
FORTRAN/RT-11

Extensions Manual

Order No. AA-2124D-TC

FORTRAN/RT-11

Extensions Manual

Order No. AA-2124D-TC

October 1977

This document describes the purpose and function

of the FORTRAN/RT-11 language extensions for

real-time support, and FDT, the FORTRAN de-

bugging technique.

FORTRAN/RT-11

Extensions Manual

Order No. AA-2124D-TC

SUPERSESSION/UPDATE INFORMATION: This document completely supersedes

the document of the same name,

Order No. DEC-11-LRTEA-C-D,

published September 1976.

OPERATING SYSTEM AND VERSION: RT-11 VO3

SOFTWARE VERSIONM: FORTRAN/RT-11 Extensions V02

FDT V02

To order additional copies of this document, contact the Software Distribution

Center, Digital Equipment Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - maynard. massachusetts

First Printing, March 1975

Reviged: June 1975

September 1976

October 1977

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment

Corporation. Digital Equipment Corporation assumes no responsibility

for any errors that may appear in this document.

The software described in this document is furnished under a license

and may be used or copied only in accordance with the terms of such

license.

Digital Equipment Corporation assumes no responsibility for the use

or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright C) 1975, 1976, 1977 by Digital Equipment Corporation

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-10 MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL 0Ss/8

DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-8

DDT LAB-8 TYPESET-10

DECCOMM DECSYSTEM-20 TYPESET-11

PREFACE

CHAPTER 1

1.1

1.2

1.2.1

e
L

.

.

N
N
N

B

R
S

»

U

W

=

L]

.

B

W

W

W

L]

[]

N

= L]

L2

N
N

I
[

]

I
N

S

.

L)

.

o

U

b

W

=
.

T
S
N
S

.

©

0
~

= £ |
-

<

1.4.11

1.4.12

CONTENTS

RT-11 FORTRAN EXTENSTIONS

WHAT ARE THE FORTRAN EXTENSIONS?

Time-Interval Control and Sampling

Digital Input and Output

Analog-to-Digital (A/D) Conversion and

Sampling

Digital-to-Analog (D/A) Conversion

Graph Plotting

THINGS TO KNOW ABOUT RT-~11 AND THE FORTRAN

EXTENSIONS

Completion Routines

Considerations in Using Completion

Routines

Software Clock

SYSLIB Library

The RT-11 User Service Routine

Action of CTRL/C

Programming Requirements for High-Volume

Data Acquisition -

CONVENTIONS

Syntax Conventions

Notation Conventions

DESCRIPTION OF THE FORTRAN EXTENSTONS

ROUTINES

CLRD (Clear Display) Routine

CVSWG (Convert Switched Gain Value)

Routine

DIS (Display Data) Routine

DRS (Digital Read-in Sampling) Routine

DXY (Display X-Y Data Pairs) Routine

FLTl6 (lo-bit Flcating—-Point Conversion)

Routine

F5H (Flash) Routine

FXY (Flash X-Y Data Pairs) Routine

HIST (Time Interval Sampling Techniqgue)

Routine :

IADC (Single Analog-to-Digital Conversion)

Routine

IDIR (Digital Input Reading) Routine

Reading a Digital Input Register or a

Memory Location

Bit and Byte Manipulation of a Single Word

Reading the Software Clock

IDOR (Digital Output Register) Routine

Loading a Digital Output Register or

Memory Location

Reading and Resetting the Software Clock

iii

CHAPTER

R

S

A

R

R

-

L]

L
]

]

-

L]

L]

L]

=
)

Y

I
y
 S
R

[
L]

-

L]

N
N
N

N

.

.
«

N
N

N

N
N
D
N
N
M
N
D
N
N
D
N
D
N
D

*

e
«

o

*

o

G
t

U

O

U
1

U

U

a
b

b

.

.

w
u
r

o

N
R
O
N
O
N
N
D
N
N

.
[l

[
[]

[]

.
L]

.

E
 o

R
S

S

N

L]

.
L]

|
 C
W

S

O

S
y

 S
y

 W
y

L]

L}

-
L

]
-

W

N

c
C

U

L
U
t

U
t

.
-

.
L]

L]

L]

[
0

w

N

=

L
o

>
.

L]

[
y

.

[

.

*

L)

V
b

W
i

[
~

V
8
]

L]

~
N

o
y

CONTENTS (CONT.)

KB2BCD (Convert Binary to BCD) Routine

KBCD2B (Convert BCD to Binary) Routine

LED (LED Display) Routine

LWATIT (Wait) Routine

REL (Relay Control) Routine

RTS (Repeated Sampling) Routine

SDIS (Stop Display) Routine

SETR (Set Rate of the Programmable Clock)

Routine

BUILDING A REAL-TIME SUPPORT L1BRARY

System Configuration

A Standard System

Changing Configuration Specifications
Assembling the Revised Configuration

The Real-Time Support Library

Generating the Library

Accessing the Library

ERROR MESSAGES

FORTRAN DEBUGGING TECHNIQUE (FDT)

INTRODUCTION

USING FDT

FDT COMMAND TYPES

Program Control Commands

Information Transfer Commands

FDT Control Commands

FDT CONVENTIONS AND TERMINOLOGY

Syntax Conventions

Current Procedure

The Location Specification

Offset Location

Named Location

Relative Locations

Subscripted Name Locations

Mode Codes

FDT Pause Definition

DESCRIPTION OF THE FDT COMMANDS

ACCEPT

CONTINUE

DIMENSTION

ERASE

GOTO

Defining a Label

IF

MACRO

Implicit Macro

NAME

PAUSE

RESET

START

STEP

STOP

TYPE

WATCH

iv

Page

1-55

1-56

1-59

N
N
N
N
N
N
N
N
N
!
}
J
N
N
N
N
N
N
N
N

|

H
E
N
O
O

U

U
L

B
B

W
W
W
N
N
N

1 - [F
9)

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

INDEX

FIGURE

TABLE

N
I

3
.

L]

.
.
N L
Y

N

=

N
N

N

.
L]

Ll

N L]

>

L]

G
l>

W

b

B

C

D

2-1

CONTENTS (CONT.)

WHAT

CAUTIONS AND PITFALLS

ADVANCED TECHNIQUES

Named Common

How FDT Generates Addresses

Octal Offsets

Names

Relative Addressing

Subscript Addressing

Indirect Addressing

Format Conversion Routines

On-line Debugging Technique (ODT)

Execution Speed

ARGUMENT AND DEFAULT SUMMARY TABLE

OBJECT AND SOURCE FILES

ERRCR SUMMARY TABLE

FDT COMMAND SUMMARY

FDT LOCATION SPECTFICATION FORMATS

FDT MODES

FDT ERROR MESSAGES

FIGURES

Linear and Circular Arrays

Circular Array Pointers

TABLES

FDT Mode Codes

Index~1

-

[}

T
M

PREFACE

The RT-11 FORTRAN Extensions Manual describes FORTRAN-callable

real-time support routines, and FDT, the FORTRAN debugging technique.

RT-11 is documented in the following manuals:

Introduction to RT-11 (DEC-11~-ORITA-A-D)

RT-11 Pocket Guide (DEC-11-ORRCB-A-D)

RT-11 System User's Guide (DEC-11-ORGDA-A-D)

RT-11 Advanced Programmer's Guide (DEC-11-OKAPA-A-D)

RT-11 Documentation Directory (DEC-11-ORDDB-A-D)

RT-11l System Message Manual (DEC=-11-ORMEB-A-D)

RT-11 System Generation Manual (DEC-11-ORGMB-A-D)

RT-11 System Release Notes (DEC-11-ORNRB-A-D)

FORTRAN is documented in the following manuals:

RT-11/RSTS/E FORTRAN IV User's Guide (DEC-11-LRRUB-A-D)

PDP-11 FORTRAN Language Reference Manual (DEC-11-LFLRA-C-D and

DEC~11-LFLRA-C-DNI)

RT~11 FORTRAN IV Installation Guide (DEC-11-LRSIA-A-D)

The three sets of laboratory peripherals supported by the FORTRAN

extensions are described in the following sets of manuals. You should

be familiar with the function of the peripherals hardware on your

system, and with the terms used in these manuals.

1., ADl1-K Analog to Digital Converter User Manual

(EK-AD11K-0P-001)

AM11-K Multiple Gain Multiplexer User's Manual

(EK-AMI1IK-TM-002)

AAll-K 4-channel D/A and Display Control User's Manual

(EK-AAL1K-TM-001)

DR11-K Interface User's Guide and Maintenance Manual

(EK-DRIIRK-MM-001)

KWll-K Dual Programmable Real Time Clock User Manual

(EK-KW11K-OP-001) '

2. AR1l User's Guide (DEC-11-HARUG-B-D)

3. LPS-11 Laboratory Peripheral System User's Guide

(EK-LPS1I-0P-0023)

LPS11-S Laboratory Peripheral System Maintenance Manual

(EK-LPS11-MM-002)

vii

CHAPTER 1

RT-11 FORTRAN EXTENSIONS

1.1 WHAT ARE THE FORTRAN EXTENSIONS?

The RT-11 FORTRAN Extensions are a library of routines for real-time

data acquisition and processing. The extensions themselves are

subprograms written in MACRO assembler language and callable from

FORTRAN. The extensions allow you to control a programmable clock

counter and laboratory peripherals from a FORTRAN program.

Specifically, the FORTRAN real-time extensions support any of the

following sets of peripherals hardware:

e the K-series hardware (ADll-K analog-to-digital converter,

AM11-K multiple gain multiplexer, AAll-K digital-to-analog

converter, DR11-K digital interface, and KWll-K programmable

clock counter)

e the ARIll real-time analog system

e the LPS1l laboratory peripheral system

See Section 1.5 for a discussion of system configuration.

The FORTRAN extensions can be combined to provide five kinds of

operations: time interval control and sampling, digital input and

output, analog-to-digital conversion and sampling, digital-to-analog

conversion, and graph plotting. The following section describes the

functions available and lists the routines you use to perform those

functions. Detailed instructions for wusing each routine appear in

Sections 1.4.1 through 1.4.20.

Time-Interval Control and Sampling

Timed program delay.

Use SETR in single-interval mode to specify the 1length of

the delay interval, and LWAIT to detect the end of the

interval.

Schedule an event at the completion of a time interval.

Use SETR to request a timed program delay, and to designate

a completion routine to execute at the end of the delay.

Repeated time intervals.

Use SETR in repeated-interval mode to specify the duration

of the intervals. The clock counter generates an interrupt

at the end of each interval.

RT-11 FORTRAN EXTENSIONS

Schedule periodic events.

Use SETR to request repeated time 1intervals, and

designate a completion routine that executes at

completion of each interval.

Time stamping.

to

the

Use IDIR or IDOR to read the current value of the software

clock (see Section 1.2.2, which describes the software

clock). You can also use DRS to read the software clock

during digital sampling. Use FLT16 to convert the unsigned

binary integer time value to a real number.

Measuring the time intervals between events.

Use HIST to read the time and SETR to run the clock in

external-event timing mode. Whenever an external event

occurs, HIST reads the time 1intervening since the last

external event. (You <cannot do this with an ARl1l because

its clock does not have the external event timing mode.)

Measuring the latencies of a series of events relative to

initial event.

an

Use HIST to read the clock value at the time of the event,

and SETR to run the clock in external-event timing from zero
mode. (You cannot do this with an AR1ll because the

clock does not have the required timing mode.)

Digital Input and Output

Read digital input.

AR1ll

Use IDIR to read the value of the digital input register.
IDIR accepts data in either binary or BCD format and stores

it in binary format.

Generate digital output.

Use IDOR to 1load a digital output register. Use

conversion routine KB2BCD to generate BCD format data
output.

Digital sampling at regular time intervals.

the

for

Use DRS to sample from a digital input register, and SETR in
repeated-interval mode to generate clock interrupts
regular intervals (thus triggering the DRS sampling).

Continuous digital sampling at regqular time intervals.

Request digital sampling at regular time intervals using

and SETR, and designate a completion routine to process

data in the call to SETR.

Digital sampling on external events.

Use DRS to sample from a digital input register.

Continuous digital sampling on external events.

Request digital sampling on external events using DRS,

designate a completion routine to process the data in
call to DRS.

Analog-to-Digital (A/D) Conversion and Sampling

Read one value from an analog input.

Use IADC to take a single sample from an A/D channel,

at

DRS

the

and

the

and

CVSWG to convert the digitized value from a nonstandard

integer data format to a real number (if autogain
switched gain was used).

or

RT-11 FORTRAN EXTENSIONS

Read a series of values from one or more analog input channels.

Use SETR to set the sampling rate with the clock in

repeated-interval mode, and RTS to collect a single sweep of

A/D samples. Use LWAIT to detect the completion of

sampling, and CVSWG to convert the digitized values from

nonstandard integer data format to real numbers.

Read values continuously from one or more analog input channels

and store the values on a mass storage device.

Use SETR to set the sampling rate with the clock in

repeated-interval mode, and RTS to sample A/D data
continuously. Designate a completion routine to handle the

data throughput to disk in the call to RTS, and use CVSWG to

convert the digitized values from nonstandard 1integer data

format to real numbers.

Digital-to-Analog (D/A) Conversion

Generate an analog voltage.

Use IDOR to generate a digital output value for a D/A

converter.

Generate a series of analog voltages.

Use SETR in repeated-interval mode to control the time base,

and to designate a completion routine. 1In the completion

routine, you use IDOR to generate the digital output value

for a D/A converter. ‘

Graph Plotting

Data scaling.

Use CLRD to multiply the data in an array so that the data

values are in the required range.

Single display of Y-axis data.

Use FSH to display a data array once.

Continuous display of Y-axis data (refresh scopes).

(a) Use SETR in repeated-interval mode to control the refresh

interval, and to designate a completion routine. 1In the

completion routine, you call FSH to display a data array.

(b) Use DIS to display a data array constantly, and SETR to

designate a completion routine. 1In the completion routine,

you use SDIS to stop the display.

Continuous display of Y-axis data (storage scopes).

Use FSH to display a data array once, and 1IDOR to control

the intensify bit and erase bit of the scope controller.

Continuous display of X-Y data pairs (refresh scopes).

(a) Use SETR in repeated—-interval mode to control the refresh

interval and to designate a completion routine. 1In the

completion routine, you call FXY to display the X and Y data

arrays.

(b) Use DXY to display the X and Y data arrays constantly, and

SETR to designate a completion routine. 1In the completion

routine, you use SDIS to stop the display.

RT-11 FORTRAN EXTENSIONS

Continuous display of X-Y data pairs (storage scopes).

Use FXY to display the X and Y data arrays once, and IDOR to

control the intensify bit and erase bit of the scope

controller.

1.2 THINGS TO KNOW ABOUT RT-11 AND THE FORTRAN EXTENSIONS

There are three variants of the RT-11 monitor: RT-11 Single Job (S8J),

RT-11 Foreground/Background (FB), and RT-1ll Extended Memory (XM).

Consult the RT-11 documentation for descriptions of the features of

the monitor variants. The FORTRAN extensions run under both RT-11 SJ
and RT-11 FB.

CAUTION

Do not use the FORTRAN extensions under

RT=-11 XM.

The FORTRAN extensions run with FORTRAN IV version 2 which includes

virtual-array support. (See the FORTRAN Language Reference Manual for

description of the VIRTUAL array declarator.) However, the FORTRAN

extensions 1impose <certain restrictions on the use of FORTRAN virtual

arrays. The extensions routines cannot refer to virtual arrays. That

is, the array arguments passed to the extensions routines cannot be

virtual-array names. If your FORTRAN program passes a virtual array

to an extensions routine, the results are invalid and unpredictable.

There is no error message. Your FORTRAN main program can contain

virtual arrays and you can copy the conventional arrays used by the

extensions routines into virtual arrays.

NOTE

Virtual arrays cannot appear in COMMON

or EQUIVALENCE statements.

1.2.1 Completion Routines

In the FORTRAN extensions package, completion routines are subroutines

called from within an interrupt service routine. The FORTRAN

extensions library provides standard interrupt service routines to

handle all interrupts from the <clock and laboratory peripherals.

Essentially, you write your own completion routines to extend the

power of interrupt service routines.

Several of the FORTRAN extensions routines allow you to designate a

completion routine name, and the conditions under which you want it to

execute. The idea behind completion routines is that you will want

them to execute wupon completion of some operation that generates

interrupts--for example, at the end of data sampling. The condition

that you specify is always in terms of some number of interrupts. For

example, you can specify that a completion routine is to execute after

a certain number of clock interrupts. Depending on the mode of clock

operation, the routine executes after a defined 1interval, after a

defined number of data samples, or after a defined number of external

event interrupts.

RT-11 FORTRAN EXTENSIONS

The RT-11 monitor puts the conditions and the completion routine name

into a subroutine <call 1in the interrupt service routine. Then
whenever the appropriate interrupt has occurred and the conditions are
satisfied, the interrupt service routine calls the completion routine.

If no other completion routine is executing, the state of the job

being executed determines what happens when a completion routine is

called. Under the RT-1l SJ monitor, the completion routine executes

immediately. Under the RT-1l1 FB monitor, foreground completion

routine requests have priority over background jobs. 1If a foreground

job requests a completion routine while a background job is executing,

RT-11 FB suspends the background 3job, and executes the foreground
completion routine. At the end of the completion routine, the monitor

returns control to the interrupted background 3job (unless the
foreground job has requested service in the meantime). If a
background job requests a completion routine while a foreground job is

executing, RT-1l1 FB queues the completion routine request until the

foreground job gives up control of the system, and then executes the
background completion routine.

If another completion routine is already executing, the action taken
depends on the RT-1l1l monitor. Under the KT-11 SJ monitor, the second

completion routine interrupts the first, executes, and returns to the

first completion routine. This procedure works only for two different

completion routines because completion routines are not reentrant.

That 1is, a FORTRAN completion routine must not attempt to interrupt

itself as the results are undefined (and there is no error message).

Under RT-11l FB, completion routines do not interrupt each other. The

completion routine executing continues to completion regardless of

whether it was requested from the foreground or the background. Then
the second completion routine executes.

Considerations in Using Completion Routines

Completion routines do not "lock out" interrupts or interrupt service

routines. You do not lose interrupts or data while completion

routines are running.

Completion routines increase the system overhead time in interrupt
handling, and therefore decrease the rate at which interrupts can be

serviced. The maximum data-acquisition speed 1is lower in programs

that use completion routines.

Completion routines should not request input or output from a hard
copy terminal. Terminal T1/0 results 1in delays in returning from
completion routines.

If you anticipate that several completion routines could be active

simultaneously, use the SYSLIB IQSET call to extend the RT-11l queue

length.

You must declare a completion-routine name in an EXTERNAL statement.

If you fail to do so, your program does not link properly.

A completion routine cannot call a subprogram that is called elsewhere
in the FORTRAN program. Because completion-routine execution is
asynchronous, the monitor could interrupt the subprogram to begin

executing the completion routine. The completion routine would then

attempt to call the interrupted subprogram, with undefined results,

because the FORTRAN subprogram code is not reentrant.

RT-11 FORTRAN EXTENSIONS

1.2.2 Software Clock

The FORTRAN extensions library provides a time service known as "the

software clock." The software clock is a memory location that SETR

increments by 1 on each hardware clock counter interrupt. The

software clock operates when, and only when, SETR is running the

hardware clock in repeated-interval mode.

The rate of the software clock is controlled by the rate of <clock

counter overflow 1interrupts specified in the call to SETR. The rate

of overflow interrupts is a function of the clock counter frequency

(irate) and the 1initial count (rcount), where the interrupt rate is

equal to irate/rcount. (The time interval between interrupts is equal

to irate*rcount.)

The software-clock values are unsigned binary integers. Before you

can do FORTRAN arithmetic with software-clock values, you must convert

the values to real number form using FLTle. The software clock counts

up to 65535 (octal 177777), which is the largest possible unsigned

binary integer. After the next clock-overflow interrupt, the value of

the software clock is zero.

The IDIR, IDOR, and DRS routines read the software clock. The 1IDOR

routine can change the software-clock value.

1.2.3 SYSLIB Library

SYSLIB is the RT-11 system library. The services provided by SYSLIB

are described in the RT-11 Advanced Programmer's Guide. For example,

SYSLIB provides character string manipulation routines, double word

integers, programmed requests, and a FORTRAN interrupt service

facility (INTSET).

The real-time extensions software protects the appropriate device

interrupt vectors during execution using the RT-11l .PROTECT programmed

request. Multiple .PROTECT requests on the same vector cause a fatal

system error. Therefore, you should not use the INTSET call or the

.PROTECT programmed request in any program that uses the FORTRAN

extensions. There is one exception: you can use INTSET or .PROTECT

for the DR11-K or LPSDR-A vectors if the program does not call T1IDIR,

IDOR, or DRS.

1.2.4 The RT-1l1l User Service Routine

The User Service Routine (USKR) portion of the RT-1l1 monitor 1is not

permanently resident 1in memory. The USR is normally swapped into

memory when any of its services is required. (The USR supports the

RT-11 file structure, and, for example, handles opening files.)

Swapping the USR can slow program execution. Programs can run faster

if you 1lock the USR into memory before the program starts executing.
The following instruction locks the USR into memory:

SET USR NOSWAP

Locking the USR into memory is recommended because that eliminates the

possibility of the USR swapping over the extensions or the completion
routines. 1If space limitations prevent you locking the USR into

memory, consult the FORTRAN documentation to find out the address

where the USR swaps and consult your program link map to see if there
are any conflicts.

1-6

RT-11 FORTRAN EXTENSIONS

1.2.5 Action of CTRL/C

The action of CTRL/C on a running FORTRAN program depends on which

RT-11 monitor 1s in use.

Under RT-11 SJ, the CTRL/C causes a UNIBUS 1INIT, which <clears and

initializes all the devices.

Under RT-11 FB, the CTRL/C causes the real-time extensions software to

clear all of the device registers in the device list maintained by the

extensions. Tf your program is using support libraries other than the

real-time extensions library (for example, VTLIB or LVLIB), use the

monitor INIT command.

1.2.6 Programming Requirements for High-Volume Data Acquisition

The FORTRAN extensions data-acquisition routines DRS, HIST, and RTS

place data in FORTRAN arrays. If the number of data points to be

collected exceeds the length of the array, these routines treat the

array as a circular array. That is, when the routine has filled the

array, it continues to put data in the array, starting again from the

beginning (see Figure 1l-1). Unless your program removes data from the

array, the routine eventually attempts to overwrite data. When it

attempts to overwrite data, the routine sets a flag for this error

condition, which is called "data overrun."

JIBENENNN HEE
Partition 1 _ Partition 2

Linear FORTRAN Array

tiz[{
Partition 1

Partition 2

Circular Array

Figure 1l-1 Linear and Circular Arrays

The linear FORTRAN array wraps around to form a

circular array. DRS and RTS treat groups of array

elements as array partitions.

RT-11 FORTRAN EXTENSIONS

There are four related variables 1involved 1in a <circular array

structure: the pointer for adding the next data point, the space

remaining before data overrun, the pointer to the next data point to
remove, and the space containing valid data (see Figure 1l-2). 1In the
FORTRAN extensions routines, space can be expressed in units of array

elements or in units of array partitions, where a partition is a
subset of the total array 1length.

Space remaining

before data overrun

~— Space containing ___,/

valid data

Pointer for the next Pointer for adding

data point to remove the next data point

Figure 1-2 Circular Array Pointers

A circular array structure involves two array

pointers and available space variables.

The extensions routines handle adding data to the array but not

removing data; your FORTRAN program must handle removing data. The

extension routine maintains the pointer for adding the next data

point; this pointer 1is inaccessible to your program. Your program

must define and maintain the pointer to the next data point to be

removed.

Both your program and the extension routine maintain the wvariable

containing the space remaining before data overrun (the available

space variable). HIST defines the available space variable as the

number of array elements before data overrun. HIST decrements the

available space variable each time it adds a data point to the array.

DRS and RTS define the available space variable as the number of

complete array partitions available before data overrun. DRS and RTS

decrement the available space variable each time an array partition is

filled. Each time your program removes an array element (with HIST)

or the contents of an array partition (with DRS or RTS) thereby making

space available, it must increment the available space variable.

Your program is also responsible for ensuring that the data-removal

pointer does not pass the data-addition pointer. Your program ensures

proper data removal by starting to remove data only after the

extension routine informs your program that data have been received.

(In practice, you can either monitor the available space pointer with

LWAIT and remove data when it changes in value, or arrange to have a

completion routine execute after a defined number of interrupts.)

RT-11 FORTRAN EXTENSIONS

1.3 CONVENTIONS

The following sections define the syntax conventions and notation
conventions used in this chapter.

1.3.1 Syntax Conventions

The syntax conventions described below apply to all of the subroutine
and function calls appearing in the chapter. The discussion of syntax
conventions refers to the following sample sequence:

CALL SUBR([nvaluesi#],rvaluel,[iflag*]][, [rvalue2],call])

Any capitalized words or letters are obligatory. You must specify

them 1in exactly the same way in all calls. For example, CALL SUBR
would be the required portion of the sequence above.

Punctuation is obligatory except when enclosed in square brackets.

Any words or letters in lower case indicate variable parts of the

syntax. You can replace these token items with names of your choosing

that satisfy other constraints of the syntax. As far as practical,
the tokens are mnemonic for the function of the argument required.
For example, "ncounts" means "number of counts."

Any lowercase word that begins with an i1 or an n means that the name

of an integer variable or constant is required in that position in the
sequence. (Unless otherwise specified, 1integer means a one-word

integer, the default INTEGER*2 data format.) The initial letter i is
mnemonic for any integer; the 1initial 1letter n is nmnemonic for
“number of" For example, iflag in the sample sequence refers to
an integer variable or constant; nvalues refers to an integer
variable or constant containing the number of values.

Any lowercase word that begins with an r means that the name of a real
variable or constant 1is required in that position in the sequence.
(Unless otherwise specified, real refers to the default REAL*4 data
format.) For example, rvalue in the sample sequence refers to a real
variable.

Any lowercase word that begins with a letter other than i, n, or r

means that the name of a subprogram is required at that point in the
sequence. For example, call 1in the sample sequence refers to a

subprogram name.

Any item in square brackets can be defaulted (left out of the

sequence) . The syntax always specifies exactly what portions of the

sequence can be defaulted. For example, ",[iflag]" indicates that the
comma 1is required regardless of whether iflag appears. The following
call is valid with the argument iflag defaulted:

CALL SUBR(NCOUNT,SUM, ,SUM2,MEANS)

When items in square brackets are defaulted from the rightmost end of
the sequence, trailing commas are sometimes required by the syntax.
However, for the sample sequence above,

use this form: CALL SUBR (NCOUNT,SUM)

not this form: CALL SUBR(NCOUNT,SUM,,,)

Any nested square brackets indicate more complex cases of the default
syntax. The nesting of rvalue2 and call in the sample sequence above

1-9

RT-11 FORTRAN EXTENSIONS

means that rvalue2 and call cannot be defaulted independently. Either

both rvalue2 and call can be defaulted (indicated by the outer

brackets), or rvalue2 can be defaulted while call is specified

(indicated by the inner brackets). However, if rvalue2 is specified,

call must also be specified.

For example, the following calls are valid:

CALL SUBR (NCOUNT,SUM,,SUMZ,MEANS)

CALL SUBR (NCOUNT,SUM,, ,MEANS)

CALL SUBR (NCOUNT,SUM,IFLAG)

These calls are not valid:

CALL SUBR (NCOUNT,SUM,,SUM2,)

CALL SUBR (NCOUNT,SUM,,SUMZ2)

An asterisk following the name of an argument 1is not part of the

calling sequence. The asterisk convention marks those arguments that

can be modified when the routine is called with the first argument

omitted. This capability is referred to as parameter-adjustment mode.

