
PDP-11 FORTRAN IV
Language Reference Manual

Order No. AA-R953A-TK

March 1983

This document describes the fundamentals of the FORTRAN IV language

elements, as implemented for the PDP-11 systems.

SUPERSESSION/UPDATE INFORMATION: This manual contains

information concerning

FORTRAN IV as of March

1983

SOFTWARE VERSION TO FORTRAN |V V2.6

OPERATING SYSTEM AND VERSION: e RSTS/E V8.0

* RT-11 V5B

e RSX-11M V4.1

¢ RSX-11M-PLUS V2.1

VAX/VMS V3.0

digital equipment corporation - maynard, massachusetts

First Printing, June 1974

Revised: December 1974

December 1975

June 1977

September 1979

March 1983

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be wused or copied only in accordance with the terms of such

license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by Digital Equipment Corporation or its

affiliated companies.

Copyright 1974, 1975, 1977, 1979, 1983

by Digital Equipment Corporation

All Rights Reserved.

Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document

requests the user's critical evaluation to assist in preparing future

documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL RSX

DEC/CMS EduSystem UNIBUS

DECnet IAS VAX

DECsystem-10 MASSBUS VMS

DECSYSTEM-20 PDP vT

DECUS PDT Logo

DECwriter RSTS mflannan

: ZK2266

HOW TO ORDER ADDITIONAL DOCUMENTATION

in Continental USA and Puerto Rico call 800-258-1710 DIRECT MAIL ORDERS (CANADA)

In New Hampshire, Alaska, and Hawaii call 603-884-6660 Digitat Equipment of Canada Ltd.
940 Belfast Road

In Canada call 613-234-7726 (Ottawa-Hull) Ottawa, Ontario K1G 4C2

800-267-6146 (all other Canadian) Attn: A&SG Business Manager

DIRECT MAIL ORDERS (USA & PUERTO RICO)* DIRECT MAIL ORDERS (INTERNATIONAL)

Digital Equipment Corporation Digital Equipment Corporation

P.O. Box CS52008 A&SG Business Manager

* Nashua, New Hampshire 03061 c/o Digital's local subsidiary or

approved distributor

*Any prepaid order from Puerto Rico must be placed

with the local Digital subsidiary (809-754-7575)

Internal orders should be placed through the Software Distribution Center (SDC), Digital Equipment

Corporation, Northboro, Massachusetts 01532

PREFACE

CHAPTER

CHAPTER

1

R

e

o

o

B

e

S

py
 W

S

e
y

N
N
N

N
N

N
N
D
N
N
N
N
D
N
N
N
B
N
N
N
N
O
N
N
D
N
N
N
D
N
N
N
N
D

M
D
D

D
N
N
O
D
N

D
W
W
W
W
w
W
w
w
w
w
h
D
o
N
D
N
P

e

o
6

®

o

e

8

6

®

e

e

®

8

6

8

&

&

6

°

e

s

6

e

o

o

o

S
O
O
I

O
T
d

B

B

R
W
W
W
W
W
w
W
w
w
w
N

-

A
U
D

W
)

.

N

.«

o
e

o
o

o
o

o
A
U

B

W
N

w

N

O
V

D

W
W
W
N
-

W
K
=

N

=

N

=

N

=

CONTENTS

INTRODUCTION TO PDP-11 FORTRAN 1V

LANGUAGE OVERVIEW . + ¢ ¢ ¢ o o

ELEMENTS OF FORTRAN PROGRAMS . . .

Statements .« .« ¢ ¢ ¢ ¢ e e e e e

Comments . « + + e s o s e e

FORTRAN Character Set e o o o

FORMATTING A FORTRAN LINE e o &

Character-per-Column Formatting

Tab-Character Formatting

Statement Label Field

Comment Indicator

Debugging Statement Indlcator

Continuation Field « ¢« « +« +« « &

Statement Field .. ¢« ¢« +« o « « &

Sequence Number Field . . « .« &

PROGRAM UNIT STRUCTURE . « « « « &

FORTRAN STATEMENT COMPONENTS

SYMBOLIC NAMES . . ¢ ¢« ¢ o o & o &

DATA TYPES . . ¢ o o o o o o o o &

CONSTANTS &« o o o o o o o o o o

Integer Constants . « . « « .« &

Real Constants . . . o o

Double Precision Constants o o

Complex Constants . .« ¢« &« « + &

Logical Constants . « ¢« ¢« « o &

Hollerith Constants . . . « . &

Alphanumeric Literals .

Data Type Rules for Hollerlth Constants

VARIABLES . . ¢ ¢ ¢ ¢ o o o o o o

Data Type Specification

Data Type by Implication

ARRAYS ¢ & 4 ¢ o o o o o o o o o o

Array Declarators . .« « +« + + &

Subscripts ¢« « ¢« ¢« ¢ o o o o o

Array Storage . .« .+« ¢ o o o o o

Data Type of an Array .« « « « .

Array References Without Subscripts

Adjustable Arrays . « ¢« o « o &

EXPRESSIONS . 4 ¢ ¢ o o o o o o o

Arithmetic Expressions

Use of Parentheses

Data type of an Arithmetic Expression

Relational Expressions

Logical Expressions . . « « .+ &

iii

Page

ix

O

I

e
l

e

I
e

S

e

e

N

e

[
I

O
O

I
I

|
N
N
B
B

W

W
N

N

L

|

I
T

O
I

C
O
W
V
W
O
O
O
I
J
A
O
A
A
T
U
H

B
N

D
N

N
N

|

|
I

1
(
W
P

N
N

N

|
= =

O

[
|o —

2-12

2-12

2-12

2-13

2-13

2-14

2-15

2-16

2-17

2-18

CONTENTS

Page

CHAPTER 3 ASSIGNMENT STATEMENTS

ARITHMETIC ASSIGNMENT STATEMENT . ¢ ¢ o « o o o &

LOGICAL ASSIGNMENT STATEMENT . . ¢« + & ¢« o o o o &

ASSIGN STATEMENT . . . ¢ ¢ ¢ ¢ o o o o o o o o o @

*

W

w
w

|
w
w

W

W

W

*

w

N

-

CHAPTER [1
~Y

CONTROL STATEMENTS

GO TO STATEMENTS ¢ ¢ ¢ & o 4 o o o o o o o o o o o

Unconditional GO TO Statement . « « & « o o o &

Computed GO TO Statement . « « o o o ¢ o o o o &

Assigned GO TO Statement . « « o & o o o o o o

IF STATEMENTS .« 4 ¢ ¢ o o o o o oo o o o s o o o

Arithmetic IF Statement . . . ¢« ¢ o o o o o o &

Logical IF Statement . . « ¢ &« ¢ o o o o o o o« &

DO STATEMENT . ¢ o o o o o o o s o s o o o o o o =

DO Iteration Control . . ¢ ¢ ¢ & o o & o« o o o '

Nested DO LOOPS + o o o o o o s o o o o o o o

Control Transfers in DO LOOPS =+ &« « o o« o o o &

Extended Range . . ¢ + ¢ o ¢ ¢ ¢ o o o o o o o

CONTINUE STATEMENT . o ¢ o o o o o o ¢ o o o o o o

CALL STATEMENT . o 4 o o o o o o o o o o s o o o o

RETURN STATEMENT . o ¢ ¢ o o o ¢ o o o o o o o o

PAUSE . o ¢« ¢ & ¢ o ¢« o o o o o o o o o o o s

STOP STA,TEMENT . Ll Ld * L4 L) L] L) . * L) e L L] L] L L

END STATEMENT - e L4 L) L] Ll . L] L] L] Ll L] L L L] L] L

®

&

&

&

&

o

s

o

o

w

N

[
I

T
R

I
B

.

N

=

s

o

9 L]

|
I

H
i
=

O

O
W
W

O
]

I
O
U
L
H

W
W
N
D

D
N

-

.

o

e

o

W
-

U
|

L
Y

 >

S
T
~

S
S

S

A
T

L
N
 L
SO

S

Y
Y
.

L
G
N

N
N

|

=
e

|

[

i
S

O

B

Y

Y
T

S

S
A

S

A

Y
L

W
C
O
J
O
A
U
M
d

W
W
W
W
W
N
N
O
N

R

P

L]

CHAPTER w
n SPECIFICATION STATEMENTS

IMPLICIT STATEMENT . ¢ & o 4 4 o o o o o o o o o @

TYPE DECLARATION STATEMENTS . ¢ ¢« ¢ ¢ o o o

DIMENSION STATEMENT . . ¢ ¢ o ¢ o o o o o &

COMMON STATEMENT . & &« & o o o o o o o o o o

VIRTUAL STATEMENT . . +« ¢« ¢ ¢ o o

Restrictions on the Use of Virtual Arrays

Virtual Array References in Subprograms . . .

EQUIVALENCE STATEMENT . . ¢ 4 « o o o o o o o o o

Making Arrays Equivalent . . ¢ ¢ ¢« ¢« « o o o o« o

Extending Common Blocks . ¢« & ¢ ¢ ¢ ¢ « o o &

EXTERNAL STATEMENT . . ¢ o ¢ ¢ o ¢ o ¢ o o o o &

DATA STATEMENT . ¢ o ¢ o ¢ o o o o o o o o o o o

PROGRAM STATEMENT . . &+ o o o o o s o o o o o o

BLOCK DATA STATEMENT . ¢ ¢ ¢ ¢ ¢ o o o o o o o &
!

W
W
N
H
H
F
O
L
O
I
J
A
A
D
d

W
N
H

e

o

o

o

o

o

o

e

o

N

T
R

«

o

o

o

o

e

o

o

o

e

o

o

»

S
 I
G
N
G
R
S

|
oo
o
y

o
e

o

[o

CHAPTER N SUBPROGRAMS

SUBPROGRAM ARGUMENTS . & ¢« ¢ o o o o s o o o o o« &

"Rules Governing Subprogram Arguments &

Adjustable Arrays « « « o o o o o o o o o o o

USER-WRITTEN SUBPROGRAMS . ¢ &« ¢ 4 o ¢ o o o o o o

Statement Functions . . ¢« ¢« &« ¢ ¢ o o o o o o &

Function Subprograms . . . « ¢ ¢« ¢ o o o o o o o

Subroutine Subprograms . . . ¢ ¢ ¢ ¢ o o o o o

FORTRAN LIBRARY FUNCTIONS . . ¢ ¢ ¢ ¢ ¢ e o o o o

*

®

W
N

N

N
N

L]

-

w

N

-

N

I

A
T
A

e

@

L]

A
T
Y
A

Y
O

{

O
O

d
W
w
w
N
n
r

~
lCHAPTER INPUT/OUTPUT STATEMENTS

I/O OVERVIEW . L] * ® * L4 Ll L] ® L4 L * L] L L L L L4 .

Records . . [[} . . [] [. L) [} . . L] [} . . [L] .

7

7

Files o ¢ ¢ o o ¢ o o o o o o o o o o o o o o o« 1-

ACCeSS MOAES v o ¢ o« o o o ¢ o o o o o o o« o o o 1b
[
]

N

N
N

.

W

N

=

iv

CONTENTS

Page

7.1.3.1 Sequential AcCCeESS & & + o+ o o o o o o o o o o 1-2

7.1.3.2 Direct Access . © e s e s e o o o e o o o 1-3
7.2 I/0 STATEMENT COMPONENTS e o o o o o o o s e o o o 1-3

7.2.1 Logical Unit Numbers . « « « « « ¢ o o o o o o« o 1-3

7¢2.2 Format Specifiers =« « o« o+ o o o o o o o o o o » 1-3

7.2.3 Direct Access Record Numbers . « « « o« o o o o o+ 1-3

7.2.4 End-of-File Condition and Error Condition

Parameters . . . ¢t e o e o o o s o e o e o o o 1-3

7.2.5 Input/Output LlStS e e o s s s e o e e e o o o o 1-4

7.2.5.1 Simple LiStS « ¢« ¢ o o o o o o o o o o o o o o 1-5

7e2.5.2 Implied DO LiStS o « o o o o o o o o o o o » o [1-6

7.3 SEQUENTIAL INPUT/OUTPUT . e s e e s e e e e o e 1-7

7.3.1 Formatted Sequential Input Statements o 7-7

7.3.2 Formatted Sequential Output Statements 7-9
7.3.3 List-Directed Input Statements e o« 1-10

7.3.4 List-Directed Output Statements . « « « « « o 7-12

7435 Unformatted Sequential Input Statement « « o 1-14
7.3.6 Unformatted Sequential Output Statements « o« o 71-14

7.4 DIRECT ACCESS INPUT/OUTPUT . « ¢ o o o o o s o @ 7-15

7.4.1 Unformatted Direct Access Input Statement . . 7-15
7.4.2 Unformatted Direct Access Output Statement . . 7-16

7.5 ENCODE AND DECODE STATEMENTS .+ o o « o o o o o o 7=17

CHAPTER 8 FORMAT STATEMENTS

8.1 FIELD DESCRIPTORS '« & &« o o o s o o o o s o o o » 8=2

8.1.1 I Field DesSCriptor « « o o o o o o o s o o o o o« 8=2

8.1.2 O Field Descriptor « « « o o o o o o s o s o o« » 8-4
8.1.3 F Field Descriptor « « « o o ¢ s o o o o« o o o o« 8-5

8.1.4 E Field DescCriptor « « « o o o o o s o o o s« o+ o+ 8-6

8.1.5 D Field DesScCriptor « « o o o o o o o o o o o o o« 8=7
8.1.6 G Field DescCriptor +« o + o o« o o o o s o s o s+ « 8-8

8.1.7 L Field Descriptor +« « o + o o s s o s o o s o« o« 8-9

8.1.8 A Field Descriptor « o « o o « o o o ¢« o o + « 8-10
8.1.9 H Field Descriptor « « o« o o o o o o o o o « o 8-11

8.1.10 X Field DesSCriptor « o o o o o o o o o o o o o 8-12

8.1.11 T Field Descriptor « « « o« o« o o o o o o o o « 8-12
8.1.12 Q Field Descriptor « « « o ¢ o o o o o o o « o« 8-13

8.1.13 Dollar Sign Descriptor + « « « o« o o o o o o« o« 8-13

8.1.14 Colon DeSCripPtor « « « « o o s o o o o« o o « » 8-14
8.1.15 Complex Data Editing « « « &+« o o« o ¢ o & « « o+ 8-14

8.1.16 Scale Factor e o o o o s+ o« o 8-15

8.1.17 Repeat Counts and Group Repeat Counts .+ « . . 8-17
8.1.18 Default Field Descriptors . « « ¢« o« o o o o+ o« 8-17

8.2 CARRIAGE CONTROL CHARACTERS . « ¢ « ¢« o« o « o+ . 8-18

8.3 FORMAT SPECIFICATION SEPARATORS . ¢« ¢« o o o o & 8-18
- 8.4 EXTERNAL FIELD SEPARATORS .+ ¢ ¢+ ¢ o o o o « « o 8-109

8.5 RUN-TIME FORMATS . . . « .+ & . . . 8-20

8.6 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT
LISTS ¢« « o s o o o o o o o o o o o o o o o o« o 8-21

8.7 SUMMARY OF RULES FOR FORMAT STATEMENTS & 8-22

8.7.1 General RULlES o &+ o + o o o o o o o o o o o o 8=22

8.7.2 Input RULIES o o o« ¢ o o o o o o o o o o oo o+ 8-23

8.7.3 Output RULES &« « o o ¢ s o o o o o o o o o o o« 8-23

CHAPTER AUXILIARY INPUT/OUTPUT STATEMENTS

OPEN STATEMENT . . . ¢« « « « &

ACCESS Keyword1

2 ASSOCIATEVARIABLE Keyword

3 BLOCKSIZE Keyword

4

5

L]

e
o

.

*

e

[

*

.

3

e

o

o

o

[}

*

*

L]

®

L]

.
o

[)

L]

L]

L
[]

e

o

o

L]

*

*

L]

-

L]

*
L)

[)

BUFFERCOUNT Keyword . . .

W
C
O
W
Y
W

O

O
W
O
Y
V
W
L
O
Y
W
W
O
W
W
O
V
Y
W
W
O
W
W
O
U
W
Y
Y
O
W
Y
Yo

[
]

N

A
U

B

W
N
)

o

b

b

b

o

b

b

2

b

b

b

APPENDIX A

A.l

A,2

A.3

APPENDIX B

B.l

B.2

B.3

INDEX

FIGURE 1-1

1-2

1-3

2-1

4-1

4-2

5-1

TABLE -

W
O
W
W
O
W
-
J
N
W
N
NN

|

=

W

W

L]

.

b

=

e

e

b

O

Q
0

]

O

C
O

O

H
W
N
E
H
O

CONTENTS

DISPOSE Keyword . ¢« ¢« & o o o« o« o o o o

ERR Keyword . . ¢ o & ¢ ¢ ¢ « o o o o =

EXTENDSIZE Keyword . « « « + o o & o o &

FORM Keyword . « o o +¢ o o o o o o o o o

INITIALSIZE Keyword . . « o ¢ o o o o

MAXREC Keyword « « o o o o o o o o o o &

NAME Keyword . .« ¢ & o & « o o o o o o @

NOSPANBLOCKS Keyword « +« & « o o o o & @

READONLY Keyword . . o &+ &+ & & o« o o o @

RECORDSIZE Keyword « « & o « o o o o o @

SHARED Keyword . .« « « & ¢ o o o o o o o

TYPE Keyword « ¢« o & & o o o o o o o o

UNIT Keyword . « ¢ ¢ ¢ & o o o o o o o o

CLOSE STATEMENT . . ¢ ¢ & ¢ o &« o o o o &

REWIND STATEMENT . ¢ ¢ ¢ ¢ o ¢ o o « o o &

BACKSPACE STATEMENT . . ¢ & & & o o o o @

FIND STATEMENT + &+ & ¢ 4 ¢ o o o o o o o

ENDFILE STATEMENT . ¢ ¢ ¢ ¢ o ¢« o« o o o o

DEFINE FILE STATEMENT . . & & ¢ ¢« o o o« o

CHARACTER SETS

FORTRAN CHARACTER SET « « « . .

ASCII CHARACTER SET . . .

RADIX-50 CONSTANTS AND CHARACTER SET . . .

FORTRAN LANGUAGE SUMMARY

EXPRESSION OPERATORS + &+ ¢ ¢ ¢ o o o o o o

STATEMENTS . L L] * L4 * L) * . Ll Ll * . L] . Ll

LIBRARY FUNCTIONS . . 4 4 o o o o o o o o

FIGURES

FORTRAN Coding Form . . . &+ &+ o & o o o &

Line Formatting Example . . « + ¢« & ¢ « .

Required Order of Statements and Lines . .

Array Storage .« « ¢ o o o o ¢ o o o o o

Nested DO LoOPS & ¢ ©¢ ¢ o o o o o o o o o

Control Transfers and Extended Range . . .

Equivalence of Array Storage . . « « o« o+ &

TABLES

Entities Identified by Symbolic Names . .

Data Type Storage Requirements . . « . . .

Result Data Type for Exponentiation . . .

Conversion Rules for Assignment Statements

Types of User-Written Subprograms

List-Directed Output Formats« . .« .

Effect of Data Magnitude on G Formats . .

Default Field Widths . . . « ¢« ¢« ¢ ¢ « « &

Carriage Control Characters . . « o« o« o« &

Summary of FORMAT CodesS . « « « o« o« o o @

OPEN Statement Keyword Values . . « « .« o

vi

®

o

e

*
®

o

e

»

(
I

I
D

T
I

H

R

O
C
W
O
O
U
W
Y
W
O
O
O
O
D
I
I
I
J
d
OD
N

W
O

O
W
W
O
W
W
I
W
O
W
W
O
U
W
Y
O
O
YW
Y

i
o

e

W

W
O
W
W
w

W

O
W
w

— N
N

B

|

O

0
0

~
J
W
w
-
~
J

U

L

*

N

N
N

=

|

L)

*

~
J

N

w

L
l

|

o
]

*

o

0
o

L
U

D
B

|
[
O
l

W

0
0
0
0
0

O

W
b

N
D
U
N
W
N

CONTENTS

ASCII Character Set o o

Expression Operators . .

FORTRAN Library Functions

vii

PREFACE

MANUAL OBJECTIVES

This manual describes the elements of PDP-11 FORTRAN IV and 1is

designed as a reference, rather than tutorial, document.

This document serves as the FORTRAN language reference manual for

several operating systems that run on the PDP-1l1 family of computers.

Therefore, no information specific to an operating system is presented

here. For that information, refer to the user's guide for each

system,

INTENDED AUDIENCE

Because this is a reference document, readers who have a basic

understanding of FORTRAN will derive maximum benefit.

STRUCTURE OF THIS DOCUMENT

This manual contains nine chapters and two appendixes.

® Chapter 1 consists of general information concerning FORTRAN
and introduces basic facts needed for writing FORTRAN

programs.

® Chapter 2 describes the components of FORTRAN statements, such

as symbolic names, constants, and variables.

® Chapter 3 describes assignment statements, which define values

used in the program.

® Chapter 4 deals with control statements, which transfer

control from one point in the program to another.

® Chapter 5 describes specification statements, which define the

characteristics of symbols used in the program, such as data

type and array dimensions.

® Chapter 6 discusses subprograms, both user-written and those

supplied with PDP-11 FORTRAN 1IV.

e Chapter 7 covers FORTRAN input/output.

® Chapter 8 describes the FORMAT statements used in conjunction

with formatted I/0 statements.

ix

® Chapter 9 contains information on auxiliary I/0 statements,

such as OPEN, CLOSE, and DEFINE FILE.

® Appendix A summarizes the character sets supported by PDP-11

FORTRAN 1V.

e Appendix B summarizes the language elements of PDP-11 FORTRAN

1v.

ASSOCIATE DOCUMENTS

The following documents are of interest to PDP-11 FORTRAN IV

programmers:

e RT-11/RSTS/E FORTRAN IV User's Guide

e RSX, VAX/VMS FORTRAN IV User's Guide

CONVENTIONS USED IN THIS DOCUMENT

The following conventions are used in this manual:

® Uppercase words and letters used in examples indicate that you

should type the words and letters as shown.

® Lowercase words and letters used in examples indicate that you

are to substitute a word or value of your choice.

® Brackets ([]) enclose optional elements.

@ Braces ({}) enclose lists from which one element 1is to be

chosen.

e Ellipses (...) indicate that the preceding item(s) can be

repeated one or more times.

In addition, the following characters denote special nonprinting

characters:

Tab character (TAB)

Space character A

CHAPTER 1

INTRODUCTION TO PDP-11 FORTRAN 1V

l.1 LANGUAGE OVERVIEW

The PDP-11 FORTRAN IV language is based on American National Standard

(ANS) FORTRAN X3.9-1966 but includes the following enhancements to ANS

FORTRAN:

@ You can use any arithmetic expression as an array subscript.

If the expression is not an integer type, it is converted to

integer type.

® Mixed-mode expressions can contain elements of any data type.

e The following data type has been added:

LOGICAL*1

® The IMPLICIT statement redefines the implied data type of

symbolic names.

e The following input/output (I/0) statements have been added:

ACCEPT

TYPE Device-oriented I/0

PRINT '

READ (u'r)

WRITE (u'r Unformatted direct-access I/0

FIND (u'r)

OPEN

CLOSE File control and attribute

DEFINE FILE specification

ENCODE Formatted data conversion

DECODE in memory

® The specifications END=s and/or ERR=s can be included in READ

or WRITE statements in order to transfer control to the

statement specified by s when an end-of-file or error

condition occurs.

e Alphanumeric 1literals (strings of characters bounded by

apostrophes) can be used in place of Hollerith constants.

e List-directed I/0 can be used to perform formatted I/O without

a format specification.

® Constants and expressions are permitted in the I/0 1lists of

WRITE, REWRITE, TYPE, and PRINT statements.

INTRODUCTION TO PDP-11 FORTRAN 1V

e The DO statement increment parameter can have a negative

value.

® For readability, you can optionally use a comma following the

label in a DO statement.

®¢ A PROGRAM statement can be used in a main program.

® You can include an explanatory comment on the same line as any

FORTRAN statement. These comments begin with an exclamation

point (!).

® You can include debugging statements in a program by placing

the letter D in column 1. These statements are compiled only

when you specify a compiler command qualifier; otherwise,

they are treated as comments.

e The statement label list in an assigned GO TO statement is

optional.

® You can use any arithmetic expression as the control parameter

in the computed GO TO statement.

® Virtual arrays provide large data areas outside of normal

program address space.

PDP-11 FORTRAN IV is simply referred to as FORTRAN throughout the rest

of this manual.

1.2 ELEMENTS OF FORTRAN PROGRAMS

FORTRAN programs consist of FORTRAN statements and optional comments.

The statements are organized into program units. A program unit is a

sequence of statements that defines a computing procedure and is

terminated by an END statement. A program unit can be either a main

program or a subprogram. An executable program consists of one main

program and one or more optional subprograms.

l1.2.1 Statements

Statements are grouped into two general classes: executable and

nonexecutable, Executable statements specify the actions of a

program, Nonexecutable statements describe data arrangement and

characteristics, and provide editing and data-conversion information.

Statements are divided into physical sections called lines. A line is

a string of up to 80 characters. If a statement is too long to fit on

one line, you can continue it on one or more additional lines, called
continuation lines. A continuation 1line 1is identified by a

continuation character in the sixth column of that line. (For further

information on continuation characters, see Section 1.3.4.)

You can identify a statement with a label so that other statements can

transfer control to it or obtain the information it contains. A

statement label is an integer number placed in the first five columns

of a statement's initial line.

INTRODUCTION TO PDP-11 FORTRAN 1V

l.2.2 Comments

Comments do not affect program processing in any way. They are merely

a documentation aid to the programmer. You can use them freely to

describe the actions of the program, to identify program sections and

processes, and to provide greater ease in reading the source program

listing. The letter C in the first column of a source line identifies

that 1line as a comment. In addition, if you place an exclamation

point (!) in the statement portion of a source line, the rest of that

line is treated as a comment.

Any printable character can appear in a comment.

1.2.3 FORTRAN Character Set

The FORTRAN character set consists of:

1. All uppercase and lowercase letters (A through Z, a through

z)

2. The numerals 0 through 9

3. The special characters listed below:

Character Name

A OY (AB Space or tab

= Equal sign

+ Plus sign

- Minus sign

* Asterisk

/ Slash

(' Left parenthesis

) Right parenthesis

’ Comma

. Period

! Apostrophe

Quotation mark

S Dollar sign

! Exclamation point

: Colon

Other printable ASCII characters can appear in a FORTRAN statement
only as a part of a Hollerith constant or alphanumeric literal (see
Appendix A for a list of printable characters).

Except in Hollerith constants and alphanumeric literals, the compiler
makes no distinction between uppercase and lowercase letters.

INTRODUCTION TO PDP-11 FORTRAN 1IV

1.3 FORMATTING A FORTRAN LINE

Each FORTRAN line has the following four fields:

e Statement label field

® Continuation indicator field

e Statement field

e Sequence number field

You can format a FORTRAN line in two ways: 1) by typing one character

per column (character-per-column) or 2) by using the tab character

(tab-character) to get from field to field. You can use

character-per-column formatting when punching cards, writing on a

coding form, or typing on a terminal keyboard. However, you can use

tab-character formatting, in addition to

formatting, only when you are typing at a terminal keyboard.

1.3.1 Character-per-Column Formatting

character-per-column

As shown in Figure 1-1, a FORTRAN line 1is divided 1into fields

statement labels, continuation indicators, statement text,

sequence numbers. Sections 1.3.3 through 1.3.6 describe the use

each field.

Each column represents a single character.

field follow.

The columns making up each

FO RTRAN CODER DATE PAGE

CODING FORM | mOMEM

€ Connnent i

! FORTRAN STATEMENT IDENTIFICATION
SY\A"A.A('P:Jl <

12345670 91011 12131413161718192021222)M232027282930313233341530317 30394041 424344454647404950513233545536375059606162016405860676868701 7217374 757627 707964

C, THIS, PROGRAM CALCULATES PRIME NUMBERS FROM 'L 1O 350, ., .\, AN A

+ DO 10, A=Vl 5,00 2, L bbbttt

J = I + + S e e et S e S S o b o s S o B e e + At + ~+-

+——+- S 2 b4 et SB i S S S e e e e e S e e o o + +—+ +

=4 - ——t

=L/A e T T SIS ARY S -

=1/J

B=A-L — e N

I F (B) 4 ‘0 5 i T e e S I S s +
3, 1F (J,. LJ SQRT, ((FLOAT (l))) GQ 1O4 N ——

TY PE ‘705 ! e i e I Rl otS i e o e e T oo e eS e b o -

‘40 :AQNTAI NQEL‘ L e e ee oe e Ti e e ei o oe S S S +-—+

+—+ + + +—+ B e e e e I O i o o o o —~+ b+ + 4

1,05 FORMAT U4,'IS PRIME ") s .

DN, -

-— ——

SetS SRS SRRS est a8 >t

-+ -+ T T T T T o ee S e e s o

b+ Re B e e e e B Ml s v e S e e o e e e -+ e

b+ R A e e e S e S T o i S U R S e T e I ST I IR R IR o St e e R S HE It S XL R S I N B B S i ol ol 4 - +——4

+ + T T T T S S S s S S e 0-#+¢—+—#—04—04—+—##0f&#+»0—44&440—##—F4++0—++¢—1‘5%#“1 g oo S

+—t- +————4—+ eT e e S eS S S e S e S o o S S e e e A e e S B e e o o o

L e e i e e ~+ e e S 2o ob S S o o L e e e S m o oo et S e o b S S S ST SR S ot a2 S8 SR S0 mm am o oy

b O A A S SO G U A U W G G U U I T G S W Y O IS W U G U U ST YT E { PR U ST dnaderdrabdrabrbhmhash obasboadnrudonb

V234 8] l S 101 1213141316171019202122232625262720930 M IV I NIV W40 414740444340 47484950 3132333453503730596061010)040300 7 MH 70 N 7] nnnunnnu

PG-3 DIGITAL EQUIPMENT CORPORATION - MAYNARD, MASSACHUSETYTS

Figure 1-1: FORTRAN Coding Form

ZK-613-82

for

and

INTRODUCTIONTO PDP-11 FORTRAN IV

Field Column(s)

Statement label 1 through 5

Continuation indicator 6

Statement | 7 through 72

Sequence number 73 through 80

To get from one field to another, type each space individually. For

example, in Figure 1-1, enter the first line, type C, press the space

bar five times, and begin typing the comment.

1.3.2 Tab-Character Formatting

You can press the tab character to move to the continuation indicator

field or the statement field. You cannot move to the sequence number

field, however, by pressing the tab. Figure 1-2 compares keystrokes

in lines using tab-character formatting and in those wusing

character-per-column formatting.

Format Using TAB Character Character-per-Coiumn Format

112 3 4 sle6|7 8 910111213i41s1617181920

C Ga® FIRST VALUE C FII|R|S|T VI]A|L |U{E

10@B| = J + 5+K+ 1]0 I = J + 5|+ |K +

@B 1 LM 1 L+|M

@B IVAL = 1+2 I {V[{A]L = Fl+]2

ZK-614-82

Figure 1-2: Line Formatting Example

The statement label field consists of the characters that you type

before the first tab character. The statement label field cannot have

more than five characters.

After you type the first tab character, you can type either the

continuation indicator field or the statement field.

To enter the continuation indicator field, type any digit. The

statement field then consists of all the characters after the digit to

the end of the line. '

To enter the statement field without a continuation indicator field,

type the statement immediately after the first tab. Note that no

FORTRAN statement starts with a'digit.

INTRODUCTION TO PDP-11 FORTRAN IV

Many text editors and terminals advance the terminal print carriage to

a predefined print position when you type the TAB key. However, this

action is not related to the FORTRAN compiler's interpretation of the

tab character described above.

You can use the tab character to improve the legibility of a FORTRAN

statement. For compilation, spaces are ignored, except those within a

Hollerith constant or alphanumeric literal. For 1legibility, spaces

are printed 1in the source 1listing. Tabs also are ignored for

compilation purposes in a statement field. 1In the source listing, the

tab causes the character that follows to be printed at the next tab

stop (located at columns 9, 17, 25, 33, and so forth)

1.3.3 Statement Label Field

A statement label or statement number consists of one to five decimal

digits ir the statement label field of a statement's initial line.

Spaces and leading 0s are ignored. An all-zero statement 1label is

invalid.

Any statement referenced by another statement must hava a label. No

two statements within a program unit can have the same label.

You can use two special indicators in the first column of the label

field: the comment indicator and the debugging statement indicator.

These indicators are described in Sections 1.3.3.1 and 1.3.3.2 below.

The statement label field of a continuation line must be blank.

1.3.3.1 Comment Indicator - The letter C in column 1 indicates that

the line 1is a comment. The compiler prints that line in the source

program listing and then ignores the line.

1.3.3.2 Debugging Statement Indicator - The 1letter D in column 1
designates a debugging statement. The first line of the debugging

statement can have a statement label in the remaining columns of the

label field. 1f a debugging statement is continued, every

continuation line must have a D in column 1 and a continuation

indicator in column 6.

The compiler command specifies whether debugging statements are to be

compiled. If you specify debug-statement compilation, debugging

statements are compiled as a part of the source program; if you do

not specify debug-statement compilation, debugging statements are

treated as comments. For a description of compilation commands, refer

to the appropriate user's guide.

1.3.4 Continuation Field

A continuation indicator is any character, except 0 or space, 1in

column 6 of a FORTRAN line or any digit, except 0, after the first

tab. A statement can be divided into continuation lines at any point.

The compiler considers the characters after the continuation character

to follow the last character of the previous 1line, as 1if no Dbreak

occurred at that point. If a continuation indicator is 0, then the

compiler considers the 1line to be the first 1line of a FORTRAN

statement.

INTRODUCTION TO PDP-11 FORTRAN IV

Comment lines cannot be continued, but they can occur between a

statement's initial 1line and its continuation 1line(s) or between

successive continuation lines.

1.3.5 Statement Field

The text of a FORTRAN statement is placed in the statement field.

