18:23))

CKEY='SMITH'

READ (3,KEYGE=CKEY) ALPHA,BETA

END

INPUT/OUTPUT STATEMENTS

The length of the character key expression 1is the 1length of the

character value or the length of the BYTE array. If the length of the

key expression is greater than the length of the key field, an error

occurs. If the length of the key expression is less than the length

of the key field, a generic key search is made rather than an exact

key search. (See "Match Criterion" below.)

An integer key expression is an integer expression. Real,

double-precision, and complex values are not permitted.

The name of a wvirtual array cannot be wused to specify a key

expression.

(2) Key-of-Reference Specifier - The key-of-reference specifier

specifies the index to be searched for the locations of a record. Its

value, or key-of-reference number, must be an integer in the range 0

to the maximum number of keys defined for the file. A value of 0

specifies the primary key; a value of 1 specifies the first alternate

key; and so forth. :

If no key-of-reference specifier is included in a key specification,

the key-of-reference is assumed to be what it was in the specification
given in the last keyed I/0 statement for the given logical unit.

(3) Match Criterion - The match criterion specifies whether the match
key must be equal to, greater than, or greater than or equal to the

key specified by the key expression.

The match criterion has the forms:

EQ - specifies equal to

GT - specifies greater than

GE - specifies greater than or equal to

The match criterion is appended to KEY as follows:

KEY

KEYEQ

KEYGT

KEYGE

For character keys, matching comparisons are made on the basis of the

ASCII collating sequence.

For integer keys, matching comparisons are made on the basis of the

signed integer sequence.

If no match criterion is specified, equal matching is assumed.

For character keys, either generic matching or exact matching is used.

Generic matching applies if the key expression in the I/O statement is

shorter than the key field in the record. 1In generic matching, only
the leftmost characters of the key field are used for the match.

For example, if the key expression is 'ABCD', and the key field is ten

characters 1long, an equal match is obtained for the first record that

contains 'ABCD' as the first four bytes of the key. The remaining six

characters are arbitrary.

Approximate generic matching occurs when approximate matching (KEYGT

or KEYGE) is selected in addition to generic matching. In approximate
generic matching, only the 1leftmost characters are used for

comparison.

INPUT/OUTPUT STATEMENTS

For example, if the key expression is 'ABCD', and the key field is

five characters long, and a greater-than match is selected, the value

'ABCDA' does not match. The value 'ABCEA', however, does match.

7.2.1.6 Transfer-of-Control Specifiers - The transfer-of-control
specifiers specify a statement to which program control is to be

transferred in the event of an end-of-file condition or an error

condition. The transfer-of-control specifiers have the form:

END=s

ERR=s

The label of an executable statement.

A READ, WRITE, REWRITE, ENCODE, or DECODE statement can include either

or both of the above specifiers in any order. The transfer-of-control

specifiers must follow the 1logical unit, record, and format

specifiers.

The statement label in a transfer-of-control specifier must refer to

an executable statement that is located within the same program unit

as the I/0 statement.

An end-of-file condition occurs when no more records exist 1in a

sequential file or when an end-file record produced by the ENDFILE

statement (see Section 9.7) 1is encountered. If a READ statement

encounters an end-of-file condition during an 1I/0 operation, it

transfers control to the statement named in the END=s specification.

If no END=s specification is present, an error condition occurs.

If a READ, WRITE, REWRITE, ENCODE or DECODE statement encounters an

error condition during an I/0 operation, it transfers control to the

statement whose label appears in the ERR=s specification. If no ERR=s

is present, the I/0 error terminates program execution.

An END= specification in a WRITE or REWRITE statement, direct access

READ statement, or keyed access READ statement is ignored. 1If you

attempt to read or write a record using a record number greater than

the maximum specified for the logical unit, an error condition occurs.

The PDP-11 FORTRAN-77 User's Guide describes system subroutines that

you can use to control error processing. These subroutines can also

be used to obtain information from the 1I/0 system on errors that

occur.

Examples of the wuse of transfer-of-control specifiers in I1/0

statements follow.

READ (8,END=550) (MATRIX(K),K=1,100)

This statement transfers control to statement 550 if an end-of-file

condition occurs on logical unit 8.

WRITE (6,50,ERR=390)

This statement transfers control to statement 390 if an error occurs

during execution.

READ (1,FORM,ERR=150,END=200) ARRAY

INPUT/OUTPUT STATEMENTS

This statement transfers control to statement 150 if an error occurs

during execution, and to statement 200 if an end-of-file condition
occurs.

7.2.2 I/0 List

The I/0 list in an input or output statement contains the names of
variables, arrays, array elements, and character substrings from which
or to which data is to be transferred. The 1I/0 1list in an output
statement can also contain constants and expressions to be output.

An I/0 list has the form:

s[,s]...

A simple list or an implied DO 1list.

The I/0 statement assigns values to, or transfers values from, the
list elements in the order in which they appear, from left to right.

7.2.2.1 Simple List - A simple I/O list consists of either a simple

I/0 1list element or a group of two or more simple I/O list elements
separated by commas. A simple I/0 1list element can be a single

variable, an array, an array element, a constant, or an expression.
For example, in the statement

WRITE (5,10) J, K(3), 4, (L+4)/2, N

J, K(3), 4, (L+4)/2, and N are simple I/0O list elements.

When you use an unsubscripted array name in an I/0 1list, a READ or
ACCEPT statement reads enough data to fill every element of the array;

a WRITE, TYPE, or PRINT statement writes all the values in the array.

Data transfer begins with the initial element of the array and

proceeds in the order of subscript progression, with the leftmost

subscript varying most rapidly. For example, the following statement

defines a two-dimensional array:

DIMENSION ARRAY (3,3)

If the name ARRAY, with no subscripts, appears in a READ statement,

this statement assigns values from the input record or records to

ARRAY (1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(l1,2), and so on through

ARRAY (3,3) .

In a READ or ACCEPT statement, variables in the I/0 list can be used

in array subscripts later in the list. For example, say you are given

the statements:

READ (1,1250) J,K,ARRAY (J,K)

1250 FORMAT (I1,X,I1l,X,F6.2)

and an input record that contains the values:

1,3,721.73

When the READ statement is executed, the first input value is assigned

to J and the second to K; the actual subscript values are now

INPUT/OUTPUT STATEMENTS

established for ARRAY (J,K). The value 721.73 1is then assigned to

ARRAY (1, 3). Variables that are to be used as subscripts in this way

must appear before (to the left of) their use as the array subscripts
in the I/0 list.

An output-statement I/0 1list may contain any valid expression.

However, this expression must not attempt any I/0 operations. For
example, an output statement I/0 list must not contain an expression

that refers to a function subprogram that performs an I/0 operation.

An input statement I/0 list must not contain an expression used other

than asa subscript expression in an array reference.

7.2.2.2 1Implied DO List - An implied DO list is an I/0 1list element

that functions as if it were a part of an I/0 statement within a DO

loop. 1Implied DO lists can be used to:

e Specify iteration of part of an I/0 list

e Transfer part of an array

e Transfer array elements in an order that differs from the

order of subscript progression

An implied DO list has the form:

(list,i=el,e2[,e3])

list

An I/0 list.

An integer variable.

el,e2,e3

Arithmetic expressions.

The variable i and the parameters el, e2, and e3 have the " same forms
and functions that they have in the DO statement (see Section 4.3).

The list immediately preceding the DO loop parameter is the range of

the 1implied DO loop. Elements in that list can reference i but they

must not alter the value of i.

For example, the statement

WRITE (3,200) (A,B,C, I=1,3)

behaves as if you had written the statement

WRITE (3,200) A,B,C,A,B,C,A,B,C

In the statement

WRITE (6) (I,(J,P(I),Q(I,J),J=1,L),I=1,M)

the I/0 list consists of an implied DO 1list that contains another
implied DO 1list nested within it. The implied DO lists vary the Js

for each value of I and write a total of (14+3*L)*M fields.

7-12

INPUT/OUTPUT STATEMENTS

In a series of nested implied DO lists, the parentheses indicate the
nesting (see Section 4.3.2). Execution of the innermost list is

repeated most often. In the example

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

150 FORMAT (F10.2)

because the inner DO loop is executed 10 times for each iteration of

the outer 1loop, the second subscript advances from 1 through 10 for

each increment of the first subscript -- that is, in the reverse of

the standard order of subscript progression. In addition, because K

is incremented by 2, only the odd-numbered rows of the array are

output.

The entire list of an implied DO 1list is transmitted before the

control variable is incremented. For example, in the statement

READ (5,999) (p(I), (Q(I,J), J=1,10), I=1,5)

P(1), 0(1,1), ©0(1,2) ...,Q0(1,10) is read before I is incremented to 2.

When processing multidimensional arrays, you can use a combination of
fixed subscripts and subscripts that vary according to an implied DO

list. For example, the statement

READ (3,5555) (BOX(1,J), J=1,10)

assigns input wvalues to BOX(l,1) through BOX(1l,10), and then

terminates without affecting any other element of the array.

The value of the control variable can also be output directly. For
example, the statement

WRITE (6,1111]) (I, I=1,20)

simply prints the integers 1 through 20.

7.3 SYNTACTICAL RULES

The FORTRAN I/O statements described in Sections 7.4 through 7.8 are

subject to the following syntactical rules.

e When in keyword form, the control parameters can appear in any

order in a control list.

e The nonkeyword form of either the logical unit specifier or

the internal file specifier must occupy the first (leftmost)

position in a control 1list.

e¢ When used with a 1logical wunit specifier or internal file

specifier, the nonkeyword form of the format specifier must

occupy the second position in the control list; the wunit or

internal file specifier must also be in nonkeyword form (and

therefore occupy the first position in the control list).

e If you use the nonkeyword form of a direct access record

specifier, it must immediately follow a nonkeyword form of the

logical unit specifier.

INPUT/OUTPUT STATEMENTS

READ

7.4 THE READ STATEMENTS

The READ statements transfer input data to internal storage from

records contained in external logical units, or to internal storage
from internal files. There are four categories of READ statements:

sequential, direct access, indexed, and internal.

7.4.1 The Sequential READ Statements

Sequential READ statements transfer input data to internal storage
from external records accessed under the sequential mode of access.

There are three classes of sequential READ statements: formatted,
list-directed, and unformatted.

The three classes of sequential READ statements have the forms:

Formatted Sequential READ Statement

READ (extu, fmt [,err][,end])[list]

READ f[,list]

List-Directed READ Statements

READ (extu, * [,err] [,end]) [list]

READ *[, list]

Unformatted Sequential READ Statements

READ (extu [,err] [,end]) [list]

extu

A logical unit specifier. See Section 7.2.1.1.

fmt

A format specifier. See Section 7.2.1.3.

£

The nonkeyword form of a format specifier. See fmt, above.

*

Specifies list-directed formatting.

err

end

Transfer-of-control specifiers., See Section 7.2.1.6.

INPUT/OUTPUT STATEMENTS

list

An I/0 list. See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of
the above parameters.

7.4.1.1 The Formatted Sequential READ Statement - The formatted
sequential READ statement does the following:

®¢ Reads character data from one or more external records

accessed under the sequential or keyed mode of access

o Translates the data from character to binary form using format

specifications to provide editing

® Assigns the translated data to the elements in the I/0 1list,
in the order, from 1left to right, in which those elements
appear in the list.

If the number of I/O list elements in a statement is 1less than the
number of fields in an input record, the statement ignores the excess
fields.

7.4.1.2 The List-Directed READ Statement - The 1list-directed READ
statement does the following:

® Reads character data from records accessed under the

sequential mode of access

e Translates the data from external to binary form using the

data types of the elements in the I/0 list, and the forms of

the data, to provide editing

e Assigns the translated data to the elements in the I/0 list in

the order, from left to right, in which those elements appear

in the list

The external records from which 1list-directed READ statements read

data contain a sequence of values and value separators.

A value in one of these records may be any one of the following:

e A constant

® A null value

® A repetition of constants in the form r*c

@ A repetition of null values in the form r¥*

Each constant has the form of the corresponding FORTRAN constant. A

complex constant has the form of a pair of real or integer constants

separated by a comma and enclosed in parentheses. Spaces can occur

between the opening parenthesis and the first constant, before and

after the separating comma, and between the second constant and the

closing parenthesis. A logical constant represents true or false

values -- that is, .TRUE. or any value beginning with T, .T, t, or

.t; or .FALSE. or any value beginning with F, .F, £, or .f. A

character constant 1is delimited by apostrophes, with an apostrophe

INPUT/OUTPUT STATEMENTS

that occurs within a character constant being represented by two

consecutive apostrophes. Hollerith, octal, and hexadecimal constants

are not permitted.

A null value 1is specified by two consecutive commas with no

intervening constant, or by an initial comma or a trailing comma.
Spaces can occur before or after the commas. A null wvalue either

indicates that the corresponding list element remains unchanged, or it
represents an entire complex constant (but not Jjust one part of a

complex constant).

The form r*c specifies r occurrences of ¢, where r 1is a nonzero,

unsigned integer constant and ¢ 1is a constant. Spaces are not

permitted except within the constant c as specified above.

The form r* specifies r occurrences of a null value, where r 1is an
unsigned integer constant.

A value separator in a record may be any one of the following:

e One or more spaces or tabs

e A comma, with or without surrounding spaces or tabs

e A slash, with or without surrounding spaces or tabs

The slash terminates execution of the input statement and processing

of the record; all remaining I/0 list elements are left unchanged.

When any of the above appear in a character constant, they are

considered part of the constant, not value separators.

The end of a record is equivalent to a space character except when it

occurs 1in a character constant. When the end of a record occurs in a
character constant, the end of the record is ignored and the character

constant 1is continued with the next record. That 1is, the last

character in the previous record is followed immediately by the first

character in the next record.

Spaces at the beginning of a record are ignored unless they are part

of a character constant continued from a previous record. When spaces

are part of a continued character constant, they are considered part

of that constant.

Input constants can be any of the following data types: integer,

real, logical, complex, and character. The data type of a constant

determines the data type of its wvalue and the translation from

external to internal form.

A numeric list element can correspond only to a numeric constant, and

a character list element can correspond only to a character constant.

If the data types of a numeric 1list element and 1its corresponding

numeric constant do not match, conversion is performed according to
the rules for arithmetic assignment (see Table 3-1).

Each input statement reads whatever number of records is required to

satisfy its I1/0 list. If a slash separator occurs, or if the I/0 list

is exhausted before all the values.in a record are used, the remainder
of the record is ignored.

An example of the use of list-directed READ statements follows.

INPUT/OUTPUT STATEMENTS

A program unit consists of the following:

CHARACTER*14 C

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL L,M

READ (1,*) I,R,D,E,L,M,J,K,S,T,C,A,B

And the external record to be read contains:

4 6.3 (3.4,4.2), (3, 2) , T7,F,,3*%14.6 ,'ABC,DEF/GHI''JK"'/

Upon execution of the program unit, the following values are assigned

to the I/0 list elements:

I/0 List

Element Value

4

6.3

(3.4,4.2)

(3.0,2.0)

. TRUE.

.FALSE.

14

14.6

14.6D0

ABC,DEF/GHI'JKQ
R

N
R
I
r
m
O
o
H

A, B, and J are unchanged.

7.4.1.3 The Unformatted Sequential READ Statement - The

unformatted sequential READ statement reads an external record

accessed under the sequential or keyed mode of access. It assigns the

fields of binary data contained in that record to the elements in the
I/0 list, in the order, from left to right, in which those elements

appear in the list. The data is not translated. The amount of data

assigned to each element is determined by the element's data type.

The unformatted sequential READ statement reads exactly one record.

If the I/0 list does not use all the values in a record -- that is, if

there are more values in the record than elements in the 1list -- the

remainder of the record is discarded. If the number of list elements

is greater than the number of values in the record, an error occurs.

If a statement contains no I/0 list, it skips over one full record,

positioning the file to read the succeeding record on the next
execution of a READ statement.

The unformatted sequential READ statement can only read records

created by unformatted sequential WRITE statements.

Some examples of the use of the unformatted sequential READ statement

follow.

READ (UNIT=1) FIELD1l, FIELD2

INPUT/OUTPUT STATEMENTS

In this example, the READ statement reads one record from logical unit

1 and assigns values of binary data to variables FIELD1l and FIELD2, 1n

the order indicated.

READ (8)

In this example, the READ statement advances logical wunit 8 one

record.

7.4.2. The Direct Access READ Statements

Direct access READ statements transfer input data to internal storage
from external records accessed under the direct mode of access. There

are two classes: formatted and unformatted.

The two classes of direct access READ statement have the forms:

Formatted Direct Access READ Statements

READ(extu, rec, fmt {[,err])[list]

Unformatted Direct Access READ Statements

READ(extu, rec [,err])[list]

extu

A logical unit specifier. See Section 7.2.1l.1.

rec

A record specifier. See Section 7.2,1.4.

fmt

A format specifier. See Section 7.2.1.3.

err

A transfer-of-control specifier. See Section 7.2.1.6.

list

An I/0 list. ©See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of

the above parameters.

7.4.2.1 The Formatted Direct Access READ Statement - The formatted

direct access READ statement does the following:

e Reads character data from one or more external records

accessed under the direct mode of access

e Translates the data from character to binary form using format

specifications to provide editing

e Assigns the translated data to the elements in the I/0 1list,

in the order, from 1left to right, in which those elements
appear in the list

INPUT/OUTPUT STATEMENTS

If the I/0 list and formatting do not use all the characters in a

record, the remainder of the record is discarded; if the I/0 list and

the formatting require more characters than are contained 1in the

record, the remaining fields are read as spaces.

An example of the use of the formatted direct access READ statement

follows:

READ (2, REC=35, FMT=10) (NUM(K), K=1,10)

10 FORMAT (10I2)

In this example, the READ and FORMAT statements read the first ten

fields from record 35 in 1logical wunit 2, translate the values to

binary form, and then assign the translated values to the internal

storage locations of the ten elements of the array NUM.

7.4.2.2 The Unformatted Direct Access READ Statement - The

unformatted direct access READ statement reads an external record

accessed under the direct mode of access and assigns the fields of

binary data contained in this record to the elements in the I/0 list,

in the order, from left to right, in which those elements appear in

the list. The data is not translated. The amount of data assigned to
each element is determined by that element's data type.

The unformatted direct access READ statement reads exactly one record.

If this record contains more fields than there are elements in the I/0

list of the statement, the unused fields are discarded; if there are

more elements than fields, an error occurs.

Examples of the use of wunformatted direct access READ statements

follow.

READ (1'10) LIST(l), LIST(8)

In this example, the READ statement reads record 10 in logical unit 1

and assigns binary integer values to elements 1 and 8 of the array

LIST.

READ (4, REC=58, ERR=500) (RHO(N), N=1,5)

In this example, the READ statement reads record 58 in logical unit 4

and assigns binary values to 5 elements of the array RHO.

7.4.3 The Indexed READ Statements

The indexed READ statement transfers input data to internal storage

from external records accessed under the keyed mode of access. There

are two classes: formatted and unformatted.

A series of records in an indexed file may be read in key-of-reference

sequence by using a sequential READ statement in conjunction with an

indexed READ statement. The first record in the sequence 1is found

using the indexed statement, the rest using sequential statements.

The two classes of indexed READ statement have the forms:

Formatted Indexed READ Statement

READ(extu, fmt, key [,keyid] [,err])([list]

INPUT/OUTPUT STATEMENTS

Unformatted Indexed READ Statement

READ(extu, key [,keyid] [,erq])[list]

extu

A logical unit specifier. See Section 7.2.1.1.

fmt

A format specifier. See Section 7.2.1.3.

key

A key specifier. See Section 7.2.1.5.

keyid

A key-of-reference specifier. See Section 7.2.1.5 (2).

err

end

Transfer-of-control specifiers. See Section 7.2.1.6.

list

An I/0 1list. ©See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of

the above parameters.

7.4.3.1 The Formatted Indexed READ Statement - The formatted 1indexed

READ statement does the following:

® Reads character data from one or more external records

accessed under the keyed mode of access

e Translates the data from character to binary form using format

specifications to provide editing

e Assigns the translated values to the elements in the I/O list,

in the order, from left to right, in which they appear in the
list

The formatted indexed READ statement may only be used on indexed

files. If the I/0 1list and format specifications specify that
additional records are to be read, the statement reads those

additional records sequentially, using the current key-of-reference

value.

If the KEYID parameter 1is omitted, the key-of-reference remains

unchanged from the most recent specification.

If the specified key value is shorter than the key field referred to,

the key wvalue 1is matched against the 1leftmost characters of the
appropriate key field until a match is found; the record supplying

the match is then read. If the key value is longer than the key field
referred to, an error occurs.

An example of the use of the formatted indexed READ statement follows:

READ (3,KAT,KEY="'ABCD') A,B,C,D

INPUT/OUTPUT STATEMENTS

In this example the READ statement retrieves a record with the wvalue

of 'ABCD' in the primary key, and then uses the format contained in

the array KAT to read the first four fields from the record into

variables A,B,C, and D.

7.4.3.2 The Unformatted Indexed READ Statement - The unformatted

indexed READ statement reads an external record accessed under the

keyed mode of access and assigns the fields of binary data contained

in that record to the elements in the I/0 list, in the order, from

left to right, in which those elements appear in the list. The data

is not translated. The amount of data assigned to each element is

determined by the element's data type.

The unformatted indexed READ statement reads exactly one record and

can be used only on indexed files. If the number of I/O list elements

is less than the number of fields in the record being read, the unused

fields in the record are discarded. If the number of I/0 list

elements is greater than the number of fields, an error occurs.

If a specified key value is shorter than the key field -referred to,

the key value 1is matched against the 1leftmost characters of the

appropriate key field until a match is found; the record supplying

the match is then read. 1If the specified key value is longer than the

key field referred to, an error occurs.

Some examples of the use of the wunformatted 1indexed READ statement

follow.

OPEN (UNIT=3, STATUS='OLD',

1 ACCESS='KEYED', ORGANIZATION='INDEXED',

2 FORM='UNFORMATTED',

3 KEY=(1:5, 30:37, 18:23))

READ (3,KEY='SMITH') ALPHA,BETA

In this example, the READ statement reads from the file connected to

logical unit 3 and retrieves the record with the value 'SMITH' in the

primary key field (bytes 1 to 5). The first two fields of the record

retrieved are placed in variables ALPHA and BETA, respectively.

READ (3,KEYGE='XYZDEF',KEYID=2,ERR=99) IKEY

In this example, the READ statement retrieves the first record having
a value equal to or greater than 'XYZDEF' in the second alternate key
field (bytes 18 to 23). The first field of that record is placed in

the variable IKEY.

7.4.4 The Internal READ Statement

The internal READ statement transfers input data to internal storage

from an internal file.

The DECODE statement discussed 1in Appendix A may be used as an

alternative to the internal READ statement.

The internal READ statement is always formatted and has the form:

READ (intu, fmt{,errl([,end])[list]

intu

An internal file specifier. See Section 7.2.1.2.

7-21

INPUT/OUTPUT STATEMENTS

fmt

A format specifier. See Section 7.2.1.3.

err

end

Transfer-of-control specifiers. See Section 7.2.1.6.

list

An I/0 1list. See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of

the above parameters.

The internal READ statement does the following:

e Reads character data from an internal file

e¢ Translates the data from character to binary form using format

specifications to provide editing

e Assigns the translated data to the elements in the I/0 1list,

in the order, from 1left to right, in which those elements

appear in the 1list

Refer to Section 7.1.3 for information on the characteristics and use

of internal files.

The following program segments demonstrate the use of internal file

reads:

CHARACTER*80 BUFFER

ACCEPT *, BUFFER

READ (BUFFER, '(I4.4)')1I

This segment reads the first four characters in the variable BUFFER as

an integer and assigns this integer value to the variable I.