In the following example, the call to SUBR results in a change to the

parameter iflag. According to the syntax, the second argument cannot

be modified in parameter-adjustment mode. Therefore, the wvariable
RATE is a dummy variable in a parameter-adjustment call, but according

to the syntax, it cannot be defaulted.

CALL SUBR(,RATE,IFLAG)

The character # following the name of an argument is not part of the

calling segquence. The # convention indicates those arguments whose

values can change during execution of the routine. Arguments marked

with # must be variable names rather than constants. Under some

circumstances, if you use a constant instead of a variable name,

FORTRAN changes the value of the constant.

For example, suppose you use the following call:

CALL SUBR(10,SUM,ITOT)

Suppose that SUBR returns 25 as the value of the first argument

(nvalues). In some cases, SUBR would return 25 as the value of the

constant 10. The constant 25 is then substituted for each subsequent

appearance of the constant 10 in the program, with peculiar results

for the program.

1.3.2 Notation Conventions

Any constant can be specified either as a decimal number or as an

octal wvalue. The system assumes that all FORTRAN constants are

decimal unless they are marked as octal. You mark a constant as octal

by prefixing the number with a double quote. For example, to select

octal address 167772, use the constant "167772.

The manual refers to a bit with a value of 1 as being "on" or "set." A

bit with value 0 is referred to as being "off" or "cleared."

The words "defaulted" and "omitted" differ in meaning when applied to

subprogram arguments in this chapter. When the manual states that an

argument can be defaulted, it means that the extensions routines

assume a particular numeric value for the argument when it is left out

of the argument list. When the manual states that an argument can be

1-10

RT-11 FORTRAN EXTENSIONS

omitted, it means that the extensions routines do not assume a value

for the argument when it does not appear 1in the argument 1list.

Tnstead, the extensions routines assume that the absence of the

argument is a flag requesting some function other than that wusually

performed by the routine.

RT-11 FORTRAN EXTENSIONS

1.4 DESCRIPTION OF THE FORTRAN EXTENSIONS ROUTINES

The FORTRAN extensions routines are described 1in the following

section. The routines are arranged alphabetically for convenient
reference use. Section 1.1 contains functional groupings and

descriptions of the routines so you can use those sections to

determine which routines you need to solve your problem. Appendix A

contains a reference summary of all the routines and their arguments.

The description of each routine contains the following information:

Name of the routine

Meaning of the name

Functional operation of the routine

Calling syntax

Explanation of the arguments

Error conditions

Interactions with other routines

Special cases or restrictions

Examples

RT-11 FORTRAN EXTENSIONS

CLRD

l.4.1 CLRD (Clear Display) Routine

CLRD performs two functions ona single data array. It scales each
element of the array by multiplying it by a scale factor supplied as
one of the arguments. Tt calculates a horizontal (X-axis) spacing
factor, which the display routines DIS and FSH use to position the
data to fill the width of the screen.

CLRD is called as a subroutine.

CALL CLRD(iarrayname#,npoints,ispace#,rscale)

The arguments are:

larrayname Name of the integer array containing the data to
be scaled. Each array element is multiplied by
rscale. Scaled values greater than 4095 (1023 for
the AR11l) are nondisplayable. '

npoints The number of elements in the array that are to be
scaled. CLRD scales the first npoints array
elements.

ispace The X-axis spacing factor returned by CLRD. DIS
and FSH wuse 1ispace to ‘"stretch" the display
horizontally so that the display fills the screen
with evenly spaced points. CLRD calculates ispace
as 4096/npoints (1lU24/npoints for the ARll). If
npoints is greater than 4096 (or 1024 for the
AR11l), then ispace is set to 1.

NOTE

The internal machine representation of
ispace is not in standard 1integer
format. Therefore you cannot calculate
your own value for ispace and you cannot

use ispace in other calculations as if
it were a normal integer value.

rscale The scale factor used to multiply each element of
ilarrayname. The scale factor affects the Y-axis
spacing by stretching or compressing the values to
fill the screen as you require. 1If rscale is
zero, then each element of the array is set to -1
(rather than =zero) to indicate a nondisplayable
value. Thus, you can 1initially make the whole
array nondisplayable wusing CLRD, and then later
selectively fill it with the points to be
displayed.

Error conditions:

SYNTAX EKROR

The required four arguments are not present.

1-13

RT-11 FORTRAN EXTENSIONS

ARGUMENT ERROR

The argument npoints is less than one.

The argument rscale is negative.

Interactions:

Both DIS and FSH require the spacing factor ispace calculated by

CLRD.

You can call CLRD to scale either or both of the data arrays for

DXY -and FXY.

Restrictions:

None

Examples:

1. Set up an array ISCREEN that you will later fill with the data to

be displayed. CLRD makes the array nondisplayable. The value

returned in TISPACE is 1.

DIMENSION ISCREEN (4096)

CALL CLRD (ISCKEEN,4096,ISPACE,0.0)

2. Suppose you have a data array IDATA of 25V points that you want to

prepare for display. The maximum value in the array is 150U, but you

would like the display to £ill the screen vertically as well as

horizontally. Calculate your scale factor by dividing the maximum

value you want by the maximum value you have. 1In this case, the scale

factor might be 4095/1500 or approximately 2.67. For an ARll, the

scale factor might be 1VU23/1500, or roughly U.67.

CALL CLRD(IDATA,250,ISP,2.67)

I1f you want the data values scaled more exactly, use the following

call:

CALL CLRD(IDATA,250,15SP,4095./1500.)

The value returned in ISP is equivalent to 16 (or 4 for the ARll).

RT-11 FORTRAN EXTENSIONS

CVSWG

1.4.2 CVSWG (Convert Switched Gain Value) Routine

CVSWG converts switched gain analog input values from packed 1integer

format to real number format. CVSWG requires as input a value in the

format returned by the RTS and TADC routines. The value contains the

digitized wvalue in the rightmost 12 bits for the ADl1-K and LPS11 (10

bits for the ARll) and the gain code in bits 12 and 13. CVSWG

separates this packed information into two values, the digitized value

as a real number, and the gain code as an integer.

CVSWG is called as a function.

rvalue=CVSWG(ivalue[,igain#])

The arguments are:

ivalue The integer value acquired using RTS or TIADC. The

real-number form of the digitized wvalue 1is

returned as CVSWG (the value of the function).

igain The name of the variable in which the gain setting

is returned. The value returned is in the range 1

to 4. The meanings of the gain codes appear 1in

the descriptions of the routines IADC and RTS (see

Sections 1.4.10 and 1.4.18, respectively).

Error conditions:

SYNTAX ERROR

No arguments, or more than two arguments, are present.

Interaction:

The CVSWG routine normally converts data acquired by RTS or TADC.

Restrictions:

None

Examples:

1. You want to convert a value acquired (using TADC as a function)
from channel 0 with a gain code of 2.

VAL=CVSWG(IADC (0,2))

2. You want to convert a value acquired by TADC from channel 2 with

autogain. IGAIN contains the gain selected and used by IADC during

the conversion. Tt is necessary to divide VAL by the gain value that

TGAIN represents to restore VAL to its original scale.

VAL=CVSWG(IADC (2,0), IGAIN)

VAL=VAL/(2%* (2% (IGAIN=-1)))

The expression (2** (2% (IGAIN-1l))) results in scale factors 1, 4, 16,

and 64 for IGAIN values 1, 2, 3, and 4 (respectively).

RT-11 FORTRAN EXTENSIONS

DIS

1.4.3 DIS (Display Data) Routine

DIS initiates the continuous display of Y-axis data on a refresh-type
scope (for example, the Tektronix 6U4).

DIS displays Y-axis data on the scope. The routine assumes that if
X-axis values were provided, they would be equally spaced, increasing
values. Logically, there are two X values for each ¥ value plotted.

One specifies the X coordinate on the screen where the Y value
appears, and the other specifies the array subscript where the Y value

can be found. The X coordinate and array subscript for a single point

usually have different values. You do not have to provide explicit X

values. The X-coordinate value is controlled by an X-axis spacing

factor, whereas the array subscript value is controlled by an indexing

factor (see the ispace and increment argument descriptions).

DIS displays one data point on every interrupt from the scope control

so that it displays points as gquickly as the scope can receive them.

DIS constantly plots points, starting again at the beginning of the

array as soon as it reaches the end.

DIS is called as a subroutine.

CALL DIS(iydata,ispace,npoints,istart,increment)

The arguments are:

iydata The name of the 1integer array containing the
scaled Y-axis data to be displayed. The Y values

should be in the range 0 to 4095 (or 0 to 1023 for
the AR1l). (See the restriction on Y values later

in this section.)

ispace The X-—-axis spacing factor. The 1space argument
controls the horizontal spacing (X coordinates)
for the points plotted. You must call CLRD to

calculate 1ispace before you call DIS. If ispace
is 1 and increment 1is 1, then the X-axis
coordinate for the display assumes values 0, 1, 2

ye+., (npoints - 1). 1If ispace is greater than 1,

then the X—axis coordinate for the display assumes

values 0, ispace*increment, 2*ispace*increment,

..., (npoints—1)*ispace*increment.

npoints The number of points to display. The npoints
argument must be greater than zero.

istart The array subscript of the first point to be
displayed from 1iydata. The istart argument must

be a legal subscript within the bounds of the

array liydata.

increment The indexing factor for the array subscripts. DIS

adds increment to the preceding subscript to

obtain the subscript of the next point to display.

The starting subscript is istart. TIf increment 1is

1, then the points displayed have subscript values

istart through (istart + npoints - 1). Tf

1-16

RT-11 FORTRAN EXTENSIONS

increment 1is greater than 1, then the subscripts
have values 1istart through istart + increment*

(npoints - 1). No error message appears when the
array subscript goes out of bounds.

Error conditions:

SYNTAX ERROR

The required five arguments are not present.

ARGUMENT ERROR

The number of points requested (npoints) is less than 1 or

greater than 4096.

The subscript of the first point to be displayed (istart)

was less than 1.

The increment specified was less than 1 or greater than
4095,

Interactions:

DIS requires the horizontal spacing factor (ispace) calculated by

CLRD.

DIS displays the next data point on every interrupt from the

scope control. A hardware 1interrupt occurs after each point

displayed by DIS, telling DIS that the scope control is ready to
receive the next data point. The time interval from the display
of a point to the occurrence of an interrupt may be as brief as
22 microseconds. Therefore, the remaining machine resources are
not sufficient to allow much data processing or computation. The
only other routines that are guaranteed to be running are other

interrupt handling routines (for example, the <clock~interrupt
service routine) and completion routines. Therefore, the most
practical way to stop DIS displays 1is to call SDIS in a
completion routine.

Restrictions:

The range of voltages accepted by some scopes 1is narrower than

the range of voltages produced by the D/A converters. For

example, full scale (U to 40Y5) for the converter may represent
-5.12 to 5.12 volts. However, the scope control may accept
display voltages in the range -5 to +5 volts. Therefore, digital
values 0 through 47 and 4048 through 4095 are not displayed on

those scopes, and displays including those values hang off the

edges of the screen. To avoid losing data with these scopes,

arrange the arguments and data so that the first 47 screen

positions correspond to nondisplayable data in the data array.

Fill the data array with displayable values so that the

displayable values have X coordinates in the range 48 through

4047. The scaled Y values should be in the range 48 through
4047.

Negative data values, or values greater than 4095 (1023 for the
ARll) are nondisplayable. A point with a value greater than 4095
(1023) is treated as if its value were -1.

Each point is intensified every npoints interrupts. The amount

of flicker in the display depends on the number of points and the
persistence of the phosphor in the scope. Nondisplayable points
are not ignored but are processed as if they were appearing on

the screen. 1Tf flicker is a problem, first try to reduce the
number of nondisplayable points being "displayed."

RT-11 FORTRAN EXTENSIONS

Examples:

1. There is a data array l0u0 points long. The horizontal spacing

factor ISPACE was calculated in a prior call to CLRD.

(a) You want to display the last 8UU points in the array.

CALL DIS(IDATA,ISPACE,800,201,1)

(b) You want to display a data window of the middle 75U points,

displaying every fifth point.

CALL DIS (IDATA,T1SPACE,150,120,5)

2. The following example is a complete short program designed for a

refresh-type scope. The example calls the routine SETR to control the

duration of the display and to set up the call to the completion

routine containing the command to stop the display.

DIMENSTION ISCREEN (4096) ;Array to be dispiayed.

EXTERNAL STOPS ;Completion routine name

;declared EXTERNAL.

CALL CLRD(ISCREEN,4096,ISPACE,0.0) ;Make array

: ;jnondisplayable and

: ;ispace=l.

DO 10 TI=48,4047,20 ;DO limits chosen to
;£il1l1 screen.

10 ISCREEN (T) =1 sPut values in ISCREEN

;for diagonal line.

NPTS=200 ;Specify 200 points.
20 IFLG=0 ;Set up SETR flag.

CALL SETR(5,0,1u00.,IFLG,,STOPS) :Time for 10 sec, then
;call the completion

;routine STOPS.

CALL DIS(ISCREEN,ISPACE,NPTS,48,20) ;Display every 20th
;point in ISCREEN

;starting with the

;48th point.

PAUSE :Wait for keyboard
; input.

GO TO 20 ;Display line again.
END

SUBROUTINE STOPS

CALL SDIS : ;Stop the display.

RETURN

END

RT-~11 FORTRAN EXTENSIONS

DRS

1.4.4 DRS (Digital Read-in Sampling) Routine

DRS mediates repeated sampling from a digital input register (DR11-K

or LPSDR~A) or from a memory location. The DRS routine extends your

digital sampling capabilities beyond the single register reading that

you can acquire using TIDIK.

DRS collects multiple samples from a single input wunit or memory

location. Use multiple calls to DRS to sample from multiple units or

memory locations.

DRS provides three basic capabilities.

l. Single-sweep sampling. Using DRS, you can acquire a short

sequence of digital input register readings by specifying the

parameters that direct DRS to stop after it £fills an array

with data.

2. Continuous sampling. Using DRS, you <can acquire digital

input data continuously. There are two classes of continuous

sampling: finite continuous sampling, in which vyou define

the total number of samples to be acquired in the call to

DRS, and infinite continuous sampling, in which you do not

specify the total number of samples in the call to DRS.

You specify the parameters directing DRS to acquire data

continuously, and either designate a completion routine or

arrange your program code to empty the arrays periodically.

You designate the completion routine in the SETR call if you

are acquiring data on clock interrupts; you designate the

completion routine directly from DRS if you are acquiring

data on interrupts from the digital input interface. TIf you

request infinite continuous sampling, you must call DRS again

to stop sampling.

You provide the completion routine to empty the arrays and

dispose of the data as required by the problem. For example,

you can write the data to secondary storage or reduce it to

means or counts.

Because the completion routine requires time to execute, the

maximum continuous sampling rate (involving a completion

routine) is lower than the maximum single-sweep sampling rate

(not involving a completion routine).

3. End sampling. Call DRS in parameter—adjustment mode to stop

infinite continuous sampling.

DRS is called as a subroutine. The number of arguments necessary

depends on the capabilities you are requesting.

Single—-sweep sampling:

CALL DRS (iarrayname,iarraysize,,[nsamples], [isource],iunit,

imask, [imode],iendflag#,nleft)

RT-11 FORTRAN EXTENSIONS

Continuous sampling:

(a) Clock-interrupt—driven continuous sampling

CALL DRS (iarrayname,iarraysize, [nsubarrays], [nsamples],

[isource],iunit,imask, [imode],iendflag#,nleft#)

(b) Event-driven continuous sampling

CALL DRS (iarrayname,iarraysize, [nsubarrays], [nsamples],

[isource],iunit, imask, [imodel], 1endflag#,nleft#[,
[intervall,completel)

End sampling:

Specify parameter-adjustment mode by omtttlng iarrayname. Only

imode can be

the register or

altered. The values of isource and iunit specify

location for which sampling is to stop. The rest

of the variable names are dummy arguments that shouldbe the same

as the names in the original DRS call.

CALL DRS (, iarraysize,,, [isource],iunit, imask, imode?*,

iendflag,nleft)

The arguments are:

iarrayname

iarraysize

nsubarrays

nsamples

The name of the integer array in which DRS places

the input data. For continuous sampling, DRS

treats the data array as a circular array (see

Section 1.2.6). If you omit iarrayname, the DRS

call expects a negative value for imode to end

sampling. .

The length of iarrayname (in words) . The

iarraysize argument specifies the amount of memory

reserved by your program for input data.

The numberof array partitions in iarrayname. The

default number of partitions is 1. The length of

each partition is equal to the largest integer 1in

(iarraysize/nsubarrays). For exanmple, with

iarraysize = 512, and nsubarrays = 5, there are
five partitions, each 100 words 1long, and 12

unused words at the end of iarrayname.

The value of nsubarrays must be less than or equal

to iarraysize. With continuous double-word

sampling, there must be at least two array

partitions (see the interval argument

description). Single—sweep sampling does not

require array partitions.

The number of samples required. A single sample

is either a single data word or a pair of words,

depending on the mode specified. The default

value of nsamples is iarraysize.

With single—-sweep sampling, set nsamples equal to

iarraysize for single—word sampling modes; set

nsamples equal to half the value of iarraysize for
double-~word sampling modes.

With continuous sampling, you assign the value to

nsamples depending on how you want to stop the

1-20

isource

iunit

imask

imode

RT-11 FORTRAN EXTENSIONS

sampling process. For finite continuous sampling,

set nsamples equal to the number of samples you

want. TIn this case,

nsamples > iarraysize

For infinite continuous sampling, set nsamples

equal to any negative number.

nsamples < U

DRS then reads data until you stop sampling by

calling DKS again 1in parameter—adjustment mode

with a negative value for imode.

The flag indicating whether to read a digital

Lnput register or a memory location. The default

value of isource is zero.

Value Meaning

Zero Read the digital input register

specified by 1iunit. 1In the process of

reading the register, DRS clears those

bits (and only those bits) that it finds

set.

rionzero Read the memory location whose address

appears 1in iunit.

The location of the data to be read.

Value Meaning

U through 7 Logical unit numbers for the

or digital 1input registers. The

0 through 8 U—-through-7 values select one of

up to eight DR11-K digital 1/0

interfaces. 1f the system

configuration includes an LPS11

with LPSDR~A, then 0 selects the

LPSDR-A, and the 1l-through-8

values select one of up to eight

DR11-K digital 1TI/0 interfaces.

(The value of 1isource must be

Zero.)

U,2,...,"177776 Memory address selected. The

address must be an even number.

(The value of 1isource must be

nonzero.)

The value used to mask the 1input value. DRS

performs a logical AND using imask and the input

value, and stores the result in the data array,

iarrayname. Request a mask with all bits on

either as -1 (decimal) or as "177777 (octal).

For single-word sampling, imode specifies the data

format of the value to be read and the source of

the interrupts driving the sampling.

1-21

RT-11 FORTRAN EXTENSIONS

For double-word sampling, imode specifies the data

format of the value to be read, the source of the

interrupts driving the sampling, and the contents

of the second word.

For parameter adjustment, imode specifies the stop

code.

The default value of imode 1is zero.

Single-word sampling.

In single-word sampling modes, DKS reads the

contents of the digital register or the memory

location into the data array. The single-word

sampling codes are:

Value Meaning

0 Read unsigned BCD data from the register

or memory location on clock interrupt.

1 Read binary data from the register or

memory location on clock interrupt.

4 Read unsigned BCD data from the register

or memory 1location on a digital event

interrupt.

5 Read binary data from the register or

memory location on a digital event

interrupt.

Double-word sampling.

There are two kinds of double-word sampling:

double-word sampling with bit location, and double

word sampling with time stamping. In both, the

first word of the pair contains the register or

memory value.

In double—-word sampling with bit location, the

second word of the pair contains the bit position

of the rightmost nonzero bit 1in the nonmasked

portion of the input value. That is, DRS performs

a logical AND between the input value and the

complement of the mask, and then scans right to

left for a nonzero Dbit. Tt assigns the bit

position (U to 15) as the value of the second

word. TIf no bits are on, the second word of the

pair 1is set to -1l. You request double-word

sampling with bit location by adding 2 to any of

the single-word sampling codes to obtain codes 2,

3, 6, and 7.

In double-word sampling with time stamping, the

second word of the pair contains the software

clock reading at the time of the digital event

interrupt. The clock value does not change. The

time—-stamping option 1is available only with

digital event interrupts. You use double-word

sampling with time stamping to obtain information

concerning what happened (the digital input

register) and when it happened (the software-clock

1-22

RT-11 FORTRAN EXTENSIONS

reading). You request double-word sampling with

time stamping by adding 8 to modes 4 and 5 to

obtain codes 12 and 13.

The double-word sampling codes are:

Value Meaning

2 Double-—word sampling with bit location.

Read and convert unsigned BCD data on

clock interrupt.

3 Double-word sampling with bit location.

Read binary data on clock interrupt.

6 Double-word sampling with bit location.

Read and convert unsigned BCD data on

digital event interrupt.

7 Double-word sampling with bit location.

Read binary data on digital event

interrupt.

12 Double-word sampling with time stamping.

Read and convert unsigned BCD data on

digital event interrupt.

13 Double-word sampling with time stamping.

Read binary data on digital event

interrupt.

End sampling.

Each parameter—-adjustment call to DRS stops

sampling from one input unit or memory location.

If you are sampling from more than one unit or

location, use one parameter—-adjustment call for

each unit to be stopped. (Request

parameter—-adjustment mode by omitting the

iarrayname argument.)

The stop code values are:

Value Meaning

-4 Finish sampling for the current array

partition. Allow queued completion

routine requests to run, but do not

gueue any more requests.

-3 Finish sampling for the current array

partition. Do not honor any queued

completion routine requests.

-2 Stop reading data. Allow queued

completion routine requests to run, but

do not queue any more requests.

-1 Stop reading data. Do not honor any

queued completion routine requests.

iendflag

nleft

interval

complete

Error conditions:

SYNTAX ERROR

RT-11 FORTRAN EXTENSIONS

The completion and/or error flag. You must set

iendflag to =zero before you call DRS. DRS

increments 1iendflag either when all samples

requested have been acquired or when sampling has

‘been stopped by a stop code (negative value for

imode). If a data overrun or other error occurs,

DRS sets 1endflag to a negative value.

The array partition flag. DRS 1initializes nleft

with the number of array partitions specified by

nsubarrays. DRS decrements nleft by 1 each time

an array partition becomes full. Thus nleft

contains the number of partitions currently

available to DRS. The nleft argument is

meaningful only with continuous sampling.

Remember to 1increment nleft when you remove data

from a full array partition so that the partition

can be reused.

If nleft becomes zero before the number of samples

requested 1in nsamples has been acquired, a data

overrun has occurred. DRS then sets 1iendflag to

indicate an error.

The number of interrupts between <c¢alls to the

completion routine. DKS initializes an internal

variable to interval and decrements it after each

interrupt. When the value is zero, DRS

reinitializes the internal variable and causes the

completion routine to be called. Therefore, the

completion routine is executed whenever interval

interrupts have occurred.

The default value for interval is the length of

the array partition, iarraysize/nsubarrays. With

single-word sampling, the default value for

interval causes the completion routine to be

executed as each array partition is filled. With

double-word sampling, the default wvalue for

interval causes the completion routine to be

executed after two array partitions have been

filled.

Completion~routine name. The completion routine

that you provide 1is executed after interval

interrupts have occurred. There 1is no default

completion routine name. If you omit the

completion routine name in digital event driven

modes, DRS does not call a completion routine. 1In

clock—-driven modes, you must omit the completion

routine argument and instead specify any necessary

completion routine 1in the <call to. the clock

routine, SETR.

There are fewer than 1U, or more than 12, arguments present.

ARGUMENT ERROKR

The digital input register (iunit) specified does not exist.

The memory address (iunit) specified is an odd number.

The mode requested (imode) is negative but the call 1is not

in parameter-adjustment mode.

1-24

RT-11 FORTRAN EXTENSIONS

DEVICE CONFLICT

The digital input register is in use.

Interactions:

In clock~driven sampling modes, you must designate any

completion-routine name in the SETK call.

Restrictions:

DR5 allows you to sample as many as eight DR11-K digital 1input

registers (and the LPSDR-A, if present) simultaneously. Call DRS

once for each unit you want to read, specifying a different array

name for each unit. Each unit can run in either clock-=driven or

event—driven mode. You can designate a unique completion routine

for each of the units running in event-driven mode.

kxamples:

l. You want to read digital input register 5 once each second for one
minute. DKS reads one word of binary data into the array MIN on each

clock overflow interrupt.

UDIMENSION MIN (oU) iSet up data array.

TEND=U ;End flag for DRS.

TENDC=0 ;End flag for clock.

CALL DRS (MIN,00,,,,5,-1,1,TEND,TFULL) ;Request sampling.

CALL SETR(5,1,100.,TENDC) ;Start clock at 1 Hz.

CALL LWATT(TEND,Q) ;Wait for 60U samples.

CALL s&8TR(-1,,.,) ;Stop the clock.

2. You want to read 60 samples of BCD data from digital input

register 3 on digital event interrupts. You are interested only in

the high-order byte, so you mask off the low-order byte.

DIMENSTON MIN(6U) iSet up data array.

TEND=0 ;End flag for DKS.

CALL DRS (MIN,60,,,,3,"177400,4,1END,TIFULL)

sRequest sampling.

CALL LWATIT(IEND,OQ) iWait for 60 samples.

3. You want to read the status register for DR11-K unit 0 and execute

a completion routine on every digital event interrupt. You reguest

double—-word sampling with time stamping using mode 13. The example

appears twice, once with completion routines, and once without

completion routines.

(a) This example uses a completion routine. The example assumes that

the interrupts occur at a rate slow enough to allow the
completion routine to execute fully between interrupts.

DIMENSTON TREG(4) iSet up array.

EXTERNAL COMPL ;Label completion routine

s EXTERNAL.,

TEND=0 ;End flag for DRS.

10

10

20

RT=11 FORTRAN EXTENSIONS

CALL DRS(IREG,4,2,-1,1,"167770,-1,13,TEND,TFUL,1,COMPL)

;Request sampling.

SUBROUTINE COMPL ;jCompletion routine.

for example,

issue control instructions

acquire or process data

compute

examine conditions to decide if done

IF (TDONE.EQ.1l) GO TO 1lu :Go to 1lU 1if finished.

TFUL=2 ;Reset available space

;jpointer.

RETURN ;Return 1f more to do.

CALL DRS(,4,,,1,"167770,-1,-~1,1END,TFUL)

;Call DRS with stop

;code=~1.

RETURN

You can achieve the same function without completion routines.

DIMENSTON IREG(4) ;Define data destination.

TEND=0 ;End flag for DRS.

CALL DRS(IREG,4,2,-1,1,"167770,-1,13,TERD,TFUL)

;Start sampling.

CALL LWATT(IFUL,2) ;Wait for an interrupt.

do whatever 1is required, for example

issue control instructions

acquire or process data

compute

examine conditions to decide if finished

go to 2U if finished

TFUL=2 ;Reset available space

ipointer.

GO TO 1vU ;Go wait for next event.

CALL DRS(,4,,,1,"16777v,-1,-1,1TEND,TFUL)

. ;Stop DRS with imode=-1l.

RT-11 FORTRAN EXTENSIONS

DXY

1.4.5 DXY (Display X-Y Data Pairs) Routine

DXY continuously displays X-Y data pairs contained in two data arrays.

The continuous display is used for refresh-type scopes (for example,

Tektronix 6U4). DXY plots correlational data, or any data 1in which

the Y values are not associated with equally spaced, ordered X values.

DXY displays one data point on each interrupt from the scope control,

so that it displays points as quickly as the scope can receive them.

DXY constantly plots data points, starting again at the beginning of

the arrays after it has displayed the last point in the arrays.

The data to be displayed must be in two arrays. The X—axis data array

contains the horizontal displacement of each point to be plotted. The

Y-axis data array contains the vertical displacement of each point to

be plotted. The displacements are relative to (0,0) in the lower left

corner of the screen. The X-Y pairs are in corresponding positions in

the two arrays. That 1is, for the fifth pair to be plotted, the X

value is the fifth element of the X array, and the Y value 1is the

fifth element of the Y array.