Because the compiler ignores the tab character and spaces (except in

Hollerith constants or alphanumeric literals), you can space the text

in any way desired for maximum 1legibility. The use of tabs for

spacing is discussed in Section 1.3.2

NOTE

If a 1line extends beyond character

position 72, the text following position

72 is ignored and no warning message is

printed.

1.3.6 Sequence Number Field

A sequence number or other identifying information can appear in

columns 73 through 80 of any line in a FORTRAN program. The compiler

ignores characters in this field. Remember that you cannot move to

the sequence number field by tab-character formatting,

1.4 PROGRAM UNIT STRUCTURE

Figure 1-3 shows the allowed order of statements in a FORTRAN program

unit. In this figure, vertical lines separate statement types that

can be interspersed. For example, comment lines, FORMAT statements,

DATA statements, and executable statements are allowed alternatives in

the body of the program. Horizontal lines indicate statement types

that cannot be interspersed. For example, IMPLICIT statements cannot

be interspersed with executable statements, a PROGRAM statement, or an

END statement because each has a definite order in the program.

PROGRAM,FUNCTION,SUBROUTINE, or BLOCK DATA Statements

IMPLICIT

Statements

PARAMETER

Other Statements

Specification

Comment FORMAT Statements

Lines and

StENTRYt Statement Function
atements DATA Definitions

Statements

Executable

Statements

END Line

ZK-1043-82

Figure 1-3: Required Order of Statements and Lines

1-7

CHAPTER 2

FORTRAN STATEMENT COMPONENTS

The basic components of FORTRAN statements are:

e Constants -- fixed values, such as numbers. They cannot be
changed by program statements.

® Variables -- symbolic names that represent stored values. The
stored values can be changed by program statements.

® Arrays -- groups of values that are stored contiguously and
can be referenced individually by a symbolic name with a
subscript or collectively by just a symbolic name. Individual
values are called array elements.

® Function references -- names of functions, optionally followed
by 1lists of arguments. A function is a program unit that
performs a specified computation using the arguments, if any:
for example, computing the trigonometric sine of the argument.
The resulting value 1is wused in place of the function
reference.

e Expressions -- constants, variables, array elements, function
references or combinations of these components used in
conjunction with operators. An operator is a symbol
specifying that a certain kind of operation, such as
multiplication, is to be performed to obtain a single result.

Variables, arrays, and functions have symbolic names. A symbolic name
is a string of characters that identify entities in the program.

Constants, variables, arrays, expressions, and functions can have the
following data types:

e Logical

® ‘Integer

® Real

e Double precision

e Complex

The following sections detail the basic components of FORTRAN, with
the exception of function references, which are described in Chapter
6. Sections 2.1 and 2.2 on symbolic names and data types,
respectively, provide information common to all basic components.

FORTRAN STATEMENT COMPONENTS

2.1 SYMBOLIC NAMES

Symbolic names identify entities within a FORTRAN program unit. These

entities are 1listed in Table 2-1. The "Typed" column indicates

whether the entity has a data type, such as real, integer, and so

forth., Data types are discussed in Section 2.2.

Table 2-1: Entities Identified by Symbolic Names

Entity Typed

Variables yes

Arrays yes

Statement functions yes

Processor-defined functions yes

Function subprograms yes

Subroutine subprograms no

Common blocks no

Main programs no

Block data subprograms no

Dummy arguments yes

A symbolic name is a string of letters and digits totaling a maximum

of six characters. The first character must be a letter.

Examples of valid and invalid symbolic names are:

valid Invalid/Explanation

NUMBER 5Q (begins with a numeral)

K9 B.4 (contains a special character)

Symbolic names must be unique within a program unit. That is, you

cannot use the same symbolic name to identify two or more entities in

the same program unit.

In executable programs consisting of two or more program units, some

entities must have unique names throughout all the program units. The

entities are:

e Processor-defined functions

e Function subprograms

e Subroutine subprograms

e Common blocks

e Main programs

e Block data subprograms

2.2 DATA TYPES

Each basic component (constants, variables, and so forth) represents

one of several data types:

® Integer -- a whole number.

FORTRAN STATEMENT COMPONENTS

® Real -- a decimal number, that is, a whole number, a decimal
fraction, or a combination of the two.

® Double precision -- a real number with more than twice as many
maximum significant digits.

® Complex -- a pair of real numbers representing a complex
number; the first value represents the real part, the second
represents the imaginary part.

® Logical -- true or false.

The data type of a basic component can be specified in one of three
ways: it can be inherent in its construction (as in constants); it
can be implied by naming convention (with or without an IMPLICIT
statement); or it can be explicitly declared.

Whenever a value of one data type is converted to a value of another
type, the conversion 1is performed according to the rules for
assignment statements (see Section 3.1).

ANS FORTRAN specifies that a "numeric storage unit" is the amount of
memory needed to store a real, integer, or logical value. Double
precision and complex values occupy two numeric storage units. In
PDP-11 FORTRAN IV, a numeric storage unit is four bytes of memory.

PDP-11 FORTRAN IV provides additional data types for better control of
performance and memory requirements. Table 2-2 lists the data types
available and the amount of memory required (in bytes). The form *n
appended to a data type name is called a data type length specifier.

Table 2-2: Data Type Storage Requirements

Data Type Storage Requirements

(Bytes)

BYTE 12
LOGICAL 4
LOGICAL*1 12
LOGICAL*4 4 1
INTEGER 2 or 4
INTEGER*2 2

INTEGER*4 43

REAL 4

REAL*4 4

REAL*8 8
DOUBLE PRECISION 8

COMPLEX 8
COMPLEX*8 8

l. Either two or four bytes are allocated depending on the
compiler command qualifier specified. The default allocation
is two bytes. Only two bytes are used for computation.

2. The l-byte storage area can contain the logical values true
or false, a single character, or integers in the range -128
to +127.

3. Four bytes are allocated but only two bytes are used for
computation.

BYTE and LOGICAL*1l are synonymous.

2-3

FORTRAN STATEMENT COMPONENTS

2.3 CONSTANTS

A constant represents a fixed value and can be a number, a logical

value, or a character string.

Hollerith constants or alphanumeric literals have no data type. They

assume the data type of the context in which they appear (see Section

2.3.6.2).

2.3.1 Integer Constants

An integer constant is a whole number with no decimal point. It can

have a leading sign and 1is interpreted as a decimal number. An

integer constant has the following form:

snn

An optional sign.

nn

A string of numeric characters.

Leading 0s, if any, are ignored.

A minus sign must appear before a negative integer constant. A plus

sign is optional before a positive constant (an unsigned constant is

assumed to be positive).

Except for the sign, an integer constant cannot contain a character

other than the numerals 0 through 9.

The absolute value of an integer constant cannot be greater than

32767.

Examples of valid and invalid integer constants are:

valid Invalid/Explanation

0 99999999999 (too large)

-127 3.14 (decimal point and

+32123 32,767 comma not allowed)

Integer constants can also be specified in octal form. The octal form

of an integer constant is:

"nn

nn

A string of digits in the range 0 to 7.

An octal integer constant cannot be negative or greater than "177777.

Examples of valid and invalid octal integer constants are:

valid Invalid/Explanation

"107 "108 (contains a digit outside the allowed
range)

"177777 "1377. (decimal point not allowed)

"177777" (trailing quotation mark not allowed)

FORTRAN STATEMENT COMPONENTS

2.3.2 Real Constants

A real constant is a number with a decimal point. It can take one of
three forms:

® A basic real constant

® A basic real constant followed by a decimal exponent

® An integer constant followed by a decimal exponent

A basic real constant is a string of decimal digits in one of three
formats:

S.nn

snn.nn

snn.

s

An optional sign.

nn

A string of decimal digits.

The decimal point can appear anywhere in the string. The number of
digits is not limited, but only the leftmost 7 digits are significant.
Leading 0s (0s to the left of the first nonzero digit) are ignored in
counting the leftmost 7 digits. Thus, in the constant 0.00001234567,
all of the nonzero digits are significant, and none of the 0s are
significant.

A decimal exponent has the form:

Esnn

An optional sign.

nn

An integer constant.

The exponent represents a power of 10 by which the preceding real or
integer constant is to be multiplied (for example, 1.0E6 represents
the value 1.0 * 10 ** g),.

A real constant occupies four bytes and is interpreted as a real
number with a precision of typically seven decimal digits.

A minus sign must appear between the letter E and a nedative exponent.
A plus sign is optional for a positive exponent.

Except for algebraic signs, a decimal point, and the 1letter E (if
used), a real constant cannot contain a character other than the
numerals 0 through 9.

If the letter E appears 1in a real constant, an integer constant
exponent must follow. The exponent cannot be omitted, but it can be
0.

The magnitude of a nonzero real constant cannot be smaller than
approximately 0.29E-38 or greater than approximately 1.7E38.

FORTRAN STATEMENT COMPONENTS

Examples of valid and invalid real constants are:

valid Invalid/Explanation

3.14159 1,234,567 (commas not allowed)

621712, 325E-45 (too small)

-.00127 -47.E47 (too large)

+5.0E3 100 (decimal point missing)

2E-3 $25.00 (special character

not allowed)

2.3.3 Double Precision Constants

A double precision constant is a basic real constant or an integer

constant followed by a decimal exponent of the following form:

Dsnn

An optional sign.

nn

An integer constant.

A double precision constant occupies eight bytes and is interpreted as

a real number with a precision of typically 16 decimal digits. The

number of digits that precede the exponent is not limited, but only

the leftmost 16 digits are significant.

A minus sign must appear before a negativée double precision constant;

a plus sign is optional before a positive constant. Similarly, a

minus sign must appear after the letter D for a negative exponent

while a plus sign is optional for a positive exponent.

The exponent following the letter D cannot be omitted, but it can be

0.

The magnitude of a nonzero double precision constant cannot be smaller

than approximately 0.29D-38 or greater than approximately 1.7D38.

Examples of valid and invalid double precision constants are:

valid Invalid/Explanation

1234567890D+5 1234567890D45 (too large)

+2.71828182846182D00 1234567890.0D-89 (too small)

-72.5D-15 +2.7182812846182 (no Dsnn present;

1DO0 this is a valid
real constant)

2.3.4 Complex Constants

A complex constant is a pair of real constants separated by a comma

and enclosed in parentheses. The first real constant represents the

real part of the complex number and the second real constant

represents the imaginary part.

FORTRAN STATEMENT COMPONENTS

A complex constant has the following form:

(rc,rc)

rc

A real constant.

The parentheses and comma are part of the complex constant and are
required. See Section 2.3.2 for the rules for forming real constants.

A complex constant occupies eight bytes and 1is interpreted as a
complex number. '

Examples of valid and invalid complex constants are:

valid Invalid/Explanation

(1.70391,-1.70391) (1,2) (integers are not allowed)
(+12739E3,0.) (1.23,) (second real constant is

missing)

(1.0,1.0D0 (double precision constants

are not allowed)

2.3.5 Logical Constants

A logical constant specifies true or false. Thus, only the following
two logical constants are possible:

. TRUE.

.FALSE.

The delimiting periods are a required part of each constant.

2.3.6 Hollerith Constants

A Hollerith constant is a string of printable characters preceded by a
character count and the letter H.

A Hollerith constant has the following form:

nHclc2c3...cn

An unsigned, nonzero integer constant stating the number of
characters in the string (including spaces and tabs).

A printable character.

The maximum number of characters is 255.

Examples of valid and invalid Hollerith constants are:

valid Invalid/Explanation

16HTODAY'S DATE 1IS: 3HABCD (wrong number of characters)
1HB

FORTRAN STATEMENT COMPONENTS

2.3.6.1 Alphanumeric Literals - An alphanumeric literal is a string

of printable ASCII characters enclosed by apostrophes that represents

an alternate form of a Hollerith constant. The form is:

'‘clc2c3...cn!

A printable character.

Both delimiting apostrophes must be present.

Within an alphanumeric 1literal, the apostrophe character is

represented by two consecutive apostrophes (with no space or other

character between them).

The length of the alphanumeric literal is the number of characters

between the apostrophes, including spaces and tabs, except that two

consecutive apostrophes represent a single apostrophe. A tab is

stored as a single character but is displayed as spaces up to the next

tab stop. The length must be in the range from 1 to 255.

Examples of valid and invalid literals are:

valid Invalid/Explanation

'WHAT?' 'HEADINGS (must contain trailing
apostrophe)

'TODAY''S DATE 1IS: v (must contain at least
one character)

HE SAID, "HELLO"' "NOW OR NEVER" (quotation marks
cannot be wused in

place of apostrophes)

2.3.6.2 Data Type Rules for Hollerith Constants - When Hollerith

constants are used 1in numeric expressions, they assume a data type

according to the following rules:

e When the constant is used with a binary operator, including

the assignment operator, the data type of the constant is the

data type of the other operand. For example:

Data Type Length of

Statement of Constant Constant

INTEGER*2 ICOUNT

REAL*8 DOUBLE

RALPHA = 4HABCD REAL*4 4

JCOUNT = ICOUNT + 'XY' INTEGER*2 2

DOUBLE = 8HABCDEFGH REAL*8 8

e When a specific data type is required, that type 1is assumed

for the constant. For example:

Data type Length of

Statement of Constant Constant

X=Y (1HA) INTEGER*2 2

FORTRAN STATEMENT COMPONENTS

® When the constant is used as an actual argument, no data typeis assumed. For example:

Data Type Length of
Statement of Constant Constant

CALL APAC (9HABCDEFGHTI) none 9

® When the constant is used in any other context, INTEGER*2 datatype is assumed. For example:

Data Type Length of
Statement of Constant Constant

IF (2HAB) 1,2,3 INTEGER*2 2
I= 1HC-1HA INTEGER*2 2
J= ,NOT, 'B' INTEGER*?2 2

When the length of the constant is less than the length implied by thedata type, spaces are appended to the constant on the right. When thelength of the constant is greater than the length implied by the datatype, the constant is truncated on the right.

Table 2-2 lists the number of characters required for each data type.Each character occupies one byte of storage.

2.4 VARIABLES

A variable is a symbolic name associated with a storage location (seeSection 2,1 for the form of a symbolic name).variable is the value currently stored in that
can change that value by assigning a new value

The value of the
location; however, you
to the variable.

Variables are classified by data type, as
type of a variable indicates the
Precision, and its storage requirements

constants. The data

data it represents, its
data of any type is

are

type of

When
assigned to a variable, it is converted, if necessary, to the datatype of the variable. You can establish the data type of a variableby wusing type declaration statements or IMPLICIT statements, or bychoosing names that begin with certain letters.

Two or more variables are associated with each other when they referto the same memory location. They are partially associated when partof the location to which one variable refers is the same as part orall of the location to which the Other variable refers. Associationand partial association occur when you use COMMON statements,EQUIVALENCE statements, and actual arguments and dummy arguments insubprogram references.,

A variable is considered defined if the
contains data of the same type as the nam
before program execution by a DATA statem
assignment or input statement.

storage associated with it
€. A variable can be definedqd
ent or during execution by an

If variables of different data types are associated (or partiallyassociated) with the same storage location, and the value of onevariable is defined (for example, by assignment), the value of theother variable becomes undefined; that is, you cannot predict itsvalue,

FORTRAN STATEMENT COMPONENTS

2.4.1 Data Type Specification

Type declaration statements (see Section 5.2) specify that given
variables are to represent specified data types. For example:

COMPLEX VARl

DOUBLE PRECISION VAR2

These statements indicate that the variable VARl is to Dbe associated
with an 8-byte storage location which will contain complex data, and
that the variable VAR2 is to be associated with an 8-byte double
precision storage location.

The IMPLICIT statement (see Section 5.1) has a more general scope: it
signifies that, in the absence of an explicit type declaration, a
variable name beginning with a specified letter, or any lette

r within
a specified range, is to represent a specified data type.

You can explicitly declare the data type of a variable only o
nce. An

explicit declaration takes precedence over an IMPLICIT sta
tement.

2.4.2 Data Type by Implication

In the absence of either IMPLICIT statements or explicit type

declaration statements, all variables with names beginning with I, J,

K, L, M, or N are assumed to be integer variables. Variables with
names beginning with any other letter are assumed to be real
variables. For example:

Real Variables Integer Variables

ALPHA : JCOUNT

BETA ITEM

TOTAL NTOTAL

2.5 ARRAYS

An array is a group of contiguous storage locations associate
d with a

single symbolic name, the array name. The individual storage

locations, called array elements, are referred to by a subscript
appended to the array name. Section 2.5.2 discusses subscripts.

An array can have from one to seven dimensions. For example, a column
of figures is a one-dimensional array. To refer to a value, you must

specify the row number. A table of more than one column of figures is
a two-dimensional array. To refer to a value you must specify both
row number and column number. A table of figures that covers several
pages 1is a three-dimensional array. To refer to a value in this
array, you must specify row number, column number, and page nu

mber,

The following FORTRAN statements establish arrays
:

e Type declaration statements (see Section 5.2)

e The DIMENSION statement (see Section 5.3)

e The COMMON statement (see Section 5.4)

e The VIRTUAL statement (see Section 5.5)

FORTRAN STATEMENT COMPONENTS

These statements may contain array declarators (see Section 2.5.1)that define the" name of the array, the number of dimensions in thearray, and the number of elements in each demension,

An element of an array is considered defined if the storage associatedwith it contains data of the same type as the array name (see Section2.5.4). An array element or an entire array can be defined beforeprogram execution by a DATA statement. An array element can bedefined during program execution by an assignment or input statement,and an entire array can be defined during program execution by aninput statement.

2.5.1 Array Declarators

An array declarator specifies the symbolic name that identifies anarray within a program unit ang indicates the properties of thatarray.

An array declarator has the following form:

a (df,d] ...)

The symbolic name of the array, that 1is, the array name,(Section 2.1 gives the form of a symbolic name.,)

A dimension declarator that is an integer constant or integervariable that specifies the upper bound of the array.

The number of dimension declarators indicates the number of dimensionsin the array. The number of dimensions can range from one to seven.

For example, in

DIMENSION IUNIT (10,10,10)

IUNIT is a three-dimensional array.

The value of a dimension declarator specifies the number of elementsin that dimension. In the example above, each dimension of IUNITconsists of 10 elements.

The number of elements in an array is equal to the product of thenumber of elements in each dimension. IUNIT above contains 1000elements.

An array name can appear in only one array declarator within a programunit.

Dimension declarators that are not constant can be used in asubprogram to define adjustable arrays. You can use adjustable arrayswithin a single subprogram to process arrays with different dimensiondeclarators by specifying the declarators as well as the array name assubprogram arguments. See Section 6.1.2 for more information.Dimension declarators that are not constant are not permitted in amain program.

2.5.2 Subscripts

A subscript qualifies an array name., A subscript is a 1list ofexpressions, called subscript expressions, that are enclosed in

2-11

FORTRAN STATEMENT COMPONENTS

parentheses and that determine which element in the array is
referenced. The subscript is appended to the array name it qualifies.

A subscript has the following form:

(sl,s)...)

A subscript expression.

A subscript expression can be a constant, variable, oOr arithmetic
expression., If the value of a subscript is not of type integer, it is
converted to integer by truncation of any fracti

onal part.

A subscripted array reference must contain one subscript expression
for each dimension defined for that array (one for each dimension
declarator).

2.5.3 Array Storage

As discussed earlier in this section, you can think of the dimensions
of an array as LoOws, columns, and levels or planes. However, FORTRAN
always stores an array in memory as a linear sequence of wvalues. A

one-dimensional array 1is stored with its first element in the first
storage location and its last element in the last storage location of
the sequence. A multidimensional array is stored so that the lefmost

subscripts vary most rapidly. This is called the "order of subscript
progression." For example, Figure 2-1 shows array storag

e in one, two,

and three dimensions.

2.5.4 Data Type of an Array

The data type of an array is specified in the same way as the data

type of a variable, that is, implicitly by the initial letter of t
he

name or explicitly by a type declaration statem
ent.

All the values in an array have the same data type. Any value
assigned to an array element is converted to the data type of the
array. If an array is named in a DOUBLE PRECISION statement, for
example, the compiler allocates an 8-byte storage location for each
element of the array. When a value of any type is assigned to any

element of that array, it is converted to double precision.

2.5.5 Array References Without Subscripts

In the following types of statements, you can specify
an array name

without a subscript to indicate that the entire array is to be used
(or defined):

e Type declaration statements

e COMMON statement

e DATA statement

e EQUIVALENCE statement

FORTRAN STATEMENT COMPONENTS

® FUNCTION statement

® SUBROUTINE statement

® Input/output statements

You can also use unsubscripted array names as actual arguments inreferences to external procedures, Unsubscripted array names are notpermitted in any other type of statement.

One-Dimensional Array BRC (6)

[1 [BRO(M)[2 [BRC(2)] 3 |BRC(3)| 4 |BRC4)| 5 |BRC(5)| 6 [BRc(e)]

Memory Positions

Two-Dimensional Array BAN (3,4)

1 [BAN(1,1)] 4 | BAN(1,2)| 7 BAN(1,3) { 10 | BAN(1,4)

2 | BAN(2,1)| 5 | BAN(2,2)| 8 BAN(2,3) | 11 | BAN(2,4)

3 | BAN(3,1)| 6 | BAN(3,2){ 9 BAN(3,3) | 12 | BAN(3,4)

L

Three-Dimensional Array BOS (3,3,3)

Memory Positions

191 BOS(1,1,3) | 22 | BOS(1,2,3) | 25 B0OS(1,3,3)

20 | BOS(2,1,3) | 23 | BOS(2,2,3) | 26 B0OS(2,3,3)

101 BOS(1,1,2) |13 | BOS(1,2,2) [16 | BOS(1,3,2) § | 27 | BOS(3,3.3)

11]BOS(2,1,2) |14 [BOS(2,2,2) | 17| BOS(2,3.2)

—

1 [BOS(1.1.1)| 4 1 BOS(1,2,1) | 7 | BOS(1,3,1) | | 18| BOS(3,3.2)

2 [BOS(2,1,1) | 5 [BOS(2,2,1) | 8 | BOS(2,3,1)

3 | BOS(3,1,1) 6 | BOS(3,2,1) | 9 | BOS(3,3,1)

Memory Positions

ZK-616-82

Figure 2-1: Array Storage

2.5.6 Adjustable Arrays

Adjustable arrays allow subprograms to manipulate arrays of variabledimensions. To use an adjustable array in a subprogram, you specifythe array bounds and the array name as subprogram arguments. SeeChapter 6 for more information.

2.6 EXPRESSIONS

An expression represents a single value. It can be a single basiccomponent, such as a constant or variable, or a combination of basic

FORTRAN STATEMENT COMPONENTS

components with one or more operators. Operators specify computations
to be performed, using the value(s) of the basic component(s) to

obtain a single value.

Expressions are classified as arithmetic, relational, or logical.
Arithmetic expressions produce numeric values; relational and logical
expressions produce logical values.

2.6.1 Arithmetic Expressions

Arithmetic expressions are formed with arithmetic elements and
arithmetic operators. The evaluation of such an expression yields a
single numeric value.

An arithmetic element can be any of the followi
ng:

e A numeric constant

e A numeric variable

e A numeric array element

e An arithmetic expression enclosed in parentheses

e An arithmetic function reference

The term "numeric," as used above, can also be interpreted
to include

logical data, since logical data is treated as integer data when used
in an arithmetic context.

Arithmetic operators specify a computation to be performed
using the

values of arithmetic elements to produce a numeric value as a resu
lt.

The operators and their meanings are:

Operator Function

* % Exponentiation

* Multiplication

/ Division

+ Addition and unary plus

- Subtraction and unary minus

These operators are called binary operators because each is
 used with

two elements. The plus (+) and minus (-) symbols are also unary

operators when written immediately preceding an arithmetic
 element to

denote a positive or negative value.

You can use any arithmetic operator with any valid arithme
tic element,

except as noted in Table 2-3.

A variable or array element must have a defined value before
 it can be

used in an arithmetic expression.

FORTRAN STATEMENT COMPONENTS

Table 2-3 shows the allowed combinations of data types of base and
exponent, and the data type of the result of exponentiation.

Table 2-3: Result Data Type for Exponentiation

Exponent
Base

Integer Real Double Complex

Integer Integer No No No

Real Real Real Double No

Double Double Double Double No

Complex Complex No No No

Note: A negative element can be exponentiated
only by an integer element; and an element with a
0 value cannot be exponentiated by another 0-value
element.

In any valid exponentiation, the result has the same data type as the
base element, except in the case of a real base and a double precision
exponent. The result in this case is double precision,

Arithmetic expressions are evaluated in an order determined by the
operators. The operators are ranked in precedence and operations ofhigher precedence are performed first. The precedence is:

Operator Precedence

* % First

* and / Second

+ and - Third

When two or more operators of equal precedence (such as + and -)
appear, they are evaluated by the compiler in any order that isalgebraically equivalent to a left-to-right order of evaluation. For
example, in 3+4-1, the addition is performed before the subtraction.
Exponentiation, however, is evaluated right to left. For example, inA**B**C, B**C is evaluated first and then A is raised to the resulting
power.

2.6.1.1 Use of Parentheses - You can use parentheses to force aparticular order of evaluation. When part of an expression is
enclosed in parentheses, that part is evaluated first and the
resulting value 1is used in the evaluation of the remainder of the

FORTRAN STATEMENT COMPONENTS

expression. In the following examples, the numbers below the

operators indicate the order of evaluation:

4 +3%2-6/2=7T

S Y S
31 4 2

(443) * 2 -6 / 2 =11

Ao A
1 2 4 3

(4 +3*2-6) /2=2

S A
2 1 3 4

2 = 4((4+43) * 2 - 6) /

Lo A
1 2 3 4

As shown in the third and fourth examples, expressions within

parentheses are evaluated according to the normal order of precedence,

unless you override the order by using parentheses within parentheses.

Using parentheses to specify the evaluation order is often important

in high-accuracy computations since evaluation orders that are

algebraically equivalent might not be computationally equivalent due

to rounding and normalization.

Using parentheses to specify the evaluation order 1is important,

furthermore, in difficult expressions. If any doubt exists as to the

resulting value of an expression, use parentheses. Extra parentheses

do not affect the result, but lack of sufficient parentheses does.

2.6.1.2 Data type of an Arithmetic Expression - If every element in
an arithmetic expression is of the same data type, the value produced

by the expression is also of that data type. 1f elements of different

data types are combined in an expression, the data type of the result

of each operation is determined by a rank associated with each data

type, on the following basis:

Data Type Rank

Logical 1 (Low)

Integer 2

Real 3

Double precision 4

Complex 5 (High)

The data type of the value produced by an operation on two arithmetic

elements of different data types is the data type of the

highest-ranked element in the operation. For example, the value

resulting £from an operation on an integer and a real element is real.

The data type of an expression is the data type of the result of the

last operation in that expression.

FORTRAN STATEMENT COMPONENTS

Operations are classified by data type as follows:

2.6.2

Integer operations -- Integer operations are performed only on
integer elements. (Logical entities wused in an arithmetic
context are treated as integers.) In integer arithmetic, any
fraction that can result from division is truncated, not
rounded. For example:

1/3 + 1/3 + 1/3

The value of this expression is 0, not 1.

Real operations -- Real operations are performed only on real
elements or combinations or real, integer, and 1logical
elements. Any integer elements present are converted to real
data type by giving each a fractional part equal to 0. The
expression is then evaluated using real arithmetic. Note,
however, that in the statement Y = (I/J)*X, an integer
division operation is performed on I and J and a real
multiplication is performed on that result and X.

Double precision operations -- Any real or integer element in
a double precision operation is converted to double precision
by making it the most significant portion of a double
precision element. The least significant portion is 0. The
expression is then evaluated in double precision arithmetic.

Converting a real element to a double precision element does
not increase its accuracy. For example, the real number:

0.3333333

is converted to:

0.3333333000000000D0

not to:

0.3333333333333333D90

Complex operations -- In an operation on an expression
containing a complex element, integer elements are converted
to real data type, as previously described. Double precision
elements are converted to real data type by rounding the least
significant portion. The real element thus obtained is
designated as the real part of a complex number; the
imaginary part is 0. The expression is then evaluated using
complex arithmetic and the resulting value is complex.

Relational Expressions

A relational expression consists of two arithmetic expressions
separated by a relational operator. The value of the expression is
true if the stated relationship exists and false if it does not.

FORTRAN STATEMENT COMPONENTS

A relational operator tests for a relationship between two arithmetic

expressions. These operators are:

Operator Relationship

.LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The delimiting periods are a required part of each operator.

Complex expressions can be related only by the L[EQ. and L.NE,.

operators. Complex entities are equal if their corresponding real and

imaginary parts are both equal.

In an arithmetic relational expression, the arithmetic expressions are

first evaluated to obtain their values. These values are then

compared to determine whether the relationship stated by the operator

exists. For example:

APPLE+PEACH .GT. PEAR+ORANGE

This expression states the relationship, "The sum of the real

variables APPLE and PEACH 1is greater than the sum of the real

variables PEAR and ORANGE." If that relationship exists, the value of

the expression is true; 1if not, the value of the expression is false.

All relational operators have the same precedence. Arithmetic

operators have a higher precedence than relational operators.

As in any other arithmetic expression, you can use parentheses to

alter the order of evaluation of the arithmetic expressions in a

relational expression. However, since arithmetic operators are

evaluated before relational operators, you need not enclose the entire

arithmetic expression in parentheses.

You can compare two numeric expressions of different in a relational

expression. In this case, the value of the expression with the

lower-ranked data type is converted to the higher-ranked data type

before the comparison is made.

2.6.3 Logical Expressions

Logical expressions are formed with logical elements and 1logical

operators. A logical expression yields a single logical value, either

true or false.

A logical element can be any of the following:

e An integer or logical constant

e An integer or logical variable

e An integer or logical array element

FORTRAN STATEMENT COMPONENTS

®¢ A relational expression

® A logical expression enclosed in parentheses

® An integer or logical function reference

The logical operators are:

Operator Example Meaning

.AND. A _AND. B Logical conjunction: The expression is
true if, and only if, both A and B are
true,

.OR. A ,OR. B Logical disjunction (inclusive OR): The
expression is true if either A or B, or
both, is true.

.XOR, A ,XOR. B Logical exclusive OR: The expression is
true if A is true and B is false, or
vice versa; but the expression is false
if both elements have the same value.

.EQV. A .EQV. B Logical equivalence: The expression is
true if, and only if, both A and B have
the same logical value, whether true or
false.

.NOT. .NOT. A Logical negation: The expression is
true if, and only if, A is false.

The delimiting periods of logical operators are required.

A logical expression is evaluated according to an order of precedence
assigned to its operators. The following list gives the order in
which all the operators that can appear in a logical expression are
evaluated:

Operator Precedence

* % First (Highest)

*/ Second

+, -
Third

Relational

Operators Fourth

.NOT. Fifth

.AND. Sixth

.OR. Seventh

. XOR., .EQV, Eighth

Operators of equal rank are evaluated from left to right. For
example:

A*B+C*ABC .EQ. X*Y+DM/ZZ .AND. .NOT. K*B .GT., TT

The sequence in which evaluation occurs is:

(((A*B)+(C*ABC)).EQ.((X*Y)+(DM/ZZ))).AND.(.NOT.((K*B).GT.TT))

FORTRAN STATEMENT COMPONENTS

As in arithmetic expressions, you can use parentheses to alter the

normal sequence of evaluation.

Two consecutive logical operators are not allowed unless the second is

.NOT. .

Some logical expressions are evaluated before all their subexpressions

are evaluated. For example, if A is .FALSE., the expression A .AND.

(F(X,Y) .GT. 2.0) .AND. B is .FALSE.. The value of the expression

can be determined by testing A without evaluating F(X,Y). Thus, the

function subprogram F may not be called, and side-effects resulting

from the call, such as changing variables in COMMON, cannot occur.

When a logical operator operates on logical elements, the resulting

data type 1is logical. When a logical operator operates on integer

elements, the logical operation 1is <carried out bit-by-bit on the

corresponding bits of the internal (binary) representation of the

integer elements. The resulting data type is integer. When a logical

operator combines integer and logical values, the logical value is

first converted to an integer value, and then the operation is carried

out as for two integer elements. The resulting data type is integer.

Example:

INTEGER I, J, K

I = "65

J = I.0R."100

K = I.AND."23

In this example, I has the value "165 and K has the value "21.

CHAPTER 3

ASSIGNMENT STATEMENTS

Assignment statements assign a single value to a variable or array
element.

The three kinds of assignment statements are:

® Arithmetic assignment statement

® Logical assignment statement

® ASSIGN statement

3.1 ARITHMETIC ASSIGNMENT STATEMENT

An arithmetic assignment statement assigns an arithmetic value to a
variable or array element.

The arithmetic assignment statement has the following form:

v = e

\

A numeric variable or array element.

e

An arithmetic expression.

The equal sign does not mean "is equal to," as in mathematics;
rather, it means "is replaced by." For example:

KOUNT = KOUNT + 1

This statement means, "teplace the current value of the integer
variable KOUNT with the sum of the current value of KOUNT and the
integer constant 1."

Although the symbolic name on the 1left of the equal sign can be
undefined, values must have been previously assigned to all symbolic
references in the expression on the right of the equal sign.

The expression must yield a value of the Proper size. For example, a
real expression that produces a value greater than 32767 is invalid if
the entity on the left of the equal sign is an INTEGER*2 variable.

If v and e have the same data types, the statement assigns the value
of e directly to v, If the data types are different, the value of e
is converted to the data type of v before it is assigned. Table 3-1
summarizes the data conversion rules for assignment statements.

