DATATRIEVE-11
User’s Guide

Order No. AA-X023B-TK

November 1987

This document tells how to use DATATRIEVE-11.

OPERATING SYSTEMS: RSX-11M
RSX11M-PLUS
RSTS/E
Micro/RSX
Micro/RSTS
VMS with VAX-11 RSX

SOFTWARE VERSION: DATATRIEVE-11 V3.2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may
appear in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1983, 1987 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid Reader’s Comments forms at the end of this document request
your critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

ﬂﬂﬂﬂan ™ MicroVAX TEAMDATA
MicroVMS UNIBUS
ACMS PDP VAX
CDD RALLY VAXcluster
DATATRIEVE Rdb/ELN VAXinfo
DEC Rdb/VMS VAX Information Architecture
DECnet ReGIS VAX/VMS
DECUS RSTS VMS
Micro/RSTS RSX VT

Micro/RSX TDMS

Page
How to Use This Manual _ xi-
Introduction to DATATRIEVE-11
1.1 Description of DATATRIEVE-11 1-1
1.2 DATATRIEVE ConceptsandTerms 1-1
121 Files. e e e e e e e e 1-2
1.2.2 Record Definitions 1-2
123 Domains e e e e e e e e e 1-2
124 DataDictionaries e e e 1-3
1.25 Commandsand Statements 1-3
1.2.6 Procedures e e e e e e 14
1.2.7 CommandFiles e 1-4
1.2.8 DATATRIEVETables 14
1.3 Components of DATATRIEVE-11 1-5
1.3.1 Interactive DATATRIEVE 1-5
1.3.2 The DATATRIEVE Distributed Server 1-5
1.3.3 The DATATRIEVE-11CallInterface 1-6
1.3.4 The DATATRIEVE-11 Remote Terminal Interface 1-6
Getting Started with DATATRIEVE
2.1 Invoking DATATRIEVE-11 i it i i i e 2-1
2.2 Sample Domains, Records,and DataFiles 2-2
2.3 QUERY.INIStartupFile e 2-2
2.4 Using READY, PRINT, and REPORT to RetrieveData 2-3
2.5 DATATRIEVE Input Line Prompts 2-4
2.6 DATATRIEVE Syntax LinePrompts 2-5
2.7 DATATRIEVE Prompts for Storing and Modifying Values 2-5
2.8 DATATRIEVE Error Messages o v v v v v v i et it e e e e e 2-5
2.9 Ending Your DATATRIEVE Session 2-6
2.9.1 Usingthe EXITCommand 2-6
2.9.2 Exiting from DATATRIEVE withCTRL/Z 2-6
2.9.3 Exiting from DATATRIEVE by Pressing CTRL/C Two Times 2-6
210 UsingHelp e 2-6
2.10.1 UsingAdvancedHelp Y
211 GuideMode L L e e e e e e e e 2-8
Creating Data Dictionaries
3.1 ContentsofaDataDictionary 3-1
3.2 CreatingaDataDictionary e 3-2
3.3 Changing Dictionaries e 3-2

Contents

ii

iv

4 Defining Domains

4.1 Specifying DomainNames 4-1
4.2 DefiningaSimple RMSDomain00, 4-2
4.3 Using the SHOW Command with Domains 4-3

5 Defining Records

5.1 Planning a Record Definition 5-1
5.2 Getting Started and NamingaRecordo, 5-2
5.3 Defining the Parts of a Record Definition 5-3
5.3.1 SpecifyingLevel Numbers 5-4

532 NamingFields oo 5-6
53.2.1 RestrictionsforField Names 5-6

5.3.2.2 Using Duplicate Field Names 5-7

5.3.2.3 Usingthe Field Name FILLER 5-8

5.3.3 Using Field DefinitionClauses 5-10

5.3.4 SpecifyingQueryNames e 5-12

5.3.5 Specifying Word Boundary Alignment with the ALLOCATION Clause . . . 5-13

5.4 Using the OCCURS Clause to Define Hierarchical Records 5-13
5.4.1 Defining Lists with a Fixed Number of Occurrences 5-15

5.4.2 Defining Lists with a Variable Number of Occurrences 5-16

54.3 Nesting Lists Within Lists to Form Sublists 5-17

5.44 Changingthe Lengthofalist 5-18

6 Defining Files

6.1 Choosing a SequentialoranIndexedFile 6-1
6.1.1 Modifying and Deleting Records 6-2

6.1.2 SummaryofDifferences 6-2

6.2 Defining a File Using the DEFINE FILE Command 6-3
6.2.1 Defininga SequentialFile 6-3

6.2.2 DefininganIndexedFile o000 6-4
6.2.2.1 Using a Group Field as the PrimaryKey 6-5

6.2.2.2 Defining AlternateKeys L. 6-5

6.2.2.3 Summary of Rules for Defining Key Fields S 6-6

6.2.3 Optional Clauses with the DEFINE FILE Command 6-6

7 Limiting Record Streams with Record Selection Expressions

7.1 Accessing Allthe RecordsinaDomain 7-2
7.2 Specifying the Number of Records in the Record Stream e 7-3
7.3 Identifying Records with Conditional Expressions -4
7.3.1 Comparing Records by Pattern Recognition 7-4
7.3.2 Grouping Records When Values Fall WithinaRange 7-6
7.3.3 Grouping Records by ReferencetoaTable 7-7

10

7.4

7.3.4 Summary of the Relational Operators e 7-7
7.3.56 Setting Up Multiple Tests with Compound Booleans 7-8

Sorting the Record Stream by Field Values 7-9

Using Compound Statements

8.1
8.2
8.3

Using REPEAT to Combine Statements 8-1
Using the FOR Statemento 0. 8-3
Using BEGIN-END Blocks to Combine Statements 8-4
8.3.1 BEGIN-END Blocksin FOR Statements 8-4
8.3.2 IF-THEN-ELSE Statements in BEGIN-ENDBlocks 8-5
8.3.3 Using BEGIN-END Blocks in STORE Statements 8-5
8.3.4 BEGIN-END Blocks in REPEAT Statements 8-6

Using DATATRIEVE Procedures

9.1
9.2
9.3

94
9.5
9.6
9.7
9.8
9.9

9.10

DefiningaProcedure e 9-1
Invoking a Procedure e e e e e e e e e e e e 9-2
ContentsofaProcedure s 9-3
9.3.1 Commands and Statements in Procedures 9-4
9.3.2 ArgumentsandClauses 9-4
9.3.3 CommentsinProcedures00, 9-5
Using Procedures to Locate Errors, 9-6
A Sample Procedureo 9-7
Nesting Procedures L L e 9-9
Using a Procedure in a Compound Statement 9-10
Aborting Procedures L. L e 9-12
Maintaining Procedures e e 9-13
9.9.1 Displaying Procedure Names 9-14
9.9.2 Displaying Complete Procedures 9-14
Editing Procedures L. e 9-14
9.10.1 Deleting Procedures e 9-15

Using DATATRIEVE Command Files

10.1
10.2

10.3

10.4
10.5
10.6
10.7
10.8
10.9

CreatingaCommandFile L. 10-2
Contents ofa Command File 10-3
10.2.1 ADT,EDIT,SETGUIDE 10-3
1022 Comments oo e e e e 10-3
Invokinga Command File 10-3
10.3.1 Invocation CommandLines 10-4
10.3.2 Invoking a Command File from a Procedure 10-4
Aborting Command Files L Lo 10-5
Editinga Command File 10-5
Sample Command File e 10-6
Nesting Command Files Within Command Files 10-7
Using a Command File in a FOR or REPEAT Statement 10-8
Maintaining Command Files 10-9

11 Using DATATRIEVE Variables

12

13

14

vi

11.1
11.2
11.3

114
11.5

Declaring Variables e e e e e 11-1
Assigning Valuesto Variables 00 11-2
Local and Global Variables 11-3
11.3.1 Global Variables e 11-4
11.3.2 Local Variables e 114
Using Variables to Assign ValuestoFields 11-5
Using Variables as Counters to Control Record Streams 11-6

Using DATATRIEVE Tables

121
12.2
12.3
124

125
12.6

12.7

A Sample DictionaryTable 12-1
Creating Dictionary Tables . '. o v v i 12-3
Sample DictionaryTables 0oL 12-4
Using the IN Relational Operator with DATATRIEVE Tables 12-5
12.4.1 Using a Table in a Record Selection Expression 12-5
12.4.1.1 Using a Table to Set Conditions in an
IF-THEN-ELSE Statement 12-5
12.4.1.2 Using a VALID IF Clause with a Table to Validate Data 12-6
12.4.2 Using the Keyword VIA with DATATRIEVE Tables 12-6
DATATRIEVE Tablesand Workspace 12-7
Displaying Table Information 12-7
12.6.1 DisplayingTables oo 12-7
12.6.2 EditingTables e e e e 12-8
12.6.3 DeletingTables e 12-9
Protecting Dictionary Tables 12-9

Defining and Using Views

13.1

13.2

Defining Views oL oL e 13-2
13.1.1 Views Using Subsetsof Records 13-3
13.1.2 Views Using SubsetsofFields 13-3
13.1.3 Views Using More Than One Domain e e e e e e e e e e 13-4
UsingaViewDomain e 13-6
13.2.1 Usinga ViewThatContainsalList 13-7

Using Hierarchies

141
14.2
14.3
14.4
14.5

Retrieving Repeating Field Values with FIND and SELECT Statements 14-3
Retrieving Repeating Field Values with Nested FORLoops 14-4
Retrieving Repeating Field Values with Inner Print Lists 14-5
Retrieving List Items with Nested RSEs — Eliminating Empty Print Lines 14-9
Retrieving Valuesfrom Sublists 14-11

15 Restructuring Domains

16

17

18

15.1
15.2

15.3
154

ASampleDomain e e e 15-2
Changing Record and File Definitions and Using New Names 15-3
15.2.1 Storing Data from All the Records in the Old Domain 15-4
15.2.2 Storing Data from a Subset of the Records in the Old Domain 15-5
15.2.3 Deleting References to the Old Domain 15-5
Changing Record and File Definitions and Using Old Names 15-5
Changing the OrganizationofaDataFile 15-8

Using the DATATRIEVE Editor

16.1
16.2
16.3
16.4
16.5

16.6

Invokingthe Editor L 16-1
EditorModes e e e e e e e e e 16-2
LinePointer e e e e e 16-2
Range Specification e e 16-3
Editor Commands e e e e e 16-4
16.5.1 DELETE Command v 16-5
16.5.2 EXITCommand v v v vt it e e e e e e 16-6
16.5.3 INSERT Command v v v v e, 16-6
16.5.4 QUITCommand i i it ittt et 16-8
16.55 REPLACECommand, 16-9
16.5.6 SUBSTITUTE Command 16-10
1657 TYPECommand vttt 16-11
Sample Editing Sessiono e e e e e e e 16-13

Optimizing Workspace and Response Time

17.1 UsingWorkspace oo e e e e e e e e e e e 17-1

17.2 Effect of READY and FINISHon Workspace 17-1

17.3 Techniques to Optimize Workspace 17-5

17.4 Techniques to Optimize Response Time 17-6

17.4.1 Using the ALLOCATION Option of the DEFINE FILE Command 17-6

17.4.2 Using Keyed Access Efficiently 17-6

17.4.2.1 Using EQUAL Rather Than CONTAINING 17-7

17.4.2.2 Choosing Domains or Collections as Record Sources 17-8

17.4.2.3 Ordering the Domains in Nested FORLoops 17-8

- 17.4.24 Restoring Indexed Files That Are Often Modified 17-8

17.4.3 Avoiding Nested FOR Loops Followed by a Conditional Statement 17-9
Controlling Output

18.1 Changing the Columns-PageSetting 18-1

18.1.1 Increasing the Columns-Page Setting 18-1

18.1.2 Decreasing the Columns-Page Setting 18-2

18.1.3 Determining the Number of Columns You Need for a Print Line 18-3

18.2 Usingthe SET ABORT Statement 18-4

18.3 Usingthe SET PROMPT Statement 18-4

vii

19 Controlling Access to Dictionary Objects

20

viii

19.1 Contentsofan AccessControlList

19.1.1
19.1.2
19.1.3

19.1.4

Sequence Numberso e
Lock Types o o o e e e e e e e e e
Keys. o o e e

19.1.3.1 PasswordKeys00
19.13.2 UICKeys o 0 i it i i e e e e e e e

AccessPrivileges L. e e e e

19.2 Creating AccessControlLists00
19.3 Processing Access Control Lists in DATATRIEVE
19.4 Maintaining an AccessControl List00

194.1
19.4.2
19.4.3
19.4.4
19.4.5

Guidelines for Ordering Entries
Assigning Privileges 0o
Displaying an Access Control List
Adding Entries toan Access ControlList
Deleting Entries from an Access Control List

Maintaining Data Dictionaries

20.1 Displaying Dictionary Objects o
20.2 Modifying Dictionary Objects
20.3 Deleting Dictionary Objects L.
20.4 Optimizing Disk Storage of Data DictionarieswithQCPRS
20.5 Extracting Dictionary Content with the QXTR Utility

Name Recognition and Single Record Context

A1 Establishing the Context for Name Recognition

All

Al12

A1l3
Al4

The Right ContextStack

A.1.11 TheContent ofa ContextBlock P
A112 GlobalVariables
A1.13 Collections e
Al114 RecordStreams
A115 LocalVariables
A.1.1.6 VERIFY Clause in the STORE Statement
A1.17 VALIDIF Clause in a Record Definition

Using Context Variables and Qualified Field Names

A.1.2.1 Context Variables as Field Name Qualifiers
A1.22 Other Field Name Qualifiers

The Left Context Stack for Assignment Statements
Examples of Context Variables in STORE and MODIFY Statements

A2 SingleRecordContext A-14
A.2.1 The SELECT Statement and the Single Record Context A-14
A.2.2 The CURRENT Collection as Target Record Stream A-20
A2.3 The OF rse Clause and Target Record Streams A-21
A.24 FOR Statements and Target Record Streams A-23
Index
Figures
5-1 DataltemsinaPersonnelRecord, 5-2
5-2 PERSONNEL_REC Record Definition 5-2
5-3 Four Partsof the SALARY Field 5-4
5-4 Level Numbers in the PERSONNEL Record Definition 5-4
5-5 Valid Field Names for EMPLOYEE_REC 5-7
5-6 Using FILLER asa Group FieldName 5-9
5-7 Query Names for PERSONNEL_REC 5-12
5-8 AFlatRecord e e 5-14
5-9 AHierarchical Recordo Lo 5-14
9-1 SampleProcedure 9-7
12-1 Code and Translation Pairs in a Dictionary Table 12-1
17-1 Empty DATATRIEVE Workspace 17-2
17-2 Workspace with One Readied Domain 17-3
17-3 Workspace with Two Readied Domains 17-3
17-4 Workspace When You Finish First Readied Domain 17-4
19-1 Sample AccessControl List 19-2
A-1 Duplicate Field Names in YACHTS and OWNERS A-2
Tables
5-1 FieldClasses e e e e e 5-12
6-1 A Comparison of Sequential and Indexed Files 6-2
7-1 Conditional ComparisonsforanRSE 7-7
16-1 Examplesof Range Specifiers 16-3
16-2 Summary of DATATRIEVE Editor Commands 16-4
19-1 AccessPrivileges s 19-4
19-2 Commands/Statements by Privilege 19-5
19-3 Privilege Requirements by Command/Statement 19-10

ix

How to Use This Manual

This manual is a guide to the interactive use of DATATRIEVE-11. It explains
how to define dictionaries and dictionary objects (domains, records, tables, and
procedures), and gives examples of using compound statements, command files,
views, and hierarchies. It also discusses the restructuring of domains and the
control of input and output.

In this manual, the DATATRIEVE-11 software is referred to as DATATRIEVE.

Intended Audience

Structure

This manual is intended for people who:
e Have read and tried the examples in the Introduction to DATATRIEVE-11
e Have experience using DATATRIEVE

e Have experience in applications programming but are unfamiliar with
DATATRIEVE

For people who have no experience with DATATRIEVE, the Introduction to
DATATRIEVE-11 provides a tutorial to the basic DATATRIEVE-11 tasks.

This manual is divided into 20 chapters, an appendix, and an index:

 Chapter 1 Introduces the basic concepts of DATATRIEVE-11.

Chapter 2 Describes how to enter and exit DATATRIEVE, display data, use
various prompts, and how to use DATATRIEVE Help and Guide
mode.

Chapter 3 Describes data dictionaries and how to create or change them.

Xi

Xii

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9
Chapter 10
Chapter 11

Chapter 12
Chapter 13
Chapter 14

Chapter 15

Chapter 16
Chapter 17

Chapter 18

Chapter 19
Chapter 20

Appendix A

Describes how to name and define domains.

Describes how to plan a record definition, the rules governing the
definition, the optional clauses you can use to specify certain con-
ditions, and the use of lists to define hierarchical records.

Describes the difference between indexed and sequential data
files, compares their advantages, and explains how to define them.

Discusses record selection expressions (RSEs) and how to use them
to select particular records from your database.

Describes the use of REPEAT, FOR, and BEGIN-END blocks to
combine statements into compound statements.

Describes how to define and use DATATRIEVE procedures.
Describes how to create and use DATATRIEVE command files.

Discusses DATATRIEVE variables, the differences between local
and global variables, and how to use them.

Describes the creation and use of DATATRIEVE tables.

Describes how to define and use view domains to examine only
part of one domain or to combine information from more than one
domain.

Discusses how to use lists to retrieve data.

Explains how to change record and file definitions to restructure a
domain.

Explains how to use the DATATRIEVE Editor.

Discusses the most effective ways of using your allotted work-
space.

Describes ways to control the format of your output and how to use
the SET ABORT and SET PROMPT commands.

Describes how to create, use, and maintain access control lists.

Describes how to modify and delete data dictionaries, optimize the
disk storage space they use, and extract their contents.

Explains in detail the way DATATRIEVE establishes context, the
context stacks, context variables, and single record context.

Related Manuals

For further information on the topics covered in this manual, see:

o Introduction to DATATRIEVE-11
o DATATRIEVE-11 Call Interface Manual
o DATATRIEVE-11 Reference Manual

Conventions

This section explains the‘ special symbols used in this book:

RET This symbol indicates the RETURN key.
TAB This symbol indicates the TAB key.
> The right angle bracket symbol at the beginning of a new line, or by

itself, represents the system prompt.
Color Color in examples shows user input.

WORD Uppercase words represent DATATRIEVE keywords.

word Lowercase words are generic terms that indicate entries you must
provide.

{} Braces enclose clauses from which you must choose one alternative.

[] Square brackets enclose optional clauses from which you can choose
one or none.

Horizontal ellipsis means you can repeat the previous item.

Vertical ellipsis in an example means that information not directly
related to the example has been omitted.

Xiii

Introduction to DATATRIEVE—-11 1

This chapter gives an overview of DATATRIEVE-11 and explains its basic con-
cepts and terms.

1.1 Description of DATATRIEVE-11

DATATRIEVE-11 is an interactive tool for inquiry, update, and maintenance of
information stored in data files. DATATRIEVE-11 runs on any PDP-11 com-
puter with an RSX-11M, RSX-11M-PLUS, RSTS/E, Micro/RSX, or Micro/RSTS

operating system.

The commands and statements you use are common English words that have
specific meaning within DATATRIEVE, With these commands and statements
you can manipulate the information in selected data files.

1.2 DATATRIEVE Concepts and Terms

DATATRIEVE-11 uses concepts and terms that may not be familiar to you.
These include:

e Files, records, and domains
e Data dictionaries
e Commands and statements

e Procedures

1-2

e Command files

e Tables

1.2.1 Files

A data file contains ordered data. The DATATRIEVE DEFINE FILE command
creates a data file and allows you to specify some of the characteristics of the file.
You can use your record definition to control the way DATATRIEVE handles the
data in other data files. You can also use a number of different record definitions
to work with the information stored in one data file.

1.2.2 Record Definitions

The record is the basic unit of information management. It describes the rela-
tionship between logically connected data items and consists of one or more
subunits called fields. DATATRIEVE uses both elementary and group fields. An
elementary field contains an item of data. A group field contains group and ele-
mentary fields that are logically related. Thus, you might have an
EMPLOYEE_NAME group field that contains the elementary fields
FIRST_NAME, MIDDLE_INITIAL, and LAST_NAME.

DATATRIEVE enables you to interpret the data in the fields of a data record.
The DATATRIEVE record definition controls the way you look at and interpret
the information coded in your data files.

In the field definition clauses in a DEFINE RECORD command, you specify the
type of field, the length of each field, and the content of the fields — character
strings, numbers, or dates. You can also control the format DATATRIEVE uses
to display values from those fields.

Note that in field names (like FIRST_NAME), this manual uses underscores ().
When you are using DATATRIEVE, you may use either underscores or hyphens
(+) in record or field definitions. DATATRIEVE accepts hyphens as input but con-
verts them to underscores before analyzing user input. To use a hyphen as a
minus sign, put spaces before and after it. Otherwise, DATATRIEVE converts
the minus sign to an underscore and issues an error message.

Be consistent in your own practice. To avoid confusion when using the manuals,
you may want to use underscores instead of hyphens. Whichever you use,
Chapter 5 of this manual explains record definitions and field definition clauses.

1.2.3 Domains

To manage the data in a file, you must explicitly connect that data file to a record
definition. DATATRIEVE makes this connection with a domain. You use the
DEFINE DOMAIN command to create a domain definition and to store that defi-
nition in your current data dictionary.

Introduction to DATATRIEVE-11

'The domain definition establishes a name for the domain and associates that
name with the names of a record definition and a data file. When you use the
name of the domain, you tell DATATRIEVE to use a particular record definition
to interpret the data stored in a specific file.

Do not confuse a domain with the data you want to manage. The data stored in
the data file does not constitute the domain. You can erase old records and add
new ones without disturbing the relationship between the data file and the
record definition, which remains fixed.

1.2.4 Data Dictionaries

A data dictionary is an RMS file that DATATRIEVE creates to store definitions.
It stores tables, procedures, and the definitions of domains and records.

1.2.5 Commands and Statements

You manage information with commands and statements based on the
DATATRIEVE keywords described in this manual.

Commands deal with the data dictionary and enable you to:

o Create, change, and display definitions in the dictionary (DEFINE, SHOW,
EDIT, DELETE, and EXTRACT)

e Maintain the access control lists associated with those definitions (DEFINEP,
SHOWP, and DELETEP)

o Get access to domains (READY)

e Release access to domains, variables, collections, and DATATRIEVE tables
(RELEASE and FINISH)

e Determine the way DATATRIEVE displays data on your terminal (SET)
¢ Get online information about DATATRIEVE (HELP)
¢ End your DATATRIEVE sessions (EXIT)

Statements deal with data and enable you to:

o Store records (STORE)

e Form and manipulate groups of records (FIND, SELECT, DROP, and SORT)
e Display data (PRINT, REPORT, and SUM)

o Modify records (MODIFY)

¢ Erase records (ERASE)

® Declare variables and assign values (DECLARE and assignment)

Introduction to DATATRIEVE-11 1-3

14

You can join statements to form compound statements in the BEGIN-END, FOR,
IF-THEN-ELSE, REPEAT, and THEN statements. You cannot join commands
with other commands or with statements. Furthermore, only statements may
contain DATATRIEVE value expressions and record selection expressions.

You can enter statements at other levels than command level (indicated by the
DTR> prompt), but you can enter commands only at command level.

If you are not sure whether a given keyword is a command or a statement, refer
to the table showing an alphabetical summary of commands and statements in
the DATATRIEVE—-11 Reference Manual.

1.2.6 Procedures

Most DATATRIEVE-11 applications involve sequences of commands and state-
ments that you use again and again. To avoid retyping such a sequence, you can
store it in your dictionary as a procedure. You can also use procedures within
commands or statements. With the DEFINE PROCEDURE command, you give
the sequence a name and enter both the name and the sequence into your dic-
tionary. You invoke the procedure by entering a colon (;) and the procedure
name. DATATRIEVE then interprets the content of the procedure just as though
you had entered it at your terminal.

1.2.7 Command Files

You can use command files in DATATRIEVE in much the way you use
DATATRIEVE procedures. The primary difference between the two is that you
store command files in your operating system directory and procedures in a
DATATRIEVE dictionary.

When you invoke a command file, DATATRIEVE displays the text of the file on
your terminal. When you invoke a procedure, however, the procedure definition
is not displayed on your terminal.

1.2.8 DATATRIEVE Tables
DATATRIEVE tables perform two functions. They let you:

e Specify one value and retrieve another that you have associated with the first

e Validate data according to the presence or absence of a data item in the table

A table contains pairs of character strings. The first member of each pair is the
code string and the second is the translation string. The last entry in the table
can be an ELSE clause that specifies a default translation string. Thus your
table might match department codes (such as A01) with department names (such
as Accounting). If you enter a code not in the table, for example, the ELSE clause
can specify a message to be displayed on your terminal telling you the code is not
valid.

Introduction to DATATRIEVE-11

1.3 Components of DATATRIEVE-11

DATATRIEVE-11 consists of four components on your PDP-11 system:

e Interactive DATATRIEVE-11

The DTR.TSK task image allows you to access DATATRIEVE at your
terminal.

o The DATATRIEVE-11 Distributed Server

DDMEFE.TSK allows users on other DECnet nodes to use DATATRIEVE for
accessing data files and data dictionaries on your node.

e The DATATRIEVE-11 Call Interface

The DTCLIB.OLB object module library allows application programs in other
high-level languages to call DATATRIEVE subroutines. The calls, through a
local or remote server, give you access to DATATRIEVE data files and
dictionaries.

o The DATATRIEVE—-11 Remote Terminal Interface

REMDTR.TSK is an interactive program that uses the Call Interface and the
remote server. When you run REMDTR as a program, it looks as though you
are running interactive DATATRIEVE on a remote node.

The following sections describe these four components and tell you where to find
information on each one.

1.3.1 Interactive DATATRIEVE

When you invoke DATATRIEVE-11 on a PDP-11 system, you are running
DTR.TSK, the interactive DATATRIEVE task image. This program accepts
DATATRIEVE commands and statements from the terminal and uses the termi-
nal as the default output device. DTR.TSK allows you to access data stored in
disk files as well as definitions stored in one of the data dictionaries on your sys-
tem, using DATATRIEVE commands and statements. The Introduction to
DATATRIEVE-11,the DATATRIEVE—11 Reference Manual, and this manual
describe how to use interactive DATATRIEVE.

1.3.2 The DATATRIEVE Distributed Server

The Distributed Data Manipulation Facility (DDMF), is also called the
DATATRIEVE Distributed Server. It is a “slave” program. Another
DATATRIEVE component sends it commands to execute, and it passes the
results back to that component. DDMF can perform all the DATATRIEVE func-
tions that DTR.TSK can perform, with the exception of the Application Design
Tool (ADT) and Guide Mode.

Introduction to DATATRIEVE—-11 1-5

1-6

You use the Distributed Server in three ways:

o VAX DATATRIEVE uses the Distributed Server on a PDP-11 or VAX node to
perform distributed operations. For example, when you type READY YACHTS
AT FRODO in VAX DATATRIEVE, DATATRIEVE starts up DDMF on the
node named FRODO and uses it to access definitions and data files on that
node.

e The DATATRIEVE-11 Call Interface uses DDMF to give you access to data
dictionaries and data files, allowing you to write application programs that
call DATATRIEVE.

e The DATATRIEVE-11 Remote Terminal Interface uses DDMF through the
Call Interface, allowing you to use your terminal to access DATATRIEVE on
other nodes.

1.3.3 The DATATRIEVE-11 Call Interface

The Call Interface allows you to write high-level language programs that call
DATATRIEVE, either on your own system or on another DECnet node. To use
the Call Interface, you include calls to external DATATRIEVE subroutines in
your program. When you build the task image, you link the program to the
object module library DTCLIB.OLB. The subroutines pass information between
the calling program and a local or remote DATATRIEVE Distributed Server.
When you are running such a program, there are actually two task images
active:

® Your program linked to DTCLIB.OLB

¢ DDMF, the DATATRIEVE Distributed Server that has been activated to serve
your program

Note

You must have the DECnet software installed on your system
before you can access DATATRIEVE on a remote node.

The DATATRIEVE-11 Call Interface Manual tells you how to write programs
that use the Call Interface.

1.3.4 The DATATRIEVE-11 Remote Terminal Interface

The DATATRIEVE-11 Remote Terminal Interface (REMDTR) gives you interac-
tive access to DATATRIEVE on other nodes.

Note

You must have the DECnet software installed on your system
before you can use REMDTR.

Introduction to DATATRIEVE-11

To use the Rembte Terminal Interface on both RSTS and RSX-11M/M-PLUS
systems, type RUN $REMDTR. If an error message is displayed, check with your
system manager to make sure the program is installed.

When REMDTR prompts you for a node name, you can type either a node name
or a complete network address specification. The address specification includes a
user name or account number and a password:

Enter node name: MYUAX
Enter node name: MYVAX"MYNAME PASWRD"

Enter node name: MYRSTS"130,34 PASWRD"

If you specify only the node name, you are logged in to the default DECnet
account and may not have access to the data files or dictionaries you want. When
you type the complete form of the specification, DECnet logs you into that
account.

After you have logged in successfully, you can use DATATRIEVE interactively
on that node as if you were using DATATRIEVE on your own node, except that
Guide Mode and ADT are not available.

You can use the Remote Terminal Interface for copying dictionary definitions
and data files across DECnet. It is also useful for testing a network path and
determining the default characteristics of DDMF, the DATATRIEVE Distributed

Server, on a remote node.

For more information on using the Remote Terminal Interface, see the
DATATRIEVE-11 Call Interface Manual.

Introduction to DATATRIEVE-11 1-7

Getting Started with DATATRIEVE 2

This chapter tells you how to start and stop DATATRIEVE. It also tells you how
to:

e Work with sample domains, records, and files included in the
DATATRIEVE-11 installation kit

e Use the PRINT and REPORT statements
e Understand DATATRIEVE prompts

e Interpret DATATRIEVE error messages
e Use Help and Guide mode

2.1 Invoking DATATRIEVE-11

The way you start DATATRIEVE can vary from one system to another. If you
cannot invoke DATATRIEVE using the method discussed in this section, contact
the person in charge of DATATRIEVE on your system.

See your system manager for the exact invocation line for your system. Here is
how to start the system if your invocation line is RUN $DTR:

» RUN $DTRQEED

PDP-11 DATATRIEVE, DEC Query and Rerport Svstem
Version: V3.2, 13-NOY-87

Tvre HELP for help

DTR>

The startup banner in the previous example shows you that you have success-
fully invoked DATATRIEVE.

2.2 Sample Domains, Records, and Data Files

The DATATRIEVE-11 installation kit includes four sample domains: YACHTS,
OWNERS, PERSONNEL, and FAMILIES. The domain definitions and the
record definitions are in the system data dictionary.

The following command creates a private dictionary for you called SAMPLE.DIC
which resides in your current default directory. The command enters the domain
and record definitions into the dictionary, and copies the data files into your
directory.

For RSTS/E and Micro/RSTS systems type:

DTR> BLB:SETUP.DTRGED
DTR>

For RSX, Micro/RSX, and VAX-11 RSX systems type:

DTR> ELB:L1,21S5ETUP.DTRRED
DTR >

To see that the sample domain and record definitions are in place, use the SHOW
command:

DTR> SHOW DOMAINS, RECORDSEED

Domains:
FAMILIES KETCHES OWNERS DWNERS_SEQUENTIAL
PERSONNEL PERSONNEL .SEQ SAILBOATS YACHTS
YACHTS _SEQUENTIAL
Records:
OWNER..RECORD PERSONNEL_REC PERSONNEL..SEQ_REC
YACHT
DTR >

The results of this command vary from one system to another, but you should be
sure that DATATRIEVE lists the needed domain and record definitions on your

terminal. If you have difficulty, see the person responsible for DATATRIEVE-11
on your system.

2.3 QUERY.INI Startup File

2-2

If you frequently start your DATATRIEVE session with the same series of com-
mands and statements, you can use a command file to execute the commands and
statements automatically each time you invoke DATATRIEVE. DATATRIEVE
recognizes QUERY.INI as the default startup file. However, you can specify a dif-
ferent startup file at installation time if you choose.

Getting Started with DATATRIEVE

DATATRIEVE first looks for a QUERY.INI file in your default directory. If one is
there, DATATRIEVE executes the commands and statements it contains before
it accepts any other input. If you would like to be in Guide mode as soon as you
invoke DATATRIEVE, for instance, you can include the SET GUIDE command
at the end of your QUERY.INI file. You can put a SET DICTIONARY command
in the QUERY.INI file to automatically change your default data dictionary. You
can ready domains you use frequently. Your QUERY.INI file, then, might include
these lines:

SET DICTIONARY MYDIC.DIC
SET GUIDE

READY

YACHTS

When you type your command to invoke DATATRIEVE, you are placed in your
own dictionary and in Guide mode, and the YACHTS domain is readied.

2.4 Using READY, PRINT, and REPORT to Retrieve Data

The basic keywords used to retrieve data are the READY command and the

PRINT and REPORT statements. To display a complete domain, for example,

first ready the domain. Then type PRINT followed by the domain name:

DTR> READY

PERSONNELRED

DTR> PRINT PERSONNELEED)

FIRST LAST START Sup
1D STATUS NAME NAME DEPT DATE SALARY ID
00012 EXPERIENCED CHARLOTTE §SPIVA TOP 12-Sep-72 75,8892 00012
00891 EXPERIENCED FRED HOWL F11 8-Apr-76 $59,584 00012
02943 EXPERIENCED CASS TERRY pgs 2-Jan-80 29,908 39485
12643 TRAINEE JEFF TASHRENT c82 4-Apr-81 $32,818 B7465
32432 TRAINEE THOMAS SCHUWEIK F11 7-Nov-81 $26,723 00891
34456 TRAINEE HANK MORRISON T32 1-Mar-82 $30,000 B7289
38462 EXPERIENCED BILL SWAY T32 5S5-Mav-80 $54,000 00012
38465 EXPERIENCED JOANNE FREIBURG E46 20-Feb-80 $23,908 48475
39485 EXPERIENCED DEE TERRICK pag 2-Mav-77 $55,828 00012
48473 EXPERIENCED GAIL CASSIDY E46 2-Mav-78 $55,407 00012
48373 TRAINEE Sy KELLER T32 2-Aug-81 $31,546 87289
49001 EXPERIENCED DAN ROBERTS 82 7-Jul-79 %41,395 B7465
48843 TRAINEE BART HAMMER D88 4-Aug-81 26,382 389485
78823 EXPERIENCED LYDIA HARRISON F11 19-Jun-78 $40,747 00891
83764 EXPERIENCED JIM MEADER T32 4-ApPr-80 $41,029 B7289
84375 EXPERIENCED MARY NALEVO pas 3-dan-76 56,847 39485
87289 EXPERIENCED LOUISE DEPALMA G20 28-Feb-79 $57,588 00012
87465 EAPERIENCED ANTHONY IACOBONE c82 2-Jan-73 $58,462 00012
87701 TRAINEE NATHANIEL CHONTZ F11 28-Jan-82 $24,502 00891
88001 EXPERIENCED DAVID LITELLA G20 11-Nov-80 $34,933 87289
80342 EXPERIENCED BRUNOD DONCHIKOY C82 9-Aug-78 435,952 B74635
91023 TRAINEE STAN WITTGEN G20 23-Dec-81 $25,023 B7289
99029 EXPERIENCED RANDY PODERESIAN CBZ 24-Mav-78 $33,738B B7465
DTR>
Getting Started with DATATRIEVE 2-3

For an explanation of the various forms of the PRINT statement, see the Intro-
duction to DATATRIEVE—-11 and the DATATRIEVE—-11 Reference Manual. To
retrieve information in a report format, use the REPORT statement. This can
provide you with a report title, a date, page numbers, and various statistical
functions. In its simplest form, the report specification consists of a REPORT
statement, followed by a PRINT statement specifying the fields you want to
report, and an END_REPORT statement to conclude the specification:

DTR> REPORT YACHTS WITH BUILDER = "ALBERG"ED
RW> PRINT BOATED
RW:> END_REPORTGRED

15-Nov-87
Page 1
LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK II KETCH 37 204000 12 $36+951

DTR>

For a complete explanation of the DATATRIEVE-11 Report Writer, see the
DATATRIEVE-11 Guide to Writing Reports.

2.5 DATATRIEVE Input Line Prompts

Several types of prompts provide you with information during your interactive
DATATRIEVE session. There are four types of input line prompts:

DTR> Marks the beginning of input lines and shows that DATATRIEVE is
ready for your input

CON> Prompts you to continue incomplete commands or statements and
shows what DATATRIEVE expects next

DFN> Prompts you to continue a partially complete DEFINE command

RW> Prompts you to complete unfinished Report Writer statements and
enter additional statements

2-4 Getting Started with DATATRIEVE

2.6 DATATRIEVE Syntax Line Prompts

When you press RETURN before completing a command or statement,
DATATRIEVE prompts you with a phrase in square brackets telling you what
sort of input it expects to satisfy the syntax of the command or statement. This
example shows several of DATATRIEVE’s syntax prompts:

DTR> READYQRED

[LooKing for Dictionary Element]

CON:> YACHTSERD

DTR> FINDRED

[Looking for "FIRST"s domain name: or collection namel
CON> YACHTS WITHRE

[LooKing for Boolean expressionl

CON> LOARD

[LooKing for relational orerator {(eas gt etc.)]
CON> BETWEENRE

[LooKing for a value exPressionl

CON» 20@RED

[lLooking for upper value of betweenl

CON> ANDRE)

[LooKing for a value exrressionl

CON> 30QRe)

[54 records foundl]

DTR >

2.7 DATATRIEVE Prompts for Storing and Modifying Values

When you enter a STORE or MODIFY statement, DATATRIEVE usually
prompts you to enter new information to be stored in the record, or to replace
what was stored there previously. Unless the statement contains a USING
clause, you are prompted to enter information for each field receiving a new
value. The prompt is made up of the word “Enter” followed by the name of the
field. It takes the following general form:

Enter field-names:

2.8 DATATRIEVE Error Messages

Error messages are DATATRIEVE responses to faulty syntax or an error in
logic. When it detects an error, DATATRIEVE displays an error message and
returns you to DATATRIEVE command level. All data items remain the same as
they were before you made the error. The messages describe the error. For
instance, when you use an undefined name in a PRINT command,
DATATRIEVE responds with an error message:

DTR> PRINT RUBINSRE
Field "RUBINS" is undefined or used out of context
DTR >

Getting Started with DATATRIEVE 2-5

2.9 Ending Your DATATRIEVE Session

You can exit from DATATRIEVE by:

e Entering the EXIT command
¢ Pressing CTRL/Z
® Pressing CTRL/C two times

2.9.1 Usingthe EXIT Command

To end your DATATRIEVE session and return to the operating system command
level, you can respond to the DTR> prompt with an EXIT command:

DTR> EXITGED

Entering the EXIT command at any other DATATRIEVE prompt is a syntax
error.

2.9.2 Exiting from DATATRIEVE with CTRL/Z

You can also end your DATATRIEVE session by entering CTRL/Z in response to
the DTR> prompt:

DTR> *Z

-

Entering CTRL/Z in response to any prompt other than DTR> returns you to
DATATRIEVE command level (DTR>).

2.9.3 Exiting from DATATRIEVE by Pressing CTRL/C Two Times

If you enter one CTRL/C when DATATRIEVE is executing a command,
DATATRIEVE aborts its operation. If you enter CTRL/C two consecutive times,
the second aborts the task and returns you to your operating system command
level. Either the EXIT command or CTRL/Z is a better way to exit than two
CTRL/Cs, because EXIT and CTRL/Z do not abort the task.

2.10 Using Help

2-6

DATATRIEVE offers two levels of help — basic and advanced. Basic help is infor-
mation about elementary DATATRIEVE statements. Advanced help provides
instructions on statements that you are likely to use after some experience with
DATATRIEVE. To get information on the help topic itself, type HELP in
response to the DTR> prompt.

DTR> HELPQRD

Getting Started with DATATRIEVE

For a listing of the topics for which help is available, type:

DTR> HELP HELPGE)

The torpics of dreatest
the following:

GUIDE
PRINT

READY
MODIFY

interest to the

bedinning wuser are

Helr is available for the followind torics:

ABORT
COMPUTED
DEFINE
DICTIONARY
EDIT
EXTRACT
FOR
MODIFY
PROCEDURE
RELEASE
SELECT
SORT

THEN

DBMS

DTR>

ADT
CONDITION
DEFINEP
DISPLAY
EDIT-STRING
FILE
GUIDE
OCCURS
RANGE
REPEAT
SET

STORE
USAGE
OWNER

FIND SORT
STORE KIT
ASSIGNMENT BEGIN
DATE DECLARE
DELETE DELETEP
DOMAIN DROP
ERASE KIT
FIND FINISH
HELP IF

PIC PRINT
READY RECORD
REPORT RSE
SHOMW SHOMWP
SUM TABLE
VALUE YIEW
WITHIN

To get help on one of these topics, type HELP followed by the name of the topic
and press the RETURN key.

2.10.1

Using Advanced Help

For a listing of topics for which advanced help is available, type:

DTR> HELP ADVANCED HELPQRE

Aduvanced help

CONDITION
EDIT
MODIFY
RANGE
SORT
UALUE

DTR >

DICTIONARY
EDIT-STRING
DCCURS
RECORD
STORE

VIENW

DOMAIN
FILE
PRINT
RSE
TABLE

is available for the followind torics:

DBMS

FIND
PROCEDURE
SELECT
USAGE

To get advanced help on one of these subjects, type HELP ADVANCED followed
by the name of the subject.

Getting Started with DATATRIEVE 2-7

2.11 Guide Mode

2-8

The self-explanatory Guide mode feature helps you:
e While you are learning to use DATATRIEVE

¢ Whenever you are unsure of the sequence of commands you need to accomplish
your task

Note

To use Guide mode, you must have a video display terminal. It will
not work on any hardcopy terminal.

To get into Guide mode, type:

DTR> SET GUIDERED

DATATRIEVE then prompts you, step-by-step, for every operation you want to
perform. If you need help, type a question mark (?). DATATRIEVE shows you a
list of the possible commands and statements you can use to complete your task:

DTR>» SET GUIDERED
Enter commands tvyre 7 for helr

If you type ?, the DATATRIEVE displays the following information:

Enter commands tvyre 7 for help

The rpossible responses are:

READY MaKke domain available
SHOMW Display status information
LEAVE Return to normal Datatrieve

Notice that Guide mode automatically spells out entire words and phrases imme-
diately after you type only one or two letters. You may find this somewhat star-
tling at first, but you soon get used to it. Guide mode fills in the word as soon as

you enter characters it recognizes. If you type R, it completes the word as
READY. If you type RE, REA, and so on, it also echoes the word READY.

You can get unexpected results with Guide mode if you are not careful, however.
For example, suppose you want to ready a domain called EASELS. If you

type R EA, Guide mode does not expand the R to READY and the EA to
EASELS. Rather, it interprets the EA as part of a READY command with

no domain name supplied. To get the results you want, you could instead

type REA EA, which would be expanded to READY EASELS.

When you are ready to exit from Guide mode and return to regular
DATATRIEVE, type LEAVE. The DTR> prompt means you are out of Guide
mode.

Getting Started with DATATRIEVE

Creating Data Dictionaries 3

Each time you invoke it, DATATRIEVE automatically connects you to a data
dictionary — an RMS file that DATATRIEVE creates to store definitions and pro-
tection information. This chapter shows how to create a data dictionary. ’

3.1 Contents of a Data Dictionary

A data dictionary contains the definitions and protection information for the fol-
lowing DATATRIEVE data structures:

¢ Domains
o Records
o Procedures

e Description tables

Each definition describes the contents of the data structure:

o A domain definition contains the name of the domain, the name of the record
definition associated with the domain, and the file specification of the file con-
taining the data for the domain.

e A record definition contains the name of the record and a definition for each
field in the record.

o A procedure definition is the procedure itself, including the procedure name
and all commands and statements in the procedure.

e A table definition is the table itself, including its name and all code and
description pairs.

3-1

Associated with each of these definitions is an access control list (ACL). It pro-
tects the one definition with which it is associated and restricts its use. Access
control lists supplement the protection features of your operating system.

3.2 Creating a Data Dictionary

You create a data dictionary using the DEFINE DICTIONARY command. The
format of this command is:

DEFINE DICTIONARY file-spec

DEFINE DICTIONARY creates an empty indexed sequential RMS file that is
suitable for use as a data dictionary. You supply the file specification, and the
operating system creates an entry for it in your directory. You can choose any file
extension when you create it. If you use the default file extension .DIC, you do
not have to specify the file extension when referring to your dictionary file from
DATATRIEVE command level. In addition, if you use the standard file exten-
sion, you can easily identify your dictionary files when you list your directory.

When you enter a DEFINE DICTIONARY command, DATATRIEVE creates a
file and establishes the new dictionary as your current data dictionary, just as if
you had entered a SET DICTIONARY command:

DTR> SHOW DICTIONARYRE)

The current dictionary is SY:[1,3INEWQ.DIC
DTR> DEFINE DICTIONARY MYDICQRED

DTR> SHOW DICTIONARYQRE)

The current dictionary is 8Y:[1,37IMY¥DIC.DIC

Note that because you did not specify any extension for the dictionary,
DATATRIEVE assigned .DIC by default.

You can begin entering definitions immediately. If DATATRIEVE cannot create
a file because, for example, you do not have write access to the disk, or the disk is
not mounted, it prints a message on your terminal and leaves you connected to
your current dictionary.

3.3 Changing Dictionaries

3-2

When you invoke it, DATATRIEVE automatically connects you to a default data
dictionary. At the time of installation, your system manager determines what
the default dictionary will be for your system. At the beginning of your
DATATRIEVE session, that dictionary is your current dictionary.

To find out the name of your current dictionary, use the following command:

DTR> SHOW DICTIONARYEE)
The current dictionary is SY:[1:37IMYDIC.DIC

SHOW DICTIONARY prints the file specification of the current data dictionary.

Creating Data Dictionaries

If you want to use a different dictionary, use the following format of the SET
command:

SET DICTIONARY file-spec

To change from the default dictionary to another dictionary, you must specify at
least one element of the file specification of the other data dictionary. For exam-
ple, if you specify only the device name, DATATRIEVE searches that device for a
directory with your project-programmer number (PPN) or user identification
code (UIC) and a file named QUERY.DIC. If DATATRIEVE does not find the file

- you specify, it prints an error message on your terminal and leaves you in your
current dictionary. (At no time are you in DATATRIEVE without being in a data
dictionary.)

If you have readied a domain in your current dictionary and you change diction-
aries, that domain is still available when you are in the new dictionary. This fea-
ture allows you to move records from that readied domain into another domain
in the new current dictionary.

If you want to return to the default data dictionary, issue the SET DICTIONARY
command without a file specification:

DTR:> SET DICTIONARYQRED

The following dialogue illustrates the setting and displaying of data dictionaries.
Note that if you try to set a dictionary that you have not defined, DATATRIEVE
prints an error message on your terminal. You must first define the dictionary
with a DEFINE DICTIONARY command. Note also that DATATRIEVE returns
the DFIN> prompt when you omit the file specification from the DEFINE
DICTIONARY command. In this example, DR1: represents the name of the
device on which the default DATATRIEVE system dictionary resides. DR2: is
the name of the device on which your file directory is stored:

DTR> SHOW DICTIONARYRED

The current dictionary is DR1:[1,21QUERY.DIC
DTR> SET DICTIONARY NEWDICRED

File "NEWDIC" not found

DTR> DEFINE DICTIONARYRE)

DFN> NEWDICRE

DTR> SHOW DICTIONARYRED

The current dictionary is DRZ2:[200,2Z00]INEWDIC.DIC
DTR* SET DICTIONARYRE

DTR> SHOW DICTIONARYRED

The current dictionary is DR1:[1,21QUERY.DIC
DTR*

Note that you do not need an explicit SET DICTIONARY command after enter-
ing DEFINE DICTIONARY NEWDIC, because that DEFINE sets the dictionary
to NEWDIC automatically.