INTEGER IVAL

CHARACTER TYPE, RECORD*80

CHARACTER*S5 AFMT, IFMT, OFMT, ZFMT

PARAMETER (AFMT='(Q,A)', IFMT= '(Il10)', OFMT= '(0ll1)',

1 ZFMT= ' (Z8)"')

ACCEPT AFMT, ILEN, RECORD

TYPE= RECORD (1:1)

IF (TYPE .EQ. 'D') THEN

READ (RECORD (2:MIN(ILEN, 11)), IFMT)IVAL

ELSEIF (TYPE .EQ. 'O') THEN

READ (RECORD (2:MIN(ILEN, 12)), OFMT)IVAL

ELSEIF (TYPE .EQ. 'X') THEN

READ (RECORD (2:MIN(ILEN, 9)),ZFMT)IVAL

ELSE

- PRINT *, 'ERROR'

ENDIF

END

This program segment reads a record and examines the first character

to determine whether the remaining data should be interpreted as

decimal, octal, or hexadecimal. It then uses internal file reads to

make appropriate conversions from character string representations to
binary.

INPUT/OUTPUT STATEMENTS

WRITE

7.5 THE WRITE STATEMENTS

The WRITE statements transfer output data from internal storage to
records contained 1in user-specified external logical units, or from

internal storage to internal files. There are four categories of

WRITE statements: sequential, direct access, indexed, and internal.

WRITE statements cannot write to existing records in an indexed file.

For statements that can perform this function, refer to the REWRITE
statement discussed in Section 7.6.

7.5.1 The Sequential WRITE Statements

Sequential WRITE statements transfer output data from internal storage

to external records accessed under the sequential mode of access.

There are three classes of sequential WRITE statements: formatted,
list directed, and unformatted.

The three classes of sequential WRITE statement have the forms:

Formatted Sequential WRITE Statements

WRITE(extu,fmt [,err]) [list]

List-Directed WRITE Statements

WRITE(extu, * [,err]) [list]

Unformatted Sequential WRITE Statement

WRITE(extu [,err]) [list]

extu

A logical unit specifier. See Section 7.2.1.1.

fmt

A format specifier. See Section 7.2.1.3.

err

A transfer-of-control specifier. See Section 7.2.1.6.

list |

An I/0 list., See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of

the above parameters. ‘

7-23

INPUT/OUTPUT STATEMENTS

7.5.1.1 The Formatted Sequential WRITE Statement - The formatted

sequential WRITE statement does the following:

® Reads specified data from internal storage

e Translates the data from binary to character form using format

specifications to provide editing

e Writes the translated values to an external record accessed

under the sequential mode of access

The length of the records written to a wuser-specified output device

(for example, a 1line printer) must not exceed the maximum record

length that this device can process. In the case of a 1line printer,

the maximum record length is usually 132 characters.

Using an appropriate format specification, a formatted sequential

WRITE statement can write more than one record.

Because numeric data transferred by formatted output statements is

always rounded during its conversion from binary to character form, a

loss of precision may result if this data is subsequently used as

input., It is recommended, therefore, that whenever numeric output is

to be used subsequently as 1input, unformatted output and input

statements be used for data transfer.

Some examples of the use of formatted sequential WRITE statements

follow

WRITE (6,650)

650 FORMAT (' HELLO THERE')

In this example, the WRITE statement writes one record, consisting of

the contents of the character constant in the format statement, to

logical unit 6.

WRITE (1,95) AYE,BEE,CEE

95 FORMAT (3F8.5)

In this example, the WRITE statement writes one record consisting of

fields AYE, BEE, and CEE to logical unit 1.

WRITE (1,900) DEE,EEE,EFF

900 FORMAT (F8.5)

In this example, the WRITE statement writes three separate records to

logical unit 1; each record consists of only one field.

7.5.1.2 The List-Directed WRITE Statement - The 1list-directed WRITE

statement does the following:

¢ Retrieves specified data from internal storage

e Translates that data from binary to character form using the

data type of the elements in the I/O list to provide editing

e Writes the translated values to an external record accessed

under the sequential mode of access

The values transferred as output by the list-directed WRITE statement

have the same forms as the constant values transferred as input by the

list-directed READ and ACCEPT statements, with the following
exception: Character constants are transferred without delimiting

INPUT/OUTPUT STATEMENTS

apostrophes, and each internal apostrophe is represented by only one

apostrophe instead of two. As a consequence of this exception,

records containing list-directed character output data can be printed

but cannot be used for list-directed input. (Refer to Section 7.4.1.2

for a full discussion on list-directed value forms.)

Table 7-3 below shows the default output formats for each data type.

Table 7-3: List-Directed Output Formats

Data Type Output Format

LOGICAL*1 IS

LOGICAL*2 L2

LOGICAL*4 L2

INTEGER*2 17

INTEGER*4 I12

REAL*4 1PG15.7

REAL*8 1PG25.16

COMPLEX*8 1X,'(',1pPG14.7, ',', 1PGl4.7,')"

CHARACTER 1X, An (where n is the length of

the character expression)

Note the following:

e List-directed output statements do not produce octal values,

hexadecimal values, null values, slash separators, or repeated
forms of values.

¢ List-directed output removes from a complex value any embedded

spaces.

e Each output record begins with a space for carriage control.

e Each output statement writes one or more complete records.

e Each individual output value 1is contained within a single

record, with the exception of character constants longer than

one record length, and complex constants that can be split

after the comma.

An example of the use of the list-directed WRITE statement follows:

DIMENSION A(4)

DATA A/4*3.4/

WRITE (1,*) 'ARRAY VALUES FOLLOW'

WRITE (1,*) A,4

In this example, the WRITE statements write the following records to

logical unit 1:

ARRAY VALUES FOLLOW

3.400000 3.400000 3.400000 3.400000 4

7.5.1.3 The Unformatted Sequential WRITE Statement - The sequential

unformatted WRITE statement transfers specified binary data from

internal storage to an external record accessed under the sequential
mode of access. The data are not translated.

7-25

INPUT/OUTPUT STATEMENTS

The sequential unformatted WRITE statement writes exactly one record;
if there is no I/0 list, the statement writes one null record.

Some examples of the use of the unformatted sequential WRITE statement

follow.

WRITE(1) (LIST(K),K=1,5)

In this example, the WRITE statement writes to logical unit 1 a record

containing the values, in binary form, of elements 1 through 5 of the

array LIST.

WRITE (4)

In this example, the WRITE statement writes one null record to logical
unit 4.

7.5.2 The Direct Access WRITE Statements

Direct access WRITE statements transfer output data from internal

storage to external records accessed under the direct mode of access.

There are two classes of direct access WRITE statements: formatted

and unformatted.

Using an OPEN statement is one method of establishing attributes of a

direct access file.

The two classes of direct access WRITE statement have the forms:

Formatted Direct Access WRITE Statements

WRITE(extu, rec, fmt [,err])[list]

Unformatted Direct Access WRITE Statements

WRITE(extu, rec [,err])[list]

extu

A logical unit specifier. See Section 7.2.1.1.

rec

A record specifier. See Section 7.2.1.4.

fmt

A format specifier. See Section 7.2.1.3.

err

A transfer-of-control specifier. See Section 7.2.1.6.

list

An I/0 list. See Section 7.2.2,

Refer to Section 7.3 for the syntactical rules that govern the use of

the above parameters.

INPUT/OUTPUT STATEMENTS

7.5.2.1 The Formatted Direct Access WRITE Statement - The formatted
direct access WRITE statement does the following:

® Retrieves binary values from internal storage

e Translates those values to character form using format
specifications to provide editing

@ Writes the translated data to a user-specified external record
accessed under the direct mode of access

If the values specified by the I/0 list and formatting do not fill the
output record being written, the unused portion of the record is
filled with space characters. If the values overfill the record, an
error occurs.

7.5.2.2 The Unformatted Direct Access WRITE Statement - The
unformatted direct access WRITE statement retrieves binary values from

internal storage and writes those values to a user-specified external
record accessed under the direct mode of access. The values are not

translated.

If the values specified by the I/0 list do not fill the output record
being written, the unused portion of the record is filled with zeros.

If the values do not fit in the record, an error occurs.

7.5.3 The Indexed WRITE Statements

The indexed WRITE statements transfer output data from internal
storage to external records accessed under the keyed mode of access.

There are two classes of indexed WRITE statements: formatted and
unformatted.

The indexed WRITE statement always writes a new record. The REWRITE

statement discussed 1in Section 7.6 1is wused to update an existing

record. :

Using an OPEN statement is one method of establishing the attributes

of an indexed file.

The syntactical form of the indexed WRITE statement is identical to

that of the sequential WRITE statement; the two statements differ

only in that the indexed WRITE statement refers to a logical unit

connected to an indexed file, whereas the sequential WRITE statement

refers to a logical unit connected to a sequential file.

The two classes of indexed WRITE statement have the forms:

Formatted Indexed WRITE Statements

WRITE(extu, fmt [,err])[list]

Unformatted Indexed WRITE Statements

WRITE(extu [,err])[list]

extu

A logical unit specifier. See Section 7.2.1.1.

INPUT/OUTPUT STATEMENTS

fmt

A format specifier. See Section 7.2.1.3.

err

A transfer-of-control specifier. See Section 7.2.1.6.

list

An I/0 list. See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of
the above parameters.

7.5.3.1 The Formatted Indexed WRITE Statement - The formatted indexed

WRITE statement does the following:

e Retrieves binary values from internal storage

e Translates those values to character form using format

specifications to provide editing

e Writes the translated data to one or more external records

accessed under the keyed mode of access

No key parameters are required in the 1list of control parameters,

because all necessary key information 1is contained in the output

record.

If the values specified by the I/0 list and formatting do not fill a

fixed-length record being written, the unused portion of the record is
filled with space characters. If additional records are specified,
these are inserted in the file logically according to the key values

contained in each record. ’

An example of the use of formatted indexed WRITE statement follows:

WRITE (4,100) KEYVAL, (RDATA (I), I=1,20)

100 FORMAT (A1l0,20F15.7)

In this example, the WRITE statement writes the translated values of

KEYVAL and each of the 20 elements of the array RDATA to a new

formatted record in the indexed file connected to logical unit 4.

7.5.3.2 The Unformatted Indexed WRITE Statement - The unformatted

indexed WRITE statement retrieves binary values from internal storage

and writes those values to an external record accessed under the keyed

mode of access. The values are not translated.

No key parameters are required in the 1list of control parameters

because all necessary key 1information 1is contained in the output
record. :

If the values specified by the I/0 list do not fill a fixed-length

record being written, the unused portion of the record is filled with

zeros; L1f the values specified overfill the record, an error occurs.,

INPUT/OUTPUT STATEMENTS

7.5.4 The_Internal WRITE Statement

The internal WRITE statement transfers output data from internal

storage to an internal file.

You can also use the ENCODE statement discussed in Appendix A to

control internal output.

The internal WRITE statement is always formatted and has the form:

WRITE (intu, fmt{,err])[list]

intu

An internal file specifier. See Section 7.2.1.2.

fmt

A format specifier. See Section 7.2.1.3.

err

A transfer-of-control specifier. See Section 7.2.1.6.

list

An I/0 list. See Section 7.2.2.

Refer to Section 7.3 for the syntactical rules that govern the use of

the above parameters.

The internal WRITE statement does the following:

e Retrieves data from internal storage

e Translates this data from binary to character form wusing

format specifications to provide editing

@ Writes the translated values to an internal file

Refer to Section 7.1.3 for information on the characteristics and use

of internal files.

The following example demonstrates the wuse of the internal WRITE

statement:

CHARACTER*80 BUFFER

ACCEPT *,1I

WRITE (BUFFER,"'(I4.4)')I ! Start buffer with 4 digits from input

END

REWRITE

7.6 THE REWRITE STATEMENT

The REWRITE statement transfers output data from internal storage to

the current record in an indexed file. There is only one category of

REWRITE statement: indexed.

INPUT/OUTPUT STATEMENTS

7.6.1 The Indexed REWRITE Statement

The indexed REWRITE statement transfers output data from internal

storage to the last record in an indexed file to be accessed by a READ

statement. There are two <classes of indexed REWRITE statements:

formatted and unformatted.

The OPEN statement is used to establish the attributes of an indexed

file. _

The two classes of indexed REWRITE statement have the forms:

Formatted Indexed REWRITE Statement

REWRITE(extu,fmt [,err]) [list]

Unformatted Indexed REWRITE Statement

REWRITE(extu [,err])[list]

where extu, fmt, err, and list are defined as they are for the indexed

WRITE statements discussed in Section 7.5.3. Refer to Section 7.3 for

applicable syntactical rules.

7.6.1.1 The Formatted 1Indexed REWRITE Statement - The formatted

indexed REWRITE statement does the following:

e Retrieves binary values from internal storage

e Translates those values to character form using format

specifiers to provide editing

e Writes the translated data to an existing record in an indexed

file

The record written to is the current record in the file -- that is,

the last record to be accessed by a preceding indexed or sequential

READ statement.

Changing the primary key value results in an error, and attempting to

rewrite more than one record causes an error. Any unused space in a

rewritten fixed-length record is filled with spaces; if the record is

too long, an error occurs.

An example of the wuse of a formatted indexed REWRITE statement

follows:

REWRITE(3, 10, ERR=99) NAME, AGE, BIRTH

10 FORMAT (Al6, I2, A8)

In this example, the REWRITE statement updates the current record

contained in the 1indexed file connected to logical unit 3 with the

values represented by NAME, AGE, and BIRTH.

7.6.1.2 The Unformatted Indexed REWRITE Statement - The unformatted

indexed REWRITE statement retrieves binary values from internal

storage and writes those values to an existing record in an indexed
file. The values are not translated.

The record written to is the current record in the file -- that is,

the 1last record to be accessed by a preceding indexed or sequential

READ statement.

INPUT/OUTPUT STATEMENTS

Changing the primary key value results in an error. Any unused space
in a rewritten, fixed-length record 1is filled with zeros; 1if the
record is too long, an error occurs.

ACCEPT

7.7 THE ACCEPT STATEMENT

The ACCEPT statement transfers input data to internal storage from
external records accessed under the sequential mode of access.

ACCEPT statements can only be used on implicitly connected logical
units.

The ACCEPT statement has the forms:

ACCEPT f[,list]

ACCEPT *[,list]

The nonkeyword form of a format spécifier. See Section 7.2.1.3.

*

Specifies list-directed formatting.

list

An I/0 list. See Section 7.2.2.

The ACCEPT statement functions exactly as the formatted sequential
READ statement discussed in Section 7.4.1.1, with the following
important exception: The ACCEPT statement can never be connected to
user-specified logical units.

An example of the use of the formatted ACCEPT statement follows:

CHARACTER *10 CHARAR(5)

ACCEPT 200, CHARAR

200 FORMAT (5A10)

In this example, the ACCEPT statement reads character data from the
implicit wunit and assigns binary values to each of the five elements

of the array CHARAR.

TYPE

PRINT

7.8 THE TYPE AND PRINT STATEMENTS

The TYPE and PRINT statements transfer output data from internal
storage to external records accessed under the sequential mode of

access,

INPUT/OUTPUT STATEMENTS

TYPE and PRINT statements have the forms:

TYPE f£[,list]

PRINT f [,list]

TYPE * [, list]

PRINT * [, list]

The nonkeyword form of a format specifier. See Section 7.2.1.3.

Specifies list-directed formatting.

list

An I/0 list. See Section 7.2.2.

TYPE and PRINT statements function exactly as the formatted sequential

WRITE statement discussed 1in Section 7.5.1.1, with the following

important exception: The formatted sequential TYPE and PRINT

statements can never be used to transfer data to user-specified

logical units.

An example of the use of a formatted sequential PRINT statement

follows:

CHARACTER*16 NAME, JOB

PRINT 400, NAME, JOB

400 FORMAT ('NAME=', A, 'JOB=', A)

In this example, the PRINT statement writes one record to the implicit

output device; the record consists of four fields of character data.

CHAPTER 8

FORMAT STATEMENTS

FORMAT statements are nonexecutable statements used with formatted I/O

statements (and with ENCODE and DECODE statements) to describe the

format in which data is to be transferred, and to specify the kind of

conversion and the editing required to achieve this format.

Throughout this chapter a distinction is made between "external form"

and "internal form." "External form" refers to the ASCII characters in

a data field of a formatted record; "internal form" refers to the

binary representation of a data value.

FORMAT statements have the form:

FORMAT (qlflslf2s2 ... fnqgn)

q

Zero or more slash (/) record terminators.

f

A field or edit descriptor, or a group of field or edit

descriptors enclosed in parentheses.

s

A field separator.

The entire list of field and edit descriptors, field separators, and

record terminators, including the enclosing parentheses (which must be

present), is called the format specification.

The field separators are the comma and the slash. The slash is also a

record terminator. Section 8.5 describes in detail the functions of

the field separators.

The field and edit descriptors have the forms:

[r]lc[w[.d[Ee]]] [rlcw.m

r

The number of times the field or edit descriptor 1is to be

repeated (repeat count). If you omit r, it is assumed to be 1.

c

A field or edit descriptor code (S, SpP, SS, 1, O, 2, F, E, D, G,

L, A, H, X, T, P, Q, $, BN, BZ, TL, or TR).

FORMAT STATEMENTS

w

The external field width, in characters.

-4

The number of characters to the right of the decimal point.

E

In this context, identifies an exponent field.

e

The number of characters in the exponent.

m

The minimum number of characters that must appear within the

field (including leading zeros).

The terms r, w, m, and d must all be unsigned integer constants; r,

w, m, d, and e must be less than or equal to 255, and r and w must be

nonzero. The r term is always an optional element in those

descriptors in which it can be used. The d and e terms are required
in some field descriptors and are invalid in others.

You are not allowed to use parameter constants for the terms r, w, m,

d, or e.

The field and edit descriptors are:

e Integer field -- Iw, Ow, Zw, Iw.m, Ow.m, Zw.m

® Logical field -- Lw

e Real, double-precision, and complex field -- Fw.d, Ew.d, Dw.d,

Gw.d, Ew.dEe, Gw.dEe

@ Character field -- Aw

Q, S, : (where n 1is a number of characters or character
positions)

e Character and Hollerith constant field -- nH, '...'

Section 8.1 describes each field and edit descriptor in detail.

The first character in an output record generally contains

carriage-control information (see Section 8.3).

During data transfers, the format specification is scanned from left

to right and the elements in the I/O list are correlated one-for-one

with corresponding field descriptors in the specification, except in

the case of edit descriptors and character- and Hollerith-constant

field descriptors, which do not require corresponding I/0 1list

elements.

Section 8.7 describes in detail the interaction between format

specifiers and the I/0 list.

FORMAT STATEMENTS

You use an I, O, Z, or L field descriptor to process integer and

logical data. You use an F, E, D, G, O, or Z field descriptor to

process real, double-precision, and complex data.

You use an A, O, or Z field descriptor to process character data.

You can create a format specification before program execution with

the FORMAT statement. Section 8.8 summarizes the rules for writing

FORMAT statements. You can create a format during program execution

by using a run-time format instead of a FORMAT statement. Section 8.6

describes run-time formats.

8.1 FIELD AND EDIT DESCRIPTORS

A field descriptor describes the size and format of a data item or

items. (Data items in an external medium are called external fields.)

An edit descriptor specifies an editing function to be performed on a
data item or items. (Some edit descriptors, such as the Scale Factor

P, actually perform control functions but are included among the edit

descriptors for the sake of simplicity.)

The numeric field descriptors ignore leading spaces in the external

field; however, they treat embedded and trailing spaces as zeros

unless the BN edit descriptor is in effect, or unless BLANK = 'NULL'

is in effect for the 1logical wunit, in which case all spaces are

ignored.

At the beginning of the execution of each formatted input statement,

the BLANK attribute for the wunit determines the interpretation of

spaces; the PDP-11 FORTRAN-77 defaults are BLANK = 'NULL' when an

OPEN statement has been executed, and BLANK= 'ZERO' when no OPEN

statement has been executed. During the execution of a formatted

input statement, the interpretation of spaces may be controlled by BN

and BZ edit descriptors -- that is, the default interpretation may be

superseded by either of these. The BN and BZ edit descriptors affect

only the formatted I/O statement of which they are a part.

The field and edit descriptors are described 1in detail 1in Sections

8.1.1 through 8.1.23. Sections 8.1.24, 8.1.25, and 8.1.26 discuss

complex-data editing, repeat counts, and default descriptors,

respectively.

8.1.1 BN Edit Descriptor

The BN edit descriptor causes the processor to ignore all the embedded

and trailing blanks it encounters within a numeric input field. It

has the form:

BN

The effect is that of actually removing the blanks and

right-justifying the remainder of the field. A field of all blanks is

treated as zero. The BN descriptor affects only I, O, Z, F, E, D, and

G editing, and only upon the execution of an input statement.

8-3

FORMAT STATEMENTS

8.1.2 BZ Edit Descriptor

The BZ edit descriptor causes the processor to treat all the embedded

and trailing blanks it encounters within a numeric input field as
zeros. It has the form:

BZ

The BZ descriptor affects only I, O, 2, F, E, D, and G editing, and

only upon the execution of an input statement. :

8.1.3 SP Edit Descriptor

The SP edit descriptor causes the processor to produce a plus

character in any position where this character would otherwise be

optional. It has the form:

SP

The SP descriptor affects only I, F, E, D, and G editing, and only

upon the execution of an output statement.

8.1.4 SS Edit Descriptor

The SS edit descriptor causes the processor to suppress a leading plus

character from any position where this character would normally be

produced as an optional character; 1t has the opposite effect of the

SP field descriptor described above. The SS descriptor has the form:

SS

The SS descriptor affects only I, F, E, D, and G editing, and only

upon execution of an output statement.

8.1.5 S Edit Descriptor

The S edit descriptor reinvokes optional plus characters (+) in

numeric output fields. It has the form:

S

The S descriptor counters the action of either the SP or SS descriptor

by restoring to the processor the decision-making ability to produce

plus characters on an optional basis.

The same restrictions apply as for the SP and SS descriptors.

8.1.6 I Field Descriptor

The I field descriptor specifies decimal integer values. It has the
form:

Iw[.m]

The corresponding I/0 list element must be of either integer or

logical data type.

FORMAT STATEMENTS

Rules in Effect for Data Input

The I field descriptor specifies that w characters are to be

read from an external field, interpreted as a decimal integer

value, and assigned to the corresponding I/0 list element.

The external data value must be an integer constant; it

cannot contain a decimal point or an exponent field.

If the external value exceeds the maximum allowed magnitude of

the corresponding list element, an error occurs.

If the first nonblank character of the external field 1is a
minus sign, the field is treated as a negative value.

If the first nonblank character is a plus sign, or if no sign

appears 1in the field, the field 1is treated as a positive

value.

An all-blank field is treated as a value of 0.

Input Examples

Format External Field Internal Value

I4 2788 2788

I3 -26 -26

19 : 312 312

Rules in Effect for Data Output

The I field descriptor specifies that the value of the

corresponding I/O 1list element 1is to be transferred as a

decimal wvalue, right Jjustified, to an external field w

characters long.

If m is present, the external field consists of at least m

digits; if necessary, 2zeros are added on the left to bring

the total digits to m.

If the value exceeds the field width, the entire field |is

filled with asterisks.

If the value of the list element is negative, the field will

have a minus sign as 1its 1leftmost, nonblank character,

provided the term w is large enough,

Plus signs are suppressed, unless SP is specified.

Output Examples

Format Internal Value External Representation

I3 284 284

I4 -284 -284

I5 174 174

12 3244 *x

I3 -473 *k*

17 29,812 Not permitted: error

14.2 1 01

I4.4 1 0001

8.1.7

FORMAT STATEMENTS

O Field Descriptor

The O field descriptor specifies octal integer wvalues. It has the

form:

Ow(.m]

The corresponding I/0 list element can be any data type.

Rules in Effect for Data Input

The O field descriptor specifies that w characters are to be

read from an external field, interpreted as an octal value,

and assigned to the corresponding I/0 list element.

The external field can contain only the numerals 0 through 7;

it cannot contain a sign, a decimal point, or an exponent

field.

An all-blank field is treated as a value of 0,

If the value of the external data exceeds the allowed size of

the corresponding list element, an error occurs.