Table 3-1:

ASSIGNMENT STATEMENTS

Conversion Rules for Assignment Statements

Expression (E)

Variable

or Array

Element (V) Integer or Logical

Double

Real Precision Complex

Integer

or

Logical

Real

Double

Precision

Complex

Assign E to V

Append fraction

(.0) to E and

assign to V

Append fraction

(.0) to E and as-

sign to Msl por-
tion of V; LSl
portion of V is 0

Append fraction

(.) to E and as-

sign to real part

of V; imaginary

part of vV is 0.0

Truncate E to

integer and

assign to V

Truncate E to

integer and

assign to V

Truncate real part

of E to integer

and assign to Vj;

imaginary part

of E is not used

Assign Msl por-
tion of E to V;

Lsl portion of
E is rounded

Assign E to V Assign real part
of E to V; imag-

inary part of E

is not used

Assign E to MsI
portion of v:

sl portion of
vV is 0

Assign E to V Assign real part
of E to Msl pir-
tion of V; LS

portion of V is

zero, imaginary

part of E is not

used

Assign Msl por-
tion of E to real

part of V; LSl
portion of E is

rounded; imagi-

nary part of V

is 0.0

Assign E to

real part of V;

imaginary part

of Vv is 0.0

Assign E to V

1. MS = most significant (high order); LS = least significant (low order)

Examples of valid and invalid assignment statements are:

valid

BETA = -1./(2.*X)+A*A/(4.*(X*X))

PI = 3,14159

SUM = SUM+l.

Invalid/Explanation

3.14 = A-B (entity on the left must be a variable
or array element)

-J = 1I**4 (entity on the left must be a variable
or array element)

ALPHA = ((X+6)*B*B/(X-Y) (entity on the right is an invalid
expression because the parentheses are

not balanced)

ASSIGNMENT STATEMENTS

3.2 LOGICAL ASSIGNMENT STATEMENT

The logical assignment statement assigns a logical value (true or

false) to a variable or array element.

The logical assignment statement has the following form:

Vv = e

A logical variable or array element.

A logical expression.

Note that v must be of logical data type and e must yield a logical

value, Otherwise, conversions will be made according to Table 3-1,

but the values will not have any logical meaning.

Values, either numeric or logical, must have been previously assigned

to all variables or array elements in e.

Examples of logical assignment statements are:

valid

LOGICAL PAGEND, PRNTOK, ABIG

PAGEND = ,FALSE.

PRNTOK LINE .LE. 132 ,AND. .NOT. PAGEND

ABIG = A .,GT. B .AND. A .GT. C .AND. A .GT. D

Invalid/Explanation

X=,TRUE. (entity on the left must be logical)

ASSIGN

3.3 ASSIGN STATEMENT

The ASSIGN statement assigns a statement label value to an integer

variable. The variable can then be wused to specify a transfer

destination in a subsequent assigned GO TO statement (see Section

4.1.3).

The ASSIGN statement has the following form:

ASSIGN s TO v

The label of an executable statement in the same program unit as

the ASSIGN statement.

An integer variable.

The ASSIGN statement assigns the statement label to the variable. It

is similar to an arithmetic assignment statement, except that the

ASSIGNMENT STATEMENTS

variable becomes defined for use as a statement 1label reference and

becomes undefined as an integer variable; that is, the value cannot

be used for purposes of output or arithmetic.

The statement label must refer to an executable statement in the same

program unit. It may not refer to a FORMAT statement.

The ASSIGN statement must be executed before the assigned GO TO

statement(s) in which the assigned variable is to be used. The ASSIGN

statement and the assigned GO TO statement(s) must occur in the same

program unit.

For example:

ASSIGN 100 TO NUMBER

This statement associates the variable NUMBER with the statement label

100. Arithmetic operations on the variable, as in the following

statement, then become invalid. For example:

NUMBER = NUMBER+1

is undefined and does not result in a value of 101 being stored in

NUMBER.

Assigning the variable a value with the following arithmetic

assignment statement:

NUMBER=10

dissociates the variable from statement 100. The variable can no

longer be used in an assigned GO TO statement, but has the arithmetic

value 10.

Examples:

valid

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

Invalid/Explanation

ASSIGN 250 TO ERROR (variable must be integer)

CHAPTER 4

CONTROL STATEMENTS

Statements are normally executed in the order in which they are
written. However, you may interrupt normal program flow to transfer
control to another section of the program or to a subprogram.

You can use control statements to transfer control to a point within
the same program unit or to another program unit. Control statements
also govern iterative processing, suspension of program execution, and
program termination.

The control statements are:

® GO TO statement -- transfers control within a program unit

e IF statement -- conditionally transfers control or
conditionally executes a statement

®¢ DO statement -- specifies iterative processing of a specified
group of statements a specified number of times

¢ CONTINUE statement -- transfers control to the next executable
statement

® CALL statement -- transfers control to a subprogram

® RETURN statement -- returns control from a subprogram to the
calling program unit

® PAUSE statement -- temporarily suspends program execution

® STOP statement -- terminates program execution

® END statement -- marks the end of a program unit

The following sections describe these statements, giving their forms
and examples of the ways in which they are used.

GO TO

4.1 GO TO STATEMENTS

GO TO statements transfer control within a program unit. The three
types of GO TO statements are:

® Unconditional GO TO statement

e Computed GO TO statement

® Assigned GO TO statement

CONTROL STATEMENTS

4.1.1 Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the same

statement every time it is executed.

The unconditional GO TO statement has the form:

GO TO s

A statement label.

The statement identified by s must be an executable statement 1in the

same program unit as the GO TO statement.

Examples:

GO TO 7734

GO TO 99999

4.1.2 Computed GO TO Statement

The computed GO TO statement transfers control to a statement

specified by the value of an arithmetic expression.

GO TO (slist)([,] e

slist

A list, called the transfer 1list, of one or more labels of

executable statements separated by commas.

An arithmetic expression whose value is in the range 1 to n,

where n is the number of statement labels in the transfer list.

The computed GO TO statement evaluates e and, if necessary, converts

the result to integer data type. Control 1is transferred to the

statement label in position e in the transfer list.

If the value of e is less than 1 or greater than the number of labels

in the transfer list, control is transferred to the first executable

statement after the computed GO TO.

Examples:

GO TO (12,24,36),INDEX

GO TO (320,330,340,350,360), SITU(J,K)+1

In the first example, if INDEX has a value of 2, execution will be

transferred to statement 24, In the second example, if SITU(J,K) has

a value of 2, execution will be transferred to statement 340.

4.1.3 Assigned GO TO Statement

The assigned GO TO statement transfers control to a statement label

placed in a variable by an ASSIGN statement. Thus, the transfer

destination can be changed, depending on the most recently executed

ASSIGN statement.

CONTROL STATEMENTS

The assigned GO TO statement has the following form:

GO TO v([[,] (slist)]

An integer variable.

slist

A list of one or more labels of executable statements separated
by commas.

The assigned GO TO statement transfers control to the statement whose
label was most recently assigned to the variable v. See Section 3.3
on the ASSIGN statement,

The GO TO statement, the associated ASSIGN statement(s), and the
statements to which control 1is transferred must be executable
statements in the same program unit. If slist is used, the assigned
value of v must be a member of slist.

Examples of assigned GO TO statements are:

ASSIGN 200 TO IGO

GO TO IGO

(This example is equivalent to GO TO 200.)

ASSIGN 450 TO IBEG

GO TO IBEG, (300,450,1000,25)

(This example is equivalent to GO TO 450.)

IF

4.2 1IF STATEMENTS

An IF statement transfers control or executes a statement only if a
specified condition is met. The two types of IF statements are:

e Arithmetic IF statement

e Logical IF statement

For each type, the decision to transfer control or to execute the
statement is based on the evaluation of an expression contained in the
IF statement.

4.2.1 Arithmetic IF Statement

The arithmetic IF statement transfers control to one of three
statements, based on the value of an arithmetic expression.

The arithmetic IF statement has the following form:

IF (e) sl, s2, s3

An arithmetic expression.

sl,s2,s3

Labels of executable statements in the same program unit.

CONTROL STATEMENTS

All three labels (sl,s2,s3) are required; however, they need not

refer to three different statements.

The arithmetic IF statement first evaluates the expression (e) 1in
parentheses. Then,

If e is: Control passes to:

Less than 0 Label sl

Equal to O Label s2

Greater than 0 Label s3

Some examples

IF (THETA-CHI) 50,50,100

This statement transfers control to statement 50 if the real variable
THETA 1is less than or equal to the real variable CHI. Control passes

to statement 100 only if THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40,20

This statement transfers control to statement 40 if the value of the

integer variable NUMBER is even; it transfers control to statement 20

if the value is odd.

4.2.2 Logical IF Statement

The logical IF statement conditionally executes a single FORTRAN
statement based on the evaluation of a logical expression.

The logical IF statement has the following form:

IF (e) st

e

A logical expression.

st

A complete FORTRAN statement. The statement can be any

executable statement except a DO statement, an END statement, or

another logical IF statement.

The logical IF statement first evaluates the logical expression (e).

I1If the wvalue of the expression 1is true, the statement (st) is

executed., If the value of the expression is false, control transfers
to the next executable statement after the 1logical IF and the

statement (st) is not executed. Note that e must yield a 1logical
value.

Examples of logical IF statements are:

IF (J .GT. 4 .,OR. J .,LT. 1) GO TO 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*(-1.5DO0)

LOGICAL ENDRUN

IF (ENDRUN) CALL EXIT

CONTROL STATEMENTS

DO

4.3 DO STATEMENT

The DO statement specifies iterative processing of a sequence of
statements. The sequence of statements is called the range of the DO
statement, and the DO statement together with its range 1is called a
"DO loop."

The DO statement has the following form:

DO s[,] v=el,e2[,e3]

S

The label of an executable statement. The statement must
physically follow in the same program unit.

\'

An integer variable.

el,e2,e3

Integer expressions,

The variable v is called the control variable; el, e2, and e3 are the
initial, terminal, and increment parameters, respectively. If you
omit the increment parameter, a default increment value of 1 is used.

s identifies the terminal statement of the DO loop. The terminal
statement must not be:

¢ A GO TO statement

® An arithmetic IF statement

®¢ An END statement

e A RETURN statement

® A DO statement

The range of the DO statement is all the statements that follow the DO
statement, up to and including the terminal statement.

The DO statement first evaluates the expressions el, e2, and e3 to
determine values for the initial, terminal, and increment parameters,
respectively. The value of the initial parameter is assigned to the
control wvariable. The executable statements in the range of the DO
loop are then executed repeatedly. The exact mechanism is explained
in Section 4.3.1,

If the increment parameter (e3) is positive, the terminal parameter
(e2) must be greater than or equal to the initial parameter (el).
Conversely, if e3 is negative, e2 must be less than or equal to el.
The increment parameter (e3) cannot be 0.

CONTROL STATEMENTS

The number of executions of the DO range, called the iteration count,

is given by:

e2 - el

e3

where [X] means the greatest integer 1in X, that is, the greatest

integer less than the absolute value of X and with the same sign.

1f the iteration count is 0 or negative, the DO loop is executed once.

4.3.1 DO Iteration Control

After each execution of the DO range, the following actions are taken:

1. The value of the increment parameter is algebraically added

to the control variable.

2. The iteration count is decremented by 1.

3, 1If the iteration count is greater than 0, control transfers

to the first executable statement after the DO statement for

another iteration of the range.

4. If the iteration count is 0, execution of the DO statement

terminates.

You can also terminate execution of a DO statement by wusing a

statement within the range that transfers control outside the loop.

The control variable of the DO statement remains defined with its

current value.

When execution of a DO loop terminates, if other DO 1loops share its

terminal statement, control transfers outward to the next outer DO

loop in the DO nesting structure (see Section 4.3.2). If no other DO

loop shares the terminal statement, or if this DO loop is outermost,

control transfers to the first executable statement after the terminal

statement,

You cannot alter the value of the control variable within the range of

the DO 1loop. However, you can reference the control variable for

other purposes in statements within the range.

The range of a DO statement can contain other DO statements, as long

as these nested DO loops meet certain requirements. See Section

4.3.2.

You cannot transfer control into the range of a DO 1loop. Exceptions

to this rule are described in Sections 4.3.3 and 4.3.4.

Examples of DO statements follow.

valid

DO 100 K=1,50,2

This statement specifies 25 iterations; K=49 during the final

iteration.

CONTROL STATEMENTS

This statement specifies 27 iterations; J=-2 during the final
iteration.

DO 25 IVAR=1l,5

This statement specifies 5 iterations; IVAR=5 during the final
iteration.

Invalid/Explanation

DO NUMBER=5,40,4 (the statement label is missing)

DO 40 M=2.,10 (a decimal point has been typed for a

comma)

Note that in the last invalid example, the statement

DO40M = 2.10

is an unintentionally valid arithmetic assignment statement.

4,3.2 Nested DO Loops

A DO loop can include one or more complete DO loops. The range of an

inner-nested DO loop must lie completely within the range of the next
outer loop. Nested loops can share a terminal statement. Figure 4-1

illustrates nested loops.

Correctly Nested Incorrectly Nested

DO Loops DO Loops

r DO 45 K=1,10 F DO 15 K=1,10

B DO 35 L=2,50,2 DO 25 L=1,20

. 35 CONTINUE 15 CONTINUE

DO 45 M=1,20 DO 30 M=1,15

|_ L. 45 CONTINUE

| 25 CONTINUE

30 CONTINUE

Figure 4-1: Nested DO Loops

4.,3.3 Control Transfers in DO Loops

Within a nested DO loop, you can transfer control from an inner loop

to an outer loop; however, a transfer from an outer loop to an inner

loop is not permitted.

CONTROL STATEMENTS

If two or more nested DO loops share the same terminal statement, you

can transfer control to that statement only from within the range of
the innermost loop. Since the shared terminal statement 1is part of
the innermost 1loop, any transfer to the terminal statement from an

outer loop is an invalid transfer.

4.3.4 Extended Range

A DO loop has an extended range if it contains a control statement

that transfers control out of the loop and if, after execution of one
or more statements, another control statement returns control back

into the loop. Thus, the range of the loop is extended to include all
executable statements between the destination statement of the first
transfer and the statement that returns control to the loop.

The following rules govern the use of a DO statement extended range:

1. A transfer into the range of a DO statement is permitted only
from its extended range.

2. Statements in the extended range must not change the control

variable.

Figure 4-2 illustrates valid and 1invalid extended range control
transfers.

valiad Invalid

Control Transfers Control Transfers

» DO 35 K=1,10 GO TO 20

DO 15 L=2,20 B DO 50 K=1,10

GO TO 20 20 A=B+C

15 CONTINUE DO 35 L=2,20

DO . .

Loop 20 A=B+C 30 D=E/F

B DO 35 M=1,15 35 CONTINUE

GO TO 50 GO TO 40

30 X=A*D DO 45 M=1,15

|_ L 35 CONTINUE 40 X=A*D

. 45 CONTINUE

50 D=E/F .

Extended . | 50 CONTINUE

Range . .

GO TO 30 GO TO 30

Figure 4-2: Control Transfers and Extended Range

CONTROL STATEMENTS

CONTINUE

4,4 CONTINUE STATEMENT

The CONTINUE statement transfers control to the next executable
statement. It is used primarily as the terminal statement of a DO
loop when that loop would otherwise end with a prohibited control
statement such as a GO TO or arithmetic IF.

The CONTINUE statement has the following form:

CONTINUE

CALL

4.5 CALL STATEMENT

The CALL statement executes a SUBROUTINE subprogram or other external
procedure. It can also specify an argument list for the subroutine.
(See Chapter 6 for the greater detail on the definition and use of a
subroutine) . :

The CALL statement has the following form:

CALL s[([a)l[,[al])...)]

S

The name of a SUBROUTINE subprogram or other external procedure;
or a dummy argument associated with a SUBROUTINE subprogram or
other external procedure.

a

An actual argument. (Section 6.1 describes actual arguments.)

If you specify an argument list, the CALL statement associates the
values in the 1list with the dummy arguments in the subroutine. It
then transfers control to the first executable statement of the
subroutine.

The arguments in the CALL statement must agree in number, order, and
data type with the dummy arguments in the subroutine. They can be
variables, arrays, array elements, constants, expressions, Hollerith
constants, alphanumeric literals, ox subprogram names. An
unsubscripted array name in the argument list refers to the entire
array.

Examples of CALL statements are:

CALL CURVE (BASE,3.14159+X,Y,LIMIT,R(LT+2))

ICALL PNTOUT (A,N,'ABCD')

CALL EXIT

CONTROL STATEMENTS

RETURN

4.6 RETURN STATEMENT

The RETURN statement is used to return control from a subprogram to

the calling program. It has the following form:

RETURN

When a RETURN statement is executed in a function subprogram, control

is returned to the statement that contains the function reference (see

Chapter 6). When a RETURN statement is executed 1in a subroutine

subprogram, control is returned to the first executable statement

following the CALL statement.

RETURN statement example:

SUBROUTINE SIZCHK (N,K)

IF (N) 10,20,30

10 =-1

RETURN

20 K=0

RETURN

30 K=+1

RETURN

END

PAUSE

4,7 PAUSE

The PAUSE statement temporarily suspends program execution and

displays a message on the terminal to permit you to take some action.

The PAUSE statement has the following form:

PAUSE [disp]

disp

An alphanumeric literal, a decimal digit string of one to five

digits, or an octal constant.

The disp argument is optional. The effect of a PAUSE statement

depends on how your program is being executed. If it is running as a

batch job, the contents of disp are written to the system output file

but the program is not suspended.

1f the program is running in interactive mode, the contents of disp

are displayed at your terminal, followed by the prompt sequence

indicating that the program is suspended; you should then enter a

control command, after which execution resumes with the first

executable statement following the PAUSE. Because the command 1is

specific to the operating system, it is not given here.

Some examples of PAUSE statements are:

PAUSE 999

PAUSE '"MOUNT NEXT TAPE'

CONTROL STATEMENTS

STOP

4.8 STOP STATEMENT

The STOP statement terminates program execution and returns control tothe operating system.

The STOP statement has the following form:

STOP [disp]

disp

An alphanumeric literal, a decimal digit string of one to fivedigits, or an octal constant.

The disp argument, if present, specifies a message to be displayedwhen execution stops.

Example of STOP statements are:

STOP 98

STOP 'END OF RUN'

STOP

END

4.9 END STATEMENT

The END statement marks the end of a program unit, It must Dbe the
last source line of every program unit.

The END statement has the following form:

END

The END statement must not occur on a continuation 1line or becontinued,

In a main program, if no STOP statement prevents execution fromreaching the END statement, program execution terminates. In asubprogram, a RETURN statement is implicitly executed.

CHAPTER 5

SPECIFICATION STATEMENTS

Specification statements are nonexecutable statements that let vyou
allocate and initialize variables and arrays, and define other
characteristics of the symbolic names used in the program.

The specfication statements are:

e IMPLICIT statement -- specifies the implied data type of
symbolic names

® Type declaration statement -- explicitly declares the data
type of specified symbolic names

¢ DIMENSION statement -- declares the number of dimensions in an
array and the number of elements in each dimension

e COMMON statement -- reserves one or more contiguous areas of
storage

e VIRTUAL statement -- reserves space for one or more arrays to
be located outside normal program storage

® EQUIVALENCE statement -- associates two or more entities with
the same storage location

¢ EXTERNAL statement -- declares the specifed symbolic names to
be external procedure names

® DATA statement -- assigns initial values to variables, arrays,
and array elements before program execution

® PROGRAM statement -- assigns a symbolic name to a main program
unit

¢ BLOCK DATA statement -- establishes a BLOCK DATA program unit
in which initial values may be assigned to entities contained
in common blocks

The following sections describe these statements, giving their forms
and examples of their usage.

IMPLICIT

5.1 IMPLICIT STATEMENT

By default, all names beginning with the 1letters I through N are
interpreted as integer data, and all names beginning with any other

SPECIFICATION STATEMENTS

letter are interpreted as real. The IMPLICIT statement permits you to

change these default data typing rules.

The IMPLICIT statement has the following form:

IMPLICIT typ(al,al...)[,typ(al,al...)])...

typ
One of the data type specifiers. (See Table 2-2.)

An alphabetic specification in one of two forms: ¢ or cl-c2,

where c¢ is an alphabetic character. The latter form specifies a

range of letters, from ¢l through c¢2, which must occur in

alphabetical order.

The IMPLICIT statement assigns the specified data type to all symbolic

names that begin with any specified 1letter, or any letter in a

specified range, and which have no explicit data type declaration.

For example:

IMPLICIT INTEGER (I,J,K,L,M,N)

IMPLICIT REAL (A-H, 0-2Z)

These statements specify the default in the absence of any explicit

statement.

IMPLICIT statements must precede all other specification statements,

and all executable statements.

You cannot label IMPLICIT statements.

Any data type can be specified in an IMPLICIT statement, as the

following examples show:

IMPLICIT DOUBLE PRECISION (D)

IMPLICIT COMPLEX (S,Y), LOGICAL*l (L,A-C)

TYPE DECLARATION

5.2 TYPE DECLARATION STATEMENTS

The type declaration statement explicitly gives a data type to

specified symbolic names.

The type declaration statement has the following form:

typ vi,v]...

typ o
One of the data type specifiers (see Table 2-2).

The symbolic name of a variable, array, statement function,

function subprogram, or an array declarator.

The following rules apply to a type declaration statement:

e A type declaration statement must precede all executable

statements.

@ You can declare the data type of a symbolic name only once.

5-2

SPECIFICATION STATEMENTS

® You cannot label a type declaration statement.

® You can use a type declaration statement to declare an array
by appending an array declarator (see Section 2.5.1) to an
array name.,

A symbolic name can be followed by a data type length specifier of the
form *s, where s is one of the acceptable lengths for the data type
being declared (see Table 2-2). Such a specification overrides the
length attribute that the statement implies, and assigns a new length
to the specified item. If you specify both a data type length
specifier and an array declarator, the data type length specifier goes
first. Examples of type declaration statements are:

INTEGER COUNT, MATRIX (4,4), SUM

REAL MAN, IABS

LOGICAL SWITCH

INTEGER*2 Q, M12*4, IVEC*4 (10)

REAL* WX1l, WX3*4, WX5, WX6*8

DIMENSION

5.3 DIMENSION STATEMENT

The DIMENSION statement specifies the number of dimensions in an array
and the number of elements in each dimension.

The DIMENSION statement has the following form:

DIMENSION a(d)[,a(d)]...

a(d)

An array declarator (see Section 2,5.1).

a

The symbolic name of an array.

d

A dimension declarator.

The DIMENSION statement allocates one storage element to each array
element in each dimension of each array. The data type of the array
determines the length of a storage element. Moreover, the total
number of storage elements assigned to an array is equal to the
product of its dimension declarators. For example:

DIMENSION ARRAY(4,4), MATRIX(5,5,5)

This statement defines ARRAY as having 16 real elements of 4 Dbytes
each, and defines MATRIX as having 125 integer elements of 2 bytes
each.

You can also use array declarators in type declaration, COMMON, and
VIRTUAL statements. However, in each program unit, you can use an
array name in only one array declarator.

You cannot label DIMENSION statements.

SPECIFICATION STATEMENTS

Examples of DIMENSION statements are:

DIMENSION BUD(12,24,10)

DIMENSION X(5,5,5),Y(4,85),2(100)

DIMENSION MARK(4,4,4,4)

For further information on arrays and on storing array elements, see

Section 2.5.

COMMON

5.4 COMMON STATEMENT

A COMMON statement reserves one or more contiguous blocks of storage.

A symbolic name identifies each block; however, you can omit a

symbolic name for the blank common block in a program unit. COMMON

statments also specify the order of variables and arrays in each

common block.

The COMMON statement has the following form:

COMMON [/[cbl/] nlist[[,]/[cb]/ nlist]...

cb

A symbolic name, called a common block name. cb can be Dblank.

If the first cb is blank, you can omit the first pair of slashes.

nlist

A list of variable names, array names, and array declarators

separated by commas.

A common block name can be the same as a variable or array name.

However, it cannot be the same as a function name or subroutine name

in the executable program (see Section 2.1).

When you declare common blocks of the same name in different program

units, these names are all associated with the same storage area when

the program units are combined into an executable program. For

example:

PROGRAM MAIN

COMMON /BLOCK1/ICOUN, IHOL/BLOCK2/ICHK

CALL GSUB

END

SUBROUTINE GSUB

COMMON /BLOCK2 /JCHK (10) /BLOCKL /JCOUN, JHOL

END

In the example, BLOCKl in MAIN and BLOCK1 in GSUB are associated with

the same storage area, as are the BLOCK2s,

You can have only one blank common block in an executable program, but

you can have any number of named common blocks.

SPECIFICATION STATEMENTS

Entities are assigned storage in common blocks on a one-for-one basis.
In the above example, ICOUN and JCOUN are associated with the same
storage space in BLOCKl because they each occur first in the list.

Entities assigned by a COMMON statement in one program unit should
agree in data type with entities placed in one-to-one correspondence
with them in the same common block by another program unit. For
example, if one program unit contains the statement.

COMMON CENTS

and another program unit contains the statement

INTEGER*2 MONEY

COMMON MONEY

incorrect results may occur when these program units are combined into
an executable program because the 2-byte integer variable MONEY is
made to correspond to the high-order 2 bytes of the real variable
CENTS.

You must not assign LOGICAL*1 or (BYTE) variables or arrays to a
common block in such a way that subsequent data of any other type is
allocated on an odd byte boundary. The compiler supplies no filler
space for common blocks; however, all common block are allocated
beginning on a word (even byte) boundary.

Examples of COMMON statements follow.

Main Program Subprogram

COMMON HEAT,X/BLK1/KILO,Q SUBROUTINE FIGURE
.

COMMON /BLK1/LIMA,R/ /ALFA,BET

CALL FIGURE .
.

RETURN

.
END

The COMMON statement in the main program puts HEAT and X in the blank
common block, and puts KILO and Q in a named common block, BLK1l. The
COMMON statement in the subroutine makes ALFA and BET correspond to
HEAT and X in the blank common block, and makes LIMA and R correspond
to KILO and Q in BLKl.

Valid Usage

LOGICAL*1 CHARS (9)

COMMON/STRING/ILEN,CHARS

Invalid Usage

LOGICAL*1 CHARS (9)

COMMON/STRING/CHARS,ILEN

In the second example, the integer variable ILEN is allocated on an
odd byte address.

SPECIFICATION STATEMENTS

VIRTUAL

5.5 VIRTUAL STATEMENT

A virtual array is an array whose storage is allocated in physical

main memory outside of the program's directly addressable main memory.

The use of virtual arrays in a program frees directly addressable

memory for executable code and other data storage.

The VIRTUAL statement specifies a virtual array. It specifies the

number of dimensions, and the number of elements in each dimension.

The VIRTUAL statement has the following form:

VIRTUAL a(d) [,a(d)]...

a(d)
An array declarator (see Section 2.5.1).

a

The symbolic name of an array.

4

A dimension declarator.

The maximum total directly addressable space available to user

programs executing on a PDP-11 family computer is 64K, or 65,536

bytes. An array can have a maximum of 32,767 elements of from 1 to 8

bytes per element. A maximum LOGICAL*1 array of 1 byte per element

would require 32,767 bytes of storage space. A maximum COMPLEX array

of 8 bytes per element would require 262,136 bytes of storage space,
a

requirement far beyond the 64K limit on directly-addressable memory.

Virtual arrays are placed in external main memory without

significantly diminishing the 64K of directly-addressable memory

available to programs.

NOTE

Virtual arrays are not supported on all

PDP-11 operating systems. See the

appropriate PDP-11 FORTRAN IV user's

guide for more information.

Examples:

VIRTUAL A(1000), LARG(180,180), MULT (4,4,4,4,4,4,4)

The above example defines a one-dimensional array named A having 1000

elements, a two-dimensional array named LARG having 32400 elements,

and a seven-dimensional array named MULT having 16384 elements.

The data type of a virtual array is specified in the same way as the

data type of any other variable or array, that is, either implicitly

according to the first letter of the name or explicitly in a type

declaration statement.

For further information concerning arrays and their storage, see

Section 2.5.

SPECIFICATION STATEMENTS

5.5.1 Restrictions on the Use of Virtual Arrays

The names of virtual arrays and virtual array elements must not be
used in some contexts:

1. A virtual array name must not be used in a COMMON statement
(Section 5.4).

2. The name of a virtual array or virtual array element must not
be used in an EQUIVALENCE statement (Section 5.6) .

3. A virtual array or virtual array element cannot be assigned
an initial value by a DATA statement (Section 5.8).

4. Virtual arrays cannot be used to contain run-time format
specifications (Section 8.6). The name of a virtual array or
virtual array element must not appear as a format specifier
in an I/0 statement.

5. The name of a virtual array or virtual array element must not
be specified as the buffer argument (third argument inside
parentheses) of an ENCODE or DECODE statement (Section 7.6).

6. The name of a virtual array element must not be used as an
actual argument to a subprogram if the subprogram assigns a
value to the corresponding dummy argument (Section 6.1).

7. The name of a virtual array or virtual array element cannot
be wused to specify the NAME keyword in an OPEN statement
(Section 9.1.13).

Examples:

Valid Usage

VIRTUAL A(1000),B(2000)

READ(1,*) A

DO 10,1I=1,1000

10 B(I)=-A(I)*2

WRITE(2,*) (A(I),I=1,1000)

CALL SUB (A,B)

Invalid Usage

VIRTUAL A(10)

DATA A(l)/2.5/ (Used in DATA statement)
COMMON /X/ A (Used in COMMON statement)
EQUIVALENCE (A(l),Y) (Used in EQUIVALENCE statement)
WRITE(1,A) X,Y (Used as format specifier)
ENCODE(4,100,A(3)) X,Y (Used as ENCODE output buffer)

5.5.2 Virtual Array References in Subprograms

A dummy argument declared as a virtual array can only become
associated with an actual argument that is also the name of a virtual
array.

An actual argument that is a reference to a virtual array element can
become associated only with a dummy argument declared as a simple
variable (see Section 2.4). 1In effect, an actual argument that is a

SPECIFICATION STATEMENTS

virtual array element is treated as an expression. Furthermore, a

value must have been assigned to the element before it is used as an

actual argument. The subprogram must not alter the value of the

corresponding dummy argument.

EXAMPLES:

Valid Usage

VIRTUAL A(1000),B(1000)

B(3)=0.5

CALL SCALE(A,1000,B(3))

END

SUBROUTINE SCALE (X,N,W)

VIRTUAL X (N)

S=0

DO 10, I=1,N

10 S=S+X(I)*W

TYPE *,S

END

Invalid Usage

VIRTUAL A(1000)

REAL B(4000)

CALL ABC(A,B,A,(3))

END

SUBROUTINE ABC(X,Y,Z)

REAL X (1000) (Actual argument is virtual)

VIRTUAL Y (4000) (Actual argument is nonvirtual)

Z=2.3 (Actual argument is virtual array

END element)

EQUIVALENCE

5.6 EQUIVALENCE STATEMENT

The EQUIVALENCE statement partially or totally associates two or more

entities in the same program unit with the same storage location.

The EQUIVALENCE statement has the following form:

EQUIVALENCE (nlist) [,(nlist)]...

nlist

A list of variables, array elements, and arrays separated by

commas. You must specify at least two entities in each list.

The EQUIVALENCE statement allocates all of the entities in each 1list

beginning at the same storage location.

In an EQUIVALENCE statement, each expression in a subscript reference

must be an integer constant. '

Dummy arguments, virtual arrays, and virtual array elements may not be

used in an EQUIVALLENCE statement.

SPECIFICATION STATEMENTS

You must not equivalence LOGICAL*1l arrays with other elements in such
a way that subsequent data of any other type is allocated on an odd
byte boundary.

An array name used in an EQUIVALENCE statement refers to the first
element of the array.

You can equivalence variables of different numeric data types, such
that each entity begins at the same address. Furthermore, you can
store multiple components of one data type with a single component of
a higher-ranked data type. For example, if you make an integer
variable equivalent to a complex variable, the integer variable shares
storage with the real part of the complex variable.

Examples of EQUIVALENCE statements are:

Valid Usage

DOUBLE PRECISION DVAR

INTEGER*2 IARR(4)

EQUIVALENCE (DVAR,IARR(1l))

This EQUIVALENCE statement makes the four elements of the integer
array IARR occupy the same storage as the double precision variable
DVAR.

Invalid Usage

LOGICAL*1 BYTES (10)

EQUIVALENCE (ILEN, BYTS(2))

In the above example, the integer variable ILEN is allocated on an odd
byte address.

5.6.1 Making Arrays Equivalent

When you make an element of one array equivalent to an element of
another array, the EQUIVALENCE statement also sets equivalences
between the corresponding elements of the two arrays. Thus, if the
first elements of two equal-sized arrays are made equivalent, both
arrays share the same storage space. I1f, for example, the third
element of a 7-element array is made equivalent to the first element
of another array, the last five elements of the first array overlap
the first five elements of the second array.

You must not use the EQUIVALENCE statement to assign the same storage
location to two or more elements of the same array. You also must not
attempt to assign memory locations in a way that is inconsistent with
the normal linear storage of array elements. For example, you cannot
make the first element of one array equivalent to the first element of
another array and then attempt to set an equivalence between the
second element of the first array and the sixth element of the other
array.

Some examples of the use of the EQUIVALENCE statement follow.

DIMENSION TABLE (2,2), TRIPLE (2,2,2)

EQUIVALENCE (TABLE(2,2), TRIPLE(1,2,2))

As a result of these statements, the entire array TABLE shares part of
the storage space allocated to array TRIPLE. Figure 5-1 shows how
these statements align the arrays.