The data values must ke in the range that can be plotted on the scope,

that 1is, 0 to 40953 (U to 1U23 for the AR1ll). You can expand or

compress the range of the X and Y data arrays independently by using

CLRD to scale them. You can also transform or scale the data arrays

elsewhere in the program with FORTRAN manipulations.

DXY is called as a subroutine.

CALL DXY(ixdata,iydata,npoints,istart,increment)

The arguments are:

ixdata The name of the 1integer array containing the

X-axis values for the X~Y pairs to be displayed.

iydata The name of the 1integer array containing the

Y-axis values for the X-Y pairs to be displayed.

npoints The number of points (X-Y pairs) to be plotted.

istart The array subscript of the first pair of points to

be plotted. The istart argument must be a legal

subscript within the bounds of the arrays ixdata

- and 1iydata.

increment The indexing factor for the array subscripts. DXY

adds 1increment to the preceding subscript to

obtain the subscript of the next pair of values to

be displayed. Tf increment is 1, then the pairs

displayed have subscript wvalues 1istart through

(istart + npoints - 1). Tf increment is greater

than 1, then the subscripts have values 1istart

through (istart + increment* (npoints - 1)). The

increment argument must be greater than or equal

to 1. No error message appears when the array

subscript goes out of bounds.

RT-11 FORTRAN EXTENSIONS

Error conditions:

SYNTAX ERROR

The required five arguments are not present.

ARGUMENT ERROR

The number of pairs of points to display (npoints) 1is less

than 1 or greater than 40UY6.

The array subscript of the first pair to be displayed

(istart) is less than 1.

The increment requested is greater than 4096.

Interaction:

DXY displays the next data point on each interrupt from the scope

control. A scope-control interrupt occurs after each point

displayed, telling DXY that the scope control is ready to receive

the next data point. The time interval from the display command

to the occurrence of an interrupt may be as brief as 22

microseconds. Therefore, the remaining machine resources are not

sufficient to allow much data processing or computation. The

only routines that are guaranteed to be running are other

interrupt handling routines (for example, the clock or keyboard

interrupt service routines) and completion routines. Therefore,

the most practical way to stop a DXY display is to call SDIS from

a completion routine.

Restrictions:

The range of voltages accepted by some scopes is narrower than

the range of voltages produced by the D/A converters. For

example, full scale (U to 4095) for the converter may represent

-5.12 to +5.12 wvolts. However, the scope control may accept

voltages in the range -5 to +5 volts. Therefore, digital values

U through 47 and 4U48 through 4095 are not displayed on those

scopes, and displays including those values hang off the edges of

the screen. To avoid losing data with these scopes, arrange the

arguments and data so that the first 47 screen positions

correspond to nondisplayable data in the data array. Scale both

the X and Y arrays to have displayable values 1in the range 48

through 4047,

Data values greater than 4095 (1023 for the AR11) are

nondisplayable. A point with a value greater than 4095 (1lU23) is

treated as if its value were -1l.

Each point is intensified every npoints interrupts. The amount

of flicker in the display depends on the number of points and the

persistence of the phosphor in the scope. Nondisplayable points

are not ignored but are processed as if they were appearing on

the screen. 1If flicker is a problem, first try to reduce the

number of nondisplayable points being "displayed."

Example:

1. The example draws a horizontal line and a vertical line to divide

the screen. into quadrants. The display 1is stopped by SDIS in a
completion routine that is designated in the call to SETR and executed
after approximately one minute.

1lu

20

30

RT-11 FORTRAN EXTENSIONS

EXTERNAL STOPS

TNTEGER XDATA (4U96) ,YDATA (40Y6)

CALL CLRD (XDATA,4096 ,TDUM, 0.0)

CALL CLRD (YDATA,4096,TDUM,0.0)

DO 10 T=44,4047,5U

XDATA(T) =1

YDATA (T)=2044

DO 2U T=73,4047,50

XDATA(1) =2048

YDATA(T) =1

NPTS=160

TFLAG=0

CALL SETR(5,0,6000.,IFLAG,,STOPS)

CALL DXY (XDATA,YDATA,NPTS,48,25)

PAUSE

GO TO 30

END

SUBROUTTNE STOPS

CALL SDIS

RETURN

END

;Clear X array.

;Clear Y array.

;Make horizontal line.

;Make vertical line.

;Number of points to

;jdisplay.
;End flag for SETR.

;Time 1 minute; then

;execute completion

;routine STOPS.

;Display the arrays.

;Wait for keyboard input.

;Go start display again.

;Completion routine.

;Stop the display.

RT-11 FORTRAN EXTENSIONS

FLT16

l.4.0 FLT16 (l6-bit Floating-Point Conversion) Routine

FLTlo converts a lo-bit unsigned binary integer to real-number format.

A le-pbit wunsigned binary integer (with octal values U to 177777) has

decimal values of 0 to 65535, (These values are in contrast to most
integers which are stored in two's complement binary and can assume
decimal values -32768 through 32767.) You must use FLT1lé for unsigned
binary values 1instead of the FORTRAN function FLOAT because FLOAT

converts two's complement binary, not unsigned binary.

FLT16 is called as a function.

rvalue = FLT1lo (ivalue)

The arguments are:

rvalue The real-number form of the integer argument.

ivalue The unsigned binary integer to be converted to a

real value.

Error conditions:

SYNTAX ERROR

There is not exactly one argument present.

Interaction:

Unsigned binary values are acquired by IDIR, DRS, and IDOR.

Restrictions:

None

Example:

l. Consider the unsigned binary value IBINRY:

1111 111 111 111 111

If

VALUE=FLT16 (IBINRY)

then VALUE contains the real-number form of 65535,

If

VALUE=FLCAT (IBINARY)

then VALUE contains the real-number form of -1.

2. Consider the unsigned binary value IBIN:

1 0uU VU0 OVUO OULU 00U

RT-11 FORTRAN EXTENSIONS

If

VAL=FLT16 (IBIN)

then VAL contains the real-number form of 32768.

1f

VAL=FLOAT (IBIN)

then VAL contains the real-number form of -32768.

3. You want to determine the time interval between two events.

DIMENSTON IEVENT (4) ;Set up data array.

TFLG=0 ' ;End flag for DRS.

ISFLG=U ;End flag for SETR.

CALL DRS(IEVENT,4,,2,,1,-1,13,1IFLG,NLEFT)

;Read register 1, double

;word sampling with time

;jstamping in event-driven

;mode.

CALL SETR(4,1,1.,ISFLG) ;SETR runs the software

;iclock in msec.

CALL LWAIT(IFLG,O0) iWait for end of

;sampling.

TIME=FLTlo (TEVENT (4))~FLT16 (IEVENT (2)) ;Interval in msec.

1Go on to examine the

;digital registers.

RT-11 FORTRAN EXTENSIONS

FSH

1.4.7 FSH (Flash) Routine

FSH displays all points in a data array once, that is, "flashes" them

on the screen. However, you can use FSH for continuous displays if
you have a storage scope (for example, Tektronix 603), or if you use a
completion routine to refresh the display for refresh—-type scopes (for
example, Tektronix 604).

FSH displays Y—-axis data on the scope. The routine assumes that if

X-axis values were provided, they would be equally spaced increasing

values. Logically, there are two X values for each ¥ value plotted.
One specifies the X <coordinate on the screen where the Y value

appears, and the other specifies the array subscript where the Y value
can be found. The X coordinate and array subscript for a single point
usually have different values. You do not have to provide explicit X

values. The X-coordinate value 1s controlled by an X-axis spacing
factor, whereas the array subscript value is controlled by an indexing

factor (see the ispace and increment argument descriptions).

FSH is called as a subroutine.

CALL FSH(iydata,ispace,npoints,istart,increment)

The arguments are:

iydata ‘ The name of the 1integer array containing the
scaled Y~axisldata to be displayed.

ispace The X-axis spacing factor. You must call CLRD to

calculate 1ispace before you call FSH. TIf ispace
is 1 and 1increment 1is 1, then the X~axis

coordinate for the display assumes values

0,1,2,..., (npoints -1). If ispace is greater than

1, the X-axis coordinate for the display assumes

values 0, ispace*increment,?2*ispace*increment,...,

(npoints = 1l)*ispace*increment.

npoints The number of points to display. The npoints

argument must be greater than zero.

istart The array subscript of the first point to be

displayed from iydata. The istart value must be a

legal subscript within the bounds of the array

iydata.

increment The indexing factor for the array subscripts. FSH

adds 1increment to the preceding subscript to

obtain the subscript of the next point to be

displayed. The starting subscript is istart. 1If

increment is 1, then the points displayed have

subscript values istart through (istart + npoints

- 1). TIf increment is greater than 1, then the

subscripts have values 1istart through istart +

increment* (npoints - 1). No error message appears

if the array subscript goes out of bounds.

RT-11 FORTRAN EXTENSIONS

Error conditions:

SYNTAX ERROR

There are not exactly five arguments present.

ARGUMENT ERROR

The number of points to be displayed (npoints) is less than
zero or greater than 40Y6.

The increment for the array subscript 1is less than 1 or
greater than 4uYe.

The subscript of the first point to be displayed (ifirst) is
less than 1.

Interactions:

A CLRD call calculating the display spacing factor (ispace) must
have preceded the FSH call.

You can obtain a continuous display on a refresh-type scope by
calling FSH from a completion routine. FSH then executes
whenever your completion routine executes. The rate of
completion-routine execution (the refresh rate) depends on the
parameters you specify when you initialize the clock (in SETR or
the SYSLIB routine ITIMER).

Unlike continuous displays with DIS and DXY, the completion
routine method of obtaining continuous displays may not use all
the machine resources. The amount of time remaining depends on
the number of points 1in the display and on how often the
completion routine executes. Your FORTRAN program might be able
to process data or perform computations while the display is on

the screen.

Restrictions:

The range of voltages accepted by some scopes 1is narrower than
the range of voltages produced by the D/A converters. For
example, full scale (0 to 4u95) for the converter may represent
-5.12 to 5.12 volts. However, the scope control may accept
voltages in the range -5 to +5 volts. Therefore, digital values
0 through 47 and 4048 through 4095 are not displayed on those
scopes, and displays including those values hang off the edges of
the screen. To avoid losing data with these scopes, arrange the
arguments and data so that the first 47 screen positions

correspond to nondisplayable data in the data array. Fill the
array with displayable values so that the displayable values have
X coordinates in the range 48 through 4047. The scaled Y values
should be in the range 48 through 4047,

Data values greater than 4095 (1023 for the AR11) are

nondisplayable. A point with a value greater than 4095 (1023) is
treated as if its value were -1.

kach point is intensified every npoints interrupts. The amount
of flicker in the display depends on the number of points and the
persistence of the phosphor in the scope. Nondisplayable points
are not ignored but are processed as if they were appearing on
the screen. 1If flicker is a problem, first try to reduce the
number of nondisplayable points being "displayed."

Examples:

1. The following example is a complete short program designed for a
storage scope. The example erases the screen and plots a diagonal

1-33

line of points that remain on the screen until you

which time it erases the screen and replots the line.

stop the program is to enter a CT

scope

RT-11 FORTRAN EXTENSIONS

remains in storage mode.

RT-11 FB.

10

20

3u

2.

on

INTEGER SCREEN (4096)

CALL ERASE

CALL CLRD (SCREEN,4096,TIDELT,0.U)

DO 10 T=45,4047,3

SCREEN(T) =1

NPT=1333

TYPE 20,NPT

FORMAT (/"

CALL FSH (SCREEN,IDELT,NPT,4t,3)

PAUSE

CALL ERASE

GO TO 30

END

SUBROUTINE ERASE

IFLAG=0

CALL IDOR(1,"1704406,"0,"0)

CALL IDOR(1,"170446,2,0)

CALL SETR(4,0,250.,IFLAG)

CALL LWAIT(IFLAG,O0)

RETURN

END

the programmable clock.

10

EXTERNAL SHOW

COMMON TYDATA (4V96),N,ISP

CALL CLRD(IYDATA,4096,18pP,0.)

DO 1u I=48,4047,20

LYDATA(I)=1

N=200

TIME=100.

IFLAG=U

CALL SETR(4,1,TIME,IFLAG,,SHOW)

PAUSE

CALL SETR(-1,,,)

END

SUBROUTINE SHOW

COMMON TYDATA (4096),N, ISP

CALL FSH(IYDATA,ISP,N,48,20)

RETURN

END

press a key, at

The only way to

After you enter a CTRL/C, the

1f you want to clear the screen, type

INTT after the monitor dot for RT-11 SJ, or reboot the system for

;Set up array space.

:Be sure screen is blank.

sMake SCREEN nondisplayable.

;DO limits chosen to fill

;jscreen.

;Create points for diagonal

;line.
;No. of points to display.

;Print message.

NO. OF POINTS DISPLAYED =',15)
;Display array.

;Wait for keyboard entry.

;Erase screen.

;Go display line again.

;You write this routine.

;Initialize flag for SETR.

;Turn on storage mode and

;non—-erase flag.

:Clear erase bit thus starting

;jerase cycle.

;Start 250 msec interval to

;swait for settling time.

;Wait for end of interval.

The following example shows the use of FSH for continuous displays

refresh-type scope (for example, Tektronix 604).

from within a completion routine which is executed on interrupts
FSH is called

from

;Define the completion

;routine.

;Make array available to

;completion routine.

;Make TYDATA nondisplayable.

;DO limits chosen to fill

;jscreen.

;Fill array with points.

;No. of points to display.

;Time interval between calls

;to the completion routine (in

;msec).

;Flag for SETR.

;Get clock going and prepare

;for completion routine.

;Wait for keyboard entry.

:Stop the clock.

;Completion routine.

;Display the array.

RT-11 FORTRAN EXTENSIONS

FXY

1.4.8 FXY (Flash X-Y Data Pairs) Routine

FXY displays X-~Y data pairs once (that 1is, "flashes" them on the

screen). However, you can use FXY for continuous displays if you have

a storage scope (for example, Tektronix ©603), or 1if vyou use a

completion routine to refresh the display for refresh-type scopes (for

example, Tektronix 6U04).

You can use FXY to plot any data 1in which the Y wvalues are not

associated with equally spaced, increasing X values (for example,

scatter—-plot data).

FXY displays X-Y data pairs contained in two data arrays. The X-axis

data array contains the horizontal displacement of each point to be

plotted. The Y-axis data array contains the vertical displacement of

each point to be plotted. The displacements are relative to (0,U) 1in

the 1lower 1left corner of the screen. The X~-Y pairs are in

corresponding positions 1in the two arrays. That is, for the fifth

pair to be plotted, the X value is the fifth element of the X array,

and the Y value is the fifth element of the Y array.

The data values must be in the range that can be plotted on the scope,

that 1is, 0 to 4095 (0 to 1023 for the AKll). You can expand or

compress the range of the X and Y data arrays independently by using

CLRD to scale them. You can also transform or scale the data arrays

elsewhere in the program with FORTRAN manipulations.

FXY is called as a subroutine.

CALL FXY(ixdata,iydata,npoints,istart,increment)

The arguments are:

ixdata The name of the 1integer array containing the

X-axis values for the X-Y pairs to be displayed.

iydata The name of the 1integer array containing the

Y-axis values for the X~Y pairs to be displayed.

npoints The number of points (X-Y pairs) to be plotted.

istart The array subscript of the first pair of points to

be plotted. The istart argument must be a legal

subscript within the bounds of the arrays ixdata

and iydata.

increment The indexing factor for the array subscripts. FXY

adds 1increment to the preceding subscript to

obtain the subscript of the next pair of values to

display. Tf 1increment 1is 1, then the pairs

displayed have subscript wvalues 1istart through

(istart + npoints - 1). If increment 1is greater

than 1, then the subscripts have values istart

through (istart + increment* (npoints - 1).

Increment must be greater than or equal to 1. No

error message appears 1f the array subscript goes

out: of bounds.

RT-11 FORTRAN EXTENSIONS

Error conditions:

SYNTAX ERROR

There are not exactly five arguments present.

ARGUMENT ERROR

The number of pairs of points to display (npoints) 1is less

than 1 or greater than 40Y6.

The array subscript of the £first pair to be displayed

(istart) is less than 1.

The increment requested is greater than 4U96.

Interactions:

You can obtain a continuous display on a rerresh-type scope by

calling FXY from a completion routine. FXY then executes

whenever your completion routine executes. The rate of

completion-routine execution (the refresh rate) depends on the

parameters you specify when you initialize the clock (in SETR or

the SYSLIB routine ITIMEK).

Unlike continuous displays with DIS and DXY, the

completion-routine method of obtaining continuous displays may

not use all the machine resources. The amount of time remaining

depends on the number of points in the display and on how often

the completion routine executes. Your FORTRAN program may be

able to process data or perform computations while the display is

on the screen.

Restrictions:

The range of voltages accepted by some scopes 1is narrower than

the range of voltages produced by the D/A converters. For

example, full scale (0 to 4095) for the converter may represent

-5.12 to +5.12 volts. However, the scope control may accept

voltages in the range -5 to +5 volts. Therefore, digital wvalues

U through 47 and 4048 through 4095 cannot be displayed on those

scopes, and displays including those values hang off the edges of

the screen. To avoid losing data with these scopes, arrange the

arguments and data so that the first 47 screen positions

correspond to nondisplayable data in the data array. Scale both

the X and Y arrays to have displayable values in the range 48

through 4047.

Data values greater than 4095 (1023 for the AR11) are

nondisplayable. A point with a value greater than 4095 (1023) is

treated as if its value were -1.

Each point is intensified every npoints interrupts. The amount

of flicker in the display depends on the number of points and the

persistence of the phosphor in the scope. Nondisplayable points

are not 1ignored but are processed as if they were appearing on

the screen. 1If flicker is a problem, first try to reduce the

number of nondisplayable points being "displayed."

Examples:

1. The following example shows the use of FXY for continuous displays

with a refresh-type scope. FXY is called from within a completion

routine which executes on interrupts from the clock counter. The

example program draws a horizontal line and a vertical line to divide

the screen into quadrants.

RT-11 FORTRAN EXTENSIONS

COMMON TXDATA (40906),IYDATA (4096),N sMake arrays available to

jcompletion routine.

EXTERNAL SHOW ;Define completion routine

sexternal.

CALL CLRD (TXDATA,4096,TISP,U.) ;Empty X array.

CALL CLRD(IYDATA,40%6,1I5P,U.) ;Empty Y array.

DO 10 T1=48,4047,5u ;Create horizontal line.

IXDATA (T)=1

10 TYDATA(TI)=2u4s

DO 20 T1=73,4047,50 ;Create vertical line.

IXDATA (T)=204Y

20 TYDATA(I)=I

N=loU iNo. of points to display.

IFLAG=0 ;End flag for SETK.

TIME=100. ;Refresh rate is luu clock

iticks.

CALL SETR(4,1,TIME,TIFLAG,,SHOW) iStart clock in msec,

;designate completion
;routine SHOW.

PAUSE ;Wait for keyboard entry.

CALL SETR(-1,,,) ;Stop the clock.

END

SUBROUTINE SHOW ;Completion routine.

COMMON IXDATA (40906),IYDATA (4096),N ;Data arrays from main

;orogram.

CALL FXY(IXDATA,TY¥DATA,N,48,25) ;Display arrays.

RETURN

END

2. The following example shows the use of FXY to display data arrays

on a storage scope. The data are collected from analog channel 2,

with sampling started by an external event (for example, a stimulus

pulse). You can compare the two sweeps of data visually by looking at

the scatter plot.

DIMENSTON IDATAL(.100G),IDATA2(100) ;Define the data arrays.

10 ICLCK=0 ;End flag for SETR.

TEND=0 ;End flag for RTS.

NPT=100 ;Length of data sweep.

CALL SETR(5,5,1.,LCLCK) iRequest external start

;with clock at 10UHZz.
CALL RTS (IDATALl,NPT,,,2,,1,2,TEND,IDUMMY)

;Request single sweep of

;100 points on clock

;interrupts.

CALL LWAIT(IEND,O) ;Wait for samples.

CALL SETR(-1,,,) ;Stop the clock.

TCLCK=0 iReset clock flag.

CALL SETR(5,5,1.,TCLCK) iRequest clock again.

TEND=0 iReset RTS end flag.

CALL RTS (IDATA2,NPT,,,2,,1,2.TEND,IDUMMY)

;Request 2nd sweep.

CALL LWAIT(IEND,O) ;Wait for 2nd sample.

CALL SETK(-1,,,) ;Stop the clock.

CALL ERASE ;Erase the screen.

CALL FXY(IDATAl,IDATA2,NPT,1,1) ;Display scatter plot.

PAUSE :Type character to finish.

CALL ERASE ;Clear screen.

GO TO 10 sKepeat whole program.

END

SUBROUTINE ERASE ;Routine to clear screen.

TFLAG=0 sEnd flag for SETR.

RT-11 FORTRAN EXTENSIONS

CALL IDOR(1,"170446,6,6)

CALL IDOR(1,"170446,2,0)

CALL SETR(4,0,250.,IFLAG)

CALL LWAIT(IFLAG,O0)

RETURN

END

1-38

;Turn on storage mode and

snonerase flag.

;jClear erase bit to start

jerase cycle.

;Start 250 msec interval

sto wait for settling time.
;Wait for end of interval.

RT-11 FORTRAN EXTENSIONS

HIST

1.4.9 HIST (Time Interval Sampling Technique) Routine

HIST reads the current value of the programmable clock counter on each

clock interrupt and stores the time readings 1in a data array.

Depending on the clock mode, you <can time the intervals between

successive events (modes 3 and 7) or you can determine the latencies

of a series of events relative to a single event (modes 2 and 6).

HIST is called as a subroutine.

CALL HIST (iarrayname,iarraysize,nsamples,iendflag#,nleft#)

The arguments are:

iarrayname

iarraysize

nsamples

iendflag

nleft

Error conditions:

SYNTAX ERROR

The name of the integer array in which HIST places

he time data.

The length of iarrayname. The 1arraysize value

must be greater than or equal to 1.

The number of time interval values to collect.

Normally, HIST continues sampling until all

samples requested have been read. However, you

can stop sampling before all samples have been

collected by calling HIST again with nsamples

equal to zero. (In this case, the arguments other

than nsamples should be the same as 1in the

previous call to HIST.)

The nsamples value may be greater than iarraysize,

in which case HIST treats the data array as a

circular array (see Section 1.2.6). You must

write your program to empty the array periodically

or the data will be overwritten. HIST itself does

not provide any completion-routine option, but you

can designate a completion routine in the call to

S5ETR.

The completion and error flag. You must set

iendflag to 2zero before you <call HIST. HIST

increments iendflag when all samples requested

have been collected. 1If a data overrun or other

error occurs, then HIST sets iendflag to -1.

The flag containing the number of array elements

available for data before data overrun. HIST

initializes nleft to the wvalue 1in 1iarraysize.

HIST decrements nleft after each data point is

collected. Data overrun occurs when nleft becomes

zero before all the samples have been collected.

Lf you are removing data from 1iarrayname while

HIST is running, you must increment nleft once for

each point you remove.

There are not exactly five arguments present.

1-39

RT-11 FORTRAN EXTENSIONS

ARGUMENT ERROR

The array size requested is less than 1.

The number of samples requested is less than zero.

Interactions:

HIST runs in close conjunction with SETR. You must call SETR to

set the clock in an external-event timing mode (mode 2 or 3) and

to set the clock rate. You connect the sensor for your external

events to Schmitt trigger #2 of the <clock counter. The

occurrence of an external event fires Schmitt trigger #2, causing

the time of occurrence to be recorded. TIf you want to start the

clock with an external—event pulse, connect that event to Schmitt

trigger #1 and specify one of the external-start clock modes for

external—-event timing (mode 6 or 7). _

HIST is driven by interrupts from the clock counter. Therefore,

a completion routine designated in SETR to service clock Schmitt

trigger #2 interrupts can process the data acquired by HIST. For

example, vyou can tally the data for time interval histograms.

You should specify an interrupt interval in SETR that is half of

iarraysize so that the completion routine executes when the array

is half full.

Restrictions:

HIST does not work for the ARI1l.

The maximum possible time interval that can be recorded depends

on the clock counter rate. The maximum count at any clock

counter rate is 65535. The faster the rate, the shorter the

actual 1interval; the slower the rate, the longer the actual

interval.

You cannot detect clock overflow. When the clock counter

increments from 65535 to 0 and continues to count, the clock

counter does not give you any signal.

Examples:

1. The following example collects 40 time-interval values. The clock

counter 1is running in external event timing from zero base mode (mode

3). When an event occurs on Schmitt trigger #2, HIST places the

current clock counter value in the array ITIMES and the clock counter

automatically resets to zero.

DIMENSTION ITIMES (40) ;Define data array.

TFLAG1=0 ;HIST completion flag.

TFLAG2=U ;SETR completion flag.

CALL HIST(ITIMES,40,4U,TIFLAGLl,IFULL) ;Request 40U values 1in

; ITIMES.

CALL SETR(5,3,0.,IFLAG2) ;Start clock at 1U0 Hz in

;external event from base

;0 mode.

CALL LWAIT(IFLAGLl,0) ;Wait until all the samples

thave been collected.

CALL SETR(-1,,,) ;Stop clock when done.

. ;Continue the program to

iprocess or store the data.

RT-11 FORTRAN EXTENSIONS

IADC

1.4.10 IADC (Single Analog-to-Digital Conversion) Routine

IADC acquires a single digitized value from an A/D converter. (You

can acquire multiple digitized values using the RTS routine.) The

program requests conversion, pauses within the IADC routine until the

conversion is complete, and returns the digitized value as an unsigned

integer (0 to 1023 from the ARll, or 0 to 4095 from the ADll-K or

LPS1ll).

If the A/D converter is operating in unipolar mode, a value of =zero

represents 0 volts, and a value of 4095 (or 1023 for the AR1ll)

represents the full scale voltage. 1If the A/D converter is operating

in bipolar mode, a value of =zero represents the maximum negative

voltage, and a value of 4095 (or 1023) represents the maximum positive

voltage. Zero voltage corresponds to a value of 2048 (or 512).

IADC is called either as a subroutine or as a function.

As a subroutine:

CALL IADC (ichannel, [igain],ivalue#)

As a function:

ivalue = IADC(ichannel[,igain])

The arguments are:

ichannel The logical channel number of the A/D converter.

The channel numbers are:

Value Meaning

0 through 63 Channel numbers for the LPS11l with

LPS11-E or ADl11-K with AM11-K used

in single—ended or

pseudodifferential mode.

0 through 15 Channel numbers for the LPS1l1l or

AD11-K with AM11-K with switched

gain operation.

Channel numbers for the ARll and

AD11-K,.

0,2,4,,,62 Even-numbered channels for the

AD11-K with AM11-K wused 1in true

differential mode.

0,2,4,,,14 Even—-numbered channels for the

AD11-K with AM11-K used in

differential mode with switched

gain operation.

igain

ivalue

Error conditions:

SYNTAX ERROR

There are

arguments.

ARGUMENT ERROR

RT-11 FORTRAN EXTENSIONS

The gain setting. The default value for igain |is

1. The gain used for converting the value is

returned in bits 13 and 12 of 1ivalue. The

possible values of bits 13 and 12 are 00, 01, 10,

and 11 binary (0, 1, 2, and 3 decimal). These

correspond to gain codes of 1, 2, 3, and 4

respectively, or to the actual gains of 1, 4, 16,

and 64. When you request a gain of 1, bits 13 and

12 always return as O. For all other gains, you

must use CVSWG to separate the converted value

from the gain bits.

The gain codes are:

Value Meaning

0 Request autogain. The software

determines the optimal gain to use for

the A/D conversion. Autogain is

available only with switchable gain
systems (AD11-K with AM11-K, or LPSI11

with LPSSG).