Input Examples

Internal

Format External Field Decimal value

05 77777 32767

04 31274 1623

06 15 53248

03 97 Not permitted: error

Rules in Effect for Data Output

¢ The O field descriptor specifies that the octal value of the

corresponding I/0 1list element 1is to be transferred as an

octal integer, right Jjustified, to an external field w

characters long.

e No signs are output; a negative value is transmitted in |its

octal (two's complement) form.

e If the value does not fill the field, 1leading spaces are

inserted.

e If the value exceeds the field width, the entire field 1is

filled with asterisks.

e If m is present, the external field consists of at least m

digits; if necessary, zeros are added on the left to bring

the total digits to m.

Output Examples

‘ External (Octal)

Format Internal (Decimal) Value Representation

06 32767 77777

06 -32767 100001

02 14261 bl

04 27 33

Oll 13.52 12173041130

04.2 7 07

04.4 7 0007

8-6

FORMAT STATEMENTS

8.1.8 Z Field Descriptor

The Z field descriptor specifies hexadecimal (base 16) values. It has
the form:

Zw(.m]

The Z fleld descriptor can be used with a corresponding I/0 1list
element of any data type.

Rules in Effect for Data Input

@ The Z field descriptor specifies that w characters are to be

read from an external field, interpreted as a hexadecimal

value, and assigned to the corresponding I/0 list element.

o The external field can contain only the numerals 0 through 9

and the letters A (or a) through F (or f£); it cannot contain

a sign, a decimal point, or an exponent field.

e An all-blank field is treated as a value of zero.

e If the value of the external field exceeds the range of the

correpsonding list element, an error occurs.

Input Examples

Internal

Format External Field Hexadecimal Vvalue

Z3 A94 A94

Z5 A23DEF A23DE

Z5 95.AF2 Not permitted: error

Rules in Effect for Data Output

¢ The Z field descriptor specifies that the value of the

corresponding I/0 1list element is to .be transferred as a

hexadecimal value, right justified, to an external field w

characters long.

e No signs are output.

® A negative value is transferred 1in 1its hexadecimal (two's

complement) form.

e If the value does not £ill the external field, leading spaces

are Inserted; if the value exceeds the field, the entire

field is filled with asterisks.

e If m is present, the external field consists of at 1least m

digits; 1if necessary, the field is zero filled on the left.

Output Examples

Format Internal (Decimal) Vvalue External Representation

Z4 32767 7FFF

zZ5 -32767 8001

zZ2 16 10
Z4 -10.5 c228

Z3.3 2708 A94

Z6.4 2708 0A94

Note that if m is zero, and the internal representation is zero, the

external field is blank filled.

8-17

FORMAT STATEMENTS

8.1.9 F Field Descriptor

The F field descriptor specifies real or double-precision values. It

has the form:

Fw.d

The corresponding I/0 list element must be of real or double-precision

data type, or it must be either the real or the imaginary part of a

complex data type.

Rules in Effect for Data Input

The F field descriptor specifies that w characters are to be

read from an external field, interpreted as a real or

double-precision value, and assigned to the corresponding 1I/0

list element. Any decimal point, signs, or exponent field

present in the external field are included in the w count, and

d is part of w.

If the w characters include a decimal point, the position of

the decimal point is used. 1If the w characters do not include
a decimal point, the decimal point 1is placed before the

rightmost 4 digits of w.

If the w characters include an exponent field (see Section

2.3.2 for real constant exponents and Section 2.3.3 for
double-precision constant exponents), the exponent is used to

evaluate the number's magnitude before the decimal point
position is determined.

If the first nonblank character of the external field 1is a

minus sign, the field is treated as a negative value.

If the first nonblank character is a plus sign, or if no sign

appears in the field, the field 1is treated as a positive

value.

An all-blank field is treated as a value of 0.

The term w must be greater than or equal to d+l.

Input Examples

Format External Field Internal Value

F8.5 123456789 123.45678

F8.5 -1234.567 -1234.56

F8.5 24.77E+2 2477.0

F5.2 1234567.89 123.45

Rules in Effect for Data Output

The F field descriptor specifies that the value of the

corresponding 1I/0 list element is to be transferred as a real
or double-precision value, rounded to d decimal positions and

right justified, to an external field w characters long.

If the value does not fill the field, 1leading spaces are

inserted.

If the value exceeds the field width, the entire field |1is

filled with asterisks.

Plus signs are suppressed, unless SP is specified.

FORMAT STATEMENTS

e¢ The term w must be greater than or equal to d+l; however, the

field width should be large enough to contain the number of
digits after the decimal point, plus 1 for the decimal point,

plus the number of digits to the left of the decimal point,
plus 1 for a possible negative sign.

Output Examples

Format Internal Value External Representation

F8.5 2.3547188 2,35472

F9.3 8789.7361 8789.736

F2.1 51.44 **

F10.4 -23.24352 -23.2435

F5,.2 325.013 kkkkk

F5.2 -2 -0.20

8.1.10 E Field Descriptor

The E field descriptor specifies real or double-precision values in

exponential form. It has the form:

Ew.d[Ee]

The corresponding I/O list element must be of real or double-precision

data type, or it must be either the real or the imaginary part of a

complex data type.

Rules in Effect for Input

On input, the E field descriptor does not differ from the F field

descriptor.

Input Examples

Format External Field Internal Value

E9.3 734.432E3 0.734432E+6

El2.4 1022.43E-6 0.102243E-2

E15.3 52.3759663 0.523759E+2

El2.5 210.5271D+10 0.2105271E+13

In the last example, note that the E field descriptor treats the D

exponent field indicator as an E indicator if the I/0 list element is

single precision.

Rules in Effect for Output

e The E field descriptor specifies that the wvalue of the

corresponding I/0 list element is to be transferred as a real

or double-precision value in exponential form, rounded to d

decimal digits and right justified, to an external field w

characters long.

e If the value does not fill the w characters, 1leading spaces

are inserted.

e If the value exceeds the w characters, the entire field 1is

filled with asterisks.

@ Output is in a standard form; that is, it has a minus sign if
the wvalue 1is negative, an optional 0, a decimal point, d

FORMAT STATEMENTS

digits to the right of the decimal point, and an e+2 character

exponent in one of the forms:

E+nn

Ew.d (for exponent < 99)

E-nn

E+n(l)n(2)...n(e)

Ew.dEe

E-n(1)n(2)...n(e)

n

A digit of an integer.

e The exponent field width specification is optional; 1if it |is

omitted, the value of e defaults to 2. If the exponent value
is too large to be output in one of the above forms, an error

occurs,

e The d digits to the right of the decimal point represent the

entire value, scaled to a decimal fraction.

e Plus signs are suppressed, unless SP is specified.

e The term w must be large enough to include: a minus sign when
necessary (plus signs are optional); a zero; a decimal

point; d digits; and an exponent. Therefore, w must be
greater than or equal to d+7, or to d+e+5 if e is present.

Output Examples

Format Internal Value External Representation

E9.2 475867.222 0.48E+06

El12.5 475867.222 0.47587E+06

E12.3 0.00069 0.690E-03

E10.3 -0.5555 -0.556E+00

ES5.3 56.12 *hkhk
E14,5E4 -1.001 0.10010E+0001

E14.3E6 0.000123 0123E-000003

8.1.11 D Field Descriptor

The D field descriptor specifies with a D instead of an E real or

double-precision values in exponential form. It has the form:

Dw.d

The corresponding I/0 list element must be of real or double-precision

data type, or it must be either the real or the imaginary part of a
complex data type. :

Rules in Effect for Input

On input, the D field descriptor does not differ from the F or E field
descriptors.

Input Examples

Format External Field Internal Value

D10.2 12345 0.1234500000D+8
D10.2 123.45 0.1234500000D+3

D15.3 367.4981763D-04 0.3674981763D~1

8-10

FORMAT STATEMENTS

Rules in Effect for Output

There is only one difference between the D and E descriptors on

output: If you use the D descriptor, the letter D is output instead

of the letter E.

Output Examples

Format Internal Value External Value

D14.3 0.0363 0.363D-01

D23,.12 5413.87625793 0.541387625793D+04
D9.6 1.2 khkkkkhkkhk

8.1.12 G Field Descriptor

The G field descriptor specifies real or double-precision values,

combining E- or F-type formats according to the size of the number

being output. It has the form:

Gw.d[Ee]

The corresponding I/0 list element must be of real or double-precision

data type, or it must be either the real or the imaginary part of a

complex data type.

Rules in Effect for Input

On input, the G field descriptor does not differ from the F, E, or D

descriptors.

Rules in Effect for Output

¢ The G field descriptor specifies that the value of the

corresponding I/0 list element is to be transferred as a real

or double-precision value in either exponential or fixed-point

form, rounded to d decimal positions and right justified, to

an external field w characters long.

@ The form in which the value is written is a function of the

magnitude of the value, as described in Table 8-1.

Table 8-1: Effect of Data Magnitude on G Formats

Data Magnitude Effective Format

0.1 <m¢< 1.0 F(w-4).d4, ' '

1.0 < m < 10.0 F(w-4).(d-1), ' !

\.)

10d-2 < m < 104-1 F(w-4).1, ' '

10d-1 < m < 10d F(w-4).0, ' !

m > 10d Ew.d [Ee]

FORMAT STATEMENTS

Note: The ' ' in the second column of Table 8-1 specifies. that
four spaces are to follow the numeric data representation.

e Plus signs are suppressed.

e The term w must be large enough to include: a minus sign when

necessary (plus signs are

digits to the right of the

optional); a decimal point; d

decimal point; and either a
4-character or an (e+2)-character exponent. Therefore, w must

be greater than or equal to d+7 or d+S+e.

Output Examples

Format Internal Value

Gl3.6 0.01234567

Gl3.6 -0.12345678

Gl3.6 1.23456789

Gl3.6 12.34567890

Gl13.6 123.45678901

Gl13.6 -1234.56789012
Gl3.6 12345.67890123

Gl3.6 123456.78901234

Gl3.6 -1234567.89012345

External Representation

0.123457E-01

-0.123457

1.23457

12,3457

123.457

-1234.57

12345.7

123457.

-0.123457E+07

Compare the above examples with the following examples, which show the

same values output with an equivalent F field descriptor.

Format Internal Value

F13.6 0.01234567

F13.6 -0.12345678

F13.6 1.23456789

F13.6 12.34567890

Fl13.6 123.45678901

F13.6 -1234.56789012

F13.6 12345.67890123

F13.6 123456.78901234

F13.6 -1234567.89012345

8.1.13 L Field Descriptor

External Representation

0.012346

-0.123457

1.234568

12.345679

123.456789

-1234.567890

12345.678901

123456.789012
khkhhhhkhhhhkh

The L field descriptor specifies logical data. It has the form:

Lw

The corresponding I/0 list element

logical data type.

Rules in Effect for Input

be of either integer or

¢ The L field descriptor specifies that w characters are to be

read from the external field.

e If the first nonblank character of the field is the letter T,

t, .T, or .t, the wvalue

corresponding I/0 list element.

.TRUE. is assigned to the

e If the first nonblank character of the field is the letter F,

£, .F, or .f, or 1if the entire field is blank, the value

.FALSE., 1s assigned.

e Any other value in the external field produces an error.

FORMAT STATEMENTS

Rules in Effect for Output

¢ The L field descriptor specifies that either the letter T (if

the wvalue of the corresponding I/0 list element is .TRUE.) or

the letter F (if the wvalue of the corresponding I/0 1list

element 1is .FALSE.) 1is to be transferred to an external field

w characters long.

@ letter T or F is in the rightmost position of the field,

preceded by w-1 spaces.

Output Examples

Format Internal Value External Representation

L5 . TRUE. T

Ll .FALSE. F

8.1.14 A Field Descriptor

The A field descriptor specifies character or Hollerith values. It

has the form:

Alw]

The corresponding I/O list element can be of any data type, because

variables of any data type can be used to store Hollerith data.

The value of w must be less than or equal to 255.

Rules in Effect for Input

e The A field descriptor transfers w characters from the

external record and assigns them to the corresponding I/0 list

element. '

e The maximum number of characters that can be stored depends on

the size of the I/0 list element.

e The size of a character I/0 list element is the length of the

character variable, character substring reference, or

character array element that makes up the element. The size

of a numeric I/0 list element depends on the data type of the

element, as follows:

I/0 List Maximum Number

Element of Characters

BYTE 1l

LOGICAL*1 1

LOGICAL*2 2

LOGICAL*4 4

INTEGER*2 2
INTEGER*4 4

REAL 4

REAL*8 8

DOUBLE PRECISION 8

COMPLEX 8

CHARACTER*n n

FORMAT STATEMENTS

e If w is greater than the maximum number of characters that can
be stored 1in the corresponding I/0 list element, only the

rightmost characters are assigned to the element. Leftmost

excess characters are ignored.

e Ifw is less than the number of characters that can be stored,

w characters are assigned to the list element, left justified,
and trailing spaces are added to fill the element.

Input Examples

Format External Field Internal Vvalue

A6 PAGE # # (CHARACTER*1)

A6 PAGE # E # (CHARACTER*3)
A6 PAGE # PAGE # (CHARACTER*6)

A6 PAGE # PAGE # (CHARACTER*S8)
A6 PAGE # # (LOGICAL*1)

A6 PAGE # # (INTEGER*2)

A6 PAGE # GE # (REAL)

A6 PAGE # PAGE # (DOUBLE PRECISION)

Rules in Effect for Output

e The A field descriptor specifies that the contents of the
corresponding I/0 1list element are to be transferred to an

external field w characters long.

e If w is greater than the size of the list element, the data

appears in the field, right justified, with leading spaces.

e If w is less than the size of the 1list element, only the

leftmost w characters are transferred.

Output Examples

Format Internal Value External Representation

AS OHMS OHMS

A5 VOLTS VOLTS

A5 AMPERES AMPER

If you omit w in an A field descriptor, a default value 1is supplied.

If the 1I/0.list element is of character data type, the default value

is the length of the I/0 list element, If the I/O list element is of

numeric data type, the default value 1is the maximum number of

characters that can be stored in a variable of that data type.

8.1.15 H Field Descriptor

The H field descriptor specifies that data 1is to be transferred

between an external record and the storage location of the H field
descriptor itself. It has the form (of a Hollerith constant):

nHclc2c3 ... €N

The number of characters to be transferred.

An ASCII character.

FORMAT STATEMENTS

Rule in Effect for Input

¢ The H field descriptor specifies that n characters be accepted

from an external field and assigned to the same storage

location as the characters of the H descriptor. The

characters of the H descriptor are overlaid by the input data,

characterfor character.

Rule in Effect for Output

¢ The H field descriptor specifies that n characters following

the letter H be transferred to the external field.

An example of H field-descriptor usage follows.

TYPE 100

100 FORMAT (41H ENTER PROGRAM TITLE, UP TO 20 CHARACTERS)

ACCEPT 200

200 FORMAT (20H TITLE GOES HERE)

The TYPE statement transfers the characters from the H field

descriptor in statement 100 to the user's terminal. The ACCEPT

statement accepts the response from the keyboard and places the input

data in the H field descriptor in statement 200. The new characters

replace the words TITLE GOES HERE. If the user enters fewer than 20

characters, the remainder of the H field descriptor is filled with

spaces to the right.

You can use a character constant instead of an H field descriptor.

Both types of format specifier function identically.

In a character constant, the apostrophe is written as two apostrophes.

For example:

50 FORMAT ('TODAY''S DATE IS: ',12,'/',12,'/',12)

A pair of apostrophes used 1in this way 1s considered a single

character.

8.1.16 X Edit Descriptor

The X edit descriptor specifies that a number of character positions

be skipped. It has the form: :

nX

The term n specifies the number of character positions to be skipped.

The value of n must be greater than or equal to 1, and less than or

equal to 255.

Rule in Effect for Input

e The X edit descriptor specifies that the next n characters |{n

the input record are to be skipped.

Rule in Effect for Output

¢ The X edit descriptor tabs right n spaces; it does not write

over anything already written. For example, the WRITE
statement in:

WRITE (6,90) NPAGE

90 FORMAT (l3HlPAGE NUMBER ,I2, 16X 23HGRAPHIC ANALYSIS, CONT.)

8-15

FORMAT STATEMENTS

prints a record similar to the following:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.

where nn is the current value of the variable NPAGE. Note that the
numeral 1 1in the first H field descriptor is not printed but is used

to advance the printer paper to the top of a new page. (Section 8.3
describes printer carriage control.)

8.1.17 T Edit Descriptor

The T edit descriptor specifies the position, relative to the start of

an external record, of the next character to be processed. It has the
form:

Tn

where the term n indicates the position in the external record of the

next character to be processed. The value of n must be greater than

or equal to 1, but not greater than the number of characters allowed

in the record.

Rule in Effect for Input

e In an input statement, the T field descriptor specifies that

data starting with the nth character position 1is to be
transferred as input. For example, the statements

READ (5,10) J,K

10 FORMAT (T7,A3,T1,A3)

specify that a 3-character string starting at character

position 7 in the external record 1is to be read first,

followed by a 3-character string starting at character

position 1.

Rule in Effect for Output

e In an output statement, the T field descriptor specifies that

data output is to begin at the nth character position of the

external record. For example, the statements

PRINT 25

25 FORMAT (T50,'COLUMN 2',T20,'COLUMN 1°')

print "COLUMN 1" at position 20 and COLUMN 2" at position 50.

The remainder of the line contains blank characters.

8.1.18 TL Edit Descriptor

The TL edit descriptor is a relative tabulation specifier for tabbing

to the left. It has the form:

TLn

The term n specifies that the next character to be transferred from or

to a record is the nth character to the left of the current character.
The value of n must be greater than or equal to 1. If the value of n

is greater than or equal to the current character position, the first
character in the record is specified.

FORMAT STATEMENTS

8.1.19 TR Edit Descriptor

The TR edit descriptor is a relative tabulation specifier for tabbing

to the right. It has the form:

TRn

The term n indicates that the next character to be transferred from or

to a record 1is the nth character to the right of the current

character. The value of n must be greater than or equal to 1.

8.1.20 Q Edit Descriptor

The Q edit descriptor specifies that the count of the characters (not

the characters themselves) remaining in a record being read are to be
assigned to a corresponding variable in an I/0 list. It has the form:

Q

A corresponding I/0 list element must be of integer or 1logical data

type.

For example, the input statements

READ (4,1000) XRAY,KK,NCHRS, (ICHR(I),I=1,NCHRS)

1000 FORMAT (E15.7,I14,Q,80Al)

read two fields into the variables XRAY and KK. The count of the

characters remaining in the record 1is then stored in NCHRS, and
exactly this number of characters is read into the array ICHR. By

placing the Q descriptor in the first position in a format

specification, you can determine the actual length of an input record.

In an output specification, the Q edit descriptor has no effect except

to cause a corresponding I/0 list element to be skipped.

8.1.21 Dollar Sign Edit Descriptor

In an output specification, the dollar sign ($) edit descriptor

suppresses a carriage return at the end of a 1line whose first

character is a space or a plus sign (see Section 8.3 on carriage

control characters). In an input specification, the dollar sign
descriptor 1is ignored. The dollar sign descriptor 1is intended

primarily for interactive I1/0; it leaves the terminal print position
at the end of the output text (rather than returning it to the left

margin) so that a response can be typed immediately after the text.

For example, the statements

TYPE 100

100 FORMAT (' ENTER RADIUS VALUE: ',$)

ACCEPT 200

200 FORMAT (F6.2)

will produce the message

ENTER RADIUS VALUE:

on your terminal.

FORMAT STATEMENTS

Your response (say, in this case, it is 12.0) can then go on the same

line, as follows:

ENTER RADIUS VALUE: 12.0

Note that the dollar sign descriptor used as a carriage control

character instead of as a field descriptor accomplishes the same
result. The following two formats are equivalent:

200 FORMAT (11H SIGN HERE:,$)

200 FORMAT (11HSSIGN HERE:)

8.1.22 Colon Edit Descriptor

The colon (:) edit descriptor terminates format control if no more

items are in an I/0 list. The colon descriptor has no effect if I/O
list items remain. For example, the statements

PRINT 100,3

PRINT 200,4

100 FORMAT(' I=',I2, ' J=',12)

200 FORMAT(' K=',I2,:,' L=',12)

print the two lines:

I=3 J=

K=4

Section 8.7 describes format control in detail.

8.1.23 Scale Factor

A scale factor is a value used in a format specifier that determines

the location of the decimal point 1in real, double precision, or
complex values.

The scale factor has the form:

nP

A signed or unsigned integer constant in the range =127 through

+127. This integer constant specifies the number of positions to

the left or right that the decimal point is to move.

Rules in Effect for Both Input and Output

@ If you do not use a scale factor, a default scale factor of OP

applies.

e The scale factor is set to OP at the start of every 1I/0

statement.

@ A scale factor applies to all subsequent F, E, D, or G field

descriptors until a new scale factor is specified.

e The scale factor can appear as a field descriptor. For

example, in the statement

10 FORMAT (X, I4, E6.3, 3P, 2A3, 212, 2F5.3, E8.5)

8-18

FORMAT STATEMENTS

the 3P applies to the 2F5.3 descriptor and to the ES8.5

descriptor, but not to the E6.3 descriptor or to the X, I, or

A descriptors.

A scale factor can appear as a prefix to an F, E, D or G field

descriptor. For example, in the statement

10 FORMAT (3P2F5.3, E8.5)

3P applies both to 2F5.3 and to E8.5.

Format reversion (see Section 8.7) has no effect on the scale

factor. For example, given the statement

10 FORMAT (X, F3.2, E3.2, 2PE4.2, F4.,2, 3PE4.2)

suppose two records are read, with reversion occurring to the

start of the format. 1In the second record, the active scale

factor 3P now applies to F3.2.

A scale factor of OP can be reinstated only by an explicit OP

specification in the format.

Additional Rules in Effect for Input

Input

If the external field contains an exponent, the scale factor

has no effect.

If the external field does not contain an exponent, the scale

factor specifies multiplication of the value by 10**-n and

assignment of the result to the <corresponding I/0 1list

element.

For example, a 2P scale factor multiplies an input value by

.01, moving the decimal point two places to the left. A -2P

scale factor multiplies an input value by 100, moving the

decimal point two places to the right.

Examples

Format External Field Internal Value

3PE10.5 37.614 .037614

3PE10.5 37.614E2 3761.4

-3PE10.5 37.614 37614.0

Additional Rules in Effect for Output

Scale factors apply only to data output. The wvalues of the

I/0 list variables do not change.

For the F field descriptor, the value of the I/O list element

is multiplied by 10**n before this value is transferred to the

external record. Therefore, a positive scale factor moves the

decimal point to the right, and a negative scale factor moves
the decimal point to the left.

For the E or D field descriptor, the basic real constant part

of the value (see Section 2.3.2) is multiplied by 10**n, and n

is subtracted from the exponent. Therefore, a positive scale

factor moves the decimal point to the right and decreases the
exponent, and a negative scale factor moves the decimal point

to the left and increases the exponent.

FORMAT STATEMENTS

e Because the G field descriptor supplies its own scaling

function, a scale factor has no effect on a G field descriptor

when the magnitude of the data to be output is within the

effective range of the descriptor. When the magnitude of the

data value is outside the range of the G field descriptor, the
G field descriptor functions as an E field descriptor;

therefore, the scale factor has the same effect as it does for

the E field descriptor.

Output Examples

Format Internal Value External Representation

1PE12.3 -270.139 -2.701E+02

1PE12.2 -270.139 -2.70E4+02

-1PE12.2 -270.139 -0.03E+04

8.1.24 Complex Data Editing

Input and output of complex values is governed by pairs of successive

real field descriptors that use any combination of the forms Fw.d,
Ew.dEe, Dw.d, or Gw.dEe.

Rule in Effect for Input

e During input, the two successive fields comprising a complex

value are read under the control of repeated or successive
real field descriptors and assigned to a complex I/0 1list

element as the value's real and imaginary parts, respectively.