SPECIFICATION STATEMENTS

Array TRIPLE Array TABLE

Array Element Array Element

Element Number Element Number

TRIPLE(1,1,1)

TRIPLE(2,1,1)

TRIPLE(l,2,1)

TRIPLE(2,2,1)

TRIPLE(1,1,2)

TRIPLE(2,1,2)

TRIPLE(1,2,2)

TRIPLE(2,2,2)

TABLE(1,1)

TABLE(2,1)

TABLE (1,2)

TABLE (2,2)

W
U
W
N

-

O
l

Figure 5-1: Equivalence of Array Storage

The following statements also align the two arrays as shown in Figure

5-~1:

EQUIVALENCE (TABLE,TRIPLE(2,2,1))

EQUIVALENCE (TRIPLE(l,1,2), TABLE(2,1))

In the EQUIVALENCE statement only, you can identify an array element

with a single subscript (that is, the linear element number), even

though the array was defined as a multidimensional array. For

example, the following statement aligns the two arrays as shown in

Figure 5-1:

EQUIVALENCE (TABLE(4), TRIPLE(7))

5.6.2 Extending Common Blocks

When you make entities equivalent to other entities stored in a common

block, the common block can be extended beyond its original boundaries

to include the entities specified in the EQUIVALENCE statement. But

you can extend the common block only beyond the last element of the

previously established common block. You cannot extend the common

block in such a way as to place the extended portion before the first

element of the existing common block. The following examples show

valid and invalid extensions of the common block:

valid

DIMENSION A(4),B(6) A(l) A(2) A(3) A(4)

COMMON A

EQUIVALENCE (A(2),B(1l)) B(l) B(2) B(3) B(4) B(5) B(6)
~ g S ~— vy

Existing Extended

Common Portion

Invalid

DIMENSION A(4),B(6) A(l) A(2) A(3) A(4)

COMMON A

EQUIVALENCE (A(2),B(3)) B(1l) B(2) B(3) B(4) B(5) B(6)

\V_/\ —~ — - ~ 7

Ex tended Existing Common Extended

Portion Portion

If you assign two entites to common blocks, you cannot make them

equivalent to each other.

SPECIFICATION STATEMENTS

EXTERNAL

5.7 EXTERNAL STATEMENT

The EXTERNAL statement lets you use external procedure names as actual
arguments to other subprograms.

An external procedure can be a user-supplied function or subroutine
subprogram (Section 6.2) or a FORTRAN library function (Section 6.3).

The EXTERNAL statement has the following form:

EXTERNAL v {,v}...

The symbolic name of a subprogram or the name of a dummy argument
associated with a subprogram name.

The EXTERNAL statement declares that each name 1in the list is an
external procedure name. Such a name can then appear as an actual
argument to a subprogram; the subprogram can use the associated dummy
argument name in a function reference or CALL statement.

Note, however, that a complete function reference used as an argument
(for example, SQRT(B) in CALL SUBR(A,SQRT(B) ,C)) represents a value,
not a subprogram name. The function name need not be defined in an
EXTERNAL statement.

:

An example of the EXTERNAL statement is:

Main Program Subprograms

EXTERNAL SIN,COS,SINDEG SUBROUTINE TRIG (X,F,Y)

EXTERNAL F

.
Y = F(X)

.
RETURN

CALL TRIG (ANGLE,SIN,SINE) END

CALL TRIG (ANGLE,COS,COSINE)

CALL TRIG (ANGLE,SINDEG,SINE)

. FUNCTION SINDEG (X)

.
SINDEG = SIN (X*3.14159/180)

.
RETURN

END

In the example, SIN and COS are trigonometric functions supplied 1in
the FORTRAN library, and SINDEG is a user-supplied function. The CALL
statements pass the name of a function to the subroutine TRIG. The
function reference F (X) subsequently invokes the function in the
second statement of TRIG. Depending on which CALL statement invoked
TRIG, the second statement is equivalent to one of the following:

SIN (X)

COS (X)

SINDEG (X)

Y

Y

Y

SPECIFICATION STATEMENTS

DATA

5.8 DATA STATEMENT

The DATA statement assigns initial values to variables, arrays, and

array elements before program execution,

The DATA statement has the following form:

DATA nlist/clist/[[,)nlist/clist/]...

nlist

A list of one or more variable names, array names, Or array

element names, separated by commas, to which the values in clist

are to be assigned sequentially on a one-for-one basis.

Subscript expressions must be integer constants.

clist

A list of constants, separated by commas, to be assigned to

nlist. Clist constants have one of the following forms:

val

n * val

Used when you specify clist as n * val. Specifies the number of

times the same value is to be assigned to successive entities in

the associated nlist. The value of n is a nonzero, unsigned

integer constant.

The DATA statement assigns the constant values in each <clist to the

entites in the preceding nlist. Values are assigned one for one in

the order in which they appear, from left to right.

The number of constants must correspond exactly to the number of

entities in the preceding nlist.

When an unsubscripted array name appears in nlist, values are assigned

to every element. The associated constant list must therefore contain

enough values to fill the array. Array elements are filled 1in the

order of subscript progression.

Dummy arguments, virtual arrays, and virtual array elements may not be

initialized in DATA statements.

When a Hollerith constant or alphanumeric literal is assigned to a

variable or array element, the number of characters that can be

assigned depends on the data type of the component (see Table 2-2).

If the constant contains fewer characters than the capacity of the

variable or array element, the constant is extended on the right with

spaces. 1f the constant contains more characters than can be stored,

the constant is truncated on the right.

Examples of the DATA statement are:

INTEGER A(10)

BYTE BELL,TAB,LF,FF,ACHR,ZCHR

DATA A, BELL,TAB,LF,FF,ACHR,ZCHR/10*0,7,9,10,12'A"',1HZ/

SPECIFICATION STATEMENTS

In the example, the DATA statements assign 0 to all 10 elements of
array A, and the ASCII control character codes are assigned to the
byte variables BELL, TAB, LF, FF.

Some other examples are:

REAL X (5)

COMPLEX 72

DATA X/2*—3.,4.,2*0.37/,Z/(l.0,-3.0)/

PROGRAM

5.9 PROGRAM STATEMENT

The PROGRAM statement assigns a symbolic name to a main program unit.,

The PROGRAM statement has the following form:

PROGRAM nam

nam

A symbolic name,

The PROGRAM statement is optional. If you use it, it must be thefirst statement in the main program. The symbolic name must not be
the name of any entity within the main program. It also must not bethe same as the name of any subprogram, entry, or common block in the
same executable program (see Section 2.1),

The PROGRAM statement must not have a statement label.

BLOCK DATA

5.10 BLOCK DATA STATEMENT

The BLOCK DATA statement begins a special type of program unit whose
only purpose is to declare common blocks and to define data in commonblocks. Therefore, the BLOCK DATA program wunit can contain only
nonexecutable statements.

The BLOCK DATA statement has the following form:

BLOCK DATA [nam]

nam

A symbolic name.

You can use only type declaration, IMPLICIT, DIMENSION, COMMON,
EQUIVALENCE, and DATA statements following a BLOCK DATA statement.The last statement in a BLOCK DATA program unit must be an END
statement., ‘

A BLOCK DATA program unit must not contain any executable statements.
A BLOCK DATA statement must not have a statement label.

SPECIFICATION STATEMENTS

If you use a BLOCK DATA program unit to initialize any entity in a

common block, you must provide a complete set of data type

specification statements for all the entities 1in the block, even

though some of the entities are not assigned an initial value in a

DATA statement. You can use the same BLOCK DATA program unit to

define initial values for more than one common block.

An example of a BLOCK DATA program unit is:

BLOCK DATA BLKDAT

INTEGER S,X

LOGICAL T,W

DOUBLE PRECISION U

DIMENSION R(3)

COMMON /AREAl/R,S,T,U,/AREA2/W,X,Y

DATA R/1.0,2*2.0/,T/.FALSE./,U/0.214537D-7/,W/.TRUE./,Y/3.5/

END

In the example, enough information 1is provided to explicitly or

implicitly declare the data type of every variable in the common

blocks AREA1l and AREA2. Not all the variables appear in the DATA

statement. '

CHAPTER 6

SUBPROGRAMS

A subprogram is one or a group of statements that define a computing
procedure. A subprogram is invoked when a statement that references
the subprogram is executed. The referencing statement is located, in
some cases, in the same program wunit and, in other cases, in a
different program unit.

Subprograms are of two kinds: either user-written or supplied as part
of the FORTRAN system.

User-written subprograms are of three kinds:

® Statement functions

e Functions

® Subroutines

There is one kind of reference to FORTRAN library functions:

® Processor-defined function references

In many cases, the program that references the subprogram passes
values, called actual arguments, to the subprogram, which uses the
actual arguments to compute the results. The subprogram specifies
entities, called dummy arguments, to receive the actual arguments.
Values may in turn be passed back to the referencing program.

In the discussion below, Section 6.1 describes actual and dummy
arguments; Section 6.2 describes user-written subprograms; and
Section 6.3 describes system-supplied subprograms.

6.1 SUBPROGRAM ARGUMENTS

A subprogram argument is an entity which passes a value to or from a
subprogram. Actual arguments are specified in the statement
referencing the subprogram. Dummy arguments are specified in the
definition of the subprogram and are associated with actual arguments
on a one-to-one basis when control is transferred to the subprogram.
Each dummy argument takes on the value of the corresponding actual
argument; and any value assigned to the dummy argument in the
subprogram also 1is assigned to the corresponding actual argument.
When the subprogram returns, the association of actual and dummy
arguments ends. There 1is no retention of argument association from
one reference of a subprogram to the next.

For example, if (I,J(3),4) is a list of actual arguments and (K,L,M)
is an associated list of dummy arguments, K is associated with I, L is
associated with J(3), and M has a value of 4.

SUBPROGRAMS

6.1.1 Rules Governing Subprogram Arguments

Actual arguments can be constants, variables, expressions, arrays,

array elements, or subprogram names. Dummy arguments as specified in

the subprogram definition appear as unsubscripted variable names.

Actual arguments must agree in order, number, and data type with the

dummy arguments with which they are associated.

Dummy arguments are symbolic names which become associated with

variables, arrays, or subprograms defined or declared in other program

units. A dummy argument is wundefined if it is not currently

associated with an actual argument.

Although dummy arguments are not variables, arrays, Or subprograms,

each dummy argument may be declared as though it were a variable,

array, or subprogram. Each dummy argument name is declared with the

attributes of the associated actual argument.

If the actual argument is a constant, expression, subprogram name, Of

virtual array element reference, the corresponding dummy argument may

not be modified.

A dummy argument declared as an array can be associated only with an

actual argument that 1is an array or array element of the same data

type. If the actual argument is an array, the dummy argument array

must not be larger than the actual argument array.

If the actual argument is an array element, the dummy argument array

will be associated with elements of the actual argument array starting

from the actual argument. In this case, the dummy argument array must

not be larger than the number of elements remaining in the actual

argument array.

Valid Usage

PROGRAM MAIN

DIMENSION A(10), B(5.5)

CALL X(A, B(1l,2))

END

SUBROUTINE X(Y,Z)

DIMENSION Y (10), Z(5,2)

END

Invalid Usage

PROGRAM MAIN

DIMENSION A(10), B(5,5)

CALL X(A,B(1,21)

END

SUBROUTINE X (C,D)

DIMENSION C(12) (dummy array must not be larger than actual
array)

DIMENSION D(5,5) (dummy array must not be larger than number

END of elements remaining in actual array)

SUBPROGRAMS

6.1.2 Adjustable Arrays

An adjustable array is a dummy argument array declared in a subprogram
with dimensions that can be changed or "adjusted" to match the
dimensions of the associated actual argument array in the referencing
program. An adjustable array declarator contains integer variables,
as well as constants, in the dimension declarators.

The following rules govern the use of adjustable arrays:

® The adjustable array must be a dummy argument of the
subprogram.

e The adjustable array must become associated with an actual
argument that is an array.

® The size of the adjustable array must be less than or equal to
the size of the actual array.

® Variables in the adjustable array declarator that represent
the adjustable dimensions must be of the integer data type.

® Variables in the adjustable array declarator must be dummy
arguments of the subprogram, and the corresponding actual
arguments must have a defined value.

For example,

PROGRAM MAIN

DIMENSION Al1(10,35), A2(3,56)

SUM1 = SUM(Al1,10,35)

SUM2 = SUM(A2,3,56)

SUM3 = SUM(A1l,10,10)

END

FUNCTION SUM (A,M,N)

DIMENSION A (M,N)

SUM = 0.0

DO 10 J = 1,N

DO 10 I = 1,M

10 SUM = SUM + A

RETURN

END

(I,J)

In the example, Al and A2 are actual arrays and A is the adjustable
array. The function subprogram computes the sum of specified sections
of Al or A2. Note that the dummy arguments M and N are used to
control the DO statement iteration as well as to specify the size of
A,

For more information on array declarators, see Section 2.5.1.

6.2 USER-WRITTEN SUBPROGRAMS

A user-written subprogram is a FORTRAN statement or group of FORTRAN
statements that perform a computing procedure. A computing procedure
can be a series of either arithmetic operations or FORTRAN statements.
You can use subprograms to perform a computing procedure in several
places in your program, and thus avoid having to duplicate the series
of operations or statements in each place.

SUBPROGRAMS

There are three types of user-written subprograms. Table 6-1 1lists

each type of subprogram, the statements needed to define it, and the

method of transferring control to the subprogram.

Table 6-1: Types of User-Written Subprograms

Control Transfer

Subprogram Defining Statements Method

Statement Statement function Function reference

function definition

Function subprogram FUNCTION Function reference
RETURN

Subroutine subprogram SUBROUTINE CALL statement

. RETURN

A function reference consists of the function name and the function

arguments and is used in an expression. The function returns a value

that is used in place of the reference in the expression in which it

appears.

Function and subroutine subprograms can change the values of their

arguments and the calling program can use the changed values.

A subprogram can refer to other subprograms, but it cannot, either

directly or indirectly, refer to itself.

6.2.1 Statement Functions

A statement function is a single-statement computation specified by a

symbolic name. When you reference the statement function name, with

its arguments, in an expression, the computation defined by the

statement Ffunction name is performed and the resulting value replaces

the statement function name in evaluating the expression. Statement

functions are defined and referenced within a single program unit.

The statement function definition statement has the following form:

£ ([pl,pl...]1)=e

f

The name of the statement function.

p
A dummy argument.

e

An expression.

The expression (e) is an arithmetic or logical expression that defines

the computation to be performed.

SUBPROGRAMS

A statement function reference has the following form:

£ (lal[,al...])

The name of the function.

An actual argument.

When a statement function reference appears 1in an expression, the

values of the actual arguments are associated with the dummy arguments

in the statement function definition. The expression in the

definition is then evaluated. The resulting value is used to complete

the evaluation of the expression containing the function reference.

The following rules govern the use of statement functions:

e Statement function names must be . unique within the same

program unit.,

e A statement function reference must appear in the same program

unit as its definition.

¢ A statement function definition statement can include a

reference to another statement function, which must be defined

earlier in the same program unit.

e Statement function definitions must be placed before all

executable statements (see Figure 1-3).

e The data type of the resulting value assigned to the name 1is

determined either implicitly by the first letter of the name,

or explicitly by a type declaration statement.

e Statement function dummy arguments serve only to indicate

order, number, and data type of arguments for the statement

function.

e Statement function dummy argument names do not follow the

usual rules for uniqueness of symbolic names (see Section

2.1). Statement function dummy arguments must be unique only

within each statement function definition. Variables or

arrays of the same names as the dummy arguments can be

declared and used within the same program unit.

e The data type of statement function dummy arguments 1is

determined either implicitly by the first letter of the name,

or explicitly by a type declaration statement.

Examples of statement function definitions are:

valid

VOLUME (RADIUS) = 4.189*RADIUS**3

AVG (A,B,C) = (A+B+C)/3

SINH (X) = (EXP(X) - EXP (-X))*0.5

Invalid/Explanation

AXG (A,B,C,3.) = (A+B+C)/3 (A constant cannot be a dummy

argument).

SUBPROGRAMS

Examples of statement function references follow. The examples below

refer to the second statement function definition above.

valid

GRADE = AVG (TEST1,TEST2,XLAB)

IF (AVG (P,D,Q).LT.AVG(X,Y,Z))GO TO 300

Invalid/Explanation

FINAL = AVG (TEST3,TEST4,LAB2)

(An actual argument and its corresponding dummy argument must agree

in data type; in this case, LAB2 is integer but C above is real.)

6.2.2 Function Subprograms

A function subprogram is a program unit referenced by a symbolic name.

When you reference the function name, with its arguments, in an

expression, the program unit defined by the function name is executed;

and the resulting value of the function replaces the function name in

evaluating the expression. A function subprogram consists of a

FUNCTION statement followed by a series of statements that define a

computing procedure.

The FUNCTION statement has the following form:

[typ] FUNCTION nam[*m] [([p[,pP]...])]

typ
One of the data type specifiers (see Table 2-2).

nam

The name of the function.

m

A data type length specifier (see Table 2-2).

p
A dummy argument.

A function reference that transfers control to a function subprogram

has the following form:

nam ([a[,al...])

nam

The symbolic name of the function.

An actual argument.

When the name of the function subprogram is used in an expression,

control 1is transferred to the subprogram; and the values of the

actual arguments (if any) in the function reference are associated

with the dummy arguments (if any) in the FUNCTION statement. The

statements in the subprogram are then executed. A value must be

assigned to the name of the function as though it were a variable.

Finally, a RETURN statement is executed in the function and returns

control to the <calling program unit. An END statement acts as an

implied RETURN. The value assigned to the function's name is now used

to complete the evaluation of the expression containing the name.

SUBPROGRAMS

The following rules govern the use of function subprograms:

® The FUNCTION statement must be the first statement of a
function subprogram.

® The FUNCTION statement must not have a statement label.

e A function subprogram must not contain these statements:
SUBROUTINE, BLOCK DATA, or another FUNCTION statement.

¢ A function subprogram can reference another subprogram but it
cannot reference itself either directly or indirectly.

e The data type of a function name can be specified either
implicitly or explicitly in the FUNCTION statement or in a
type declaration statement.

e The function name must have the same data type in the

subprogram and in the referencing program.

An example of a function subprogram is:

FUNCTION ROOT (A)

X =1.0

2 EX = EXP(X)

EMINX = 1./EX

ROOT = ((EX+EMINX)*.5+COS(X)-A)/((EX - EMINX)*.5-SIN(X))
IF (ABS (X-ROOT).LT.lE-6) RETURN

X = ROOT

GO TO 2

END

The function in this example uses the Newton-Raphson iteration method
to obtain the root of the following function:

F(X) = cosh(X) + cos(X) - A =0

The value of A is passed as an argument. The iteration formula for
this root is:

Xi+l =

cosh (Xi)+cos (Xi)-A

X1 -

sinh (Xi)-sin(X1i)

The caluclation is repeated until the difference between Xi and Xi+l
is less than 1.0E-6. :

The function uses the FORTRAN library functions EXP, SIN, COS, and ABS
(see Section 6.3).

6.2.3 Subroutine Subprograms

A subroutine subprogram is a program unit referenced by a symbolic
name., When you reference the subroutine name in a CALL statement, the
program unit defined by the subroutine name is executed. In contrast
to the statement function and function subprogram, no value is
returned to the subroutine name. A subroutine subprogram consists of
a SUBROUTINE statement followed by a series of statements that define
a computing procedure.

SUBPROGRAMS

The SUBROUTINE statement has the following form:

SUBROUTINE nam [([pl,p]...1)]

nam

The name of the subroutine.

A dummy argument.

You must use a CALL statement to transfer control to a subroutine
subprogram, and a RETURN statement to return control to the calling

program unit. Section 4.5 describes the CALL statement.

When control is transferred to the subroutine, the values of the

actual arguments (if any) in the CALL statement are associated with

the corresponding dummy arguments (if any) in the SUBROUTINE

statement. The statements in the subprogram are then executed.

Finally, a RETURN statement is executed in the subroutine and it

returns control to the calling program. An END statement acts as an

implied RETURN.

The following rules govern the use of subroutine subprograms:

® The SUBROUTINE statement must be the first statement of a

subroutine.

@ The SUBROUTINE statement must not have a statement label.

e A subroutine subprogram must not contain a FUNCTION, BLOCK

DATA, or another SUBROUTINE statement.

e A subroutine subprogram can reference another subprogram, but
it cannot reference itself either directly or indirectly.

Example:

The subroutine in the following example computes the volume of a

regular polyhedron, given the number of faces and the length of one
edge. It uses the computed GO TO statement to determine whether the

polyhedron is a tetrahedron, cube, octahedron, dodecahedron, or

icosahedron. The GO TO statement also transfers control to the proper

procedure for calculating the volume. If the number of faces is not
4, 6, 8, 12, or 20, the subroutine displays an error message on the

user's terminal.

Main Program

COMMON NFACES, EDGE, VOLUME

ACCEPT *, NFACES,EDGE

CALL PLYVOL

TYPE *, 'VOLUME=',6VOLUME

STOP

END

SUBPROGRAMS

Subroutine

SUBROUTINE PLYVOL

COMMON NFACES, EDGE,VOLUME

CUBED = EDGE**3

Goro (6,6,6,1,6,2,6,3,6,6,6,4,6,6,6,6,6,6,6,5),NFACES

GOTO 6

1 VOLUME = CUBED * 0,11785

RETURN

2 VOLUME = CUBED

RETURN

3 VOLUME = CUBED * 0.47140

RETURN

4 VOLUME = CUBED * 7.66312

RETURN

5 VOLUME = CUBED * 2.18170

RETURN

6 TYPE 100, NFACES

100 FORMAT (' NO REGULAR POLYHEDRON HAS ',I3, ' FACES.'/)

VOLUME=0.0

RETURN

END

6.3 FORTRAN LIBRARY FUNCTIONS

FORTRAN library functions are system-supplied subprograms referenced

in the same way as user-written function subprograms.

For example:

R = 3.14159 * ABS (X-1)

ABS is a FORTRAN library function. As a result of this reference, the

absolute value of X-1 1is calculated and multiplied by the constant

3.14159; the result is assigned to the variable “"R.

The FORTRAN library functions are listed in Appendix B, which also

gives the data type of each 1library function and of the actual

arguments.

The FORTRAN 1library functions also are called processor-defined

functions. Note that the processor-defined functions include both the

Intrinsic Functions and the Basic External Functions described in ANS

FORTRAN.

Normally, a name in the table of processor-defined functions refers to

the FORTRAN library function with that name. However, the name can

refer to a user-defined function wunder any of the following

conditions:

e The name appears in a type declaration statement specifying a

different data type from that shown in the table.

@ The name is used in a function reference with arguments of a

different data type from that shown in the table.

Processor-defined function names apply only to the program unit in

which they are referenced. Thus, they can be used for other purposes

in other program units. In addition, the data type of a

processor-defined function does not change because of an IMPLICIT

statement,

CHAPTER 7

INPUT/OUTPUT STATEMENTS

FORTRAN programs use READ and ACCEPT statements for input, and WRITE,

REWRITE, TYPE, and PRINT statements for output. Some forms of these

statements are wused with format specifiers that control the

translation and editing of data between internal (binary) form and
external (readable character) form.

Each READ or WRITE statement refers to the logical unit to or from
which data is to be transferred. A logical unit can be connected to a
device or file by the OPEN statement (see Section 9.1).

The ACCEPT, TYPE, and PRINT statements do not refer to logical units;
rather, they transfer data between the program and an implicit logical

unit. The ACCEPT and TYPE statements are normally connected to the
user's terminal and the PRINT statement is normally connected to the
system line printer.

Input/output (I/0) statements are grouped into three categories:

® Sequential I/0 - transfers records sequentially to and from

files, or to and from an I/0 device such as a terminal. See
Section 7.3.

® Direct Access 1I/0 - transfers records, selected by record
number, to and from direct access files. See Section 7.4.

® Internal I/0 - ENCODE and DECODE statements translate and

transfer data between variables and arrays within the FORTRAN
program. See Section 7.6.

I/0 statements that contain format specifiers are called formatted 1/0
statements. Formatted 1I/0 statements are used to translate data

between internal (binary) form within the program and external
(readable character) form in the records.

I/0 statements that do not contain format specifiers are called
unformatted 1I/0 statements. Unformatted I/0 statements transfer data
without translation. Unformatted I/0 1is generally used when data
output by a program will be subsequently input by the same (or a
similar) program. Unformatted I/O saves execution time by eliminating
the data translation process, preserves greater precision in the
external data, and usually conserves file storage space.

I/0 statements transfer all data in terms of records. The amount of
data that one record can contain, and the way records are separated,
depend on how the data is transferred.

In unformatted I/0, the I/O statement specifies the amount of data to
be transferred. In formatted 1/0, the 1I/0 statement and its
associated format specifier jointly determine the amount of data to be
transferred.

INPUT/OUTPUT STATEMENTS

Executing an input or output statement initiates transfer of a new

record. Normally, the data transferred by an I/0 statement

constitutes one record. However, formatted I/0 statements can

transfer more than one record.

Section 7.1 describes general FORTRAN input/output concepts. Section
7.2 describes the components of FORTRAN I/O statements. Sections 7.3
through 7.6 describe each category of I/0 statement.

7.1 I/0 OVERVIEW

The following sections describe in general terms the characteristics
of FORTRAN I/0 processing: records, files and access modes. See the

appropriate PDP-11 FORTRAN IV wuser's guide for more detail about
FORTRAN I/0 processing.

7.1.1 Records

A record is a collection of data items, called fields, that are

logically related and are processed as a unit. Each FORTRAN I/O
statement transfers one record. Formatted I/0 statements may transfer

additional records.

If an input statement does not use all of the data fields in a record,

the remaining fields are ignored. If an input statement requires more

data fields than the record contains, an error occurs.

If an output statement attempts to write more data fields than the

record can contain, an error condition occurs.

7.1.2 PFiles

A file is a collection of logically related records, arranged 1in a

sequential order, and treated as a unit. The arrangement of a file is
determined when the file is created.

Files can be stored on disk or on magnetic tape. Other peripheral

devices such as terminals, card readers, and line printers are treated

as sequential files.

In the sequential file organization, records appear in physical

sequence. Each record, except the first, has another record preceding

it, and each record, except the last, has another record following it.

The physical order in which records appear is always identical to the

order in which the records were originally written to the file.

7.1.3 Access Modes

Access mode is the method your program uses to retrieve and store

records in a file. The access mode is specified as part of each 1/0

statement. PDP-11 FORTRAN IV supports two kinds of access modes:

sequential and direct.

7.1.3.1 Sequential Access - Sequential access means that records are
processed 1n sequence. For a sequential organization file, the

sequence is the physical sequence of the records.

7-2

INPUT/OUTPUT STATEMENTS

7.1.3.2 Direct Access - Direct access means that the programspecifies the order of processing by including a direct access recordnumber in each I/0 statement. For sequential organization files, therecords must be fixed-length,

7.2 1/0 STATEMENT COMPONENTS

The following sections describe the components of I/0 statements:logical unit numbers, format specifiers, direct access record numbers,key expressions, I/0 lists, and parameters specifying the transfer ofcontrol if an error or end-of-file condition occurs.

7.2.1 Logical Unit Numbers

A logical unit number is an integer value that refers to a specificfile or 1/0 device. A logical unit number must be an integer constantor variable with a value in the range 1 through 99,

A logical unit number is connected to a file or device in one of twoways:

® Explicitly through an OPEN Statement (see Section 9.1).

® TImplicitly by the System. The appropriate PDP-11 FORTRAN 1Vuser's guide describes the use of implicit 1logical unitnumbers in greater detail.

7.2.2 Format Specifiers

Format specifiers are used in formatted I/0 statements and can be anyof the following:

®¢ The statement label of a FORMAT statement.

® The name of an array containing a run-time format (see Section8.6).

Chapter 8 describes FORMAT statements, Section 8.7 describes theinteraction between formats and 1/0 statements.

In sequential 1/0 statements, you can use an asterisk instead of aformat specifier to denote list-directed formatting. See Sections7.3.3 and 7.3.4 on list~directed 1/0.

7.2.3 Direct Access Record Numbers

A direct access record number is an integer value that specifies theposition of the record in a direct access file,

The value must be greater than or equal to 1, and less than or equalto the maximum number of records in the file,

7.2.4 End-of-File Condition and Error Condition Parameters

If an I/0 error or end-of-file condition is encountered, any READ,WRITE, REWRITE, ENCODE or DECODE statement can specify that control is

7-3

INPUT/OUTPUT STATEMENTS

to be transferred to a specified statement. The specifiers have the
following forms, respectively, for end-of-file and error

conditions:

END=s

ERR=s

The label of an executable statement to which control is to be

transferred.

A READ, WRITE, REWRITE, ENCODE or DECODE statement can incl
ude either

or both of the above specifications, in any order. The
specification(s) must follow the unit number, record number, and/or
format.

The statement label in the END=s or ERR=s specification must refer to

an executable statement within the same program unit as that of the
1/0 statement.

An end-of-file condition occurs when no more records exist in a
sequential file, oOr when an end-file record produced by the ENDFILE

statement (see Section 9.8) is encountered. 1f a READ statement

encounters an end-of-file condition during an 1/0 operation, it
transfers control to the statement named in the END=s specification.
If no END=s specification is present, an error conditio

n occurs.

1f a READ, WRITE, REWRITE, ENCODE or DECODE statement encounters an

error condition during an I/0 operation, it transfers control to the

statement whose label appears in the ERR=S specification., If no ERR=5S
is present, the 1/0 error terminates program execution

.

An END= specification in a WRITE or REWRITE statement or
direct access

READ statement 1is ignored. If you attempt to read or write a record
using a record number greater than the maximum specified for the
logical unit, an error condition occurs.

The appropriate PDP-11 FORTRAN IV user's guide describes system

subroutines that you can use to control error processing. These

subroutines can also be used to obtain information from the
 I1/0 system

on the type of error that occurred.

Examples of I/O statements follow.

READ (8,END=550) (MATRIX(K),K=1,100)

This statement transfers control to statement 550 if an end-of-file
condition occurs on logical unit 8.

WRITE (6,50,ERR=390)

This statement transfers control to statement 390 if an error occurs

in execution of the WRITE statement.

READ (l,FORM,ERR=150,END=200) ARRAY

This statement transfers control to statement 150 if an error OcCCuUurs

in the execution of the READ statement and to statement 200 if the

end-of-file condition occurs.

7.2.5 Input/Output Lists

The I/0 list in an input, output, ENCODE, or DECODE statement contains
the names of variables, arrays, and array elements from which or to

7-4

INPUT/OUTPUT STATEMENTS

which data will be transferred. The I/0 list in an output statement
can also contain constants and expressions to be output.

An I/O list has the following form:

s[,s]...

A simple list or an implied DO 1list.

The I/0 statement assigns values to, or transfers values from, the
list elements in the order in which they appear, from left to right.

7.2.5.1 Simple Lists - A simple I/0 list element can be a single
variable, array, array element, constant, or expression. A simple I/0
list consists of either a simple I/0 list element or a group of two or
more simple I/0 1list elements separated by commas and enclosed in
parentheses. For example:

WRITE (5,10) J, K(3), 4, (L+4)/2, N

When you use an unsubscripted array name in an I/0 1list, a READ or
ACCEPT statement reads enough data to fill every element of the array;
a WRITE, TYPE, or PRINT statement writes all the values in the array.
Data transfer begins with the initial element of the array and
proceeds in the order of subscript progression, with the leftmost
subscript varying most rapidly. For example, the following defines a
two-dimensional array:

DIMENSION ARRAY(3,3)

if the name ARRAY, with no subscripts, appears in a READ statement,
that statement assigns values from the input record(s) to ARRAY (1,1),
ARRAY (2,1), ARRAY (3,1), ARRAY (1,2), and so on through ARRAY (3,3).

In a READ or ACCEPT statement, variables in the I1/0 list can be used
in array subscripts later in the list. For example:

READ (1,1250) J,K,ARRAY (J,K)

1250 FORMAT (I1,X,I1,X,F6.2)

The input record contains the following values:

1,3,721.73

When the READ statement is executed, the first input value is assigned
to J and the second to K, thereby establishing the actual subscript
values for ARRAY(J,K). Then the value 721.73 is assigned to
ARRAY (1,3). Variables that are to be used as subscripts in this way
must appear before (to the left of) their use as the array subscripts
in the 1/0 list.

An output statement I/0 1list may contain any valid expression.
However, this expression must not attempt any further I/0 operations.
For example, an output statement I/0 list expression must not refer to
a function subprogram that performs 1/0.

An input statement I/0 list must not contain an expression, except as
a subscript expression in an array reference.

INPUT/OUTPUT STATEMENTS

7.2.5.2 Implied DO Lists - An implied DO list is an I/0 list element

that functions as though it were a part of an I/O statement within a

DO loop. Implied DO lists can be used to:

e Specify iteration of part of an 1/0 list

e Transfer part of an array

e Transfer array elements in a sequence different from the order

of subscript progression

An implied DO list has the form:

(list,i=el,e2[,e3])

list

An 1/0 list.

An integer variable.

el,e2,e3

Integer expressions.

The variable i and the parameters el, e2, and e3 have the same forms

and the same functions that they have in the DO statement (see Section

4.3). The list immediately preceding the DO loop parameter is the

range of the implied DO loop. Elements in that list can reference i,

but they must not alter the value of i. Some examples are:

WRITE (3,200) (A,B,C, I=1,3)

The statement in this example behaves as though you had written:

WRITE (3,200) A,B,C,A,B,C,A,B,C,

Another example is:

WRITE (6) (I,(J,P(I),Q(I,J),J=1,L),I=1,M)

The I/0 list in this example consists of an implied DO list containing

another implied DO 1list nested within it, The implied DO lists

together will write a total of (1+3*L) *M fields, varying the Js for

each value of I.

In a series of nested implied DO lists, the parentheses indicate the

nesting (see Section 4.3.2). Execution of the innermost lists is

repeated most often. For example:

WRITE (6,150) ((FORM(K,L), L=1,10), K=1,10,2)

150 FORMAT (F10.2)

Because the inner DO loop is executed 10 times for each iteration of

the outer loop, the second subscript L advances from 1 through 10 for

each increment of the first subscript. This is the reverse of the

order of subscript progression. In addition, K is incremented by 2,

so only the odd-numbered rows of the array are output.

INPUT/OUTPUT STATEMENTS

The entire list of an implied DO 1list 1is transmitted before the
control variable is incremented. For example:

READ (5,999) (p(1), (Q(I,J), J=1,10), I=1,5)

In this example, P(l), Q(1,1), Q(1l,2) eeesQ(1,10) is read before I is
incremented to 2.