1 Request gain of 1. This value specifies

bipolar mode for the ARlL. ,

2 Request gain of 4 to multiply the input
signal by 4. This value specifies

bipolar mode for the ARI1l.

3 Request gain of 16 to multiply the input
signal by 1l6. This value specifies

unipolar mode for the ARIl.

4 Request gain of 64 to multiply the input

signal by 64. This value specifies

unipolar mode for the ARILI.

The name of a variable containing the digitized

value in bits 0 through 11 (or 0 through 9 for the
AR1l) and the gain code in bits 13 and 12. TIf you

use IADC as a subroutine, you must include the

argument ivalue to recover the data. T1f you use

IADC as a function, the argument 1ivalue Iis

redundant (because ivalue is returned as the value

of the function) and can be omitted.

no arguments, or there are more than three

The channel number is greater than 15 for the AR1l or AD1l1-K

without AMI1-K.

The channel number 1is greater than 63 for the ADl11-K with
AM11-K, or the LPS11.

The gain setting is negative or greater than 4.

RT-11 FORTRAN EXTENSIONS

DEVICE CONFLICT

Autogain was requested for the AR1ll by specifying 1igain as

Zero.

ADC CONFLICT

A/D conversion is already being done under control of RTS.

Interactions:

You cannot write a program that would attempt to call TIADC and

RTS at the same time. IADC and RTS use the same conversion

hardware, and only one of the routines can execute at one time.

When the value of igain is not 1, TADC returns a value that is a

combination of the digitized value and the gain setting. You can

unpack the digitized value in real-number form and the gain used

by calling the function CVSWG (see Section 1.4.2).

With gains other than 1, the A/D conversion system multiplies the

input signal by 4, 16, or 64. When you get the digitized value

from CVSWG, you must divide by the appropriate gain (4, 16, or

64) if you need to restore the value to the original scale.

Restrictions:

Autogain mode does not work with the AD1l-K or the LPS11 in
unipolar mode.

Autogain is not available for the AR1l.

When you specify any gain other than 1, the channel number

requested must be in the range 0 to 15.

The AD1l-K with AM11-K hardware can be set up with gains of 1, 5,

and 50 instead of 1, 4, 16, and 64. Autogain does not work in

this case. The meaning of gain codes 2, 3, and 4 depends on the

actual gain selected for each group of channels in the AM11-K.

Examples:

l. Collect a digitized reading from channel 2 with a gain of 1.

VALUE=CVSWG(IADC (2))

2. Collect a digitized value from channel 1 with autogain and convert

the value to the original scale.

VAL=CVSWG (IADC(1,0) ,IGAIN)

VAL=VAL/(2** (2* (IGAIN-1)))

RT-11 FORTRAN EXTENSIONS

IDIR

1.4.11 1IDIR (Digital Input Reading) Routine

TDIR provides four distinct capabilities, two of which are related.

The description of IDTR is presented in three sections, one for each

of the classes of capabilities. The first section describes using
IDIK to read a digital 1input register or a memory location. The

second describes using IOTIR for bit and byte manipulation. The third
describes using IDIKR to read the software clock.

Reading a Digital Input Register or a Memory Location

IDIRK reads one data word from a digital 1input register (DR11-K or

LPSDK~A) or from a memory location. 1t performs a logical AND using

the data value and a mask specified in the argument list.

IDTR is called as a function.

ivalue = IDIR([isource],iunit,imask, [itype][,iwhere#])

The arguments are:

ivalue The masked register or memory value returned by

IDIR. 1IDIR performs a logical AND using imask and

the register or memory value, and returns the

result as the value of the function.

isource The code specifying whether to read a register or

a memory value. The default value of isource is

zero.

The location codes are:

Value Meaning

zZero Read the register specified by the

logical wunit number 1in iunit. 1In the

process of reading the register, 1IDIR

clears those bits (and only those bits)

that it finds set. '

nonzero Read the memory location whose address

appears in iunit.

iunit The register number or the address of the value to

be read.

The possible values for iunit are:

Value Meaning

U through 7 Logical unit numbers for the

or digital input registers. The

0 through 8 0-through-7 values select one of

up to eight DR11-K digital 1/0

interfaces. 1t the system

imask

itype

iwhere

Error conditions:

SYNTAX ERROR

There are

specified.

RT-11 FORTRAN EXTENSIONS

Value Meaning

configuration includes an LPS1l1

with LPSDR-A, then 0 selects the

LPSDR-A and 1 through 8 select

one of up to eight DR11-K digital

1/0 interfaces. (The isource

argument must be zero.)

U,2,...,"177776 Memory address selected. The

address must be an even number.

(The 1isource argument must be

nonzero.) You can read the

control/status register (CSR) or

some other register associated

with a device. For example, vyou

can read the AAll-K or LPSVC

status bits, or vyou can read

registers for devices that are

not supported by the FORTRAN

extensions.

The wvalue wused to mask the contents of the

register or memory location. A commonly used mask

is one with all bits on. You can request all bits

on either as -1 (decimal) or as "177777.

The data format of the register or memory

location. The default value of itype is =zero.

The data types are:

Value ' Meaning

zZero Read unsigned BCD data from the register

or memory location and convert it to

binary. (The data word is masked before

it is converted to binary.)

nonzero Read binary data from the register or

memory location.

Bit position (U to 15) of the rightmost nonzero

bit in the portion of the register or memory

location that was masked with =zeros. That 1is,

IDIR performs a 1logical AND using the register

value and the complement of the mask, and scans

the result from right to left for a nonzero bit.

If no bits were set in the part masked with zeros,

then iwhere contains the value -1.

fewer than four or more than five arguments

RT-11 FORTRAN EXTENSIONS

ARGUMENT ERROR

The memory address specified in iunit is an odd number.

The register requested in iunit does not exist.

Interaction:

None

Restrictions:

None

Examples:

1. Reading a digital input register.

IREG = IDIR(0,0,"1777,1,ISPOT)

If the register contains the octal value 51324

0 101 001 011 vlo 10U

and the mask is 1777 (octal)

U 000 001 111 111 111

then the logical AND using the register and the mask 1is octal 1324.

Because binary conversion was specified by imode = 1, IDIR returns

1324 as its value.

0 0V0 001 ull Olu 10U

IDIR also examines the 1logical AND using the register and the

complement of the mask:

.not. mask 1 111 110 000 00Qu WOUL

register 0 1ul 001 011 Olu 1lov

result 0 101 00U V00 000 000

Scanning the result from right to left, IDIR finds the first nonzerc

bit in bit 12 and returns 12 as the value of ISPOT. (Remember that

the rightmost bit in the word is bit 0.)

2. Reading a memory location.

You want to obtain the contents of the status register for DR11-K unit
Zero.

MEMLOC=IDIR(-1,"167770,"177777,1)

Bit and Byte Manipulation of a Single Word

IDIR provides limited bit manipulation capability in FORTRAN. You can

swap the bytes of a single word or shift bits left or right within a

word.

IDIR is called as a function.

ivalue = IDIR(,iflag,ibefore,iop[,iresult#])

The arguments are:

ivalue The byte-swapped value or the logical value of the
last bit shifted, depending on the value of iop.

1-46

iflag

ibefore

RT-11 FORTRAN EXTENSIONS

The flag specifying the bit-manipulation

functions of IDIR. The value of ifl
negative.

The value on which bit or byte

performed.

and clock

ag must be

manipulation is

iop The manipulation operation selected.

The manipulation operations are:

Value

0

to ~16

iresult The value

Meaning

Swaps the upper and lower bytes of

ibefore, and returns the new value as

the value of 1IDIR. The byte-swapped
value 1is also returned as the value of

iresult if that argument was specified.

The value of ibefore does not change.

Shifts ibefore m places to the right

and returns the shifted value in
iresult. IDIR fills 1iresult from the
left with m zeros. The bits shifted out

are lost. The value in ibefore does not

change.

The 1logical value of the 1last bit

shifted out 1is returned in ivalue (the

value of the function IDIR). The value

returned 1is =1 or "true" if the bit was

on, and U or "false" if the bit was off.

Shifts ibefore m places to the left and

returns the shifted value 1in iresult.

IDIR fills iresult from the left with -m

Zzeros. The bits shifted out are 1lost.

The value in ibefore does not change.

The 1logical value of the last bit

shifted out 1is returned in ivalue (the
value of the function IDIR). The value

returned 1is -1 or "true" if the bit was

on, and 0 or "false" if the bit was off.

resulting from byte-swapping or
bit-shifting ibefore.

Error conditions:

SYNTAX ERROR

There are fewer

present.

Interaction:

None

Restrictions:

None

than four or more than five arguments

RT-11 FORTRAN EXTENSIONS

Example:

1. You want to find out whether or not bit 13 of digital 1input

register 2 has been set. You have previously read the whole register

value in binary with the following call:

IREG=IDIR(,2,-1,1)

You test bit 13 by shifting the register value three places to the

left so that bit 13 is the last bit shifted out. You are not

interested in the shifted register value itself, so you omit the last

argument, iresult:

IBIT=IDIR(,~1,IKEG,-3)

Reading the Software Clock

IDIR reads the current value of the software <clock and performs a

logical AND using the clock value and a mask provided in the argument

list. (See Section 1.2.2 on the software clock.)

IDIR is called as a function.

iclock = IDIR(,iflag,imask,)

or

ivalue = IDIR(,iflag,imask,,iclock#)

The arguments are:

ivalue The masked clock value returned as the value of
IDIR. The same value 1is returned in iclock if

that argument 1is included in the «call. IDIR

performs a logical AND using the software-clock

value and imask. The value of the software clock

does not change.

iflag The flag specifying the clock and bit functions of

IDIR. The value of iflag must be negative.

imask The value used to mask the software-clock value.
IDIR performs a logical AND using the

software-clock value and imask. Request a mask

with all bits on either as -1 (decimal) or as

"177777.

iclock The masked clock value. (This wvalue 1is also

returned as the value of the function.)

Error conditions:

SYNTAX ERROR

There are fewer than four or more than five arguments

present.

Interaction:

SETR is responsible for the software clock. The software clock

is running only if you have called SETR to turn on the

programmable clock counter in repeated interval mode.

RT-11 FORTRAN EXTENSIONS

Restrictions:

IDIR and IDOR can both read the software clock. This redundant
capability is necessary because there is a restriction on
subroutines called from completion routines. A FORTRAN program
and a completion routine designated in the program cannot both
call the same subroutine. The redundancy of IDIR and IDOR allows
you to read the software clock both from within the program and
from within a completion routine. For example, you could use
IDIR to read the clock within the program, and IDOR to read and
maybe reset the clock within a completion routine.

Examples:

l. Reading the software clock

IFL=0 End flag for SETR.

CALL SETR(4,1,1.,IFL) iRun the clock in repeated interval

smode at 1 msec rate.

ICLOCK=IDIR(,-1,-1,) sRead lo bits of software clock.

RT-11 FORTRAN EXTENSIONS

IDOR

1.4.12 IDOR (Digital Output Register) Routine

IDOR provides three separate output capabilities, two of which are

related. Each of these output capabilities is analogous to an input

capability of the function IDIR. The description of IDOR is presented

in two sections. The first section describes using IDOR to load a

digital output register or memory location. The second section

describes using IDOR to read and reset the software clock.

Loading a Digital Output Register or Memory Location

IDOR changes the value of a digital output register or memory

location. The new value of the register or location is determined by

the value of the arguments iselect and iset, as well as by the

original value of the register or location. The following algorithm

describes the function of the IDOR routine.

The bits set in iselect specify the bits in the register or location

to be altered. If the bit in iselect is 0, the corresponding bit

position in the register is not changed; if the bit in iselect is 1,

the corresponding bit position in the register is altered according to

the value at that bit position in iset.

The values of the bits in iset specify the action taken for the bits

specified in 1iselect. If the selected bit in 1iset 1is 0, the

corresponding register bit is cleared; 1if the selected bit in iset is

1, the corresponding register bit is set.

If all bits in iselect are 1, then all bits in the register are

altered according to the values of the corresponding bits in iset. If

all bits in iset are 0, then all bits in the register corresponding to

those set in iselect are cleared. For example, if iselect is -1 (all

bits are on) and iset is zero (all bits are off), then the entire

register is cleared.

The logical relationship among the arguments is shown in the following

equation:

ivalue = (iset.AND.iselect).OR. (.NOT.iselect.AND. (old register))

IDOK is called as a function or as a subroutine.

As a function:

ivalue = IDOR([idest],iunit,iselect,iset[,ioutput#])

As a subroutine:

CALL IDOR([idest],iunit,iselect,iset[,ioutput#])

The arguments are:

ivalue The value returned by the function IDOR. The

value of the function is the new value loaded into

the digital output register or memory location.

The new value is a combination of iselect, iset,

and the original contents of the register or

memory location.

1-50

idest

iunit

iselect

iset

ioutput

Error conditions:

SYNTAX EKROR

RT-11 FORTRAN EXTENSIONS

The destination (digital output register or memory

location) of the output value. The default value

of idest is zero.

Value Meaning

zero Load the register specified by the

logical unit number in iunit.

nonzero Write to the memory location whose

aadress appears in iunit.

The logical unit number or the address of the

location to be loaded.

Value Meaning

0 through 7 Logical unit numbers for the

or digital output registers. The

U through 8 O-through-7 values select one of

up to eight DR11-K digital I/0

interfaces. If the system

configuration includes an LPS11

with LPSDR-A, then 0 selects the

LPSDR-A, and 1 through 8 select

one of up to eight DR11-K digital

I/0 interfaces. (The idest wvalue

must be zero.)

0,2,...,"177776 Memory address selected. The

address must be an even number.

(The idest value must be

nonzero.)

The bits to be altered in the output register or

memory location. The bits that are on select the

corresponding bits 1in the register or memory

location to be altered. To select all bits, you

can use either -1 (decimal) or "1777717.

The action taken for each bit selected by iselect

for alteration. If the bit in iset is 0, the

selected bit is cleared; if the bit in iset is 1,

the selected bit is set.

The value returned by the function IDOR. The

ioutput argument contains the value loaded into

the digital output register or memory location.

The following relationship defines the value of

ioutput:

ioutput = (iset.AND.iselect).OR. (.NOT.iselect

.AND, (0ld register))

There are fewer than four or more than five arguments

present.

RT=-11 FORTRAN EXTENSIONS

ARGUMENT ERROR

The DR unit addressed does not exist.

The memory address specified was not an even number.

Interaction:

None

Restrictions:

None

Examples:

1. Clearing a register or memory location.

(a) Clearing a register. The call

CALL IDOR(,1,-1,0)

clears logical register 1. Notice that the 1ioutput argument is

omitted. Omit the ioutput argument when you have no need for the

value that was loaded into the register.

(b) Clearing a memory location. The call

IMEM=IDOR (15,"177xxx,-1,U)

clears memory location 177xxx. The variable IMEM contains the value

zero as a result of the call.

2. Loading a digital output register.

You want to set the even-numbered bits in the low-order byte of the

register, and clear the even-numbered bits in the high-order byte of

the register. The odd-numbered bits in the register remain unchanged.

Suppose the current value of the register is 177400.

CALL IDOR(,U,"52525,"377,INEWR)

Notice that idest is defaulted (indicating a register function) and

iunit 1is zero (indicating logical register 0). The value of iselect

is 52525 and iset is 377 (both octal).

"The following shows the binary values of the arguments and the action

of the call on the register value:

Name Binary Value

iselect 0 101 010 1uvl 010 1ul

iset 0 000 000 011 111 111

0ld register 1 111 111 10vu 000 vuo

new register 1 010 101 001 010 1vul

The new value loaded into the register is 125125 (octal) and is
returned as the value of INEWR.

Reading and Resetting the Software Clock

IDOR reads the current value of the software <clock and performs a

logical AND using the clock value and a mask provided in the argument

list (see Section 1.2.2 on the software clock). IDOR can change the

software clock value to a value provided in the argument list.

IDOR

As a

As a

RT-11 FORTRAN EXTENSIONS

is called as a function or as a subroutine,

function:

ivalue = IDOR(,iunit,imask,[iset] [,iclock#])

subroutine:

CALL IDOR(,iunit,imask, [iset],iclock#)

The arguments are:

ivalue The value returned by the Ffuncotion IDOR, IDOR

performs a logical AND between imask and the

current value of the software clock. After

reading the <clock value, IDOR loads the software

clock with the value in iset, if the iset argument

is specified.

iunit The flag selecting the clock funection of IDOR.

The value of iunit must be negative,

imask The value used to mask the current wvalue of the

software clock. IDOR performs a logical AND

between imask and the clock value. To reguest a

mask with all bits on, you ¢an use either -1

(decimal) or "177777.

iset The value loaded into the software clock by IDOR.

IDOR sets the clock with the value iset. If you

omit iset from the argument list, IDOR does not

change the clock value.

iclock The masked clock value. IDOR performs a logical
AND between imask and the current clock value.

Error conditions:

SYNTAX ERROR |

There are fewer than four or more than five arguments

present.

Interaction:

None

Restrictions:

IDOR and IDIR can both read the software clock. This redundant

function is necessary because there 1is a resgtriction on

subroutines called from completion routines. A FORTRAN program

and a completion routine designated in the program cannot both

call the same subroutine. The redundancy of IDOR and IDIR allows

you to read the software clock both from within the program and

from within a completion routine. For example, you ¢ould use

IDOR to read and reset the clock within a completlon routine, and

IDIR to read the clock within the program.

1-53

RT-11 FORTRAN EXTENSIONS

Examples:

1. You want to read the lo-bit software clock without changing its

value.

ICLOCK=IDOR(,-1,-1,)

2. You want to read the rightmost eight bits of the software <clock,

and reset the clock to zero.

ICLOCK=IDOR(,-1,"377,0)

RT-11 FORTRAN EXTENSIONS

KB2BCD

1.4.13 KB2BCD (Convert Binary to BCD) Routine

KBZ2BCO converts a lo-bit binary integer in the range 0 to 9999

(decimal) to 4-digit unsigned BCD form.

KB2BCD is called as a function.

1digits=KBZBCD (ibinary)

The arguments are:

idigits The 4-digit unsigned BCD representation of

iboinary.

ibinary The standard binary integer value to be converted.

The wvalue of ibinary must be in the range 0 to

Y999,

Error conditions:

SYNTAX ERROR

There 1s not exactly one argument present.

ARGUMENT ERROR

The value to be converted (ibinary) is negative or greater

than 9999,

Interaction:

You can use IDOR to output unsigned BCD values returned by

KB2BCD.

Restrictions:

None

Example:

1. The decimal value of IBIN is 4175 (or 10117 octal):

U UUl Ju0 0ul Ul 111

You want to convert IBIN to BCD form for output to a BCD instrument.

IBCD=KB28CD (IBIN)

IBCDL contains the BCD value for 4175 (shown with BCD grouping of the

bits):

0luu vuul U111l vlul

RT-11 FORTRAN EXTENSIONS

KBCD2B

1.4.14 KBCD2B (Convert BCD to Binary) Routine

KBCD2B converts a 4-digit unsigned B8CD input to lb-bit binary integer
form. The result is always positive.

KBCD2B is called as a function.

ibinary=KBCD2B (idigits)

The arguments are:

ibinary The l6-bit binary integer form of idigits.

idigits The 4-digit (le-bit) unsigned BCD input value.

Error conditions:

S5YNTAX ERROR

There is not exactly one argument present.

Interaction:

None

Restrictions:

None

Example:

1. Suppose IBCD contains the following bit pattern, which is 0969% in

BCD:

0000 1001 0110 1001

As a result of the tollowing call,

IBIN=KBCD2B (IBCD)

IBIN contains the following bit pattern, which is 969 decimal.

0 0UU 001 111 001 VUl

1.4.15 LED (LED Dis

LED displays numbers

LED without an LPS

display positions an

LED is called as a s

CALL LED(ivalue

or

CALL LED(rvalue

The arguments are:

ivalue

rvalue

format

Error conditions:

S5YNTAX ERROR

There are

ARGUMENT ERROR

The format

DEVICE CONFLICT

The system

Interaction:

LED can be used

(for example,

calibrate your

a data collecti

Restrictions:

LED requires an

RT-11 FORTRAN EXTENSIONS

LED

play) Routine

on the LED panel of the LPS11. You cannot use

11 in the system configuration. There are six LED

d a movable decimal point.

ubroutine,.

, 'format')

, 'format'")

The integer value to be displayed 1in the format

specified.

The real value to be displayed in the format

specified.

The FORTRAN format specification for the value to

be displayed. The maximum field width for integer

(I) formats 1is six; the maximum field width for

real (F) formats is seven. The maximum F format

field width is wider to allow for a decimal point.

The decimal point does not use an LED display

position as the decimal point appears between

display positions. The minus sign does use an LED

display position so that the largest negative

numbers that can be displayed have five

significant digits. The largest positive numbers

that can be displayed have six significant digits.

If the value exceeds the width of the field

specified, the display contains all minus signs.

not exactly two arguments present.

specified is not legal.

configuration does not include an LPS11.

to display data values acquired by other routines
IADC, 1IDIR). You might want to do this to

instruments or Schmitt-trigger thresholds prior to

on run.

LPS11.

RT-11 FORTRAN EXTENSIONS

Examples:

1. Display a negative integer.

NEG=-123

CALL LED(NEG,'I4')

HEEEE

CALL LED(NEG,'I3"'")

2. Display a real number.

REALV=25,94

CALL LED(REALV,'F5.2")

3. Display a single analog value from channel U of the ADC. Assume

that you want the display value to be expressed in volts and that the

ADC accepts bipolar input with a range of -5 volts to +5 wvolts. The

following example shows the transformation from the 1l2-bit value

acquired to the corresponding input voltage.

CALL LED((FLOAT(IADC(U)-2048)/2048.)*5.,'F7.4')

RT-11 FORTRAN EXTENSIONS

LWAIT

1.4.16 LWAIT (Wait) Routine

LWAIT initiates a pause in the program. Any activity already started

by the program (fcr example, repeated sampling) continues, but

execution of the program does not continue past the LWAIT statement

until the arguments differ. For example, wuse LWAIT to compare a

numeric value to a completion flag (that will be changed by an

interrupt service or completion routine).

LWAIT is called either as a subroutine or as a function.

28 a subroutine:

CALL LWAIT (ivaluel,ivalue?2)

Me a function:

ivar=LWAIT (ivaluel,ivalue?2)

The arguments are:

ivaluel The name of a variable to be compared to ivalue?2.

If you wuse LWAIT as a function call, LWAIT sets

ivar to ivaluel.

ivalue2 A variable or constant to be compared to ivaluel.

NOTE

Neither of the arguments to LWAIT 1is

changed within LWAIT, but at least one

of the arguments specified must be a

variable that changes as a result of

activity 1in an interrupt service or

completion routine.

Error conditions:

None

Interaction:

At least one of the arguments for LWAIT must be changed by an

interrupt service or completion routine. For example, an

argument for LWAIT can be a completion flag for one of the

routines SETR, RTS, HIST, or DRS.

Restrictions:

One of the arguments must eventually change if program execution

is to continue. The call

CALL LWAIT(1l,1)

would suspend program execution indefinitely.

RT-11 FORTRAN EXTENSIONS

Example:

1. You want a timed program delay of 50U msec.

IFLAG=0 ;Initialize flag.

CALL SETR(4,0,500.,IFLAG) ;Start clock in single interval

;mode for 5UU msec.

CALL LWAIT(IFLAG,U) ;jWait until clock endflag is

;honzero.

RT-11 FORTRAN EXTENSIONS

REL

1.4.17 REL (Relay Control) Routine

REL operates the two normally open relays 1in the LPS1l. (See the

LPS11l hardware manual for considerations on connecting equipment to

the relays.)

KEL is called as a subroutine.

CALL REL(irelay,isetting)

The arguments are:

irelay The relay number. The relays are numbered 1 and

2. If irelay is an odd number, REL selects relay

1; if irelay is an even number, REL selects relay

isetting The relay setting.

Value Meaning

Zero Open relay.

nonzero Close relay.

Error conditions:

SYNTAX ERROR

There are not exactly two arguments present.

ARGUMENT ERROR

The relay number is negative.

DEVICE CONFLICT

The system configuration does not include an LPS1l1.

Interaction:

None

Restrictions:

REL is meaningful only if the system includes an LPS11l.

Examples:

1. The following call closes relay number 2:

CALL REL(2,-5)

2. Read digital input register unit 1. Leave relay 1 open if the

register value 1is zero; close relay 1 if the register value is

nonzero.

CALL REL(1,IDIR(,1,-1,1))

RTS

1.4.18

RT-11 FORTRAN EXTENSIONS

RTS (Repeated Sampling) Routine

RTS mediates repeated sampling from A/D converters. The RIS routine

extends

that can

KTS 1is a

1'

2.

3.

your analog sampling capabilities beyond the single reading

be acquired using IADC.
-

flexible routine providing three basic capabilities.

Single-sweep sampling. RTS provides the capability for

acquiring 1limited bursts of analog data. You so specify the

parameters that RTS stops sampling after it £fills an array

with data. For the AD11-K and the ARll, RTS provides a fast,

restricted capability, single-sweep sampling mode called

fast-sweep mode (described later).

Continuous sampling. RTS provides the capability for

acquiring continuous streams of analog data. There are two

classes of continuous sampling: finite continuous sampling,

in which you specify the total number of samples to be

acquired, and infinite continuous sampling, in which you do

not specify the total number of samples in the RTS call. If

you request infinite continuous sampling, you must call RTS a

second time to stop the sampling process.

In both cases, you specify the parameters so that RTS fills

data arrays continuously. You either designate a completion

routine that executes periodically or arrange your program

code to empty the arrays. You structure the completion

routine or program to dispose of the data as you require (for

example, by writing it to secondary storage, or by reducing

it to means or counts). Because completion routines require

time to execute, the maximum continuous sampling rate (which

involves a completion routine) is lower than the maximum

single-sweep sampling rate (which does not involve a

completion routine).

End sampling. You can call RTS in parameter-adjustment mode

to stop infinite continuous sampling.

RTS is called with a subroutine call. The number of arguments
necessary depends on the capability you are requesting.

Single-sweep sampling:

CALL RTS (iarrayname,iarraysize,,[nsamples], [ifirst], [nchannels],

[igain], [imode] ,iendflag#,nleft)

Continuous sampling:

CALL RTS (iarrayname,iarraysize,[nsubarrays], [nsamples], [ifirst],

End

[nchannels],[igain], [imode],iendflag#,nleft#

[, [interval],complete])

sampling:

CALL RTS(,iarraysize,,,,,,imode*,iendflag,nleft)

The arguments are:

iarrayname

iarraysize

nsubarrays

nsamples

RT-11 FORTRAN EXTENSIONS

The name of the integer array in which RTS places

the analog data sampled. With continuous
sampling, RTS treats the data array as a circular
array. If you omit iarrayname, the RTS call

requests parameter-adjustment mode.

The 1length of iarrayname (in words) . This

parameter gpecifies the amount of memory reserved

for RTS to store data. For single-sweep sampling,
the wvalue of iarraysize should be calculated
according to the following relationships:

iarraysize = nsamples*nchannels

or

iarraysize = nsamples*hchannels*z (for LPS11
dual sample-and-hold)

For continuous sampling, iarraysize should be
greater than interval*nchannels*nsubarrays.

The number of logical partitions in iarrayname.
The length of each partition is equal to the
largest integer in (iarraysize/nsubarrays). For
example, with iarraysize = 1024 and nsubarrays =

10, there are 10 partitions, each 100 words 1long,

and 24 unused words at the end of iarrayname. The
default number of partitions is one.

The number of partitions must be 1less than or
equal to iarraysize. The length of each partition
must be an integer multiple of +the number of

channels to be sampled.

The number of samples per channel, The parameter

specifies the total number of times that each
analog channel is sampled. The default wvalue of

nsamples 1is iarraysize. The default can be used

only with single-sweep sampling for a
single-channel sample. The default cannot be used
with the LPS11l dual sample-and-hold.