Input Examples

Format | External Field Internal Value

F8.5,F8.5 1234567812345,.67 123.45678, 12345.67
E9.1,F9.3 734.432E8123456789 734.432E8, 123456.789

Rules in Effect for Output

@ During output, the two parts of a complex value are

transferred to an external record under the control of
repeated or successive field descriptors.

e¢ The two parts are transferred consecutively, without

punctuation or spacing, unless the format specifier states

otherwise.

Output Examples

Format Internal Value External Representation

2F8.5 ' 2.3547188, 3.456732 2.35472 3.45673

E9.2,' , ',E5.3 47587.222, 56.123 0.48E+06 , ****%

8.1.25 Repeat Counts and Group Repeat Counts

You can apply any field descriptor except H, T, P, or X to a number of
successive data fields by preceding the field descriptor with an

unsigned nonzero integer constant that specifies the number of

FORMAT STATEMENTS

applications, or repetitions, desired. This 1integer constant is
called a repeat count. For example, the following two statements are

equivalent:

20 FORMAT (El12.4,E12.4,E12.4,15,15,15,15)

20 FORMAT (3El2.4,415)

Similarly, you can apply a group of field descriptors repeatedly by

enclosing the group in parentheses and preceding it with an unsigned

nonzero integer constant. This integer constant is called a group

repeat count. For example, the following two statements are

equivalent:

50 FORMAT (218,3(F8.3,E15.7))

50 FORMAT (I18,18,F8.3,E15.7,F8.3,E15.7,F8.3,E15.7)

R e S g

1 2 3

To repeat an H or X field specification (for example, 20H), you can

enclose it in parentheses and treat it as a group repeat specification

(for example, 5(20H)).

If you do not specify a group repeat count, a default count of 1 is

assumed.

8.1.26 Default Field Descriptors

If you write the field descriptors 1, 0, 2, L, F, E, D, G, or A

without specifying a field width value, default values for w, 4, and e

are supplied on the basis of the data type of the 1I/0 1list element.

Note that for F, E, D, and G, you must specify w.d[Ee] or nothing.

Table 8-2 lists the default values for w, d, and e. Notice that for

the A field descriptor, the default for w 1is the length of the

corresponding I/0 list element.

Table 8-2: Default Field Widths

List Element

Field Descriptor Data Type w d e

I, 0, 2 INTEGER*2 7

I, O, Z INTEGER*4 12

0, 2 CHARACTER*n (see Note)

0, Z LOGICAL*1l, BYTE 7

0o, 2z REAL 12

o, Z DOUBLE PRECISION 23

L LOGICAL 2

F, E, G, D REAL, COMPLEX 15 7 2

F, E, G, D DOUBLE PRECISION 25 16 2

A LOGICAL*1 or BYTE 1

A LOGICAL*2, INTEGER*2 2

A LOGICAL*4,INTEGER*4 4

A REAL, COMPLEX 4

A DOUBLE PRECISION 8

A CHARACTER*n n

Note: The default value of w is:

(n*8)/3+1 if (n*8 MOD 3) = 0

(n*8)/3+2 otherwise

FORMAT STATEMENTS

8.2 VARIABLE FORMAT EXPRESSIONS

You can use an expression in a FORMAT statement any place you can use

an integer (except in the specification of the number of characters in

the H field), by enclosing it in angle brackets. For example, the

statement

FORMAT (I<J+1>)

performs an I (integer) data transfer with a field width one greater

than the value of J at the time the format is scanned. The expression

is reevaluated each time it is encountered in a normal format scan.

If the expression is not of integer data type, its evaluated result is

converted to integer data type before it is used. You can use any

valid FORTRAN expression, including function calls and references to

dummy arguments.

The wvalue of a variable format expression must obey the same

restrictions on magnitude that apply to an integer constant in a

format, or an error occurs.

Figure 8-1 shows an example of a variable format expression.

DIMENSION A(S)

DO 10 I = 1,10

WRITE (6,100) I

100 FORMAT (I<MAX(I,S5)>)

10 CONTINUE

DO 201 =1,5

WRITE (6,101) (A(I),J=1,1I)

101 FORMAT (<I>F10.<I-1>)

20 CONTINUE

END

On execution, these statements produce the following output:

1

2

3

4

5

6

7

8

9

10

l.

2.0 2.0

3.00 3.00 3.00

4.000 4,000 4.000 4.000

5.0000 5.0000 5.0000 5.0000 5.0000

Figure 8-1: Variable Format Expression Example

FORMAT STATEMENTS

8.3 CARRIAGE CONTROL CHARACTERS

The first character of every record transferred to a printer |is

assumed by the system to be a carriage control character (except when

overridden by the OPEN statement specification CARRIAGECONTROL =

'"LIST' or 'NONE'); this character is not printed. The FORTRAN I/0

system recognizes certain characters as carriage control characters.

Table 8-3 lists these characters and their effects.

Table 8-3: Carriage Control Characters

Character Effect

A (space) Advances one line

0 (zero) Advances two lines

1l (one) Advances to top of the

next page

+ (plus) Does not advance

(allows overprinting)

$ (dollar sign) Advances one line before

printing and suppresses

carriage return at the

end of the record

Any character other than those listed in Table 8-3 1is treated as a

space and 1is deleted from the print 1line. Note that 1if you

accidentally omit the carriage control character, the first character

of the record is not printed.

8.4 FORMAT SPECIFICATION SEPARATORS

When the next value in an I/0 list is to be transferred to or from the

current record, you use a comma to separate the relevant field

descriptor from the preceding one. However, when the next value is to

be transferred to or from the next succeeding record, you use a slash

(/) to separate the relevant field descriptor from the preceding one.

For example, the statements

WRITE (6,40) K,L,M,N,O,P

40 FORMAT (306/16,2F8.4)

are equivalent to the following:

WRITE (6,40) K,L,M

40 FORMAT (306)

WRITE (6,50) N,O,P

50 FORMAT (16,2F8.4)

You can use multiple slashes to bypass 1input records or to output

blank records. If n consecutive slashes appear between two fleld
descriptors, (n-1l) records are skipped on input or (n-1) blank records

are output. The first slash terminates the current record; the
second slash terminates the first skipped or blank record; and so on.

FORMAT STATEMENTS

However, n slashes at the beginning or end of a format specification

result 1in n skipped or blank records, because the opening and closing

parentheses of the format specification are themselves a record

initiator and terminator, respectively. For example, the statements

WRITE (6,99)

99 FORMAT ('l1',T51,'HEADING LINE'//T51,'SUBHEADING LINE'//)

produce the following output:

Column 50, top of page

HEADING LINE

(blank line)

SUBHEADING LINE

(blank line)

(blank line)

8.5 EXTERNAL FIELD SEPARATORS

A field descriptor such as Fw.d specifies that an input statement is

to read w characters from an external record. If the data field in
the external record contains fewer than w characters, the input

statement reads characters from the next data field in the external
record, unless you have padded the short field with leading 2zeros or

spaces. When the field descriptor is numeric, you can avoid having to
pad the input field by using a comma to terminate the field; the

comma overrides the field descriptor's field-width specification.

Using a comma to override a field descriptor's field-width

specification 1is called short field termination and is particularly

useful when you are entering data from a terminal keyboard. You can

use it with the I, O, Z, F, E, D, G, and L field descriptors. For

example, if the statements

READ (5,100) I,J,A,B

100 FORMAT (216,2F10.2)

read the record

the following assignments occur:-

I =1

J = -2

A= 1.0

B = 0.35

The physical end of the record also serves as a field terminator.

Note that the d part of a w.d specification 1is not affected by an

external field separator. Therefore, you should always include an

explicit decimal point in an external field for F, E, D, and G field

descriptors.

You can use a comma to terminate fields only when those fields are

less than w characters long. If a comma follows a field of w

characters or more, the comma is considered part of the next field.

FORMAT STATEMENTS

Two successive commas, or a comma after a field of exactly w

characters, constitutes a null (zero-length) field. Depending on the

field descriptor specified, the resulting value assigned 1is 0, 0.0,

0.D0, or .FALSE.. :

You cannot use a comma to terminate a field that is controlled by an

A, H, or alphanumeric-literal field descriptor. However, if a record

being read under the control of an A, H, or alphanumeric-literal field

descriptor reaches 1its physical end before w characters are read,

short-field termination occurs and the characters that have been read

are successfully assigned. Trailing spaces are appended as required

by the corresponding I/0 list element or the field descriptor.

8.6 RUN-TIME FORMATS

You can store format specifications in arrays (numeric or character),

array elements, character variables, and character substrings to use

at run time. These format specifications are called run-time formats

and can be constructed or altered during program execution.

Virtual arrays must not be used for storing specifications for

run-time formats.

A run-time format in an array has the same form as that of a FORMAT

statement, without the word FORMAT and the statement label. The

opening and closing parentheses are required. Variable format

expressions are not permitted.

Run-time formats are especially useful when you cannot Kknow before

execution time exactly which field descriptors will be required. To

solve this problem, you can write a program to create a format with

field descriptors that depend on the attributes of the relevant data.

The following example demonstrates the use of run-time formats:

REAL TABLE (10,5)

CHARACTER*26 FMT

CHARACTER*5 FBIG,FMED,FSML

DATA FMT(l:1)/'('/,FMT(26:26)/')'/

DATA

FMT (6:6)/','/,FMT(11:11)/','/,FMT(16:16)/"','/,FMT(21:21)/','/

DATA FBIG,FMED,FSML/'F8.2','F9.4','F9.6"'/

DO 10 I=1,10

DO 15 J=1,5

TABLE (I,J)=100.

15 CONTINUE

10 CONTINUE

DO 20 I=1,10

DO 18 J=1,5

IF (TABLE(I,J).GE.100) THEN

FMT (5* (J-1)+2:5* (J-1)+5=FBIG

ELSEIF(TABLE(I,J).LE.O.1) THEN

FMT (5% (J-1)+2:5% (J-1)+5) =FMED

ELSE

FMT (5*(J-1)+2:5*%(J-1)+5)=FSML

ENDIF

18 CONTINUE

TYPE *, FMT

WRITE (6, FMT) (TABLE(I,Jd), J=1,5)

20 CONTINUE

END

FORMAT STATEMENTS

In the above example, the given data is stored in the real array
TABLE. The magnitudes of the data stored in the elements of TABLE

will not be known until just before output. The format specification

is stored in the character variable FMT. A left parenthesis is stored
in the first character of FMT and a right parenthesis is stored in the

last character of FMT. A selection of field descriptors is stored in

the character variables FBIG, FMED, FSML. The choice of field
descriptors to be assigned to FMT is made to depend on the magnitudes

of the data in TABLE. Finally, the output statement references FMT

instead of a format statement label.

Each time an I/O statement referencing a run-time format is executed,

the format 1is compiled (or recompiled) and assigned a storage

location. Data read into that location through use of the H field

descriptor is not stored in the array holding the format. At the end

of the I/0 statement, the data is lost.

8.7 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

Format control begins with execution of a formatted I/0 statement.

During format control, the action taken depends on information

provided jointly by the next element of the I/O list (if one exists)
"and the next field descriptor of the format specification. The I/0
list and the format specification are correlated from left to right,
except when repeat counts are specified.

If the I/0 statement contains an I/0 list, you must specify at least

one 1, 0, z, F, E, D, G, L, A, or Q field descriptor in the format, or

an error occurs.

On execution, a formatted input statement reads one record from the

specified unit and initiates format control. Thereafter, additional

records can be read as indicated by the format specification. Format
control requires that a new record be read when a slash occurs in a

format specification, or when the last closing parenthesis of a format
specification 1is reached before all the elements in the corresponding

I/0 list have been assigned values. When this new record is read, any

remaining characters read from the current record are discarded.

A formatted output statement transmits a record to the specified unit
as format control terminates. Records can also be written during
format control 1if a slash appears 1in the controlling format

specification, or 1f the last closing parenthesis in the controlling

format specification is reached and more I/O list elements remain to
be transferred.

Each I, 0, 2, F, E, D, G, L, A, and Q field descriptor corresponds to

one element in an I/0 list. No list element corresponds to an H, X,

P, T, BN, BZ, $, :, TL, TR, S, SP, SS, or field descriptor. In H and

character-constant field descriptors, data transfer occurs directly

between an external record and the storage location of the format

specification.

In format control, when an I, O, 2, F, E, D, G, L, A, or Q field

descriptor is encountered, the I/0 list is checked for a corresponding

element. If a corresponding element is found, data 1is transferred

and, if appropriate, translated between the external record and the

list element. If a corresponding element is not found, format control

terminates.

FORMAT STATEMENTS

When the last closing parenthesis of the format specification is

reached, format control determines whether there are any more I/0 list

elements remaining to be processed. If there are no more, format

control terminates. However, if additional list elements remain, part

or all of the format specification is reused in a process called

format reversion.

Format reversion consists of the termination of the current record and

the starting of a new record. Format control reverts to the group

repeat specification whose left parenthesis 1is complemented by the

next-to-last right parenthesis of the format specification. 1If the

format does not contain a group repeat specification, format control

returns to the beginning of the format specification.

Examples of format reversion follow.

READ (I,100) A, B, C, D, E, F

100 FORMAT (F8.3, F8.3)

In this example, three records containing two fields are read. The

first record assigns values to A and B; the second to C and D; and

the third to E and F.

READ (4,200) N, A, I1, I3, I2, I4, Il1l1, I13, I12, I14

200 FORMAT (I2, F8.3,2(I2, I4))

In this example, format control reverts to the group repeat

specification 2(12, I4), and 1/0 list elements Ill1, I13, I12, and Il4

are assigned values from the next record.

DIMENSION A(5,5),B(5)

WRITE (6,10)X,(I,B(I),(A(I,J),J=1,5),I=1,5)

10 FORMAT (E10.3/(15,E10.3, 5(F8.5)))

In this example, format reversion returns to the group repeat

specification that begins with IS.

8.8 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following sections summarize the rules for constructing and using

the format specifications and their components, and for constructing

external fields and records. Table 8-4 summarizes the FORMAT codes.

8.8.1 General Rules

e A FORMAT statement must always be labeled.

¢ In a field descriptor such as rIw or nX, the terms r, w, m,

and n must be unsigned integer constants greater than 0.

(They cannot be names assigned to constants in PARAMETER

statements.) You can omit the repeat count and field width

specification.

e In a field descriptor such as Fw.d, the term d must be an

unsigned integer constant. If w is specified, then you must

specify d4d in F, E, D, and G field descriptors even if it is 0;

and the field width specification (w) must be greater than or

equal to d. The decimal point is also required. You must

either specify both w and d or omit them both. 1In a field

descriptor such as Ew.dEe, the term e must also be an unsigned

integer constant.

FORMAT STATEMENTS

¢ In a field descriptor such as nHcle2 ... cn, exactly n

characters must follow the H format code. You can use any

printing ASCII character in this field descriptor.

e In a scale factor of the form nP, n must be a signed or

unsigned integer constant in the range =127 through 127

inclusive. The scale factor affects the F, E, D, and G field

descriptors only. Once you specify a scale factor, it applies

to all subsequent F, E, D, and G field descriptors in that

format specification until another scale factor appears. You

must explicitly specify OP to reinstate a scale factor of

zero. Format reversion does not affect the scale factor.

e No repeat count is permitted for BN, BZ, $, :, H, X, T, TR,

TL, S, SP, SS, or character constant field descriptors, unless

these descriptors are enclosed in parentheses and treated as a

group repeat specification.

e If the associated I/0 statement contains an I/0 1list, the

format specification must contain at 1least one field

descriptor other than H, X, P, T, or a character constant.

e¢ A run-time format specification must be constructed in the

'same way as a format specification in a FORMAT statement,

including the opening and closing parentheses. The word

FORMAT and the statement label only are omitted.

e If a character-constant format 1includes apostrophes, those

apostrophes must be represented by double apostrophes.

8.8.2 Input Rules

e A minus sign must precede a negative wvalue 1in an external

input field; a plus sign is optional before a positive value.

e On input, an external field under I field descriptor control

must be an 1integer constant. It cannot contain a decimal

point or an exponent. An external field wunder 0 field

descriptor control must contain only the numerals 0 through 7.

An external field input under Z field descriptor control must

contain only the numerals 0 through 9 and the letters A(a)

through F(f). An external field under O or Z field descriptor

control must not contain a sign, a decimal point, or an

exponent. You cannot use octal and hexadecimal constants in

the form '777'0 or 'AF9'X in external records.

¢ On input, an external field under F, E, D, or G field

descriptor control must be an integer constant or a real or

double~-precision constant. It can contain a decimal point

and/or an E or D exponent field.

e¢ If an external field contains a decimal point, the actual size

of the fractional part of the field, as indicated by that

decimal point, overrides the d specification of the

corresponding real or double-precision field descriptor.

e If an external field contains an exponent, the scale factor

(if any) of the corresponding field descriptor has no effect

on the conversion of that field.

8.8.3

FORMAT STATEMENTS

The field width specification must be large enough to
accommodate both the numeric character string of the external
field and any other characters that are allowed (algebraic
sign, decimal point, and/or exponent).

A comma is the only character you can use as an external field

separator. It terminates input of numeric fields that are
shorter than the number of characters expected. It also
designates null (zero-length) fields.

Output Rules

A format specification cannot specify more output characters
than the external record can contain. For example, a line

printer record cannot contain more than 133 characters,

including the carriage control character.

The field width specification (w) must be large enough to
accommodate all characters that the data transfer can

generate, including an algebraic sign, decimal point, and

exponent., For example, the field width specification in an E

field descriptor should be 1large enough to contain d+7
characters. '

The first character of a record output to a 1line printer or
terminal is wused for «carriage control; it is not printed.

The first character of such a record should be a space, 0, 1,

$, or +. Any other character is treated as a space and is
deleted from the record.

Table 8-4: Summary of FORMAT Codes

Code Form Effect

Iw[.m] Specifies transfer of decimal integer values

Ow[.m] Specifies transfer of octal integer values

Zw([.m] Specifies transfer of hexadecimal integer
values

Fw.d Specifies transfer of real or

double-precision values in basic real form

Ew.d[Ee] Specifies transfer of real or

double-precision values in exponential form

Dw.d Specifies transfer of real or

double-precision values in double-precision

exponential form with a D instead of an E

Gw.d[Ee] Specifies transfer of real or

double~-precision values: on input, acts

like F code; on output, acts like E code or

F code

(continued on next page)

FORMAT STATEMENTS

Table 8-4: (Cont.) Summary of FORMAT Codes

Code Form Effect

L Lw Specifies transfer of logical data: on
input, ¢transfers T, t, .T, .t, F, £, .F, or

.£; on output, transfers T or F

A A[w] Specifies transfer of character or Hollerith

values

H nHc...cC Specifies transfer of Hollerith values

between an external record and the format

storage location

X nX Specifies that n characters are to be

skipped on input or that n spaces are to be

skipped on output

S S Reinvokes optional plus characters in

numeric output fields: counters the action

of SP and SS

SP SP Writes plus characters that would otherwise

be optional into numeric output fields

SS SS Suppresses optional plus characters in

numeric output fields

T Tn Specifies the position, in the external

record, of the next character to be

processed

TL TLn Relative tabulation specifier (left)

TR TRn Relative tabulation specifier (right)

Q Q Specifies the number of characters remaining

to be transferred in an input record

$ $ Suppresses carriage return during
interactive 1/0

: : Terminates format control if the I/0 list is

exhausted

BN BN Specifies that embedded and trailing blanks

in a numeric input field are to be ignored

BZ BZ Specifies that embedded and trailing blanks

in a numeric input field are to be treated

as zeros

CHAPTER 9

AUXILIARY INPUT/OUTPUT STATEMENTS

The auxiliary '1nput/output statements perform file managementfunctions. The auxiliary 1I/0 statements and their respectivefunctions are as follows:

® OPEN -- establishes a connection between a logical unit and a
file or device, and specifies the attributes required for read
and write operations

® CLOSE =-- terminates the connection between a logical unit and
a file or device

® REWIND and BACKSPACE -- perform file-positioning functions

® DELETE -- deletes records in a relative or indexed file

® UNLOCK -- frees 1locked records for other users in a
shared-file environment

¢ ENDFILE -- writes a special record that causes an end-of-file
condition (and an END= transfer) when an input statement reads
the record

See Section 7.2 for a definition of the I/0 components of these
statements.

OPEN

9.1 OPEN STATEMENT

An OPEN statement either connects an existing file to a 1logical unit
or creates a new file and connects this new file to a logical unit.
In addition, OPEN can specify file attributes that control file
creation and/or subsequent processing.

The OPEN statement has the form:

OPEN (par{,par]...)

par

A parameter, or keyword specification, in one of the forms:

kwd

kwd = value

AUXILIARY INPUT/OUTPUT STATEMENTS

kwd

A keyword, as described below.

value

Depends on the keyword, as described below.

Keywords are divided into functional categories as follows:

Keywords that identify the unit and file.

UNIT - logical unit number to be used

FILE or NAME - file name specification for the file

STATUS or TYPE - file existence status at OPEN

DISPOSE - file existence status after CLOSE

Keywords that describe the file processing to be performed.

ACCESS - FORTRAN access method to be used

ORGANIZATION - logical file structure

READONLY - write protection

Keywords that describe the records in the file.

BLOCKSIZE- - size of I/0 transfer buffer

CARRIAGECONTROL - type of printer control

FORM - type of FORTRAN record formatting

RECL or RECORDSIZE - logical record length

RECORDTYPE - logical record structure

BLANK - blank interpretation for numeric input

KEY - key field definition

Keywords that describe file storage allocation when a file |is

created.

INITIALSIZE - initial file storage allocation

EXTENDSIZE - file storage allocation increment size

Keywords that provide additional capability for direct access

I1/0.

ASSOCIATEVARIABLE - variable holding the next direct access

record number

MAXREC - maximum direct access record number

Optional keywords that provide improved per formance or special

capabilities.

ERR , - statement to which control is transferred

if an error occurs during execution of

the OPEN statement

BUFFERCOUNT - number of I1I/0 buffers to use

NOSPANBLOCKS - records are not to be split across

physical blocks

SHARED - other programs can simultaneously access

the file

USEROPEN - option to provide a user-written external
function that controls the opening of the

file

AUXILIARY INPUT/OUTPUT STATEMENTS

NOTE

Not all PDP-11 operating systems support

all keywords and options. Consult the

PDP-11 FORTRAN-77 User's Guide for

information on system-specific

restrictions.

Table 9-1 lists in alphabetical order the keywords and their possible
associated values, including default values.

Table 9-1: OPEN Statement Keyword Values

Keyword Valuesl Function Default

ACCESS 'SEQUENTIAL' Access method 'SEQUENTIAL'

'DIRECT?®

'APPEND'

'KEYED'

ASSOCIATEVARIABLE \Y Next record No associate

number in variable

direct access

BLANK '"NULL' Interpretation '"NULL'

'ZERO' of blanks (/F77)

BLOCKSIZE e Size of 1/0 System default

buffer

BUFFERCOUNT e Number of I/0 System default

buffers

CARRIAGECONTROL '"FORTRAN' Print control 'FORTRAN'

'LIST' (formatted)

"NONE' 'NONE'

(unformatted)

DISPOSE 'SAVE' or 'KEEP' File disposi- '"SAVE'

DISP '"PRINT' tion

'DELETE"' at close

ERR s Error transfer No error

label transfer

EXTENDSIZE e File storage Volume or sys-

allocation tem default

increment

FILE c File name Depends on

NAME specification unit and system

FORM 'FORMATTED' Format type Depends on

'"UNFORMATTED' ACCESS keyword

INITIALSIZE e File storage No allocation

allocation

KEY (k[,k]ees) Indexed file No default

key fields

(continued on next page)

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-1: (Cont.) OPEN Statement Keyword Values

Keyword valuesl! Function Default

MAXREC e Maximum record No maximum

number in

direct access

NOSPANBLOCKS - Records do not Records can span

span blocks blocks

ORGANIZATION 'SEQUENTIAL"' File structure 'SEQUENTIAL'

'RELATIVE'

'"INDEXED'

READONLY - Write protec- No write

tion protection

RECL e Record length Depends on TYPE,

RECORDSIZE ORGANIZATION,

and RECORDTYPE

keywords

RECORDTYPE 'FIXED' Record Depends on

'VARIABLE' structure ACCESS and

'SEGMENTED' FORM keywords

SHARED - File sharing File sharing

allowed not allowed

STATUS 'OLD! File status 'UNKNOWN''

TYPE '"NEW' at open (/F77)
"SCRATCH'

"UNKNOWN'

UNIT e Logical unit No default

number

USEROPEN p User program No option

option

l. ¢ is a character constant, array name, variable name, array

element name, or a character substring reference.

e 1is an integer, real, or double-precision expression. The value

of this expression is converted to the integer data type before

it is used.

is a key specification.

is an external function.

is a statement label.