When processing multidimensional arrays, you can use a combination of
fixed subscripts and subscripts that vary according to an implied DO
list, For example:

READ (3,5555) (BOX(1,J), J=1,10)

This statément assigns input values to BOX(1,1) through B0OX(1,10) and
then terminates without affecting any other element of the array.

The value of the control variable can also be output directly. For
example:

WRITE (6,1111) (I, I=1,20)

This statement simply prints the integers 1 through 20,

7.3 SEQUENTIAL INPUT/OUTPUT

Sequential I/O statements transfer records sequentially to or from
either files or I/0 devices.

Formatted sequential I/0 statements transfer records using format
specifiers to «control the translation of data between internal and
external form.

List-directed sequential I/0 statements transfer formatted records.
Instead of wusing a format specifier, the data types of the I1/0 list
elements control the translation of data between internal and external
form, 1In effect, list-directed sequential I/0 statements are a method
of obtaining simple formatted input or output without wusing FORMAT
statements. Both formatted sequential and list-directed 1I/0
statements can refer to the same logical unit. When you read files
that contain both formatted and list-directed records, you must ensure
that each record is read with the correct format.

Unformatted sequential I/0 statements transfer records of binary data
without translation.

READ

ACCEPT

7.3.1 Formatted Sequential Input Statements

The formatted sequential READ statement transfers data from the
specified logical unit. If a formatted sequential READ statement does
not have a logical unit number, it uses an implicit logical unit.

INPUT/OUTPUT STATEMENTS

The formatted sequential ACCEPT statement is similar to a formatted

sequential READ statement except that an implicit logical unit number

is always used.

Formatted sequential input statements have the following forms:

READ (u,f[,END=s][,ERR=s])[1list]

READ f{,list]

ACCEPT f[,list]

u

A logical unit number.

£

A format specifier.

s

The label of an executable statement.

list

An I/0 list.

A statement of the following form causes data to be read from a

system-defined logical unit:

READ 200, ALPHA,BETA,GAMMA

Characters transferred by formatted sequential statements are

translated to the internal form specified by the format specifier.

The resulting values are assigned to the elements of the I/0 list.

If the number of list elements is less than the number of input record

fields, the excess portion of the record is ignored.

Usually a single formatted record is transferred by the execution of a

formatted sequential input statement. However, the format specifier

can specify that more than one record is to be read during execution

of a single input statement.

If the FORMAT statement associated with a formatted input statement

contains a Hollerith constant, input data is read and stored directly

into the storage location of the format specification. See Section

8.]—.9.

If no I/0 list is present, data transfer occurs only between the

record and the storage location of the format specifier. For example:

READ (5,100)

100 FORMAT (15H DATA GOES HERE)

These statements read 15 characters from the next record on logical

unit 5. If the 15 characters are:

REVIEW SECTIONS

The FORMAT statement becomes:

100 FORMAT (1l5HREVIEW SECTIONS)

Other examples of formatted sequential input statements follow:

READ (1,300) ARRAY

300 FORMAT (20F8.2)

INPUT/OUTPUT STATEMENTS

These statements read a record from logical unit 1 and assign fields
to ARRAY.

READ 100, ICOUNT,ALPHA,BETA

100 FORMAT (I5, F8.2, F5.,1)

These statements read a record from an implicit 1logical wunit, and
assign fields to integer variable ICOUNT and real variables ALPHA and
BETA.

WRITE

TYPE

PRINT

7.3.2 Formatted Sequential Output Statements

The formatted sequential WRITE statement transfers data to the
specified logical unit.

The formatted sequential TYPE and PRINT statements are similar to the
formatted sequential WRITE statement, except that output is directed
to an implicit logical unit.

The formatted sequential output statements have the following forms:

WRITE (u,f[,ERR=s])[list]

TYPE f[,list]

PRINT f[,list]

u

A logical unit number.

£

A format specifier.

s

The label of an executable statement.

list

An I/O0 list,

The I/0 list specifies a sequence of values that are converted to
characters and positioned as specified by the format specifier. 1If no
I/0 list is present, data transfer occurs only between the storage
location of the format specifier and the record.

The data transferred by a formatted sequential output statement
normally constitutes one formatted record. However, the format can
specify that additional records are to be written during execution of
a single output statement.

Numeric data output under format control is rounded during the
conversion to external format. If such data is input for additional
calculations, 1loss of precision may result. To avoid loss of
precision, use unformatted output.

INPUT/OUTPUT STATEMENTS

The records transmitted by a formatted WRITE statement must not exceed

the length that the specified device can accept. For example, a line

printer typically cannot print a record longer than 132 characters.

Examples of formatted sequential output statements follow.

WRITE (6, 650)

650 FORMAT (' HELLO THERE')

These statements write the alphanumeric literal contained in the

FORMAT statement to logical unit 6.

WRITE (1,95) AYE,BEE,CEE

95 FORMAT (3F8.5)

These statements write one record, consisting of three fields, to

logical unit 1.

WRITE (1,950) AYE,BEE,CEE

950 FORMAT (F8.5)

These statements write three separate records, consisting of one field

each, to logical unit 1.

In the last example, the rightmost parenthesis of the FORMAT statement

is reached before all elements of the I/O list are output. Each time

this occurs, the current record is terminated and a new record 1is

initiated. Thus, three separate records are written. For a more

complete explanation, see Section 8.7.

READ

ACCEPT

7.3.3 List-Directed Input Statements

The list-directed READ statement transfers records from the specified

logical unit, translates the data from external to internal form, and

assigns the resulting values to the elements of the 1/0 1list in the

order in which those elements appear, from left to right. The 1/0

list is required. 1I1f a list-directed READ statement does not 1include

a logical wunit number, an implicit logical unit number is used. The

list-directed ACCEPT statement is similar to a 1list-directed READ

statement except that an implicit logical unit number is always used.

The list-directed input statements have the following forms:

READ (u,*[,END=s][,ERR=s]) list

READ *,list

ACCEPT *,list

A logical unit number.

Indicates list-directed formatting.

INPUT/OUTPUT STATEMENTS

The label of an executable Sstatement.

list

An I/0 list,

The external record must contain a sequence of values and value
separators. A value can be:

® A constant

® A null value

® A repetition of constants in the form r*c

® A repetition of null values in the form r*

The following paragraphs describe these values.

Each input constant has the form of a FORTRAN constant (see Section
2.3). A complex constant has the form of a pair of real or integer
constants separated by a comma-and enclosed in parentheses. Spaces
can occur between the opening parenthesis and the first constant,
before and after the separating comma, and between the second constant
and the closing parenthesis. A logical constant is either T or t
(true) or F or £ (false). Hollerith and octal constants are not
permitted. If the data types of a list element and its corresponding
constant do not match, conversion is performed according to the rules
for arithmetic assignment (see Table 3-1).

A null value 1is specified by two consecutive commas with no
intervening constant. Spaces can occur between the commas. A null
value specifies that the corresponding list element remains unchanged.
A null value cannot be used for either part of a complex constant, but
can represent an entire complex constant.

The form r*c indicates r occurrences of ¢ where r is a nonzero,
unsigned integer <constant and ¢ is a constant. Spaces are not
permitted except within the constant c as specified above.

The form r* indicates r occurrences of a null value where r is an
unsigned integer constant.

A value separator can be:

®¢ One or more spaces or tabs

® A comma, with or without surrounding spaces or tabs

®¢ A slash

The slash value separator terminates processing on the input statement
and record; all remaining I/0 list elements are unchanged.

Each input statement will read one or more records as required to
satisfy the I/0 list. 1If a slash separator occurs or the I/0 list is
exhausted before all the values in a record are used, the remainder of
the record is ignored.

The end of a record is equivalent to a space character.

Spaces at the beginning of a record are ignored.

INPUT/OUTPUT STATEMENTS

An example follows.

The program unit includes:

DOUBLE PRECISION T

COMPLEX D,E

LOGICAL L,M

READ (1,*) I,R,D,E,L,M,J,K,S,T,A,B

The external record contains:

4 6.3 (3.4E0,4.2¢0), (3, 2) , t,F,,3*14.6 /

The following values are assigned to the I/O list elements:

1/0 List

Element Value

4

6.3

(3.4,4.2)

(3.0,2.0)

. TRUE.

.FALSE.

14

14.6

14.6DOH
n
R
I
O
E
H
O
=
H

A, B, and J will be unchanged.

WRITE

TYPE

PRINT

7.3.4 List-Directed Output Statements

The list-directed WRITE statement transfers the elements in the 1/0

list to the specified logical unit, translating and editing each value

according to the data type of the value.

The list-directed TYPE and PRINT statements are similar to the

list-directed WRITE statement, except that output is directed to an

implicit logical unit.

List-directed output statements have the following forms:

WRITE (u,*[,ERR=s]) list

TYPE *,list

PRINT *,list

INPUT/OUTPUT STATEMENTS

u

A logical unit number.

*

Indicates list-directed formatting.

S

The label of an executable statement.

list

An I/0 list.

The values in the I/0 list are converted to character form and written
in a fixed format according to the data type of the value. Table 7-1
lists the output formats for each data type. The I/0 1list is
required.

Table 7-1: List-Directed Output Formats

Data Type Output Format ’

LOGICAL*1 I5

LOGICAL*4 L2
INTEGER*?2 I7

INTEGER*4 I12

REAL*4 1PG1l5.7

REAL*8 1PG25.16

COMPLEX*8 IX,'(',1PGl4.7, ',"', 1pGl4.7,")"
Hollerith 1X,An (n is the length of the

Hollerith constant)

List-directed output statements do not produce octal values, null
values, slash separators, or repeated forms of values. Alphanumeric
literals in the 1I/0 1list itself are output without delimiting
apostrophes. Note that 1list-directed output records that contain
Hollerith constants may not be input using list-directed formatting.

Each output record begins with a space for carriage control. Each
output statement writes one or more complete records (see Section
8.7). Each output value is contained within a single record, except
for Hollerith constants that are longer than a record.

Some examples follow:

PRINT *, 'THEAARRAYAZAIS',Z

TYPE *,'THEAANSWERAIS', (I,XX(I),I=1,10)

If a program unit consists of:

DIMENSION A(5)

DATA A/5*3.4/

WRITE (1,*) 'ARRAYAVALUESAFOLLOW'

WRITE (1,*) A,5

then the following records will be output:

ARRAYAVALUESAFOLLOW

AAA3 . 400000AAAAAAAZ . 400000AAAAAAA3 . 400000AAAAAAAS . 400000
ANAASZ s 40000 0AAAAAAAAAND

INPUT/OUTPUT STATEMENTS

READ

7.3.5 Unformatted Sequential Input Statement

The unformatted sequential READ statement transfers one unformatted

record from the specified logical unit, and assigns the untranslated

fields of the record to the 1/0 list elements in the order in which

they appear, from left to right. The data type of each element

determines the amount of data input to the element.

The unformatted sequential READ statement has the following form:

READ (u[,END=s][,ERR=s])[list]

u

A logical unit number.

S

The label of an executable statement.

list

an I/0 list.

An unformatted sequential READ statement reads exactly one record,

If the I/0 list does not use all the values in the record (that is,

there are more values in the record than elements in the list), the

remainder of the record 1is discarded. If the number of list

elements is greater than the number of values 1in ,the record, an

error occurs.

If an unformatted sequential READ statement contains no I/0 list,

one full record is skipped.

The unformatted sequential READ statement must only be used to read

records created by unformatted sequential WRITE statements.

Examples of unformatted sequential input statements follow.

READ (1) FIELDl, FIELD2

This statement reads one record from logical wunit 1 and assigns

values to variables FIELD1l and FIELD2.

READ (8)

This statement advances logical unit 8 by one record.

WRITE

7.3.6 Unformatted Sequential Output Statements

The unformatted sequential WRITE statement transfers the

untranslated values of the elements in the I/0 list to the specified

logical unit as one unformatted record.

The unformatted sequential WRITE statement has the following form:

WRITE (ul,ERR=s])[list]

INPUT/OUTPUT STATEMENTS

u

A logical unit number.

]

The label of an executable statement.

list

An I/0 list.

If an unformatted WRITE statement contains no I/0 1list, one null

record is output to the specified unit.

Some examples follow.

WRITE (1) (LIST(K),K=1,5)

This statement outputs the contents of elements 1 through 5 of array

LIST to logical unit 1.

WRITE (4)

This statement writes a null record on logical unit 4.

7.4 DIRECT ACCESS INPUT/OUTPUT

Direct access I/0 statements transfer records, specified by record

numbers, to and from direct access files. Each direct access I/0

statement contains a record number. The OPEN statement (Section

9.1) establishes the attributes of the direct access file.

Unformatted direct access I/0 statements transfer records of binary

data without translation. The DEFINE FILE statement (Section 9.9)

may be used to specify the attributes of the direct access file.

READ

7.4.1 Unformatted Direct Access Input Statement

The unformatted direct access READ statement transfers the specified

record from the file currently connected to the specified unit, and

assigns the untranslated fields of the record to the I/0 list

elements.

The unformatted direct access READ statement has the following form:

READ (u'r[,ERR=s]) [list]

u

A logical unit number.

r

The record number.

S

The label of an executable statement.

list

An I/0 list.

INPUT/OUTPUT STATEMENTS

If the I/0 list does not use all the fields in the record (that is,

there are more fields in the record than elements in the list), the

remainder of the record 1is discarded. If the number of 1list

elements is greater than the number of record fields, an error

occurs.

Examples of unformatted direct access input statements follow.

READ (1'10) LIST(1l),LIST(8)

This statement reads record 10 of a file on logical wunit 1, and

assigns 2 integer values to specified elements of array LIST.

READ (4'IREC) (RHO(N) ,N=1,5)

This statement reads the record specified by the value of IREC of a

file on logical unit 4, and assigns 5 real values to array RHO.

WRITE

7.4.2 Unformatted Direct Access Output Statement

The unformatted direct access WRITE statement transfers the

untranslated values of the elements in the I/0 list to the specified

record of the file currently connected to the specified unit.

The unformatted direct access WRITE statement has the following

Form:

WRITE (u'r[,ERR=s]) [list]

u

A logical unit number.

r

The record number.

S

An executable statement label.

list

An I/0 list.

If the values specified by the I/0 list do not fill the record, the

unused portion of the record is filled with zeroes.

If the I/0 list specifies more data than can fit into the record, an

error occurs.

You can use a WRITE statement either to write a new record or to
update an existing record.

Example:

WRITE (2'35) (NUM(K),K=1,10)

This statement outputs 10 integer values to record 35 of the file
connected to logical unit 2.

INPUT/OUTPUT STATEMENTS

ENCODE

DECODE

7.5 ENCODE AND DECODE STATEMENTS

The ENCODE and DECODE statements transfer data according to format

specifiers, translating the data from internal to character form,

and vice versa. Unlike conventional formatted 1I/0 statements,

however, these data transfers take place entirely between variables

or arrays in the FORTRAN program.

The ENCODE and DECODE statements have the following forms:

ENCODE (c,f,b[,ERR=s])[list]

DECODE (¢, f,b[,ERR=s])[list]

An integer expression. In the ENCODE statement, ¢ 1is the

number of characters (bytes) to be translated to character

form. 1In the DECODE statement, ¢ is the number of characters

to be translated to internal form. It corresponds to the

length of a formatted record.

A format specifier. TIf more than one record is specified, an

error occurs.

The name of an array, array element or variable. b corresponds

to a formatted record. In the ENCODE statement, b receives the

characters after translation to external form. In the DECODE

statement, it contains the characters to be translated to

internal form,

The label of an executable statement.

list

An I/O0 list (see Section 7.2.6). 1In the ENCODE statement, the

I/0 1list contains the data to be translated to character form.

In the DECODE statement, the 1list receives the data after

translation to internal form.

Similar to a WRITE statement, the ENCODE statement translates the

list elements to character form according to the format specifier,

"and stores the characters in b. If fewer than ¢ characters are

transmitted, the remaining character positions are filled with

spaces.

Similar to a READ statement, the DECODE statement translates the

character data in b to internal (binary) form according to the

format specifier, and stores this data in the elements in the 1list.

If b is an array, its elements are processed in the order of

subscript prograssion. The record buffer b must not be the name of

a virtual array or a virtual array element (see Section 5.5).

The number of characters that the ENCODE or DECODE statement can

process depends on the data type of b in that statement. For

example, since an INTEGER*2 array can contain 2 characters per

element, the maximum number of characters is twice the number of

elements in that array.

INPUT/OUTPUT STATEMENTS

The interaction between the format specifier and the I/0 1list (see
Section 8.7) for an ENCODE or DECODE statement is the same as that
for a formatted I/0 statement.

An example of the ENCODE and DECODE statements follows.

DOUBLE PRECISION INBUF, OUTBUF

INTEGER*2 A,B,C,D

DATA INBUF/'12345678'/

DECODE (8,100,INBUF) A,B,C,D

ENCODE (8,100,0UTBUF) D,C,B,A

100 FORMAT (412) -

The DECODE statement translates the 8 characters in INBUF to integer
form (specified by statement 100), and stores them in the integer
variables A,B,C,D, as follows:

A =12

B = 34

C = 56

D = 78

The ENCODE statement translates the values D,C,B,A to character form

and stores the characters in the variable OUTBUF, as follows:

OUTBUF = '78563412'

CHAPTER 8

FORMAT STATEMENTS

FORMAT statements are nonexecutable statements used with formatted I/0

statements, and with ENCODE and DECODE statements, to specify the

editing and formatting of the data. If input is being performed or a

DECODE statement is being executed, the format statement describes the

format in which the input data is interpreted. If output 1is being

performed or an ENCODE statement 1is being executed, the format

statement describes the format in which the output data will be

represented.

Throughout this chapter a distinction is made between "external" and

"internal" form. External form refers to the ASCII characters in a

data field of a formatted record. Internal form refers to the binary

representation of a data value.

FORMAT statements have the following form:

FORMAT (glflslf2s2 ... £fnqgn)

q
Zero or more slash (/) record terminators.

f

A field descriptor or a group of field descriptors enclosed in

parentheses.

s

A field separator.

The entire list of field descriptors, field separators, and record

terminators, including the parentheses, 1is called the format

specification. The list must be enclosed in parentheses.

The field separators are comma and slash. A slash is also a record

terminator. Section 8.5 describes in detail the functions of the

field separators.

A field descriptor has the following form:

[rlclwl.d]]

The number of times the field descriptor 1is to be repeated

(repeat count). If you omit ¥, it is assumed to be 1,

A field descriptor code (I1,0,F,E,D,G,L,A,H,X,T,P,Q,S, oOF (
X
3

—

.

FORMAT STATEMENTS

W

The external field width.

d

The number of characters to the right of the decimal point.

The terms r, w, and d must all be unsigned integer constants. r, w,

and 4 must be less than or equal to 255; and r and w must be nonzero.

The r term is optional; however, you cannot use it in some field

descriptors. The d term is required in some field descriptors and is

invalid in others.

The field descriptors are:

e Integer -- Iw, Ow

e Logical -- Lw

e Real, double precision, and complex -- Fw.d, Ew.d, Dw.d, Gw.d

® Character -- Aw

e Editing, and Hollerith constant -- nH, '...', nX, TTMn, nP, Q,

$, @ (n is a number of characters or character positions)

Section 8.1 describes each field descriptor in detail.

The first character in an output record generally contains carriage

control information. See Section 8.3 for more information.

During data transfers, the format specification is scanned from 1left

to right. The elements 1in the I/0 list are correlated one-for-one

with the corresponding field descriptors. However, the editing and

Hollerith constant field descriptors do not require an I/0 list

element. Section 8.7 describes in detail the interaction between

format specifiers and the I/0 list.

You use an I, O, or L field descriptor to process integer and 1logical

data. You use an F, E, D, or G field descriptor to process real,

double precision, and complex data.

Section 8.8 summarizes the rules for writing FORMAT statements.

You can create a format during program execution by using a run-time

format instead of a FORMAT statement. Section 8.6 describes run-time

formats.

8.1 FIELD DESCRIPTORS

A field descriptor describes the size and format of a data item or of

several data items; each data item in the external medium is called

an external field. The following sections describe each of the field

descriptors in detail. The field descriptors ignore leading spaces in

the external field, but treat embedded and trailing spaces as zeroes.

8.1.1 I Field Descriptor

The I field descriptor specifies transfer of decimal integer values.

It has the following form:

Iw

FORMAT STATEMENTS

The corresponding I/0 list element must be of either integer or

logical data type.

Rules in Effect for Data Input:

@ The I field descriptor specifies that w characters are read

from the external field, interpreted as a decimal integer

value, and assigned to the corresponding I/O list element.

® The external data must be an integer constant; it cannot

contain a decimal point or exponent field.

e If the external data value exceeds the maximum allowed

magnitude of the corresponding list element, an error occurs.

e If the first nonblank character of the external field 1is a

minus sign, the field is treated as a negative value.

e If the first nonblank character is a plus sign, or if no sign

appears in the field, the field 1is treated as a positive

value.

@ An all-blank field is treated as a value of 0.

Input Example:

Format External Field Internal Value

14 2788 2788

I3 -26 -26

I9 ANANNAN3 L2 312

I4 2 8 2008

Rules in Effect for Data Output:

@ The I field descriptor specifies output of the value of the

corresponding I/0 1list element, right Jjustified, to an

external field w characters long, as a decimal integer.

¢ If the value does not fill the field, 1leading spaces are

inserted.

e If the value exceeds the field width, the entire field is

filled with asterisks.

e If the value of the list element is negative, the field will

have a minus sign as its leftmost, nonblank character. The

term w must therefore be large enough to provide for a minus

sign, when necessary.

® Plus signs are suppressed.

Output Example:

Format Internal Value External Representation

13 284 284

14 -284 -284

I5 174 174

12 3244 *x

I3 -473 * k%

17 29,812 Not permitted: error

FORMAT STATEMENTS

8.1.2 O Field Descriptor

The O field descriptor specifies transfer of octal

has the following form:

integer values. It

Ow

The corresponding I/0 list

logical data type.

element must be of either integer or

Rules in Effect for Data Input:

@ The O field descriptor specifies that w characters are

from the external field, interpreted as an octal value,

assigned to the corresponding I/0 list element,

read

and

®¢ The external field can contain only the numerals 0 through 7;

it cannot contain a sign, a decimal point, or an exponent

field.

@ An all-blank field is treated as a value of 0.

¢ If the value of the external data exceeds the allowed size of

the corresponding list element, an error occurs.

Input Example:

Internal

Format External Field Decimal Value

05 77777 32767

04 31274 1623

06 15AAAAN 53248

03 974 Not permitted: error

Rules in Effect for Data Output:

¢ The O field descriptor specifies output of the octal value of

the corresponding 1I/0 1list element, right justified, to an

external field w characters long, as an octal integer.

® No signs are output; a negative value is transmitted in its

octal (2's complement) form.

e If the value does not fill the field, leading spaces are

inserted.

e If the value exceeds the field width, the entire field 1is

filled with asterisks.

Output Example:

Format

06

06

02

04

05

Internal (Decimal) Value

32767

-32767

14261

27

13.52

External (octal)

Representation

ATTT777

100001
* *

AA33

Not permitted: error

FORMAT STATEMENTS

8.1.3 F Field Descriptor

The F field descriptor specifies the transfer of real or double

precision values. It has the following form:

Fw.d

The corresponding I/0 list element must be of either real or double

precision data type; or it must be either the real or the imaginary

part of a complex data type.

Rules in Effect for Data Input:

@ The F field descriptor specifies that w characters are read

from the external field, interpreted as a real or double

precision value, and assigned to the corresponding I/0 1list

element. Any decimal point, signs, or exponent field present

in the external field are included in the w count and d is

part of w. '

e If the w characters include a decimal point, the position of

the point 1is used. If the w characters do not include a

decimal point, the decimal point 1is placed before the

rightmost d digits of w.

e If the w characters include an exponent field (see Section

2.3.2 for real constants and Section 2.3.3 for double

precision constants), the exponent is used to evaluate the

number's magnitude before the decimal point position is

determined.

@ If the first nonblank character of the external field 1is a

minus sign, the field is treated as a negative value.

e If the first nonblank character is a plus sign, or if no sign

appears in the field, the field 1is treated as a positive

value.

e An all-blank field is treated as a value of 0.

e w must be greater than or equal to d+1l.

Input Examples:

Format External Field Internal Value

F8.5 123456789 123.45678

F8.5 -1234.567 ~-1234,56

F8.5 24,77E+2 2477.0

F5.2 1234567.89 123.45

Rules in Effect for Data Output:

¢ The F field descriptor transfers the value of the

corresponding I/0 list element, rounded to d decimal positions

and right justified, to an external field w characters 1long.

¢ If the value does not fill the field, leading spaces are

inserted.

@ If the value exceeds the field width, the entire field is

filled with asterisks.

FORMAT STATEMENTS

@ Plus signs are suppressed.

¢ w must be greater than or equal to d+l; however, the field

width should be large enough to contain the number of digits

after the point, plus 1 for the point, plus the number of

digits to the 1left of the point, plus 1 for a possible

negative sign.

Output Examples::

Format Internal Value External Representation

F8.5 2.3547188 N2.35472

F9.3 8789.7361 N8789.736

F2.1 51.44 * %

F10.4 -23.24352 AN-23.2435

F5.2 325.013 *hk kK

F5.2 -.2 -0.20

8.1.4 E Field Descriptor

The E field descriptor specifies transfer of real or double precision

values in exponential form. It has the following form:

Ew.d

The corresponding I/0 list element must be of either real or double

precision data type; or it must be either the real or the imaginary

part of a complex data type.

Rules in Effect for Input:

On input, the E field descriptor does not differ from the F field

descriptor.

Input Examples:

Format External Field Internal Value

E9.3 734.432E3 0.734432E+6

E12.4 AN1022,43E-6 0.102243E-2

E15.3 52.3759663 AAAAA 0.523759E+2

E12.5 210.5271D+10 0.2105271E+13

In the last example, note that the E field descriptor treats the D

exponent field indicator as an E indicator if the I/0 list element is

single precision.

Rules in Effect for Output:

e The E field descriptor transfers the value of the

corresponding I/0 1list element, rounded to d decimal digits

and right justified, to an external field w characters 1long.

e If the value does not fill the w characters, leading spaces

are inserted.

e If the value exceeds the w characters, the entire field 1is

filled with asterisks.

FORMAT STATEMENTS

® Output is in a standard form: that is, a minus sign if the

value is negative, an optional 0, a decimal point, 4 digits to

the right of the decimal point, and a 4-character exponent in

one of the following two forms:

E+nn

E-nn

nn

A 2-digit integer constant.

® Plus signs are suppressed.

® w must be greater than or equal to d+7; that 1is, the field

width must not be stated to be less than the number of digits

after the point, plus 1 for the point, plus 1 for the 0 before

the point, plus one for a possible negative sign, plus 4 for

the exponent.

Output Examples:

Format Internal Value External Representation

E9.2 475867.222 N0 .48E+06

E12.5 475867.222 A0,47587E+06

E12.3 0.00069 AANDL 690E-03

E10.3 -0.5555 -0.556E+00

E5.3 56.12 kkkkk

8.1.5 D Field Descriptor

The D field descriptor specifies transfer of real or double precision

values in exponential form with a D instead of an E. It has the

following form:

Dw.d

The corresponding I/0 list element must be of either real or double

precision data type; or it must be either the real or the imaginary

part of a complex data type.

Rules in Effect for Input:

On input, the D field descriptor does not differ from the F or E field

descriptors.

Input Examples:

Format External Field Internal Value

D10.2 12345AA00A 0.1234500000D+8

D10.2 AA123.45AN 0.1234500000D+3

D15.3 367.4981763D-04 0.3674981763D-1

Rules in Effect for Input:

There is only one difference between the D and E descriptors on

output: If you use the D descriptor, the letter D is output instead

of the letter E.

FORMAT STATEMENTS

Output Examples:

Format Internal Value External Value

D14.3 0.0363 AAANAND «363D-01

D23.12 5413.87625793 AANAAND .541387625793D+04
D9.6 1.2 khkkkhkkxkhkkkk

8.1.6 G Field Descriptor

The G field descriptor specifies transfer of real or double precision

values, combining E- or F-type formats according to the size of the

number being output. It has the following form:

Gw.d

The corresponding I/0 list element must be of either real oxr double

precision data type; or it must be either the real or the imaginary

part of a complex data type.

Rules in Effect for Input:

On input, the G field descriptor does not differ from the F, E, or D

descriptors.

Rules in Effect for Output:

¢ The G field descriptor transfers the value of the

corresponding I/0 list element, rounded to d decimal positions

and right justified, to an external field w characters long.

e The form in which the value is written is a function of the

magnitude of the value, as described in Table 8-1.

Table 8-1: Effect of Data Magnitude on G Formats

Data Magnitude Effective Conversion

m < 0.1 Ew.d

0.1 <m¢<«<K 1,0 F(w=4).d, 'AAAA!

1.0 <m < 10.0 F(w-4).(d-1), 'anaa’

10d-2 < m < 104d-1 F(w=4).1, 'aAnnn!

10d-1 < m < 10d F(w=4).0, 'aAnnA!'

m > 10d Ew.d

NOTE: The 'aAaaA' in the second column of Table 8-1 specifies that

four spaces are to follow the numeric data representation.

FORMAT STATEMENTS

@ Plus signs are suppressed.

e w must be greater than or equal to d+7; that 1is, the field

width must not be stated to be less than the number of digits

after the point, plus 1 for the point, plus 1 for a possible 0

before the point, plus 1 for a possible negative sign, plus 4

for a possible exponent.

Output Examples:

Format Internal Value External Representation

G1l3.6 0.01234567 A0.123457E-01

G1l3.6 -0.12345678 -0.123457A00N

G1l3.6 1.23456789 AAY . 23457A0AN

G13.6 12,.34567890 AAL2,3457 ALAAA

Gl3.6 123.45678901 AN123,457 000N

Gl3.6 -1234.56789012 AN=1234,.57A00N

Gl3.6 12345.67890123 ANL12345.7AMAN

Gl3.6 123456.78901234 AAL23457 .AAAAN

Gl3.6 -1234567.89012345 -0.123457E+07

Compare the above examples with the following examples, which show the

same values output with an equivalent F field descriptor.

Format Internal Value External Representation

F13.6 0.01234567 ANAAND 012346

F13.6 -0.12345678 ADAN-0.123457

F13.6 1.23456789 AANANL. 234568

F13.6 12,34567890 ANANL2 345679

F13.6 123.45678901 AAN123.456789

F13.6 -1234.,56789012 A=-1234,567890

F13.6 12345,.67890123 A12345.678901

F13.6 123456.,78901234 . 123456.789012

F13.6 -1234567.89012345 khkkkkkhhkhhxk

8.1.7 L Field Descriptor

The L field descriptor specifies transfer of logical data. It has the

following form:

Lw

The corresponding I/0 list element must be of either integer or

logical data type.

Rules in Effect for Input:

¢ The L field descriptor specifies that w characters are read

from the external field.

e If the first nonblank character of the field is the letter T

or t, the value .TRUE. 1is assigned to the corresponding I/0

list element.,

e If the first nonblank character of the field is the letter F

or f, or if the entire field is blank, the value .FALSE. 1is

assigned.

e Any other value in the external field produces an error.

FORMAT STATEMENTS

Rules in Effect for Output:

¢ The L field descriptor specifies output of either the letter T

(1f the value of the corresponding I/0 1list element is

.TRUE.), or the letter F (if the value 1is .FALSE.) to an

external field w characters long.

® The letter T or F is in the rightmost position of the field,

preceded by w-1 spaces.

Output Examples:

Format Internal Value External Representation

L5 . TRUE. ANANAAT

L1l .FALSE, F

8.1.8 A Field Descriptor

The A field descriptor specifies the transfer of Hollerith values. It

has the following form:

Aw

The corresponding I/0 list element can be of any data type, since you

can use variables of any data type to store Hollerith data.

The value of w must be less than or equal to 255.

Rules in Effect for Input:

¢ The A field descriptor transfers w characters from the

external record and assigns them to the corresponding I/0 list

element.

® The maximum number of characters that can be stored depends on

the size of the I/0 list element, as follows:

I/0 List Maximum Number

Element of Characters

BYTE 1

LOGICAL*1 1

LOGICAL*4 4

INTEGER*?2 2

INTEGER*4 4

REAL 4

REAL*S8 8

DOUBLE PRECISION 8

COMPLEX 8

e If w is greater than the maximum number of characters that can

be stored 1in the <corresponding 1I/0 list element, only the

rightmost characters are assigned to that element. Leftmost

excess characters are ignored.

e If w is less than the number of characters than can be stored,

W characters are assigned to the list element, left justified,

and trailing spaces are added to fill the element.

FORMAT STATEMENTS

Input Examples:

Format External Field Internal Value

A6 PAGEA# # (LOGICAL*1)

A6 PAGEA# A# (INTEGER*2)

A6 PAGEA# GEA# (REAL)

A6 PAGEA# PAGEA#AA (DOUBLE PRECISION)

Rules in Effect for Output:

@ The A field descriptor specifies output of the contents of the

corresponding I/0 1list element to an external field w
characters long.

e If w is greater than the size of the list element, the data

appears in the field, right justified, with leading spaces.

e If w is less than the size of the 1list element, only the

leftmost w characters are transferred.

Output Examples:

Format Internal Value External Representation

A5 OHMS AQHMS

A5 VOLTSAAA VOLTS

A5 AMPERES A AMPER

8.1.9 H Field Descriptor

The H field descriptor specifies transfer of data between the external
record and the storage location of the H field descriptor itself. It
has the form of a Hollerith constant:

nHclc2c3 ... ¢n

The number of characters to be transferred.

ci

An ASCII character.

Rules in Effect for Input:

e The H field descriptor specifies acceptance of n characters

from the external field and their assignment to the same

storage location as the characters of the H descriptor, which

are overlaid by the input data, character for character.

Rules in Effect for Output:

@ The H field descriptor specifies output of the n characters

following the letter H to the external field.

An example of the H field descriptor usage follows.