In single-sweep sampling, the value you assign to
nsamples depends on whether vyou are collecting

data from each channel independently, or from
pairs of channels with LPS11 dual sample-and-hold.
For normal sampling, you specify

nsamples = iarraysize/nchannels

With LPS1l dual sample-and-hold, you specify

nsamples = iarraysize/(nchannels*2)

The maximum value of nsamples for DMA sampling

with the LPS11l is 409e6.

In continuous sampling, the value you assign to

nsamples depends on how you want to stop the

sampling process.

ifirst

nchannels

RT-11 FORTRAN EXTENSIONS

(a) For finite continuous sampling, you set

nsamples equal to the number of samples you want.

In this case, the value of nsamples 1is greater

than iarraysize/nchannels (because you are

requesting continuous sampling).

(b) For infinite continuous sampling, you set

nsamples equal to any negative number:

nsamples < U

RTS then samples data until the program executes a

call to RTS 1in parameter—-adjustment mode with a

negative value for imode.

For either type of continuous sampling, you must

write the program code and specify the parameters

necessary to remove data from full array

partitions. Continuous sampling is not valid for

LPS11l DMA sampling.

The first channel to be sampled. If you request

more than one channel, the channels are sampled

consecutively in ascending order so that ifirst is

the lowest numbered channel to be sampled. The

default value for ifirst is zero.

The valid channel numbers are:

Value Meaning

0 through 63 Range of channel numbers for the

LPS11 or AD11-K with AM11-K,

without switchable gain.

0 through 15 Range of channel numbers for the
LPS11 or ADll-K with AM1l1l-K, with

switchable gain.

Range of channel numbers for the

AR1ll or AD1l1-K.

0,2,...,62 Range of channel numbers for AD1l1l-K

with AM11-K with differential

input, without switchable gain.

0,2,...,14 Range of channel numbers for AD11-K

with AM11-K wused in differential

mode with switchable gain.

0,2,...,7 Range of channel numbers for LPS11

with dual sample-and-hold.

The number of consecutive channels to be sampled

in either single-ended or differential mode. The

value of nchannels must be the total number of

channels between the lowest numbered channel to be

sampled and the highest numbered channel to be

sampled (inclusive). That 1is,

nchannels = (highest numbered - lowest

numbered) + 1

1-64

igain

imode

RT-11 FORTRAN EXTENSIONS

This is the case, regardless of whether the data

from any of the intervening channels are of

interest.

For the LPS1l dual sample-and-hold, nchannels 1is
the number of consecutive pairs of channels to be

sampled.

The default value for nchannels is 1.

The gain setting. The default value for igaih is

1. The gain used for converting each value is

teturned in bits 13 and 12 of ivalue. The

possible wvalues of bits 13 and 12 are 00, 01, 10,

and 11 binary (0, 1, 2, or 3 decimal). These

correspond to gain codes of 1, 2, 3, and 4

respectively, or to the actual gains of 1, 4, 16,

and 64. When you request a gain of 1, bits 13 and

12 always return as 0. For all other gains, you

mast use CVSWG to separate the converted value

from the gain bits.

Value Meaning

0 Request autogain. The software

determines the optimal gain to use for

each A/D conversion. Autogain is

available only with switchable gain

systems (ADll1-K with AM11-K, or LPS11

with LPSS5G).

1 Request gain of 1. This value specifies

bipolar mode for the ARI1l.

2 Request gain of 4 to multiply the input

signal by 4. This wvalue specifies

bipolar mode for the ARI1l.

3 Request gain of 16 to multiply the input

" signal by 1le. This wvalue specifies

unipolar mode for the ARI1l.

4 Request gain of 64 to multiply the input

signal by 64. This wvalue specifies

unipolar mode for the ARI11.

The mode of sampling.

The stop codes that terminate sampling and

determine what happens to completion routines when

sampling stops.

The default for imode is zero.

RT-11 FORTRAN EXTENSIONS

The mode values and their meanings are:

Value Meaning

0 For the ADl11-K and the LPS1l, take one
A/D sample on each Schmitt trigger #1

interrupt.

For the ARll, take one A/D sample on

each external event.

2 Take one A/D sample on each

clock-overflow pulse.

4 For the ADl1l1l-K and the ARll, enable

fast-sweep mode (see the first

restriction in this section). Take one

A/D sample on each Schmitt trigger #1

interrupt (for the AD11-K) or on each

external event (for the AR1ll).

For the LPS11, enable dual

sample-and-hold. Take one simultaneous
pair of A/D samples on each Schmitt
trigger #1 interrupt.

6 For the ADl1ll-K and the ARll, enable
fast-sweep mode (see the first

restriction in this section). Take one

A/D sample on each clock overflow pulse.

For the LPS11, enable dual

sample-~and-hold. Take one pair of A/D

samples on each clock overflow pulse.

8 Enable DMA. DMA is valid only for the

LPS11l with single-channel single-sweep

sampling.

9 Enable DMA in burst mode. In burst

mode, data are acquired as fast as they

can be converted. That is, one

conversion starts as soon as the

previous one is completed. Burst mode

is valid only for the LPS1l with

single-channel single-sweep sampling.

For the LPS11l, dual sample-and-hold, DMA, and

clock-overflow sampling can be requested singly
(by using the code in the table) or in combination
by adding the codes for the desired options to

form the value of imode. For example, to initiate

clock-overflow (mode 2), dual sample-and-hold

(mode 4) sampling for the LPS1ll, specify imode = 2

+ 4 = 6.

iendflag

nlett

interval

RT-11 FORTRAN EXTENSIONS

The stop codes and their meanings are:

Value Meaning

-4 Continue sampling only to fill the

current array partition., Do not queue

any more completion-routine requests,

but allow those requests already queued

to run.

-3 Continue sampling only to fill the

current array partition. Do not honor

any queued completion-routine requests.

-2 Stop sampling initiated by RTS. Do not

queue any more completion-routine

requests, but allow those requests

already queued to run.

-1 Stop sampling initiated by RTS. Do not

honor any queued completion-routine

regquests.

The completion and/or error flag. You must set

iendflag to zero before you call RTS. RTS

increments iendflag either when all samples

requested have been acquired or when sampling has

been stopped by a stop code (negative value for

imode). If a data overrun or other error occurs,

RTS sets iendflag to a negative value.

The array partition flag. RTS initializes nleft

with the number of array partitions. RTS

decrements nleft by 1 each time an array partition

becomes full. Thus nleft contains the number of

partitions currently available to RTS. If you are

using a completion routine to remove data from

full array partitions, you should increment nleft

each time a partition becomes available. If nleft

reaches zero before the number of samples

requested in nsamples has been acquired, a data

overrun has occurred and RTS then sets iendflag to

indicate an error.

Note: nleft is meaningful only with continuous

sampling.

The number of interrupts between calls to the

completion routine. You specify the number of

interrupts, external events, or clock overflow

pulses that should occur before the completion

routine is executed. RTS initializes an internal

variable to interval and decrements it after each

interrupt. When the wvalue reaches zero, RTS

reinitializes the internal variable, and the

completion routine executes. Therefore, the

completion routine executes every interval

interrupts or events.

RT-11 FORTRAN EXTENSIONS

The default value for interval is
iarraysize/nsubarrays. If only one data point is

collected on each interrupt, the default ensures
that the completion routine executes when each

array partition becomes full. With dual

sample-and-hold or more than one channel, you must

calculate interval if you want the completion
routine called as each array partition becomes
full.

interval = iarraysize/(nsubarrays*nchannels)

or

interval = iarraysize/(nsubarrays*nchannels*2)

for LPS11 dual sample-and-hold.

complete Completion-routine name. You write a completion
routine that executes whenever interval interrupts

have occurred. There is no default

completion-routine name. When you omit the last
two arguments, RTS does not designate a completion

routine.

Error conditions:

SYNTAX ERROR

There are fewer than 10 or more than 12 arguments present.

ARGUMENT ERROR

The starting channel number (ifirst) is too large.

The number of channels requested (nchannels) is negative, or

too large (greater than 16 or greater than 64, depending on
the hardware).

Autogain was requested for the ARIl.

The gain code (igain) is greater than 4.

The mode (imode) requested is out of range (less than -4 or

greater than 15).

The sum of ifirst and nchannels requests sampling from a

nonexistent channel with channel number greater than 63 (or
15).

The size of the array partition is not an even multiple of

the number of channels to be sampled (nchannels).

Autogain was requested with DMA.

Continuous sampling with stop code termination was specified
for DMA.

Data acquired with DMA exceeds the available space

(iarraysize).

DEVICE CONFLICT

An RTS call attempted to initiate sampling while sampling

from a previous call to RTS was still in progress.

Interactions:

RTS can request an A/D conversion on each clock-overflow pulse.

It does not require clock interrupts. You can run the clock

without interrupts by requesting noninterrupt mode in SETR. RTS

runs faster without clock interrupts because you save the time

normally used to process the clock interrupts. RTS runs even

faster when SETR noninterrupt mode 1is combined with the

fast-sweep mode described in the first restriction in this

section.

RT-11 FORTRAN EXTENSIONS

You cannot write a program that would attempt to call IADC and

RTS at the same time. Both IADC and RTS use the same conversion

hardware and only one of the routines can execute at a time.

When the value of igain is not 1, RTS returns a packed value

containing the digitized wvalue and the gain setting. You can

unpack the digitized value in real-number form, and the gain in

integer form by using CVSWG (see Section 1.4.2).

With gains other than 1, the A/D conversion system multiplies the

input signal by 4, 16, or 64. When you get the digitized value

in real-number form from CVSWG, vyou must divide it by the

appropriate gain (4, 16, or 64) if you need to restore the value

to the original scale.

Restrictions:

Fast-sweep mode is a mode available only with the AD11-K or ARIll.

With fast-sweep mode, you <can acquire analog data at a rate

several times faster than normally possible with RTS. There are

several restrictions on using fast-sweep mode. You can request

fast-sweep mode only for single-sweep sampling for a

single-channel sample with the <c¢lock running in noninterrupt

mode. There can be no array partitions, no completion routines,

and no autogain.

Data overrun occurs when RTS fills the array partitions faster

than the completion routine can empty them. This situation

occurs when the clock rate is too fast for the size of the array

partitions.

When the AD1l1-K, with or without AM11-K, is used in differential

mode, the data in odd numbered channels duplicate those in even

numbered channels, and can be ignored.

DMA sampling is available only in single-sweep mode for

single—-channel sampling. Continuous sampling is not wvalid for

DMA sampling. Call RTS once for each DMA sweep required. The

maximum number of data points that can be accepted in one DMA

operation is 4K words. The maximum value for iarraysize with DMA

is 4096.

The AD11-K with AM11-K hardware can be set up with gains of 1, 5,

and 50 instead of 1, 4, 16, and 64. Autogain does not work in

this case. The meaning of gain codes 2, 3, and 4 depends on the

actual gain selected for each group of channels in the AM11-K.

Autogain does not work with an AD11-K or LPS1ll in unipolar mode.

Autogain is not available at all for the AR11.

Examples:

l. You want to collect a single sweep of 200 samples from four

channels, starting with channel 0. Because it 1is single-sweep

sampling, you omit nsubarrays, interval, and a completion routine

name. You wuse the default values for ifirst (0), igain (1), imode

(0). The nleft argument (IDUM) is not used by single-sweep sampling,

but must be included to satisfy the syntax.

RT-11 FORTRAN EXTENSIONS

DIMENSION IDATA (4,50) :Set up the data array.

IFLG=0 ;Initialize RTS flag.

CALL RTS (IDATA,200,,50,,4,,,IFLG,IDUM) :Call RTS.

CALL LWAIT(IFLG,0) sWait until all samples

;read.

(Notice that the data array could have been dimensioned as IDATA (200).

FORTRAN stores the data the same way regardless of how you specify the
dimensions. Using IDATA (4,50) can be more convenient for later data

access, because the value of the first subscript specifies the channel

number and the value of the second subscript specifies the sequence

number of the sample.)

2. You want to request continuous sampling of 1300 samples using a
400-word data array with four lU0-word partitions. You sample channel

1 100 times per second on clock overflow, with a gain of 3. This

example processes the array partitions without using a completion

routine. As soon as a partition is full, the program sums the data in

that partition, and frees the partition by incrementing the partition

count (NLEFT).

DIMENSION IDATA(100,4),SUM(13) ;Set up arrays.

DO 5 I=1,13

5 SUM(I) = 0 :Initialize SUM array.

N=0 ;Index for SUM array.

IPART=0 :Index for IDATA array.

IRFLG=0 ;RTS endflag.

ISFLG=0 ;SETR endflag.

CALL RTS (IDATA,400,4,1300,1,1,3,2,IRFLG,NLEFT)
;Request continuous sampling.

CALL SETR(5,1,1.,ISFLG) ;Start clock at 100Hz.

10 IF (NLEFT.EQ.4) GO TO 10 ;Wait for first partition to

;Eill.

IPART=IPART+1 ;No. of partitions (mod 4).
N=N+1 ;Increment index for SUM array.

DO 20 I=1,100

20 SUM (N) =SUM (N) +CVSWG (IDATA (I,IPART))/16.
:Sum the data in the

;just-filled partition.

IF (IPART.LT.4) GO TO 30 :Check to see if end of IDATA.

IPART=0 ;Start indexing from start

;of array next time.

30 NLEFT=NLEFT+1 ;Increment the available
;partition count.

IF (IRFLG.GE.(0) GO TO 40 ;Skip if not an error.

STOP 'RTS ERROR' :Error if IRFLGKO.

40 IF (IRFLG.EQ.0) GO TO 10 ;If still sampling, jump.

CALL SETR(-1,,.,) ;Finished, stop clock.

TYPE 41,SUM ;Output the data.

41 FORMAT (F12.2)

STOP 'DONE'

END

(Notice that you could specify the data array as IDATA (400). However,

your subscript calculation would then be more complicated. FORTRAN

stores its arrays "by columns," so that it puts the first 100 samples
into IDATA(1,1) through IDATA(100,1), the second 100 samples into

IDATA(1,2) through IDATA(100,2), and so on. Therefore, the value of

the first subscript specifies the sequence number within the

partition, and the value of the second subscript specifies the

partition number.)

RT-11 FORTRAN EXTENSIONS

SDIS

1.4.19 SDIS (Stop Display) Routine

SDIS stops a continuous display that is being controlled by either DIS

or DXY,

SDIS is called as a subroutine.

CALL SDIS

There are no arguments.

Error conditions:

None

Interaction:

While the continuous-display routines (DIS, DXY) are running, the

only other activities for which resources are guaranteed are

interrupt service routines and completion routines. Therefore,

the most practical way to stop a continuous display is by calling

SDIS from within a completion routine. For example, you might

use SETR to designate a completion routine that would be executed

after a specific time interval, or on receipt of an external

event.

Restrictions:

None

Examples:

l. The following example is part of the example given in full in the

description of DIS. The completion routine HOLDIT contains the call

to SDIS. The completion routine is specified in the call to SETR.

EXTERNAL HOLDIT ;Specify the completion

;routine.

IFLG=0 ;End flag for SETR.

CALL SETR(5,0,1000.,IFLG, ,HOLDIT) ;Start the clock.

CALL DIS (ISCREEN,ISPACE,NPTS,48,20) ;Start the display.

PAUSE

SUBROUTINE HOLDIT ;Completion routine.

CALL SDIS ;Stop the display.

RETURN

END

RT-11 FORTRAN EXTENSIONS

SETR

1.4.20 SETR (Set Rate of the Programmable Clock) Routine

SETR provides several options for controlling time intervals and
counting events. The hardware clock counter can be used to generate
interrupts to the processor at specified intervals or in response to
external events, to measure time intervals, or to count events.

The KWll-K and LPS clock counter run at any of five crystal-controlled
frequencies (100 Hz to 1 MHz), at 1line frequency, or at an external
frequency supplied through a Schmitt trigger. The AR1ll clock counter
runs at any of five crystal-controlled frequencies, or at a frequency
supplied through an external input line.

The KW1ll-K and LPS clock counter operate in any of four programmable
modes: single interval, repeated interval, external event timing, or
external event timing from zero base. The AR1ll clock counter has two
programmable modes: single interval, and repeated interval. The
clock modes are described later in this section.

SETR allows you to specify the clock mode, the clock rate (or type of
synchronization), the length of the interval or number of counts, the
completion routine to be called, and the conditions under which it is
called. Call SETR to start or to stop the clock. :

SETR is called as a subroutine.

CALL SETR(irate,imode,rcount,iendflag#([, [intervall,complete])

The arguments are:

irate The rate for the oscillator that controls the
clock counter frequency.

The stop codes that disable the clock and
determine what happens to completion routines when
the clock is disabled.

Table of rate codes:

Value Meaning

0 Stop the clock (without disabling it).

No rate selected.

1 Set clock frequency to 1 MHz.

2 Set clock frequency to 100 KHz.

3 Set clock frequency to 10 KHz.

4 Set clock frequency to 1 KHz.

5 Set clock frequency to 100 Hz.

imode

RT-11 FORTRAN EXTENSIONS

Value Meaning

6 Use Schmitt trigger #1 (the external

input line for the ARll) as the input

for an external frequency source.

7 Set clock freguency to line frequency

(50 Hz or 60U Hz). (Not valid for the

The stop codes are:

Value Meaning

-2 Disable the clock., Do not gqueue any

more completion~routine requests, but

allow those requests already queued to

run.

-1 Disable the clock. Do not honor any

queued completion-routine requests.

The imode argument selects the mode of clock

operation.

The external event and external start modes (modes

2 through 7, 12, and 13) are not valid for the

ARL1l.

The codes for clock modes are:

Value Meaning

0 Single-interval mode. The clock counter

counts rcount times, generates an

interrupt, and then stops. You need not

issue a stop code hecause the clock

turns off automatically.

For the ARll, mode 0 can be used only

with rates 1 through 5.

1 Repeated—-interval mode. The clock

counter counts rcount times, overflows

(generating an interrupt), and then

begins again to count rcount times. RTS

and DRS require overflow events to

synchronize sampling.

2 External—-event timing mode. The initial

value of the <c¢lock counter is rcount

(which you must set to zero). The clock

counter runs at the rate specified by

irate, A pulse from Schmitt trigger #2

causes the current clock counter value

to be transferred to a clock register.

(You <can read the register value into a

data array using HIST.) The clock

counter continues to count,

RT-11 FORTRAN EXTENSIONS

Value Meaning

3 External-event timing mode from 2zero

base (similar to mode 2). The initial

value of the <c¢lock counter is rcount

(which you must set to zero). The clock

counter runs at the rate specified by

irate. A pulse from Schmitt trigger #2

causes the current clock counter value

to be transferred to a clock register.

(You can read the clock register value

into a data array using HIST.) The

clock counter is cleared to zero and the

clock continues to count.

External start modes.

When you add 4 to modes 0 through 3 above, you

obtain a mode value that specifies an external

start pulse for the clock. 1In modes 4 through 7,

the clock counter starts counting on receipt of a

pulse from Schmitt trigger #1, rather than

starting as soon as the routine SETR is executed.

Extirnal start modes are not available with the

AR1ll.

The codes for external start clock modes are:

Value Meaning

4 Single-interval mode with external

start.

5 Repeated-interval mode with external

start.

6 External-event timing mode with external
start.

7 External-event timing mode from =zero

base with external start.

Noninterrupt modes.

When you add 8 to modes 0, 1, 4, and 5 above, you

obtain a mode value that specifies running the

clock counter so that clock overflow generates a

clock overflow pulse but does not generate an

interrupt. The RTS routine does not require the

clock-overflow interrupt, but only the

clock-overflow pulse. RTS runs faster with the

clock interrupts turned off because you save the

time normally required to process the interrupts.

The clock-overflow interrupts are disabled when

the clock mode is 8, 9, 12, or 13.

HIST and DRS, which require clock interrupts, do

not work with noninterrupt mode. 1In noninterrupt

mode, SETR does not run the software clock.

rcount

iendflag

interval

RT-11 FORTRAN EXTENSIONS

The codes for noninterrupt mode are:

Value Meaning

8 Single-interval noninterrupt mode.

9 Repeated—-interval noninterrupt mode.

12 Single-interval noninterrupt mode with

external start.

13 Repeated—-interval noninterrupt mode with

external start.

Limited mode.

When you add 8 to modes 9 and 13 above, you obtain

a limited service clock mode. In limited mode,

the only function SETR performs is to increment

the software clock. TIf the software clock is the

only timing function you require, wuse limited

mode.

None of the other services requiring SETR

interrupts (HISsT, DRS, and SETR completion

routines) is available in limited mode.

The codes for limited mode are:

Value Meaning

17 Repeated-interval limited mode.

21 Repeated-interval 1limited mode with

external start. (External start modes

are not available for the AR1l1l.)

Initial count value. The c¢lock counter counts

rcount times at the frequency specified by irate,

and then overflows and generates an interrupt.

Therefore, the clock generates an interrupt every

rcount counts, resulting 1in an interrupt rate

equal to irate/rcount. The value of rcount must

vte a real number. For the KWll-K or the LPS11,

the maximum value for rcount is 65535 (decimal);

for the ARll, the maximum value for rcount is 255

(decimal). With the external event timing modes,

rcount must be zero.

The completion flag for single interval mode.

SETR 1increments iendflag only when the clock

counter overflows 1n mode O. You nust set

iendflag to zero before you call SETR.

The number of interrupts between calls to the

completion routine. With this argument, vyou

specify the number of clock overflow interrupts or

the number of Schmitt trigger pulses elapsing

before the completion routine executes. SETR has

an 1internal variable initialized to interval that

it decrements after each c¢lock interrupt or

Schmitt trigger #2 pulse. When the value reaches

1-75

RT-11 FORTRAN EXTENSIONS

zero, SETR calls the completion routine. The

completion routine thus executes after every

interval interrupts. The default value of

interval is 1.

complete Completion-routine name. The completion routine

that you provide 1is executed whenever interval

interrupts have occurred. There 1s no default

completion-routine name. When you omit the last

two arguments, SETR does not <call a completion

routine.

Since the completion routine is called £from the

clock interrupt service routine, you cannot

request a completion routine when the clock is

running in noninterrupt mode.

Error conditions:

SYNTAX ERROR

There are fewer than four or more than six arguments

present.

ARGUMENT ERROR

The rate requested is less than -4 or greater than 7.

The mode requested is not one of the valid modes described

above.

The count value requested for the ARll is greater than 255.

DEVICE CONFLICT

Consecutive calls to SETR with rate parameter 1 through 7.

This error does not occur for consecutive calls with

variants of single-interval mode (modes 0, 4, and 8). The

remedy is to insert (between the other calls) a call to SETR

using a negative rate.

CLOCK ERROR--RATE TOO FAST

Clock overrun occurred, meaning that a clock interrupt has

been 1lost and program execution stops. The remedy is to

request a lower clock rate, or, 1if practical, ¢to run in

noninterrupt mode.

Interactions:

Use SETR to get the clock going in the desired mode at the

desired rate. You can then wuse RTS, DRS, or HIST to acquire

analog, digital, or time interval data (respectively).

SETR controls the operation of the 16-bit software clock (see

Section 1.2.2).

DRS and HIST require clock-overflow interrupts. Therefore those

routines do not operate properly if the clock is running in

noninterrupt mode.

Restrictions:

You can use the following call to stop the clock (except in modes

0 and 4 in which it stops automatically). In this case, you do

not need to specify names or values for the second through the

fourth arguments.

CALL SETR(-1,,,)

RT-11 FORTRAN EXTENSIONS

Examples:

1. CALL SETR(6,0,2.0,IFLAG,,NAME) $ Requests completion routine
tNAME after Schmitt trigger

;#1 has fired twice.

RT-11 FORTRAN EXTENSIONS

1.5 BUILDING A REAL-TIME SUPPORT LIBRARY

When your system is delivered, you receive the FORTRAN extensions

real-time support routines in object module form, and a configuration

routine in MACRO source form. (Appendix B lists the names and

contents of these files.) Before you can use the real-time support

routines, you must combine the object modules you received into a

library. Before you create the library, you must be sure either that

your system configuration matches that specified in the configuration

routine, or that you have changed the configuration routine so that it

describes your system.

1.5.1 8System Configuration

The real-time support library assumes that you have a standard system

unless you inform it otherwise by changing the necessary source

statements in CONFIG.MAC. The source program CONFIG.MAC is a MACRO

program containing a complete hardware description of a "standard"

system.

1.5.1.1 A Standard System - To find out what a standard system

contains, list the source file CONFIG.MAC. The first few pages of the

listing contain the confiquration set-up block, with Section A

containing the hardware definition, and Section B containing the

interrupt vector and status register addresses. Each statement

defines some aspect of the system. For example,

SAD11K=0

is the statement defining the absence of an ADl11-K A/D converter and

KWll-K programmable clock counter in the system.

1.5.1.2 Changing Configuration Specifications - Each statement in
CONFIG.MAC is accompanied by comments that explain the statement, and
the changes to make 1if your system differs from the standard system.
Read through the explanation, and, using the text editor on your

system, make whatever changes are required to CONFIG.MAC so that it
describes your system. For example, if you have the AD1l-K and KWll-K

on your system, change the definition statement to

SAD11K=1

Any changes you make will probably be to the hardware definition

Sstatements. The interrupt vector and status register addresses are

factory-set standard addresses. Do not change any of these address
statements in CONFIG.MAC unless vyou have made the corresponding
hardware changes.

RT-11 FORTRAN EXTENSIONS

1.5.1.3 Assembling the Revised Configuration - The changes you make

to CONFIG.MAC are «changes to a source file. To incorporate the

changes into the system, you must assemble the revised source file

using the MACRO assembler. Your dialogue with the computer has the

following sequence (where your input has been underlined):

.MACRO/LIST CONFIG

ERRORS DETECTED: U

1.5.2 The Real-Time Support Library

Before you can use the real-time support subroutines, you must create

the real-time subroutine library. Create the library file using the

librarian system utility LIBR. (Refer to the RT-11 System User's

Guide for more information on the librarian.)

1.5.2.1 Generating the Library - Use the LIBR program to generate

the library of real-time subroutines.

.LIBR/CREATE

Library? 1libnam

Files ? LDPOBJ

.

If you have the standard system configuration, you <can now use the

library that you created (libnam). :

If you have a nonstandard system configuration and have made the

necessary changes in CONFIG.MAC, you must perform one further step to

generate the library. Still wusing the LIBR program, revise the

library, libnam, to include the changes in CONFIG.

.LIBR

Library? 1libnam

Files ? CONFIG/REPLACE

1.5.2.2 Accessing the Library - Write your FORTRAN programs using

the real-time subroutine and function calls described in this chapter.

Compile the programs in the normal manner. (Refer to the RT-11 System

User's Guide for information on the FORTRAN compiler and its optional

switches.)

When you link the programs, include the name of your real-time library

in the list of commands for the linker:

.LINK progrm,libnam

(1f you have one system library SYSLIB), or

.LINK progrm,libnam/F

(1f FORLIB and SYSLIB are separate libraries).

RT-11 FORTRAN EXTENSIONS

1.6 ERROR MESSAGES

The FORTRAN extensions routines produce five error messages. These

messages are SYNTAX ERROR, ARGUMENT ERROR, DEVICE CONFLICT, ADC

CONFLICT, and CLOCK ERROR. Each error message appears with a line

number, 1indicating the line where the error occurred. You must refer

to your listing to determine which routine caused the error, and then

refer to the error summary table (Appendix C) to determine the

possible causes of the error.

The error summary table uses the following abbreviations for the error

conditions:

Abbreviation Error Condition

SYN SYNTAX ERROR

The call to the subroutine or function

contains an invalid number of arguments.

ARG ARGUMENT ERROR

At least one of the arguments in the call to

the routine has an illegal value. The error

message does not indicate which argument 1is

in error.