Creating Data Dictionaries 3-3

Defining Domains 4

When you define a DATATRIEVE domain, the domain associates the names of a
record definition and a data file with each other. When you use a domain name,
you tell DATATRIEVE to use a particular record definition to interpret the data
stored in a specific file.

Do not confuse the domain with the data you want to manage using the domain.
You can erase old records or add new ones to a data file without disturbing the
relationship between the file and a record definition. That relationship is estab-
lished when you define a domain and it remains fixed.

This chapter explains how to define simple RMS domains. You can also use the
Application Design Tool (ADT) to define domains, records, and files. For informa-
tion on using ADT, see the Introduction to DATATRIEVE-11.

4.1 Specifying Domain Names

In the DEFINE DOMAIN command, you specify the name of a domain, the name
of the record definition associated with the domain, and the file specification of
the file containing the data for the domain. The domain name must:

e Begin with a letter (A-Z)
e Contain 31 characters or less
e End with a letter (A-Z) or a digit (0-9)

e Contain only letters, digits, dollar signs, hyphens, or underscores
(A-Z,0-9,8%,-,0r)

4-1

DATATRIEVE enters the domain definition in your current dictionary directory.
Note :

DATATRIEVE treats hyphens and underscores as identical char-
acters. You may use either underscores or hyphens in the names
you assign. When processing, DATATRIEVE automatically con-
verts hyphens to underscores. When it returns the output, it shows
underscores whether you have entered hyphens or underscores. To
use a hyphen as a minus sign, put spaces before and after it.

4.2 Defining a Simple RMS Domain

4-2

To define a domain, you associate the name of the domain with a record defini-
tion and file specification. The format for the DEFINE DOMAIN command
follows:

sswd)
")
The domain name cannot duplicate a DATATRIEVE keyword or the name of any
other element in the current data dictionary. The record name refers to the

record definition to be associated with the domain. You can define the domain
before you define the record. (See Chapter 5 for information on defining records.)

DEFINE DOMAIN domain-name USING record-name [(pa] ON file-spec

An optional password can be used to check for E (execute) privilege for the record
definition. If an asterisk prompt (*) is specified, DATATRIEVE prompts you for
the password.

Be sure to end the definition with a semicolon (;). If you omit the semicolon,
DATATRIEVE prompts you for one with DFN>.

The following rules apply to the DEFINE DOMAIN command:
e It must be preceded by a DATATRIEVE command level prompt DTR>.

® You cannot include a domain definition in a procedure.

¢ You cannot invoke a procedure in a domain definition.

e You cannot include a DEFINE DOMAIN command in a DATATRIEVE
statement.

Here is an example of the DEFINE DOMAIN command:

DTR> DEFINE DOMAIN SCHEDULE USING SCHED.REC ON SCHED IR
DTRX

This command enters the definition for SCHEDULE in your current dictionary.
The domain uses a record definition called SCHED_REC and a data file called
SCHED.DAT. The file extension .DAT is assigned to the data file by default.

Defining Domains

4.3 Using the SHOW Command with Domains

You can use the SHOW command to see how a domain is defined. If you enter
SHOW followed by the domain name, the text you used in the DEFINE
DOMAIN command is displayed on your terminal. For example, you enter
SHOW SCHEDULE, as follows, to see how the domain SCHEDULE is defined:

DTR> SHOW SCHEDULERED)
DOMAIN SCHEDULE

USING SCHED.REC ON SCHED]:
DTR >

Note that the domain must be defined in your current default dictionary. (See
Chapter 3 for information on dictionaries.)

To see if a domain is in your dictionary, enter the SHOW DOMAINS command.
This displays a listing of all domains in your default dictionary, as follows:

DTR> SHOW DOMAINSEED)

Domainss:
FAMILIES KETCHES OWNERS
OWNERS _SEQUENTIAL SAILBOATS SCHEDULE
YACHTS YACHTS _SEQUENTIAL

DTR>

Defining Domains 4-3

Defining Records

There are two ways to define a record in DATATRIEVE-11. You can use the
interactive Application Design Tool (ADT), and DATATRIEVE creates the
record for you based on your responses to a series of questions. You can also
define the record yourself with the DEFINE RECORD command.

For simple records, the Application Design Tool is often an efficient way to com-
plete your definition. See the Introduction to DATATRIEVE-11 for a sample
ADT session. The DEFINE RECORD command, on the other hand, lets you use
options not available through ADT. For instance, it lets you include clauses such
as the COMPUTED BY clause, which asks DATATRIEVE to calculate the value
of a field from the values of other fields or value expressions.

This chapter explains how to set up a record definition using the DEFINE
RECORD command. The DATATRIEVE-11 Reference Manual contains addi-
tional information on defining records, including alphabetical listings of all
clauses you can use in your record definitions.

5.1 Planning a Record Definition

The first step in writing a DATATRIEVE record definition is to analyze your
data. Decide what data items you need to manage, their relative importance, and
ways to group related items.

You might want to maintain your personnel files with DATATRIEVE, for exam-
ple. As you analyze the information, you find that for each employee you want to
include an identification number, status (experienced or trainee), name, depart-
ment, starting date, salary, and supervisor identification number. Your list of
data items might look like that in Figure 5-1.

5-1

IDENTIFICATION NUMBER

STATUS

EMPLOYEE NAME

DEPARTMENT

START DATE

SALARY

SUPERVISOR'S IDENTIFICATION NUMBER

Figure 5-1: Data Items in a Personnel Record

With your DATATRIEVE installation kit, you receive a record called
PERSONNEL_REC made up of the data items listed in Figure 5-1. The
DATATRIEVE definition for that record appears in Figure 5-2.

DTR> SHOW PERSONNEL_RECGRE)
RECORD PERSONNEL_REC

USING
01 PERSON,
03 ID PIC IS 9(3).
05 EMPLOYEE_STATUS PIC IS X(11)
QUERY_NAME IS5 STATUS
QUERY_HEADER IS "STATUS"
VALID IF STATUS EO "TRAINEE" »"EXPERIENCED".
05 EMPLOYEE_NAME QUERY_NAME IS5 NAME.
10 FIRST_NAME PIC IS X(10)
QUERY_NAME IS F_NAME.
16 LAST_NAME PIC IS X(10)
QUERY_.NAME IS L_NAME.
03 DEPT PIC IS XXX.
03 START_DATE USAGE IS DATE.
05 SALARY PIC IS 89(3)
EDIT_STRING I5 $%%,:%%%.
03 SUP_ID PIC IS 9(3).
b
DTR >

Figure 5-2: PERSONNEL_REC Record Definition

To write a DATATRIEVE record definition yourself, you provide the elements to
transform a list of data items like that in Figure 5-1 into a formal record defini-
tion like that in Figure 5-2. The rest of this chapter tells you how to make such a
change.

5.2 Getting Started and Naming a Record

5-2

When you define a record, you begin by specifying the name of a record. You can
define the record interactively by entering the DEFINE RECORD command

at the DTR> prompt followed by the complete record definition. If you make

a mistake, DATATRIEVE displays an error message and returns you to the
DATATRIEVE command level without saving the definition. You must then
retype it.

Defining Records

To avoid retyping, you can define the record in a procedure (see Chapter 9) or a
command file (see Chapter 10). You can define your record, or only a few fields of
the record, complete the definition (remember the semicolon), and then revise it
later. You can use your text editor or the DATATRIEVE Editor to add additional
fields or make whatever other changes you would like.

To make the changes with your text editor:

1. Copy the record definition to a file, using the following statement:
EXTRACT ON file-spec record-name

2. EXIT from DATATRIEVE

3. Use your text editor to make corrections in the record definition

Notice the file begins with the commands DELETE record-name and
DEFINE record-name. DATATRIEVE inserts these commands into the com-
mand file when you use the EXTRACT command. When you invoke the file,
DATATRIEVE deletes the incorrect record definition and creates the cor-
rected one.

4. Return to DATATRIEVE

5. Execute the command file just created by typing the at sign (@) and the file
name

See Chapter 16 for a description of the DATATRIEVE Editor.
When you name the record, the name must:

o Begin with a letter (A-Z)

e Contain 31 characters or less

e Contain only letters, digits, dollar signs, hyphens, or underscores
(A-Z,0-9,8%,-,0r_)

e Not duplicate a DATATRIEVE keyword

© Not duplicate the name of an existing dictionary object

5.3 Defining the Parts of a Record Definition

Having named the record, you can define its parts. The complete record
definition consists of one or more field definitions for fields like PERSON,
EMPLOYEE_STATUS, and EMPLOYEE_NAME in Figure 5-2. Each field defi-
nition describes the field itself, with a name and a field definition clause. It also
describes the field’s relationship to other fields, with a level number. Follow the
definition with a period. Figure 5-3 shows the four parts of the SALARY field in
PERSONNEL_REC.

Defining Records 5-3

5-4

Level Field
Number Name

05 SALARY PIC IS 9(3) < Two Field Definition Clauses
EDIT_STRING IS $$$,$$$F < Period (.)

Figure 5-3: Four Parts of the SALARY Field

These are required parts of the field definition:

¢ A level number specifying the field’s relationship to other fields in the record
e A field name identifying the field
e A period (.) signifying the end of the field definition

In addition, most field definitions contain clauses describing the information
stored in the field. Among other things, field definitions can describe the size of a
field, the type of information stored in it, and how the information will be
displayed.

In Figure 5-3, for example, the PIC (or PICTURE) clause describes the size of
the SALARY field and the type of information which can be stored there, in this
case a number with no more than five digits. The EDIT_STRING clause specifies
that information in the SALARY field will be displayed in monetary format with
a leading dollar sign ($) and a comma (,) in the appropriate place.

Level numbers, field names, and field definition clauses are discussed in the fol-
lowing sections.

5.3.1 Specifying Level Numbers

DATATRIEVE recognizes the levels of fields in the record definition according to
the level numbers you assign. The level number is the first element of a field
definition. Level numbers are one- or two-digit numbers, ranging from the high-
est possible level, 1, to the lowest possible level, 65. Leading zeros, as in 01 or 05,
do not affect the value of the level number.

Figure 5—4 shows the level numbers for fields in the PERSONNEL record
definition.

01 PERSON

05 1D

05 EMPLOYEE_STATUS

05 EMPLOYEE_NAME
10 FIRST_NAME
10 LAST_NAME

03 DEPT

05 START.DATE

05 SALARY

05 SUP.ID

Figure 5-4: Level Numbers in the PERSONNEL Record Definition

Defining Records

The level numbers apply to each group and elementary field:

e Group fields contain one or more group or elementary fields.

o Elementary fields contain one item of data and no other fields.

The group field PERSON is the top-level field and the only field with the level
number 01. Every record must have a top-level field. The group field
EMPLOYEE_NAME, numbered 05, contains the elementary fields
FIRST_NAME and LAST_NAME, numbered 10. The remaining fields, num-
bered 05 like the group field EMPLOYEE_NAME, are elementary fields at the
same level as EMPLOYEE_NAME.

If one of the elementary fields numbered 05 (DEPT, for example), were numbered
06, then that field would no longer be at the same level as the group field preced-
ing it. If DEPT were numbered 06, then it would become a part of the group field
EMPLOYEE_NAME.

A group field is not just a marker of record structure and relationships among
data items. A group field also gives you a way of using one name to refer to more
than one field. You can access all the data in the PERSONNEL_REC record, for
example, by using the group field PERSON. The following example shows how
you can display all the data in a selected record in the PERSONNEL domain
using the PERSON group field in a PRINT statement:

DTR> READY PERSONNELRE)
DTR> FIND PERSONNELQRE)
[23 records foundl
DTR> SELECT 3QReD

DTR> PRINT PERSONGD

FIRST LAST START SuP
ID STATUS NAME NAME DEPT DATE SALARY 1D
02843 EXPERIENCED CASS TERRY pDag 2-Jan-80 $29,908 38485

DTR>

When you develop a record structure, keep in mind these four guidelines for
using group and elementary fields:

e A record definition must define at least one elementary field.

e A record definition with more than one field definition must define a top-level
group field that includes all other fields in the record.

e A group field must contain at least one elementary field.

e A group field can contain both elementary and group fields.

Defining Records 5-5

5-6

Following are several rules for level numbers:

e Level numbers need not be consecutive.

Only the relative value of level numbers determines the relationship between
fields. For example, the structure of the record would be no different from its
present form if the fields numbered 05 had level numbers 02, and
FIRST_NAME and LAST_NAME had level numbers 47. Using similar incre-
ments in the numbers of successive levels is convenient but arbitrary. You do
not have to use the same increment between levels.

e Only the level numbers determine the relationships among fields.

The examples of records in this book indent field names to show the relation-
ships among levels of fields. Although indenting fields can make a record defi-
nition easy to read, it has no effect on the levels of fields and no effect on the
relationships between fields.

¢ You must use one number for all the fields at the same level in a group field,
like FIRST_NAME and LAST_NAME in PERSONNEL_REC.

® The level number for a group field must be lower than the number for any field
it contains.

5.3.2 Naming Fields

You must name every field you define. You use field names to control the way
DATATRIEVE retrieves, modifies, and stores data. If you do not specify a column
header different from the field name, DATATRIEVE uses the field name as the
column header when displaying data.

5.3.2.1 Restrictions for Field Names — The names you choose for fields must con-
form to the general restrictions for DATATRIEVE names, described in the
DATATRIEVE-11 Reference Manual. In summary, the name:

e Can consist of letters, digits, hyphens, dollar signs, and underscores
® Must begin with a letter

e Must not duplicate a DATATRIEVE keyword

® Must be from 1 to 31 characters long

o Must not duplicate the name of another dictionary object, domain, procedure,
or table

In most cases, DATATRIEVE displays an error message if you violate these
rules. However, if you duplicate dictionary object names, you may not receive an
error message or you may get unexpected results. For example, suppose you
want to display the contents of a field with the same name as a readied domain
in your workspace. If you enter PRINT and the field name, DATATRIEVE asso-
ciates the name with the domain rather than the field and displays the contents
of the domain. DATATRIEVE associates the name with the field only if it is the
second name in a print list.

Defining Records

You can continue a name from one input line to another by typing a hyphen at
the end of the input line, pressing RETURN, and completing the name on the
next line. To make the original information for the PERSONNEL record (Figure
5-1) conform to the rules for field names, change some of them. None of the
names in the original information exceeds 30 characters, but several contain
spaces, which are illegal characters in DATATRIEVE names. Figure 5-5 shows
the necessary changes.

IDENTIFICATION - ID

STATUS } — EMPLOYEE_STATUS

EMPLOYEE NAME : — EMPLOYEE_NAME
FIRST_NAME
LAST-NAME

DEPARTMENT —- DEPT

START DATE — START_DATE

SUPERVISOR'S IDENTIFICATION NUMBER — SUP_ID

Figure 5-5: Valid Field Names for EMPLOYEE_REC

5.3.2.2 Using Duplicate Field Names — DATATRIEVE does not require field
names to be unique. You can have several fields in one record that have the same
name. However, fields that share one name must be in different group fields. To
refer to a field name that is a duplicate, prefix it with its group field name. The
record is a field tree, not a simple linear list. No other field is equivalent to the
top-level field. All other fields are at lower levels of the structure. The levels of
the field tree define the relationships among group and elementary fields and
determine the sequence DATATRIEVE follows in searching for the names of
fields. In PERSONNEL_REC, the fields ID, EMPLOYEE_STATUS,
EMPLOYEE_NAME, DEPT, START_DATE, SALARY, and SUP_ID are at the
same level, one level below the top-level PERSON. FIRST_NAME and
LAST_NAME are on the third level in the field tree.

The following examples show some consequences of this structure:

o If you specify EMPLOYEE_NAME.LAST_NAME, DATATRIEVE looks at the
field names in the group field EMPLOYEE_NAME until it finds the desired
field. When DATATRIEVE searches for the specified field, it finds the first field
named EMPLOYEE_NAME. Then it looks at the next level lower for the first
field named LAST_NAME.

DTR>» FIND PERSONNELRED

[23 records foundl

DTR> SELECT 3R

DTR>» PRINT IDs EMPLOYEE_NAME.LAST_NAME: SALARYRD

LAST
1D NAME SALARY
02943 TERRY $29,908

DTR>

Defining Records 5-7

5-8

If you had a duplicate field called LAST_NAME, perhaps under a group field
SUP_NAME, you could use the tree structure to tell DATATRIEVE whether
you wanted to print EMPLOYEE_NAME.LAST_NAME or
SUP_NAME.LAST_NAME.

e LAST_NAME, without any qualification, is also a valid and unique field name

in PERSONNEL_REC because there is no duplicate for it in the present
record.

¢ Ifyou tell DATATRIEVE to store a value in ID.FIRST_NAME, it does not find
the field FIRST_NAME and does not store the value. It displays an error mes-
sage that says:

Field "ID.,FIRST_NAME" is undefined or used out of context

In general, though you can have duplicate and even multiple field names, it is
best to avoid duplicates. Unless you provide a qualified field name when refer-
ring to a duplicate field, DATATRIEVE retrieves the value of the first instance of
the duplicate field name. If you intend to refer to an instance other than the first
but do not specify it, you will receive the output of the first instance instead of
what you intend. If you do choose to use duplicate or multiple field names, you
should be careful to use qualified names when necessary.

~ 5.3.2.3 Using the Field Name FILLER — Sometimes you want to preserve fields in

a data file without using them, usually for one of these reasons:

¢ You may not need those fields for a particular application.

¢ You may want to control the display of records so that you do not display cer-
tain data.

® You may want to reserve space in the physical record of the data file.

For these purposes, you can specify the keyword FILLER as the name of an ele-
mentary or group field. Like other fields, a field named FILLER must have a
level number, and it can contain field definition clauses. Unlike other fields, the
field name FILLER can belong to more than one field at the same‘level in a
group field. When you use the PRINT, LIST, MODIFY, STORE, REPORT, and
SUM statements, DATATRIEVE ignores values in FILLER fields. When you use
the DISPLAY statement, DATATRIEVE does display the values in FILLER
fields.

You cannot retrieve whole records or group fields containing a group field named
FILLER. You can, however, retrieve values from the elementary and group fields
included in a group field named FILLER. Each of those fields has its own valid
name, and you can retrieve the value by specifying that name in a record selec-
tion expression, a print list, or a field list.

Figure 5-6 shows a part of the YACHT record definition with FILLER in place of
TYPE, the group field that contains MANUFACTURER and MODEL. It also
shows the result of a SHOW FIELDS and two PRINT statements, one of the top-
level group field and one of an elementary field (MODEL) in the group field
FILLER.

Defining Records

Level numbers and field names of YACHT record with filler as group field

01 BOAT

03 FILLER
06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
0B RIG
0B LENGTH-.OVER_-ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

The effect of FILLER on SHOW FIELDS

DTR> SHOW FIELDSEE)

YACHTS
BOAT
SPECIFICATIONS (SPECS)

RIG [Character stringl
LENGTH_.OVER_-ALL (LOA) [Character stringl
DISPLACEMENT (DISP) [Number]
BEAM [Number]
PRICE [Numberl

DTR >

The effect of FILLER as a group field on two PRINT statements

DTR> FIND YACHTS3 SELECT3S PRINTGEE)

LENGTH

OVER
RIG ALL WEIGHT BEAM PRICE
KETCH 37 20,000 12 $3B6.:951

DTR*> PRINT MODELRE)
MODEL
37 MK II

DTR:

Figure 5-6: Using FILLER as a Group Field Name

Defining Records

5-9

5-10

5.3.3 Using Field Definition Clauses

DATATRIEVE handles the information in a field according to the type of data in
the field definition. DATATRIEVE recognizes the following field definition
clauses:

e COMPUTED BY

e EDIT_STRING

e OCCURS

e PICTURE

e QUERY_HEADER
e QUERY_NAME

e REDEFINES

e SIGN

e USAGE

e VALID IF

When you write a DATATRIEVE record definition, use a PICTURE, USAGE, or
COMPUTED BY clause to specify the type of data each elementary field
contains.

You can specify these classes of ﬁelds:v

e Alphanumeric

Define an alphanumeric field with a PICTURE clause of the form PIC X(n),
where n is an integer value describing the field width. The
EMPLOYEE_STATUS field in the record PERSONNEL_REC, for instance,
looks like this:

05 EMPLOYEE_STATUS PIC IS X(11).

You can store any combination of characters in alphanumeric fields: letters,
digits, and the special characters that are part of the DATATRIEVE character
set. See the DATATRIEVE~11 Reference Manual for a definition of the
DATATRIEVE character set.

Defining Records

e Numeric

You can store digits and an optional sign (+ or -) in numeric fields.
DATATRIEVE assumes unsigned numbers to be positive in computations. In
the YACHT record, DISPLACEMENT, BEAM, and PRICE are numeric fields.
Define a numeric field with a PICTURE clause of the form PIC (n), where n is
an integer value representing the field width, or with any of these USAGE
clauses:

— COMP (or INTEGER)

— COMP-1 (or REAL)

— COMP-2 (or DOUBLE)

— COMP-3 (or PACKED)

— COMP-5 (or ZONED)

USAGE clauses follow a field definition in the format:

06 EMPLOYEE_SALARY PIC IS 89(B) USAGE IS5 INTEGER.

See the DATATRIEVE—11 Reference Manual for explanations of the internal
storage for USAGE clauses.

e Date

Define a date field with the USAGE clause in the form USAGE IS DATE. You
can store dates between 17-Nov—-1858 and 28-Feb—2100 in a date field. You can
use the values in date fields in some kinds of computations. For example, you
can subtract one date from another to get the number of days elapsed between
the two dates.

o Computed by

Define a computed by field with the COMPUTED BY clause. A computed by
field in a record definition does not correspond to a field in the physical record
stored in the data file and does not occupy space in a record. It specifies a value
expression. For example, you can define a field named SALARY computed by
multiplying the hourly pay of an employee (the WAGE field of the same record)
by the number of hours worked (the HOURS field of the record). The field defi-
nition would be:

05 SALARY
EDIT.STRING 4%39,809
COMPUTED BY WAGE * HOURS.

DATATRIEVE computes the value of the field when you refer to it in a
statement.

Defining Records 5-11

5-12

An elementary field can belong to any one of the four classes of fields — alphanu-
meric, numeric, date, or computed by. You do not need to use a clause to specify
the data type for a group field. A group field is always alphanumeric. If you have
stored only digits in a group field, you can use it in arithmetic computations.

Table 5-1 summarizes the field classes and their content.

Table 5—1: Field Classes

Field Type " Class Content
Elementary field Alphanumeric Any combination of characters
Numeric Any combination of digits and optional plus (+) or
minus (—) sign
DATE A date

COMPUTED BY None; the field definition specifies a value expres-
sion, but no value is stored in the record

Group field Alphanumeric The values of the fields contained in the group field

5.3.4 Specifying Query Names

You can use the QUERY_NAME field definition clause to specify an alternative
name for any field in your record definition. When you name a field, it is good to
select a field name that is short enough to use easily but long enough to be mean-
ingful, especially to other people who may use the record. At times, however, you
may want to use an abbreviation or a memorable short name in place of the for-
mal field name. For example, the YACHT record contains one field named
LENGTH_OVER_ALL that is fifteen characters long. The name suggests the
meaning of the data stored in that field and is therefore helpful to a person unfa-
miliar with the YACHTS domain. The field has a query name as well, LOA, to
save you from having to type the complete name each time you refer to the field.

You can use a query name in any DATATRIEVE statement where you can use
the corresponding field name. Figure 5-7 shows a set of query names for
PERSONNEL_REC.

EMPLOYEE_STATUS QUERY_NAME IS STATUS.

EMPLOYEE_NAME QUERY_NAME IS NAME.
FIRST-NAME QUERY-NAME IS F_NAME.
LAST_NAME QUERY_NAME IS L_NAME.

Figure 5-7: Query Names for PERSONNEL_REC

Defining Records

5.3.5 Specifying Word Boundary Alignment with the ALLOCATION
) Clause

The ALLOCATION clause determines which word boundary alignment
DATATRIEVE uses when storing records in the data file. You can specify one of
three kinds of alignment:

e LEFT_RIGHT
e MAJOR_MINOR
e ALIGNED_MAJOR_MINOR

For explanations of the three word boundary alignments, see the
DATATRIEVE-11 Reference Manual. If you do not specify otherwise,
DATATRIEVE-11 uses LEFT_RIGHT alignment.

If you attempt to use DATATRIEVE-11 on a data file created with an alignment

| other than LEFT_RIGHT, be sure to specify the matching alignment in the
DATATRIEVE-11 record definition. VAX DATATRIEVE, for instance, uses
MAJOR_MINOR as the default alignment. You must specify MAJOR_MINOR
in your DATATRIEVE-11 record definition if you wish to use a data file created
on VAX DATATRIEVE. If the alignment in the record definition does not match
the alignment in the data file, you receive this message:

File and domain record lendths don’t match (D=37)

) 5.4 Using the OCCURS Clause to Define Hierarchical Records

At times, to save space in your record definition, you may want to define one or
more fields as list fields. Compare, for instance, the following two sample output
lines from the domain FAMILIES. The first does not use a list field but instead
includes a separate field in the record for each child. The second does use a list

field:
) DTR> PRINT FIRST 1 FAMILIESGEED
KID KID
FATHER MOTHER NAME AGE NAME AGE
JIM ANN URSULA 7 RALPH 3
DTR>

DTR> PRINT FIRST 1 FAMILIESGEED

NUMBER KID
FATHER MOTHER KIDS NAME AGE
JIM ANN 2 URSULA 7
RALPH 3

DTR>

Defining Records 5-13

5-14

Records without lists are flat records, because the elementary fields in them are
logically equivalent to each other. When you print a flat record, all the elemen-
tary fields display on the same line.

Without an OCCURS clause, the record for FAMILIES can look like the one
shown in Figure 5-8.

01 FAMILY_REC.,
03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).
03 KIDS,
06 FIRST_KID.
08 KIDLNAME PIC X(10).
089 AGE PIC 99 EDIT_STRING IS Z9.
06 SECOND_KID.
09 KID_NAME PIC X(10).
09 AGE PIC 88 EDIT_STRING IS Z9.

Figure 5-8: A Flat Record

When using an OCCURS clause, however, you can define a record with fields
that are lists. A record containing a list or lists is not a flat record, but a
hierarchical record. In hierarchical records, elementary fields are not all logi-
cally equivalent to each other. The list field displays on the same line as the ele-
mentary fields with the same number, but the list items display on additional
lines beneath the list field. With an OCCURS clause for KIDS, the record
FAMILY_REC can look like the one in Figure 5-9, a sample record installed
with your system.

DTR> SHOW FAMILY_RECGEE
RECORD FAMILY_REC
01 FAMILY.,
03 PARENTS.
0B FATHER PIC X(10).
06 MOTHER PIC X{(10).
03 NUMBER_KIDS PIC 99 EDIT.STRING IS Z9.
03 KIDS OCCURS © TO 10 TIMES DEPENDING ON NUMBER-KIDS.
06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

DTR
Figure 5-9: A Hierarchical Record
The OCCURS clause in the record definition creates the hierarchical structure.

The clause can define a variable-length or a fixed-length list. The following two
sections discuss fixed-length and variable-length lists for hierarchical records.

Defining Records

5.4.1 Defining Lists with a Fixed Number of Occurrences

The OCCURS clause format for fixed length lists is OCCURS n TIMES, where n
is the number of occurrences. If you define the record for FAMILIES using
OCCURS 2 TIMES, the record definition looks like this:

03 KIDS_NAMES OCCURS 2 TIMES.
05 FIRST_NAME PIC X(10).
05 AGE PIC 99 EDIT_STRING IS Z29.

The definition specifies that the group field KIDS_NAMES occurs twice. Each
occurrence of KIDS_NAMES contains two fields, FIRST_NAME and AGE.

When DATATRIEVE displays the fixed record, the output looks like this:

DTR> PRINT FIRST 2 FAMILIESGEE)

FIRST
NAME
FATHER MOTHER AGE
JIM ANN URSULA 7
RALPH 3
JIM LOUISE ANN 31
JIM 29

DTR>

You can use OCCURS n TIMES with an elementary or group field, and a record
definition can contain any number of OCCURS clauses in this format. That is, an
OCCURS clause can contain another fixed-length OCCURS clause.

03 KIDS_NAMES OCCURS 2 TIMES
05 FIRST_NAME PIC X{(10).
05 AGE PIC 889 EDIT.STRING IS Z9.
05 NICKNAME PIC X(10)
OCCURS 3 TIMES.,

If you define a hierarchical record with a list that occurs a fixed number of times,
every record in the domain contains enough space to store the same number of
list items. If the first two families had only one child, for instance, the FAMILIES
domain with a fixed number of occurrences would print a blank line for the sec-
ond child:

DTR> PRINT FAMILIESQRE

FIRST
NAME
FATHER MOTHER AGE
JIM ANN URSULA 7
0
JIM LOUISE ANNE 31
0

DTR>

Defining Records 5-15

A field definition cannot contain both an OCCURS and a COMPUTED BY
clause. That is, you cannot specify multiple occurrences of a COMPUTED BY
field.

5.4.2 Defining Lists with a Variable Number of Occurrences

Using the OCCURS clause in a field definition defines a hierarchical record that
allows a variable number of list items from one record to another. This format
lets you vary the number of list items in the records of a domain:

OCCURS min TO max TIMES DEPENDING ON field-name

The record definition for FAMILIES uses the OCCURS clause to define KIDS as
a variable-length list. The KIDS variable-length list for FAMILY_REC is shown
in Figure 5-9. The output of the PRINT command shows the relationship
between NUMBER_KIDS and the fields KID_NAME and AGE. The values of
KID_NAME and AGE appear as a list in records with more than one kid:

DTR> PRINT FAMILIESGE

NUMBER KID
FATHER MOTHER KIDS NAME AGE
JIM ANN 2 URSULA 7
RALPH 3
JIM LOUISE 5 ANNE 31
JIM 28
ELLEN 26
DAVID 24
. ROBERT 16
JOHN JULIE 2 ANN 29
JEAN 26
JOHN ELLEN 1 CHRISTOPHR O
ARNIE ANNE 2 SCOTT 2
BRIAN 0
SHEARMAN SARAH 1 DAVID 0
TOM ANNE 2 PATRICK 4
SUZIE B
BASIL MERIDETH (5] BEAU 28
' BROOKS 26
ROBIN 24
JAY 22
WREN 17
- JILL 20
ROB DIDI 0
JEROME RUTH 4 ERIC 32
CISsY 24
NANCY 22
MICHAEL 20
TOM BETTY 2 MARTHA 30
TOM 27
GEORGE LOIS 3 JEFF 23
FRED 26
LAURA 21
HAROLD SARAH 3 CHARLIE 31
HAROLD 35
SARAH 27
EDMWIN TRINITA 2 ERIC 16
SCOTT 11
DTR>

5-16 Defining Records

When you define a record with a variable-length list in it, you must put the list
at the end of the record definition. You can use only one field with an OCCURS
clause. That is, you cannot have an OCCURS clause within an OCCURS clause.
If you attempt to define another field after an OCCURS clause and at the same

level, you receive the following error message:

ONLY Subordinate fields allowed after OCCURS DEPENDING ON

5.4.3 Nesting Lists Within Lists to Form Sublists

Although you can use only one OCCURS clause in a record definition, you can
define fixed-length lists within a variable-length list. In fact, you can include
any number of OCCURS n TIMES clauses within a field defined with an
OCCURS clause. This sample record definition with a sublist is an extension of
the FAMILY record. The list PET occurs twice for each kid, so each kid in each

family can record the data for two pets:

DTR> SHOW PETSEE
DOMAIN PETS
USING PET_REC ON PET.DAT;

DTR*> SHOW PET_-RECGRE)
RECORD PET_REC
01 FAMILY
03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_-KIDS PIC 99 EDIT_STRING IS Z9.

03 KIDS OCCURS 0 TO 10 TIMES DEPENDING

06 EACH.KID.

08 KID.NAME PIC X{(10) QUERY_
09 KID_AGE PIC 89 EDIT_.STRING IS

09 PET DCCURS 2 TIMES.
13 PET_NAME PIC X(10),
13 PET-AGE PIC 89,

.
3

DTR:> READY PETSEED
DTR> PRINT FIRST Z PETSE

NUMBER KID
FATHER MOTHER KID§8 NAME
JIM LORAINE 2 GARY
SUE
JIM ANN 2 URSULA
RALPH

NAME

ON NUMBER_
IS KID.
£9.
KID PET
AGE NAME
24 POP
S0DA
23 MOUSE
SHORTY
7 SQUEEKY
FRANK
3

Defining Records

KIDS.,

PET
AGE

03
o4
03
08
03
07
00
00

5-17

5-18

5.4.4 Changing the Length of a List

If you define a record-with the OCCURS clause, you can change the number of
occurrences in a list. If you specify the MAX clause when defining the data file,
all records have enough space for the maximum number of occurrences, and you
can always change the number of occurrences up to the limit you have set:

DTR> DEFINE FILE FOR FAMILIES MAX

If you do not specify the MAX clause when you define a sequential file,
DATATRIEVE sets the length of each record when you store it. In that case, you
cannot add examples to the list. You can always decrease the number of occur-
rences, though, and you can increase the number of occurrences back to the orig-
inal number.

If you do not specify the MAX clause and the file organization is indexed, you can
still change the number of occurrences.

The following example shows how to add items to a list. Because you are modify-
ing an existing record, you use MODIFY rather than STORE to add items to the
list:

DTR> READY INDEXED_FAMILIES WRITEGD
DTR> FIND FIRST 1 INDEXED_FAMILIESRD
[1 Record foundl

DTR> SELECT: PRINTGED

NUMBER KID

FATHER MOTHER KIDS NAME AGE
JIM ANN 2 UrRSULA 7
RALPH 3

DTR> MODIFY NUMBER_KIDSEED
Enter NUMBER_KIDS: 4@
DTR> FIND KIDSED

[4 records foundl

DTR> SELECT 3@

DTR> MODIFY@ED

Enter KID_NAME: NICKY@ED
Enter AGE: 2@

DTR> SELECT 4@

DTR> MODIFY@®D

Enter KID_NAME: TAMED
Enter AGE: 1@

DTR*> PRINT FIRST 1 INDEXED_FAMILIESGEED

NUMBER KID
FATHER MOTHER KIDS NAME - AGE
JIM ANN 4 URSULA 7
RALPH 3
NICKY 2
TAM 1

DTR>

For information on retrieving data from hierarchical records, see Chapter 14 in
this manual. '

Defining Records

Defining Files 6

The way you define a data file determines how much storage space the file occu-
pies, how quickly you can retrieve data from the file, and whether you can
change or duplicate data fields in that file.

DATATRIEVE is based on RMS, the standard DIGITAL record and file manage-
ment software facility. Based on how you define your data files, DATATRIEVE
uses RMS to create, define, store, manipulate, and maintain information within

your files. Your operating system documentation will give you more information
on RMS.

You can define two types of files in DATATRIEVE:

e Sequential files, which store records in the order you enter them

¢ Indexed files, which store records according to the order of a specified key field

This chapter discusses the DEFINE FILE command, the choices you have when
deciding whether to use sequential or indexed files, and other options available
to you when you define a file in DATATRIEVE.

6.1 Choosing a Sequential or an Indexed File

Sequential files require less storage space than indexed files but it often takes
longer to retrieve data from sequential files.

To retrieve records from a sequential file, DATATRIEVE searches records one by
one according to their order in the file. To retrieve records from an indexed file,
DATATRIEVE searches the file according to specified key fields. The key fields
are searched first, regardless of their order in the data file.

6-1

Sequential organization is useful in certain applications. For example, if your

~ records contain a date field and you frequently retrieve them in chronological

- order, it is often best to arrange the records in the order you stored them. You are
likely to want sequential access to banking transactions, for example.

Use sequential files for accessing large groups of records in the order you stored
them.

In other cases, sequential organization may be unnecessarily slow. When you
use a record selection expression (RSE) to form a record stream or collection of
records from a sequential file, DATATRIEVE has to start at the beginning of the
file and read every record until it finds the ones that you request.

If you use an RSE to form a record stream based on key fields, RMS searches
through the index it maintains without having to read every record. If you need

to access a small number of records distributed throughout a file, use an indexed
file.

6.1.1 Modifying and Deleting Records

Because of differences in file organization, you modify and delete records differ-
ently for sequential and indexed files. In a sequential file, you can use the
MODIFY statement to change any field, but in an indexed file, you cannot mod-
ify the primary key field. You also cannot modify secondary key fields defined
with the NO CHANGE clause explained in the section on optional clauses later
in this chapter.

RMS does not allow you to use the ERASE statement in a sequential file where
sequence is the basis of the file organization. If you need to erase records from
your data file, use an indexed file. You can, however, use the MODIFY statement
on records in sequential files and change every field to zero or spaces depending
on the data type.

6.1.2 Summary of Differences
Table 6-1 summarizes the differences between sequential and indexed files.

Table 6—1: A Comparison of Sequential and Indexed Files

SEQUENTIAL FILE INDEXED FILE
Stores records in the order you create them Stores records according to the values in the
' primary key field

Takes up less storage space than an indexed Allows you to retrieve certain data faster

file than a sequential file does

Allows you to modify any field Does not allow you to modify primary key
field or any key field that has NO CHANGE
attribute

Requires you to use MODIFY instead of Lets you use ERASE statement

ERASE

6-2 Defining Files

6.2 Defining a File Using the DEFINE FILE Command

DATATRIEVE can store and retrieve data using existing RMS data files, so it is
compatible with other languages or utilities that use RMS. It can also create
RMS files, including sequential files and multikey indexed files. The DEFINE
FILE command forms an RMS data file for the domain you specify. It uses the
format: :

DEFINE FILE [FOR] domain-name [,]
ALLOCATION = n
SUPERCEDE
MAX

{KEY = field-name-1 [([NOJCHANGEI,] [NO] DUP)]} [

The DATATRIEVE-11 Reference Manual also discusses the DEFINE FILE
command.

[..]

6.2.1 Defining a Sequential File
If you decide you want your data file to be sequential, follow these steps:

1. Before you define a data file, the associated domain and record definitions
must be in your dictionary. You can use the SHOW command to be sure that
they are in place:

DTR> SHOW YACHTS_SEQUENTIAL + YACHTRED
DOMAIN YACHTS_SEQUENTIAL
USING YACHT ON YACHT.SEQ 3
RECORD YACHT
USING
01 BOAT.
03 TYPE.

068 MANUFACTURER PIC X{(10)
QUERY_NAME IS BUILDER.

06 MODEL PIC X(10),

03 SPECIFICATIONS

DUERY_NAME SPECS.

06 RIG PIC X(B)

VALID IF RIG EQ "SLOOP""KETCH" ,"MS" s"YAMWL",

06 LENGTH_OVER_ALL PIC XXX
YALID IF LOA BETHWEEN 15 AND 30
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99989
QUERY_HEADER IS5 "WEIGHT"
EDIT_STRING IS ZZZZ
QUERY_NAME I8 DISP.

06 BEAM PIC 89,

06 PRICE PIC 899399
VALID IF PRICE:DISP#*1.3 OR PRICE EQ 0
EDIT_STRING IS 5% :%$%%.

DTR:

Defining Files 6-3

64

2. Use the DEFINE FILE command to define the file. For a sequential file, you
need specify only the domain name in the DEFINE FILE command:

DTR> DEFINE FILE FOR YACHTS_SEQRE
DTR>

3. Select the options you want to use with the file, as explained in the later sec-
tion on optional clauses.

6.2.2 Defining an Indexed File

You use the KEY clause in the DEFINE FILE command to create an indexed file.
The clause creates an indexed file and specifies a field in the record definition to
be an index key for the domain’s data file. The first key field you name in the
DEFINE FILE command is the primary key. All subsequent keys are alternate
keys.

If you decide you want your file to be indexed, first analyze your record definition
to decide which field or fields you want to be key fields.

You can designate only one primary key field, but you can name as many
alternate key fields as you wish from the remaining fields in the record.
DATATRIEVE searches the primary and alternate fields independently, so defin-
ing alternate keys does not slow performance for queries based on the primary
key.

To choose a primary key, decide which field of the record you are likely to name
most often in queries. Make certain you will not want to change that field,
because DATATRIEVE does not allow you to change the values in primary keys.

Finally, look for a field that has a unique value for each record. Unless you spec-
ify otherwise, DATATRIEVE does not allow you to have the same value in more
than one primary key field. For instance, you could not have two records in
PERSONNEL with the ID 99883. You can use the DUP option to allow dupli-
cates, as explained later in this chapter, but duplicate values slow performance.

If you were setting up a PERSONNEL domain, you might predict that most
users seeking information on an employee would base their search on the ID.
You would not want to change identification numbers, and no two employees
should have the same identification number. Consequently, ID uniquely identi-
fies a record and is a good primary key for your PERSONNEL domain. This
DEFINE FILE command would make ID the primary key for the indexed file
PERSONNEL:

DTR> DEFINE FILE FOR PERSONNEL s+ KEY=IDGRE
DTR>

Defining Files

6.2.2.1 Using a Group Field as the Primary Key — If the field you use most often
does not uniquely identify each record, you can find another field that, together
with the first, does identify the record. Then designate a group field made up of
the two fields as the primary key. In the domain YACHTS the elementary field
MANUFACTURER does not uniquely identify a record. ALBIN, for instance, is
the builder of three of the first five YACHTS:

DTR» PRINT FIRST 5 YACHTSGED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK I1I KETCH 37 20,000 12 $36,951
ALBIN 79 sLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7276 10 $27,500
ALBIN VEGA sLoaP 27 5:070 08 $18,600
AMERICAN 26 SLO0OP 26 4,000 08 %9,895

DTR>

The combination of MANUFACTURER and MODEL, however, is unique for
each record. These two fields are defined as the group field TYPE in the YACHT
record definition. Therefore, TYPE, which has no duplicate values, makes a suit-
able primary key.

Note that when you use a group field as a primary key, you cannot modify any of
the elementary fields in the group. In addition, note that BUILDER has been
defined as a query name for MANUFACTURER in the YACHT record definition.
This means you can use the shorter name BUILDER in place of
MANUFACTURER in queries.

If a group field is the primary key, list the field most commonly used in queries as
the first elementary field in the group field. The field MANUFACTURER
(BUILDER) appears in queries more frequently than MODEL, for example.

When a group field such as TYPE is defined as a key field, keyed access will work
only for queries involving the group field itself or the first elementary field in the
group. With TYPE as the key field, DATATRIEVE conducts an indexed search
for TYPE or BUILDER but a sequential search for the second elementary field,
MODEL.

If you want DATATRIEVE to use the first elementary field in a group field as a
key, you must define that first field as either PIC X or PIC 9 in the group field
definition. When you ready the domain, DATATRIEVE uses the group field as
the key. If the first elementary field is anything but a simple numefric or charac-
ter string, it is not treated as a key when the domain is readied.

6.2.2.2 Defining Alternate Keys — If there are additional fields that you often use
in queries, you can define them as alternate keys. DATATRIEVE performs an
indexed search when you refer to an alternate key in a query.

Defining Files 6-5

6—6

You could make LENGTH_OVER_ALL an alternate key for YACHTS. Use this
form of the DEFINE FILE command:

DTR» DEFINE FILE FOR YACHTS KEY = TYPEs KEY = LOAGD
DTR>

DATATRIEVE allows duplicate values for the alternate keys unless you specify
otherwise with the NO DUP option explained in a later section on options.

Chapter 17 in this manual tells how to use key fields for optimum processing.

6.2.2.3 Summary of Rules for Defining Key Fields — To set up key fields that
DATATRIEVE can process most efficiently, use these guidelines:

e When defining data, make the field most commonly used in queries the pri-
mary key.

e If the most commonly used field does not uniquely identify a record, combine it
with another field in a field group so that the group field identifies the record.

o Avoid duplicate values of a primary key when possible because duplications
slow performance.

e If you decide to make a group field the primary key, list the field most com-
monly used in queries as the first elementary field.

- If your record has other fields you often use with the primary key in queries,

designate them as alternate keys.

6.2.3 Optional Clauses with the DEFINE FILE Command

You can use the following options in your DEFINE FILE command for both
sequential and indexed files:

e ALLOCATION = n

ALLOCATION in the DEFINE FILE command refers to the allocation of disk
blocks to a file. If you do not specify an allocation for a sequential file that you
create, DATATRIEVE allots zero blocks to the file and then assigns space as
needed. For an indexed file, it allots a small space when you create the file and
additional space as needed.

If you know your file is going to be large, however, you can use the
ALLOCATION = n clause to reserve storage space for the file and increase the
speed at which you can store records:

DTR>» DEFINE FILE FOR YACHTS ALLOCATION = 2000@D)
DTR >

See Chapter 17 for a discussion of techniques for optimizing response time and
workspace.

Defining Files

¢ SUPERSEDE

If you specify SUPERSEDE in your DEFINE FILE command, DATATRIEVE
deletes the existing file with the same name and replaces it with the new one.

Because RSTS/E systems keep only one version of a file, you must specify
SUPERSEDE on RSTS/E systems when defining a file to replace one that
already exists. If you do not, DATATRIEVE sends you an error message and
does not create the new file:

DTR> DEFINE FILE FOR YACHTSGEE
File "YACHT.DAT" already exists
DTR>

On RSX systems, be sure that the complete file specification, including version
number, duplicates the one you want to replace. Otherwise, DATATRIEVE
keeps both the old and the new files. If the file you want to replace is
YACHT.DAT;1, you would specify the replacement file as follows:

DTR> DEFINE DOMAIN YACHTS USING YACHT ON YACHT.DATi1@E)
DTR> DEFINE FILE FOR YACHTS SUPERSEDEQRD
DTR:

e MAX

As explained in Chapter 5, a record defined with the OCCURS clause allows
you to vary the number of occurrences in a list.

For a record with an OCCURS clause, use the MAX clause when defining the
file. This reserves space in every record for the maximum possible number of
list items. The record for FAMILIES, for instance, has this OCCURS clause:

03 KIDS OCCURS O TO 10 TIMES DEPENDING ON NUMBER_KIDS.

If you request the MAX option when defining a file for FAMILIES, you reserve
space for 10 kids in each record. Use this form of the command:

DTR> DEFINE FILE FOR FAMILIES MAXEED
DTR:

If you do not specify the MAX clause when you define a sequential file,
DATATRIEVE sets the length of each record when you store it. In that case,
you cannot add additional elements to the list. You can decrease the number of
occurrences and you can also increase the number of occurrences back to the
original number.

If you specify more than one option in the DEFINE FILE command, separate
each from the next with a comma. You do not have to specify the options in any
particular order.

DTR>» DEFINE FILE FOR FAMILIES SUPERSEDEs ALLOCATION = 2000, MAXED
DTR>

Defining Files 6—7

6-8

You can use these optional clauses with indexed files:

e CHANGE or NO CHANGE

The CHANGE or NO CHANGE clause determines whether or not you can
modify the contents of the key field associated with the clause. To specify the
CHANGE or NO CHANGE option, put the clause in parentheses after the
name of the key field:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (ND CHANGE)@H
DTR >

You cannot specify CHANGE for a primary key. CHANGE is in effect for alter-
nate keys unless you specify otherwise.