TYPE 100

100 FORMAT (41HAENTERAPROGRAMATITLE,AUPATOA20ACHARACTERS)

ACCEPT 200

200 FORMAT (20HATITLEAGOESAHEREAAA)

FORMAT STATEMENTS

The TYPE statement transfers the characters from the H field

descriptor in statement 100 to the user's terminal. The ACCEPT

statement accepts the response from the keyboard, placing the input

data in the H field descriptor in statement 200. The new characters

replace the words TITLE GOES HERE. 1If the user enters 1less than 20

characters, the remainder of the H field descriptor is filled with

spaces to the right. The H field descriptor may also be specified as

an alphanumeric literal.

In an alphanumeric 1literal, the apostrophe is written as two

apostrophes. For example:

50 FORMAT ('TODAY''SADATEAIS:A',I2,'/',12,'/',12)

A pair of apostrophes wused 1in this way 1is considered a single

character.

8.1.10 X Field Descriptor

The X field descriptor specifies skipping character positions. It has

the following form:

nX

The term n specifies how many character positions are to be skipped.

The value of n must be greater than or equal to 1 and less than or

equal to 255.

Rules in Effect for Input:

¢ The X field descriptor specifies that the next n character in

the input record are to be skipped.

Rules in Effect for Output:

¢ The X field descriptor specifies output of n spaces to the

external record. For example:

WRITE (6,90) NPAGE ‘

90 FORMAT (13H1PAGEANUMBERA,I2,16X,23HGRAPHICAANALYSIS,ACONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.

where nn is the current value of the variable NPAGE. Note that the

numeral 1 1in the first H field descriptor is not printed but is used

to advance the printer paper to the top of a new page. (Section 8.3

describes printer carriage control.)

8.1.11 T Field Descriptor

The T field descriptor specifies the position of the next character to

be treated relative to the start of the external record. It has the

following form:

Tn

The term n indicates the position in the external record of the next

character to be treated. The value of n must be greater than or equal

to 1 but not greater than the number of characters allowed 1in the

record.

FORMAT STATEMENTS

Rules in Effect for Input:

e In an input statement, the T field descriptor specifies that

data 1is to be input starting with the nth character position.

For example:

10 FORMAT (T7,A3,T1,A3)

READ (5,10) J,K

In the example, a 3-character string starting at character position 7

in the external record is read first, followed by a 3-character string

starting at character position 1; however, any order can be

specified. '

Rules in Effect for Output:

e In an output statement, the T field descriptor specifies that

the data 1is to be output starting at the nth character

position of the external record. For example:

PRINT 25

25 FORMAT (T50,'COLUMNA2',T20,'COLUMNAL"')

These statements will print "COLUMN 1" at position 20 and COLUMN 2" at

position 50. The remainder of the line contains blank characters.

8.1.12 Q Field Descriptor

The Q field descriptor specifies assignment to the corresponding

variable in the 1I/0 1list of the number of characters in the input
record remaining to be transferred during a READ operation. It has

the following form:

Q

The corresponding I/0 list element must be of integer or logical data
type.

For example:

READ (4,1000) XRAY,KK,NCHRS, (ICHR(I),I=1,NCHRS)

1000 FORMAT (El15.7,I4,Q,80Al)

These input statements read two fields into the variables XRAY and KK.

The number of characters remaining in the record is stored in NCHRS

and exactly that many characters are read into the array ICHR. By

placing the Q descriptor first in the format specification, you can

determine the actual length of the input record.

In an output statement, the Q field descriptor has no effect except

that the corresponding I/0 list element is skipped.

8.1.13 Dollar Sign Descriptor

The dollar sign character ($) used as a field descriptor suppresses,

on output, a carriage return at the end of the line when the first

character of the line is a space or a plus sign (see Section 8.3 on

carriage control characters). In an input statement, the $§ descriptor

FORMAT STATEMENTS

is ignored. The § descriptor is intended primarily for interactive

1/0; it leaves the terminal print position at the end of the text
(rather than returning it to the left margin) so that a typed response

will follow the output on the same line.

Thus, the statements

TYPE 100

100 FORMAT ('AENTERARADIUSAVALUEA',S)

ACCEPT 200,X

200 FORMAT (F6.2)

produce a message on the terminal in the following form:

ENTERARADIUSAVALUE

Your response (in this case, 12.) can then go on the same 1line, as

follows:

ENTERARADIUSAVALUEALZ2,

Note that the $ used as a carriage control character accomplishes the

same result. The following two formats are equivalent:

200 FORMAT (11HASIGNAHERE:,S)

200 FORMAT (l1ll1HS$SSIGNAHERE:)

8.1.14 Colon Descriptor

The colon character (:) used as a field descriptor terminates format
control if no more items are in the I/0 list. The : has no effect if

I/0 list items remain. For example:

PRINT 100,3

PRINT 200,4

100 FORMAT ('AlI=',I2, 'AJ=',I2)

200 FORMAT ('AK=',I2,:,'AL=',12)

These statements print the following two lines:

I=A3AJ=

K=n4

Section 8.7 describes format control in detail.

8.1.15 Complex Data Editing

A complex value is an ordered pair of real values. Therefore, input
or output of a complex value 1is governed by two real field

descriptors, using any combination of the forms Fw.d, Ew.d, Dw.d, or
Gw.d.

Rules in Effect for Input:

® In an input statement, the two successive fields are read and

assigned to a complex I/0 1list element as 1its real and
imaginary parts, respectively.

FORMAT STATEMENTS

Input Examples:

Format External Field Internal Value

F8.5,F8.5 1234567812345.67 123.45678, 12345.67

E9.1,F9.3 734,432E8123456789 734.432E8, 123456.789

Rules in Effect for Output:

e In an output statement, the two parts of a complex value are

transferred under the control of repeated or successive field

descriptors.

e The two parts are transferred consecutively, without

punctuation or spacing, unless the format specifier states

otherwise.

Output Examples:

Format Internal Value External Representation

2F8.5 2.3547188, 3.456732 A2,35472 3.45673

E9.2,'A,A",E5.3 47587.,222, 56.123 AQ.48E+06AL ,A***x*k

8.1.16 Scale Factor

A scale factor is a value used in a format specifier which determines

the location of the decimal point in real, double precision, or

complex values.

The scale factor has the form:

nP

A signed or unsigned integer constant in the range -127 through

+127. It specifies the number of positions to the left or right

that the decimal point is to move.

Rules in Effect for both Input and Output:

e If you do not use a scale factor, a default scale factor of OP

applies.

e The scale factor is set to 0P at the start of every 1/0

statement.

e A scale factor applies to all subsequent F, E, D, or G field

descriptors, until a new scale factor is specified.

@ The scale factor can appear as a field descriptor. For

example:

10 FORMAT (X, 14, E6.3, 3P, 2A3, 212, 2F5.3, E8.5)

In the example, the 3P applies to the 2F5.3 and the E8.5 but

not to the E6.3 or the X, I, or A descriptors.

FORMAT STATEMENTS

A scale factor can appear as a prefix toan F, E, D, or G

field descriptor. For example:

10 FORMAT (3P2F5.3, E8.5)

In the example, 3P applies both to 2F5.3 and to E8.5.

Format reversion (see Section 8.7) has no effect on the scale

factor. For example:

10 FORMAT (X, F3.2, E3.2, 2PE4.2, F4.2, 3PE4.2)

In this example, suppose two records are read, reversion

occurring to the start of the format. 1In the second record,

the active scale factor 3P now applies to F3.2.

A scale factor of OP can be reinstated only by an explicit 0P

specification in the format.

Additional Rules in Effect for Input:

If the external field contains an exponent, the scale factor

has no effect.

If the external field does not contain an exponent, the scale

factor specifies multiplication of the data by 10**-n and

assignment of it to the corresponding I/0 list element.

For example, a 2P scale factor multiplies an input value by

.01, moving the decimal point two places to the left. A -2P

scale factor multiplies an input value by 100, moving the

decimal point two places to the right.

Input Examples:

Format External Field Internal Value

3PE10.5 AAN3T . 614N .037614

3PE10.5 AN3T7 ,614E2 3761.4
-3PE10.5 AAAN3T 614 37614.0

Additional Rules in Effect for Output:

Scale factors apply only to data output. The values of the

I/0 list variables do not change.

For the F field descriptor, the value of the I/0 list element

is multiplied by 10**n before transfer to the external record.

Thus, a positive scale factor moves the decimal point to the

right; a negative scale factor moves the decimal point to the
left.

For the E or D field descriptor, the basic real constant part

of the value (see Section 2,3.2) is multiplied by 10**n, and n

is subtracted from the exponent. Thus, a positive scale
factor moves the decimal point to the right and decreases the

exponent; a negative scale factor moves the decimal point to

the left and increases the exponent.

FORMAT STATEMENTS

®¢ A scale factor has no effect on a G field descriptor 1if the

magnitude of the data to be output is within the effective

range of the descriptor, because the G field descriptor

supplies 1its own scaling function. Moreover, the G field

descriptor functions as an E field descriptor if the magnitude

of the data value 1is outside its range. 1In this case, the

scale factor has the same effect as for the E field

descriptor.

Output Examples:

Format Internal Value External Representation

1PE12.3 -270.139 AAN=-2,.701E+02

1PE12.2 -270.139 AAA=-2,70E+02

-1PE12.2 -270.139 AAN=-0.03E+04

8.1.17 Repeat Counts and Group Repeat Counts

You can apply most field descriptors (except H, T, P, or X) to a

number of successive data fields by preceding that field descriptor

with an unsigned nonzero integer constant specifying the number of

repetitions. This constant 1is called a repeat count. For example,

the following two statements are equivalent:

20 FORMAT (El12.4,El12.4,E12.4,15,15,15,15)

20 FORMAT (3E12.4,415)

Similarly, you can apply a group of field descriptors repeatedly to

data fields by enclosing these field descriptors in parentheses and

preceding them with an unsigned nonzero integer constant. The integer

constant 1is called a group repeat count. For example, the following

two statements are equivalent:

50 FORMAT (218,3(F8.3,E15.7))

50 FORMAT (18,I8,€8.3,E15.7,€8.3,E15.3,€8.3,E15.Z)

1 2 3

An H or X field descriptor, which could not otherwise be repeated, can

be enclosed in parentheses and treated as a group repeat

specification. Thus, it could be repeated a desired number of times.

If you do not specify a group repeat count, a default count of 1 is

assumed.

8.1.18 Default Field Descriptors

If you write the field descriptors I, O, L, F, E, D, G, or A without

specifying a w or w.d, default values are supplied based on the data

type of the I/0 list element. Note that for F, E, D, and G, you may

not specify only w or d; you must specify w.d or nothing.

Table 8-2 lists the default values for w and 4.

FORMAT STATEMENTS

Table 8-2: Default Field Widths

Field Descriptor List Element w d

Data Type

I, O INTEGER*2 7

I, O INTEGER*4 12

L LOGICAL 2

F, E, G, D REAL, COMPLEX 15 7

F, E, G, D DOUBLE PRECISION 25 16

A LOGICAL*1 or BYTE 1

A INTEGER*?2

A LOGICAL*4, INTEGER*4 4

A REAL, COMPLEX 4

A DOUBLE PRECISION 8

Notice that for the A field descriptor the default is the 1length of

the corresponding 1/0 list element.

8.2 CARRIAGE CONTROL CHARACTERS

The first character of every record transferred to a printer 1is not

printed. Instead, it is interpreted as a carriage control character.

The FORTRAN I/0 system recognizes certain characters as carriage

control characters. Table 8-3 1lists these characters and their

effects.

Table 8-3: Carriage Control Characters

Character Effect

A (space) Advances one line

0 (zero) Advances two lines

1 (one) Advances to top of next page

+ (plus) Does not advance (allows overprinting)

$ (dollar sign) Advances one line before printing and

suppresses carriage return at the end of the

record

Any character other than those listed in Table 8-3 1is treated as a

space and 1is deleted from the print line. Note that 1if you

accidentally omit the carriage control character, the first character

of the record is not printed.

8.3 FORMAT SPECIFICATION SEPARATORS

Field descriptors in a format specification are generally separated by

commas. You can also use the slash (/) record terminator to separate

FORMAT STATEMENTS

field descriptors. A slash terminates input or output of the current

record and initiates a new record. For example:

WRITE (6,40) K,L,M,N,O0,P

40 FORMAT (306/16,2F8.4)

This statement is equivalent to:

WRITE (6,40) K,L,M

40 FORMAT (306)

WRITE (6,50) N,O,P

50 FORMAT (16,2F8.4)

You can use multiple slashes to bypass input records or to output

blank records. If n consecutive slashes appear between two field

descriptors, (n-1l) records are skipped on input or (n-1l) blank records

are output. The first slash terminates the current record; the

second slash terminates the first skipped or blank record, and so on.

However, n slashes at the beginning or end of a format specification

result 1in n skipped or blank records because the opening and closing

parentheses of the format specification are themselves a record

initiator and terminator, respectively. For example:

WRITE (6,99)

99 FORMAT ('1l',T51,'HEADINGALINE'//T51,"'SUBHEADINGALINE'//)

The above statements produce the following output:

Column 50, top of page

HEADING LINE

(blank line)

SUBHEADING LINE

(blank line)

(blank line)

8.4 EXTERNAL FIELD SEPARATORS

A field descriptor such as Fw.d specifies that an input statement Iis

to read w characters from the external record. If the data field in

the external record contains 1less than w characters, the input

statement would read characters from the next data field in the

external record, unless you padded the short field with leading zeroes

or spaces. When the field descriptor is numeric, you can avoid having

to pad the input field by using a comma to terminate the field. The

comma overrides the field descriptor's field width specification.

This is called short field termination, and is particularly useful

when you are entering data from a terminal keyboard. You can use it

with the 1, 0, F, E, D, G, and L field descriptors. For example:

READ (5,100) I1,J,A,B

100 FORMAT (216,2F10.2)

The above statements read the following record:

FORMAT STATEMENTS

On execution, the following assignments occur:

I =1

J = =2

A= 1.0

B = 0.35

The physical end of the record also serves as a field terminator.

Note that the 4 part of a w.d specification is not affected by an

external field separator. Therefore, you should always include an

explicit decimal point in the external field for F, E, D and G field

descriptions.

You can use a comma to terminate only fields less than w characters

long. If a comma follows a field of w characters or more, the comma

is considered part of the next field.

Two successive commas, or a comma after a field of exactly w

characters, constitutes a null (zero-length) field. Depending on the

field descriptor specified, the resulting value assigned is 0, 0.0, or

0.DO, or .FALSE..

You cannot use a comma to terminate a field that is controlled by an

A, H, or alphanumeric 1literal field descriptor. However, if the

record reaches its physical end before w characters are read, short

field termination occurs; and the characters that were input are

assigned successfully. Trailing spaces are appended to fill the

corresponding I/0 list element or the field descriptor.

8.5 RUN-TIME FORMATS

A run-time format 1is a format stored as Hollerith or alphanumeric data

in an array. In the I/0 statement referencing the format, you write

the name of the array instead of a format statement label (see Section

7.2.2). Virtual arrays must not be used for this purpose.

A run-time format in an array has the same form as a FORMAT statement,

without the word FORMAT and the statement label. The opening and

closing parentheses are required.

Run-time formats are especially useful when you do not know exactly

which field descriptors will be required until execution time. To

solve this problem, you can write a program to create a format, the

choice of field descriptors being made to depend on the attributes of

the data. For example:

REAL TABLE (10,5)

REAL FMT(1l1l),FBIG,FMED,FSML

DATA FMT(1)/'('/,EMT(1ll)/')'/

DATA FBIG,FMED,FSML/'F8.2','F9.4','F9.6"'/

DATA FMT (3),FMT(5),FMT(7) ,FMT(9) /4*',"'/

DO 20 I=1,10

DO 18 J=1,5

FMT (2*J) =FMED

IF (TABLE(I,J).GE.100) FMT(2*J)=FBIG

IF (TABLE(I,J).LE.0.l1) FMT(2*J)=FSMAL

18 CONTINUE

WRITE (6,FMT) (TABLE(I,J),J=1,5)"

20 CONTINUE

END

FORMAT STATEMENTS

In the example, the data is stored in the real array TABLE. The

magnitudes of the data stored in the elements of TABLE will not be

known until just before output. The format specification is stored in

the real array FMT. A left parenthesis is stored in FMT (1), a right

parenthesis is stored in FMT(l11l), and commas are stored in other

odd-numbered elements of FMT. A selection of field descriptors is

stored in the real variables FBIG, FMED, FSML. The choice of field

descriptors to be assigned to even-~-numbered elements of FMT is made to

depend on the magnitude of the data in TABLE. Finally, the output

statement references FMT instead of a format statement label.

Each time an I/0 statement referencing a run-time format is executed,

the format 1is compiled (or recompiled) and assigned a storage

location. Data read into that location through use of the H field

descriptor 1is not stored in the array holding the format. At the end

of the I/0 statement, the data will be lost.

8.6 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS

Format control begins with execution of a formatted 1I/0 statement.

During format control, the action taken depends on information

provided jointly by the next element of the I/0 list (if one exists)

and the next field descriptor of the format specification. The I/0

list and the format specification are correlated from left to right,

except when repeat counts are specified.

If the I/0 statement contains an I/O list, you must specify at least

one I, O, F, E, D, G, L, A, or Q field descriptor in the format, or

else an error occurs.

On execution, a formatted input statement reads one record from the

specified wunit and initiates format control. Thereafter, additional

records can be read as indicated by the format specification. Format

control requires that a new record be input when a slash occurs in the

format specification, or when the 1last closing parenthesis of the

format specification 1is reached and I/0 list elements remain to be

filled. Any remaining characters in the current record are discarded

when the new record is read.

On execution, a formatted output statement transmits a record to the

specified wunit as format control terminates. Records can also be

written during format «control if a slash appears in the format

specification or if the last closing parenthesis is reached and mote

I/0 list elements remain to be transferred,

The 1, O, F, E, D, G, L, A, and Q field descriptors each correspond to

one element in the I/O0 list. No list element corresponds to an H, X,

P, T, or alphanumeric literal field descriptor. 1In H and alphanumeric

literal field descriptors, data transfer occurs directly between the

external record and the storage location of the format specification.

In format control, when an 1, O, ¥, E, D, G, L, A, or Q field

descriptor is encountered, the I/0 list is checked for a corresponding

element. 1If one is found, data is transferred and, 1if appropriate,

translated Dbetween the external record and the list element. If one

is not found, format control terminates.

When the last closing parenthesis of the format specification is

reached, format control determines whether more I/0 list elements are

to be processed. 1If not, format control terminates. However, if

additional list elements remain, part or all of the format

specification is reused in a process called format reversion.

FORMAT STATEMENTS

Format reversion is the termination of the current record and the
starting of a new one. Format control reverts to the group repeat

specification whose 1left parenthesis is complemented by the
next-to-last right parenthesis of the format specification. If the
format does not contain a group repeat specification, format control
returns to the beginning of the format specification and continues
from that point.

Examples of format reversion are:

READ (I,l100) A, B, C, D, E, F

100 FORMAT (F8.3, F8.3)

In this example, three records containing two fields are read. The

first record assigns values to A and B; the second to C and D; and

the third to E and F.

DIMENSION A(5,5),B(5)

WRITE (6,10)X,(I,B(I),(A(I,J),J=1,5),I=1,5)

10 FORMAT (E10.3/(I5,E10.3, 5(F8.5)))

In this example, format reversion returns to the group repeat

specification that begins with I5.

8.7 SUMMARY OF RULES FOR FORMAT STATEMENTS

The following sections summarize the rules for constructing and wusing

the format specifications and their components, and for constructing

external fields and records. Table 8-4 summarizes the FORMAT codes.

8.7.1 General Rules

l. A FORMAT statement must always be labeled.

2. In a field descriptor such as rIw or nX, the terms ¥, w, and

n must be unsigned integer constants greater than 0. You can

omit the repeat count and field width specification.

3. In a field descriptor such as Fw.d, the term d must Dbe an

unsigned integer constant. If w is specified, then you must

specify 4 in F, E, D, and G field descriptors even if it |is

0; and the field width specification (w) must be greater

than or equal to d. The decimal point is also required. You

must either specify both w and d, or omit them both.

4. In a field descriptor such as nHclc2 ... cn, exactly n

characters must follow the H format code. You can use any

printing ASCII character in this field descriptor.

5. In a scale factor of the form nP, n must be a signed or

unsigned integer <constant 1in the range -127 through 127

inclusive. The scale factor affects the F, E, D, and G field

descriptors only. Once you specify a scale factor, it

applies to all subsequent F, E, D, and G field descriptors in

that format specification until another scale factor appears.

You must explicitly specify OP to reinstate a scale factor of

zero. Format reversion does not affect the scale factor.

8.7.2

l.

8.7.3

l.

FORMAT STATEMENTS

No repeat count is permitted for H, X, T, or alphanumeric

literal field descriptors unless these descriptors are

enclosed 1in parentheses and treated as a group repeat

specification.

If the associated I/0 statement contains an I/0 1list, the

format specification must contain at 1least one field

descriptor other than H,;, X, P, T, or an alphanumeric literal.

A format specification in an array must be constructed the

same as a format specification in a FORMAT statement,

including the opening and c¢losing parentheses. The word

FORMAT and the statement label only are permitted.

Input Rules

A minus sign must precede a negative value 1in an external

input field; a plus sign 1is optional before a positive

value.

On input, an external field under I field descriptor control

must be an 1integer <constant. It cannot contain a decimal

point or an exponent. An external field wunder O field

descriptor control must contain only the numerals 0 through 7

and must not contain a sign, a decimal point, or an exponent.

On input, an external field under F, E, D, or G field

descriptor control must be an integer constant or a real or

double precision constant. It can contain a decimal point

and/or an E or D exponent field.

If an external field contains a decimal point, the actual

size of the fractional part of the field, as indicated by

that decimal point, overrides the d specification of the

corresponding real or double precision field descriptor.

If an external field contains an exponent, the scale factor

(if any) of the corresponding field descriptor has no effect

on the conversion of that field.

The field width specification must be large enough to

accommodate both the numeric character string of the external

field and any other characters that are allowed (algebraic

sign, decimal point, and/or exponent).

A comma is the only character you can use as an external

field separator. It terminates input of numeric fields that

are shorter than the number of characters expected. It also

designates null (zero-length) fields.

Output Rules

A format specification cannot specify more output characters

than the external record can contain. For example, a line

printer record cannot contain more than 133 characters,

including the carriage control character.

FORMAT STATEMENTS

2. The field width specification (w) must be large enough to

accommodate all characters that the data transfer can

generate, including an algebraic sign, decimal point, and

exponent. For example, the field width specification in an E

field descriptor should be 1large enough to contain d+7

characters.

3. The first character of a record output to a line printer or

terminal is wused for carriage control; it is not printed.

The first character of such a record should be a space, 0, 1,

$, or +, Any other character is treated as a space and is

deleted from the record.

Table 8-4: Summary of FORMAT Codes

Code Form Effect

I Iw Specifies transfer of decimal integer values.

0 Oow Specifies transfer of octal integer values.

F Fw.d Specifies transfer of real or double precision

values in basic real form.

E Ew.d Specifies transfer of real or double precision

values in exponential form.

D Dw.d Specifies transfer of real or double precision

values 1in double precision exponential form

with a D instead of an E.

G Gw.d Specifies transfer of real or double precision

values: on input, acts 1like F code; on

output, acts like E code or F code.

L Lw Specifies transfer of logical data: on input,

transfers T, t, F, or f£; on output, transfers

T or F.

A Aw Specifies transfer of alphanumeric or Hollerith

values.

H nHc...cC Specifies transfer of alphanumeric or Hollerith

values between an external record and the

format storage location.

X nX Specifies that n characters are to be skipped

(on input) or that n spaces are to Dbe

transmitted (on output).

T Tn Specifies the position, in the external recotd,

of the next character to be processed.

Q Q Specifies the number of characters remaining to

be transferred in an input record.

S S Suppresses carriage return during interactive

1/0.

: : Terminates format control if the I/0 1list is

exhausted.

CHAPTER 9

AUXILIARY INPUT/OUTPUT STATEMENTS

The auxiliary input/output statements perform file management
functions., These statements are:

® OPEN -- establishes a connection between a logical unit and a

file or device, and specifies the attributes required for read
and write operations.

e CLOSE -- terminates the connection between a logical unit and

a file or device.

e REWIND, BACKSPACE, and FIND -- perform file-positioning

functions.

e ENDFILE -- writes a special record that causes an end-of-file

condition (and END= transfer) when an input statement reads
the record.

e DEFINE FILE -- associates a FORTRAN logical wunit with an

unformatted, direct access file.

See Section 7.2 for a definition of the I/O statement components of
these statements.

OPEN

9.1 OPEN STATEMENT

An OPEN statement either connects an existing file to a logical unit,

or creates a new file and connects it to a logical unit. 1In addition,

OPEN can specify file attributes that control file creation and

subsequent processing.

The OPEN statement has the following form:

OPEN (par[,par]...)

par

A keyword specification in one of the following forms:

key

key = value

key

A keyword, as described below.

value

Depends on the keyword, as described below.

9~-1

AUXILIARY INPUT/OUTPUT STATEMENTS

Keywords are divided into several categories based on function:

Keywords that identify the unit and file.

UNIT - logical unit number to be used

NAME - file name specification for the file

TYPE - file existence status at OPEN

DISPOSE - file existence status after CLOSE

Keywords that describe the file processing to be performed.

ACCESS - FORTRAN access method to be used

READONLY - write protection

Keywords that describe the records in the file.

BLOCKSIZE - size of I/0 transfer buffer

CARRIAGECONTROL - type of printer control

FORM - type of FORTRAN record formatting

RECORDSIZE - logical record length

Keywords that describe file storage allocation when a file is

created.

INITIALSIZE - initial file storage allocation

EXTENDSIZE - file storage allocation increment size

Keywords that provide additional capability for direct access

1/0.

ASSOCIATEVARIABLE - variable holding the next direct access

record number

MAXREC - maximum direct access record number

Optional keywords that provide improved performance or special

capabilities.

ERR - statement to which control is transferred

if an error occurs during execution of

the OPEN statement

BUFFERCOUNT - number of 1/0 buffers to use

NOSPANBLOCKS - records are not to be split across

physical blocks

SHARED - other programs can simultaneously access

the file

NOTE

Not all PDP-11 operating systems support

all keywords and options. Consult the

appropriate PDP-11 FORTRAN IV user's

guide for information in system-specific

restrictions.

Table 9-1 lists in alphabetical order the keywords and their possible

associated values, including default values.

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-1: OPEN Statement Keyword Values

Keyword values? Function Default

ACCESS 'SEQUENTIAL" Access method 'SEQUENTIAL"

'DIRECT'

'APPEND'

ASSOCIATEVARIABLE v Next record No associate

number in variable

direct access

BLOCKSIZE e Size of 1/0 System default

buffer

BUFFERCOUNT e Number of I/0 System default

buffers

CARRIAGECONTROL 'FORTRAN' Print control 'FORTRAN'

‘LIST' (formatted)

"NONE' 'NONE'

(unformatted)

DISPOSE 'SAVE' or 'KEEP' File disposi- 'SAVE'

DISP '"PRINT' tion

'DELETE' at close

ERR] Error transfer No error

label transfer

EXTENDSIZE e File storage Volume or

allocation system default

increment

FORM 'FORMATTED' Format type Depends on

'UNFORMATTED' ACCESS

INITIALSIZE e File storage No allocation

allocation

MAXREC e Maximum record No maximum

number in

direct access

NAME o File name Depends on

specification unit and system

NOSPANBLOCKS - Records do not Records can span

span blocks blocks

READONLY - Write protec- No write

tion protection

(continued on next page)

AUXILIARY INPUT/OUTPUT STATEMENTS

Table 9-1 (Cont): OPEN Statement Keyword Values

Keyword valuesl Function Default

RECORDSIZE e Record length Depends on TYPE,

SHARED - File sharing File sharing
allowed not allowed

TYPE '‘OLD! File status 'NEW'
'NEW at open

'SCRATCH'

'UNKNOWN'

UNIT e Logical unit No default
number

1. c is an alphanumeric literal, array name, variable name, or

array element name.

e is an integer expression.

S is a statement label,.

v is an integer variable name.

Keyword specifications can appear in any order. Determining whether
they are optional and which ones are required depends upon the type of

file you are establishing or have established, and upon what you plan
to do with it,

Some examples follow.

OPEN (UNIT=1, ERR=100)

This example creates a new sequential formatted file on wunit 1 with

the default file name,.

OPEN (UNIT=3, TYPE='SCRATCH', ACCESS='DIRECT',

INITIALSIZE=50, RECORDSIZE=64)

This example creates a 50-block sequential file to be used with direct

access. The file is deleted at program termination.

OPEN (UNIT=I, NAME='MTO:MYDATA.DAT', BLOCKSIZE=8192,

TYPE="NEW', ERR=14, RECORDSIZE=1024, RECORDTYPE='FIXED')

This example creates a file on magnetic tape with a large block size

for efficient processing.

OPEN (UNIT=I, NAME='MTO:MYDATA.DAT', READONLY, TYPE='OLD',
RECORDSIZE=1024, RECORDTYPE='FIXED', BLOCKSIZE=8192)

This example opens the file created in the previous example for input.

Sections 9.1.1 through 9.1.18 describe the keywords in detail.

AUXILIARY INPUT/OUTPUT STATEMENTS

9.1.1 ACCESS Keyword

The ACCESS keyword specifies the method of 1locating, reading, or
writing records. In FORTRAN IV there are two access methods:
sequential and direct.

This keyword has the following form:

ACCESS= acc

acc

One of the alphanumeric 1literals, 'SEQUENTIAL', or 'APPEND'.
ACCESS= 'APPEND' implies sequential access and positioning after
the last record in the file.

If no ACCESS is specified, the default is 'SEQUENTIAL'.

In sequential access, you must read or write records in sequence from
the beginning of the file.

Direct access to sequential file requires that the records in the file
be fixed-length (see Section 9.1.15.)

In direct access, you specify record number n (Section 7.2.3) in the
I/0 statement, and the system selects the nth record.

9.1.2 ASSOCIATEVARIABLE Keyword

ASSOCIATEVARIABLE specifies the integer variable (asv) that, after
each direct access 1I/0 operation, contains the record number of the
next sequential record in the file. This specifier 1is ignored for
sequential access.

This keyword has the following form:

ASSOCIATEVARIABLE = asv

asv

An integer variable.

9.1.3 BLOCKSIZE Keyword

BLOCKSIZE specifies the size (in bytes) of the I/0 transfer buffer.
I/0 statements appear to transfer records directly between a file and
the entities specified in the I/0 list. 1In fact, the system transfers
the records to an intermediate I/0 buffer.

This keyword has the following form:

BLOCKSIZE = Dbks

bks

An integer expression.

For sequential files, BLOCKSIZE determines the number of disk blocks
to transfer for disk files or the physical blocking factor for
magnetic tape files. The default 1is the system default for the
device. -

See the appropriate PDP-11 FORTRAN IV wuser's guide for more
information.

AUXILIARY INPUT/OUTPUT STATEMENTS

9,1.4 BUFFERCOUNT Keyword

BUFFERCOUNT specifies the number of buffers to be associated with the

logical wunit for multibuffered 1/0. The BLOCKSIZE keyword determines

the size of each buffer. If you do not specify BUFFERCOUNT, or if you

specify 0, the system default is used. This keyword has the following

form:

BUFFERCOUNT = bc

bc

An integer expression.

9.1.5 CARRIAGECONTROL Keyword

CARRIAGECONTROL determines the kind of carriage control to Dbe used

when printing a file. The default for formatted files is 'FORTRAN',

the default for unformatted files, the default is 'NONE'. 'FORTRAN'

specifies normal FORTRAN interpretation of the first character (see

Section 8.2); 'LIST' specifies no FORTRAN interpretation, but rather

single spacing between records; and 'NONE' specifies no implied

carriage control.

This keyword has the following form:

CARRIAGECONTROL = cc

cc

One of the alphanumeric literals 'FORTRAN', 'LIST', or 'NONE'.

9.,1.6 DISPOSE Keyword

DISPOSE determines the disposition of the file connected to the wunit

when the unit is closed. 1If you specify 'SAVE' or 'KEEP', the file is

retained after the unit is closed; this is the default value. 1If you

specfiy 'PRINT', the file 1is submitted to the system line printer

spooler. On some systems, the file is deleted after printing. If you

specfiy 'DELETE', the file is deleted. A read-only file (see Section

9.1.14) cannot be printed or deleted, and a scratch file (see Section

9.1.17) cannot be saved or printed.

This keyword has the following forms:

DISPOSE = dis

DISP = dis

dis

One of the alphanumeric literals 'SAVE', 'KEEP', 'PRINT', or

'"DELETE'.

9.1.7 ERR Keyword

ERR transfers control to the executable statement specified by s if an

error occurs during execution of the OPEN statement. The ERR

specification applies only to the OPEN statement, not to subsequent

I/0 operations on the unit. If an error does occur, no file is opened

or created.

AUXILIARY INPUT/OUTPUT STATEMENTS

This keyword has the following form:

ERR= s

The label of an executable statement.

9.1.8 EXTENDSIZE Keyword

EXTENDSIZE specifies the number of blocks by which to extend a disk
file when additional file storage is allocated. If you do not specify
EXTENDSIZE, or if you specify 0, the system default for the device is
used.

This keyword has the following form:

EXTENDSIZE = es

es

An integer expression.

9.1.9 FORM Keyword

FORM specifies whether the file being opened is to be read and written
using formatted or unformatted I/O statements. For sequential access,
'"FORMATTED' is the default. For direct access, 'UNFORMATTED' is the
default. You must not mix formatted and unformatted I/0 statements on
the same unit.

This keyword has the following form:

FORM = ft

ft

The alphanumeric literal 'FORMATTED' or 'UNFORMATTED'.

9.1.10 INITIALSIZE Keyword

INITIALSIZE specifies the number of blocks in the initial allocation
of space for a new file on a disk. 1If you do not specify INITIALSIZE,
or if you specify 0, no initial allocation is made.