DEV DEVICE CONFLICT

This error arises when one of the routines

tries to use a device that is busy. This can

happen under the foreground/background

monitor if another job is using the device.

It can also occur when you call a routine for

which completion-routine requests are still

queued as a result of a previous call to the

routine.

ADC ADC CONFLICT

Device conflict error for the A/D converter:

the A/D converter is busy.

CLK CLOCK ERROR--RATE TOO FAST

The clock interrupts are occurring too fast

to be processed.

Error-causing conditions are described in the reference section for

each routine. A summary table of error conditions for all routines

appears as Appendix C.

CHAPTER 2

FORTRAN DEBUGGING TECHNIQUE (FDT)

2.1 1INTRODUCTION

The FORTRAN Debugging Technique (FDT) is a sophisticated interactive

debugging tool for FORTRAN IV programs. FDT gives you step-by-step

control of the execution of your program and the ability to examine

and change the contents of any variable in your program during program

execution.

FDT runs on any PDP-11 with FORTRAN IV under the RT-1l1 or RSTS/E

operating system. FDT requlres approximately 2K words of memory space

during a debugging session.

To use FDT successfully, you need to know the FORTRAN IV programming

language. You do not need to know details of internal data formats,

machine operation, or the FORTRAN compilation process.

2.2 USING FDT

If you have a program that does not work, follow these steps to begin

an FDT debugging session:

l. Compile your FORTRAN program. You must use the FORTRAN

compiler option that produces threaded code; FDT does not

work with inline code. Do not use the compiler option that

suppresses internal statement numbers because FDT needs them.

Obtain a source program listing and a storage map listing.

You do not need the generated code listing.

2. Link your program units. 1Include FDT among the input files

to be 1linked. If you are using overlays, place FDT in the

root segment of your program. Generate a linker map if vyour

program has named common blocks or assembly language

subroutines that you might need to examine.

3. Run your FORTRAN program. FDT takes control and executes an

automatic FDT pause before the first executable statement of

the program. The following message appears on the terminal:

FDT V02-01

FDT PAUSE AT ISN xx IN mainprog
1

The variable components of the message are:

XX The internal statement number of the first

executable statement in the FORTRAN program.

2-1

FORTRAN DEBUGGING TECHNIQUE (FDT)

mainprog The main program being debugged. FDT refers to

the main program with the name assigned to it in

the FORTRAN PROGRAM statement. If you do not use

the PROGRAM statement to name the program, FDT

uses the default main program name, .MAIN.

The prompt FDT issues to indicate it is ready to

accept a command.

NOTE

If you do not follow the instructions,

FDT may not be able to get control, and

the FORTRAN program will then run

without FDT. Sometimes FDT gets only

partial control (as happens when the

main program is compiled without

internal statement numbers) and cannot

continue. In this case, FDT issues the

message FDT START FAIL, and exits to the

monitor.

4. Begin debugging your program. Type in the FDT commands that
you have decided to use to start solving your problem. At
this point, you must type in at least one command that causes

an FDT pause, or else the program runs to completion without

allowing you to enter any FDT commands. If you want to

execute your program without FDT intervention, type CONTINUE

or START.

2.3 FDT COMMAND TYPES

There are three classes of FDT commands:

® Program control commands

e Information transfer commands

e FDT control commands

Program Control Commands

Program control commands allow you to control the execution of your

FORTRAN program. You <can use the program control commands to halt

program execution, to continue with the next executable statement or

restart from the beginning, to step through the program one or more

statements at a time, or to end a debugging session and exit to the
operating system monitor. The program control commands are START,

STOP, CONTINUE, STEP, PAUSE, RESET, and WATCH.

Information Transfer Commands

Information transfer commands allow you to examine the contents of any

variable or array element in your program and to modify its value. As
part of the command, you can define the data type of the variable, so

FORTRAN DEBUGGING TECHNIQUE (FDT)

that the contents of the variable appear 1in familiar notation (see

Section 2.4.3 on mode codes and Section 2.4.2 on location

specification). The information transfer commands are NAME,

DIMENSION, TYPE, ACCEPT, and ERASE.

FDT Control Commands

FDT control commands allow you to control the operation of sequences

of FDT commands. Using these commands, you can define and execute

macros composed of FDT commands, and can branch, conditionally or

unconditionally, to another FDT command. The FDT control commands are

GOTO, IF, MACRO, and WHAT.

2.4 FDT CONVENTIONS AND TERMINOLOGY

Syntax Conventions

The general form of an FDT command is the command name followed by its

parameters. A simple example is

STEP 3

where STEP is the command name and 3 is the parameter. You can enter

a command whenever FDT has issued its exclamation-point prompt.

The syntax conventions for entering FDT commands appear 1in the

following paragraphs:

® Spaces between the prompt and the command are optional. You

can place the command directly after the prompt, or you can

separate the command from the prompt by any number of spaces.

The following forms are correct:

tcommand

! command

@ FDT recognizes only the first three letters of any command.

You can abbreviate any FDT command name to its first three

letters. There cannot be any blanks between the 1letters in

the command name.

The following examples are correct:

!START

ISTA

ISTAT FDT interprets this command as STA.

The following examples are incorrect:

I1ST A There is an embedded space in the command.

1CO The abbreviation is too short.

® Spaces are regquired between a command name and its

parameter (s). Some FDT commands can accept parameters. You

must leave at least one space between the command name and the

parameter.

FORTRAN DEBUGGING TECHNIQUE (FDT)

The following examples are correct:

!MACRO 1

|PAUSE .MAIN.,20 MACRO 2 AFTER 10

The following example is incorrect:

IMACRO1

@ There are two formats for a series of FDT commands. You can

enter the commands as a list with one command on each line, or
you can enter several commands on a line, separating the
commands with semicolons.

The following example shows two commands on a line:

!MACRO 1; TYPE I,J

e The maximum command length is one line. There is no
continuation character to permit a command longer than one
line. MACRO definitions (but not the MACRO command) can

continue onto more than one line (see Section 2.5.7).

If you type a command that is incorrectly spelled or incorrectly

spaced, FDT prints the error message ?UNDEFINED and prompts for a new

command.

2.4.1 Current Procedure

An important concept in using FDT is the "current procedure." As its
name implies, the current procedure is the procedure (main program,
subroutine, or function) beingsexecuted at a given time. FDT defines
the current procedure as the procedure being executed when an FDT

pause occurs (see Section 2.4.4). You need to know what the current
procedure 1is when vyou are defining locations for FDT (see Sections
2.4.2, 2,4.3, and 2.7.2).

2.4.2 The Leccation Specification

The FDT information transfer commands require you to specify the

location of a variable or array element in the FORTRAN program. The

location specification consists of two parts, the location itself, and

the data type for the location.

There are several ways to specify a location. For a variable, you can

use an offset location, a named location, or a relative location. For

an array element, you use a subscripted name location.

Offset Location

The most direct way of specifying a variable's location is to give its

offset. The offset 1is the difference between the address of the
variable and the base location of the current procedure's data block.
The offset for any variable appears in the storage map produced by the

FORTRAN compiler.

FORTRAN DEBUGGING TECHNIQUE (FDT)

You specify the offset of a location by typing an octal number:

nnn

where nnn is the offset of the variable as shown on the FORTRAN
storage map. (The offsets in the storage map are expressed in octal
bytes.) You need not enter leading zeros.

The following is a fragment from a FORTRAN IV storage map:

FORTRAN 1V Storage Map for Program Unit .MAIN.

Local Variables, .PSECT $DATA, Size = 000322 (105. words)

Name Type Offset Name Type Offset Name Type Offset
DAY I*2 000306 I I*2 000314 I4 I*2 000312
J I*2 000316 MONTH 1I%*2 000304 YEAR I*2 000310

The offset of the variable DAY is 306; the offset of the variable
YEAR is 310.

You can specify the offset of a location only for unsubscripted
variables in the current procedure. You cannot use a location offset
specification for subscripted array elements, variables in common, or
variables in a FORTRAN routine that is not the current procedure. The
two exceptions to this rule are for variables in blank common and
variables in the main program. (Section 2.7.1 describes special
techniques for specifying the offsets of variables in named common.)

1. Variable Offsets in Blank Common

To specify an offset location for a variable in blank common,
type:

.BCOM. +nnn

where nnn is the offset of the wvariable (as shown in the
FORTRAN storage map).

2. Variable Offsets in the Main Program

Any variable in the main program can be referenced at any
time by typing:

mainprog+nnn

where mainprog is the name of the main program and nnn is the
offset of the variable.

Named Location

You can specify the location of a variable by using a name that vyou
have associated with the location. You use the NAME command in FDT to
define a name and associate it with a location (see Section 2.5.8).
Once you have defined a name, you can use it in any location
specification. The name is valid in any procedure.

Relative Locations

You can specify the location of a variable relative to a previously
named variable. To specify a location relative to a previously
defined name, you enter the name and the displacement of the variable
from the named location. This practice 1is useful primarily for
referencing sequences of variables in consecutive locations.

2-5

FORTRAN DEBUGGING TECHNIQUE (FDT)

The format of the specification is:

name-+nnn

The components of the specification are:

name The named location previously defined in a NAME command.

nnn The displacement in octal between the location to be

specified and the location associated with the name. (The

displacement is the difference between the address of the

variable and the address of the named location.)

Subscripted Name Locations

You can specify the location of an array element by using a

subscripted name. The FDT DIMENSION command allows you to define a

subscripted name and associate it with the location of a FORTRAN

array. Once you have defined a subscripted name and associated it

with an array, you can specify the location of any element within the

array with the subscripted name and the appropriate subscripts in

parentheses. For example:

ARRAY (3,7)

There are two ways to specify the subscript of an array element:

e Use an integer constant.

e Use a name defined in a previous NAME command. If you use a

name as a subscript, FDT assumes that the variable associated

with the name has an integer value.

There are certain conventions you must follow for using a subscripted

name location:

e Each subscript value must be within the range defined for that

dimension. If the subscript value is outside this range, FDT

prints the following warning message:

$SUBSCR OUT OF BOUNDS

Since the message is only a warning, FDT references the

location using the subscripts specified.

e The number of subscripts you specify 1in a subscripted name

must be less than or equal to the number of dimensions in the

DIMENSION command that defined the name. If the number of

subscripts is equal to the number of dimensions, FDT uses the

FORTRAN subscript reference algorithm to locate the array

element. If the number of subscripts is less than the number

of dimensions, FDT assumes that the missing subscripts have a

value of 1. For example, if ARRAY 1is defined as a

three-dimensional array, ARRAY (3) is equivalent to

ARRAY (3,1,1).

e A subscripted name retains its association with a location

regardless of whether that 1location is 1in the current

procedure. The name loses its association with the location

only when you redefine the name with another NAME or DIMENSION

command or when you cancel the name with an ERASE command.

FORTRAN DEBUGGING TECHNIQUE (FDT)

2.4.3 Mode Codes

The second major component of a location specification is the

type or mode for the location.

To specify a mode for a location, type:

loc [/mode]

The components of the location specification are:

loc The location (see Section 2.4.2).

mode The FDT mode code for the location. The FDT modes

data

are

similar to FORTRAN data types. The default mode for a

location is I, corresponding to the INTEGER*2 data type in

FORTRAN. Table 2-1 1lists the FDT modes and the nearest

corresponding FORTRAN data type.

FORTRAN DEBUGGING TECHNIQUE (FDT)

Table 2-1

FDT Mode Codes

Mode FORTRAN Type Description

I INTEGER*2 16-bit value displayed in decimal

J INTEGER*4 32 bits, first 16 bits displayed in
decimal

L LOGICAL*4 32 bits, displayed as T or F

M LOGICAL*1 8 bits, displayed as T or F

E REAL*4 32 bits, scientific notation

D REAL*8 64 bits, scientific notation

C COMPLEX 64 bits, real and imaginary parts

B BYTE 8 bits, displayed in decimal

R ——— 16 bits, displayed as three RAD50

characters

0 ——— 16 bits, displayed in octal

An —-—— A string of n ASCII characters (where
n is in the range 1 to 255)

Z —-———— ASCIZ string (as used in the FORTRAN
string handling package)

P - Dummy variable mode

When you need to indicate that the associated variable is a parameter
(dummy variable), you can use the letter P preceding any of the FDT
modes. In fact, you must specify this form for any variable listed as
a parameter in the attributes section of the FORTRAN storage map.

FORTRAN DEBUGGING TECHNIQUE (FDT)

Examples:

Specification . : Meaning

204 /E A REAL*4 variable at offset 204.

l6/PI An INTEGER*2 parameter variable at offset lé6.

POWER/C A COMPLEX variable ata location associated with

tthe name POWERK.

Any location specification can include a mode specification. For

example:

TYPE 202/E

The offset of the location is 202 and the data type of location offset

202 is REAL*4,

If a location specification occurs without a mode, there are two

possible actions.

1. If the specification does not involve a name, then FDT

assumes the default mode I. For example,

TYPE 202

is the same as

TYPE 202/I

2. If the specification includes a name (a named location or a

subscripted name) then FDT assumes the mode associated with

that name. (The mode becomes associated with the name when

you define the name in an FDT NAME or DIMENSION command.)

For example,

NAME PI,202/E

TYPE PI

has the same result as

TYPE 202/E

Similarly,

NAME ANGLE, 202

TYPE ANGLE

has the same result as

TYPE 202

The original mode definition can be overridden in subsequent commands.
For example, if the name definition 1is

NAME PI,202/E

FORTRAN DEBUGGING TECHNIQUE (FDT)

the following commands have the effects shown:

TYPE PI/D Uses mode D for output.

TYPE PI Uses originally defined mode E for output.

TYPE 202 Uses the default mode I for output.

The mode code is important for subscripted names 1in a DIMENSION

command because the mode code determines how FDT locates the required

array element. You can use the default mode in a DIMENSION command.

However, it is better practice to specify the intended mode explicitly

in the DIMENSION command.

You can specify a mode only in a location specification. Subscripts

and other command parameters are not location specifications, so you

cannot associate modes with them.

2.4.4 FDT Pause Definition

FDT contains a pause feature similar in operation to a FORTRAN PAUSE

statement: the FDT pause halts execution of the program and allows

the program to be continued by further commands. When the pause

occurs, you can enter FDT commands. (Do not confuse the FDT pause

with the FORTRAN pause. The FORTRAN PAUSE statement cannot cause an

FDT pause.)

There are five ways to cause an FDT pause. The pause name indicates

the situation causing the pause:

e automatic pause

® entry pause

e statement pause

e step pause

e watch pause

The automatic pause occurs before the first executable statement in

the main program. (There is no FDT command for invoking the automatic

pause.) The automatic pause occurs only during the first run of the

program in a debugging session and not during subsequent runs. That

is, subsequent FDT START commands or monitor START or REENTER commands

do not invoke the automatic pause.

An entry pause occurs at the entry point of a subroutine or function.

You use the PAUSE command to specify the procedure name, and FDT

pauses before the procedure begins executing.

A statement pause occurs before execution of a particular FORTRAN

statement. Using a PAUSE command, you specify the statement where you

want the pause to occur, and FDT pauses when that statement is the

next one to be executed.

A step pause occurs after a defined number of FORTRAN statements have

executed. You specify the number of statements using the STEP

command.

2-10

FORTRAN DEBUGGING TECHNIQUE (FDT)

A watch pause occurs when the wvalue of a variable being watched

changes. You specify the variable to watch using the WATCH command.

When an FDT pause occurs, FDT prints the following message on the

terminal: :

FDT PAUSE AT ISN nnn IN proc

!

The variable components of the message are:

nnn The internal statement number of the next executable

FORTRAN statement.

proc The name of the procedure 1in which the FDT pause

occurred. A procedure 1is a main program, subprogram,

or function. FDT defines procedure proc as the

current procedure. This procedure remains the current

procedure until the next FDT pause occurs.

FORTRAN DEBUGGING TECHNIQUE (FDT)

2.5 DESCRIPTION OF THE FDT COMMANDS

The FDT commands are described in the following section. The commands

are arranged alphabetically for convenient reference. Appendix D

contains a reference summary of the commands.

Useful commands for a new FDT user are:

e PAUSE, STEP, and CONTINUE to control execution

e NAME to refer to variables

® TYPE and ACCEPT to display and change values

FORTRAN DEBUGGING TECHNIQUE (FDT)

ACCEPT

2.5.1 ACCEPT

The ACCEPT command assigns new values to FORTRAN variables. There are

three forms of arguments for the ACCEPT command. You can mix all

three forms freely within a macro definition. (The third form is not

valid outside a macro.) You can specify as many arguments as fit on a

single command line. The arguments must be separated by commas.

The first form is:

ACCEPT loc=value

The argument components are:

loc The location whose value is to be changed.

value The new value to be assigned to loc. The new value may

be a constant in the same data format as the mode of

loc, or it may be a previously defined name or

subscripted name.

The second form is:

ACCEPT 'text'

The argument is:

'text' The literal string to be printed.

This form of the ACCEPT command is identical in function to the

analogous form of the TYPE command. The FORTRAN conventions for

text literals apply. :

The text literal form of ACCEPT is useful for FDT macros, where

you can use the text as a prompt to enter new values.

The third form is:

ACCEPT loc

The argument is:

loc The location specification for a value entered from the

terminal.

This form of the ACCEPT command is valid only in FDT macros. It

requires an input value from your terminal, and prompts for the

value with a question mark. The value you enter must follow the

same conventions required for other forms of the ACCEPT command.

The following mode conventions apply to the wvalues in the ACCEPT

command:

e The value may be a previously defined name. If it 1is,

FDT copies its contents into loc. When you use a name as

the value, its mode should match the mode of 1loc, but

need not. If the modes of loc and name are different,

the mode of loc determines the number of bytes copied

from name into loc (see Table 2-1).

2-13

FORTRAN DEBUGGING TECHNIQUE (FDT)

For example:

Mode of loc Data Type Number of
Bytes Copied

I INTEGER*2 2

J INTEGER*4 4

E REAL*4 4

D REAL*8 8

Z ASCIZ 1

When you use a name as a value, FDT ignores the mode of

name and uses name only to find the address of the value

to be copied. FDT never does conversions from one mode

to another.

e String-mode constants (/Z or /An) must appear enclosed in

single quotes. The FORTRAN conventions for text literals

apply.

e RAD50 constants and logical constants (/R, /L, and /M)

must be preceded by the character # to indicate that they

do not represent names. For example, the logical

constants T and F are represented by #T and #F.

e Complex constants appear as two real constants separated

by a comma, in the order real, imaginary.

e Nonstring constants may include at most 40 characters.

The number of characters represented by a string constant

is limited by the length of the input line.

Examples:

Command Meaning

ACCEPT 202=1 Sets the INTEGER*2 value at offset 202
to the value 1.

ACC DELTA=EPSILON Replaces the contents of DELTA with
the contents of EPSILON.

ACC 'DELTA=',DELTA Prints DELTA=? on the terminal and
waits for an input value. (Valid only

within an FDT macro.)

ACC I=0,J=1,244/E=3,14159 Sets the values of locations named 1

and J to 0 and 1 respectively; sets

the REAL*4 variable at offset 244 to

3.14159.

ACCEPT 1I=12,'J=',d Sets the 1location named I to 12;
prints J=? on the terminal and waits

for input to set the location named J.

(Valid only within an FDT macro.)

FORTRAN DEBUGGING TECHNIQUE (FDT)

NOTE

Both ACCEPT and TYPE use subroutines

that are loaded by FORTRAN to process

FORMAT statements. If you are debugging

a program without D, E, F, or G FORTRAN

format specifications, then some of the

format conversion routines are not

loaded and FDT cannot accept or type

variables with modes C, D, or E. If you

attempt to use modes C, D, or E when the

format conversion routines are not

present, FDT prints the error message

?NO CONVERSION and continues execution.

Section 2.7.3 describes a way to avoid

this problem.

FORTRAN DEBUGGING TECHNIQUE (FDT)

CONTINUE

2.5.2 CONTINUE

The CONTINUE command resumes program execution after any FDT pause.

The next statement executed is the statement whose internal statement

number and procedure name appeared in the last pause message. When it
executes a CONTINUE command, FDT ignores any commands remaining on the
line.

If the current FDT pause occurred as the result of a PAUSE command,

the CONTINUE command can have one optional parameter called the

execution count. FDT ignores the execution-count parameter if the
current pause is an automatic pause or if it occurred as a result of a

STEP or WATCH command.

The form of the command and parameter is:

CONTINUE [ntimes]

The parameter is:

ntimes The execution count. The execution count is an integer

specifying the number of times the FORTRAN program must

reach this point before another FDT pause can occur

here. If you omit the ntimes parameter or if ntimes =

1, an FDT pause occurs the next time control reaches

this point (unless the PAUSE command is replaced or

cancelled by subsequent commands).

FORTRAN DEBUGGING TECHNIQUE (FDT)

DIMENSION

2.5.3 DIMENSION

The DIMENSION command associates a name and a list of dimensions with
the FORTRAN array you want to define, allowing the name to be used as
a subscripted name. FDT cannot access FORTRAN virtual arrays. The
DIMENSION command 1is the subscripted-name equivalent of the NAME

command.

The form of the DIMENSION command is:

DIMENSION name(i,j,...)[,loc]

The parameters are:

name The FDT name to be associated with the array.

(L,F500¢s) The list of dimensions associated with the array.
There may be at most seven dimensions. Each

dimension value in the list must be an integer in
the range 1 through 32767.

loc The location specification for the first element
(base) of the array. The offset for the base of

the array appears in the FORTRAN storage map.

Offsets for FORTRAN virtual arrays are not valid
loc parameters. If you omit the loc argument, FDT

erases the name specified (see ERASE command,

Section 2.5.4).

The mode code is an important part of the location specification for
subscripted names. You can default the mode in a DIMENSION command.
However, it is better practice to specify the intended mode explicitly
in the DIMENSION command. FDT wuses the specified mode in all
subscript calculations referring to the array.

ASCII mode (/An) is not valid in a DIMENSION command because it has no
meaning when used in subscript calculation. No error message appears
if you specify ASCII mode in a DIMENSION command. However, when you
attempt to wuse the subscripted name, FDT responds with the error
message ?UNDEFINED.

Examples:

Command Meaning

DIMENSION DATA (10,10),46/E A REAL*4 array named DATA with 10

by 10 dimensions at offset 46.

DIM COLUMN (10),DATA(1,3)/E A one-dimensional REAL*4 array

COLUMN equivalenced to the third

column of the array DATA.

FORTRAN DEBUGGING TECHNIQUE (FDT)

The following example shows a useful trick for naming one element of
an array.

NAME W,DATA (5,5)/E A REAL*4 variable W equivalenced
to array element (5,5) of DATA

(see NAME command 1in Section

2.5.8).

FORTRAN DEBUGGING TECHNIQUE (FDT)

ERASE

2.5.4 ERASE

The ERASE command cancels the association of a name and a location,
and frees the space in FDT's internal tables.

The ERASE command has the following form:

ERASE namel[,name2,...]

You can specify as many names or subscripted names in an ERASE command
as can fit on a single line. The names must be separated by commas.
Subscripted names must appear without subscripts; subscripts are
invalid in the ERASE command. It is not possible to erase the name
for part of an array.

Examples:

ERASE TIME

ERASE SPEED,DIST,DATA,ICOUNT

ERASE does not change the values of the variables whose associated
names are erased.

2-19

FORTRAN DEBUGGING TECHNIQUE (FDT)

GOTO

2.5.5 GOTO

The GOTO command changes the order of execution of commands within an

FDT macro. It causes an unconditional transfer of control, analogous

to that caused by the FORTRAN GO TO statement. (Do not confuse the

FDT GOTO and the FORTRAN GO TO; the FDT GOTO cannot change the order

of execution of FORTRAN statments.) Like the FORTRAN GO TO, the FDT

GOTO requires numeric statement labels.

The form of the GOTO command is:

GOTO label

(Remember that FDT command names must not contain spaces; GO TO is an

invalid FDT command.)

The parameter is:

label The numeric label of the command to which control is

transferred by the GOTO command. The label must be an

integer in the range 1 to 32767. Embedded spaces are not

valid.
H

If two or more labels have the same value, FDT uses the first

occurrence of the label. If the label you reference does not exist

within the current macro, FDT prints the error message ?LABEL.

You can use the IF command and the GOTO command to create loops of FDT

commands analogous to simple FORTRAN loops or to FORTRAN DO loops (see

sections 2.5.6 and 2.5.7). For example, if the first command in the

loop has the 1label 100, the 1last command in a loop might be IF

NEXT<>0;GOTO 100. The only loops you can do are on conditions or

values:; there is no way to increment an index in FDT.

If FDT is executing an infinite loop, you can terminate execution only

by typing CTRL/C twice to return to the monitor. The monitor's START

or REENTER commands can then operate in the same way as the START

command in FDT. However, in some cases, you will have to use the RUN

command to reload the FORTRAN program and start the debugging session

from the beginning.

Defining a Label

You label a command by preceding it with an integer. The label must

follow either the 1left parenthesis that marks the beginning of the

macro definition or the semicolon that delimits the preceding command.

The label may be set off by spaces in its defining occurrence.

The following macro definition contains a label:

MACRO 1 (TYPE MAX; 10 ACCEPT 'INIT=',INIT ;IF INIT>MAX;

GOTO 10; S 3)

FORTRAN DEBUGGING TECHNIQUE (FDT)

IF

2.5.6 1IF

The IF command requests conditional execution of another FDT command.
You wuse IF to specify that another FDT command is to be executed only
if a given condition is met.

The form of the command is:

IF loc<rel>value;FDT command

The parameters are:

loc The location specification for the wvalue to be

compared. The mode of loc must be E, I, or J.

<rel> The logical relation tested. The parameter <rel>

is one of the six logical relations: = (equal),
<> (not equal), > (greater than), >= (greater

than or equal), < (less than), or <= (less than

or equal).

value The value to be compared to 1loc. The wvalue

parameter may be either a constant in the same

mode as loc, or a previously defined FDT namne.

Subscripted names are valid. The mode of the

name should (but need not) match the mode of loc.

FDT assumes that name has the same mode as loc,

and ignores the actual mode of name. It compares
the contents of loc and name in the mode defined

ky loc. FDT never does conversions from one mode

to another. (See also the discussion of mixed

modes in the ACCEPT command, Section 2.5.1.)

FDT command The single FDT command that is executed only if

the 1logical relation specified between loc and
value is true.

The entire IF command must fit on one line.

The IF command compares the value in loc to the value specified. If
the relation is true, FDT executes the FDT command specified. If the
relation is not true, FDT does not execute the command but skips to
the next command.

Example:

IF PARM/I>5;WATCH COUNT;STEP

If PARM is greater than 5, FDT sets a watch on the 1location named
COUNT, and executes the next FORTRAN statement; otherwise, FDT simply
executes the next FORTRAN statement.

FORTRAN DEBUGGING TECHNIQUE (FDT)

MACRO

2.5.7 MACRO

The MACRO command allows you to define, execute, or delete an FDT
macro. An FDT macro is a sequence of FDT commands that is executed as

a unit. Thus, an FDT macro is analogous to a FORTRAN subroutine or

function subprogram.

1. Defining a macro

You can create a new macro, or change an existing macro, with a MACRO
command by typing:

MACRO m(FDT commands)

The parameters are:

m The number of the macro where m 1is a value in the

range 0 to 7.

FDT commands Any valid FDT command or series of commands.

There is no space between the macro number (m) and the

left parenthesis. The FDT commands appear within the
parentheses, separated by semicolons. There 1is no
limit to the number of commands defining a macro. The

definition may continue on as many lines as necessary.

FDT prompts for each new line. The end of the macro

is defined by the closing right parenthesis.

Examples:

The following example prints the values of the variables associated
with the names TIME, SPEED, and DIST, and the first two elements of
the array named DATA:

MACRO 3 (TYPE TIME,SPEED,DIST,DATA(l),DATA (2))

The following example shows a multiple-line macro definition. The

macro accepts a floating-point value VAR from the terminal, and tests
whether VAR is within the limits required by the program. If VAR is

outside the limits, FDT goes to the command labeled "100" and prompts

for another value.