DUP or NO DUP

The DUP or NO DUP clause determines whether or not you can assign the
same value to the specified key field in more than one record. Can more than
one YACHTS record, for instance, have the value ALBIN for the key field
BUILDER?

NO DUP is the default for primary keys. However, DATATRIEVE allows you
to specify DUP for primary keys. You may slow performance in retrieving
records if you do so, because DATATRIEVE performs an indexed search to find
the primary key and then a sequential search through the duplicates when it
finds them.

For alternate keys you can, by default, use duplicate values. You can specify
NO DUP if you like, but eliminating duplicates from an alternate key field
can limit the number of records you can store successfully. If you assigned RIG
as an alternate key and specified the NO DUP option, for instance, you

could store only four records in YACHTS: one sloop, one ketch, one yawl,

and one MS.

If you do not want duplicates and you do not want the alternate key values to
change, put both sets of keywords in parentheses and separate them with a
comma: KEY = field-name (NO DUP, NO CHANGE).

This example defines an indexed file for YACHTS. It uses the group field TYPE
as the primary key with the DUP option in effect, and RIG as an alternate key
with the NO CHANGE option in effect:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE (DUP) :RE)
DFN> KEY = RIG (NO CHANGE)GRE
DTR>

Defining Files

Limiting Record Streams with Record
Selection Expressions

You define and store data so you can retrieve information in whatever form is
most useful. You may want to perform any of these activities:

¢ Display a group of records (PRINT or REPORT statements)
¢ Form a temporary collection of records (FIND statement)

e Update a group of records (MODIFY statement)

To carry out any of these tasks, you must identify a record stream, that is, a
group of records from a domain or collection. You form record streams with
DATATRIEVE by specifying a record selection expression (RSE).

By including various clauses in the RSE, you can determine the content of the
record stream in several ways:

e By specifying the number of records in the record stream (FIRST n clause)

e By limiting the record stream to records that meet a conditional test (WITH
clause)

e By sorting the records according to the values of one or more fields (SORTED
BY clause)

This chapter presents many examples to teach you how to use RSEs. The exam-
ples use RSEs with the PRINT statement, but you may use them with FIND,
REPORT, or other DATATRIEVE statements.

In addition, see Chapter 14 for information about another form of RSE that lets
_you access list items from hierarchical records.

7-1

7.1 Accessing All the Records in a Domain

If a domain does not contain many records, you may be satisfied to display all of
the records. You form one type of PRINT statement by typing PRINT followed by
an RSE; for example:

DTR> READY YACHTSEED
DTR> PRINT YACHTSED

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK II KETCH 37 20,000 12 36,951
ALBIN 79 SLOOP 26 44200 10 $17,800
ALBIN BALLAD sLOooP 30 7276 10 $27,500
ALBIN VEGA SLOOP 27 5:070 0B $18,600
AMERICAN 26 sLoop 26 4,000 0B $8,895
AMERICAN 26-MS MS 26 5300 08 $18,885
BAYFIELD 30/32 sLooP 32 9,300 10 $32:875
BLOCK I. 40 SLOoP 39 18,500 12

BOMBAY CLIPPER SLOOP 31 9,400 11 $23,950
BUCCANEER 270 SLOOP 27 5000 08
BUCCANEER 320 sLOOP 32 124300 10

caC CORVETTE sLoop 31 8650 09

VENTURE 222 SLOOP 22 2,000 07 $3:564
WESTERLY CENTAUR SLOOP 26 B:700 0B $15.,245
WESTSAIL 32 sLoop 32 18,500 11
WINDPOWER IMPULSE SLOOP 16 650 07 $3:+500
WRIGHT SEAWIND II SLOOP 32 14,900 00 434,480

DTR>

The PRINT YACHTS statement gives a display of all the records in the YACHTS
domain. The source for the RSE is YACHTS, the name of the domain. Each RSE
must include a source for the records, either a domain name, collection name, or
list name.

For clarity, you may want to specify the keyword ALL when you want a record
stream to include all the records in a domain. The keyword ALL is optional. For
example, PRINT ALL YACHTS and PRINT YACHTS are equivalent.

7-2 Limiting Record Streams with Record Selection Expressions

7.2 Specifying the Number of Records in the Record Stream
The keywords ALL and FIRST let you indicate the number of records in the
record stream. To specify the number of records in the record stream, type FIRST

followed by a number before typing the source for the RSE. For example:

DTR> PRINT FIRST 5 YACHTSED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK 11 KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 417,800
ALBIN BALLAD sLooP 30 7276 10 $27,300
ALBIN VEGA sLooe 27 5,070 08 $18,600
AMERICAN 26 SLOOP 26 4,000 08 $9,885

DTR >

In this case FIRST 5 YACHTS is the RSE. DATATRIEVE displays the first five
records in YACHTS according to their order in the data file. An RSE can have

either form:
FIRST ndomain-name < for a domain
FIRST n collection-name <« for a collection

where n is any number less than or equal to the total number of records in the
domain or collection.

If n is greater than the number of records in the source, DATATRIEVE gives you
all the records that fulfill the RSE and does not display a message on your
terminal.

Limiting the record stream can be useful when you are testing procedures, com-
plex RSEs, or report specifications. You can conduct your tests without having to
wait for DATATRIEVE to display the complete set of records.

Specifying the number of records can be useful, too, when you want to display a
fixed number of those records that meet the requirements of the RSE:

DTR> PRINT FIRST 5 YACHTS WITH PRICE NE OR

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK I1I KETCH 37 20,000 12 $36:851
ALBIN 79 sLOOP 2B 4,200 10 $17,900
ALBIN BALLAD sLoopP 30 74276 10 $27,300
ALBIN VEGA SLOOP 27 5,070 08 418,600
AMERICAN 26 sLooP 26 4,000 08 9,895

DTR>

Limiting Record Streams with Record Selection Expressions ~ 7-3

7.3

7-4

Identifying Records with Conditional Expressions

There are several ways to limit the number of records in the record stream.
Often you are interested in grouping similar records together, regardless of their
position in the domain or record stream. You can restrict the record stream to
those records that satisfy a specified condition by using the WITH clause of the
RSE. Different forms of the WITH clause specify different types of relationships
between the values of the same field for different records. You can form record
streams based on:

e Patterns among the field values (EQUAL, NOT EQUAL, CONTAINING)

¢ Field values that fall within a specified range (BETWEEN...AND..., LESS
THAN, GREATER THAN)

¢ Field values you can or cannot find in a table
7.3.1 Comparing Records by Pattern Recognition

You can group records if the characters of a field value are equal or not equal to a
specified value; for example:

DTR> PRINT YACHTS WITH BUILDER = "ALBIN"GD

LENGTH

DVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 71276 10 $27,500
ALBIN VEGA sLooP 27 5+070 0B 418,600
DTR>

This statement asks DATATRIEVE to examine each record of the YACHTS
domain and display only those records with the value “ALBIN” for the
BUILDER field. After testing each record of YACHTS, DATATRIEVE identifies
and then displays each record that meets the specified condition. WITH
BUILDER = “ALBIN” lets you limit the record stream to the records you wish
to access.

The expression, BUILDER = “ALBIN”, is a Boolean expression. A Boolean
expression controls a comparison between value expressions. A Boolean expres-
sion is either true or false depending on the values of the field and the value
expression specified. The term that relates the value expressions is called a
relational operator. In this example the relational operator is the equal

sign (=).

When you use EQUAL (=) or NOT EQUAL, you can list more than one value
expression in the same Boolean expression. The following queries specify a group
of value expressions for DATATRIEVE to compare with each field value. The

Limiting Record Streams with Record Selection Expressions

comma here is equivalent to saying AND BUILDER =, so that the statement

tells DATATRIEVE to print all yachts by Albin and all yachts by Alberg:

DTR> PRINT YACHTS WITH BUILDER =

MANUFACTURER MODEL
ALBIN 79

ALBIN BALLAD
ALBIN VEGA
ALBERG 37 MK II

DTR> PRINT YACHTS WITH RIG NOT EQUAL "SLOOP"

MANUFACTURER MODEL
AMERICAN ©26-M8
EASTHWARD HO
FJORD MS 33
LINDSEY 39

ROGGER FD M/S

DTR>

RIG

SLOOP
SLOOP
sLooP
KETCH

RIG
MS
MS

MS
MS

"ALBIN", "ALBERG"

LENGTH

OVER

ALL WEIGHT BEAM PRICE

26 4,200 10 17,900

30 74276 10 $27,300

27 5:070 08 $18:600

37 20,000 12 $36:851
+ "KETCH"

LENGTH

OYER

ALL WEIGHT BEAM PRICE

26 5,500 0B $18,895

24 7,000 089 $15,900

33 14,000 11

39 14,500 12 $35,800

33 17,600 11

Note that the EQUAL (=) and NOT EQUAL operators are case sensitive. They
see uppercase and lowercase letters as different:

DTR» FIND YACHTS WITH BUILDER =

[0 records foundl

DTR> FIND YACHTS WITH BUILDER

[3 records foundl

“Albin"@D
"ALBIN"@E

Because the builders’ names are in uppercase letters in the data file but lower-
case letters in the first query, DATATRIEVE did not find any record for a builder
named “Albin”. However, for “ALBIN”, it found three records.

On the other hand, the CONTAINING operator is indifferent to the case of the
letters. It finds matches if there is agreement with all of the letters in the field
value or with a substring derived from the field value. Thus the CONT operator

finds the “ALBIN” record if you specify either “Albin” or “bin”, a three letter

substring:

DTR> FIND YACHTS WITH BUILDER

[3 records foundl

CONT "Albin"@ED

DTR> PRINT YACHTS WITH BUILDER CONT "bin"@ED

MANUFACTURER MODEL
ALBIN 79
ALBIN BALLAD
ALBIN VEGA

DTR>

RIG

SLOOP
SLOOP
SLOOP

LENGTH
OVER
ALL WEIGHT BEAM PRICE
26 4,200 10 $17,900
30 7276 10 $27,500
27 5:070 08 $18,600

Limiting Record Streams with Record Selection Expressions

7-5

DATATRIEVE finds and displays each record that contains the substring “bin”
in the value for BUILDER.

Note that another difference between EQUALS and CONTAINING is that
DATATRIEVE can optimize EQUALS if the field is an RMS key, but it cannot
optimize for CONTAINING. The CONTAINING operator always reads every
record in the file. The EQUALS operator does not have to read each record if the
field is a key.

7.3.2 Grouping Records When Values Fall Within a Range

DATATRIEVE allows you to use a variety of relational operators to test whether
a field value for a record falls within a specified range. These operators are
GREATER_THAN (> or GT), GREATER_EQUAL (GE), LESS_THAN (< or
LT), LESS_EQUAL (LE), and BETWEEN (BT):

DTR> PRINT YACHTS WITH PRICE GREATER_THAN S0000RED)

LENGTH

DVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26,700 13 451,228
ISLANDER FREEPORT KETCH a1 224000 13 #54,970
OLYMPIC ADVENTURE KETCH 42 24,250 13 480,500

DTR> PRINT YACHTS WITH PRICE GREATER-EQUAL S000Q0RD

LENGTH
DVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26700 13 $51,228
ISLANDER FREEPORT KETCH a1 22,000 13 $54,+870
NORTHERN 37 KETCH 37 14,000 11 $350,000
DLYMPIC ADVENTURE KETCH 42 24,250 13 480,500

DTR>

Note the difference between the two record streams. Northern, priced at exactly
$50,000, appears when the Boolean expression is PRICE GREATER_EQUAL
50000, but it does not appear when you use the GREATER_THAN operator.

The LESS_THAN and LESS_EQUAL operators work in a similar manner. The
LESS_EQUAL operator includes a record if its field is either less than or equal to
the value expression specified.

The BETWEEN operator is the equivalent of the GREATER_EQUAL and
LESS_EQUAL operators combined. It searches for records with field values that
are within the range specified or equal to either of the value expressions that
determine the range. For the BETWEEN operator to work, the range must go
from a smaller value to a larger one. In the following example, the Boolean

7-6 Limiting Record Streams with Record Selection Expressions

expression identifies a record stream that includes records with values for
PRICE between $50,000 and $90,000:

DTR> PRINT YACHTS WITH PRICE BETWEEN S0000 AND 90000R

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26,700 13 $51.,228
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NORTHERN 37 KETCH 37 14,000 11 450,000
OLYMPIC ADVENTURE KETCH 42 24,250 13 80,300

DTR>

7.3.3 Grouping Records by Reference to a Table

Some domains are associated with dictionary tables containing code strings that
correspond to values in a field in the record. You can form an RSE that causes
DATATRIEVE to look up the field value in the table. You can use the relational
operator IN to compare the contents of a field with the code strings in a diction-
ary table or domain table. If there is a match on the code string in the table,
DATATRIEVE includes the record in the record stream. Two queries using
table-based RSEs are FIND YACHTS WITH RIG IN RIG_TABLE and FIND
YACHTS WITH RIG NOT IN RIG_-TABLE.

See Chapter 12 for a discussion of tables.
7.3.4 Summary of the Relational Operators

Table 7-1 summarizes all of the relational operators available to form Boolean
expressions in the WITH clause of an RSE.

Table 7-1: Conditional Comparisons for an RSE

Type of Relationship of Relational Boolean Expression
Comparison Values in Boolean Operator
Pattern Exact match (case = BUILDER = “ALBIN”
recognition sensitive) EQUAL “ALBIN” = BUILDER
EQ
No match (case NE BUILDER NE “ALBIN”
sensitive) NOT_EQUAL “ALBIN” NE BUILDER
NOTEQUAL '
Substring matches CONT BUILDER CONT “bin”
(not case CONTAINING
sensitive)
Substring does not NOT CONT BUILDER NOT CONT
match (not case NOT CONTAINING “bin”
sensitive)

(continued on next page)

Limiting Record Streams with Record Selection Expressions 7-7

Table 7-1: Conditional Comparisons for an RSE (Cont.)

Type of Relationship of Relational Boolean Expression
Comparison Values in Boolean Operator
Value within Value is > PRICE > 50000
arange greater than GT 50000 > PRICE
GREATER_THAN
Value is GE PRICE GE 50000
greater than or = GREATER_EQUAL 50000 GE PRICE
Value is < PRICE < 20000
less than LT 20000 < PRICE
LESS_THAN
Value is LE PRICE LE 20000
less than or = LESS_EQUAL
Value is BT PRICE BETWEEN
between the two BETWEEN 30000 AND 54000
values or = to one
Look up in Field value is in IN table-name RIGIN RIG_TABLE
table the table
Field value is not NOT IN table-name RIGNOT IN
in the table RIG_TABLE
Record stream Record stream is ANY rse FAMILIES WITH ANY
empty not empty KIDS
Record stream is NOT ANY rse FAMILIES WITH NOT
empty ANY KIDS

7.3.5 Setting Up Multiple Tests with Compound Booleans

Thus far, each Boolean expression imposed just one test for records to be included
in the record stream. To set up multiple or complex tests for records, you can join
two or more Boolean expressions together. Expressions that join Booleans are
Boolean operators.

There are four Boolean operators: AND, OR, NOT, and BUT. With AND, OR, and
BUT you can join two or more Boolean expressions together to form a single
Boolean expression. NOT allows you to reverse the value of a Boolean
expression.

If you link Boolean expressions with AND or BUT, the resulting Boolean expres-
sion is true only if all the Booleans linked with AND or BUT are true.

If you link Boolean expressions with OR, the resulting Boolean expression is
true if any one of the Booleans linked with OR is true.

If you precede a Boolean expression with NOT, the resulting Boolean expression
is true if the Boolean expression following NOT is false.

7-8 Limiting Record Streams with Record Selection Expressions

The following example shows the use of the Boolean operator:

DTR>» PRINT YACHTS WITH RIG = MS OR LOA = 39RD

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT
AMERICAN 26-M8 MS 26 5300
BLOCK I. a0 sLOooP 39 18500
EASTWARD HO MS 24 71000
FJORD M& 33 M8 33 14,000
LINDSEY 38 MS .39 14,300
PEARSON 39 sLoorp 38 17,000
ROGGER FD M/S MS 35 17 :600

DTR

The query displays data on all yachts that have a RIG that is MS or an LOA

BEAM

08
12
09
i1
12
12
11

PRICE

18,885

$15,900

$35,900

equal to 39. For DATATRIEVE to include a record in the record stream, it must
find that the record from YACHTS satisfies either condition or both.

7.4 Sorting the Record Stream by Field Values

When you use a PRINT statement to display a record stream, the primary key

defined for the data file determines the order of the records. However, you can
use the SORTED BY clause of the RSE to sort the record stream in a different

order. For example, the records in YACHTS are already sorted by BUILDER, the

first part of the primary key (TYPE) for the data file.

If you are interested in the length of the boats, you can sort the records by LOA.

To break down each length yacht by weight, specify DISP, the query name for
displacement, as an additional sort key. The following query first sorts the
YACHTS records according to LOA and DISP, then limits the record stream to

the first five records:

DTR> FIND YACHTS SORTED BY LOA,» DISPEE)
[113 records foundl
DTR* PRINT FIRST 5 CURRENTQRE)

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT
WINDPOWER IMPULSE sLooP 16 650
CAPE DORY TYPHOON SLOOP 19 1,800
ENCHILADA 20 SLOOP 20 2,300
SAN JUAN 21 SLOOP 21 14250
VENTURE 21 SLOOP 21 1,500

DTR:

BEAM

07
06
07
07
07

PRICE

$3,300
$4,295

$24+823

Limiting Record Streams with Record Selection Expressions

7-9

The SORTED BY clause takes precedence over the original sort order for the
record stream. It does not change the file organization of the records. The
SORTED BY clause enables you to produce reports with data records organized
into groups. Certain fields will control how the organization of these reports
takes place. For more information on control group reports, see the
DATATRIEVE-11 Guide to Writing Reports.

7-10 Limiting Record Streams with Record Selection Expressions

Using Compound Statements 8

When you want to do something in DATATRIEVE that involves definitions in a
data dictionary, you usually need to use a DATATRIEVE command. When you

want to manipulate data in a dictionary, you usually use DATATRIEVE state-
ments, such as STORE, MODIFY, PRINT, and FIND.

You can enter individual statements or combine them into compound state-
ments. You can enter statements at DATATRIEVE command level (the DTR>
prompt), in procedures, or in command files.

You can also enter individual commands at DATATRIEVE command level, in
procedures, or command files. However, you cannot combine DATATRIEVE com-
mands into compound commands, mix commands and statements to form com-
pound statements, or include commands in BEGIN-END blocks.

Table 5-1 in the DATATRIEVE—11 Reference Manual tells you whether a
DATATRIEVE keyword is used in commands or statements.

This chapter describes the use of compound statements, REPEAT and FOR
statements, and BEGIN-END blocks.

8.1 Using REPEAT to Combine Statements

Often you want to use the same DATATRIEVE statement over and over. For
instance, if you are storing five new boats into the domain YACHTS, you could
ready the domain for WRITE access and then repeat the instruction STORE
YACHTS five times.

81

By using a compound statement, however, you can combine the STORE state-
ment with a REPEAT statement and then type the STORE statement only once
for the five records. The following example shows a frequent use of a compound

statement — combining STORE with REPEAT:

DTR> READY YACHTS WRITERD
DTR>» REPEAT 3 STORE YACHTSERD
Enter MANUFACTURER: HOBIERED
Enter MODEL: CATRED

Enter RIG: SLOOPRED

Enter LENGTH OVER ALL: ZZ@ED
Enter DISPLACEMENT: 4000R
Enter BEAM: BEE)

Enter PRICE: G500@GD

Enter MANUFACTURER: RIDGERE
Enter MODEL: ACTRED

Enter RIG: SLOOPRE)

Enter LENGTH OVER ALL: ZZ2@E
Enter DISPLACEMENT: 3500@E
Enter BEAM:([B

Enter PRICE:([D

Enter MANUFACTURER: ROBERTSQEE
Enter MODEL: Z11G@E)

Enter RIG: SLOOPQRE)

Enter LENGTH OVER ALL: Z5@HD
Enter DISPLACEMENT: 4500@D)
Enter BEAM: 10@E)

Enter PRICE: 73500@RE)

DTR>

Prompts are repeated for each field in the record until data is stored in the speci-
fied number of records or until you end the operation by entering CTRL/Z.

When you use a REPEAT statement with MODIFY, PRINT, and REPORT state-
ments, you may also want to use a prompting value expression (*.prompt). You
probably do not want to PRINT, MODIFY, or REPORT on a single record more
than once. However, you can use a prompting value expression to supply new

information each time a statement is repeated.

The following example uses the prompting value expression with a REPEAT

loop:

DTR>» SET NO PROMPTRED)

DTR> READY YACHTSGEH

DTR>» REPEAT #*,"NUMBER OF TIMES TO REPORT"RE)

CON> BEGINRED

CON» REPORT FIRST 1 YACHTS WITH LDA = *,"THE LOA"RE
RW> PRINT BOATGRE

RW>» END REPORTRED

CON> ENDEED

Enter NUMBER OF TIMES TO REPORT: Z@E

Enter THE LOA: 37@D

8-2 Using Compound Statements

(continued on next page)

MANUFACTURER

ALBERG

23-0ct-87

Enter THE LOA: 3GGEO

MANUFACTURER

CABOT

DTR>

Page 1
LENGTH
OVER
MODEL RIG ALL WEIGHT BEAM PRICE
37 MK II KETCH 37 20,000 12 $36,951
23-0ct-87
Pade 1
LENGTH
OVER
MODEL RIG ALL WEIGHT BEAM PRICE
36 SLOOP 36 15000 12

A compound statement can include any DATATRIEVE statement except FIND,
SELECT, DROP, RELEASE, or SORT.

Note that if you follow the REPEAT statement with a procedure, DATATRIEVE
repeats only the first statement in the procedure. To repeat the complete proce-
dure, you must use a BEGIN-END block, described in a later section in this
chapter. Note also that a procedure in a REPEAT statement cannot include
DATATRIEVE commands.

8.2 Using the FOR Statement

You can use a FOR statement when you want to access individual fields more
than once. Suppose you want to supply a price for yachts with no price listed. You
do not want to change all the fields in the target records. You want to change
only the price field for specific yachts. First, form a collection of the boats you
want to modify. Then, use a FOR statement to modify the target records:

DTR> SET NO PROMPTQRE)

DTR> READY YACHTS MODIFY@®ED

DTR> FIND FIRST 3 YACHTS WITH PRICE = O@S
[3 records foundl

DTR> PRINT ALLED

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
BLOCK I. 40 SLOOP 38 184300 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLooP 32 12,500 10

DTR> FOR CURRENTRED
CON> MODIFY USING PRICE = DISP * 1.3 + S000RD
DTR> PRINT CURRENTRE)

(continued on next page)

Using Compound Statements 8-3

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT
BLOCK I. 40 sLooe 39 184500
BUCCANEER 270 sLooe 27 5,000
BUCCANEER 320 SLOOP 32 124500

DTR: .

BEAM PRICE

12 $29,050
08 11,500
10 421,250

8.3 Using BEGIN-END Blocks to Combine Statements

8-4

Another way to combine statements is the BEGIN-END block, which causes
DATATRIEVE to treat several statements as one statement. BEGIN-END
blocks are especially useful within FOR, STORE, and REPEAT statements.

8.3.1 BEGIN-END Blocks in FOR Statements

You can, for instance, use a BEGIN-END block in a FOR statement to modify the
price field in specific records. The BEGIN-END block lets you include two PRINT
statements within the MODIFY statement — the first to display the unchanged
records, the second to show the records after DATATRIEVE has modified them:

DTR> SET NO PROMPTGEED
DTR> READY YACHTS WRITEGD

DTR> FOR YACHTS WITH PRICE = O@D
CON> MODIFY USINGED

CON> BEGINGE

CON PR INTRED
CON> PRICE = *,"NEW PRICE"“@E
CON PRINTRE)
CON> ENDRED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT
BLOCK I. 40 SLOOP 39 1B+500
Enter NEW PRICE: Z290350@D)

LENGTH

DVER
MANUFACTURER MODEL RIG ALL WEIGHT
BLOCK I. 40 SLOOP 39 184300
BUCCANEER 270 SLOOP 27 5,000

Enter NEW PRICE: "Z
Execution terminated by operator
DTR >

Using Compound Statements

BEAM PRICE

12

BEAM PRICE

12 $29,030
08

8.3.2 IF-THEN-ELSE Statements in BEGIN-END Blocks

You can include an IF-THEN-ELSE statement with a prompting expression
within the block to allow you to decide whether or not to modify each record
stream:

DTR> SET NO PRDMPT@EED
DTR>» FOR FIRST 3 YACHTS WITH PRICE = OQR)
CON>» BEGINEED

CONZ IF *,"Y 70O MODIFY PRICE: N TO SKIP" CONT "“Y"RE)
CON THEN MODIFY PRICE ELSERED

CON> PRINT "NO CHANGE"EED)

CON» ENDEED

Enter ¥ TO MODIFY PRICEs N TO SKIP: Y (&

Enter PRICE: 23456
Enter Y TO MODIFY PRICE, N TO SKIP: N

NO CHANGE

Enter ¥ TO MODIFY PRICE, N TO SKIP: N
NO CHANGE

DTR >

Conversely, if there are several DATATRIEVE statements required in the THEN

and ELSE clauses, include them in BEGIN-END blocks.

8.3.3 Using BEGIN-END Blocks in STORE Statements

Often you may want to include a number of lines in the BEGIN-END block. The

following example shows how to use:

e A BEGIN-END block within the STORE statement
e A prompting value expression to request user response

o A BEGIN-END block in a VERIFY clause

e A VERIFY clause with a USING clause to allow you to decide whether or not

to store the record displayed in the PRINT statement
e A context variable (A) to establish DATATRIEVE context

See Appendix A for more information on DATATRIEVE context.

DTR> READY YACHTS WRITERE
DTR> STORE A IN YACHTS USINGEED
CON BEGINRE)

CON BUILDER = *.,BUILDERGE

CON> MODEL = #.MODEL@E

CON> RIG = *,RICED

CON» LOA = *,LENGTHGED

CON> DISP = *.,WEIGHT@ED

CON» BEAM = *,BEAMED

CON PRICE = DISP # 1.3 + BEAM * 100D

CON> END VERIFY USINGGD
CON> BEGINGE

CON> PRINT A.BOAT, SKIP@D
CON > IF *.CONFIRMATION CONT "N" THENGED
CON> ABORT "“BAD RECORD "G

‘CON> ENDGEED

DTR>

Using Compound Statements

8-5

8-6

When you press RETURN to enter the compound statement, DATATRIEVE
prompts for each of the fields in the YACHT record, then requests a confirmation:

BUILDER:
MODEL:
RIG: KETCH@ED
LENGTH: 326
WEIGHT: 8,725@D
BEAM: 10@D

Enter
Enter
Enter
Enter
Enter
Enter

MANUFACTURER MODEL
CRIS-CRAFT

Enter CONFIRMATION:
ABORT: BAD RECORD

DTR> FIND YACHTS WITH BUILDER =

[O records foundl

NG@ED

CRIS-CRAFTED

LENGTH

OVER
RIG ALL WEIGHT BEAM PRICE MANUFACTURER
KETCH 32 8,725 10 $12,343 CRIS-CRAFT

CRIS-CRAFTRE

8.3.4 BEGIN-END Blocks in REPEAT Statements

If you want to repeat a sequence of statements, use a BEGIN-END block inside a
REPEAT statement. Suppose you wanted to store 50 new yachts using the
MANUFACTURER, LOA, DISPLACEMENT, and PRICE fields. You could use
the following BEGIN-END block to repeat the sequence of prompting

statements:

DTR> SET NO PROMPTQRED)

DTR> READY YACHTS WRITERE)

DTR>» REPEAT 50 STORE YACHTS USINGE)
CON> BEGINRD

CON> MANUFACTURER = *.,MANUFACTUREREE)
CON> L.OA = *%,L0ARE)

CON> DISPLACEMENT = *,DISPLACEMENTRE)
CON> PRICE = ¥,PRICERE)

CON> ENDEE

Enter MANUFACTURER: GRAMPIANRE)

Enter LOA: 40RD

Enter DISPLACEMENT: 1400@e)

Enter PRICE: Z3456GRD)

Enter MANUFACTURER: HIGGINSEE)

Enter LOA: 37@H)

Enter DISPLACEMENT: 1375@E

Enter PRICE: 14765Re)

DTR>

For information on invoking a procedure in a REPEAT statement, see Chapter 9.

Because statements that use BEGIN-END blocks can be quite long, it is often
useful to put them into DATATRIEVE procedures so that you can edit and reuse
them without having to retype them. The next chapter explains how to use

procedures.

Using Compound Statements

Using DATATRIEVE Procedures 9

Often you want to execute the same series of commands and statements over and
over again, and you may want to have other users execute those same commands
and statements. Unless you use procedures, you have to retype the input each
time. By using procedures, however, you can develop the series of steps once and
then simply invoke the procedure each time you want to do the same steps over
again.

A procedure is a fixed sequence of DATATRIEVE commands and statements you
create, name, and store in your data dictionary. A procedure can also contain
portions of a command or statement, such as a complex value expression.

9.1 Defining a Procedure

For almost any series of statements you use over and over again, you can save
yourself time by defining a single procedure. For example, you repeatedly per-
form a simple query to display information about the manufacturers of large
yachts:

DTR> READY YACHTSED

DTR>» FIND BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDERGE)
[B records foundl

DTR> PRINT ALLEH

(continued on next page)

9-1

9.2

9-2

LENGTH

OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26+700 13 451,228
COLUMBIA a1 sLOOP a1 20,700 11 $48,480
GULFSTAR a1 KETCH a1 22,000 12 $41,350
ISLANDER FREEPORT KETCH a1 22,000 13 454,970
NAUTOR SWAN 41 SLOOP 41 17750 12

NEWPORT 41 8 SLOOP a1 18,000 11

OLYMPIC ADVENTURE KETCH az 24,250 13 480,500
PEARSON 419 KETCH 42 21,000 13

DTR:

Rather than type this query repeatedly, you can put it into a procedure. To define
a procedure, enter the DEFINE PROCEDURE command at DATATRIEVE com-

mand level. After typing the keywords DEFINE PROCEDURE, enter a name for
the procedure and press RETURN.

DTR> DEFINE PROCEDURE BUILDERSEED

DATATRIEVE then prompts with DFN> to indicate that it expects a procedure
definition. Enter the commands or statements that form the procedure defini-
tion. DATATRIEVE continues to prompt with DFN> until you enter the
keyword END_PROCEDURE on a line by itself.

DTR» DEFINE PROCEDURE BUILDERSQRED

DFN .

DFN .

DFN .

DFN END_PROCEDURERED
DTR>

As soon as you enter END_PROCEDURE, DATATRIEVE stores the procedure
definition in your current dictionary. It checks the syntax of the DEFINE
PROCEDURE statement, not that of the statements the procedure contains.
DATATRIEVE checks for syntax errors in those statements only when you
invoke the procedure.

Invoking a Procedure

You invoke a procedure by preceding its name with a colon:
:procedure-name

The content of a procedure determines where you can invoke it. In general, you
can invoke a procedure anywhere you can use the commands or statements con-
tained in the procedure. For example, if the procedure contains only complete
DATATRIEVE commands and statements, you can invoke it at the
DATATRIEVE command level.

DTR> :BUILDERSEE)

Note that you cannot invoke a procedure during an ADT, EDIT, or GUIDE mode
session or in a domain, record, or table definition.

Using DATATRIEVE Procedures

In addition, when DATATRIEVE executes a procedure, you do not see the com-
mands and statements in the procedure or the system messages that are nor-
mally displayed. You see only the output that follows the last statement or
command in the procedure. In the following example, the only output is in
response to FIND YACHTS SORTED BY DESC PRICE, the last statement in
the procedure EXPENSIVE:

DTR> SHOW EXPENSIVERE)

PROCEDURE EXPENSIVE

READY YACHTS

FIND YACHTS SORTED BY DESC PRICE
END_PROCEDURE

DTR> :EXPENSIVERD

[113 records foundl

DTR >

If you follow the FIND statement with another statement, you no longer receive
the message about the number of records found:

DTR> SHOW EXPENSIVERED

PROCEDURE EXPENSIVE

READY YACHTS

FIND YACHTS SORTED BY DESC PRICE
PRINT FIRST 5§ CURRENT
END.PROCEDURE

DTR> :EXPENSIVERED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
OLYMPIC ADVENTURE KETCH a2 244250 13 $B0O,300
ISLANDER FREEPORT KETCH a1 22,000 13 434,970
CHALLENGER 41 KETCH 41 26700 13 31,228
NORTHERN 37 KETCH 37 14,000 11 $350,000
COLUMBIA 41 SLOOP a1 20,700 11 448,490

DTR>

9.3 Contents of a Procedure

A procedure can contain any number of the following DATATRIEVE elements:
¢ Full DATATRIEVE commands and statements

e Command and statement clauses and arguments

e Comments

) Using DATATRIEVE Procedures 9-3

9-4

Using DATATRIEVE Procedures

9.3.1 Commands and Statements in Procedures

You might define a procedure containing complete DATATRIEVE commands
and statements. This one, for instance, finds and displays the biggest yachts in
the domain:

DTR» DEFINE PROCEDURE BIG_YACHTSEE

DFN> FIND BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDERGE)
DFN» PRINT ALLEE)

DFN> END_PROCEDURERED

DTR>

When you execute the procedure BIG_YACHTS, the results are the same as
entering the FIND and PRINT statements at the DATATRIEVE command level,
indicated by the DTR> prompt:

DTR> READY YACHTSQRE
DTR: :BIG_YACHTSRE

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26,700 13 451,228
COLUMBIA 41 sLOOP 41 20,700 11 48,480
GULFSTAR a1 KETCH a1 224000 12 $41,350
ISLANDER FREEPORT KETCH a1 22,000 13 $344+970
NAUTOR SWAN 41 sLoar a1 17,750 12
NEWPORT 41 8 SLOOP a1 18,000 11
ODLYMPIC ADVENTURE KETCH 42 24,250 13 80,500
PEARSON 419 KETCH 42 21,000 13

DTR

9.3.2 Arguments and Clauses

Besides full commands and statements, a procedure can contain fragments of
statements or commands. It can contain an argument or clause from a command
or statement. For example, a procedure can contain a record selection
expression:

DTR>» DEFINE PROCEDURE BIG_YACHTS5_RSERE

DFN> BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDEREED
DFN» END_PROCEDURERE)

DTR>

Having separated the record selection expression from the FIND statement, you
can use the procedure name as the argument of a FIND statement:

DTR> FIND :BIG_YACHTS_RSER)
[B records foundl
DTR>

In fact, you can use this procedure in any command or statement containing an
RSE argument, such as the PRINT statement:

DTR> PRINT ALL :BIG.YACHTS_RSEQRE

LENGTH
DVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH a1 26,700 13 451,228
COLUMBIA 41 SLOOP a1 20,700 11 48,480
GULFSTAR 41 KETCH a1 22,000 12 +41,350
ISLANDER FREEPORT KETCH 41 22,000 13 454,970
NAUTOR SWAN 41 sLooP 41 174750 12
NEWPORT 41 8§ SLO0OP a1 18,000 11
OLYMPIC ADVENTURE KETCH 4z 24,250 13 480,500
PEARSON 419 KETCH 4z 21,000 13

You can begin a procedure with the end fragment of a command or statement
and include other whole commands or statements. You can also end a procedure
with the beginning fragment of a command or statement after a series of com-
plete commands and statements.

9.3.3 Comments in Procedures

A comment contains explanatory information for you or other users that
DATATRIEVE does not interpret as input. To put a comment in a procedure, put
an exclamation point (!) before the information that you want to include.

When you invoke a procedure, DATATRIEVE processes it without displaying
the contents of the procedure. To display the comments, use the SHOW command
with the procedure name. You could, for instance, put a comment into the proce-
dure BIG_-YACHTS_QUERY. The results of the procedure are the same as with-
out the comment. But when you use a SHOW command, you can see the
explanatory comment:

DTR> SHOW BIG_YACHTS_QUERY
SET ABORT

DECLARE LENGTH PIC 99
VALID IF LENGTH GT 33.

]

!THIS PROCEDURE SHOWS YACHTS GE SPECIFIED LENGTH

1

LENGTH = *,"MIN LOA"

IF LENGTH GT 42

THEN ABORT "“NO BOATS THAT BIG"

FIND BIGGIES IN YACHTS WITH LOA GE LENGTH SORTED BY BUILDER
PRINT BUILDER,» RIG: LOA,» PRICE OF BIGGIES

END_PROCEDURE :

DTR >

Using DATATRIEVE Procedures 9-5

9.4 Using Procedures to Locate Errors

When you invoke a procedure, DATATRIEVE processes the contents of the pro-
cedure. If it finds an error, it issues a message. Suppose, for instance, you created
the following long procedure:

DTR> DEFINE PROCEDURE WAGE_REPORT

DFN> REPORT WAGES .

DFN> SET REPORT_-NAME = WEEKLY MWAGE REPORT

DFN> SET COLUMNS_PAGE = 70

DFN: PRINT LAST_NAME, GROSS_PAY s FICA

DFN» FEDERAL_TAX SBTATE_TAX:

DFN> GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX)*("NET PAY") USING
DFN> $%.%%%,899

DFN: AT BOTTOM OF REPORT PRINT SKIP 2, COL 1, "TOTAL:":

DFN> TOTAL GROSS_PAY USING $%$%$,%%%.,99,

DFN> TOTAL FICA USING $$%+%$%%$.99,

DFN> TOTAL FEDERAL_TAX USING $%$%$,%$$%,99,

DFN> TOTAL STATE_TAX USING $$%,%$%%.99.,

DFN> TOTAL (GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX)) USING
5% ,%$%%,89

DFN* END_REPORT

DFN* END_PROCEDURE

DTR >

If you have made any errors, DATATRIEVE stops executing when it finds the
first error and sends you an error message, as in this example:

DTR> :WAGE_REPORTRE)
Invalid column header or rerport name (WEEKLY)
DTR> EDIT WAGE_REPORTEE)

Edit the procedure to place quotation marks around “WEEKLY WAGE
REPORT”. Then try the procedure again:

DTR> :WAGE_REPORTRE)
Field "WAGES" is undefined or used out of context
DTR> EDIT WAGE.REPORTG®ED

To correct this second error, edit the procedure to place the READY WAGES com-
mand before the REPORT statement. Then invoke the procedure again:

DTR» :WAGE_REPORTGEE)
Enter COLUMNS PER PAGE: BOEE)

(continued on next page)

9-6 Using DATATRIEVE Procedures

WEEKLY WAGE REPORT 23-0ct-87

Pade 1

LAST GROSS FEDERAL STATE
NAME PAY FICA TAX TAX NET PAY
BLAKE %1 ,000,00 $103,.86 $204.,77 $.,01 $691.36
DUNN $14+500,00 $145.87 $287.,98 $54.,32 $1,001,83
HILL $500,00 $52.93 79,73 $32.,98 $334.,34
CHONTZ 999,99 $103.85 204,76 $57.90 $633.48
MOONY $1,800,98 $145.87 $375.98 $75.90 $1+,303.23
STARK $8,:500,00 $145.,87 $999.84 $106,90 $8,247.39
TOTAL: $15:400,97 $698.,25 $2+163.,08 328,01 $12,211.63

DTR

9.5 A Sample Procedure

You can create your own procedures now using the example in Figure 9-1 asa
model. The following is a procedure that uses the Report Writer to write a sum-
mary report of yacht data:

DTR> DEFINE PROCEDURE YACHT_SUMMARY@ED

DFN> SET ABORTRE))

DFN> PRINT "THIS REPORT REQUIRES AN ESTABLISHED COLLECTION"@ED

DFN> PRINT "SORTED BY LOA AND BEAM."RD

DFN> PRINT "HAVE YOU ESTABLISHED A COLLECTION?"RE)

DFN> IF *,"YES OR NO" CONTAINING "N" THEN ABORT "COLLECTION NEEDED."RE
DFN> REPORT ON *,"0UTPUT DEVICE OR FILE"“@E

DFN> SET REPORT_NAME="EXAMPLE: REPORT FROM A PROCEDURE"RE)

DFN> SET LINES_PAGE=53, COLUMNS_PAGE=GOERD

DFN> PRINT BUILDER,» MODEL., LOAs BEAMs PRICERE)

DFN> AT BOTTOM OF LOA PRINT SKIP. COL 30 "AVERAGE PRICE =",Re
DFNZ AYERAGE (PRICE) s SKIPERE)
DFN> AT BOTTOM OF REPORT PRINT COL 17:"NUMBER OF BOATS = " @

DFNZ COL 35, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =" :@ED)
DFN> AVERAGE (PRICE)EED

DFN> END_REPORTRED

DFN> END_PROCEDUREGED

DTR

Figure 9-1: Sample Procedure
This example illustrates some statements that are particularly useful in
procedures:

e Use the PRINT statement to display a message when the procedure is invoked.

e The prompting value expression *.“YES OR NO” requires a response to the
question: HAVE YOU ESTABLISHED A COLLECTION? The Boolean expres-
sion CONTAINING checks the user’s response to the question. If the response
is N or NO, the procedure aborts.

Using DATATRIEVE Procedures 9-7

DTR> :YACHT_SUMMARYRED)

THIS REPORT REQUIRES AN ESTABLISHED COLLECTION.
SORTED BY LOA AND BEAM.

HAVE YOU ESTABLISHED A COLLECTION?

Enter YES OR NO: NOR

ABORT: COLLECTION NEEDED

DTR>

e If you answer YES to the first prompt, but you do not actually have a current
collection, the Report Writer aborts the procedure and prints an error message:

DTR>» :YACHT_SUMMARYRE

THIS REPORT REQUIRES AN ESTABLISHED COLLECTION
SORTED BY LOA AND BEAM,

HAVE YOU ESTABLISHED A COLLECTION?

Enter YES OR NO: YESRE

A current collection has not been established.
DTR>

® The prompting value expression *.“OUTPUT DEVICE OR FILE” allows you to
select the device or file to contain the report when DATATRIEVE executes the
procedure.

¢ If you make a collection of YACHTS with LOA between (and including) 36 and
37 and price not equal to zero, DATATRIEVE displays the following report on
your terminal:

DTR> READY YACHTSEE

DTR> FIND YACHTS WITH LOA BETWEEN 36 37 AND PRICE NE OQ@D
[5 records foundl

DTR» SORT CURRENT BY LOA+ BEAMGEE

DTR> :YACHT_SUMMARY@ED

THIS REPORT REGQUIRES AN ESTABLISHED COLLECTION:

SORTED BY LOA AND BEAM.

HAVE YOU ESTABLISHED A COLLECTION?

Enter YES OR NO: YESED

Enter OUTPUT DEVICE OR FILE: TI:®eD

EXAMPLE: REPORT FROM A PROCEDURE 01-Apr~1987

Page 1

LENGTH

DVER
MANUFACTURER . MODEL ALL BEAM PRICE
ISLANDER 36 36 i1 $31,730
I. TRADER 37 36 12 $39,500
AVERAGE PRICE = $35,6185
IRWIN 37 MARK 11 37 11 $36,950
NORTHERN 37 37 11 $50:000
ALBERG 37 MK 11 37 12 $36:951

(continued on next page)

L

9-8 Using DATATRIEVE Procedures

AVERAGE PRICE = $41:300

NUMBER OF BOATS = 5
AVERAGE PRICE OF ALL BOATS = $39,026

9.6 Nesting Procedures

A nested procedure is a procedure within another procedure.

The following procedure calculates the price per pound of a boat and assigns a
column header and edit string for that value expression:

DTR> DEFINE PROCEDURE PRICE_PER_-POUNDGE

DFN> PRICE/DISPLACEMENT ("PRICE"/"PER"/"POUND") USING $$9.99G0D
DFN> END_PROCEDUREGRED)

DTR>

You cannot invoke this procedure by itself, but you can invoke the
PRICE_PER_POUND procedure in another procedure that prints the builder,
model, and price per pound of all boats in the CURRENT collection, as follows:

DTR> DEFINE PROCEDURE PRICE_-REPORTRE

DFN> PRINT ALL BUILDER, MODEL,» :PRICE_PER_POUNDGE)
DFN* END-PROCEDUREGRED

DTR»

When you invoke the procedure PRICE_REPORT, DATATRIEVE displays three
fields for each YACHTS record. First the builder and model are displayed as a
result of the procedure’s PRINT statement. Then the PRICE_PER_POUND pro-
cedure is called to compute and format the price/displacement before it is
displayed.

The following example uses the BIG_YACHTS procedure to establish the
CURRENT collection and PRICE_REPORT to print a short report:

DTR> :BIG_YACHTS3 :PRICE_REPORTGEDD

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH a1 26700 13 $351.,228
COLUMBIA 41 sLooP 41 20,700 11 448,480
GULFSTAR a1 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SHWAN 41 SLOOP 41 17,750 12
NEWPORT a1 s sLoop 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 480,300
PEARSON 419 KETCH 42 21,000 13

(continued on next page)

Using DATATRIEVE Procedures 9-9

PRICE

PER

MANUFACTURER MODEL POUND
CHALLENGER 41 %1.92
COLUMBIA a1 $2.34
GULFSTAR a1 $1.88
ISLANDER FREEPORT $2.,50
NAUTOR SWAN 41 $0.,00
NEWPORT 41 s $0,00
OLYMPIC ADVENTURE $3.32
PEARSON 418 $0.,00

DTR> EXITEED

When nesting procedures, do not let a procedure invoke itself. You can create an
infinite loop. (Should you create such a loop, press CTRL/C two times to stop your
process.)

9.7 Using a Procedure in a Compound Statement

9-10

To execute a procedure a number of times, you can invoke it in a REPEAT or
FOR statement. You should be careful when invoking a procedure in these state-
ments, however. For example, the following procedure appears to be correct but
produces unexpected results:

DTR» SHOW EX1GRED
PROCEDURE EX1
FOR
YACHTS WITH PRICE = O AND LOA BT 16 AND 23
PRINT BUILDERs MODEL ., LOA
PRINT "Printindg Test Record"
END.PROCEDURE

DTR> REPEAT 3 :EXI1

LENGTH

OVER
MANUFACTURER MODEL ALL
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Test Record

Only the FOR statement in the EX1 procedure is repeated. The PRINT state-
ment is executed only once at the very end. When DATATRIEVE encounters the
first complete statement in a procedure, it assumes that the REPEAT statement
is also complete. Therefore, it repeats only the first statement in the procedure
and executes each of the remaining statements once.