This keyword has the following form:

INITIALSIZE = insz

insz

An integer expression.

9.1.11 MAXREC Keyword

MAXREC specifies the maximum number of records permitted in a direct
access file. The default is no maximum number of records. This
specifier is ignored for other types of files.

AUXILIARY INPUT/OUTPUT STATEMENTS

This keyword has the following form:

MAXREC = mr

mr

An integer expression.

9.1.12 NAME Keyword

NAME specifies the name of the file to be connected to the unit. The

name can be any file specification accepted by the operating system.

The appropriate PDP-11 FORTRAN IV user's guide describes default file

name conventions.,

1f the file name is stored in a variable, array, or array element, the

name must consist of ASCII <characters terminated by an ASCII null

character (0 byte).

This keyword has the following form:

NAME = fln

fln

An array name, variable name, array element name, Or alphanumeric

literal.

9.,1.13 NOSPANBLOCKS Keyword

NOSPANBLOCKS is used for sequential files stored on disk only. It

specifies that records are not to cross disk block boundaries. If any

record exceeds the size of a disk block, an error occurs.

This keyword has the following form:

NOSPANBLOCKS

9.1.14 READONLY Keyword

READONLY prohibits writing by the program to a file.

This keyword has the following form:

READONLY

9,1.15 RECORDSIZE Keyword

RECORDSIZE specifies the logical record length.

If the file contains fixed-length records, RECORDSIZE specifies the

size of each record. If the file contains variable-length records,

RECORDSIZE specifies the maximum length for any record.

You must specify RECORDSIZE when you create a file with fixed-length

records,

AUXILIARY INPUT/OUTPUT STATEMENTS

This keyword has the following form:

RECORDSIZE = rl

rl

An integer expression.

The value of rl depends on the value of FORM (see Section 9.1.9). If

the records are formatted, the length is the number of characters; if

the records are unformatted, the 1length is the number of numeric

storage units (four bytes).

9.1.16 SHARED Keyword

SHARED specifies that the file is to be opened for shared access by

more than one program executing simultaneously.

Sequential files may only be shared if they are stored on disk, and

only one program may have write access.

This keyword has the following form:

SHARED

See the appropriate PDP-11 FORTRAN IV user's guide for additional

information on this keyword.

9.1.17 TYPE Keyword

TYPE specifies the status of file to be opened. 1If you specify 'OLD',

the file must already exist. If you specify 'NEW', a new file is

created. 1If you specify 'SCRATCH', a new file is created and it is

deleted when the file is closed. If you specify 'UNKNOWN', the system
will first try 'OLD'; if the file is not found, the system will use
'NEW', thereby creating a new file. The default is 'NEW'.

This keyword has the following form:

TYPE = typ

typ
One of the alphanumeric literals 'OLD', 'NEW', 'SCRATCH', or

unknown.

9.1.18 UNIT Keyword

UNIT specifies the logical unit to which a file is to be connected.

The unit specification must appear in the list. Another file cannot

be connected to the logical unit when the OPEN statement is executed.

This keyword has the following form:

UNIT = u

An integer expression.

AUXILIARY INPUT/OUTPUT STATEMENTS

CLOSE

9.2 CLOSE STATEMENT

The CLOSE statement disconnects a file from a unit.

The CLOSE statement has the following form:

DISPOSE

CLOSE (UNIT=u], =p |[,ERR=8])
DISP

u

A logical unit number.

p] » L] »]
An alphanumeric literal that determines the disposition of the

file. 1Its values are 'SAVE', 'KEEP', 'DELETE', and 'PRINT'.

S

The label of an executable statement.

If you specify either 'SAVE' or 'KEEP', the file is retained after the

unit 1is closed. If you specify 'PRINT', the file is submitted to the

line printer spooler. On some systems, the file is deleted after

printing. If you specify 'DELETE', the file is deleted. For scratch

files, the default is 'DELETE'; for all other files, the default is

'SAVE'. The disposition specified in a CLOSE statement supersedes the

disposition specified in the OPEN statement, except that a file opened

as a scratch file cannot be saved or printed, nor can a file opened

for read-only access be printed or deleted.

For example:

CLOSE (UNIT=1,DISPOSE="'PRINT"')

This statement closes the file on unit 1 and submits the file for

printing.

CLOSE (UNIT=J,DISPOSE='DELETE',ERR=99)

This statement closes the file on unit J and deletes it.

REWIND

9.3 REWIND STATEMENT

The REWIND statement repositions an open sequential file at the

beginning of the file.

The REWIND statement has the following form:

REWIND u

A logical unit number.

AUXILIARY INPUT/OUTPUT STATEMENTS

The unit number must refer to an open sequential file on disk or
magnetic tape. For example:

REWIND 3

This statement repositions logical wunit 3 to the beginning of a
currently open file.

You must not issue a REWIND statement for a file that is open for
direct access.

BACKSPACE

9.4 BACKSPACE STATEMENT

The BACKSPACE statement repositions an open sequential file at the
beginning of the preceding record. When the next I/0 statement for
the unit is executed, that record is available for processing.

The BACKSPACE statement has the following form:

BACKSPACE u

A logical unit number.

The unit number must refer to an open sequential file on disk or
magnetic tape. For example:

BACKSPACE 4

This statement repositions the open file on 1logical wunit 4 to the
beginning of the preceding record.

You must not issue a BACKSPACE statement for a file that is open for
direct or append access.

FIND

9.5 FIND STATEMENT

The FIND statement positions a direct access file on a specified unit
to a particular record. No data transfer takes place.

This statement has the following form:

FIND (u'r)

A logical unit number.

The direct access record number.

AUXILIARY INPUT/OUTPUT STATEMENTS

The record number cannot be less than 1 or greater than the number of

records defined for the file.

The associated variable of the file, if specified, 1is set to the

direct access record number.

ENDFILE

9.6 ENDFILE STATEMENT

The ENDFILE statement writes an end-file record to the specified unit.

This statement has the following form:

ENDFILE u

A logical unit number.

You can write an end-file record only to sequentially accessed

sequential organization files containing variable-length or segmented

records.

For example:

ENDFILE 2

This statement outputs an end-file record to logical unit 2,

DEFINE FILE

9.7 DEFINE FILE STATEMENT

The DEFINE FILE statement describes direct-access sequential files

‘that are associated with a logical unit number. The OPEN statement

(Section 9.1) is the preferred way to do this. The DEFINE FILE

statement establishes the size and structure of the direct access

file.

The DEFINE FILE statement has the following form:

DEFINE FILE u (m,n,U,asv) [,u(m,n,U,asv)] ...

u

An integer constant or integer variable that specifies the

logical unit number.

m

An integer constant or integer variable that specifies the number

of records in the file.

n

An integer constant or integer variable that specifies the

length, in 16-bit words, (2 bytes), of each record.

U

Specifies that the file is unformatted (binary); this 1is the

only acceptable entry in this position.

AUXILIARY INPUT/OUTPUT STATEMENTS

asv

An integer variable, called the asociated variable of the file.

At the end of each direct access I/0 operation, the record number

of the next higher-numbered record in the file 1is assigned to

asv.

DEFINE FILE specifies that a file containing m fixed-length records of

n 1l6-bit words each exists, or is to exist, on logical unit u. The

records in the file are numbered sequentially from 1 through m.

DEFINE FILE must be executed before the first direct-access 1/0

statement that refers to the specified file,

DEFINE FILE also establishes the integer variable asv as the

associated variable of the file. At the end of each direct access I/0O

operation, the FORTRAN I/0 system places in asv the record number of

the record immediately following the one just read or written. Since

the associated variable always points to the next sequential record in

the file (unless it 1is redefined by an assignment, input, or FIND

statement), direct access 1I/0 statements can perform sequential

processing of the file by using the associated variable of the file as

the record number specifier.

For example:

DEFINE FILE 3 (1000,48,U,NREC)

This statement specifies that logical unit 3 is to be connected to a

file of 1000 fixed-length records; each record is forty-eight 16-bit

words long. The records are numbered sequentially from 1 through

1000, and are unformatted. After each direct access I1/0 operation on

this file, the integer variable NREC will contain the record number of

the record immediately following the record just processed.

APPENDIX A

CHARACTER SETS

A.1l FORTRAN CHARACTER SET

The FORTRAN character set consists of:

1. The letters A through Z and a through z

2. The numerals 0 through 9

3. The following special characters:

Character Name Character Name

A Or (TAB Space or tab ' Comma

= Equal sign . Period

+ Plus sign ! Apostrophe

- Minus sign " Quotation mark

* Asterisk $ Dollar sign

/ Slash ! Exclamation point

(Left parenthesis : Colon

) Right parenthesis

Other printing characters can appear in a FORTRAN statement only as

part of a Hollerith constant. Any printing character can appear in a

comment. See Table A-1l.

A.2 ASCII CHARACTER SET

Table A-1 is a table representing the ASCII character set. At the top

of the table are hexadecimal digits (0 to 7), and to the left of the

table are hexadecimal digits (0 to F). To determine the hexadecimal

value of an ASCII character, locate the ASCII character in the table,

use the row number as the unit's position digit, and use the column

number as the 16's position digit. For example, the hexadecimal value

of the equal sign (=) is 3D.

CHARACTER SETS

Table A-1: ASCII Character Set

Columns

0 1 2 3 4 5 6 7

0 NOL DLE SP 0 Q P * P

1 SOH DCl ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 c) o S

4 EOT DC4 S 4 D T d t

5 ENQ NAK % 5 E U e u

o ACK SYN & 6 F v £ v

7 BEL ETB 7 G W g W

8 BS CAN (8 H X h X

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ 1 J

D CR GS - = M] m

E SO RS . > N - n ~

F sT us [/ ? 0 _ 0 DEL

NUL Null DLE Data Link Escape

SOH Start of Heading DCl1 Device Control 1

STX Start of Text DC2 Device Control 2

ETX End of Text DC3 Device Control 3

EOT End of Transmission DC4 Device Control 4

ENQ Enquiry NAK Negative Acknowledge

ACK Acknowledge SYN Synchronous Idle

BEL Bell ETB End of Transmission Block

BS Backspace CAN Cancel

HT Horizontal Tabulation EM End of Medium

LF Line Feed SUB Substitute

VT Vertical Tab ESC Escape

FF Form Feed FS File Separator

CR Carriage Return GS Group Separator -

SO Shift Out RS Record Separator

SI Shift In us Unit Separator

SP Space DEI, Delete

A.3 RADIX-50 CONSTANTS AND CHARACTER SET

Radix-50 is a special character data representation in which up to 3

characters can be encoded and packed into 16 bits. The Radix-50

character set is a subset of the ASCII character set.

The Radix-50 characters and their corresponding code values are:

ASCII Octal Radix~50 Value

Character Equivalent (Octal)

Space 40 0

A - 2 101 - 132 1 - 32

S 44 33

. 56 34

(Unassigned) 35

0 -9 60 - 71 36 - 47

CHARACTER SETS

Radix-50 values are stored, up to 3 characters per word, by packing

them into single numeric values according to the formula:

((i * 50 + §) * 50 + k)

where i, j, and k represent the code values of 3 Radix-50 characters.

Thus, the maximum Radix-50 value is:

47*50*50 + 47*50 + 47 = 174777

A Radix-50 constant has the following form:

nRclc2...cn

n

An unsigned, nonzero integer constant that states the number of

characters to follow.

c

A character from the Radix-50 character set.

The maximum number of characters is 12. The character count must

include any spaces that appear 1in the character string (the space

character is a valid Radix-50 character). You can use Radix-50

constants only in DATA statements.

Examples of valid and invalid Radix-50 constants are:

valid Invalid

4RABCD 4RDKO: (the colon is not a Radix~-50 character)

6 RATOAAA

When a Radix-50 constant is assigned to a numeric variable or array

element, the number of bytes that can be assigned depends on the data

type of the component (see Table 2-2). If the Radix-50 constant

contains fewer bytes than the 1length of the component, ASCII null

characters (0 bytes) are appended on the right. If the constant

contains more bytes than the length of the component, the rightmost

characters are not used.

APPENDIX B

FORTRAN LANGUAGE SUMMARY

B.1l EXPRESSION OPERATORS

Table B-1 lists the expression operators in each data type in order of
descending precedence.

Table B-1l: Expression Operators

Data Type Operator Operation Operates Upon:

Arithmetic * ok Exponentiation Arithmetic

expressions

*,/ Multiplication,

division

+,- Addition, subtraction,

unary plus and minus

Relational .GT. Greater than Arithmetic or logical

expressions (all

.GE. Greater than or relational operators

equal to have equal priority)

LLT. Less than

.LE, Less than or

equal to

.EQ. Equal to

.NE, Not equal to

Logical .NOT. .NOT.A is true if and Logical or integer

only if A is false expressions

.AND. A.AND.B is true if

and only if A and B

are both true

.OR, A.OR.B is true if

either A or B or

both are true

(continued on next page)

FORTRAN LANGUAGE SUMMARY

Table B-1 (Cont.): Expression Operators

Data Type Operator Operation Operates Upon:

Logical .EQV. A.EQV.B is true if and .EQV. and .XOR.

(cont.) only if A and B have equal
are both true or A priority

and B are both false

.XOR. A.XOR.B is true if and

only if A is true and

B is false or B is

true and A is false

B.2 STATEMENTS

The following list summarizes the statements availablein the PDP-11

FORTRAN IV language, including the general form of each statement.

The statements are listed alphabetically for ease of reference. The

"Manual Section" column indicates the section of the manual that

describes each statement in detail.

Manual

Form Effect Section

ACCEPT See READ, Formatted Sequential 7.3.1

See READ, List-Directed 7.3.3

Arithmetic/Logical Assignment 3.1, 3.2

v=e

v A variable name, or an array element name.

e An expression.

Assigns the value of the arithmetic or

logical expression to the variable.

Statement Function 6.2.1

f(lpl,pl...]1)=e

f A symbolic name.

p A symbolic name.

e An expression,

Creates a user-defined function having the

variable p as a dummy argument. When

referred to, the expression is evaluated

using the actual arguments in the function

call.

FORTRAN LANGUAGE SUMMARY

Manual

Form Effect Section

ASSIGN s TO v 3.3

S A label of an executable statement.

v An integer variable name.

Associates the statement label s with the

integer variable v for later use in an

assigned GO TO statement.

BACKSPACE u 9.4

u An integer expression.

Backspaces one record the currently open file on

logical unit u.

BLOCK DATA [nam]

nam A symbolic name.

Specifies the subprogram that follows as a

BLOCK DATA subprogram.

CALL f[(fa]l,[al]l...)] 4.5

6.2

£ A subprogram name or entry point.

a An expression, an array name, or a procedure

name.

Calls the subroutine subprogram with the

name specified by £, passing the actual

arguments a to replace the dummy

arguments in the subroutine definition.

CLOSE (pl,pl...) 9.2

P One of the following forms:

UNIT = e

DISPOSE = 'SAVE'

DISPOSE = 'KEEP'

DISPOSE = 'DELETE'

DISPOSE = 'PRINT'

ERR = s

e An integer expression.

s A label of an executable statement.

Closes the specified file. DISPOSE can

be abbreviated DISP.

Form

FORTRAN LANGUAGE SUMMARY

Effect

COMMON [/[cbl/] nlist [[,]/[cb]/nlist]...

cb

nlist

CONTINUE

A common block name.

A list of one or more variable names,

array names, or array declarators

separated by commas.

Reserves one or more blocks of storage

space under the name specified to contain

the variables associated with that block

name.

Causes no processing.

DATA nlist/clist/[[,] nlist/clist/]...

nlist

clist

A list of one or more variable names,

array names, or array element names

separated by commas. Subscript

expressions must be constant.

A list of one or more constants separated

by commas, each optionally preceded by j*,

where j is a nonzero, unsigned integer

constant.

Initially stores elements of clist

in the corresponding elements of

nlist.

DECODE (c,f,b[,ERR=s]) [list]

list

An integer expression.

A format specifier.

A variable name, array name, Or array

element name.

A label of an executable statement.

An I/0 list.

Reads c¢ characters from buffer b and

assigns values to the elements in the

list, converted according to format

specification f.

DEFINE FILE u(m,n,U,v)[,u(m,n,U0,v)]...

u

m

An integer variable or integer constant.

An integer variable or integer constant.

Manual

Section

5.4

FORTRAN LANGUAGE SUMMARY

Manual

Form Effect Section

n An integer variable or integer constant.

\% An integexr variable name.

Defines the record structure of a

direct access file where u is the logical

unit number, m is the number of fixed-

length records in the file, n is the

length in words of a single record, U is

a fixed argument, and v is the associated

variable.

DIMENSION a(d)[,a(d)]... 5.3

a(d) An array declarator.

Specifies storage space requirements for

arrays.

DO s [,] v = el,e2[,e3] 4.3

S A label of an executable statement.

\' A variable name.

el,e2,e3 Numeric expressions.

Executes the DO loop by performing the following steps:

l. Set v = el

2. Execute all statements through

statement number s

3. Evaluate v = v+e3

4. Repeat steps 2 through 3 for the following

iterations:

MAX (1, INT((e2 - el)/e3) + 1)

ENCODE (c,f,b[,ERR=s]) [list] 7.6

c An integer expression.

£ A format specifier.

b A variable name, array name, Or array

element name.,

s A label of an executable statement.

list An I/0 list.

Writes ¢ characters into buffer b, which

contains the values of the elements of

the list, converted according to format

specification f.

FORTRAN LANGUAGE SUMMARY

Form Effect

END

Delimits a program unit.

ENDEFILE u

u An integer expression.

Writes an end-£file record on logical

unit u.

END=s ,ERR=s

s A label of an executable statement.

Transfers control on end-of-file or error

condition. This is an optional element

in each type of I/0 statement and allows

the program to transfer to statement

number s when an end-of-file (END=) or

error (ERR=) condition occurs.

EQUIVALENCE (nlist)[,(nlist)]...

nlist A list of two or more variable names,

array names, Or array element names,

separated by commas. Subscript

expressions must be constants.

Assigns each of the names in nlist

the same storage location.

EXTERNAL v[,v]...

\Y A subprogram name,

Defines the names specified as subprograms.

FIND (u'r)

u An integer expression.

r An integer expression.

Positions the file on logical

unit u to the record

specified by r.

FORMAT (field specification,...)

Describes the format in which one or

more records are to be transmitted;

statement label must be present.

a

Manual

Section

4.9

8.1 - 8.8

Form

FORTRAN LANGUAGE SUMMARY

Effect

[typ] FUNCTION nam[*n] [([p[,pP)...])]

typ

nam

*n

p

GO TO s

A data type specifier.

A symbolic name.

A data type length specifier.

A symbolic name.

Begins a function subprogram, indicating

the program name and any dummy argument

names (p). An optional type specification

can be included.

A label of an executable statement.

Transfers control to statement number s.

GO TO (slist)[,] e

slist A list of one or more statement

labels separated by commas.

An integer expression.

Transfers control to the statement

specified by the value of e (if e=1,

control transfers to the first statement

label; 1if e=2, control transfers

to the second statement label, etc.).

If e is less than 1 or greater than the

number of statement labels present, no

transfer takes place.

GO TO v [[,] (slist)]

\Y

slist

An integer variable name.

A list of one or more statement

labels separated by commas.

Transfers control to the statement most

recently associated with v by an ASSIGN

statement,

IF (e) sl,s2,s3

e An expression.

Manual

Section

6.2'2

Form

IF (e) st

st

IMPLICIT typ (al,al...)[,typ(al,al...)]...

typ

a

OPEN (par[,par]

par

key

value

FORTRAN LANGUAGE SUMMARY

Manual

Effect Section

A label of an executable statement.

Transfers control to statement sl

depending on the value of e (if e is

less than 0, control transfers to

sl; 1if e equals 0, control transfers

to s2; if e is greater than 0, control

transfers to s3).

An expression.

Any executable statement except a DO or

logical IF.

Executes the statement if the logical

expression has a value of true.

A data type specifier.

Either a single letter, or two letters

in alphabetical order separated by

The element a represents a single (or a

range of) letter (s) whose presence as the

initial letter of a variable specifies

the variable to be of that data type.

ees)

A keyword specification in one of the following

forms:

key

key value

A keyword, as described below.

Depends on the keyword, as described

below.

Keyword Values

ACCESS 'SEQUENTIAL"

'DIRECT!

'APPEND'

ASSOCIATEVARIABLE \Y

BLOCKSIZE e

BUFFERCOUNT e

CARRIAGECONTROL 'FORTRAN'

'LIST!

'NONE'

DISPOSE 'SAVE' or 'KEEP'

DISP 'PRINT'

'DELETE'

Form

PAUSE [disp]

disp

PRINT

PROGRAM nam

nam

FORTRAN LANGUAGE SUMMARY

Manual

Effect Section

Keyword Values

ERR S

EXTENDSIZE e

FORM '"FORMATTED'

'UNFORMATTED'

INITIALSIZE e

MAXREC e

NAME o]

NOSPANBLOCKS -

READONLY -

RECORDSIZE e

SHARED -

TYPE 'OLD!

'NEW'

'SCRATCH"

"UNKNOWN''

UNIT e

An array name, variable name, array

element name, or alphanumeric literal.

A numeric expression.

A label of an executable statement.

An integer variable name.

Opens a file on the specified logical unit

according to the parameters specified by

the keywords.

4'7

A decimal digit string containing one to five

digits, an octal constant, or an

alphanumeric literal.

Suspends program execution and prints the

display, if one is specified.

See WRITE, Formatted Sequential. 7.3.2

See WRITE, List-Directed. 7.3.4

5.10

A symbolic name.

Specifies a name for the main program.

7.3.1READ (u,f[,END=s][,ERR=s])[list]

READ f[,list]

ACCEPT f[,list]

u

f

An integer expression.

A format specifier.

FORTRAN LANGUAGE SUMMARY

Manual

Form Effect Section

s A label of an executable statement.

list An I/0 list.

Reads one or more logical records from

unit u and assigns values to the elements

in the list., The values are converted

according to format specification f.

READ (u[,END=s] [,ERR=s]) [list] 7.3.5

u An integer expression.

s A label of an executable statement.

list An I/0 list.

Reads one unformatted record from logical

unit u, and assigns values to the

elements in the list.

READ(u'r[,ERR=s8])[list] 7.4.3

u An integer expression.

r An integer expression.

S A label of an executable statement.

list An I/0 list.

Reads record r from logical unit u and assigns

values to the elements in the list,.

READ (u,*[,END=s][,ERR=s])list 7.3.3

READ *,list

ACCEPT *,list

u An integer expression.

* Denotes list-directed formatting.

S A label of an executable statement.

list An I/0 list.

Reads one or more records from

logical unit u and assigns values to

the elements in the list. The

values are converted according to the

data type of the list element.

FORTRAN LANGUAGE SUMMARY

Manual

Form Effect "~ Section

RETURN 4.6

Returns control to the calling program

from the current subprogram.

REWIND u 9.3

u An integer expression.

Repositions logical unit u to the

beginning of the currently opened file.

STOP [disp]

disp A decimal digit string containing one to five

digits, an octal constant, or an

alphanumeric literal.

Terminates program execution and prints

the display, if one is specified.

SUBROUTINE nam[([p[,p)l...])] 6.2.3

nam A symbolic name.

p A symbolic name.

Begins a subroutine subprogram, indicating

the program name and any dummy argument

names (p).

TYPE See WRITE, Formatted Sequential. 7.3.2

See WRITE, List-Directed. 7.3.4

Type Declaration 5.2

typ vi,v]...

typ One of the following data types:

BYTE

LOGICAL

LOGICAL*1

LOGICAL*4

INTEGER

INTEGER*2

INTEGER*4

REAL

REAL*4

REAL*8

DOUBLE PRECISION

COMPLEX

COMPLEX*8

FORTRAN LANGUAGE SUMMARY

Manual

Form Effect Section

v A variable name, array name, function or
function entry name, or an array declarator.

The name can optionally be followed by a data

type length specifier (*n).

The symbolic names (v) are assigned the

specified data type.

VIRTUAL a(d)[,a(d)]}... 5.5

a(d) An array declarator.

Specifies storage space for arrays

outside normal program address space.

WRITE (u,f[,ERR=s])[list] 7.3.2

PRINT f[,list]

TYPE f[,list]

u An integer expression.

f A format specifier.

S A label of an executable statement.

list An I/0 list.

Writes one or more records to logical unit

u, containing the values of the elements

in the list. The values are converted

according to format specification f.

WRITE (ul[,ERR=s])[list] 7.3.6

u An integer expression.

s A label of an executable statement label.

list An I/0 list,

Writes one unformatted record to logical

unit u containing the values of the elements

in the list.

WRITE (u'r(,ERR=s]) [list] 7.4.4

u An integer expression.

X An integer expression.

S A label of an executable statement label.

list An I/0 list.

Writes record r to logical unit u containing

the values of the elements in the list.

B-12

FORTRAN LANGUAGE SUMMARY

Manual

Form Effect Section

WRITE(u,*[,ERR=s])1list 7.3.4

PRINT *,list

TYPE *,list

u

*

S

list

An integer expression.

Denotes list-directed formatting.

A label of an executable statement.

An I/0 list.

Writes one or more logical records to logical

unit u containing the values of the elements

in the list. The values are converted

according to the data type of the list

element.

B.3 LIBRARY FUNCTIONS

Table B-2 lists the FORTRAN IV library functions. Superscripts in the

table refer to notes which follow the table.

Table B-2: FORTRAN Library Functions

Argument Result

Form Definition Type Type

ABS (X) Real absolute value Real Real

IABS (1) Integer absolute value Integer Integer

DABS (X) Double precision absolute value Double Double

CABS (Z) Complex to Real, absolute valuel Complex Real

FLOAT(I) Integer to Real conversion?2 Integer Real
IFIX (X) Real to Integer conversion? Real Integer
SNGL (X) Double to Real conversion2 Double Real
DBLE (X) Real to Double conversion?2 Real Double
REAL (Z) Complex to Real conversion,

obtain real part Complex Real

AIMAG(Z) Complex to Real conversion,

obtain imaginary part Complex Real

CMPLX (X, Y) Real to Complex conversion

CMPLX (X, Y)=X+i*Y Real Complex

AINT (X)

INT (X)

IDINT (X)

Truncation functions return the sign of

the argument * largest integer = largl

Real to Real truncation3 Real Real
Real to Integer truncation3 Real Integer
Double to Integer truncation3 Double Integer

Remainder functions return the remainder

when the first argument is divided by

the second.

(continued on next page)

FORTRAN LANGUAGE SUMMARY

Table B-2 (Cont.): FORTRAN Library Functions

Argument Result

Form Definition Type Type

AMOD (X, Y) Real remainder Real Real

MOD(I,J) Integer remainder Integer Integer

DMOD (X, Y) Double precision remainder Double Double

Maximum value functions return the

largest value from among the argument

list; 2 or more arguments.

AMAXO(I,J,¢40) Real maximum from Integer list Integer Real

AMAX1(X,Y,...) Real maximum from Real list Real Real

MAX0(I,J,...) Integer maximum from Integer list Integer Integer

MAX1(X,Y,...) Integer maximum from Real list Real Integer

DMAX1(X,Y,...) Double maximum from Double list Double Double

Minimum value functions return the small-

est value from among the argument list;

2 or more arguments.

AMINO(I,J,...) Real minimum of Integer list Integer Real

AMIN1(X,Y,...) Real minimum of Real list Real Real

MINO(I,Jd,...) Integer minimum of Integer list Integer Integer

MIN1(X,Y,¢..) Integer minimum of Real list Real Integer

DMINL(X,Y,...) Double minimum of Double list Double Double

The transfer of sign functions return

(sign of the second argument)

value of first argument).

SIGN(X,Y) Real transfer of sign Real Real

ISIGN(I,J) Integexr transfer of sign Integer Integer

DSIGN(X,Y) Double precision transfer of sign Double Double

Positive difference functions return the

first argument minus the minimum of the

two arguments.

DIM(X,Y) Real positive difference Real Real

IDIM(I,J) Integer positive difference Integer Integerx

Exponential functions return the value

of e raised to the argument power,

EXP(X) eXx Real Real

DEXP (X) eX Double Double

CEXP(2) e? Complex Complex

ALOG (X) loge(X) Real Real

ALOG10 (X) logq g (X) Real Real

DLOG (X) loge (X) Double Double

DLOG10 (X) logyg (X) Double Double

CLOG(Z) loge (2) Complex Complex

SQRT (X) Square root of Real argument Real Real

DSQRT (X) Square root of Double precision argument Double Double

CSQRT (Z)> Square root of Complex argument Complex Complex

(continued on next page)

FORTRAN LANGUAGE SUMMARY

Table B-2 (Cont.): FORTRAN Library Functions

: Argument Result

Form Definition Type Type

SIN(X) Real sine Real Real

DSIN(X) Double precision sine Double Double

CSIN(2Z)6 Complex sine Complex Complex

COS (X) Real cosine Real Real

DCOS (X) Double precision cosine Double Double

Cccos(z)® Complex cosine Complex Complex

TANH (X) Hyperbolic tangent Real Real

ATAN (X) Real arc tangent Real Real

DATAN (X) Double precision arc tangent Double Double

ATAN2 (X,Y) Real arc tangent of (X/Y). Real Real

DATAN2 (X,Y) 7,8 Double precision arc tangent of (X/Y) Double Double

CONJG(2Z) Complex conjugate, if Z=X+i*Y

CONJG(Z)=X-1i*Y Complex Complex

RAN (I,J)9 Returns a pseudo-random number of
uniform distribution over the range of

0 to 1. Integer Real

1. The absolute value of a complex number, (X,Y), is the real value:

(X2+Y2)1/2

2. Functions that cause conversion of one data type to another type

provide the same effect as the implied conversion in assignment

statements. The function SNGL with a real argument and the function

DBLE with a double precision argument return the value of the argument

without conversion.

3. [x] is defined as the largest integer whose magnitude does not

exceed the magnitude of x and whose sign is the same as that of x.

For example [5.7] equals 5. and [-5.7] equals -5.

4. The argument of ALOG, DLOG, ALOGl0, and DLOGl0 must be greater

than 0. The argument of CLOG must not be (0.,0.).

5. The argument of SQRT and DSQRT must be greater than or equal to 0.

The result of CSQRT is the principal value with the real part greater

than or equal to 0. When the real part 1is 0, the result 1is the

principal value with the imaginary part greater than or equal to 0.

6. The argument of SIN, DSIN, COS, DCOS, TAN, and DTAN must be in

radians. The argument is treated modulo 2*pi.

7. The result of ASIN, DASIN, ACOS, DACOS, ATAN, DATAN, ATANZ2, and

DATAN2 is in radians.

8. The result of ATAN2 and DATAN2 is 0 or positive when a(2) is less

than or equal to 0. The result is undefined if both arguments are 0.

9. The argument for this function must be an 1integer variable or

integer array element. The atrgument should initially be set to 0.

The RAN function stores a value in the argument that it later uses to

calculate the next random number. Resetting the argument to 0

regenerates the sequence. Alternate starting values generate

different random number sequences.

INDEX

A field descriptor, 8-10 to 8-11,

8-18

Absolute value of integer

constant, 2-4

ACCEPT statement, B-2, B-9 to

B-10, B-13

formatted sequential, 7-8

list-directed, 7-10

See also Input

ACCESS keyword, 9-2, 9-3, 9-5

Access modes, 7~2 to 7-3

direct, 7-3

sequential, 7-2

Access, shared, 9-9

Actual arguments, 2-10, 6-1 to

6-3

Actual record length, 9-4, 9-8

Addition, 2-14

Adjustable arrays, 2-13, 6-3

All-blank field, 8-3, 8-5, 8-9

Allocation, 2-3

Allocating storage elements,

5-3

All-zero statement label, 1-6

Alphanumeric literals, 2-8

American National Standard

FORTRAN X3.9-1966, 1-1

.AND., 2-19

Apostrophe character, 2-8,

7-17, 8-12

'APPEND' Access value, 9-3, 9-5

Append spaces, 2-9

Area, l-byte storage, 2-3

Argument list, 4-9

Arguments

actual, 2-9, 6-1 to 6-3

associating dummy and

actual, 6-1 to 6-2

in the CALL statement, 4-9

dummy, 2-9, 4-9, 6-1 to

6-3, 6-5

function references used as,

5-11

subprogram, 6-1 to 6-3

Arithmetic

assignment statement, 3-1

elements, 2-14, 2-15

expression, 2-14, 2-15, 2-16,

6~-4

IF statement, 4-3 to 4-4

operators, 2-14, B-1

Arithmetic/loyical assignment,

B-2

Array, 2-1, 2-2, 2-11

adjustable, 2-13, 6-3

data type of an, 2-12

dimensions in, 5-3 to 5-4

ansubscripted, 2-12 to 2-13,

4-9, 5-14, 7-5

Array declarator, 2-11, 5-3

Array elements, 2-1, 2-10, 2-11,

2-14

and DATA statements, 5-12 to

5-13

transmitting, 7-6

Array format specifications,

8-23

making equivalent, 5-9 to

5-10

multidimensional, 2-10, 7-7

Array references, 2-12, 2-13, 7-5

run-time formats in, 8-20 to 8-21
Array size, dummy, 6-3

Array storage, 2-12

ASCII

character set, A-1 to A-2

characters, 8-22

null character, 9-8

octal equivalents of Radix-50

characters, A-2

ASSIGN statement, 3-3 to 3-4,

4-2, 4-3

Assigned GO TO statement, 4-2 to

4-3

Assigning

initial values in common

blocks, 5-14

LOGICAL*]1l elements to

COMMON, 5-5

storage locations, 5-9

symbolic program name, 5-13

values, 3-1

values to list elements, 7-5

values to variables, arrays,

and array elements, 5-12

Assignment, arithmetic/logical,

B-2

Assignment operator, 2-8

Assignment statements, 3-1 to

3-4

Associated variables, 2-9, 9-13

ASSOCIATEVARIABLE keyword, 9-2,

9-3, 9-5

Associating dummy and actual

arguments, 6-1 to 6-2

Asterisk (*), 1-3, 8-3, 8-4

Attribute specifications, 9-1

Auxiliary 1/0 statement, 9-1

BACKSPACE statement, 9-1, 9-11

B-3

Base elements, 2-15

Basic component, 2-13 to 2-14

Basic real constant, 2-5

Binary data, 7-1

Binary operator, 2-8, 2-14

Blank. See Space character

Index-1

INDEX

Blank common block, 5-4

boundaries, crossing disk,

9-8

Block, common, 2-2, 5-4 to 5-5

See also Common blocks

data subprograms, 2-2

size, physical, 9-5

BLOCK DATA statement, 5-13 to

Blocks of storage, 5-4

Bound

dimensions, 2-13

Boundary allocation, byte,

Boundary, word, 5-5

BUFFERCOUNT keyword, 9-2,

Bypassing input records,

Byte boundary, odd, 5-9

Byte, zero, 9-8

5-9

9_3 i

8-19

9-6

l1-6

4_9 r

C (letter), 1-3,

CALL statement,

6-8, B-3

discussion of, 4-9

Carriage control character,

8-24, 9-6

CARRIAGECONTROL keyword,

9-3, 9-6

Character count,

Character set

ASCII, A-1, A-2

FORTRAN, 1-3, A-1

RADIX~-50, A-2, A-3

Characters

apostrophe,

ASCII, 8-22

carriage control,

colon (:), 8-14

dollar sign ($),

8-18

number of,

8-13

Plus (+),

position 72,

position of,

5-11

9"2'

2-17

2-8

8-18, 8-24

8-13 to 8-14,

to be transferred,

8-18

1-7

in the external

record, 8-12 to 8-13

printable, 1-4, A-1l

space, l1-6

special, 1-3

tab, 1-5

character-per-column

formatting, 1-5

maximum number of,

variables, 8-10

Classes of symbolic names, 2-2

CLOSE statement, 9-1, 9-10

B-3

Coding form,

Colon (:)

Column

number, 2-10

one through 72, 1-5

seventy-three through 80,

1-5

stored in

1-4

8-14

FORTRAN,

descriptor,

Commas, 7-11

as a field separator,

8-23

Comments, 1-3, 1-6

indicator, 1-6

line, 1-6, 1-7

Common blocks, 2-2, 5-4 to 5-5

assigning LOGICAL*1l elements

to 5-5

blank, 5-4

EQUIVALENCE and, 5-10

extending, 5-10

initial values in, 5-14

5-4 to 5-5,

Complex constant,

7-11

Complex data editing, 8~14 to 8-15

Complex data type, 2-3, 2-16

complex operations, 2-17

Complex value, 8-14 to 8-15

COMPLEX*8, 2-3

Components, FORTRAN statement,

2-1

Computed GO TO statement, 4-2

Conditional statement execution,

4-4

Constant,

B-4

2-6 to 2-7,

2-4, 7-11

absolute value of an integer, 2-4

complex 2-6 to 2-7, 7-11

double precision, 2-6

Hollerith, 1-1, 1-3, 2-7, 7-11,

8-2, 8-11

input, 7-15

integer, 2-4

logical, 2-7, 7-11

magnitude of a real, 2-5

negative double precision,

2-6

negative integer, 2-4

positive integer, 2-4

real, 2-5 to 2-6

truncated, 2-9

values, 7-11

Constants, 2-1

and DATA statement, 5-12

octal integer, 2-4

repetition of, 7-11

unsigned integer, 2-4, 8-22

Contiguous storage locations,

2-10, 5-4

Continuation

field, 1-6

indicator,

lines, 1-6

CONTINUE statement,

Control

carriage, 8-18, 8-24

DO iteration, 4-6

format, 8-21

in DO loops, 4-6

Control statements, 4-1

Control transfer methods,

to 4-4, 6-4, 6-6, 6-8

1-5, 1-6

4-1

Index-2

INDEX

Control variable, 4-5, 7-7

Conversion,

double precision, 2-17

rules for assignment

statements, 3-2

Count

character, 2-7

group repeat,

iteration, 4-6

repeat, 8-1

Crossing disk block boundaries, 9-8

8-17, 8-23

D (letter), 1-6, 2-6

D exponent field indicator, 8-7,

8-23

D field descriptor, 8-2, 8-7 to

8-8, 8-16

Data

alphanumeric,

8-12

editing between internal and

external form, 7-1

editing complex, 8-14 to 8-15

format for input and output,

8-1

integer, 2-10

logical, 2-14

magnitude, and G formats, 8-9

rounding numeric, 7-9

transfer, 7-1 to 7-2, 7-7 to

transmission of,

7-10, 7-12 to 7-17, 8-2

DATA statement, 2-9, 2-11, 5-1,

5-12 to 5-13

Data type, 2-2 to 2-3, 2-8 to 2-9,

2-10, 2-16 to 2-17, 6-2, 7-14

of an arithmetic expression,

2-16

of an array, 2-12

complex, 2-3, 2-16

declaration statement, 5-2 to

5-3

default rules, 5-1 to 5-2

double precision, 2-3, 2-6

by implication, 2-10

integer, 2-2, 2-4

length specifier, 2-3,

of the list elements,

logical, 2-3, 2-16

rank of, 2-17

real, 2-3, 2-5, 2-16

specifications, 2-10,

5-3 :

storage requirements, 2-3

Debugging statement, 1-2, 1-6

Decimal point, 8-15, 8-16, 8-23

scale factor and, 8-15 to 8-17

Declaration, explicit type, 2-10

Declaration statements, type, 2-10,

5-1, 5-2 to 5-3

Declarator

adjustable array, 6-

array, 2-11, 5-3, 5-

dimension, 2-11

5-3

7-11

5-2 to

3

6

DECODE statement, 7-4, 7-17 to

7-18, 8-4

Default allocations for data

types, 2-3

Default data names, 5-1

Default field descriptors, 8-17 to

8-18

DEFINE FILE statement,

9-12 to 9-13,

Defined variable, 2-9

'DELETE' DISPOSE value,

Delimiting periods, 2-7,

Descriptor

¢ (colon),

$ (dollar),

field,

8-23

Dimension

adjustable,

in an array,

declarator, 2-11

variable, 2-13,

DIMENSION statement,

B-5

Direct access,

files, 7-1,

9-12

I1/0

statement,

unformatted,

READ statement,

unformatted, 7-15 to 7-16

WRITE statement,

unformatted, 7-16

'DIRECT' ACCESS value,

Disconnecting a file,

DISPOSE (DISP) keyword,

9—].,

B-4 to B-5

9_3, 9-6

2-19

8-14

8-13 to 8-14

8-2 to 8-18, 8-21, 8-22,

6-3

5-1

6-3

5-3 to 5-4,

7-3

9_7,

9-13

7-15 to 7-16

9-3

9-10

9-2, 9-3

Disposition,

DO iteration control,

DO list, implied, 7-6

DO loop, 4-6, 4-7 to 4-8,

6-11, 7-10

DO range, executions of the, 4-6

DO statement, 4-5 to 4-6, 7-6,

B-5

Dollar sign

8-18

Double precision,

2-16, 8-8

constant, 2-6

conversion, 2-17

negative constant,

operations, 2-17

Dummy arguments, 2-9,

6-1 to 6-3, 6-5

association with actual

arguments, 6-1 to 6-2

integer, 6-3

Dummy array size,

file default,

4-6

9-6

($), 8-13 to 8-14,

2-3, 2-15,

2-6

4-9, 5-8,

6-3

E field descriptor, 8-2, 8-6 to

8-7, 8-15, 8-16

‘Index-3

INDEX

Editing, complex data, 8-14 to

8-15

Editor,

Elements

arithmetic, 2-14, 2-15

array, 2-1, 2-10, 2-11, 2-14

See also Array elements

assigning values to list, 7-5

base, 2-15

of a FORTRAN program,

logical, 2-20

Embedded spaces,

ENCODE statement,

7-18

End-of-file

condition, 7-3 to 7-4

record, 7-4, 9-12

transfer of control on, 7-4

END= specification, 1-1, 7-4,

B-7

END statement, 1-2,

ENDFILE statement,

B-6

.EQ., 2-18

Equal sign, 3-1

EQUIVALENCE statement,

5-1, 5-8 to 5-10,

.EQV., 2-19

ERR keyword, 9-2,

9-6 to 9-7

ERR= specification,

9-7, B-6

Error condition, 7-3 to 7-4, 9-6

Evaluation of operators, 2-19

Evaluation order, 2-16

Even byte boundary, 5-5

Exclamation point, 1-3

Executable program, 1-2,

5-5

Executable statements,

Execution

of a condition statement, 4-4

of the DO range, 4-6

of a formatted I/0 statement,

8-21

termination of statement,

to 4-11

Explicit type declaration,

Exponent, 2-5, 2-6, 8-5

in an external field, 8-23

Exponent field indicator, 8-6

Exponentiation, 2-14, 2-15

Expressions,

arithmetic,

6-4

complex, 2-18

defined, 2-1, 2-13 to 2-14

in I/0 1list, 7-5

logical, 2-14, 2-18 to 2-19,

4-4, 6-4

mixed-mode, 1-1

relational, 2-14, 2-17 to 2-18

in statement functions, 6-5

subscript, 2-11 to 2-12, 5-4, 7-5

using a text, 1-6

1-2, 1-3

8-2

7-4, 7-17 to

4-11, B-6

2—9 7

B-7

9—3'

5-4,

1-2, 5-16

4-10

2-10

2-14, 2-15, 2-16,

Expression operators, B-1 to B-2

Extended range, DO loop, 4-8

Extending a file, 9-7

Extending the common block,

EXTENDSIZE keyword, 9-2,

9-7

External field

constructing, 8-22 to 8-23

procedure names, 5-11

5-10

9_3’

separators, 8-19 to 8-20, 8-23

EXTERNAL statement, 5-1, 5-11, B-7

F field descriptor, 8-2, 8-5 to

8-6, 8-15, 8-17

Factor, scale, 8-15 to 8-17,

8-22

.FALSE., 2-7

Field

all-blank, 8-3, 8-5, 8-9

continuation, 1-6

external, 8-22 to 8-23

fractional part of, 8-23

null (zero-length), 8-20,

separators, external 8-1,

to 8-20, 8-23

sequence number,

statement, 1-7

statement label, 1-6

termination, short, 8-19

Field descriptors, 8-2 to 8-18,

8-21, 8-22, 8-23

A, 8-10 to 8-11, 8-18

D, 8-2, 8-7 to 8-8, 8-16

E, 8-2, 8-6 to 8-7, 8-15,

F, 8-2, 8-5 to 8-6, 8-15,

G, 8-2, 8-8 to 8-9, 8-17

H, 8-11 to 8-12

I, 8-2 to 8-3

L, 8-9 to 8-10

0, 8-4

Q, 8-13

T, 8-12 to 8-13

X, 8-12

general trules for 8-22

Field width

default values, 8-18

specification 8-23,

File, 7-2

access to a, 7-2 to 7-3

attributes of, 9-1

seqguential organization, 7-2

Filling array elements, 5-12

8-23

8-19

1-7

8-16

8-17

8-24

FIND statement, 9-1, 9-11 to 9-12,

B-7

First character of a record,

output, 8-18, 8-24

Fixed-length records, 9-13

Form

FORTRAN coding, 1-4

*n, 2-3

r*, 7-11

r*c, 7-11

readable character, 7-1

FORM keyword, 9-2, 9-3, 9-7

Index-4

Format

G, effect of data

magnitude on, 8-8

reversion, 8-16, 8-21 to 8-22

rules for, summarized, 8-22 to

8-24

run-time, 8-20 to 8-21

Format control, 8-23 to 8-24

Format separators, 8-1, 8-18 to

8-19

Format specifiers, 7-1, 7-3

FORMAT statement, 7-3, 7-8, 7-10,

8-1, 8-22 to 8-24, B-6

Format, summary of codes, 8-24

'FORMATTED' FORM value, 9-3,

9-7

Formatted I/O0. See Input; Output

'FORTRAN' CARRIAGECONTROL value,

9-3, 9-6

FORTRAN character set, 1-3, A-1

FORTRAN language summary, B-1

FORTRAN library functions, 6-9

B-13 to B-14

See also Processor-defined

functions

FORTRAN line formatting, 1-4 to

1-7

FORTRAN program elements, 1-2,

1-3

FORTRAN X3.9-1966, American

National standard, 1-1

Four-byte allocation, 2-3

Fractional part of the field,

8-23

Function

file positioning, 9-1

Function reference, 2-1, 4-11,

6-4

processor-defined, 6-9

statement, 6-5, 6-6

used as arguments, 5-11

FUNCTION statement, 6-4, 6-6

to 6-8, B-8

Function subprogram, 2-2,

6-6 to 6-7

Functions

FORTRAN library, 6-9

B-13 to B-14. See also

Processor-defined functions

statement, 6-5, 6-6, B-2

G field descriptor, 8-2, 8-8 to

8-9, 8-17

G formats, effect of data

magnitude on, 8-9

.GE., 2-18

GO TO statement, 4-1 to 4-3, B-7

Group repeat count, 8-17, 8-23

.GT., 2-18

H (letter), 2-7

H field descriptor, 8-11 to 8-12

INDEX

Hollerith constants, 1-1, 1-3, 2-4,
2-7 to 2-9, 7-11, 8-2, 8-11

data type rules for, 2-8 to

2-9

Hollerith data, 5-2, 8-10, 8-20

I field descriptor, 8-2 to 8-3

I1/0. See Input/Output

IF statement, 4-4, B-7 to B-8

Imaginary numbers, 2-3, 2-6

Implication, data type by, 2-10.

See also Data type

Implicit logical unit, 7-1

number, 7-3, 7-8

IMPLICIT statement, 2-9, 2-10,

5-1 to 5-2, B-8

Implied DO lists, 7-6

Increment parameter, 4-5

Indicator, 1-6

Initial parameter, 4-5

Initial space allocation, 9-7

INITIALSIZE keyword, 9-2, 9-3, 9-7

Initiator, record, 8-19

Inner loop, 4-7 to 4-8

See also DO loop

Input, 7-1

constant, 7-11

field, external, 8-22 to 8-23

FORMAT statement rules, 8-23

statements, 2-9, 7-1 ,

formatted sequential, 7-7

to 7-9

list-directed, 7-10 to 7-12

unformatted direct access,

7-15 to 7-16

unformatted sequential, 7-14

to 7-19.

See also READ statement; ACCEPT

statement

Input/output

devices, 7-3

lists, 7-4 to 7-5, 8-23

format control inter-

action with, 8-21 to 8-22

sequential, 7-7

statement components, 7-3 to

7-7.

See also Input; Output

Integer, 2-2, 2-3, 2-15

constant, 2-4,

absolute value of an, 2-4

negative, 2-4

unsigned, 8-22

data, 2-10

rules for, 8-3

and logical operator, 2-19 to

2-20

variables, 2-10, 6-3

Integer operations, 2-17

INTEGER*2, 2-3

INTEGER*4, 2-3

Internal representation, 2-20,

7-1

Index-5

INDEX

Iteration

DO iteration control, 4-6

Newton-Raphson method, 6-7

'KEEP' DISPOSE value, 9-3, 9-6

Keywords in the OPEN statement,

9-1 to 9-9

. field descriptor, 8-9, 8-10

Label, statement, 1-5, 1-6, 6-8,

7-3

field, 1-6

list, 1-2

reference, 3-4

Language summary,

.LE., 2-18

Leading spaces, 8-2, 8-5

Length specifier, data type,

2-3, 5-3

Letters, lower- and uppercase,

1-3

Library functions, FORTRAN,

6-9, B-13 to B-14,

See also Processor-defined

functions

Line, 1-2

comment, 1-6, 1-7

continuation 1-7, 1-9

formatting a FORTRAN,

List

argument,

elements,

7-5

implied DO, 7-6

1/0, 7-4 to 7-5,

simple 1/0, 7-5

statement label, 1-5, 1-6

'LIST' CARRIAGECONTROL value,

9-3, 9-6

List-directed 1/0.

See Input; Output

List-directed output formats

(table), 7-13

Literals, alphanumeric.

See Alphanumeric literals

Locations. See Storage

Logical assignment statement,

3-3

Logical constant,

Logical data

transfer of, 8-9

type, 2-3, 2-16,

Logical elements,

Logical expressions,

2-19, 4-4

Logical IF statement, 4-4

Logical operators, 2-19 to 2-20,

B-1 to B-2

Logical record length,

Logical unit, 7-1

number, 7-3

Logical values,

3-3

FORTRAN, B-1

1-4 to 1-7

4-9

assigning values to,

8-21

2-7, 7-11

3-3

2-20

2-14, 2-18 to

9-8

2-14, 2-18, 2-20,

LOGICAL*1l, 2-3

array, 5-5, 5-6

elements, assigning to

COMMON, 5-5

LOGICAL*2, 2-3

LOGICAL*4, 2-3

Loop. See DO loop

Lowercase letter,

.LT., 2-18

1-3

Main program, 1-2, 2-2

RETURN and, 4-10

terminating, 4-11

Maximum Radix-50 value, A-3

MAXREC keyword, 9-2, 9-3, 9-7 to

9-8

Memory requirements for data

types, 2-3

Minus, unary, 2-14

Mixed-mode expressions,

Multibuffered 1/0, 9-6

Multidimensional arrays,

processing, 7-7

Multiplication, 2-14

1-1

*n, 2-3

NAME keyword, 9-2,

Named common block,

Names

common block 5-4

external procedure,

symbolic, 2-1, 2-2,

2-11

.NE,, 2-18

Negative constants,

Nested DO loops, 4-7

'NEW' TYPE value, 9-4, 9-9

Newton-Raphson iteration method,

6-7

'"NONE' CARRIAGECONTROL value,

9-3, 9-6

Nonexecutable statements,

5-1

NOSPANBLOCKS keyword,

9-8

«NOT.,

Null

character, ASCII,

record, 7-15

value, 7-11

values, repetition of, 9-15

zero-length field, 8-20, 8-23

Number

complex, 2-6 to 2-7

of dimensions in arrays, 2-10

implicit logical unit, 7-3,

7-8

logical unit,

of blocks, 9-7

statement, 1-6

Numeric data, rounding,

Numeric value, 2-14

9-3, 9-8

5-4

5-11

2-4, 2-6

].-'2,

2-9

9-8

7-3

7-9

Index-6

INDEX

O field descriptor, 8-4

Octal integer constant, 2-4

Octal values, transfer of, 8-4

'OLD' TYPE value, 9-4, 9-9

One-byte storage area, 2-3

One (1) character, 8-18

One~dimensional array, 2-10

OPEN statement, 9-1 to 9-4, B-8

to B-9

examples, 9-4

keywords, 9-1 to 9-9

Operators '

arithmetic, 2-14, B-1

assignment, 2-8

evaluation of, 2-19

exponentiation, 2-14

expression, B-1 to B-2

logical, 2-19 to 2-20, B-1

to B-2

precedence of, 2-15

relational, 2-17 to 2-18, B-1

role of, 2-14

unary, 2-14

.OR., 2-19

Order of subscript progression,

2-12, 5-12

Ordering rules, statement, 1-7

Outer loop, 4-7 to 4-8,

See also DO loop

Output, 7-7

formatted sequential, 7-9 to

7-10

list-directed, 7-12 to 7-13

unformatted direct access,

7-16

unformatted sequential, 7-14 to

7-15

See also WRITE statement;

PRINT statement; REWRITE

statement; TYPE statement

Output format rules, 8-23 to 8-24

Parameter

of DO statements, 4-5.

See also Constants

Parentheses, 2-15 to 2-16, 2-18,

2-20, 7-11, 8-1, 8-17

PAUSE statement, 4-10, B-9

Periods, delimiting, 2-7, 2-18,

2-19

Physical block size, 9-5.

See also Block

Plus (+) character, 8-18

Plus, unary, 2-14

Point, decimal, 8-15, 8-16, 8-23

Positive integer constant, 2-4.

See also Constant

Precedence, 2-15, 2-18, 2-19

Precision, loss of, 7-9.

See also Data type storage

requirements; Double

precision

'PRINT' DISPOSE value, 9-3, 9-6

PRINT statement, B-9, B-12,

B-13

formatted sequential, 7-9 to

7-10

list-directed, 7-12 to 7-13.

See also Output

Printing characters, 1-4, A-1

Procedure, computing, 1-3

Procedure names

external, 5-11

as subprogram arguments, 5-11

Processing

carriage control, 9-6.

See also Carriage control;

CARRIAGECONTROL keyword

iterative, 4-5

multidimensional arrays, 2-10,
7-17

termination of, 7-11

Processor-defined function, 2-2,

6~-9

Program

elements of a FORTRAN, 1-2, 1-3
executable, 1-2, 5-4, 5-5

FORTRAN, 1-2

main, 1-2, 2-2

terminating, 4-11

PROGRAM statement, 5-1, 5-16, B-9
Program unit, 1-2, 3-4, 5-4,

5-5, 6-6, 6-7, 6-8, 6-9
block data, 5-13 to 5-14

end of, 4-11

structure, 1-7

Progression, order of subscript,

2-12, 5-12

Q field descriptor, 8-13

Radix-50, A-2 to A-3

Rank, data type, 2-17

READ statement, B-9, B-10

formatted sequential, 7-7 to 7-8

list-directed, 7-10 to 7-11

unformatted direct access,

7-15 to 7-16

unformatted sequential, 7-14.

See also Input

Read-only file, 9-6

READONLY keyword, 9-2, 9

Real data type, 2-3, 2-5

Real constant, 2-5 to 2-

REAL*4, 2-3

Record, 7-2

end of a, 7-11

external, character position

in, 8-12, 8-13

first character of an output,

8-18, 8-24

initiator, 8-19

length of, 9-8 to 9-9

physical end of, 8-20

size of, 9-8

spaces at beginning of, 7-11

6

Index-7

INDEX

Record, (Cont.)

terminator, 8-1, 8-19

transmitting. See Input;

Output

zero-filled, 7-16

RECORDSIZE, 9-2, 9-4, 9-8 to

9-9

Reference

array, 2-12, 2-13, 7-5

function, used as arguments,

5-11

processor-defined function,

6-9

statement label, 3-4

Reference, function, 2-1, 6-4

Relational expressions, 2-14,

2-17 to 2-18

Relational operators, 2-17 to 2-18,

B-1

Repeat count, 8-1

Repeat specifications, group,

8-17, 8-23

Representation,

7-1

Resuming program execution, 4-10

RETURN statement, 4-10, 6-6,

6-8, B-11

Reversion, format,

8-22

REWIND statement,

9-11, B-11

See also Output

Rounding numeric data,

Rule, 1/0 list, 8-23

Rules

conversion for assignment

statements, 3-2

for format statements,

8-22 to 8-24

statement ordering, 1-7

for subptogram arguments, 6-2

Run-time formats, 8-20 to 8-21

internal, 2-20,

8-16, 8-21 to

9-1, 9-10 to

7-9

summary,

'SAVE' DISPOSE value, 9-3, 9-6

Scale factor, 8-15 to 8-17, 8-22

Scratch file, 9-6

'"SCRATCH' TYPE value, 9-4, 9-9

Separators

external field, 8-19 to 8-20,

8-23

field, 8-1

format specification, 8-1,

8-18 to 8-19

slash, 7-11

Sequence number field, 1-7

Sequential access, 7-2

Sequential file, 7-2

'SEQUENTIAL' ACCESS value,

9-5

Sequential 1I/0.

Output

Sequential READ statement,

7-8, 7-14

See Input;

7-7 to

Sequential WRITE statement, 7-9

to 7-10, 7-16

Shared access, 9-19

SHARED keyword, 9-2, 9-4, 9-9

Sharing storage space, 5-9

Short field termination, 8-19

Signed quantity, 2-4

Simple 1I/0 list, 7-5

Size, dummy array, 6-3

Size, specifying the physical

block, 9-5

Slash (/), 7-11,

8-19, 8-21

consecutive, 8-19

record terminator,

separator, 7-11

Source line, 4-11

Space

allocation, initial,

character, 8-18

sharing storage,

Spaces, 7-11

appended, 2-9

at beginning of a record,

7-11

leading, 8-2,

trailing, 8-2

Special characters,

Specification

attribute, 9-1

data type, 2-10

determining field width, 8-23,

8-24

END=, 1-1, 7-4,

ERR=, 1-1, 7-4,

format, 8-1.

See also FORMAT

statement

separators, format,

8-19

statements, 5-1

statements in BLOCK DATA

program units, 5-13

Specifier, data type length,

5-3

Specifiers,

Statement

ACCEPT, 7-8,

B-10, B-13

arithmetic assignment,

3-2

ASSIGN, 3-3,

assigned GO TO,

BACKSPACE, 9-1,

B-3

BLOCK DATA,

B-3

CALL,

B-3

CLOSE,

COMMON, 2-9, 2-10,

5-5, 5-11, B-4

computed GO TO,

8-1,

8-18, 8-19

9-7

5-9

8-5

1-3

B-7

9-6 to 9-7, B-6

8-1, 8-18 to

2“3'

format, 7-1, 7-3

3-1 to

4-2 to 4-3

9-11,

5-1, 5-13 to 5-14,

4-9, 5—11’ 6-7' 6_8,

9-1, 9-10, B-3

5-1, 5-4 to

4-2

Index-8

INDEX

Statement, (Cont.) Statement field, 1-7
CONTINUE, 4-9, B-4 Statement function, 6-5, 6-6,
control, 4-1 B-2
baTa, 2-9, 2-11, 5-1, 5-12 to Statement label, 1-5, 1-6, 4-3,

5-13, B-4 6-8, 7-3
DECODE, 7-4, 7-17 to all-zero, 1-6

7-18, B-4 field, 1-6
DEFINE FILE, 9-1, 9-12 to 9-13, list, 1-2

B-4 to B-5 reference, 3-4
DIMENSION, 5-1, 5-3 to 5-4, Statement number, 1-6

B-5 Statement ordering rules, 1-7
DO, 4-5 to 4-6, B-5 Statements, 1-2
ENCODE, 7-4, 7-17 to assignment, 3-1

7-18, B-=5 in a BLOCK DATA subprogram,
END, 1-2, 4-11, B-6 5-13 to 5-14
ENDFILE, 9-1, 9-12, B-6 conversion rules for assign-
EQUIVALENCE, 2-9, 5-8 to 5-10, ment, 3-2

B-6 establishing arrays, 2-10
EXTERNAL, 5-1, 5-11, executable, 1-2

B-6 format, summary of rules, 8-22
FIND, 9-1, 9-11 to 9-12, B-6 to 8-24

FORMAT, 7-3, 7-8, 8-1, 8-22 to nonexecutable, 1-2

8-24, B-6 specification, 5-1
formatted. See Input; Output summary of, B-2 to B-13
FUNCTION, 6-4, 6-6 to 6-8, type declaration, 2-10, 5-1, 5-2

B-7 to 5-3

functions, 2-2, 6-5, 6-6 Stop, tab, 1-5
GO TO, 4-1 to 4-3, B-7 Storage

IF, 4-4, B-7 to B-8 allocating elements, 5-3
iMpLICIT, 2-9, 2-10, 5-1 to 5-2, area, l-byte, 2-3

5-3, B-8 array, 2-12

logical assignment, 3-3 blocks, 5-4
logical IF, 4-4 location, 5-8
OPEN, 9-1 to 9-4, B-8 to B-9 locations, contiquous, 2-10
PAUSE, 4-10, B-9 requirements, data type, 2-3
PRINT, 7-9 to 7-10, 7-12 to space, sharing, 5-9

7-13, B-9, B-12, B-13 unit, defined, 2-3
PROGRAM, 5-1, 5-16, B-9 units, 9-9

READ, 7-7 to 7-8, 7-10 to 7-11, String, 2-7

7-15 to 7-16, B-9 to B-10. Structure, program unit, 1-7
See also READ statement; Subprogram, 1-2, 2-15, 6-1

Input actual arguments, 6-1 to 6-3
RETURN, 4-10, 6-6, 6-8 arguments

B-11 rules governing, 6-2
REWIND, 9-1, 9-10, 9-11, B-11 using procedure name as, 5-11
sSTOoP, 4-11, B-11 block data, 2-2
SUBROUTINE, 6-7 to 6-8, B-11 dummy arguments, 6-1 to 6-3,
terminal, 4-9 6-6

TYPE, 7-9 to 7-10, 7-12 to 7-13 END and, 4-11
B-11 to B-13 function, 6-6 to 6-7

type declaration, 2-10, 5-1, FUNCTION in, 6-6 to 6-7
5-2 to 5-3, B-1l1 to B-12 user-written, 6-3 to 6-4

unconditional GO TO, 4-2 function, 2-2, 6-9
unformatted. See Input; Output statement, 6-4 to 6-6
VIRTUAL, 5-1 5-6 to 5-8, B-12 subroutine, 2-2, 4-9,
WRITE, 7-9 to 7-10, 7-12 to 7-13, 6-7 to 6-9.

7-14 to 7-15, B-12, B-13. See also User-supplied
See also WRITE statement; subprograms; System-

output supplied subprograms
Statement components, FORTRAN, virtual array referencing,

2-1, 7-3 to 7-7 5-7 to 5-8
Statement execution, conditional, SUBROUTINE statement, 6-7 to 6-8,

4-4 B-11

Index-9

INDEX

Subroutine subprogram, 4-9,

6-7 to 6-9

Subscript expressions, 2-11 to

2-12, 5-4, 7-5

Subscript progression, 5-12, 7-5

Subscript order, 2-12

Subtraction, 2-14

Summary

FORTRAN language, B-1

generic function names, 6-14

of rules for format statements,

8-22 to 8-24

of statements, B-2 to B-13

Suspending program execution, 4-10

Symbolic name, 2-1, 2-2, 2-9 to

2-11

classes, 2-2

defining data types of, 5-2 to

5-3

overriding length attributes

of, 5-3

System-supplied subprograms, 6-9

See also FORTRAN library

functions

T field descriptor, 8-12 to 8-13

TAB character, 1-5 to 1-6

Tab as a value separator,

Terminal statement, 4-9

of a DO loop, 4-5

Terminating program execution, 4-11

Termination of processing, 7-11

7-11

Termination, short field, 8-19

Terminator, record, 8-1, 8-19

slash (/), 8-18 to 8-19

Text editor, 1-6

Three-dimensional arrays, 2-10

Trailing spaces, 8-2

Transfer of control, 6-5, 6-6, 6-8

7-4.

See also GO TO statements

Transmitting array elements by

implied DO lists, 7-6

Transmitting records.

See Input; Output

True, 2-7

.TRUE., 2-7

Truncated constant, 2-9

Two-dimensional array,

Type

by implication, data, 2-10

data. See Data type

declaration, explicit, 2-10

specification, data, 2-10

Type declaration statement, 2-10,

5-1, 5-2 to 5-3, B-11 to B-12

TYPE keyword, 9-2, 9-4, 9-9

TYPE statement, B-11 to B-13

to B-18

formatted sequential, 7-9 to

7-10

list-directed 7-12 to 7-13

See also output

2-10

Unary operators, 2-14

Unconditional GO TO statement,

4-2

'UNFORMATTED'

9-7

Unformatted 1/0.

Unit

logical, 7-2

main program, 5-4, 5-5, 5-13

UNIT keyword, 9-2, 9-4, 9-13

'UNKNOWN' TYPE value, 9-4, 9-9

Unsigned integer constant, 2-4,

8-22

Unsubscripted array,

4-9, 5-14, 7-5

Unsubscripted array name,

2-13, 4-9, 5-14, 7-5

Uppercase letters, 1-3

User-written subprograms,

to 6-4

FORM value, 9-3,

See Input; Output

2-12 to 2-13,

2-12 to

6-3

Value

complex, 8-14 to 8-15

constant, 7-11

evaluating magnitude of,

8-5

in form r*c,

integer, 2-20

null, 7-11

numeric, 2-14

of the variable, 2-9

Radix-50, A-2 to A-3

Value separators, 7-1l1

Values

assigning, 3-1

assigning to variables and

array elements, 5-12

default field descriptors,

8-17 to 8-18

in common blocks, assigning

7-11

initial, 5-14

logical, 2-14, 2-18, 2-20,

3-3

Variable

control, 4-5

in dimension declarators, 6-3

value of the, 2-9

variables, 2-1, 2-2, 2-9, 2-10,

2-11

assigning values to array

elements and, 5-12

associated, 2-9, 9-13

integer, 2-10

in I/0 lists, 7-4 to 7-5

maximum number of characters

stored in, 8-10

real, 2-10

Virtual array, 5-6 to 5-8

references, restrictions on

use of, 5-7

VIRTUAL statement, 5-1, 5-6 to

5-8, B-12

Index-10

INDEX

Width default value, field, 8-18
Word boundary, 5-5

WRITE statement, B-12, B-13

formatted sequential, 7-9 to

7-10

list-directed, 7-12 to 7-13
unformatted sequential, 7-14 to

7-15

See also Output

X field descriptor, 8-12

Zero byte, 9-8

Zero character, 8-18

Zero scale factor, reinstating,

8-22

Zero-filled records, 7-16

Zero-length field (null), 8-20,

8-23

Index-11

READER’S COMMENTS

PDP-11 FORTRAN IV

Language Reference Manual

AA-R953A-TK

NOTE: This form is for document comments only. DIGITAL will use comments submitted on this form at the

company’s discretion. If you require a written reply and are eligible to receive one under Software

Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this' manual understandable, usable, and well organized? Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

[] Assembly language programmer

[Higher-level language programmer

(] Occasional programmer (experienced)

(] User with little programming experience

(] Student programmer

(71 Other (please specify)

Name Date

Organization

Street

City _ State Zip Code
or Country

— — — DoNotTear-FoldHereandTape — — — — — — — — — — — — — — — — — — ——

i No Postage

i ' Necessary

i i if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

BSSG PUBLICATIONS ZK1-3/J35

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, NEW HAMPSHIRE 03061

— — — DoNotTear-FoldHere — — — — — — - - — - — - - - - — - - _— = —]

C
u
t
 A
l
o
n
g
 D
ot
te
d
Li
ne

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	replyA
	replyB