<
o
x

Keyword specifications can appear in any order.

is an integer variable name.

Determining whether
they are optional and which ones are required depends upon the type of
file you are establishing or have established, and upon what you
to do with it.

plan

AUXILIARY INPUT/OUTPUT STATEMENTS

Some examples follow.

OPEN (UNIT=1, ERR=100)

This example creates a new sequential formatted file on unit 1 with
the default file name.

OPEN (UNIT=3, STATUS='SCRATCH', ACCESS='DIRECT',

INTTIALSIZE=50, RECL=64)

This example creates a 50-block sequential file to be used with direct

access., The file is deleted at program termination.

OPEN (UNIT=I, FILE='MTO:MYDATA.DAT', BLOCKSIZE=8192,

STATUS='NEW', ERR=14, RECL=1024, RECORDTYPE='FIXED')

This example creates a file on magnetic tape with a large block size

for efficient processing.

OPEN (UNIT=I, FILE='MTO:MYDATA.DAT', READONLY, STATUS='OLD',

RECL=1024, RECORDTYPE='FIXED', BLOCKSIZE=8192)

This example opens the file created in the previous example for input.

Example:

OPEN (UNIT=1,STATUS='NEW', ORGANIZATION='INDEXED',

RECL=60, FORM="'UNFORMATTED',

KEY= (1:20, 30:33:INTEGER, 46:57), ACCESS='KEYED')

This statement creates a new indexed file specifying three keys: The

primary key will be from byte 1 to 20; the first alternate key will

be an integer key from byte 30 to 33; and the second alternate Kkey

will be from byte 46 to 57.

Sections 9.1.1 through 9.1.26 describe the OPEN statement keywords in

detail.

9.1.1 ACCESS

ACCESS specifies the method of locating, reading, or writing records.

There are three access methods: sequential, direct and, keyed. If

you specify 'DIRECT', the file is accessed directly. 1If you specify

'SEQUENTIAL', the file 1is accessed sequentially. If you specify

'KEYED', the file 1is accessed by a specified key. 'APPEND' implies

sequential access and positioning after the last record of the file.

The default is 'SEQUENTIAL'.

An ACCESS specification has the form:

ACCESS= acc

acc

One of the character constants 'SEQUENTIAL', 'DIRECT', 'KEYED' or

'APPEND'.

If no ACCESS is specified, the default is 'SEQUENTIAL'.

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-2 shows the valid combinations of ACCESS values and file
organizations:

Table 9-2: Allowed Combinations of ACCESS Values

and File Organizations

ACCESS Value

File Organization SEQUENTIAL DIRECT KEYED APPEND

Sequential Yes Yesl No Yes

Relative Yes Yes No No

Indexed Yes No Yes No

1. Direct access to a sequential file requires that the
records in the file be fixed 1length (see Section

9.1.19).

In sequential access, you must read or write records in sequence from

the beginning of the file. (See Section 7.1.4.1.)

In direct access, you specify in an I/0O statement the record number of

the desired record, and the system selects that record. (See Section
7.1.4.2.)

In keyed access, you specify in an I/O statement the key value of the

desired record, and the system selects the record having a matching
key. (See Section 7.1.4.3.)

9.1.2 ASSOCIATEVARIABLE

ASSOCIATEVARIABLE specifies the integer wvariable that, after each

direct access I/0 operation, contains the record number of the next

sequential record in a file. This specifier is ignored for sequential

access or keyed access.

An ASSOCIATEVARIABLE specification has the form:

ASSOCIATEVARIABLE = asv

asv

An integer variable.

9.1.3 BLANK

BLANK specifies either that all blanks in a numeric input field are to

be ignored (except 1if the field is all blanks, in which case it is

treated as zero), or that all blanks other than leading blanks are to
be treated as zeros. The default value is 'NULL'.

BLANK has the form:

BLANK = blnk

AUXILIARY INPUT/OUTPUT STATEMENTS

blnk

A character constant having a value equal to either 'NULL' or

'ZERO'.

If the /NOF77 compiler command qualifier is specified, the default

value is 'ZERO',.

9.1.4 BLOCKSIZE

BLOCKSIZE specifies the size (in bytes) of the I/0 transfer buffer.

I/0 statements appear to transfer records directly between a file and

the entities specified in the I/0O list; however, the system actually

transfers records between a file and an intermediate 1I/0 buffer.

BLOCKSIZE affects the size of this buffer.

A BLOCKSIZE specification has the form:

BLOCKSIZE = bks

bks

An integer expression.

For sequential files, BLOCKSIZE determines the number of disk blocks

to transfer (for disk files), or the physical blocking factor (for

magtape files). The default is the system default for the device.

For relative and indexed files, BLOCKSIZE determines a file's bucket

size, A bucket is the number of disk blocks used as the unit of I/0

transfer and as the unit of locking and control information. Each

bucket contains control information as well as data.

See the PDP-11 FORTRAN-77 User's Guide for more information.

9.1.5 BUFFERCOUNT

BUFFERCOUNT specifies the number of buffers to be associated with a

logical wunit for multibuffered 1I1I/0. BLOCKSIZE, discussed in the

previous section, specifies the size of each of these buffers. If you

do not specify BUFFERCOUNT, or if you specify 0, the system default is

used.

A BUFFERCOUNT specification has the form:

BUFFERCOUNT = bc

bc

An integer expression.

A specification of BUFFERCOUNT= -1 opens a file for block I/0.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.6 CARRIAGECONTROL

CARRIAGECONTROL determines the kind of carriage control to be used

when a file is printed. The default for formatted files is 'FORTRAN';

the default for unformatted files 1is 'NONE'. 'FORTRAN' specifies

normal FORTRAN interpretation of the first character (see Section
8.3); 'LIST' specifies single spacing between records; and 'NONE'

specifies no implied carriage control.

A CARRIAGECONTROL specification has the form:

CARRIAGECONTROL = cc

cc

The character constant 'FORTRAN', 'LIST', or 'NONE'.

9.1.7 DISPOSE

DISPOSE determines the disposition of a file connected to a unit when

that unit 1is closed. If you specify 'SAVE' or 'KEEP', the file is
retained after the unit is closed; file retention 1is the default

operation. If you specify 'PRINT', the file is submitted to the

system line printer spooler. (On some systems, the file 1is deleted

after printing.) If you specify 'DELETE', the file is deleted. A

read-only file (see Section 9.1.18) cannot be printed or deleted, and

a scratch file (see Section 9.1.23) cannot be saved or printed.

A DISPOSE specification has the forms:

DISPOSE = dis

DISP = dis

dis

The character constant 'SAVE', 'KEEP', 'PRINT', or 'DELETE'.

9.1.8 ERR

ERR transfers control to a specified executable statement if an error

occurs during execution of the OPEN statement containing it. The ERR
specification applies only to the OPEN statement containing the ERR

keyword, not to subsequent I/0 operations on the specified unit. If

an error does occur, no file is opened or created.

An ERR specification has the form:

ERR= s

The label of an executable statement.

9.1.9 EXTENDSIZE

EXTENDSIZE specifies the number of blocks a disk file 1is to be

extended when additional £file storage is allocated. If you do not
specify EXTENDSIZE, or if you specify 0, the system default for the

device is used.

AUXILIARY INPUT/OUTPUT STATEMENTS

An EXTENDSIZE specification has the form:

EXTENDSIZE = es

An integer expression.

9.1.10 FILE

FILE specifies the name of the file to be connected to a unit. The

name can be any file specification accepted by the operating system.

The PDP-11 FORTRAN-77 User's Guide describes default file name
conventions.

If the file name is stored in a numeric variable, numeric array, or
numeric array element, the name must consist of ASCII characters

terminated by an ASCII null character (zero byte). However, if the
file name 1is stored in a character variable, character array, or

character array element, it must not contain a zero byte.

A FILE specification has the form:

FILE = fln

fln

An array name, variable name, array element name, character

constant, or a character substring reference. You cannot use the

name of a virtual array or virtual array element.

9.1.11 FORM

FORM specifies whether the file being opened is to be read from and

written to with formatted or with unformatted I/0 statements. For

sequential access, 'FORMATTED' is the default. For direct or keyed

access, 'UNFORMATTED' is the default. You must not mix formatted and

unformatted I/0 statements on the same unit,

A FORM specification has the form:

FORM = ft

ft

The character constant 'FORMATTED' or 'UNFORMATTED'.

9.1.12 INITIALSIZE

INITIALSIZE specifies the number of blocks allocated for a new file on

a disk. If you do not specify INITIALSIZE, or if you specify 0, no

initial allocation is made. '

An INITIALSIZE specification has the form:

INITIALSIZE = insz

insz

An integer expression.

9-9

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.13 KEY

KEY designates fields to be used as key fields 1in an indexed file.

These designated key fields must be included in an OPEN statement when

an indexed file 1is created. Thereafter, all key information is

available from the file itself. 1If key parameters are specified for

an existing file, they must match the parameters of the existing file

Or an error occurs.

A KEY specification has the form:

KEY = (kspec [,kspecl...)

where each kspec has the form:

el : e2 [:dtn]

el

The first byte position of the key.

e2

The last byte position of the key.

dtn

The data type of the key.

el,e2

Integer expressions.

dtn

One of the following data-type names:

INTEGER - Integer key

CHARACTER - Character key

If dtn is omitted, the key data type is character.

The key starts at position el in a record and has a length of e2-el+l.

The values of el and e2 must be such that:

1 .LE. (el) .LE. (e2) .LE. record-length

If the key type is INTEGER, the key length must be 2 or 4. There must

be at least one key specification following KEY=; but there may be up
to 255 key specifications. Each key specification defines a key

field. The first key specification, kspec 0, defines the primary key.
The second key specification, kspec 1, defines the first alternate

key, and so on.

The order of a key specification in a list of key specifications (in a

KEY specification) determines the key-of-reference number for that key
(the key number to be used in subsequent I/0 statements). Each key in

a file must be specified in a key specification 1list.

Up to 254 alternate keys may be specified in a key specification list;

however, at least one key -- the primary key -- must be specified.

9-10

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.14 MAXREC

MAXREC specifies the maximum number of records permitted in a direct

access file. The default is no maximum number of records. MAXREC is

ignored for other types of files.

A MAXREC specification has the form:

MAXREC = mr

mr

An integer expression.

9.1.15 NAME

NAME is a nonstandard synonym for FILE. See Section 9.1.10.

9.1.16 NOSPANBLOCKS

NOSPANBLOCKS specifies that records are not to cross disk block

boundaries; it is used only for sequential files stored on disk. If

any record exceeds the size of a disk block, an error occurs.

A NOSPANBLOCKS specification has the form:

NOSPANBLOCKS

9.1.17 ORGANIZATION

ORGANIZATION specifies the internal structure of a file. The default

organization is 'SEQUENTIAL'. The organization of the file must

always be specified for relative and indexed files.

An ORGANIZATION specification has the form:

ORGANIZATION= org

org

The character constant 'SEQUENTIAL', 'RELATIVE', or 'INDEXED'.

In sequential files, records are stored in the order in which they are

written, In relative files, records are stored in fixed-length cells
identified by an integer number. In indexed files, records are stored

in a system-defined order; indexes or directories are maintained to
locate records based on character strings or integer values, called

keys, contained in the record.

Table 9-3 shows the valid combinations of ORGANIZATION keywords and

access modes:

9-11

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-3: Valid Access Modes for ORGANIZATION Keywords

Access Mode

FILE ORGANIZATION

Sequential Direct Keyed Append

SEQUENTIAL Yes Yesl No Yes

RELATIVE Yes Yes No No

INDEXED Yes No Yes No

1. Direct access to a sequential file requires that the records
in the file be fixed length (see Section 9.1.18).

For additional information, see the PDP-11 FORTRAN-77 User's Guide.

9.1.18 READONLY

READONLY prohibits a program from writing to a file.

A READONLY specification has the form:

READONLY

9.1.19 RECL

RECL specifies the logical record length.

If a file contains fixed-length records, RECL specifies the size of

each record. If a file contains variable-length records, RECL

specifies the maximum length for any record.

You must specify RECL when you create a file that 1is to have

fixed-length records or that is to have relative organization.

A RECL specification has the form:

RECL = rl

rl

An integer expression.

The value of rl depends on the value of FORM (see Section 9.1.11). 1If

the records are formatted, the length is the number of characters; 1if

the records are unformatted, the 1length is the number of numeric

storage units (four bytes).

For existing files, the default is the existing record size.

9.1.20 RECORDSIZE

RECORDSIZE is a nonstandard synonym for RECL. See Section 9.1.19.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.21 RECORDTYPE

RECORDTYPE specifies whether a file has fixed-length records,
variable-length records, or segmented records. When you create a
file, the default record types for the various file types are as
follows:

File Type Default Record Type

Relative organization '"FIXED'

Indexed organization 'FIXED'

Direct access files 'FIXED'

Formatted sequential 'VARIABLE'

access files

Unformatted sequential 'SEGMENTED'

access files

Segmented records consist of one or more variable-length records and
allow a FORTRAN logical record to span several physical records.
However, they can only be used in sequential access, unformatted files

with sequential organization. You cannot specify 'SEGMENTED' for any
other file type.

NOTE

ASCIZ stream files are not directly

supported by PDP-11 FORTRAN-77.

A RECORDTYPE specification has the form:

RECORDTYPE = typ

typ

The character constant 'FIXED', 'VARIABLE', or 'SEGMENTED'.

If you do not specify RECORDTYPE when you access an existing file, the

record type of the file 1is wused, unless the file is a sequential
access, unformatted file with sequential organization; this file has

a default of 'SEGMENTED'.

If you specify RECORDTYPE, typ must match the record type of the
existing file.

In fixed-length record files, if an output statement does not specify
a full record, the record is filled with spaces (for a formatted file)

or zeros (for an unformatted file).

9.1.22 SHARED

SHARED specifies that a file is to be opened for shared access by more

than one program executing simultaneously.

Sequential files may only be shared if they are stored on disk, and

only one program may have write access.

AUXILIARY INPUT/OUTPUT STATEMENTS

Relative and indexed files may be shared with multiple programs having

write access.

A SHARED specification has the form:

SHARED

See the PDP-11 FORTRAN-77 User's Guide for additional information on
this keyword.

9.1.23 STATUS

STATUS specifies the status of file to be opened. If you specify

'OoLD', the file must already exist. If you specify 'NEW', a new file

is created. If you specify 'SCRATCH', a new file is created and then

is deleted when the file is closed. If you specify 'UNKNOWN', the

system will first try 'OLD'; 1if the file is not found, the system

will assume 'NEW' and therefore create a new file. The default is

"UNKNOWN'.

A STATUS specification has the form:

STATUS = sta

sta

The character constant 'OLD', 'NEW', 'SCRATCH', or 'UNKNOWN'.

If the /NOF77 compiler command qualifier 1is specified, the default

value is 'NEW'.

You cannot specify STATUS='SCRATCH' for a file on magnetic tape. If

you do, at run time your program will terminate with no error message

when it encounters the OPEN statement.

NOTE

STATUS is also used in CLOSE statements

to specify the status of a file after

the file is closed; however, the values

it uses are different from those used in

OPEN statements.

9.1.24 TYPE

TYPE is a nonstandard synonym for STATUS. See Section 9.1.23.

9.1.25 UNIT

UNIT specifies the logical unit to which a file is to be connected.

The UNIT keyword must appear in any OPEN keyword list. When an OPEN

statement is executed, another file cannot be connected to the logical

unit specified by the UNIT keyword in the OPEN statement.

AUXILIARY INPUT/OUTPUT STATEMENTS

There must not be a file converted to the logical unit at the time the

OPEN statement is executed.

A UNIT specification has the form:

[UNIT] = u

An integer expression.

The optional character string UNIT= can be omitted only when the value

of u will occupy the first position in the keyword list containing it.

9.1.26 USEROPEN

USEROPEN specifies a user-written external function that 1is to be

invoked to control the opening of the specified file. USEROPEN allows
knowledgeable users to employ features of the file management system

not directly available from FORTRAN, yet retain the convenience of
writing programs in FORTRAN,

A USEROPEN specification has the form:

USEROPEN = p

An external function name.

The external function name must be declared in an EXTERNAL statement

in the program unit.

Consult the PDP-11 FORTRAN-77 User's Guide for information on using

the USEROPEN keyword.

CLOSE

9.2 CLOSE STATEMENT

The CLOSE statement disconnects a file from a unit.

The CLOSE statement has the form:

STATUS

CLOSE ([UNIT=]u , [DISPOSE = p] [,ERR=s])

DISP

u

A logical unit number.

P

A character constant that determines the disposition of the file;

its values are 'SAVE', 'KEEP', 'DELETE', and 'PRINT'.

s

The label of an executable statement.

9-15

AUXILIARY INPUT/OUTPUT STATEMENTS

If you specify either 'SAVE' or 'KEEP', the file is retained after the

unit is closed. 1If you specify 'PRINT', the file is submitted to the
line printer spooler. (On some systems, the file is deleted after

printing.) If you specify 'DELETE', the file is deleted. For scratch

files, the default is 'DELETE'; for all other files, the default is

'SAVE'. The disposition specified in a CLOSE statement supersedes the

disposition specified in a preceding OPEN statement; however, a file

opened as a scratch file cannot be saved or printed, and a file opened
for read-only access cannot be printed or deleted.

For example, the statement

CLOSE (UNIT=1,DISPOSE="PRINT')

closes the file on unit 1 and submits the file for printing. And the

statement

CLOSE (UNIT=J,DISPOSE='DELETE"',ERR=99)

closes the file on unit J and deletes it.

REWIND

9.3 REWIND STATEMENT

The REWIND statement repositions to the beginning of the file a

sequential file currently open for sequential or append access.

The REWIND statement has the forms:

REWIND u

REWIND ([UNIT=]Jul[,ERR=s])

A logical unit number.

The label of an executable statement.

The unit number must refer to an open sequential file on disk or

magnetic tape.

For example, the statement

REWIND 3

repositions logical unit 3 to the beginning of a currently open file.

You must not issue a REWIND statement for a file that 1is open for

direct or keyed access or for a relative or indexed file.

AUXILIARY INPUT/OUTPUT STATEMENTS

BACKSPACE

9.4 BACKSPACE STATEMENT

The BACKSPACE statement repositions an open sequential file to the

beginning of the ©preceding record. When the next I/0 statement for

the unit is executed, this preceding record is the one processed.

The BACKSPACE statement has the forms:

BACKSPACE u

BACKSPACE ([UNIT=]ul[,ERR=s])

A logical unit number.

The label of an executable statement.

The unit number must refer to an open sequential file on disk or
magnetic tape.

For example, the statement

BACKSPACE 4

repositions the open file on logical unit 4 to the beginning of the

preceding record.

You must not issue a BACKSPACE statement for a file that is open for

direct, keyed, or append access, or for a relative or indexed file.

DELETE

9.5 DELETE STATEMENT

The DELETE statements delete records in relative files and in 1indexed

files. Specifically, they <cause a record to be marked as deleted;
records so marked are not accessible to subsequent READ or REWRITE

statements.

The DELETE statement cannot be used with a sequential file.

There are two DELETE statements: the sequential DELETE statement and
the direct DELETE statement.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.5.1 Sequential DELETE Statement

The sequential DELETE statement deletes the last record that was read

from a logical unit by a READ statement.

The sequential DELETE statement has the form:

DELETE ([UNIT=]u[,ERR=s])

A logical unit number.

The label of an executable statement.

For example, the statement

DELETE (11)

deletes the last record read from the file connected to

11.

9.5.2 Direct DELETE Statement

The direct DELETE statement deletes a record specified

number.

The direct DELETE statement has the forms:

DELETE (u'r[,ERR=s])

DELETE ([UNIT=]u,REC=r[,ERR=s])

u

A logical unit number.

r

The direct access record number.

s

The label of an executable statement.

For example, the statement

DELETE (1'I)

deletes the record specified by the value of I, located

connected to logical unit 1.

UNLOCK

9.6 UNLOCK STATEMENT

The UNLOCK statement unlocks records in a relative or

logical unit

by a record

in the file

indexed file,.

When a record is "locked," it cannot be accessed by any other program

or logical unit.

AUXILIARY INPUT/OUTPUT STATEMENTS

A record accessed in a shared-file environment is automatically locked

when a READ statement selects the record. The record is unlocked

either when another I/0 statement is executed on the same logical unit

or when an UNLOCK statement is executed.

Attempts to access a locked record result in error messages.

The UNLOCK statement is used in place of an otherwise unnecessary 1I/0
operation.

The UNLOCK statement has the forms:

UNLOCK u

UNLOCK ([UNIT=]u [,ERR=s])

A logical unit number.

The label of an executable statement.

The UNLOCK statement frees the locked records on the specified logical

unit, If no record is locked, the statement has no effect. Records

in a sequential file cannot be locked.

You must not issue an UNLOCK statement on a sequential file.

Consult the PDP-11 FORTRAN-77 User's Guide for information on file

sharing and record locking.

ENDFILE

9.7 ENDFILE STATEMENT

The ENDFILE statement writes an end-file record to the specified unit.

The ENDFILE statement has the forms:

ENDFILE u

ENDFILE ([UNIT=]u [,ERR=s])

A logical unit number.

The label of an executable statement.

You can write an end-file record only to sequentially accessed

sequential files that contain variable-length or segmented records.

For example, the statement

ENDFILE 2

outputs an end-file record to logical unit 2.

9-19

APPENDIX A

ADDITIONAL LANGUAGE ELEMENTS

For the purpose of facilitating compatibility with other versions of
PDP-11 FORTRAN, PDP-11 FORTRAN-77 includes the statements ENCODE,
DECODE, DEFINE FILE, and FIND, and offers alternative syntax for the
PARAMETER statement and octal constants. These language elements are
discussed in Sections A.1 through A.S5.

Section A.6 describes the interpretation of the EXTERNAL statement
that applies when the /NOF77 compiler command qualifier is used. The
FORTRAN-77 interpretation of the EXTERNAL statement (see Section 5.8)
is 1incompatible with the previous ANSI standard and with previous
DIGITAL FORTRAN implementations.

ENCODE

DECODE

A.l1 THE ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements transfer data between variables or
arrays in 1internal storage and translate that data from internal to
character form, or from character to internal form, according to
format specifiers. Similar results can be accomplished using internal
files with formatted sequential WRITE and READ statements.

The ENCODE and DECODE statements have the forms:

ENCODE (c,f,b [,ERR=s])([1list]

DECODE(c,f,b [,ERR=s])[list]

c

An integer expression. (In the ENCODE statement, ¢ is the number
of characters (bytes) to be translated to character form. In the
DECODE statement, ¢ is the number of characters to be translated
to internal form)

£

A format identifier. (If more than one record is specified, an
error occurs.)

ADDITIONAL LANGUAGE ELEMENTS

b

The name of an array, array element, variable, or character

substring reference. You cannot use the name of a virtual array
or virtual array element. (In the ENCODE statement, b receives

the characters after translation to external form. In the DECODE

statement, b contains the characters to be translated to internal

form.)

s

The label of an executable statement.

list

An I/0 list. (In the ENCODE statement, the I/0 list contains the

data to be translated to character form, In the DECODE

statement, the 1list receives the data after translation to

internal form.)

The ENCODE statement translates the list elements to character form

according to the format specifier and stores the characters in b, as
does a WRITE statement. If fewer than c characters are transmitted,

the remaining character positions are filled with spaces.