Using DATATRIEVE Procedures

To repeat the entire procedure, enclose the procedure call or the procedure defini-
tion in a BEGIN-END block. For example, the following sequence of statements
puts a procedure in a BEGIN-END block and repeats the procedure three times:

DTR* REPEAT 3 BEGINRE)
[LooKing for statement]
CON* :EXIRE

CON> ENDREE)

LENGTH
OVER
MANUFACTURER MODEL ALL
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
Printing Test Record
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21
Printing Test Record
ENCHILADA 20 20
ERICSON 23/ SPECIA 23
SAN JUAN 21 21

Printing Te

st Record

The following example uses a FOR statement, includes a BEGIN-END block in
the procedure, and invokes the procedure in a REPEAT statement:

DTR> SHOW EX3@D

PROCEDURE E
FOR
YACHTS W
BEGIN

X3

ITH PRICE =

O AND LOA BT 16 AND 23

PRINT BUILDER, MODEL s LOA
PRINT "Print Test Record"
END
END_PROCEDURE

DTR* REPEAT 3 X 3RED
LENGTH
OVER
MANUFACTURER MODEL ALL
ENCHILADA 20 20
Print Test Record
ERICSON 23/ SPECIA 23
Print Test Record
SAN JUAN 21 21
Print Test Record
ENCHILADA 20 20
Print Test Record
ERICSON 23/ SPECIA 23
Print Test Record
SAN JUAN 21 21
Print Test Record
ENCHILADA 20 20
Print Test Record

(continued on next page)

Using DATATRIEVE Procedures

9-11

ERICSON 23/ SPECIA 23
Print Test Record
SAN JUAN 21 21
Print Test Record

DTR:

If you invoke a procedure in a FOR statement, you must use the same technique.
Enclose the call or the procedure definition in a BEGIN-END block as in the fol-
lowing example:

DTR>» SHOW PRICE_REPORTZEE

PROCEDURE PRICE_REPORTZ2

PRINT BUILDER» MODEL, :PRICE_PER_POUND
END_PROCEDURE

DTR >

DTR> FOR YACHTS WITH PRICE GT 20000 AND LOA LT 28R
[LooKing for statement]

CON> BEGINGE

[LooKing for statement]

CON> :PRICE_REPORTZEE)

[LooKing for statement or "END"]

CON> END@ED

PRICE

PER
MANUFACTURER MODEL POUND
CAPE DORY 28 $2.44
SABRE 28 $2.,97

DTR

Remember that if you use a procedure in a loop, do not include a FIND, SELECT,
DROP, or RELEASE statement. These statements cannot appear in BEGIN-
END blocks.

9.8 Aborting Procedures

You can abort a procedure by including a SET ABORT statement in the proce-
dure definition. If the abort conditions arise and SET ABORT is in effect,
DATATRIEVE aborts the procedure and prints a message on your terminal. If
SET NO ABORT is in effect, DATATRIEVE aborts the command or statement
that contains the ABORT but continues to execute the other commands and
statements in the procedure.

9—12 Using DATATRIEVE Procedures

The default setting in DATATRIEVE is SET ABORT. You can ensure that SET
ABORT is in effect by including that statement in the procedure definition:

DTR> DEFINE PROCEDURE BIG_YACHTS_QUERYQRE)

DFN: SET ABORTEED

DFN: DECLARE LENGTH PIC 99@)

DFN2 YALID IF LENGTH GT 35.@D

DFN* LENGTH = *,"MIN LOA"@®ED

DFN> IF LENGTH GT 42@D)

DFN> THEN ABORT "NO BOATS THAT BIG"@D

DFN> FIND BIGGIES IN YACHTS WITH LOA GE LENGTHQRE
DFNZ SORTED BY BUILDERREED

DFN> PRINT BUILDER,» RIGs LOA,» PRICE OF BIGGIESQRED
DFN> END_PROCEDURERED)

DTR>

If you invoke BIG_YACHTS_QUERY and supply a length of 35 or smaller,
DATATRIEVE reprompts you for a valid length. If you supply a length greater
than 42, the procedure aborts, prints the specified abort message, and returns
you to DATATRIEVE command level:

DTR> :BIG_YACHTS_.QUERYQRE)

Enter MIN LOA: 35RD

Yalidation error for LENGTH

Re-enter MIN LOA: 43@D

ABORT: NO BOATS THAT BIG

Execution terminated by "ABORT" statement
DTR >

If you assign a value between 36 and 42 to length, DATATRIEVE prints the
_appropriate collection:

DTR> :BIG_YACHTS_QUERYGD
Enter MIN LDA: 39@®

LENGTH
DVER
MANUFACTURER RIG ALL PRICE
BLOCK I. sLooP 39
CHALLENGER KETCH 41 $51,228
COLUMBIA sLoop 41 $48,490
GULFSTAR KETCH 41 $41,350
ISLANDER KETCH 41 34,970
LINDSEY MSs 39 $35+800
NAUTOR SLOOP a1
NEWPORT sLooP a1
OLYMPIC KETCH 42 80,3500
PEARSON sLoop 39
PEARSON KETCH a4z

9.9 Maintaining Procedures

You can maintain the procedures stored in your default dictionary directory with
the SHOW, EDIT, and DELETE commands.

Using DATATRIEVE Procedures 9-13

9.9.1 Displaying Procedure Names

You can list the names of all procedures in your default directory with the SHOW
command:

DTR>» SHOW PROCEDURESEE

Procedures:
BIG BIG_YACHTS_QUERY CHEAP
MS.SEARCH PHONE.REP TEST YACHT _SUMMARY

DTR>

9.9.2 Displaying Complete Procedures

If you want to display a procedure on your terminal, you can use the SHOW com-
mand and specify the name of the procedure to be displayed:

DTR> SHOW MS_SEARCHRED)

PROCEDURE MS_SEARCH

READY YACHTS

FIND YACHTS WITH RIG = "MS"

FOR CURRENT PRINT BUILDER:

(BUILDER VIA COMPANY_TABLE) ("ADDRESS")
END.PROCEDURE

DTR>

9.10 Editing Procedures

You can correct an error with the DATATRIEVE Editor. Invoke the Editor with
the following command at the DTR> prompt:

EDIT procedure-name

When you find the error, use the DATATRIEVE Editor to correct it or follow this
sequence:

1. EXTRACT the procedure from DATATRIEVE to a command file on your sys-
tem using the following statement:

EXTRACT ON file-spec procedure-name

Use the file extension .CMD in the file specification to distinguish the
extracted file as a command file.

2. Exit from DATATRIEVE.

3. Use the text editor you normally use on your system to revise the command
file containing the procedure.

4. Return to DATATRIEVE.

5. Invoke the command file by typing the at sign (@) and the name of the file to
bring the corrected procedure into DATATRIEVE.

9-14 Using DATATRIEVE Procedures

See the following chapter for information on DATATRIEVE command files and
Chapter 16 in this manual for information on DATATRIEVE Editor commands.

9.10.1 Deleting Procedures
You can delete a procedure from your dictionary with the DELETE command:

DTR> SHOW PROCEDURESERE)

Procedures:
BIG BIG.YACHTS_QUERY CHEAP
MS_SEARCH PHONE_.REP YACHT_SUMMARY

DTR>» DELETE BIGIi@E)

DTR>» SHOW PROCEDURESEE)

Procedures:
BIG_YACHTS_QUERY CHEAP MS_SEARCH
PHONE_REP YACHT _SUMMARY

DTR>
Note that the DELETE command must end with a semicolon (;).

You should maintain a backup copy of your procedure, especially if it is a long
one. Use the DATATRIEVE EXTRACT command to copy your procedure to a
command file for backup. Once you have a backup copy, you can always recover
the procedure if you happen to delete it accidentally.

The following example illustrates how you can create a backup file, delete a pro-
cedure, and replace it without ever leaving DATATRIEVE:

DTR» SET COLUMNS_PAGE = BO0@D
DTR> SHOW PROCEDURESGH

Procedures:

BIG_YACHTS BIG_YACHTS_QUERY BP

BREAK_REP CTRL XPENSIVE F

FAM_REC INFLATION_REPORT JOB_HISTORY
MULTIPLE_PRINT MULTIPLE_STORE NEW_YACHTS NME

P PAGE_HEADER PICKBOATS PRICE_INCREASE
R SALARY _REPORT SALARY_.REPORT1 SALARY_REPORTZ
SALARY_TOTALS SUM TAB_TEST TEST_.HWAGE
TITLE_PAGE Y WAGE_REPORT WP

X YACHTS_REPORT YACHT_PER_LB YACHT-PRICE

DTR> EXTRACT ON SAUBIG BIG_YACHTS_QUERYRE
DTR> DELETE BIG_YACHTS_QUERY i@®ED
DTR> SHOW PROCEDURESRE)

Procedures:

BIG_YACHTS BP BREAK_REP CTRL

EXPENSIVE F FAM_REC INFLATION_REPORT
JOB_HISTORY MULTIPLE-.PRINT MULTIPLE_.STORE NEW_YACHTS

NME P PAGE_HEADER PICKBOATS
PRICE_INCREASE R SALARY_REPORT SALARY_REPORT1
SALARY_REPORTZ SALARY_TOTALS SuUM TAB_TEST
TEST_WAGE TITLE.PAGE Y WAGE_REPORT

WP KP YACHTS_REPORT YACHT_PER.LB

YACHT_PRICE

(continued on next page)

Using DATATRIEVE Procedures 9-15

DTR>» EBSAVBIG

DELETE BIG.YACHTS_QUERY 3
"BIG_YACHTS_QUERY" has not been defined in
DEFINE PROCEDURE BIG.YACHTS.QUERY

SET ABORT

DECLARE LENGTH PIC 99

VALID IF LENGTH GT 35.

the dictionary

LENGTH = *,"MIN LOA"

IF LENGTH GT 42

THEN ABORT "NO BOATS THAT BIG"

FIND BIGGIES IN YACHTS WITH LOA GE LENGTH SORTED BY BUILDER

PRINT BUILDER:, RIG,s LOA, PRICE OF BIGGIES

END._.PROCEDURE

DTR> SHOW PROCEDURESRED

Procedures:
BIG_YACHTS BIG.YACHTS.QUERY BP
BREAK_REP CTRL EXPENSIVE F
FAM_REC INFLATION_REPORT JOB_HISTORY
MULTIPLE_PRINT MULTIPLE.STORE NEW_YACHTS NME
P PAGE._.HEADER PICKBOATS PRICE_INCREASE
R SALARY_REPORT SALARY_REPORT1 SALARY.REPORTZ2
SALARY_TOTALS SUM TAB_TEST TEST..WAGE
TITLE.PAGE Y WAGE.REPORT WP
KP YACHTS_REPORT YACHT.PER_LB YACHT_PRICE

DTR> :BIG_YACHTS_QUERYGED)
Enter MIN LOA: "Z
Execution terminated by
DTR>

opPerator

9-16 Using DATATRIEVE Procedures

Using DATATRIEVE Command Files 1 0

Many people use DATATRIEVE by typing in single commands in the form
@ENTERC or :MONTHLY_REPORT and then watching the results scroll on
their screens. Someone else has prepared a command file or procedure for them.
Within the command file or procedure are the DATATRIEVE commands and
statements to carry out a given task.

Command files are much like procedures. Both contain fixed sequences of
DATATRIEVE commands and statements and both allow you to execute fre-
quently used operations. They have the following differences:

® You invoke a command file by typing the at sign (@) before the file specifica-
tion, a procedure by typing a colon (:) before the procedure name.

¢ You store the procedures in your dictionary. You can see your procedures with
a SHOW PROCEDURES command from within DATATRIEVE. Your com-
mand files, on the other hand, reside outside DATATRIEVE in your operating
system directory. You must exit from DATATRIEVE and use operating system
commands to display them.

¢ You edit procedures with the DATATRIEVE Editor, command files with your
operating system editor.

e When you invoke command files, you see the command statements and com-
ments echo on your terminal.

You can use command files for the following purposes:

e To create a startup command file that will automatically execute certain com-
mands and statements each time you invoke DATATRIEVE. Default name for
the file is QUERY.INI. See Chapter 2.

e To create and then invoke command files to add definitions of dictionary
objects to your dictionary.

101

e To use as backup files of your dictionary. If something happens to corrupt the
dictionary and you need to restore the definitions it previously contained, you
can use your backup files of domain, record, table, and procedure definitions.

DATATRIEVE executes the command file and returns to your operating sys-
tem’s command level.

e To process files in batch mode. You can include invocation command lines to
execute DATATRIEVE commands and statements.

e To develop and test a procedure you want to store in your dictionary:

1. Put the steps of the procedure into a command file. Do not yet include the
DEFINE PROCEDURE command.

2. Execute the command file from your operating system’s command level.

3. The steps in the command file will appear on the screen and stop at the
point where an error occurs. Use the message to help you decide what is
wrong with the series of statements you have entered.

4. When you have eliminated all errors from the command file, insert a
DEFINE PROCEDURE statement at the beginning of the file and an
END_PROCEDURE statement at the end of the file. If you have an earlier
version of the procedure or another element with the same name that you
do not need any more, insert a DELETE command and the file name before
the DEFINE PROCEDURE statement. Be careful not to delete anything
important, however.

5. Execute the command file by typing an at sign (@) and the file name to load
the procedure into your dictionary.

10.1 Creating a Command File

10-2

You create a command file at the operating system level with a text editor.
Invoke an editor and enter the sequence of DATATRIEVE commands and state-
ments just as you would in DATATRIEVE. Do not include DATATRIEVE
prompts such as DTR>, CON>, DFN>, or RW>, only the commands and state-
ments you enter following a prompt. When you complete the sequence of com-
mands and statements and exit from the editor, your operating system stores the
command file in your system directory.

It is usually a good idea to specify .CMD as the file extension of a DATATRIEVE
command file. Because it is the default file extension, you do not have to type the
.CMD extension when you invoke the command file in DATATRIEVE. For exam-
ple, to invoke the command file HELLO.CMD in DATATRIEVE, you can type
the following:

DTR> BHELLO

Using DATATRIEVE Command Files

10.2 Contents of a Command File

A command file can contain any DATATRIEVE command or statement.

10.2.1 ADT, EDIT, SET GUIDE

You can include ADT, EDIT, or SET GUIDE commands in a command file.
DATATRIEVE places you in ADT, edit, or Guide mode and displays an ADT,
edit, or Guide prompt. You cannot include a response to the Guide prompt in
your command file, however. The file can contain only commands or statements.

DATATRIEVE executes the next line in the command file only after you exit
from the DATATRIEVE Editor, Guide mode, or ADT. Even if that line is a valid
response to an ADT, edit, or Guide mode prompt, DATATRIEVE displays an
error message and returns you to DATATRIEVE command level unless it is a
valid DATATRIEVE command or statement.

10.2.2 Comments

You can include comments in a command file by placing an exclamation point (!)

before each comment line. Comments echo on your terminal when you invoke
the file.

If your command file defines a procedure and you put comments into the proce-
dure definition, DATATRIEVE stores the comments in the dictionary along with
the rest of the definition. DATATRIEVE displays those comments when you
invoke the command file. When you invoke the procedure, however,
DATATRIEVE does not display the comments on your terminal.

10.3 Invoking a Command File

To invoke a command file that you have catalogued in your directory, precede the
file specification with an at sign (@). To invoke a command file, enter the invoca-
tion on a line by itself. For RSTS systems, use this format:

@device:[PPN]filename.cmd
For RSX systems, use this format:
(@device:[UIC]filename.cmd;version

If the file extension is .CMD and the file is in your default directory, you need
enter only the file name:

@filename

Using DATATRIEVE Command Files 10-3

10.3.1 Invocation Command Lines

You need not eater DATATRIEVE to invoke a command file. You can invoke a
command file from the system level. For example, to invoke PRT.CMD in your
operating system directory, type this in response to the system level prompt (>):

Readv

> DTR @PRTED

Invoking a command file in this way differs from invoking one in response to the
DTR> prompt. DATATRIEVE executes all the commands and statements in the
command file as though you had entered them interactively. However, it does not
print the DTR> prompt on your terminal and after executing the last command
or statement in the file, it automatically exits from DATATRIEVE. If the com-
mand file is in another user’s directory, you invoke it by specifying all the neces-
sary information in the following format:

@device:[UIC]filename.extension

For RSX systems, you can also specify a version number after the extension.

10.3.2 Invoking a Command File from a Procedure

You can invoke a command file from a procedure you define with the DEFINE
PROCEDURE command. For example, suppose you create a procedure
PICKBOATS to form a collection of boats that cost more than $10,000. Invoke a
command file SAMPLE.CMD containing report-generating statements within
PICKBOATS to produce a report:

DTR> DEFINE PROCEDURE PICKBOATSRED
DFN:* READY YACHTSEE
DFN* FIND YACHTS WITH PRICE GT 10000 SORTED BY LOA, BEAMEE
DFN> BSAMPLERS)
SET ABORT
ITHIS REPORT REQUIRES AN ESTABLISHED COLLECTION
ISORTED BY LOA AND BEAM.
1
'HAVE YOU ESTABLISHED A COLLECTION?
IF *,"YES DR NO" CONTAINING "N" THEN ABORT "SORRYs NO COLLECTION."
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT-NAME="SAMPLE REPORT"/"FROM A PROCEDURE"
SET LINES_PAGE=55+ COLUMNS_-PAGE=B0
PRINT BUILDER,» MODEL, LOAs BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIPs "AVERAGE PRICE =",
AVERAGE (PRICE) s SKIP
AT BOTTOM OF REPORT PRINT COL 17 "NUMBER OF BOATS = ",
COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =" AVERAGE (PRICE)
END_REPORT
DFN* END_PROCEDUREQRED
DTR> :PICKBOATSEE
Enter YES OR NO: YEED
Enter OUTPUT DEVICE OR FILE: TI:RED

DTR*
(continued on next page)

10-4 Using DATATRIEVE Command Files

SAMPLE REPORT 25-Aug-82

FROM A PROCEDURE Pade 1

LENGTH

OVER
MANUFACTURER MODEL ALL BEAM PRICE
EASTWARD HO 24 09 $15,900
AVERAGE PRICE = %15,900
IRWIN 25 25 12 $10,950
AVERAGE PRICE = $10,850
AMERICAN 26-M8 26 08 $18,885
GRAMPIAN 26 26 08 $11,485
WESTERLY CENTAUR 26 08 $15.,245
TANZER 26 2 09 $11,+750
ALBIN 79 26 10 $17,900

DTR

You cannot invoke command files while you are in ADT or Guide Mode.

You can invoke a command file in response to the RW> prompt of the Report
Writer. The file must begin with valid report statements. If you complete the
report specification in the file with an END_REPORT statement, you can follow
the specification with other valid DATATRIEVE commands or statements. When
you invoke a command file, DATATRIEVE prints each command or statement on
your terminal and executes it as if you had entered it directly from your key-
board. If an error occurs, DATATRIEVE prints an error message and stops exe-
cuting the command file.

10.4 Aborting Command Files

To abort a command file that may contain an error, include an ABORT state-
ment in the file. If the responses meet the abort conditions and SET ABORT is in
effect, DATATRIEVE aborts the command file and prints the message specified
for the ABORT command. If SET NO ABORT is in effect, DATATRIEVE aborts
the command or statement that contains the ABORT but continues to execute
the commands and statements that follow in the file.

10.5 Editing a Command File

To edit a command file you must exit from DATATRIEVE and use a text editor.
When you correct any error, return to DATATRIEVE, ready the necessary
domains, establish any appropriate collections, and execute the command file
again.

Using DATATRIEVE Command Files 10-5

10.6 Sample Command File

10-6

In contrast to the sample procedure, the sample command file prints each state-
ment and command in the file as DATATRIEVE executes it.

When DATATRIEVE encounters the statement with the *.“YES OR NO”
prompting value expression, it pauses to wait for your response to the question:
HAVE YOU ESTABLISHED A COLLECTION? The Boolean expression
CONTAINING checks your response to the question. If the response contains a
letter N anywhere, the command file aborts.

When DATATRIEVE encounters the *.“OUTPUT DEVICE OR FILE” prompt, it
pauses again for you to select the device or file for output of the report.

Note that, except for the report name, the report the command file produces
is the same as the one produced by the procedure YACHT_SUMMARY in
Chapter 9. '

The file YSUM.CMD contains the following sequence of commands and
statements:

SET ABORT

ITHIS REPORT REWUIRES AN ESTABLISHED COLLECTION

ISORTED BY LDA AND BEAM.

i

IHAVE YOU ESTABLISHED A COLLECTION?

IF *,"YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION,"

REPORT ON #,"OUTPUT DEVICE OR FILE"

SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"

SET LINES_PAGE=55, COLUMNS_PAGE=B0

PRINT BUILDER, MODEL, LOA:» BEAM, PRICE

AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",
AVERAGE (PRICE)s SKIP

AT BOTTOM OF REPORT PRINT COL 13,"NUMBER OF BOATS = ",

COL 33, COUNTs SKIP. "AVERAGE PRICE OF ALL BDATS =", AVERAGE (PRICE)

END_REPORT

When you have readied the domain and established the appropriate collection,
you invoke the command file with an at sign (@). You do not have to include the
.CMD extension. DATATRIEVE prints each command and statement as it exe-
cutes them:

DTR>» READY YACHTSED

DTR> FIND FIRST 5 YACHTS WITH LOA BETWEEN 36 37 AND PRICE NE ORD)
[3 records foundl

DTR> SORT BY LOA, BEAMERED

DTR>» BYSUMERD)

SET ABORT

'THIS REPORT REQUIRES AN ESTABLISHED COLLECTION

'SORTED BY LOA AND BEAM.

i

IHAVE YOU ESTABLISHED A COLLECTION?

IF *,"YES OR NO" CONTAINING "N" THEN ABORT "SORRY: NO COLLECTION,"
Emter YES OR NO: YEGSQRD

REPORT ON #*,"0OUTPUT DEVICE OR FILE"

SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"

SET LINES_PAGE=55s COLUMNS_PAGE=GO

(continued on next page)

Using DATATRIEVE Command Files

PRINT BUILDER, MODEL,» LOA, BEAM:s PRICE

AT BOTTOM OF LOA PRINT SKIP: "AVERAGE PRICE =",
AVERAGE (PRICE)s SKIP

AT BOTTOM OF REPORT PRINT COL 17,"NUMBER OF BOATS = "

CoL 40 COUNT. SKIP, "AVERAGE PRICE OF ALL BOATS =", AVERAGE (PRICE)
END_REPORT
Enter OUTPUT DEVICE OR FILE: TI:EED
SAMPLE REPORT 01-APr-87
FROM A COMMAND FILE Pade 1
LENGTH
OVER
MANUFACTURER MODEL ALL BEAM PRICE
ISLANDER 36 36 11 $31:730
I. TRADER 37 36 12 $38,500
AVERAGE PRICE = $35+615
IRWIN 37 MARK II 37 11 $36 930
NORTHERN 37 37 i1 $50,000
ALBERG 37 MK II 37 12 $36+951
AVERAGE PRICE = $41,300

NUMBER OF BOATS =
AVERAGE PRICE OF ALL BOATS = $39,026

o

10.7 Nesting Command Files Within Command Files

You can invoke both procedures and command files from within a command file.
For example, the command file MSMOD creates a loop with a FOR statement

and then invokes the command file MOD. MOD contains a BEGIN-END block of
statements that allows you to modify prices interactively:

DTR: EMSMODGEE
READY YACHTS WRITE
FOR YACHTS WITH RIG = "MG"
@MOD
BEGIN
PRINT
IF *,"Y TO MODIFY, N TO SKIP" CONTAINING "Y"
THEN MODIFY PRICE ELSE
PRINT "NO CHANGE"
IF *,"Y TO CONTINUE, N TO ABORT" CONTAINING “N"
ABORT "END OF PRICE CHANGES"

END
LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
AMERICAN - 26-MS MS 26 5,500 08 18,950

Enter ¥ TO MODIFY: N TO SKIP: Y@D)

Enter PRICE: 19350R

Enter ¥ TO CONTINUE, N TO ABORT: YRE)

EASTWARD HO MS 24 7,000 089 $13,900

(continued on next page)

Using DATATRIEVE Command Files 10-7

Enter ¥ TO MODIFY, N TO SKIP: N@ED
NO CHANGE

Enter ¥ TO CONTINUE: N TO ABORT: NED
ABORT: END OF PRICE CHANGES

DTR> FIND YACHTS WITH RIG = "MS"@D
[S records foundl

DTR» SELECTQRED

DTR> PRINTGEED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
AMERICAN 26-MS MS 26 5500 0B $19,350
DTR

When nesting command files, do not allow a command file to invoke itself, either
directly or indirectly. If you do, you receive this message:

Command file nesting limit exceeded

10.8 Using a Command File in a FOR or REPEAT Statement

You can invoke a command file in a loop you create with the FOR or REPEAT
statements. As the following example shows, you must be sure to invoke the
command file on a separate line, and you must include its statements within a
BEGIN-END block:

DTR>» SET NO PROMPTRED

DTR> READY YACHTS WRITERE

DTR> FIND YACHTS WITH RIG = "KETCH"GE)

[13 records foundl

DTR*» FOR CURRENT EMODED)

Expected statements encountered "B8",

DTR> FOR CURRENTQRE

CON> EMODREe

BEGIN
PRINT
IF *,"Y TO MODIFYs N TO SKIP" CONTAINING "Y"
THEN MODIFY PRICE ELSE
PRINT "NO CHANGE"
IF *,"Y T0O CONTINUE, N TO ABORT" CONTAINING "N"
ABORT "END OF PRICE CHANGES"

END

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK II KETCH 37 20,000 12 $36,951

Enter ¥ TO MODIFY» N TO SKIP: "2
Execution terminated by orerator
DTR>

10-8 Using DATATRIEVE Command Files

10.9 Maintaining Command Files

Your operating system directories, not the dictionary, store the command files. If
you adopt the convention of using .CMD as the extension for command files, you
can display the names of the command files on your terminal by requesting a
directory listing of *.CMD at the command level. You can adopt any other con-
vention you wish and use the wildcard in the same manner:

READY

*DIR *,CMDQRED

Name Tvp Size Prot Date SY:[1,371
BLD11M.CMD 2 4 BO» 24-Ser-82

CLASSE.CMD -3 < BOx 24-5ep-82

SAMPLE.CHMD 4 < BOr 24-Sep-82

You can display the contents of a command file with the TYPE command at the
system level:

*TYPE SAMPLE.CMD ;@D
SET ABORT
ITHIS REPORT REQUIRES AN ESTABLISHED COLLECTION:
ISORTED BY LOA AND BEAM.
I
IHAVE YDU ESTABLISHED A COLLECTION?
IF *,"YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION,"
REPORT ON *,"OUTPUT DEVICE DR FILE"
SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES_PAGE=55, COLUMNS_PAGE=G0
PRINT BUILDER, MODEL: LOAs BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",
AVERAGE (PRICE), SKIP

AT BOTTOM OF REPORT PRINT COL 17, "NUMBER OF BOATS = ",

COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS =", AVERAGE (PRICE)
END_REPORT

You can delete a command file from your directory with the operating system
command level DELETE command.

*DELETE SAMPLE.CMD @D

Using DATATRIEVE Command Files 10-9

Using DATATRIEVE Variables 1 1

A variable is a symbol whose value can change as you execute a program. You
can use the letter A as a variable, for instance. The name of the variable stays
the same, but its value can change during a DATATRIEVE session.

You use variables in DATATRIEVE:

e To assign values to fields in STORE and MODIFY statements
o Ascounters in FOR, REPEAT, and WHILE loops

® As conditional values in Boolean expressions

11.1 Declaring Variables

You declare a variable with a statement in this form:
DECLARE variable-name variable-definition

The variable name is the name you give to the variable. The variable definition
consists of field definition clauses.

The following is an example of a DECLARE statement. Notice the similarity
between the DECLARE statement and the definition of a field in a record:

DTR> DECLARE X PIC 9(7)V89 EDIT_STRING IS $3%,$%%,$%$%.,89,

When you declare a variable, you can use any of the DATATRIEVE field
definition clauses except OCCURS and REDEFINES. You must include at
least one PIC, COMPUTED BY or USAGE clause. You can also use the
QUERY_HEADER, QUERY_NAME, EDIT_STRING, VALID IF, and SIGN
clauses. '

11-1

11.2 Assigning Values to Variables

11-2

DATATRIEVE assigns a starting value to, or initializes, variables at the time
you create them. Numeric variables are initialized to the value 0. Alphabetic or
alphanumeric string variables are initialized to a blank field (spaces). You can
assign an initial value of 0 to numeric fields or space to string fields, but it is not
necessary to do this. Of course, you must always initialize a variable when you
want the starting value to be other than the DATATRIEVE default.

In most cases, you use the assignment statement (=) to give a value to a varia-
ble. The assignment statement takes the following form:

variable-name = value-expression

Variable name is the name you gave the variable in the DECLARE statement.
Value expression can be any one of the following:

o A literal
e A field name

e Another variable

e A prompting value expression
¢ Values from a table

¢ A statistical function

e An arithmetic expression

¢ A concatenated expression

Remember, however, to assign a value that is consistent with the definition of
the variable. If you assign a value that is larger or a different data type than you
specified in the PIC or USAGE clauses, your results might not be what you
intended.

You can also use the assignment statement to change the value of a variable at
any time after initialization. The following example declares a variable, prints
its initial value, then changes its value using two methods:

DTR> DECLARE ¥ PIC 999 EDIT_STRING ZZ9.@®
DTR: PRINT @D

DTR> X = 233 PRINT XE&T

(continued on next page)

Using DATATRIEVE Variables

DTR> X = *,"VALUE FOR X"G&D

Enter VALUE FOR X: 4SGE
DTR> PRINT X (-)G@

458

DTR>

The minus sign (—) in the preceding example suppresses the heading, in this
case the name of the variable (X), in a PRINT statement.

The following example illustrates another way of assigning values to a variable.
In the example, the procedure NAME_LIST creates a variable NEAT_NAME).
The values of the variable are supplied from the PERSONNEL domain and com-
puted by two fields (FIRST_NAME and LAST_NAME) in the record definition
for that domain. The values for the variable change as the values for the
COMPUTED BY fields change.

The procedure uses the variable both to restrict the print display to the two
name fields in the record and to improve the appearance of each name by elimi-
nating extra spaces between the first and last names:

DTR> SHOW NAME_LISTQRED

PROCEDURE NAME_LIST

DECLARE NEAT.NAME COMPUTED BY FIRST_NAME!!" "ILAST_NAME
QUERY_HEADER IS "EMPLOYEE NAMES",

READY PERSONNEL

PRINT NEAT_NAME OF FIRST 2 PERSONNEL

END_PROCEDURE

DTR> :NAME_LISTED

EMPLOYEE NAMES

CHARLOTTE SPIVA
FRED HOMWL

DTR>

11.3 Local and Global Variables

You can define two kinds of variables in DATATRIEVE:
e Global

o Local

You use the DECLARE statement to define both local and global variables. A
variable you define with a BEGIN-END block is a local variable, and you can use
it only within that block. A variable you define at DATATRIEVE command level
is a global variable. It remains in your workspace until you release it or exit
from DATATRIEVE. Use the assignment statement (variable = value) to set the
variable equal to a particular value.

Using DATATRIEVE Variables 11-3

11.3.1 Global Variables

You can use a global variable to change values in every record in a domain. Sup-
pose you want to assign to each boat in YACHTS a new price that is two-thirds of
the present price. By using a COMPUTED BY clause in a global variable, you
can apply a single formula to every yacht, as in the example that follows:

DTR> READY YACHTS MODIFYRED

DTR> DECLARE SALE_PRICE COMPUTED BY PRICE/1.S5E
CON> EDIT.STRING IS $29,999.99.RD

DTR> SALE_PRICE = 0@

DTR> FOR FIRST 5 YACHTS PRINT BOATs SALE_PRICEQRED

LENGTH
OVER SALE
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE PRICE
ALBERG 37 MK 11 KETCH 37 20,000 12 436,951 %24,634.00
ALBIN 79 sLooP 26 4,200 10 $17,900 $11,933.,33
ALBIN BALLAD sLOOP 30 7276 10 $27,500 $18,333.33
ALBIN VEGA sLOOP 27 5:070 08 $18,600 $12,400,00
AMERICAN 26 SLOOP 26 4,000 08 $9,895 ¢ 6,586.67

DTR>

The variable SALE_PRICE declared at DATATRIEVE command level remains
in the workspace throughout the session. It changes its value whenever the
value of PRICE changes. The variable remains in your workspace until you
release it with the RELEASE command or declare another variable with the
same name.

11.3.2 Local Variables

You define local variables with DECLARE statements entered in BEGIN-END
blocks and THEN statements. The local variable has an effect only within the
clause or statement in which you declare it.

In the following example, the local variable declared in the inner statement
supersedes one with the same name declared in an outer statement. Notice that
the different value or different data type assigned to the inner variable has no
effect on the value of the variable in the outer statement. Note also that neither
local variable exists when DATATRIEVE finishes executing the compound state-
ments containing them both:

DTR> SET NO PROMPT
DTR> BEGINGH

CON> DECLARE X PIC XXX .G
CON X = "TOP"GD

CON PRINT XED

CON BEGINGED

CON> DECLARE ¥ PIC 9.99.@0D
CON> X = 1,236

CON> PRINT X@EE

CON ENDRED

(continued on next page)

11-4 Using DATATRIEVE Variables

CON PRINT @D
CON> END@ED

TOP

DTR* PRINT XE0
Field "X" is undefined or used out of context

DTR >

If you declare a global variable and then use the same name for local variables,
the value of the global variable is not affected by value assignments and changes
made to its local counterpart(s).

11.4 Using Variables to Assign Values to Fields

You can use variables to assign values to fields in the USING clauses of STORE
and MODIFY statements. You cannot, however, use a variable to respond to a
prompt for a field value, whether the prompt is the result of the syntax of the
STORE or MODIFY statement or of a prompting value expression.

In USING clauses of STORE and MODIFY statements, you can use value
expressions on the right side of assignment statements to supply values for
fields. In some circumstances, you can use variables in those assignments to con-
trol the uniformity of input data.

In this example, WORK is a domain you want to contain uniform names. The
data file is indexed on WHO and allows duplicates:

DTR» SHOW WORK_-RECGED
RECORD WORK_REC

USING
01 TOP.
’ 03 JOB PIC X(13). .
03 RESPONSIBLE_PERSON PIC x(4)
QUERY_NAME WHO.
ki
DTR>

Using DATATRIEVE Variables 11-5

NAME_TABLE translates the varying inputs into uniform values to store in the
work domain:

DTR*> SHOW NAME_TABLEGRE
TABLE NAME.TABLE

E : ED
ED : ED»
EM : ED»

M : ED

F : FRED »
FH : FRED
FRED : FRED »
H : FRED »
L : RICK
R : RICK
RBL : RICK s
RICK : RICK
RL : RICK
ELSE "777?7"

END_TABLE

In the following STORE statement, the USING clause uses the variable
PERSON with a prompting value expression for the responsible person. The

table translates the value supplied to that prompt and stores the uniform results
in the field WHO.

DTR> SET NO PROMPTGRE)

DTR> DECLARE PERSON PIC X(3).RD
DTR> READY WORK WRITEGRE)

DTR> REPEAT 3 STORE WORK USINGRE)
CON> BEGINGD

CON JOB = *,JOBRE
CONZ PERSON = =, WHORE)
CON WHO = PERSON VIA NAME_TABLERE)

CON> ENDRED

Enter JOB: CLEANINGEE)
Enter WHD: ERED

Enter JOB: DRYINGQRED
Enter WHO: FREED
Enter JOB: SELLINGGEED)
Enter WHO: REE

DTR> PRINT WORKERE)

RESPONSIBLE
JoB PERSON
CLEANING ED
DRYING A
SELLING RICK

DTR:

11.5 Using Variables as Counters to Control Record Streams
You can use a counter to keep track of how many times DATATRIEVE performs

a task. When you use a counter to control a record stream, however, it can also
limit the number of times DATATRIEVE executes FOR and WHILE statements.

11-6 Using DATATRIEVE Variables

Suppose you want to keep a running count of the yachts you are repricing. You
can use the following global variable:

DTR> DECLARE A PIC 999.@D
DTR> A = ORE)
DTR> PRINT AQRED

A

000

DTR> SET NO PROMPTEED
DTR> FOR YACHTSEE

CON> BEGINGRED
CONZ A=A+ 16D

CON> PRINT A, BOAT@ED
CON> END

LENGTH

OVER
A MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
001 ALBERG 37 MK II KETCH 37 20,000 12 $36.:851
00Z ALBIN 79 sLoop 26 4,200 10 $174+800
003 ALBIN BALLAD sLoop 30 74276 10 $27,500
004 ALBIN VEGA SLOoP 27 5,070 08 $18.600
005 AMERICAN 26 5LO0P 26 4,000 08 $9,885
0068 AMERICAN 26-MS MS 26 5,500 08 $18,883
007 BAYFIELD 30/32 sLooe 3z 9,500 10 $32,875
113 WRIGHT SEAWIND II SLOOFP 3z 14,9800 00 $34,480
DTR>

In this example, you use the variable as a counter. Each time DATATRIEVE
prints the corresponding record, it increases A by one.

When you use a global variable as a counter in FOR and WHILE statements,
you must initialize the variable to ensure that DATATRIEVE executes the loop
the number of times you intend. If you use the same variable to control two
loops, you must reinitialize the variable before DATATRIEVE executes the sec-
ond loop. If you do not, DATATRIEVE may execute the loop fewer times than
you intend. It may not execute the loop at all if the value of the variable is
greater than the value specified in the IF-THEN-ELSE statement in the second
loop.

Either at the beginning or the end of the loop, you can use an IF-THEN-ELSE
statement to evaluate the variable against a set of conditions. Depending on the
evaluation, DATATRIEVE will continue the looping or execute an ABORT state-
ment to end the loop. This example shows the use of a global variable to control a
FOR statement and force an end to the loop:

DTR> SET NO PROMPTGE)
DTR> READY YACHTSGED
DTR> DECLARE B PIC 9.G®
DTR: B = 0@

(continued on next page)

Using DATATRIEVE Variables 11-7

DTR> FOR YACHTSGED

CONZ BEGINREED

CONZ B =B + 1R

CONZ PRINT B, BOATEED

CON IF B = 7 THEN ABORT "END OF LOOP"RED

CON> ENDEED

LENGTH

DVER
B MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
1 ALBERG 37 MK I1 KETCH 37 20,000 12 4$36,951
2 ALBIN 78 SLOOP 26 4,200 10 $17,800
3 ALBIN BALLAD SLOOP 30 74276 10 $27,500
4 ALBIN VEGA sLOOP 27 5070 08 $18,600
5 AMERICAN 26 SLOOP 26 4,000 08 $8,895
6 AMERICAN 26-MS MS 26 54300 08 418,895
7 BAYFIELD 30/32 sLooe 32 9,500 10 $32,875

ABORT: END OF LOOP
Execution terminated by "ABORT" statement
DTR>

You can also assign a value greater than zero to the variable and use it as a
decremental counter, as in this example:

DTR> DECLARE A PIC 9,
DTR> A=8
DTR> PRINT AR

A
8

DTR> SET NO PROMPTGE
DTR> FOR YACHTSED

CON> BEGINGED

CON Y PRINT A: BOATGD

CON A=A - 1@

CON IF A = 0 THEN ABORT "END OF LOOP"GE
CON> ENDG®

LENGTH

. OVER
A MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
8 ALBERG 37 MK II KETCH 37 20,000 12 $36.,951
7 ALBIN 79 sSLooP 26 4,200 10 $21,:659
6 ALBIN BALLAD sLooP 30 7+276 10 $27,500
5 ALBIN VEGA sLoop 27 5,070 0B $18.:600
4 AMERICAN 26 sLooOP 26 4,000 08 $9,885
3 AMERICAN 26-M8 MSs 26 5,500 08 418,895
2 BAYFIELD 30/32 sLoorP 32 9,300 10 $32,875
1 BLOCK I, 40 sLoOP 39 184300 12 $29,030

ABORT: END OF LOOP
Execution terminated by "ABORT" statement
DTR*

11-8 Using DATATRIEVE Variables

The WHILE statement causes DATATRIEVE to repeat a statement as long as
the condition specified in the Boolean expression is “true.” The command file
(WH.CMD) in this example uses a variable in a WHILE statement.

DTR> EWHED
DECLARE A USAGE INTEGER.

A =0
PRINT A
A
0
FOR YACHTS
WHILE A < 5
BEGIN
A=A+ 1
PRINT A, BOAT
END
LENGTH
OVER
A MANUFACTURER MODEL - RIG ALL WEIGHT BEAM PRICE
1 ALBERG 37 MK 11 KETCH 37 20,000 12 436,951
2 ALBERG 37 MK II KETCH 37 20,000 12 $36.,951
3 ALBERG 37 MK 1II KETCH 37 20,000 12 $36,951
4 ALBERG 37 MK II KETCH 37 20,000 12 $36,851
5 ALBERG 37 MK II KETCH 37 20+000 12 $36,951
DTR >

The variable in the next example changes with the value expression
PRICE/LOA and stops the FOR loop when the value expression meets the condi-
tion specified in the IF-THEN-ELSE statement:

DTR>» SET NO PROMPTEE)

DTR>» FIND FIRST 15 YACHTSEH

[15 records foundl

DTR>» DECLARE X PIC 9999 EDIT_.STRING IS $%$,%$%%.,99.@60
DTR> X = QRN

DTR> FOR CURRENTQEED

CONZ> BEGINRED
CONZ X = PRICE/LOAGRD
CONZ PRINT TYPE, X ("PRICE"/"PER FOOT")®ED
CONZ IF ¥ GE 1000 THEN ABORT “TOO SHORT FOR THE MONEY"@EED
CON> ENDRED
PRICE
MANUFACTURER MODEL PER FOOT
ALBERG 37 MK II 998,00
ALBIN 79 $688.00
ALBIN BALLAD $916.00
ALBIN VEGA $688.00
AMERICAN 2B $380,00
AMERICAN 26-M8 $726.00
BAYFIELD 30/32 $1,027.00

ABORT: TDOO SHORT FOR THE MONEY
Execution terminated by "ABORT" statement
DTR >

Using DATATRIEVE Variables 11-9

Using DATATRIEVE Tables 1 2

Tables save space. They save space in record definitions and data files. They also
save space when you type in commands and statements. With a DATATRIEVE
table, you can associate codes with corresponding translations — for example,
area codes with states and products with price codes.

One advantage to such code and translation pairs is that you can substitute a
short field for a long one. For instance, you can have a list of codes for job titles
such that you can put E01 into the definition and have a table that translates the
code into Tax Assessor First Class. A dictionary table looks like the sample in
Figure 12-1.

DICTIONARY TABLE

Code Translation

C “Customer Services”

E Engineering

Figure 12-1: Code and Translation Pairs in a Dictionary Table

12.1 A Sample Dictionary Table

Suppose, for example, that you are a manufacturer who needs to order various
items from clerks around the country. With the help of a DATATRIEVE table,
you can use one command to find out which products have reached zero inven-
tory, which clerks are responsible for the parts, and the phone numbers for those
clerks.

121

You can use a dictionary table, in this case a table called ORDER_TABLE, to
pair clerks and phone numbers with the products you need to track. You can
define a procedure to determine which items are out of stock, then invoke a table
producing a list of clerks responsible for those parts.

The following example uses the domain PRODUCTS and a procedure TAB,
which finds the items no longer in stock and uses ORDER_TABLE to list the
clerks you need to call:

DTR> READY PRODUCTSGEED
DTR> PRINT ALL PRODUCTSEED

PARTS
PART IN
YENDOR ITEM NUMBER STOCK
ACME ASPHALT & SBHINGLE ASPHALT 1001 3
ACME ASPHALT & SHINGLE SHINGLES 1002 0
ACME ASPHALT & SHINGLE CUBE WALLS 1003 9989
PURGE SYSTEMS ERASER-CHALK 3001 3
PURGE SYSTEMS ERASER-PENCIL 3002 1
PURGE SYSTEMS WHITE-OUT 3003 8645
PURGE SYSTEMS MAGNETS-20 0Z. 3004 0
QUERY ENTERPRISES LISTINGS 2001 4
QUERY ENTERPRISES REPORTS 2002 0

DTR> SHOW ORDER_TABLEGRED
TABLE ORDER_TABLE

"ACME ASPHALT & SHINGLE"
"QUERY ENTERPRISES"
"PURGE SYSTEMS"

ELSE "SOMETHING ELSE"
END_TABLE

DTR> SHOW TABED
PROCEDURE TAB

FIND PRODUCTS WITH STOCK = O SORTED BY PART
FOR CURRENT PRINT ITEM: PART:

VENDOR VIA ORDER-TABLE ("CALL") USING X(30)
END_PROCEDURE

DTR> :TABRED

"L+ LANDFILL (8999) 555-1234";,
"T. ABMOW (111) 555-4321",
"T. SKWAIRDEE (123) 555-8B76",

PART
ITEM NUMBER CALL
SHINGLES 1002 L. LANDFILL (999) 555-1234
REPORTS 2002 T. ABMOMW (111) 555-4321
MAGNETS-20 0Z. 3004 T. SKWAIRDEE (123) 555-9876

DTR:

12-2 Using DATATRIEVE Tables

12.2 Creating Dictionary Tables

To create a dictionary table, enter the DEFINE TABLE command:
DEFINE TABLE table-name

Then enter the pairs of codes and their translations on separate lines, separating
them by a colon (:). Make sure to place a comma after each pair at the end of the
line.

If the code or the translation contains more than one word, enclose it in quota-
tion marks. For example, the translation “New Hampshire” must be placed in
quotation marks so DATATRIEVE will recognize the two words as one transla-
tion entry. You must also use quotation marks to preserve lowercase letters in a
code or translation.

If you use quotation marks, the rules for character string literals apply. That is,
neither the code nor the translation can exceed 132 characters, and neither can
contain a RETURN, line feed, space, or control character.

After the last code and translation pair, you can enter an optional ELSE clause.
DATATRIEVE substitutes the translation in the ELSE clause for any values not
found in the table. If your dictionary table does not contain an ELSE clause,
DATATRIEVE prints an error message when it cannot find a value in the table.

Translations included in an ELSE clause are also enclosed in quotation marks.
Apply the same rules as with character string literals, except do not place a
comma after an ELSE clause.

To end a dictionary table definition, enter the keyword END_TABLE. The
END_TABLE statement must follow the ELSE clause, if specified, or the last
code and translation pair if there is no ELSE clause. If you omit the ELSE
clause, do not put a comma after the last code and translation pair.

After you enter the END_TABLE statement, DATATRIEVE stores the defini-
tion in your current dictionary and creates an access control list for the diction-
ary table.

When you first refer to a table, DATATRIEVE searches the current data diction-
ary for the table and loads it into your DATATRIEVE workspace. DATATRIEVE
evaluates the value expression in your statement and compares the value with
the codes in the table. The comparison is case sensitive and proceeds character-
by-character. Thus, a value expression of 5 does not match a code of 05, and a
value expression of Rig does not match a code of RIG.

As you define a dictionary table, DATATRIEVE checks for syntax errors. For
example, if you use a semicolon in place of the required colon, DATATRIEVE
prints an error message and aborts the DEFINE TABLE command.

DATATRIEVE does not store anything in the dictionary until you complete the
table definition without a syntax error. You can use the DATATRIEVE Editor to
change a table once it is in the dictionary.

Using DATATRIEVE Tables 12-3

If you want to edit the table as you create it, you can:

¢ Enter one code and translation pair, finish the definition with END_TABLE,
then use the DATATRIEVE Editor to extend the table to include additional
code and tranlation pairs.

e Leave DATATRIEVE and use the editor you usually use on your operating sys-
tem to define the table in a command file. Then enter DATATRIEVE again and
invoke the command file at the DTR> prompt. DATATRIEVE checks the syn-
tax, and if the definition contains an error you can leave DATATRIEVE again
and edit the command file.

See Chapter 10 for more information about command files.
12.3 Sample Dictionary Tables

This section show ways you can define and use dictionary tables.

For example, suppose you are a sales manager with a list of names and phone
numbers of potential customers, and you want to know where they live. You can
enter telephone area codes and their corresponding state names in a dictionary
table, then refer to the table in a PRINT statement.

You can define a dictionary table as follows:

TABLE AREA_CODE_TABLE
207 : MAINE:
603 : "NEW HAMPSHIRE"

802 : VERMONT .