Previous definitions:

NAME VAR, 234/E

NAME TOP, 240 /E

Macro definition:

MACRO 5(100 ACCEPT 'VAR=',6VAR; 1IF VAR<K1l2.; GOTO 100;

IF VAR>TOP; GOTO 1luU; CON)

FORTRAN DEBUGGING TECHNIQUE (FDT)

2. Executing a macro

You can execute a macro either automatically or manually:

FDT executes a macro automatically whenever it executes an FDT pause
that was set up by a PAUSE command containing a MACRO parameter (see
Section 2.5.9).

You can execute a macro manually by typing the following command:

MACRO m

The parameter is:

m The number of the macro to be executed. The value of

m is a number in the range 0 to 7.

The specified macro executes until FDT reaches the end of the macro,
at which time FDT prompts you for more commands by printing !, or
until a START, STEP, or CONTINUE command within the MACRO is executed,
at which time FDT resumes execution of the FORTRAN program.

3. Deleting a macro

You can delete a macro by redefining it with a null command string.

The form of the command is:

MACRO m()

The parameter is:

m The number of the macro in the range 0 to 7.

() Null command string. The left and right parentheses must
not enclose any characters or spaces.

Implicit Macro

MACRO 0 is a special macro number that you cannot associate explicitly
with a PAUSE. Any current PAUSE command that you have not explicitly
associated with another MACRO is implicitly associated with MACRO 0.

MACRO 0 is usually not defined. 1If you do define MACRO 0, every PAUSE

command without a MACRO parameter executes MACRO 0. You can execute
MACRO 0 manually.

2-23

FORTRAN DEBUGGING TECHNIQUE (FDT)

NAME

2.5.8 NAME

The NAME command associates a name with a location and a mode. The

name must be unique in the first six characters. Any characters after
the sixth are ignored. The first character of the name must be a
letter. The other characters can be either letters or digits.

The form of the NAME command is:

NAME name[,loc]

The parameters are:

name The name to be associated with the wvariable. If the

name you specify has already been defined, this NAME

command redefines the name. The o0ld definition is lost.

loc The location specification (as described in Sections
2.4.2 and 2.4.3). If you omit the location

specification, FDT cancels the name association (see
ERASE command, Section 2.5.4).

Examples:

Command Meaning

NAME I,202 INTEGER*2 variable I at offset 202.

NAM PARM,16/PI INTEGER*2 parameter PARM at offset 16.

NAM DELTA,I+2/E REAL*4 variable DELTA at offset 204.

(Relative location I+2 is location 202+2.)

NAM EPSILON,DELTA+4/E REAL*4 variable EPSILON at offset 210.

NAM PARM Erases the definition of PARM.

FORTRAN DEBUGGING TECHNIQUE (FDT)

PAUSE

2.5.9 PAUSE

The PAUSE command defines statement pauses and entry pauses (see
Section 2.4.4).

The PAUSE command marks the statement in your program before which you
want an FDT pause to occur. You mark the statement using its internal

statement number. The pause occurs only when the marked statement is

the next one to be executed.

You can define a statement pause for any executable FORTRAN statement

in your program, even if that statement is located in a procedure that

is nonresident or in a shared library. The location of the pause is

stored internally by FDT. It is not stored in the FORTRAN program

itself.

You can place an entry pause on the entry point of any FORTRAN

subroutine or function. Whenever the procedure is called, FDT issues

the message FDT PAUSE AT ISN 0 IN proc. You can use this feature to

detect calls to a procedure without having to determine the first

executable statement of the procedure.

The PAUSE command requires you to specify the location of the pause.

There are two optional parameters. You can specify the optional
parameters MACRO and AFTER in either order. The complete form of the

PAUSE command is:

PAUSE {[proc],isn} [MACRO m][AFTER ntimes]
proc

The parameters are:

proc,isn The location of the statement to be marked.

proc The name of the procedure 1in which the pause

occurs. The default value for the procedure

name is the name of the current procedure. The

current procedure is defined as the main

program, subroutine, or function whose name was

printed in the last FDT pause message.

If you specify a subroutine or function as the

procedure and omit the 1isn parameter, FDT

establishes an entry pause at the entry point of

the FORTRAN procedure you named. You cannot

place an entry pause on the entry point of an

assembly language routine. (Note that "proc,0"

is not equivalent to "proc" because internal

statement number 0 is undefined.)

isn The internal statement number of the FORTRAN

source statement where you want the FDT pause to

occur. The internal statement number appears to

the left of each statement in the source

listing.

FORTRAN DEBUGGING TECHNIQUE (FDT)

NOTE

FDT does not give an error message if

proc,isn specifies a nonexistent or

nonexecutable statement in the FORTRAN

program. The command containing an

invalid internal statement number is

effectively ignored; the nonexistent or

nonexecutable point is not executed by

the program and thus cannot cause an FDT

pause to occur.

MACRO m

AFTER ntimes

The FDT macro that 1is executed when the FDT

pause occurs. An FDT macro is a sequence of FDT

commands that is executed as a unit. It 1is

analogous to a subroutine or function in

FORTRAN. PFor more information on FDT macros,

see Section 2.5.7.

The m argument specifies the number of the FDT

macro you want to associate with the FDT pause

you are creating. The macro number must be an

integer in the range 1 to 7.

The MACRO m parameter is valid whether or not

macro m exists. The macro can be defined or

changed at any time without affecting the PAUSE

command. If the macro does not exist when the

pause occurs, FDT operates as if the macro

parameter were not specified.

If the macro does exist when the pause occurs,

FDT executes the macro without issuing an FDT

pause message. If the macro contains a CONTINUE

command, execution of the FORTRAN program

resumes. If the macro does not contain a

CONTINUE command, FDT prompts for more commands

when it has finished executing the macro.

You can abbreviate the word MACRO to MAC. Only

the first three characters are checked for

spelling accuracy. (Remember that there must be

a space between the word MACRO and the macro

number, m.)

The execution count. The ntimes parameter

specifies the number of times that the program

must reach (but not execute) the marked

statement before an FDT pause occurs at that

point. The ntimes value must be an integer in
the range 1 to 32767. The default value for the
AFTER ntimes parameter is 1, which causes an FDT

pause the first time program control reaches the

statement.

FORTRAN DEBUGGING TECHNIQUE (FDT)

FDT decrements the execution count each time

control reaches the internal statement number

specified. An FDT pause occurs when the count

is zZero. When the pause occurs, FDT

automatically resets the execution count to the

default value of 1. If you want to override the

default execution count, specify the required

execution count 1in a CONTINUE ntimes command

(see Section 2.5.2). (The pause definitions

output by the WHAT command contain the current

value of the execution count, not the initial

value.)

You can abbreviate the word AFTER to AFT. Only

the first three characters are checked for

spelling accuracy. (Remember that there must be

a space between the word AFTER and the execution

count, ntimes.)

There can be at most eight active PAUSE commands in a program at any

one time. If you attempt to define more than eight pauses in a

program, FDT prints out the error message ?NO ROOM.

You cannot place two pause definitions at the same point in vyour

program. If you try to place two pauses at the same point, the second

pause definition cancels the first.

Statement pauses are disabled when FDT is in step mode (see STEP

command, Section 2.5.12).

Example:

The following command line

PAUSE SUBR;PAUSE ,10

places an entry pause on procedure SUBR, and a statement pause on

statement 10 of the current procedure.

FORTRAN DEBUGGING TECHNIQUE (FDT)

RESET

2.5.10 RESET

The RESET command removes pauses created by fhe PAUSE command.

The form of the RESET command is; |

RESET proc,isn

The parameters are:

proc,isn The 1ocation in the FORTRAN program for which
the pause was defined. The location specified

must be exactly the same as that which appeared

in the pause definition.

proc The name of the procedure in which the pause was

to occur.

isn The internal statement number of the FORTRAN

source statement where the pause was to occur.

For example, the command line

RESET ,10;RES SUBR

removes the statement pause on statement 10 of the current procedure

and the entry pause on procedure SUBR.

FORTRAN DEBUGGING TECHNIQUE (FDT)

START

2.5.,11 START

You can issue the START command whenever FDT prints its command

prompt. The FDT START command begins executing your FORTRAN program

at the first executable statement in the main program. However, START

might not work when the system is not in an initial or ready

condition. For example, if there are open files, a START command

causes an error message and FDT returns control to the monitor.

The START command has no parameters. When the START command 1is

executed, FDT ignores any commands remaining in the line.

FORTRAN DEBUGGING TECHNIQUE (FDT)

STEP

2.5.12 STEP

The STEP command continues execution of ybur program in step mode, and
indicates the number of statements that you want to execute before the

next FDT pause.

The forms of the command and its optional parameter are:

STEP [n]

S [n]

(Notice that the STEP command has the special abbreviation S.)

The parameter is:

n An integer in the range 1 to 32767. FDT executes n FORTRAN

statements before pausing. The default value for n is 1,

which results in single-step operation with a pause before

each statement.

Step mode disables all statement pause definitions. You cancel step

mode and reenable the pause definitions by entering any FDT command
(other than another STEP command). The occurrence of an FDT pause
also cancels step mode.

STEP counts only executable statements. A logical IF statement counts

as one executable statement if it contains a GOTO; otherwise, a
logical 1IF statement may be one or two executable statements

(depending on the outcome of the IF test). The END statement is an
executable statement. Nonexecutable statements are FORMAT statements,
declaration statements, and SUBROUTINE and FUNCTION statements.

After it executes a STEP command, FDT ignores any commands remaining
in the line.

FORTRAN DEBUGGING TECHNIQUE (FDT)

STOP

2.5.13 STOP

You issue the STOP command to end a debugging session. The STOP

command in FDT is equivalent to a STOP statement in the FORTRAN

program. The STOP command closes any open logical units, performs

necessary exit actions, and returns control to the operating system.

The STOP command has no parameters.

FORTRAN DEBUGGING TECHNIQUE (FDT)

TYPE

2.5.14 TYPE

The TYPE command prints the values of variables in the FORTRAN program

during a debugging session. '

The forms of the TYPE command are:

TYPE loc|[,more]

or

TYPE 'text'([,more]

The parameters are:

loc The location specification of the variable whose value

you want to examine.

'text' A literal text string to be printed on the terminal.
The FORTRAN conventions for text literals apply to FDT

literals.

more Another loc or text parameter.

Multiple loc or text parameters may appear in a single TYPE command.

The parameters must be separated by commas. The maximum length of the

TYPE command is one line.

FDT finds each location specified and prints the contents of the

location in the mode indicated by the location specification. FDT

prints text literals exactly as you type them (except for the

enclosing quotation marks). If multiple parameters appear in a TYPE

command, FDT separates the values with commas.

Examples:

Command Meaning

TYPE 202 Prints INTEGER*2 variable at offset 202.

TYPE 'HI' Prints HI.

TYPE 'DON''T' Prints DON'T.

TYPE DELTA,EPSILON Prints two values separated by a comma.

TYPE DELTA/O Prints first 16 bits of DELTA in octal.

TYPE 'DELTA=',DELTA Prints DELTA= followed by the value of

DELTA.

TYPE DATA(I,J) Prints the value of the (i,]j) array element

in DATA.

FORTRAN DEBUGGING TECHNIQUE (FDT)

WATCH

2.5.15 WATCH

The WATCH command directs FDT to watch the contents of a location and

to perform a watch pause whenever the value in that location changes.

The form of the WATCH command is:

WATCH [loc]

The parameter is:

loc The specification of the 1location to be watched.

(Secticns 2.4.2 and 2.4.3 describe how to specify a

location.) Only one location can be watched at any

given time. A new WATCH 1loc command cancels the

previous WATCH command. A WATCH command without a

locaticn specification cancels the previous WATCH loc

command.

The location to be watched can have any FDT mode

except Alpha (/An). Only the first character of the

string is watched for locations in ASCIZ string mode

(/2).

When the value of a watched location changes, FDT prints the message

WATCH PAUSE, and performs an FDT pause at the next executable FORTRAN

statement. The value must actually change. For example, if IVALUE is

equal to 5, then the statement IVALUE=5 does not cause a watch pause.

If another FDT command changes the value of a watched location, a

watch pause does occur. For example, you can deliberately trigger a

watch pause by using FDT's information transfer commands to change the

value in a watched location.

Each time a watch pause occurs, FDT cancels the WATCH command that

initiated it. You must issue another WATCH command with the same

location specification if you want FDT to continue watching the same

location.

Watch pauses are independent of other FDT pauses. You can place a

watch pause and any other command causing a pause (for example, PAUSE

or STEP) on the same FORTRAN statement. If you do specify a watch

pause and another pause for the same statement, FDT processes the

other pause first. You must resume execution using CONTINUE, STEP, or

START before the watch pause can occur.

Examples of the WATCH command:

WATCH MAX

WATCH ARRAY (3,2)

WHAT

2.5.16

FORTRAN DEBUGGING TECHNIQUE (FDT)

WHAT

The WHAT command displays the current status of the FDT systenm. When

you type WHAT, FDT returns the following information:

A list of the definitions for all the active pauses. For each

pause, FDT prints the 1location of the pause (the procedure

name and optional internal statement number), the current

value of the execution count (when it is greater than 1), and

any associated macro number. The pause listing for an entry

pause has no internal statement number.

A list of all currently defined macro numbers and the contents

of the macros.

FORTRAN DEBUGGING TECHNIQUE (FDT)

2.6 CAUTIONS AND PITFALLS

The following are some general cautions you should observe while using
FDT:

e Correct use of spaces is important in FDT.

@ Invalid location specifications or constants out of range

cause unpredictable results.

® Under the RT-11 SJ operating system, the ends of long lines of

text printed at the terminal may be lost when the terminal
reaches its right margin. FDT does not provide automatic
carriage return or line feed.

e For purposes of subscripting and copying, FDT considers

locations with ASCIZ mode (/Z) to have a length of one byte.

For example, the command

ACCEPT NAME/Z=INPUT

copies only the first character from INPUT to NAME. To copy
an ASCIZ string, use mode An, where n is equal to the maximum
possible length of the ASCIZ string, including the terminating
zero byte. For example, the command

ACCEPT NAME/A25=INPUT

copies 25 bytes from INPUT to NAME.

e An FDT error message does not indicate that an entire command

was abaorted. Some action may have occurred before discovery
of the error. 1In this case, side effects <can result. For

example, the command

PAUSE SUBR+12

produces the error message ?UNDEFINED, but it acts 1like the

command PAUSE SUBR.

e FDT ignores any commands following CONTINUE, START, or STEP.
For example, if you type the command line

STEP 3 ; TYPE INDEX

FDT executes three FORTRAN statements and then pauses, without

typing anything. However, commands following CONTINUE, START,

or STEP are executed if FDT control branches around CONTINUE,

START, or STEP. For example, if you type

IF SPY<50;CONTINUE;TYPE INDEX

then FDT resumes execution if SPY is less than 50, but types

the contents of INDEX and waits for another FDT command if SPY

is greater than or equal to 50.

® You cannot place an FDT pause on the GO TO of a logical IF

Statement. For example, suppose the FORTRAN source listing

contains the following statements:

0008 NEXT=NOW+1

0009 IF (ITEMS (NEXT) .GT.ITEMS(NOW)) GO TO 50

0011 TEMP=ITEMS (NOW)

FORTRAN DEBUGGING TECHNIQUE (FDT)

You cannot place an FDT pause on internal statement 10. That

is, the FDT command

PAUSE ,10

never causes a pause.

However, an FDT pause on statement 10 would be wvalid 1if the

source listing contained the following statements:

goos DO 50 NEXT=1,N

0009 IF (ITEMS (NEXT).GT.MAX) MAX=ITEMS (NEXT)

0011 50 CONTINUE

In this case, the FDT pause occurs before the value of MAX

changes 1if the condition is true. If the condition is false,

no FDT pause occurs.

2.7 ADVANCED TECHNIQUES

The following sections describe some advanced techniques that you can

use to extend FDT's power.

2.7.1 Named Common

FDT can access variables in a FORTRAN named common block after you

define the block using the NAME command. Use the following procedure:

ll Locate the address of the named common block.

The absolute address of the named common block appears in the

link map. The name given to the block in the FORTRAN source

code appears in the 1link map under the column labeled

SECTION. The 6-digit number following the name 1is the

address of the block.

For RT-11 FB foreground programs, the named common block

address appearing in the link map is a relative address. The

desired absolute address is the sum of the link map relative

address and the foreground Jjob load address. Obtain the

foreground load address by issuing the FRUN command with the

/P option. (The /P option causes control to return to the

monitor; type RESUME to execute the foreground job.)

Describe the named common block to FDT.

A NAME command in the following form defines the block's

location:

NAME block, .ABS.+addr

The arguments are:

block The FDT name of the common block. If the

block name is the same as the name of a

variable in a previous NAME command, FDT

erases the previous name.

addr The 6-digit absolute address of the named

common block.

2-36

FORTRAN DEBUGGING TECHNIQUE (FDT)

3. Refer to locations in named common.

The location of any variable in named common is expressed as

follows:

block+nnn

The components of the specification are:

block The FDT name of the common block.

nnn The offset of the variable as given in the

FORTRAN storage map.

You can assign FDT names to variables in named common by

using block+nnn as a location in a NAME command.

Examples:

Assume that the name of the FORTRAN named common block is COMBLK and

the link map gives its address as 063524,

Describe the named common block to FDT:

NAME COMBLK, .ABS.+63524

Print the contents of an INTEGER*2 variable at offset 000010 1in

COMBLK:

TYPE COMBLK+10

Name the variable at location COMBLK+10:

NAME INDEX,COMBLK+1l0

Print the contents of the variable:

TYPE INDEX

2.7.2 How FDT Generates Addresses

FDT uses the location specification to generate the address and mode

information of a FORTRAN variable. The manner in which FDT generates

the 16-bit PDP-11 address depends on the information in the location

specification. The following section describes the address-generation

process for the five kinds of location specifications.

Octal Offsets

The form of the location specification is:

oct An octal number in the range of 0 to 177777.

When you give an octal number as a location specification, FDT always

interprets the number as an offset from the base address of the

current procedure's data block. In other words, FDT adds the octal

number to the base address to generate the 16-bit address. Thus, you

can use the offsets produced by the FORTRAN compiler to generate

addresses for any locations shown in the FORTRAN storage map.

2-37

FORTRAN DEBUGGING TECHNIQUE (FDT)

Names

The form of the location specification is:

name An alphanumeric name unique in the first six characters.

The first character must be a letter. FDT 1ignores any

characters after the sixth. The NAME command associates

a name with a location. Once the association has been

established, the name refers directly to the location of

the variable.

Relative Addressing

The form of the location specification is:

name+oct An alphanumeric name unique 1in the first six

characters, a plus sign, and an octal number in the

range 0 to 177777.

This location specification is a form of relative addressing in which

the base address is the location associated with the name. FDT adds

the octal displacement to the base address to determine the 1location

of the wvariable. Displacements in the range 100000 to 177777 are

negative displacements. FDT assumes that all octal numbers represent

two's complement binary integers. For example, the displacement

177776 represents a displacement of -2 bytes (the word preceding the

name) . You must determine the displacement yourself. It does not

appear in the storage map.

You could use relative addressing for array subscripts. However, this

is unnecessary because FDT allows you to define subscripted names.

Relative addressing allows you to address variables in named common

blocks once you have supplied the base address of the common block.

There are several predefined names in FDT that you <c¢an wuse as Dbase

addresses for relative addressing. These names are:

. MAIN, The default name assigned by FDT to the base address

of the FORTRAN main program. You can reference any

location in the main program using this base. If you

named your main program with the FORTRAN PROGRAM

statement, then FDT uses that name to find the Dbase

address.

. BCOM. The name assigned by FDT to the base address of the

FORTRAN blank common area. Use .BCOM. to reference

variables in blank common.

.ABS. The zero address of memory. FDT uses this name as the

base address for referencing any absolute memory

location.

For example, the following command prints the contents

of absolute location 56 (octal) in octal format:

TYPE .ABS.+56/0

FORTRAN DEBUGGING TECHNIQUE (FDT)

Subscript Addressing

The form of the location specification is:

name (i,j,k,..) A subscripted name for specifying arrays with at
most seven dimensions. The base address for this
form of addressing is the address of
name (1,1,1,...).

FDT wuses the FORTRAN subscripting algorithm to compute the
displacement from the base address and to locate the specified array
element.

| Indirect Addressing

When you define a name as a parameter (by specifying its mode as P),
FDT wuses the 1location associated with the parameter name as an
indirect address. That is, FDT regards the value associated with the
name as the address of the desired value. For example, if the
location of the parameter PARM contains 2000, and location 2000
contains 1234, then the command

TYPE PARM/I,PARM/PI

prints

2000,1234

2.7.3 Format Conversion Routines

TYPE, ACCEPT, and IF commands use the FORTRAN library format
conversion routines. If the program you are debugging does not have
D, E, F, or G format specifications, then the linker does not load the
routines that FDT requires for C, D, and E modes. 1If you require C,
D, or E modes you can force the linker to load the required routines
with the following procedure:

1. When you link your program, include the /I switch in the
first linker command line.

2. The linker responds with:

LIBRARY SEARCH:

Type RCIS (followed by a carriage return) to request the
floating-point conversion routines and a null line (carriage
return only) to end the library search list.

The resulting program contains all the necessary conversion routines.

2.7.4 On-line Debugging Technique (ODT)

If you use assembly language routines with FORTRAN routines, you may
sometimes need to use FDT and ODT at the same time. There is no
interaction between the two debugging techniques except when ODT,
which runs at a higher priority, occasionally interrupts the output of
FDT or of the FORTRAN program. FDT does not use breakpoint or T-bit
traps.

FORTRAN DEBUGGING TECHNIQUE (FDT)

2.7.5 Execution Speed

FDT uses the FORTRAN internal statement number traceback feature to

gain control at the beginning of a FORTRAN program and to execute

PAUSE and STEP commands. Therefore, FDT adds some overhead to the
execution of each FORTRAN statement and slightly reduces the execution

speed of any FORTRAN program.

The amount of FDT overhead time in a main FORTRAN program is difficult

to reduce. However, you can get fully debugged, time-critical
subroutines to run at full speed. You should compile these routines
with the traceback feature disabled. You cannot use FDT within these

routines. However, you can use the entry-pause feature of FDT for
these routines because the entry pause does not require the traceback
feature. If you issue a STEP command immediately before a subroutine
compiled without internal statement numbers, control proceeds to the

next executable FORTRAN statement in a routine with the traceback
feature enabled.

Execution speed with FDT is affected by FDT pauses. Each active pause

slows the execution of all FORTRAN statements. It particularly slows

those with internal statement numbers greater than that of the

statement where the pause occurs. The program runs more quickly if
you reset pauses that are no longer necessary. Entry pauses (see

Section 2.5.9) do not require overhead for traceback and hence are

more time efficient than other PAUSE commands.

APPENDIX A

ARGUMENT AND DEFAULT SUMMARY TABLE

The table contains arguments and default values for the extensions routines. Arguments in

square brackets can be either defaulted or omitted. If there is a numeric default value, it

appears in the column directly below the argument name. Consult the relevant reference section to

find out what happens when you omit a bracketed argument that does not have an explicit default value.

SECTION ROUTINE | ARGUMENTS

1.4.1 CLRD iarrayname npoints ispace# rscale

1.4.2 CVSWG ivalue [igain#]

1.4.3 DIS iydata ispace npoints istart increment

144 DRS [iarrayname] iarraysize [nsubarrays] {nsamples] [isource] iunit imask l[imodeTM] iendflag# nleft# Hintervall [complete]

- 1 iarraysize 0 0 iarraysize/nsubarrays -~

i.4.5 DXY ixdata iydata npoints istart increment

1.4.6 FLT16 ivalue

1.4.7 FSH iydata | ispace npoints istart increment

14.8 FXY ixdata iydata npoints istart increment

1.4.9 HIST iarr_ayname iarraysize nsamples iendflag# nleft#

1.4.10 IADC ichannel [igain] ivalue#
1

1.4.11 IDIR (a) [isource] iunit imask litype] [iwhere#]

0 0 -

(b) , iflag ibefore iop [iresult#]

(c) , iflag imask ,

1.4.12 IDOR (a) [idest] iunit iselect iset [ioutput#]

0 —

(b) , iunit imask [iset] [iclock#]

1.4.13 KB2BCD ibinary

1.4.14 KBCD2B idigits

1.4.15 LED ivalue ‘format’

1.4.16 LWAIT ivalue1 ivalue2

1.4.17 REL irelay isetting

1.4.18 RTS [iarrayname] iarraysize [nsubarrays] [nsamples] [ifirst] [nchannels] [igain] [imodeTM] iendflag# nleft# [interval] [complete]

- 1 iarraysize 0 1 1 0 iarraysize/nsubarrays -

1.4.19 SDIS

1.4.20 SETR lirate] imode rcount iendflag# [interval] [complete]

- 1 -

APPENDIX B

OBJECT AND SOURCE FILES

LDPOBJ.OBJ, which you receive as part of the FORTRAN extensions
software, is a file concatenating 28 individual object files. This
appendix lists the names of all the object modules and the names of
the corresponding source files. The FORTRAN extensions binary
software kit includes one source file, CONFIG.MAC. The other source
files can be ordered in a separate kit.

Object File Source File Contents

CONFIG.OBJ CONFIG.MAC Configuration definition module
CLRD.OBJ CLRD.MAC CLRD processor
CVSWG.0OBJ CVSWG.MAC CVSWG processor
DIS.OBJ DIS.MAC DIS, SDIS, and DXY processors
DRS.OBJ DRS.MAC DRS processor for all digital 1I/0

units
FSH.OBJ FSH.MAC FSH processor
FLT16.0BJ FLLT16.MAC FLT16 processor
HIST.OBJ HIST.MAC HIST processor
IADC.OBJ IADC.MAC IADC processor
IDIR.OBJ IDIR.MAC IDIR processor
IDOR.OBJ IDOR.MAC IDOR processor
KB2BCD.OBJ KB2BCD.MAC KB2BCD processor
KBCD2B.OBJ KBCD2B.MAC KBCD2B processor
LAO.OBJ LAO.MAC Parameter check routine
LA1.0BJ LAl .MAC Parameter check routine
LA2,0BJ LA2.MAC Parameter check routine
LDISP.OBJ LDISP.,MAC Completion routine dispatcher
LED.OBJ LED.MAC LED processor
LGAO.OBJ LGAO.MAC Argument fetch routine
LGA1.0BJ LGA1l.MAC Argument fetch routine
LICMP.OBJ LICMP.MAC Completion of interrupts
LIN16.0BJ LIN16.MAC Convert to unsigned binary integer
LINIT.OBJ LINIT.MAC Device initialization routine
LPARS.OBJ LPARS.MAC Command parser for DIS, DXY, and FSH
LPUT.OBJ LPUT.MAC Buffer insertion routine
REL.OBJ REL.MAC REL processor

RTS.0OBJ RTS.MAC RTS processor
SETR.OBJ SETR.MAC SETR processor

LPSMAC.MAC System macro definitions. LPSMAC must
be included in the MACRO assembler
command line to assemble any source

file except CONFIG.MAC.

APPENDIX C

ERROR SUMMARY TABLE

The table summarizes all of the conditions causing errors from the
extensions routines. The error name abbreviations (SYN, ARG, DEV,
ADC, CLK) are described in Section 1.6.

Routine Error Cause

CLRD SYN Four arguments required.

The number of elements to be scaled

(npoints) is less than one.

The scale factor (rscale) is negative

CVSWG SYN One or two arguments required.

DIS SYN Five arguments required.

ARG The number of points to display (npoints)

is less than one or greater than 4096.
The first point (istart) is less than one.
The indexing factor (increment) 1is 1less

than one or greater than 4096.

DRS SYN Ten to 12 arguments required.

ARG The digital input

does not exist.

The memory address

odd.

The mode requested

The mode requested

the call 1is not

unit requested (iunit)

specified (iunit) 1is

(imode) is not valid.

(imode) is negative, but

in parameter adjustment
mode.

DEV Digital input unit is in use.

DXY SYN Five arguments required.

ARG The number of points to display (npoints)

is less than 1 or g reater than 4096.

The first point (istart) is less than 1.

The indexing factor (increment) is greater

than 4096.

FLT16 SYN One argument required.

FSH SYN Five arguments required.

ARG The number of points to display (npoints)

is less than 1 or greater than 4096.

The indexing factor (increment) 1is less
than 1 or greater than 4096.

The first point (istart) is less than 1.

Routine

FXY

HIST

IADC

IDIR

IDOR

KB2BCD

KBCD2B

LED

LWAIT

REL

RTS

Error

SYN

ARG

SYN

ARG

SYN

ARG

DEV

ADC

SYN

ARG

SYN

ARG

SYN

ARG

SYN

SYN

ARG

DEV

none

SYN

ARG

DEV

SYN

ARG

ERROR SUMMARY TABLE

Cause

Five arguments required.

The number of points to display (npoints)

is less than 1 or greater than 4096.

The first point (istart) is less than 1.

The indexing factor (increment) is greater

than 4096.

Five arguments required.

The length of the array (iarraysize) |is

less than 1.

The number of samples (nsamples) 1is 1less

than zero.

One to three arguments required. :

The channel number 1is greater than 15

(AR11l, AD1l1-K).

The channel number 1is greater than 63

(AD11-K with AM11-K, LPS1ll).

The gain code (igain) 1is negative or

greater than 4.

Autogain was requested for the AR1l.

A/D converteris in use.

Four or five arguments required.

Memory address (iunit) is odd.

Digital input register (iunit) does not

exist.

Four or five arguments required.

Memory address (iunit) is odd.

Digital output register (iunit) does not

exist.

One argument required.

The value (ibinary) is negative or greater

than 9999.

One argument required.

Two arguments required.

Illegal format requested.

System does not have an LPS1l.

Two arguments required.

The relay number is less than 1.

System does not have an LPS1l.

10 to 12 arguments required.

Starting channel number is too large.

The number of channels (nchannels) is

negative or too large.

Autogain was requested for the ARII.

The gain code (igain) is greater than 4.

The mode (imode) is less than -4 or greater

than 15.

The sum of ifirst and nchannels requests a

nonexistent channel.

Array partition size is not a multiple of

nchannels.

ERROR SUMMARY TABLE

Routine Error Cause

Autogain was requested with DMA.

Continuous sampling with stop code was

requested with DMA.

The array length (iarraysize) with DMA 1is

greater than 4090.

DEV A/D converter 1s in use.

SDIS none

SETR SYN Four to six arguments required.

ARG Rate is less than -4 or greater than 7.

The mode requested (imode) is not valid.

The count value (rcount) for AR1ll is

- greater than 255.

DEV Clock is running.

CLK Clock interrupt lost (clock overrun).

Command

ACCEPT

CONTINUE

DIMENSION

ERASE

GOTO

IF

MACRO

NAME

PAUSE

RESET

START

STEP

APPENDIX D

FDT COMMAND SUMMARY

Parameters

loc=value

'text'

loc

[ntimes]

name (i,j,...) [,1loc]

name [,name2,...]

label

Description

Assign value as the new contents

of loc.

Print text on terminal.

Accept a value from the terminal

and assign it to loc.

Resume FORTRAN execution.

Associate a location specifi-

cation and a subscript list with

a name.

Remove name associations.

Unconditional branch command

changes execution sequence within

an FDT macro.

loc<rel>value;FDT command

m(FDT commands)

m

m()

name[,1loc]

Execute the FDT command only if

the condition is true.

Define FDT macro m.

Execute FDT macro m.

Delete FDT macro m.

Associate a location specifi-

cation with a name.

proc,isn [AFTER ntimes] [MACRO m]

proc,isn

[n]

Create an FDT pause at internal

statement number isn of procedure

proc.

Remove an FDT pause.

Begin execution of main program.

Resume execution and execute n

statements.

FDT COMMAND SUMMARY

Command Parameters Description

STOP Return to operating system.

TYPE loc Print value or text on the

'text' terminal.

WATCH loc Cause an FDT pause when the

contents of the specified

location change.

WHAT Print FDT status.

FDT

Format

XXX

name

name-+xxx

name (i,Jj,k,...)

.MAIN.

.BCOM.

.ABS.

APPENDIX E

LOCATION SPECIFICATION FORMATS

Meaning

Location offset in octal bytes

Named location

Relative addressing

Subscripted name

Base address of the FORTRAN main program (if

the main program was not named in a PROGRAM

statement)

Base address of FORTRAN blank common

The zero address of memory

APPENDIX F

FDT MODES

Mode FORTRAN Type Description

I INTEGER*2 l6-bit value displayed in decimal

J INTEGER*4 32 bits, first 16 displayed in decimal

L LOGICAL*4 32 bits, displayed as T or F

M LOGICAL*1 8 bits, displayed as T or F

E REAL*4 32 bits, scientific notation

D REAL*8 64 bits, scientific notation

C COMPLEX 04 bits, real and imaginary parts

B BYTE 8 bits, displayed in decimal

R ———— 16 bits, displayed as 3 RAD50 characters

0 ———— 16 bits, displayed in octal

An —-——— A string of n ASCII characters (1 <= n

<= 255)

Z ———— ASCIZ string (as used in the FORTRAN string

handling package).

Any mode in the above table can be preceded by the 1letter "P" to

indicate that the associated location represents a FORTRAN parameter

variable.

Message

?BAD DIM

?BAD LOC

?BAD MACRO

?BAD SUBS

FDT START FAIL

?FORMAT

?LABEL

?MACRO #

?NO CONVERSION

?NO ROOM

?20NLY IN MACRO

?PAUSE NOT FOUND

$SUBSCR OUT OF BOUNDS

2UNDEFINED

APPENDIX G

FDT ERROR MESSAGES

Description of Error

An invalid dimension limit was specified.

The location specification 1is not aligned

correctly according to 1ts mode or it

references a location outside the program

bounds.

An attempt was made to redefine a macro while

it was executing.

Subscripts are in an invalid format or cause

overflow.

Invalid main program, bad start address, or

internal statement numbers not enabled in

main program.

The input constant is not in the expected

mode.

The label specified does not exist.

The macro number is not in the range 0-7.

Floating-point formats are not available with

current FORTRAN program (see Section 2.7.3).

Not enough memory space to define a new

PAUSE, MACRO, or NAME.

The operation attempted is valid only within

an FDT macro.

An attempt was made to remove a PAUSE that is

not active.

The specified subscripts exceed the declared

dimensions. (Warning message only.)

Syntax error or undefined name.

A/D, 1-2, 1-3, 1-41, 1-62

Abbreviations, 1-80, 2--3, 2-30

.ABS., 2-36, 2-38 :

Absolute address, 2-36

ACCEPT, 2-3, 2-13, 2-21, 2-39

ADC CONFLICT, 1-80

Address,

absolute, 2-36

base, 2-4, 2-17, 2-37, 2-38,

2-39

indirect, 2-39

relative, 2-36, 2-38

/An, 2-13, 2-17, 2=-33

Analog-to-digital, see A/D

ARGUMENT ERROR, 1-80

Array, _

circular, 1-7, 1-8, 1-20,

1-39, 1-63

virtual, 1-4, 2-17

Array element, 2-6, 2-10, 2-39

Array partition, 1-7, 1-8,

1-20, 1-24, 1-63, 1-67

ASCII mode, 2-17

ASCIZ mode, 2-33, 2-35

Asterisk convention, 1-10

Asynchronous, 1-5

Autogain, 1-2, 1-42, 1-43,

1-65, 1-69

Automatic FDT pause, 2-1, 2-10

Base address, 2-4, 2--17, 2-37,

2-38, 2-39

BCD,

convert binary to, 1-55

BCD data type, 1-2, 1-22,

1-55, 1-56

Binary,

convert BCD to, 1-56

two's complement, 1-30, 2-38

unsigned, 1-6, 1-30

Bipolar mode, 1-42, 1-65

Bit location, 1-22, 1-45

Bit manipulation, 1-46

Bit values, 1-10

Blank common, 2-5, 2--38

BOUNDS,

$SUBSCR OUT OF, 2-6

Brackets,

square, 1-9

Byte manipulation, 1-46

INDEX

Circular array, 1-7, 1-8, 1-20,

1-39, 1-63

Clear display, 1-13

Clock,

hardware, 1-72

software, 1-2, 1-6, 1-48,

1-52, 1-~75

CLOCK ERROR~--RATE TOCO FAST, 1-80

Clock frequency, 1-72

Clock mode, 1-72

Clock overflow, 1-40

Clock rate,

setting, 1-72

CLrRD, 1-3, 1-13, 1-17, 1-33, 1-35

Code,

FDT mode, 2-7, 2-8

gain, 1-15, 1-42, 1-65

inline, 2-1

mode, 2-17

. threaded, 2-1

Command types,

FDT, 2-2

Commands,

FDT control, 2-3

information transfer, 2-2,

2-4, 2-33

program control, 2-2

Commas, 1-9, 2-19, 2-32

Common,

blank, 2-5, 2-38

named, 2-5, 2-36, 2-38

Completion routine, 1-1, 1-2,

1-3, 1-4, 1-5, 1-8, 1-19,

1-24, 1-25, 1-28, 1-33, 1-39,

1-53, 1-59, 1-68, 1-71, 1-76

Conditional transfer of

control, 2-21

CONFIG.MAC, 1-78

Configuration,

system, 1-1, 1-78

Configuration routine, 1-78

CONFLICT,

ADC, 1-80

DEVICE, 1-80

Constant, 1-9, 1-10

octal, 1-10

string, 2-13

CONTINUE, 2-2, 2=16, 2-23,

2-26, 2-35

Continuous display, 1-3, 1-16,

1-27, 1-35, 1-71

Continuous sampling, 1-19, 1-62

finite, 1-19, 1-62

infinite, 1-19, 1-62

Index-1

INDEX

Control,

relay, 1-61

scope, 1l-16, 1=-27

unconditional transfer of,

2-20

Control commands,

FDT, 2-3

program, 2-2

Convention,

asterisk, 1-10

mode, 2-13

notation, 1-9

syntax, 1-9, 2-3

Conventions, 1-9, 2-13

Conversion,

16-bit floating-point, 1-30

format, 2-15, 2-39

single analog-to-digital,

1-41

Convert BCD to binary, 1-56

Convert binary to BCD, 1-55

Convert switched gain value,

1-15

Count,

execution, 2-16, 2-26, 2-34

Counting events, 1-=72

CTRL/C, 1-7, 2=20

Current procedure, 2-4, 2-6,

2-11, 2-25

cvVswGg, 1-2, 1-3, 1-15, 1-43,

1-65, 1-69

Data,

BCD, 1-22

display, 1-3, 1-16

removing, 1-8, 1-67

Data overrun, 1-7, 1-39, 1-67,

1-69

Data pairs,

display X-Y, 1-27

flash X-Y, 1-35

X-y, 1-3, 1-4, 1-27, 1-35

Data type, 2-4, 2-7 to 2-10

Debugging procedure, 2-1, 2-=2

Defaulted, 1-9, 1-10

Defining a label, 2-20

Defining a macro, 2-22

Deleting a macro, 2-23

DEVICE CONFLICT, 1-80

Differential mode, 1-41, 1-64,

1-69

Digital input reading, 1-44

Digital input register, 1-2,

1-19, 1-44

Digital output register, 1-2,

1-50

(CONT.)

Digital read-in sampling, 1-19

Digital-to-analog, see D/A

DIMENSION, 2-3, 2-6, 2-9, 2-10,

2-17

Dimensions, see Subscripts

number of, 2-6

pis, 1-3, 1-13, 1-14, 1-1l6,

1-71

Displacement, 2-~5, 2-6, 2-38,

2-39

Display,

clear, 1-13

continuous, 1-3, 1l-l6, 1-27,

1-35, 1-71

LED, 1-57

single, 1-3

stop, 1-=71

Display data, 1-16

Display X-Y data pairs, 1-27

DMA sampling, 1-63, 1-69

Double-word sampling, 1-22

DRS, 1-2, 1-6, 1-7, 1-8,

1-19, 1-30, 1-74, 1-75

Dual sample-and-hold,

LPS1l, 1-63

Dummy variable, 1-10, 2-8

DXy, 1-3, 1-14, 1-27, 1-71

Element,

array, 2-6, 2-10, 2-39

Entry pause, 2-10, 2-25, 2-34,

2-40

Entry point, 2-10, 2-25

ERASE, 2-3, 2-17, 2-19, 2-24

ERROR,

ARGUMENT, 1-80

CLOCK, 1=-80

SYNTAX, 1-80

Error flag, 1-24, 1-39, 1-67

Error message, 1-4, 1-5, 1-80,

2-20, 2-27, 2=35

Events,

counting, 1-72

external, 1-40

Executable statement, 2-25,

2-30

Executing a macro, 2-23

Execution count, 2-16, 2-26,

2-34

Execution speed, 1-6, 1-17,

1-19, 1-28, 1-33, 1-36, 1-62,

2-40

External event, 1-40

External event timing mode,

1-73 :

EXTERNAL statement, 1-5

Index-2

INDEX

Factor,

scale, 1-13

X-axis spacing, 1-13

FAIL,

FDT START, 2-2

Fast-sweep mode,

FB,

RT-11,

FDT, 2-1

FDT addressing,

2-37 to 2-39

command types, 2-2

control commands,

macro, 2-13, 2-22,

mode codes, 2-7, 2-8,

pause, 2-1, 2-2, 2-4,

2-23, 2-30, 2~-33, 2-35

FDT START FAIL, 2~2

Finite continuous sampling,
1-19, 1-62

Flag,

error, 1-24, 1-39, 1-67

Flash, 1-32

Flash X-Y data pairs, 1-35

Flicker, 1-17, 1-28, 1-33,

Floating-point conversion,

l6-bit, 1-30

FLT1l6, 1-2, 1-6, 1-30

Foreground/Background,

RT-11, 1-4, 1-5, 1-7,

Format,

BCD, 1-2

nonstandard integer, 1-13

packed integer, 1-15

Format conversion routines,

2-15, 2-39

FORTRAN PAUSE,

Frequency,

clock, 1-72

FRUN, 2-36

FSH, 1-3,

FXY, 1-3,

1-62, 1-69

l-4, 1-5, 1-7, 2-36

2-4 to 2-6,

FDT

FDT

FDT

FDT

FDT

2-3

2=26

2-33

2-10,

1-36

2-36

2-10

1-32

1-35

1-13,

1-4,

1-14,

1-14,

Gain, 1-42, 1-65

convert switched, 1-15

switched, 1-15, 1-41

Gain codes, 1-15, 1-42,

GOTO, 2-3, 2-20

1-65

Hardware,

peripherals, 1-1

Hardware clock, 1-72

Hisr, 1-2, 1-7, 1-8,

1-74, 1-75

Histograms, 1-40

1_39'

(CONT.)

Iapc, 1-2, 1-15, 1-41, 1-57,

1-69

IDIR, 1-2,

1-44,

IDOR, 1-2,

1-49, 1-50, 1-55

IF, 2-3, 2-21, 2-39

logical, 2-30, 2-35

Implicit macro, 2-23

Indirect addressing, 2-39

Infinite continuous sampling,

1-19, 1-62

Information transfer commands,

2=-2, 2-4, 2-33

INIT, 1-7

Inline code, 2-1

Input register,

digital, 1-2,

Integer, 1-9

packed, 1l-15

unsigned binary, 1-6, 1-30

Internal statement number,

2-1, 2-11, 2-16, 2-25,

2-34, 2-40

Interrupt service routines,

l1-4, 1-5, 1-17, 1-71

Interval sampling technique,

time, 1-39

Intervals,

time, 1-2,

INTSET, 1-6

IQSET, 1-5

ITIMER, 1-33,

1-6’

1-53,

1-3,

1-19’

1-57

1-4,

1-30,

1-6' 1—30,

1-19, 1-44

1-40, 1-72

1-36

KB2BCD, 1-2,

KBCD2B, 1-56

1-55

?LABEL, 2-20

Label,

defining a, 2-20

numeric, 2-20

Latencies, 1-2, 1-39

LDPOBJ, 1-79, B-1

LED, 1-57

LED display,

LIBR, 1-79

Library, 1-78, 1-79,

Limited mode, 1-75

Link, 1-79, 2-39

Link map, 2-1, 2-36

Literals,

text, 2-13,

l.ocation,

bit, 1-22, 1-45

named, 2-4, 2-5

1-57

2-25, 2-39

2-32

Index--3

INDEX (CONT.)

Location (Cont.),

offset, 2-4

relative, 2-4, 2-5

subscripted name, 2-4, 2-6

Location specification, 2-4,

2-24, 2-35, 2-37

Logical IF, 2-30, 2=35

Logical relation, 2-21

Loops, 2-20

LPS1ll dual sample-and-hold,

1-63

LwaIiTr, 1-1, 1-3, 1-8, 1-59

MACRO, 2-3, 2-22

Macro, 2-34

defining a, 2=22

deleting a, 2-23

executing a, 2-23

FDT, 2-13, 2~22, 2-26

implicit, 2-23

Main program name, 2-2

.MAIN., 2-38

Manipulation,

bit, 1-46

byte, 1-46

Map,
link, 2-1, 2-36

storage, 2-1, 2-4, 2-8, 2-17,

2-37

Mask, 1-44, 1-45, 1-48, 1-52

Message,

error, l1l-4, 1-5, 1-80, 2-20,

2-27, 2=-35

Mode, 2-7, 2-13, 2-21, 2-24,

2=-32

ASCII, 2-17

bipolar, 1-42, 1-65

clock, 1=72

differential, 1-41, 1-64, 1-69

external event timing, 1-73

fast-sweep, 1-62, 1-69

FDT, 2-33

limited, 1-75

noninterrupt, 1-68, 1-74

parameter-adjustment, 1-10,

1-19, 1-23, 1-62

repeated-interval, 1-73

single-ended, 1-64

single-~interval, 1-73

step, 2-27

unipolar, 1-42, 1-65

Mode code,

FpT, 2-7, 2-8, 2-17, 2-33

Mode conventions, 2-13

Mode conversion, 2«14, 2-21

Module,

object, 1-78, B-1

NAME, 2-3, 2-5,

2-24, 2-36,

Name,

main program,

2-9, 2-17,

2-38

2=-2

Named common, 2-5, 2-36, 2-~38

Named location,

?NO CONVERSION,

2-4, 2-5

2=15

?NO ROOM, 2-27

Nondisplayable, 1-13, 1-17,

1-28, 1-33, 1-36

Noninterrupt mode, 1-68, 1-74

Nonstandard system, 1-=79

Notation conventions, 1-9

Number of dimensions, 2-6

Numeric label, 2-20

Object module, 1-78, B-1

Octal constants, 1-10

oDT, 2-39

Offset, 2-4, 2-37

Offset location, 2-4

Omitted, 1-11

OUT OF BOUNDS,

$SUBSCR, 2-6

Output register,

digital, 1-2, 1=50

Overflow,

clock, 1-40

Overhead, 1-5, 2-40

Overrun,

data, 1-7, 1-39, 1-67, 1-69

/P option, 2-36

Packed integer format, 1-15

Parameter, 2-3, 2-8, 2-39

Parameter-adjustment mode,

1-10, 1-19, 1-23, 1-62

Partition,

array, 1-7, 1-8, 1-20, 1-24,

1-63, 1-67

PAUSE, 2-2, 2-16, 2~23, 2-=25,

2-28, 2-33, 2-40

Pause, 1-59, 2-10 '

automatic FDT, 2-1, 2-10

entry, 2-10, 2-25, 2-34, 2-40

FDT, 2-2, 2-4, 2-10, 2-23,

2-30, 2-33, 2-35

FORTRAN, 2-10

statement, 2-10, 2-25

step, 2-10

watch, 2-10, 2-33

Peripherals hardware, 1l-1

Priority, 1-5, 2-39

Procedure, 2-4, 2-11

current, 2-4, 2-6, 2-11, 2-25

Index-4

INDEX

Program control commands, 2=2

Program name,

main, 2-2

Programmable clock,

set rate, 1-72

Programmed request, 1l-6

Prompt, 2-2, 2-3, 2-13, 2-22,

2-29

.PROTECT, 1l-6

Punctuation, 1-9

RAD50, 2-8, 2-13

Rate of the programmable clock,

set, 1=72

RCIS$, 2-39

Read-in sampling,

digital, 1-19

Reading,

digital input, 1-44

Real-time functions,

A/D sampling, 1-2, 1-3

D/A output, 1-3

digital 1/0, 1-2

plotting, 1-3, 1-4

time interval control, 1-1,

1-2

REENTER, 2-10, 2-20

Reentrant, 1-5

Refresh, 1-3, 1-33, 1-36

Refresh scopes, 1-3, 1-16, 1-32,

1-35

Register,

digital input, 1-2, 1-19,

1-44

digital output, 1-2, 1-50

REL, l1l-61

Relation,

logical, 2-21

Relative address, 2-36, 2-38

Relative location, 2-4, 2-5

Relay control, 1-61

Removing data, 1-8, 1-67

Repeated sampling, 1-62

Repeated-interval mode, 1-73

Request,

programmed, 1l-6

RESET, 2-2, 2-28

RESUME, 2-36

Routine,

completion, 1l-1, 1-~2, 1-3, 1-4,

1-5, 1-8, 1-19, 1-24, 1-25,
1-28, 1-33, 1-39, 1-53,

1-59, 1-68, 1-71, 1-76
configuration, 1-73

format conversion, 2-15, 2-39

interrupt service, 1-4, 1-5,
1-17, 1-71

(CONT.)

RSTS/E, 2-1

RT-11, 1-4, 1

RT-11 FB, 1-4,

RT-11 SJ, 1-4,

RT-11 XM, 1-4

RTS, 1-3, 1-7,

1-43, 1-62

RUN, 2-20

Sample-~and-hold,

LPS11 dual, 1-63

Sampling,

continuous, 1-19, 1-62

digital read-in, 1-19

DMA, 1-63, 1-69

double-word, 1-22

finite continuous, 1-19, 1-62
infinite continuous, 1-19,

1-62

repeated, 1-62

single~sweep, 1-19, 1-62
single-word, 1-21, 1-22

stop, 1-21, 1-39, 1-67

time interval, 1-39

Scale factor, 1-13

Scaling, 1-3, 1-13

Scatter-plot, 1-35

Scope,

refresh, 1-3, 1-16, 1-32, 1-35

storage, 1-3, 1-4, 1-32, 1-35

Scope control, 1-16, 1-27

SpIs, 1-3, 1-71

Service routine,

interrupt, 1-4, 1-5, 1-17,

1-71

Set rate of the programmable

clock, 1-72

SETR, 1-1, 1-2, 1-3, 1-6, 1-19,

1-25, 1-33, 1-36, 1-39,

1-48, 1-68, 1-72

Single analog-to-digital

conversion, 1-41

Single display, 1-3

Single job,

RT-11, 1-4, 1-5, 1-7, 2-35

Single-ended mode, 1-64

Single-interval mode, 1-73

Single-sweep sampling, 1-19,

1-62

Single-word sampling, 1-21,

1-22

SJ,

RT-11, 1-4, 1~5, 1-7, 2-35

Software clock, 1-2, 1-6, 1-48,

1-52, 1-75

Spacing,

Y-axis, 1-13

Index-5

INDEX

Spacing factor,

X-axis, 1-13

Specification,

location, 2-4, 2-24, 2-35,

2=-37

Speed,

execution, 1-6, 1-17, 1-19,

1-28, 1-33, 1-36, 1-62,

2=40

Square brackets, 1-9

Stamping,

time, 1-2, 1=22

Standard system, 1-78

START, 2-2, 2-10, 2-20, 2-23,

2-~29, 2-33, 2-35

START FAIL,

FDT, 2-2

Statement,

executable, 2-25, 2-30

EXTERNAL, 1-5

Statement number,

internal, 2-1, 2-11, 2-16,

2-25, 2-34, 2-40

Statement pause, 2-10, 2-25

sTEP, 2-2, 2-10, 2-23, 2=27,

2-30, 2-33, 2-35, 2-40

Step mode, 2-27

Step pause, 2-10

sTop, 2-2, 2-31

Stop display, 1-71

Stop sampling, 1-21, 1-39,

1-67

Storage map, 2-1, 2-4, 2-8,

2-17, 2=37

Storage scope, 1-3, 1-4, 1-32,

1-35

String constant, 2-13

$SUBSCR OUT OF BOUNDS, 2-6

Subscript, 2-6, 2-19, 2-38

Subscripted name location,

2-4, 2-6

Switched gain, 1-15, 1-41

convert, 1-15

Syntax conventions, 1-9, 2-3,

2-4

SYNTAX ERROR, 1-80

sysrnis, 1-5, 1-6, 1-33, 1-36,

1-79

System configuration, 1l-1,

1-78

nonstandard, 1-79

standard, 1-78

Text literals, 2-13, 2-32

Threaded code, 2-1

Throughput, 1-3

(CONT.)

Time interval, 1-2, 1-40, 1-72

Time interval sampling

technique, 1-39

Time stamping, 1-2, 1-22

Timing mode,

external event,

Transfer commands,

information, 2-2,

Transfer of control,

conditional, 2-21

unconditional, 2-20

Two's complement binary, 1-30,

2-38

TYPE, 2-3,

1-73

2-4, 2-33

2-13, 2=32, 2-39

Unconditional transfer of

control, 2-20

?UNDEFINED, 2-4, 2-17, 2-35

Unipolar mode, 1-42, 1-65

Unsigned binary integer, 1l-6,

1-30

Variable,

dumny, 1-10,

Virtual arrays,

2-8

1-4, 2-17

Wait, 1-59

WATCH, 2-2,

Watch Pause,

WHAT, 2-3,

2-11, 2-33

2-10, 2-33

2-27, 2-34

X-Y data pairs,

1-35

X-Y data pairs,

display, 1-27

flash, 1-35

X-axis spacing factor,

XM,

RT-11,

1-3, 1-4, 1-27,

1-13

1-4

Y-axis spacing, 1-13

Index~-6

* convention, 1-10

#, 1-10, 2-13

-ABS., 2-36’ 2-38

IBCOMO Fi 2-5’ 2-38

oMAIN., 2”38

/P option, 2-36

/Z, 2—13, 2-33’ 2-35

l6-bit floating-point

conversion, 1-~30

?LABEL, 2-20

?NO CONVERSION, 2-15

?NO ROOM, 2-27

?UNDEFINED, 2-4, 2-17, 2-35

INDEX (CONT.)

Index-7

m
n
e
,

Pl
ea

se
 c
ut

 a
lo

ng
 t
hi
s

|

FORTRAN/RT~-11

Extensions Manual

AA=-2124D=-TC

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's

discretion. Problems with software should be reported

on a Software Performance Report (SPR) form. If you

require a written reply and are eligible to receive

one under SPR service, submit your comments on an SPR

form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficlent documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher=-level language programmer

User with little programming experience

O
O
[:] Occasional programmer (experienced)

O
(] student programmer

O Non-programmer interested in computer concepts and‘capabilities

Name Date

Organization

Street

City State Zip Code
or

Country

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS

PERMIT NO. 152

MARLBORO, MASS

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Documentation

200 Forest Avenue MR1-2/E37

Marlboro, Massachusetts 01752

digital equipment corporation

Printed in U.S.A.

	000
	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	A-01
	B-01
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	F-01
	G-01
	Index-1
	Index-2
	Index-3
	Index-4
	Index-5
	Index-6
	Index-7
	replyA
	replyB
	xBack