The DECODE statement translates the character data in b to internal

(binary) form according to the format specifier and stores the
elements in the list, as does a READ statement.

If b is an array, its elements are processed in the order of subscript
progression.

The number of characters that the ENCODE or DECODE statement can

process depends on the data type of b in that statement. For example,
an INTEGER*2 array can contain two characters per element, so that the

maximum number of characters is twice the number of elements in that
array. A character variable or character array element <can contain

characters equal in number to 1its 1length. A character array can

contain characters equal in number to the 1length of each element

multiplied by the number of elements.

The interaction between the format specifier and the I/O0 list is the

same as for a formatted I/O statement.

An example of the ENCODE and DECODE statements follows:

DIMENSION K (3)

CHARACTER*12 A, B

DATA A /'123456789012'/

DECODE (12,100,A) K

100 FORMAT (3I4)

ENCODE (12,100,B) K(3), K(2), K(1)

The DECODE statement translates the 12 characters in A to integer form

(specified by statement 100) and stores them in array K, as follows:

K(1) = 1234

K(2) = 5678

K(3) = 9012

The ENCODE statement translates the values K(3), K(2), and K(l1) ¢to

character form and stores the characters in the character variable B
as follows:

B = '901256781234"

ADDITIONAL LANGUAGE ELEMENTS

DEFINE FILE

A.2 DEFINE FILE STATEMENT

The DEFINE FILE statement describes direct access sequential files

that are associated with a logical unit number. However, the OPEN

statement (Section 9.1) can also be used to describe direct access

sequential files, and is the preferred instrument.

The DEFINE FILE statement establishes the size and structure of a

direct access file.

The DEFINE FILE statement has the form:

DEFINE FILE u (m,n,U,asv) [,u(m,n,U,asv)] ...

u

An integer <constant or integer variable that specifies the

logical unit number.

m

An integer constant or integer variable that specifies the number

of records in the file.

n

An integer constant or integer variable that specifies the

length, in 16-bit words (2 bytes), of each record.

U

Specifies that the file is unformatted (binary); this 1is the
only acceptable entry in this position.

asv

An integer variable, called the associated variable of the file.

At the end of each direct access I/0 operation, the record number

of the next higher-numbered record in the file 1is assigned to

asv.

DEFINE FILE specifies that a file containing m fixed-length records of

n 16-bit words each exists, or is to exist, on logical unit u. The
records in the file are numbered sequentially from 1 through m.

DEFINE FILE must be executed before the first direct access 1I/0

statement that refers to the specified file.

DEFINE FILE also establishes the integer variable asv as the

associated variable of the file. At the end of each direct access I/0

operation, the FORTRAN I/0 system places in asv the record number of
the record immediately following the one Jjust read or written.

Because the associated variable always points to the next sequential

record in the file (unless it is redefined by an assignment, input, or

FIND statement), direct access I/0 statements can perform sequential

processing of the file by using the associated variable of the file as

the record number specifier. ‘

ADDITIONAL LANGUAGE ELEMENTS

For example, the statement

DEFINE FILE 3 (1000,48,U,NREC)

specifies that logical unit 3 is to be connected to a file of 1000

fixed-length records; each record is forty-eight 16-bit words long.

The records are numbered sequentially from 1 through 1000 and are

unformatted. After each direct access I/0 operation on this file, the

integer variable NREC will contain the record number of the record

immediately following the record just processed.

FIND

A.3 FIND STATEMENT

The FIND statement positions a direct access file on a specified unit

to a particular record. No data transfer takes place.

The FIND statement has the forms:

FIND (u'r[,ERR=s])

FIND ([UNIT=]u[,REC=r][,ERR=s])

u

A logical unit number.

r

The direct access record number.

s

The label of an executable statement.

The record number cannot be less than 1 or greater than the number of

records defined for the file.

The associated variable of the file, 1if specified, 1is set to the

direct access record number.

For a relative organization file, the record is locked.

For example, the statement

FIND (1'1)

positions logical unit 1 to the first record of the file; the file's

associated variable is set to 1. And the statement

FIND (4'INDX)

positions the file to the record identified by the content of INDX;

the file's associated variable is set to the value of INDX.

ADDITIONAL LANGUAGE ELEMENTS

PARAMETER

A.4 PARAMETER STATEMENT

This statement assigns a symbolic name to a constant, as does the
PARAMETER statement discussed 1in Section 5.11. However, it differs
from the PARAMETER statement discussed in Section 5.11 in that its
list is not bounded with parentheses and the form of the constant
(rather than the typing of the symbolic name) determines the data type
of the variable.

The PARAMETER statement has the following form:

PARAMETER p=c [,p=c] ...

A symbolic name.

An integer expression.

Each symbolic name (p) becomes a constant and is defined by the wvalue
of the constant (c); c¢ can be any valid FORTRAN constant.

Once a symbolic name is defined to be a constant, it can appear any
place 1in a program that a constant is allowable. The effect of using
a symbolic name defined to be a constant is the same as if the
constant were being used.

The symbolic name of a constant cannot appear as part of another
constant; however, it can appear as a real or imaginary part of a
complex constant.

The PARAMETER statement applies only to the program unit in which it
appears. A symbolic name can appear only once in a PARAMETER

statement in the same program unit.

The constant assigned to the symbolic name determines its data type.

The 1initial 1letter of the constant's name does not affect its type.

You cannot specify the constant's type by using the name in an
explicit type declaration statement.

Examples of valid PARAMETER statements are:

PARAMETER PI=3.1415927, DPI=3.141592653589793238D0

PARAMETER FLAG=.TRUE., LONGNAME='A STRING OF 25 CHARACTERS®

A.5 OCTAL FORMS OF INTEGER CONSTANTS

Octal forms of integer constants are provided for compatibility with

PDP-11 FORTRAN IV-PLUS V3.0. The octal form of an integer constant

is:

"nn

ADDITIONAL LANGUAGE ELEMENTS

nn

A string of digits in the range 0 to 7.

An octal integer constant cannot be negative or greater than
“37777777777.

Examples of valid and invalid octal integer constants are:

valid Invalid

"107 "108 (contains a digit outside the allowed

range)

"177777 "1377. (decimal point not allowed)

"17777" (trailing quotation mark not allowed)

Note that these octal forms are not the same as the typeless octal
constants discussed in Section 2.3.5. 1Integer constants in octal form

have integer data type and are treated as integers.

EXTERNAL

A.6 /NOF77 INTERPRETATION OF THE EXTERNAL STATEMENT

The /NOF77 interpretation of the EXTERNAL statement combines the

function of the JINTRINSIC statement with that of the EXTERNAL
statement discussed in Section 5.8. It is available only 1if the

/NOF77 compiler command qualifier is present.

The /NOF77 EXTERNAL statement allows the programmer to use subprograms
as arguments to other subprograms.

The subprograms to be used as arguments can be either wuser-supplied

procedures or FORTRAN library functions.

The /NOF77 EXTERNAL statement has the form:

EXTERNAL [*]v [,[*]V]...

The symbolic name of a subprogram, or the name of a dummy

argument associated with the symbolic name of a subprogram.

Specifies that a user-supplied function is to be used instead of

a FORTRAN library function having the same name. See Section 6.3

for information on FORTRAN library functions.

The EXTERNAL statement declares that each name in the 1list 1is an

external procedure name. Such a name can then appear as an actual

argument to a subprogram; the subprogram can use the associated dummy

argument name in a function reference or CALL statement.

Note, however, that a complete function reference used as an argument

(for example, SQRT(B) in CALL SUBR(A,SQRT(B),C)) represents a value,

not a subprogram name. The function name need not be defined in an
EXTERNAL statement,

ADDITIONAL LANGUAGE ELEMENTS

An example of the EXTERNAL statement is:

Main Program Subprograms

EXTERNAL SIN,COS,SINDEG SUBROUTINE TRIG (X,F,Y)

EXTERNAL F

. Y = F(X)

. RETURN

CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

CALL TRIG (ANGLE,SINDEG,SINE)
.

FUNCTION SINDEG (X)

. SINDEG = SIN (X*3.14159/180)

. RETURN

END

In the example, SIN and COS are trigonometric functions supplied in

the FORTRAN library, and SINDEG is a user-supplied function. The CALL
statements pass the name of a function to the subroutine TRIG. The

function reference F(X) subsequently 1invokes the function in the
second statement of TRIG. Depending on which CALL statement invoked
TRIG, the second statement is equivalent to one of the following:

Y = SIN(X)

Y = COS (X)

Y = SINDEG (X)

An asterisk (*) may precede a name in the 1list; the name then

identifies a wuser-supplied function or subprogram, not a FORTRAN
library function. Use the asterisk only when a user-supplied function
or subprogram has the same name as that of a FORTRAN library function.

(See Section 6.3 for additional information on FORTRAN library
functions.)

For example, the statement:

EXTERNAL *SIN, *COS

identifies the names SIN and COS as user-supplied subprograms and not
the FORTRAN library functions for the sine and cosine.

APPENDIX B

CHARACTER SETS

B.l1 FORTRAN CHARACTER SET

The FORTRAN character set consists of:

® The letters A through Z and a through z

e The numerals 0 through 9

e The following special characters:

Character Name Character Name

A Space or tab ' Apostrophe

= Equal sign " Quotation mark

+ Plus sign $ Dollar sign

- Minus sign v Comma

* Asterisk ! Exclamation point

/ Slash : Colon

(Left parenthesis < Left angle bracket

) Right parenthesis > Right angle bracket

. Period

Other printing characters can appear in a FORTRAN statement only as
part of a Hollerith constant. Any printing character can appear in a
comment. See Table B-1.

B.2 ASCII CHARACTER SET

Table B-1 is a table representing the ASCII character set. At the top
of the table are hexadecimal digits (0 to 7), and to the left of the
table are hexadecimal digits (0 to F). To determine the hexadecimal
value of an ASCII character, locate the ASCII character in the table,
use the row number as the unit's position digit, and use the column
number as the 16's position digit. For example, the hexadecimal value
of the equal sign (=) is 3D.

CHARACTER SETS

Table B-1: ASCII Character Set

Columns

0 1 2 3 4 5 6 7

0 NUL DLE SP O @ P P

1 SOH DC1l | 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s
4 EOT DC4 S 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F \' £ \V
7 BEL ETB ' 7 G W g W

8 BS CAN (8 H X h X

9 HT EM) 9 I Y i Y

A LF suBp * : J yA j z
B VT ESC + ; K [k

C FF FS ¢ < L \ 1

D CR GS - = M] m

E SO RS . > N " n
F SI us / ? 0 _ o DEL

NUL Null DLE Data Link Escape

SOH Start of Heading DC1 Device Control 1

STX ©Start of Text DC2 Device Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENQ Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation EM End of Medium

LF Line Feed SUB Substitute

VT Vertical Tab ESC Escape

FF Form Feed FS File Separator

CR Carriage Return GS Group Separator

so shift Out RS Record Separator

SI Shift In us Unit Separator

SP Space DEL Delete

B.3 RADIX-50 CONSTANTS AND CHARACTER SET

Radix-50 is a special character data representation in which up to 3

characters can be encoded and packed into 16 bits.

character set is a subset of the ASCII character set.

The Radix-50

The Radix-50 characters and their corresponding code values are:

Character ASCII Octal

Equivalent

Space 40

A -2 101 - 132

$ 44

. 56

(Unassigned)

60 - 71

Radix-50 Value

(Octal)

0

1l - 32

33

34

35

36 - 47

CHARACTER SETS

Radix-50 values are stored, up to 3 characters per word, by packing

them into single numeric values according to the formula:

((i * 50 + j) * 50 + k)

where i, j, and k represent the code values of three Radix-50

characters.

Thus, the maximum Radix-50 value is:

47*50*%50 + 47*50 + 47 = 174777

A Radix-50 constant has the form:

nRclc2...cn

An unsigned, nonzero integer constant that states the number of

characters to follow.

A character from the Radix-50 character set.

The maximum number of characters is 12. The character count must

include any spaces that appear in the character string (the space

character is a wvalid Radix-50 character). You <can use Radix-50
constants only in DATA statements.

Examples of valid and invalid Radix-50 constants are:

valid Invalid

4RABCD 4RDKO: (the colon is not a Radix-50

character)

6R TO

When a Radix-50 constant is assigned to a numeric variable or array

element, the number of bytes that can be assigned depends on the data

type of the component (see Table 2-2). If the Radix-50 constant

contains fewer bytes than the 1length of the component, ASCII null
characters (0 bytes) are appended on the right. If the constant

contains more bytes than the length of the component, the rightmost
characters are not used.

C.1l EXPRESSION

APPENDIX C

LANGUAGE SUMMARY

OPERATORS

Table C-1 lists the expression operators in each data type in order of

descending precedence.

Table C-1: Expression Operators

Data Type Operator Operation Operates upon:

Arithmetic *% Exponentiation Arithmetic

expressions

*,/ Multiplication,

division

+,- Addition, subtraction,

unary plus and minus

Relational .GT. Greater than Arithmetic, logical,

or character

.GE. Greater than or expressions (all

equal to relational operators

have equal priority)

.LT. Less than

.LE. Less than or

equal to

.EQ. Equal to

.NE. Not equal to

Logical .NOT. .NOT.A is true if and Logical or integer

only if A is false expressions

.AND, A.AND.B is true if

and only if A and B

are both true

.OR. A.OR.B is true if

eitherA or B or

both are true

(continued on next page)

LANGUAGE SUMMARY

Table C-1: (Cont.) Expression Operators

Data Type Operator Operation Operates upon:

Logical .EQV. A.EQV.B is true if and .EQV. and .XOR.

(cont.) only if A and B have equal

are both true, or A priority

and B are both false

. XOR, A.XOR.B is true if and

only if A is true and

B is false, or B is

true and A is false

.NEQV. Same as .XOR.

C.2 STATEMENTS

The following list summarizes the statements available in the PDP-11

FORTRAN-77 language, 1including the general form of each statement.

The statements are listed alphabetically for ease of reference. The

"Manual Section" column indicates the section of the manual that

describes each statement in detail.

Manual

Form Effect Section

ACCEPT See READ

Arithmetic/Logical/Character Assignment 3.1, 3.2, 3.3

v=e

\ is a variable name, an array element name,

or a character substring name.

e is an expression.

Assigns the value of the arithmetic,

logical, or character expression to

the variable.

Statement Function 6.2.1

£(lpl,P)...])=e

f is a symbolic name (not data type

character).

P is a symbolic name.

e is an expression.

Creates a user-defined function having the

variable p as a dummy argument. When

referred to, the expression is evaluated

using the actual arguments in the function

call.

LANGUAGE SUMMARY

Manual

Form Effect Section

ASSIGN s TO v 3.4

S is a label of an executable statement

or a FORMAT statement.

V. is an integer variable name.

Associates the statement label s with the

integer variable v for later use in an

assigned GO TO statement or as a format

specifier.

BACKSPACE u 9.4

BACKSPACE ([UNIT=]ul[,ERR=s])

u is an integer expression.

S is a'label of an executable statement.

Backspaces one record the currently open file on

logical unit u.

BLOCK DATA [nam] 5.13

nam is a symbolic name.

Specifies the subprogram that follows as a

BLOCK DATA subprogram.

CALL f[([all,[al]...)] 4.5

6.2

f is a subprogram name or entry point.

a is an expression, an array name, or a

procedure name.

Calls the subroutine subprogram with the

name specified by f, passing the actual

arguments a to replace the dummy

arguments in the subroutine definition.

CLOSE ([UNIT=]ul,p][,ERR=s}) 9.2

p is one of the following forms:

STATUS 'SAVE'

DISPOSE = 'KEEP'

DISP 'DELETE'

'PRINT'

e is an integer expression.

s is a label of an executable statement.

Closes the specified file. DISPOSE can

be abbreviated DISP.

C-3

Form

LANGUAGE SUMMARY

Effect

COMMON [/[cb}/] nlist ([[,]/[cb]l/nlist]...

cb

nlist

CONTINUE

is a common block name.

is a list of one or more variable names,

array names, or array declarators

separated by commas.

Reserves one or more blocks of storage

space under the name specified to contain

the variables associated with that block

name.,

Causes no processing.

DATA nlist/clist/[[,] nlist/clist/]...

nlist

clist

is a list of one or more variable names,

array names, array element names, or

character substring references, separated

by commas. Subscript and substring

expressions must be constant.

is a list of one or more constants separated

by commas, each optionally preceded by j*,

where j is a nonzero, unsigned integer

constant,

Initially stores elements of clist

in the corresponding elements of

nlist.

DECODE (c,f,b[,ERR=s])[list]

list

is an integer expression.

is a format specifier.

is a variable name, array name, array

element name, or character substring

reference.

is a label of an'executable statement,

is an I/0 list.

Reads c characters from buffer b and

assigns values to the elements in the

list, converted according to format

specification f£.

Manual

Section

5.4

4.4

LANGUAGE SUMMARY

Manual

Form Effect Section

DEFINE FILE u(m,n,U,v)[,u(m,n,U,v)]... A.2

u is an integer variable or integer constant.,

m is an integer variable or integer constant.

n is an integer variable or integer constant.

\Y is an integer variable name.

Defines the record structure of a

direct access file where u is the logical

unit number, m is the number of fixed-

length records in the file, n is the

length in words of a single record, U is

a fixed argument, and v is the associated

variable.

DELETE ([UNIT=]Ju(,REC=r][,ERR=s]) 9.5

DELETE (u'r [,ERR=s])

u is an integer expression.

r is an integer expression.

S is a label of an executable statement.

Deletes the record on unit u that is specified

by r, or the most recently accessed record.

DIMENSION a(d)[,a(d)]... 5.3

a(d) is an array declarator.

Specifies storage space requirements for

arrays.

DO s [,] v = el,el3[,e3] : 4.3

s is a label of an executable statement.

\ is a variable name.

ei,e2,e3 are numeric expressions.

Executes the DO loop by performing the following

steps:

1. Evaluates cnt= INT((e2-el+e3)/e3)

2. Sets v=el

3. If cnt is less than or equal to

zero, does not execute the loop

LANGUAGE SUMMARY

Form Effect

4. If cnt is greater than zero, then

a. Executes the statements 1in

the body of the loop

b. Evaluates v=v+e3

c. Decrements the loop count

(cnt=cnt-1). If cnt is

greater than zero, repeats

the loop

ELSE

Defines a block of statements to be

executed if logical expressions in

previous IF THEN and ELSE IF THEN

statements have values of false.

See IF THEN.

ELSE IF (e) THEN

e is a logical expression.

Defines a block of statements to be

executed if logical expressions in

previous IF THEN and ELSE IF THEN

statements have values of false, and

the logical expression e has a value

of true. See IF THEN.

ENCODE (c,f,b[,ERR=s])[list]

c is an integer expression.

f is a format specifier.

b is a variable name, array name, array

element name, or character substring

reference.

S is a label of an executable statement.

list is an 1/0 list.

Writes ¢ characters into buffer b, which

contains the values of the elements of

the list, converted according to format

specification £,

Manual

Section

LANGUAGE SUMMARY

Manual

Form Effect Section

END 4.9

Delimits a program unit.

ENDFILE u 9.7

ENDFILE ([UNIT=]u,[,ERR=s])

u is an integer expression.

S is a label of an executable statement.

Writes an end-file record on logical

unit u.

END IF

Terminates block IF construct. See IF THEN.

END=s, ERR=s 7.2.1.6

s is a label of an executable statement.

Transfers control on end-of-file or error

condition. This is an optional element

in each type of I/0 statement and allows

the program to transfer to statement

number s when an end-of-file (END=) or

error (ERR=) condition occurs.

ENTRY nam [([p[,pP]...])] 6.2.4

nam is a subprogram name.

p is a symbolic name.

Defines an alternative entry point within

a subroutine or function subprogram.

EQUIVALENCE (nlist)[,(nlist)]... 5.6

nlist is a list of two or more variable names,

array names, array element names, or

character substring names separated by

commas. Subscript expressions must

be constants.

Assigns each of the names in nlist

the same storage location.

LANGUAGE SUMMARY

Manual

Form Effect Section

EXTERNAL v[,v]...

\' is a subprogram name.

Defines the names specified as subprograms.

EXTERNAL *v[,*v]... 5.8

\' is a subprogram name.

Defines the names specified as

user-defined subprograms.

FIND (u'r(,ERR=s]) A.3
FIND ([UNIT=]u,REC=r[,ERR=s])

u is an integer expression,

r is an integer expression.,

Positions the file on logical

unit u to the

record specified by r.

FORMAT (field specification,...) 8.1 - 8.8

Describes the format in which one or

more records are to be transmitted; a

statement label must be present,

[typ] FUNCTION nam[*n] (([p[,P]...])] 6.2.2

typ is a data type specifier.

nam is a symbolic name.

*n is a data type length specifier.

P is a symbolic name.

Begins a function subprogram, indicating
the program name and any dummy argument

names (p). An optional type specification
can be included.

GO TO s | 4.1.1

S is a label of an executable statement,

Transfers control to statement number s.

Form

LANGUAGE SUMMARY

Manual

Effect Section

GO TO (slist)[,] e 4.1.2

slist is a 1list of one or more statement

labels separated by commas.

is an integer expression.

Transfers control to the statement

specified by the value of e (if e=1,

control transfers to the first statement

label; 1if e=2, control transfers

to the second statement label, and so forth).

If e is less than 1 or greater than the

number of statement labels present, no

transfer takes place.

GO TO v [[,)(slist)] 4.1.3

v

slist

IF (e) sl,s2,s3

e

-]

IF (e) st

e

st

is an integer variable name.

is a list of one or more statement

labels separated by commas.

Transfers control to the statement most

recently associated with v by an ASSIGN

statement.

is an expression.

is a label of an executable statement.

Transfers control to statement si

depending on the value of e (if e is

less than 0, control transfers to

sl; 1f e equals 0, control transfers

to s2; 1if e is greater than 0, control

transfers to s3).,

is an expression.

is any executable statement except a DO,

END, block IF, or logical IF.

Executes the statement if the logical

expression has a value of true,

Cc-9

Form

IF (el) THEN

block

LANGUAGE SUMMARY

Manual

Effect Section

4.2.3

ELSE IF (e2) THEN

block

ELSE

block

END IF

el,e?

block

are logical expressions.

is a series of zero or more FORTRAN

statements.

Defines blocks of statements and

conditionally executes them.

If the logical expression in the IF

THEN statement has a value of true,

the first block is executed and control

transfers to the first executable

statement after the END IF statement.

1f the logical expression has a value

of false, the process is repeated

for the next ELSE IF THEN

statement. If all logical

expressions have values of false,

the ELSE block is executed.

If there is no ELSE block,

control transfers to the next

executable statement following END IF.

IMPLICIT typ (af,al...)[,typ(al,a]...)]... 5.1

typ

a

is a data type specifier.

is elither a single letter or two letters

in alphabetical order separated by

a hyphen (i.e., X-Y).

The element a represents a single (or a

range of) letter(s) whose presence as the

initial letter of a variable specifies

the variable to be of that data type.

INCLUDE 'filespec’ 1.5

'filespec' is a character constant.

Includes the source statements in the

compilation from the file specified.

Form

LANGUAGE SUMMARY

Effect

INTRINSIC funci,func]...

func is an intrinsic function name.

Designates symbolic names as

Manual

Section

5.9

intrinsic functions and allows

those names to be used as

actual arguments.

OPEN(par([,par]...)

par is a keyword specification in one of the

following forms:

kwd

kwd = value

kwd is a keyword, as described below.

value depends on the keyword, as

described below.