617 : "EASTERN MASSACHUSETTS"
413 : "WESTERN MASSACHUSETTS"
401 : "RHODE ISLAND"

203 CONNECTICUT »
ELSE "NDT A VALID AREA CODE"
END_TABLE

Then you can prompt for an area code and print the corresponding state in a sin-
gle statement:

DTR» PRINT *."AREA CODE" VIA AREA_CODE_TABLE USING X(Z1)ED
Enter AREA CODE: Z203R0

CONNECTICUT

DTR >

Suppose you also want to create a table of abbreviations for RIG, KETCH,
SLOOP, and MS from the YACHTS domain. You can create the following diction-
ary table, RIG_TABLE, and store it in the data dictionary for YACHTS:

DTR> DEFINE TABLE RIG_TABLERD

DFN> "SLOOP" : "ONE-MAST" @D

DFN> "KETCH" : "TWO MASTS, BIG ONE IN FRONT" @D
DFNZ: "yAWL" : "SIMILAR TO KETCH" :R)

DFN: "MS" : "SAILS AND BIG MOTOR" @D

DEN: ELSE "SOMETHING ELSE"@D
DFN» END_TABLEGE
DTR:

12-4 Using DATATRIEVE Tables

12.4 Using the IN Relational Operator with DATATRIEVE Tables

You can use tables with the relational operators IN and NOT IN to set conditions
in IFFTHEN-ELSE statements and to validate data. The following is the general
format for using IN and NOT IN with a DATATRIEVE table:

field-name
*.prompt [NOT]IN table-name
variable-name

12.4.1 Using a Table in a Record Selection Expression

In a record selection expression, you can use a Boolean expression that refers to a
dictionary table:

DTR> FOR YACHTS WITH RIG NOT IN RIG_TABLE PRINT BOATQRED

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
AMERICAN 26-MS8 MS 26 3:500 0B $18,885
EASTWARD HO MS 24 7000 08 $13,800
FJORD M5 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,5300 12 $35,800
ROGGER FD M/8 MS 35 17,600 11

DTR>» FIND YACHTS WITH RIG IN RIG_TABLEQRE
[108 records foundl
DTR =

12.4.1.1 Using a Table to Set Conditions in an IF-THEN-ELSE Statement — You can
combine IN with a table reference to set the conditions of an IFFTHEN-ELSE
statement:

DTR> SET NO PROMPT@ED
DTR: FOR YACHTS WITH LOA = 2GGE
CON> BEGING

CONx PRINTGEED
CONZ IF RIG NOT IN RIG_TABLEGH
CONX THEN ABORT "“Does not meet requirements"ReE
CON> ENDGEED)

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBIN 79 SLOOP 26 4,200 10 $17,900
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-M8 Ms 26 5:;500 0B $18,895

ABORT: Does not meet requirements
Execution terminated by "ABORT" statement
DTR >

Using DATATRIEVE Tables 12-5

12-6

12.4.1.2 Using a VALID IF Clause with a Table to Validate Data — By referring to a
dictionary table in a VALID IF clause, you can validate data in a field before
storing the data. The VALID IF clause must be part of the record definition. The
following definition of PHONE_REC illustrates this method of automatic data
validation:

DTR> DEFINE RECORD PHONE_REC USINGQRED)
DFN> 01 PHONE.@RE

DFN> 02 NAME PIC X(20).@D

DFN> 02 NUMBER PIC 9(7) EDITLSTRING IS XXX-XXKXRED
DFN > 02 LOCATION PIC X(9) .G

DFNZ 02 DEPARTMENT PIC XX VALID IFRE)

DFN> DEPARTMENT IN DEPT_TABLE.R

DFNZ 3@

DTR >

The table DEPT_TABLE looks like this:

DTR> SHOW DEPT_TABLEGD
TABLE DEPT_TABLE

"T3" @ "TYPESETTING" .

"DS" : "FINANCE":

"RO" : "HOUSEKEEPING":

"K7" @ "GROUNDSKEEPING"

"R7" "BEEKEEPING" »

ELSE "NDT A DEPARTMENT HERE"
END_TABLE

DTR*

If you try to enter a department number that is not in the table, DATATRIEVE
rejects the entry and prompts you for a correct one:

DTR* READY PHONE WRITEQRE)

DTR> STORE PHONERED

Enter NAME: "BENJAMIN PAUL"RE)
Enter NUMBER: 7548769R0

Enter LOCATION: POLE..S@E)

Enter DEPARTMENT: T4QRD
VYalidation error for DEPARTMENT
Re-enter DEPARTMENT: T3@E)

DTR >

- 12.4.2 Using the Keyword VIA with DATATRIEVE Tables

To refer to tables in value expressions, combine the table name with the keyword
VIA. DATATRIEVE compares the codes in the table with the value you supply. If
the value matches one of the codes, DATATRIEVE uses the corresponding trans-
lation in the table. Use the following format to refer to a dictionary table in a
value expression:

field-name
*.prompt VIA table-name
variable-name

Using DATATRIEVE Tables

You can refer to an entry in the dictionary table RIG_TABLE by using a prompt-
ing value expression, as shown in the following PRINT statement:

DTR> PRINT *,"TYPE OF BOAT" VUIA RIG_TABLE USING X(30)ED
Enter TYPE OF BOAT: KETCHQRED
TWO MASTS, BIG ONE IN FRONT

If you refer to a dictionary table in a PRINT statement, include anedit string to
specify the number of characters to be printed. If you omit the edit string,
DATATRIEVE uses an edit string that is 10 characters long.

12.5 DATATRIEVE Tables and Workspace

Once you have referred to a table, it remains in your DATATRIEVE workspace
until you either relinquish it with the RELEASE command or end your
DATATRIEVE session. If you are redefining a table, you must release the old
version before the new table takes effect. Note that DATATRIEVE does not
release tables when you switch data dictionaries.

You cannot have two tables with the same name in your workspace at the same
time. Use the SHOW READY command to display the names of tables in your
DATATRIEVE workspace. It is helpful for optimization to see the tables in your
workspace so you can release tables you do not need.

For a complete discussion of DATATRIEVE workspace, see Chapter 17 in this

manual.

12.6 Displaying Table Information

You can use the SHOW TABLES command to list the names of all dictionary
tables in your default dictionary.

DTR> SHOW TABLESED
Tables:

DEPT_TABLE JOB_TITLE NAME_TABLE RIG_TABLE
DTR>

12.6.1 Displaying Tables

To display a dictionary table on your terminal, use the SHOW command and
specify the name of the table. Use the following format to display a table:

(passwd)

SHOW table-name [)

Using DATATRIEVE Tables 12-7

12-8

Here is an example:

DTR> SHOW AREA_CODE_TABLERED)
TABLE AREA_CODE_TABLE
207 : MAINE:

603 : "NEW HAMPSHIRE"

802 : VERMONT,

617 : "EASTERN MASSACHUSETTS"»
413 : "WESTERN MASSACHUSETTS"
401 : "RHODE ISLAND" .,

203 : CONNECTICUT

ELSE "NOT A UVALID AREA CODE"
END_TABLE

DTR:

12.6.2 Editing Tables

You can modify a table in the current data dictionary with the DATATRIEVE
Editor. Type EDIT and the table name, then use the Editor to make the desired

changes. Remember to end a new table entry with a comma. When you EXIT
from the Editor, DATATRIEVE places the modified table in your workspace.

See Chapter 16 for more information on the DATATRIEVE Editor.

The following example illustrates how to use the Editor to add a new entry to an
existing table:

DTR> SHOW NUM_LISTQRED
TABLE NUM_LIST
1:"ONE" »
2:"TWO" »
3:"THREE" »
ELSE "NUMBER OUT OF TABLE RANGE"
END_TABLE
DTR> EDIT NUM_LISTRED
QED> "ELSE"RED
ELSE "NUMBER OUT OF TABLE RANGE"

QED> IQRE

IN> 4:"FOUR" »@®ED

IN> "2

QED> WHED
1:"0ONE" »
2:"THO" »
3:"THREE" »
4:"FOUR"»
ELSE "NUMBER OUT OF TABLE RANGE"
END_TABLE

QED:> "Z

DTR>

Using DATATRIEVE Tables

12.6.3 Deleting Tables

You can delete a table from your current data dictionary with the DELETE com-
mand. Use the following format:

sswd)

)

The following example deletes AREA_CODE_TABLE from the default data
dictionary:

DELETE table-name [(pa

DTR> SHOW TABLESRD
Tables:
AREA_CODE_TABLE JOB_TITLE NAME_TABLE
DTR> DELETE AREA_CODE.TABLE R
DTR> SHOW TABLESRD
Tables:
JOB_TITLE NAME_TABLE
DTR >

12.7 Protecting Dictionary Tables

When you create a dictionary table, DATATRIEVE stores its definition in the
current data dictionary and creates an access control list (ACL) for it.
DATATRIEVE automatically stores one project-programmer number (PPN) or
user identification code (UIC) in the ACL with full access privileges. An account
number is called a PPN under RSTS/E systems and a UIC under other operating
systems.

Your individual installation determines the actual PPN/UIC that is stored in the
ACL. Any user logged in under that PPN/UIC and the creator of the table have
R (Read), W (Write), E (Execute), M (Modify), and C (Control) access to the dic-
tionary table. Depending on the PPN/UIC in the ACL, other users in the instal-
lation may be able to delete, modify, or print the dictionary table.

If you want to grant additional privileges to other users or further restrict the
use of the dictionary table, you must modify its ACL. For more information
on protecting dictionary tables and on modifying access control lists, refer to
Chapter 19.

To guard against accidental deletion of your dictionary table, you can maintain a
backup copy of it by using the DATATRIEVE EXTRACT command to copy your
table to a disk file or tape file. For example:

DTR> EXTRACT ON NAMTAB.BKP NAME_TABLERED

DTR >

Using DATATRIEVE Tables 12-9

Defining and Using Views 1 3

A view is a special type of domain that lets you select some or all fields in some
(or all) records from one or more domains. Using a view, you can refer to fields
and field values in different domains without duplicating their records and data.
You can use views to do the following:

e Work with subsets of records

¢ Refer to subsets of fields in records

e Change the apparent order of the fields in records

e Combine subsets of records from more than one domain

e Modify the values in the fields you select

A view does not actually change the way fields are organized in records or the
way records are combined into data files. A view only changes how existing data
appears to you. You can modify values in the fields selected by the view, but you
cannot store or erase any records accessed by the view.

A view is like a window in a house. Just as a window might let you look into
more than one room, a view can let you look into more than one domain. A win-
dow might give you a complete look at everything in one or more rooms, restrict
what you can see to a few items of furniture, or only let you see the back of one
chair. Similarly, a view can let you look at all records, a few records, or parts of
records.

Each window in a house gives you a different picture of what is inside, but the
actual locations of the items you see are the same no matter how you look at
them. In the same way, when you define a view, you do not affect the way infor-
mation is actually stored.

131

13.1 Defining Viéws

13-2

You define a view by creating a domain definition in your data dictionary with
the DEFINE DOMAIN command:

DEFINE DOMAIN view-name OF domain-name [,...] USING
level-number-1 field-name-1 OCCURS FORrse-1.

OCCURS FOR rse-2

level-number-2 field-name-2 {FR OM domain-name-2

After the keyword OF, you must list each domain that the view uses. The
domains you list cannot be views themselves. You may specify the domains in
any order, separating them with commas. You must end each field definition
with a period and end the view definition with a semicolon.

You can use two clauses to define the fields in a view:

e OCCURS FOR
e FROM

The top-level field must be defined with an OCCURS FOR clause. The record
selection expression in the first OCCURS FOR clause determines the number of
records in the view. Each subsequent OCCURS FOR clause creates a list within
the view. Consequently, a view that contains more than one OCCURS FOR
clause is always a hierarchy. (The first OCCURS FOR clause does not make the
view a hierarchy. It only establishes the source record stream for the view.)

See Chapter 14 for more information about hierarchies.

You establish the fields of data for the view with the FROM clause. It specifies
the name of the field and the domain from which it derives. The domain must be
the same domain named in the preceding OCCURS FOR clause. The field name
must be either a field name or a query name from that domain.

If two or more fields have the same name, you might have to qualify those field
names to avoid ambiguity. See Appendix A for more information about qualified
field names.

Defining and Using Views

13.1.1 Views Using Subsets of Records

A view lets you work with a specific subset of records from another domain. For
instance, you may want to work with the records for ketches only and no other
rig type. The following example shows a view definition that allows you to work
with four fields of the yachts that are ketches:

DTR> DEFINE DOMAIN KETCHESGEE)
DFN: OF YACHTS USINGGED
DFN> 01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH" .G

DFNx 03 TYPE FROM YACHTS.QR
DFNx 03 LOA FROM YACHTS.EH)
DFN 03 PRICE FROM YACHTS.@e)
DFN* 3@ED

DTR:> READY KETCHESQRE
DTR> PRINT FIRST 4 KETCHESGRS)

LENGTH

OVER
MANUFACTURER MODEL ALL PRICE
ALBERG 37 MK 11 37 $36.:951
CHALLENGER 41 41 $51,228
FISHER 30 30
FISHER 37 37

DTR:

The view domain KETCHES, which is based on the single domain YACHTS, is
not hierarchical because there is only one OCCURS FOR clause.

You cannot store or erase records in a view. Otherwise, you can use a view just as
you would any other domain.

13.1.2 Views Using Subsets of Fields

Another type of view lets you refer to a subset of fields from the records of
another domain. For example, the record definition for YACHTS contains seven
elementary fields and three group fields:

DTR> READY YACHTSED
DTR> SHOW FIELDSEE
YACHTS
BOAT
TYPE [Indexed fieldl]
MANUFACTURER (BUILDER) [Character strings indexed Kevl]
MODEL [Character string, indexed Kevl
SPECIFICATIONS (SPECS)
RIG [Character stringl
LENGTH_OVER_ALL (LOA) [Character stringl
DISPLACEMENT (DISP) [Numberl
BEAM [Numberl
PRICE [Number]

Defining and Using Views 13-3

134

If you want to work with only a few fields of the record, you can create a record
definition for those fields and then create a domain and a data file containing one
record for each record in YACHTS. The result is a data file that duplicates some
field values in an existing data file (YACHT.DAT). Maintaining these two files so
that they always contain the same field values would be difficult.

You can define a view, however, that lets you look at just the fields in YACHTS
that you need without duplicating field values. You also avoid the additional
time and overhead of creating another record definition and creating and updat-
ing two data files:

DTR> DEFINE DOMAIN MAKERSRE
DFN> OF YACHTS USINGRE)
DFN> 01 BOAT OCCURS FOR YACHTS.@H

DFN 03 TYPE FROM YACHTS.@D
DFN 03 RIG FROM YACHTS.G®
DFNY

DTR> READY MAKERSED
DTR® PRINT FIRST B MAKERSED

MANUFACTURER MODEL RIG
ALBERG 37 MK II KETCH
ALBIN 79 SLOOP
ALBIN BALLAD sLoop
ALBIN VEGA SLOO0OP
AMERICAN 26 5L00P
AMERICAN 26-MS MS

13.1.3 Views Using More Than One Domain

The preceding sections showed how to use view domains to define a subset of
records or fields from a single domain. You can also use field values from more
than one domain.

The domain OWNERS, for example, contains records of yacht owners. Each
record contains the owner’s name and the name, builder, and model of the
owner’s yacht:

DTR> SHOW OWNER_RECORDGED
RECORD OWNER_RECORD
ALLOCATION IS LEFT_RIGHT
01 OWNER.
03 NAME PIC X(10) QUERY_HEADER IS "OWNER"/"NAME"
EDIT_STRING I8 X(3).
03 BOAT_NAME PIC X(17) QUERY_HEADER IS "BOAT NAME".
03 TYPE.
068 BUILDER PIC X(10Q),
0B MODEL PIC X(10).
1
DTR> READY OWNERSEED)
DTR> PRINT FIRST 1 OWNERSED

DWNER

NAME BOAT NAME BUILDER MODEL
SHERM MILLENNIUM FALCON ALBERG 35

DTR

Defining and Using Views

If you define a view that refers to both the OWNERS domain and the YACHTS
domain, you can use any combination of fields and records in those domains. For

example, you can include the name and yacht fields from the OWNERS domain
and the price field from the YACHTS domain.

The view SAILBOATS in the following example uses every field and every record
in the YACHTS domain to match owners with the boats they own. It uses records
from the OWNERS domain and matches those records by boat type with records
in the YACHTS domain. It requests only the NAME field from those records.

After the first OCCURS FOR clause, each OCCURS FOR creates a list within
the view. A domain that contains a list is a hierarchy. The view SAILBOATS,
therefore, is a hierarchical view:

DTR> SHOW SAILBOATSEE)
DOMAIN SAILBOATS
OF YACHTS: OWNERS USING
01 S5AILBOAT DCCURS FOR YACHTS.
03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.
05 NAME FROM DMWNERS.,
ki

DTR>

The field SKIPPERS is a list of owner names. Each record in SAILBOATS can
contain a NAME field for each of several owners. This view allows you to com-
bine all the information on each yacht with the names of all its skippers.

DTR> READY SAILBOATSEED
DTR> PRINT FIRST 2 SAILBOATS WITH ANY SKIPPERSEE

LENGTH
OVER OWNER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME
ALBIN VEGA KETCH 33 17,000 12 $33,000 STEVE
HUGH
C&C CORVETTE SLO0OP 31 8,650 01 JIM
ANN

DTR>

Printing the values of list fields is illustrated later in this chapter. Hierarchies
are discussed in greater detail in Chapter 14.

In general, if you define a view that uses only one domain, use an OCCURS FOR
clause to define the top-level field and then use FROM clauses to specify which
fields the view contains. If you define a view using more than one domain, group
the field definitions by the domain they refer to, putting the field definition with
an OCCURS FOR clause first in each group.

Defining and Using Views 13-5

13.2 Using a View Domain

You use a view as you do any other domain. To ready a view, you must have R
(Read) access privilege to the view, and you must also have the same access priv-
ilege to each domain the view uses. You must have E (Execute) access privilege
to the record definition associated with each domain.

You cannot store or erase records in a view, but you can modify values of fields.
For example, here is how to modify a field in the view KETCHES:

DTR> READY KETCHESRE)

DTR> SHOW KETCHESRED

DOMAIN KETCHES

OF YACHTS USING

01 KETCH OCCURS FOR YACHTS WITH RIG EG "KETCH".
03 TYPE FROM YACHTS.
03 LOA FROM YACHTS.
03 PRICE FROM YACHTS.

DTR> READY KETCHES MODIFY@®ED

DTR> FIND KETCHES WITH PRICE EQ OQ)
[4 records foundl

DTR> PRINT ALLEE

LENGTH
OVER
MANUFACTURER MODEL ALL PRICE
FISHER 30 30
FISHER 37 37
PEARSON 365 36
PEARSON 419 42

DTR> FOR CURRENT PRINT THEN MODIFY PRICERD

LENGTH

OVER
MANUFACTURER MODEL ALL PRICE
FISHER 30 30
Enter PRICE: 30C00RED
FISHER 37 37
Enter PRICE: 45000RD
PEARSON 365 36
Enter PRICE: 3Z2000@H
PEARSON 419 4z
Enter PRICE: S4000RE
DTR> PRINT ALL

LENGTH

OVER
MANUFACTURER MODEL ALL PRICE
FISHER 30 30 30,000
FISHER 37 37 45,000
PEARSON 365 36 $3Z2,000
PEARSON 4189 42 $54 4,000

DTR>

13-6 Defining and Using Views

13.2.1 Using a View That Contains a List

To refer to field values contained in a list, use one of the methods described in
Chapter 14. For example:

DTR>» SHOW SAILBOATSED
DOMAIN SAILBOATS
OF YACHTS: OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.
03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.
05 NAME FROM OWNERS,
1 N
DTR>» READY SAILBOATS WRITERE
DTR>» FIND OWNED IN SAILBOATS WITH ANY SKIPPERSED
[6 records foundl

DTR: PRINT ALLGED

LENGTH
OVER OWNER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME
ALBIN VEGA sLOOP 27 5,070 0B $18,B00 STEVE
' HUGH
C&C CORVETTE SLOOP 31 8,650 09 JIM
ANN
ISLANDER BAHAMA sSLOOpP 24 4,200 0B $6,500 JIM
ANN
STEVE
HARVE
PEARSON 10M sLOOP 33 12,441 i1 TOM
PEARSON 2B SLOOP 26 5,400 0B DICK
RHODES SWIFTSURE SLOOP 33 14,000 10 JOHN

DTR> SELECT 3@
DTR>» FIND SKIPPERSEE)
[4d records foundl
DTR> PRINT ALLERE)

DOWNER
NAME

JIM
ANN
STEVE
HARVE

DTR> SELECT 2@
DTR» MODIFY NAMEGE

Enter NAME: ANNERD
DTR> PRINT BOATs ALL SKIPPERS SORTED BY NAME OF OWNEDGRED)

(continued on next page)

Defining and Using Views 13-7

13-8

MANUFACTURER

ALBIN

C&C

ISLANDER

PEARSON
PEARSON
RHODES

DTR>

MODEL

VEGA

CORVETTE

BAHAMA

10M
26

SWIFTSURE

Defining and Using Views

RIG

SLOOP

sLoop

SLOOP

SLOO0OP
sLooP
sLoop

LENGTH
OVER
ALL

27

31

24

33

ed
_~

33

WEIGHT

34070

8,650

4,200

12,441
S4+400
14,000

BEAM

08

09

08

11
08
10

PRICE

$18,600

$6 500

OWNER
NAME

HUGH
STEVE
ANN
JIM
ANNE
HARVE
JIM
STEVE
TOM
DICK
JOHN

Using Hierarchies 1

In DATATRIEVE, the term hierarchy refers to a one-to-many relationship
between record sources.

With hierarchies, you can nest record streams to see a single record from one
record source displayed with a combination of records from another record
source. This nesting established a parent-child relationship between the two
record streams. For each record in the outer, parent record stream, you see all
records in the inner, child record stream. Parent records are displayed even if
there are no corresponding child records in the inner record stream. Some exam-
ples of how this can be useful are:

° One team with several players

® One project with several workers

e One employee with several previous jobs
e One library with many books

e One computer with several users

Hierarchies let you define records with fields that are lists. Items in a list can
contain more than one field, and the list itself may contain more than one item.
Therefore, a list lets you store more than one value for a field or group of fields in
one record. Lists are also called repeating fields.

When you retrieve a value from a record containing a repeating field, you cannot
always apply the same statements you do for other records. The following

14-1

sequence of statements shows what can happen when you try to print the repeat-
ing field KIDS from the hierarchical record FAMILIES:

DTR> READY FAMILIESEE
DTR> SHOMW FAMILY_RECERE)
RECORD FAMILY_.REC
01 FAMILY.
03 PARENTS.,
06 FATHER PIC X(10),
06 MOTHER PIC X(10).
03 NUMBER_KIDS PIC 99 EDIT.STRING IS Z9.
03 KIDS OCCURS © TO 10 TIMES DEPENDING ON NUMBER_-KIDS.
06 EACH_KID.
089 KID-NAME PIC X(10) QUERY_NAME IS KID.
08 AGE PIC 8989 EDIT-STRING IS Z9,

-

DTR> PRINT FATHER OF FAMILIESERE)
FATHER

JIM
JIM

+
+

+

DTR> PRINT MOTHER OF FAMILIESRE
MOTHER

ANN
LOUISE

3
+

+

DTR> PRINT KIDS OF FAMILIESED)
Expected end of statement: encountered "OF"
DTR

You can print the names of fathers and mothers, but you get an error message
when you try to print the list field KIDS. If you form a collection, you can again
print information on fathers and mothers but not kids:

DTR> FIND FAMILIESED
[13 records foundl
DTR> PRINT ALL FATHERRE)

FATHER
JIM
JIM

3

+

(continued on next page)

14-2 Using Hierarchies

DTR» PRINT ALL MOTHERGRED)
MOTHER

ANN
LOUISE

+

+

DTR> PRINT ALL EACH_KIDEED

Field "EACH_KID" is undefined or used out of context
DTR> PRINT ALL KIDSQRD

Field "KIDS" is undefined or used out of context
DTR> PRINT ALL KIDS OF FAMILIESQED

Expected end of statement» encountered "OF"

In the first two examples, you get a message stating that the field name is unde-
fined or used out of context. The third example results in the same message you
got in the previous example. To retrieve the information, you can apply one of
the following methods to set up a DATATRIEVE context:

e Use a FIND statement to establish a context for the list. Then use a SELECT
statement to identify one record in the collection.

e Use nested FOR RSE loops. The outer FOR loop forms a target stream of hier-
archical records and the inner FOR loop forms a stream of list items within a
hierarchical record.

e Use inner print lists (ALL print-list OF rse) to form a stream of list items
within a record stream.

The following sections describe these methods for retrieving items from lists. For
more information about DATATRIEVE context, see Appendix A in this manual.

14.1 Retrieving Repeating Field Values with FIND and SELECT
Statements

You use the FIND statement to find all the records in the file that meet your
specifications. Then you can use the SELECT statement to request any one of
these records:

DTR>» READY FAMILIESQRE)
DTR> FIND FAMILIESRE
[14 records foundl
DTR> SELECT 33 PRINTQRE)

NUMBER KID
FATHER MOTHER KIDS NAME AGE
JOHN JULIE 2 ANN 29
JEAN 26

Using Hierarchies 14-3

When you have selected a record that contains a list, you can treat the list as
though it were a source of records like a domain or collection. You can continue
as follows:

DTR> PRINT KIDSEE)

KID

NAME AGE
ANN 29
JEAN 26
DTR:

You can also combine the FIND and SELECT statements to single out one list
item. Then the context of the selected list item allows you to use the list item
name by itself in a PRINT statement. Continue the previous example by forming
a collection of the KIDS list field and selecting a list item from the collection:

DTR> FIND KIDSRE)
[2 records foundl
DTR* SELECT 23 PRINTQRE.

KID
NAME AGE
JEAN 26

DTR> PRINT AGERED
AGE
26

DTR

14.2 Retrieving Repeating Field Values with Nested FOR Loops

144

To retrieve values from list items by nesting FOR loops, start from the top of the
hierarchy and work toward the list items you want to retrieve. In the following
example, the source for the RSE in the first or outer FOR loop is the hierarchical
domain FAMILIES. The source in the second loop is the list item KIDS:

DTR* FOR FAMILIESED

[LooKing for statementl

CON: FOR KIDS WITH AGE « 10FD
[Looking for statementl]

CON* PRINT KID_NAMERE)

(continued on next page)

.Using Hierarchies

KID
NAME

URSULA
RALPH
CHRISTOPHR
SCOTT
BRIAN
DAVID
PATRICK
SUZIE

DTR>

The FOR statement preceding the PRINT statement in the following example
loops through all the records in FAMILIES. For each of those records, the RSE in
the PRINT statement retrieves only the first kid whose age is less than 10:

DTR>» FOR FAMILIESEE
[LooKing for statement]
CON» PRINT KID_NAME OF FIRST 1 KIDS WITH AGE + 10@D

KID

NAME
URSULA
CHRISTOPHR
SCOTT
DAVID
PATRICK

DTR>

The OF rse clause in the PRINT statement serves the same purpose as a nested
FOR RSE statement. The inner RSE (FIRST 1 KIDS WITH AGE < 10) identifies
items from the list field KIDS that are included with a FAMILIES record identi-
fied by the outer FOR RSE statement.

You get the same results using the following nested FOR rse statements:

DTR> FOR FAMILIES FOR FIRST 1 KIDS WITH AGE < 10 PRINT KID_NAME

14.3 Retrieving Repeating Field Values with Inner Print Lists

The simplest way to print a repeating field is to print the entire record contain-
ing the repeating field:

DTR> READY FAMILIESRD
DTR>» PRINT FIRST 1 FAMILIESRE

NUMBER KID

FATHER MOTHER KIDS NAME AGE
JIM ANN 2 URSULA 7
RALPH 3
DTR:

Using Hierarchies 14-5

To print selected fields from the record, you must specify a print list in the
PRINT statement. (Print lists consist of field names or other value expressions
and modifiers.) To specify a list item in a print list, you must use an inner print
list, which has the format:

ALL print-list OF rse

In the print list clause of the inner print list, include the list items you want to
display. The OF rse of the inner print list creates a context for the item in the
hierarchical list.

You can nest an inner print list in a PRINT statement using any of the following
formats. The arrows under each format show where the inner print list begins
and ends. A sample PRINT statement for the FAMILIES domain illustrates each
format:

1. PRINT ALL ALL print-list OF rse OF rse
1 4

DTR> PRINT ALL ALL KID_NAME OF KIDS OF FIRST 1 FAMILIESGRD

KID
NAME

URSULA
RALPH

DTR>

2. PRINT [ALL] value-exp, ALL print-list OF rse OF rse
t i

DTR> PRINT ALL MOTHER. FATHER ALL KID_NAME OFQRE)
CON> FIRST 1 KIDS OF FIRST 1 FAMILIESGED

KID
MOTHER FATHER NAME
ANN JIM URSULA

DTR>

3. PRINT ALL ALL print-list OF rse, value-exp OF rse
4 4

DTR> PRINT ALL ALL KID_NAME OF FIRST 1 KIDS, FATHER OFGRE)
CON> FIRST 1 FAMILIESEE)

KID
NAME FATHER
URSULA JIM

DTR>

14-6 Using Hierarchies

There are two important points to remember when working with inner print
lists:

e To DATATRIEVE, an inner print list is just another print list element in the
outer print list.

e Aninner print list establishes context for items in a list. See Appendix A for
more information about context.

While inner print lists can complicate statements, they allow you to control com-
pletely how DATATRIEVE displays repeating fields. By using the repeating field
as the source for an RSE in an inner print list, you can specify which occurrences
of the repeating field DATATRIEVE displays.

As a rule of thumb, you can think of embedding an inner print list in a PRINT
statement the same way you think of nesting parentheses in an arithmetic
expression. Just as you put a matching left parenthesis for every right parenthe-
sis in an arithmetic expression, there must be a matching ALL for every RSE in
a PRINT statement. In the second format the first ALL is optional, but it is eas-
ier to remember the rule of thumb than to remember when ALL is optional.

The remainder of this section presents more examples to help you use inner print
lists effectively.

By limiting the RSEs in a PRINT statement, you can tailor a record stream to
suit your needs. These next three examples show the results of limiting one or
both of the RSEs in a PRINT statement that includes an inner print list using
the second format:

DTR* PRINT ALL MOTHER,» ALL EACH_KID OF KIDS OF FIRST 1 FAMILIESRE

KID
MOTHER NAME AGE
ANN URSULA 7
RALPH 3

DTR> PRINT ALL MOTHER: ALL EACH_KID OF FIRST 1 KIDS OF FAMILIESGRD

KID
MOTHER NAME AGE

ANN URSULA 7
LOUISE ANNE 31
JULIE ANN 29
ELLEN CHRISTOPHR 0O
ANNE SCOTT 2
SARAH DAVID 0
ANNE PATRICK 4
MERIDETH BEAU 28
DIDI

RUTH ERIC 32
BETTY MARTHA 30
LOIS JEFF 23
SARAH CHARLIE 31
TRINITA ERIC 16

(continued on next page)

Using Hierarchies 14-7

14-8

DTR> PRINT ALL MOTHER: ALL EACH_KID OFQ@E)
CON> FIRST 1 KIDS OF FIRST 1 FAMILIESQRD

KID
MOTHER NAME AGE
ANN URSULA 7

DTR:

If you want to display only items from the list field, you must precede the inner
print list with two ALL keywords, one for each RSE you define. In the following
examples, the first ALL matches the RSE, FIRST 1 FAMILIES WITH
NUMBER_KIDS = 3. The second ALL matches the RSE, KIDS:

DTR>» PRINT ALL ALL EACH_KID OF KIDS OF@ED
[LooKing for "FIRST": domain wnames» or collection namel
CON» FIRST 1 FAMILIES WITH NUMBER.KIDS = 3ED)

' KID

NAME AGE
JEFF 23
FRED 26
LAURA 21

DTR> PRINT ALL ALL KID_NAME OF KIDS WITHRE)
[LooKing for Boolean expressionl
CON> AGE GT 25 0OF FAMILIESE

KID
NAME

ANNE
JIM
ELLEN
ANN
JEAN

BEAU
BROOKS

ERIC
MARTHA
TOM
FRED
CHARLIE
HAROLD
SARAH

DTR>

The last display contains blank lines that you would probably want to eliminate.
Eliminating empty print lines is discussed in the next section.

Using Hierarchies

Note that when you include a list field in a print list, you should specify the list
field as the last item. The following example shows what happens when you spec-
ify some other field after the list. The display of that field begins on the same line
as the last item in the list:

DTR> PRINT ALL ALL EACH_KID OF KIDS, MOTHER OF FIRST 2 FAMILIESQRE

KID
NAME AGE MOTHER
URSULA 7
RALPH 3 ANN
ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16 LOUISE
DTR:

14.4 Retrieving List ltems with Nested RSEs — Eliminating Empty Print
Lines

You can use Boolean expressions in the outer RSE to eliminate empty print
lines. Empty print lines occur when the outer RSE includes records that do not
satisfy the inner RSE. When DATATRIEVE processes a record that does not con-
tain information needed by the inner RSE, it generates a carriage return and
line feed. The following example illustrates empty print lines that result from an
outer RSE (FAMILIES) that forces DATATRIEVE to include records that do not
match inner RSE requirements:

DTR» PRINT ALL ALL EACH_KID OF KIDS WITHR

[LooKing for Boolean expressionl
CON> AGE GT 25 OF FAMILIESRD

KID

NAME AGE
ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26
BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27
DTR >

Using Hierarchies 14-9

In the following statement, the clause WITH ANY KIDS eliminates the blank
line caused by the record of the family without children:

DTR* PRINT ALL ALL EACH_KID OF KIDS WITHRH
[LooKing for Boolean expressionl
CON> AGE GT 25 OF FAMILIES WITH ANY KIDSED

KID

NAME AGE
ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26
BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27
DTR>

The four blank lines in the preceding print display represent the records of fami-
lies who have kids, but whose kids have ages less than or equal to 25. The follow-
ing statement excludes those records from the record stream and therefore
eliminates the blank lines:

DTR> PRINT ALL ALL EACHLKID OF KIDS WITHEE
[LooKing for Boolean expressionl

CON> AGE GT 25 OF FAMILIES WITH ANY KIDS WITHGRED
[LooKing for Boolean expressionl

CON> AGE GT Z5@R0

KID

NAME AGE
ANNE 31
JIM 29
ELLEN 26
ANN 29
JEAN 26
BEAU 28
BROOKS 26
ERIC 32
MARTHA 30
TOM 27
FRED 26
CHARLIE 31
HAROLD 35
SARAH 27
DTR:

14-10 Using Hierarchies

You do not have to use an extra ALL before inner print lists if you put the PRINT
statement in a FOR statement:

DTR:* FOR FAMILIES PRINT ALL EACH_KID OF KIDS WITHGRED
[LooKing for Boolean exPressionl
CON:* KID_NAME CONT "Y"@D)

KID

NAME AGE
Jay zz
CISSY 24
NANCY 22
DTR>

14.5 Retrieving Values from Sublists

You can use collections, nested FOR loops, or inner print lists to retrieve values
from sublists (lists within lists).

When you work with sublists, you must remember to create a context for each
level of the hierarchy. The outermost context establishes the target record or tar-
get record stream (source = FAMILIES); the second establishes the context for
the list (source = KIDS); and the third establishes the context for the sublist
(source = PET); and so on.

This series of FIND and SELECT statements uses collections to retrieve one list
item from PET:

DTR:> READY PETSE

DTR* FIND PETSERE

[3 records foundl

DTR> SELECT: FIND KIDSGEH

[2 records foundl

DTR> SELECT: FIND PETED

[2Z records foundl

DTR*» SELECT3 PRINT PET_-NAME: PET_AGEQRE)

PET PET

NAME AGE
FOP 03
DTR>

Using Hierarchies 14-11

You can also use nested FOR loops for dealing with a sublist:

DTR>» FOR PETS WITH ANY KIDSERD
[LooKing for statement]

CON> FOR KIDS WITH ANY PETED
[LooKindg for statementl

CON» FOR PET WITH PET-AGE GT ORD
[LooKing for statementl

CON» PRINT PET_NAME:s PET_AGEQRED

PET PET

NAME AGE
POP 03
s0DA od
MOUSE 03
SHORTY 08
SQUEERY 03
FRANK 07
FRANK 14
DTR:

You can also use inner print lists to get at all three levels of the hierarchy:

DTR>» PRINT ALL ALL ALL PET_NAME OF PET OFG

[LooKing for "FIRST": domain names or collection namel
CON: RIDS WITH ANY PET WITH PET_AGE NE 0O OFGRED

[LooKing for "FIRST": domain names or collection namel
CON> PETS WITH ANY KIDS WITH ANY PET WITH PET.AGE NE ORED

PET
NAME

POP
S0DA
MOUSE
SHORTY
SQUEEKY
FRANK
FRANK

DTR:

14-12 Using Hierarchies

Restructuring Domains 1 5

This chapter describes how to create new domains with data from existing ones.
You might do this to:

o Add new fields to the record definition associated with the domain

o Change field definitions to affect the values stored in the data file

o Creéte a copy of a domain for testing

e Change the file organization

e Change the index structure (key fields)

e Create a domain that contains a subset of records contained in another domain
How you create the new domain depends on whether you want to keep the old

domain. If you want to keep the old domain, follow these steps when creating the
new domain:

1. Define a new domain, its record, and its data file.

2. Ready the new domain for WRITE or EXTEND access and the old domain
for READ access.

3. Use a statement with the following format to transfer field values from the
old data file to the new one:

FOR rse-FROM-old-domain-name

STORE new-domain-name USING
new-record-name = old-record-name

15-1

If you want to use old procedures on the new domain, you must edit them if they
refer to fields not included in the new domain. See Chapter 9 for information
about editing procedures.

If the old procedures refer only to fields included in the new domain, you need
not change the procedures. You can ready the new domain with the old domain
name as an alias (READY NEW AS OLD) and execute the old procedures.

If you do not want to keep the old domain, you can still use the old procedures if
you follow these steps:

1. Define the new domain (NEW), record (NEW_REC), and file (NEW.DAT).

2. Use a statement with the following format to transfer the data from the old
domain (OLD) to the new one (NEW):

FOR rse-FROM-old-domain-name
STORE new-domain-name USING
new-record-name = old-record-name

3. Use the REDEFINE command, which deletes the old domain and creates a
new domain with the same name as the old domain. The new domain uses
the old domain name (OLD), the new record definition (NEWREC), and the
new data file NEW.DAT):

DTR> REDEFINE DOMAIN OLD USING NEWREC ON NEW.DAT IR
DTR

4. Check the old procedures for any references to field names not included in
the new record definition and edit where necessary.

The following sections provide examples to help you restructure your own
domains.

15.1 A Sample Domain

PROJECTS is a sample domain you can create to practice restructuring:

DTR> SHOW PROJECTS: PROJECTS_RECGEED
DOMAIN PROJECTS

USING PROJECTS_REC ON PROJEC.DATS
RECORD PROJECTS_REC

USING

01 PROJECT.
03 PROJ_CODE PIC 9(3) QUERY.NAME IS CODE,
03 PROJ_NAME PIC X(10) QUERY_NAME IS NAME.
03 MANAGER_NUM PIC 8(3) QUERY_NAME IS NUM.

1

DTR

15-2 Restructuring Domains

The data file PROJEC.DAT is a sequential file and contains these records:

DTR: PRINT PROJECTSE

PROJ PROJ MANAGER
CODE NAME NUM

002 GROUNDS 00006
005 BUILDING 2 00003
008 SHED Q0002
018 RESEARCH 00006
037 PUB REL Q0008

073 MATERIALS 00002

DTR:
15.2 Changing Record and File Definitions and Using New Names

This section shows you how to change record and file definitions using new
names for the record and data file.

To create a new domain with two fields added to PROJECTS_REC, follow these
steps:

1. Define a new domain:

DTR> DEFINE DOMAIN NEW_PROJECTSEED
DFN> USING NEW_PROJECTS_.REC ON NWPROJ.DAT @D
DTR

2. Use the EXTRACT command to copy the old record definition to a command
file:

DTR> EXTRACT ON TEMP PROJECTS_RECEED
DTR>

3. Exit DATATRIEVE and edit the command file TEMP.CMD. Remove the
DELETE command from the first line of the file, change the name of the
record, add the new fields, and include any other changes you want.

4. Enter DATATRIEVE again and invoke the modified command file to enter
the new record definition in the data dictionary:

DTR> EBTEMPGED
DEFINE RECORD NEW_PROJECTS_REC

USING
01 NEW_PROJECT.
03 PROJ.CODE PIC 9(3) QUERY_NAME IS CODE.
03 PROJ_NAME PIC X(10) QUERY_NAME IS NAME.
03 PROJ-COST PIC 9(6)YS99 EDIT-S8TRING IS $%%.:%%9.89,.
03 MANAGER_-NUM PIC 9(3),
03 MANAGER_NAME PIC X(13).

;
[Record NEW_PROJECTS.REC is 41 bvtes longl
DTR>

Restructuring Domains 15-3

15-4

5. Define a data file for NEW_PROJECTS. This example creates an indexed
file to replace the sequential file associated with PROJECTS:

DTR> DEFINE FILE FOR NEW_PROJECTS KEY=CODEGE)
DTR

You are now ready to transfer the data from the old domain to the new one.

15.2.1 Storing Data from All the Records in the Old Domain

This section tells you how to transfer data from all the records in the old domain.
The next section explains how to transfer data from a subset of the records in the
old domain.

You must first ready both domains. Ready the new domain for WRITE or
EXTEND access and ready the old domain for READ access. Use the STORE
statement in a FOR loop to transfer the data:

DTR> READY NEW_PROJECTS WRITEGED
DTR> READY PROJECTSED

DTR* FOR PROJECTSGEE

[LooKing for statement]

CON> STORE NEW_PROJECTS USINGED
[LooKing for assidnment statement(s)]

CON> NEW_PROJECTS_REC = PROJECTS-RECGEE
DTR

For each field name in NEW_PROJECTS_REC that matches a field name

in PROJECTS_REC, the STORE statement transfers field values from

the record in PROJECTS to a record in NEW_PROJECTS. If a field in |
NEW_PROJECTS_REC does not match a field in PROJECTS_REC,
DATATRIEVE initializes the field according to its data type and field definition
(zero for numeric fields; spaces for alphabetic and alphanumeric ones).

The data file associated with NEW_PROJECTS now has records in it. When you
display its contents on the terminal, you can see the values transferred from the
PROJECTS domain, as well as initial values for the two new fields, PROJ_COST
and MANAGER_NAME:

DTR* PRINT NEW_PROJECTSEE

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COsT NUM - NAME
002 GROUNDS 0,00 00006

005 BUILDING 2 $0,00 00003

008 SHED $0,00 00002

018 RESEARCH $0,00 00006

037 PUB REL $0,00 00008

073 MATERIALS 0,00 00002

DTR >

Restructuring Domains

15.2.2 Storing Data from a Subset of the Records in the Old Domain

You can create the new domain from a subset of the old domain records. You
specify the limiting conditions in the RSE following the FOR statement. For

example, you could have limited NEW_PROJECTS to the projects of only two
managers:

DTR> FOR PROJECTS WITH MANAGER_NUM EQ 2 GQRE)
[LooKing for statement]

CON> STORE NEW_PROJECTS USINGQRED

[LooKing for assidnment statement(s)l

CON> NEW_PROJECTS.REC = PROJECTS_RECRE)

DTR> PRINT NEW_PROJECTSERD

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME COoSsT NUM NAME
002 GROUNDS $0,00 Q0006

008 SHED $0,00 Qo002

018 RESEARCH 0,00 00006

073 MATERIALS $0,00 00002

DTR >

15.2.3 Deleting References to the Old Domain

After you store records from the old domain in your new one, you can delete the
old data file from your directory. You can continue to use your old procedures
with the new record definition and data file, however, by using the REDEFINE
command. As described earlier in this chapter, the REDEFINE command deletes
the old domain and creates a new domain with the same name as the old domain.
The domain is now defined with the new record definition and data file:

DTR> REDEFINE DOMAIN PROJECTS USINGEE
DFN> NEW_PROJECTS_REC ON NWPROJ.DATi@RED
DTR:

15.3 Changing Record and File Definitions and Using Old Names
This section explains how to restructure domains when you do not want to access

old data, but you want to keep the domain, record, and file names you created for
the old domain. The sample statements use the domain PROJECTS.

Using an alias is the easiest way to change data structures without changing the
names you use for them.

Note

Notice that the changes made to the PROJECTS record and file
definitions are not associated with the names you want until you
use the FINISH command and ready the PROJECTS domain
again.

Restructuring Domains 15-5

15-6

The following list explains how to restructure domains. Steps preceded by
(RSTS/E only) are necessary only if you are working on a RSTS/E system:

1.

(RSTS/E only) At the system command level, rename the data file associated
with the domain you are restructuring. The examples in the following steps
assume that PROJEC.DAT has been renamed OLDPRO.DAT.

At the DATATRIEVE command level, use the EXTRACT command to copy
the old record definition to a command file:

DTR> EXTRACT ON TEMP PROJECTS_RECRED
DTR>

At the system command level, edit the command file TEMP.CMD to add the
desired field definitions. Do not remove the DELETE command from the first
line of the file.

(RSTS/E only) At the DATATRIEVE command level, redefine the domain
specifying the renamed data file:

DTR» REDEFINE DOMAIN PROJECTS USINGRE)
DFN> PROJECTS_REC ON OLDPRO.DAT @D
DTR

At the DATATRIEVE command level, ready the domain as an alias:

DTR* READY PROJECTS AS OLD_PROJECTSE
DTR*» SHOW READYQRED
Ready domains:
OLD_PROJECTS: RMS SEQUENTIAL ., PROTECTED READ
DTR>

Invoke the modified command file to enter the revised record definition in
the data dictionary:

DTR> BTEMPRED
DELETE PROJECTS_RECH
DEFINE RECORD PROJECTS_REC

USING
01 PROJECT.
03 PROJ.CODE PIC 9(3) QUERY_NAME IS CODE.
03 PROJ.NAME PIC X(10) QUERY_NAME IS NAME.
03 PROJ_COST PIC 9(6)V88 EDIT_STRING IS $$%,$$9.99,
03 MANAGER-NUM PIC 9(3).
03 MANAGER_NAME PIC X(13).,

L)
[Record PROJECTS_REC is 41 bytes longl
DTR*

. (RSTS/E only) Redefine the domain PROJECTS using your original name

for the data file:

DTR*» REDEFINE DOMAIN PROJECTS USINGRED)
DFN» PROJECTS_REC ON PROJEC.DATIRED
DTR

Restructuring Domains

8. Define a new data file for the domain. When you ready a domain with an

10.

alias, as in Step 5, defining a new file does not interfere with the link
between that readied domain and the file containing the old data. Do not use
the SUPERSEDE option of the DEFINE FILE command. The following
example changes the file organization from sequential to indexed:

DTR>» DEFINE FILE FOR PROJECTS KEY = NUMGEED
DTR >

Ready the domain as a different alias and specify WRITE access mode. This
READY command uses the new record definition and opens the new data file
created by the DEFINE FILE command:

DTR> READY PROJECTS AS NEW_PROJECTS WRITERE
DTR> SHOW READYQRED
Ready domains:
NEW_PROJECTS: RMS INDEXED,» PROTECTED WRITE
OLD_PROJECTS: RMS SEQUENTIAL: PROTECTED READ
DTR >

Use the STORE statement in a FOR loop to move the data from the original
domain to the new one.

If you plan to use all the records in the domain, you simply specify the alias
of the old domain in the FOR statement:

DTR» FOR OLD.PROJECTSEED

[LooKing for statement]

CON> STORE NEW_PROJECTS USINGRE)
[LooKind for assidnment statement(s)]
CON: PROJECTS_-REC = PROJECTS_RECEED
DTR >

If you plan to use a subset of the records in the old domain, specify a more
restrictive RSE including the alias of the old domain. The following example
limits the record stream to the projects of two managers:

DTR> FOR OLD_-PROJECTS WITH MANAGER_NUM EQ 2, BERe)
[LocKindg for statement]

CON> STORE NEW_PRODJECTS USINGQRD)

[LooKing for assidnment statement(s)]

CON: PROJECTS_REC = PROJECTS_RECED

DTR:

Restructuring Domains 15-7

11.

12.

When you type FINISH and ready the domain again, you can access data as
you restructured it. DATATRIEVE no longer recognizes either alias. The fol-
lowing example assumes that the RSE specified in the FOR loop included all
the records from the domain:

DTR*> FINISHRE
DTR> READY PROJECTSQED
DTR:> SHOW READYRED
Ready domains:
PROJECTS: RMS INDEXEDs PROTECTED READ
DTR> PRINT PROJECTSQED

PROJ PROJ PROJ MANAGER MANAGER
CODE NAME CosT NUM NAME
002 GROUNDS 0,00 00006

003 BUILDING 2 0,00 00003

008 SHED 0,00 00002

018 RESEARCH $0.,00 00006

037 PUB REL $0,00 00008

073 MATERIALS $0,00 00002

DTR

(RSTS/E only) At the system command level, delete the data file associated
with your domain before you changed the file organization. Using the
PROJECTS domain as an example, you would delete the file OLDPRO.DAT.

15.4 Changing the Organization of a Data File

15-8

1.

You can also use an alias with the READY command to change only the organi-
zation of a data file associated with a domain.

The following steps make the indexed file created for PROJECTS a sequential
file again:

(RSTS/E only) At the system command level, rename the data file associated
with PROJECTS. The examples in the following steps assume that
PROJEC.DAT has been renamed IDXPRJ.DAT.

. (RSTS/E only) At the DATATRIEVE command level, redefine the

PROJECTS domain specifying the renamed data file:

DTR> REDEFINE DOMAIN PROJECTS USINGEE)
DFN> PROJECTS_REC ON IDXPRJ.DATIREDD
DTR™>

. Ready the domain using an alias:

DTR>» READY PROJECTS AS IDK_PROJECTSED
DTR> SHOW READYEED
Ready domains:
IDX_PROJECTS: RMS INDEXED: PROTECTED READ
DTR >

Restructuring Domains

. (RSTS/E only) Redefine PROJECTS again, using the original name of the
data file:

DTR> REDEFINE DOMAIN PROJECTS USINGEED
DFN> PROJECTS_REC ON PROJEC.DAT@ED)
DTR >

. Define for the domain a data file that has the organization you want. The
following example defines a sequential file:

DTR> DEFINE FILE FOR PROJECTSRED
DTR>

. Ready the domain for WRITE access using another alias:

DTR> READY PROJECTS A5 SEQ_PROJECTS WRITERED
DTR

. Using a STORE statement in a FOR loop, transfer records from the old
domain to the new one:

DTR> FOR IDX_PROJECTSGE

[LooKing for statement]

CON>» STORE SEQ_PROJECTS USINGERD
[lLooKing for assidnment statement{(s)]
CON> PROJECTS.REC = PROJECTS_RECEE)
DTR >

. Type FINISH. When you ready the domain again, access records in the reor-
ganized file:

DTR> FINISHERE)
DTR> READY PROJECTSED)
DTR> SHOW READYEED
Readied domains:
PROJECTS: RMS SEQUENTIAL» PROTECTED READ
DTR >

. (RSTS/E only) You may want to print some records to ensure that records
were successfully copied to your reorganized file. Then, at the system com-
mand level, delete the data file with the organization you no longer want.
Using the PROJECTS domain as an example, you would delete
IDXPRJ.DAT from your directory.

Restructuring Domains 15-9

Using the DATATRIEVE Editor 16

Using a command file is probably the easiest way to make changes to your
DATATRIEVE work. You can edit a command file using the editor you already
know from your own operating system, rather than learning a new editor. Chap-
ter 10 explains how to use command files. The rest of this chapter explains how
to use the DATATRIEVE Editor.

You can use the DATATRIEVE Editor only to modify dictionary objects that are
defined in your current data dictionary. You can edit commands and statements
only when they are stored as a procedure.

Edit with caution, especially when changing record definitions. The
DATATRIEVE Editor does not check for syntax errors as you edit dictionary
objects. Any errors show up only when you use the modified dictionary object.

The changes you make with the DATATRIEVE Editor do not affect domains that
you currently have readied in your workspace. For example, if you ready the
domain PERSONNEL and then edit its record definition, you are not changing
the record definition currently being used by the PERSONNEL domain. For the
new record definition to take effect, you must finish the PERSONNEL domain
and ready it again. Similarly, edits do not change a dictionary table loaded into
your DATATRIEVE workspace until you release the table and refer to it again.

16.1 Invoking the Editor

You invoke the DATATRIEVE Editor at the DATATRIEVE command level with
the following command:

(passwd)

EDIT object-name[*)][ADVANCED]

Arguments

object-name Is the name of the dictionary object in the current data diction-
ary you want to edit.

(passwd) Is an asterisk enclosed in parentheses (*) or the password neces-

*) sary to gain C (control) access to the dictionary object. If you

specify a password, you must enclose it in parentheses. If you
specify (*), DATATRIEVE prompts you for the password but
does not print the response on your terminal. If you omit this
argument, DATATRIEVE uses your login UIC/PPN to verify
that you have C (control) access privilege to the dictionary
object you want to edit.

ADVANCED Must be included in the EDIT command if you want to edit a
domain definition or a record definition.

When you invoke the DATATRIEVE Editor, it responds with the QED> prompt.

16.2 Editor Modes

When you first invoke the Editor, you are at the Editor’s command level in edit
mode. In this mode, the Editor interprets all your input as commands, and you
can display and alter the text of the dictionary object. The QED> prompt indi-
cates that you are in edit mode.

The second Editor mode, insert mode, allows you to enter text directly into the
dictionary object. You enter insert mode with the INSERT and REPLACE com-
mands and leave it by pressing CTRL/Z. The Editor uses the IN> prompt to indi-
cate that you are in insert mode. In this mode, the Editor interprets all your
input as new text to be entered into the dictionary object.

16.3 Line Pointer

16-2

Some commands move you through the text from one line to another. Other com-
mands display or alter lines at various places in the text but leave the current
line unchanged. The Editor uses a line pointer to keep track of the current line.

The line pointer points to the entire current line, not to any part of the line. You
can display the current line by typing a period (.) and pressing RETURN in
response to the QED> prompt. The maximum line size you can edit is 132
characters.

The line pointer can also point to the end of the text buffer, where you can add
text to the end of the dictionary object. The symbol [EOB] marks the end of the
text buffer.

Using the DATATRIEVE Editor

16.4 Range Specification

The Editor commands for deleting, inserting, replacing, and typing lines, and for
substituting strings all contain an optional argument that specifies the range of
lines on which the command operates. The range may be a single line, a series of
consecutive lines, or a group of nonsequential lines. For a complete listing of all
the range specifiers you can use with the DATATRIEVE Editor, refer to the sec-
tion on the EDIT command in the DATATRIEVE-11 Reference Manual. Table
16—1 shows several examples of these ranges using the TYPE command. TYPE
displays specified lines on your terminal, and it searches for specified strings.

If you want to display the rest of a dictionary object, the following commands all
work:

TYPE REST
TYPE R
REST

TR

AR

Note the percent sign before the R in the last example. The Editor assumes R by
itself is the abbreviated form of the REPLACE command. Entering R without
the percent sign in response to the QED> prompt does not display the rest of the
dictionary object; it deletes the current line and puts you in insert mode.

Table 16—-1: Examples of Range Specifiers

You Type: Editor Displays:
TYPE ALL "BEAM" All lines containing the string BEAM.
TYPEBEGIN AND END The first line of the dictionary object and the end-of-buffer
marker ((EOB]).
TYPE BEGIN, "BEAM" The first line of the dictionary object and the first line containing

the string “BEAM?”. If the current line is the first line of the dic-
tionary object and contains the string “BEAM?”, this command
displays the current line twice.

TYPE BEFORE All lines before the current line and the current line.
TYPEBEGIN The first line of the dictionary object.

TYPE END The end-of-buffer marker ((EOB]).

TYPE . FORS The current line and the four lines following it.

TYPE REST The current line and all remaining lines in the dictionary object.
TYPE "BEAM" The next line containing the string “BEAM”. If the current line

contains “BEAM?”, the Editor displays the current line.

(continued on next page)

Using the DATATRIEVE Editor 16-3

Table 16—1: Examples of Range Specifiers (Cont.)

You Type:

Editor Displays:

TYPE WH
TYPE BE+5

TYPE "BEAM"+B

TYPE

All lines in the dictionary object.
The sixth line of the dictionary object.

The sixth line following the next line containing the string
“BEAM?”. If the current line contains the string “BEAM”, the
Editor displays the sixth line following the current line.

The current line.

16.5 Editor Commands

Table 16—-2 summarizes the DATATRIEVE Editor commands in alphabetical
order. The following section contains a sample editing session illustrating some

common uses of these commands.

Table 16-2: Summary of DATATRIEVE Editor Commands

Command

Format

Function

CTRL/Z

DELETE
EXIT

INSERT

QUIT

REPLACE

CTRL/Z

D[ELETE] [range]

EX[IT]

IINSERT] [range]

QuUIT

R[EPLACE] [range]

In edit mode, works like the EXIT command. In
insert mode, returns control to edit mode.

Deletes the specified range or the current line if
you omit the range. After deletion, the current
line is the line following the last line deleted.

Returns you to DATATRIEVE command level.
The edited dictionary object replaces the previous
version in the data dictionary.

Enters insert mode. The Editor inserts lines
before the line specified by range or before the
current line if you omit the range. CTRL/Z ends
insert mode and returns you to the Editor com-
mand level. If you omit the range, the current line
does not change when you leave insert mode; if
you specify a range, the line specified by the range
becomes the current line. Do not use ALL, AND, a
comma (,), BEFORE, FOR, a semicolon (;), REST,
or WHOLE when specifying the range in this
command.

Returns you to DATATRIEVE command level and
leaves the dictionary object unchanged by the
editing session.

Deletes the specified range or the current line if
you omit the range and puts you in insert mode.
CTRL/Z ends insert mode and returns you to the
Editor command level. The current line is the line
following the last line deleted. None of the restric-
tions on specifying ranges in the INSERT com-
mand apply to REPLACE.

164 Using the DATATRIEVE Editor

(continued on next page)

Table 16—2: Summary of DATATRIEVE Editor Commands (Cont.)

Command Format ' Function

SUBSTITUTE S/str—1/[str—2][/[range]] Substitutes string 2 for all occurrences of string 1
in the specified range or in the current line if you
omit the range. The line in which the last substi-
tution occurred becomes the current line. If you
omit the range, you can also omit the third delim-
iter. If you omit string 2, the Editor deletes the
specified string from the range you specify or from
the current line if you omit the range. The search
for the first occurrence of string 1 starts with the
current line and proceeds toward the end of the
text buffer. Do not use END to specify the range in
this command.

TYPE [TIYPE]] [range] Displays the specified range of lines or the line fol-
lowing the current line if you omit the range. The
first line displayed becomes the current line, with
one exception: if E[ND] plays any part in the
range of this command, the line pointer points at
the end-of-buffer marker ([EOB]).

16.5.1 DELETE Command

Function

Deletes one or more lines from the dictionary object.
Format

D[ELETE] [range]
Argument

range Specifies the range of lines to be deleted. If you omit the range, only the
current line is deleted.

Position of Line Pointer

Current line is the line following the last line deleted.
Examples

Delete the current line only:

QED:> DGED

Delete all lines containing the string PHD:

QED> D ALL "PHD"@ED

Using the DATATRIEVE Editor 16-5

16-6

Delete all lines containing the string “PHD” from the current line and the seven
lines following it:

DED> D "PHD" FOR 7@

Delete all lines from the beginning of the dictionary object up to and including
the current line:

GED:> D BEFORERED

16.5.2 EXIT Command

Function

Ends an editing session, and returns you to DATATRIEVE command level.
The edited dictionary object replaces the previous version in the data diction-
ary.

Format

EX[IT]
CTRLZ

Argument

None.

Position of the Line Pointer
Not applicable.

Examples

End the current editing session with the EXIT command:

QED> EX@EED
DTR

End the current editing session with CTRL/Z:

DED» “Z
DTR >

16.5.3 INSERT Command

Function

Enters insert mode, which allows you to enter text directly into the diction-
ary object. The inserted lines are added before the line specified in the range
or before the current line if you omit the range.

Format

IINSERT] [range]

Using the DATATRIEVE Editor

Argument

range Is the line or group of lines that will follow the inserted lines. If you omit
the range, DATATRIEVE adds the inserted lines before the current line.

Position of the Line Pointer

If you omit the range, the current line does not change when you leave insert
mode. If you specify a range, the line that the range specifies becomes the cur-
rent line.

Notes

e When you issue the INSERT command, the Editor prompts with IN> to show
that you are in insert mode.

e Remember to press RETURN after each line you want to insert. If you enter
CTRL/Z after a line, that line is not entered into the procedure or table. In the

following example, only the words READY YACHTS are inserted in the dic-
tionary object:

QED> INSERTEED

IN READY YACHTSRED
IN FIND TINIES IN YACHTS MWITH LOA < 20 "%
QED:

e Do not use the following range specifiers in the INSERT command:
- [%]ALL
— [%]AND (,)
— [%]BEFORE
— [%]FOR (;)
— [%IR[EST]
— [%]WH[OLE]

® To leave insert mode and return to edit mode, enter CTRL/Z.

Examples

Insert lines before the current line:

OED> I@ET

IN? READY YACHTSEED

IN> PRINT ALL TINIESGEED
IN> "z

QED >

Using the DATATRIEVE Editor 16-7

16-8

Insert lines before the first line of the dictionary object:

QED> I BEGINRED
ING READY YACHTSEED

Insert lines after the last line of the dictionary object:

QED> I ENDGEED
[EOB]
ING PRINT ALL TINIESEED

Insert lines before the next line containing the string “BEAM”:

QED> I ‘BEAM’RED
ING PRINT ALL TINIES SORTED BY BEAMEED

Insert lines between the fourth and fifth lines from the current line:

QED> I .+5@
IN3 PRINT BUILDER OF TINIESRED

16.5.4 QUIT Command

Function

Returns you to the DATATRIEVE command level and leaves the dictionary
object unchanged by the editing session.

Format
QuIT
Argument
None.
Position of the Line Pointer
Not applicable.

Notes -

e QUIT aborts an editing session. Any changes made during the session do not
affect the dictionary object.

® You cannot abbreviate the QUIT command.

Example

Abort the current editing session:

QED> QUITEED
DTR>

Using the DATATRIEVE Editor

16.5.5 REPLACE Command

Function

Deletes the specified range of lines in a dictionary object or deletes the cur-
rent line if you omit the range and enters insert mode, which allows you to
enter text directly into the dictionary object.

Format
R[EPLACE] [range]
Argument

range Specifies the range of lines to be deleted. If you omit the range,
DATATRIEVE deletes only the current line.

Position of the Line Pointer

After you leave insert mode, the current line is the line following the last line
deleted. If you have inserted lines, the current line is the line after the inserted
lines.

Notes

e When you issue the REPLACE command, the Editor deletes the lines you
specify in the range and then prompts with IN> to show that you are in insert
mode.

e To leave insert mode and return to edit mode, enter CTRL/Z.

© The restrictions on specifying ranges in the INSERT command do not apply to
REPLACE.

Examples

Replace the current line with a single line:

QED > FIND YACHTS WITH LOA BETWEEN 36 AND 37(@ED
QED> RRED

INZ FIND YACHTS WITH LOA * 3BQET

INZ “Z

QED> .[RED

REPORT CURRENT SORTED BY BEAM:; LOAs RIG ON ,WHERE

Delete the first line of a dictionary object and enter insert mode:

QED> R BERED
ING

Delete all lines containing the string “PRICE” and enter insert mode at the line
following the last line deleted:

OED> R ALL "PRICE"QRED
IN

Using the DATATRIEVE Editor 16-9

Delete all lines in the dictionary object and enter insert mode:

QED> R WHOLERED
ING

16.5.6 SUBSTITUTE Command

Function

Substitutes a character string for all instances of another character string in
the specified range or in the current line if you omit the range.

Format
S[UBSTITUTE] /string—1/[string—2][/[range]]
Arguments
string—1 Isthe string of characters to be replaced.

/ Is the delimiter that separates string 1, string 2, and the range. The
delimiter can be any printing character not in string 1 or string 2. In
any given SUBSTITUTE command, you must use the same character
as a delimiter. You need only specify the first two delimiters if you
omit the range.

string—2 Is the string of characters to replace string 1. If you omit string 2, then
string 1 is deleted from the specified line.

range Specifies the range of lines within which DATATRIEVE will make the
substitution. If you specify a range, DATATRIEVE replaces all occur-
rences of string 1 in that range with string 2. If you omit the range,
- DATATRIEVE replaces only the first occurrence of string 1. That first
occurrence of string 1 need not be in the current line.

Position of the Line Pointer

If a substitution takes place, the current line is the last line in which the substi-
tution occurred. If there is no match for string 1 within the range, or if there is
no match for it in the current line or any line from that point to the end of the
dictionary object, no substitution takes place. The current line remains
unchanged.

Notes
e The Editor prints each line in which a substitution occurs.
e Do not use END to specify the range in this command.

e The search for the first occurrence of string 1 starts with the current line and
moves toward the end of the text buffer.

16-10 Using the DATATRIEVE Editor

Examples

Substitute the string YACHT for the first occurrence of the string YAHCT in the
current line only:

QED> 8 /YAHCT/YACHT/ (RET

Substitute the string YACHT for every occurrence of YAHCT in the entire dic-
tionary object:

QED>5 *YAHCT*YACHT* WHQRED

This WHOLE range is in effect regardless of the current line’s position in the
text buffer. Substitute the string YACHT for the next occurrence of YAHCT:

QED> S /YAHCT/YACHT

If there is no occurrence of string 1 between the current line and the end of the
text buffer, then DATATRIEVE does not change the current line.

Substitute the string YACHT for every occurrence of YAHCT from the current
line to the end of the dictionary object:

QED> 5§ "YAHCT"YACHT" RESTEED

16.5.7 TYPE Command

Function

Displays the specified range of lines or the line following the current line if
you omit the range.

Format
[T[YPE]] [range]
Argument

range Specifies the range of lines to be displayed. If you omit the range, the
Editor displays only the line following the current line.

Position of the Line Pointer

The first line displayed becomes the current line, with one exception. If the range
of this command contains E[ND], the line pointer points to the end-of-buffer
marker ((EOB]).

Using the DATATRIEVE Editor 16-11

16-12

Notes

e Both the command name and range are optional. If you press the RETURN
key, the Editor prints the line following the current line, which then becomes
the current line. You can also enter the range specifiers without the command
name.

e The TYPE command performs the searches in the DATATRIEVE Editor. You
can search for text strings in dictionary objects by enclosing the string you
seek in pairs of single or double quotation marks.

Examples

The following commands all work as alternative ways of displaying lines during
an editing session:

Commands for displaying the current line only:

QED> TYPE .@ED

QED: .(@ED

Commands for displaying the next line (the line following the current line):
QED> TYPE .+1(ED

QED> . +1@ED

QED> TEED

QED> (RED

Commands for displaying the entire dictionary object:

QED> T WHEED

DED > WH(ET

Commands for displaying the first and last lines of the dictionary object:
QED> T BEGINENDEED

GED:> BEGINENDEED

DED> BE AND EQ@ED

Commands for displaying all lines from the current line to the end of the diction-
ary object:

BED> T REST(RED

GED> RESTRED

OED> “%REED

Using the DATATRIEVE Editor

16.6 Sample Editing Session

DTR

EDIT CTRLEED

DED> WHQEED

QED >
QED>
QED >
ING
ING
QED >
QED >
QED >
DED>
QED >
ING
ING
QED >

QED >

QED
QED >
QED
QED >

QED >

QED >

QED >
QED >

READY YACHTS
FIND YACHTS WITH LOA BETWEEN 3G AND 37
REPORT CURRENT SORTED BY BEAM. LOA: RIG ON .WHERE

SET REPORT-NAME = "YACHTS WITH LENGTH-OVER-ALL"/
"0OF 36 AND 37 FEET"
AT TOP OF BEAM PRINT COL 1, "BEAM = ", COL 7, BEAM
AT TOP OF LOA PRINT COL 12+ "LENGTH = ", COL 20, LOAs SKIP

PRINT BUILDER+ RIG,» DISP
AT BOTTOM OF RIG PRINT SKIP: COL 4, "NUMBER OF ", COL 14
LoA¢(" "), COL 17 "FOOT ", COL 22, RIG: COL 28,

"WITH BEAM OF ", COL 40, BEAM., COL 43, " = ", COL 46
COUNT USING Z9, SKIP

AT BOTTOM OF REPORT PRINT SKIPs "LIGHTEST = ", MIN (DISP);
SKIP, "HEAVIEST = " MAX (DISP)s SKIP:
"AVERAGE WEIGHT OF ALL BOATS = ", AVERAGE (DISP)

SET DATE = "DD-MMM-YY"

SET COLUMNS-PAGE = BO
END-REPORT
+(RED)
READY YACHTS
RET
FIND YACHTS WITH LOA BETWEEN 36 AND 37
R(RET,
FIND YACHTS WITH LOA > 3BRET
+ BED
REPORT CURRENT SORTED BY BEAM,s LOAs» RIG ON ,WHERE

§/0N +WHERE/Q@ED

REPORT CURRENT SORTED BY BEAM, LOA, RIG
RET

SET REPORT-NAME = "YACHTS MWITH LENGTH-DVER-ALL"/
RET,

"OF 3B AND 37 FEET®

RRET

"GREATER THAN 38 FEET"(ED
+ (RED

AT TOP OF BEAM PRINT COL 1. "BEAM = ", COL 7, BEAM

ALL "AT BOTTOM"GED

AT BOTTOM OF RIG PRINT SKIP, COL 4, "NUMBER OF ", COL 14,

AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST = ", MIN (DISP),
+(RED

AT BOTTOM OF RIG PRINT SKIP, COL 4, "NUMBER OF ", COL 14,
"BOTTOM"RED

AT BOTTOM OF RIG PRINT SKIP, COL 4+ "NUMBER OF ", COL 14,
RET,

LOA(" "), COL 17, "FOOT ", COL 22, RIGs COL 28,

"BOTTOM" RED _
AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST = “, MIN (DISP),
+ ;3
AT BOTTOM OF REPORT PRINT SKIP, "LIGHTEST = ", MIN (DISP) .,
SKIP, "HEAVIEST = ", MAX (DISP), SKIP,
"AVERAGE WEIGHT OF ALL BOATS = ", AVERAGE (DISP)
+ RET)
AT BOTTOM OF REPORT PRINT SKIP, “LIGHTEST = ", MIN (DISP),
D . ;3@ED
+ (RET)
SET DATE = "DD-MMM-YY"

(continued on next page)

Using the DATATRIEVE Editor 16-13

QED> IEED

ING SET MAX-PAGES = 4O@ED
IN “Z
QED> ,@ED

SET DATE = "DD-MMM-YY"
QED> @ED

SET COLUMNS-PAGE = GO
QED>

END-REPORT
QED> @E

[EOB1

QED*» BEQRE)
READY YACHTS
QED> S/RIG/PRICE/WHRED
REPORT CURRENT SORTED BY BEAMs LOA,» PRICE
PRINT BUILDER,» PRICEs DISP
AT BOTTOM OF PRICE PRINT SKIP, COL 4, "NUMBER OF " COL 14,
Loa¢" "), COL 17, "FOOT ", COL ZZ, PRICE, COL 28,
QED» WHQRED
READY YACHTS
FIND YACHTS WITH LOA > 38
REPORT CURRENT SORTED BY BEAM, LOA, PRICE
SET REPODRT_NAME = "YACHTS WITH LENGTH_OVER_ALL"/
"GREATER THAN 38 FEET"

AT TOP OF BEAM PRINT COL 1, "BEAM = ", COL 7. BEAM
AT TOP OF LOA PRINT COL 12, "LENGTH = ", COL 20, LOAs SKIP
PRINT BUILDER: PRICEs DISP
AT BOTTOM OF PRICE PRINT SKIP, COL 4, "NUMBER OF ", COL 14,
LoA¢(" "), COL 17, "FOOT ", COL 22, PRICE, COL 28
"WITH BEAM OF ", COL 40, BEAM, COL 43, " = ", COL 46

COUNT USING 29 SKIP
SET MAX_PAGES = 40
SET DATE = "DD-MMM-YV"
SET COLUMNS_PAGE = GO
END_REPORT
QED> EX®ED
DTR>

16-14 Using the DATATRIEVE Editor

Optimizing Workspace and Response Time 1 7

This chapter explains the concept of DATATRIEVE workspace. It shows you how
to use memory space efficiently during a DATATRIEVE session and suggests
ways to optimize DATATRIEVE performance.

17.1 Using Workspace

Your DATATRIEVE workspace is the area in physical memory that is available
to you during your DATATRIEVE session. Sometimes referred to as “pool space,”
the workspace is not the same as disk space. Workspace refers instead to the
size of the current DATATRIEVE task you are performing. The maximum work-
space allowed for each DATATRIEVE session is 32K words. If the task you per-
form requires DATATRIEVE to use more than 32K words of memory, you receive
an error message, such as “Compiler storage pool exhausted,” and are unable to
complete your task.

17.2 Effect of READY and FINISH on Workspace

Before you ready any domains, the workspace looks like that in Figure 17-1. All
the workspace is available, some of it for carrying out tasks related to Record
Management Services (RMS), some for tasks related to DATATRIEVE domains,
and some for sorting the records as you issue DATATRIEVE commands and
statements.

17-1

17-2

RMS WORKSPACE

SORT WORKSPACE

SMALL BLOCK WORKSPACE

Figure 17-1: Empty DATATRIEVE Workspace

The dashed lines indicate temporary boundaries. DATATRIEVE takes space
from the sort workspace and allocates it to the RMS workspace and the small
block workspace when they need more space. A readied domain uses space in
both the RMS workspace and the small block workspace. Collections, variables,
and tables all use space in the small block workspace.

If you use the SHOW SPACE command, you see that the proportions of space
used are comparable to those in the diagram. The numbers you see for your sys-
tem will not be identical with those in the following example:

DTR>» SHOW SPACERED
¥%Current Memory Usade¥#

Allocated Used Free # of Fradgments
RMS rool 4384 4148 236 3
Small block Pool 312 312 0 0
Sort pPool 14024 0 14024 0
Total 18720 4460 14260 3

When using the SHOW SPACE command, pay particular attention to the total
used space and the total free space. As you take up more workspace, the used
space increases and free space decreases.

When you ready a domain, you begin to use up the available workspace, as
shown in Figure 17-2.

Optimizing Workspace and Response Time

YACHTS BUFFERS

FREE SORT WORKSPACE

YACHTS BLOCKS

Figure 17-2: Workspace with One Readied Domain

If you type SHOW SPACE, you can see how the valﬁes change for current use of
memory:

DTR> READY YACHTSERED
DTR> SHOW SPACERED
#%¥Current Memory Usagdex**

Allocated Used Free # of Fradments
RMS pPool 4384 4292 220 1
Small block pool 2300 1588 712 13
Sort pool 12036 0 12036 0
Total 18720 5880 12840 16

If you ready a second domain, you use additional space as shown in Figure 17-3.

YACHTS BUFFERS

YACHTS BLOCKS

Figure 17-3: Workspace with Two Readied Domains

Type SHOW SPACE to see values for current memory use after readying two
domains:

DTR> READY PERSONNELGED
DTR> SHOW SPACERED

Optimizing Workspace and Response Time 17-3

17-4

¥¥Current Memory Usagde¥%

Allocated Used Free # of Fradments
RMS rool 4944 4388 220 o
Small block rool 3416 2656 760 21
Sort Pool) 10360 0 10360 Q
Total 18720 7044 11676 26

If you finish a domain, you free the workspace that the domain was occupying.
The sort workspace recovers free space only if the free space is adjacent to the
sort workspace. If you free space in the interior of the RMS workspace or small
block workspace, then it remains in that workspace as a fragment, as shown in
Figure 17-4.

FREE RMS WORKSPACE

FREE SORT WORKSPACE

PERSONNEL BLOCKS

FREE SMALL BLOCK WORKSPACE

Figure 17-4: Workspace When You Finish First Readied Domain

The following SHOW SPACE command illustrates that releasing the first read-
ied domain does not increase the amount of free sort workspace:

DTR> FINISH YACHTSEED
DTR» SHOW SPACEQRED
¥%¥Current Memory Usadex#%

Allocated Used Free # of Fradments
RMS pPool 4944 4244 700)
Small blocK Pool 3416 1380 2036 12
Sort pool 10360 (v} 10360 0
Total 18720 3624 13096 17

DTR >

You use the sort workspace each time you specify the order of a record stream
with the SORTED BY clause in an RSE or a collection with the SORT statement.
DATATRIEVE immediately seizes space from the sort workspace and releases it
when it finishes the sort. DATATRIEVE sorts slowly when it has little space to
work with, so keeping the sort workspace as large as possible saves computing
time. If the sort workspace is too small, DATATRIEVE returns the message:

Sort worKsrace exhausted
Execution failed

Optimizing Workspace and Response Time

17.3 Techniques to Optimize Workspace

The following techniques for readying and finishing domains can help you opti-
mize your workspace:

e Try to reduce the number of files you have open at a time. If you no longer need
a domain, FINISH it.

e Pay attention to the order in which you open the files. As the illustrations
show, when you finish a domain you do not always free a complete, contiguous
block of workspace. If you finish the first domain before you finish the second,
your workspace looks like that in Figure 17—4. 1t is best, therefore, first to
ready the domains you plan to use the longest and then ready and finish those
you need for only a short time.

You can save space in the way you define your records too. Each time you define
a field, you add overhead cost in addition to the size of the item being stored.
EDIT-STRINGS, QUERY-HEADERS, and QUERY-NAMES also add to the stor-
age space your record requires. Use the following guidelines when defining your
record:

e Keep record definition clauses short, in particular EDIT-STRINGS, QUERY-
HEADERS, and QUERY-NAMES. Do not use any of these clauses
unnecessarily.

e Use short names and eliminate unnecessary fields. Unnecessary group fields
are a particular waste of space.

e When you use FILLER, try to combine two or more elementary fields into one
FILLER field.

There are also other techniques you can use to save space:

¢ Release collections, tables, and variables that you do not need.

¢ Avoid using long BEGIN-END blocks, and the THEN connector to form com-
pound statements. DATATRIEVE compiles the complete statement all at once,
at the cost of workspace.

e Use a small file bucket size. The file bucket size determines the size of the
RMS buffers needed. A bucket size of 8 would use approximately half of
DATATRIEVE workspace and would cause you to run out of space repeatedly.
A bucket size of 1 or 2 reduces the requirements for DATATRIEVE workspace.

e For the REPORT statement, first use the FIND statement to form a collection
and the SORT statement to sort and then report on the sorted collection. Avoid
including the SORTED BY clause in the REPORT statement. The REPORT
and SORT statements both require large amounts of workspace.

Optimizing Workspace and Response Time 17-5

17.4 Techniques to Optimize Response Time

17-6

As mentioned earlier, DATATRIEVE performs best when it has adequate space
to work with. Therefore, when you keep the sort pool in your workspace as large
as possible, you improve response time. The following sections suggest other
ways you can improve DATATRIEVE performance.

17.4.1 Using the ALLOCATION Option of the DEFINE FILE Command

If you know approximately how many blocks of storage your data file will
require and you want to enter records quickly, you can use the ALLOCATION
option in the DEFINE FILE command to reserve contiguous storage space for
the file. This option is particularly useful if you know your data file will be large.
The format for the ALLOCATION option is ALLOCATION = n, where n is the
number of blocks you want as the initial allocation for the file.

17.4.2 Using Keyed Access Efficiently

DATATRIEVE allows you to define indexed or sequential files for your data.
Sequential files require less storage, but DATATRIEVE must search records one
by one according to their physical order in the file. This organization may be
optimal in certain cases. For example, a domain’s records may contain a field for
the current date, so you may want records physically arranged in the order in
which you stored them. For instance, you are likely to want to have sequential
access to banking transactions. If you access groups of records in chronological
order, you might find sequential organization efficient.

In other cases, your access needs may not be suited to sequential organization.
You may need to access a group of records that are distributed throughout the
file. If you have stored the records in a sequential file, DATATRIEVE may have
to read all the records to find the one or two that you request. In this case,
indexed file organization is probably a better choice. Although indexed files
require more storage, DATATRIEVE can search indexed files quickly to find the
records you want, if you base the search on a key field.

When defining data, try to decide which field of the record you are likely to name
most often in queries. Make that field the primary key if its value is likely to be
unique for each record. For example, if you are setting up a personnel domain,
you might predict that most users seek information based on employee ID. In
that case, make the ID field the primary key.

By default, primary key values are unique. That is, the primary key value by
itself is enough to identify a record. It is legal in DATATRIEVE to specify that
primary keys can have duplicate values. However, allowing duplicate primary
key values is not recommended; having too many duplicate key values slows
DATATRIEVE searches based on key fields.

Optimizing Workspace and Response Time

If the leading candidate for the primary key does not uniquely identify the
record, find another field such that the two fields combined can uniquely identify
the record. You can then designate a group field, encompassing the two fields, as
the primary key. For example, in the YACHTS domain, the group field TYPE
(consisting of BUILDER and MODEL) is the primary key, uniquely determining
records in YACHTS.

After organizing your indexed file and storing records in the file, you should
structure DATATRIEVE queries to take advantage of keyed access. A query is a
request for DATATRIEVE to identify all the records that satisfy a specified con-
dition. Not all the DATATRIEVE queries you can formulate use keyed access to
indexed files. The following sections tell you how to produce queries that give
you the fastest response time.

Avoid using a field defined as USAGE IS DATE as a key field. The value stored
in a date field is larger than the maximum value allowed for a key by RMS.
Therefore, specifying a date field as a key provides no response time advantage
when you base a query on a comparison of the field value and the range of values
(for example, LT, GT, LE, GE, and BETWEEN). If you base your query of an
indexed data field on an equality comparison, DATATRIEVE uses the index and
performs faster than if it did a sequential search of the records.

17.4.2.1 Using EQUAL Rather Than CONTAINING — A Boolean expression that
tests records with the EQUAL (=) relational operator is more efficient than a
Boolean with CONTAINING (CONT) when the expression refers to a key field.
For example, compare these two queries:

DTR> PRINT YACHTS WITH BUILDER = "PEARSON"RED

DTR:> PRINT YACHTS WITH BUILDER CONT "“PEARSON"(RED

Although both queries yield the same results, the first query is twice as fast as
the second one.

To resolve the first query, DATATRIEVE conducts a fast search through the
index to retrieve the desired records. In the second case, DATATRIEVE must
search through the values of BUILDER looking for matches with the string fol-
lowing CONT. DATATRIEVE must check all substrings of each BUILDER value
that are equal in length to the string specified in the Boolean.

To take advantage of the increased efficiency of EQUAL (=), you must specify a
value that matches the field value exactly. EQUAL (=) is case sensitive but
CONT is not. In the last example, if a record had the value “Pearson” for
BUILDER, only the second query would find the record.

To get around the problem of case sensitivity, you might consider using only
uppercase letters when entering data. Otherwise, to use the EQUAL operator,
you must remember the case of each character of a field value.

Optimizing Workspace and Response Time 17-7

17-8

17.4.2.2 Choosing Domains or Collections as Record Sources — When you form a
collection, DATATRIEVE can no longer use key-based access for retrieving
records. In most cases, you get the best performance on key-based queries when
you specify a domain rather than a collection in the RSE.

Furthermore, if you form a query that relates to more than one record source, all
but the last source specified is an implied collection. Therefore, you cannot have
key-based access for any but the last record source in a relational query. When
you use nested FOR loops and specify domains and key fields in each loop, for
example, DATATRIEVE can use a key-based index only for evaluating the RSE
in the last FOR loop.

If all other conditions are equal, it is better to use a domain name than a collec-
tion name in the last position of a key-based relational query. But there is one
more factor to consider. Collections are efficient to use if you need to refer back to
the same group of records in the same DATATRIEVE session. This is especially
true if the collection is much smaller than the data file from which it is formed.
In such a case, you may get better performance by forming and naming a collec-
tion so that DATATRIEVE does not have to retrieve the same group of records
over and over again.

To summarize, you gain efficiency with a domain when you can use keyed
access. You gain efficiency with a collection if you reduce the number of times
DATATRIEVE must isolate the same small group of records from a large body
of records.

17.4.2.3 Ordering the Domains in Nested FOR Loops — If one FOR loop must pro-
cess many more records than the others and all have the same key field, include
the larger record stream in the last (inner) FOR loop. Similarly, if only one FOR
loop can use keyed access, make sure that FOR loop is the last, or innermost,
loop you specify.

17.4.2.4 Restoring Indexed Files That Are Often Modified — If you add, erase, or
change many records in an indexed file, that file can degrade DATATRIEVE per-
formance. When you have erased many records from an indexed file, records in
the file can occupy many noncontiguous areas of the disk. This slows down record
access. When you add records to a file or change many values in key fields, the
index for the file can be split over many noncontiguous areas of the disk. This
also slows down record access. The more keys you define for each file, the more
quickly DATATRIEVE response time degrades when you make many changes to
the file.

If you have a DATATRIEVE performance problem and you have made many
modifications to your indexed file, restructuring your domain might improve
DATATRIEVE response time. When you restructure a domain, you are recreat-
ing the data file. When the new file is created, the records and index are stored as
much as possible on contiguous areas of the disk.

Optimizing Workspace and Response Time

Follow the same steps given in Chapter 15 for reorganizing a data file. In this
case, however, specify the same organization for your new file rather than a dif-
ferent one. If you have defined many different keys for your file, you might want
to eliminate any keys that you seldom use in queries. If you define as keys only
those fields that you often use in queries, modifying your file has less effect on
DATATRIEVE response time.

You can also restructure files and indexes using the RMS-11 utilities CONVERT
and IFL. These utilities are explained in the RMS-11 manuals in your operating
system documentation set. The DATATRIEVE-11 utility program QCPRS,
explained in Chapter 20 of this manual, can be used to restructure files and
indexes.

17.4.3 Avoiding Nested FOR Loops Followed by a Conditional
Statement

Try to avoid using nested FOR loops to control the execution of a conditional
statement. The following example is extremely inefficient:

DTR> FOR A IN OWNERSEED

CON> FOR YACHTSQEED

CON> IF TYPE = A.TYPERED

CON* THEN PRINT BOAT: A.NAMERED

Wherever possible, include conditional tests as Boolean expressions within one
of the RSEs. This effectively limits the number of records that DATATRIEVE
has to process. The following example works much more efficiently than the pre-
ceding one:

DTR* FOR A IN OWNERSEED
CON> FOR YACHTS WITH TYPE = A.TYPEQRED
CON> PRINT BOAT: ANAMERED

Optimizing Workspace and Response Time 17-9

Controlling Output

When you invoke DATATRIEVE, several characteristics are set that control
your display of input and output:

o The number of columns in an output display (COLUMNS_PAGE)
o The way DATATRIEVE responds to an ABORT statement ((NO] ABORT)
o The presence or absence of Looking for... prompts ((NO] PROMPT)

You can change these characteristics at any time during a DATATRIEVE ses-
sion by using the forms of the SET command discussed in the following sections.

18.1 Changing the Columns-Page Setting

The default for the columns-page setting is 80 characters, the width of most
video display screens. You can change this setting to fit your application and ter-
minal characteristics.

18.1.1 Increasing the Columns-Page Setting

You may want to increase the columns-page setting on your video diplay termi-
nal or hardcopy terminal if you want to display detail lines more than 80 charac-
ters long. If you have a VT100-family or VT200-family terminal and your
command language is DCL, do the following:

1. Use the DCL SET TERMINAL command to tell your system to increase the
width of lines it can send you:

$ SET TERMINAL/WIDTH=13ZReD

18-2

Use the SET COLUMNS_PAGE command to increase the length of the line
DATATRIEVE can display on your terminal. The maximum limit on the col-
umns-page setting is 255.

DTR» SET COLUMNS_PAGE = 13ZRH

Whatever the column setting on your terminal, you can continue a long input
line by using a hyphen (-) continuation character at the end of the line. When
you use a hyphen, DATATRIEVE does not check the syntax of your input until
you press RETURN after a line that does not end in a hyphen. If the line you
want to extend ends with a complete word, separate the hyphen from the word by
entering a space. Otherwise, DATATRIEVE considers the characters at the
beginning of the next line to be part of the same character string.

18.1.2 Decreasing the Columns-Page Setting

To decrease the number of columns displayed, enter a SET COLUMNS_PAGE
command:

DTR> SET COLUMNS_PAGE = BGO@D
DTR>

Decreasing the columns-page setting may cause problems when you display your
output, however. If one of the elements in a print line is longer than the columns-
page setting, DATATRIEVE displays an error message:

DTR> SET COLUMNS_PAGE = 15@D
DTR> PRINT "12345G67890123456"ED)
Print obdect too larde for line width

DTR>

Notice that the columns-page setting does not affect the length of your input
lines or the messages you receive from DATATRIEVE.

Reducing the columns-page setting can also distort the display of a record as in
the following example:

DTR> READY YACHTSED
DTR> PRINT FIRST 1 YACHTSQE

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK 11 KETCH 37 20,000 12 $36,951

DTR> SET COLUMNS-PAGE = 12RD)
DTR> PRINT FIRST 1 YACHTSEED

(continued on next page)

Controlling Output

MANUFACTURER
ALBERG

37 MK II
KETCH

37

20,000 12
$36 8951

DTR>

18.1.3 Determining the Number of Columns You Need for a Print Line

Several considerations determine the number of spaces, or columns, needed for
each print object in the output line:

e The actual length of the character string literal or numeric literal, or the
length of the field or variable as specified by the record definition or the
DECLARE command

e The length of the field name, query name, query header, or longest segment of
the query header

e The length of the edit string

The longest of these determines how many columns you need.

To prevent crowding, DATATRIEVE also adds one space to the length of all fields
except the last one on a line. To print a record from the YACHTS domain
requires a minimum of 57 columns:

¢ MANUFACTURER takes 13 columns; the query-header is 12 characters long.

e MODEL takes 11 columns; the field is defined as 10 characters long: PIC
X(10).

e RIG takes 7 columns; the field is defined as 6 characters long: PIC X(6).

e LENGTH_OVER_ALL takes 7 columns; the longest segment of the query
header (LENGTH) is 6 characters long.

¢ DISPLACEMENT takes 7 columns; both the query header (WEIGHT) and the
edit string (ZZ,2Z9) are 6 characters long.

e BEAM takes 5 columns; the query header (BEAM) is 4 characters long.

e PRICE takes 7 columns; the edit string ($$3$,$$$) is 7 characters long, but no
column is added because PRICE is the last field in the detail line.

Controlling Output 18-3

If you set the columns to 56, the PRICE field no longer fits on one line.
DATATRIEVE displays the price on the following line and omits the PRICE
header:

DTR> SET COLUMNS_PAGE = SGRE)
DTR> PRINT FIRST 1 YACHTSED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM
ALBERG 37 MK II KETCH 37 20,000 12
$36,951
DTR>

18.2 Using the SET ABORT Statement

When DATATRIEVE executes an ABORT statement in a command file or proce-
dure while SET NO ABORT is in effect, it affects only the compound statement
containing the ABORT statement. If SET ABORT is in effect, DATATRIEVE
terminates the remainder of the command file or procedure. The same rules
apply if you enter CTRL/Z in response to a prompt.

If DATATRIEVE encounters a syntax or logical error in a command file or proce-
dure, it returns you to the DTR> prompt whether or not you have used SET
ABORT. SET NO ABORT is the default setting when you invoke DATATRIEVE.

See Chapters 9 and 10 for a discussion of using ABORT and NO ABORT in con-
trolling procedures and command files.

18.3 Using the SET PROMPT Statement

184

When you invoke DATATRIEVE, SET PROMPT is in effect. If you press
RETURN before finishing a command or statement, DATATRIEVE prompts you
for the remaining required elements of that command or statement.

The following sequence of commands and statements shows how DATATRIEVE
responds when SET PROMPT is in effect. After the line of text indicates the next
required element, DATATRIEVE displays the CON> (continuation) prompt. As
long as the syntax of a command or statement is incomplete, DATATRIEVE uses
CON> to tell you it is ready for further input.

DTR* READY®ED

[LooKing for Dictionary Element]

CON* YACHTSE

DTR*> FINDGRE)

[LooKing for "FIRST": domain names or collection namel
CON* FIRSTGED

[LooKing for a value expressionl

CONZ 1@ED

[LooKing for collection or domain namel
CON> YACHTSED

[1 Record foundl

DTR>

Controlling Output

Notice that DATATRIEVE stops prompting as soon as you enter elements that
comprise a syntactically complete command or statement. For example, READY
YACHTS is complete, and DATATRIEVE does not prompt for any further ele-
ment. Similarly, when you enter FIND FIRST 1 YACHTS, DATATRIEVE does
not prompt you for a Boolean expression or a SORTED BY clause.

When SET NO PROMPT is in effect, DATATRIEVE does not display the text
about the next required element. It does, however, use the CON> prompt when

the syntax is incomplete. The following example is identical to the previous one
but has SET NO PROMPT in effect:

DTR> SET NO PROMPTEED
DTR* FINDRED

CON> FIRSTEE)

CON> 1@

CON* YACHTSEm

[1 Record foundl
DTR >

Note that SET NO PROMPT does not suppress the messages DATATRIEVE dis-
plays about the results of commands and statements.

Controlling Output 18-5

Controlling Access to Dictionary Objects 19

To supplement your operating system protection, DATATRIEVE uses access con-
trol lists (ACLs) to protect your data and dictionary definitions. An ACL, stored
in the data dictionary, regulates user access to an object in the data dictionary.

Every dictionary object (domain, record, procedure, and table) has an associated
ACL. This chapter describes the contents of an ACL and the commands you use
to maintain the ACL. It also shows a strategy to help ensure the integrity of your
data.

Carefully maintained ACLs can be effective against unauthorized browsing
through files and accidental corruption of the dictionary or data. Use them to
augment the overall security system for your installation.

19.1 Contents of an Access Control List

An ACL consists of one or more entries. Each entry contains the following
information:

e A sequence number
e A lock type
e A key

e One or more access privileges

Figure 19-1 shows a sample ACL containing three entries that illustrate the
parts and options in an ACL. The table within Figure 19-1 identifies the parts of
each entry.

DTR> SHOWP SAMPLEGRED
1,UIC, [254,:2031+ "RWEMC"
23PW,y "SWORDFISH" s "RM"
3:UIC, [*,%1, "RE"

Sequence Lock Kevy Priviledes
Number

1 uIc [254,2031 RWEMC

2 PW SWORDFISH RM

3 uic [*4%] RE

Figure 19—1: Sample Access Control List

19.1.1 Sequence Numbers

Sequence numbers are sequential integers beginning with 1 that DATATRIEVE
assigns to identify ACL entries. Use sequence numbers to identify entries you
are adding to or deleting from the ACL.