Keyword Values

ACCESS "'SEQUENTIAL'

'DIRECT'

"APPEND'

'KEYED'

ASSOCIATEVARIABLE v

BLOCKSIZE e

BLANK "NULL'

'ZERO'

BUFFERCOUNT e

CARRIAGECONTROL 'FORTRAN"'

"LIST'

"NONE"

DISPOSE 'SAVE' or 'KEEP'

DISP 'PRINT'

'"DELETE"

ERR s

EXTENDSIZE e

FILE o)

FORM 'FORMATTED'

'UNFORMATTED"

INITIALSIZE e

KEY (k[,k]..e)

MAXREC e

NAME (same as FILE)

NOSPANBLOCKS -

ORGANIZATION 'SEQUENTIAL'

'RELATIVE'

"INDEXED'

READONLY -

RECL e

RECORDSIZE (same as RECL)

LANGUAGE SUMMARY

Manual

Form Effect Section

Keyword Values

RECORDTYPE '"FIXED'
'VARIABLE'

'SEGMENTED'

SHARED -

STATUS '‘oLD!
"NEW'

'SCRATCH'

'UNKNOWN''

TYPE (same as STATUS)

UNIT e

USEROPEN P

c is an array name, variable name, array

element name, or character constant.

e is a numeric expression.

k is a key specification.

o) is a program unit name.

s is a label of an executable statement.

\ is an integer variable name.

opens a file on the specified logical unit

according to the parameters specified by

the keywords.

PARAMETER (p=c [,p=c]...) 5.11

PARAMETER p=c [,p=C]l... A.4

o is a symbolic name.

c is a constant.

Defines a symbolic name for a constant.

PAUSE [disp] 4.7

disp is a decimal digit string containing one to

five digits, an octal constant, or an :

alphanumeric literal.

Suspends program execution and prints the

display, if one is specified.

PRINT See WRITE

PROGRAM nam 5.12

nam is a symbolic name.

Specifies a name for the main program.

Form

READ

READ

LANGUAGE SUMMARY

Effect

([UNIT=]u, [FMT=] f[,END=s] [,ERR=8]) [list]

£(,1list]

ACCEPT f[,list]

READ

READ

u is an integer expression.

£ is a format specifier,

S is a label of an executable statement.

list is an I/0 list.

Reads one or more logical records from

unit u and assigns values to the elements

in the 1list. The values are converted

according to format specification £,

([UNIT=]u,REC=r,[FMT=]f[,ERR=s8])[list]

(u'r,[FMT=]£f[,ERR=s])[list]

u is an integer expression.

r is an integer expression.

£ is a format specifier,

s is a label of an executable statement.

list is an I/0 list,

Reads records starting at record r

from logical unit u and assigns

values to the elements in the list.

The values are converted according

to format specification f.

READ([UNIT=]u(,END=s][,ERR=s]) [list]

u is an integer expression.

s is a label of an executable statement.

list is an I/0 list.

Reads one unformatted record from logical

unit u and assigns values to the

elements in the list.

Manual

Section

7.4.1.1

7.4.1.1

7.7

7.4.2.1

7.4.1.3

LANGUAGE SUMMARY

Manual

Form Effect Section

READ ({UNIT=]u,REC=r[,ERR=s])[list]

READ(u'r[,ERR=s]) [list] 7.4.2.2

u is an integer expression.

r is an integer expression.

s is a label of an executable statement.

list is an I/0 list.

Reads record r from logical unit u and assigns

values to the elements in the list,

READ ([UNIT=]u,[FMT=]*[,END=s][,ERR=s])[list] 7.4.1.2
7.4.1.2

READ *[,list] 7.7

"ACCEPT *[,list]

u is an integer expression.

* denotes list-directed formatting.

s is a label of an executable statement.

list is an I/0 list,

Reads one or more records from

logical unit u and assigns values to

the elements in the list. The

values are converted according to the

data type of the list element.

READ ([UNIT=]u, (KEY

RKEYEQ L _y EYID=kn] [,ERR=s]) [list 7.4.3.2KEYGE v[i,K D 10, NI]

KEYGT

u is an integer expression.

kv is a key expression.

kn is an integer expression.

S is a label of an executable statement.

list is an I/0 list.

Reads the record on logical unit u described

by the key expression kv and key-of-reference number

kn.

The values in the record are assigned to the

elements in the list.

LANGUAGE SUMMARY

Manual

Form Effect Section

READ ([UNIT=]u,[FMT=]f, (KEY

KEYEQ % —xy[,KEYID=kn] [,ERR=s])[1list] 7.4.3.1
KEYGE

KEYGT

u is an integer expression,

£ is a format specifier.

kv is a key expression,

kn is an integer expression.

S is a label of an executable statement.

list is an I/0 list,

Reads the record on logical unit u described

by the key expression kv and key-of-reference

number kn. The values in the record are

converted according to format specification

f and assigned to the elements

in the list.

READ ([UNIT=]c,[FMT=]f[,ERR=s][,END=s])[1list] 7.4.4

o] is an internal file specifier,

f is a format specifier.

S is the label of an executable statement.

list is an I/0 list.

Reads one or more internal

records into the I/0 list in

accordance with the format specification.

RETURN 4.6

Returns control to the calling program

from the current subprogram.

REWIND u 9.3

REWIND ([UNIT=]ul,ERR=s])

u is an integer expression.

] is a label of an executable statement.

Repositions logical unit u to the

beginning of the currently opened file.

LANGUAGE SUMMARY

Manual

Form Effect Section

REWRITE ([UNIT=]u,[FMT=]f[,ERR=s]) [list] . 7.6.1.1

u is an integer expression,

f is a format specifier.

s is a label of an executable statement.

list is an I/0 list.

Rewrites the current record on logical

unit u, containing the values of the

elements of the list. The values are

translated according to format

specification f.

REWRITE ([UNIT=]ul,ERR=s]) ([list] 7.6.1.2

u is an integer expression. .

s is a label of an executable statement.

list is an I/0 list.

Rewrites the current record on logical

unit u, containing the values of

the elements of the list.

SAVE[a[,a]...] 5.7

a is a named common block enclosed in
slashes, a variable name, or an array name.

Retains the definition status of an

entity after the execution of a RETURN

or END statement in a subprogram.

STOP ([disp] 4.8

disp is a decimal digit string containing one to
five digits, an octal constant, or an

alphanumeric literal.

Terminates program execution and prints

the display, if one is specified.

SUBROUTINE nam([([pl,P]l...])] 6.2.3

nam is a symbolic name.

p is a symbolic name,

Begins a subroutine subprogram, indicating
the program name and any dummy argument

names (p).

C-16

LANGUAGE SUMMARY

Manual

Form Effect Section

TYPE See WRITE, Formatted Sequential. | 7.8
See WRITE, List-Directed.

Type Declaration 5.2

typ vi,v]...

typ is one of the following data types:

BYTE

LOGICAL

LOGICAL*1

LOGICAL*2

LOGICAL*4

INTEGER

INTEGER*2

INTEGER*4

REAL

REAL*4

REAL*8

DOUBLE PRECISION

COMPLEX

COMPLEX*8

CHARACTER

CHARACTER*1len

\Y is a variable name, array name,

function or function entry name, or

an array declarator. The name can

optionally be followed by a data

type length specifier (*n).

For character entities, the length

specifier can be *len.,

The symbolic names (v) are assigned the

specified data type.

UNLOCK u 9.6

UNLOCK ([UNIT=]Ju[,ERR=s])

u is an integer expression.

] is a label of an executable statement.

Unlocks all records currently locked on

logical unit u.

VIRTUAL a(d)([,a(d)]... 5.5

a(d) is an array declarator.

Specifies storage space for arrays

outside normal program address space.

C-17

Form

LANGUAGE SUMMARY

Effect

WRITE ([UNIT=]u,[FMT]=£f[,ERR=s])[list]

PRINT f[,list]

TYPE f£[,list]

u

f

S

list

is an integer expression.

is a format specifier.

is a label of an executable statement.

is an I/0 list.

Writes one or more records to logical unit

u, containing the values of the elements

in the list. The values are converted

according to format specification f.

WRITE ([UNIT=]u,REC=r,[FMT=]f[,ERR=s])[list]

WRITE (u'r,[FMT=]1£[,ERR=s])[list]

u

r

f

s

list

is an integer expression.

is an integer expression.

is a format specifier.

is a label of an executable statement.

is an I/0 list.

Writes one or more records on logical unit

u, containing the values of the elements

of the list starting at record r. The

values are converted according to format

specification f.

WRITE ([UNIT=]Jul,ERR=s])[list]

u

S

list

is an integer expression.

is a label of an executable statement label.

is an I/0 list.

Writes one unformatted record to logical

unit u containing the values of the elements

in the list.

Manual

Sectio on

7.5.1.1

7.8

7.8

7.5.2.1

7.5.1.3

LANGUAGE SUMMARY

Manual

Form Effect Section

WRITE ([UNIT=]u,REC=r{,ERR=s])[list]

WRITE (u'r[,ERR=s]) [list] 7.5.2.2

u is an integer expression.

r is an integer expression.

s is a label of an executable statement label.

list is an 1I/0 list,.

Writes record r to logical unit u containing

the values of the elements in the list.

WRITE([UNIT=]u, [FMT=]*[,ERR=s])[list] 7.5.1.2

7.8

PRINT *[,list] 7.8

TYPE *[,list]

u is an integer expression.

* denotes list-directed formatting.

] is a label of an executable statement.

list is an 1/0 list.

Writes one or more logical records to logical

unit u containing the values of the elements

in the list. The values are converted

according to the data type of the list

element.

WRITE ([UNIT=]c,[FMT=]f [,ERR=s])[List] 7.5.4

o] is an internal file specifier.

f is a format specifier.

] is the label of an executable statement.

list is an I/0 list.

Writes elements in the list to

the internal file specified by

the unit, converting to character

strings in accordance with the format

specification.

C.3 LIBRARY FUNCTIONS

LANGUAGE SUMMARY

Table C-2 lists the PDP-11 FORTRAN-77 generic functions and intrinsic

functions (listed in the column headed "Specific Name"). Superscripts

in the table refer to notes that follow the table.

Table C-2: Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Square rootl SQRT SQRT Real Real
DSQRT Double Double

a(l/2) CSQRT Complex Complex

Natural logarithm2 LOG ALOG Real Real

DLOG Double Double

Log(e)a CLOG Complex Complex

Common logarithm2 LOG10 ALOG10 Real Real
DLOG10 Double Double

Log(10)a

Exponential EXP EXP Real Real

e(a) DEXP Double Double

CEXP Complex Complex

Sine3 SIN SIN Real Real

DSIN Double Double

Sin a CSIN Complex Complex

Cosine3 cos cos Real Real

DCOS Double Double

Cos a CCos Complex Complex

Tangent 3 TAN TAN Real Real
DTAN Double Double

Tan a

Arc sine4,5 ASIN ASIN Real Real
DASIN Double Double

Arc sin a

Arc cosine4,5 ACOS ACOS Real Real

DACOS Double Double

Arc cos a

Arc tangent (5) ATAN ATAN Real Real

DATAN Double Double

Arc tan a

Arc tangent5,6 ATAN?2 ATAN2 Real Real
DATAN2 Double Double

Arc tan a(l)/a(2)

Hyperbolic sine SINH SINH Real Real

DSINH Double Double

Sinh a

(continued on next page)

LANGUAGE SUMMARY

Table C-2: (Cont.) Generic and Intrinsic Functions

Number of Generic Specific Type of Type of
Functions Arguments Name Name Argument Result

Hyperbolic cosine COSH COSH Real Real

DCOSH Double Double
Cosh a

Hyperbolic tangent TANH TANH Real Real

DTANH Double Double
Tanh a

Absolute value7 ABS ABS Real Real
DABS Double Double

[a] CABS Complex Real

IIABS Integer*2 1Integer*2

JIABS Integer*4 1Integer*4

IABS IIABS Integer*2 Integer*2

JIABS Integer*4 1Integer*4

Truncation$8 INT IINT Real Integer*2
JINT Real Integer*4

[a] IIDINT Double Integer*2

JIDINT Double Integer*4

IDINT IIDINT Double Integer*2

JIDINT Double Integer*4

AINT AINT Real Real

DINT Double Double

Nearest integer8 NINT ININT Real Integer*2
JNINT Real Integer*4

[a+.5*sign(a)] IIDNNT Double Integer*?2

JIDNNT Double Integer*4

IDNINT IIDNNT Double Integer*2

JIDNNT Double Integer*4

ANINT ANINT Real Real

DNINT Double Double

Fix 2 IFIX IIFIX Real Integer*2
(real-to-integer conversion) JIFXI Real Integer*4

Float9 FLOAT FLOATI Integer*2 Real
(integer-to-real conversion) FLOATJ Integer*4 Real

Double-Precision float? DFLOAT DFLOTI Integer*2 Double
(integer-to-double conversion) DFLOTJ Integer*4 Double

Conversion to single SNGL - Real Real
precision? SNGL Double Real

FLOATI Integer*2 Real

FLOATJ Integer*4 Real

(continued on next page)

LANGUAGE SUMMARY

Table C-2: (Cont.) Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Conversion to 1 DBLE DBLE Real Double

double—precision9 - Double Double
- Complex Double

DFLOTI Integer*2 Double

DFLOTJ Integer*4 Double

Real part of complex or 1 REAL REAL Complex Real

conversion to single FLOATI Integer*2 Real

precision FLOATJ Integer*4 Real
SNGL Real Real

SNGL Double Real

Imaginary part of complex 1 - AIMAG Complex Real

Complex from two reals 2 - CMPLX Real Complex

Conversion to complex CMPLX - Integer*2 Complex

or - Integer*4 Complex

complex from two - Real Complex

arguments CMPLX Real Complex
- Double Complex

- Complex Complex

Complex conjugate 1 - CONJG Complex Complex

(if a=(X,Y)

CONJG (a)=(X,Y)

Double product of reals 2 - DPROD Real Double

a(l)*a(2)

Max imum n MAX AMAX1 Real Real
DMAX1 Double Double

max{a(l) ,a(2),...a(n})) IMAXO Integer*2 1Integer*2

(returns the maximum value JMAXO0 Integer*4 Integer*4
from among the argument

list; there must be at least

two arguments)

MAXO0 IMAXO Integer*2 Integer*2

JMAXO Integer*4 1Integer*4

MAX1 IMAX1 Real Integer*2

JMAX1 Real Integer*4

AMXAQ AIMAXO Integer*2 Real

AJMAXO Integer*4 Real

Minimum n MIN AMIN1 Real Real
DMIN1 Double Double

min(a(l),a(2),..a(n)) IMINO Integer*2 1Integer*2
(returns the minimum value JMINO Integer*4 Integer*4
among the argument list;

there must be at least two

arguments)

(continued on next page)

LANGUAGE SUMMARY

Table C-2: (Cont.) Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Minimum MINO IMINO Integer*2 Integer*2

(Cont.,) JMINO Integer*4 Integer*4

MIN1 IMIN1 Real Integer*2

JMIN1 Real Integer*4

AMINO AIMINO Integer*2 Real

AJMINO Integer*4 Real

Positive difference 2 DIM DIM Real Real

DDIM Double Double

a(l)-(min(a(l,,a(2))) IIDIM Integer*2 Integer*2
(returns the first argument JIDIM Integer*4 Integer¥*4

minus the minimum of the

two arguments)

IDIM IIDIM Integer*2 Integer*2

JIDIM Integer*4 1Integer*4

Remainder 2 MOD AMOD Real Real

DMOD Double Double

a(l)-a(2)*[a(l)/a(2)] IMOD Integer*2 Integer*2
(returns the remainder JMOD Inetger*4 1Integer*4

when the first argument

is divided by the second)

Transfer of sign 2 SIGN SIGN Real Real

DSIGN Double Double

la(l)*Sign a(2) IISIGN Integer*2 Integer*2

JISIGN Integer*4 1Integer*4

ISIGN IISIGN Integer*2 Integer*2

JISIGN Integer*4. 1Integer*4

Bitwise AND 2 IAND ITIAND Integer*2 Integer*2

(performs a logical AND on JIAND Integer*4 1Integer*4

corresponding bits)

Bitwise OR 2 IOR IIOR Integer*2 1Integer*2

(performs an inclusive OR on JIOR Integer*4 Integer*4

corresponding bits)

Bitwise exclusive OR 2 IEOR ITEOR Integer*2 Integer*2

(performs an exclusive OR on JIEOR Integer*4 1Integer*4

corresponding bits)

Bitwise complement 1 NOT INOT Integer*2 1Integer*2

(complements each bit) JNOT Integer*4 1Integer*4

Bitwise shift 2 ISHFT IISHFT Integer*2 Integer*2
JISHFT Integer*4 1Integer*4

(a(l) logically shifted left

a(2) bits)

(continued on next page)

Table C-2:

LANGUAGE SUMMARY

(Cont.) Generic and Intrinsic Functions

Number of Generic Specific Type of Type of

Functions Arguments Name Name Argument Result

Random number10 1 - RAN Integer*4 Real
(returns the next number

from a sequence of pseudo-

random numbers of uniform

distribution over the range 2 - RAN Integer*2 Real

0 to 1)

Length 1 - LEN Character Integer*2

(returns length of the

character expression)

Index (C(1),C(2)) 2 - INDEX Character 1Integer*2

(returns the position of the

substring c(2) in the character

expression c(1))

ASCII Value 1 - ICHAR Character Integer*2

(returns the ASCII value of

the argument; the argument

must be a character expres-

sion that has a length of 1)

Character relationals 2 - LLT Character Logical*2

(ASCII collating sequence) 2 - LLE Character Logical¥*2

2 - LGT Character Logical*2

2 - LGE Character Logical*2

1. The argument of SQRT and DSQRT must be greater than or equal to 0. The

result of CSQRT is

equal to 0.

the imaginary part greater than or equal to 0.

2, The argument of ALOG, DLOG, ALOG10, and DLOG1l0 must be greater than

argument of CLOG must not be (0.,0.).

3. The argument of SIN, DSIN, COS, DCOS,

argument is treated modulo 2*pi.

TAN,

4. The absolute value of the argument of ASIN, DASIN, ACOS, and DACOS

less than or equal to 1.

5. The result of ASIN, DASIN, ACOS,

radians.

6. The result of ATAN2 and DATAN2 is 0 or positive when a(2)

The result is undefined if both arguments are 0.equal to 0.

7. The absolute value of a complex number,

(X(2)+Y(2)) (1/2)

8. [x]

magnitude of x

equals 5.

(X,Y),

is defined as the largest integer whose magnitude

and whose sign is the same as that of x.

and [-5.7]) equals -5.

DACOS, ATAN, DATAN, ATAN2,

does

is 1less

is the real value:

not exceed

the principal value with the real part greater than or

When the real part is 0, the result is the principal value with

0. The

and DTAN must be in radians. The

must be

and DATAN2 is in

than or

the

For example [5.7]

10.

LANGUAGE SUMMARY

Functions that cause conversion of one data type to another type provide the

same effect as the implied conversion in assignment statements. The function

SNGL with a real argument and the function DBLE with a double-precision

argument return the value of the argument without conversion.

The argument for this function must be an integer variable or integer array

element. The argument should initially be set to 0. The RAN function stores

a value in the argument that it later uses to <calculate the next random

number, Resetting the argument to 0 regenerates the sequence. Alternate

starting values generate different random-number sequences.

ACCEPT statement, 1-8, 7-1, 7-12,

7-31

Accessing records, 9-5

ACCESS keyword, 9-2, 9-3, 9-5

default value, 9-3

function, 9-5

Access mode, 7-2, 7-4

append, 9-5

direct, 7-5, 9-5

keyed, 7-5, 9-5

sequential, 7-4, 9-5

shared, 9-4

Actual arguments (See Arguments,

actual)

Adjustable arrays, 2-14, 2-17,

6-3

rules governing, 6-3

bound values of, 6-4

A field descriptor, 8-13 to 8-15,

" 8-30

defaults for, 8-22

Allocating variables, 5-1

Alphanumeric literals, 1-8

.AND., 2-24

Angle brackets, 8-23

ANSI Standard FORTRAN-77, 1-1

enhancements to, 1-1

Apostrophes,

in character constants,

8-29

in input records, 7-16

in output records, 7-25

'APPEND', 9-5

Argument, buffer, 5-9

Arguments, actual, 6-1

dummy, 2-2, 4-15, 6-1, 6-2

subprogram, 6-1

Arithmetic assignment

statements, 3-1

conversion rules for, 3-2

examples of, 3-3

Arithmetic expressions, 2-19

evaluation of, 2-20

data type of, 2-21

Arithmetic IF statement, 4-4,

4-11, 4-14

Arithmetic operators, 2-19

Array declarators, 2-12, 2-14

Array elements, 2-13, 2-14

Array names, unsubscripted, 2-17

Arrays, 2-1, 2-2, 2-13

actual argument, 6-3

adjustable, 2-14, 2-17, 6-2

INDEX

Arrays (Cont.)

dummy argument, 6-2, 6-4

format specifications in, 8-26

multidimensional, 2-16

storage of, 2-15

typing, 2-16

unsubscripted, 2-16, 7-12

Assigned GO TO statement, 4-3

Assigning statement labels, 3-5

Assignment statements, 3-1

conversion rules for, 3-2

ASSIGN statement, 1-8, 3-5, 4-3,

7-7

Associated variables, 3-6

ASSOCIATEVARIABLE keyword, 9-2,

9-3, 9-6

Assumed-size dummy arrays, 6-5

Asterisk (*), 1-3, 1-7, 2-15

Auxiliary I/0 statements (See I/0

statements, auxiliary)

BACKSPACE statement, 1-8, 9-1,

9-17

Batch, 4-16

Binary operators (See Arithmetic

operators)

BLANK keyword, 8-3, 9-2, 9-3,

9-6 '

Blanks, embedded and trailing,

8-3

ignoring, 9-6

treating as zeros, 9-6

BLOCK DATA statement, 5-1, 5-22,

6-10

Block data subprograms, 2-2

Block IF statement (See IF

statements, block)

Block IF constructs, 4-6, 4-7

nested, 4-10

Blocking factor, 9-7

Blocks, allocating, 9-10

BLOCKSIZE keyword, 9-2, 9-3, 9-7

BN edit descriptor, 8-3, 8-31

Bounds, array, 2-14

Bucket size, 9-7

BUFFERCOUNT keyword, 9-2, 9-3,

9-7

Buffer, 1/0 transfer, 9-7

Buffers, specifying, 9-7

BZ edit descriptor, 8-3, 8-31

BYTE, 2-4

storage, 2-4

Index-1

INDEX

C comment indicator, 1-3, 1-7

CALL statement, 1-8, 4-1, 4-14,

5-17, 6-6, 6-9, 6-11, 6-13

Carriage control, 8-2, 8-18,

8-23, 8-30, 9-8

CARRIAGECONTROL keyword, 8-23,

9-2, 9-3, 9-8

Cells, 7-3, 9-11

empty, 7-3

Character, plus, 8-4

space, 2

TAB, 2

Character assignment statements,

3-4

Character constants, 2-9

apostrophe within, 2-10

in input records, 7-16

in output records, 7-25

Character data, specifying, 8-13

to 8-15

Characters, ASCII, B-1, B-2

carriage control, 8-24

continuation, 1-3, 1-7

FORTRAN, B-1

printing, B-1

Character data type, 2-1, 2-3

Character expressions, 2-22

CHARACTER*len, 2-4, 5-2, 5-3

storage, 2-4

Character library functions

(See Functions, character)