19.1.2 Lock Types

Each entry in the ACL has a lock type that indicates whether you access the
associated dictionary object by specifying a password or by using a UIC/PPN.
There are two lock types: PW, for password, and UIC, for UIC/PPN. (A UIC/PPN
represents an operating system account number.)

19.1.3 Keys

DATATRIEVE uses keys to identify you when you request access to dictionary
objects. When you attempt to access a dictionary object, you must provide the
correct password for a PW lock or own the correct UIC/PPN for a UIC lock.

19.1.3.1 Password Keys — If the lock type is PW, the key is a 1- to 10-character
password. You can use any character from the ASCII character set except the
dollar sign ($). Examples of legal passwords include: FISH-FRY, SWORDFISH,
1234, and PASSWD-9.

To execute a command or statement that requires access privileges protected by
a password, you include the password directly in the command or statement. For
example, the domain YACHTS might contain only one ACL entry:

1 PW SWORDFISH RWEMC

To delete the YACHTS domain definition from the dictionary, you can specify the
password enclosed in parentheses in the DELETE command:

DTR> DELETE YACHTS (SWORDFISH) i@

19-2 Controlling Access to Dictionary Objects

For security reasons, you can also suppress the display of the password on your
terminal. To do this, type an asterisk enclosed in parentheses ((*)) instead of the
password. DATATRIEVE then prompts for the password but does not display the
password when you enter it:

DTR:> DELETE YACHTS (*) Q@)
Enter rPassword for YACHTS: RET)

This technique for specifying a password is especially useful if you have a
hardcopy terminal.

19.1.3.2 UIC Keys — If the lock type is UIC (for UIC/PPN), the key is an account
number known to the operating system. Under RSTS/E systems, an account
number is called a project-programmer number, or PPN. Under other operating
systems, the account number is called the user identification code, or UIC. The
UIC/PPN consists of a 3-digit octal group number followed by a 3-digit octal user
number. The numbers are separated by a comma and enclosed in brackets, for
example [253,201].

A UIC/PPN lock can include specific numbers, asterisks, or a combination of an
asterisk and a number. Asterisks allow all users or only users in a specified
group to access a dictionary object. The following are valid ACL lock entries:

o [253,201], allowing only the uéer with the account number [253,201] to have
access

o [253,*], allowing any user with group number 253 to have access

e [**] allowing any user to have access

For the UIC lock type, you do not include a UIC or PPN in a command or state-
ment. Rather, DATATRIEVE verifies that you have access by checking the
UIC/PPN you used to log in. For example, if the ACL for the procedure BIG-
YACHTS contains just the following entry, then you must log in under [253,201]
in order to access the procedure:

1 uic [233+2011 RWEMC

If the ACL contains the following entry, you can access the procedure regardless
of your UIC/PPN:

1 uic [*,%] RWEMC

Because you cannot use a password when invoking a procedure, you may want to
use the UIC/PPN lock type to protect procedures.

Note

On RSX and VAX-11 RSX systems, a UIC must be in the range of
[0,0] to [377,377]. On RSTS systems, a UIC must be in the range of
[0,0] to [256,256].

Controlling Access to Dictionary Objects 19-3

19-4

19.1.4 Access Privileges
An access privilege determines the access you have to the associated dictionary

object. You designate an access privilege by a single letter, a string of letters, or a
space. Table 19-1 contains a list of access privileges and their description.

Table 19-1: Access Privileges

Access Description
Privilege
R READ. The user can SHOW or EXTRACT the associated dictionary object. For a

domain, the user can ready the domain for READ access only.

w WRITE. The user can ready the domain for READ, EXTEND, MODIFY, or
WRITE access to retrieve, modify, store, or erase records.

E EXTEND or EXECUTE. For a domain, the user can ready the domain for
EXTEND access only to store records. For a procedure, the user can execute the
procedure. For a table, the user can refer to the table (using VIA or IN clauses).
The user must have E access to a record to ready the associated domain.

M MODIFY. The user can ready the domain for READ or MODIFY access to read or
change records in the domain but not to add or delete. '

C CONTROL. The user can issue the commands DEFINEP, DELETE, REDEFINE,
DELETEP, EDIT, and SHOWP.

Space(s) No access. The user cannot access the dictionary object.

Each entry in an ACL can include from one to five access privileges or designate
no access. A space indicates that no access is permitted to a user with the corre-
sponding key. For example, the single letter R specifies that a user with the cor-
responding key has read access only. The letters RW specify that the user has
both read and write access. Full access, designated by RWEMC, allows a user
complete access to the dictionary object. If you specify a space, the user has no
access to the dictionary object.

Each access privilege allows you to issue certain commands and statements. For
example, with R privilege, you can issue an EXTRACT command or ready a
domain for read access. If you ready a domain to READ, you can then use com-
mands and statements that display and manipulate the domain database. With
only R privilege, you cannot ready a domain to WRITE, MODIFY, or EXTEND.
Therefore, you cannot add to, delete, or modify data.

Table 19-2 contains a list of commands that you can issue if you are granted the
corresponding access privilege. The table also shows the statements you can use
after issuing the command.

Controlling Access to Dictionary Objects

Table 19-2: Commands/Statements by Privilege

Privilege Commands Query
for Domain Permitted Statements Permitted

R " EXTRACT

READY...READ FIND
PRINT
SELECT
SORT
SUM

SHOW

E READY.. EXTEND STORE

M READY..READ FIND
PRINT
SELECT
SORT
SUM

READY...EXTEND STORE

READY..MODIFY FIND

‘ MODIFY
PRINT
SELECT
SORT
SUM

W READY..READ FIND
PRINT
SELECT
SORT
SUM

READY.. EXTEND STORE

READY.. MODIFY FIND
MODIFY
PRINT
SELECT
SORT
SUM

READY...WRITE ERASE
FIND
MODIFY
PRINT
SELECT
SORT
STORE
SUM

(continued on next page)

Controlling Access to Dictionary Objects 19-5

Table 19-2: Commands/Statements by Privilege (Cont.)

Privilege Commands Query
for Domain Permitted Statements Permitted

C DEFINEP -

DELETE . -
REDEFINE -
DELETEP -
EDIT -
SHOWP -

Note

You must have E access to the associated record definition to ready
a domain.

The meaning of E privilege differs depending on the dictionary object to which
an ACL corresponds. In an ACL for a domain, E means extend privilege; that is,
the user can store records in a file or extend it. In an ACL for a table, procedure,
or record definition, E means execute privilege. The user can use a table or proce-
dure, or ready the domain associated with the record definition.

Only users with C (control) access to a dictionary object can directly access its
associated ACL or edit or delete the dictionary object. However, any user with a
group (or project) code of 1 (that is, a UIC/PPN in the form [1,n]) is automatically
granted C (control) access to all ACLs.

19.2 Creating Access Control Lists

19-6

When you define a dictionary object, DATATRIEVE automatically creates an
ACL for that object. The ACL initially contains only one entry, a UIC/PPN that
is granted full access privileges to the dictionary object. The specific UIC/PPN
stored in the ACL is installation-dependent and is determined when the
DATATRIEVE software is installed. The entry can be in one of the following
formats:

[m,n]

Full access privileges are granted to any user with the same UIC/PPN as the
creator of the dictionary definition. For example, if you log in under [253,201]
and create a procedure definition, then an entry for [253,201] is stored in the
access control list for the procedure. Only users with a UIC/PPN of [253,201]
can access the procedure.

Controlling Access to Dictionary Objects

[m,*]

Full access privileges are granted to any user with the same group (or pro-
ject) code (m) as the creator of the definition. For example, if you log in under
[253,201] and create a procedure definition, then an entry for [253,*] is stored
in the access control list for the procedure. Any user with a group (or project)
code of 253 (such as [253,222]) also has full access privileges to the procedure.

(%]

All DATATRIEVE users, regardless of their UIC/PPN, are granted full
access to the dictionary object.

Regardless of the default UIC/PPN stored in the ACL, the creator of the defini-
tion always has full access privileges (RWEMC) to the dictionary object at the
time he or she creates the definition.

If you have C access to a dictionary object, you can grant privileges to additional
users or further restrict the use of the dictionary object by changing its ACL. The
commands you use to change the table are summarized later in this chapter and
described fully in Chapter 5 of the DATATRIEVE-11 Reference Manual.

19.3 Processing Access Control Lists in DATATRIEVE

DATATRIEVE checks the appropriate access control list to verify that you have
access privilege whenever you use a table, invoke a procedure, or issue one of the
following commands:

e DEFINEP
e DELETE

e DELETEP

e EDIT

o EXTRACT

e READY

o REDEFINE
o SHOW

o SHOWP

Controlling Access to Dictionary Objects 19-7

19-8

To verify that you have the correct access privilege, DATATRIEVE searches the
ACL, checking each entry until it finds a match between the ACL key and your
UIC/PPN or between the password you supply and one in the ACL.
DATATRIEVE searches the table in the following sequence:

1. DATATRIEVE stores your UIC/PPN and determines if you are a privileged
user. A privileged user is one with a group (or project) code of 1 (that is, a
UIC/PPN in the form [1,n]). At a minimum, DATATRIEVE grants a privi-
leged user C (control) access. It may grant additional privileges, depending
on the results of the following steps.

2. DATATRIEVE checks the first entry in the access control list.

If the lock type is PW, DATATRIEVE checks to see if you specified a pass-
word in the command. If you did and the password matches the entry’s key,
DATATRIEVE stops searching the access control list and grants you the
privilege or privileges listed in the entry. If the password does not match or
you did not specify a password, DATATRIEVE performs the next step.

If the lock type is UIC, DATATRIEVE checks to see if your UIC/PPN
matches the key. If it does, DATATRIEVE stops searching the list and grants

you the privileges listed in the entry. If the UICs do not match,
DATATRIEVE performs the next step.

3. DATATRIEVE checks the next entry in the list, following the same proce-
dure as in the previous step.

When there are no more entries, DATATRIEVE denies access to the diction-
ary object and rejects your command or statement.

The following examples show how DATATRIEVE handles some user requests.
The examples use the following ACL for the domain YACHTS:

DTR> SHOWP YACHTSEE
1,UIC, [253:+2011, " "
2yUICy [2144+2171 “"CHW"®
3+PWs "FISH-FRY"» "M"
4,uIC, [*.*1,s "R"

A user with UIC/PPN [253,201] enters a SHOW command to look at the defini-
tion of the YACHTS domain. DATATRIEVE checks the user’s UIC/PPN and
finds it as the first entry. Because no access privilege is granted, access to the
domain is denied to the user.

DTR> SHOW YACHTS
Access denied to dictionary resource "YACHTS"
DTR >

A user with UIC/PPN [214,217] readies YACHTS for write access. The first
match in the ACL (at entry 2) grants the user write (and control) privilege. The
READY command executes:

DTR>» READY YACHTS WRITEQRED
DTR:

Controlling Access to Dictionary Objects

A user with UIC/PPN [253,201] tries to ready YACHTS for modify access by
including a password in the READY command. Because the entry in the ACL
that contains the password FISH-FRY appears after the entry denying all privi-
leges to the user, modify access to YACHTS is denied:

DTR> READY YACHTS MODIFY (FISH-FRY)QRED
Access denied to dictionary resource "YACHTS"
DTR*

A user with UIC/PPN [234,231] issues the same command as in the previous
example. Because the user does not have the UIC/PPN that is denied all access
and has included the correct password key for modify access, the READY com-
mand executes:

DTR:> READY YACHTS MODIFY (FISH-FRY)@ED
DTR >

19.4 Maintaining an Access Control List

To maintain an ACL that implements your security strategy, you must have C
(control) access to the dictionary object associated with the ACL. Control access
allows you to display an ACL and add or delete ACL entries.

19.4.1 Guidelines for Ordering Entries

When you add entries to an ACL, the order of entries in the ACL controls the
access to the dictionary object. Place the most restrictive entries first in an ACL
and the least restrictive entries last. The most restrictive entries completely
deny access to a specific UIC/PPN, while the least restrictive entries allow access

by any UIC/PPN.
The following rules apply when adding entries to the ACL:

e Place entries that deny all privileges first. Use a lock type UIC (instead of PW)
for these entries.

® Place restrictive entries that limit access to a specific UIC/PPN next.
o Place the less restrictive entries (such as those requiring a password) next.

e [faccess is allowed for any UIC/PPN (that is, if the key is [*,*]), place its entry
last in the list.

Controlling Access to Dictionary Objects 19-9

19-10

19.4.2 Assigning Privileges

If you know which commands or statements you want to permit a user to issue,
use Table 19-3 to find the privileges you must assign to that user.

Table 19-3: Privilege Requirements by Command/Statement

Command/Statement Privilege Required
DEFINEP C privilege for the dictionary object
DELETE C privilege for the dictionary object
DELETEP C privilege for the dictionary object
EDIT C privilege for the procedure or table
EDIT ADVANCED C privilege for the domain or record
ERASE W privilege for the domain and E privilege for the associated
record
EXTRACT R privilege for the dictionary object
READY ..READ R, W, or M privilege for the domain and E privilege for the associ-
ated record
...WRITE W privilege for the domain and E privilege for the associated
record
....MODIFY M or W privilege for the domain and E privilege for the associated
record
..EXTEND E, W, or M privilege for the domain and E privilege for the associ-
ated record
SHOW domain-name R privilege for the dictionary object
record-name
proc-name
table-name
SHOWP C privilege for the dictionary object associated with the ACL

Use care when assigning the W privilege, particularly if a more restrictive privi-
lege (such as R or M) would suffice. The W privilege allows the user to perform
the same functions as the R, M, and E privileges but also allows the user to issue
the ERASE command to delete records.

19.4.3 Displaying an Access Control List

Use the SHOWP command to display an ACL:

SHOWP object-name

(passwd) :I

Controlling Access to Dictionary Objects

19.4.4 Adding Entries to an Access Control List
Use the DEFINEP command to add an entry to an ACL:

PW, new-passwd

. (passwd) i .
DEFINEP object name[) sequence-no, {UIC, (m.n] } , priv

Before adding any entry to an ACL, display the ACL using SHOWP. The follow-
ing example illustrates adding one entry to an ACL:
DTR> SHOWP YACHTS (FISH-FRY)@®D
1+PWs "FISH-FRY", "RWEMC"
DTRY DEFINEP YACHTS (FISH-FRY) 2, UIC, [201,2131, R@ED
DTR» SHOWP YACHTS (FISH-FRY)@ED
1+PWs "FISH-FRY", “RWEMC"

2,UICy [201.,2131 "R"
DTR»

When you add an entry to an ACL, DATATRIEVE renumbers the entries that
follow it so that their numbers occur in proper sequence.

19.4.5 Deleting Entries from an Access Control List

The DELETEP command deletes one entry from an ACL:
DELETEP object-name [(p a?%wd) :I sequence-number

Use the SHOWP command before deleting an entry to verify that you are delet-
ing the correct entry. For example:

DTR> SHOWP YACHTS (FISH-FRY)QRED

1+PW,y "FISH-FRY"» “"RWEMC"
2yUICy [201,2131, "R"

DTR> DELETEP YACHTS (FISH-FRY) ZQR
DTR» SHOWP YACHTS (FISH-FRY)RED

1+PWs "FISH-FRY", "RWEMC"
DTR>

After you delete an entry, DATATRIEVE renumbers the entries so that they are
sequential, beginning with 1.

An ACL must have at least one entry. DATATRIEVE does not allow you to
delete an entry when that entry is the only one in the ACL.

If you delete all entries that have C (control) privilege, there is only one way to
change the ACL. Log in using a privileged UIC/PPN, invoke DATATRIEVE, and
use the DEFINEP command to create an entry that gives one or more users the
C privilege.

Controlling Access to Dictionary Objects 19-11

Maintaining Data Dictionaries 26

A data dictionary holds domain, record, procedure, and table definitions. The
items that you define in a data dictionary are called dictionary objects.
DATATRIEVE supplies you with a default dictionary called QUERY.DIC. When
you invoke DATATRIEVE, your current dictionary is QUERY.DIC. You can keep
all your data definitions in QUERY.DIC, but it is orderly and efficient to store
related definitions in separate dictionaries. You can create other data dictiona-
ries with the CREATE DICTIONARY command.

You can change from one dictionary to another, and you can display general and
specific information about your current dictionary. You can also display informa-
tion about readied domains, established collections, tables currently in memory,
and selected records. '

You can transfer definitions stored in one dictionary to another dictionary by
copying the definitions you want to a command file. You then set the destination
dictionary as the current dictionary and execute the command file to store the
definitions.

You can also edit dictionary definitions. If you need to make only a few changes
to an existing procedure or table, use the DATATRIEVE Editor, as described in
Chapter 16. If you need to make extensive modifications to a procedure or table
or want to edit a domain or record definition, you can copy the definition to a
command file, exit from DATATRIEVE, edit the command file with the editor of
your choice, and return to DATATRIEVE to execute the command file and store
the new definition.

The following sections discuss dictionary maintenance in detail.

20-1

20.1 Displaying Dictionary Objects
You can list the names of all domains, records, procedures, and tables defined in
the current data dictionary with the SHOW ALL command. SHOW ALL also
lists the names of any established collections and readied domains:

DTR> SHOW ALLGEED

Domains:
COMPANIES DDMF_TEST FAMILIES FOOYAC
OLD_FAMILIES OWNERS PROJECTS YACHTS
YACHTS _SEQUENTIAL
Records:
COMPANIES _REC FAMILY _REC OWNER_RECORD PROJECTS_REC
Procedures:
LOA_REPORT PRICE_PER_.POUND THMP VERIFY
Tables: .

The current dictionary is SY:[2:11QUERY.DIC
No established collections
No ready domains

You can print the definition of any dictionary object to which you have read
access:

DTR:> SHOW FAMILIESRE
DOMAIN FAMILIES

USING FAMILY_.REC ON FAMILY.DAT;
DTR

The kind of access you have to a dictionary object depends on the access control
list (ACL) associated with that object. The ACL specifies whether you have R
(read), W (write), M (modify), E (execute), C (control) or no privilege for a diction-
ary object. You can only display the ACL for a dictionary object if you have C
(control) privileges. The following example prints the ACL for the domains
FAMILIES and PROJECTS:

DTR> SHOWP FAMILIESRE)

1+UICs [*,:%1, "RWMEC"
DTR> SHOWP PROJECTSGED

1,UICy [23+431 "RWMEC"

ZsPWs "SESAME" s "RE"
DTR >

See Chapter 19 for further information on controlling access to dictionary
objects.

20.2 Modifying Dictionary Objects

To modify the definition of a dictionary object, you must have M (modify) access
to the dictionary object. You can modify dictionary objects in the following ways:

® You can use the DATATRIEVE Editor to modify definitions of procedures and
tables. You cannot modify domains or records with the DATATRIEVE Editor,
however.

20-2 Maintaining Data Dictionaries

® You can use the REDEFINE command to create a new definition.
DATATRIEVE deletes the previous version of the object and allows you to
define it a different way. The domain FAMILIES, for example, can be redefined
as follows:

DTR> SHOW FAMILIESQRE)

DOMAIN FAMILIES

USING FAMILY_REC ON FAMILY.DAT;

DTR:> REDEFINE FAMILIES USINGEE)

DFN* NEW_FAMILY_REC ON NEW_FAMILY.DAT 3R
DTR> SHOW FAMILIESQRE)

DOMAIN FAMILIES

USING NEW_FAMILY_REC ON NEW_FAMILY.DAT:
DTR:

Note

The previous definition of an element will be permanently lost
after a REDEFINE command is entered. If you make a mistake
while entering the definition, you must enter it again from the
beginning.

® The easiest way to modify a dictionary element is probably to copy the defini-
tion to a command file using the EXTRACT command:

DTR> EXTRACT ON TEMP.CMD PERSON_RECQRED
DTR»

Exit DATATRIEVE and edit the command file using the text editor of your
choice. After making the needed changes, return to DATATRIEVE and exe-
cute the command file.

The EXTRACT command adds both a DELETE command and a DEFINE
command to the beginning of the indirect command file. When you execute the
command file, the DELETE command removes the old definition of the diction-
ary object from the current data dictionary, and the DEFINE command stores”
the new definition in that dictionary.

Note

Use extreme caution when changing record definitions. If you
change the record definition so that the record it describes no
longer matches the record stored in your file, you can no longer
access your data. Chapter 15 explains the relationship between
your record definition and data access.

The REDEFINE and EXTRACT commands do not copy the ACL associated with
your record definition. When you redefine your record with the command file,
DATATRIEVE also defines a new ACL for the record. This new ACL specifies the
default privileges that have been set up for your system.

Maintaining Data Dictionaries 20-3

The QXTR utility, discussed later in this chapter, enables you to copy the ACL
associated with your record to a command file.

20.3 Deleting Dictionary Objects

To remove the definition of a dictionary object from the current data dictionary,
you must have C (control) access to the dictionary object. To remove a dictionary
definition, use the DELETE command:

DTR> SHOW DOMAINSQRED

Domains:
DDMF_TEST FAMILIES FOOYAC OLD_FAMILIES
OWNERS PROJECTS YACHTS YACHTS_SEQUENTIAL

DTR>» DELETE FOOYAC @M

DTR> SHOW DOMAINSED)

Domains:
DDMF_TEST FAMILIES OLD_FAMILIES OWNERS
PROJECTS YACHTS YACHTS_SEQUENTIAL

DTR >

Remember to terminate the DELETE command with a semicolon.

DELETE removes from the dictionary both the definition of the dictionary object
and its associated ACL. This command does not delete the data file associated
with a domain. The data file still resides in the directory where it was stored.

Therefore, you can delete a domain definition and redefine it to access the same
data file.

20.4 Optimizing Disk Storage of Data Dictionaries with QCPRS

20-4

The data dictionary is an indexed file stored on a disk. When you add and delete
definitions from a dictionary, that file accumulates unused areas of disk space. To
reclaim this wasted disk space, run the utility program QCPRS. QCPRS com-
presses the contents of the dictionary, eliminating unused disk space. Com-
pressing your dictionary can also improve DATATRIEVE performance.

To compress a data dictionary, you should first determine how many blocks of
storage your dictionary occupies. The following example determines the size of
the dictionary KELLER.DIC that resides in directory [100,120] on the system
disk. The example uses the DCL. DIRECTORY command:

$ DIRECTORY/FULL SY:[100,1201KELLER.DICRE)

The resulting display tells you the size (in blocks) of the dictionary. Later on,
QCPRS prompts you for the number of blocks it should allocate for the com-
pressed file. The number you supply should equal or exceed the number of blocks
the dictionary currently uses.

On a RSTS/E system, you should rename the dictionary before invoking the
QCPRS utility. The easiest way to do this is to change the file extension:

$ RENAME KELLER.DIC KELLER.BAKEED
%

Maintaining Data Dictionaries

Then you invoke QCPRS in response to the operating system prompt. The follow-
ing example assumes that you are using DCL to invoke QCPRS, which prints an
identification message and requests a command with the following prompt:

$ RUN $QCPRS
QUERY FILE COPY-COMPRESS UTILITY

CPR>

Use the following format to compress the dictionary:
new-file = old-file

New-file is the file specification for the compressed copy of the dictionary.
Old-file is the file specification of the dictionary to be compressed. If you omit a
field in either file specification, QCPRS uses the following defaults:

Field Default

dev: SY: (the system device)
UIC/PPN Your default UIC/PPN
filename QUERY

extension DIC

Under all operating systems but RSTS/E, the file specifications for new-file and
old-file can be the same. QCPRS merely creates a new copy of the file using the
next higher version number.

Under RSTS/E, the file specifications for new-file and old-file must be different.
Use the renamed dictionary from a previous example:

QCP>KELLER.DIC = KELLER.BAKRD

After you have entered the file specifications, QCPRS asks you to specify a num-
ber of disk blocks as an allocation for the new version of the dictionary:

ENTER ALLOCATION FOR AREA O:

Enter the number of disk blocks you want to allocate for the compressed diction-
ary. If the number is too low, QCPRS automatically extends the file to hold the
contents of the original file. If the number is too high, the extra blocks remain in
the file and give room for contiguous expansion of the dictionary. A number that
is higher than what the file currently needs can help maintain DATATRIEVE
performance for a longer period of time; however, the higher number wastes disk
space over the short run.

QCPRS then prompts again with CPR>, and you can compress another diction-
ary file or terminate QCPRS with CTRL/Z.

Maintaining Data Dictionaries 20-5

Because QCPRS does not alter the contents of the original file, you can save the
file as a backup, or you can delete it.

You can use QCPRS to compress an indexed data file associated with a
DATATRIEVE domain as well as to compress a dictionary. If you have added
many records to the indexed data file since the time you created it, compressing
the file can help reduce DATATRIEVE response time to queries that access the
file. Simply follow the steps you use to compress a dictionary, but specify the
name and extension of the indexed file.

20.5 Extracting Dictionary Content with the QXTR Utility

20-6

You might want to transfer dictionary objects from one data dictionary to
another or transport your dictionary objects to VAX DATATRIEVE. You can use
the QXTR utility to create a command file containing all the definitions
extracted from a DATATRIEVE-11 data dictionary. Like QCPRS, QXTR is a dic-
tionary maintenance program supplied with the DATATRIEVE-11 installation
kit.

Running the QXTR program is equivalent to specifying all the objects in your
dictionary in an EXTRACT command. However, the QXTR program also allows
you to preserve the access control lists (ACLs) associated with each dictionary
object.

You must invoke QXTR from the system command level. The following example
uses the DCL RUN command:

$ RUN $OXTRGD

Extract Utility for DTR Dictiomaries W0O2.00
QXTR then prompts you for the following information:
e The file specification of the dictionary to be processed.

e Whether you want to extract the access control list for each dictionary object.

o Ifyou respond with Y to the question on access control lists, whether you want
those lists to use VAX DATATRIEVE syntax.

® The name of the output command file to contain the extracted definitions. (The
default is QXTR.CMD in your default directory.)

When QXTR finishes processing your dictionary, it returns you to system com-
mand level. The file QXTR creates an RMS sequential file you can invoke as an
indirect command file for DATATRIEVE.

Maintaining Data Dictionaries

The following example processes the dictionary KELLER.DIC and copies the dic-
tionary object definitions to LESLIE.CMD. The ACLs are extracted along with
the objects. The ACLs remain in DATATRIEVE-11 syntax:

Dictionmary Filesrec to Extract from? KELLER.DICQRE)
Should Protection Tables be Extracted (Y or N)? YGE
Extract in YAX-11 DATATRIEVE Svyntax? NGB

Filespec to Extract elements to? LESLIE.CMDRE

]

Like the EXTRACT command in DATATRIEVE, the QXTR utility precedes each
dictionary object definition with a DELETE command. It also adds an
ALLOCATION LEFT_RIGHT clause if no ALLOCATION clause is specified for
record definitions.

QXTR checks that you have R (read) privilege for the objects in the dictionary
before extracting them. If you do not, it prints a message that the objects were
not extracted, and the program continues. If you are logged in under a privileged
account (with a UIC/PPN [1,x]), you can extract everything regardless of the
access control list. If the access control list allows only password access and not
UIC/PPN access, you must run QXTR from a privileged account to extract the
element. The program checks your current UIC against the access control list.

QXTR aborts if it encounters a corrupt dictionary object. In this case, the com-
mand file contains definitions extracted before QXTR encountered the corrupt
object. It does not contain the definition of the corrupt object or the definitions
that would follow. DATATRIEVE extracts definitions in the following order:
domains, procedures, records, and tables. Definitions of specific objects within
these four types are extracted in alphabetical order according to the name of the
object. Examine the incomplete command file to determine which dictionary
object is corrupt. You must delete the corrupt object from the dictionary before
running QXTR again.

Maintaining Data Dictionaries 20-7

Name Recognition and Single Record Context A

When you use a field name as a value expression and when you display, modify,
or erase one or more records, DATATRIEVE determines exactly which record or
records are the targets of the action you propose.

For each of these actions, DATATRIEVE must first determine the context within
which the action occurs. The context is the set of conditions that govern the way
DATATRIEVE recognizes field names and determines which records are the
targets of DATATRIEVE statements. Understanding the way DATATRIEVE
manages context is especially important when you begin nesting DATATRIEVE
statements.

A.1 Establishing the Context for Name Recognition

DATATRIEVE does not require that every field name be unique. You can use the
same name in several record definitions. You can even use the same name sev-
eral times in the same record definition, as long as the fields with the identical
name do not have the same level number in one group field.

Both the YACHTS and OWNERS domains, for example, have group fields named
TYPE, and both group fields contain elementary fields you can refer to with the
names BUILDER and MODEL. (In YACHTS, DATATRIEVE recognizes the
query name BUILDER as equivalent to MANUFACTURER. Other query names
for YACHTS are SPECS, LOA, and DISP.) Figure A—1 shows the fields in both
record definitions and points out the duplicate names.

When you work with several record streams from the same domain, the field
names in all record streams are identical. Whether you form collections or record
streams of records from the YACHTS domain, DATATRIEVE has a mechanism
for identifying which record to act on when you want to retrieve or change data
from only one field of one record.

A-1

A-2

i DWNERS | i YACHTS |
L + Fem e +
DWNER
NAME
BOAT_NAME BOAT
TYPE - TYPE
BUILDER —> MANUFACTURER (BUILDER)
MODEL — MODEL
SPECIFICATIONS (SPECS)
RIG

LENGTH_OVER_ALL (LOA)
DISPLACEMENT (DISP)
BEAM

PRICE

Figure A-1: Duplicate Field Names in YACHTS and OWNERS

When you understand the way DATATRIEVE establishes the context for recog-
nizing names, you can use the names of domains, fields, collections, and vari-
ables to form both simple and complex relationships among fields. One of the
keys to mastering the use of context is understanding the two DATATRIEVE
context stacks.

A.1.1 The Right Context Stack

When you issue a statement, DATATRIEVE builds a context stack, a linked
list that controls the DATATRIEVE search for names to match the ones you use
in statements. The context stack consists of context blocks, or lists of names.
These context blocks are linked together by pointers that control the sequence of
search by DATATRIEVE for values to associate with the names you use in
statements.

DATATRIEVE searches the right context stack for values to associate with
names you use in print lists, Boolean expressions, and the right side of assign-
ment statements such as x = y. The left context stack is discussed later in this
appendix.

A.1.1.1 The Content of a Context Block — When you use a record selection expres-
sion, DATATRIEVE creates a context block to establish a context for name rec-
ognition. That context block contains, among other things, a list of names.

At the top of the list is a slot for the name of a context variable (see the section on
context variables later in this appendix). Next is the name of the domain
referred to in the record selection expression. The rest of the list contains the
names of fields in the record associated with that domain. Those field names are
arranged according to the field tree associated with the source.

The field tree contains the names of all the group fields, elementary fields,
COMPUTED BY fields, REDEFINES fields, and lists in the record and preserves
the hierarchical relationships among them.

Name Recognition and Single Record Context

When DATATRIEVE searches for a name in the context stack, it is looking for a
value to associate with that name. The search ends, and DATATRIEVE takes
the associated value when it finds the first name that matches the one in your
statement.

A DATATRIEVE name can consist of several names joined together. They resem-
ble dictionary path names in form and function. To be recognized, these com-
pound or qualified names must represent a valid path through the hierarchy of a
context block and the field tree it contains.

When DATATRIEVE encounters a name, it begins its search in the context block
on top of the stack. DATATRIEVE first looks at the slot in the context block
reserved for the name of a context variable. For unnamed CURRENT collections,
this slot contains the name CURRENT. For named CURRENT collections, the
name CURRENT and the collection name are equivalent. Named collections
that are not the CURRENT collection have the collection name in this slot.

If the top block on the context stack refers to a record stream, this slot is empty
unless you use a context variable in the RSE that forms the record stream. The
context variable gives a record stream a temporary name; this name fills the first
slot in the context block for these “named” record streams.

If DATATRIEVE finds that the first segment of a qualified name matches the
name in the collection name/context variable slot, it continues its search in that
block for a match for the rest of the name. If the name in your statement does not
match the name in the collection name/context variable slot, or if that slot is
empty, DATATRIEVE continues to look through the first context block to find a
match.

Next in the context block is the name of the source of the records referred to by
that block. For collections and record streams, that source can be the name of a
domain, collection, or list for hierarchical records. The source can also be the
name of a collection if you use the collection as the basis for a record stream in a
FOR statement and you use a context variable.

If the source name does not match the name in your statement, DATATRIEVE
next looks for the name in the slot reserved for names.

Next DATATRIEVE looks at the name of the top-level (the 01 level) field name.
If no match occurs, DATATRIEVE looks at each succeeding field name in the
order they are displayed when you enter a SHOW FIELDS command. That order
can take you through the entire hierarchy of the field tree, traversing first the
left branch then the right, wherever there is a branching point in the hierarchy.

If DATATRIEVE finds no match in the first block on the context stack, it goes to
the next context block on the stack and begins its search there.

DATATRIEVE stops its search as soon as it finds an exact match for the name in
your statement. Then it associates the value assigned to the name on the context
stack with the name of the field in your statement.

Name Recognition and Single Record Context A-3

A4

If DATATRIEVE finds no match for the name in any of the context blocks, it dis-
plays a message on your terminal that the field name is either undefined or used
out of context. The only remedies are to change the context so that the name in
your statement resolves properly or to remove any ambiguity by qualifying the
name further with group field names or context variables.

For the sake of clarity, the following description of the various types of context
blocks starts with the bottom of the context stack, that is, with the context block
that DATATRIEVE checks last.

A.1.1.2 Global Variables — The bottom context block contains the names of any
global variables you have established and have not released. This block is differ-
ent from the others on the stack because its content is not determined by a record
selection expression. Nevertheless, DATATRIEVE treats the name of a global
variable as though it were the name of a field in a simple record. Just as
DATATRIEVE associates the value of a field with the field name, DATATRIEVE
associates the value of a global variable with its name.

DATATRIEVE looks at the global variables last when trying to find a name to
match one in your statement. No two global variables can have the same name.
When you issue a DECLARE statement at command level (indicated by the
DTR> prompt), DATATRIEVE checks the names of the global variables you
have declared. If it finds one with the same name, it releases the old variable and
its value and replaces it with the new one. DATATRIEVE initializes the new
variable with a default value, a zero, or a space depending on the clauses you
include in the DECLARE statement.

A.1.1.3 Collections — The next higher set of blocks in the context stack refers to
existing collections. Each collection with a block on the context stack must have
one record singled out as a selected record. Although a collection can have a
number of records in it, only one of those records can be used in the search for the
context of a name. DATATRIEVE can assign only one value to the name. Conse-
quently, that one value can come from only one of the records in the collection.

Remember, the reason for resolving the context of a name you use in a statement
is to assign a value to the name that can be used in the statement.

For an existing collection, you can designate one record at a time as the selected
record for that collection. The SELECT statement lets you designate the selected
record in a collection by relative reference (FIRST, NEXT, and LAST) or by abso-
lute reference to the position number of the record in the collection. A collection
has a block on the context stack only if it has a selected record.

If you have more than one existing collection with a selected record, the block
immediately above the one for global variables refers to a named collection with
a selected record. That collection is the one you formed with a FIND statement
before you formed any of the other collections that have selected records.

The rest of the context blocks for the collections with selected records are ordered
according to the sequence in which you formed them, not the order in which you
entered the SELECT statement to establish the selected records.

Name Recognition and Single Record Context

If the CURRENT collection has a selected record, the context stack contains a
block referring to the CURRENT collection. That block is above the blocks of all
other collections. DATATRIEVE searches for names in the context block of the
CURRENT collection before it searches the context block of any other collection.

The key to understanding the way DATATRIEVE recognizes names is that
except for the global variables, the context stack is ordered on a last-in, first-out
basis. The most recently formed context block is the one DATATRIEVE searches
first.

You do not have to rely on your memory to recall the order in which you formed
your existing collections. You need only issue a SHOW COLLECTIONS com-
mand. DATATRIEVE displays the most recently formed collection (always the
CURRENT collection, whether it has a name or not) at the top of the list and the
“oldest” one at the bottom.

The SHOW COLLECTIONS command, however, lists all the existing collections
whether or not they contain selected records. Remember, only the collections
with selected records are represented on the context stack.

With the SHOW collection-name command, you can inspect each existing collec-
tion to see how many records are in the collection, whether it has a selected
record, and, if it does, what the position number of the selected record is in the
collection.

If DATATRIEVE searches the context stack and does not find a match for the
name in your statement, it displays an error message that may seem puzzling
unless you understand the way DATATRIEVE forms the context stack:

Field "wame" is undefined or used out of context

You may know the name has been defined, and that it is the name of a field in a
record associated with one or more existing collections. If, however, none of the

collections containing that field has selected records, DATATRIEVE cannot tell
if the field is defined or not.

If a collection containing the named field has no selected record, that collection
has no block on the context stack. Consequently, DATATRIEVE neither finds a
match for the field name nor has a way of discovering from the search of the con-
text stack if the field name is defined at all.

The order of context blocks at the higher levels of the context stack depends on
the order in which DATATRIEVE encounters the elements containing names
associated with values. The order of the following sections does not imply any
relative position on the stack. Only the order DATATRIEVE encounters those
elements determines their order on the stack.

A.1.1.4 Record Streams — Before DATATRIEVE looks at the context block of
the most recently formed collection with a selected record, it first looks at the
context blocks created explicitly in the statement. One type of context block cre-
ated by a statement refers to the field names of a record stream formed by a
statement.

Name Recognition and Single Record Context A-5

A-6

Context blocks of record streams act differently from those of collections. The
context block for a collection stays on the stack as long as the collection has a
selected record. The context block of a collection is removed from the stack only if
you release the collection or remove its selected record with a DROP statement.

The context block for a record stream, however, stays on the stack only as long as
the statement containing it is being executed. When DATATRIEVE finishes
processing the statement, the block is removed from the context stack and is not
available when DATATRIEVE rebuilds the stack after it encounters the next
statement.

Only three statements and one command make lasting changes to the context
stack:

e FIND

The FIND statement can remove the CURRENT collection from the context
stack by forming a new CURRENT collection. The new CURRENT collection
releases the old collection but does not put a block on the context stack because
a newly formed collection has no selected record.

e SELECT

The SELECT statement puts a collection on the context stack by establishing
a selected record. SELECT cannot change the relative order of collections on
the stack. That order is determined by the relative order in which you formed
the collections with the FIND statement.

e DROP

The DROP statement removes a collection from the context stack by dropping
the selected record from the collection. The SHOW collection-name command
still notes the position number of the previously selected record, but the record
has been removed from the collection and you cannot retrieve it unless you
form a new collection that contains it.

e RELEASE

The RELEASE command also removes a collection from the context stack. The
released collection no longer exists, thus freeing the space it occupied. Records
and domains associated with a collection named in the RELEASE command
are not affected.

These three statements, however, share a restriction that separates them from
all other statements: you cannot use FIND, SELECT, or DROP statements in
compound statements. They must be entered at command level by themselves.
Furthermore, these statements do not form temporary record streams; they
affect only collections.

Name Recognition and Single Record Context

You can, however, have several context blocks for record streams on the context
stack at one time. The block for a record stream stays on the context stack until
DATATRIEVE finishes the statement. Because you can nest statements in FOR
loops, BEGIN-END blocks, IF-THEN-ELSE statements, THEN, and WHILE
statements, the inner statements can form record streams before DATATRIEVE
finishes the outermost statement.

DATATRIEVE has to keep the context of outer statements separate from that of
inner ones. It keeps them separate by putting a block on the context stack when
it encounters an element that requires one. DATATRIEVE begins processing
compound statements with the outermost statement and works progressively
toward the innermost one. The context blocks it forms for elements in the inner-
most statement are at the top of the stack when the innermost statement is
being processed.

When DATATRIEVE finishes processing the innermost statement, it removes
the blocks created by that statement. DATATRIEVE works its way back out
toward the outermost statement, removing blocks created by statements as soon
as it finishes processing the statement. For example, in the case of nested FOR
loops, the context block for the innermost FOR loop is higher in the stack than
the blocks for the outer loops.

When DATATRIEVE completes the execution of the innermost loop, it removes
the context block of that FOR statement, leaving the blocks of the outer FOR
statement on the stack. As DATATRIEVE completes each loop, the context block
for that loop is removed from the stack. This same pattern applies to statements
in BEGIN-END blocks.

When a statement that forms a record stream is followed by a second statement
that is not contained in the first, DATATRIEVE removes the context block cre-
ated for the first statement from the stack and puts a context block for the second
statement in its place. For example, in a BEGIN-END block, one PRINT state-
ment containing an OF rse clause follows another. The context block of the first
statement is in effect only during the execution of that first statement. That
block is replaced by the one for the second PRINT statement when
DATATRIEVE begins processing the second statement.

DATATRIEVE handles the context block of a FOR loop the same as it handles
statements containing an OF rse clause.

DATATRIEVE creates four other types of context blocks that affect the order of
the context stack: those for local variables, VERIFY clauses, VALID IF clauses,
and context variables.

A.1.1.5 Local Variables — Local variables are variables defined in compound
statements. A local variable and its effect on the context stack last only from the
DECLARE statement that defines it until DATATRIEVE completes the execu-
tion of the statement containing the DECLARE statement.

Name Recognition and Single Record Context A-7

A-8

A.1.1.6 VERIFY Clause in the STORE Statement — Like the context for local vari-
ables, the context for resolving field names in a VERIFY clause of the STORE
statement is short-lived. The STORE statement does not access or change any
existing record. Consequently, for each STORE statement, DATATRIEVE cre-
ates a context block to associate the field names with the values in the new
record. DATATRIEVE executes the VERIFY clause after you have assigned val-
ues to all the fields prescribed by the syntax of the statement but before
DATATRIEVE stores the record in the data file.

A.1.1.7 VALID IF Clause in a Record Definition — When you assign a value to a
field name in either a STORE or MODIFY statement, DATATRIEVE looks in
the appropriate record definition for a VALID IF clause. If the value is unaccept-
able according to the conditions specified in the VALID IF clause, DATATRIEVE
displays a message on your terminal and reprompts you for an acceptable value.
It uses the same context to associate the field name with your response to the
reprompt. '

The context for resolving field names in the VALID IF clause is established by
the context block set up for either:

® The STORE statement
o The MODIFY statement

In either case, the value associated with the field name is the one just assigned to
it by your response to a prompt or by an assignment statement in the USING
clause of the STORE or MODIFY statement.

DATATRIEVE executes the VERIFY clause only after the values you assign
meet the conditions of VALID IF clauses in the record definition. As a result,
there can be no conflict between the context established for these two clauses.
The context for the VALID IF clause no longer exists when DATATRIEVE exe-
cutes the VERIFY clause.

A.1.2 Using Context Variables and Qualified Field Names

The ways of establishing context discussed to this point deal with resolving the
connections between names and values by finding the first instance of a valid
field name or variable name. When several context blocks on the stack contain
fields with the same names, you need a way to skip over some instances of the
name to get to the field that contains the value you want to retrieve.

DATATRIEVE gives you two methods of forcing name recognition: context vari-
ables and qualified field names. Although they require different actions from
you, these two methods have an underlying similarity.

A.1.2.1 Context Variables as Field Name Qualifiers — A context variable is a
dummy variable specified in a record selection expression for the purpose of
name recognition. When DATATRIEVE encounters a context variable, it puts a
new block on the context stack. That new block connects the name of the context
variable with the field names and values of the records identified by the record
selection expression.

Name Recognition and Single Record Context

The context established by the context variable lasts until DATATRIEVE com-
pletes the execution of the statement containing the record selection expression
in which the context variable occurs. However, that context does not affect any
outer loops or nesting statements that contain the statement in which you use
the context variable.

A context variable, however, does affect all inner statements nested in the state-
ment that contains the record selection expression in which the context variable
occurs.

You can use the context variable as a prefix for each field name of the records
identified by the record selection expression. Citing a field name with a context
variable prefix can make a field name unique, even when the domains and field
trees of a record in a record stream are identical.

Putting a prefix on a field name produces a qualified field name. The context
variable must be the first prefix added to a field name.

' A1.2.2 Other Field Name Qualifiers — Using other qualifiers as prefixes to field
names is the second method of overriding the DATATRIEVE default mechanism
of name recognition.

Each fully qualified field name must be unique. The fully qualified field name
consists of the record name, the top-level group field name, the names of any
group field to which the elementary field belongs, and the elementary field
name. You must separate each element of the fully qualified name from the next
with a period. For example, in the domain YACHTS, the fully qualified field
name of MODEL is:

YACHT .BOAT.TYPE.MODEL

You can use these elements in any combination that preserves their hierarchical
order to distinguish the MODEL field in YACHTS from the MODEL field in
another domain such as OWNERS.

When DATATRIEVE encounters a qualified field name, it searches the context
stack for the first match of the name you specify. For example, if you use
BOAT.MODEL in a record selection expression, DATATRIEVE searches the con-
text stack for the first valid occurrence of the name BOAT and searches the
branches of the hierarchy under BOAT for the first valid occurrence of the name
MODEL.

The success of the search is not jeopardized because you omit the group field
name TYPE from the qualified name MODEL. DATATRIEVE searches the
entire hierarchy under BOAT until it finds the first valid occurrence of TYPE.
When an intermediary group field name is omitted, DATATRIEVE searches the
hierarchy according to the order in which the fields of the record were defined.

Fully qualified field names are adequate when working with two or more
domains that share elementary or group field names, or both. However, when
you are working with two record streams from the same domain, you must fur-
ther qualify the field name with a context variable. This extra qualification is
especially necessary when dealing with lists in hierarchical records.

Name Recognition and Single Record Context A-9

A-10

Suppose you want to display information about all builders who build boats with
more than one type of rig. YACHT is the given name of the record associated
with the domain YACHTS. The field tree of YACHT has the structure:

YACHTS
01 BOAT

03 TYPE
06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH.OVER.ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

You can print the desired information with nested FOR loops. For each boat from
the outer FOR statement, you want DATATRIEVE to loop through all the boats
and find all the ones with the same builder. For each one it finds, you want it to
compare its rig with the rig of the boat from the outer loop. Then you want to
separate out the ones for which the rigs are not the same. At first, you might be
tempted to use the following statement to produce the desired list:

DTR> SET NO PROMPTQRED)
DTR> FOR YACHTSEED
CONZ FOR YACHTS WITH BUILDER = BUILDER ANDQRED

CON> RIG NE RIGED
CONZ PRINT BUILDER:s RIG: RIGEED
DTR>

After a long search for records, DATATRIEVE displays no records. The problem
is that the preceding syntax asks DATATRIEVE to look for a boat with a rig that
is not equal to itself — an obvious contradiction. Both of the fields named RIG
resolve to the record stream formed by the second FOR statement. The name
BUILDER also resolves to the same record stream.

When you enter this statement, DATATRIEVE takes the first record from
YACHTS but does not look at any of the values in its fields. Then it looks at
every record in YACHTS and discovers that for every one of them, the name of
the builder equals itself, but that no rig is not equal to itself. Thus every record
in YACHTS fails to meet the condition set by the statement.

DATATRIEVE then takes the second record in YACHTS and once again goes
through all the boats, finding that the two values are always equal to themselves
and thus fail to meet the impossible demands of the statement. And so it goes for
each record: two comparisons for 113 times 113 records, and no records meet the
self-contradictory conditions.

Name Recognition and Single Record Context

The problem is how to get DATATRIEVE to look at the builder and rig of the
outer FOR statement when making the comparison. The context variable pro-
vides one solution:

DTR>» FOR A IN YACHTSGED

CON> FOR YACHTS WITH BUILDER = A.BUILDER AND RIG NE A.RIGEE
CON PRINT BUILDER: A.RIG: RIGRE

MANUFACTURER RIG RIG

AMERICAN SLOOP MS

AMERICAN MS SLOOP

CHALLENGER SLOOP KETCH

’ + +

+ + +

PEARSON KETCH SLOOP

PEARSON KETCH SLOOP
DTR >

In this case, the use of the context variable A forces DATATRIEVE to look to the
record stream formed by the outer FOR statement. At the same time,
DATATRIEVE recognizes the unqualified names, RIG and BUILDER, in the
context established by the most recent RSE: the one in the second FOR state-
ment. The conditions in the second FOR statement are no longer impossible, and
information from 62 records is displayed.

The way DATATRIEVE treats the unqualified names in this example illustrates
another rule for context resolution: the left-hand member of a Boolean expres-
sion must resolve to the record selection expression of which it is a part. If you
start the Boolean expression in the second FOR statement with A.BUILDER,
DATATRIEVE tells you that A.BUILDER is undefined or used out of context.

You can add a second context variable in the previous example to make sure the
resolution of the names is explicitly stated:

DTR> FOR A IN YACHTSQR
CON» FOR B IN YACHTS WITH B.BUILDER = A.BUILDER AND B.RIG NE A.RIGED
CON> PRINT B.BUILDER, A.RIG: B.RIGRED

You gain two advantages by specifying the second context variable: clarity of
representation and certainty that DATATRIEVE will display an error message
if you make a syntax error. Using the second context variable, however, does not
allow you to violate the rule for resolving field names on the left side of Boolean
expressions.

A.1.3 The Left Context Stack for Assignment Statements

When you make assignment statements at DATATRIEVE command level or as
part of STORE or MODIFY statements, DATATRIEVE must assign values to
the field or variable you intend. It uses the left context stack to associate the val-
ues you supply with the fields and variables you want the values assigned to.
Blocks on the left context stack are for records and variables that you can
update.

Name Recognition and Single Record Context A-11

A-12

Whenever DATATRIEVE begins to process a statement, the left context stack
contains the global variables you have declared and not released. Any local vari-
ables you declare in compound statements are also on the left context stack. The
local variables are removed when the statement in which you declared them
ends. :

Local and global variables are on both stacks. Each type of variable has a value
that can be assigned to a field or another variable; hence, they are on the right
context stack. Both can be updated with new values you assign them; hence,
they are on the left context stack.

Context blocks for a record you want to modify is also on both context stacks. The
record has a value you can use in Boolean expressions and assignment state-
ments. You can update that value in a MODIFY statement. Because a field is on
both stacks at the same time, you can use the old value of the field to calculate
the new value. You can use the following form of assignment statement:

DTR> MODIFY USING PRICE = PRICE * 1.,1@
DTR>

DATATRIEVE retrieves the old value of PRICE associated with the name on the
right context stack and multiplies the old PRICE by a constant. It then associ-
ates that value with the name PRICE on the left context stack and updates the
value of the PRICE field.

When you enter a STORE statement, the only context block for the new record is
on the left context stack. No record exists yet, and, of course, no values are asso-
ciated with fields of a record. The fields can only receive values.

However, as soon as DATATRIEVE associates a value with a field, you can move
that value to the right context stack and use it on the right side of assignment
statements. You can make this shift before you finish assigning values to all the
fields of the new record. In fact, you can use the values of new fields to calculate
the values DATATRIEVE stores in other new fields in the same record.

To shift newly stored values to the right context stack, include a context variable
with the domain name when you enter the STORE statement:

DTR> STORE A IN YACHTS USING .+ . .

Then in the USING clause, you use the context variable to qualify the names of
any field whose value you want to use on the right side of an assignment
statement:

DTR> STORE A IN YACHTS USINGEE)
CON> BEGINGRED

CON > F1 = value-exPressionQ@e
CON F2 = value-expPressionQ@e

CON> F3' = A F1+A.FZRDD
CON> ENDRED
DTR>

Name Recognition and Single Record Context

The context variable allows you to associate a field name on the right context
stack with its new value as soon as you assign the value to the field. You cannot,
however, use a field name on the right side of an assignment statement until you
have assigned a value to the field.

A.1.4 Examples of Context Variables in STORE and MODIFY
Statements

You can combine STORE and MODIFY statements to keep an audit trail of mod-
ifications made to records in a domain and to change statistical records when you
store new records.

To form an audit trail you need a domain for the audit records. This domain can
use the same record definition as the original domain, but it must have its own
domain definition and its own data file. Here is a simple example:

DTR> SHOW AUDIT_YACHTSRE)
DOMAIN AUDIT.YACHTS USING
YACHT ON AUD_YACHT3
DTR> FOR A IN YACHTS MODIFY USINGED
CON> BEGINGE

CON> BUILDER = *.BUILDERGED

CON> MODEL = *,MODELGE

CON> RIG = * . RIGED

CON> LOA = * ., LOAGD

CON DISP = * WEIGHT@D

CON BEAM = * . BEAMEED

CON> PRICE = *,PRICEGH

CON STORE B IN AUDIT_YACHTS USINGEED
CON B.BOAT = A.BOATED

CON >ENDGE

Enter BUILDER:

If you have a VERIFY USING clause in the MODIFY statement, put the STORE
statement as the last statement in the VERIFY clause. If you put the VERIFY
clause after the STORE statement and the VERIFY clause aborts the change,
you have a record of the change, but you have not changed the record.

You can also embed a MODIFY statement in a STORE statement. In this exam-
ple, the embedded MODIFY statement updates a record of the last date a new
record was added to the data file and records the TYPE field of the record stored.
The file LAST.DAT is a sequential file with one record in it.

DTR> SHOW LAST_ENTRY@EED

DOMAIN LAST_ENTRY USING LAST.REC ON LAST.DAT;
DTR> SHOW LAST_RECGEE

RECORD LAST_REC USING

01 TOP.

03 LAST_DATE USAGE DATE.

03 TYPE PIC X(Z0).

¥
DTR> STORE YACHTS USINGGEE
CON> BEGINGE

CONY BUILDER = #.BUILDERGE)
CON MODEL = #,MODELGE
CON> RIG = * . RIGED

(continued on next page)

Name Recognition and Single Record Context A-13

CON> LDOA = * ., LOARED)

CON> DISP = * WEIGHT@®D

CON> BEAM = * , BEAMGD

CON> PRICE = *,PRICEGD

CON? MODIFY LAST_ENTRY USINGGED
CONY BEGIN

CON> LAST_DATE = "TODAY"GH
CON B.TYPE = A.TYPEGH
CON? END

CON > ENDGE)

Enter BUILDER:

With the proper use of context variables, you can also store or change data in
fields shared by two or more domains.

A.2 Single Record Context

A-14

The DATATRIEVE statements PRINT, MODIFY, and ERASE can act on one
record at a time or on an entire record stream or collection. The records on which
they act are called target records. You can identify target records for these
statements in four ways:

e A SELECT statement identifies one target record in a collection.

e The keyword ALL in the statement without an OF rse clause makes all records
in a collection the targets of the statement.

e An OF rse clause in the statement forms a target record stream.

e The RSE clause in a FOR statement forms a stream of target records for the
statement contained in the FOR loop.

A.2.1 The SELECT Statement and the Single Record Context

Before discussing the SELECT statement and context, a short review of facts
about collections is in order.

DATATRIEVE keeps a list of the collections you form with the FIND statement.
The most recent one formed is always at the top of the list and is called the
CURRENT collection. The only other collections on the list are the ones to which
you assigned a name when you formed them. The next collection you form then
becomes the new CURRENT collection. DATATRIEVE discards the old
CURRENT collection unless you give it a name when you form it.

With the RELEASE command, you can remove a collection from that list. If you
release the CURRENT collection, the next one on the list becomes the
CURRENT collection.

No collection on this list, however, is represented by a block on the context stack
unless you use the SELECT statement to single out one record in the collection.
When you select a record in a collection, DATATRIEVE puts a block for that col-
lection on the context stack. If every existing collection has a selected record,
then DATATRIEVE keeps a block on the context stack for each of those
collections.

Name Recognition and Single Record Context

The relative ages of the collections with selected records determine the order of
context blocks for collections. The “oldest” collection with a selected record is
nearest the bottom of the context stack. Because the CURRENT collection is
always the “youngest,” its context block, if it has one, is nearest the top.

This order of context blocks for collections establishes the order DATATRIEVE
uses not only for recognizing field names as described previously, but also for
identifying single target records. When you enter the most abbreviated forms of
the PRINT, MODIFY, and ERASE statements, DATATRIEVE looks on the con-
text stack for the first valid single record context to carry out the specified action.
It looks for the youngest collection with a selected record and either prints the
record, erases it, or changes it.

The following sequence of examples illustrates the effect of the SELECT and
DROP statements on single record context and the subsequent actions of the
PRINT, MODIFY, and ERASE statements.

Form a collection of records from the YACHTS domain, call it BIGGIES, select
the third record as the target record, and display it:

DTR> READY YACHTS WRITER
DTR> FIND BIGGIES IN YACHTS WITH LOA » 40R
[8 records foundl
DTR> SELECT 3R
DTR* PRINTRE)

LENGTH

DYER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
GULFSTAR 41 KETCH a1 22,000 12 $41.,350

DTR >

Store a new record in the YACHTS domain and form a collection that consists of
that one record. Later you can modify and erase this record:

DTR> STORE YACHTSQED

Enter MANUFACTURER: HINKLEY®D
Enter MODEL: BERMUDA 40GD
Enter RIG: YAWLGEE

Enter LENGTH_OVER_ALL: 40@D
Enter DISPLACEMENT: Z0000RE
Enter BEAM: 12@D)

Enter PRICE: BZ,000@D

DTR» FIND YACHTS WITH BUILDER = "HINKLEY"GE
[1 record foundl
DTR>

Name Recognition and Single Record Context A-15

You now have two collections, CURRENT (the younger) and BIGGIES (the
older):

DTR> SHOW COLLECTIONSERE)
Collections:

CURRENT

BIGGIES

DTR>» SHOW CURRENTRE)
Collection CURRENT
Domain: YACHTS
Number of Records: 1
No Selected Record
DTR> SHOW BIGGIESED
Collection BIGGIES
Domain: YACHTS
Number of Records: 8
Selected Record: 3
DTR >

The CURRENT collection has no selected record, but BIGGIES still does.
Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE prints the record in the first valid single record context, that is,
the selected record in BIGGIES:

DTR> PRINTQRED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
GULFSTAR 41 KETCH 41 22,000 12 $41,350

DTR

When you type SELECT and press the RETURN key, DATATRIEVE selects the
first and only record in the CURRENT collection. Now when you type PRINT
and press the RETURN key, the single record context has changed. Now the
selected record in the CURRENT collection is the target record of the PRINT
statement:

DTR» SELECTGRE
DTR> PRINTGEED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
HINKLEY BERMUDA 40 YAMWL 40 204000 12 482,000

DTR> SHOW CURRENTGRE)
Collection CURRENT
Domain: YACHTS
Number of Records: 1
Selected Record: 1
DTR >

A-16 Name Recognition and Single Record Context

Now modify the PRICE of the target record and display the result. The MODIFY
and PRINT statements both act on the record in the first valid single record con-
text, that is, the selected record in the CURRENT collection:

DTR> MODIFY PRICERE
Evter PRICE: 75,000@D
DTR> PRINTQRE)

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
HINKLEY BERMUDA 40 YAWL 40 20,000 12 $75,000

DTR>

Now type ERASE and press the RETURN key. The ERASE statement also acts
on the record in the first valid single record context, and the record for the
HINKLEY boat is removed from the data file YACHT.DAT. Even though you
erase the only record in the collection, DATATRIEVE does not discard the collec-
tion. It takes note that you have erased the selected record and removes the con-
text block for the CURRENT collection from the context stack. You can verify
the change in single record context by typing PRINT and pressing RETURN.
The selected record from BIGGIES is again in the first valid single record
context:

DTR> ERASERE)
DTR> SHOW CURRENTQRE)
Collection CURRENT
Domain: YACHTS
Number of Records: 1
Selected Record: 1
DTR> PRINTQE)

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
GULFSTAR a1 KETCH a1 22,000 12 $41,350

DTR>

If you type MODIFY or ERASE and press the RETURN key, and no existing col-
lection has a selected record, DATATRIEVE displays a message that there is no
target record for the action you propose:

DTR> ERASERE)

No targdet record for ERASE.
DTR> MODIFYQRED

No selected record for modifvy
DTR >

Name Recognition and Single Record Context ~ A-17

A-18

However, if you type PRINT and press the RETURN key, and no existing collec-
tion has a selected record, DATATRIEVE displays a message that there is no
selected record and then prints out the whole collection:

DTR> FIND YACHTS WITH BUILDER = "ALBIN"GE
[3 records foundl

DTR> PRINTE®ED
No record selecteds Printing whole collection

LENGTH

DVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBIN 79 SLoop 26 4,200 10 $17,800
ALBIN BALLAD sLOOP 30 74276 10 $27,500
ALBIN VEGA SLOOP 27 5070 0B $18.,600

DTR:

You can change the single record context with the DROP statement. The DROP
statement removes the selected record from a collection but does not erase the
record from the data file. When you type DROP and press the RETURN key, and
the CURRENT collection has no selected record, DATATRIEVE displays a mes-
sage on your terminal:

DTR: FIND BIGGIES IN YACHTS WITH LOA > 40RD
[8 records foundl

DTR:> DROPEE)

No collection with selected record for DROP.
DTR*

If the CURRENT collection has a selected record, the DROP statement removes
that record from the collection when you type DROP and press the RETURN key.
If other collections have selected records, you must specify the collection name in
the DROP statement.

The CURRENT collection is BIGGIES. Select and display the first record in
BIGGIES and form a new CURRENT collection of boats built by Albin:

DTR> SELECTS PRINTGEED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26,700 13 451,228
DTR> FIND YACHTS WITH BUILDER = "ALBIN"RED
[3 records foundl
DTR>

Name Recognition and Single Record Context

Now select, display, and drop the first record of the CURRENT collection. Then
enter a SHOW CURRENT command to see how DATATRIEVE records the
results of your actions. The SELECT statement creates a single record context
for the current collection, thus the target record of the PRINT statement is the
selected record in the CURRENT collection, not in BIGGIES:

DTR*> SELECTQRED
DTR> PRINTGRED

LENGTH

DVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBIN 79 SLOOP 26 4,200 10 %17,:800

DTR*> DROPEE)

DTR*> SHOW CURRENTQRE)

Collection CURRENT
Domain: YACHTS
Number of Records: 3
Selected Record: 1

DTR>

When you drop a selected record from a collection, you change the éingle record
context. The context block for that collection is removed from the context stack.

Consequently, when you type PRINT and press the RETURN key again,
DATATRIEVE displays the selected record in BIGGIES, the record in the first
valid single record context:

DTR> PRINTEED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
CHALLENGER 41 KETCH 41 26700 13 51,228

DTR:

Like PRINT, MODIFY, and ERASE, the DROP statement acts on the record in
the first valid single record context.

If you type PRINT and press RETURN when you have no valid single record con-
text, DATATRIEVE displays the whole CURRENT collection because there is no
selected record in either of the two existing collections. Because you dropped one

record from the CURRENT collection, it contains only two records now:

DTR> PRINTEE)
No record selected, printind whole collection

LENGTH
OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBIN BALLAD SLOOP 30 73276 10 $27,300
ALBIN VEGA SLOOP 27 5:070 08 $18,600

DTR:

Name Recognition and Single Record Context A-19

A-20

To show that you have not erased the record dropped from the CURRENT collec-
tion, form and display a new CURRENT collection of boats by Albin:

DTR> FIND YACHTS WITH BUILDER = "ALBIN"GD)
[3 records foundl
DTR>» PRINT ALLRED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD sLOOP 30 74276 10 $27,:300
ALBIN VEGA sLOO0OP 27 5,070 08 418,600

DTR>

A.2.2 The CURRENT Collection as Target Record Stream

The preceding example shows the effect of the keyword ALL on a PRINT state-
ment that does not contain an OF rse clause.

Although DATATRIEVE acts on only one record at a time, you can identify more
than one record for a single DATATRIEVE statement to act on. With the
keyword ALL, you can make every record in the CURRENT collection the target
of a single PRINT, MODIFY, or ERASE statement. Such a statement, however,
cannot also contain an OF rse clause.

If you have a CURRENT collection and type PRINT ALL and press the
RETURN key, DATATRIEVE displays the whole CURRENT collection. If you
have no CURRENT collection, DATATRIEVE displays a message on your termi-

nal. To illustrate this effect, release all collections and enter the statement
PRINT ALL:

DTR» SHOW COLLECTIONSRED
Collections:

CURRENT

BIGGIES

DTR>» RELEASE CURRENT, BIGGIESED

DTR> SHOW COLLECTIONSEE)

No established collections.

DTR>» PRINT ALLEE)

A current collection has not been established.
DTR>

DATATRIEVE displays the same message on your terminal when you have no
CURRENT collection and you enter an ERASE ALL or MODIFY ALL
statement.

When you have a CURRENT collection and enter an ERASE ALL statement,
DATATRIEVE removes every record in the CURRENT collection from the data
file. Although frequently useful, this operation can jeopardize valuable data if
you use it carelessly.

Name Recognition and Single Record Context

Note that if your collection contains many records and you mistakenly enter an
ERASE ALL or MODIFY ALL statement, you can enter CTRL/C to prevent all
the records in the CURRENT collection from being erased or changed. How
many records get erased or changed under such circumstances depends on the
speed with which you enter CTRL/C, the processing load on your system, and the
priority of your process.

The various forms of the MODIFY ALL statement change the data in each
record of the CURRENT collection (see the DATATRIEVE—-11 Reference
Manual). Make a collection of the first three yachts with no listed price. Display
the CURRENT collection, modify the PRICE to $30,000, display the results of
the change, and change the price back to zero using a different form of the
MODIFY ALL statement:

DTR* FIND FIRST 3 YACHTS WITH PRICE = OQRH
[3 records foundl
DTR* PRINT ALLEH

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
BLOCK I. 40 sLOOP 39 18,300 12
BUCCANEER 270 sLOO0P 27 5000 08
BUCCANEER 320 SLOO0OP 32 12,500 10
DTR> MODIFY ALL PRICERED
Enter PRICE: 30,000@
DTR> PRINT ALLQEED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
BLOCK I. 40 SLOOP 39 18+500 12 430,000
BUCCANEER 270 sLooP 27 3:000 0B $30,000
BUCCANEER 320 sLooP 32 12,500 10 $30,000

DTR» MODIFY ALL USING PRICE = 03 PRINT ALLED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
BLOCK I. 40 sLooP 39 18,500 12
BUCCANEER 270 sLOOP 27 3,000 08
BUCCANEER 320 sLooP 32 12,500 10

DTR>

A.2.3 The OF rse Clause and Target Record Streams

The OF rse clause in a PRINT, ERASE, or MODIFY statement lets you create a
new context for that statement. The OF rse clause specifies a target record
stream that overrides any context established for your existing collections. For
each such clause, DATATRIEVE puts a new block on the context stack. When
DATATRIEVE completes execution of the statement, it removes that block from
the context stack.

Name Recognition and Single Record Context ~ A-21

A-22

The following example contrasts the effect of PRINT, PRINT ALL, and PRINT
OF rse. (When the PRINT statement does not include a list of fields, you can
omit the OF from the statement.) The record selection expression here is FIRST
3 YACHTS WITH PRICE = 0. This RSE identifies a new target record stream
for the PRINT statement that overrides the CURRENT collection as a target -
record stream. It also overrides the single record context of the selected record in
the CURRENT collection:

DTR> FIND FIRST 3 YACHTSEE
[3 records foundl
DTR>» SELECTi PRINTQRED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK II KETCH 37 20,000 12 4$36.,951
DTR> PRINT ALLGEED

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
ALBERG 37 MK 11 KETCH 37 20,000 12 $36:951
ALBIN 79 5LOOP 26 4,200 10 $17,+800
ALBIN BALLAD - §L0O0P 30 74276 10 $274300
DTR>» PRINT FIRST 3 YACHTS WITH PRICE = OQRE

LENGTH

OVER
MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
BLOCK I. 40 SLOooP 39 18500 12
BUCCANEER 270 sLoorp 27 5,000 0B
BUCCANEER 320 sLoop 32 12,500 10

DTR

To reduce the risk to your data, DATATRIEVE forces you to include both
keywords ALL and OF when using the OF rse clause in MODIFY and ERASE
statements. Although the results are not shown here, you must type MODIFY
and ERASE statements to resemble the following examples. The record selection
expression used in these statements is PHONES WITH DEPT = “32T”:

DTR> MODIFY ALL OF PHONES WITH DEPT = "32T"
DTrR> MODIFY ALL DEPT OF PHONES WITH DEPT = "32T"
DTR» MODIFY ALL USING DEPT = _#*."NEW DEPT" OF PHONES WITH DEPT = "32T"

DTR> ERASE ALL OF PHONES WITH DEPT = "32T"

Name Recognition and Single Record Context

Unless you include an assignment statement in the USING clause of a MODIFY
statement, DATATRIEVE prompts you once to supply a value for each elemen-
tary field specified or implied in the statement. After you respond to the last of
the prompts, DATATRIEVE begins to change each of the records in the
CURRENT collection to correspond to the values you supplied to the prompts.
You can prevent any changes from taking effect by entering CTRL/Z when
responding to any of the prompts.

A.2.4 FOR Statements and Target Record Streams

You can use FOR statements to create target record streams for the
DATATRIEVE statements that use single record context. Using FOR loops has
an advantage over using target record streams formed by the OF rse clause and
the target record stream formed of the CURRENT collection by the keyword
ALL. The FOR statement lets you work with each record individually; you do not
have to perform the same operation on all target records. By putting STORE and
MODIFY statements and prompting value expressions in a FOR loop, you can
act on each member of a record stream or collection one at a time.

When you put a MODIFY statement in a FOR statement, DATATRIEVE
prompts you once for each field in the record if you do not specify a field list or a
USING clause in the MODIFY statement.

This FOR statement creates a record stream of boats that have no price listed.
The MODIFY statement prompts you to supply a price for each record in the
record stream. You can put a unique value in the PRICE field for each boat:

DTR>READY YACHTS MODIFYQRE)

DTR*FOR YACHTS WITH PRICE = 0 MODIFY PRICERE
Enter PRICE: 12900RD

Enter PRICE: 15GOOEED

Enter PRICE:

DTR

Another valuable feature of FOR loops is the complex relationships you create
between record streams when you include one FOR loop inside another. Each
FOR statement puts a block on the context stack. As a result, you can use the
context mechanism to transfer values between records.

By putting a MODIFY statement inside two FOR statements, you can automati-
cally update master records with the data from periodic transaction records:

DTR> FOR A IN DAILY_.TRANSACTIONSRE

CON> FOR B IN MASTER_DATA WITH B.ACCOUNT = A.ACCOUNTED
CON3 MODIFY USINGED

CON BEGINGD)

CON> MASTER_BAL = MASTER_BAL - WITHDRAW + DEPOSIT@ED
CONZ TOT_WITHDRAW = TOT_WITHDRAW + WITHDRAWGE

CON3 TOT_DEPOSIT = TOT_DEPOSIT + DEPOSITED

CON ENDEE)

DTR:

Name Recognition and Single Record Context A-23

A-24

The Boolean expression in this example limits the record stream for the inner
FOR statement to one record.

You can also create nested FOR statements in which DATATRIEVE executes a
series of statements at each level of nesting. For each owner record in the next
example, DATATRIEVE asks you if you want to modify the SPECS of every boat
in the YACHTS inventory built by the manufacturer of the the owner’s boat. The
third time through the outer loop, DATATRIEVE again begins the cycle of
prompting for the boats by Albin because the third person in the OWNERS
domain also owns a boat by Albin. Notice that the record changed during the
second loop appears during the third:

DTR>SET ND PROMPTEED
DTR>FOR OWNERSEE)
CON>BEGINQRE)

CON> PRINT SKIP, BUILDER, SKIPGEE®
CON> FGR YACHTS WITH BOAT.BUILDER = OWNER.BUILDERGE
CON> BEGINGE)
CON PRINT SPECSGEED
CON> IF %,"DO YOU WANT TO CHANGE THIS" CONT "Y"@
CON> THEN MODIFY SPECSED
CON> ENDGEE)
CONYEND
BUILDER
ALBERG
LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 37 20,000 12 $36,000
Enter DO YOU WANT TO CHANGE THIS: NEE

ALBIN

SLOOP 26 4,200 10 $17+900
Enter DO YOU WANT TO CHANGE THIS: NG
SLOOP 30 74276 10 $27,+3500
Enter DO YOU WANT TO CHANGE THIS: NE
SLOOP 27 5+070 08 %18:600

Enter DO YOU WANT TO CHANGE THIS: YQ@ED
Enter RIG: KETCHES

Enter LENGTH_OVER_ALL: 35@D
Enter DISPLACEMENT: 17000@
Enter BEAM: 12QR

Enter PRICE: 33000@D

(continued on next page)

Name Recognition and Single Record Context

ALBIN

SLooP 26 4,200
Enter DO YOU MWANT TO
SLOoOP 30 74276
Enter DO YOU WANT TO
KETCH 35 17000
Enter DO YOU WANT TO
CaC

SLOOP 31 8:650

Enter DO YOU WANT TO
Execution terminated
DTR>

10 417,900
CHANGE THIS: NGRS

10 $274+3500
CHANGE THIS: NED

12 $33,000
CHANGE THIS: NG

09
CHANGE THIS:
by orerator

rd

Name Recognition and Single Record Context

A-25

A

ABORT statement
in command file, 10-5
Aborting procedures, 9-12 to 9-13
Access control list
adding entries to, 19-11
contents, 19-1 to 19-6
control (C) privilege, 20-2
creating, 19-6 to 19-7
deleting entries, 19-11
displaying, 19-10, 20-2
execute (E) privilege, 20-2
key, 19-1 to 19-6
lock type, 19-1 to 19-6
maintaining, 19-9 to 19-11, 20-6
modify (M) privilege, 20-2
privileges, 19-4 to 19-6
processing, 19-7 to 19-9
protecting data, 19-1
read (R) privilege, 20-2
sample, 19-1F
sequence number, 19-1 to 19-6
write (W) privilege, 20-2
ACL v
See Access control list
ADT
See Application Design Tool
ADT command, 10-3
ADVANCED HELP command, 2-7
ALLOCATION clause, 6-6
Alphanumeric fields, 5-10
AND Boolean operator, 7-8
Application Design Tool, 4-1
defining records, 5-1

Index

Arguments

in procedures, 9-4 to 9-5
Assignment statement, 11-2
AT (@) sign

executing command files, 5-3

BEGIN-END statement, 8-3 to 8-6
BETWEEN relational operator, 7-6
Boolean expressions

compound, 7-8 to 7-9
Boolean operators, 7-8
Brackets []

used as syntax prompts, 2-5
BUT Boolean operator, 7-8

Cc

Call Interface, 1-6
Case sensitivity
with relational operators, 7-5
CHANGE, 6-8
Clauses
in procedures, 9-4 to 9-5
Colon (3)
using to invoke procedures, 1-4
Column-page setting
See SET COLUMNS_PAGE command
Command files, 1-4, 10-1 to 10-9
aborting, 10-5
comments, 10-3
compared with procedures, 10-1
contents, 10-3

Index-1

Command files (cont.)
creating, 10-2
editing, 10-5
editing with, 16-1
in FOR and REPEAT statements, 10-8
invocation command lines, 10-4
invoking, 10-3 to 10-5
maintaining, 10-8 to 10-9
nesting, 10-7 to 10-8
restrictions on invoking, 10-4 to 10-5
sample, 10-6 to 10-7
SET ABORT/SET NO ABORT, 10-5
uses, 10-1
- Commands and statements, 1-3 to 1-4
in procedures, 9-4
in QUERY.INI file, 2-2
Compound statements, 1-4, 8-1 to 8-6
BEGIN-END, 8-4 to 8-6
IF-THEN-ELSE in, 8-5
in REPEAT, 8-6 ‘
in STORE, 8-5 to 8-6
FOR in, 8-3 to 8-4
BEGIN-END, 8-4
REPEAT in, 8-1 to 8-3
Compressing data dictionary, 20-4 to 20-6
COMPUTED BY clause, 5-1
Computed by clause, 5-11
CON> prompt, 2-4
Conserving memory
See Optimizing workspace
CONTAINING relational operator, 7-5
Context, A-1
establishing, A-1 to A-14
Context block
content of, A-2 to A-4
existing collections, A-4 to A-6
global variables, A-4
record streams, A-5 to A-7
Context stack, A-2 to A-8
lasting changes, A-6
left
assignment statements, A-11
Context variables, A-8 to A-11
field name qualifiers, A-8
with MODIFY statement, A-13
with STORE statement, A-13
Controlling output, 18-1 to 18-5
column width, 18-1 to 18-4
Corruption of data
protection against, 19-1
CREATE DICTIONARY command, 20-1
CTRL/C, 2-6
CTRL/Z
exiting from DATATRIEVE, 2-6

Index-2

CURRENT _
as target record stream, A-20 to A-21

D

Data dictionary, 1-3
access privileges, 20-2
changing, 3-2 to 3-3
contents, 3-1 to 3-2
creating, 2-2, 3-2
default extension (.DIC), 3-2
deleting definitions in, 20-4
determining size of, 20-4
displaying, 3-3, 20-2
editing definitions, 20-1
extracting from, 20-6 to 20-7
function, 3-1
maintaining, 20-1 to 20-7
modifying, 20-2 to 20-4
objects, 20-1
optimizing disk storage, 20-4 to 20-6
QCPRS utility, 20-4
security, 19-1 to 19-11
setting, 3-3
transferring definitions, 20-1
DATATRIEVE
components, 1-5 to 1-7
concepts and terms, 1-1 to 1-4
Date fields, 5-11
DDMF
See Distributed Server
DECLARE statement, 1-3
variable-name, 11-1
Declaring variables, 11-1
Default dictionary
QUERY.DIC, 20-1
DEFINE command, 1-3

DEFINE DICTIONARY command, 3-2 to 3-3

DEFINE DOMAIN command, 1-2, 4-1 to 4-2
entered interactively, 5-2
optional password, 4-2
syntax, 4-2
terminated by semicolon, 4-2
usage rules, 4-2
DEFINE FILE command, 1-2, 6-3 to 6-8
optional clauses, 6-6 to 6-8
syntax, 6-3
used with sequential files, 6-4
DEFINE PROCEDURE command, 1-4, 9-2
DEFINE RECORD command
advantage over ADT, 5-1
DEFINE TABLE command, 12-3
DEFINEP command, 1-3

Defining
alternate keys, 6-5
domains, 1-2, 4-1 to 4-3
records, 5-1 to 5-18
DELETE command, 1-3, 16-5 to 16-6
removing data dictionary definition, 20-4
terminated by semicolon, 20-4
DELETEP command, 1-3
DFN> prompt, 2-4
Dictionary
See Data dictionary
Dictionary objects
controlling access to, 19-1 to 19-11
Dictionary tables
See Tables
Disk space

conserving with QCPRS utility, 20-4 to 20-6

Displaying
established collections, 20-2
readied domains, 20-2
Distributed Server
function and use of, 1-5 to 1-7
Domains
access all records, 7-2
defining, 1-2, 3-1, 4-1 to 4-3
restructuring, 15-1 to 15-9
examples, 15-2 to 15-9
rules for naming, 4-1
" sample, 2-2
views, 13-1 to 13-9
defining, 13-2
DROP statement, 1-3
DTR.TSK, 1-56
DTR> prompt, 2-4
DUP, 6-8

E

EDIT command, 1-3, 10-3
EDIT_STRING clause
in field definition, 5-4
Editor, 16-1 to 16-14
changing record definitions, 5-3
commands, 16-4 to 16-12
DELETE command, 16-5 to 16-6
editing procedures, 9-14
EXIT command, 16-6
INSERT command, 16-6 to 16-8
invoking, 16-1 to 16-2
line pointer, 16-2
modes, 16-2
QED> prompt, 16-3 to 16-14
QUIT command, 16-8
range specifiers, 16-3 to 16-4

Editor (cont.)
REPLACE command, 16-9 to 16-10
sample editing session, 16-13 to 16-14
SUBSTITUTE command, 16-10 to 16-11
TYPE command, 16-11 to 16-12
Elementary fields
defined, 5-5 to 5-6
EMPLOYEE_REC
valid field names, 5-7F
END_PROCEDURE clause, 9-2

END_REPORT statement (Report Writer), 2-4

END_TABLE clause, 12-3
EQUAL relational operator, 7-4
ERASE statement, 1-3
restrictions, 6-2
Error messages, 2-5
incorrectly named fields, 5-6
located by a procedure, 9-6 to 9-7
EXIT command, 1-3, 2-6, 16-6
Exiting DATATRIEVE, 2-6
EXTRACT command, 1-3, 9-14, 20-3
copying record definitions, 5-3

F

FAMILIES sample domain, 2-2
using list field, 5-13
using SHOWP, 20-2

Field definitions, 5-3 to 5-12
clauses, 5-10 to 5-12
clausesin, 1-2
EDIT_STRING clause, 5-4
elementary fields, 5-5 to 5-6
group fields, 5-5 to 5-6
level numbers, 5-4 to 5-6
naming fields, 5-6
PICTURE clause, 5-4
rules for writing, 5-3 to 5-12
terminated by period (.), 5-4
valid field names, 5-7F

Field names
duplicate, 5-7 to 5-8
FILLER, 5-8 to 5-9
restrictions, 5-6 to 5-7
use of hyphens or underscores, 1-2

Fields
alphanumeric, 5-10
Computed by, 5-11
date, 5-11
definition clauses, 5-10 to 5-12

PICTURE, 5-10
USAGE, 5-11 to 5-12

elementary and group, 1-2
list, 5-13

Index-3

Fields (cont.)
naming, 5-6
numeric, 5-11
specifying types of data, 5-10 to 5-12
Files
changing structure of, 15-1 to 15-9
comparison of sequential and indexed, 6-2T
defining, 1-2, 6-1 to 6-8
indexed, 6-1 to 6-8
criteria for using, 6-2
defining, 6-4
sequential, 6-1 to 6-7
criteria for using, 6-2
defining, 6-3 to 6-4
FILLER fields
as group field name, 5-9
FIND statement, 1-3
FINISH command, 1-3
FIRST n clause
in RSE, 7-3
Flat records, 5-14F
FOR statement, 8-3
creating target record streams, A-23 to A-25
FROM clause, 13-2

G

Global variables, 11-4

named in context block, A-4
GREATER_EQUAL relational operator, 7-6
GREATER_THAN relational operator, 7-6
Group fields

as primary key, 6-5

defined, 5-5 to 5-6

using FILLER field, 5-9
Guide mode, 2-3, 2-8

invoking, 2-8

using a question mark (?), 2-8

H

HELP command, 1-3, 2-6 to 2-7
ADVANCED HELP, 2-7
Hierarchies, 14-1 to 14-12
defining, 5-13 to 5-18
eliminating empty print lines, 14-9
retrieving values
sublists, 14-11 to 14-12
using ALL in nested print lists, 14-5
using FIND and SELECT statements,
14-3
using nested RSEs, 14-9
using OF rse clause, 14-5
with nested FOR loops, 14-9

Index—4

Hierarchies (cont.)
saving space, 5-13
using, 5-14 to 5-18

Hyphen (-)
continuation character, 5-6
conversion to underscore (_), 1-2, 4-1
in record name, 5-3

IF-THEN-ELSE statement, 8-5
IN relational operator, 12-5
Indexed files, 6-1 to 6-8
compared with sequential, 6-2T
compressing, 20-6
defining, 6-4
multikey, 6-3
optimizing storage, 20-6
Input line prompt, 2-4
INSERT command, 16-6 to 16-8
Installation kit, 2-2
Interactive DATATRIEVE, 1-5
Invoking
DATATRIEVE, 2-1 to 2-2

K

KEY clause, 6-4
Keys
accessing dictionary objects, 19-2
defining alternate keys, 6-5
defining key fields
rules for, 6-6

L

LESS_EQUAL relational operator, 7-6
LESS_THAN relational operator, 7-6
Line pointer, 16-2
Lists
changing length of, 5-18
defining fixed occurrences, 5-15 to 5-16
defining variable occurrences, 5-16 to 5-17
defining with OCCURS clause, 5-13 to 5-18
nesting to form sublists, 5-17
Lists, in records
See Hierarchies
Local variables, 11-4 to 11-5
effect on context stack, A-7
Lock types, 19-2

M

MAX clause, 5-18, 6-7
Memory, conserving
See Optimizing workspace
MODIFY statement, 1-3, 2-5
changing fields, 6-2

N

NO CHANGE, 6-8

NO DUP, 6-8

NOT Boolean operator, 7-8

NOT EQUAL relational operator, 7-4
NOT IN relational operator, 12-5
Numeric fields, 5-11

o

OCCURS clause, 5-13 to 5-18
changing list length, 5-18
defining hierarchical records, 5-14
fixed number of occurrences, 5-15 to 5-16
variable number of occurrences, 5-16 to 5-17
OCCURS FOR clause, 13-2
OF rse clause
targeting record streams, A-21 to A-23
Operating systems
for DATATRIEVE, 1-1
Optimizing
response time, 17-6 to 17-9
with keyed access, 17-6 to 17-9
workspace, 17-5
OR Boolean operator, 7-8
Output
controlling, 18-1 to 18-5
default settings, 18-1
OWNERS sample domain, 2-2

P

Passwords
keys, 19-2
Period
in field definition, 5-4
PERSONNEL sample domain, 2-2, 2-3
record data items, 5-2F
PERSONNEL_REC
record level numbers, 5-4
sample record definition, 5-2F
PICTURE clause, 5-10
in field definition, 5-4
Pool space
See Workspace

PRINT statement, 1-3
lists, 14-9
retrieving data, 2-3
Privileges
assigning, 19-10
Procedures, 1-4, 9-1 to 9-16
aborting, 9-12 to 9-13
comments in, 9-5
compared with command files, 10-1
contents, 3-1, 9-3 to 9-5
defining, 9-1 to 9-2
deleting, 9-15 to 9-16
displaying, 9-14
editing, 9-14 to 9-15
in compound statements, 9-10 to 9-12
invoking, 9-2 to 9-3
locating errors, 9-5 to 9-7
maintaining, 9-13 to 9-16
nesting, 9-8 to 9-10
samples, 9-7 to 9-8
SET ABORT/SET NO ABORT, 9-12 to 9-13
Prompting value expressions
for storing and modifying values, 2-5
Prompts
CON>, 24
DFN>, 2-4
DTR>, 2-4
RW>, 24
syntax, 2-5
Protecting dictionary tables, 12-9

Q

QCPRS utility
conserving disk space, 20-4 to 20-6
data dictionary compression, 20-4
defaults, 20-5
improving performance, 20-4
invoked by Digital Command Language,
20-5
QED> prompt, 16-3 to 16-14
Query names
specifying, 5-12
QUERY.DIC default dictionary, 20-1
QUERY.INI file, 2-2
sample, 2-3
SET DICTIONARY in, 2-3
SET GUIDE in, 2-3
QUERY_HEADER clause, 5-10
QUERY_NAME clause, 5-10
Question mark (?)
used in Guide mode, 2-8
QUIT command, 16-8

Index-5

QXTR utility, 20-6 to 20-7
creating command files, 20-6
transferring data dictionary objects, 20-6

R

READY command
gaining access to domains, 1-3
retrieving data, 2-3
Record definition
changing, 15-1 to 15-9
contents, 3-1
field definitions within, 5-3 to 5-12
steps in writing, 5-1 to 5-18
using OCCURS clause, 5-14
VALID IF clause, A-8
Record selection expression, 7-1 to 7-10
accessing records, 7-2
ALL clause, 7-2
Boolean expressions, 7-4 to 7-6
definition, 7-1
FIRST n clause, 7-1 to 7-3
limiting the number, 7-3
retrieving field values, 5-8
SORTED BY clause, 7-1, 7-9 to 7-10
tables, 7-7
WITH clause, 7-1, 7-4 to 7-9
record selection expression
tables, 12-5
Record stream, 7-1
sorting
by field values, 7-9 to 7-10
Record streams
context block, A-5 to A-7
Records
comparing, 7-4 to 7-6
defining, 1-2, 5-1 to 5-18
field definitions within, 5-3 to 5-12
field level numbers, 5-4 to 5-6
specifying names, 5-2 to 5-3
with variable length list, 5-16 to 5-17
deleting, 6-2
example data items, 5-2F
flat, 5-14F
grouping
by table reference, 7-7
in range of values, 7-6 to 7-7
hierarchical, 5-14 to 5-18
limiting access, 13-3
limiting fields in a, 13-3
modifying, 6-2
rules for naming, 5-3
sample definition, 5-2F

Index—6

Records (cont.)

selecting

conditional expressions, 7-4

REDEFINE command

changing domain definitions, 15-2 to 15-9
REDEFINES clause, 5-10
Relational operators, 7-4 to 7-8

summary of, 7-7T
RELEASE command, 1-3
Remote Terminal Interface, 1-6 to 1-7
REPEAT statement, 8-1 to 8-3
REPLACE command, 16-9 to 16-10
REPORT statement, 1-3

retrieving data, 2-3 to 2-4
Response time

reducing with QCPRS utility, 20-4
Restructuring domains

examples, 15-1 to 15-9
Retrieving data, 2-3 to 2-4
RMS facility

capabilities, 6-1 to 6-3
RSE

See Record selection expression
RW> prompt, 2-4

S

Sample editing session, 16-13 to 16-14
Security
dictionary definitions, 19-1 to 19-11
Semicolon
with DEFINE DOMAIN command, 4-2
with DELETE command, 20-4
Sequence numbers, 19-2
Sequential files, 6-1 to 6-7
compared with indexed, 6-2T
defining, 6-3 to 6-4
SET ABORT command, 10-5, 18-4
effect on ABORT statement, 18-4
SET COLUMNS_PAGE command, 18-1 to
18-4
SET command
terminal control, 1-3
SET DICTIONARY command, 3-3
in QUERY.INI file, 2-3
SET GUIDE command, 2-8, 10-3
in QUERY.INI file, 2-3
SET NO ABORT command, 10-5
SET PROMPT command, 18-4 to 18-5
SET TERMINAL command, 18-1
SHOW ALL command, 20-2
SHOW command, 1-3,2-2 -
with domains, 4-3

SHOW DICTIONARY command, 3-2 to 3-3
SHOW TABLES command, 12-7
SHOWP command, 1-3
SIGN clause, 5-10
Single record context, A-14
SORT statement, 1-3
SORTED BY clause, 7-9 to 7-10
Specifying domain names
DEFINE DOMAIN command, 4-1 to 4-2
Startup banner, 2-1
Statements
See Commands and statements
STORE statement, 1-3, 2-5
Sublists, 5-17
" retrieving values, 14-11 to 14-12
SUBSTITUTE command, 16-10 to 16-11
SUM statement, 1-3
SUPERSEDE clause, 6-7
System security
using access control lists, 19-1 to 19-11

T

Tables, 12-1 to 12-9
and workspace, 12-7
code/translation strings, 1-4, 12-1 to 12-6
creating, 12-3 to 12-4
defining, 3-1
defining and using, 12-4
deleting, 12-9
displaying, 12-7
displaying contents, 12-7 to 12-8
editing, 12-3 to 12-4, 12-8
functions and uses of, 1-4
IF-THEN-ELSE statement, 12-5 to 12-6
in a record selection expression, 12-5
maintaining, 12-9
protecting, 12-9
sample, 12-1 to 12-2
using IN relational operator, 12-4
VALID IF clause, 12-6
validating data, 12-6
VIA value expression, 12-6 to 12-7
WITH in, 12-5

Task size, reducing
See Optimizing workspace

TYPE command, 16-11 to 16-12

U

UIC
See User identification code
Underscore (_), 1-2, 4-1
in record name, 5-3
USAGE clause, 5-10, 5-11 to 5-12
User identification code, 3-3
keys, 19-2 to 19-3

\'}

VALID IF clause, 5-10

in record definition, A-8
Variables, 11-1 to 11-9

as counters, 11-6 to 11-9

declaring, 11-1

global, 11-4

local, 11-4 to 11-5

storing values, 11-2 to 11-6
VERIFY clause

in STORE statement, A-8

VIA value expression, 12-6 to 12-7 |

View domains, 13-1 to 13-9
combining data, 13-4 to 13-5
containing a list, 13-7 to 13-9
defining, 13-2
limiting record access, 13-3
using, 13-6 to 13-9

w

WHILE statement, 11-9
Workspace, 12-7
defined, 17-1
optimizing use of, 17-5

Y

YACHTS sample domain, 2-2, 2-4
access all records, 7-2
comparing records, 7-4 to 7-6

SET COLUMNS_PAGE command,

18-2 to 18-4

Index-7

How to Order Additional Documentation

If you live in: Call: or Write:

New Hampshire, 603-884-6660 Digital Equipment Corp.

Alaska P.O. Box CS2008
Nashua, NH 03061-2698

Continental USA, 1-800-258-1710 Same as above.

Puerto Rico, Hawaii

Canada 613-234-7726 Digital Equipment Corp.

(Ottawa-Hull) 940 Belfast Road

Ottawa, Ontario K1G 4C2
Attn: P&SG Business
Manager or approved

distributor

Canada 1-800-267-6146 Same as above.

(British Columbia)

Canada 112-800-267-6146 Same as above.

(All other)

All other areas — Digital Equipment Corp.
Peripherals & Supplies
Centers

P&SG Business Manager
c¢/o DIGITAL’s local
subsidiary

Note: Place prepaid orders from Puerto Rico with the local DIGITAL subsid-
iary (phone 809-754-7575).

Place internal orders with the Software Distribution Center, Digital Drive,
Westminster, MA 01473-0471.

Reader's Comments DATATRIEVE-11
User’'s Guide
AA-X023B-TK

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor

Accuracy (software works as manual says)
Completeness (enough information)
Clarity (easy to understand)

Organization (structure of subject matter)
Figures (useful)

Examples (useful)

Index (ability to find topic)

Page layout (easy to find information)

OoOgonQoooo
oooogoood
Oo00oOooooad
DOoOoOooood

I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:
Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.
Company Date
Mailing Address

Phone

— Do Not Tear - Fold Here and Tape ——————————— — —— — — — — — e e ———————

No Postage

™ Necessary
Bﬂgﬂnan if Mailed

in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

— L e S e S o S S S S — o e Sl b, S WD . e e S S S — PSS —— — ——— — —— O ———— S —— T S———— — ——— i — — —— — e o, e

DIGITAL EQUIPMENT CORPORATION
Corporate User Publications—Spit Brook
ZK01-3/J35

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

— Do Not Tear - FoldHere ———————— e e e e e

Reader's Comments DATATRIEVE-11
User’s Guide
AA-X023B-TK

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual’s: Excellent Good Fair Poor
Accuracy (software works as manual says) O O O O
Completeness (enough information) a g g O
Clarity (easy to understand) d | a a
Organization (structure of subject matter) O O O O
Figures (useful) O O O O
Examples (useful) O O O O
Index (ability to find topic) O a O O
Page layout (easy to find information) d a d d
I would like to see more/less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version of the software this manual describes.

Name/Title Dept.

Company Date

Mailing Address

Phone

— Do Not Tear - Fold Here and Tape ——————————————————— T —————————————

i | No Postage
™ Necessary
Engnan if Mailed
in the
United States
]
[]
]
]
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.
[]
POSTAGE WILL BE PAID BY ADDRESSEE [T
' []
.
DIGITAL EQUIPMENT CORPORATION T

Corporate User Publications—Spit Brook
ZK01-3/J35

110 SPIT BROOK ROAD

NASHUA, NH 03062-9987

— Do Not Tear - Fold Her¢ ———————— e e e