Characters-per-column formatting,

1-5

Character set, ASCII, B-1, B-2

FORTRAN, B-1

PDP-11 FORTRAN-77, 1-4

RADIX-50, B-2

Character substring, 2-17

Character substring reference,

2-18

CLOSE statement, 1-8, 9-1, 9-14,

9-15

Colon (:) edit descriptor, 8-18,

8-31

Control list, 7-5

specifiers, 7-6

Constants, 2-1, 2-3

character, 1-4

Hollerith, 1-4

parameter, 2-2

RADIX-50, B-2

Comma (,) field terminator, 8-1

Comma (,) format separator, 8-24

Comma (,) terminator, 7-16

Comment indicators, 1-7

Comments, 1-3

optional, 1-3

COMMON statement, 1-8, 2-12,

2-13, 2-17, 5-1, 5-6, 5-8,

5-23

Common blocks, 2-2, 5-5, 5-22

blank, 5-5

extending, 5-16

Compilation,

debugging statement, 1-7

Complex constants, 2-7

in a record, 7-16

storage, 2-4

Complex data editing, 8-20, 8-21

Complex data type, 2-1, 2-3

COMPLEX*8, 2-4

Computed GO TO, 4-2

Continuation characters, 1-3, 1-7

Continuation field, 1-7

Continuation line, 1-3, 1-7,

1-10, 4-17

CONTINUE statement, 1-8, 4-1,

4-14

Control descriptors, 8-2

Control statements, 4-1

Control variable, 4-11

Conventions, document, 2

naming, 2-3

Conversion rules, assignment

statement, 3-2

Converting data, 8-1

Counting, character, 8-17

Creating files, 9-1

Data conversion, 8-1

Data, binary, 7-1, 8-1

editing, 7-1, 8-1

readable, 7-1, 8-

translating, 7-1

DATA statement, 1-8, 2-12, 2-14,

2-17, 5-1, 5-9, 5-19, 5-23

Data type conversion, 2-3

Data type length specifier, 2-3

Data type, PDP-11 FORTRAN-77

variations, 2-3

Data types, 2-1, 2-2

default output formats of, 7-25

storage, 2-4

ways of assigning, 2-3

Data typing, 2-3, 5-2, 5-3, 5-21

by implication, 2-12

by specification, 2-12

default, 5-2

Debugging statement indicator,

1-7

Debugging statements, 1-7

Decimal point, determining

location of, 8-19

Declarations, adjustable array,

6-3

array, 2-13

DECODE statement, 5-9, 6-5, 7-10,

7-22, 8-1, A-1

DEFINE FILE statement, A-1, A-3

1

Index-2

INDEX

'DELETE', 9-8, 9-16 '

DELETE statement, 1-8, 9-1, 9-17

direct, 9-18

sequential, 9-18

Descriptor codes, 8-1

summary of, 8-30

Descriptors, control, 8-2, 8-3

Descriptors, edit, 8-3

Descriptors, field, 8-2, 8-3

D exponent, 2-7

D debugging indicator, 1-7

D field descriptor, 8-10 to 8-11,

8-20, 8-22, 8-30

DIMENSION statement, 1-8, 2-13,

5—1, 5—5' 5-23

Dimensions, array, 2-13

Dimension declarator, array, 2-14

'DIRECT', 9-5

Direct-access file, A-3, A-4

attributes of, 7-26

number of records in, 9-11

Direct-access 1/0, 9-6, A-3

Direct-access input, 7-18

Direct-access output, 7-23

Direct-access READ statements,

7-18

formatted, 7-18, 7-19

unformatted, 7-18, 7-19

Direct—-access WRITE statements,

7-23

formatted, 7-23, 7-24

unformatted, 7-23, 7-24

Disk blocks, 9-7, 9-11

DISP (See DISPOSE)

DISPOSE (in CLOSE), 9-16

DISPOSE keyword, 9-2, 9-3, 9-8

Dollar sign ($) edit descriptor,

8-17, 8-31

DO loops, 4-8, 4-10, 6-12,

7-12

control transfers within, 4-13

nested, 4-12, 4-13

DO statement, 1-8, 4-1, 4-10,

4-11, 4-12, 6-3

Double precision constants, 2-6

Double precision data,

specifying, 8-8 to 8-9, 8-9

to 8-10, 8-11 to 8-12

Double precision data type, 2-1,

2-3, 2-4

Dummy arguments (See Arguments,

dummy)

Edit descriptors (See

Descriptors, edit)

Editing data (See Data, editing)

E field descriptor, 8-9 to 8-10,

8-11 to 8-12, 8-20, 8-30

defaults for, 8-22

ELSE, 1-8, 4-1, 4-5

ELSE I1IF, 1-8

ELSE IF THEN, 4-1, 4-5, 4-6, 4-8

ENCODE statement, 5-9, 6-5, 7-10,

7-29, 8-1, A-1, A-2

END=, 7-10, 9-1

END statement, 1-3, 1-8, 4-1,

4-8, 4-11, 4-16, 5-16, 5-23,

6-8, 6-10

ENDFILE statement, 1-8, 7-10,

9-1, 9-19

ENDIF, 1-8, 4-1, 4-5

End-of-file conditions, 7-10, 9-1

ENTRY statement, 2-17, 6-6, 6-10,

6-11, 6-12, 6-13

in function subprograms, 6-12

in subroutine subprograms, 6-13

rules governing, 6-11

Entry points, 2-2, 6-11

.EQ., 2-23

EQUIVALENCE statement, 1-8, 2-12,

2-17, 5-1, 5-9, 5-11,

5-13, 5-16

Equivalencing arrays, 5-12

Equivalencing substrings, 5-13
examples of, 5-14, 5-15

+EQV., 2-25

ERR keyword, 7-10, 9-2, 9-3, 9-8

Error conditions, 7-10

Error processing,

controlling, 7-11

Exclamation point (!), 1-3, 1-7

Executable statements, 1-8

Explicit type declaration, 2-13

Exponentiation, 2-19, 2-20

result types from, 2-20

Exponents, 2-6

specifying, 8-9, 8-10

Expressions, 2-1, 2-18

arithmetic, 2-18

character, 2-19, 2-22

logical, 2-19, 2-24

relational, 2-19, 2-22

subscript, 2-15

variable format, 8-22

Extended range DO, 4-13

rules governing, 4-14

EXTENDSIZE keyword, 9-2, 9-3, 9-8

EXTERNAL statement, 1-8, 5-1,

5-17, 6-11, 6-14

EXTERNAL statement, /NOF77, A-1,

A-6

F field descriptor, 8-8 to 8-9,

8-11 to 8-12, 8-20, 8-30

defaults for, 8-22

Field, continuation indicator,

1-4, 1-6

sequence number, 1-5, 1-6

Index-3

INDEX

Field, continuation indicator

(Cont.)

statement, 1-5, 1-6

statement label, 1-4, 1-6, 1-7

Field descriptors, 8-1, 8-2

default parameters of, 8-21

separating, 8-24

Fields, 7-3

external, 8-3

Field separator, 8-1

external, 8-29

Field terminators, 8-1

Field widths, default, 8-22

File, direct-access (See

Direct—-access file)

FILE keyword, 5-9, 9-2, 9-3, 9-9

File organizations, specifying,

9-11

File name, specifying, 9-9

File positioning, 9-1

Files, 7-2, 7-3

ASCIZ stream, 9-13

connecting, 9-1

disconnecting, 9-15

formatted, 9-8

indexed, 7-3, 7-21, 7-30, 9-10

opening, 9-1

relative, 7-3

sharing, 9-13

sequential, 7-3

unformatted, 9-8

File size, extending, 9-9

File status, specifying, 9-14

FIND statement, 1-8, A-1l, A-4

'FIXED', 9-13

FMT, 7-7

Format codes, 8-29

Format control, 8-26

Format reversion, 8-27, 8-29

Format specifications, 8-1

Format specifiers, 7-1, 7-7

explicit, 7-1

Formats, run-time, 8-2

FORMAT statements, 1-8, 3-5,

8-1, 8-23, 8-26, 8-28, 8-

rules governing, 8-27

' FORMATTED', 9-9

Formatted direct-access READ,

7-18, 7-19

Formatted direct-access WRITE,

7=-27

Formatted indexed READ, 7-20

Formatted indexed REWRITE, 7-30

Formatted indexed WRITE, 7-28

Formatted I/O (See 1/0,

formatted)

Formatted input, 7-15, 7-18,

7-19, 7-20, 7-22, 7-27, 7-31,

8-3

Formatted output, 7-23, 7-24,

7-27, 7-28, 7-29, 7-30, 7-32

Formatted sequential READ, 7-15,

7-32, A-1l

-7,7

29

Formatted sequential WRITE, 7-23,

7-24, 7-33, A-1

Formatting,

explicit, 7-7

list-directed, 7-7

Formatting FORTRAN lines, 1-4

FORM keyword, 9-2, 9-3, 9-9, 9-12

'FORTRAN', 9-8

FORTRAN lines,

fields of, 1-4

Function entry points, 2-2

Function references, 2-1, 6-6,

6-8

generic, 6-14

intrinsic, 6-14

FUNCTION statement, 2-17, 6-6,

6-8, 6-10, 6-11, 6-12

Functions, 2-1

character, 6-13, 6-17

generic, 6-1, 6-14, 6-15

intrinsic, 2-2, 5-1, 5-17,

5-18, 6-1, 6-13, 6-14,

6-15, C-20

lexical, 6-13, 6-17

multiple, 6-12 '

specific, 6-14, C-20

user defined, 6-14

Functions, generic and intrinsic,

list of, C-20

Function subprograms, 2-2, 6-5,

6-7, 6-12

rules governing, 6-9

.GE., 2-23, 6-19

Generic function names,

summary of, 6-15

Generic functions (See Functions,

generic)

G Field descriptor, 8-11 to 8-12,

8-20, 8-30

defaults for, 8-22

GO TO statement, 1-8, 3-5, 4-1,

4-2, 4-3, 4-11, 4-14

assigned, 4-2, 4-3

computed, 4-2

unconditioned, 4-2

.GT., 2-23, 6-19

Hexadecimal constants, 2-3, 2-7

Hexadecimal data, specifying, 8-7

H field descriptor, 8-14, 8-30

Hollerith constants, 1-8, 2-3,

2-10

Hollerith data, specifying, 8-13

to 8-15

Index-4

INDEX

I INTRINSIC Statement, 1-8, 5-1,

5-17, 5-18

I1/0 1list, 7-5, 7-11, 8-4, 8-27

ICHAR function, 6-19 implied DO, 7-12

IF statements, 4-1, 4-4 simple, 7-11

arithmetic, 1-8, 4-4 I1/0, direct access, 7-1

block, 1-8, 4-4, 4-5, 4-8, 4-9, indexed, 7-1

4-11 , internal, 7-1

logical, 1-8, 4-4 multibuffered, 9-7

I field descriptor, 8-4, 8-30 sequential, 7-1

defaults for, 8-22 I1/0 statements, 2-17, 7-1, 7-2,

IF THEN, 4-1, 4-5 9-7

IMPLICIT statement, 1-8, 2-3, auxiliary, 9-1

2-12, 2-13, 5-1, 5-2, 5-23, components of, 7-5

6~14 formatted, 7-1, 8-1, 9-9

Implicit type declarations, 2-13 list-directed, 7-1
Implied DO list, 7-12 syntactical rules governing,

Included file, 1-9, 1-10 7-13
INCLUDE statement, 1-9 unformatted, 7-1
Increment parameter, 4-11 Iteration control, 4-11

INDEX function, 6-18 Iteration count, 4-11, 4-12

'INDEXED', 9-11 Iterative processing, 4-1

Indexed access mode, 7-4, 7-5

Indexed files (See Files,

indexed) K

Indexed input, 7-20

Indexed I/0 statements, 5-9

Indexed output, 7-28, 7-30 'KEEP', 9-8, 9-15

Indexed READ statements, 7-31 KEY, 7-8, 7-9

Indexed WRITE statements, 7-27 'KEYED', 9-5

formatted, 7-28 KEYEQ, 7-8, 7-9

unformatted, 7-28, 7-29 Key expressions, 5-9, 7-8, 7-9
Index, key, 7-8 Key fields, designating, 9-10

primary, 7-8 KEYGE, 7-8, 7-9

alternate, 7-8 KEYGT, 7-9, 7-9

Indicators, 1-7 KEYID, 7-8, 7-21

Initial parameter, 4-11 KEY keyword, 9-2, 9-3, 9-10

INITIALSIZE keyword, 9-2, 9-3, 9-9 Key-of-reference number, 7-8, 7-9

Input statements, 7-14, 7-31 Key-of-reference specifier, 7-8,
(also see I/0 statements) 7-9

INTEGER*2, 2-4 Keys, 7-3, 9-11
storage, 2-4 alternate, 7-4, 7-9

INTEGER*4, 2-4, 2-5 primary, 7-4, 7-31
storage, 2-4 Key specification, 7-5, 7-8

Integer constants, 2-4 Key specifier, 7-8
octal form of, A-1, A-5 Keyword, statement, 7-5

Integer data, specifying, 8-4 to Keywords, OPEN statement, 9-2
8-5 Keyword specifications, OPEN

Integer data type, 2-1, 2-3 statement,

Interactive 1/0, 8-18 examples of, 9-6

Interactive mode, 4-16

Internal files, 7-2, 7-3, 7-4,

7-7, 17-22, 7-29 L
Internal file specifier, 7-7

Internal input, 7-22

Internal output, 7-29 Label, statement, 1-3

Internal READ statements, 7-22 .LE., 2-23, 6-19

Internal WRITE statements, 7-29 LEN function, 6-18

Intrinsic Functions, FORTRAN lLexical comparison library

(See Functions, intrinsic) functions (See Functions,

Initializing variables, 5-1 lexical comparison)

Index-5

INDEX

L field descriptor, 8-12, 8-30

defaults for, 8-22

LGE function, 6-19

LGT function, 6-19

Library functions, FORTRAN, 6-9,

6-13

list of, C-20

Line, FORTRAN, 1-5

Lines, FORTRAN, 1-3

continuation, 1-3

'LIST', 9-8

List-directed ACCEPT, 7-25

List-directed input, 7-15

List-directed output, 7-23, 7-25

List-directed READ, 7-25

List-directed sequential READ,

7-15

List-directed WRITE, 7-25

/LIST qualifier, 1-9

with INCLUDE, 1-9

LLE function, 6-19

LLT function, 6-19

LOGICAL*1, 2-4 (also see BYTE)

storage, 2-4

LOGICAL*2, 2-4

storage, 2-4

LOGICAL*4, 2-4

storage, 2-4

Logical assignment statements, 3-3

conversion rules for, 3-2

Logical constants, 2-19

in a record, 7-16

storage, 2-4

Logical data type, 2-1, 2-3

Logical expressions, 2-24

evaluation of, 2-25

Logical IF (See IF statements,

logical)

Logical units,

connecting files to, 9-1

explicit, 7-6

implicit, 7-1, 7-6, 7-31

specifying 9-14

user-specified, 7-32, 7-33

Logical unit specifier, 7-6

.LT., 2-23, 6-19

Magtape files, 9-7

Main programs, 1-3, 2-2, 4-17

Match,

exact, 7-5

generic (partial), 7-5

Match criterion, 7-5, 7-8, 7-9

Matching, approximate generic,

7-10

exact, 7-10

generic, 7-10

MAXREC keyword, 9-2, 9-4, 9-11

default values, 9-4

Memory, directly addressable, 5-8

Multibuffered 1/0, 9-7

Multiple functions,

name usage, 6-17

NAME keyword (See FILE keyword)

.NE., 2-23

.NEQV., 2-~25

'NEW', 9-14

Newton-Raphson, 6-9

/NOF77, 4-11

'NONE', 9-8

NOSPANBLANKS keyword, 9-2, 9-4,

9-11

default value, 9-4

.NOT., 2-25

'NULL', 9-7

Null fields, 8-26, 8-29

Null value,

in a record, 7-16

O field descriptor, 8-5, 8-30

defaults for, 8-22

Octal constants, 2-3, 2-7

Octal data, specifying, 8-5 to

8-6

'OLD', 9-14

OPEN statement, 1-8, 5-9, 7-6,

7-26, 7-30, 8-3, 8-24, 9-1,

9-8, A-3

Operations, double precision,

2=-22

complex, 2-22

integer, 2-21

real, 2-22

Operators, 2-1, 2-18

arithmetic, 2-19, C-1

logical, 2-24, C-1

relational, 2-23, C-1

.OR., 2-24

ORGANIZATION keyword, 9-2, 9-4,

9-11

default value, 9-4

Output statements (See I/0

statements)

Overlaid programs, 5-17

Overlays, 5-17

PARAMETER, /NOF77, 5-21, A-1, A-5

PARAMETER statement, 2-2, 5-1,

5-2, 5-21, 8-28

Index-6

INDEX

PAUSE statement, 1-8, 4-1, 4-15

pPDP-11, 5-8

PDP-11 FORTRAN-77, 1-1, 1-2

Precedence in operations, 2-20

arithmetic operator, 2-20

logical operator, 2-24

relational operator, 2-24

'PRINT', 9-3, 9-15

PRINT statement, 1-8, 7-1, 7-31

Procedure, computing, 6-5

PROGRAM statement, 1-8, 5-1, 5-22

Program elements, 1-3

Program suspension, 4-1

Program termination, 4-1

Program unit, 1-3, 1-8

BLOCK DATA, 5-1.

P scale factor, 8-3, 8-18 to

8-20, 8-28, 8-29

Q edit descriptor, 8-17 to 8-18,

8-31

Range, DO statement, 4-11

Rank, data type, 2-21

READONLY keyword, 9-2, 9-4, 9-12

default value, 9-4

READ statements, 1-8, 7-1, 7-8,

7-10, 7-11, 7-12, 7-14, 9-17,

A-2

REAL*4, 2-4

storage, 2-4

REAL*8, 2-4

storage, 2-4

Real constants, 2-5

storage, 2-4

Real data, specifying, 8-8 to

8-9, 8-9 to 8-10, 8-11 to

8-12

Real data type, 2~-1, 2-3

REC=, 7-7

RECL keyword, 9-2, 9-4, 9-12

default value, 9-4

Record length, specifying, 9-12

Records, 7-2, 7-3

deleting, 9-17

end-file, 7-10, 9-19

external, 7-14

fixed length, 7-5, 9-12, 9-13

locked, 9-18

segmented, 9-13

unlocking, 9-18

variable length, 9-12, 9-13

RECORDSIZE keyword (See RECL)

Record specifier, 7-7

Record terminators, 8-1

RECORDTYPE keyword, 9-2, 9-4,

9-13

default values, 9-4, 9-13

Record type, specifying, 9-13

Referencing, arrays, 2-17

executable statements, 1-3

FORMAT statements, 1-3

subprograms, 6-1

'RELATIVE', 9-11

Relational expressions, 2-23

evaluation of, 2-23

Relative access mode, 7-4, 7-5

Repeat count, 8-21, 8-29

descriptor, 8-1

group, 8-21

Repeat specification,

group, 8-28

RETURN statement, 1-8, 4-1, 4-11,

4-15, 4-17, 5-1, 5-16, 6-6,

6-8, 6-10 '

REWIND statement, 1-8, 9-1, 9-16

REWRITE statement, 1-8, 7-1,

7-10, 7-11, 7-29

formatted indexed, 7-30

unformatted indexed, 7-30, 7-31

RSTS/E, 5-8

Run-time formats, 8-25, 8-29

specifications, 5-9

'SAVE', 9-8, 9-15

SAVE statement, 1-8, 2-17, 5-1,

5-16

Scale factor (See P scale factor)

'*'SCRATCH', 9-14

SHARED keyword, 9-2, 9-4, 9-13

default value, 9-4

Short field termination, 8-25

Simple list (See I/0 list,

simple)

Skipping character positions,

8~16

S edit descriptor, 8-4, 8-31

Segment, overlay, 5-17

'SEGMENTED', 9-13

Separators, external field, 8-24

format specification, 8-23

in a record, 7-15, 7-16

Sequence number field, 1-8

'SEQUENTIAL' (access), 9-5

'SEQUENTIAL' (organization), 9-11

Sequential input, 7-14, 7-31

Sequential output, 7-23, 7-32

Sequential READ statements, 7-14,

7-20, 7-31

formatted, 7-14, 7-15

list-directed, 7-14, 7-15

unformatted, 7-14, 7-17

Sequential WRITE statements, 7-23

formatted, 7-23, 7-24

Index-7

Sequential WRITE statements (Cont.)

list-directed, 7-23, 7-25

unformatted, 7-24, 7-26

Slash (/) field terminator, 8-1

Slash (/) format separator, 8-24

Slash (/) record terminator, 8-1,

8-27

Slash (/) terminator, 7-16

Space terminator, 7-16

Spacing, 1-8

Specification statements, 1-8,

5-1

Specifiers, control list, 7-5

SP edit descriptor, 8-4, 8-31

SS edit descriptor, 8-4, 8-31

Statement blocks, 4-6, 4-8

Statement components, 2-1

Statement field, 1-8

Statement functions, 2-2, 6-1,

6-6

Statement label,

all zero, 1-7

Statement label field, 1-7

Statements, compatibility, A-1

executable, 1-3 ‘

nonexecutable, 1-3, 5-1, 8-1

required order, 1-9

summary of, C-2

STATUS keyword, 9-2, 9-4, 9-14

default value, 9-4

STATUS (in CLOSE), 9-15

STOP statement, 1-8, 4-1, 4-16

Storage, allocating, 9-9

array, 2-16, 5-5

common block, 5-5

data type, 2-4

units, 9-11

Subprograms, 1-3, 6-1

external, 5-17

references in, 5-9

subroutine, 2-2, 4-15, 6-1,

6-6, 6-9, 6-13

system, 6-1

user, 6-1

SUBROUTINE statement, 2-17, 6-6,

6-9, 6-11, 6-12

Subroutine entry points, 2-2

Subscripts, array, 2-15

Symbolic names, 2-1, 2-2

Syntactical rules, 7-14

T

Tabbing left, 8-17

Tabbing right, 8-17

Tab-character formatting, 1-5,

1-6, 1-8

Tab terminator, 7-16

T edit descriptor, 8-16 to 8-17,

8-31

Terminal parameter, 4-11

INDEX

Terminal statements, sharing,

4-13

Terminating program executions,

7-10

TL edit descriptor, 8-16, 8-31

Transfer list, 4-2

Transfer-of-control specifiers,

7-10, 7-11

Transferring program control,

4-1, 4-12, 4-13, 7-10

TR edit descriptor, 8-17, 8-31

Type declaration statements, 1-8,

2-12, 2-13, 2-17, 5-1,

5-3, 5-23, 6-11

TYPE keyword (See STATUS)

TYPE statement, 1-8, 7-1, 7-12,

7-31

Typing by implication (See Data

typing)
Typing by specification (See

Data typing)

Unconditional GO TO (See GO TO

statements)

'UNFORMATTED', 9-9

Unformatted direct-access READ,

7-18, 7-19

Unformatted direct-access WRITE,

7-27

Unformatted indexed READ, 7-20,

7-21

Unformatted indexed REWRITE,

7-30, 7-31

Unformatted indexed WRITE, 7-28,

7-29

Unformatted input, 7-17, 7-18,

7-19, 7-20, 7-21

Unformatted output, 7-24, 7-26,

7-28, 7-29, 7-30, 7-31

Unformatted sequential READ,

7-14, 7-17

Unformatted sequential WRITE,

7-18, 7-26

UNIT=, 7-6, 7-7

UNIT keyword, 9-2, 9-4, 9-14

'"UNKNOWN', 9-14

UNLOCK statement, 1-8, 9-1, 9-18

USEROPEN keyword, 9-2, 9-4, 9-15

default value, 9-4

'VARIABLE', 9-13

Variable format expressions (See

expressions)

variables, 2-1, 2-2

allocating, 5-1

Index-8

Variables (Cont.)
associated, 2-12, 3-6

typing, 2-12 (See Data typing)

Virtual arrays, 5-7

in subprograms, 5-10

VIRTUAL statement, 2-13, 5-1, 5-8

W

WRITE statements, 1-8, 7-1, 7-10,

7-11, 7-12, 7-23

INDEX

X edit descriptor,

.XOR., 2-25

8-15, 8-31

*ZERO', 9-7

Z field descriptor, 8-7, 8-30

defaults for, 8-22

Index-9

READER’S COMMENTS

PDP-11 FORTRAN-77

Language Reference Manual

AA-V193A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[Assembly language programmer

(] Higher-level language programmer

[[] Occasional programmer (experienced)

[] User with little programming experience

(7] Student programmer

[[] Other (please specify)

Name Date

Organization

Street

City State Zip Code

or Country

— — DoNot Tear- Fold Hereand Tape¢ — — — — — — — — —_— e — - — - — =

No Postage |
Necessary |

if Mailed in the | |

United States |

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

— — DoNotTear-FoldHeg — — — — — — — — — — — — — — — — — — _—— - -

C
u
t
 A
l
o
n
g
 D
ot
te
d
Li
ne

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	8-30
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	9-19
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB

