
BASIC
Reference Manual

Order No. AA-L334A-TK

inciuding AD-L334A-T1

February 1984

This manual describes language elements, compiler commands, and com­
piler directives of VAX BASIC and PDP-11 BASIC-PLUS-2.

OPERATING SYSTEM AND VERSION: VAX/VMS V3
RSX-11 M-PLUS V2
RSX-11M V4
RSTS/E VB

SOFTWARE VERSION: VAX BASIC V2
PDP-11 BASIC-PLUS-2 V2

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should not be construed as
a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no
responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied only
in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not supplied by
DIGITAL or its affiliated companies.

Copyright© 1982, 1984 by Digital Equipment Corporation. All Rights Reserved.

The postage-paid READER'S COMMENTS form on the last page of this document requests your
critical evaluation to assist us in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

~nmnomo ™
DEC writer RSTS
DIBOL RSX

DEC MASS BUS UNIBUS
DEC mate PDP VAX
DECsystem-1 0 P/OS VMS
DECSYSTEM-20 Professional VT
DEC US D'.linh,.._,.,

''Ull IUVVV VVOik Pmcessor

Commercial Engineering Publications typeset this manual using DIGIT Al's TMS-11 Text
Management System.

Contents

To the Reader

PART I - Program Elements and Structure

1.0 Elements of a BASIC Program .

1.1 Line Numbers.
1.2 Labels
1 . 3 Statements

1.4
1.5
1.6

1.3.1
1.3.2
1.3.3

Keywords.
Single-Statement Lines and Continued Statements
Multi-Statement Lines.

Compiler Direct.ives .
Line Terminators
Lexical Order.

2.0 Program Documentation .

2.1 Comment Fields.
2.2 REM Statements.
2.3 Empty Statements

3.0 BASIC Character Set . . .
4.0 BASIC Data Types

4.1 Implicit Data Typing.
4.2 Explicit Data Typing .

5.0 Constants.

5.1

5.2
5.3

5.4
5.5

Numeric Constants

5.1.1
5.1.2
5.1.3

Floating-Point Constants
Integer Constants . . .
Packed Decimal Constants (VAX-11 BASIC) .

String Constants
Named Constants

5.3.1 Naming Constants Within a Program Unit.
5.3.2 Naming Constants External to a Program Unit .

Explicit Literal Notation
Predefined Constants.

Page

xi

. 1

. 1

. 2

. 3

. 3

.4

. 5

. 7

. 7

.8

.8

.8

.9
10

10
10

13
13

14

15

15
17
17

18
19

19
20

21
23

iii

6.0 Variables.

6.1 Variable Names .
6.2 Implicitly Declared Variables .
6.3 Explicitly Declared Variables .
6.4 Subscripted Variables and Arrays
6.5 Initialization of Variables.

7.0 Expressions .

7.1 Numeric Expressions.

7.1.1 Floating-Point and Integer Promotion Rules
7.1.2 DECIMAL Promotion Rules (VAX-11 BASIC).

7.2 String Expressions .
7.3 Conditional Expressions

7.3.1 Numeric Relational Expressions
7.3.2 String Relational Expressions
7.3.3 Logical Expressions.

7.4 Evaluating Expressions .

PART II - Compiler Commands

iv

1.0 APPEND
2.0 ASSIGN (VAX-11 BASIC).
3.0 BRLRES (BASIC-PLUS--2) .
4.0 BUILD (BASIC-PLUS--2)
5.0 $Command
6.0 COMPILE.
7.0 CONTINUE.
8.0 DELETE
9.0 DSKLIB (BASIC-PLUS--2) .
10.0 EDIT.

i0.1
10.2
10.3
10.4
10.5
10.6

DEFiNE (BASIC-PLUS-2).
EXECUTE (BASIC-PLUS--2) .
EXIT or CTRL /Z (BASIC-PLUS--2)
FIND (BASIC-PLUS--2). . . .
INSERT (BASIC-PLUS--2) . . .
SUBSTITUTE (BASIC-PLUS-2)

11.0 EXIT .
12.0 HELP.
13.0 IDENTIFY.
14.0 INQUIRE.
15.0 LIBRARY (BASIC-PLUS--2)
16.0 LIST and LISTNH
17.0 LOAD
18.0 LOCK
19.0 NEW
20.0 ODLRMS (BASIC-PLUS--2)
21.0 OLD ...
22.0 Qualifiers.
23.0 RENAME .
24.0 REPLACE .

25

25
26
27
27
29

30

31

31
32

34
34

35
36
37

40

43
45
46
48
49
51
53
54
55
57

61
62
63
64
65
66

68
69
71
72
73
75
77
78
79
80
82
83
95
97

25.0 RESEQUENCE (VAX-11 BASIC) . 98
26.0 RMS RES (BASIC-PLUS-2). . 100
27.0 RUN and RUNNH. . 102
28.0 SAVE. . 104
....,on
L.7.v

crA1 i:
J\.....nLL • . 105

30.0 SCRATCH . 106
31.0 SEQUENCE. . 107
32.0 SET . 108
33.0 SHOW. . 109
34.0 UNSAVE. . 111

PART Ill - Compiler Directives

1.0 %ABORT. . 113
2.0 %CROSS. . 114
3.0 %!DENT . . 115
4.0 %IF-% THEN-%ELSE-%END-%1F . . 117
5.0 %INCLUDE. . 119
6.0 %LET . 121
7.0 %LIST . . 122
8.0 %NOCROSS . 123
9.0 %NOLIST . 124
10.0 %PAGE . 125
11.0 %SBTTL . 126
12.0 %TITLE. . 127
13.0 %VARIANT. . 128

PART IV - Statements

1.0 CALL. . 129
2.0 CHAIN. . 134
3.0 CHANGE. . 136
4.0 CLOSE. . 138
5.0 COMMON. . 139
6.0 DATA . . 143
7.0 DECLARE. . 145
8.0 DEF . . 149
9.0 DEF*. . 153
10.0 DELETE . 157
11.0 DIMENSION . 158
12.0 END. . 162
13.0 EXIT. . 164
14.0 EXTERNAL . 166
15.0 FIELD . 169
16.0 FIND. . 171
17.0 FNEND . 177
18.0 FNEXIT. . 178
19.0 FOR. . 179
20.0 FREE (V AX-11 BASIC) . . 182 I
21.0 FUNCTION. . 183
22.0 FUNCTIONEND. . 187
23.0 FUNCTION EXIT. . 188

February 1984 v

24.0 GET. . 189
25.0 GOSUB . 195
26.0 GOTO. . 196
27.0 IF . . 197
28.0 INPUT. . 199
29.0 INPUT LINE . 202
30.0 ITERATE . 204
31.0 KILL . . 205
32.0 LET . 206
33.0 LINPUT . 207
34.0 LSET. . 209
35.0 MAP. . 210
36.0 MAP DYNAMIC . . 213
37.0 MARGIN (VAX-11 BASIC) . 215
38.0 MAT. . 216
39.0 MAT INPUT . 219
40.0 MAT LINPUT. . 221
41.0 MAT PRINT. . 223
42.0 MAT READ. . 225
43.0 MOVE. . 227
44.0 NAME AS . 230
45.0 NEXT . 231
46.0 NOMARGIN (VAX-11 BASIC). . 232
47.0 ON ERROR GO BACK . . 233
48.0 ON ERROR GOTO . 234
49.0 ON ERROR GOTO 0 . 235
50.0 ON GOSUB . 236
51.0 ON GOTO. . 237
52.0 OPEN . . 238
53.0 OPTION. . 248
54.0 PRINT . . 251
55.0 PRINT USING. . 254
56.0 PUT. . 258
57.0 RANDOMIZE. . 260
58.0 READ . 261
59.0 RECORD (VAX-11 BASIC) . 263
60.0 REM. . 267
61.0 REMAP. . 268
62.0 RESTORE (RESET) . 271
63.0 RESUME . . 272
64.0 RETURN . . 273
65.0 RSET. . 274
66.0 SCRATCH . 275
67.0 SELECT. . 276
68.0 SLEEP . 278
69.0 STOP . 279
70.0 SUB. . 280
71.0 SUBEND. . 284
72.0 SUBEXIT . . 285
73.0 UNLESS . 286
74.0 UNLOCK. . 287
75.0 UNTIL. . 288
76.0 UPDATE . . 289
77.0 WAIT . 291
78.0 WHILE. . 292

VI

PART V - Functions

1.0 ABS . 293
2.0 ABS% . 294
3.0 ASCII . 295
4.0 ATN. . 296
5.0 BUFSIZ. . 297
6.0 CCPOS. . 298
7.0 CHR$. 299
8.0 COMP%. . 300
9.0 cos. . 301
10.0 CTRLC. . 302
11.0 CVT$$. . 303
12.0 CVTXX. . 304
13.0 DATE$. . 306
14.0 DECIMAL (V AX-11 BASIC) . . 307
15.0 DET. . 308
16.0 DIF$. . 309
17.0 ECHO. . 310
18.0 ED!T$. 311
19.0 ERL . 312
20.0 ERN$. 313
21.0 ERR . . 314
22.0 ERT$. . 315
23.0 EXP . . 316
24.0 FIX . 317
25.0 FORMAT$. 318
26.0 FSP$. . 319
27.0 FSS$ (BASIC-PLUS-2) . 320
28.0 GETRFA . 321
29.0 INSTR . . 322
30.0 INT . 324
31.0 INTEGER. . 325
32.0 LEFT$. 326
33.0 LEN . ')')7

• J~/

34.0 LOC (V AX-11 BASIC) . 328
35.0 LOG. . 329
36.0 LOG10. . 330
37.0 MAG. . 331
38.0 MAGTAPE . 332
39.0 MAR (V AX-11 BASIC) . 334
40.0 MID$. 335
41.0 NOE CHO . 336
42.0 NUM . 337
43.0 NUM2. . 338
44.0 NUM$. . 339
45.0 NUM1$. 340
46.0 ONECHR (BASIC-PLUS-2) . . 341
47.0 PLACE$. 342
48.0 POS. . 345
49.0 PROD$. 347
50.0 QUO$. . 349
51.0 RAD$. 351
52.0 RCTRLC . 352
53.0 RCTRLO . . 353

vii

54.0 REAL. . 354
55.0 RECOUNT . 355
56.0 RIGHT$. 356
57.0 RND. . 357
58.0 SEG$.. . 358
59.0 SGN. . 359
60.0 SIN . 360
61.0 SPACE$. 361
62.0 SQR .. . 362
63.0 STATUS . 363
64.0 STR$. . 365
65.0 STRING$. . 366
66.0 SUM$. . 367
67.0 SWAP% . 368
68.0 SYS . . 369
69.0 TAB. . 371
70.0 TAN. . 372
71.0 TIME. . 373
72.0 TIME$. . 375
73.0 TRM$. 376
74.0 VAL. . 377
75.0 VAL% . . 378
76.0 XLATE . . 379

PART VI - BASIC-PLUS-2 Debugger Commands

1.0 BREAK (BASIC-PLUS-2) . . 383
2.0 CONTINUE (BASIC-PLUS-2) . . 385
3.0 CORE (BASIC-PLUS-2). . 386
4.0 ERL (BASIC-PLUS-2). . 387
5.0 ERN (BASIC-PLUS-2) . 388
6.0 ERR (BASIC-PLUS-2) . 389
7.0 EXiT (BASiC-PLUS--2) . . 390
8.0 FREE (BASIC-PLUS-2) . . 391
9.0 I /0 BUFFER (BASIC-PLUS-2). . 392
10.0 LET (BASIC-PLUS-2). .. . 393
11.0 PRINT (BASIC-PLUS-2) . 395
12.0 RECOUNT (BASIC-PLUS-2) . 396
13.0 REDIRECT (BASIC-PLUS-2). . 397
14.0 STATUS (BASIC-PLUS-2). . 398
15.0 STEP (BASIC-PLUS-2) 400
16.0 STRING (BASIC-PLUS-2). . . 401
17.0 TRACE (BASIC-PLUS-2) . . 402
18.0 UNBREAK (BASIC-PLUS-2). . 403
19.0 UNTRACE (BASIC-PLUS-2). . 405

Appendix A Reserved BASIC Keywords

Appendix B Program and Subprogram Coding Conventions

Index

viii

Tables

1 Keyword Space Requirements. .4
2 BASIC Data Types. 12
') l\.l11mharc in I= "-.lnt~tinn 16 J 1-,UllllJ'-1~ Ill L- l"'\J'-Ul.IVll •

4 Pred,efi ned Constants . 23
5 Arithmetic Operators . 30
6 Result Data Types in BASIC Expressions 32
7 VAX-11 BASIC Result Data Types . 32
8 Result Data Types for DECIMAL Data 33
9 Numeric Relational Operators. 35
10 String Relational Operators 37
11 Logical Operators . 38
12 Truth Tables 38
13 Numeric Operator Precedence 47
14 BASIC-PLUS-2 Editing Mode Commands . 60
15 ODL Files 81
16 VAX-11 BASIC COMPILE and SET Command Qualifiers 84
17 BASIC-PLUS-2 Command Qualifiers. 90
18 RMS Libraries . . 101
19 VAX-11 BASIC Parameter Passing Mechanisms . 132
20 BASIC-PLUS-2 Parameter Passing Mechanisms . 133
21 Fl LL Item Formats and Storage Allocations . 141
22 EDIT$ Values . . 311
23 MAGT APE Function Codes . . 332
24 Performing MAGTAPE Functions in VAX-11 BASIC . 333
25 Rounding and Truncation of 123456.654321 . 344
26 VAX-11 BASIC STATUS Bits . 364
27 VAX-11 BASIC Subset of RSTS/E SYS Calls . 369
28 TIME Function Values . 374

IX

To the Reader

This manual is part of the BASIC documentation set. This set of manuals was designed to let you learn
and use BASIC regardless of your prior experience with computers. The documentation set includes:

For the beginner:

• Introduction to BASIC

• BASIC for Beginners

• More BASIC for Beginners

For al I systems:

• BASIC User's Guide

• BASIC Reference Manual

• BASIC Pocket Reference Guide

For specific systems:

• BASIC on RSTS/E Systems

• BASIC on RSX-11 MI M-PLUS Systems

• BASIC on VAX/VMS Systems

For the system manager:

• BASIC-PLUS-2 RSTS!E Installation Guide and Release Notes

• BASIC-PLUS-2 RSX-11 MI M-PLUS Installation Guide and Release Notes

• VAX-11 BASIC Installation Guide and Release Notes

For the beginner, Introduction to BASIC explains the fundamentals of the BASIC language and shows
how to use BASIC to solve programming problems. BASIC for Beginners and More BASIC for
Beginners lead the reader step-by-step through planning and writing several practical programs that
teach BASIC programming techniques. In addition, the first chapter of the system-specific user's guide
tells you how to log on to your computer system, create and execute programs, and do simple file
operations such as printing, typing, and deleting files.

XI

For programmers who are more familiar with BASIC, the BASIC User's Guide and the system-specific
user's guides include a complete explanation of BASIC and how to use it on your system. If you need
information on a particular feature or statement, the BASIC Reference Manual describes the format of
each BASIC command or keyword individually.

The BASIC documentation set has several new features that let you find information quickly and
easily. Each manual has its own index (with instructions on its use) and the BASIC Reference Manual
has a master index to the entire documentation set. For quick reference the BASIC Pocket Reference
Guide provides a brief explanation of all BASIC commands and functions. Similar information is also
available at the computer terminal from the BASIC HELP facility.

The following pages describe the function of this particular manual. We welcome your comments
and encourage you to use the Reader's Comments Form provided at the back of this book.

Document Objectives

This manual describes the language elements and syntax of Version 2 of VAX-11 BASIC and
BASIC-PLUS-2. The term BASIC is used generically in this manual to refer to both VAX-11 BASIC
and BASIC-PLUS-2. The term VAX-11 BASIC refers specifically to VAX-11 BASIC as implemented on
VAX/VMS systems. BASIC-PLUS-2 refers specifically to BASIC-PLUS-2 as implemented on RSTS/E,
RSX-11M, and RSX-11M-PLUS systems.

Note

For your convenience, examples, formats, or rules specific to VAX-11 BASIC,
BAS/C-PLUS-2, or BASIC-PLUS-2 on RSTSIE or RSX-11 MI M-PLUS are identified by
a marginal symbol:

<9> indicates VAX-11 BASIC only.

8 indicates BAS/C-PLUS-2 only.

@ indicates BASIC-PLUS-2 on RSTS/E systems.

I RSX j indicates BASIC-PLUS-2 on RSX-11 MI M-PLUS systems.

Intended Audience

This manual should be used by programmers familiar with computer concepts and the BASIC lan­
guage. It is a reference manual to be used in conjunction with the BASIC user's guides.

Document Structure

This manual consists of six parts, two appendixes, and a master index to the BASIC documentation
set. With the exception of Part I, BASIC language elements are arranged in alphabetical order within
each part; each language element begins on a separate page. A sample format page is included on
page xiv.

Part I

Part II

xii

Describes BASIC program elements and structure.

Describes BASIC compiler commands.

Part Ill

Part IV

Part V

Part VI

Appendix A

Appendix B

Describes BASIC compiler directives.

Describes BASIC statements.

Describes BASIC functions.

Describes BASJC-PLUS-2 debugger commands.

Lists reserved keywords.

Summarizes program and subprogram coding conventions.

This manual also includes three tabbed dividers for convenient reference:

• The first divider summarizes the conventions used in this manual.

•The second divider lists most BASIC keyv.1ords by function.

• The third divider precedes the Master Index and describes its use.

xiii

Sample Format Page

ENTRY NAME

1.0 ENTRY NAME

Function

Describes the entry's function or effect.

Format

A format shows the syntax of a language element. When you have a choice of formats, the
formats are named for clarity. When a format is named General, it applies to both VAX-11
BASIC and BAS/C-PLUS-2. Format components are explained in syntax and general rules.
When a language element has more than one format, formats are referred to by name.
Some formats are divided into two parts. The first part, in the top portion of the box, shows
the general elements and order of the format.

The second part of the format, in the lower portion of the box, shows the components
and order of the individual elements in the general format.

Syntax Rules

Syntax rules tell you how to order format elements to form clauses or statements. They also
impose restrictions or relax restrictions implied by the format.

General Rules

· General rules define the semantics of the entry and the entry's effect on program execution or
compilation.

Examples

This section presents one or more sample program lines. All examples work for both VAX-11 BASIC
and BASIC-PLUS-2 unless otherwise noted.

xiv

Conventions

Formats present the correct syntax for writing BASIC source code. You must order syntax elements as
shown in the format unless the syntax rules indicate otherwise.

Syntax formats consist of BASIC keywords, metaianguage mnemonics, and punctuation symbols.
Metalanguage mnemonics are symbolic derivations of BASIC objects or structures. The tabbed
divider that follows this section lists the most frequently used mnemonics and their meanings, as well
as the most frequently used punctuation symbols.

Note

BASIC keywords are always capitalized in this manual and must be spelled exactly as
shown. Mnemonics are in lowercase letters in formats and are italicized in the syntax
and general rules.

Some metalanguage mnemonics are derived directly from BASIC keywords. For example:

•Map

•Com

•Fune

•Def

•Sub

From MAP

From COMMON

From FUNCTION

From DEF

From SUB

Others are abbreviated forms of words. For example:

• Vbl For variable

• Unsubs For unsubscripted

•Subs For subscripted

• Str For string

•Const For constant

•Exp For expression

•Nam For name

• Cond For conditional

• Int For integer

• File-spec For file-specification

• Data-type For data-type

Most mnemonics used in formats are combinations of mnemonics. For example:

• Const-nam Is a constant name.

• Sub-nam

• Unsubs-vbl

Is the name of a SUB subprogram.

Is an unsubscripted variable. (continued on next page)

xv

• Int-exp Is an integer expression.

• Cond-exp Is a conditional expression.

• Str-unsubs-vbl Is a string unsubscripted variable.

Mnemonics are combined in this way to indicate exactly what type of object or structure BASIC
expects. Some BASIC statements, for example, allow you to specify any type of variable (string or
numeric) in the format, while others allow only a numeric variable (integer or floating-point), a string .
variable, an integer variable, or a floating-point variable.

Thus, the uncombined form of the variable mnemonic (vb/) in a format means that you can use any
type of variable (string or numeric). A combined variable mnemonic (such as str-vbl, num-vbl, or
int-vb/) in a format means that you can specify only a particular type of variable.

Within formats, mnemonics are either simple or complex. Simple mnemonics identify a format
element (such as an expression, a variable, or a name) that needs no further definition. For example:

EXTERNAL data-type CONST ANT const-nam, ...

The mnemonics in this format need no further definition. The EXTERNAL keyword must be followed
by a data-type, the CONSTANT keyword, and then a const-nam. The comma and ellipsis(...), as
defined in the Punctuation Symbols Table, indicate that you can specify more than one const-nam.
The data-type mnemonic is defined in the Mnemonics Table as a BASIC data-type keyword, and
const-nam is defined as a constant name. Restrictions to the use of data-type keywords in the
EXTERNAL statement are specified in the syntax rules.

Complex mnemonics identify a format element (such as a parameter passing mechanism or a state­
ment clause) that has more than one component. Complex mnemonics are further defined in the
lower portion of the format box by simple mnemonics. For example:

Format

Variables

DECLARE data-type decl-item [, [data-type] decl-item] ...

DEF Functions

DECLARE data-type FUNCTION { def-nam [([def-param], ...)] }, ...

Named Constants

DECLARE data-type CONSTANT { const-nam const }, ...

decl-item: l unsubs-vbl-nam I
array-nam (int-const, ...)

def-param: [data-type]

xvi

When you look at the upper portion of this format, you can see that a data-type keyword must follow
the DECLARE statement and that a decl-item must follow the data-type keyword. Deel-item is a
complex mnemonic that is then further defined in the lower portion of the box. There you can see
that a decl-item can be a simple variable name or an array name followed by parentheses and integer
constants separated by parentheses. The portion of the upper format in brackets indicates that you can
specify another data-type keyword and another array name or simple variable name. The comma and
ellipsis (...), as defined on the tabbed divider in this section, indicate that you can continue adding
data-type keywords and array names or simple variable names.

This type of format unfolds the syntax of BASIC language elements and indicates the type of element
BASIC expects to receive.

Note

In most cases, BASIC signals an error if the syntax element does not exactly match the
indicated format. In other instances, particularly with numeric elements, BASIC con­
verts the numeric element you specify to the type of numeric element it expects to
receive. These instances are noted in the syntax rules.

Multiple occurrences of mnemonics in a format are numbered to prevent confusion. Vb/3, for exam­
ple, is the third unique variable in a general format and is referred to as vb/3 in the syntax and general
rules.

The most frequently used punctuation symbols and metalanguage mnemonics are listed and
described on the first tabbed divider in this manual. Less frequently used mnemonics and most
complex mnemonics are defined as they occur in syntax formats.

Please use the Reader's Comments Form in the back of this book to report errors or to make sugges­
tions for future documentation releases.

xvii

Conventions

Syntax Mnemonics

Mnemonic Definition

exp An expression

vbl A variable

unsubs Unsubscripted; used with the variable mnemonic to indicate a simple variable, as opposed to an array
element

subs Subscripted; used witn the variable mnemonic to indicate an array element; the element's position in the array
is specified by subscripts enclosed in parentheses and separated by commas

array

con st

lit

num

real

int

str

cond

log

rel

lex

target

lin-num

label

item

nam

com

def

func

map

sub

chnl

data-type

file-spec

file-nam

An array; syntax formats indicate whether you can specify bounds and dimensions, or just dimensions

A constant value

A literal value, in quotation marks; a literal is always a constant, but a constant may be named, so constants
are not always literals

A numeric value

A floating-point value

An integer value

A character string

Conditional; used with the expression mnemonic to indicate that an expression can be either logical or
relational

Logical; used with the expression mnemonic to indicate a logical expression

Relational; used with the expression mnemonic to indicate a relational expression

Lexical; used to indicate a component of a compiler directive

The target point of a branch statement; used to indicate that the target point can be either a program line
number or a statement label

A program line number

An alphanumeric statement label

Allowable BASIC objects, such as variables, data types, and parameters; allowable objects are defined in
formats as they occur

Name; indicates the declaration of a name or the name of a BASIC structure, such as a SUB subprogram

Specific to a COMMON

Specific to a DEF

Specific to a FUNCTION subprogram

Specific to a MAP

Specific to a SUB subprogram

An I /O channel associated with a file

A data-type keyword

A file-specification

A file name

Punctuation Svmbols

Svmbols

r i

{ }

Definition

Rr::irkPtc: prirlnc:P ::in nntinn::il nnrtinn nt ;:i tnrm;:it Kr;:irkPtc: ;:irnrrnrl vprtrr;:illv c;t;:ickerl entrrpc; rnrlrcrite that vou
can select one of the enclosed elements. You must include all punctuation as it appears in the brackets.

Braces enclose a mandatory portion of a general format. Braces around vertically stacked entries indicate
that you must choose one of the enclosed elements. Braces also group portions of a format as a unit. You
must include all punctuation as it appears in the braces.

An ellipsis indicates that the immediately preceding language element can be repeated. An ellipsis following
a format unit enclosed in brackets or braces means that you can repeat the entire unit. If repeated elements
or format units must be separated by commas, the ellipsis is preceded by a comma (, ...).

Definitions

In this manual, the following definitions apply:

BASIC The term BASIC refers to Version 2 of both VAX-11 BASIC and POP-11
BASIC-PLUS-2.

BASIC-PLUS-2 The term BASIC-PLUS-2 refers specifically to Version 2 of POP-11
BASIC-PLUS-2 as implemented on RSTSIE, RSX-11 M, and RSX-11 M-PLUS
systems.

Cannot

Cursor
or

cursor position

Must

Cannot indicates than an operation cannot be performed and that an attempt to
perform the operation causes BASIC to signal an error.

Cursor or cursor position refers to a terminal's print mechanism. It can be the
flashing cursor on a video display terminal or the print head on a hard-copy
terminal.

Must indicates that an operation must be performed and that failure to perform the
specified operation causes BASIC to signal an error.

Program module A program module is a BASIC main program, a SUB subprogram, or a FUNCTION
subprogram.

Subprogram A separately compiled program module that must be linked or task-built with the
main program.

Subroutine A subroutine is a block of code accessed by a GOSUB or ON GOSUB statement. It
is always in the same program module as the statement that accesses if

VAX-11 BASIC The term VAX-11 BASIC refers specifically to Version 2 of VAX-11 BASIC as
implemented on VAX/VMS systems.

Functional List of BASIC Keywords

Arrays Error Handling NOECHO END SUB

DET i:o1
Ll'\.L

PRINT USING i:v1T c1 1 ~1rT1r>",
L/'\I I l \JI~'- l IVI~

DIMENSION ERN$ RCTRLC EXIT SUB

MAT ERR RCTRLO EXTERNAL

MAT INPUT ERT$ RECOUNT FUNCTION

MAT LINPUT ON ERROR GO BACK TAB LOC

MAT PRIN1 ON ERROR GOTO Numbers
SUB

MAT READ ON ERROR GOTO O
NUM RESUME ABS Strings

NUM2 ATN EDIT$
Function Definition COMP% FORMAT$

Cata Conversion DEF cos INSTR

ASCII END DEF DECIMAL LEFT$

CHANGE END FUNCTION EXP LEN

CHR$ EXIT DEF FIX LSET

NUM$ EXIT FUNCTION INT MIO$

NUM1$ EXTERNAL iNTEGER POS

STR$ FUNCTION LOG RIGHT$

VAL LOG10 RSET

VAL% 1/0 to Files MAG SEG$

CLOSE RANDOMIZE SPACE$
Data Definition DELETE REAL STRING$

COMMON FIND RND TRM$

DECLARE FREE SGN XLATE

DIMENSION GET SIN

MAP INPUT# SQR
String Arithmetic

MAP DYNAMIC INPUT LINE# SWAP% DIF$

MOVE KILL TAN PLACE$

RECORD LINPUT # PROD$

REMAP MAR
Program Control QUO$

MARGIN END SUM$
Data Formatting MOVE EXIT LOOP

FORMAT$ NAME AS FOR Value Assignmen·

PRINT USING OPEN GOSUB DATA

PRINT# GOTO LET

Data Typing PUT# IF LSET

COMMON RECOUNT ITERATE READ

DECLARE RESTORE# ON GOTO RESTORE

DEF SCRATCH RETURN RSET

DIMENSION UNLOCK SELECT

EXTERNAL UPDATE SLEEP

FUNCTION STOP

MAP I I 0 to Terminals UNLESS

OPTION CCPOS
UNTIL

SUB CTR LC WAIT

ECHO WHILE

Date and Time Conversion INPUT Program Segmentation

DATE$ INPUT LINE CALL
TIME LINPUT CHAIN
TIME$ MAR END FUNCTION

1.0 Elements of a BASIC Program

PARTI
Program Elements

and Structure

A BASIC program is a series of program lines that contain instructions for the BASIC compiler. These
instructions are in the form of BASIC statements. Program lines contain the BASIC keywords, opera­
tors, and operands that make up a BASIC program.

The first line of a BASIC program must begin with a line number. The program lines that follow may
contain:

• Line numbers or labels

• Statements

• Optionai compiier direciives

• Optionai comment fields

• Line terminator (carriage return)

1.1 Line Numbers

Every BASIC statement must be associated with a line number. Thus, the first element i.n a BASIC
program must be a line number. A line number must be an integer between 1 and 32767, inclusive.
A space or tab terminates the line number. Embedded spaces, tabs, and commas within line numbers
are invalid.

A line number followed by a carriage return does not constitute a BASIC program line. A program line
must contain a statement or a comment field. Comment fields are discussed in Section 2.1. A new
line number or a carriage return terminates a BASIC program line.

A program line can contain any number of text lines; however, a text line cannot exceed 255
characters in VAX-11 BASIC and BASIC-PLUS-2 on RSTS/E systems, and 132 characters in
BASIC-PLUS-2 on RSX-11 MI M-PLUS systems.

February 1 984 BASIC Reference Manual 1

The BASIC language uses line numbers to:

• Indicate the order of statement execution

• Provide control points for branching

• Help in debugging and updating programs

• Find the location of run-time errors

• Resume processing after an error has been handled

Therefore, each line number must be unique. BASIC ignores leading spaces, tabs, and zeros in line
numbers.

1.2 Labels

A label is a 1- to 31-character name that immediately precedes a statement. It may immediately
follow a line number. The label logically identifies a statement or block of statements. The label name
must conform to the rules for naming variables, described in Section 6.1. The label name must be
separated from the statement it labels with a colon (:). For example:

100 Yes_routine: PRINT "Your answer is YES."

The colon is not part of the label name. It tells BASIC that the label is being defined rather than
referenced. Consequently, the colon is not allowed when you use a label to reference a statement.
For example:

200 GOTO Yes_routine

The BASIC language uses labels to:

• Provide control points for branching

• Help in debugging programs

• Help in maintaining and updating programs

You can reference a label anywhere you can reference a line number, with three exceptions:

• You cannot compare the value returned by the ERL function (the line number associated with the
program line where the last error occurred) with a label.

• You cannot use the RESUME statement to reference a label.

• You cannot reference a label in an IF-THEN-ELSE statement without using the keyword GOTO or
GO TO. You can use the implied GOTO form only to reference a line number. For example:

100 IF AI = BX.
THEN 1000
ELSE 1050

200 IF A$ = "YES"
THEN GOTO Yes
ELSE GOTO No

2 BASIC Reference Manual

Because the first statement references a line number, the GOTO keyword is not required; the second
statement references a label, so the GOTO keyword is required.

1.3 Statements

A BASIC statement consists of a statement keyword and optional operators and operands. For
example:

aoo LET A% = 53a% + (SUM% - DIF%)
PRINT A%

The first statement assigns a value to the integer variable A%. The PRINT statement causes BASIC to
display the value of A% on your terminal.

A statement is either executable or nonexecutable:

• Executable statements perform operations (for example, PRINT, GOTO, and READ).

• Nonexecutable statements describe the characteristics and arrangement of data, specify usage infor­
mation, and serve as comments in the source program (for example, DATA, DECLARE, and REM).

BASIC can accept and process one statement on a line of text, several statements on a line of text,
multiple statements on multiple lines of text, and single statements continued over several lines of
text. Each line of program text is associated with the last specified line number.

Multi-statement and continuation lines are discussed in Sections 1.3.2 and 1.3.3.

1.3.1 Keywords

A keyword is a reserved element of the BASIC language. Every statement except LET and empty
statements must begin with a keyword. BASIC uses keywords to:

• Define data and user identifiers

• Perform operations

• Invoke built-in functions

Note

Keywords are reserved words and cannot be used as variable names or as names for
MAP or COMMON areas.

Keywords cannot be used in any context other than as BASIC keywords. STRING$ = "YES", for
example, is invalid because STRING$ is a reserved BASIC keyword. Appendix A in this manual
contains a list of BASIC reserved keywords.

A BASIC keyword cannot have embedded spaces and cannot be split across lines of text. There must
be a space, tab, or special character such as a comma between the keyword and any other variable or
operator.

BASIC Reference Manual 3

Some keywords use two words. In this case, their spacing requirements vary, as shown in Table 1.

Table 1: Keyword Space Requirements

Optional Space Mandatory Space No Space

GO SUB BY DESC FNEND
GOTO BY REF FNEXIT
ON ERROR BY VALUE FUNCTION END

END DEF FUNCTION EXIT
END FUNCTION NOECHO
END GROUP NOMARGIN
END IF SU BEND
END RECORD SUBEXIT
END SELECT
END SUB
EXIT DEF
EXIT FUNCTION
EXIT SUB
INPUT LINE
MAP DYNAMIC
MAT INPUT
MAT LINPUT
MAT PRINT
MAT READ

1.3.2 Single-Statement Lines and Continued Statements

A single-statement line consists of one statement on one numbered line or one statement continued
over two or more text lines. For example:

100 PRINT 6 * C I 12

This single-statement line has a line number, keyword (PRINT), operators (*, /), and operands (B, C,
and 12).

You can have a single statement span several text lines by typing an ampersand (&) and a carriage
return. For example:

100 OPEN 11 SAMPLE.DAT 11 AS FILE 2%t &@:)
SEQUENTIAL VARIABLEt &@:)
MAP ABC

The ampersand must come immediately before the carriage return in VAX-11 BASIC. BASIC-PLUS-2
ignores spaces or tabs that follow the ampersand and precede the carriage return. For compatibility,
DIGITAL recommends that you type the carriage return immediately after the ampersand.

The ampersand continuation character may be used but is not required for continued REM state­
ments. The following example is valid:

100 REM This is a remarK
And this is also a remarK

4 BASIC Reference Manual

You can continue any BASIC statement, but you cannot continue a string literal or BASIC keyword.
For example, BASIC returns the error message "Unterminated string literal" if you try to print the
following:

100 PRINT 11 FEE-F!E­
FOE-FUM11

This example is valid:

200 PRINT 11 FEE- 11
;

11 FIE- 11
;

"FOE-";
11 FUM 11

A more efficient way to continue string literals is to use the string concatenation operator:

100 PRINT "FEE-"
+ 11 FIE- 11
+ 11 FOE- 11
+ 11 FUM 11

BASIC concatenates the four string literals at compile time and stores them as one string. When the
PRINT statement executes, BASIC displays the one concatenated string literal rather than four sepa­
rate string literals, thereby causing your program to execute faster and more efficiently.

Continued statements do not have line numbers, although the compiler counts and numbers them as
sublines.

1.3.3 Multi-Statement Lines

Multi-statement lines contain several statements on one line of text or multiple statements on separate
lines of text. All the statements on a multi-statement line are associated with a single line number.

Multiple statements on one line of text must be separated by backslashes (\). For example:

400 PRINT A \ PRINT V \ PRINT G

Because all statements are on the same program line, any reference to line number 400 refers to all
three statements and execution begins with the first statement on the line. That is, BASIC cannot
execute the second statement without executing the first statement.

A statement that unconditionally transfers control to another program line should always be the last
statement on a multi-statement line. Otherwise, the statements that follow the statement transferring
control will never execute. The following program line, for example, will execute, but it is not
recommended:

200 PRINT A \ GOTO 410 \ PRINT B

BASIC prints the value of A and then branches to line 410. The statement PRINT B will never execute.

BASIC Reference Manual 5

~

8

You can also write a multi-statement program line that associates all statements with a single line
number by ending each statement with an ampersand (&) and a carriage return and preceding the
next statement with a backslash. For example:

aoo PRINT A &
\ PRINT V &
\ PRINT G

Because programs written in this format tend to be cluttered and hard to read, BASIC allows you to
associate multiple statements with a line number by placing each statement on a separate line without
using the ampersand or backslash. This format requires only a space or tab at the beginning of each
new line of text. BASIC assumes that such an unnumbered line of text is either a new statement or an
IF statement clause. For example:

aoo PRINT A
PRINT 8
PRINT 11 FINISHED 11

In this example, each line of text begins with a BASIC statement and each statement is associated with
line number 400.

BASIC also recognizes IF statement keywords on a new line of text and associates such keywords with
the preceding IF statement. For example:

100 IF (A$ = II YES") DR CA$ = "Y")
THEN PRINT "You tYPed YES"
ELSE PRINT "You typed NO"

STOP
END IF

The BASIC compiler listing file numbers the lines associated with line number 100 as they occur. The
VAX-11 BASIC listing file looks like this:

1 100 IF <A$ = 11 YES 11 > DR <A$ = II Y II)
2 THEN PRINT "You tYPed YES"
3 ELSE PRINT 11 You tYPed NO"
a STOP
5 END IF

The BAS/C-PLUS-2 listing file looks like this:

00001 100 IF CA$ = 11 YES 11 > OR CA$ = "Y" >

00002 THEN PRINT "You tYPed YES"
00003 ELSE PRINT 11 You tYPed NO"
ooooa STOP
00005 END IF

Each statement has a number that indicates its position in the line. The BASIC compiler counts the
statements in a multi-statement line to locate compile-time errors. You cannot use statement numbers
as targets of branch statements. Targets of branch statements such as GOTO must be a line number or
a label.

6 BASIC Reference Manual

You can use any BASIC statement in a multi-statement line. However, a REM or DATA statement
must be the last statement on a multi-statement line. This is because the compiler:

• Ignores all text following a REM keyword until it reaches a new line number.

•Treats aii text foiiowing a DATA keyword as data untii it reaches a new iine number; thus, every
DATA statement in your program has to have its own line number.

Because a leading space or tab not followed by a line number implies a new statement in a multi­
statement line, compiler commands and immediate mode statements cannot be preceded by a space
or tab. If you enter a compiler command or immediate mode statement, you cannot add more
continuation lines to the last program line. If you attempt to do so, BASIC signals the error "unknown
command input".

.. A "-mp=•er l"'\:r--&"1··-­I .'t \,UI I II Lii C"L YC~

Compiler directives are instructions in a program that tell BASIC to perform certain operations as it
compiles the program. With compiler directives, you can:

• Place program titles and subtitles in the header that appears on each page of the listing file

• Place a program version identification string in both the listing file and object module

• Start or stop the accumulation of listing information for selected parts of a program

• Start or stop the accumulation of cross-reference information for selected parts of a program

• Include BASIC code from another source file

•Conditionally compile parts of a program

• Terminate compilation

• Include COD record definitions in a BASIC program (VAX-11 BASIC only)

All compiler directives:

• Must begin with a percent sign

• Can be preceded by an optional line number

•Must be the only text on the line (except for %IF-% THEN-%ELSE-%END-%1F)

• Must be preceded by a space, tab, or line number

• Cannot appear within a quoted string

See the BASIC User's Guide and Part Ill in this manual for more information on compiler directives.

1.5 Line Terminators

In the BASIC environment, a carriage return I line feed combination (@) followed by an optional
space or tab and a new line number ends a BASIC program line. An ampersand followed by a
carriage return ends a line of text but not the program line. All statements between the first line
number and the next line number are associated with the first line number.

BASIC Reference Manual 7

1.6 Lexical Order

Lexical order refers to the order in which BASIC compiles statements in a program. In general terms,
BASIC compiles program lines in sequential order from the lowest to the highest line number. Thus,
statement A precedes statement B if the line number with which statement A is associated is lower
than the line number with which statement B is associated. If both statements are associated with the
same iine number, statement A precedes statement B only if it physically precedes statement B or
appears to the left of statement B. BASIC processes statements on a line of text from left to right and
Ii nes of text from top to bottom.

Some BASIC statements, such as comments and MAP declarations, are nonexecutable. If program
control passes to a nonexecutable statement, BASIC executes the first statement that lexically follows
the nonexecutable statement.

2.0 Program Documentation

Documentation clarifies and explains source program structure. You can provide such explanations
with:-

• Comment fields

• REM statements

2.1 Comment Fields

A comment field begins with an exclamation point(!) and ends with a carriage return. You supply text
after the exclamation point to document your program. BASIC does not execute text in a comment
field. For example:

100 ! FOR loop to initialize list Q
FOR I = 1 TO 10

Q(I) = 0 ! This is a COMMent
NEXT I
! List now initialized

BASIC executes only the FOR loop. The comment fields, preceded by exclamation points, do not
execute.

Comment fields help make your program more readable and allow you to format your program into
readily visible logical blocks. They can also serve as target lines for GOTO and GOSUB statements:

10
Square root ProsraM

!
INPUT 'Enter a nuMber' ;A
PRINT 'SQR of ';A;'is ';sQR<A>

! More square roots?
!
INPUT 'TYPe 11 Y11 to continue t a carriase ret1.1rn to quit' ;ANS$
GOTO 10 IF ANS$ = I y I

88 END

8 BASIC Reference Manual

You can also use an exclamation point to terminate a comment field, but this practice is not recom­
mended. Therefore, you should make sure that there are no exclamation points in the comment field
itself; otherwise, BASIC treats the text remaining on the line as source code.

Note

Comment fields in DATA statements are invalid; the compiler treats the comments as
additional data.

2.2 REM Statements

A REM statement begins with the REM keyword and ends when BASIC encounters a new line
number. The text you supply between the REM keyword and the next iine number documents your
program. Like comment fields, REM statements do not affect program execution. BASIC ignores all
characters between the keyword REM and the next line number. Therefore, the REM statement can be
continued without the ampersand continuation character and should be the only statement on the
line or the last of several statements in a multi-statement line:

10 REM This is an exaMPle
20 A=5

6=10
REM A eciuals c; ._,

B eciuals 10
30 PRINT At B

The REM statement is nonexecutable. When you transfer control to the line number of a REM
statement, BASIC executes the next executable statement that lexically follows the referenced line.
For example:

10 REM ** Square root Fro~raM
20 INPUT 'Enter a nuMber';A

INPUT 'TY Pe 11 Y11 to continue, a carriage return to ciuit / ;ANS$
GOTO 10 IF ANS$ = 1 Y 1

40 END

When the conditional GOTO statement in line 20 transfers program control to line 10, BASIC ignores
the REM comment on line 10 and continues program execution at line 20.

Note

Because BASIC treats all text between the REM statement and the next line number as
commentary, REM should be used very carefully in programs that follow the implied
continuation rules. Program statements intended for execution will not execute when
they are inside a REM statement. DIGITAL recommends the use of comment fields (!)
for program documentation in programs formatted with implied continuation lines.

BASIC Reference Manual 9

2.3 Empty Statements

Empty statements consist of a line number and an exclamation mark followed by optional text, a line
terminator and a new line number. For example:

100
FOR looP to initiaiize iist Q

200 FOR I = 1 TO 10
Q(l) = 0 ! This is a comment

NEXT I
300 !

! List is now initialized

Lines 100 and 300 are empty statements.

3.0 BASIC Character Set

BASIC uses the full ASCII character set. This includes:

• The letters A through Z, both upper- and lowercase

• The digits 0 through 9

• Special characters

Appendix C in BASIC on VAX/VMS Systems, BASIC on RSX-1 JMIM-PLUS Systems, and BASIC on
RSTS IE Systems contains the full ASCII character set and character values.

The compiler:

•Does not distinguish between upper- and lowercase letters except in string literals or within a DATA
statement

• Does not process nonprinting characters unless they are part of a string literal

• Does not process characters in REM statements or comment fields

In string literals, BASIC processes:

• Lowercase letters as lowercase

• Nonprinting characters

The ASCII character NUL (ASCII code 0) and line terminators cannot appear in a string literal. Use the
CHR$ function or explicit literal notation to use this character and terminators.

You can use nonprinting characters in your program, for example, in string constants, but to do so
you must use: 1) a predefined constant such as ESC and DEL, 2) the CHR$ function to specify an
ASCII value, or 3) explicit literal notation for character constants. See Section 5.4 in this manual for
more information on explicit literal notation. See the BASIC User's Guide for more information on
predefined constants and the CHR$ function.

4.0 BASIC Data Types

All data in a BASIC program has a specific data type that determines how many bits of storage should
be considered as a unit and how the unit is to be interpreted and manipulated.

10 BASIC Reference Manual

VAX-11 BASIC recognizes five primary data types: integer, floating-point, character string, packed
decimai, and RFA. These types correspond to the BASIC generic data-type keywords:

•INTEGER

•REAL

•STRING

•DECIMAL

• RFA

BASIC-PLUS-2 recognizes four primary data types: integer, floating-point, character string, and RFA.
These types correspond to the BASIC generic data-type keywords:

•INTEGER

•REAL

•STRING

• RFA

Integer data are stored as binary values in a byte, a word, or a longword. These values correspond to
the BASIC data-type keywords:

•BYTE

•WORD

•LONG

Floating-point values are stored using a signed expohent and a binary fraction. VAX-11 BASIC allows
four floating-point formats: single, double, gfloat, and hfloat. These formats correspond to the BASIC
data-type keywords:

e SINGLE

•DOUBLE

• GFLOAT

• HFLOAT

BASIC-PLUS-2 allows only single and double floating-point formats. These formats correspond to the
BASIC data-type keywords:

•SINGLE

•DOUBLE

VAX-11 BASIC packed decimal data is stored in a string of bytes. Refer to Appendix C in BASIC on
VAX/VMS Systems for more information on the storage of packed decimal data.

Character data are strings of bytes containing ASCII codes as binary data. The first character in the
string is stored in the first byte, the second character is stored in the second byte, and so on. VAX-11
BASIC allows up to 65535 characters for a STRING data element. BASIC-PLUS-2 allows up to 32767
characters.

BASIC Reference Manual 11

I

In addition to these data types, BASIC also recognizes a special RFA data type to provide information
about a Record File Address (RFA). A Record File Address consists of a block number within a file and
an offset into that block. An RFA uniquely identifies a record in a file. You can access RMS files of any
organization by Record File Address (RFA). This means that you specify the disk address of a record,
and RMS retrieves the record at that address. Accessing records by RFA is more efficient and faster
than other forms of random record access.

The RFA data type is unique and can be used only for:

• RFA operations (with the GETRFA function and GET and FIND statements)

• Assignments to other variables of the RFA data type

•Comparisons with other variables of the RFA data type using the equal to (=)or not equal to(<>)
relational operators

• Formal and actual parameters

• DEF and function results

You cannot use variables or constants of the RFA data type for any arithmetic operations. You cannot
declare a constant of the RFA data type.

The RFA data type requires six bytes of information: four bytes for the address of a disk block, and
two bytes for the offset into the disk block. See Chapter 9 in the BASIC User's Guide for more
information on Record File Addresses and the RFA data type.

Table 2 lists BASIC data-type keywords and summarizes BASIC data types.

Table 2: BASIC Data Types

Precision
Data Type (decimal
Keyword* Size Range** digits)

INTEGER - specifies integer data

BYTE 8 bits -128 to + 127 NA

WORD 16 bits -32768 to + 32767 NA

LONG 32 bits -2147483648to NA

+ 2147 483647

REAL - specifies floating-point data

SINGLE 32 bits .29 * 10-
38

to 1.7 * 10
38

6

DOUBLE 64 bits . 2 9 * 10-
38

to 1 . 7 * 10
38

16

GFLOAT 64 bits .56 * 10-
308

to .9 * 10
308

15

HFLOAT 128 bits .84 * 10-
4932

to .59 * 10
4932

33

DECIMAL(d,s) 0 to 16 bytes 1 * 10-
31

to 1 * 10
31

31

STRING One character NA NA
per byte

RFA 6 bytes NA NA

* VAX-11 BASIC only data types are italicized.

** Approximate for REAL and DECIMAL data types.

12 BASIC Reference Manual February 1984

For the VAX-11 BASIC only DECIMAL data type, you can specify the total number of digits (d) in the ~
data type and the number of digits to the right of the decimal point (s). For instance, DECIMAL(10,3) VAX

specifies decimal data with a total of 10 digits, 3 of which are to the right of the decimal point.

In Table 2, REAL and INTEGER are generic data-type keywords that specify floating-point and integer
storage, respectively. if you use the REAL or iNTEGER keywords to type data, the actuai data type
(SINGLE, DOUBLE, GFLOAT or HFLOAT in VAX-11 BASIC, BYTE, WORD, or LONG) depends
on the current default. That is, if you do not explicitly type REAL and INTEGER data as SINGLE,
DOUBLE, BYTE, WORD, and so on, BASIC uses the current defaults for REAL and INTEGER.

You can specify data-type defaults in the BASIC environment with the SET and COMPILE commands
or in a program module with the OPTION statement. On VAX/VMS systems, you can also specify
data-type defaults from DCL level with the DCL BASIC command. You can also specify whether
program values are to be typed implicitly or explicitly. The following sections discuss data-type
defaults and implicit and explicit data typing.

4.1 Implicit Data Typing

You implicitly assign a data format to program values by adding a suffix to the variable name or
constant value or by specifying no suffix with the variable name or constant value:

• A dollar sign suffix ($) specifies STRING storage.

• A percent sign suffix (%) specifies INTEGER storage.

• No suffix character specifies storage of the default type, which may be INTEGER, REAL, or
DECIMAL (VAX-11 BASIC only).

Suffixes on variable names and program constants specify string, integer, or floating-point storage of
the default size. No suffix character implies that the value is of the default type (integer, floating­
point, or packed decimal in VAX-11 BASIC). With implicit data typing, the range and precision for
integer, floating-point, and packed decimal values (VAX-11 BASIC only) is determined by the current
default data type. The default data type is determined by the system default (REAL) or the data type set
foi the BASIC envimnment with the SET Oi COMPILE commands. VAX-11 BASIC qualifiers are
described in Table 16. BASIC-PLUS-2 qualifiers are described in Table 17.

Note that if you compile your program with the /TYPE: EXPLICIT qualifier, you cannot type program
values implicitly. All program values must be explicitly assigned a data type in your program or
BASIC signals an error.

Good programming practice dictates that you do not mix implicit and explicit data typing in expres­
sions or in program units and that you do not rely extensively on implicit data typing. Explicit data
typing makes programs easier to understand and maintain because the data type of all program values
is explicitly spelled out in the program and is not as dependent upon compilation defaults that may
change.

4.2 Explicit Data Typing

Explicit data typing means that you use a declarative statement to specify the type, range and preci­
sion of your program values. Declarative statements associate attributes such as data type and value
with user identifiers. For example:

BASIC Reference Manual 13

100 DECLARE STRING CONSTANT ZIP_CODE = 03080
DECLARE STRING EMP_NAMEt DOUBLE WITH_TAXt SINGLE INT_RATE

The first DECLARE statement associates the constant value 03060 and the STRING data type with a
constant named ZIP _CODE. The second DECLARE statement associates the STRING data type with
EMP _NAME, the DOUBLE data type with WITH_ TAX, and the SINGLE data type with INT _RATE.
No constant values are associated with user identifiers in the second DECLARE statement because
they are variable names.

With explicit data typing, each program variable within a program can have a different range and
precision. This gives you more control over your program. Because you can explicitly assign data
types to variables, constants, arrays, parameters, and functions, all integer data, for instance, does not
have to take the compilation defaults. Likewise, all floating-point data does not have to take the
compilation default because you can declare floating-point values as SINGLE or DOUBLE in
BASIC-PLUS-2 and as SINGLE, DOUBLE, GFLOAT, or HFLOAT in VAX-11 BASIC. See the BASIC
User's Guide and the sections on these statements in this manual for more information on explicitly
typing data.

Using the REAL and INTEGER keywords to explicitly type program values allows you to write pro­
grams that are transportable across systems, since these data-type keywords specify that all floating­
point and integer data take the current default for REAL and INTEGER. The data type INTEGER, for
example, specifies only that the constant or variable is an integer. The actual subtype (BYTE, WORD,
or LONG) depends on the default set with the COMPILE or SET command, the VAX-11 BASIC DCL
BASIC command, or the OPTION statement.

You can also specify a particular data type size for values declared INTEGER or REAL with compila­
tion qualifiers. The qualifier /DOUBLE, for instance, specifies that all data typed REAL is to be treated
as double-precision data.

The /TYPE: EXPLICIT qualifier or OPTION TYPE= EXPLICIT statement allows you to specify that all
program data must be explicitly typed. Compiling a program with /TYPE: EXPLICIT or specifying
OPTION TYPE= EXPLICIT means that any program value not explicitly declared causes BASIC to
signal an error.

For new applications, DIGITAL recommends using BASIC's explicit data typing features. See Chapter
5 of the BASIC User's Guide for more information.

5.0. Constants
A constant is a numeric or character literal that does not change during program execution. A
constant can also be named and associated with a data type. BASIC allows the following types of
constants:

•Numeric

Floating-point

Integer

Packed decimal (VAX-11 BASIC only)

• String (ASCII characters enclosed in quotation marks)

A constant of any of the above data types can be named with the DECLARE CONST ANT statement.
You can then refer to the constant by name in your program. Refer to Section 5.3 for information on
naming constants.

14 BASIC Reference Manual

You can also use a special explicit literal notation to specify the value and data type of a numeric
literal. Explicit literal notation is discussed in Section 5.4.

If you do not specify a data type for a numeric constant with the DECLARE CONST ANT statement or
with explicit literal notation, the type and size of the constant is determined by the default REAL,
INTEGER, or (VAX-11 BASIC only) DECIMAL set:

• At installation (BASIC-PLUS-2 only)

•With the DCL BASIC command (VAX-11 BASIC only)

• With the SET command

•With the COMPILE command

• With the OPTION statement

BASIC also supplies predefined constants for ease in representing some ASCII characters and mathe­
matical values.

The following sections discuss numeric and string constants, named constants, explicit literal nota­
tion, and predefined constants.

5.1 Numeric Constants

A numeric constant is a literal or named constant whose value never changes. In VAX-11 BASIC, a
numeric constant can be a floating-point number, an integer, or a packed decimal number. In
BASIC-PLUS-2, a numeric constant can be either a floating-point number or an integer. The type and
size of numeric constants are determined by the current default values, the data-type qualifiers
specified with the COMPILE command, the defaults set by the SET command, the data type specified
in a DECLARE CONSTANT or OPTION statement, or by explicit literal notation.

If you use a declarative statement to declare data type and name a numeric constant, the constant is
of the type and size specified in the statement. For example:

100 DECLARE BYTE CONSTANT AGE = 12

This example associates the numeric literal 12 and the BYTE data type with the user identifier AGE.
To specify a data type for unnamed numeric constants, you must use the explicit literal notation
format described in Section 5.4.

5.1.1 Floating-Point Constants

A floating-point constant is a literal or named constant with one or more decimal digits, either
positive or negative, an optional decimal point and an optional exponent (E notation). If the default
data type is INTEGER, a decimal point or an E is required or BASIC treats the literal as an INTEGER. In
VAX-11 BASIC, if the default data type is DECIMAL, an E is required or VAX-11 BASIC treats the
literal as a packed decimal value. The following, for example, are REAL literals:

Defau It type REAL:

-8.738
239.21 E-6

.79
299

BASIC Reference Manual 15

Default type INTEGER:

-8.738
239.21 E-6

.79
299E

Default type DECIMAL (VAX-11 BASIC only):

-8.738E
239.21 E-6

.79E
299E

Very large and very small numbers can be represented in E (exponential) notation. This form of
mathematical shorthand uses the format:

±number E ± n

where:

+ or - Is the number's sign. The plus sign is optional, but negative numbers require a minus
sign.

number Is the number carried to a maximum of:

• 6 decimal places for SINGLE precision

• 16 decimal places for DOUBLE precision

• 15 decimal places for GFLOAT precision (VAX-11 BASIC only)

• 33 decimal places for HFLOAT precision (VAX-11 BASIC only)

E Represents the words "times 10 to the power of."

+ or - Is the exponent's sign. The plus sign is optional, but the minus sign is mandatory for
negative exponents.

n Is an integer constant (the power of 10). If an exponent sign is specified, n can be zero,
but not blank. If an exponent sign is not specified, n can be blank.

Table 3 compares numbers in standard and E notation.

Table 3: Numbers in E notation

Standard Notation E Notation

.0000001 .1 E-06
1,000,000 .1 E+07
-10,000,000 -.1 E+08
100,000,000 .1 E+09
1,000,000,000,000 .1E+13

16 BASIC Reference Manual

The range and precision of floating-point constants are determined by the current default data types or
the explicit data type used in the DECLARE CONSTANT statement. There are, though, limits to the
range allowed for numeric data types. Table 2 lists BASIC data types and ranges. BASIC signals the
fatal error "floating point error or overflow" when your program specifies a constant value outside of
tho '.ltlnul':ihla r'.lnaa fnr '.l fln'.ltina_nnint rl'.lt'.l htno
UI'- U.11'-'YYUU'I"'-' IU11f)'-" l'-1'1 U 11' ... l't •. &.'-1110 t-"'-'"''- '9.U.A.\.U '-]f'-''-'•

5.1.2 Integer Constants

An integer constant is a literal or named constant, either positive or negative, with no fractional digits
and an optional trailing percent sign (%). The percent sign is required for integer literals if the default
type is not INTEGER. For example:

Default type INTEGER:

81257
-3477

79

Default type REAL or (VAX-11 BASIC only) DECIMAL:

81257%
-3477%

79%

The range of allowable values for integer constants is determined by either the current default data
type or the explicit data type used in the DECLARE CONSTANT statement. Table 2 lists BASIC data
types and ranges. BASIC signals an error for a number outside the applicable range.

BASIC treats numeric literals as floating-point numbers unless:

• The default data type is INTEGER

• The I iteral has a % suffix

Thus, BASIC must convert numeric literals when assigning them to integer variables. This means that
your program runs somewhat slower than it would if integer values were explicitly declared. You can
prevent this conversion step by using percent signs for integer constants, numeric literal notation, or
named integer constants.

Note

You cannot use percent signs in integer constants that appear in DATA statements. An
attempt to do so causes BASIC to signal "Data format error" (ERR= 50).

5.1.3 Packed Decimal Constants (V AX-11 BASIC Only)

A packed decimal constant is a number, either positive or negative, that has a specified number of
digits and a specified decimal point position (scale). You specify the number of digits (d) and the
position of the decimal point (s) when you declare the constant as a DECIMAL. If the constant is not
declared, the number of digits and the position of the decimal are determined by the representation of
the constant. For example, when the default data type is DECIMAL, 1.234 is a DECIMAL(4,3) con­
stant, regardless of the default decimal size. Likewise, using explicit literal notation, "1.234"P is a

BASIC Reference Manual 17

DECIMAL(4,3) constant, regardless of the default data type and default DECIMAL size. Explicit literal
notation is described in Section 5.4. See the BASIC User's Guide for more information on packed
decimal numbers.

5.2 String Constants

String constants are either string literals or named constants. A string literal is a series of characters
enclosed in string delimiters. Valid string delimiters are:

• Double quotation marks ("text")

• Single quotation marks ('text')

You can embed double quotation marks within single quotation marks ('this is a "text" string') and
vice versa ("this is a 'text' string"). Note, however, that BASIC does not accept incorrectly paired
quotation marks and that only the outer quotation marks must be paired. The following character
strings, for example, are valid:

"The record number does not exist."

"I'm here!"

"The terminating 'condition' is equal to A$."

"REPORT 543"

The following strings are not valid:

"Quotation marks do not match'

"No closing quotation mark

Characters in string constants can be letters, numbers, spaces, tabs, or any ASCII character except a
line terminator or NUL (ASCII code 0). If you need a string constant that contains a NUL, you should
use the NUL predefined constant in a compile-time constant expression or explicit literal notation.
See Section 5.4 in this manual for information on explicit literal notation and the BASIC User's Guide
for more information on the NU L predefined constant.

BASIC determines the value of the string constant by scanning all its characters. For example, because
of the number of spaces between the delimiters and the characters, these two string constants are not
the same:

" END-OF-FILE REACHED

"END-OF-FILE REACHED"

"

BASIC stores every character between delimiters exactly as you type it into the source program,
including:

• Lowercase letters (a-z)

• Leading, trailing, and embedded spaces

•Tabs

• Special characters

18 BASIC Reference Manual

BASIC does not print the delimiting quotation marks when executing the program. That is, the value
of the string constant does not include the delimiting quotation marks. For example:

100 PRINT 11 ENO-OF-FILE REACHED"

200 ENO

RUN NH

END-OF-FILE REACHED

BASIC prints double or single quotation marks when they are enclosed in a second paired set:

100 PR I NT I FA I LURE CONDIT ION: II RECORD LENGTH II I

200 END

RUNNH

FAILURE CONDITION: "RECORD LENGTH"

5.3 Named Constants

BASIC allows you to name constants. You can assign a mnemonic name to a constant that is internal
to your program and refer to the constant by name throughout the program. You can also name a
constant that is external to your program and refer to it by name throughout your program. This
naming feature is useful for the following reasons:

• If a commonly-used constant must be changed, you need to make only one change in your
program.

• A logically named constant makes your program easier to understand.

You can use named constants anywhere you can use a constant, for example, to specify the number
of elements in an array.

You cannot change the value of an explicitly named constant during program execution. To change
the value of a constant, you must change the program statement that names the constant and declares
its value and then recompile the program.

5.3.1 Naming Constants Within a Program Unit

You name constants within a program unit with the DECLARE statement. For example:

100 DECLARE DOUBLE CONSTANT Preferred_rate = .147
DECLARE SINGLE CONSTANT NorMal_rate = +182
DECLARE DOUBLE CONSTANT RiskY_rate = +175

500 New_bal Old_bal * C1 + Preferred_rate)AYears_PaYMent

BASIC Reference Manual 19

When interest rates change, only three lines have to be changed rather than every line that contains
an interest rate constant.

Constant names must conform to the rules for naming internal, explicitly declared variables listed in
Section 6.1. No constant name can have embedded spaces.

The value associated vvith a named constant can be a compile-time expression as well as a literal
value. For example:

100 DECLARE STRING CONSTANT Consrats &
"+--------------------+" + LF + CR + &
"l Consratulations! l" +CR+ CR+ &
"+--------------------+"

500 PRINT Consrats

1000 PRINT Consrats

Named constants can save you programming time (since you don't have to retype the congratulations
box every time you want to display it) and execution time (since the named constant is known at
compile time).

Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic, relational, and
logical operators except exponentiation. You cannot use built-in functions in DECLARE CONSTANT
expressions.

BAS/C-PLUS-2 allows you to name floating-point, integer, and string constants, but floating-point
constants cannot be named as expressions. Only STRING and INTEGER constants can be named as
expressions in DECLARE CONST ANT statements. VAX-11 BASIC allows constants of all data types to
be named as expressions. For example:

100 DECLARE DOUBLE CONSTANT &
MIN_VALUE Ot &
MAx_ VALUE = PI I 2

This example is valid only in VAX-11 BASIC.

Note that you can specify only one data type in a DECLARE CONSTANT statement. To declare a
constant of a different data type, you must use a second DECLARE CONST ANT statement.

5.3.2 Naming Constants External to a Program Unit

To declare constants outside the program unit, use the EXTERNAL statement. For example:

200 EXTERNAL LONG CONSTANT SS$_NORMAL
EXTERNAL WORD CONSTANT IS.sue

The first line declares the VAX/VMS status code SS$_NORMAL to be an external LONG constant.
The second line declares IS.SUC, a success code, to be an external WORD constant. Note that
VAX-11 BASIC allows external BYTE, WORD, LONG, and SINGLE constants, while BASIC-PLUS-2
allows only external WORD constants. The linker or task builder supplies the values for the constants
specified in EXTERNAL statements.

20 BASIC Reference Manual

External constant names cannot exceed six characters in BASIC-PLUS-2 and 31 characters in
VAX-11 BASIC and must conform to the rules for naming external variables listed in Section 6.1. No
constant name can have embedded spaces.

The types of external constants you can refer to vary from system to system. In VAX-11 BASIC, the
named constant might be a system status code or a global constant declared in a VAX-11 MACRO or
VAX-11 BLISS program. In BASIC-PLUS-2, the named constant might be a global constant declared
in a MACR0-11 program or an RMS constant. See the user's guide for your system for more informa­
tion on external constants avai I able to your programs.

5.4 Explicit Literal Notation

You can specify the value and data type of numeric literals by using a special notation. The format of
this notation in VAX-11 BASIC is:

[radix] num-str-lit [data-type]

Radix specifies an optional base.

In VAX-11 BASIC, radix can be:

• D Decimal (base 10)

• B Binary (base 2)

• 0 Octal (base 8)

• X Hexadecimal (base 16)

The VAX-11 BASIC default radix is D, but you can also specify binary, octal, and hexadecimal
integer literals. Binary, octal, and hexadecimal notation allows you to set or clear individual bits in
the representation of an integer. This feature is useful in forming conditional expressions and in using
logical operations.

In BASIC-PLUS-2, num-str-lit is always treated as decimal (base 10), so the format for explicit literal
notation in BASIC-PLUS-2 is:

num-str-lit [data-type]

Num-str-lit is a quoted string that can consist of digits and an optional decimal point when the radix is
decimal. You can also use E notation for floating-point constants. A leading minus sign cannot appear
inside the quotation marks, but can appear before the radix.

In VAX-11 BASIC, num-str-lit can be the digits 0 and 1 when the radix is binary, the digits 0 through 7
when the radix is octal, and the digits 0 through F when the radix is hexadecimal.

Data-type is an optional single letter that corresponds to a data-type keyword, excluding INTEGER
and REAL:

• B BYTE

• W WORD

• L LONG

• F SINGLE
(continued on next page)

BASIC Reference Manual 21

• D DOUBLE

• G GFLOAT (VAX-11 BASIC only)

• H HFLOAT (VAX-11 BASIC only)

• P DECIMAL (VAX-11 BASIC only)

For example:

"255"L

"4000"F

-"125"B

Specifies a LONG decimal constant with a value of 255.

Specifies a SINGLE decimal constant with a value of 4000.

Specifies a BYTE decimal constant with a value of -125.

A quoted numeric string alone, without a radix and a data-type, is a string literal, not a numeric
literal. For example:

"255"W

"255"

Specifies a WORD decimal constant with a value of 255.

Is a string I iteral .

In VAX-11 BASIC, if you specify a binary, octal, or hexadecimal radix, data-type must be an integer.
If you do not specify a data type, BASIC uses the default integer data type. For example:

B"11111111 "B Specifies a BYTE binary constant with a value of -1.

B"11111111 "W Specifies a WORD binary constant with a value of 255.

B"11111111" Specifies a binary constant of the default data type (BYTE, WORD, or LONG).

B"11111111 "F Is illegal because F is not an integer data type.

X"FF"B Specifies a BYTE hexadecimal constant with a value of -1.

X"FF"W Specifies a WORD hexadecimal constant with a value of 255.

X"FF"D Is illegal because D is not an integer data type.

0"377"B Specifies a BYTE octal constant with a value of -1.

0"377"W Specifies a WORD octal constant with a value of 255.

0"377"G Is illegal because G is not an integer data type.

When you specify a radix other than decimal, VAX-11 BASIC treats the numeric string as an unsigned
integer. When, however, this value is assigned to a variable or used in an expression, VAX-11 BASIC
treats the variable as a signed integer. For example:

100 DECLARE BYTE A
A= B11 11111111 11 B
PRINT A

RUNNH

-1

In this example, VAX-11 BASIC sets all eight bits in storage location A. Because A is a BYTE integer, it
has only 8 bits of storage and its value is -1 (the 8-bit two's complement of 1 is 11111111). If the
data type were W (WORD), VAX-11 BASIC would set the bits to 0000000011111111, and its value
would be 255.

22 BASIC Reference Manual

Note that in VAX-7 7 BASIC a D can appear in both the radix position and the data type position. Din
the radix position specifies that the numeric string is to be treated as a decimal number (base 10). D in
the data type position specifies that the value is to be treated as a double-precision, floating-point
constant. A P in the data type position specifies a packed decimal constant. For example:

"255"0 Specifies a double-precision constant with a value of 255.

"255.55"P Specifies a DECIMAL constant with a value of 255.55.

You can also use explicit literal notation to represent a single-character string in terms of its 8-bit
ASCII value. The format in VAX-11 BASIC is:

[radix] num-str-lit C

The format in BASIC-PLUS-2 is:

num-str-lit C

The letter C is an abbreviation for CHARACTER. The value of the numeric string must be between 0
and 255, inclusive.

This feature lets you create your own compile-time string constants containing nonprinting charac­
ters. For example:

100 DECLARE STRING CONSTANT CONTROL_G
PRINT CONTROL_G

"7"C

This example declares a string constant named CONTRQL_G (ASCII decimal value 7). When BASIC
executes the PRINT statement, the terminal bell sounds.

See the BASIC User's Guide for more information on explicit literal notation.

5.5 Predefined Constants

Predefined constants are symbolic representations of either: 1) ASCII characters or 2) mathematical
values. They are also called compile-time constants because their value is known at compile time
rather than at run time. Predefined constants:

• Format program output to improve readability

• Make source code easier to understand

Table 4 lists predefined constants supplied by BASIC, their ASCII values, and their purposes.

Table 4: Predefined Constants

Decimal
ASCII

Constant Value Purpose

BEL (Bell) 7 Sounds the terminal bell

BS (Backspace) 8 Moves the cursor one position to the left

HT (Horizontal Tab) 9 Moves the cursor to the next horizontal tab stop

(continued on next page)

BASIC Reference Manual 23

Table 4: Predefined Constants (Cont.)

c t t _ons an.

LF (Line Feed)

VT (Vertical Tab)

FF (Form Feed)

CR (Carriage Return)

SO (Shift Out)

SI (Shift In)

ESC (Escape)

SP (Space)

DEL (Delete)

Pl

Decimal
ASCII
VI a.ue

10

11

12

13

14

15

27

32

127

None

D • urpose

Moves the cursor to the next line

Moves the cursor to the next vertical tab stop

Moves the cursor to the start of the next page

Moves the cursor to the beginning of the current line

Shifts out for communications networking, screen formatting, and alternate graphics

Shifts in for communications networking, screen formatting, and alternate graphics

Marks the beginning of an escape sequence

Inserts one blank space in program output

Deletes the last character entered

Represents the number Pl with the precision of the default floating-point data type

You can use predefined constants in many ways. For example, to print and underline a word on a
hard copy terminal:

110
120

PR I NT II NAME: II + BS + BS + BS + BS + BS + II - - - - -

END

RUN NH

NA.ME.:.

To print and underline a 'Nord on a VT100 video display teiminal:

100 PRINT ESC + 11 [l11nNAME: 11 + ESC + 11 [01n 11

110 END

RUNNH

til.A.M8_

Note that the "m" in the above example must be lowercase.

You can also create your own predefined constants with the DECLARE CONSTANT statement. For
example:

10
20
30

DECLARE STRING CONSTANT Underlined_name
DECLARE DOUBLE CONSTANT D_PI = PI
PRINT Underlined_naMe
PRINT D_PI t tPI

ESC + 11 [l1MNAME: 11 + ESC + 11 [0m 11

Line 10 defines Underlined_name as a string constant equivalent to the constant displayed by line
100 in the previous example. Line 20 defines D_PI as a DOUBLE constant equal to the predefined
constant Pl. If the default REAL data size is SINGLE, the program can use both single-precision Pl and
double-precision D_PI. See the BASIC User's Guide for more information on predefined constants
and their use in BASIC programs.

24 BASIC Reference Manual

6.0 Variables

A variable is a named quantity whose value can change during program execution. Each variable
name refers to a location in the program's storage area. Each location can hold only one value at a
time. Variables of all data types can have subscripts that indicate their position in an array.

Depending on the program operations specified, the value of a variable can change from statement to
statement. BASIC uses the most recently assigned value when performing calculations. This value
remains until another statement assigns a new value to the variable.

You can declare variables implicitly or explicitly.

BASIC accepts these general types of variables:

• Floating-point

• Integer

• String

• RFA

• Packed Decimal (VAX-11 BASIC oniy)

• Record (VAX-11 BASIC only)

See Chapter 9 in the BASIC User's Guide for more information on RFA variables and Chapter 6 in
BASIC on VAX/VMS Systems for more ·information on record data structures.

6.1 Variable Names

The name given to a variable depends on whether the variable is internal or external to the program
and whether the variable is implicitly or explicitly declared.

1. The name of an internal, explicitly declared variable must conform to the following rules:

• The name consists of from 1 to 31 characters.

• The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

• The last character of the name cannot be a dollar sign ($) or a percent sign (%).

• The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs($), underscores(_), or periods(.). The use
of underscores in variable names helps improve readability and is preferred to the use of
periods.

2. The name of an internal, implicitly declared variable must conform to the following rules:

• The name consists of from 1 to 31 characters.

• The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

• The last character of the name can be either a dollar sign ($) to indicate a string variable or a
percent sign (%) to indicate an integer variable. If the last character is neither a dollar sign
nor a percent sign, the name indicates a variable of the default type.

BASIC Reference Manual 25

• The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs($), underscores(_), or periods(.). The use
of underscores in variable names helps improve readability and is preferred to the use of
periods.

3. The name of an external, explicitly declared variable in VAX-11 BASIC must follow the rules
for naming an internai, expiicitly deciared variabie.

4. The name of an external, explicitly declared variable in BASIC-PLUS-2 must conform to the
following rules:

• The name consists of from one to six characters.

• The first character of the name must be an upper- or lowercase alphabetic character (A
through Z).

• The remaining characters, if present, can be any combination of upper- or lowercase letters
(A through Z), numbers (0 through 9), dollar signs ($), or periods (.).

5. A program cannot have external, implicitly declared variables since all implicitly declared
names except SUB subprogram names are internal to the program.

In all cases, no variable name can have embedded spaces.

6.2 Implicitly Declared Variables

BASIC accepts three types of implicitly declared variables:

• Floating-point (or default data type)

• Integer

• String

The name of an implicitly declared variable defines its data type. Integer variables end with a percent
sign (%), string variables end with a dollar sign ($), and variables of the default type (usually floating­
point) end with any allowable character except a percent sign or dollar sign. All three types of
variables must conform to the rules listed in Section 6.1 for naming variables. The current data-type
default (INTEGER, REAL, or, in VAX-11 BASIC, DECIMAL) determines the data type of implicitly
declared variables that do not end in a percent sign (%) or dollar sign ($).

A floating-point variable is a named location that stores a single floating-point value. The current
default size for floating-point numbers (SINGLE, DOUBLE, or, in VAX-11 BASIC, GFLOAT or
HFLOA T) determines the data type of the floating-point variable. The following are valid floating­
point variable names:

c
M1
F67T.J

L. .. 5
BIG47
Z2.

ID_NUMBER
STORAGE.LOCATION.FOR.XX
STRESS_ VALUE

If a numeric value of a different data type is assigned to a floating-point variable, BASIC converts the
value to a floating-point number.

26 BASIC Reference Manual

An integer variable is a named location that stores a single integer value. The current default size for
integers (BYTE, WORD, or LONG) determines the data type of an integer variable. The following are
valid integer variable names:

ABCDEFG%
8%

C_8%
D6E7%

RECORD.NUMBER%
THE.VALUE.I.WANT%

If the default data type is INTEGER, the percent suffix (%) is not necessary.

If you assign a floating-point or decimal (VAX-11 BASIC only) value to an integer variable, BASIC
truncates the fractional portion of the value. It does not round to the nearest integer. For example:

100 Bl = -5.7

BASIC assigns the value -5 to the integer variable, not -6.

A string variable is a named location that stores strings. The following are valid string variable names:

C1$
L.6$
ABC1$

M$
F34G$
T .. $

EMPLOYEE_ NAME$
TARGET.RECORD$
STORAGE_SHELF _IDENTIFIER$

Strings have both value and length. BASIC sets all string variables to a default length of zero before
program execution begins, except those in a COMMON, MAP, or virtual array. See Sections 5.0 and
35.0 in Part IV of this manual for information on string length in COMMON and MAP areas. See the
BASIC User's Guide for information on default string length in virtual arrays.

During execution, the length of a character string associated with a string variable can vary from zero
(signifying a null or empty string) to 65535 characters in VAX-11 BASIC or 32767 characters in
BASIC-PLUS-2.

6.3 Explicitly Declared Variables

In addition to implicitly declared variables described in the previous sections, BASIC lets you explic­
itly assign a data type to a variable or an array. For example:

100 DECLARE DOUBLE Interest_rate

Data-type keywords are described in Section 4.0. For more information on explicit declaration of
variables, see the sections on COMMON, DECLARE, DIMENSION, DEF, FUNCTION, EXTERNAL,
MAP, and SUB in Part IV of this manual and Chapter 5 in the BASIC User's Guide.

6.4 Subscripted Variables and Arrays

A subscripted variable is part of an array. Arrays can be of any valid data type. Subscripted variables
and arrays follow the same naming conventions as nonsubscripted variables. Subscripts follow the
variable name in parentheses and define the variable's position in the array. When you create an
array, bounds follow the array name in parentheses and define the maximum size of the array. For
example:

100 DECLARE STRING EMP_name(1000)
200 FOR Il = Ol TO 10001

INPUT 11 EMPloYee naMe";EMP_naMe<II>
NEXT Il

BASIC Reference Manual 27

The DECLARE statement in the example on the previous page sets the bounds of array Emp_name to
1000. Thus, the maximum value for an Emp_name subscript is 1000. The bounds of the array define
the maximum value for a subscript of that array.

In VAX-7 7 BASIC, subscripts can be any positive integer value from 0 to 2147483646 in LONG
mode. In BASIC-PLUS-2, subscripts can be any non-negative integer value from 0 to 32766.

Note

The compiler signals an error if a subscript is bigger than the allowable range. Also,
the amount of storage the system can allocate depends on available memory. There­
fore, very large arrays may cause an internal allocation error.

An array is a set of data ordered in any number of dimensions. A one-dimensional array, like
Emp_name(1000), is called a list or vector. A two-dimensional array, like Payro1Ldata(5,5), is called
a matrix. An array of more than two dimensions, like Big_array(15, 9,2), is called a tensor.

BASIC arrays are always zero-based. That is, the number of elements in any dimension always
includes element number zero. For example, the array Emp_name(1000) contains 1001 elements,
since BASIC allocates element zero. Payro1Ldata(5,5) contains 36 elements because BASIC always
allocates row and column zero.

For all arrays except virtual arrays, the total number of array elements cannot exceed 2147 483647
in VAX-7 7 BASIC and 32767 in BASIC-PLUS-2. For example, VAX-11 BASIC allows array
A(2147483646) but does not allow array A(l ,2147483646). BASIC-PLUS-2 allows array A(32766)
but does not allow array A(1,32766).

VAX-11 BASIC arrays can have up to 32 dimensions. BASIC-PLUS-2 arrays can have up to eight
dimensions. You can also specify the type of data the array contains with data-type keywords. Table 2
lists BASIC data types.

An element in a one-dimensional array has a variable name followed by one subscript in parentheses.
There can be a space between the array name and the parenthetical subscripts. For example:

A(6%)

B (6%)

C$ (6%)

A(6%) refers to the seventh item in this list:

A(0%) A(1 %) A(2%) A(3%) A(4%) A(5%) A(6%)

An element in a two-dimensional array has two subscripts, in parentheses, following the variable
name. The first subscript specifies the row number, the second specifies the column. Use a comma to
separate the subscripts. There can be a space between the array name and the parenthetical sub­
scripts. For example:

A (7%,2%) A%(4%,6%) A$(10%, 10%)

28 BASIC Reference Manual

In the following table, the arrow points to the element specified by the subscripted variable
A%(4%,6%):

c 0 L u M N s
0 2 3 4 5 6

R 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
W2 0 0 0 0 0 0 0
s 3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 ..,......_ A%(4%,6%)

An element in an array has as many subscripts as there are dimensions. An element of
Big_array(15%, 9% ,2%), for example, would have three subscripts.

Although a program can contain a variable and an array with the same name, this is regarded as poor
programming practice. Variable A and the array A(3%,3%) are separate entities and are stored in
completely separate locations and should have different names.

Note

A program cannot contain two arrays with the same name and a different number of
subscripts. For example, the arrays A(3%) and A(3%,3%) are invalid in the same
program.

BASIC arrays can be redimensioned at run time. See Chapter 7 in the BASIC User's Guide for more
information on arrays.

6.5 Initialization of Variables

BASIC sets variables to zero or null values at the start of program execution. Variables initialized by
BASIC include:

• Numeric variables and in-storage array elements (except those in MAP or COMMON statements).

• String variables (except those in MAP or COMMON statements).

• Local variables in function definitions. In addition, BASIC sets these values to zero each time the
program cal Is the function.

• Variables in subprograms. Subprogram variables are initialized to zero or the null string each time
the subprogram is called.

BASIC does not initialize virtual arrays.

Note

In BASIC-PLUS-2, variables in a MAP statement referenced in an OPEN statement are
initialized to zero or the null string when the file is opened. In VAX-11 BASIC, these
variables are not initialized. You can also use MACR0-11 routines to initialize MAP
and COMMON areas. See BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS IE
Systems for more information.

BASIC Reference Manual 29

7.0 Expressions

BASIC expressions consist of operands (numbers, strings, constants, variables, functions, or array
elements) separated by:

•Arithmetic operators

• String operators

• Relational operators

• Logical operators

All BASIC expressions except string concatenation and invocations of string-valued functions yield
numeric values. The way you combine numeric operators and operands and use the resulting values
allows you to produce:

• Numeric expressions

• String expressions

• Conditional expressions

BASIC evaluates expressions according to operator precedence and uses the results in program execu­
tion. Parentheses can appear in expressions to group operands and operators, thus controlling the
order of evaluation.

The following sections explain the types of expressions you can create and the way BASIC evaluates
expressions.

7.1 Numeric Expressions

Numeric expressions consist of floating-point, integer, or packed decimal (VAX-11 BASIC only)
operands separated by arithmetic operators and optionally grouped by parentheses. Table 5 shows
how numeric operators work in numeric expressions.

Table 5: Arithmetic Operators

Operator Example Use

+ A+ B Add B to A

- A-B Subtract B from A

* A*B Multiply A by B

I A/B Divide A by B

A KB Raise A to the power B

** A**B Raise A to the power B

In general, two arithmetic operators cannot occur consecutively in the same expression. Exceptions
are the unary plus and unary minus. The following expressions are valid:

A*+ B

A* (-B)

A*+-+-B

30 BASIC Reference Manual

The following expression is not valid:

A-*B

An operation on two numeric operands of the same data type yields a result of that type. For example:

A% + B% yields an integer value of the default type.

G3 * MS yields a floating-point value if the default type is REAL.

If the result of the operation exceeds the range of the data type, VAX-11 BASIC signals an overflow
error message. For example:

10 DECLARE BYTE At B
A = 127
B = 127
PRINT A + B

99 END

This example causes VAX-11 BASIC to signal the error "Integer error or overflow" because the sum of
A and B (254) exceeds the range of-128 to + 127 for BYTE integers. Similar overflow errors occur for
REAL and DECIMAL data types whenever the result of a numeric operation is outside the range of the
data type.

Assigning a value of one data type to a variable of a different data type changes the assigned value's
data type to the variable's data type. For example:

10 Al = 5+1 * 8+3

This example assigns the value 32 to the integer variable A% even though the floating-point value of
the expression is 32.13. This is called numeric conversion. See Chapter 5 of the BASIC User's Guide
for more information on numeric conversion.

7.1.1 Floating-Point and Integer Promotion Rules

When an expression contains operands with different data types, the data type of the result is deter­
mined by BASIC's data type promotion rules:

•With one exception, BASIC promotes operands with different data types to the lowest common data
type that can hold the largest or most precise possible value of either operand's data type, then
performs the operation in that data type, and yields a resuit of that data type.

•The exception to the previous rule is that when an operation involves SINGLE and LONG data
types, BASIC promotes the LONG data type to SINGLE, rather than to DOUBLE, performs the
operation, and yields a result of the SINGLE data type.

Note that BASIC does a sign extend when converting BYTE and WORD integers to a higher INTEGER
data type (WORD or LONG). That is, the high order bit (the sign bit) determines how the additional
bits are set when the BYTE or WORD is converted to WORD or LONG. If the high order bit is zero
(positive), all higher-order bits in the converted BYTE or WORD are set to zero. If the high order bit is
one (negative), all higher-order bits in the converted BYTE or WORD are set to one.

Table 6 lists the data type results possible in numeric expressions that combine BYTE, WORD,
LONG, SINGLE, and DOUBLE data. Table 7 lists the data type results possible in numeric expres­
sions that combine the VAX-11 BASIC only data types, GFLOAT and HFLOAT. Note that in VAX-7 7
BASIC, when the operands are DOUBLE and GFLOAT, BASIC promotes both values to HFLOAT, and

BASIC Reference Manual 31

returns an HFLOAT value. The promotion of DOUBLE and GFLOAT to HFLOAT is necessary because
a DOUBLE value is more precise than a GFLOAT value, but cannot contain the largest possible
GFLOAT value. Consequently, BASIC promotes these data types to a data type that can hold the
largest and most precise value of either operand.

Table 6: Result Data Types in BASIC Expressions

Operand 2

Operand 1 BYTE WORD LONG SINGLE DOUBLE

BYTE BYTE WORD LONG SINGLE DOUBLE

WORD WORD WORD LONG SINGLE DOUBLE

LONG LONG LONG LONG SINGLE DOUBLE

SINGLE SINGLE SINGLE SINGLE SINGLE DOUBLE

DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE DOUBLE

<8> Table 7: VAX-11 BASIC Result Data Types

Operand 2

Operand 1 GFLOAT HFLOAT

BYTE GFLOAT HFLOAT

WORD GFLOAT HFLOAT

LONG GFLOAT HFLOAT

SINGLE GFLOAT HFLOAT

DOUBLE HFLOAT HFLOAT

GFLOAT GFLOAT HFLOAT

HFLOAT HFLOAT HFLOAT

As Table 6 shows, if one operand is SINGLE and one operand is DOUBLE, BASIC promotes the
SINGLE value to DOUBLE, performs the specified operation, and returns the result as a DOUBLE
value. This promotion is necessary because the SINGLE data type has less precision than the
DOUBLE value, whereas the DOUBLE data type can represent all possible SINGLE values. If BASIC
did not promote the SINGLE value and the operation yielded a result outside of the SINGLE range,
loss of precision and significance would occur.

The data types BYTE, WORD, LONG, SINGLE, and DOUBLE form a simple hierarchy: if all operands
in an expression are these data types, the result of the expression is the highest data type used in the
expression.

<8> 7.1.2 DECIMAL Promotion Rules (VAX-11 BASIC only)

VAX-11 BASIC also allows the DECIMAL(d,s) data type. The number of digits (d) and the scale or
position of the decimal point (s) in the result of operations involving a DECIMAL value depends on the

32 BASIC Reference Manual

data type of the other operand. If one operand is DECIMAL and the other is DECIMAL or INTEGER,
the d and s values of the result are determined as follows:

• If both operands are typed DECIMAL, and if both operands have the same digit (d) and scale (s)
values, no conversions occur and the result of the operation has exactly the same d ands values as
the operands. Note, however, that overflow can occur if the result exceeds the range specified by
the d value.

• If both operands are DECIMAL but have different digit and scale values, BASIC always uses the
larger number of specified digits for the result.

For example:

100 DECLARE DECIMALC5t2) A
DECLARE DECIMALC4t3) 5

Variable A allows three digits to the left of the decimal point and two digits to the right. Variable B
allows one digit to the left of the decimal point and three digits to the right. Therefore, the result
allows three digits to the left of the decimal point and three digits to the right:

A
B

Result

• If one operand is typed DECIMAL and one is typed INTEGER, the INTEGER value is converted to a
DECIMAL(d,s) data type as follows:

BYTE is converted to DECIMAL(3,0).

WORD is converted to DECIMAL(S,0).

LONG is converted to DECIMAL(10,0).

BASIC then determines the d and s values of the result by evaluating the d and s values of the
operands as described above.

Note that only INTEGER data types are converted to the DECIMAL data type. If one operand is
DECIMAL and one is floating-point, the DECIMAL value is converted to a floating-point value. The
total number of digits (d) in the DECIMAL value determines its new data type, as shown in Table 8.

Table 8: Result Data Types for DECIMAL Data

Number of Floating-point Operands
DECIMAL Digits

in Operand SINGLE DOUBLE GFLOAT HFLOAT

1-6 SINGLE DOUBLE GFLOAT HFLOAT

7-15 DOUBLE DOUBLE GFLOAT HFLOAT

16 DOUBLE DOUBLE HFLOAT HFLOAT

17-31 HFLOAT HFLOAT HFLOAT HFLOAT

BASIC Reference Manual 33

If the value of d is between 7 and 15, the operand is converted to:

• DOUBLE if the floating-point operand is SINGLE or DOUBLE

• GFLOAT if the floating-point operand is GFLOAT

• HFLOAT if the floating-point operand is HFLOAT

Thus, a DECIMAL(8,S) operand is converted to DOUBLE if the other operand is SINGLE or DOUBLE,
to GFLOAT if the other operand is GFLOAT, and to HFLOAT if the other operand is HFLOAT.

I Note also that exponentiation of a DECIMAL data type returns a REAL value.

See the BASIC User's Guide for more information on data type interactions, conversions, and promo­
tion rules in BASIC numeric expressions.

7 .2 String Expressions

String expressions are string entities separated by the plus sign (+). When used in a string expression,
the plus sign concatenates strings.

For example:

100 INPUT "TYPe two words to be c0Mbined";A$1 6$
C$ = A$ + 6$
PRINT C$

200 END

RUNNH

TYPe two words to be coMbined? hello
? 9'oodbye

hello9'oodbYe

Ready

7 .3 Conditional Expressions

Conditional expressions can be either relational or logical expressions.

Numeric relational expressions compare numeric operands to determine whether the expression is
true or false. String relational expressions compare string operands to determine which string expres­
sion occurs first in the ASCII collating sequence.

Logical expressions contain integer operands and logical operators. BASIC determines whether the
specified logical expression is true or false by testing the numeric result of the expression. Note that in
conditional expressions, as in any numeric expression, when BYTE and WORD operands are con­
verted to WORD and LONG, the specified operation is performed in the higher data type, and the
result returned is also of the higher data type. When one of the operands is a negative value, this
conversion will produce accurate but perhaps confusing results, because BASIC performs a sign
extend when converting BYTE and WORD integers to a higher integer data type. See Section 7.1.1 for
information on integer conversion rules.

34 BASIC Reference Manual February 1984

7 .3.1 Numeric Relational Expressions

Operators in numeric relational expressions compare the values of two operands and return: 1) a
minus one if the relation is true or 2) a zero if the relation is false. The data type of the result is the
default integer type. For example:

Example 1

100 A = 10
B = 15

RUN NH

XX. = <A < > B)
IF X% = -1%
THEN PRINT 'Relationship is true'
ELSE IF }{% = 0

THEN PRINT 'Relationship is false'
END IF

END IF

RelationshiP is true

Example 2

10 A = 10
B = 15
X% = A = B
IF X% = - tl
THEN PRINT 'Relationship is true'
ELSE IF X% = 0

THEN PRINT 'Relationship is false'
END IF

END IF

RUNNH

Relationship is false

Tabie 9 shows how numeric operators work in numeric reiationai expressions.

Table 9: Numeric Relational Operators

Operator

<

>

<=or=<

>=or=>

<>or><

Example

A=B

A<B

A>B

A<= B

A>= B

A<> B

A== B

Meaning

A is equal to B.

A is less than B.

A is greater than B.

A is less than or equal to B.

A is greater than or equal to B.

A is not equal to B.

A and B will PRINT the same because
they are equal to six significant digits.

BASIC Reference Manual 35

7.3.2 String Relational Expressions

Operators in string relational expressions determine how BASIC compares strings. BASIC determines
the value of each character in the string by converting it to its ASCII value. ASCII values are listed in
Appendix C in BASIC on VAX/VMS Systems, BASIC on RSX-11 M!M-PLUS Systems, and BASIC on
RSTS IE Systems. BASIC compares the strings character by character, left to right, until it finds a
difference in ASCII value. For example:

10 A$ = I ABC I

B$ = I ABZ I

20 IF A$ < B$
THEN PRINT 'ABC comes before ABZ'

GOTO 99
ELSE IF A$ == B$

THEN PRINT 'The strin~s are identical'
GOTO 99

ELSE IF A$ > B$
THEN PRINT 'ABC comes after ABZ'

GOTO 99
END IF

END IF
END IF

55 PRINT 'Strin~s are equal but not identical'
99 END

In this example, BASIC compares A$ and B$ character by character. The strings are identical up to
the third character. Because the ASCII value of "Z" (90) is greater than the ASCII value of "C" (67),
A$ is less than B$. BASIC evaluates the expression A$ < B$ as true (-1), prints "ABC comes before
ABZ" and goes to Ii ne 99.

If two strings of differing lengths are identical up to the last character in the shorter string, BASIC pads
the shorter string with spaces (ASCII value 32) to generate strings of equal length, unless the operator
is the double equals sign (= =). If the operator is the double equals sign, BASIC does not pad the
shorter string. For example:

. " .LV A$;;;; 'ABCDEf
B$ = 'ABC'

20 PRINT 'B$ comes before A$' IF
PRINT 'A$ comes before B$' IF

30 C$ = 'ABC I

IF B$ - - C$
THEN PRINT 'B$ exactly
ELSE PRINT 'B$ does not

END IF
IF B$ = C$

THEN PRINT 'B$ Matches
ELSE PRINT 'B$ does not

END IF

RUN NH

B$ comes before A$
B$ does not exactly match C$
B$ matches C$ with Paddin~

B$ < A$
A$ < B$

matches C$'
exactly match C$'

C$ with Paddin~'
match C$'

In this program, BASIC compares "ABCDE" to "ABC "to determine which string comes first in the
collating sequence. "ABC "comes before "ABCDE" because the ASCII value for space (32) is lower
than the ASCII value of "D" (68). Then BASIC compares "ABC " with "ABC" using the double

36 BASIC Reference Manual

equals sign and determines that the strings do not match exactly without padding. The third compari­
son uses the single equals sign. BASIC pads "ABC" with spaces and determines that the two strings
match with padding.

Table 1 O shows how numeric operators work in string relational expressions.

Table 10: String Relational Operators

Operator

<

>

<=or=<

>=or=>

<>or><

Example Meaning

A$ = B$ Strings A$ and B$ are identical after the shorter string has been padded with spaces to
equal the length of the longer string.

A$ < B$ String A$ occurs before string B$ in ASCII sequence.

A$ > B$ String A$ occurs after string B$ in ASCII sequence.

A$ < = B$ String A$ is identical to or precedes string B$ in ASCII sequence.

A$ > = B$ String A$ is identical to or follows string B$ in ASCII sequence.

A$ <> B$ String A$ is not identical to string B$.

A$ = = B$ Strings A$ and B$ are identical in composition and length, without padding.

BASIC treats unquoted strings typed in response to the INPUT statement differently than quoted strings
by ignoring leading and trailing spaces and tabs. That is, BASIC evaluates the quoted strings "ABC"
and "ABC " as equal but not identical because the = = operator does not pad the shorter string
with spaces. When you input the same strings as unquoted strings in response to the INPUT prompt,
BASIC evaluates them as equal and identical because it ignores the trailing spaces. The LINPUT
statement, on the other hand, treats unquoted strings as string literals so the trailing spaces are part of
the string, and BASIC evaluates the strings as equal but not identical.

7.3.3 Logical Expressions

A logical expression contains either:

•A unary iogicai operator and one integer operand

• Two integer operands separated by a binary logical operator

• One integer operand

Logical expressions are valid only when the operands are integers. If the expression contains two
integer operands of differing data types, the resulting integer has the same data type as the higher
integer operand. For instance, the result of an expression that contains a BYTE integer and a WORD
integer would be a WORD integer. Table 6 shows how integer data types interact with each other in
expressions.

BASIC determines whether the condition is true or false by testing the result of the logical expression
to see whether any bits are set. If no bits are set, the value of the expression is zero and it is evaluated
as false; if any bits are set, the value of the expression is nonzero, and the expression is evaluated as
true. BASIC generally accepts any nonzero value in logical expressions as true. However, logical
operators can return unanticipated results unless minus one is specified for true values and zero for
false. Therefore, logical operators should be used on the results of relational expressions to obtain
valid and predictable results. Table 11 lists logical operators. Examples that show how logical opera­
tors work on nonzero and minus one values follow the table.

BASIC Reference Manual 37

Table 11 : Logical Operators

Operator Example Meaning

NOT NOTA% The bit-by-bit complement of A%. If A% is true (-1), NOT A% is false (0).

AND A% AND 8% The logical product of A% and 8%. A% AND 8% is true only if both A% and 8% are true.

OR A% OR 8% The logical sum of A% and 8%. A% OR 8% is false only if both A% and 8% are false;
otherwise, A% OR 8% is true.

XOR A% XOR 8% The logical exclusive OR of A% and 8%. A% XOR 8% is true if either A% or 8% is true
but not if both are true.

EQV A% EQV 8% The logical equivalence of A% and 8%. A% EQV 8% is true if A% and 8% are both true
or both false; otherwise, the value is false.

IMP A%1MP8% The logical implication of A% and 8%. A% IMP 8% is false only if A% is true and 8% is
false; otherwise, the value is true.

The truth tables in Table 12 summarize the results of these logical operations. Zero is false; minus one
is true.

Table 12: Truth Tables

A% NOTA% A% 8% A% OR 8%

0 -1 0 0 0
-1 0 0 -1 -1

-1 -0 -1
-1 -1 -1

A% 8% A% AND 8% A% 8% A% EQV 8%

0 0 0 0 0 -1
0 -1 0 0 -1 0

-1 0 0 -1 0 0
-1 -1 -1 -1 -1 -1

A% 8% A% XOR 8% A% 8% A%1MP8%

0 0 0 0 0 -1
0 -1 -1 0 -1 -1

-1 0 -1 -1 0 0
-1 -1 0 -1 -1 -1

The operators XOR and EQV are logical complements.

Note that in logical expressions, any nonzero value is evaluated as true, while in relational expres­
sions, a minus one is generated as a true value. Logical operators set bits in the result of the expres­
sion; any bit set is a nonzero value and is evaluated as true. For this reason, it is important to use
logical operators on the results of relational expressions (the values of minus one and zero) to avoid
unanticipated results. For example:

10 AX. = 2%
20 B'X. = a·x.
30 IF A% THEN PRINT 'A% IS TRUE'

38 BASIC Reference Manual

ao IF Bl THEN PRINT 'Bl IS TRUE'
50 IF Al AND Bl THEN PRINT 'Al AND Bl IS TRUE'

60 END

RUNNH

Al IS TRUE
Bl IS TRUE
Al AND Bl IS FALSE

ELSE PRINT 'A7n AND B7n IS FALSE'

In this example, the values of A% and B% both test as true because they are nonzero values.
However, the logical AND of these two variables returns an unanticipated result of "false."

The program returns this seemingly contradictory result because logical operators work on the indi­
viduai bits of the operands. The 8-bii binary represeniaiion of 2% is:

0 0 0 0 0 0 1 0

The 8-bit binary representation of 4% is:

0 0 0 0 0 1 0 0

Each value tests as true because it is nonzero. However, the AND operation on these two values sets
a bit in the result only if the corresponding bit is set in both operands. Therefore, the result of the
AND operation on 4% and 2% is:

0 0 0 0 0 0 0 0

No bits are set in the result, so the value tests as false (zero).

If the value of B% is changed to 6%, the resulting value tests as true (nonzero) because both 6% and
2% have the second bit set. Therefore, BASIC sets the second bit in the result and the value tests as
nonzero and true.

The 8-bit binary representation of minus one is:

The result of -1 % AND -1 % is -1 % because BASIC sets bits in the result for each corresponding bit
that is set in the operands. The result, therefore, tests as true because it is a nonzero value. For
example:

10 Al -U
20 B'X = -1%
30 IF A'X THEN PRINT
ao IF B'X THEN PRINT
50 IF AX. AND BX. THEN

GO END

RUNNH

Al IS TRUE
B'.t IS TRUE
Al AND Bl IS TRUE

ELSE

'AX. IS TRUE I

'Bl IS TRUE'
PRINT 'Al AND B% IS TRUE'
PRINT 'A% AND Bl IS FALSE'

BASIC Reference Manual 39

Your program may also return unanticipated results if you use the NOT operator with a nonzero
operand that is not minus one. For example:

10 A%=-1'X
20 6'X.=2
30 IF A% THEN PRINT I A%

ELSE PRINT I AI
40 IF 6% THEN PRINT I 6%

ELSE PRINT I 6'%
50 IF NOT A% THEN

60 IF NOT

99 END

RUN NH

AI IS TRUE
6% IS TRUE

6%

NOT A% IS FALSE
NOT 6% IS TRUE

ELSE
THEN
ELSE

PRINT
PRINT
PRINT
PRINT

IS TRUE'
IS FALSE'
IS TRUE I

IS FALSE'
'NOT Al IS TRUE I

'NOT Al IS FALSE'
'NOT 6 '% IS TRUE'
'NOT 6% IS FALSE'

In this example, BASIC evaluates both A% and B% as true because they are nonzero. NOT A% is
evaluated as false (zero) because the binary complement of minus one is zero. NOT B% is evaluated
as true because the binary complement of two has bits set and, therefore, is a nonzero value.

Note

DIGIT AL recommends that you use logical operators on the results of relational
expressions to avoid obtaining unanticipated results.

7 .4 Evaluating Expressions

BASIC evaluates expressions according to operator precedence. Each arithmetic, relational, and string
operator in an expression has a position in the hierarchy of operators. The operator's position tells
BASIC when to perform the operation. Parentheses can change the order of precedence.

Table 13 lists all operators as BASIC evaluates them. Note that:

• Operators with equal precedence are evaluated logically from left-to-right.

• BASIC evaluates expressions enclosed in parentheses first, even when the operator in parentheses
has a lower precedence than that outside the parentheses.

40 BASIC Reference Manual

Table 13: Numeric Operator Precedence

I ** or "

- (unary minus) or + (unary plus)

*or I

+or-

+ (concatenation)

al I relational operators

NOT

AND

OR, XOR

IMP

EQV
!

Lowest

BASIC thus evaluates the expression A = 15"2 + 12"2 - (35 * 8) in five steps:

1. 15"2 = 225 Exponentiation (left-most expression)

2. 12"2 = 144 Exponentiation

3. 225 + 144 = 369 Addition

4. (35 * 8) = 280 Multiplication

5. 369 - 280 = 89 Subtraction

There is one exception to this order of precedence: when an operator that does not require operands
on either side of it (such as NOT) immediately follows an operator that does require operands on both
sides (such as +), BASIC evaluates the second operator first. For example:

A% + NOT B% + C%

This expression is evaluated as:

(A% + (NOT B%)) + C%

BASIC evaluates the expression NOT B before it evaluates the expression A + NOT B. When the
NOT expression does not follow the + expression, the normal order of precedence is followed:

NOT A% + B% + C%

This expression is evaluated as:

NOT ((A% + B%) + C %)

BASIC Reference Manual 41

BASIC evaluates the two plus expressions (A% + B%) and ((A% + B%) + C%) because the plus (+)
operator has a higher precedence than the NOT operator.

BASIC evaluates nested parenthetical expressions from the inside out. For example:

100 A= ((((25 + 5) I 5) * 7) + 3)
PRINT A

300 B = 25 + 5 I 5 * 7 + 3
PRINT B

RUNNH

45
35

In this program, BASIC evaluates the parenthetical expression A quite differently from expression B.
For expression A, BASIC evaluates the innermost parenthetical expression (25 + 5) first, then the
second inner expression (30 I 5), then (6 * 7), and finally (42 + 3). For expression B, BASIC evaluates
(5 I 5) first, then (1 * 7), then (25 + 7 + 3) to obtain a different value.

42 BASIC Reference Manual

PART II
""""pile• '-'Ulll I I

Commands

APPEND

1.0 APPEND

Function

The APPEND command merges an existing BASIC source program with the program currently in
memory.

Format

APPEND [file-spec]

Syntax Rules

1. File-spec names the file of BASIC program lines you want to merge with the program
currently in memory. The VAX-11 BASIC default file type is BAS, and the BASIC-PLUS-2
default file type is B2S.

General Rules

1. If you type APPEND without specifying a file name, BASIC prompts with:

APPend file naMe--

Respond with a file name. If you respond with a carriage return and no file name, VAX-11
BASIC searches for a file named NONAME. BAS. BASIC-PLUS-2 searches for a file named
NONAME.B2S. If the compiler cannot find NONAME.BAS or NONAME.B2S, VAX-11
BASIC signals the error "file not found"; BASIC-PLUS-2 signals "can't find file or
account''.

BASIC Reference Manual 43

APPEND

2. You can append the contents of file-spec to a source program called into memory with the
OLD command or created in the BASIC environment. If there is no program in memory,
BASIC appends the file-spec to an empty program with the default file name, NONAME.

3. If the file-spec contains a BASIC line with the same line number as a line of the program in
memory, the line in the appended file replaces the line of the program in memory. Other­
wise, BASIC inserts appended lines into the program in memory in sequential, ascending
line number order.

4. The APPEND command does not change the name of the program in memory.

5. If you have not saved the appended version of the program, BASIC signals the warning
"Unsaved change has been made, CTRL/Z or EXIT to exit" the first time you try to leave
the BASIC environment.

Examples

APPEND PROGB

44 BASIC Reference Manual

ASSIGN

2.0 ASSIGN {VAX-11 BASIC)

Function

The ASSIGN command equates a logical name to a complete file specification, a device, or another
logical name within the context of the BASIC environment.

Format

ASSIGN equiv-nam[:] log-nam[:]

Syntax Rules

1. Equiv-nam specifies the file specification, device, or logical name to be assigned a logical
name. If you specify a physical device name, terminate it with a colon (:).

2. Log-nam is the 1- to 63-character logical name to be associated with equiv-nam. You can
specify a logical name for any portion of a file specification. If the logical name translates
to a device name, and will be used in place of a device name in a file specification,
terminate it with a colon (:).

General Rules

1. When the logical name assignment supersedes another logical name assigned previously,
BASIC displays the message "previous logical name assignment replaced".

2. If log-nam has more than 63 characters, BASIC signals the error "invalid logical name".

3. Logical names assigned with the ASSIGN command are placed in the process logical name
table and remain there until you exit the BASIC environment.

Examples

ASSIGN CLEONARD.BASJ PRO:

BASIC Reference Manual 45

BR LR ES

3.0 BRLRES (BASIC-PLUS-2)

Function

The BRLRES command allows you to specify a memory-resident BASIC-PLUS-2 or user-created
library to be used when you task-build the program. When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command file. The default library for
the BRLRES command is chosen by your system manager when BASIC-PLUS-2 is installed.

Format

BRLRES [lib-param]

lib-param: I file-spec I
NONE

Syntax Rules

1. If you enter the BRLRES command without a lib-param, BASIC prompts for one and dis­
plays the name of the current default memory-resident library.

• File-spec can be a library supplied by BASIC-PLUS-2 or a user-created library.

• NONE tells the Task Builder not to link your task to the BASIC-PLUS-2 default resident
library. Therefore, the Task Builder links to the BASIC-PLUS-2 object module library,
BP20TS.OLB.

• If you type a carriage return in response to the prompt, the current default memory­
resident library is used.

General Rules

1. The memory-resident libraries supplied by BASIC-PLUS-2 are LB: [1, 1 JBP2RES and
LB:[1,1]BP2SML on RSX-11M/M-PLUS systems and LB:BP2RES and LB:BP2SML on
RSTSIE systems. LB: is a RSTS/E logical name for the library account on disk. Because
memory-resident libraries are optional, your system manager can se~ect none, one, or both
when BASIC-PLUS-2 is installed. See BASIC on RSX-11 MI M-PLUS Systems or BASIC on
RSTS IE Systems for information on BASIC-PLUS-2 memory-resident libraries.

2. BASIC-PLUS-2 links the specified memory-resident library to your program when you
task-build the program, so you must use the BRLRES command before you use the BUILD
command to include the specified library in the Task Builder command file.

3. The BRLRES library you specify is included in your Task Builder command files until you
specify a new library with the BRLRES command or exit from the BASIC environment.
When you exit from the environment, the original default library is restored as the default.

4. You can override the BRLRES command with the /BRLRES qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD operation.

46 BASIC Reference Manual

BRLRES

5. The Task Builder returns an error message when the requested memory-resident library is
not avai I able.

6. Consult your system manager for information about the resident libraries available to you.

Examples

RSX-17 MI M-PLUS Systems

BRLRES LB:[1t1JBP2RES

BRLRES LB:BP2RES

BASIC Reference Manual 47

BUILD

4.0 BUILD (BASIC-PLUS-2)

Function

The BUILD command generates a command (CMD) file and an overlay description language (ODL)
file for the Task Builder. The command file contains instructions that enable the Task Builder to link
your program module(s) with libraries and other routines. The overlay description language file
specifies how segments of the task-built program are overlaid when you run it.

Format

BUILD [prog-nam [sub-nam, ...]] [/qualifier] ...

Syntax Rules

1. Prog-nam names the program you want to build. If you do not specify a prog-nam,
BASIC-PLUS-2 creates CMD and ODL files for the current program or for NONAME if
there is no current program.

2. Sub-nam names the subprogram or subprograms you want to link to the main program.
You must specify a prog-nam if you specify a sub-nam.

3. The command file takes the name of the main program and a default extension of CMD.
The ODL file takes the name of the main program and a default extension of ODL.

4. I Qualifier specifies a qualifier keyword that sets a BASIC default. Table 17 lists all
BASIC-PLUS-2 qualifiers and describes their functions.

5. The BUILD command line must fit on a single 80-character line.

General Rules

1. The BUILD command does not change the current context of the BAS/C-PLUS-2
environment.

2. The BUILD command generates the CMD and ODL files. It does not cause the Task Builder
to begin operation.

3. In addition to program names and build qualifiers, the BUILD command accepts defaults
from previously specified BRLRES, DSKLIB, ODLRMS, RMSRES, LIBR, and SET commands.

4. BUILD qualifiers tell the Task Builder to perform special operations on object modules
when you task-build the program. You can abbreviate all qualifiers to the first three letters
of the qualifier keyword.

Examples

BUILD MAINtSUB1 tSUB2/DUMP/REL

48 BASIC Reference Manual

$Command

5.0 $ Command

Function

You can enter a system command while in the BASIC environment by typing a dollar sign ($) before
the command. BASIC passes the command to the operating system for execution. The context of the
BASIC environment and the program currently in memory do not change in VAX-11 BASIC and
BASIC-PLUS-2 on RSX-11 MI M-PLUS systems. On RSTS IE systems, the system command executes
and control returns to the default run-time system, not to BASIC-PLUS-2.

Format

$ system-command

Syntax Rules

1. BASIC passes system-command directly to your operating system without checking for
validity.

General Rules

1. The terminal displays any error messages or output that the system-command generates.

VAX-11 BASIC

1. Control returns to the BASIC environment after the system-command executes. The context
(source file status, loaded modules, and so on) of the BASIC environment and the program
currently in memory do not change unless the system-command causes the operating
system to abort BASIC or log you out.

2. On VAX/VMS systems, the system-command you specify executes within the context of a
subprocess. Consequently, commands such as the DCL SET command execute only within
the subprocess and do not affect the process running BASIC.

BASIC-PLUS-2

1. On RSX-11 MI M-PLUS systems, control returns to the BASIC environment after the j RSX I
system-command executes. The context (source file status, loaded modules, and so on) of
the BASIC environment and the program currently in memory do not change unless the
system-command causes the operating system to abort BASIC or log you out.

2. On RSTS IE systems, the context of the environment and the program currently in memory §
are lost. After the system command executes, control passes to monitor level, not to
BAS/C-PLUS-2.

3. If you have made changes to the program currently in memory, BAS/C-PLUS-2 displays
the message "Unsaved change has been made - type SCRATCH or REPLACE" when you
enter a system-command.

BASIC Reference Manual 49

$Command

Examples

VAX-11 BASIC

Ready

$SHOW PROTECTION
SYSTEM=RWED1 OWNER=RWED, GROUP=RWED1 WORLD=RE

Ready

BASIC-PLUS-2

$DIR STOCK.B2S
%Unsaved change has been made - tYPe SCRATCH or REPLACE.

BASIC2

REPLACE

BASIC2

$DIR STOCK.B2S

SO BASIC Reference Manual

COMPILE

6.0 COMPILE

Function

The COMPILE command converts a BASIC source program to an object module and writes the object
file to disk.

Format

COMPILE [file-spec] [/qualifier] ...

Syntax Rules

1. File-spec specifies a name for the output file or files. If you do not provide a file-spec, the
compiler uses the name of the program currently in memory for the file name, a default file
type of OBJ for the object file, and a default file type of LIS (VAX-7 7 BASIC) or LST
(BASIC-PLUS-2) for the listing file, if a listing file is requested. BASIC-PLUS-2 uses a
default file type of MAC for the macro source code file when a macro file is requested.

2. In VAX-11 BASIC, file-spec can precede or follow I qualifier. In BASIC-PLUS-2, file-spec
must precede the qualifiers.

3. /Qualifier specifies a qualifier keyword that sets a BASIC default. See Section 22.0 for
information on BASIC qualifiers. Table 16 lists and describes VAX-11 BASIC qualifiers.
Table 17 lists and describes BASIC-PLUS-2 qualifiers.

4. In cases of ambiguous or erroneous qualifiers, VAX-11 BASIC signals "Unknown quali­
fier", BASIC-PLUS-2 signals "Illegal switch", and the program does not compile. When
qualifiers conflict, BASIC compiles the program using the last specified conflicting quali­
fier. For example:

COMPILE/OBJ/NOOBJ

BASIC compiles the program currently in memory but does not create an OBJ file.

5. You can abbreviate all positive COMPILE qualifiers to the first three letters of the qualifier
keyword. A negative qualifier can be abbreviated to NO and the first three letters of the
qualifier keyword.

6. There must be a program in memory or the COMPILE command does not execute and
BASIC does not signal an error or warning.

General Rules

1. If an object file for the program already exists in your directory, BASIC-PLUS-2 on RSTS IE
systems overwrites it with the new object file. VAX-11 BASIC and BASIC-PLUS-2 on
RSX-11 MI M-PLUS systems create a new version of the OBJ file.

BASIC Reference Manual 51

COMPILE

2. You should not specify both a file name and file type. For example:

3.

Examples

COMPILE NEWOBJ.FIL/LIS/OBJ

• VAX-11 BASIC creates two versions of NEWOBJ.FIL. The first version, NEWOBJ.FIL;1, is
the listing file; the second version, NEWOBJ.FIL;2, is the object file. If you specify only a
file name, BASIC uses the OBJ and LIS file type defaults when creating these files.

• BAS/C-PLUS-2 creates only the object file and names it NEWOBJ.FIL.

Use the COMPILE/NOOBJECT command to check your program for errors without pro­
ducing an object file.

COMPILE NEWSTRING/DOUBLE/LIST

52 BASIC Reference Manual

CONTINUE

7 n ~nNTINI 11:::: . ·- --··. ···--
Function

The CONTINUE command continues program execution after BASIC executes a STOP statement or,
in VAX-11 BASIC, encounters a CTRL /C.

Format

CONTINUE

Syntax Rules

None.

General Rules

1. In VAX-11 BASIC, a program stops executing in response to a STOP statement or a ~
CTRL/C: V
•You can enter immediate mode commands and resume program execution with the

CONTINUE command.

•You cannot resume program execution if you have made source code changes or
additions.

2. In BASIC-PLUS-2, a program stops executing when BASIC executes a STOP statement and 8
control passes to the BASIC-PLUS-2 debugger, which prompts with a pound sign (#).
Type the CONTINUE command to resume program execution. Note that if the program
was executed with the RUN /DEBUG command, you can enter debugger commands be-
fore resuming program execution with the CONTINUE command. See Part VI in this
manual for more information on debugger commands.

Examples

VAX-11 BASIC

lBAS-I-STOt StoP
-BAS-I-FROLINMODt from line 25 in module ABC
Ready

CONTINUE

BASIC-PLUS-2

Stop at line 20

#CONTINUE

BASIC Reference Manual 53

DELETE

8.0 DELETE

Function

The DELETE command removes a specified line or range of lines from the program currently in
memory.

Format

DELETE lin-num [sep lin-num] , ...

sep:

Syntax Rules

1. You must enter at least one line number. If you do not, DELETE has no effect in VAX-7 7
BASIC, while BASIC-PLUS-2 signals the error "Illegal Delete command".

2. The sep characters allow you to delete individual lines or a block of lines.

• If you separate line numbers with commas, BASIC deletes each specified line number.

• If you separate line numbers with a hyphen (-), BASIC deletes the inclusive range of
lines. The lower line number must come first. If it does not, DELETE has no effect in
VAX-11 BASIC, while BASIC-PLUS-2 signals the error "Bad line number pair".

3. You can combine individual line numbers and line ranges in a single DELETE command.
Note, however, that a line number range must be followed by a comma and not another
hyphen, or BASIC signals an error.

General Rules

1. BASIC-PLUS-2 signals an error if there are no lines in the specified range. VAX-11 BASIC
does not signal an error and the DELETE command has no effect.

2. If you do not specify a beginning line number for a range, VAX-11 BASIC signals the error
"illegal line number". BASIC-PLUS-2 assumes a beginning line number of 1 and deletes
all lines in the range 1 - lin-num.

3. If you do not specify an end line number in a range, VAX-11 BASIC does not delete any
lines and does not signal an error. BASJC-PLUS-2 deletes only the specified line number.

Examples

DELETE 50

DELETE 70-SOt 110t 124

DELETE 50t60t80-110

54 BASIC Reference Manual

DSKLIB

9~0 DSKLIB (BASIC-PLUS-2)

Function

The DSKLIB command lets you select a disk-resident, object module library to be used when you
build your program. When you use the BUILD command, BASJC-PLUS-2 includes the specified
library in the Task Builder command file. Every system has a disk library default set when
BASIC-PLUS-2 is installed.

Format

DSKLIB [file-spec]

Syntax Rules

1. If you enter the DSKLIB command without a file-spec, BASIC-PLUS-2 prompts for one and
displays the name of the current default disk-resident library.

• File-spec can be a disk-resident, object module library supplied with BASIC-PLUS-2 or a
user-created library.

• If you type a carriage return in response to the prompt, BASJC-PLUS-2 uses the default
disk-resident library.

General Rules

1. The object module libraries supplied by BASIC-PLUS-2 are LB:BP20TS.OLB on RSTS IE
systems and LB: [1, 1] BP20TS. OLB on RSX-11 MI M-PLUS systems. LB: is a RSTS IE logical
name for the library account on disk. These libraries contain the BASIC Object Time
System (OTS). OLB is the default object module library file type. If your system does not
have memory-resident libraries, the Task Builder extracts all BASIC routines from these
disk-resident libraries. See BASIC on RSX-11 MI M-PLUS Systems and BASIC on RSTS IE
Systems for more information on object module libraries.

2. The Task Builder links the specified library to your program when you task-build the
program. You must use the DSKLIB command before you use the BUILD command to
include the library you want in the Task Builder command file.

3. The DSKLIB library you specify is included in all Task Builder command files until you
specify a new library with the DSKLIB command or exit from the BASIC environment.
When you exit from the BASIC environment, the default object module library set at
installation is restored as the default disk-resident library.

4. You can override the DSKLIB command with the /DSKLIB qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

5. The Task Builder returns an error message when the requested disk-resident library is not
available.

6. Consult your system manager for information about the disk-resident libraries available to
you.

BASIC Reference Manual 55

DSKLIB

Ex~mples

RSX-11 MI M-PLUS Systems

DSKLI6 LB:[1t1JBP20TS

RSTS IE Systems

DSKLI6 L6:6P20TS

56 BASIC Reference Manual

EDIT

Function

The EDIT command allows you to edit individual program lines in the BASIC environment. In
VAX-11 BASIC, EDIT with no arguments invokes the default text editor and reads the current program
into the editor's buffer. In BASIC-PLUS-2, EDIT with no arguments puts you in the BASIC-PLUS-2
editing mode. BAS/C-PLUS-2 editing mode commands are listed in Table 14 and described in
Sections 10.1 to 10.6.

Format

VAX-11 BASIC

EDIT [[lin-num] search-clause [replace-clause]]

search-clause: delim unq-str1 delim

replace-clause: [unq-str2] [delim [int-const1] [, int-const2]]

BASIC-PLUS-2

EDIT [[lin-num [- lin-num]] search-clause [replace-clause]]

search-clause: delim unq-str1 delim

replace-clause: [unq-str2] delim [int-const1

Syntax Rules

1. Lin-num specifies the line to be edited.

2. Search-clause specifies the text you want to remove or replace. Unq-str1 is the search
string you want to remove or replace.

3. Replace-clause specifies the replacement text and the occurrence of the search string you
want to replace.

• Unq-str2 is the replacement string.

• lnt-const1 specifies the occurrence of unq-str1 you want to replace. If you do not specify
an occurrence, BASIC replaces the first occurrence of unq-str1.

4. Delim can be any printing character not used in unq-str1 or unq-str2. The examples in this
and the following sections use the slash (/) as a delimiter.

5. The delim characters in search-clause must match, or BASIC signals an error.

6. If the delim you use to signal the end of replace-clause does not match the delim used in
search-clause, BASIC does not signal an error and treats the end delim as part of unq-str2.

BASIC Reference Manual 57

EDIT

7. BASIC replaces or removes text in a program line as follows:

• If unq-str1 is found, BASIC replaces it vvith unq~str2.

• If unq-strl is not found, BASIC signals an error.

• If unq-strl is null, VAX-11 BASIC signals "no change made". BASIC-PLUS-2 replaces
the first character of the last edited line with unq-str2 and does not signal an error.

• If unq-str2 is null, BASIC deletes unq-strl. The delim in the replace-clause is required if
you want to delete unq-strl.

• BASIC matches and replaces strings exactly as you type them. If unq-strl is uppercase,
BASIC searches for an uppercase string. If it is lowercase, BASIC searches for a lowercase
string.

VAX-11 BASIC

1. The EDIT command followed by a carriage return causes BASIC to temporarily save your
program in a file called BASEDITMP.TMP. BASIC then invokes the same editor you use
when you type the DCL EDIT command. When you finish editing your program and
exit the editor, the edited program is the program currently in memory, and the context
of the BASIC environment is unchanged. Note that BASIC deletes all versions of
BASEDITMP.TMP when you return to BASIC from the editor.

2. lnt-const2 in replace-clause specifies the sub-line of a block of program code where you
want BASIC to begin the search.

8 BASIC-PLUS-2

1. The EDIT command followed by a carriage return puts you in the BASIC-PLUS-2 editing
mode. Editing mode commands, iisted in Table 14 and described in Sections 10.1 to 10.6,
are valid only in the BASIC-PLUS-2 editing mode. The editing mode prompt is an asterisk
(*).

2. BASIC-PLUS-2 sets a specified line number as the current edit line, even when the editing
operation fails. That line number remains set as the current edit line until you specify
another line number or exit the BASIC environment.

3. You can edit a range of lines by separating two line numbers with a hyphen. BASIC signals
an error and does not edit the specified range if there are spaces between the hyphen and
the line numbers.

4. If you specify a range of lines and an occurrence, BASIC replaces each occurrence of
unq-strl in each line of the range beginning with the specified occurrence. For example:

10 PRINT DISPLAY$t DISPLAY$t DISPLAY$
20 PRINT DISPLAY$t DISPLAY$t DISPLAY$
EDIT 10-20 /DISPLAY$/NEW$/2

10 PRINT DISPLAY$t NEW$t NEW$
20 PRINT DISPLAY$, NEW$t NEW$

11 DISPLAY$ 11 replaced bY 11 NEW$ 11 +

a substitutions

58 BASIC Reference Manual

EDIT

General Rules

VAX-11 BASIC

1. VAX-11 BASIC displays the edited line with changes after the EDIT command successfully
executes.

2. If you specify a lin-num with no text parameters, VAX-11 BASIC displays the line.

BASIC-PLUS-2

1. BASIC-PLUS-2 displays the edited line or lines with changes after the EDIT command
successfully executes. lt also displays a message showing the search siring, replacemeni
string, and number of replacements made.

2. If you want to edit a range of numbers, you must specify both the beginning and end of the
range. BASIC-PLUS-2 does not default to the last edited line or to the last line number in
the program.

3. When you specify a,fin-num with no text parameters, BASIC-PLUS-2 displays the message
"Current edit line is x", where x is the specified lin-num.

4. When you type EDIT with no parameters to enter the editing mode, BASIC-PLUS-2 checks
the last edited line number to make sure that it still exists in the current program. If it has
been deleted, BAS/C-PLUS-2 displays the message "?No current line".

Examples

VAX-11 BASIC

EDIT 100 /LEFT$/RIGHT$/3t2

EDIT

BASIC-PLUS-2

EDIT 300-400 /LEFT$//

ED IT 300 I LEFT$ IR I GHT$ I 3

EDIT

BASIC Reference Manual 59

EDIT

8 Table 14: BASIC-PLUS-2 Editing Mode Commands

Command Function

DEFINE Used to enter a macro definition. A macro definition consists of editing commands. You cannot,
though, use the DEFINE and EXECUTE commands in a macro definition. To end the macro
definition, type a carriage return and then EXIT or CTRL/Z. You must use the EXECUTE command
to execute the macro definition.

EXECUTE Executes the macro defined by the DEFINE command as many times as you specify.

EXIT (or CTRL/Z) Allows you to exit from editing mode, execute an INSERT command, or end a DEFINE command.

FIND Searches from the last edited line to the end of the current program for a specified string.

INSERT Allows you to add program lines after a specified line number. Type a carriage return and EXIT or
CTRL/Z to execute this subcommand.

SUBSTITUTE Performs the same function and accepts the same text parameters as the EDIT command; you
cannot, however, specify line numbers or line number ranges.

60 BASIC Reference Manual

DEFINE

10.1 DEFINE (BASIC-PLUS-2)

Function

The DEFINE editing mode command allows you to enter a macro definition. The macro consists of a
series of editing mode commands in the order in which they are to execute.

Format

~ D l
(DEFINE)

Syntax Rules

1. The macro definition must consist of valid editing mode commands or BASJC-PLUS-2
signals an error. You cannot use the DEFINE or EXECUTE editing mode commands in a
macro definition.

General Rules

1. Type the DEFINE command and a carriage return, then enter your macro definition. Type
EXIT or CTRL/Z in response to the DEFINE prompt(->) when you have finished entering
your macro definition. BASIC-PLUS-2 displays the editing mode prompt, and you can
enter more editing commands.

2. BASIC writes the macro definition to a file, so the definition remains in effect until you
enter another DEFINE command. That is, an EXECUTE command executes the last defined
macro definition.

Examples

*DEFINE

*

Enter coMMand sequence:
->FIND REM
- >SUBSTITUTE I REM I ! I
->EXIT

BASIC Reference Manual 61

EXECUTE

10.2 EXECUTE (BASIC-PLUS-2)

Function

The EXECUTE editing mode command executes the last macro defined by the DEFINE command. You
specify the number of times the macro is to execute.

Format

I EXE I
EXECUTE [int-const]

Syntax Rules

1. lnt-const specifies the number of times the macro executes. If you do not specify int-const,
BASIC-PLUS-2 executes the macro once.

General Rules

1. An EXECUTE command always executes the last defined macro definition. If no macro
definition exists, BAS/C-PLUS-2 signals the error "Command sequence has not been
defined".

Examples

*EXECUTE 5

62 BASIC Reference Manual

EXIT

10.3 EXIT or CTRL/Z (BASIC-PLUS-2)

Function

The EXIT or CTRL/Z editing mode command marks the end of a DEFINE or INSERT command or exits
from editing mode.

Format

Syntax Rules

None.

General Rules

1. If you type EXIT or CTRL /Z in response to the editing mode prompt, BASIC-PLUS-2 exits
from editing mode.

2. If you type EXIT or CTRL/Z to end a DEFINE or INSERT command, BASJC-PLUS-2 dis­
plays the editing mode prompt and you can enter more editing commands.

Examples

*DEFINE

*

Enter command sequence
->FIND REM
=>SUBS I REM I l
- >E}< IT

BASIC Reference Manual 63

FIND

10.4 FIND (BASIC-PLUS-2)

Function

The FIND editing mode command searches the current program for a specified string starting at the
last edited line and continuing to the end of the program.

Format

I :IND I [unq-str]

Syntax Rules

1. The FIND command does not require character delimiters for unq-str. Delimiters are the
space after the command and a carriage return.

General Rules

1. When unq-str is found, BASIC-PLUS-2 displays the line that contains the unq-str, sets it as
the last edited line, and displays an informational message.

2. If unq-str is not found, the last edited line remains unchanged and BAS/C-PLUS-2 displays
a message telling you that the string was not found.

3. The FIND command matches unq-str exactly as you type it. If unq-str is uppercase,
BASIC-PLUS-2 searches for uppercase characters. The delimiters (space and carriage
return) are not included in the match.

4. If you do not specify an unq-str, the FIND command matches the unq-str specified by the
last FIND command. If there is no previous FIND command, BASIC-PLUS-2 matches the
first character of the last edited line.

Examples

*FIND PRIMT

330 PRIMT 'How Many receiPts do You have';RECEIPTS

"PRIMT" found on line 330

*

64 BASIC Reference Manual

INSERT

10.5 INSERT (BASIC-PLUS-2)

Function

The INSERT editing mode command allows you to add lines to a program.

Format

l :NSERT I [lin-num]

Syntax Rules

1. Lin-num specifies the line number after which you want to insert new program lines. If you
do not specify a lin-num, BASIC defaults to the last edited line.

2. If lin-num does not exist in the source program currently in memory, BASIC signals an
error.

General Rules

1. Type in program lines, beginning with a line number, after entering the INSERT command.
When you are finished inserting lines, type EXIT or CTRL/Z to return to the editing mode.
BASIC-PLUS-2 displays the editing mode prompt and you can enter more editing
mode commands.

2. If you insert a line number that already exists, BASIC-PLUS-2 replaces the existing line
with the code you insert and does not signal a warning.

3. BAS/C-PLUS-2 does not perform syntax checks on inserted program lines even when
syntax checking is enabled.

4. The current edit line does not change. For example, if the current edit line is 10 and you
insert lines 20 and 30, line 10 remains the current edit line.

Examples

*INSERT 30

Enter lines to be added after line 30
->40 INPUT 'More receiPts';RECEIPTS$
->50 IF RECEIPTS$ = 1111

-> THEN GOTO 32787
-> END IF
->EXIT

*

BASIC Reference Manual 65

SUBSTITUTE

10.6 SUBSTITUTE (BASIC-PLUS-2)

Function

The SUBSTITUTE editing mode command allows you to substitute one character string for another in
the program currently in memory. SUBSTITUTE is the editing mode equivalent of the EDIT command
with one exception: you cannot specify a range of lines. The SUBSTITUTE subcommand can replace
only one occurrence of the specified search string, while the EDIT command can replace all occur­
rences in a range of lines, if you so specify.

Format

I :UBSTITUTE I search-clause [replace-clause]

search-clause:

replace-clause:

Syntax Rules

delim unq-str1 delim

[unq-str2] delim [int-const]

1. Delim marks the beginning and end of the search and replace strings. Delimiters are
required before and after unq-str1. The delimiter after unq-str2 is optional.

• Delim can be any printing character not used in the search or replace strings. The
examples in this section use the slash (I) as a delimiter.

• The beginning and ending delim characters must match, or BAS!C signals an error.

2. Unq-str1 specifies the string you want to remove or replace. Unq-str2 specifies the string to
be substituted for unq-str 1.

• If unq-str1 is found, BASIC replaces it with unq-str2.

• If unq-str1 is not found, BASIC signals an error.

• If you do not specify unq-str2, BASIC deletes unq-str1.

• If you do not specify unq-str1, BASIC replaces the first character of the last edited line
with unq-str2.

•The SUBSTITUTE subcommand matches and replaces strings exactly as you type them. If
unq-str1 is uppercase, BASIC searches for an uppercase string. If it is lowercase, BASIC
searches for a lowercase string.

3. /nt-const specifies the occurrence of str-lit1 you want to replace. If you do not specify an
int-canst, BASIC replaces the first occurrence of str-lit1.

4. If you type only the SUBSTITUTE subcommand and a carriage return, BAS/C-PLUS-2
signals the error "Parameters required".

66 BASIC Reference Manual

SUBSTITUTE

Genera! Rules

1. BASIC displays the edited line with changes after the SUBSTITUTE command executes.

Examples

*SUBSTITUTE /Al/ABSOLUTEl/3

BASIC Reference Manual 67

EXIT

11.0 EXIT

Function

The EXIT command or CTRL /Z clears memory and returns control to the operating system.

Format

EXIT

Syntax Rules

None.

General Rules

1. If you type EXIT after creating a new program or editing an old program without first typing
SAVE or REPLACE, BASIC signals "Unsaved change has been made, CTRL/Z or EXIT to
exit". The message warns you that the new or revised program will be lost if you do not
SAVE or REPLACE it. If you type EXIT again, BASIC exits from the environment whether
you have saved your changes or not.

Examples

EXIT

68 BASIC Reference Manual

HELP

Function

The HELP command displays on-line documentation for BASIC commands, keywords, statements,
functions, and conventions.

Format

HELP [unq-str] ...

Syntax Rules

1. If you type HELP with no parameters, BASIC displays a list of topics.

2. Unq-str is BASIC topic, keyword, command, statement, function, or convention.

3. The first unq-str must be a topic. If it is not, BASIC displays a list of topics for you to choose
from.

4. You can specify a subtopic after the topic. Separate one unq-str from another with a space.

5. You can use the asterisk(*) wildcard character in unq-str or alone as unq-str. If you use an
asterisk in unq-str, BASIC displays information on all topics that match the specified por­
tion of unq-str. If you use the asterisk alone, BASIC displays information on all BASIC
topics.

General Rules

1. If the unq-str you specify is not a unique topic or subtopic, BASIC displays a information on
all topics or subtopics beginning with unq-str. For example:

Ready
HELP STATEMENTS CH

STATEMENTS

CHAIN

The CHAIN stateMent transfers control f roM the current Pro9raM to another
BASIC Pro9raM. The Pro9raM to which You CHAIN Must be in executable
forMat.

ForMat

CHAIN <str-exP>

ExaMPle

zao CHAIN "COSINE.EXE"
(continued on next page)

BASIC Reference Manual 69

HELP

STATEMENTS

CHANGE

The CHANGE stateMent: 1) converts a string of characters to their ASCII
integer valuest or 2) converts a list of nuMbers to a string of ASCII
characters.

ForMat

String Variable to ArraY:

CHANGE str-exP TO nuM-arraY

ArraY to String Variable:

CHANGE nuM-arraY TO str-vbl

ExaMPle

200 CHANGE ARRAY_CHANGES TO A$

ToPic?

2. An asterisk (*) indicates that you want to display information that matches any portion of
the topic you specify. For example, if you type HELP GO*, BASIC displays information on
GOSUB and GOTO.

3. When information on a particular topic or subtopic is not available, BASIC signals the
message "Sorry, no documentation on unq-str" and a list of "Additional information
available".

Examples

HELP STATEMENTS ON GOTO

STATEMENTS

ON

GOTO

The ON GOTO stateMent transfers PrograM control to one of several linest
dePending on the value of a control exPression.

ForMat

{ GO TO }
ON int-exP { GOTO } target ,. •• [OTHERWISE target J

Example

330 ON INDEX% GOTO 700t800t800t OTHERWISE 1000

Topic?

70 BASIC Reference Manual

IDENTIFY

13.0 IDENTIFY

Function

The IDENTIFY command displays an identification header on the controlling terminal. The header
contains the name and version number of BASIC.

Format

IDENTIFY

General Rules

1. The message displayed by the IDENTIFY command includes the name of the BASIC com­
piler and the version number.

Examples

VAX-11 BASIC

IDENTIFY

VAX-11 BASIC v2.o

BASIC-PLUS-2

IDENTIFY

PDP-11 BASIC-PLUS-2 v2.o

BASIC Reference Manual 71

INQUIRE

14.0 INQUIRE

Function

The INQUIRE command is a synonym for the HELP command. See the HELP command for syntax
rules.

72 BASIC Reference Manual

LIBRARY

15.0 LIBRARY (BASIC-PLUS-2)

Function

The LIBRARY command allows you to specify a memory-resident BASIC-PLUS-2 or user-created
library to be used when you task-build the program. When you use the BUILD command,
BASIC-PLUS-2 includes the specified library in the Task Builder command file. The default library for
the LIBRARY command is chosen by your system manager when BASIC-PLUS-2 is installed.

Format

LIBRARY [lib-param]

lib-param: file-spec

Syntax Rules

lib-nam

NONE

1. If you enter the LIBRARY command without a lib-param, BASIC-PLUS-2 prompts for one and
displays the name of the current default memory-resident library.

• Lib-nam or file-spec can be a memory-resident library supplied by BASIC-PLUS-2 or a user­
created library. If you specify only lib-nam with no device, BASIC-PLUS-2 assumes LB: on
RSTS/E systems and LB:[1,1] on RSX-11M/M-PLUS systems.

• NONE tells the Task Builder not to link your task to the BASIC default memory-resident
library. Therefore, the Task Builder links to the BASIC disk-resident, object module
library, BP20TS.OLB.

• If you type a carriage return in response to the prompt, the current default memory-resident
library is used.

General Rules

1. The memory-resident libraries supplied by BASIC-PLUS-2 are BP2RES and BP2SML.
Because memory-resident libraries are optional, your system manager can select none,
one, or both then BASIC-PLUS-2 is installed. See BASIC on RSX-11 MI MPLUS Systems or
BASIC on RSTS/E Systems for information on using BASIC-PLUS-2 memory-resident librar­
ies. See your system manager for information on the libraries available on your system.

2. On RSTS IE systems, the LIBRARY command does not require the LB: logical name. BASIC
automatically searches this account for the memory-resident library symbol table. On
RSX-11 MI M-PLUS systems, the LIBRARY command automatically references libraries on
LB:[1,1] unless you specify another UIC.

3. BASIC-PLUS-2 links the specified library to your program when you task-build the pro­
gram. You must use the LIBRARY command before you use the BUILD command to
include the specified library in the Task Builder command file.

BASIC Reference Manual 73

LIBRARY

4. The library you specify is_ included in your Task Builder command files until you specify a
new library with the LIBRARY command or exit from the compiler. When you exit from the
compiler; the original default library is restored as the default.

5. You can override the LIBRARY command with the /LIBRARY qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

6. The Task Builder returns an error message when the requested resident library is not
available.

Examples

LIBRARY BP2RES

74 BASIC Reference Manual

LIST

16.0 LIST and LISTNH

Function

The LIST command displays the program lines of the program currently in memory. Line numbers are
sequenced in ascending order. LISTNH displays program lines without the program header.

Format

VAX-11 BASIC

l' LiSTNH !'
LIST [lin-num [sep [lin-num]]] ...

sep:

BASIC-PLUS-2

I LISTNH I
LIST i [-] lin-num] [sep [lin-num]] ...

sep:

Syntax Rules

1. The LIST command displays program lines, along with a header containing the program
name, the current time, and the date. To suppress the pmgiam headei, type LlSTNH.

2. UST without parameters displays the entire program.

3. The sep characters allow you to display single lines or a range of lines.

• To display single lines, separate line numbers with commas. For example:

LIST 30 t70

displays a header and lines 30 and 70.

• To display an inclusive range of lines, separate line numbers with a hyphen. The first
number must be lower than the second number in the range or BASIC signals an error.
For example:

LIST 30-70

displays lines 30 through 70.

4. Line number ranges must be separated from other ranges or individual line numbers by
commas as BASIC does not allow two consecutive hyphens.

BASIC Reference Manual 75

LIST

VAX-11 BASIC

1. A lin-num followed by a hyphen and a cairiage return displays the specified line and all
remaining lines in the program.

2. A hyphen between the LIST command and lin-num causes VAX-11 BASIC to signal an
error.

8 BASIC-PLUS-2

1. A hyphen between the LIST command and the lin-num displays all lines from the begin­
ning of the program up to and including the lin-num you specify.

2. A lin-num followed by a comma or a hyphen and a carriage return displays only the
specified line.

3. If there are no lines in the specified range, BASIC-PLUS-2 signals an error.

General Rules

1. BASIC displays the source program lines in the order you specify in the command line.
That is, BASIC displays line 100 before line 10 if you type LIST 100, 10.

Examples

VAX-11 BASIC

LIST SOt 200-300t 30000-

BASIC-PLUS-2

LISTNH -301 2000-25001 19000

76 BASIC Reference Manual

LOAD

17.0 LOAD

Function

The LOAD command makes a previously created object module or modules available for execution
with the RUN command.

Format

LOAD file-spec [+ file-spec] ... J
Syntax Rules

1. File-spec must be a BASIC object module or BASIC signals an error. OBJ is the default file
type. If you specify only the file name, BASIC searches for an OBJ file in the current default
directory.

2. Each device and directory specification applies to all following file specifications until you
specify a new directory or device.

3. Each new LOAD command cancels the effect of a previous LOAD command. That is, the
LOAD command clears all previously loaded object modules from memory.

4. The LOAD command accepts multiple device, directory, and file specifications.

General Rules

1. BASIC does not process the loaded object files until you issue the RUN command. Conse­
quently, errors in the loaded modules may not be detected until you execute them.

2. BASIC signals an error:

• If the file is not found

• If the file specification is not val id

• If the file is not a BASIC object module

• If run-time memory is exceeded

Errors do not change the program currently in memory.

3. Typing the LOAD command does not change the program currently in memory.

Examples

LOAD PROGA + PROGB + PROGC

BASIC Reference Manual 77

LOCK

18.0 LOCK

Function

The LOCK command changes default values for COMPILE command qualifiers. It is a synonym for
the SET command. See the SET command for syntax rules.

78 BASIC Reference Manual

NEW

10 n NS:W • ..,.v .,._ ••

Function

The NEW command clears BASIC memory and allows you to assign a name to a new program.

Format

NEW [prog-nam]

Syntax Rules

1. Prog-nam is the name of the program you want to create. VAX-11 BASIC and
BASIC-PLUS-2 on RSX-11 MI M-PLUS systems allow names to contain up to nine alpha­
numeric characters. BASIC-PLUS-2 on RSTS IE systems allows names to contain up to six
alphanumeric characters.

2. BASIC-PLUS-2 on RSTS IE systems truncates a prog-nam that exceeds six characters and
does not signal an error.

3. VAX-11 BASIC and BASIC-PLUS-2 on RSX-11 MI M-PLUS systems signal an error if the
prog-nam exceeds nine characters.

4. VAX-11 BASIC signals "error in program name" if you specify a file type. BAS/C-PLUS-2
ignores the file type and does not signal an error.

General Rules

1. If you do not specify a prog-nam, BASIC prompts with:

New file na!Tle--

2. The defauit name is NONAME. if you do not prov1ae a prog-nam in response to the
prompt, BASIC assigns the file name NONAME to your program.

3. When you type the NEW command, the program currently in memory is lost. Program
modules loaded with the LOAD command remain unchanged.

Examples

NEW PROG1

BASIC Reference Manual 79

I

OD LR MS

20.0 ODLRMS (BASIC-PLUS-2)

Function

The ODLRMS command allows you to select an overlay description (ODL) file to describe the RMS
overlay structure to be used when your program is task built. When you use the BUILD command,
BASIC-PLUS-2 includes the specified ODL file in the Task Builder command file. Every system has
an ODL default set when BASIC-PLUS-2 is installed. See your system manager for the name of your
BASIC default.

Format

ODLRMS [odl-param]

odl-param: I file-spec I
NONE

Syntax Rules

1. If you enter the ODLRMS command without an odl-param, BAS/C-PLUS-2 prompts for
one and displays the name of the current default ODL file.

• File-spec can be an ODL file supplied by RMS or a user-created file. Table 15 lists and
describes RMS ODL files.

• NONE tells the Task Builder not to link your task to any RMS ODL file.

• If you type a carriage return in response to the prompt, BASIC-PLUS-2 uses the default
ODL file.

General Rules

80

1. New versions of RMS can change ODL file names, so consult the RMS distribution kit for
current ODL names. LB: is a RSTS/E logical name for the library account on disk. On
RSX-11 MI M-PLUS systems, you must specify LB:[1, 1] before the ODL file name.

2. Enter the ODLRMS command before you enter the BUILD command. The ODL file you
specify is included in all Task Builder command files until you enter a new ODLRMS
command or exit from the BASIC environment, at which time BAS/C-PLUS-2 returns to the
ODL default file.

3. You can override the ODLRMS command with the ODL qualifier to the BUILD command
for a single BUILD operation.

4. Refer to the RMSRES compiler command to see which ODL files are required for each RMS
library.

BASIC Reference Manual February 1984

ODLRMS

5. The Task Builder returns an error message if the ODL file you select is not available or
valid. Consult your system manager for information about ODL files available to you.

6. Consult BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS IE Systems for more
information on using RMS libraries.

Table 15: ODL Files

ODLRMS File Organization Type of Overlay

Option Seq Rel Ind Library Segments

RMSRLX Yes Yes Yes Memory None

DAPRLX Yes Yes Yes Memory None

RMS11 S Yes Yes No Disk 11

RMS12S Yes Yes No Disk 5

RMS11 X Yes Yes Yes Disk 35

RMS12X Yes Yes Yes Disk 13

DAP11 X Yes Yes Yes Disk 16

Examples

RSX-11 MI M-PLUS Systems

ODLRMS LB:[l tlJRMSRLX.ODL

RSTS IE Systems

ODLRMS LB:RMSRLX.DDL

February 1984 BASIC Reference Manual 81

OLD

21.0 OLD

Function

The OLD command brings a previously created BASIC program into memory.

Format

OLD [file-spec]

Syntax Rules

1. If you do not name a file-spec, BASIC prompts for one. If you do not enter a file-spec in
response to the prompt, BASIC searches for a file named NONAME. BAS (V AX-11 BASIC)
or NONAME.B2S (BASIC-PLUS-2) in the current default directory.

2. The default file type is BAS for VAX-11 BASIC and B2S for BASIC-PLUS-2.

General Rules

1. If the compiler cannot find the file-spec, VAX-11 BASIC signals the error "file not found"
and BASIC-PLUS-2 signals "can't find file or account".

2. When the specified file is found, it is placed in memory and any program currently in
memory is erased. If BASIC does not find the specified file, the program currently in
memory does not change.

3. If you specify a file that does not begin with a line number, BASIC discards all text up to the
first line number, brings the file into memory! and signals the error "Non-continued state­
ment has no line number near <line number>". You can then LIST and SAVE the
program.

Examples

OLD CHECK
Ready

82 BASIC Reference Manual

Qualifiers

22 .. 0 Qualifiers

Function

BASIC qualifiers allow you to specify defaults for the compilation process and the BASIC environ­
ment. You specify qualifiers with the COMPILE and SET commands. In BASIC-PLUS-2, you can also
specify qualifiers with the BUILD and RUN commands.

Format

command [/qualifier] ...

Syntax Rules

1. The slash delimiter is not required before the first qualifier in the SET command. Multiple
qualifiers, however, must be separated by slashes or commas. See the syntax rules for the
SET command for more information on separating qualifiers.

2. You can abbreviate all positive qualifiers to the first three letters of the qualifier keyword.
You can abbreviate a negative qualifier to NO and the first three letters of the qualifier
keyword.

General Rules

1. Table 16 lists VAX-11 BASIC qualifiers and their functions. Table 17 lists BASIC-PLUS-2
qualifiers, the commands they can be used with, and their functions.

2. In cases of ambiguous or erroneous qualifiers, VAX-11 BASIC signals the error "Unknown
qualifier", while BASIC-PLUS-2 signals "Illegal switch".

3. When you exit from the BASIC environment, all defaults set with qualifiers return to the
defaults. Use the SHOW command before setting any quaiifiers to dispiay your system
defaults.

Examples

COMP I LE I NOOBJ I DOUBLE I DEBUG

SET /TYPE-DEFAULT: EXPLICIT/LIST

BASIC Reference Manual 83

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers

Qualifier

[NOJANSLSTANDARD

[NO]AUDIT [sep text-entry]

sep:

text-entry:

[NO] BOU N DS_CH ECK

BYTE

[NO]CROSS_REFERENCE [sep [NOJKEYWORDS l

sep: I~ I
[NO] DEBUG

DECIMAL_SIZE sep (d,s)

sep: I~ I

84 BASIC Reference Manual

Function

Tells BASIC to compile programs according to the ANSI Minimal
BASIC Standard and to flag syntax that does not conform to the
standard. See BASIC on VAX/VMS Systems for information on
the ANSI Minimal BASIC Standard.

Tells BASIC to include a history entry in the COD data base when
a COD definition is extracted. Str-lit is a quoted string. File-spec
is a text file. The history entry includes:

• The contents of str-lit, or up to the first 64 lines in the file
specified by file-spec

•The name of the program module, process, user name, and
user UIC that accessed the COD

• The time and date of the access

•A note that access was made by the BASIC compiler

• A note that the access was an extraction

Tells BASIC to perform range checks on array subscripts. BASIC
checks that all subscript references are within the array bound­
aries set when the array was declared.

Causes the compiler to allocate eight bits of storage as the default
for all integer data not explicitly typed in the program. Untyped
integer values are treated as BYTE vaiues and must be in the
BYTE range or BASIC signals the error "Integer error or over­
flow". Table 2 in this manual lists BASIC data types and ranges.

Causes the compiler to include cross-reference information in the
program listing file. If you specify KEYWORDS, BASIC also
cross-references BASIC keywords used in the program. The list­
ing file takes the program name as the file name and a default file
type of LIS.

Tells BASIC to provide records for the VAX-11 Symbolic
Debugger. See BASIC on VAX /VMS Systems for information on
using the VAX-11 Symbolic Debugger.

Allows you to specify the default size and precision for all
DECIMAL data not explicitly assigned size and precision in the
program. You specify the total number of digits (d) and the num­
ber of digits to the right of the decimal point (s). BASIC signals
the error "Decimal error or overflow" (ERR= 181) when
DECIMAL values are outside the range specified with this quali­
fier. See Table 2 in this manual and Appendix C in BASIC on
VAX/VMS Systems for information on the storage and range of
packed decimal data.

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

DOUBLE

[NO]FLAG [sep (flag-clause, ...)]

sep:

flag-clause:

February 1984

I [NO]BP2COMPATIBILITY I
[NO] DECLINING

Function

Causes the compiler to allocate 64 bits of storage in
D_FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating­
point values are treated as DOUBLE values and must be in
the DOUBLE range or BASIC signals the error "Floating­
point error or overflow". Table 2 in this manual lists BASIC
data types and ranges.

Causes BASIC to provide compile-time information about
program elements that are not compatible with
BASIC-PLUS-2 or that DIGITAL designates as declining.
An element is designated declining when BASIC has a
preferred and often more powerful way to perform the
operation.

If you specify BP2COMPATIBILITY, BASIC will flag the
following source code as incompatible with
BASIC-PLUS-2:

• String comparisons using(<),(>),(<=), or(>=)

• DECIMAL keyword and DECIMAL function

• HFLOAT keyword

• GFLOAT keyword

• LOC function

• MAR and MAR% functions

I
• MARGIN and NOMARGIN statements

• RECORD declarations

• More than 16 digits of precision in a floating-point literal

• Explicit literal notation that specifies a radix

• Explicit literal notation with data type other than "B"
(BYTE), "W" (WORD), "L" (LONG), "S" (SINGLE), "D"
(DOUBLE), or "C" (CHARACTER)

• Names in the EXTERNAL statement that have more than
six characters or contain characters not in the Radix-SO
character set

• BY DESC clauses on anything other than entire arrays or
unsubscripted STRING variables

• BY VALUE clauses for anything other than BYTE or
WORD unsubscripted variables

• More than eight parameters to a DEF, subprogram, or
external function

(continued on next page)

BASIC Reference Manual 85

I

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

GFLOAT

HFLOAT

[NO]LINE

[NO]LIST

86 BASIC Reference Manual

Function

• Arrays of more than eight dimensions

• Terminal-format files opened with no MAP or
RECORDSIZE clause and no ACCESS READ clause

• BY DESC, BY REF, and BY VALUE clauses in SUB and
FUNCTION statements

If you specify DECLINING, BASIC will flag the following
source code as declining:

• CVT$$ (use EDIT$)

• CVT$% 1 CVT$F, CVT%$, CVTF$ 1 and SWAP% (use
multiple MAP statements)

• DEF* functions (use DEF functions)

• FIELD statements (use MAP DYNAMIC and REMAP)

• GOTO lin-num% (do not use the integer suffix with a
line number)

Causes the compiler to allocate 64 bits of storage in
G_FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating­
point values are treated as GFLOAT values and must be in
the GFLOA T range or BASIC signals "Floating-point error I
or overflow". Table 2 in this manual !ists BASIC data types
and ranges.

Causes the compiler to allocate 128 bits of storage in
H_FLOAT format as the default size for all floating-point I
data not explicitly typed in the program. Untyped floating- .
point values are treated as HFLOAT values and must be in
the HF LOA T range or BASIC signals "Floating-point error
or overflow". Table 2 in this manual lists BASIC data types
and ranges.

Includes line number information in object modules. If you
specify NOLINE in a program containing a RESUME state­
ment or using the run-time ERL function, BASIC warns that
the NOLINE qualifier has been overridden.

Tells BASIC to produce a source listing file. By default, this
file contains a memory allocation map. The listing file
takes the name of the program and a default file type of
LIS.

(continued on next page)

Qualifiers

Tab!e 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

LONG

[NO]MACHINE_CODE

[NO] OBJECT

[NO]OVERFLOW [sep (data-type, ...)]

sep:

data-type:

[NO] ROUND

[NO] SETUP

1~1
!INTEGER I

DECIMAL

Function

Causes the compiler to allocate 32 bits of storage as the
default size for all integer data not explicitly typed in the
program. Untyped integer values are treated as LONG val­
ues and must be in the LONG range or BASIC signals the
error "Integer error or overflow". Table 2 in this manual
lists BASIC data types and ranges.

Causes BASIC to include the machine code generated by
the compilation in the program listing file.

Generates an object module with the same file name as the
program and a default file type of OBJ. Use NOOBJECT to
check your program for errors without creating an object
file.

Tel Is BASIC to report arithmetic overflow for operations on
integer and /or packed decimal data.

Tells BASIC to round rather than truncate DECIMAL
values.

I
Te!!s BASIC to make ca!!s to the Run-Time Library that set
up the stack for BASIC variables, set up dynamic string and
array descriptors, initialize variables, and enable BASIC
error handling. If you specify NOSETUP, BASIC will
attempt to optimize your program by omitting these calls.
If your program contains any of the following elements,
BASIC provides an informational diagnostic and does not
optimize your program:

• CHANGE statements

• DEF or DEF* statements

• Dynamic string variables

• Executable DIM statements

• EXTERNAL string functions

• MAT statements

• MOVE statements for an entire array

• ON ERROR statements

(continued on next page)

BASIC Reference Manual 87

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

[NOJSHOW [sep (show-item, ...) I

sep:

show-item:

'

SINGLE

[NO]CDD_DEFINITIONS
[NO] ENVIRONMENT
[NO]INCLUDE
[NO] MAP
[NO] OVERRIDE

[NO]SYNTAx_CHECK

[NO]TRACEBACK

88 BASIC Reference Manual

I

Function

• READ statements

• REMAP statements

• RESUME statements

• String concatenation

• Built-in string functions

• Virtual array declarations

Note that program modules compiled with NOSETUP
cannot perform any I /0 and have no error handling capa­
bilities. If an error occurs in such a module, the error is
resignaled to the calling program.

Tells BASIC what to include in the listing file:

• CDD_DEFINITIONS specifies translated COD defini­
tions.

• ENVIRONMENT specifies a listing of the compilation
qualifiers in effect.

• INCLUDE specifies a listing of the contents of %IN­
CLUDE files.

• MAP specifies a storage allocation map.

• OVERRiDE canceis the effect of ail %NOLIST directives
in the source program.

If you do not specify a show-item, BASIC uses the defaults
set with the DCL command.

Causes the compiler to allocate 32 bits of storage in
F _FLOAT format as the default size for all floating-point
data not explicitly typed in the program. Untyped floating­
point values are treated as SINGLE values and must be in
the SINGLE range or BASIC signals the error "Floating­
point error or overflow". Table 2 in this manual lists BASIC
data types and ranges.

Tells BASIC to perform syntax checking after each program
line is typed.

Causes BASIC to include traceback information in the ob­
ject file that allows reporting of the sequence of calls that
transferred control to the statement where an error
occured.

I

(continued on next page)

Qualifiers

Table 16: VAX-11 BASIC COMPILE and SET Command Qualifiers (Cont.)

Qualifier

TYPE_DEFAULT sep default-clause

sep:

default-clause:

REAL
INTEGER
DECIMAL
EXPLICIT

VARIANT sep int-const

sep:

[NO]WARNINGS [sep warn-clause l

sep:

I I

l [NO]WARNINGS !
[NO] IN FORMATIONALS I warn-clause:

WORD

Function

Sets the default data type (REAL, INTEGER, or DECIMAL)
for all data not explicitly typed in your program or specifies
that all data must be explicitly typed (EXPLICIT).

• REAL specifies that all data not explicitly typed is float­
ing-point data of the default size (SINGLE, DOUBLE,
GFLOAT, or HFLOAT).

• INTEGER specifies that all data not explicitly typed is
integer data of the default size (BYTE, WORD, or
LONG).

• DECIMAL specifies that all data not explicitly typed is
packed decimal data of the default size.

• EXPLICIT specifies that all data in a program must be
explicitly typed. Implicitly declared variables cause
BASIC to signal an error.

Establishes int-canst as a value to be used in compiler
directives. The variant value can be referenced in a lexical
expression by using the lexical function, %VARIANT.
Int-canst always has a data type of LONG.

Tells BASIC to display warning and /or informational mes­
sages. If you specify WARNINGS but do not specify a
warn-clause, BASIC displays both warnings and informa­
tional messages.

Causes the compiler to allocate 16 bits of storage as the
default for all integer data not explicitly typed in the pro­
gram. Untyped integer values are treated as WORD values
and must be in the range -32768 to 32767 or BASIC sig­
nals the error "Integer error or overflow." Table 2 in this
manual lists BASIC data types and ranges.

BASIC Reference Manual 89

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers

Qualifier

BRLRES: lib-param

I ib-param: I ~~~c I

BYTE

[NO]CHAIN

[NOJCLUSTER[:!ib-param]

lib-param: I file-spec I
NONE

[NOJCROSS_REFERENCE[: [NO] KEYWORDS]

90 BASIC Reference Manual

Commands

BUILD

COMPILE
RUN
SET

COMPILE**
RUN**
SET**

BUILD
SET

COMPILE
SET

Function

Lets you specify a memory-resident library to be
linked to your program. File-spec can be a library
supplied with BASIC-PLUS-2 or a user-created
library. NONE tells the Task Builder not to link
your task to the default memory-resident library.
See the BRLRES command syntax rules in this man­
ual for more information on memory-resident
libraries.

Causes the compiler to allocate eight bits of storage
as the default for all integer data not explicitly
typed in the program. Untyped integer values are
treated as BYTE values and must be in the BYTE
range or BASIC signals the error "Integer error or
overflow". Table 2 in this manual lists BASIC data
types and ranges.

Enables other programs to CHAIN into the program
using the LINE clause of the CHAIN statement. The
default (CHAIN or NOCHAIN) is an installation
option. If the program has more than 200 line
numbers, NOCHAIN reduces the memory needs of
the output program by disabling storage of line
numbers in memory. You cannot chain from one
DECNET node to another.

Tells the Task Builder to duster memory-resident
libraries to increase the space available for your
task. For the cluster qualifier to have an effect, at
least two resident libraries must be linked to the
task: the BASIC-PLUS-2 resident library, and one I
other resident library. File-spec specifies a mem­
ory-resident library to be clustered. NONE speci­
fies that only the BASIC-PLUS-2 and RMS libraries
are clustered.

If there is no default CLUSTER library, the
CLUSTER qualifier without a parameter acts the
same as the CLUSTER:NONE qualifier. The speci­
fied library must be in the account LB: on RSTS/E
systems or the account LB: [1, 1] on RSX systems.
Consult BASIC on RSX-11 MI M-PLUS Systems or
BASIC on RSTS IE Systems for more information on
using RMS libraries.

Causes the compiler to include cross-reference
information in the program listing file. If you spec­
ify KEYWORDS, BASIC also cross-references
BASIC keywords used in the program. The listing
file takes the program name as the file name and a
default file type of LST.

(continued on next page)

February 1984

Qualifiers

Tabie 17: BASiC-PlUS-2 Command Qualifiers (Cont.)

Qualifier

[NO] DEBUG

DOUBLE

DSKLI B file-spec

[NO] DUMP

I EXTEND: int-canst

FLAG:[NO]DECLINING

February 1984

Commands

COMPILE
RUN
SET

COMPILE
RUN
SET

BUILD

BUILD
SET

BUILD
SET

COMPILE
RUN
SET

Function

Tel Is BASIC to provide records for the
BASIC-PLUS-2 debugger when you compile a pro­
gram or to pass control to the debugger when you
execute a program with RUN in the BASIC envi­
ronment. The LINE qualifier must be in effect when
you compile a program with the DEBUG quaiifier
in effect.

Causes the compiler to allocate 64 bits of storage
as the default size for all floating-point data not

1
explicitly typed in the program. Untyped floating­
point vaiues are treated as DOUBLE values and
must be in the DOUBLE range or BASIC signals the
error "Floating-point error". Table 2 in this manual
lists BASIC data types and ranges.

Lets you specify a disk-resident object module
library to be linked to your program. File-spec can
be a library supplied with BASIC-PLUS-2 or a
user-created library. NONE tells the Task Builder
not to link your task to the default object module
library. See the DSKLIB command syntax rules for
more information on disk-resident libraries.

Tells the Task Builder to generate a memory dump
if the program aborts with a fatal error.

I Specifies the amount of space to be added to the
initial task size when the task is started. The Task
Builder rounds the extension up to the nearest
32-word boundary. The maximum extension is
32000.

Causes BASIC to provide compile-time information
about program elements that DIGIT AL designates
declining. An element is designated declining
when BASIC has a preferred and often more
powerf u I ca pa bl ity. When you specify
FLAG:DECLINING, BASIC will flag the following
source code:

• CVT$$ (use EDIT$)

• CVT$%, CVT$F, CVT%$, CVTF$, and SWAP%
(use multiple MAP statements)

• DEF* functions (use DEF functions)

(continued on next page)

BASIC Reference Manual 91

I

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont.)

Qualifier

[NO]IND

LIBRARY: lib-param

lib-param: I lib-nam I
file-spec
NONE

[NOJUNE

[NOJLIST

LONG

[NO] MACRO

92 BASIC Reference Manual

Commands

BUILD
SET

BUILD

COMPILE
RUN
SET

COMPILE
SET

COMPILE
RUN
SET

COMPILE
SET

Function

• FIELD statements (use MAP DYNAMIC and
REMAP)

• GOTO lin-num% (do not use the integer suffix
with a line number)

Causes the Task Builder to include the code
needed for indexed file operations. BASIC-PLUS-2
enables this qualifier automatically for programs
containing an OPEN statement with an
ORGANIZATION INDEXED clause.

Lets you specify a memory-resident I ibrary to be
linked to your program. File-spec and lib-nam can
be a library supplied with BASIC-PLUS-2 or a
user-created library. If you specify only a lib-nam
with no device, BASIC assumes LB: on RSTSIE sys­
tems and LB:[l,1] on RSX systems. NONE tells the
Task Builder not to link your task to the default
memory-resident library. Therefore, the Task
Builder links to the BASIC disk-resident, object
module library, BP20TS.OLB. See the LIBRARY
command syntax rules for more information on
memory-resident libraries.

Includes line number information in object
modules. If you specify NOLINE in a program con­
taining a RESUME statement or using the run-time
ERL function, BASIC warns that the NOLINE quali­
fier has been overridden.

Tells BASIC to produce a source listing file. The
listing file takes the name of the program and a
default file type of LST.

Causes the compiler to allocate 32 bits of storage
as the default size for all integer data not explicitly
typed in the program. Untyped integer values are
treated as LONG values and must be in the LONG
range or BASIC signals the error "Integer error".
Table 2 in this manual lists BASIC data types and
ranges.

Converts the program into MACRO source code
and saves it in a file with the same name as the
program and a file type of MAC. The MAC file can
be assembled.

(continued on next page)

Qualifiers

Tabie 17: BASiC-PlUS-2 Command QualifieiS (Cont.)

Qualifier

[NO] MAP

[NO]OBJECT

ODLRMS: odl-param

odl-param: I ~~:cl

PAGE_SIZE: int-const

[NO] REL

RMSRES: lib-param

lib-param: i~~:c l

[NO]SCALE: const

[NO] SEQ

February 1984

Commands

BUILD

COMPILE
SET

BUILD

COMPILE
SET

BUILD
SET

BUILD

COMPILE

BUILD
SET

Function

Includes information for the allocation map in the
Task Builder command file.

Generates an object module with the same file
name as the program and a default file type of OBJ.
Use NOOBJECT to check your program for errors
without creating an object file.

Lets you specify an ODL file to describe the RMS
overlay structure to be used by the Task Builder.
File-spec can be an ODL file supplied by RMS or a
user-created file. NONE tells the Task Builder not
to link your task to the default ODL file. See the
ODLRMS command syntax rules in this manual for
more information on ODL files.

Sets the page size for the listing file. lnt-const must
be greater than zero or BASIC signals the warning
"Listing length out of range - ignored".

Causes the Task Builder to include the code
needed for relative file operations. BASIC-PLUS-2
sets this qualifier automatically for programs con­
taining an ORGANIZATION RELATIVE clause in
an OPEN statement.

Lets you specify an RMS library that supplies code

I
for file and record opeiations to be linked to your
program. File-spec can be a library supplied by
RMS or a user-created library. NONE tells the Task
Builder not to link your task to the default RMS
library. See the RMSRES command syntax rules for
more information on RMS libraries.

Allows control of accumulated round-off errors
when double precision numbers (values typed
DOUBLE) are used. Numbers are stored as multi­
ples of 10 by setting the scale factor (canst) from 0
to 6. Floating-point numbers are truncated to an
integer value of 0 to 6. A scale factor larger than 6
causes BASIC to signal the error message "Scale
factor of n is out of range."

Causes the Task Builder to include the RMS--11
code needed for sequential file operations.
BASIC-PLUS-2 sets this qualifier automatically for
programs containing an ORGANIZATION
SEQUENTIAL clause in the OPEN statement.

(continued on next page)

BASIC Reference Manual 93

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont.)

Qualifier

SINGLE

[NO]SYNTAx_CHECK

TYPE_DEFAULT: default-clause

default-clause: I REAL I
INTEGER
EXPLICIT

VARIANT: int-canst

[NO]VIR

94 BASIC Reference Manual

Commands

COMPILE
RUN
SET

COMPILE
RUN
SET

COMPILE
RUN
SET

COMPILE
RUN
SET

BUILD*
SET*

Function

Causes the compiler to allocate 32 bits of storage
as the default size for all floating-point data not
explicitly typed in the program. Untyped floating­
point values are treated as SINGLE values and must
be in the SINGLE range or BASIC signals the error
"Floating-point error". Table 2 in this manual lists
BASIC data types and ranges.

Tells BASIC to perform syntax checking after each
program line is typed.

Sets the default data type (REAL or INTEGER) for all
data not explicitly typed in your program or speci­
fies that all data must be explicitly typed
(EXPLICIT).

• REAL specifies that all data not explicitly typed is
floating-point data of the default size (SINGLE or
DOUBLE).

• INTEGER specifies that all data not explicitly
typed is integer data of the default size (BYTE,
WORD, or LONG).

• EXPLICIT specifies that all data in a program
must be explicitly typed. Implicitly declared vari­
ables cause BASIC to signal an error.

Establishes int-canst as a value to be used in com­
piler directives. The variant value can be refer­
enced i. a lexical expression by using the lexical
function, % VARIANT. Int-canst always has a data
type of WORD.

Causes the Task Builder to include the RMS code
needed for virtual array and block I /0 file opera­
tions. BAS/C-PLUS-2 sets this qualifier automati­
cally when you compile a program containing an
ORGANIZATION VIRTUAL clause in the OPEN
statement.

(continued on next page)

Qualifiers

Table 17: BASIC-PLUS-2 Command Qualifiers (Cont.)

Qualifier Commands Function

WIDTH: int-const COMPILE Sets the width of the listing file. lnt-const must be
SET in the range 72 to 132, inclusive, or BASIC signals

the warning "Listing width out of range -
ignored".

WORD COMPILE Causes the compiler to allocate 16 bits of storage
RUN as the default for all integer data not explicitly
SET typed in the program. Untyped integer values are

treated as WORD values and must be in the range
-32768 to 32767 or BASIC signals the error
"Integer error." Table 2 in this manual lists BASIC
data types and ranges.

* RSX only
** RSTS IE only

BASIC Reference Manual 94.1

RENAME

23.0 RENAME

Function

The RENAME command allows you to assign a new name to the program currently in memory.
BASIC does not write the renamed program to a file until you save the program with the REPLACE or
SAVE command.

Format

Syntax Rules

1. Prog-nam specifies the new program name. VAX-11 BASIC and BASIC-PLUS-2 on
RSX-11 MI M-PLUS systems allow names to contain up to nine alphanumeric characters.
BASIC-PLUS-2 on RSTS IE systems allows names to contain up to six alphanumeric
characters.

2. The program you want to rename must be in memory. If you type RENAME with no
program in memory, BASIC renames the default program, NONAME, to the specified
prog-nam.

VAX-11 BASIC

1. If you do not specify a prog-nam, VAX-11 BASIC renames the program currently in mem­
ory NONAME.

2. If you specify a file type, VAX-11 BASIC signals the error "error in program name".

BAS/C-PLUS-2

1. BASIC-PLUS-2 prompts for the new prog-nam if you do not specify one with the
RENAME command. If you do not specify a prog-nam in response to the prompt, the name
of the program currently in memory remains unchanged.

2. If you specify a file type, BASJC-PLUS-2 ignores the file type, does not signal an error, and
assigns the B2S file type to the file when you save it.

General Rules

1. You must type SAVE or REPLACE to write the renamed program to a file. If you do not type
SAVE or REPLACE, BASIC does not save the renamed program.

2. The RENAME command does not affect the original saved version of the program. For
example:

OLD TEST
Ready

RENAME NEWTES
Ready

SAVE

BASIC Reference Manual 95

RENAME

Examples

In this example, the OLD command calls the program named TEST into memory. The
RENAME command renames TEST to NEWTES and the SAVE command writes
NEVVTES. BAS (VAX-11 BASiC) or NE\t\tTES. B2S (BASiC-PLUS-2) to a fiie. The originai fiie,
TEST.BAS or TEST.B2S, is not changed and is not deleted from your account.

RENAME NEWPRO

96 BASIC Reference Manual

REPLACE

24.0 REPLACE

Function

The REPLACE command writes the current program to a storage medium.

Format

REPLACE [file-spec]

Syntax Rules

1. If you do not supply a file-spec, BASIC writes the program to the default disk with the file
name of the program currently in memory.

• VAX-11 BASIC and BASIC-PLUS-2 on RSX-11 MI M-PLUS systems create and save a
new version of the file, incrementing the version number by one. Previous versions of the
file remain unchanged.

• BAS/C-PLUS-2 on RSTS IE systems overwrites the original version of the file with the
new version.

General Rules

1. The file-spec does not have to match that of the program currently in memory. You can
differentiate a changed program from the original version of the program by specifying a
new file-spec. BASIC saves the program with the new file-spec.

2. The program currently in memory does not change.

Examples

REPLACE PROGA.NEW

BASIC Reference Manual 97

RESEQUENCE

25.0 RESEQUENCE (VAX-11 BASIC)

Function

The RESEQUENCE command allows you to resequence the line numbers of the program currently in
memory. BASIC also changes all references to the old line numbers so they reference the new line
numbers.

Format

RESEQUENCE [lin-num1 [- lin-num2] [lin-num3]] [STEP int-const]

Syntax Rules

1. Lin-num 1 is the line number in the program currently in memory where resequencing
begins. The default for lin-num 1 is the first line of the program module.

2. Lin-num2 is the optional end of the range of line numbers to be resequenced. If you specify
a range, BASIC begins resequencing with lin-num 1 and resequences through lin-num2. If
you do not specify lin-num2, BASIC resequences the specified line. If you do not specify
either lin-num1 or lin-num2, BASIC resequences the entire program.

3. Lin-num3 specifies the new first line number; the default number for the new first line
is 100.

• If lin-num3 will cause existing lines to be deleted or surrounded, BASIC signals an error.

• You can specify lin-num3, the new first line number, only when resequencing a range of
lines.

4. lnt-const specifies the numbering increment for the resequencing operation. The default for
int-const is 10.

5. BASIC signals an error when you try to resequence a program that contains a %IF directive.
BASIC also signals an error when you try to resequence a program that has a %INCLUDE
directive if the file to be included contains a reference to a line number.

General Rules

1. Before the RESEQUENCE command executes, BASIC verifies the syntax of the program. If
the program is not syntactically valid, the RESEQUENCE command does not execute.

2. BASIC sorts the renumbered program in ascending order when the RESEQUENCE com­
mand executes.

3. If the renumbering creates a line number greater than the maximum line number of 32767,
BASIC signals an error.

4. BASIC signals an error if resequencing causes a change in the order in which program
statements are to execute and does not resequence the program.

5. BASIC issues the error "undefined line number" in the case of undefined line numbers and
does not resequence the program.

98 BASIC Reference Manual

RESEQUENCE

6. BASIC corrects all line numbers for statements that transfer control.

7. BASIC does not modify the program currently in memory when the RESEQUENCE com­
mand generates an error.

8. In general, the RESEQUENCE command is not recommended for programs containing error
handlers that test the value of ERL. However, the RESEQUENCE command correctly modi­
fies the program if the tests that reference ERL are of this form:

Examples

ERL relational-operator int-lit

The RESEQUENCE command does not correctly renumber programs if the test compares
ERL with an expression or a variable, or if ERL fol lows the relational operator. The fol low­
ing line number references, for example, would not be correctly renumbered:

IF ERL = 1000 + AZ THEN
IF 1000 >ERL THEN •••

RESEQUENCE 100-1000 STEP 5

BASIC Reference Manual 99

I

I

I

RMS RES

26.0 RMSRES (BASIC-PLUS-2)

Function

The RMSRES command allows you to select an RMS memory-resident library to be used when your
program is task built. You can also choose to use no RMS memory-resident library. The RMS library
supplies RMS code for file and record operations. After you specify a library with the RMSRES
command, when you use the BUILD command, BAS/C-PLUS-2 includes the specified library in the
Task Builder command file. Every system has an RMS library default set when BAS/C-PLUS-2 is
installed.

Format

RMSRES lib-param

lib-param: I file-spec I
NONE

Syntax Rules

1. If you enter the RMSRES command without a lib-param, BAS/C-PLUS-2 prompts for one
and displays the name of the current default RMS library.

• File-spec can be RMSRES (the RMS memory-resident library) or a user-created resident
library. Table 18 lists and describes RMS libraries.

• NONE tells the Task Builder not to link your task to the RMS default resident library.
Therefore, the Task Builder links to the RMS object module library, RMSLIB.OLB.

• If you type a carriage return in response to the prompt, the current default memory­
resident library is used.

General Rules

100

1. LB: is a RSTS/E logical name for the library account on disk. On RSX-11 MI M-PLUS
systems, you must specify LB:[1, 1] before the ODL file name.

2. BASIC-PLUS-2 links the specified RMS library to your program when you task-build the
program. You must use the RMSRES command before you use the BUILD command to
include the specified library in the Task Builder command file.

3. If you use an RMS library other than the default, you must specify one of the RMS ODL
files listed in Table 18. See the ODLRMS compiler command for more information. .

BASIC Reference Manual February 1984

RMS RES

A •L- nlACnrc l:L _____ ··-·· ____ :.c.. :_ : __ 1._..J _ _J :_ ··-··- , __ .. n .. :1_1 ______________ I .t'.:I __ ... _ ... :I·--··
'+. 1 r1e l'\.1v1,:,l'\.c.) 11urdry yuu ~µeury 1~ 111uuueu 111 yuur 1 d~K. ou11uer curmndrm 111es um11 you

specify a new library with the RMSRES command or exit from the BASIC environment.
When you exit from the environment, the originai RMS default library is restored as the
default.

5. You can override the RMSRES command with the /RMSRES qualifier added to the BUILD
command, but the specified library remains in effect for only one BUILD routine.

6. The Task Builder returns an error message when the requested library is not available.

7. Consult your system manager for information about the RMS libraries available to you.
Consult BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS IE Systems for more
information on using RMS libraries

Table 18: RMS Libraries

Library File Organization
Name Seq Rel Ind

RMS RES Yes Yes Yes

DAPRES Yes Yes Yes

RMSLIB Yes Yes Yes

Examples

RSX-11 MI M-PLUS Systems

RMSRES LB:[l tlJRMSRES

RSTS IE Systems

RMSRES LB:RMSRES

February 1984

Type of ODL File
Library Required

Memory RMSRLX.ODL

Memory DAPRLX.ODL

I RMS115.0DL)

RMS125.0DL

Disk
(

< RMS11 X.ODL)

(RMS12X.ODL)

DAP11X.ODL

BASIC Reference Manual 101

<8>

8

RUN

27.0 RUN and RUNNH

Function

The RUN command allows you to execute a program from the BASIC environment without first
invoking the PDP-11 Task Builder or the VAX-11 Linker to construct an executable image. The
program can be:

•A BASIC program brought into memory with the OLD command, created in response to the NEW
command, or specified in the RUN command

• An object module or modules placed in memory with the LOAD command

• A com bi nation of the above

RUN executes the program starting at the lowest line number. Program modules previously compiled
and placed in memory with the LOAD command are referenced when the RUN command is given.
RUNNH executes the program but does not display the program header.

Format

VAX-11 BASIC

I RUNNH I
RUN [file-spec]

BASIC-PLUS-2

~ RUNNH I
I RUN l [file-spec] [/qualifier] ...

Syntax Rules

1. If you specify only the file name, BASIC searches for a file with a BAS (VAX-11 BASIC) or
B2S (BASIC-PLUS-2) file type in the current default directory.

2. If you do not supply a file-spec, BASIC executes the program currently in memory.

3. BASIC signals the warning message "No main program" if you do not supply a file-spec
and do not have a program currently in memory.

4. The RUNNH command is identical to RUN, except that it does not display the program
header, current date, and time.

8 BASIC-PLUS-2

1. !Qualifier specifies a qualifier keyword that sets a BASIC default. See Section 22.0 for
information on BASIC qualifiers. Table 17 lists all BASIC-PLUS-2 qualifiers and the com­
mands they can be used with, and describes their functions.

2. Support for RUN is an installation option. Use the SHOW command to see whether your
system supports the RUN command.

102 BASIC Reference Manual

RUN

General Rules

1. When you specify a file-spec with the RUN command, BASIC brings the program into
memory and then executes it. You do not have to bring a program into memory with the
OLD command in order to run it. The RUN command executes just as if the program had
been brought into memory with the OLD command.

2. If your program calls a subprogram, the subprogram must be compiled and placed in
memory with the LOAD command. If your program tries to cal I a subprogram that has not
been compiled and loaded, BASIC signals an error.

3. The RUN command does not create an object module file or a listing file.

VAX-11 BASIC

1. The program stops executing and control passes to the BASIC environment and immediate
mode when BASIC encounters a STOP statement in the program.

• Any BASIC statement that does not require the creation of new storage can be entered in
immediate mode to debug the program. You cannot create new variables in immediate
mode.

•Type the CONTINUE command to resume program execution.

2. The RUN command uses whatever qualifiers have been set with the exception of those that
have no effect on a program running in the environment. These are:

• NOCROSS

• NODEBUG

• NOLIST

• NOMACHINE

• NOOBJECT

These qualifiers are always in effect when you run a program in the environment.

BASIC-PLUS-2

1. The program stops executing when BASIC encounters a STOP statement:

Examples

• If you used the RUN command to execute the program, BASIC displays a pound sign(#)
prompt. In response to the prompt, you can type only CONTINUE to resume program
execution, or EXIT to end the program.

• If you used the RUN /DEBUG command to execute the program, control passes to the
BASIC-PLUS-2 debugger. You can then use BASIC-PLUS-2 debugger commands to
display and change program values and to analyze your program. Use the CONTINUE
debugger command to resume program execution. See Part VI in this manual for more
information on debugger commands.

RUN PROG1

BASIC Reference Manual 103

SAVE

28.0 SAVE

Function

The SAVE command writes the BASIC source program currently in memory to a file on the default or
specified device.

Format

SA VE [file-spec]

Syntax Rules

1. If you do not supply a file-spec, BASIC saves the file with the name of the program
currently in memory and the BAS (VAX-77 BASIC) or B2S (BASIC-PLUS-2) default file
type.

2. If you specify only the file name, BASIC saves the program with the default file type in the
current default directory.

General Rules

1. In BASIC-PLUS-2, if you type SAVE and the file-spec already exists as a disk file, BASIC
displays the message "File exists - Rename or Replace".

2. VAX-11 BASIC writes a new version of a previously saved program when you type the
SAVE command.

3. BASIC stores the sorted program in ascending line number order.

4. You can store the program on a specified device. For example:

SAVE DBA1:NEWTST.PRD

BASIC saves the file NEWTST.PRO on disk OBA 1 :.

Examples

SAVE JUNK.BAS

104 BASIC Reference Manual

SCALE

29.0 SCALE

Function

The SCALE command allows you to control accumulated round-off errors by multiplying numeric
values by 10 raised to the scale factor before storing them.

Format

SCALE int-canst

Syntax Rules

1. In BASIC-PLUS-2, SCALE with no argument causes BASIC to display the message "Current
scale factor is n", where n is an integer from 0 to 6 inclusive. In VAX-11 BASIC, SCALE
with no argument causes BASIC to signal the error "illegal argument for command".

2. lnt-const specifies the power of 10 you want to use as the scaling factor.

• In VAX-11 BASIC, int-const must be an integer from 0 to 6, inclusive, or BASIC signals
the error "illegal argument for command".

• In BASIC-PLUS-2, int-con st can be a floating-point or integer number up to 6. 999999.
BASIC truncates a floating point value and displays the message "%Scale factor has been
truncated to n", where n is the integer portion of the value. If the specified value is
greater than 6. 999999, BASIC signals the error "Scale factor of n is out of range", where
n is the specified value.

General Rules

1. SCALE affects only values of the data type DOUBLE.

2. BASIC multiplies values using the scale factor you specify. The vaiue 2.488888, for
example, is rounded as follows:

Scale: Produces:

0 2.48889
2.4

2 2.48
3 2.488
4 2.4888
5 2.48888
6 2.48889

Examples

SCALE 2

February 1984 BASIC Reference Manual 105

I

SCRATCH

30.0 SCRATCH

Function

The SCRATCH command clears any program currently in memory, removes any object files loaded
with the LOAD command, and resets the program name to NONAME.

Format

SCRATCH

Syntax Rules

None.

General Rules

None.

Examples

SCRATCH

106 BASIC Reference Manual

SEQUENCE

Function

The SEQUENCE command causes BASIC to automatically generate line numbers for your program
text. BASIC supplies line numbers for your text until you end the procedure or reach the maximum
line number of 32767.

Format

SEQUENCE [lin-num] [, int-const]

Syntax Rules

1. Lin-num specifies the line number where sequencing begins.

•If you do not specify a lin-num, the VAX-11 BASIC default is the last line inserted by a
SEQUENCE command; if there is no previous SEQUENCE command, the default is line
number 100.

• The BAS/C-PLUS-2 default lin-num is always line number 100.

2. lnt-const specifies the iine number increment for your program.

• If you do not specify an increment, VAX-11 BASIC defaults to the int-const specified in
the last SEQUENCE command; if there is no previous SEQUENCE command, the default
is 10.

• BASIC-PLUS-2 always defaults to 10.

General Rules

1. If you specify a lin-num that already contains a statement, or if the sequencing operation
generates a line number that already contains a statement, BASIC signals "Attempt to
sequence over existing statement", and returns to normal input mode.

2. Enter your program text in response to the line number prompt; the carriage return ends
each line and causes BASIC to generate a new line number.

3. If you enter a CTRL/Z in response to the line number prompt, BASIC terminates the
sequencing operation and prompts for another command.

4. You can also terminate the sequence operation in BASIC-PLUS-2 by typing a carriage
return in response to the line number prompt.

5. When the maximum line number of 32767 is reached, BASIC terminates the sequencing
process and returns to normal input mode.

6. BASIC does not check syntax during the sequencing process.

Examples

SEQUENCE 100t10

BASIC Reference Manual 107

SET

32.0 SET

Function

The SET command allows you to specify BASIC defaults for all BASIC qualifiers. Qualifiers control the
compilation process and the run-time environment. Qualifiers are set or reset as you specify. The
defaults you set remain in effect for all subsequent operations until they are reset or until you exit from
the compiler.

Format

SET [
qualifier, ...]

/qualifier .. .

Syntax Rules

1. !Qualifier specifies a qualifier keyword that sets a BASIC default. See Section 22.0 for
information on BASIC qualifiers. Table 16 lists and describes all VAX-11 BASIC qualifiers.
Table 17 lists and describes all BASIC-PLUS-2 qualifiers.

2. If you do not specify any qualifiers, VAX-11 BASIC resets all defaults to the defaults
specified with the DCL BASIC command.

3. If you do not specify any qualifiers, BASIC-PLUS-2 resets all qualifiers except those set
with the BRLRES, DSKLIB, LIBRARY, ODLRMS, RMSRES, or EXTEND qualifier to the
installation defaults. The SCALE value set with the SCALE command is also not reset to the
installation default.

4. VAX-11 BASIC signals the error "unknown qualifier" and BASIC-PLUS-2 signals "Illegal
switch" if you do not separate multiple qualifiers with commas or slashes, or if you mix
commas and slashes on the same command line. The same error is signaled if you separate
qualifiers with a slash but do not prefix the first qualifier with a slash.

General Rules

None.

Examples

SET I DOUBLE I BYTE IL I ST

108 BASIC Reference Manual

SHOW

33.0 SHO\•/

Function

The SHOW command displays the current defaults for the BASIC compiler on your terminal.

Format

SHOW

Syntax Rules

None.

General Rules

None.

Examples

VAX-11 BASIC

SHOW
VAX-11 BASIC V2. Current Environment Status 11-DEC-1982 10:05:58.57
DEFAULT DATA TYPE INFORMATION: LISTING FILE INFORMATION INCLUDES:

Data tYPe : REAL NO Source
Real size : SINGLE NO Cross reference
Integer size LONG COD Definitions
Decimal size : <15t2) Environment
Scale factor : 0 NO Override of %NOLIST
NO Round decimal numbers NO Machine code

MaP
COMPILATION QUALIFIERS IN EFFECT: INCLUDE files

ObJect file
Overflow checK integers
Overflow checK decimal numbers
Bounds checKing

NO SYntax checking
Lines
Variant : 0
Warnings
Informationals
SetuP
ObJect Libraries

Ready

BASIC-PLUS-2

SHOW
PDP-11 BASIC-PLUS-2 v2.o
ENVIRONMENT INFORMATION:

Current edit line : 0
NO Modules loaded
NO Main module loaded

Run SUPPort

NONE

FLAGGERS:
Declining features

NO BASIC PLUS 2 subset

DEBUG INFORMATION:
TracebacK records

NO Debug symbol records

RMS FILE ORGANIZATION:
NO Index
NO Relative
NO Sequential
NO Virtual

(continued on next page)

BASIC Reference Manual 109

SHOW

DEFAULT DATA TYPE INFORMATION:
Data tYPe : REAL
Real size : SINGLE
Integer size : WORD
Scale factor : 0

COMPILATION QUALIFIERS:
NO ObJect
NO Macro

Lines
NO Debug records
NO SYntax checKing
Flag : Declining
Variant : 0

110 BASIC Reference Manual

LISTING FILE INFORMATION:
NO Source
NO Cross Reference
NO Keywords

60 lines by 132 coluMns
BUILD QUALIFIERS:

NO DUMP
NO MaP
TasK extend
RMS ODL file
BP2 DisK lib
BP2 Resident
RMS Resident

512
LB:RMSRLX
LB:BP20TS

lib LB:BP2RES
lib : LB:RMSRES

UNSAVE

34.0 UNSAVE

Function

The UNSAVE command deletes a specified file from storage.

Format

UNSAVE [file-spec]

Syntax Rules

1. File-spec is optional.

• If you do not supply a file-spec, BASIC deletes a file that has the file name of the program
currentiy in memory and a file type of BAS (VAX-11 BASIC) or B2S (BASIC-PLUS-2).

• If you do not supply a file-spec and do not have a program in memory, BASIC searches
for the default file NONAME.BAS.

2. You do not have to supply a full file-spec. If you specify only a file name, BASIC deletes the
file with the specified name and the BAS (VAX-11 BASIC) or B2S (BAS/C-PLUS-2) file type
from the default device and directory. Other file types with the same file name are not
deleted.

General Rules

1. The program currently in memory does not change even when it is the deleted file because
it is a copy of the deleted file.

Examples

UNSAVE D82:CHECK+DAT

BASIC Reference Manual 111

1.0 %ABORT

Function

PART Ill
Compiler

Directives

o/oABORT

The %ABORT directive terminates program compilation and displays a fatal error message you
supply.

Format

%ABORT [str-lit]

Syntax Rules

1. The %ABORT directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%ABORT directive.

General Rules

1. BASIC stops the compilation and terminates the listing file as soon as it encounters a
%ABORT directive. Str-lit is displayed on the terminal screen and in the compilation
listing, if one has been requested.

Examples

100 %IF %VARIANT = 2 %THEN
%ABORT "Cannot coMPile with variant 2"

i..END 'X. IF

BASIC Reference Manual 113

I

o/oCROSS

2.0 %CROSS

Function

The %CROSS directive causes BASIC to begin or resume accumulating cross-reference information
for the listing file.

Format

%CROSS

Syntax Rules

1. The %CROSS directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%CROSS directive.

General Rules

1. When a cross-reference is requested, the compiler starts or resumes accumulating cross­
reference information immediately after encountering the %CROSS directive.

Examples

1000 %CROSS

114 BASIC Reference Manual February 1984

%1DENT

3.0 o/olDENT

Function

The %1DENT directive lets you identify the version of a program module. The identification text is
placed in the object module and printed in the listing header.

Format

%iDENT str-iit

Syntax Rules

1. Str-lit is the identification text. VAX-11 BASIC allows str-lit to consist of up to 31 ASCII
characters. BASIC-PLUS-2 allows str-lit to consist of up to six RAD-50 characters. Both
truncate extra characters from str-lit and signal a warning message.

2. In BASIC-PLUS-2, if str-lit contains non-RAD-50 characters, a warning message is 8
issued, and the %1DENT directive is ignored. See BASIC on RSX-11 MI M-PLUS Systems
or BASIC on RSTS IE Systems for more information on RAD-50 characters.

3. The %1DENT directive cannot begin in column one.

4. Only a line number or a comment field can appear on the same physical line as the
%1DENT directive.

General Rules

1. The compiler inserts the identification text in the first 6 or 31 character positions of the
second line on each listing page. The compiler also includes the identification text in the
object moduie, if the compilation produces one, and in the map file created by the Task
Builder (BASIC-PLUS-2) or the VAX-11 Linker.

2. The %1DENT directive should appear at the beginning of your program if you want the
identification text to appear on the first page of your listing. If the %1DENT directive
appears after the first program statement, the text will appear on the next page of the listing
file.

3. You can use the %1.DENT directive only once in a module. If you specify more than one
%1DENT directive in a module, BASIC signals a warning and uses the identification text
specified in the first %1DENT.

February 1984 BASIC Reference Manual 115

%1DENT

4. The default BASIC-PLUS-2 identification text is a 6-digit number. The first two digits
represent the compiler base level, while the last four digits represent the month and day.
For example, the identification text 100712 represents base level 10, and a date of July 12.

5. VAX-11 BASIC does not provide a default identification text.

Examples

100 % ID ENT "l,)3. 2 II

116 BASIC Reference Manual

0/olF-0/o THEN-o/oELSE-%END-o/olF

4.0 o/oiF-0/o THEN-o/oELSE-o/oEND-o/oiF

Function

The %IF-% THEN-%ELSE-%END-%1F directive lets you conditionally include source code or exe­
cute another compiler directive.

Format

%!F !ex-exp % THEN code [%ELSE code] %END %!F

Syntax Rules

1. The %IF directive can appear anywhere in a program where a space is allowed, except in
column one or within a quoted string. This means that you can use the %IF directive to
make a whole statement, part of a statement, or a block of statements conditional.

2. Lex-exp is always a LONG integer in VAX-11 BASIC and a WORD integer in
BASIC-PLUS-2. It can be:

•A iexical constant named in a %LET directive.

•An integer literal, with or without the percent sign suffix.

•A lexical built-in function (%VARIANT).

• Any combination of the above, separated by valid lexical operators. Lexical operators
include !ogica! operators; relational operators; and the arithmetic operators for addition
(+), subtraction (-), multiplication (*), and division (/).

3. Code is BASIC program code. It can be any BASIC statement or another compiler directive,
including another %IF directive. You can nest %IF directives to eight levels.

4. %THEN, %ELSE, and %END %IF do not have to be on the same physical line as %IF.

General Rules

1. If lex-exp is true, BASIC processes the % THEN clause. If lex-exp is false, BASIC processes
the %ELSE clause. If there is not an %ELSE clause, BASIC processes the %END %IF clause.
The compiler includes statements in the % THEN or %ELSE clause in the source program
and executes directives in order of occurrence.

2. You must include the %END %IF clause. Otherwise, BASIC assumes the remainder of the
program is part of the last % THEN or %ELSE clause and signals the error "missing %END
%IF" when compilation ends.

BASIC Reference Manual 117

o/olF-o/o THEN-%ELSE-%END-%1F

Examples

100 %IF <%VARIANT = 2)
lTHEN DECLARE SINGLE HOURLY_PAY<100)
%ELSE %IF <%VARIANT = 1)

%THEN DECLARE DOUBLE SALARY_PAYC100)
%ELSE l'.A60RT "Can't comPile with specified variant"
%END %IF

%END %.IF

1000 PRINT %IF (%VARIANT = 2>
%THEN PRINT 'Hourly Wage Chart'

GOTO HourlY_routine
%ELSE PRINT 'Salaried Wage Chart'

GOTO Salary_routine
%END II F

118 BASIC Reference Manual

5. ft 0/ 'N"' I '"E .u /'Oii vL.ULI

Function

o/olNCLUDE

The %INCLUDE directive lets you include BASIC source text from another program file in the current
program compilation. VAX-11 BASIC also 1.ets you access record definitions in the VAX-11 Common
Data Dictionary (COD).

Format

Gene;al

%INCLUDE file-spec

VAX-11 BASIC

----~-ol_N_c_Lu_o_E __ %_F_R_o_M_0_~_c_o_o_s_tr_-1i_t __ I ~
Syntax Rules

1. The %INCLUDE directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%INCLUDE directive.

3. File-spec specifies the file to be included. BASIC uses the default device, directory, and file
type (BAS in VAX-11 BASIC and B2S in BASIC-PLUS-2) if you do not specify these parts of
the file specification.

4. File-spec must be a disk file or BASIC signais an error.

5. File-spec must be a string literal enclosed in quotation marks.

VAX-11 BASIC only

1. Str-lit specifies a VAX-11 COD path specification. This lets you extract a RECORD defini­
tion from the COD.

2. There are two types of COD path names: absolute and relative. An absolute path name
begins with CDD$TOP and specifies the complete path to the record definition. A relative
path name begins with any string other than CDD$TOP.

General Rules

1. The compiler includes the specified source file in the program compilation at the point of
the %INCLUDE directive and prints the included code in the program listing file if the
compilation produces one.

2. The included file cannot contain line numbers or BASIC signals the error "Line number
may not appear in %INCLUDE file".

BASIC Reference Manual 119

0/olNCLUDE

3. All statements in the accessed file are associated with the line number of the program line
that contains the %INCLUDE directive. This means that a %INCLUDE directive cannot
appear before the first line number in a source program.

4. A file accessed by %INCLUDE can itself contain a %INCLUDE directive.

5. All %IF directives in an included file must have a matching %END %IF directive in the file.

VAX-11 BASIC only

1. You can control whether or not included text appears in the compilation listing with the
/SHOW:INCLUDE qualifier. When you specify /SHOW:INCLUDE, the compilation list­
ing file identifies any text obtained from an included file by placing a mnemonic in the first
character position of the line on which the text appears. The mnemonic is of the form "In"
where "I" tells you that the text was accessed with a %INCLUDE directive and "n" is a
number that tells you the nesting level of the included text. See the BASIC User's Guide for
more information on listing mnemonics.

2. When you use the %INCLUDE directive to extract a record definition from the CDD,
BASIC translates the CDD definition to the syntax of the BASIC RECORD statement.

3. You can use the /SHOW:CDD_DEFINITIONS to specify that translated CDD definitions
(in RECORD statement syntax) are included in the compilation listing file. BASIC places a
"C" in column one when the translated RECORD statement appears in the listing file.

4. When you do not specify /SHOW:CDD_DEFINITIONS, BASIC includes the names, data
types, and offsets of the CDD record components in the program listing's allocation map.

5. See BASIC on VAX/VMS Systems and the VAX-11 Common Data Dictionary Utilities
Reference Manual for more information on CDD definitions.

Examples

General

100 %INCLUDE 11 YESN0 11

VAX-11 BASIC only

1000 UNCLUDE %FROM %CDD "CDD$TOP+EMPLOYEE"

120 BASIC Reference Manual

0/oLET

- - ftl I 0.U -/oLC I

Function

The %LET directive declares and provides values for lexical constants. You can use lexical constants
only in conditional expressions in the %IF-% THEN-%ELSE directive and in lexical expressions in
subsequent %LET directives.

Format

%LET %1ex-const-nam = lex-exp

Syntax Rules

1. Lex-const-nam is the name of a iexicai constant. Lexical constants are aiways LONG
integers in VAX-7 7 BASIC and WORD integers in BASJC-PLUS-2.

2. Lex-const-nam must be preceded by a percent sign and cannot end with a dollar sign ($)or
percent sign.

3. Lex-exp can be:

• A lexical constant named in a previous %LET directive.

•An integer literal, with or without the percent sign suffix.

•A lexical built-in function (%VARIANT)

• Any combination of the above, separated by valid lexical operators. Lexical operators
may be logical operators, relational operators, and the arithmetic operators for addition
(+), subtraction (-), multiplication (*), and division (/).

4. The %LET directive cannot begin in column one.

5. Only a line number or a comment field can appear on the same physical line as the %LET
directive.

General Rules

1. You cannot change the value of lex-const-nam within a program unit once it has been
named in a %LET directive.

Examples

100 'X.LET 'X.DEBUG _ON

BASIC Reference Manual 121

o/oLIST

7.0 °/oLIST

Function

The %LIST directive causes the compiler to start or resume accumulating compilation information for
the program listing file.

Format

%LIST

Syntax Rules

1. The %LIST directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%LIST directive.

General Rules

1. As soon as it encounters the %LIST directive, the compiler starts or resumes accumulating
information for the program listing file. Thus, the directive itself appears as the next line in
the listing file.

2. The %LIST directive has no effect unless you requested a listing file.

Examples

100 :tLI ST

122 BASIC Reference Manual February 1984

o/oNOCROSS

8.0 =/oNOCROSS

Function

The %NOCROSS directive causes the compiler to stop accumulating cross-reference information for
the program listing file.

Format

%NOC ROSS

Syntax Rules

1. The %NOCROSS directive cannot begin .in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%NOCROSS directive.

General Rules

1. The compiler stops accumulating cross-reference information for the program listing file
immediately after encountering the %NOCROSS directive.

2. The %NOCROSS directive has no effect unless you requested cross-reference
information.

3. Digital recommends that you not embed a %NOCROSS directive within a statement.
Embedding a %NOCROSS directive within a statement makes the accumulation of cross­
reference information behave unpredictably.

Examples

1000 %NDCROSS

February 1984 BASIC Reference Manual 123

I

o/oNOLIST

9.0 °/oNOLIST

Function

The %NOLIST directive causes the compiler to stop accumulating compilation information for the
program listing file.

Format

%NOLIST

Syntax Rules

1. The %NOLIST directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%NOLIST directive.

General Rules

1. As soon as it encounters the %NOLIST directive, the compiler stops accumulating informa­
tion for the program listing file. Thus, the directive itself does not appear in the listing file.

2. The %NOLIST directive has no effect unless you requested a listing file.

3. In VAX-11 BASIC, you can override all %NOLIST directives in a program with the
/SHOW:OVERRIDE qualifier.

Examples

100 %NOLI ST

124 BASIC Reference Manual February 1984

%PAGE

10.0 °.kPAGE

Function

The %PAGE directive causes BASIC to begin a new page in the program listing file immediately after
the line that contains the %PAGE directive.

Format

%PAGE

Syntax Rules

1. The %PAGE directive cannot begin in column one.

2. Only a line number or a comment field can appear on the same physical line as the
%PAGE directive.

General Rules

None.

Examples

1000 lPAGE

BASIC Reference Manual 125

%SBTTL

11.0 o/oSBTTL

Function

The %SBTTL directive lets you specify a subtitle for the program listing file.

Format

%SBTTL str-lit

Syntax Rules

1. VAX-11 BASIC allows str-lit to contain 45 characters. BASIC-PLUS-2 allows str-lit to
contain 48 characters.

2. BASIC truncates extra characters from str-lit and does not signal a warning or error.

3. The %SBTIL directive cannot begin in column one.

4. Only a line number or a comment field can appear on the same physical line as the
%SBTIL directive.

General Rules

1. The specified subtitle appears underneath the title on the second line of all pages of the
listing file until the compiler encounters another %SBTTL or % TITLE directive.

2. Because BASIC assumes that a subtitle is associated with a title, a new % TITLE directive
eliminates the current subtitle. In this case, no subtitle appears in the listing until the
compiler encounters another %SBTTL directive.

3. If you want a subtitle to appear on the first page of your listing, the %SBTTL directive
should appear at the beginning of your program, immediately after the % TITLE directive.
Otherwise, the subtitle will appear on the second page of the listing, but not on the first.

4. If you want the subtitle to appear on the page of the listing that contains the %SBTTL
directive, the %SBTTL directive should immediately follow a %PAGE directive or a% TITLE
directive that follows a %PAGE directive.

Examples

100 %SBTTL 'DESMA218 Production EleMents'

126 BASIC Reference Manual

%TITLE

12.0 %TITLE

Function

The % TITLE directive lets you specify a title for the program listing file.

Format

%TITLE str-lit

Syntax Rules

1. VAX-11 BASIC allows str-lit to contain 45 characters. BASIC-PLUS-2 allows str-lit to
contain 48 characters.

2. BASIC truncates extra characters from str-lit and does not signal a warning or error.

3. The% TITLE directive cannot begin in column one.

4. Only a line number or a comment field can appear on the same physical line as the
% TITLE directive.

General Rules

1. The specified title appears on the first line of every page of the listing file until BASIC
encounters another % TITLE directive in the program.

2. The % TITLE directive should appear on the first line of your program, before the first
statement, if you want the specified title to appear on the first page of your listing.

3. !f you want the specified title to appear on the page that contains the% T!TLE directive, the
% TITLE directive should immediately follow a %PAGE directive.

4. Because BASIC assumes that a subtitle is associated with a title, a new % TITLE directive
eliminates the current subtitle.

Examples

100 ITITLE 'Production Control for DESMA218'

BASIC Reference Manual 127

o/oVARIANT

13.0 % VARIANT

Function

%VARIANT is a built-in lexical function that allows you to conditionally control program compila­
tion. %VARIANT returns an integer value when you reference it in a lexical expression. You set the
variant value with the /VARIANT qualifier when you compile the program or with the SET command.

Format

%VARIANT

Syntax Rules

1. The % VARIANT function can appear only in a lexical expression.

General Rules

1. The %VARIANT function returns the integer value specified at compile-time with the
/VARIANT qualifier to the COMPILE command or with the SET command, or in VAX-11
BASIC, set with the DCL BASIC command. The returned integer always has a data type of
LONG in VAX-11 BASIC and WORD in BASIC-PLUS-2.

Examples

100 lIF ClLOOP_CONST <= %VARIANT>
lTHEN GOTO Tax_Routine
lELSE lA60RT 'Variant too iarge for Program to compile'
lEND UF

128 BASIC Reference Manual

1.0 CALL

Function

PART IV
Statements

CALL

The CALL statement transfers control to a BASIC subprogram or other callable routine. You can pass
optional arguments to the routine and can specify how these arguments are to be passed. When the
called routine finishes executing, control returns to the calling program.

Format

CALL routine [pass-mech] [([actual-param], ...)]

routine:

pass-mech:

actual-param:

Syntax Rules

I

I sub-nam

any callable routine

BY REF

BY VALUE

BY DESC

l exp I
array ([,]...) [pass-mech]

1. Routine is the name of the BASIC SUB subprogram you want to call or the name of any
other callable module, such as a system service or an RTL routine on VAX /VMS systems. It
cannot be a variable name.

BASIC Reference Manual 129

CALL

2. Pass-mech specifies how arguments are passed to the called routine. If you do not specify a
pass-mech, BASIC passes arguments as indicated in Tables 19 and 20.

3. You can use passing mechanisms only when calling non-BASIC routines.

4. When pass-mech appears before the parameter list, it applies to all arguments passed to the
called routine. You can override this passing mechanism by specifying a pass-mech for
individual arguments in the actual-param list.

5. Actual-param lists the arguments to be passed to the called routine.

6. You can pass expressions or entire arrays. Optional commas in parentheses after the array
name specify the dimensions of the array. The number of commas is equal to the number
of dimensions minus one. Thus, no comma specifies a one-dimensional array, one comma
specifies a two-dimensional array, two commas specify a three-dimensional array, and
so on.

VAX-11 BASIC

1. The name of the routine can consist of from 1 to 31 characters and must conform to the
following rules:

• The first character of an unquoted name must be an alphabetic character (A through Z).
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), periods (.), or underscores (_).

• A quoted name can consist of any combination of printable ASCII characters.

2. Routine can be a system service, an RTL routine, or any procedure written in a language
that supports the VAX-11 Procedure Calling Standard. See BASIC on VAX/VMS Systems for
more information on using system services, RTL routines, and other procedures.

3. VAX-11 BASIC allows you to pass up to 255 paiameters.

4. You cannot pass virtual arrays. 8 BASIC-PLUS-2

1. The name of the routine can consist of from one to six characters and must conform to the
following rules:

• The first character of an unquoted name must be an alphabetic character (A through Z).
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), or periods (.).

• A quoted name can consist of any combination of alphabetic characters, digits, dollar
signs ($), periods (.), or spaces.

2. Routine can be a BASIC-PLUS-2 subprogram or a subprogram written in another
language.

Note

Although 'you can call routines written in other languages, BASIC-PLUS-2 does
not support calling anything but BASIC-PLUS-2 routines.

130 BASIC Reference Manual

CALL

3. You can pass all arguments BY REF, but you can pass only string values and entire arrays
BY DESC.

4. BASIC-PLUS-2 lets you pass up to eight parameters to a BASIC-PLUS-2 subprogram and
up to 255 parameters to a MACR0-11 subprogram.

General Rules

1. The optional pass-mech clauses tell BASIC how to pass arguments to the called sub­
program. Table 19 describes VAX-11 BASIC parameter passing mechanisms. Table 20
describes BASIC-PLUS-2 parameter passing mechanisms.

• BY REF specifies that BASIC passes the argument's address. This is the default for all
arguments except strings and entire arrays.

•BY VALUE specifies that VAX-11 BASIC passes the argument's 32-bit value and that
BASIC-PLUS-2 passes the argument's 16-bit value.

• BY DESC specifies that BASIC passes the address of a VAX-11 BASIC descriptor or a
BASIC-PLUS-2 descriptor. For information about the format of a VAX-11 BASIC descrip­
tor for strings and arrays, see Appendix C in BASIC on VAX I VMS Systems; for informa­
tion on other types of descriptors, see the VAX Architecture Handbook. BASIC-PLUS-2
creates descriptor·s only for strings and arrays; these descriptors are described in Appen­
dix C in BASIC on RSX-11 MI M-PLUS Systems and BASIC on RSTS/E Systems.

2. You can specify a null argument as an actual-param for non-BASIC routines by omitting
the argument and the pass-mech, but not the commas or parentheses. This forces BASIC to
pass a null argument as defined by your operating system and allows you to access system
routines from BASIC.

3. Arguments in the actual-param list must agree in data type and number with the formal
parameters specified in the subprogram.

4. An argument is modifiable when changes to it are evident in the calling program. Changing
a modifiable parameter in a subprogram means the parameter is changed for the calling
program as well. Variables and entire arrays passed BY DESC or BY REF are modifiable.

5. An argument is nonmodifiable when changes to it are not evident in the calling program.
Changing a nonmodifiable argument in a subprogram does not affect the value of that
argument in the calling program. Arguments passed BY VALUE, constants, and expressions
are nonmodifiable. Passing an argument as an expression (by placing it in parentheses)
changes it from a modifiable to a nonmodifiable argument.

6. For expressions and virtual array elements passed BY REF, BASIC makes a local copy of the
value, and passes the address of this local copy. For dynamic string arrays, BASIC passes a
descriptor of the array of string descriptors. BASIC passes the address of the argument's
actual value for all other arguments passed BY REF.

7. No files are closed when the CALL statement executes.

VAX-11 BASIC

1. Only BYTE, WORD, LONG, and SINGLE values can be passed by BY VALUE. BYTE and
WORD values passed by VALUE are converted to LONG values.

BASIC Reference Manual 131

CALL

8 BASIC-PLUS-2

1. Only BYTE and WORD values can be passed BY VALUE. BYTE values passed BY VALUE
are converted to WORD values.

2. BASIC-PLUS-2 does not allow recursion. That is, once a subprogram is called, it cannot
be called again until the SU BEND or SUBEXIT statement has executed or until an error has
been trapped with ON ERROR GO BACK.

Examples

200 CALL SUB1 BY REF CEMPNAME$1 CZl.) BY VALUE, 0$() BY DESC>

Table 19: VAX-11 BASIC Parameter Passing Mechanisms

Argument Type BY VALUE BY REF BY DESC

Numeric Arguments

Variables **YES *YES YES

Constants **YES *Local copy Local copy

Expressions **YES *Local copy Local copy

Array elements **YES *YES YES

Virtual array elements **YES *Local copy Local copy

Entire arrays NO YES *YES

Entire virtual arrays NO NO NO

String Arguments

Variables NO YES *YES

Constants NO Local copy *Local copy

Expressions NO Local copy *Local copy

Array elements NO YES *YES

Virtual array elements NO Local copy *Local copy

Entire arrays NO YES *YES

Entire virtual arrays NO NO NO

* One asterisk indicates the default parameter passing mechanisms for
BASIC programs.

** Two asterisks indicate that the value can have 32 bits, at most.

132 BASIC Reference Manual

Table 20: BASIC-PLUS-2 Parameter Passing Mechanisms

Argument Type BY VALUE BY REF BY DESC

Numeric Arguments

Variables **YES *YES NO

Constants **YES *Local copy NO

Expressions **YES *Local copy NO

Array elements **YES *Local copy NO

Virtual array elements **YES *Local copy NO

Entire arrays NO YES *YES

Entire virtual arrays NO NO *YES

String Arguments

Variables NO YES *YES

Constants NO Local copy *Local copy

Expressions NO Local copy *Local copy

Array elements NO Local copy *Local copy

Virtual array elements NO Local copy *Local copy

Entire arrays NO YES *YES

Entire virtual arrays NO NO *YES

* One asterisk indicates the default parameter passing mechanisms for
BASIC programs. You should never use a BY clause when calling a BASIC
subpmg;am from a BASIC main pmg;am.

** Two asterisks indicate that the value can be only WORD or BYTE. Other
data types require more than the 16 bits of storage allowed.

Note

DIGITAL recommends that you not pass entire virtual arrays as parameters in the CALL
statement. Instead, you can share the data in a virtual array between a calling program
and a subprogram by opening a virtual file in either program and dimensioning the
array (using the same channel number) in both programs.

CALL

BASIC Reference Manual 133

CHAIN

2.0 CHAIN

Note

The CHAIN statement is not recommended for new program development. DIGITAL
recommends that you use the CALL statement for program segmentation.

Function

The CHAIN statement transfers control from the current program to an executable BASIC program.
CHAIN closes all files, then requests that the new program begin execution. Control does not return
to the original program when the new program finishes executing.

Format

General

CHAIN str-exp

BASIC-PLUS-2 on RSTS!E only

CHAIN str-exp [LINE lin-num]

Syntax Rules

1. Str-exp represents the file specification of the program to which control is passed. It can be
a quoted or unquoted string.

• Str-exp must refer to an executable image Oi BASIC signals an error.

• If you do not specify a file type, VAX-11 BASIC searches for an EXE file type and
BASIC-PLUS-2 searches for a TSK file type.

• You cannot chain to a program on another node.

BAS/C-PLUS-2

1. On RSTS/E systems you can specify that control pass to a specified line number in another
BASIC-PLUS-2 program.

• Lin-num specifies a line in another BASIC program. It must be in the range 1 to 32767,
inclusive.

• If you specify a lin-num, the program to which control passes must have been compiled
with the /CHAIN qualifier. The /CHAIN qualifier overrides the /NOLINE qualifier.

General Rules

1. Execution starts at the first line number of the specified program unless your system is
RSTS/E and you have specified a lin-num at which execution is to start.

2. On RSTS!E systems, BASIC-PLUS-2 signals an error when the specified line number does
not exist.

134 BASIC Reference Manual

CHAIN

3. Before chaining takes place, a!! active output buffers (except terminal-format files) are
written, all open files are closed, and all storage is released. On RSTS!E systems, the last
buffer (512 bytes) of a terminal-format file does not get written unless the file is closed
before the CHAIN statement executes.

4. Because a CHAIN statement passes control from the executing image, the values of any
program variables are lost. This means that you can pass parameters to a chained program
only by using files or a system-specific feature such as the GET /PUT Core Common on
RSTS/E systems, or LIB$GET and LIB$PUT on VMS systems.

5. See BASIC on RSTS/E Systems or BASIC on RSX-1 7 MI M-PLUS Systems for information
about how the CHAiN statement is implemented on youi system.

Examples

General

100 CHAIN "PROG2"

800 CHAIN PROG5.EXE

BASIC-PLUS-2 on RSTS!E only

200 CHAIN PROGA.TSK LINE 300

BASIC Reference Manual 135

IB>

CHANGE

3.0 CHANGE

Function

The CHANGE statement: 1) converts a string of characters to their ASCII integer values or 2) converts
a list of numbers to a string of ASCII characters.

Format

String Variable to Array

CHANGE str-exp TO num-array

Array to String Variable

CHANGE num-array TO str-vbl

Syntax Rules

1. Num-array should be a one-dimensional array (or list). If you specify a two-dimensional
array, BASIC converts only the zero row of that array. BASIC does not support CHANGE to
or from arrays of more than two dimensions.

2. Str-exp is a string expression.

3. VAX-11 BASIC does not support RECORD elements as a destination string or as a source
or destination array for the CHANGE statement.

General Rules

String Variable to Array

1. This format converts each character in str-exp to its ASCII value.

2. BASIC assigns the value of str-exp's length to the zero element (0) or (0,0) of the num-array.

3. BASIC assigns the ASCII value of the first character in str-exp to the first element, (1) or
(0, 1), of num-array, the ASCII value of the second character to the second element, (2) or
(0,2), and so on.

4. If the string is longer than the bounds of num-array, BASIC does not translate the excess
characters, and signals the error "subscript out of range" (ERR= 55). Element zero, (0) or
(0,0), of num-array still contains the length of str-exp.

Array to String Variable

136

1. This format converts the elements of num-arr to a string of characters.

2. The length of str-vbl is determined by the value in the zero element, (0) or (0,0), of
num-array. If the value of element zero is greater than the array bounds, BASIC signals the
error "subscript out of range" (ERR= 55).

BASIC Reference Manual February 1984

CHANGE

3. BASIC changes the first element, (1) or (0, 1), of num-array to its ASCII character equiva­
lent, the second element, (2) or (0,2), to its ASCII equivalent, and so on. The length of the
returned string is determined by the value in the zero element of num-array. For example,
if num-arr is dimensioned as (10), but the zero element (0) contains the value 5, BASIC
changes only elements (1), (2), (3), (4), and (5) to string characters.

4. BASIC truncates floating-point values to integers before converting them to characters.

5. Values in array elements are treated modulo 256.

Examples

String Variabie to Array

50 DIM ARRAY_CHANGESlCB>
BO CHANGE "ABCDE" TD ARRAY_CHANGES%

Array to String Variable

200 CHANGE ARRAY_CHANGES% TD A$

BASIC Reference Manual 137

CLOSE

4.0 CLOSE

Function

The CLOSE statement ends I /0 processing to a device or file on the specified channel.

Format

CLOSE chnl-exp, ...

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
can be preceded by an optional pound sign (#).

General Rules

1. BASIC writes the contents of any active buffers to the file or device before it closes that file
or device.

2. Channel 0 (the controlling terminal) cannot be closed. An attempt to do so has no effect.

3. If you close a magnetic tape file that is open FOR OUTPUT, BASIC writes an end-of-file on
the magnetic tape.

4. If you try to close a channel that is not currently open, BASIC does not signal an error and
the CLOSE statement has no effect.

Examples

1000 CLOSE •1 t 3

138 BASIC Reference Manual

COMMON

5.0 COMMON

Function

The COMMON statement defines a named, shared storage area called a COMMON block or pro­
gram section (PSECT). BASIC program modules can access the values stored in the COMMON by
specifying a COMMON with the same name.

Format

I ~~~MON I [(com-nam)] { [data-type] com-item }, ...

com-item:

Syntax Rules

,
num-unsubs-vbl-nam

num-array-nam (int-const,...)

str-unsubs-vbl-nam = int-const

~ str-array-nam (int-const, ...) [= int-const] ..­

FILL [(int-const)] [= int-const]

FILL% [(int-const)]

FILL$ [(int-const)] [= int-const]
"'

1. Com-nam is optional. If present, it must be in parentheses.

2. A COMMON can have the same name as a program variable. However, in
BASIC-PLUS-2, a COMMON cannot have the same name as a subprogram withi~ the
same task image.

3. A COMMON and a MAP in the same program module cannot have the same name.

4. Com-item declares the name and format of the data to be stored.

• Num-unsubs-vbl-nam and num-arr-nam specify a numeric variable or a numeric array.

• Str-unsubs-vbl-nam and str-arr-nam specify a fixed-length string variable or array. You
can specify the number of bytes to be reserved for the variable with the =int-canst
clause. The default string length is 16.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts of the record buffer
within or between data elements and to define the format of the storage. Int-canst speci­
fies the number of FILL items to be reserved. The =int-canst clause allows you to specify
the number of bytes to be reserved for string FILL items. Table 21 describes FILL item
format and storage allocation.

BASIC Reference Manual 139

COMMON

Note

In the applicable formats of Fill, (ini-const) represents a repeat count, not an
array subscript. FILL (n) represents n elements, not n + 1.

5. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

6. When you specify a data-type, all following com-items, including FILL items, are of that
data type until you specify a new data type.

7. If you do not specify any data-type, com-items take the current default data type and size.

8. Variable names, array names, and FILL items following a data-type cannot end in a dollar
sign or percent sign character.

9. Variables and arrays declared in a COMMON statement cannot be declared elsewhere in
the program by any other declarative statements.

10. COMMON elements must be separated with commas.

VAX-11 BASIC

1. The default com-nam is "$BLANK".

2. Com-nam can consist of from 1 to 31 characters. The first character of the name must be
an alphabetic character (A through Z). The remaining characters, if present, can be any
combination of letters, digits (0 through 9), dollar signs($), periods(.), or underscores(_).

8 BASIC-PLUS-2

1. The default com-nam is".$$$$.".

2. Com-nam can consist of from one to six characters. The first character must be an alpha­
betic character (A through Z). The remaining characters, if present, can be any combina­
tion of letters, digits (0 through 9), dollar signs ($), or periods (.).

140 BASIC Reference Manual

COMMON

Table 21: FILL Item Formats and Storage Allocations

FILL Format Storage Allocation

FILL Allocates storage for one floating-point element unless preceded by a data-type; the
number of bytes allocated depends on the default floating-point data size or the speci-
fled data-type.

FILL(int-const) Allocates storage for the number of floating-point elements specified by int-const unless

I preceded by a data-type; the number of bytes allocated for each element depends on the
default floating-point data size Oi the specified data-type.

FILL% Allocates storage for one integer element; the number of bytes allocated depends on the
default integer size.

FILL %(int-canst) Allocates storage for the number of integer elements specified by int-canst; the number
of bytes allocated for each element depends on the default integer size.

FILL$ Allocates 16 bytes of storage for a string element. The dollar sign can be omitted if the
FILL keyword is preceded by the STRING data-type.

FILL$(int-const) Allocates 16 bytes of storage for the number of string elements specified by int-canst.
The dollar sign can be omitted if the FILL keyword is preceded by the STRING data-type.

FILL$= int-const Allocates the number of bytes of storage specified by = int-const for a string element.
The dollar sign can be omitted if the FILL keyword is preceded by the STRING data-type.

FILL$(int-const) =int-canst Allocates the number of bytes of storage specified by =int-canst for the number of string
elements specified by int-canst. The dollar sign can be omitted if the FILL keyword is
preceded by the STRING data-type.

Note

In the applicable formats of FILL, (int-const) represents a repeat count, not an
array subscript. FILL (n) represents n elements, not n + 1.

General Rules

1. A COMMON area and a MAP area with the same name, in different program modules,
specify the same storage area.

2. BASIC does not execute COMMON statements. The COMMON statement allocates and
defines the data storage area at compile time.

3. When you link or task-build your program, the size of the COMMON area is the size of the
largest COMMON area with that name. That is, BASIC concatenates COMMON state­
ments with the same com-nam within a single program module into a single PSECT. The
total space allocated is the sum of the space allocated in the concatenated COMMON
statements.

4. The COMMON statement must lexically precede any reference to variables declared in it.

5. A COMMON area can be accessed by more than one program module, as long as you
define the com-nam in each module that references the COMMON.

BASIC Reference Manual 141

COMMON

6. Variable names in a COMMON statement in one program module need not match those in
another program module.

7. VAX-11 BASIC does not initialize variables in COMMON blocks.

8. Since BASIC-PLUS-2 initializes variables in COMMON blocks, you must use unique
names for each variable in each COMMON block.

9. In BASIC-PLUS-2, you should know how your program overlays if data stored in a
COMMON area is to be shared by several program modules. The COMMON should be
named in an overlay unit that will remain in memory as long as program units need to
reference the COMMON data. If the overlay that names the COMMON is forced out of
memory, BASIC reinitializes the COMMON area to zero when the overlay is brought back
into memory. See BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS/E Systems for
information on overlay structures.

10. The data-type specified for com-items or the default data type and size determines the
amount of storage reserved in a COMMON block:

Examples

• BYTE integers reserve 1 byte.

• WORD integers reserve 2 bytes.

• LONG integers reserve 4 bytes.

• SINGLE floating-point numbers reserve 4 bytes.

• DOUBLE floating-point numbers reserve 8 bytes.

• GFLOAT floating-point numbers reserve 8 bytes (VAX-11 BASIC only).

• HFLOAT floating-point numbers reserve 16 bytes (VAX-11 BASIC only).

• DECIMAL(d,s) packed decimal numbers reserve (d + 1) I 2 bytes (VAX-11 BASIC only).

• STRING reserves 16 bytes (the default) or the number of bytes you specify with
= int-const.

500 COMMON <INVEN> INTEGER SHELF_NUMBERt STRING ROW = z, &
DOUBLE FILL, PART_BINt LIST_PRICE

142 BASIC Reference Manual

DATA

6.0 DATA

Function

The DAT A statement creates a data block for the READ statement.

Format

DATA r
num-lit l
str-lit , ...

l unq-str J

Syntax Rules

1. Num-lit specifies a numeric literal.

2. Str-lit is a character string that starts and ends with double or single quotation marks. The
quotation marks must match.

3. Unq-str is a character sequence that does not start and end with double or single quotation
marks and does not contain a comma.

4. Commas separate data elements. If a comma is part of a data item, the entire item must be
enclosed in quotation marks.

5. Because BASIC treats comment fields in DATA statements as part of the DAT A sequence,
do not include comments.

6. A DATA statement must be the last or the only statement on a line.

7. DATA statements must end with a line terminator. BASIC interprets a!! characters except
the ampersand(&) between the keyword DATA and the final line terminator as part of the
data. You can continue DAT A statements by placing an ampersand (&) immediateiy before
the line terminator.

8. You cannot use the percent sign suffix for integer constants that appear in DAT A state­
ments. An attempt to do so causes BASIC to signal "Data format error" (ERR= 50) when
you try to run the program.

General Rules

1. DATA statements are local to a program module.

2. BASIC does not execute DATA statements. Instead, BASIC passes control to the next exe­
cutable statement.

3. A program can have more than one DATA statement. BASIC assembles data from all DATA
statements in a single program unit into a lexically ordered single data block.

4. BASIC ignores leading and trailing blanks and tabs unless they are in a string literal.

BASIC Reference Manual 143

DATA

5. Commas are the only valid data delimiters. You must use a quoted string literal if the
comma is to be part of a string.

6. BASIC ignores DAT A statements without an accompanying READ statement.

7. BASIC signals the error "Data format error" if the DAT A item does not match the data type
of the variable specified in the READ statement or if a data element that is to be read into
an integer variable ends with a percent sign (%). If a string data element ends with a dollar
sign ($), BASIC treats the dollar sign as part of the string.

Examples

300 DATA 35t 32.3t PRODUCTION SEQUENCEt 'SYSTEM' t '1t2'

144 BASIC Reference Manual

DECLARE

.., n ns:~1 A cu:
I •"' ..,._"°_r-..1 •-

Function

The DECLARE statement explicitly assigns a data type to and names a variable, an entire array, a
function, or a constant.

Format

Variables

DECLARE data-type decl-item [, [data-type] decl-item]. ..

DEF Functions

DECLARE data-type FUNCTION { def-nam [([def-param], ...)] }, ...

Named Constants

DECLARE data-type CONSTANT { const-nam const }, ...

decl-item:

I
unsubs-vbl-nam I
array-nam (int-const, ...)

def-param: [data-type]

Syntax Rules

1. Data-type can be any BASIC data-type keywOid or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

Variables

1. Deel-item names a variable or an array.

2. A dec/-item cannot end in a percent sign (%) or dollar sign ($).

3. A dec/-item named in a DECLARE statement cannot also be named in another DECLARE
statement, or a DEF, EXTERNAL, FUNCTION, SUB, COMMON, MAP, or DIM statement.

4. lnt-const specifies the upper bounds of the array-nam.

5. Each dec/-item is associated with the preceding data-type. A data-type is required for the
first dec/-item.

6. Deel-items of data-type STRING are dynamic strings.

BASIC Reference Manual 145

I

DECLARE

DEF Functions

1. Def-nam names the DEF function. It cannot end with a percent sign (%)or doilar sign ($).

2. Data-type specifies the data type of the value the function returns.

3. Def-params specify the number and, optionally, the data-type of the DEF parameters.
Parameters define the arguments the DEF expects to receive when invoked.

• When you specify a data-type, all following parameters are of that data type until you
specify a new data type.

• If you do not specify any data-type, parameters take the current default data type and
size.

• The number of parameters equals the number of commas plus one. For example, empty
parentheses specify one parameter of the default type and size; one comma inside the
parentheses specifies two parameters of the default type and size, and so on. One
data-type inside the parentheses specifies one parameter of the specified data type; two
data-types separated by one comma specifies two parameters of the specified type, and
so on.

Named Constants

146

1. Const-nam is the name you assign to the canst.

2. Data-type specifies the data type of the const-nam. The value of the canst must be numeric
if the data type is numeric and string if the data type is STRING. If the data-type is STRING,
canst must be a quoted string or another string constant.

3. Const cannot end with a percent sign (%) or a dollar sign ($).

4. Const cannot be of the RFA data type.

5. For VAX-11 BASIC, string constants cannot exceed 498 characters.

6. For BASIC-PLUS-2, string constants cannot exceed 128 characters.

7. VAX-11 BASIC allows canst to be an expression for all data types except DECIMAL.
Expressions are not allowed as values when you name DECIMAL constants.

8. BASIC-PLUS-2 allows canst to be an expression for STRING and INTEGER data types.
Expressions are not allowed as values when you name floating-point constants.

9. Allowable operators in DECLARE CONSTANT expressions include all valid arithmetic,
relational, and logical operators except exponentiation. Built-in functions cannot be used in
DECLARE CONSTANT expressions. The following examples use valid expressions as
values:

100 DECLARE DOUBLE CONSTANT MA}{_ t.JALUE = <PI I 2) (VAX-17 BASIC only)

100 DECLARE STRING CONSTANT LEFT_ARROW = < '<-----' + LF +CR>

BASIC Reference Manual February 1984

DECLARE

1. The DECLARE statement is not executable.

2. The DECLARE statement must lexically precede any reference to the variables, functions,
or constants named in it.

3. You cannot declare virtual arrays.

4. To avoid confusion and to retain BASIC's implicit data typing feature, variable names
ending with a dollar sign or percent sign are invalid in a DECLARE statement.

Variables

1. Variables named in a DECLARE statement are initialized to zero if numeric or to the null
string if string.

2. Subsequent decl-items are associated with the specified data type until you specify another
data-type.

DEF Functions

1. The DECLARE FUNCTION statement allows you to name a function defined in a DEF
statement, specify the data type of the value the function returns, and declare the number
and data type of the DEF parameters.

2. Data-type keywords must be separated by commas. For example:

100 DECLARE DOUBLE FUNCTION INTEREST< ttDOUBLEtSINGLE>

This example decares two parameters of the default type and size, one DOUBLE parame­
ter, and one SINGLE parameter for the function named INTEREST.

3. The first specification of a def-param is the default for subsequent arguments until you
specify another def-par am.

Named Constants

1. The DECLARE CONSTANT statement allows you to name a constant value and assign a
data type to that value. Note that you can specify only one data type in a DECLARE
CONST ANT statement. To declare another constant, you must use a second DECLARE
CONST ANT statement.

2. You cannot change the value assigned to const-nam.

3. You cannot use a const-nam where a variable is required.

BASIC Reference Manual 147

DECLARE

4. In VAX-11 BASIC, the specified data-type determines the data type of const. For example: <8>
100 DECLARE WORD CONSTANT MMM 1 c:'

.L • .._,

200 DECLARE REAL CONSTANT zzz 123%
300 DECLARE BYTE CONSTANT yyy '123 'L
aoo PRINT MMMtZZZtYYY

RUNNH

123 123

In this example, BASIC truncates the value 1 .5 to a WORD integer, and ignores the percent
suffix and the L (LONG) data type.

5. BAS/C-PLUS-2 signals the error "Constant is inconsistent with the type of <name> " if the ~
data type of const does not match the specified data-type.

Note

Data types specified in a DECLARE statement override any defaults specified in
COMPILE command qualifiers or OPTION statements.

Examples

Variables

100 DECLARE INTEGER CATALOG_NUMt DOUBLE PRICEt STRING ITEM_NAME

DEF Functions

100 DECLARE INTEGER FUNCTION AMOUNT< ttDOUBLEtBYTEtt)

Named Constants

100 DECLARE DOUBLE CONSTANT INTEREST_RATE 15.22

148 BASIC Reference Manual

DEF

8.0 DEF

Function

The DEF statement lets you define a single- or multi-line function.

Format

Single-Une DEF

DEF [data-type] def-nam [([[data-type] unsubs-vb!-nam], ...)] exp

Multi-Line DEF

DEF [data-type] def-nam [([[data-type] unsubs-vbl-nam],. . .)]

[statement] ...

I END DEF I
FNEND

Syntax Rules

1. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

2. The data-type that precedes the def-nam specifies the data type of the value returned by the
DEF function.

3. Def-nam is the name .of the DEF function. The def-nam may contain from 1 to 31
characters.

4. If the def-nam also appears in a DECLARE FUNCTION statement, the following rules
apply:

• A function data-type is required.

• The first character of the def-nam must be an alphabetic character (A through Z). The
remaining characters may be any combination of letters, digits (0 through 9), dollar signs
($), underscores (_), or periods (.), with one restriction: the last character cannot be a
dollar sign.

5. If the def-nam does not appear in a DECLARE FUNCTION statement, but the DEF state­
ment appears before the first reference to the def-nam, the following rules apply:

• The function data-type is optional.

• The first character of the def-nam must be an alphabetic letter (A through Z). The remain­
ing characters can be any combination of letters, digits, dollar signs, underscores, or
periods. (continued on next page)

BASIC Reference Manual 149

DEF

• If a function data-type is specified, the last character in the def-nam cannot be a dollar
sign or percent sign.

• If a function data-type is not specified, the last character in the def-nam must be a
percent sign (%) for an INTEGER function, a dollar sign ($) for a STRING function, or a
letter, digit, period, or underscore for a function of the default type and size.

6. If the def-nam does not appear in a DECLARE FUNCTION statement, and the DEF state­
ment appears after the first reference to the def-nam, the following rules apply:

• The function data-type cannot be present.

• The first two characters of the def-nam must be FN. The remaining characters can be any
combination of letters, digits, dollar signs, underscores, or periods, with one restriction:
the last character must be a percent sign (%) for an INTEGER function, a dollar sign ($)
for a STRING function, or a letter, digit, period, or underscore for a function of the
default type and size.

• There must be at least one character between the FN characters and the ending dollar
sign or percent character. FN$ and FN% are not valid function names.

7. Unsubs-vbl-nam specifies optional formal DEF parameters. Because the parameters are
local to the DEF function, any reference to these variables outside the DEF body creates a
different variable.

8. You can specify the data-type of DEF parameters with a data-type keyword or, in VAX-11
BASIC, with a data type defined in a RECORD statement. If you do not include a data type,
the parameters are of the default type and size. Parameters that follow a data-type keyword
are of the specified type and size until you specify another data type.

9. BASIC-PLUS-2 allows you to specify up to eight parameters in a DEF statement.

10. VAX-11 BASIC allows you to specify up to 255 parameters in a DEF statement.

Single-Line DEF

1. Exp specifies the operations the function performs.

Multi-Line DEF

1. Statements specify the operations the function performs.

2. The END DEF or FNEND statement is required to end a multi-line DEF.

3. You can use any BASIC statement except END FUNCTION, END SUB, FUNCTION,
FUNCTIONEND, FUNCTIONEXIT, DEF, or DEF* in a function definition.

150 BASIC Reference Manual

DEF

1. When BASIC encounters a DEF statement, control of the program passes to the next exe­
cutable statement after the DEF.

2. Functions are invoked when you use the function name in an expression.

3. You cannot specify how parameters are passed. When you invoke a function, BASIC
evaluates parameters from left to right and passes parameters to the function so that they
cannot be modified. Numeric parameters are passed BY VALUE and string parameters are
passed BY DESC, where the descriptor points to a local copy. DEF functions may reference
variables in the main program, but they cannot reference variables in other DEF or DEF*
functions. A DEF function may, therefore, modify other variables in the program, but not
variables within another DEF function.

4. A DEF is local to the program or subprogram that defines it.

5. The DEF statement, or the first invocation of a function, whichever occurs first, constitutes
the declaration of the function. The DECLARE FUNCTION statement defines the name of
the function, but does not invoke it.

6. If your program invokes a function with a name that does not start with FN before the DEF
statement defines the function, or if the number of parameters, types of parameters, or type
of result declared in the invocation disagree with the number or types of parameters
defined in the DEF statement, BASIC signals an error.

7. DATA statements in a multi-line DEF are not local to the function; they are local to the
program module containing the function definition.

8. The function value (that is, the location storing the value the function returns) is initialized
to zero or the null string each time you invoke the function.

9. ON ERROR GO BACK is the default error handler in a DEF function definition.

10. ON ERROR statements within a DEF are local to the function.

11. A GOTO, GOSUB, ON ERROR GOTO, or RESUME statement in a multi-line function
definition must refer to a line number or label in the same function definition.

12. You cannot transfer control into a multi-line DEF except by invoking the function.

13. DEF functions can be recursive.

February 1984 BASIC Reference Manual 151

I

DEF

Examples

Single-Line DEF

1000 DEF DOUBLE ADD <DOUBLE At Bt SINGLE Ct Dt E> = A+ B + C + D + E
2000 INPUT 'Enter five nuMbers to be added';VtW,x,y,z
2010 PRINT 'The SUM is';ADDCVtWtXtYtZ)

Multi-Line DEF

1000

1030
1040
1045
1050

152

DEF DOUBLE PAYROLLCINTEGER HOURS, REAL RATE>
EXIT DEF IF HOURS = 0
DECLARE INTEGER OVERTIME
OVERTIME = HOURS - 40
IF OVERTIME <= 0

THEN HOURS HOURS
ELSE HOURS = 40

END IF
DECLARE REAL CONSTANT OVER_RATE = 1+5
PAYROLL= <HOURS* RATE> + <OVERTIME* COVER_RATE *RATE>>

END DEF
INPUT "Your hours this i,.1eeK 11 ;MY-HOURS
INPUT "Your PaY rate" ;MY_PAY_RATE
PRINT 'Your PaY for the weeK is';PAYROLLCMY_HOURStMY_PAY_RATE>

BASIC Reference Manual

9.0 DEF*

Function

The DEF* statement lets you define a single- or multi-line function.

Format

Note

The DEF* statement is not recommended for new program development. DIGITAL
recommends that you use the DEF statement for defining single- and multi-line
functions.

Single-Une DEF*

DEF* [data-type] def-nam [([[data-type] unsubs-vbl-nam], ...)] exp

Multi-Une DEF*

DEF* [data-type] def-nam [([[data-type] unsubs-vbl-nam], ...)]

[statement]. ..

I END DEF I
FNEND

Syntax Rules

DEF*

1. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

2. The data-type that precedes the def-nam specifies the data type of the value returned by the
DEF* function.

3. Def-nam is the name of the DEF* function. The def-nam may contain from 1 to 31
characters.

4. If the def-nam also appears in a DECLARE FUNCTION statement, the following rules
apply:

• A function data-type is required.

• The first character of the def-nam must be an alphabetic character (A through Z). The
remaining characters may be any combination of letters, digits (0 through 9), dollar signs
($), underscores (_), or periods (.), with one restriction: the last character cannot be a
dollar sign.

BASIC Reference Manual 153

DEF*

5. If the def-nam does not appear in a DECLARE FUNCTION statement, but the DEF* state­
ment appears before the first reference to the def-nam, the following rules apply:

• The function data-type is optional.

• The first character of the def-nam must be an alphabetic letter (A through Z). The remain­
ing characters can be any combination of letters, digits, dollar signs, underscores, or
periods.

• If a function data-type is specified, the last character in the def-nam cannot be a dollar
sign or a percent sign.

• If a function data-type is not specified, the last character in the def-nam must be a
percent sign (%) for an INTEGER function, a dollar sign ($) for a STRING function, or a
letter, digit, period, or underscore for a function of the default type and size.

6. If the def-nam does not appear in a DECLARE FUNCTION statement, and the DEF* state­
ment appears after the first reference to the def-nam, the following rules apply:

• The function data-type cannot be present.

• The first two characters of the def-nam must be FN. The remaining characters can be any
combination of letters, digits, dollar signs, underscores, or periods, with one restriction:
the last character must be a percent sign (%) for an INTEGER function, a dollar sign ($)
for a STRING function, or a letter, digit, period, or underscore for a function of the
default type and size.

• There must be at least one character between the FN characters and the ending dollar
sign or percent character. FN$ and FN% are not valid function names.

7. Unsubs-vbl-nam specifies optional formal function parameters.

8. You can specify the data-type of function parameters with a data-type keyword. If you do
not specify a data-type, parameters are of the default type and size. Parameters that follow
a data-type keyword are of the specified type and size until you specify another data-type.

9. BAS/C-PLUS-2 allows you to specify up to eight parameters in a DEF* statement.

10. VAX-11 BASIC allows you to specify up to 255 parameters in a DEF* statement.

Single-Line DEF*

1. Exp specifies the operations the function performs.

Multi-Line DEF*

1. Statements specify the operations the function performs.

2. The END DEF or FNEND statement is required to end a multi-line DEF*.

3. You can use any BASIC statement except END FUNCTION, END SUB, FUNCTION,
FUNCTIONEND, FUNCTIONEXIT, DEF, or DEF* in a function definition.

154 BASIC Reference Manual

DEF*

Generai Ruies

1. When BASIC encounters a DEF* statement, control of the program passes to the next
executable statement after the DEF.

2. Functions are invoked when you use the function name in an expression.

3. You cannot specify how parameters are passed. When you invoke a DEF* function,
BASIC evaluates parameters from left to right and passes parameters to the function so that
they cannot be modified. Numeric parameters are passed BY VALUE, and string
parameters are passed BY DESC, where the descriptor points to a local copy. DEF*
functions may reference variables in the main program, but they cannot reference
variables in other DEF or DEF* functions. A DEF* function may, therefore, modify varia­
bles in the program, but not variables within another DEF* function.

4. A DEF* is local to the program or subprogram that defines it.

5. The DEF* statement permits inclusion of the GOTO, ON GOTO, GOSUB, and
ON GOSUB statements in a multi-line DEF* function. This allows you to transfer pro­
gram control outside the function definition.

6. Although other variables used within the body of a DEF* are not local to the DEF*, DEF*
formal parameters are. However, if you change the value of formal parameters within a
DEF* function and then transfer control out of the DEF* without executing the END DEF
or FNEND statement, variables outside the DEF* that have the same names as DEF*
formal parameters are also changed.

7. The DEF* statement, or the first invocation of a function, whichever occurs first, consti­
tutes the declaration of the function. The DECLARE FUNCTION statement defines the
name of the function, but does not invoke it.

8. If your program invokes a function before the DEF* statement defines the function, or if
the number of parameters, types of parameters, or type of result declared in the invoca­
tion disagree with the number or types of parameters defined in the DEF* statement,
BASIC signals an error.

9. DEF* function values are not initialized when DEF* functions are invoked. Therefore, if a I
DEF* is invoked, and no new function value is assigned, the DEF* returns the value of its
previous invocation.

10. DEF* functions can be recursive.

11. DATA statements in a multi-line DEF* are not local to the function; they are local to the
program module containing the function definition.

12. The error handler of the program module that contains the DEF* is the default error
handler for a DEF* function, not ON ERROR GO BACK as in DEF functions. Parameters
return to their original values when control passes to the error handler.

February 1984 BASIC Reference Manual 155

DEF*

Examples

Single-Line DEF*

1000 DEF* STRING CONCATCSTRING At6) = A + 6
2000 INPUT 'Enter two 1,,10 rds' HJORD1 tWORD2
2010 PRINT CONCATCWDRD1 tWORD2)

Multi-Line DEF*

1000 DEF* DOUBLE EXAMPLECDOUBLE At Bt SINGLE Ct Dt E>
EXIT DEF IF B = 0
EXAMPLE (A I 6) + C - <DE>

1030 END DEF
1040 INPUT 'Enter 5 nu1T1be rs' ;1.i tW tX tY tZ
1050 PRINT EXAMPLECVtWtXtYtZ>

156 BASIC Reference Manual

DELETE

10.0 DELETE

Function

The DELETE statement removes a record from a relative or indexed file.

Format

DELETE chnl-exp

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

General Rules

1. The DELETE statement removes the current record from a file. You cannot then access the
record.

2. The file specified by chnl-exp must be open with ACCESS MODIFY or WRITE.

3. You can delete a record only if the last I 10 statement executed on the specified channel
was a successful GET or FIND.

4. The DELETE statement leaves the Current Record Pointer undefined and the Next Record
Pointer unchanged.

5. BASIC signals an error when the I /0 channel is illegal or not open, when no current record
exists, when access is illegal or illogical, when the operation is illegal, or when the record
or bucket is locked.

A.

6. In VAX-7 7 BASIC, if the record being deleted is in a file opened with UNLOCK EXPLICIT, fvAX'\
the DELETE statement does not remove the lock on the record. If no lock was imposed with V
a previous GET or FIND statement, the default lock, ALLOW NONE, remains imposed.
The lock can be removed with the FREE or UNLOCK statement. See the sections on GET,
FIND, OPEN, FREE, and UNLOCK in this manual for more information on explicit record
locking and unlocking.

Examples

1000 DELETE 5

BASIC Reference Manual 157

DIMENSION

11.0 DIMENSION

Function

The DIMENSION statement creates and names a static, dynamic, or virtual array. The array subscripts
determine the dimensions and size of the array. You can specify the data type of the array and
associate the array with an I /0 channel.

Format

Nonvirtual, Nonexecutable

I DIM I
DIMENSION { [data-type] array-nam (int-const, ...) }, ...

Virtual

I DIM I
DIMENSION chnl-exp, { [data-type] array-nam (int-const, ...) [int-const] }, ...

Executable

I DIM I
DIMENSION { [data-type] array-nam (int-vbl, ...) },. ..

Syntax Rules

1. Array-nam is an array name. It must conform to the rules for naming variables.

2. An array-nam in a DIM statement cannot also appear in a COMMON, MAP, or DECLARE
statement.

3. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

4. If you do not specify a data type, the array-nam determines the type of data the array holds.
If the array-nam ends in a percent sign (%), the array stores integer data. If the array-nam
ends in a dollar sign ($), the array stores string data. Otherwise, the array stores data of the
default type and size.

5. A VAX-11 BASIC array can have up to 32 dimensions.

6. A BASIC-PLUS-2 array can have up to eight dimensions.

158 BASIC Reference Manual

DIMENSION

7. Each instance of int-canst or int-vb/ within the parentheses specifies the upper bound of an
array dimension.

• In VAX-11 BASIC, array bounds must be in the range Oto 231
-

1
•

• In BASIC-PLUS-2, array bounds must be in the range Oto 215
-

1
•

• Although the compiler does not generate an error for subscript values outside of these
ranges, there is a limit to the amount of storage your system can allocate. Therefore, very
large arrays can cause an internal allocation error or a run-time error.

Nonvirtual, Nonexecutabie

1. When all the dimension specifications are int-cansts, as in DIM A(15%, 10%,20%), the
DIM statement is nonexecutable and the array is static. A static array cannot appear in
another DIM statement because BASIC allocates storage at compile time.

2. A nonexecutable DIM statement must lexically precede any reference to the array it dimen­
sions. That is, you must DIMENSION a static array before you can reference array
elements.

Virtual

1. The pound sign (#) must precede chnl-exp when dimensioning virtual arrays.

2. The virtual array must be dimensioned and the file must be open before you can reference
the array.

3. When the data-type is STRING, the =int-canst clause specifies the length of each array
element. The default string length is 16 characters. Virtual string array lengths are rounded
to the next higher power of two.

Executable

1. When any of the dimension specifications are int-vbls, as in DIM A(10%,20%,Y%), the
DIM statement is executable and the array is dynamic. A dynamic array can be redimen­
sioned with a DIM statement any number of times, since BASIC allocates storage at run
time.

General Rules

1. You can create an array implicitly by referencing an array element without using a DIM
statement. This causes BASIC to create an array with dimensions of (10), (10, 10),
(10, 10, 10), and so on, depending on the number of bounds specifications in the refer­
enced array element. You cannot create virtual or executable arrays implicitly.

2. The lower bound of a BASIC array is always zero, rather than one. Thus, A(10) allocates 11
elements, A(10, 10) allocates 121 elements, and A(0,0,0) allocates 1 element.

3. BASIC allocates storage for arrays by row, from right to left.

BASIC Reference Manual 159

DIMENSION

Nonvirtual, Nonexecutable

1. You can declare arrays with the COMf.AON, f.AAP, and DECLARE statements. Airnys so
declared cannot be redimensioned with the DIM statement. Furthermore, string arrays
declared with a COMMON or MAP statement are always fixed-length.

2. If you reference an array element declared in an array whose subscripts are larger than the
bounds specified in the DIM statement, BASIC signals the error "Subscript out of range"
(ERR= 55).

Virtual

1. When the rightmost subscript varies faster than the subscripts to the left, fewer disk
accesses are necessary to access array elements in virtual arrays.

2. Using the same DIM statement for multiple virtual arrays allocates all arrays in a single disk
file. The arrays are stored in the order they were declared.

3. Any program or subprogram can access a virtual array by declaring it in a virtual
DIMENSION statement. For example:

100 DIM #1, A< 10>
200 DIM #1, B< 10)

In this example, array B overlays array A. You must, however, specify the same channel
number, data types, and limits in the same order as they occur in the DIM statement that
created the virtual array.

4. BASIC stores a string in a virtual array by padding it with trailing nulls to the length of the
array element. It removes these nulls when it retrieves the string from the virtual array.

5. In BASIC-PLUS-2 on RSX-1 JM/M-PLUS systems and in VAX-11 BASIC, the OPEN state­
ment for a virtual array must include the ORGANIZATION VIRTUAL clause for the
chnl-exp specified in the DIMENSION statement.

6. BASIC does not initialize virtual arrays and treats them as statically allocated arrays. You
cannot redimension virtual arrays.

7. Refer to the BASIC User's Guide for more information on virtual arrays.

Executable

1. You create an executable, dynamic array by using integer variables for array bounds as in
DIM A(Y%,X%). This eliminates the need to dimension an array to its largest possible size.
Array bounds in an executable DIM statement can be constants or variables, but not
expressions. At least one bound must be a variable.

2. You cannot reference an array named in an executable DIM statement until after the DIM
statement executes.

3. You can redimension a dynamic array to make the bounds of each dimension larger or
smaller, but you cannot change the number of dimensions. That is, you cannot redimen­
sion a four-dimensional array to be a five-dimensional array.

160 BASIC Reference Manual

DIMENSION

4. The executable DIM statement cannot be used to dimension virtual arrays, arrays feceived
as formal param~ters, or arrays declared in COMMON, MAP, or nonexecutable DIM
statements.

5. An executable DIM statement always reinitializes the array to zero (for numeric arrays) or
the null string (for string arrays).

6. If you reference an array element declared in an executable DIM statement whose sub-_
scripts are larger than the bounds specified in the 1ast execution of the DIM, BASIC signals
the error "Subscript out of range" (ERR= 55).

Examples

Nonvirtual, Nonexecutable

300 DIM STRING NAME_LIST< 100 dOO>, BYTE AGE< 100)

Virtual

100 DIM # 1'X. , STRING NAM_LI ST< 500 > , REAL AMOUNT C 10 , 10 >

Executable

200 DIM DOUBLE INVENTORY<BASE1MARKUP>

BASIC Reference Manual 161

END

12.0 END

Function

The END statement marks the physical and logical end of a main program, a program module, or a
block of statements.

Format

END [block]

'DEF "

FUNCTION

GROUP (VAX-11 only)

IF
block: _. .-

Syntax Rules

RECORD (VAX-11 only)

SELECT

SUB

\... VARl~NT .J (VAX-11 only)

1. The END statement with no block keyword marks the end of a main program. The END
statement must be the last statement on the lexically last line in the main program.

2. The END statement followed by a block keyword marks the end of a BASIC SUB or
FUNCTION subprogram, or a DEF, IF, or SELECT statement block. In VAX-11 BASIC, END
RECORD, END GROUP, and END VARIANT mark the end of a RECORD statement, or a
GROUP component or VARIANT component of a RECORD statement.

3. The END block statement must be the lexically last statement in a subprogram or statement
block and must match the statement that established the subprogram or statement block.

General Rules

1. When an END statement marking the end of a main program executes, BASIC closes all
files and releases all program storage.

2. BASIC cannot execute an END statement that marks the end of a program unit while an
error is being handled. The module must execute a RESUME or ON ERROR statement
before the END statement.

3. BASIC signals an error when a program contains an END block statement with no corre­
sponding and preceding block keyword.

4. When BASIC executes an END DEF or END FUNCTION statement, it returns the function
value to the statement that invoked the function and releases all storage associated with the
DEF or FUNCTION.

162 BASIC Reference Manual

END

5. The END DEF statement restores the error handling in effect when the DEF was invoked.

6. Error handlers set up in DEF* statements are global. The END DEF statement does not
restore the error handling in effect when the DEF* was invoked.

7. The END SUB and END FUNCTION statements do not affect I 10 operations or files.

8. The END SUB statement releases the storage allocated to local variables and returns con­
trol to the calling program.

9. The END SUB statement cannot be executed in an error handler unless the SU BEND is in a
subprogram called by the error handler.

Examples

300

32767

IF A = 20
THEN PRINT "B}·e"

GOTO 32767
ELSE GOTO 100
END IF

END

BASIC Reference Manual 163

EXIT

13.0 EXIT

Function

The EXIT statement lets you exit from a SUB or FUNCTION subprogram, a multi-line DEF, or from a
statement block.

Format

EXIT block

block: DEF

FUNCTION

SUB

label 1

' I

Syntax Rules

1. The FUNCTION, SUB, and DEF keywords specify the type of subprogram or multi-line
DEF from which BASIC is to exit.

2. Label specifies a statement label for an IF, SELECT, FOR, WHILE, or UNTIL statement
block.

General Rules

164

1. An EXIT DEF, EXIT FUNCTION, or EXIT SUB statement is equivalent to an unconditional
branch to an END DEF, END FUNCTION, or END SUB statement. Control then passes to
the statement that invoked the DEF or to the statement following the statement that called
the subprogram.

2. The EXIT label statement is equivalent to an unconditional branch to the first statement
following the end of the IF, SELECT, FOR, WHILE, or UNTIL statement labelled by the
label.

3. An error handler cannot execute an EXIT FUNCTION or EXIT SUB statement unless the
error handler calls the FUNCTION or SUB subprogram.

4. An EXIT FUNCTION or EXIT SUB statement cannot be used within a multi-line DEF
function.

5. When the EXIT FUNCTION or EXIT SUB statement executes, BASIC releases all storage
allocated to local variables and returns control to the calling program.

BASIC Reference Manual February 1984

Exam pies

100 LOOP_l: FOR I% = 1% TO 10%

5000 SUB SUBA

!
6000 Ei{ IT SUB

10000 END SUB

NE>n I/..

PRINT I'X,
IF I'X. = 5%
THEN Ei<IT LOOP_1
END IF

EXIT

BASIC Reference Manual 165

EXTERNAL

14.0 EXTERNAL

Function

The EXTERNAL statement declares constants, variables, functions, and subroutines external to your
program. You can describe parameters for external functions and subroutines.

Format

External Constants

EXTERNAL data-type CONSTANT const-nam, ...

External Variables

EXTERNAL data-type unsubs-vbl-nam, ...

External Functions

EXTERNAL data-type FUNCTION { func-nam [pass-mech] [([external-param], ...)] }, ...

External Subroutines

EXTERNAL SUB { sub-nam [pass-mech] [([external-param], ...)] }, ...

pass-mech:

external-param:

(BY DESC

I BY REF

(BY VALUE

[data-type] [DIM ([,] ...)] [int-const] [pass-mech]

Syntax Rules

166

1. For external variables, data-type can be any valid numeric data type.

2. For external constants, data-type can be:

• For VAX-11 BASIC: BYTE, WORD, LONG, SINGLE, INTEGER (any size), or REAL (if
the default size is SINGLE).

• For BASIC-PLUS-2: WORD, or INTEGER (if the default size is WORD).

3. For external functions and subroutines, data-type can be any BASIC data-type keyword
or, in VAX-11 BASIC, a data type defined by a RECORD statement. Data-type keywords,
size, range, and precision are listed in Table 2 in this manual.

BASIC Reference Manual February 1984

4.

EXTERNAL

In VAX-11 BASIC, the name of an external constant, variable, function, or subroutine can /y~.
consist of from 1 to 31 characters and must conform to the following rules: "'7
• The first character of an unquoted name must be an alphabetic character (A through Z).

The remaining characters, if present, can be any combination of letters, digits (O through
9), dollar signs ($), periods (.), and underscores (_).

•Quoted names are allowed for the EXTERNAL SUB statement only. Quoted names can
consist of any combination of printable ASCII characters. I

•An EXTERNAL SUB or EXTERNAL FUNCTiON statement with empty parentheses speci­
fies that the named subprogram has zero arguments.

5. An EXTERNAL SUB or EXTERNAL FUNCTION statement with no parentheses specifies that I
the named subprogram may receive any number of arguments.

6. In BASIC-PLUS-2, the name of an external constant, variable, or subroutine can consist of rQ
from one to six characters and must conform to the following rules: V

• The first character of an unquoted name must be an alphabetic character (A through Z).
The remaining characters, if present, can be any combination of letters, digits (O through
9), dollar signs ($), and periods (.).

• Quoted names are allowed for the EXTERNAL SUB statement only. Quoted names can
consist of any combination of alphabetic characters, digits, dollar signs, periods, and
spaces.

External Functions and Subroutines

1. The data-type that precedes the FUNCTION keyword defines the data type of the function
result.

2. Pass-mech specifies how parameters are to be passed to the function or subroutine.

• A pass-mech clause outside the parentheses applies to al I parameters.

• A pass-mech clause inside the parentheses overrides the previous pass-mech and applies
only to the specific parameter.

3. Externa/-param defines the form of the arguments passed to the external function or
subprogram.

• Empty parentheses indicate that the function or subroutine is being named, but that
parameters are not being defined.

• Data-type specifies the data type of a parameter. If you do not specify a data type,
parameters are of the default data type and size. When you do specify a data type, all
following parameters are of that data type until you specify a new data type.

February 1984 BASIC Reference Manual 167

I

EXTERNAL

• The DIM keyword indicates that the parameter is an array. Commas specify array dimen­
sions. The number of dimensions is equal to the number of commas plus one. For
example:

100 DnERNAL STRING FUNCTION NEW <DOUBLE t STRING DIM< t), DIM<))

This example declares a function named NEW that has three parameters. The first is a
double-precision floating-point value, the second is a two-dimensional string array, and
the third is a one-dimensional string array. The function returns a string result.

• You can specify how an argument is to be passed to the function or subprogram with the
optional pass-mech clause. If you do not specify a passing mechanism for a parameter,
BASIC passes arguments by the default passing mechanisms listed in Tables 19 and 20.

General Rules

1. The EXTERNAL statement must precede any program reference to the constant, variable,
function, or subroutine declared in the statement.

2. The EXTERNAL statement is not executable.

3. A name declared in an EXTERNAL CONSTANT statement may be used in any nondeclara­
tive statement as if it were a constant.

4. A name declared in an EXTERNAL FUNCTION statement may be used as a function
invocation in an expression.

5. A name declared in an EXTERNAL SUB statement may be used in a CALL statement.

6. The optional pass-mech clauses in the EXTERNAL FUNCTION and EXTERNAL SUB
statements tell BASIC how to pass arguments to a non-BASIC function or subprogram.
Table 19 describes VAX-7 7 BASIC parameter passing mechanisms. Table 20 describes
BASIC-PLUS-2 parameter passing mechanisms.

• BY REF specifies that BASIC passes the argument's address. This is the default for all
arguments except strings and entire arrays.

• BY VALUE specifies that VAX-11 BASIC passes the argument's 32-bit value and that
BASIC-PLUS-2 passes the argument's 16-bit value.

• BY DESC specifies that BASIC passes the address of a VAX-7 7 BASIC descriptor
or a BASIC-PLUS-2 descriptor. For information about the format of a VAX-17 BASIC
descriptor for strings and arrays, see Appendix C in BASIC on VAX /VMS Systems.
BASIC-PLUS-2 creates descriptors only for strings and arrays; these descriptors are de­
scribed in Appendix C in BASIC on RSX-7 7 MI M-PLUS Systems and BASIC on RSTSIE
Systems.

168 BASIC Reference Manual

EXTERNAL

7. The arguments passed to external functions and subroutines should match the external
parameters declared in the EXTERNAL FUNCTION or EXTERNAL SUB statement in num­
ber, type, ordinality, and passing mechanism as BASIC forces arguments to conform to the
declared parameters. BASIC signals an error when conformance is impossible (for exam­
ple, when a STRING argument is passed where an INTEGER parameter was declared) and
an informational message when a conversion results in a modifiable parameter becoming a
nonmodifiable parameter.

Examples

External Constants

100 EXTERNAL LONG CONSTANT SYSSFC

External Variables

100 EXTERNAL WORD SYSNUM

External Functions

100 E}{TERNAL DOUBLE FUNCTION USR$2 (DOUBLE DIM< t) t BYTE BY 1.JALUE)

External Subroutines

100 EXTERNAL SUB CALC BY DESC <STRING DIM< t) t BYTE BY REF>

February 1984 BASIC Reference Manual 168.1

I

FIELD

-tc n CICI n
1 ~.u r 111 1.1

Function

Note

The FIELD statement is supported only for compatibility with BASIC-PLUS. Because
data defined in the FIELD statement can be accessed only as string data, you must use
the CVTxx functions to process numeric data. This means that you must convert string
data to numeric after you move it from the I /O buffer. Then, after processing, you
must convert numeric data back to string data before transferring it to the I /O buffer.
DiGiTAL recommends that you use BASiC's dynamic rnapping feature or multiple
MAPs instead of the FIELD statement and CVTxx functions.

The FIELD statement dynamically associates string variables with all or parts of an I /0 buffer. FIELD
statements do not move data. Instead, they permit direct access through string variables to sections of
a specified 1/0 buffer.

Format

FIELD chnl-exp, int-exp AS str-vbl [, int-exp AS str-vbl] ...

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be preceded by a pound sign (#). A file must be open on the specified channel or
BASIC signals an error.

2. Int-exp specifies the number of characters in the str-vbl that follows the AS keyword.

General Rules

1. A FIELD statement is executable. You can change a buffer description at any time by
executing another FIELD statement. For example:

100 FIELD #llt 40% AS WHOLE_FIELD$
FIELD #Ii.. t 10% AS AS t 10% AS 5$ t 107.. AS CS t 10% AS DS

The first FIELD statement associates the first 40 characters of a buffer with the variable
WHOLE_FIELD$. The second FIELD statement associates the first 10 characters of the
same buffer with A$, the second 10 characters with B$, and so on. Later program state­
ments can refer to any of the variables named in the FIELD statements to access specific
portions of the buffer.

2. You cannot define virtual array strings as string variables in a FIELD statement.

3. See the BASIC-PLUS Language Manual for more information on the FIELD statement.

BASIC Reference Manual 169

FIELD

VAX-11 BASIC

1. A variable named in a FiELD statement cannot be used in a COMMON or MAP statement,
as a parameter in a CALL or SUB statement, or in a MOVE statement.

2. Using the FIELD statement on a VIRTUAL file that contains a virtual array causes BASIC to
signal "Illegal or illogical access" (ERR= 136).

3. If you name an array in a FIELD statement, you cannot use MAT statements of the format:

MAT arr-nam 1 = arr-nam2

or

MAT arr-nam1 = NUL$

where arr-nam 1 is named in the FIELD statement. An attempt to do so causes BASIC to
signal a compile-time error.

Examples

100 FIELD #Slt 21 AS U$t 21 AS CL$t a% AS X$t al AS Y$
210 LSET U$ = CVTl$(LJl)

LSET CL$ = CVTl$(CL%)
LSET X$ = CVTF$(X)
LSET Y$ = CVTF$(Y)

300 Ul = CVT$l(LJ$)
CU', = CVTS'X. (CL$)
X CVT$F (}{$)
Y = Ct..JT$F<Y$)

Nole

DIGITAL does not recommend the FIELD statement for new program development.

170 BASIC Reference Manual

FIND

16.0 FIND

Function

The FIND statement locates a specified record in a disk file and makes it the Current Record for a
GET, UPDATE, or DELETE operation. FIND statements are valid on RMS sequential, relative, in­
dexed, and block I /O files. You should not use FIND statements on terminal-format files, virtual array
files, or files opened with ORGANIZATION UNDEFINED.

Format

VAX-11 BASIC

FIND chnl-exp [, position-clause] [, lock-clause]

RFA rfa-exp

position-clause: RECORD num-exp

KEY# key-clause

lock-clause: I
ALLOW allow-clause I
REGARDLESS

NONE

allow-clause: READ

MODIFY

key-clause: int-exp1 rel-op

rel-op: EQ I GE

GT

str-exp

int-exp2

decimal-exp

(continued on next page)

BASIC Reference Manual 171

FIND

8 BASIC-PLUS-2

FIND chnl-exp [, position-clause]

l
RFA rfa-exp

position-clause: RECORD num-exp

KEY# key-clause

key-clause: int-exp1 rel-op

rel-op: l :~
GT

Syntax Rules

I str-exp I
int-exp2

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Position-clause specifies the position of a record in a file. BASIC signals an error if you
specify a position-clause and chnl-exp is not associated with a disk file.

• If you do not specify a position-clause, FIND locates records sequentially. Sequential
record access is valid on RMS sequential, relative, indexed, and block I /0 files.

• The RFA position-clause allows you to randomly locate records by specifying the Record
File Address (RFA) of a record. That is, you specify the disk address of a record, and RMS
locates the record at that address. All RMS file organizations may be accessed by RFA.

• The RECORD position-clause allows you to randomly locate records in relative and
block I /0 files by specifying the record number.

• The KEY position-clause allows you to randomly locate records in indexed files by speci­
fying a key of reference, a relational test, and a key value.

3. Rfa-exp in the RFA position-clause is a variable of the RFA data type that specifies the
record's Record File Address. Note that an RFA expression can only be a variable of the
RFA data type or the GETRFA function. Use the GETRFA function to find the RFA of a
record.

4. Int-exp in the RECORD position-clause specifies the number of the record you want to
locate. It must be between one and the file's maximum record number.

172 BASIC Reference Manual

FIND

5. In the key-clause:

• Int-exp 1 is the target key of reference. It must be a WORD or LONG integer between
zero and the highest-numbered key for the file, inclusive. BASIC converts BYTE integers
to WORD. The primary key is key number zero, the first alternate key is key number
one, the second alternate key is key number two, and so on. Int-exp 1 must be preceded
by a pound sign (#) or BASIC signals an error.

• Str-exp and int-exp2 specify a string or integer value to be compared with the key value
of a record.

• Rel-op specifies how str-exp or int-exp2 is to be compared to int-exp 1. EQ means "equal
to,u GE means ;;greater than or equal to," and GT means "greater than."

6. When you specify a RECORD clause, chnl-exp must be a channel associated with an open
relative or block I /0 file.

7. When you specify a KEY clause, chnl-exp must be a channel associated with an open
indexed file.

VAX-11 BASIC

1. Str-exp in the KEY clause cannot be a null string.

2. Decimal-exp in the KEY clause specifies a packed decimal value to be compared with the
key value of a record.

3. Lock-clause allows you to control how a record is locked to other access streams. The file
associated with chnl-exp must have been opened with the UNLOCK EXPLICIT clause or
BASIC signals the error "illegal record locking clause".

4. If you specify a lock-clause, it must follow the position-clause. If the lock-clause precedes
the position-clause, BASIC signals an error.

General Rules

1. The file associated with chnl-exp must be opened with ACCESS MODIFY, READ, or
SCRATCH before your program can execute a FIND.

2. FIND does not transfer any data.

3. A successful sequential FIND updates both the Current Record and Next Record Pointers.

• For sequential files, a successful FIND locates the next sequential record (the record
pointed to by the Next Record Pointer) in the file, changes the Current Record Pointer to
the record just found, and sets the Next Record Pointer to the next sequential record. If
the Current Record Pointer points to the last record in a file, a sequential find causes
BASIC to signal "End of file on device" (ERR= 11).

• For relative files, a successful FIND locates the record with the next higher record num­
ber (or cell number), makes it the Current Record, and changes the Next Record to the
Current Record plus one.

BASIC Reference Manual 173

FIND

• For indexed files, a successful FIND locates the next logical record in the current key of
reference, makes this the Current Record, and changes the Next Record to the Current
Record plus one.

• For block I /0 files, a successful FIND locates the next disk block (for files with
RECORDSIZE 512) or the next record (for files with RECORDSIZE greater than 512),
makes it the Current Record, and changes the Next Record to the Current Record plus
one.

4. A successful random FIND by KEY locates the first record whose key satisfies the
key-clause comparison:

• With an exact key match (EQ), a successful FIND locates the first record in the file that
equals the key value given in int-exp or specified by str-exp. The characters specified by
str-exp are matched approximately rather than exactly. That is, if you specify "ABC" and
the key length is six characters, BASIC matches the first record that begins with ABC. If
you specify "ABC ", BASIC matches only a record with the key "ABC ". If no
match is possible, BASIC signals the error "Record not found" (ERR= 155).

• With the greater than key match (GT), a successful FIND locates the first record with a
value greater than int-exp or str-exp. If no such record exists, BASIC signals the error
"End of file on device" (ERR= 11).

• If you specify a greater than or equal to key match (GE), a successful FIND locates the
first record that equals the key value in int-exp or str-exp. If no exact match is possible,
BASIC locates the first record with a key value higher than int-exp or str-exp.

5. A successful random access FIND by RFA or by RECORD changes the Current Record
Pointer to the record specified by rfa-exp or int-exp, but leaves the Next Record Pointer
unchanged.

6. A successful random access FIND by KEY changes the Current Record Pointer to the first
record whose key satisfies the key-clause comparison and the Next Record Pointer to the
record with the next higher value in the current key.

7. When a random access FIND by RFA, RECORD, or KEY is not successful, BASIC signals
"Record not found" (ERR= 155). The values of the Current Record Pointer and Next
Record Pointer are undefined.

8. If the RMS index lists are in memory, a FIND on an indexed file does not initiate any disk
operations.

VAX-11 BASIC

1. The type of lock you impose on a record remains in effect until you explicitly unlock it with
a FREE or UNLOCK statement or until you close the file.

• ALLOW NONE specifies no access to the record. This means that other access streams
cannot retrieve the record unless they bypass lock checking with GET REGARDLESS.

• ALLOW READ specifies read access to the record. This means that other access streams
, can retrieve the record but cannot PUT or UPDATE the record.

• ALLOW MODIFY specifies both read and write access to the record. This means that
other access streams can GET, PUT, DELETE, or UPDATE the record.

174 BASIC Reference Manual

FIND

2. When you do not specify an ALLOW clause, locking is imposed as follows:

• If the file associated with chnl-exp was opened with UNLOCK EXPLICIT, BASIC imposes
the ALLOW NONE lock on the retrieved record and the next GET or FIND does not
unlock the previously locked record.

• If the file associated with chnl-exp was not opened with UNLOCK EXPLICIT, BASIC locks
the retrieved record and unlocks the previously locked record.

BAS/C-PLUS-2

1. When you access a shared file, a successful FIND locks the record or bucket and unlocks
the previousiy iocked record or bucket.

Examples

Sequential Access

100 MAP <XYZ> STRING LAST_NAME = 10t FIRST_NAME = 6
150 OPEN 'EMP.DAT' AS FILE #11 &

ORGANIZATION SEQUENTIALt MAP XYZ
200 FIND #1

Random Access

100
200
300

DECLARE RFA Address(88)
MAP CXYZ> STRING LAST_NAME = 10t FIRST_NAME
OPEN 'EMP.DAT' AS FILE #1 t &

ORGANIZATION SEQUENTIALt MAP XYZ
400 FIND #1

AddressCO> = GETRFA<1>

500 FIND #1 t RFA Address(5)

600 OPEN 'NEWEMP.DAT' AS FILE #21 &
ORGANIZATION RELATIVEt MAP XYZ

700 FIND #21 RECORD A%
Address<A%> = GETRFA<2>

FIND #21 RFA Address<A%>

800 OPEN 'OLDEMP.DAT' AS FILE #3t &
ORGANIZATION INDEXEDt MAP XYZt &
PRIMARY KEY LAST_NAME

FIND #3t KEY #0 EQ "JONES"
Address(5) = GETRFA(3)

FIND #31 RFA Address<?>

6

BASIC Reference Manual 175

FIND

VAX-11 BASIC

100
200

MAP <XYZ> STRING LAST_NAME = 10t F!RST_NAME = 8
OPEN 'EMP.DAT' AS FILE #1 t

ORGANIZATION INDEXEDt
MAP XYZt PRIMARY KEY LAST_NAMEt
UNLOCK EXPLICIT

aoo FIND #3t KEY #0 EQ "JONES"t ALLOW READ

176 BASIC Reference Manual

&
&
&

FNEND

17.0 FNEND

Function

The FNEND statement is a synonym for END DEF. See the END statement for syntax rules.

Format

FNEND
END DEF

February 1984 BASIC Reference Manual 177

I
I

I

FNEXIT

18.0 FNEXIT

Function

The FNEXIT statement is a synonym for the EXIT DEF statement. See the EXIT statement for syntax
rules.

Format

178

FNEXIT
EXIT DEF

BASIC Reference Manual February 1984

FOR

19.0 FOR

Function

The FOR statement repeatedly executes a block of statements, while incrementing a specified control
variable for each execution of the statement block. FOR loops can be conditional or unconditional,
and can modify other statements.

Format

Unconditional

FOR num-unsubs-vbl = num-exp1 TO num-exp2 [STEP num-exp3]

[statement] ...

NEXT num-unsubs-vbl

Conditional

I
UNTIL I

FOR num-unsubs-vbl = num-exp1 [STEP num-exp3] WHILE \ cond-exp

[statement] ...

NEXT num-unsubs-vbl

Unconditional Statement Modifier

statement FOR num-unsubs-vbl

Conditional Statement Modifier

statement FOR num-unsubs-vbl

Syntax Rules

num-exp1 TO num-exp2 [STEP num-exp3]

num-exp1 [step num-exp3] I UNTIL I
WHILE cond-exp

1. Num-unsubs-vbl is the loop variable. It is incremented each time the loop executes.

2. In unconditional FOR loops, num-exp 1 is the initial value of the loop variable, while
num-exp2 is the maximum value.

3. In conditional FOR loops, num-exp 1 is the initial value of the loop variable, while the
cond-exp in the WHILE or UNTIL clause is the condition that controls loop iteration.

4. Num-exp3 in the STEP clause is the value by which the loop variable is incremented after
each execution of the loop.

5. In VAX-11 BASIC, you can nest FOR loops to a maximum of 12 levels, depending on the
complexity of the loops.

February 1 984 BASIC Reference Manual 179

I

I

FOR

6. In BASIC-PLUS-2, you nest FOR loops to a maximum of 8 levels, depending on the
complexity of the loops.

7. An inner loop must be entirely within an outer loop; the loops cannot overlap.

8. You cannot use the same loop variable in nested FOR loops. That is, if the outer loop uses
"FOR I = 1 TO 10", you cannot use the variable I as a loop variable in an inner loop.

9. The default for num-exp3 is one if there is no STEP clause.

10. You can transfer control into a FOR loop only be returning from a function invocation, a
subprogram call, or an error handler that was invoked in the loop.

11. Each FOR statement must have a corresponding NEXT statement or BASIC signals and
error.

General Rules

1. The starting, incrementing, and ending values of the loop do not change during loop
execution.

2. The loop variable can be modified inside the FOR loop.

3. BASIC converts num-exp 1, num-exp2, and num-exp3 to the data type of num-unsubs-vbl
(the loop variable) before storing them.

4. When an unconditional FOR loop ends, the loop variable contains the value last used in
the loop, not the value that caused loop termination.

5. During each iteration of a conditional loop, BASIC tests the value of cond-exp before it
executes the loop.

• If you specify a WHILE clause and cond-exp is false (value zero), BASIC exits from the
loop. If the cond-exp is true (value nonzero), the loop executes again.

• If you specify an UNTIL clause and cond-exp is true (value nonzero), BASIC exits from
the loop. If the exp is false (value zero), the loop executes again.

6. When FOR is used as a statement modifier, BASIC executes the statement until
num-unsubs-vbl equals or exceeds num-exp2 or until the WHILE or UNLESS condition is
satisfied.

Examples

Unconditional

350 FOR I 3 TO 88 STEP 3

aoo NEXT I

Unconditional

100 FOR Z 0 STEP 2 UNTIL}{

200 NE>n Z

180 BASIC Reference Manual February 1 984

FOR

Unconditional Statement Modifier

100 A = A + +0005 FOR I 1 TO 10

Conditional Statement Modifier

100 FIND #2 FOR I = 1 UNTIL ERR=155

BASIC Reference Manual 181

FREE

I 20.0 FREE (VAX-11 BASIC)

Function

The FREE statement unlocks all records and buckets associated with a specified channel.

Format

FREE chnl-exp

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

General Rules

1. The file specified by chnl-exp must be open.

2. You cannot use the FREE statement with files not on disk.

3. If there are no locked records or buckets on the specified channel, the FREE statement has
no effect and BASIC does not signal an error.

4. The FREE statement does not change record buffers or pointers.

5. Your program must execute a GET or FIND statement after a FREE statement executes
before a PUT statement can execute.

Examples

aso FREE #G'X.

182 BASIC Reference Manual February 1984

FUNCTION

21.0 FUNCTiON

Function

The FUNCTION statement marks the beginning of a FUNCTION subprogram and defines the subpro­
gram's parameters.

Format

VAX-11 BASIC

FUNCTION data-type func-nam [pass-mech] [([formal-param], ...)]

[statement] ...

\ END FUNCTION l
I FUNCTIONEND J

pass-mech:

formal-param:

BASIC-PLUS-2

{ BY REF l

l BY DESC \

unsu bs-vbl-nam

[data-type] , array-nam (['.nt-const]

FUNCTION data-type func-nam [([formal-param], ...)]

[statement] ...

I
END FUNCTION l
FUNCTIONEND \

formal-param: unsubs-vbl-nam

[data-type] , array-nam (['.nt-const]

'...)

, ...)

int-const] [pass-mech]

I

BASIC Reference Manual 183

FUNCTION

Syntax Rules

184

1. Func-nam names the FUNCTION subprogram. The last character of the name cannot be a
dollar sign ($).

2. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

3. The data-type that precedes the func-nam specifies the data type of the value returned by
the FUNCTION subprogram.

4. Formal-param specifies the number and type of parameters for the arguments the
FUNCTION subprogram expects to receive when invoked.

• Empty parentheses indicate that the FUNCTION subprogram has zero parameters.

• Data-type specifies the data type of a parameter. If you do not specify a data type,
parameters are of the default data type and size. When you do specify a data type, all
following parameters are of that data type until you specify a new data type.

• If you specify a data-type, unsubs-vbl-nam and array-nam cannot end in a percent sign
(%) or dollar sign ($).

• Parameters defined in formal-param must agree in number and type with the arguments
specified in the function invocation.

5. The FUNCTION statement must be the first statement in the FUNCTION subprogram.

6. Compiler directives and comment fields (!), because they are not BASIC statements, may
precede the FUNCTION statement. However, they cannot precede the subprogram's first
numbered !ine. Note that REM is a BASIC statement; therefOie, it cannot precede the
FUNCTION statement.

7. Every FUNCTION statement must have a corresponding END FUNCTION statement or
FUNCTIONEND statement.

8. Any BASIC statement except END, SUB, SUBEND, END SUB, or SUBEXIT can appear in a
FUNCTION subprogram.

VAX-11 BASIC

1. Func-nam can consist of from 1 to 31 characters The first character must be an alphabetic
character (A through Z). The remaining characters, if present, can be any combination of
letters, digits (0 through 9), dollar signs($), periods(.), or underscores(_).

2. If the data type is STRING, the =int-canst clause allows you to specify the length of the
string. The default string length is 16.

3. VAX-11 BASIC allows you to specify from 1 to 32 formal-params.

BASIC Reference Manual February 1984

FUNCTION

4. Pass-mech specifies the parameter passing mechanism by which the FUNCTION sub­
program receives arguments when invoked. A pass-mech should be specified only when
the FUNCTION subprogram is being called by a non-BASIC program.

5. A pass-mech clause outside the parentheses applies by default to all FUNCTION parame­
ters. A pass-mech clause in the formal-param list overrides the specified default and applies
only to the immediately preceding parameter.

BAS/C-PLUS-2

1. Func-nam can consist of from one to six characters. The first character must be an alpha­
betic character (A through Z). The remaining characters, if present, can be any combina­
tion of letters, digits (O through 9), dollar signs ($), and periods (.).

2. BASIC-PLUS-2 allows you to specify from one to eight formal-params.

General Rules

1. FUNCTION subprograms must be declared with the EXTERNAL statement before your
program can invoke them.

2. FUNCTION subprograms receive parameters BY REF or BY DESC.

• BY REF specifies that the FUNCTION subprogram receives the argument's address.

• BY DESC specifies that the FUNCTION subprogram receives the address of a VAX-11
BASIC descriptor or a BASIC-PLUS-2 descriptor. For information about the format of a
VAX-11 BASIC descriptor for strings and arrays, see Appendix C in BASIC on VAX/VMS
Systems; for information on other types of descriptors, refer to the VAX Architecture
Handbook. BASIC-PLUS-2 creates descriptors only for strings and arrays; these descrip­
tors are described in Appendix C in BASIC on RSX-11 MI M-PLUS Systems and BASIC on
RSTS/E Systems.

3. All variables and data, except virtual arrays, COMMON areas, and MAP areas in a
FUNCTION subprogram, are local to the subprogram.

4. BASIC initializes local numeric variables to zero and local string variables to the null string
each time the FUNCTION subprogram is invoked.

5. ON ERROR GO BACK is the default error handler for a FUNCTION subprogram.

8 I

BASIC-PLUS-2 8
1. BASIC-PLUS-2 receives numeric unsubs-vbls BY REF and string unsubs-vbls and entire

arrays BY DESC.

VAX-11 BASIC ~
1. By default, VAX-11 BASIC FUNCTION subprograms receive numeric unsubs-vbls BY REF,

and all other parameters BY DESC. You can override these defaults with a BY clause:

• Any parameter can be received BY DESC.

•To receive a string parameter BY REF, you must specify the string length.

•To receive an entire array BY REF, you must specify the array bounds.

February 1984 BASIC Reference Manual 185

FUNCTION

Examples

VAX-11 BASIC only

100 FUNCTION GFLOAT SIGMA BY DESC
<GFLOAT A<20t20) t
Bt HFLOAT C BY REF>

250 END FUNCTION

BASIC-PLUS-2 only

&
&

100 FUNCTION DOUBLE CALC <SINGLE At Bt DOUBLE C<10t50))

250 END FUNCTION

186 BASIC Reference Manual

FUNCTION END

22.0 FUNCTIONEND

Function

The FUNCTIONEND statement is a synonym for the END FUNCTION statement. See the END
statement for syntax rules.

Format

i FUNCTIONEND l
(END FUNCTION)

BASIC Reference Manual 187

FUNCTION EXIT

23.0 FUNCTIONEXIT

Function

The FUNCTIONEXIT statement is a synonym for the EXIT FUNCTION statement. See the EXIT state­
ment for syntax rules.

Format

l FUNCTIONEXIT I
EXIT FUNCTION

188 BASIC Reference Manual

GET

24.0 GET

Function

The GET statement moves a record from a file to a record buffer and makes the data avai I able for
processing. GET statements are valid on RMS sequential, relative, indexed, and block I /0 files, and
on RSTS!E non-RMS block I /0 files. You should not use GET statements on terminal-format files,
virtual array files, or files opened with ORGANIZATION UNDEFINED.

Format

VAX-11 BASIC

GET chnl-exp [, position-clause] [, lock-clause]

position-clause:

lock-clause:

RFA rfa-exp

RECORD num-exp

KEY# key-clause

l ALLOW allow-clause I
REGARDLESS

NONE

allow-clause: READ

key-clause:

rel-op:

MODIFY

str-exp

int-exp1 rel-op int-exp2

EQ

GE

GT

decimal-exp

(continued on next page)

BASIC Reference Manual 189

GET

8 BASIC-PLUS-2

GET chnl-exp [, position-clause]

position-clause:

key-clause:

rel-op:

Syntax Rules

l
RFA rfa-exp

RECORD num-exp

KEY# key-clause

int-exp1 rel-op I str-exp I
int-exp2

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Position-clause specifies the position of a record in a file. BASIC signals an error if you
specify a position-clause and chnl-exp is not associated with a disk file.

• If you do not specify a position-clause, GET retrieves records sequentially. Sequential
record access is valid on RMS sequential, relative, indexed, and block I /0 files.

• The RFA position-clause allows you to randomly retrieve records by specifying the Rec­
ord File Address (RFA) of a record. That is, you specify the disk address of a record, and
RMS retrieves the record at that address. All RMS file organizations may be accessed by
RFA.

• The RECORD position-clause allows you to randomly retrieve records in relative and
block I /0 files by specifying the record number.

•The KEY position-clause allows you to randomly retrieve records in indexed files by
specifying a key of reference, a relational test, and a key value.

3. Rfa-exp in the RFA position-clause is an expression of the RFA data type that specifies the
record's Record File Address. Note that an RFA expression can be only a variable of the
RFA data type or the GETRFA function. Use the GETRFA function to find the RFA of a
record.

4. Int-exp in the RECORD position-clause specifies the number of the record you want to
retrieve. It must be between one and the file's maximum record number.

190 BASIC Reference Manual

GET

5. In the key-clause:

• Int-exp 1 is the target key of reference. It must be a WORD or LONG integer between
zero and the highest-numbered key for the file, inclusive. BASIC converts BYTE integers
to WORD. The primary key is key number zero, the first alternate key is key number one,
the second alternate key is key number two, and so on. Int-exp 1 must be preceded by a
pound sign (#) or BASIC signals an error.

• Str-exp and int-exp2 specify a string or integer value to be compared with the key value of
a record. Str-exp can contain fewer characters than the key of the record you want to
retrieve.

• Rel-op specifies how str-exp or int-exp2 is to be compared to int-exp 1. EQ means "equal
to," GE means "greater than or equal to," and GT means "greater than."

6. When you specify a RECORD clause, chnl-exp must be a channel associated with an open
relative or block I /0 file.

7. When you specify a KEY ciause, chnl-exp must be a channel associated with an open
indexed file.

VAX-11 BASIC

1. Str-exp in the KEY clause cannot be a null string.

2. Decimal-exp in the KEY clause specifies a packed decimal value to be compared with the
key value of a record.

3. Lock-clause al lows you to control how a record is locked to other access streams or to
override lock checking when accessing shared files that may contain locked records.

4. If you specify a lock-clause, it must follow the position-clause. If the lock-clause precedes
the position-clause, BASIC signals an error.

5. If you specify an allow-clause, the file associated with chnl-exp must have been opened
with the UNLOCK EXPLICIT clause or BASIC signals the error "illegal record locking
clause".

General Rules

1. The file specified by chnl-exp must be open with ACCESS READ or MODIFY before your
program can execute a GET. The default ACCESS clause is MODIFY.

2. If the last I /0 operation was a successful FIND, a sequential GET retrieves the Current
Record located by the FIND and sets the Next Record Pointer to the Current Record plus
one.

3. If the last I /0 operation was not a FIND, a sequential GET retrieves the Next Record and
sets the Next Record Pointer to the Current Record plus one.

• For sequential files, a sequential GET retrieves the next record in the file.

• For relative and block I /0 files, a sequential GET retrieves the record with the next
higher cell number.

• For indexed files, a sequential GET retrieves the record with the next higher value in the
current key of reference.

BASIC Reference Manual 191

GET

4. A successful random GET by RFA or by RECORD retrieves the record specified by rfa-exp
or int-exp.

5. A successful random GET by KEY retrieves the first record whose key satisfies the
key-clause comparison:

•With an exact key match (EQ), a successful GET retrieves the first record in the file that
equals the key value given in int-exp or specified by str-exp. The characters specified by
str-exp are matched approximately rather than exactly. That is, if you specify "ABC" and
the key length is six characters, BASIC matches the first record that begins with ABC. If
you specify "ABC ", BASIC matches only a record with the key "ABC ". If no
match is possible, BASIC signals the error "Record not found" (ERR= 155).

•With the greater than key match (GT), a successful GET retrieves the first record with a
value greater than int-exp or str-exp. If no such record exists, BASIC signals the error "End
of file on device" (ERR= 11).

• If you specify a greater than or equal to key match (GE), a successful GET retrieves the
first record that equals the key value in int-exp or str-exp. If no exact match is possible,
BASIC retrieves the first record with a key value higher than int-exp or str-exp.

6. A successful random GET by RFA, RECORD, or KEY sets the value of the Current Record
Pointer to the record just read. The Next Record Pointer is set to the Current Record plus
one.

7. An unsuccessful GET leaves the recOid pointers and the I /0 buffer in an undefined state.

8. If the retrieved record is smaller than the receiving buffer, BASIC fills the remaining buffer
space with nulls.

9. If the retrieved record is larger than the receiving buffer, BASIC truncates the record and
signals an error.

10. A successful GET sets the value of the RECOUNT variable to the number of bytes trans­
ferred from the file to the record buffer.

11. Because a GET statement on a block I /0 file always transfers an integral number of
512-byte disk blocks, your program must perform record blocking and deblocking. See
Chapter 9 in the BASIC User's Guide for more information.

VAX-11 BASIC

1. The type of lock you impose on a record remains in effect until you explicitly unlock it with
a FREE or UNLOCK statement or until you close the file.

• ALLOW NONE specifies no access to the record. This means that other access streams
cannot retrieve the record unless they bypass lock checking with GET REGARDLESS.

• ALLOW READ specifies read access to the record. This means that other access streams
can retrieve the record, but cannot PUT or UPDATE the record.

•ALLOW MODIFY specifies both read and write access to the record. This means that
other access streams can GET, PUT, DELETE, or UPDATE the record.

192 BASIC Reference Manual

GET

2. When you do not specify an ALLOW clause, locking is imposed as follows:

• If the file associated with chnl-exp was opened with UNLOCK EXPLICIT, BASIC imposes
the ALLOW NONE lock on the retrieved record and the next GET or FIND does not
unlock the previously locked record.

• If the file associated with chn/-exp was not opened with UNLOCK EXPLICIT, BASIC locks
· the retrieved record and unlocks the previously locked record.

3. REGARDLESS specifies that the GET statement can override lock checking and read a
record locked by another program.

4. REGARDLESS does not impose a lock on the retrieved record.

BAS/C-PLUS-2

1. When you access a shared file, a successful GET locks the record or bucket and unlocks
the previously locked record or bucket.

Examples

Sequential Access

100 MAP <XYZ> STRING LAST_NAME = 10t FIRST_NAME = 6
150 OPEN 'EMP+DAT' AS FILE #1, &

ORGANIZATION SEQUENTIALt MAP XYZ
200 GET #4

Random Access

100 MAP <XYZ> STRING LAST_NAME = 101 FIRST_NAME = 6
200 DECLARE RFA Address(88)
300 OPEN 'EMF.DAT' AS FILE #l t &

ORGANIZATION SEQUENTIAL, MAP XYZ
400 GET •1

Address<O> = GETRFA<1>

500 GET #lt RFA Address<S>

600 OPEN 'NEWEMP.DAT' AS FILE #2t
ORGANIZATION RELATIVEt MAP XYZ

700 GET #2t RECORD Al
Address(Al> = GETRFA<2>

FIND #2t RFA Address<Al>

(continued on next page)

BASIC Reference Manual 19~

GET

900 OPEN 'OLDEMP.DAT' AS FILE •3t
ORGANIZATION INDEXEDt MAP XYZt
PRIMARY KEY LAST_NAME

GET •31 KEY •O EQ "JONES"
Address(5) = GETRFA<3>

GET •3, RFA Address(7)

VAX-11 BASIC

100 MAP CXYZ> STRING LAST_NAME = 10t FIRST_NAME = 6
300 OPEN 'EMP.OAT' AS FILE •1t ~

ORGANIZATION INDEXEDt &
MAP XYZt PRIMARY KEY LAST_NAMEt &
UNLOCK EXPLICIT

aoo GET #1 t KEY #0 EQ "JONES"t ALLOW READ

194 BASIC Reference Manual

GOSUB

Function

The GOSUB statement transfers control to a specified line number or label and stores the location of
the GOSUB statement for eventual return from the subroutine.

Format

l r-n c::11P. I

l ~~S~~B-- \ target

Syntax Rules

1. Target must refer to an existing line number or label in the same program unit as the
GOSUB statement or BASIC signals an error.

2. Target cannot be inside a FOR/NEXT, WHILE, or UNTIL loop or a multi-line function
definition unless the GOSUB statement is also within that loop or function definition.

General Rules

None.

Examples

200 GOSUB 1100

1100 Subroutine 1

2100 RETURN

BASIC Reference Manual 195

GOTO

26.0 GOTO

Function

The GOTO statement transfers control to a specified line number or label.

Format

I :~;i I target

Syntax Rules

1. Target must refer to an existing line number or label in the same program unit as the GOTO
statement or BASIC signals an error.

2. Target cannot be inside a FOR/NEXT, WHILE, or UNTIL loop or a multi-line function
definition unless the GOTO statement is also inside that loop or function definition.

General Rules

None.

Examples

20 GOTO 200

196 BASIC Reference Manual

IF

27.0 IF

Function

The IF statement evaluates a conditional expression and transfers program control depending on the
resulting value.

Format

Conditional

THEN I

~tatement.. · 1
lm-num

IF cond-exp

GOTO target

Statement Modifier

statement IF cond-exp

Syntax Rules

Conditional

[I lin-num I]
ELSE statement...

1. Cond-exp can be any valid conditional expression.

[END IF]

2. Any executable statement is valid in the THEN or ELSE clause, including another IF state­
ment. You can include any number of statements in either ciause.

3. All statements between the keyword THEN and the next ELSE, line number, or END IF are
part of the THEN clause. All statements between the ELSE keyword and the next line
number or END IF are part of the ELSE clause.

4. You can omit the THEN keyword when the target of a GOTO statement in the THEN is a
lin-num. The THEN keyword is required when the target of a GOTO statement is a label.

5. BASIC assumes a GOTO statement when the ELSE keyword is fol lowed by a lin-num.
When the target of a GOTO statement is a label, the GOTO keyword is required.

6. If a THEN or ELSE clause contains a FOR, SELECT, UNTIL, or WHILE statement, then a
corresponding NEXT or END statement must appear in the same THEN or ELSE clause.

7. IF statements can be nested to 12 levels.

8. The END IF statement terminates the most recent unterminated IF statement.

9. A new line number terminates all unterminated IF statements.

BASIC Reference Manual 197

IF

Statement Modifier

1. IF can modify any executable statement except a block statement such as FOR, vVHILE,
UNTIL, or SELECT.

2. Cond-exp can be any valid conditional expression.

General Rules

Conditional

1. BASIC evaluates cond-exp for truth or falsity. If true (nonzero), BASIC executes the THEN
clause. If false (zero), BASIC skips the THEN clause and executes the ELSE clause, if
present.

2. The NEXT keyword cannot be in a THEN or ELSE clause unless the IF statement associated
with the NEXT keyword is also part of the THEN or ELSE clause.

3. Execution continues at the statement following the END IF or ELSE clause. If the statement
does not contain an ELSE clause, execution continues at the next statement after the THEN
clause.

Statement Modifier

1. BASIC executes statement only if the cond-exp is true (nonzero).

Examples

Conditional

19000 IF ERR = 11
THEN

IF ERL = 1000
THEN GOTO ERROR-ROUTINE
ELSE

END IF

IF ERL = 2000
THEN 32700
ELSE

END IF

IF ERL = 3000
THEN GOTO ERROR_ROUTINE
END IF

ELSE PRINT ERT$CERR>
END IF

Statement Modifier

100 PRINT 'END OF PROCESSING' IF ERR = 11

198 BASIC Reference Manual

INPUT

28.0 INPUT

Function

The INPUT statement assigns values from your terminal or from a terminal-format file to program
variables.

Format

INPUT [chnl-exp,] [prompt] vbl [sep [prompt] vbl] ...

sep:

prompt: str-const sep

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Vb/ cannot be a DEF function name unless the INPUT statement is inside the multi-line DEF
that defines the function.

General Rules

1. The default chnl-exp is zero (the controlling terminal). If a chnl-exp is specified, a file must
be open on that channel with ACCESS READ or MODIFY before the INPUT statement can
execute.

2. You can include more than one prompt in an INPUT statement. The first prompt is issued
for the first vb/, the second prompt for the second vb/, and so on. The sep that follows the
vb/ associated with the prompt has no formatting effect. BASIC always advances to a new
line when you terminate input with a carriage return.

3. Sep in the prompt clause determines where the question mark is displayed and where the
cursor is positioned for input.

•A comma tells BASIC to skip to the next print zone and display the question mark. For
example:

100 INPUT 'NAME' tYOUR_NAME$

Run

NAME ?

• A semicolon tells BASIC to display the question mark next to str-const. For example:

100 INPUT 'ADDRESS';ADDR$

Run

ADDRESS?

BASIC Reference Manual 199

INPUT

4. BASIC signals an error if the INPUT statement has no argument.

5. If input comes from a terminal, BASIC displays the contents of str-const, if present, and a
question mark (?). If you have not specified a str-const, BASIC displays only the question
mark. The program then waits for data.

6. If the open channel does not correspond to a terminal, BASIC displays only the question
mark.

7. When BASIC receives a line terminator or a complete record, it checks each data element
for correct data type and range limits, then assigns the values to the corresponding
variables.

8. If you specify a string variable to receive the input text, and the user enters an unquoted
string in response to the prompt, BASIC ignores the string's leading and trailing spaces and
tabs. An unquoted string cannot contain any commas.

9. When you enter several data elements in response to the INPUT prompt, you must separate
them with commas.

10. If there is not enough data in the current record or line to satisfy the variable list, BASIC
takes one of the following actions:

• If the input device is a terminal, BASIC repeats the question mark, but not the str-const,
on a new line until sufficient data is entered.

• If the input device is not a terminal, BASIC signals "Not enough data in record"
(ERR= 59).

11. If there are more data items than variables in the INPUT response, BASIC ignores the
excess.

12. If there is an error in converting or assigning data (for example, assigning string data to a
numeric variable), BASIC takes one of the following actions:

• If the input device is a terminal, BASIC signals a warning, reexecutes the INPUT state­
ment, and displays str-const and the question mark.

• If the input device is not a terminal, BASIC signals "Illegal number" (ERR= 52) or "Data
format error" (ERR= 50).

13. When a RESUME statement transfers control to an INPUT statement, the INPUT statement
retrieves a new record regardless of any data left in the previous record.

14. After a successful INPUT statement, the RECOUNT variable contains the number of char­
acters transferred from the file or terminal to the record buffer.

200 BASIC Reference Manual

INPUT

15. If you terminate input text with CTRL/Z, BASIC assigns the value to the variable and signals
"End of file on device" (ERR= 11) when the next terminal input statement executes. If there
is no next INPUT, INPUT LINE, or LINPUT statement in the program, the CTRL/Z is passed
to BASIC as a signal to exit the BASIC environment. BASIC signals "Unsaved changes have
been made, CTRL/Z or EXIT to exit" if you have made changes to your program. If you
have not made changes, BASIC exits from the BASIC environment and does not signal an
error.

Examples

aoo INPUT "TYPE IN 3 INTEGERS";A%i 5%, C%

100 INPUT •311 RECORD_STRING$

150 INPUT # 1 % , II PURCHASE NUMBER II ; PO_NUM%; ii COST II ; COST, "ID NUMBER II ; ID'X.

BASIC Reference Manual 201

INPUT LINE

29.0 INPUT LINE

Function

The INPUT LINE statement assigns a string value, including the line terminator, from a terminal or
terminal-format file to a string variable.

Format

INPUT LINE [chnl-exp,] [prompt] str-vbl [sep [prompt] str-vbl] ...

sep:

prompt: str-const sep

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Vb/ cannot be a DEF function name unless the INPUT LINE statement is inside the multi­
line DEF that defines the function.

General Rules

1. The default chnl-exp is zero (the controlling terminal). If a chnl-exp is specified, a file must
be open on that channel with ACCESS READ before the INPUT LINE statement can exe­
cute.

2. You can include more than one prompt in an INPUT LINE statement. The first prompt is
issued for the first vb/, the second prompt for the second vb/, and so on. The sep that
follows the vb/ associated with the prompt has no formatting effect. BASIC always
advances to a new line when you terminate input with a carriage return.

3. Sep in the prompt clause determines where the question mark is displayed and where the
cursor is positioned for input.

•A comma tells BASIC to skip to the next print zone and display the question mark. For
example:

100 INPUT LINE 'NAME' tYOUR_NAME

Run

NAME ?

• A semicolon tells BASIC to display the question mark next to str-const. For example:

100 INPUT LINE 'ADORESS';ADDR$

Run

ADDRESS?

202 BASIC Reference Manual

INPUT LINE

4. BASIC signals an error if the INPUT LINE statement has no argument.

5. If input comes from a terminal, BASIC displays the contents of str-const, if present, and a
question mark (?). If you have not specified a str-const, BASIC displays only the question
mark. The program then waits for data.

6. If chnl-exp does not correspond to a terminal, BASIC displays only the question mark.

7. The INPUT LINE statement assigns all input characters including the line terminator(s) to
str-vbl. Single and double quotation marks, commas, tabs, leading and trailing spaces, or
other special characters in the string are part of the data.

8. When a RESUME statement transfers control to an INPUT LINE statement, the INPUT LINE
statement retrieves a new record regard less of any data left in the previous record.

9. After a successful INPUT LINE statement, the RECOUNT variable contains the number of
characters transferred from the file or terminal to the record buffer.

10. If you terminate input text with CTRL /Z, BASIC assigns the value to the variable and signals
"End of file on device" (ERR= 11) when the next terminal input statement executes. If there
is no next INPUT, INPUT LINE, or l:.INPUT statement in the program, the CTRL/Z is passed
to BASIC as a signal to exit the BASIC environment. BASIC signals "Unsaved changes have
been made, CTRL/Z or EXIT to exit" if you have made changes to your program. If you
have not made changes, BASIC exits from the BASIC environment and does not signal an
error.

Examples

850 INPUT LINE 11 TYPe two 1,,1ords 11 t Z$t 11 TYPe Your naMe 11 ;N$

380 INPUT LINE #4%t RECDRD_STRING$

BASIC Reference Manual 203

ITERATE

30.0 ITERATE

Function

The ITERATE statement allows you to explicitly reexecute a loop.

Format

ITERATE [label]

Syntax Rules

1. Label is the label of the first statement of a FOR-NEXT, WHILE, or UNTIL loop

2. The ITERATE statement can be used only within a FOR-NEXT, WHILE, or UNTIL loop.

General Rules

1. ITERATE is equivalent to an unconditional branch to the current loop's NEXT statement. If
you supply a label, ITERATE transfers control to the NEXT statement in the specified loop. If
you do not supply a label, ITERATE transfers control to the current loop's NEXT statement.

2. Label must conform to the rules for naming variables.

Examples

1000 Date_looP: WHILE 1% = 1%

NEXT

GET •1
ITERATE Oate~looP IF Day$ <> Today$
ITERATE Date_looP IF Month$ <> This-Month$
ITERATE Date_loop IF Year$ <> This_year$
PRINT IteM$

204 BASIC Reference Manual

KILL

31.0 KILL

Function

The KILL statement deletes a disk file, removes the file's directory entry, and releases the file's storage
space.

Format

KILL file-spec

Syntax Rules

1. File-spec can be a quoted string constant, a string variable, or a string expression. It cannot
be an unquoted string constant.

General Rules

1. The KILL statement marks a file for deletion but does not delete the file until all users have
closed it.

2. If you do not specify a complete file-spec, BASIC uses the default device and direc­
tory. If you do not specify a file version, VAX-11 BASIC and BASIC-PLUS-2 on
RSX-11 MI M-PLUS systems delete the highest version of the file.

3. The file-spec must exist or BASIC signals an error.

4. You can delete a file in another directory if you have access to that directory and privilege
to delete the file.

Examples

200 KILL 11 TEMP.DAT 11

BASIC Reference Manual 205

LET

32.0 LET

Function

The LET statement assigns a value to one or more variables.

Format

[LET] vbl,... exp

Syntax Rules

1. Vb/ cannot be a DEF or FUNCTION name unless the LET statement occurs inside that DEF
block or in that FUNCTION subprogram.

2. You cannot assign string data to a numeric variable or numeric data to a string variable.

3. The keyword LET is optional.

General Rules

1. When you assign a value to a subscripted variable, BASIC evaluates the subscripts from left
to right before evaluating exp and assigning the value. In the following example, line 10
assigns the value 5 to I, then line 20 assigns the value 2 to A(S) and to I:

10 LET I = 5
20 LET A (I > t I = 2

2. The vaiue assigned to a numeric variabie is converted to the variable's data type. For
example, if you assign a floating-point value to an integer variable, BASIC truncates the
value to an integer.

3. For dynamic strings, the destination string's length equals the source string's length.

4. When you assign a value to a fixed-length string variable, the value is left-justified and
padded with spaces or truncated to match the length of the string variable.

Examples

10 LET A = 3+141
20 A$ = 11 ABCDEFG 11

206 BASIC Reference Manual

LINPUT

33.0 LINPUT

Function

The LINPUT statement assigns a string value, without line terminators, from a terminal or terminal­
format file to a string variable.

Format

LINPUT [chnl-exp,] [prompt] str-vbl [sep [prompt] str-vbl] ...

sep:

prompt: str-const sep

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Vb/ cannot be a DEF function name unless the LINPUT statement is inside the multi-line
DEF that defines the function.

General Rules

1. The default chnf-exp is zem (the contmlling terminal). If you specify a chnl-exp, ihe file
associated with that channel must have been opened with ACCESS READ or MODIFY.

2. You can include more than one prompt in an INPUT LINE statement. The first prompt is
issued for the first vb/, the second prompt for the second vb/, and so on. The sep that
follows the vb/ associated with the prompt has no formatting effect. BASIC always
advances to a new line when you terminate input with a carriage return.

3. Sep in the prompt clause determines where the question mark is displayed and where the
cursor is positioned for input.

• A comma tells BASIC to skip to the next print zone and display the question mark. For
example:

100 LI NPUT II NAME II f YOUR _NAME

Run

NAME ? (continued on next page)

BASIC Reference Manual 207

LINPUT

• A semicolon tells BASIC to display the question mark next to str-const. For example:

100 LIN PUT II ADDRESS II ; ADDR$

Run

ADDRESS?

4. BASIC signals an error if the LINPUT statement has no argument.

5. If input comes from a terminal, BASIC displays the contents of str-const, if present, and a
question mark (?). If you have not specified a str-const, BASIC displays only the question
mark. The program then waits for data.

6. If chnl-exp does not correspond to a terminal, BASIC displays only the question mark.

7. The LINPUT assigns all characters except the line terminator(s) to str-vbl. Single and double
quotation marks, commas, tabs, leading and trailing spaces, or other special characters in
the string are µart of the data.

8. If the RESUME statement transfers control to a LINPUT statement, the LINPUT statement
retrieves a new record regardless of any data left in the previous record.

9. After a successful LINPUT statement, the RECOUNT variable contains the number of bytes
transferred from the file or terminal to the record buffer.

10. If you terminate input text with CTRL /Z, BASIC assigns the value to the variable and signals
"End of file on device" (ERR= 11) when the next terminal input statement executes. If there
is no next INPUT, INPUT LINE, or LINPUT statement in the program, the CTRL/Z is passed
to BASIC as a signal to exit the BASIC environment.

Examples

100 LINPUT "ENTER YOUR LAST NAME" ;Last_narr1e$

200 LINPUT #2%t Last_name$

208 BASIC Reference Manual

LSET

34.0 LSET

Function

The LSET statement assigns left-justified data to a string variable. LSET does not change the length of
the destination string variable.

Format

LSET str-vbl,... str-exp

Syntax Rules

1. Str-vbl is the destination string. Str-exp is the string value assigned to str-vbl.

2. BASIC evaiuates str-vbl's subscripts (if present) before evaiuating str-exp.

3. Str-vbl cannot be a DEF function name unless the LSET statement is inside the multi-line
DEF that defines the function.

General Rules

1. The LSET statement treats all strings as fixed-length. LSET neither changes the length of the
destination string nor creates new storage. Rather, it overwrites the str-vb/'s current storage.

2. If the destination string is longer than str-exp, LSET left-justifies str-exp and pads it with
spaces on the right. If smaller, LSET truncates characters from the right of str-exp to match
the length of str-vbl.

Examples

10 LSET ALPHA$='XYZ'

20 LSET A$, 6$ = CODE$ + NA_ME$

BASIC Reference Manual 209

MAP

35.0 MAP

Function

The MAP statement defines a named area of statically allocated storage called a PSECT, declares data
fields in the record, and associates them with program variables.

Format

MAP (map-nam) { [data-type] map-item }, ...

map-item:

Syntax Rules

~
num-unsubs-vbl-nam

num-array-nam (int-const, ...)

str-unsubs-vbl-nam [= int-const]

~ str-array-nam (int-const, ...) [= int-const] .­

FILL [(int-const)] [= int-const]

FILL% [(int-const)]

FILL$ [(int-const)] [= int-const]

"'

1. Map-nam is global to the program and task. It cannot appear elsewhere in the program unit
as a variable name.

2. In VAX-11 BASIC map-nam can consist of from 1 to 31 characters. The first character of
the name must be an alphabetic character (A through Z). The remaining characters, if
present, can be any combination of letters, digits (0 through 9), dollar signs($), periods(.),
or underscores (_).

3. In BAS/C-PLUS-2, map-nam can consist of from one to six characters. The first character
must be an alphabetic character (A through Z). The remaining characters, if present, can be
any combination of letters, digits (0 through 9), dollar signs ($), or periods (.).

4. Map-item declares the name and format of the data to be stored.

• Num-unsubs-vbl-nam and num-arr-nam specify a numeric variable or a numeric array.

• Str-unsubs-vbl-nam and str-arr-nam specify a fixed-length string variable or array. You
can specify the number of bytes to be reserved for the variable with the = int-const
clause. The default string length is 16.

• The FILL, FILL%, and FILL$ keywords allow you to reserve parts of the record buffer
within or between data elements and to define the format of the storage. Int-canst speci­
fies the number of FILL items to be reserved. The =int-canst clause allows you to specify
the number of bytes to be reserved for string FILL items. Table 21 describes FILL item
format and storage al location.

21 O BASIC Reference Manual

Note

In the applicable formats of FILL, (int-canst) represents a repeat count, not an
array subscript. FILL (n), for example, represents n elements, not n + 1.

MAP

5. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
by a RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2.

6. When you specify a data-type, all following map-items, including FILL items, are of that
data type until you specify a new data type.

7. If you do not specify any data-type, map-items without a data-typing suffix character (% or
$) take the current default data type and size.

8. Variable names, array names, and FILL items following a data-type cannot end in a dollar
sign or percent sign.

9. Variables and arrays declared in a MAP staiement cannoi be declared elsewhere in the
program by any other declarative statements.

General Rules

1. BASIC does noi execuie MAP siaiements. The MAP statement allocates static storage and
defines data at compile time.

2. A program can have multiple MAPs with the same name. The allocation for each MAP
overlays the others. Thus, data is accessible in many ways. The actual size of the data area
is the size of the largest MAP. When you link or task-build your program, the size of the
MAP area is the size of the largest MAP with that name.

3. Map-items with the same name can appear in different MAP statements with the same
map-nam only if they match exactly in attributes such as data type, position, and so forth.
If the attributes are not the same, BASIC signals an error. For example:

100
200
300
400

MAP <ABC> LONG At B
MAP <ABC> LONG At C
MAP <ABC> LONG Bt A
MAP CABC> WORD At B

This MAP stateroent is valid
This MAP stateroent Produces an error
This MAP stateroent Produces an error

Line 300 causes BASIC to signal the error "variable <name> not aligned in multiple
references in MAP <name>", while line 400 generates the error "attributes of overlaid
variable <name< don't match".

4. The MAP statement should precede any reference to variables declared in it.

5. Storage space for map-items is allocated in order of occurrence in the MAP statement.

6. A MAP area can be accessed by more than one program module, as long as you define the
map-nam in each module that references the MAP.

7. A COMMON area and a MAP area with the same name specify the same storage area and·
are not allowed in the same program module.

BASIC Reference Manual 211

MAP

8. A MAP named in an OPEN statement's MAP clause is associated with that file. The file's
records and record fields are defined by that MAP. The size of the MAP determines the
record size for file I /0, unless the OPEN statement includes a RECORDSIZE clause.

9. VAX-11 BASIC does not initialize variables in the MAP statement.

10. BASJC-PLUS-2 initializes MAP variables to zero or a null string.

Examples

200 MAP CBUF1> BYTE AGEt STRING EMP_NAME = 20t SINGLE EMP_NUM

400 MAP CBUF1> BYTE FILLt STRING LAST_NAME = 12t FILL = St SINGLE FILL

212 BASIC Reference Manual

MAP DYNAMIC

36.0 MAP DYNAMIC

Function

The MAP DYNAMIC statement names the variables and arrays whose size and position in a MAP
buffer can change at run time. BASIC sets all variable and array element pointers to the beginning of
the MAP buffer when the MAP DYNAMIC statement is processed.

Format

MAP DYNAMIC (map-nam) { [data-type 1 map-item }, ...

map-item:

Syntax Rules

num-unsubs-vbl-nam

num-array-nam (int-canst, ...)

str-unsubs-vbl-nam

str-array-nam (int-canst, ...)

1. Map-nam is the storage area named in a MAP statement.

2. Map-item declares the name and data type of the items to be stored in the map buffer. All
variable pointers point to the beginning of the map buffer until the program executes a
REMAP statement.

• Num-unsubs-vbl-nam and num-arr-nam specify a numeric variable or a numeric array.

• Str-unsubs-vbl-nam and str-arr-nam specify a string variable or array. You cannot specify
the number of bytes to be reserved for the variable in the MAP DYNAMIC statement. All
string items have a fixed-length of zero until the program executes a REMAP statement.

3. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in the RECORD statement. Data-type keywords, size, range, and precision are listed in
Table 2 in this manual.

4. When you specify a data-type, all following map-items are of that data type until you
specify a new data type.

5. If you do not specify any data-type, map-items take the current default data type and size.

6. Variable names and array names following a data-type cannot end in a dollar sign or
percent sign suffix character.

7. Variables and arrays declared in a MAP DYNAMIC statement cannot be declared else­
where in the program by any other declarative statements.

8. Map-items must be separated with commas.

BASIC Reference Manual 213

MAP DYNAMIC

General Rules

1. The MAP DYNAMIC statement does not affect the amount of storage allocated to the map
buffer declared in a previous MAP statement. Until your program executes a REMAP
statement, all variable and array element pointers point to the beginning of the MAP buffer.

2. BASIC does not execute MAP DYNAMIC statements. The MAP DYNAMIC statement
names the variables whose size and position in the MAP buffer can change and defines
their data type.

3. If there is no MAP statement in the program unit with the same map-nam specified in the
MAP DYNAMIC statement, BASIC signals the error "Insufficient space for MAP DYNAMIC
variables in MAP <name>".

4. The MAP DYNAMIC statement must lexically precede the REMAP statement or BASIC
signals the error "MAP variable <name> referenced before declaration".

Examples

100 MAP CMY+6UF) STRING DUMMY = 512
MAP DYNAMIC CMY.6UF) STRING LASTt FIRSTt MIDDLEt

BYTE AGEt STRING EMPLOYERt
STRING CHARACTERISTICS

214 BASIC Reference Manual

MARGIN

37.0 MARGiN (VAX-11 BASIC)

Function

The MARGIN statement specifies the margin width for a terminal or for records in a terminal-format
file.

Format

MARGIN [chnl-exp,] int-exp

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Int-exp specifies the margin width.

General Rules

1. If you do not specify a chnl-exp, BASIC sets the margin on the controlling terminal.

2. The file associated with chnl-exp must be an open terminal-format file.

3.. BASIC signals the error "Illegal operation" (ERR = 141) if the file associated with chnl-exp
is not a terminal-format file.

4. If chnl-exp does not correspond to a terminal, and if int-exp is zero, BASIC sets the right
margin to the size specified by the RECORDSIZE clause in the OPEN statement, if present.
If no RECORDSIZE clause is present, BASIC sets the margin to the RMS blocksize.

5. If chnl-exp is not present or if it corresponds to a terminai, and if int-exp is zero, BASiC sets
the right margin to the size specified by the RECORDSIZE clause in the OPEN statement, if
present. If no RECORDSIZE clause is present, BASIC sets the margin to the default terminal
width.

6. BASIC prints as much of a specified record as the margin setting allows on one line before
going to a new line. Numeric fields are never split across lines.

7. If you specify a margin larger than the channel's recordsize, BASIC signals an error.

8. The MARGIN statement is in effect only while chnl-exp is open. When you close chnl-exp,
BASIC returns to the default margin when you reopen the channel.

Examples

30 MARGIN #Qt 132%

BASIC Reference Manual 215

MAT

38.0 MAT

Function

The MAT statement lets you implicitly create and manipulate one- and two-dimensional arrays. You
can use the MAT statement to assign values to array elements or to redimension a previously dimen­
sioned array. You can also perform matrix arithmetic operations such as multiplication, addition, and
subtraction, and other matrix operations such as transposing and inverting matrices.

Format

Initialization (Numeric)

CON I
ION [(int-exp1 [, int-exp2])]

ZEA

MAT num-array

Initialization (String)

MAT str-array NUL$ [(int-exp1 [, int-exp2])]

Array Arithmetic

MAT num-array1 num-array2 r ! + 1 num-array3 l
L' I J

Scalar Multiplication

MAT num-array4 (num-exp) * num-array5

Inversion and Transposition

MAT num-array6 ~ I :vN I (num-array7)

Syntax Rules

1. You cannot use the MAT statement on arrays of more than two dimensions.

2. In VAX-11 BASIC, you cannot use the MAT statement on arrays of data-type DECIMAL or
on arrays named in a RECORD statement.

3. When initializing arrays, you can specify the array bounds. lnt-exp7 and int-exp2 define
the upper bounds of the array being implicitly created or the new dimensions of an existing ·
array.

216 BASIC Reference Manual

MAT

4. if you are creating an array, int-exp1 and int-exp2 cannot exceed 10.

• If you do not specify bounds, BASIC creates the array and dimensions it to (10) or
(10, 10).

• If you do specify bounds, BASIC creates the array with the specified bounds. If the
bounds exceed (10) or (10, 10), BASIC signals "Redimensioned array" (ERR= 105).

5. To perform MAT operations on arrays larger than (10,1 0), create the input and output
arrays with the DIM statement.

60 When the array exists, the following rules apply:

• If you specify bounds, BASIC redimensions the array to the specified size. However,
MAT operations cannot increase the total number of array elements.

• If you do not specify bounds, BASIC does not redimension the array.

7. An array passed to a subprogram and redimensioned there by a MAT statement remains
redimensioned when control returns to the calling program, with two exceptions:

• When the array is within a RECORD and is passed BY DESC.

• When the array is passed BY REF.

Initialization

1. CON sets all elements of num-array to one, except those in row and column zero.

2. ION creates an identity matrix from num-array. The number of rows and columns in
num-array must be identical. ION sets all elements to zero except those on the diagonal
from num-array(1, 1) to num-array(n, n), which are set to one.

3. ZER sets all array elements to zero, except those in row and column zero.

4. ~~UL$ sets all elements of a string array to the nu!! string, except those in row and column
zero.

Array Arithmetic

1. The equals sign (=) assigns the results of the specified operation to the elements in
num-array 1.

2. If num-array3 is not specified, BASIC assigns the values of num-array2's elements to the
corresponding elements of num-array1. Num-arrayJ must have at least as many rows and
columns as num-array2.

3. Use the plus sign (+)to add the elements of two arrays. Num-array2 and num-array3 must
have identical bounds.

4. Use the minus sign (-) to subtract the elements of two arrays. Num-array2 and num-array3
must have identical bounds.

5. Use the asterisk (*) to perform matrix multiplication on the elements of num-array2 and
num-array3 and to assign the results to num-array1. This operation gives the dot product of
num-array2 and num-array3. All three arrays must be two-dimensional, and the number of
columns in num-array2 must equal the number of rows in num-array3. BASIC redimen­
sions num-arrayJ to have the same number of rows as num-array2 and the same number of
columns as num-array3.

February 1984 BASIC Reference Manual 217

I

MAT

Scalar Multiplication

1. BASIC multiplies each element of num-array5 by num-exp and stores the results in the
corresponding elements of num-array4. ·

Inversion and Transposition

1. TRN transposes num-array7 and assigns the results to num-array6. If num-array7 has
m rows and n columns, num-array6 will haven rows and m columns. Both arrays must be
two-dimensional.

2. You cannot transpose a matrix to itself: MAT A = TRN(A) is invalid.

3. INV inverts num-array7 and assigns the results to num-array6. Num-array7 must be a two­
dimensional array that can be reduced to the identity matrix using elementary row opera­
tions. The row and column dimensions must be identical.

General Rules

1. You cannot increase the number of array elements or change the number of dimensions in
an array when you redimension with the MAT statement. That is, you can redimension an
array with dimensions (5,4) to (4,5) or (3,2), but you cannot redimension that array to (5,5)
or to (10). The total number of array elements includes those in row and column zero.

2. If an array is named in both a DIM statement and a MAT statement, the DIM statement
must lexically precede the MAT statement.

3. MAT statements do not operate on elements in: 1) the zero element (one-dimensional
arrays) or 2) the zero row or column (two-dimensional arrays). MAT statements use these
elements to store results of intermediate calculations. Therefore, you should not depend on
values in row and column zero if your program uses MAT statements.

Examples

Initialization (Numeric)

100 MAT CONVERT ZER < 10t10)

Initialization (String)

1000 MAT NA_ME$ NUL$(5t5)

Array Arithmetic

2000 MAT NEW_INT OLD_INT - RSLT_INT

Scalar Multiplication

3000 MAT z40 = <4.24> * z

Inversion and Transposition

aooo MAT Q% = INV CZ%>

218 BASIC Reference Manual February 1 984

MAT INPUT

39.0 MAT INPUT

Function

The MAT INPUT statement assigns values from a terminal or terminal-format file to array elements.

Format

MAT INPUT [chnl-exp,] { array [(int-exp1 [, int-exp2])] }, ...

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. The file associated with chnl-exp must be an open terminal-format file. If chnl-exp is not
specified, BASIC takes data from the controlling terminal.

3. You cannot use the MAT INPUT statement on arrays of more than two dimensions.

4. In VAX-11 BASIC, you cannot use the MAT INPUT statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement.

5. Int-exp 1 and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array.

6. If you are creating an array, int-exp 1 and int-exp2 cannot exceed 10.

• If you do not specify bounds, BASIC creates the array, dimensions it to (10, 10), and
prompts only for the first array element.

• If you do specify bounds, BASIC creates the array with the specified bounds. If the
bounds exceed (i 0) or (10, 10), BASiC signais 11Redimensioned array;; (ERR= 105).

7. To MAT INPUT to arrays larger than (10, 10), create the input and output arrays with the
DIM statement. When the array exists, the following rules apply:

• If you specify bounds, BASIC redimensions the array to the specified size. However,
MAT INPUT cannot increase the total number of array elements.

• If you do not specify bounds, BASIC does not redimension the array.

General Rules

1. The MAT INPUT statement prompts with a question mark on terminals open on channel
zero only.

2. Use commas to separate data elements and a line terminator to end the input of data. Use
an ampersand before the line terminator to input data on more than one line.

3. The MAT INPUT statement assigns values by row. That is, it assigns values to all elements
in row one before beginning row two.

BASIC Reference Manual 219

MAT INPUT

4. The MAT INPUT statement assigns the row number of the last data element transferred into
the array to the system variable, NUM.

5. The MAT INPUT statement assigns the column number of the last data element transferred
into the array to the system variable, NUM2.

6. If there are fewer elements in the input data than there are array elements, BASIC does not
change the remaining array elements.

7. If there are more data elements in the input stream than there are array elements, BASIC
ignores the excess.

8. Row zero and column zero are not changed.

Examples

1000 MAT INPUT EMP_NAME$C10t10)

220 BASIC Reference Manual

MAT LINPUT

40.0 MAT LINPUT

Function

The MAT LINPUT statement receives string data from a terminal or terminal-format file and assigns it
to string array elements. ·

Format

MAT LINPUT [chnl-exp,] { str-array [(int-exp1 [, int-exp2])] }, ...

Syntax Rules

1. Chnf-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. You cannot use the MAT LINPUT statement on arrays of more than two dimensions.

3. In VAX-11 BASIC, you cannot use the MAT LINPUT statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement.

4. The file associated with chni-exp must be an open terminal-format file. If chnl-exp is not
specified, BASIC takes data from the controlling terminal.

5. lnt-expl and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array.

6. If you are creating an array, int-exp 1 and int-exp2 cannot exceed 10.

• If you do not specify bounds, BASIC creates the array, dimensions it to (10, 10), and
prompts only for the first array element.

e If you do specify bounds, BASIC Geates the aiiay with the specified bounds. lf the
bounds exceed (10) or (10, 10), BASIC signals "Redimensioned array" (ERR= 105).

7. To MAT LINPUT to arrays larger than (10, 10), create the input and output arrays with the
DIM statement.

8. When the array exists, the following rules apply:

• If you specify bounds, BASIC redimensions the array to the specified size. However,
MAT LINPUT cannot increase the total number of array elements.

• If you do not specify bounds, BASIC does not redimension the array.

General Rules

1. For terminals open on channel zero only, the MAT LINPUT statement prompts with a
question mark for each string array element, starting with element (1, 1). BASIC assigns
values to all elements of row one before beginning row two.

2. The MAT LINPUT statement assigns the row number of the last data element transferred
into the array to the system variable, NUM.

BASIC Reference Manual 221

MAT LINPUT

3. The MAT LINPUT statement assigns the column number of the last data element transferred
into the array to the system variable, NUM2.

4. Typing only a line terminator in response to the question mark prompt causes BASIC to
assign a null string to that string array element.

5. MAT LINPUT does not change row and column zero.

Examples

400 MAT LINPUT TIME_CARD$C10%)

222 BASIC Reference Manual

MAT PRINT

41.0 MAT PRINT

Function

The MAT PRINT statement prints the contents of a one- or two-dimensional array on your terminal or
assigns the value of each array element to a record in a terminal-format file.

Format

MAT PRINT [chnl-exp,] { array [(int-exp1 [, int-exp2])] [sep] } ...

sep:

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. You cannot use the MAT PRINT statement on arrays of more than two dimensions.

3. In VAX-11 BASIC, you cannot use the MAT PRINT statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement.

4. The file associated with chnl-exp must be an open terminal-format file. If you do not
specify a chnl-exp, BASIC takes data from the controlling terminal.

5. lnt-exp1 and int-exp2 define the upper bounds of the array being irnplicitly created or the
dimensions of an existing array.

6. If the array does not exist, the following rules apply:

• If you do not specify bounds, BASIC creates the array and dimensions it to (10, 10).

• If you do specify bounds, BASIC creates the array with the specified bounds. If the
bounds exceed (10) or (10, 10), BASIC prints (10) or (10, 10) elements and signals
"Subscript out of range" (ERR = 55).

7. When the array exists, the following rules apply:

• If the specified bounds are smaller than the maximum bounds of a dimensioned array,
BASIC prints a subset of the array, but does not redimension the array. For example, if
you use the DIM statement to dimension A(20,20), and then MAT PRINT A(2,2), BASIC
prints elements (1, 1), (1,2), <2, 1), and (2,2) only; array A(20,20) does not change.

• If you do not specify bounds, BASIC prints the entire array.

BASIC Reference Manual 223

MAT PRINT

8. Sep determines the output format for the array:

• If you use a comma, BASIC prints each array element in a new print zone and starts each
row on a new line.

• If you use a semicolon, BASIC separates each array element with a space and starts each
row on a new line.

• If you do not use a sep character, BASIC prints each array element on its own iine.

9. When you use the MAT PRINT statement to print more than one array, each array name
except the last must be followed with either a comma or a semicolon. BASIC prints a blank
line between arrays.

General Rules

1. The MAT PRINT statement does not print elements in row or column zero.

2. The MAT PRINT statement cannot redimension an array.

Examples

500 MAT PRINT •1, TIME_CARD$C2S>;

224 BASIC Reference Manual

MAT READ

42.0 MAT READ

Function

The MAT READ statement assigns values from DAT A statements to array elements.

Format

MAT READ { array [(int-exp1 [, int-exp2])] }, ...

Syntax Rules

1. You cannot use the MAT READ statement on arrays of more than two dimensions.

2. In VAX-11 BASIC, you cannot use the MAT READ statement on arrays of data-type
DECIMAL or on arrays named in a RECORD statement.

3. Int-exp 1 and int-exp2 define the upper bounds of the array being implicitly created or the
dimensions of an existing array.

4. If you are creating an array, int-exp 1 and int-exp2 cannot exceed 10.

• If you do not specify bounds, BASIC creates the array and dimensions it to (10, 10).

• If you do specify bounds, BASIC creates the array with the specified bounds. If the
bounds exceed (10) or (10, 10), BASIC signals "Redimensioned array" (ERR= 105).

5. To MAT READ arrays larger than (10, 10), create the array with the DIM statement.

6. When the array exists, the fo!!O'vving rules apply:

• If you specify bounds, BASIC redimensions the array to the specified size. However,
MAT READ cannot increase the total number of array elements.

• If you do not specify bounds, BASIC does not redimension the array.

General Rules

1. The DATA statement(s) must be in the same program unit as the MAT READ statement.

2. The MAT READ statement assigns data items by row. That is, it assigns data items to all
elements in row one before beginning row two.

3. The MAT READ statement does not read elements into row or column zero.

4. The MAT READ statement assigns the row number of the last data element transferred into
the array to the system variable, NUM.

BASIC Reference Manual 225

MAT READ

5. The MAT READ statement assigns the column number of the last data element transferred
into the array to the system variable, NUM2.

6. If you MAT READ an existing array without specifying bounds, BASIC does not redimen­
sion the array. If you MAT READ an existing array and specify bounds, BASIC redimen­
sions the array.

Examples

100 MAT READ Z%

226 BASIC Reference Manual

MOVE

A':l n 11nvs:
-rv.v •••~ • ...

Function

The MOVE statement transfers data between a record buffer and a list of variables.

Format

move-item:

Syntax Rules

chnl-exp, move-item, ...

~ num-vbl

num-array ([,] ...)

str-vbl [= int-exp]

~ str-array ([,]...) [= int-exp] ~

[data-type] FILL [(int-exp)] [int-const]

FILL% [(int-exp)]

~
FILL$ [(int-exp)] [int-exp]

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Move-item specifies the variable or array to which or from which data is to be moved.

3. Num-vbl and num-array specify a numeric variable or a numeric array. Parentheses indi­
cate the number of dimensions in a numeric array. The number of dimensions is equai to
the number of commas plus one. That is, empty parentheses indicate a one-dimensional
array, one comma indicates a two-dimensional array, and so on.

4. Str-vbl and str-array specify a fixed length string variable or array. Parentheses indicate the
number of dimensions in a string array. The number of dimensions is equal to the number
of commas plus one. You can specify the number of bytes to be reserved for the variable or
array elements with the =int-exp clause. The default string length for a MOVE FROM
statement is 16. For a MOVE TO statement, the default is the string's length.

5. The FILL, FILL%, and FILL$ keywords allow you to transfer fill items of a specific data type.
Table 21 shows FILL item formats, representations, and storage requirements.

• If you specify a data-type before the FILL keyword, the fill is of that data type. If you do
not specify a data-type, the fill is of the default data type. Data-type can be any BASIC
data-type keyword or, in VAX-11 BASIC, a data type defined by a RECORD statement.
Data-type keywords, size, range, and precision are listed in Table 2 in this manual. FILL
items following a data-type cannot end in a dollar sign or percent sign.

• Int-exp specifies the number of FILL items to be moved.

• FILL% indicates integer fill. FILL$ indicates string fill. The =int-exp clause specifies the
number of bytes to be moved for string FILL items.

BASIC Reference Manual 227

MOVE

Note

In the applicable formats of FILL, (int-exp) represents a repeat count, not an
array subscript. FILL (n), for example, represents n elements, not n + 1.

6. You cannot use an expression or function reference as a move-item.

General Rules

1. Before a MOVE FROM statement can execute, the file associated with chnl-exp must be
open and there must be a record in the record buffer.

2. A MOVE statement neither transfers data to or from external devices, nor invokes the
system Record Management Services. Instead, it transfers data between user areas. Thus, a
record should first be fetched with the GET statement before using a MOVE FROM, and a
MOVE TO should be followed by a PUT or UPDATE statement that writes the record to a
file.

3. MOVE FROM transfers data from the record buffer to the move-item.

4. MOVE TO transfers data from the move-item to the record buffer.

5. The MOVE statement does not affect the record buffer's size. If a MOVE statement partially
fills a buffer, the rest of the buffer is unchanged. If there is more data in the variable list
than in the buffer, BASIC signals "MOVE overflows buffer" (ERR= 161).

6. Each MOVE statement to or from a channel transfers data starting at the beginning of the
buffer. For example:

200 MOVE FROM #1lt Il, A$ = Il

In this example, BASIC assigns the first value in the record buffer to 1%; the value of 1% is
then used to determine the length of A$.

7. If a MOVE statement operates on an entire array:

• BASIC transfers elements of row and column zero (contrast this with the MAT
statements).

• The storage size of the array elements and the size of the array determine the amount of
data moved. A MOVE statement that transfers data from the buffer to a longword integer
array transfers the first four bytes of data into element (0,0), the next four bytes of data
into element (0, 1), and so on.

8. If the MOVE TO statement specifies an explicit string length, the following restrictions
apply:

• If the string is equal to or longer than the explicit string length, BASIC moves only the
specified number of characters into the buffer.

• If the string is shorter than the explicit string length, BASIC moves the entire string and
pads it with spaces to the specified length.

9. BASIC does not check the validity of data during the MOVE operation.

228 BASIC Reference Manual

MOVE

990 MOVE FROM tt4%t RUNSlt HITSlt ERRORS%t RBilt BAT_AVERAGE

100 MOVE TO •9%t FILL$ = 10lt A$ = 10lt 6$ = 30%t C$ = 2%

BASIC Reference Manual 229

NAME AS

44.0 NAME AS

Function

The NAME AS statement changes the name of a specified file.

Format

NAME file-spec1 AS file-spec2

Syntax Rules

1. File-spec1 and file-spec2 must be string expressions.

2. There is no default for file type in file-spec1 or file-spec2. If the file to be renamed has a file
type, file-spec1 must include both the file name and the file type. If you specify only a file
name, BASIC searches for a file with no file type. If you do not specify a file type for
file-spec2, BASIC names the file, but does not assign a file type.

General Rules

1. If the file specified by file-spec1 does not exist, BASIC signals "Can't find file or account"
(ERR= 5).

2. In VAX-11 BASIC and BASIC-PLUS-2 on RSX-11 MI M-PLUS systems, file version num­
bers are optional. BASIC renames the highest version of file-spec1 if you do not specify a
version number.

3. !n VAX-11 BASIC and BAS!C-PLUS-2 on RSX-11 MI M-PLUS systems, if you use the
NAME AS statement on an open file, BASIC does not rename the file until you close it.

Examples

aoo NAME "OUT.DAT" AS "RERUN.DAT"

500 NAME OLD_FILE$ AS NEW_FILE$

230 BASIC Reference Manual

NEXT

45.0 NEXT

Function

The NEXT statement marks the end of a FOR, UNTIL, or WHILE loop.

Format

NEXT [num-unsubs-vbl]

Syntax Rules

1. Num-unsubs-vbl is required in a FOR loop and must correspond to the num-unsubs-vbl
specified in the FOR statement.

2. Num-unsubs-vbl is not allowed in an UNTIL or WHILE loop.

General Rules

1. Each NEXT statement must have a corresponding FOR, UNTIL, or WHILE statement or
BASIC signals an error.

Examples

100 NEXT Il

BASIC Reference Manual 231

NO MARGIN

46.0 NOMARGIN (VAX-11 BASIC)

Function

The NOMARGIN statement removes the right margin limit set with the MARGIN statement for a
terminal or a terminal-format file.

Format

NOMARGIN [chnl-exp]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

General Rules

1. When you specify NOMARGIN, the right margin is set to 132.

2. Chnl-exp, if specified, must be an open terminal-format file or a terminal.

3. If you do not specify a chnl-exp, BASIC sets the margin on the controlling terminal to 132.

4. The NOMARGIN statement applies to the specified channel only while the channel is
open. If you close the channel and then reopen it, BASIC uses the default margin of 72.

Examples

1000 NOMARGIN #2I

232 BASIC Reference Manual

ON ERROR GO BACK

47 n nN s:aanc ~n AAr&e
--. . ·- _ -· .. ·-·. -- _,...,.....,.,

Function

After BASIC executes an ON ERROR GO BACK in a subprogram or DEF, control transfers to the
calling program when an error occurs.

Format

(ONERROR)

I ON ERROR\

Syntax Rules

None.

General Rules

GO BACK

1. The ON ERROR GO BACK statement is the default error handler for DEF functions.

2. An ON ERROR GO BACK statement executed in the main program is equivalent to an
ON ERROR GOTO 0 statement.

3. If a main program calls a subprogram named SUB1, and SUB1 calls the subprogram
named SUB2, an ON ERROR GO BACK statement executed in SUB2 transfers control to
SUB1 when an error occurs in SUB2. If SUB1 also has executed an ON ERROR
GO BACK statement, BASIC transfers control to the main program's error handling
routine.

4. If there is no error outstanding, execution of an ON ERROR GO BACK statement causes
subsequent errors to return control to the calling program's error handler.

5. If there is an error outstanding, execution of an ON ERROR GO BACK statement immedi­
ately transfers control to the calling program's error handler.

6. The ON ERROR GO BACK statement remains in effect until the program unit completes
execution or until BASIC executes another ON ERROR statement.

Examples

100 SUB LIST (A$)
ON ERROR GOTO 19000
OPEN A$ FOR INPUT AS FILE #1

400 LINPUT #1t B$
PRINT B$

600 GOTO 400

19000 IF <ERR = 11%) AND <ERL = 400%>
THEN CLOSE #1%
RESUME 32767
ELSE ON ERROR GO BACK

32767 SUBEND

BASIC Reference Manual 233

ON ERROR GOTO

48.0 ON ERROR GOTO

Function

The ON ERROR GOTO statement transfers program control to a specified line or label in the current
program unit when an error occurs.

Format

I ONERROR I
ON ERROR

Syntax Rules

I GO TO I
GOTO target

1. Target must exist in the same program unit as the ON ERROR GOTO statement.

2. If an ON ERROR GOTO is in a DEF, target must also be in that function definition.

General Rules

1. Execution of an ON ERROR GOTO statement causes subsequent errors to transfer control
to the specified target.

2. The ON ERROR GOTO statement remains in effect until the program unit completes
execution or until BASIC executes another ON ERROR statement.

3. BASIC does not allow recursive error handling. If a second error occurs during execution of
an error-handling routine, control passes to the BASIC error handler and the prograrn stops
executing.

Examples

500 ON ERROR GOTO 8999

600 ON ERROR GOTO YES_ROUTINE

234 BASIC Reference Manual

ON ERROR GOTO 0

49.0 ON ERROR GOTO 0

Function

The ON ERROR GOTO 0 statement disables user error handling and passes control to the BASIC
error handler when an error occurs.

Format

ON ERROR

Syntax Rules

None.

General Rules

l GOTO'

l GOTO \ 0

1. If an error is outstanding, execution of an ON ERROR GOTO 0 statement immediately
transfers control to the BASIC error handler.

2. If there is no error outstanding, execution of an ON ERROR GOTO 0 statement causes
subsequent errors to transfer control to the BASIC error handler.

Examples

19000 ON ERROR GOTO 0

BASIC Reference Manual 235

ON GOSUB

50.0 ON GOSUB

Function

The ON GOSUB statement transfers program control to one of several subroutines, depending on the
value of a control expression.

Format

ON int-exp GOSUB target, ... [OTHERWISE target]

Syntax Rules

1. Target must exist in the current program unit.

2. Control cannot be transferred into a statement block (such as FOR/NEXT, UNTIL/NEXT,
WHILE/NEXT, DEF /END DEF, or SELECT /END SELECT).

3. You can use the ON GOSUB statement in a statement block if ON GOSUB and all its
targets are inside that statement block.

General Rules

1. Int-exp determines which target BASIC selects as the GOSUB argument. If int-exp equals
one, BASIC selects the first target. If int-exp equals two, BASIC selects the second target,
and so on.

2. If there is an OTHERWISE clause, and if int-exp is less than one or greater than the number
of targets in the list, BASIC selects the target of the OTHERWISE clause.

3. If there is no OTHERWISE clause, and if int-exp is less than one or greater than the number
of targets in the list, BASIC signals "ON statement out of range" (ERR= 58).

4. If a target specifies a nonexecutable statement, BASIC transfers control to the first execut­
able statement that lexically fol lows the target.

Examples

150 ON CONTROL% GOSUB 100t200t300t400

200 ON A% GOSUB 10000t12000t14000 OTHERWISE 21000

236 BASIC Reference Manual

ON GOTO

51.0 ON GOTO

Function

The ON GOTO statement transfers program control to one of several lines, depending on the value of
a control expression.

Format

i GOTO l
ON int-exp I GOTO) target , ... [OTHERWISE target]

Syntax Rules

1. Target must exist in the current program unit.

2. Control cannot be transferred into a statement block (such as FOR/NEXT, UNTIL/NEXT,
WHILE/NEXT, DEF /END DEF, SELECT /END SELECT).

3. You can use the ON GOTO statement in a statement block if ON GOTO and all its targets
are inside that statement block.

General Rules

1. Int-exp determines which line number BASIC selects as the GOTO argument. If int-exp
equals one, BASIC selects the first target. If int-exp equals two, BASIC selects the second
target, and so on.

2. If there is an OTHERWISE clause, and if int-exp is less than one or greater than the number
of targets in the list, BASIC transfers control to the target of the OTHERWISE clause.

3. If there is no OTHERWISE clause, and if int-exp is less than one or greater than the number
of line numbers in the iist, BASIC signals "ON statement out of range" (ERR= 58).

4. If a target specifies a nonexecutable statement, BASIC transfers control to the first execut­
able statement that lexically fol lows the target.

Examples

330 ON INDEX% GOTO 700t800t800 OTHERWISE 1000

BASIC Reference Manual 237

OPEN

52.0 OPEN

Function

The OPEN statement opens a file for processing. It transfers user-specified file characteristics to
Record Management Services and verifies the results.

Format

[
FOR INPUT]

OPEN file-spec1 FOR OUTPUT AS [FILE] chnl-exp1 [, open-clause]. ..

open-clause:

r

...

;-

1

...

~

' VIRTUAL

I UNDEFINED I

[ORGANIZATION] 1 INDEXED •

SEQUENTIAL I
RELATIVE

NONE

READ

ALLOW WRITE

MODIFY

I
APPEND

READ

ACCESS i WRITE •
MODIFY

SCRATCH

RECORDTYPE

LIST

FORTRAN

NONE

ANY

238 BASIC Reference Manual

[

STREAM] ._
VARIABLE

FIXED ,,

(continued on next page)

RECORDSIZE int-exp1

FILESIZE int-exp2

WINDOWSIZE int-exp3

TEMPORARY

CONTIGUOUS

MAP map-nam

CONNECT chnl-exp2

BUFFER int-exp4

USEROPEN Func-nam

DEFAUL TNAME file-spec2

EXTENDSIZE int-exp5

MODE int-exp6

CLUSTERSIZE int-exp?

BLOCKSIZE int-exp8

NOREWIND

NOSPAN

SPAN

BUCKETSIZE int-exp9

PRIMARY [KEY] key [DUPLICATES]

OPEN

} (Except on RSTS/E)

} (Except on RSTS/E)

} (BASIC-PLUS-2 only)

} (BAS/C-PLUS-2 on RSTS/E only)

} (Sequential files)

} (Sequential files)

} (Sequential files)

} (Sequential files)

} (Relative and Indexed files)

} (Indexed files)

ALTERNATE [KEY] key [DUPLICATES] [CHANGES] } (Indexed files)

UNLOCK EXPLICIT

Key:

February 1984

str-unsubs-vbl

int-unsubs-vbl

decimal-unsubs-vbl

(str-unsubs-vbl1 , ... str-unsubs-vbl8)

} (VAX-11 BASIC only)

BASIC Reference Manual 239

I

I

I

OPEN

Syntax Rules

240

1. File-specl specifies the fiie to be opened and associated with chnl-exp 1. It can be any valid
string expression and must conform to your system's rules for file specifications. BASIC
passes these values to RMS without editing, alteration, or validity checks.

• VAX-11 BASIC does not supply any default file specifications unless you include the
DEFAUL TNAME clause in the OPEN statement.

• BAS/C-PLUS-2 supplies the device as a default. If a device has been supplied in a
previous OPEN statement, that device is used as the default. If there is no previous
device, SY: is supplied as the default device. There is no default for the file type unless
you include the DEFAUL TNAME clause in the OPEN statement.

2. The FOR clause determines how BASIC opens a file.

• If you open a file FOR INPUT, the file must exist or BASIC signals an error.

• If you open a file FOR OUTPUT, BASIC creates the file if it does not exist. If the file does
exist, VAX-11 BASIC and BASIC-PLUS-2 on RSX-11 M IM-PLUS systems create a new
version of the file. BASIC-PLUS-2 on RSTS/E systems overwrites the existing file.

• If you do not specify either FOR INPUT or FOR OUTPUT, BASIC tries to open an existing
file. If there is no such file, BASIC creates one.

3. Chnl-exp is a numeric expression that specifies a channel number to be associated with
file-spec. It can be preceded by an optional pound sign (#).

• In VAX-11 BASIC, chnl-exp must be in the range 1 to 99.

• In BASIC-PLUS-2, chn!-exp must be in the range 1 to 12.

4. The ORGANIZATION clause specifies the file organization. When present, it must precede
all other clauses. When your OPEN statement has ORGANIZATION SEQUENTIAL,
RELATIVE, or INDEXED, you get an RMS file.

•On VAX/VMS and RSX-11MIM-PLUS systems, you get a terminal-format file when you
omit the ORGANIZATION clause entirely. Terminal-format files are implemented as
RMS sequential variable files and store ASCII characters in variable-length records. Car­
riage control is performed by the operating system; the record does not contain carriage
returns or line feeds. You use essentially the same syntax to access terminal-format files
as when reading from or writing to the terminal (INPUT and PRINT).

• On RSTS/E systems, when you omit the ORGANIZATION clause, you get a terminal­
format file that is a native mode RSTS/E ASCII stream file. RSTS/E ASCII stream files
contain embedded carriage control characters. That is, carriage return and line feed
characters are part of the record. See BASIC on RSTS!E Systems for more information on
RSTS/E native mode files.

5. In the USEROPEN clause, func-nam must be a separately compiled FUNCTION subpro­
gram and must conform to FUNCTION statement rules for naming subprograms.

6. The key specified in the PRIMARY KEY or ALTERNATE KEY clause must be declared in the
MAP statement referenced by the OPEN statement.

BASIC Reference Manual February 1984

OPEN

General Rules

1 . The OPEN statement does not retrieve records.

2. Channel zero, the terminal, is always open. If you try to open channel zero, VAX-11
BASIC signals the error "Illegal I /0 channel" (ERR= 46) and BASIC-PLUS-2 signals "I /0
channel already open at line <number>".

3. A statement that accesses a file cannot execute until you open that file and associate it with
a chnl-exp.

4. If a program opens a file on a channel already associated with an open file, BASIC closes
the previously opened fi!e and opens the new one.

5. The FOR clause does not specify how your program can use the file or how others can
share it. The ACCESS clause specifies how' you use the file and the ALLOW clause specifies
how the file is shared.

6. The ALLOW clause determines how other users can access the file:

• ALLOW NONE lets no other users access the file. This is the default if any ACCESS other
than READ is specified.

• ALLOW READ lets other users have READ access to the file. This is the default for
ACCESS READ.

• ALLOW WRITE lets other users have WRITE access to the file.

• ALLOW MODIFY lets other users have unlimited access to the file.

7. The ACCESS clause determines how the program can use the file:

• ACCESS READ allows only FIND, GET, or other input statements on the file. The OPEN
statement cannot create a file if the ACCESS READ clause is specified.

• ACCESS WRITE allows only PUT, UPDATE, or other output statements on the file.

•ACCESS MODIFY aiiows any I /0 statement except SCRATCH on the fiie. ACCESS
MODIFY is the default.

• ACCESS SCRATCH allows any I /0 statement valid for a sequential or terminal-format
file.

• ACCESS APPEND is the same as ACCESS WRITE for sequential files, except that BASIC
positions the file pointer after the last record when it opens the file. You cannot use
ACCESS APPEND on relative or indexed files.

8. The RECORDTYPE clause can be used only with RMS files. It specifies the file's record
attributes:

• LIST specifies implied carriage control, <CR> <LF> in BAS/C-PLUS-2, and <CR> in
VAX-11 BASIC. This is the default for all file organizations except VIRTUAL.

• FORTRAN specifies a control character in the record's first byte.

• NONE specifies no attributes. This is the default for VIRTUAL files.

• ANY specifies a match with any file attributes when opening an existing file. If you create
a new file, ANY is treated as LIST for all organizations except VIRTUAL. For VIRTUAL, it
is treated as NONE.

BASIC Reference Manual 241

OPEN

9. The RECORDSIZE clause specifies the file's record size:

• For ORGANIZATION FIXED, int-expl specifies the size of all records.

• For ORGANIZATION VARIABLE, int-exp1 specifies the size of the largest record.

• If you specify both a RECORDSIZE and a MAP clause, the RECORDSIZE clause overrides
the record size set by the MAP clause. If you specify a MAP but no RECORDSIZE, the
record size is equal to the MAP size. If there is no MAP, the RECORDSIZE clause
determines the record size. If there is no MAP or RECORDSIZE specified, BASIC uses the
default record size for the file organization when creating the file. When a program
opens an existing file, BASIC uses the file's record size.

• When creating SEQUENTIAL files, BASIC supplies a default record size of 132.

• The record size is always 512 for VIRTUAL files unless you specify a RECORDSIZE.

• If you do not specify a RECORDSIZE clause when opening an existing file, BASIC
retrieves the record size value from the file. If you open a new file of ORGANIZATION
RELATIVE and do not specify a RECORDSIZE clause, BASIC signals "Bad recordsize
value on OPEN" (ERR= 148).

10. The FILESIZE clause lets you pre-extend a new file to a specified size. The value of int-exp2
is the initial allocation of disk blocks. The FILESIZE clause has no effect on an existing file.

11. lnt-exp3 in the WINDOWSIZE clause lets you specify the number of block retrieval
pointers you want to maintain in memory for the file. Retrieval pointers are associated with
the file header and point to contiguous blocks on disk. By keeping retrieval pointers in
memory, you can reduce the I /0 associated with locating a record, as the operating
system does not have to access the file header for pointers as frequently. The number
of retrieval pointers in memory at any one time is determined by the system default
or by the WINDOWSIZE clause. The usual default number of retrieval pointers on
RSX-11 MI M-PLUS and VAX I VMS systems is seven.

•On VAX/VMS systems, a value of 0 specifies the default number of retrieval pointers. A
value of 255 means to map the entire file, if possible. Values between 128 and 254,
inclusive, are reserved.

• On RSX-11 MI M-PLUS systems, you can specify up to 127 retrieval pointers.

• On RSTSIE systems the number of pointers in a window block is fixed at seven. Thus,
you cannot use the WINDOWSIZE clause. You can, however, use the CLUSTERSIZE
clause to increase the number of contiguous blocks mapped by one retrieval pointer.

12. The TEMPORARY clause causes BASIC to delete the output file as soon as the program
closes it.

13. The CONTIGUOUS clause causes RMS to try to create the file as a contiguous sequence of
disk blocks in BASIC-PLUS-2 and as a contiguous-best-try sequence of disk blocks in
VAX-11 BASIC. The CONTIGUOUS clause does not affect existing files or nondisk files.

242 BASIC Reference Manual

OPEN

14. The rv\AP clause specifies that a previously declared map-nam is associated with the file's
record buffer. The MAP clause determines the record buffer's address and length unless
overridden by the RECORDSIZE clause.

• The size of the largest MAP with the same map-nam in the current program unit becomes
the file's record size if the OPEN statement does not include a RECORDSIZE clause.

• If there is no MAP clause, the record buffer space that BASIC allocates is not directly
accessible. Thus, MOVE statements are needed to access data in the record buffer.

• You must have a MAP clause when creating an indexed file; you cannot use KEY clauses
without ,~v1AP statements si nee keys serve as offsets into the buffer.

15. The BUFFER clause can be used with all file organizations except UNDEFINED. For
RELATIVE and INDEXED files, int-exp4 specifies the number of device or file buffers Rec­
ord Management Services uses for file processing. For SEQUENTIAL files, int-exp4 speci­
fies the size of the buffer; for example, BUFFER 8 for a SEQUENTIAL file sets the buffer size
to eight 512-byte blocks.

· 16. The USEROPEN clause lets you open a file with your own FUNCTION subprogram.
Func-nam must conform to the FUNCTION statement rules for naming subprograms.
BASIC calls the user program after it fills the FAB (File Access Block), the RAB (Record
Access Block), and the XABs (Extended Attribute Blocks). The subprogram must issue the
appropriate RMS calls, including $OPEN and $CONNECT, and return the RMS status as
the value of the function. See the BASIC User's Guide for more information on the
USEROPEN routine.

17. The DEFAULTNAME clause lets you supply a default file specification. If file-specl is not a
complete file spec, file-spec2 in the DEFAUL TNAME clause supplies the missing parts. For
example:

10 INPUT "FILE NAME" ;FNAM$
20 OPEN FNAMS FOR INPUT AS FILE #llt &

DEFAULTNAME "DB2:.DAT"

If you type "ABC" for the file name, BASIC tries to open DB2:ABC.DAT. BASIC-PLUS-2
allows DEFAULTNAME for RMS files only.

18. The EXTENDSIZE clause lets you specify the increment by which Record Management
Services extends a file after its initial allocation is filled. The value of int-exp5 is in
512-byte disk blocks.

19. The BLOCKSIZE clause specifies the physical blocksize of magnetic tape files. The value of
int-expB is the number of records in a block. Thus, the block size in bytes is the product of
the RECORDSIZE and the BLOCKSIZE value. The default BLOCKSIZE is one record.

20. The NOREWIND clause controls tape positioning on magnetic tape files. If you specify
neither ACCESS APPEND nor NOREWIND, the OPEN statement positions the tape at its
beginning and then searches for the file.

21. The NOSPAN clause specifies that sequential records do not cross block boundaries. SPAN
specifies that records can cross block boundaries. SPAN is the default. This clause does not
affect nondisk files.

February 1984 BASIC Reference Manual 243

I
I

I

I

OPEN

22. The BUCKETSIZE clause applies only to relative and indexed files. It specifies the size of an
RMS bucket. The value of int-exp9 is the number of records in a bucket. The default is one
record.

23. The PRIMARY KEY clause lets you specify an indexed file's key. You must specify a
PRIMARY KEY when opening an indexed file. The ALTERNATE KEY clause lets you specify
up to 254 alternate keys. The AL TERNA TE key clause is optional.

• RMS creates one index list for each PRIMARY and ALTERNATE key you specify. These
indexes are part of the file and contain pointers to the records. Each key you specify
corresponds to a sorted list of record pointers.

• The keys you specify determine the order in which records in the file are stored. All keys
must be variables declared in the file's corresponding MAP statement. The position of the
key in the MAP statement determines its position in the record. The data type and size of
the key are as declared in the MAP statement.

• A key can be an unsubscripted string or WORD variable in BASIC-PLUS-2 and an
unsubscripted string, WORD, LONG, or packed decimal variable in VAX-11 BASIC.

• You can also create a segmented index key for string keys by separating the string
variable names with commas and enclosing them in parentheses. You can then reference
a segment of the specified key by referencing one of the string variables instead of the
entire key. A string key can have up to eight segments.

• The order of appearance of keys determines key numbers. The PRIMARY KEY, which
must appear first, is key zero. The first ALTERNATE KEY is one, and so on.

• DUPLICATES in the PRIMARY and ALTERNATE key clauses specifies that two records
can have the same key value. If you du not specify DUPLiCA TES, the key value must be
unique in all records .

. • CHANGES in the ALTERNATE key clause specifies that you can change the value of an
alternate key when updating records. If you do not specify CHANGES when creating the
file, you cannot change the value of a key. You cannot specify CHANGES with the
PRIMARY KEY clause.

VAX-11 BASIC

1. If you open a terminal-format file with RECORDTYPE NONE, you must explicitly insert
carriage control characters into the records your program writes to the file.

2. When you PRINT to a terminal-format file, you must supply a RECORDSIZE if the margin is
to exceed 72 characters. For example, if you want to PRINT a 132-character line, specify
RECORDSIZE 132 or use the MARGIN and NOMARGIN statements.

3. The CONTIGUOUS clause does not guarantee that the file will occupy a contiguous disk
area. If RMS can locate the file in a contiguous area, it will do so. However, if there is not
enough free contiguous space for a file, RMS allocates the largest possible contiguous areas
and does not signal an error. See the VAX-7 7 RMS User's Guide for more information on
contiguous disk allocation.

244 BASIC Reference Manual

OPEN

4. The CONNECT clause permits multiple record streams to be connected to the file.

• The CONNECT clause must specify an INDEXED file already opened on chnl-exp2 with
the primary OPEN statement. You cannot connect to a connected channel, only to the
initially opened channel. You can connect more than one stream to an open channel.

• All clauses of the two files to be connected must be identical except MAP,
CONNECT, and USEROPEN.

5. VAX-11 RMS does not allow the EXTENDSIZE clause for relative and indexed files.

6. if you specify NOREVv'll~D, the OPEN statement does not position the tape. Your program
can search for records from the current position.

7. The ALLOW clause can be used in the OPEN statement to specify file sharing of relative, I
indexed, sequential, and virtual files. But for sequential and virtual files, VAX-11 RMS
restricts file sharing to files with fixed-length, 512-byte records. It does not allow the
sharing of sequential files with variable-length records (the default), or of virtual files with I
recordsizes other than 512.

8. The UNLOCK EXPLICIT clause allows you to explicitly lock records with GET and FIND
statements.

• The type of lock you impose on a record with GET or FIND remains in effect until you
explicitly unlock the record or file with a FREE or UNLOCK statement or until you close
the file.

• If you specify UNLOCK EXPLICIT, and do not impose a lock on a record with GET or
FIND, BASIC imposes the ALLOW NONE lock by default and the next GET or FIND does
not unlock the previously locked record.

•You must open a file with UNLOCK EXPLICIT before you can lock records with GET and
Fll~D statements. See the sections on GET and FIND in this manual and Chapter 8 in
BASIC on VAX/VMS Systems for more information on explicit record locking and unlock­
ing.

9. KEY clauses are optional for existing files if the keys in the file match BASIC defaults. If you
do specify a key, it must match a key in the file.

BASIC-PLUS-2

1. The ORGANIZATION SEQUENTIAL STREAM clause specifies an RMS sequential stream
file.

2. On RSTS/E systems, you can create both RMS sequential stream and RSTSIE ASCII stream @
files:

• If you specify ORGANIZATION SEQUENTIAL STREAM, the file is RMS sequential
stream.

• If you omit the ORGANIZATION clause entirely, the file is RSTS!E ASCII (that is, a
RSTS/E terminal-format file).

3. If you specify a CONTIGUOUS clause and there is not enough free contiguous space, RMS
signals an error.

February 1984 BASIC Reference Manual 245

OPEN

4. The CONNECT clause in BASIC-PLUS-2 establishes additional record access streams for
RMS files that allow your program to process more than one record of a file at the same
time. Each stream represents an independent and concurrently active sequence of record
operations.

5.

6.

7.

•The CONNECT clause must specify a RELATIVE or INDEXED file already open on
chnl-exp2.

• Each CONNECT established in a secondary OPEN statement uses another I /0 channel.
Because there are 12 I /0 channels available, you can have a maximum of 12 connects
to a file.

• All clauses in the secondary OPEN statements must be identical except MAP, CON­
NECT, and USEROPEN.

• BASIC-PLUS-2 signals the error "Invalid file option" (ERR= 139) if your program
attempts to connect to a record stream that is already connected to another stream.

BAS/C-PLUS-2 provides the MODE clause for non-RMS file operations. lnt-exp6 specifies
a MODE value.

• On RSX-11 MI M-PLUS systems, MODE is ignored except when your program is doing
device-specific I /0 to a magnetic tape. In this case, you can use MODE to set the tape
density. In all other cases, RSX-11 MI M-PLUS systems ignore the MODE value. See
BASIC on RSX-11 MI M-PLUS Systems for information on MODE values.

• On RSTS/E systems, MODE values affect only native-mode files, not RMS files. Further,
MODE values have different meanings depending on the context in which you use them.
This is because other pieces of software scan the MODE value to see which bits are set.
For example, bit 14 may have one meaning to the RSTS/E terminal driver, another
meaning to the file processor, and a third meaning to the diskette device driver. See
BASIC on RSTS/E Systems for information on MODE values.

BASIC-PLUS-2 on RSTSIE systems does not support the EXTENDSIZE clause.

On RSTS/E systems, you can specify the smallest amount of contiguous disk space to be
allocated when an RMS or RSTS/E native-mode file's present allocation is exhausted. You
do this with the CLUSTERSIZE clause. lnt-exp7 must be a power of two. For example, a
CLUSTERSIZE of eight means that each time the file requires more disk space, the RSTS/E
operating system must have at least eight contiguous disk blocks to allocate. If the disk is
fragmented, there may be no eight-block clusters, and BAS/C-PLUS-2 signals the error
"No room for user on device".

• The default size of the clusters is a disk pack parameter set when the disk pack is
initialized or mounted. This parameter, called a CLUSTER (of 512-byte blocks), becomes
the default CLUSTERSIZE (the smallest amount of disk space that can be allocated for any
file operations on that disk pack).

• The CLUSTERSIZE clause does not affect the number of blocks read or written. It speci­
fies only the smallest amount of disk space that can be allocated to a file.

• VAX-11 BASIC and BASIC-PLUS-2 on RSX- 7 7 MI M-PLUS systems do not support the
CLUSTERSIZE clause; however, the EXTENDSIZE clause serves a similar function.

246 BASIC Reference Manual

OPEN

8. !f you specify NOREWIND, the OPEN FOR OUTPUT statement positions the tape at the
logical end of the tape. The program can then write records. The OPEN FOR INPUT
statement searches for the specified file without rewinding. If the file is not found, BASIC
rewinds the tape and searches for the file from the start of the tape. If the file is still not
found, BASIC signals the error "File not found".

Examples

100

200

100

200

OPEN 11 !NPUT.DAT 11 FOR INPUT AS FILE #llt
ORGANIZATION SEQUENTIAL FIXEDt
RECORDSIZE 200t
MAP ABC t
ALLOW MODIFY, ACCESS MODIFY

OPEN Newfile$ FOR OUTPUT AS FILE #3;
ORGANIZATION INDEXED;
MAP E1r1P_na1T1e t
DEFAUL TNAME 11 DB2: .DAT 11 t
PRIMARY KEY Last$ DUPLICATESt
ALTERNATE KEY First$ CHANGES

MAP <SEGKEY> STRING LAST_NAME = 15t
FIRST_NAME = 15t MI = 1

OPEN 11 NAMES.IND 11 FOR OUTPUT AS FILE #1 t
ORGANIZATION INDEXED;
PRIMARY KEY <LAST _NAME t FIRST _NAME t MI> t
MAP SEGKEY

February 1984 BASIC Reference Manual 247

•

I

OPTION

53.0 OPTION

Function

The OPTION statement allows you to set compilation qualifiers such as default data type, size, and
scale factor. In VAX-11 BASIC, you can also set compilation conditions such as subscript checking,
overflow checking, decimal rounding, and setup in a source program. The defaults affect only the
program module in which the OPTION statement occurs.

Format

OPTION option-clause, ...

option-clause:

type-clause:

size-clause:

size-item:

' TYPE = type-clause '
I

SIZE = size-clause

~ SCALE = int-const >

l ACTIVE I
INACTIVE

= active-clause J

j INTEGER

REAL

EXPLICIT

DECIMAL (VAX-11 BASIC only)

! size-item I
(size-item)

I . . I

(VAX-11 BASIC only)

(VAX-11 BASIC only)

INTEGER int-clause

REAL real-clause

DECIMAL (d,s) (VAX-11 BASIC only)

int-clause:

real-clause:

active-clause:

BYTE

WORD

LONG

SINGLE

DOUBLE
~ >

GFLOAT (VAX-11 BASIC only)

HFLOAT (V AX-11 BASIC only)

l active-item /

(active-item, ...))

248 BASIC Reference Manual

active-item:

Syntax Rules

INTEGER OVERFLOW

DECIMAL OVERFLOW

SETUP

DECIMAL ROUNDING

SUBSCRIPT CHECKING

OPTION

(all VAX-11 BASIC only)

1. Option-clause specifies the compilation qualifiers to be in effect for the program module.

• Type-clause sets the default data type for variables not explicitly declared in the program
module. You can specify only one type-clause in a program module.

• Size-clause sets the default data subtypes for floating-point, integer, and (VAX-11 BASIC
only) packed decimal data. Size-item specifies the data subtype you want to set. You can
specify an INTEGER and/or REAL size-item in BASIC-PLUS-2 and an INTEGER, REAL,
and/or DECIMAL size-item in VAX-11 BASIC. Multiple size-items in an OPTION state­
ment must be enclosed in parentheses and separated by commas.

• SCALE controls the scaling of double precision floating-point variables. lnt-const speci­
fies the power of 10 you want as the scaling factor. It must be an integer from 0 to 6,
inclusive, or BASIC signals an error. See the SCALE command in Section II of this manual
for more information on scaling.

• In VAX-11 BASIC, active-clause specifies the decimal rounding, integer and decimal ~
overflow checking, setup, and subscript checking conditions you want in effect for the V
program module. Active-item specifies the conditions you want to set. Multiple
active-items in an OPTION statement must be enclosed in parentheses and separated by
commas.

2. You can have more than one option in an OPTION statement, or you can use multiple
OPTION statements in a program module. However, each OPTiON statement must lexi­
cally precede all other source code in the program module, with the exception of comment
fields, REM, SUB, FUNCTION, and OPTION statements.

General Rules

1. OPTION statement specifications apply only to the program module in which the state­
ment appears and affect all variables in the module, including SUB and FUNCTION
parameters.

2. BASIC signals an error in the case of conflicting options. For example, you cannot specify
more than one type-clause or SCALE factor in the same program unit.

3. If you do not specify a type-clause or a subtype-clause, BASIC uses the current environ­
ment default data types.

4. If you do not specify a scale factor, BASIC uses the current environment default scale
factor.

BASIC Reference Manual 249

OPTION

5. In VAX-11 BASIC, ACTIVE specifies the conditions that are to be in effect for a particular
program module. INACTIVE specifies the conditions that are not to be in effect for a
particuiar program module. If a condition does not appear in an active-clause, VAX-11
BASIC uses the current environment default for the condition. See Table 16 in this
manual for information on the INTEGER_OVERFLOW, DECIMAL_OVERFLOW, SETUP,
DECIMAL_ROUNDING, and SUBSCRIPT_CHECKING compilation qualifiers. These
qualifiers correspond to active-clause conditions (INTEGER OVERFLOW, DECIMAL
OVERFLOW, SETUP, DECIMAL ROUNDING, and SUBSCRIPT CHECKING).

Examples

10

20

FUNCTION REAL DOUBLE MONTHLY-PAYMENTt
<DOUBLE INTEREST_RATEt

LONG NO_OF_PAYMENTSt
DOUBLE PRINCIPLE>

OPTION TYPE = REALt
SIZE = <REAL DOUBLE t INTEGER LONG) t
SCALE = a

250 BASIC Reference Manual

&
&
&

&
&

PRINT

54.0 PRINT

Function

The PRINT statement transfers program data to a terminal or a terminal-format file.

Format

To the Controlling Terminal

PR!NT [output-list]

To a Channel

PRINT chnl-exp [, output-list]

output-list: [exp] [sep [exp]] . . . [sep]

sep: \ : I I ,

Syntax Rules

1. Chn/-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#). If you do not specify a chn/-exp,
BASIC prints to the controlling terminal.

2. Output-list specifies the expressions to be printed and the print format to be used.

3. Exp can be any val id expression.

4. A sep character must separate each exp. The sep characters control the print format:

• A comma tells BASIC to skip to the next print zone before printing the expression.

• A semicolon tells BASIC to print the expression immediately after the previous
expression.

General Rules

1. A terminal-format file must be open on the specified chnl-exp.

2. A PRINT line has an integral number of print zones. Note, though, that the number of print
zones in a line differs from terminal to terminal.

3. The right margin setting, if set by the MARGIN statement, controls the width of the PRINT
line.

4. The PRINT statement prints string constants and variables exactly as they appear, with no
leading or trailing spaces.

BASIC Reference Manual 251

PRINT

5. BASIC prints quoted string literals exactly as they appear. Thus, you can print quotation
marks, commas, and other characters by enclosing them in quotation marks.

6. A PRINT statement with no output-list prints a blank line.

7. An exp in the output-list can be followed by more than one sep character. That is, you can
omit an exp and specify where the next exp is to be printed by the use of multiple sep

* characters. For example:

100 PRINT 11 Na1r1e 11 tt"Address and ";"City"
Run
PROGA 16-MAR-83 16:16

NaMe Address and CitY

In this example, the double commas after "Name" cause BASIC to skip two print zones
before printing "Address and ". The semicolon causes the next expression, "City", to be
printed immediately after the preceding expression.

8. When printing numeric fields, BASIC precedes each number with a space or minus sign
and follows it with a space. If a number can be represented exactly by six decimal digits or
less, and, optionally, a decimal point, BASIC prints it that way.

9. BASIC rounds a number with an integer portion of six decimal digits or less (for example,
1234.567) to six digits (1234.57). If a number has more than six decimal digits, BASIC
rounds the number to six digits and prints it in E format.

10. BASIC does not print trailing zeros to the right of the decimal point. If all digits to the right
of the decimal point are zeros, BASIC omits the decimal point as well.

11. BASIC does not print more than six digits in explicit notation. If a number requires more
than six digits, BASIC uses E format and precedes positive exponents with a plus sign (+).

12. The PRINT statement can print up to:

• Three digits of precision for BYTE integers

• Five digits of precision for WORD integers

• Six digits of precision for SINGLE floating-point numbers

• Ten digits of precision for LONG integers

• Sixteen digits of precision for DOUBLE floating-point numbers

• Fifteen digits of precision for GFLOAT floating-point numbers (VAX-11 BASIC only)

•Thirty-three digits of precision for HFLOAT floating-point numbers (VAX-11 BASIC only)

• Thirty-one digits of precision for DECIMAL numbers (VAX-11 BASIC only)

• The string length for STRING values

252 BASIC Reference Manual

PRINT

13. A comma or semicoion can aiso foiiow the iast item in output-iist:

• When printing to a terminal, BASIC does not generate a line terminator after printing the
last item. The next item printed with a PRINT statement is printed at the position speci­
fied by the sep character following the last item in the first PRINT statement.

• When printing to a terminal-format file, BASIC does not write out the record until a
PRINT statement without trailing punctuation executes.

14. If no punctuation follows the last item in the output-list:

• When printing to a terminal, BASIC generates a line terminator after printing the last
item.

• When printing to a terminal-format file, BASIC writes out the record after printing the last
item.

15. If a string field does not fit on the current line:

• When printing string elements to a terminal, BASIC prints as much as will fit on the
current line and prints the remainder on the next line.

• W~en printing string elements to a terminal-format file, BASIC prints the entire element
on the next line.

16. If a numeric field is the first field in a line, and the numeric field spans more than one line,
BASIC prints part of the number on one line and the remainder on the next. Otherwise,
numeric fields are never split across lines. If the entire field cannot be printed at the end of
one line, the number is printed on the next line.

17. When a number's trailing space does not fit in the last print zone, the number is printed
without the trailing space.

18. VAX-11 BASIC rounds a floating point number with a magnitude between 0.1 and 1.0 to
six digits. For magnitudes smaller than 0.1, BASIC rounds the number to six digits and
prints it in E format.

19. For magnitudes smaller than 1, BASIC-PLUS-2 prints up to five leading zeros and six
significant digits in explicit point unscaled notation.

Examples

100 PR I NT II THE ANSWER Is II ; SUM'i:',

200 PRINT #l t EMP_NUMt EMP_NAME$; EMP_AGE%

February 1984 BASIC Reference Manual 253

I

PRINT USING

55.0 PRINT USING

Function

The PRINT USING statement generates output formatted according to a format string (either numeric
or string) to a terminal or a terminal-format file.

Format

PRINT [chnl-exp] USING str-exp sep output-list

sep:

output-list: [exp] [sep [exp]] . . . [sep]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#). If you do not specify a chnl-exp,
BASIC prints to the controlling terminal.

2. Str-exp is the format string. It must contain at least one valid format field and must be
followed by a sep character and at least one exp.

3. Output-list specifies the expressions to be printed.

• Exp can be any val id expression,

• A sep character must separate each exp.

4. The sep characters in the PRINT USING statement do not control the print format as in the
PRINT statement.

General Rules

1. The PRINT USING statement can print up to:

• Three digits of precision for BYTE integers

• Five digits of precision for WORD integers

• Six digits of precision for SINGLE floating-point numbers

• Ten digits of precision for LONG integers

• Sixteen digits of precision for DOUBLE floating-point numbers

• Fifteen digits of precision for GFLOAT floating-point numbers (VAX-11 BASIC only)

• Thirty-three digits of precision for HFLOAT floating-point numbers (VAX-11 BASIC only)

• Thirty-one digits of precision for DECIMAL numbers (VAX-1 7 BASIC only)

• The string length for STRING values

254 BASIC Reference Manual

PRINT USING

2. A terminal-format file must be open on the specified chnl-exp or BASIC signals an error.

3. PRINT USING rounds a floating-point number once.

4. Format string characters control the format of numeric output.

• The pound sign (#) reserves space for one sign or digit.

• The comma (,) causes BASIC to insert commas before every third significant digit to the
left of the decimal point. In the format field, the comma must be to the left of the
decimal point, and to the right of the rightmost dollar sign, asterisk, or pound sign. A
comma reserves SP?Ce for a comma or digit.

• The period (.) inserts a decimal point. The number of reserved places on either side of
the period determines where the decimal point appears in the output.

•The hyphen (-) reserves space for a sign and specifies trailing minus sign format. lf
present, it must be the last character in the format field. It makes BASIC print negative
numbers with a minus sign after the last digit, and positive numbers with a trailing
space. The trailing minus sign format(-) can be used as part of a dollar sign ($$)format
field.

• The letters CD enclosed in angle brackets (<CD>) print CR (Credit Record) after nega­
tive numbers or zero and DR (Debit Record) after positive numbers. If present, it must
be the last format in the format field. The (<CD>) format can be used as part of a dollar
sign ($$) format field.

• Four caretsCAA") specify E notation for floating-point numbers. They reserve four places
for SINGLE, DOUBLE, and VAX-11 BASIC GFLOAT values and five places for VAX-11
BASIC HFLOAT values. If present, they must be the last characters in the format field.

e Tvv'o dollar signs($$) reserve space for a dollar sign and a digit and cause BASIC to print
a dollar sign immediately to the left of the most significant digit.

• Two asterisks(**) reserve space for two digits and cause BASIC to fill the left side of the
numeric field with leading asterisks.

•A zero enclosed in angle brackets (<0>) prints leading zeros instead of leading spaces.

• A percent sign enclosed in angle brackets (< % >) prints al I spaces in the field if the
value of the print item is zero.

Note

When the dollar sign ($$), asterisk-fill (**),or zero-fill (<0>) formats are used to form
one print field, they are mutually exclusive. Additionally, when the zero-fill (<0>) or
blank-if-zero (<%>) formats are used to form one print field, they also are mutually
exclusive.

• An underscore (_) forces the next formatting character in the format string to be inter-
preted as a literal. It affects only the next character. If the next character is not a valid
formatting character, the underscore has no effect and will itself be printed as a literal. I

February 1984 BASIC Reference Manual 255

PRINT USING

256

5. BASIC interprets any other characters in a numeric format string as string literals.

6. Depending on usage, the same format string characters can be combined to form one or
more print fields within a format string. For example:

•When a dollar sign($$) or asterisk-fill(**) format precedes a pound sign(#), it modifies
the pound sign format. The ($$) or (**) reserves two places, and with the pound signs
forms one print field. For example:

**$$###
****##

forms one field and reserves five spaces
forms one field and reserves four spaces

When these formats are not followed by a pound sign or a blank-if-zero(<%>) format,
they reserve two places and form a separate print field.

•When a zero-fill (<0>) or blank-if-zero (<%>) format precedes a pound sign (#), it
modifies the pound sign format. The (<0>) or(<%>) reserves one place, and with the
pound signs forms one print field. For example:

**<0>####
**<%>###

forms one field and reserves five spaces
forms one field and reserves four spaces

When these formats are not followed by a pound sign, they reserve one space and form
a separate print field.

•When a blank-if-zero(<%>) format follows a dollar sign($$) or asterisk-fill(**) format,
it modifies the ($$) or(**) format string. The (<%>) reserves one space, and with the
($$) or (**) format string forms one print field. For example:

**$$<%>### forms one field and reserves six spaces
****<%>## forms one field and reserves five spaces

When the (<%>) precedes a ($$) or (**), it reserves one space and forms a separate
print field.

7. In VAX-11 BASIC, the comma (digit separator), dollar sign (currency symbol), and deci­
mal point (radix point) are the defaults for U.S. currency. The PRINT USING statement
accesses the system-wide logical names for these symbols. To cause PRINT USING to
format foreign currency, these logical names must be changed.

8. For E notation, PRINT USING left-justifies the number in the format field and adjusts the
exponent to compensate, except when printing zero. When printing zero in E notation,
BASIC prints leading spaces, leading zeros, a decimal point, and zeros in the fractional
portion if the PRINT USING string contains these formatting characters, and then the
string "E + 00".

9. Zero cannot be negative. That is, if a small negative number rounds to zero, it is repre­
sented as a positive zero.

BASIC Reference Manual February 1984

PRINT USING

10. If there are reserved positions to the left of the decimal point, and the printed number is
less than one, BASIC prints one zero to the left of the decimal point and pads with spaces
to the left of the zero.

11. If there are more reserved positions to the right of the decimal point than fractional digits,
BASIC prints trailing zeros in those positions.

12. If there are fewer reserved positions to the right of the decimal point than fractional digits,
BASIC rounds the number to fit the reserved positions.

13. !fa number does not fit in the specified format field, BASIC prints "%", followed by the
number in PRINT format.

14. Format string characters control string output. Al I format characters except the backslash
and exclamation point must start with a single quote ('). A single quote by itself reserves
one character position. A single quote followed by format character(s) marks the begin­
ning of a character format field and reserves one character position.

Note

VAX-11 BASIC accepts either upper- or lowercase string formatting characters.
BASIC-PLUS-2 accepts only uppercase string formatting characters.

• L reserves one character position. The number of Ls plus the leading single quote
determines the field's size. BASIC left-justifies the print expression and pads with spaces
if the print expression is less than or equal to the field's width. If the print expression is
larger than the field, BASIC left-justifies the expression and truncates its right side to fit
the field.

• R reserves one character position. The number of Rs plus the leading single quote
determines the field's size. BASIC right-justifies the print expression and pads with
spaces if the print expression is less than or equal to the field's width. If the print
expression is larger than the field, BASIC left-justifies the expression and truncates its I
right side to fit the field.

• C reserves one character position. The number of Cs plus the leading single quote
determines the field's size. If the string does not fit in the field, BASIC truncates its right
side. Otherwise, BASIC centers the print expression in this field. If the string cannot be
centered exactly, it is offset one character to the left.

• E reserves one character position. The number of Es plus the leading single quote
determines the field's size. BASIC left-justifies the print expression if it is less than or
equal to the field's width and pads with spaces. Otherwise, BASIC expands the field to
hold the entire print expression.

• Two backslashes (\ \) when separated by n spaces reserve n + 2 character positions.
PRINT USING left-justifies the string in this field. BASIC does not allow a leading
quotation mark with this format.

• An exclamation point (!) creates a 1-character field. The exclamation point both starts
and ends the field. BASIC does not allow a leading quotation mark with this format.

February 1984 BASIC Reference Manual 256.1

PRINT USING

Noie

The backslash and exclamation formatting characters are included for com­
patibility with BASIC-PLUS. DIGITAL recommends that you do not use this
type of character field for new program development.

15. BASIC interprets any other characters in the format string as string literals and prints them
exactly as they appear.

16. A comma or semicolon can also follow the last item in output-list:

• When priniing to a terminal, BASIC does not generate a line terminator after printing the
last item. The next item printed with a PRINT statement is printed at the position speci­
fied by the sep character following the last item in the first PRINT statement.

• When printing to a terminal-format file, BASIC does not write out the record until a
PRINT statement without trailing punctuation executes.

17. If no punctuation follows the last item in the output-list:

Examples

• When printing to a terminal, BASIC generates a line terminator after printing the last
item.

• When printing to a terminal-format file, BASIC writes out the record after printing the last
item.

500 PRINT USING fl$$:i:t::i:t::i:t::i:t:.:i:t::i:t:-fl t 8832.33 t -88.3 t A_t.JARIABLE

300 PR I NT :i:t: 1 US I NG fl 'E fl ; fl NOW IS THE TI ME FOR ALL GOOD MEN fl

BASIC Reference Manual 257

I

PUT

56.0 PUT

Function

The PUT statement transfers data from the record buffer to a file. PUT statements are valid on RMS
sequential, relative, indexed, and block I /0 files. You cannot use PUT statements on terminal-format
files, virtual array files, or files opened with ORGANIZATION UNDEFINED.

Format

PUT chnl-exp [, RECORD num-exp] [, COUNT int-exp]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. PUT with no RECORD clause writes data to an RMS sequential, relative, indexed, or block
I /0 file.

• For sequential files, PUT adds a record at the end of the file.

• For relative and block I /0 fiies, PUT places the record in the empty cell pointed to by
the Next Record Pointer. If the file is empty, the first PUT places a record in cell number
one, the second in cell number two, and so on.

• For indexed files, RMS stores records in order of ascending primary key value and
updates all index keys.

3. The RECORD clause allows you to randomly write records to a relative or block I /0 file by
specifying the record number. Int-exp must be between one and the maximum record
number defined in the OPEN statement.

4. Int-exp in the COUNT clause specifies the record's size. If there is no COUNT clause, the
record's size is that defined by the MAP or RECORDSIZE clause (RECORDSIZE overrides
MAP) in the OPEN statement.

• If you write a record to a file with variable-length records, int-exp must be between zero
and the maximum record size specified in the OPEN statement, inclusive.

• If you write a record to a file with fixed-length records, the COUNT clause serves no
purpose. If used, int-exp must equal the record size specified in the OPEN statement.

• In BASIC-PLUS-2, if int-exp equals zero, the entire record is written to the file.

General Rules

258

1. For sequential access, the file associated with chnl-exp must be open with ACCESS WRITE,
MODIFY, SCRATCH, or APPEND.

2. To add records to an existing sequential file, open it with ACCESS APPEND. If you are not
at the end of the file when attempting a PUT to a sequential file, BASIC signals "Not at end
of file" (ERR = 149).

BASIC Reference Manual February 1984

PUT

3. For random access, the relative or block 110 file associated with chnl-exp must be open
with ACCESS WRITE or MODI FY.

4. After a PUT statement executes, there is no Current Record Pointer. The Next Record
Pointer is set as follows:

• For sequential files, PUT sets the Next Record Pointer to the end-of-file.

• For relative and block I /0 files, a sequential PUT sets the Next Record Pointer to the
Next Record plus one. A random PUT leaves the Next Record Pointer unchanged.

• For indexed files, PUT leaves the Next Record Pointer unchanged.

5. When you specify a RECORD clause, BASIC evaluates int-exp and uses this value as the
relative record number of the target eel I.

• If the target cell is empty or occupied by a deleted record, BASIC places the record in
that cell.

• If there is a record in the target cell, the PUT statement fails, and BASIC signals the error
"Record already exists" (ERR= 153).

6. If an existing record in an indexed file has a record with the same key value as the one you
want to PUT to the file, BASIC signals the error "Duplicate key detected" (ERR = 134) if
you did not specify DUPLICATES for the key in the OPEN statement. If you specified
DUPLICATES, RMS stores the records in a first-in, first-out sequence.

7. The number specified in the COUNT clause determines how many bytes are transferred
from the buffer to a file:

• If you have not completely filled the record buffer before executing a PUT, BASIC pads
the record with nulls to equal the specified value.

• If the specified COUNT value is less than the buffer size, the record is truncated to equal
the specified value

8. The number in the COUNT clause must not exceed the size specified in the MAP
or RECORDSIZE clause in the OPEN statement or BASIC signals "Size of record invalid"
(ERR = 156).

9. Although block 1/0 files are implemented through RMS on VAX/VMS systems and
RSX-11 MI M-PLUS systems, when you write a record to a block I /0 file, RMS does not
perform the same error checking as with relative files. A PUT will write a record to a disk
block specified in the RECORD clause, regardless of whether the block already contains a
record. See Chapter 9 in the BASIC User's Guide for more information on RMS block I /0
files. See the RSTS/E Programming Manual for information on RSTS/E native-mode block
I /0 files.

Examples

Sequential, Relative, Indexed, and Block I 10 Files

700 PUT #3t COUNT 55%

Relative and Block 110 Files Only

2000 PUT #5t RECORD 133t COUNT 16%

BASIC Reference Manual 259

RANDOMIZE

57.0 RANDOMIZE

Function

The RANDOMIZE statement gives the random number function, RND, a new starting point.

Format

I RANDOMIZE I
RANDOM

Syntax Rules

None.

General Rules

1 . Without the RANDOMIZE statement, successive runs of the same program generate the
same random number sequence. If you use the RANDOMIZE statement before invoking
the RND function, the starting point changes for each run. Thus, a different random num­
ber sequence appears each time.

Examples

as RANDOMIZE

260 BASIC Reference Manual

READ

58.0 READ

Function

The READ statement assigns values from a DATA statement to variables.

Format

READ vbl, ...

Syntax Rules

1. In VAX-11 BASIC, vb/ cannot be a DEF function name, unless the READ statement is inside
the multi-line DEF body.

2. In BASJC-PLUS-2, vb/ can be a DEF function name. If you assign a value to the DEF
function name in this way, the next invocation of the function returns that value if it is not
modified by the function body.

3. If your program has a READ statement without DATA statements, BASIC signals a compile­
time error.

General Rules

1. When BASIC initializes a program unit, it forms a data sequence of all values in all DATA
statements. An internal pointer points to the first value in the sequence.

2. When BASIC executes a READ statement, it sequentially assigns values from the data
sequence to variables in the READ statement variable list. As BASIC assigns each value, it
advances the internal pointer to the next value.

3. BAS!C signals the error "Out of data" (ERR= 57) if there are fewer data elements than
READ statements. Extra data elements are ignored.

4. The data type of the value must agree with the data type of the variable to which it is
assigned or BASIC signals "Data format error" (ERR= 50).

5. IF you READ a string variable, and the DATA element is an unquoted string, BASIC ignores
leading and trailing spaces. If the DATA element contains commas, they must be inside
quotation marks.

6. BASIC evaluates subscript expressions in the variable list after it assigns a value to the
preceding variable, and before it assigns a value to the subscripted variable. For example:

100 READ At A$CA>

500 DATA 10t NELSON

BASIC assigns the value 10 to variable A, then assigns the string "NELSON" to array
element A$(10).

BASIC Reference Manual 261

READ

Examples

1000 READ At 5%t CS

2000 DATA 32.5t St ENDDATA

262 BASIC Reference Manual

RECORD

P'"ft ft .-..r-""-"""" Iv AV ol ol rt A ~I,...\
:>~.u ncvvnu \ KA- 1 1 DK.:::>1" J

Function

The RECORD statement lets you name and define data structures in a BASIC program and provides
the BASIC interface to the VAX-11 Common Data Dictionary (COD). You can use the defined
RECORD name anywhere a BASIC data-type keyword is valid.

Format

RECORD rec-nam
rec-component

END RECORD [rec-nam]

rec-component:

rec-item:

group-clause:

variant-clause:

data-type rec-item [, [data-type] rec-item]

group-clause

variant-clause

unsubs-vbl [= int-const]

array (int-canst, ...) [= int-canst]

FILL [(int-canst)] [= int-canst]

GROUP group-nam [(int-canst, ...)]

rec-component

END GROUP [group-nam]

VARIANT

case-clause

END VARIANT

case-clause: CASE

[rec-component]

BASIC Reference Manual 263

I

RECORD

Syntax Rules

1. Each line of text in a RECORD, GROUP, or VARIANT block can have an optional line
number.

2. Data-type can be a BASIC data-type keyword or a previously defined rec-nam or
group-nam. Table 2 lists and describes BASIC data-type keywords.

3. If the data-type of a rec-item is STRING, the string is fixed-length. You can supply an
optional string length with the =int-exp clause. If you do not specify a string length, the
default is 16.

4. Jnt-const in the group-clause specifies the number of times the GROUP block occurs in the
RECORD data structure.

General Rules

264

1. Rec-item must conform to the rules for naming BASIC variables.

2. Variables and arrays in a record definition are also called elementary record components.

3. The RECORD statement names and defines a data structure called a record template, but
does not allocate any storage. When you use the record template as a data type in a
statement such as DECLARE, MAP, or COMMON, you declare a record instance. This
declaration of the record instance allocates storage for the RECORD. For example:

4.

1000 DECLARE EMPLOYEE EMP_REC

This statement declares a variable named EMP _REC. EMP _REC is of the user-defined
data type EMPLOYEE.

Whenever you access an elementary record component, that is, a variable named in a
RECORD definition, you do it in the context of the record instance. Therefore, rec-item
names need not be unique in your program. For example, you can have a variable called
FIRST _NAME in any number of different RECORD definitions. However, you cannot use a
BASIC keyword as a rec-item name and you cannot have two variables or arrays with the
same name at the same level in the RECORD or GROUP definition.

BASIC Reference Manual February 1984

RECORD

5. The declarations bctvv'een the RECORD statement and the END RECORD statement are
called a RECORD block.

6. The declarations between the GROUP keyword and the END GROUP keywords are called
a GROUP block. The GROUP keyword is valid only within a RECORD block.

7. A repeated GROUP is similar to an array within the record as it is zero-based. Thus, a
repeat-count of 10 actually specifies 11 repetitions of the named GROUP.

8. The declarations between the VARIANT keyword and the END VARIANT keywords are
cal led a VARIANT block.

9. The amount of space allocated for a VARIANT field in a RECORD is equal to the space
needed for the variant field requiring the most storage. A record component outside of this
overlaid field determines which record variant is used.

10. The rec-nam qualifies the group-nam and the group-nam qualifies the rec-item. You can
access a particular rec-item within a record by specifying rec-nam: :group-nam: :rec-item.
This specification is called a fully qualified reference. The full qualification of a rec-item is
also called a component path name.

11. The group-nam is optional in a rec-item specification unless there is more than one
rec-item with the same name. For example:

10 DECLARE EMPLOYEE EMP_REC

100

200

RECORD Address
STRING Streett Cit}' t State t ZiP

END RECORD Address
RECORD E1r1P 1 o >' e e

GROUP E1r1P_na1r1e
STRING First = 15
STRING Middle = 1
STRING Last = 15

END GROUP EMP_naMe
ADDRESS WorK
ADDRESS Ho1T1e

END RECORD EMPloYee

You can access the rec-item "Last" by specifying only "EMP _REC: :Last" because only one
rec-item is named "Last." However, if you try to reference "EMP _REC: :City", BASIC signals
an error because "City" is an ambiguous field, a component of both "Work" and "Home."
To access "City," you must specify either "EMP _REC: :Work: :City" or
"EMP _REC::Home::City."

February 1 984 BASIC Reference Manual 265

I

RECORD

Examples

1000 RECORD EMP_WAGE_CLASS

266

GROUP EMP_NAME
STRING Last = 15
STRING First = 1a
STRING Middle = 1

END GROUP EMP_NAME
GROUP EMP-ADDRESS

STRING Street = 15
STRING City = 20
STRING State = 2
DECIMAL<5t0) ZiP

END GROUP EMP_ADDRESS
STRING WAGE_CLASS = 2
VARIANT

CASE
GROUP HOURLY

DECIMAL<a,2> HourlY_wage
SINGLE Regular_pay_ytd
SINGLE OvertiMe_pay_ytd

END GROUP HOURLY
CASE

GROUP SALARIED
DECIMALC7t2> YearlY_salary
SINGLE Pay_ytd

END GROUP SALARIED
CASE

GROUP E}{ECUT I VE
DECIMALC8t2) YearlY_salarY
SINGLE Pay_ytd
SINGLE Expenses_Ytd

END GROUP EXECUTIVE
END l.,JAR I ANT

END RECORD EMP_WAGE_CLASS

BASIC Reference Manual February 1984

60.0 REM

Function

The REM statement permits program documentation.

Format

REM [comment]

Syntax Rules

1. REM must be the only statement on the line or the last statement on a multi-statement line.

2. Because the REM statement is not executable, you can place it anywhere in a program,
except where other statements, such as SUB and END SUB, must be the first or last
statement in a program unit.

3. BASIC interprets every character between the keyword REM and the next line number as
part of the comment.

General Rules

1. When the REM statement is the first statement on a line-numbered line, BASIC treats any
reference to that line number as a reference to the next higher-numbered executable
statement.

2. The REM statement is similar to the comment field that begins with an exclamation point,
with one exception: the REM statement must be the last statement on a multi-statement
line. The exclamation point comment field can be ended with a line terminator and fol­
lowed by a BASIC statement. See Section I of this manual for more information on the
comment field.

Examples

500 REM THIS IS A COMMENT

BASIC Reference Manual 267

REMAP

61.0 REMAP

Function

The REMAP statement defines or redefines the position in the record buffer of variables named in the
MAP DYNAMIC statement.

Format

REMAP (map-nam) remap-item, ...

remap-item: ~ num-vbl-nam

Syntax Rules

num-array-nam ([int-exp, ...])

str-vbl-nam [= int-exp]

~ str-array-nam ([int-exp, ...]) [= int-exp] ~

[data-type] FILL [(int-exp)] [= int-exp]

FILL% [(int-exp)]

FILL$ [(int-exp)] [= int-exp]
~

1. fv;fap-nam is the name of a map area declared in the MAP and MAP DYNAMIC statements.

2. Remap-item names a variable, array, or array element declared in a preceding MAP
DYNAMIC statement:

• Num-vbl-nam specifies a numeric variable or array element. Num-arr-nam () specifies an
entire numeric array.

• Str-vbl-nam specifies a string variable or array element. Str-arr-nam () specifies an entire
fixed-length string array. You can specify the number of bytes to be reserved for string
variables and array elements with the =int-exp clause. The default string length is 16.

3. Remap-item can also be a FILL item. The FILL, FILL%, and FILL$ keywords let you reserve
parts of the record buffer. Int-exp specifies the number of FILL items to be reserved. The
=int-exp clause allows you to specify the number of bytes to be reserved for string FILL
items. Table 21 describes FILL item format and storage allocation.

Note

In the applicable formats of FILL, (int-const) represents a repeat count, not an
array subscript. FILL (n), for example, represents n elements, not n + 1.

4. All remap-items, except FILL items, must have been named in a previous MAP DYNAMIC
statement, or BASIC signals an error.

268 BASIC Reference Manual

REMAP

5. Data-type can be any BASIC data-type keyword or, in VAX-11 BASIC, a data type defined
in a RECORD statement. Data-type keywords, size, range, and precision are listed in Table
2 in this manual. You can specify a data type only for FILL items.

• When you specify a data-type, all following FILL items are of that data type until you
specify a new data type.

• If you do not specify any data-type, FILL items take the current default data type and size.

• FILL items following a data-type cannot end in a dollar sign or percent sign suffix
character.

6. Remap-items must be separated with commas.

General Rules

1. The REMAP statement does not affect the amount of storage allocated to the map area.

2. Each time a REMAP statement executes, BAS!C sets record pointers to the named map area
for the specified variables from left to right.

3. The REMAP statement must be preceded by a MAP DYNAMIC statements or BASIC signals
the error "No such MAP area <name>". The MAP statement creates a named area of
static storage, the MAP DYNAMIC statement specifies the variables whose positions can
change at run time, and the REMAP statement specifies the new positions for the variables
names in the MAP DYNAMIC statement.

4. Until the REMAP statement executes, all variables named in the MAP DYNAMIC statement
point to the first byte of the MAP area and all string variables have a length of zero. When
the REMAP statement executes, BASIC sets the internal pointers as specified in the REMAP
statement. For example:

100 MAP <DUMMY> STRING MAP_BUFFER = 50
MAP DYNAMIC <DUMMY> LONG At STRING Bt SINGLE CC7>
REMAP <DUMMY> B=lllt At CC>

The REMAP statement sets a pointer to byte 1 of DUMMY _MAP for string variable B, a
pointer to byte 15 for LONG variable A, and pointers to bytes 19, 23, 27, 31, 35, 39, 43,
and 47 for the elements in SINGLE array C.

5. You can use the REMAP statement to redefine the pointer for an array element or variable
more than once in a single REMAP statement. For example:

100 MAP <DUMMY> STRING = as
MAP DYNAMIC <DUMMY> LONG At BC10)
REMAP <DUMMY> BC) t B<O>

This REMAP statement sets a pointer to byte 1 in DUMMY _MAP for array B. Since array B
uses a total of 44 bytes, the pointer for the first element of array B, B(O) points to byte 45.
References to array element B(O) will be to bytes 45 through 48. Pointers for array elements
1 through 10 are set to bytes 1, 4, 8, 12, and so forth.

6. Because the REMAP statement is local to a program module, it affects pointers only in the
program module in which it executes.

BASIC Reference Manual 269

REMAP

Examples

100

500

MAP <EMPREC> STRING MAP_BUFFER = 100
MAP DYNAMIC <EMPREC> STRING EMP_NAMEt

LONG BADGE_NOt
STRING STREET, CITY, STATE,
WORD ZIPt
STRING START_DATE

REMAP <EMPREC> EMP_NAME = 20,
BADGE_NOt
STREET = 10,
CITY = 10,
STATE = 2,
ZIP,
START_DATE 8

REMAP <EMPREC> EMP_NAME = 10,
BADGE_NOt
STRING FILL = 32t
WORD FILL,
START_DATE = 8

270 BASIC Reference Manual

&
&
&
&

&
&
&
&
&
&

RESTORE

Function

The RESTORE statement resets the DATA pointer to the beginning of the DATA sequence or sets the
record pointer to the first record in a file. RESET is a synonym for RESTORE.

Format

[chnl-exp [, KEY # int-exp]]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Int-exp must be between zero and the number of keys in the file minus one, inclusive.

General Rules

1. The RESTORE statement is not allowed on virtual array files or on files opened on unit
record devices.

2. If you do not specify a chnl-exp, RESTORE resets the DAT A pointer to the beginning of the
DATA sequence.

3. RESTORE affects only the current program unit. Thus, executing a RESTORE statement in a
subprogram does not affect the DATA pointer in the main program.

4. If there is no chnl-exp, and the program has no DATA statements, RESTORE has no effect.

5. The file specified by chnl-exp must be open.

6. If chnl-exp specifies a magnetic tape file, BASIC rewinds the tape to the first record in the
file.

7. The KEY clause applies to indexed files only. It sets a new key of reference equal to int-exp
and sets the Next Record Pointer to the first logical record in that key.

8. For indexed files, the RESTORE statement without a KEY clause sets the Next Record
Pointer to the first logical record specified by the current key of reference. If there is no
current key of reference, the RESTORE statement sets the Next Record Pointer to the first
logical record of the primary key.

9. If you use the RESTORE statement on any file type other than indexed, BASIC sets the Next
Record Pointer to the first record in the file.

Examples

400 RESTORE #7%t KEY #4%

BASIC Reference Manual 271

I

RESUME

63.0 RESUME

Function

The RESUME statement marks an exit point from an error-handling routine. BASIC clears the error
condition and returns program control to a specified line number or to the program block in which
the error occurred.

Format

RESUME [lin-num]

Syntax Rules

1. Lin-num must exist within the same program unit as the RESUME statement.

2. The RESUME statement cannot be used in a multi-line DEF unless the lin-num is also in
the DEF function definition.

General Rules

272

1. The RESUME statement does not accept a label as an argument. Therefore, you should
number lines that are to receive control from the error handler.

2. When no lin-num is specified in a RESUME statement, BASIC transfers control based on
where the error occurs. If the error occurs on a numbered line containing a single state­
ment, BASIC always transfers cunirol io ihat statement. However, if the error occurs
within a multi-statement line:

• Within a FOR, WHILE, or UNTIL loop, BASIC transfers control to the first statement that
follows the FOR, WHILE, or UNTIL statement.

• Within a SELECT block, BASIC transfers control to the start of the CASE block in which
the error occurs.

• After a loop or SELECT block, BASIC transfers control to the statement that follows the
NEXT or END SELECT statement.

• If none of the above conditions occurs, BASIC transfers control back to the statement
that follows the most recent line number or label.

3. To simplify and clarify error handling, DIGITAL recommends that the RESUME statement
always be used with lin-num.

BASIC Reference Manual February 1984

RESUME

4. A RESU,~v1E statement \Vith a specified !in-num transfers control to the first statement of a
multi-statement line, regardless of which statement caused the error.

5. A RESUME statement cannot transfer control out of the current program unit. Thus, a
RESUME statement with no lin-num cannot terminate an error handler in the following
situation: (1) the error handler is handling an error that occurred in a subprogram or an
external function, and (2) the error was passed to the calling program's error handler by
an ON ERROR GO BACK statement or by default.

6. The execution of a RESUME with no lin-num is illegal if there is no error active. A
RESUME \Vith a lin-num is always !ega!.· After clearing the error condition; BASIC transfers
control to the specified line.

Examples

19100 RESUME 300

18880 RESUME

BASIC Reference Manual 272.1

RETURN

64.0 RETURN

Function

The RETURN statement transfers control to the statement immediately following the most recently
executed GOSUB or ON GOSUB statement in the current program unit.

Format

RETURN

Syntax Rules

1. RETURN is the last statement executed in a subroutine even if it is not the last statement in
the subroutine.

General Rules

1. Execution of a RETURN statement before the execution of a GOSUB or ON GOSUB causes
BASIC to signal "RETURN without GOSUB" (ERR= 72).

Examples

800 RETURN

BASIC Reference Manual 273

RSET

65.0 RSET

Function

The RSET statement assigns right-justified data to a string variable. RSET does not change a string
variable's length.

Format

RSET str-vbl,... = str-exp

Syntax Rules

1. BASIC evaluates the str-vbl subscript expression (if present) before assigning values.

2. Str-vbl cannot be a DEF function name, unless the RSET statement is inside the DEF
function definition.

General Rules

1. The RSET statement treats strings as fixed-length. It does not change the length of str-vbl nor
does it create new storage locations.

2. If str-vbl is longer than str-exp, RSET right-justifies the data and pads it with spaces on the
left.

3. If str-vbl is shorter than str-exp, RSET truncates str-exp on the left.

Examples

100 RSET ZZ$ = "LMNOP"

274 BASIC Reference Manual

SCRATCH

66.0 SCRATCH

Function

The SCRATCH statement deletes the Current Record and all following records in an RMS sequential
file.

Format

SCRATCH chnl-exp

Syntax Rules

None.

General Rules

1. Before you execute the SCRATCH statement, the file must be opened with ACCESS
SCRATCH.

2. The SCRATCH statement applies to ORGANIZATION SEQUENTIAL files only.

3. The SCRATCH statement has no effect on terminals or unit record devices.

4. For disk files, the SCRATCH statement discards the current record and all that follow it in
the file. The file is not physically shortened.

5. For magnetic tape files, the SCRATCH statement overwrites the current record with two
end-of-file marks.

Examples

600 SCRATCH #41

BASIC Reference Manual 275

SELECT

67.0 SELECT

Function

The SELECT statement lets you specify an expression, a number of possible values the expression may
have, and a number of alternative statement blocks to be executed for each possible case. The END
SELECT keywords terminate the SELECT block. The code between SELECT and END SELECT is called
a SELECT block, and the code between CASE statements is cal led a CASE block.

Format

SELECT exp1

case-clause

[else-clause]

END SELECT

case-clause:

case-item:

else-clause:

Syntax Rules

CASE case-item, ...

[statement] ...

I [rel-op] exp2 I
exp3 TO exp4

' I

CASE ELSE

[statement] ...

1. Exp1 is the expression to be tested against the case-clauses and the else-clause. It can be
numeric or string.

• Case-clause consists of the CASE keyword fol lowed by a case-item and statements to be
executed when the case-item is true.

• Else-clause consists of the CASE ELSE keywords fol lowed by statements to be executed
when no previous case-item has been selected as true.

2. Case-item is either an expression to be compared with exp 1 or a range of values separated
with the keyword TO.

• Rel-op is a relational operator specifying how exp 1 is to be compared to exp2. If you do
not include a rel-op, BASIC assumes the equals (=) operator. BASIC executes the state­
ments in the CASE block when the specified relational expression is true.

276 BASIC Reference Manual

SELECT

• Exp3 and exp4 specify a range of numeiic m stiing values separated by the keyword TO.
Separate multiple ranges with commas. BASIC executes the statements in the CASE block
when exp 1 falls within any of the specified ranges.

3. A SELECT statement can have only one else-clause. The else-clause is optional and, when
present, must be the last CASE block in the SELECT block.

General Rules

1. Each statement in a SELECT block can have its own line number.

2. The SELECT statement begins the SELECT BLOCK and the END SELECT keywmds teiminate
it. BASIC signals an error if you do not include the END SELECT keywords.

3. Each CASE keyword establishes a CASE block. The next CASE or END SELECT keyword
ends the CASE block.

4. You can nest SELECT blocks within a CASE or CASE ELSE block.

5. BASIC evaluates expl when the SELECT statement is first encountered; BASIC then com­
pares exp 1 with each case-clause in order of occurrence until a match is found or until a
CASE ELSE block or END SELECT is encountered.

6. The following conditions constitute a match:

• Exp 1 satisfies the relationship to exp2 specified by rel-op.

• Exp 1 is greater than or equal to exp3, but less than or equal to exp4, greater than or equal
to exp5 but less than or equal to exp6, and so on.

7. When a match is found between expl and a case-item, BASIC executes the statements in
the CASE block where the match occurred. If ranges overlap, the first match causes BASIC
to execute the statements in the CASE block. After executing CASE block statements,
control passes to the statement immediately following the END SELECT keywords.

8. If no CASE match occurs, BASIC executes the statements in the else-clause, if present, and
then passes control to the statement immediately following the END SELECT keywords.

9. If no CASE match occurs and you do not supply a case-else clause, control passes to the
statement following the END SELECT keywords.

Examples

100 SELECT Al'. + 5% + C%
CASE 100

PRINT 'THE VALUE IS EXACTLY 100'
CASE 1 TO 88

PRINT 'THE VALUE IS BETWEEN 1 AND 88'
CASE > 100

PRINT 'THE VALUE IS GREATER THAN 100'
CASE ELSE

PRINT 'THE VALUE IS LESS THAN 100'
END SELECT

BASIC Reference Manual 277

SLEEP

68.0 SLEEP

Function

The SLEEP statement suspends program execution for a specified number of seconds or until a
carriage return is entered from the controlling terminal.

Format

SLEEP int-exp

Syntax Rules

1. In VAX-11 BASIC, int-exp must be between 0 and 2147 483647, inclusive; if it is greater
than 2147483647, BASIC signals the error "Integer error or overflow" (ERR=51).

2. In BASIC-PLUS-2, int-exp must be between 0 and 32767, inclusive; if it is greater than
32767, BASIC signals "Integer error" and does not suspend program execution.

General Rules

1. Int-exp is the number of seconds BASIC waits before resuming program execution.

2. Pressing the RETURN key on the controlling terminal cancels the effect of the SLEEP
statement.

Examples

80 SLEEP 120X

278 BASIC Reference Manual

69.0 STOP

Function

The STOP statement halts program execution.

Format

STOP

Syntax Rules

None.

General Rules

1. STOP is valid anywhere in a program.

2. The STOP statement does not close files.

VAX-11 BASIC

STOP

1. When a STOP statement executes in a program executed with the RUN command in the
BASIC environment, BASIC prints the line number and module name associated with the
STOP statement, then displays the BASIC prompt. In response to the prompt, you can type
immediate mode statements, CONTINUE to resume program execution, or any valid com­
piler command. See BASIC on VAX /VMS Systems for more information on immediate
mode.

2. When a STOP statement is in an executable image, the line number, module name, and a
pound sign (#) prompt are printed. In response to the prompt, you can type CONTINUE to
continue program execution or EXIT to end the pmgrnm. If the program moduie was
compiled with the /NOLINE qualifier, no line number is displayed.

BASIC-PLUS-2

1. When a STOP statement executes in a program executed with the RUN /DEBUG command
or compiled with the /DEBUG qualifier, control passes to the BASIC-PLUS-2 debugger.
The debugger prints the line number and module name associated with the STOP state­
ment, then displays the pound sign (#) prompt. You can then use BASIC-PLUS-2 debugger
commands to analyze and debug your program. See Part VI in this manual for information
on BAS/C-PLUS-2 debugger commands. Use the EXIT command to exit from the debugger
and end the program.

2. When a STOP statement executes in a program executed with RUN or compiled without
the /DEBUG qualifier, the line number of the STOP statement and a pound sign (#)
prompt are printed. In response to the prompt, you can type CONTINUE to continue
program execution or EXIT to end the program. The EXIT command closes all files before
leaving the program.

Examples

95 STOP

BASIC Reference Manual 279

SUB

70.0 SUB

Function

The SUB statement marks the beginning of a BASIC subprogram and specifies its parameters by
number and data type.

Format

VAX-11 BASIC

SUB sub-name [pass-mech] [([formal-param], ...)]

I END SUB I
SUBEND

[statement]. ..

I BY DESC I pass-mech:
BY REF

formal-param: unsubs-vbl-nam

[data-type] , array-nam (['.nt-const] , ...)

BASIC-PLUS-2

SUB sub-name [([formal-param], ...)]

I END SUB I
SUBEND

[statement]. ..

formal-param: unsubs-vbl-nam

[data-type] array-nam ([:nt-const] ,. ..) ,

280 BASIC Reference Manual

int-const] [pass-mech]

SUB

Syntax Rules

1. Sub-nam is the name of the separately compiled subprogram.

2. Formal-param specifies the number and type of parameters for the arguments the SUB
subprogram expects to receive when invoked.

• Empty parentheses indicate that the SUB subprogram has no parameters.

• Data-type specifies the data type of a parameter. If you do not specify a data type,
parameters are of the default data type and size. When you do specify a data type, all
following parameters are of that data type until you specify a new data type. Data-type
keywords, size, range, and precision are listed in Table 2 in this manual.

• If you specify a datatype, unsubs-vbl-nam and array-nam cannot end in a percent sign
(%) or dollar sign ($).

3. The SUB statement must be the first statement in the SUB subprogram.

4. Compiler directives and comment fields (!), because they are not BASIC statements, may
precede the SUB statement. However, they cannot precede the subprogram's first
numbered line. Note that REM is a BASIC statement; therefore, it cannot precede the SUB
statement.

5. Every SUB statement must have a corresponding END SUB statement or SUBEND
statement.

6. Any BASIC statement except END, FUNCTION, END FUNCTION, or EXIT FUNCTION
can appear in a SUB subprogram.

VAX-11 BASIC

1. Sub-nam can consist of from 1 to 31 characters and must conform to the following rules:

• The first character of an unquoted name must be an alphabetic character (A through Z).
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), periods (.), or underscores (_).

• A quoted name can consist of any combination of printable ASCII characters.

2. Data-type can be any BASIC data-type keyword or a data type defined in the RECORD
statement.

3. If the data type is STRING, the = int-const clause allows you to specify the length of the
string. If you do not specify ,a string length, the default length is 16.

4. Pass-mech specifies the parameter passing mechanism by which the subprogram receives
arguments when called by non-BASIC programs.

5. A pass-mech clause outside the parentheses applies by default to all SUB parameters. A
pass-mech clause in the formal-param list overrides the specified default and applies only
to the immediately preceding parameter.

6. If you do not specify a pass-mech, the SUB program receives arguments by the default
passing mechanisms, as shown in Table 19.

February 1984 BASIC Reference Manual 281

SUB

7. Parameters defined in formal-param must agree in number, type, ordinality, and
pass-mech with the arguments specified in the CALL statement of the ca!!ing program.

8. You can specify from 1 to 32 formal-params.

8 BASIC-PLUS-2

1. Sub-nam can consist of from one to six characters and must conform to the following rules:

• The first character of an unquoted name must be an alphabetic character (A through Z).
The remaining characters, if present, can be any combination of letters, digits (0 through
9), dollar signs ($), or periods (.).

• A quoted name can consist of any combination of alphabetic characters, digits, dollar
signs ($), periods (.), or spaces.

2. Data-type can be any BASIC data-type keyword.

3. Parameters defined in forma/-param must agree in number, type, and ordinality with the
arguments specified in the CALL statement of the calling program.

4. You can specify from one to eight formal-params.

General Rules

1. All variables, except those named in MAP and COMMON statements and in DAT A state­
ments in a subprogram, are local to that subprogram.

2. BASIC initializes local variables upon each entry to the subprogram as follows:

• Numeric variables are initialized to zero.

• String variables are initialized to the null string.

VAX-11 BASIC

1. SUB subprograms receive parameters BY REF or BY DESC. A SUB subprogram cannot
receive any parameter BY VALUE. Table 19 lists and describes VAX-11 BASIC parameter
passing mechanisms.

• BY REF specifies that the subprogram receives the argument's address.

• BY DESC specifies that the subprogram receives the address of a VAX-11 BASIC descrip­
tor. For information about the format of a VAX-71 BASIC descriptor for strings and
arrays, see Appendix C in BASIC on VAX !VMS Systems. For information on other types
of descriptors, see the VAX Architecture Handbook.

2. By default, VAX-11 BASIC subprograms receive numeric unsubs-vbls BY REF and all other
parameters BY DESC. You can override these defaults for strings and arrays with a BY
clause:

• If you specify a string length with the =int-canst clause, you must also specify BY REF. If
you specify BY REF and do not specify a string length, BASIC uses the default string
length of 16.

• If you specify array bounds, you must also specify BY REF.

3. RECORD data structures are initialized to zero or the null string.

4. VAX-1 7 BASIC subprograms may be called recursively.

282 BASIC Reference Manual

SUB

BASIC-PLUS-2

1. You cannot specify how subprograms receive parameters in BASIC-PLUS-2. Numeric
unsubs-vbls are received BY REF and string unsubs-vbls and entire arrays are received BY
DESC. Table 20 lists and describes BASIC-PLUS-2 BASIC parameter passing mecha,nisms.

• BY REF specifies that the subprogram receives the argument's address.

• BY DESC specifies that the subprogram receives the address of a BASIC-PLUS-2 descrip­
tor. For information about the format of a BASIC-PLUS-2 descriptor, see Appendix C in
BASIC on RSX-11 MI M-PLUS Systems and BASIC on RSTS/E Systems.

2. BASIC-PLUS-2 subprograms cannot be called recursively.

Examples

VAX-11 BASIC

100 SUB SUB3 BY REF <DOUBLE At Bt

900 END SUB

BASIC-PLUS-2

STRING EMP_NAM = 20 BY DESCt
WAGE<20>>

100 SUB SUBPRO <BYTE AGEt DOUBLE WAGEC20t20) t STRING EMP_NAME>

900 END SUB

BASIC Reference Manual 283

SU BEND

71.0 SUBEND

Function

The SUBEND statement is a synonym for END SUB. See the END statement for syntax rules.

Format

I SUBEND I
END SUB \

284 BASIC Reference Manual

SUB EXIT

72.0 SUBEXIT

Function

The SUBEXIT statement is a synonym for the EXIT SUB statement. See the EXIT statement for syntax
rules.

Format

~ SUBEXIT I
l EXIT SUB \

BASIC Reference Manual 285

UNLESS

73.0 UNLESS

Function

UNLESS modifies a statement. BASIC executes the modified statement only if a conditional expres­
sion is false.

Format

statement UNLESS cond-exp

Syntax Rules

1. The UNLESS qualifier cannot be used on nonexecutable statements or on statements such
as SELECT, IF, and DEF that establish a statement block.

2. Cond-exp can be any conditional expression.

General Rules

1. BASIC executes the statement only if cond-exp is false (value zero).

Examples

100 PRINT "A DOES NOT EQUAL 3 11 UNLESS Al 3%

286 BASIC Reference Manual

UNLOCK

74.0 UNLOCK

Function

The UNLOCK statement unlocks the current record or bucket locked by the last FIND or GET
statement.

Format

UNLOCK chnl-exp

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

General Rules

1. A file must be opened on chnl-exp before UNLOCK can execute.

2. The UNLOCK statement does not apply to files not on disk.

3. If the current record is not locked by a previous GET or FIND statement, the UNLOCK
statement has no effect and BASIC does not signal an error.

4. The UNLOCK statement does not affect record buffers.

5. After you execute the UNLOCK statement, you cannot UPDATE or DELETE the current
record.

Examples

90 UNLOCK #10

BASIC Reference Manual 287

UNTIL

75.0 UNTIL

Function

The UNTIL statement marks the beginning of an UNTIL loop or modifies the execution of another
statement.

Format

Conditional

UNTIL cond-exp

[statement] ...

NEXT

Statement Modifier

statement UNTIL cond-exp

Syntax Rules

1. Cond-exp can be any valid relational or logical expression.

Conditional

1. A NEXT statement must end the UNTIL loop.

General Rules

Conditional

1. BASIC evaluates cond-exp before each loop iteration. If the expression is false (value zero),
BASIC executes the loop. If the expression is true (value nonzero), control passes to the first
executable statement after the NEXT statement.

Statement Modifier

1. BASIC executes the statement repeatedly until cond-exp is true.

Examples

Conditional

10 UNTIL A >= 5
A = A + +01
TOTAL TOTAL + 1

NEXT

Statement Modifier

100 A = A + 1 UNTIL A >= 200

288 BASIC Reference Manual

UPDATE

76.0 UPDATE

Function

The UPDATE statement replaces a record in a file with a record in the record buffer. UPDATE is valid
only on RMS sequential, relative, and indexed files.

Format

UPDATE chnl-exp [, COUNT int-exp]

Syntax Rules

1. Chnl-exp is a numeric expression that specifies a channel number associated with a file. It
must be immediately preceded by a pound sign (#).

2. Int-exp in the COUNT clause specifies the record's size.

3. In BASIC-PLUS-2, if int-exp equals zero, the entire record is written to the file.

General Rules

1. The file associated with chnl-exp must be a disk file opened with ACCESS MODIFY.

2. Each UPDATE statement must be preceded by a successful GET or FIND operation or
BASIC signals "No current record" (ERR = 131). Because FIND locates but does not
retrieve records, you must specify a COUNT clause in the UPDATE statement when the
preceding operation was a FIND. Int-exp in the COUNT clause must exactly specify the
size of the oid record.

3. After an UPDATE statement executes, there is no Current Record Pointer. The Next Record
Pointer is unchanged.

4. The length of the new record must be the same as that of the existing record for all files
with fixed-length records. If the new record is larger than the existing record, BASIC
truncates the right side of the new record to fit the existing record. If the new record is
smaller than the existing record, the file gets corrupted.

5. If you write a record to a sequential file with fixed-length records, int-exp in the COUNT
clause must exactly match the size of the old record.

6. For sequential files with variable-length records, the length of the new record must be the
same as that of the existing record.

• If you specify a COUNT clause, int-exp must match the size of the existing record.

• In the absence of a COUNT clause, UPDATE uses the record size set by the last success­
ful GET on that channel.

BASIC Reference Manual 289

UPDATE

7. For relative files with variable-length records, the new record can be larger or smaller than
the record it replaces.

• The new record must be smaller than or equal to the maximum record size set with the
MAP or RECORDSIZE clause when the file was opened.

• You must use the COUNT clause to specify the size of the new record if it is different
from that of the record last accessed by a GET on that channel.

8. For indexed files with variable-length records, the new record can be larger or smaller than
the record it replaces.

• When an indexed file permits duplicate primary keys, an updated record must be the
same length as the old one.

• When the program does not permit duplicate primary keys, the new record can be no
longer than the maximum record size specified in the MAP or RECORDSIZE clause when
the file was opened and must include at least the primary key field.

• An alternate key for the new record can differ from that of the existing record only if the
OPEN statement for that file specified CHANGES for the alternate key.

9. On RSTS!E systems, you can use UPDATE on native-mode files opened with mode 1 bit set
(UPDATE mode).

Examples

100 UPDATE #41 COUNT 32

290 BASIC Reference Manual

WAIT

77.0 WAIT

Function

The WAIT statement specifies the number of seconds the program waits for terminal input before
signaling an error.

Format

WAIT int-exp

Syntax Rules

1. The WAIT statement must precede an INPUT, INPUT LINE, LINPUT, MAT INPUT, or MAT
LIN PUT statement, or it has no effect.

2. In VAX-11 BASIC, int-exp must be between 0 and 2147483647, inclusive; if it is greater
than 2147 483647, BASIC signals the error "Integer error or overflow" (ERR= 51).

3. In BASIC-PLUS-2, int-exp must be between 0 and 32767, inclusive; if it is greater than
32767, BASIC signals "Integer error" and the WAIT statement has no effect.

General Rules

1. Int-exp is the number of seconds BASIC waits for input before signaling the error,
"Keyboard wait exhausted" (ERR = 15).

2. After BASIC executes a WAIT statement, all input statements wait the specified amount of
time before BASIC signals an error.

3. WAIT 0 disables the WAIT statement.

Examples

50 WAIT 60
INPUT "YOU HAVE SIXTY SECONDS TO TYPE YOUR NAME"; NAME$
WAIT 0

BASIC Reference Manual 291

WHILE

78.0 WHILE
Function

The WHILE statement marks the beginning of a WHILE loop or modifies the execution of another
statement.

Format

Conditional

WHILE cond-exp

[statement] ...

NEXT

Statement Modifier

statement WHILE cond-exp

Syntax Rules

1. Cond-exp can be any valid relational or logical expression.

Conditional

1. A NEXT statement must end the WHILE loop.

General Rules

Conditional

1. BASIC evaluates cond-exp before each loop iteration. If the expression is true (value non­
zero), BASIC executes the loop. If the expression is false (value zero), control passes to the
first executable statement after the NEXT statement.

Statement Modifier

1. BASIC executes the statement repeatedly as long as cond-exp is true.

Examples

Conditional

10 WHILE X < 100
X = }{ + SQR C X >

NEXT

Statement Modifier

100 X% = X% + 1% WHILE X% < 100%

292 BASIC Reference Manual

1.0 ABS

Function

PARTV
Functions

ABS

The ABS function returns a floating-point number that equals the absolute value of a specified
floating-point expression.

Format

real-vbl ABS(real-exp)

Syntax Rules

None.

General Rules

1. BASIC expects the argument of the ABS function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

2. The returned floating-point value is always greater than or equal to zero. The absolute
value of zero is zero. The absolute value of a positive number equals that number. The
absolute value of a negative number equals that number multiplied by minus one.

Examples

400 A = ABSC-100 * G>
410 B = -39.Z
420 PR I NT ABS t A

BASIC Reference Manual 293

2.0 ABS0/o

Function

The ABS% function returns an integer number that equals the absolute value of a specified integer
expression.

Format

int-vbl = ABS%(int-exp)

Syntax Rules

None.

General Rules

1. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default integer size.

2. The returned value is always greater than or equal to zero. The absolute value of zero is
zero. The absolute value of a positive number equals that number. The absolute value of a
negative number equals that number multiplied by minus one.

Examples

400 A = ABSlC-1001 * Gl)
410 B = -39
420 PRINT AB8l(8) t A

294 BASIC Reference Ma~1ual

ASCII

3.0 ASCII

Function

The ASCII function returns the ASCII value (base 10) of a string's first character.

Format

l ASC I
int-vbl = ASCII (str-exp)

Syntax Rules

None.

General Rules

1. The ASCII value of a null string is zero.

2. The ASCII function returns an integer value of the default size between 0 and 255,
inclusive.

Examples

500 ASC_VAL ASCIICEMP_NAM$)

BASIC Reference Manual 295

ATN

4.0 ATN

Function

The ATN function returns the angle, in radians, of a specified tangent.

Format

real-vbl = ATN(real-exp)

Syntax Rules

None.

General Rules

1. ATN returns a value from -Pl I 2 through Pl I 2.

2. The returned angle is expressed in radians.

3. BASIC expects the argument of the A TN function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Examples

150 ANGLE_RAD ATN<T>
160 ANGLE_OEG = ANGLE_RADl<PI /180)

296 BASIC Reference Manual

I; n CU ICCl7
V•V .., "'I,,._

Function

The BUFSIZ function returns the buffer size, in bytes, of a specified channel.

Format

int-vbl BUFSIZ(chnl-exp)

Syntax Rules

None.

General Rules

BUFSIZ

1. Chn/-exp is the channel expression of an open file. If the specified channel is closed,
BUFSIZ returns zero. You cannot include a pound sign (#) in chnl-exp.

2. In BASIC-PLUS-2, BUFSIZ of channel zero returns the current terminal width or, in a
batch stream, 512.

3. In VAX-11 BASIC, BUFSIZ of channel zero always returns 132.

4. Int-vb/ is a WORD integer in BASIC-PLUS-2 and a LONG integer in VAX-11 BASIC.

Examples

100 A BUFSIZC2>

BASIC Reference Manual 297

CCPOS

6.0 CCPOS

Function

The CCPOS function returns the output record's current character or cursor position on a specified
channel.

Format

int-vbl CCPOS(chnl-exp)

Syntax Rules

None.

General Rules

1. Chnl-exp must specify an open file or terminal. You cannot include a pound sign (#) in
chnl-exp.

2. If chnl-exp is zero, CCPOS returns the current character position of the controlling
terminal.

3. The int-vb/ returned by the CCPOS function is of the default integer size.

4. The CCPOS function counts only characters. If you use cursor addressing sequences such
as escape sequences, the value returned will not be the cursor position.

5. The first character position on a line is zero.

Examples

100 CHNLO = CCPOS CO>

298 BASIC Reference Manual

CHR$

7_n ~MR~ • • ••• ·;+r

Function

The CHR$ function returns a 1-character string that corresponds to the ASCII value you specify.

Format

str-vbl CHR$(int-exp)

Syntax Rules

None.

General Rules

1. CHR$ returns the character whose ASCII value equals int-exp. If int-exp is greater than 255,
BASIC treats it modulo 256. For example, CHR$(325) is the same as CHR$(69).

2. BASIC treats all arguments as unsigned 8-bit integers in the range 0 to 255. Negative
numbers are treated as the two's complement (for example, -1 is treated as 255).

3. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Examples

220 A$ = CHR$C65)
230 PRINT CHR$CVALUE>

BASIC Reference Manual 299

COMPo/o

Function

The COMP% function compares two numeric strings and returns a minus one, zero, or one, depend­
ing on the results of the comparison.

Format

int-vbl COMP%(str-exp1, str-exp2)

Syntax Rules

1. Str-expl and str-exp2 are numeric strings. They can contain up to 60 ASCII digits and an
optional decimal point and leading sign.

General Rules

1. If str-expl is greater than str-exp2, COMP% returns one.

2. If the string expressions are equal, COMP% returns zero.

3. If str-expl is less than str-exp2, COMP% returns minus one.

4. The value returned by the COMP% function is an integer of the default size.

Examples

400 NUM_STRING$ = 11 35 11

425 OLD_NUM_STRING$ = 11 33.1 11

450 ALPHA = COMP%<NUM_STRING$t OLD_NUM_STRING$)

300 BASIC Reference Manual

9.0 cos
Function

The COS function returns the cosine, in radians, of an angle.

Format

real-vbl COS(real-exp)

Syntax Rules

None.

General Rules

1. The returned value is between minus one and one.

cos

2. BASIC expects the argument of the COS function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Examples

800 COSINE.ALPHA COS CPI /2)

BASIC Reference Manual 301

CTR LC

10.0 CTRLC

Function

The CTRLC function enables CTRL/C trapping. When CTRL/C trapping is enabled, a CTRL/C typed
at the terminal causes control to be transferred to the program's error handler.

Format

int-vbl = CTRLC

Syntax Rules

None.

General Rules

1. After the CTRLC function is invoked, control passes to the error handler when BASIC
encounters a CTRL/C. If there is no error handler in a program, the program aborts when
BASIC encounters a CTRL /C.

2. CTRL/C trapping is asynchronous; that is, BASIC suspends execution and signals
"Programmable "C trap" (ERR= 28) as soon as it detects a CTRL/C. Consequently, a
statement can be interrupted while executing. A statement so interrupted may be only
partially completed and variables may be left in an undefined state.

3. BASIC can trap more than one CTRL/C error in a program as long as the error does not
occur while the error handler is executing. If a second CTRL /C is detected while the error
handler is processing the first CTRL/C, the program aborts.

4. On RSX-11 MI M-PLUS systems, the task that contains the CTRLC function must be able to
attach to a terminal as soon as the CTRLC function is enabled. If another task is attached to
the terminal, the task that enabled the CTRLC function terminates with a directive error.

5. The CTRLC function always returns a value of zero.

Examples

10 ON ERROR GOTO 18000
20 Y% = CTRLC

18000 IF <ERR 28) THEN Y% CTRLC
18010 RESUME

302 BASIC Reference Manual

CVT$$

11.0 CVT$$

Function

The CVT$$ function is identical to the EDIT$ function. See the EDIT$ function for syntax and general
rules.

Note

DIGITAL recommends that you use the EDIT$ function rather than the CVT$$ function
for new program development.

Format

str-vbl = CVT$$(str-exp, int-exp)

Examples

100 A$ CVT$$(8$t48)

BASIC Reference Manual 303

CVTxx

12.0 CVTxx

Function

Note

CVT functions are supported only for compatibility with BASIC-PLUS. DIGITAL
recommends that you use BASIC's dynamic mapping feature or multiple MAP state­
ments for new program development.

The CVT$% function maps the first 2 characters of a string into a 16-bit integer. The CVT%$ function
translates a 16-bit integer into a 2-character string. The CVT$F function maps a 4- or 8-character
string into a floating-point variable. The CVTF$ function translates a floating-point number into a 4-
or 8-byte character string. The number of characters translated depends on whether the floating-point
variable is single- or double-precision.

Format

int-vbl = CVT$%(str-vbl)

str-vbl = CVT%$(int-vbl)

str-vbi = CVTF$(reai-vbl)

real-vbl = CVT$F(str-vbl)

Syntax Rules

1. In VAX-11 BASIC, CVT functions reverse the order of the bytes when moving them to or
from a string. Thus, you can mix MAP and MOVE statements, but you cannot use FIELD
and CVT functions on a file if you also plan to use MAP or MOVE.

General Rules

CVT$%

1. If the CVT$% str-vbl has fewer than two characters, BASIC pads the string with nulls.

2. In VAX-11 BASIC, if the default data type is LONG, only two bytes of data are extracted
from str-vbl; the high-order byte is sign-extended into a longword.

3. The value returned by the CVT$% function is an integer of the default size.

CVT%$

1. Only two bytes of data are inserted into str-vbl.

2. If you specify a floating-point variable for int-vb/, BASIC truncates it to an integer of the
default size. If the default size is BYTE and the value of int-vb/ exceeds 127, BASIC signals
an error.

304 BASIC Reference Manual

£\ !Tct C::
__VI .,Pl

CVTxx

1. CVT$F maps four characters when the program is compiled with /SINGLE and eight char­
acters when the program is compiled with /DOUBLE.

2. If str-vbl has fewer than four or eight characters, BASIC pads the string with nulls.

3. The real-vb/ returned by the CVT$F function is of the default floating-point size. In VAX-11
BASIC, if the default size is GFLOAT or HFLOAT, BASIC signals the error "Floating CVT
illegal for GFLOAT or HFLOAT".

CVTF$

1. The CVTF$ function maps single-precision numbers to a 4-character string and double­
precision numbers to an 8-character string.

2. BASIC expects the argument of the CVTF$ function to be a real-exp. When the argument is
a real-exp, BASIC returns a value of the same floating-point size. When the argument is not
a real-exp, BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size. In VAX-11 BASIC, if the default floating-point size
is GFLOAT or HFLOAT, BASIC signals the error "Floating CVT illegal for GFLOAT or
HFLOAT".

Examples

10 Ai.. Cl.JT$i.. (EMP _NAME$)

20 A$ Cl.JT'J.,$ < A'J..)

100 A = CVT$FCEMP_NAME$)

110 EMP_NAME$ = CVTF$CA)

Note

DIGITAL does not recommend the CVTxx functions for new program development.

BASIC Reference Manual 305

I

DATE$

13.0 DATE$

Function

The DATE$ function returns a string containing a day, month, and year in the form dd-Mmm-yy.

Format

str-vbl DATE$(int-exp)

Syntax Rules

1. Int-exp can have up to six digits in the form YYYDDD, where the "Y" characters specify
the number of years since 1970 and the "D" characters specify the day of that year.

2. You must fill all three of the "D" positions with digits or zeros before you fill the "Y"
positions. For example:

• DATE$(121) returns the date 01-May-70, day 121 of the year 1970.

• DATE$(1201) returns the date 20-Jul-71, day 201 of the year 1971.

• DATE$(12001) returns the date 01-Jan-82, day 1 of the year 1982.

• DATE$(10202) returns the date 21-Jul-80, day 202 of the year 1980.

3. If int-exp equals zero, DATE$ returns the current date.

General Rules

1. The str-exp returned by the DATE$ function consists of nine characters and expresses the
day, month, and year in the form dd-Mmm-yy.

2. If you specify an invalid date, such as day 385, results are undefined and unpredictable.

3. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

4. On RSTS IE systems, the form of the DATE$ function's output can be changed to ISO
format, yy.mm.dd, during the installation procedure, or to the format selected by the
system manager at system start-up time.

Examples

500 PRINT DATEC8231)

306 BASIC Reference Manual February 1984

DECIMAL

14.0 DECIMAL (VAX-11 BASIC Only}

Function

The DECIMAL function converts a numeric expression or numeric string to the DECIMAL data type.

Format

decimal-vb! DECIMAL(exp [, int-const1, int-const2])

Syntax Rules

1. lnt-const1 specifies the total number of digits (the precision) and int-const2 specifies the
number of digits to the right of the decimal point (the scale). If you do not specify these
values, BASIC uses the d (digits) and s (scale) defaults for the DECIMAL data type.

2. lnt-const1 and int-const2 must be positive integers in the range 1 to 31, inclusive.
lnt-const2 cannot exceed the value of int-const1.

3. Exp can be either a numeric expression or a numeric string. If a numeric string, it can
contain up to 31 ASCII digits and an optional decimal point and leading sign.

General Rules

1. If exp is a string, BASIC ignores leading, trailing, and embedded spaces and tabs.

2. The DECIMAL function returns a zero when a string argument contains only spaces and
tabs, or when it is null.

Examples

-100 INPUT "enter a deci111al 1.1alue 11 ;oEC_t,lALUE
B = DECIMAL<DEC_VALUEt5t2)
PRINT Bt DECIMALCHOURLY_PAY>

BASIC Reference Manual 307

DET

15.0 DET

Funciion

The DET function returns the value of the determinant of the last matrix inverted with the MAT INV
function.

Format

real-vb I DET

Syntax Rules

None.

General Rules

1. When a matrix is inverted with the MAT INV statement, BASIC calculates the determinant
as a by-product of the inversion process. The DET function retrieves this value.

2. If your program does not contain a MAT INV statement, the DET function returns a zero.

3. The value returned by the DET function is a floating-point value of the default floating­
point size.

Examples

100 DETERMINANT = DET
PRINT DET

308 BASIC Reference Manual

DIF$

16.0 DIF$

Function

DIF$ returns a string whose value is the difference between two numeric strings.

Format

str-vbl DIF$(str-exp1, str-exp2)

Syntax Rules

1. Str-exp 1 and str-exp2 specify the numeric strings you want to process. They can contain up
to 54 ASCII digits, an optional decimal point, and an optional leading sign.

General Rules

1. BASIC subtracts str-exp2 from str-exp 1 and stores the result in str-vbl.

2. The difference between two integers takes the precision of the larger integer.

3. The difference between two decimal fractions takes the precision of the more precise
fraction, unless trailing zeros generate that precision.

4. The difference between two floating-point numbers takes precision as follows:

• The difference of the integer parts takes the precision of the larger part.

•The difference of the decimal fraction part takes the precision of the more precise part.

5. BASIC truncates leading and trailing zeros.

Examples

500 RESULT$ = DIF$(11 6776 11
t

11 -455 11
)

BASIC Reference Manual 309

ECHO

17.0 ECHO

Function

The ECHO function causes characters to be echoed at a terminal open on a specified channel.

Format

int-vbl ECHO(chnl-exp)

Syntax Rules

None.

General Rules

1. Chnl-exp must specify a terminal. You cannot include a pound sign (#) in chnl-exp.

2. The ECHO function is the complement of the NOECHO function; that is, ECHO disables
the effect of ECHO and vice versa.

3. The ECHO function has no effect on an unopened channel.

4. The ECHO function always returns a value of zero.

Examples

100 Y = ECHO<O>

310 BASIC Reference Manual

EDIT$

18.0 EDIT$

Function

The EDIT$ function performs one or more string editing functions, depending on the value of its
integer argument.

Format

str-vbl EDIT$(str-exp, int-exp)

Syntax Rules

None.

General Rules

1. BASIC edits str-exp to produce str-vbl.

2. The editing that BASIC performs depends on the value of int-exp. Table 22 describes EDIT$
values and functions.

3. All values are additive; that is, you can perform the editing functions of values 8, 16, and
32 by specifying a value of 56.

4. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Table 22: EDIT$ Values

I Value I Edit Performed

Discards each character's parity bit (bit 7)

2 Discards all spaces and tabs

4 Discards all carriage returns, line feeds, form feeds, deletes, escapes, and nulls

8 Discards leading spaces and tabs

16 Converts multiple spaces and tabs to a single space

32 Converts lowercase letters to uppercase letters

64 Converts left bracket([) to left parenthesis [(] and right bracket (]) to right parenthesis [)]

128 Discards trailing spaces and tabs (same as TRM$ function)

256 Suppresses all editing for characters within quotation marks; if the string has only one quotation mark, BASIC
suppresses all editing for the characters following the quotation mark

Examples

100 NEW-STRING$ EDIT$(0LD_STRING$t 32 + 16)

BASIC Reference Manual 311

ERL

19.0 ERL

Function

The ERL function returns the number of the line where the last error occurred.

Format

int-vbl ERL

Syntax Rules

None.

General Rules

1. If the ERL function is used before an error occurs or after BASIC executes a RESUME
statement, results are undefined.

2. The ERL function overrides the /NOLINE qualifier. If a program compiled with the
/NOLINE qualifier in effect contains an ERL function, BASIC signals the message "ERL
overrides NOLIN E".

3. The int-vb/ returned by the ERL function is a WORD integer in BASIC-PLUS-2 and a
LONG integer in VAX-11 BASIC.

Examples

300 IF <ERL 20) THEN RESUME 500

500 PRINT 'Error occurred on line';ERL

312 BASIC Reference Manual

ERN$

ftft ft ... ""',..
~u.u CMN\1)

Function

The ERN$ function returns the name of the main program, subprogram, or (VAX-11 BASIC only) DEF I
that was executing when the last error occurred.

Format

str-vb! ERN$

Syntax Rules

None.

General Rules

1. In BASIC-PLUS-2, if the ERN$ function executes before an error occurs, ERN$ is unde­
fined. When an error occurs, ERN$ is set to the name of the module that caused the error.

2. On VAX-11 systems, if the ERN$ function executes before an error occurs or after BASIC
executes a RESUME statement, ERN$ returns a nuii string.

Examples

2000 PRINT 'Error in Module';ERN$

February 1984 BASIC Reference Manual 313

ERR

21.0 ERR

Function

The ERR function returns the number of the latest run-time error.

Format

int-vbl ERR

Syntax Rules

None.

General Rules

1. If the ERR function is used before an error occurs or after BASIC executes a RESUME
statement, results are undefined.

2. The int-vb/ returned by the ERR function is always a WORD integer in BASIC-PLUS-2 and
a LONG integer in VAX-11 BASIC.

3. Appendix B in BASIC on VAX I VMS Systems, BASIC on RSX-11 MI M-PLUS Systems, or
BASIC on RSTSIE Systems lists run-time errors and their numbers.

Examples

2000 IF (ERR 11) THEN RESUME 1000

314 BASIC Reference Manual

22.0 ERT$

Function

The ERT$ function returns explanatory text associated with an error number.

Format

str-vbl ERT$(int-exp)

Syntax Rules

None.

General Rules

1. Int-exp is an error number. It must be between 0 and 255, inclusive.

ERT$

2. The ERT$ function can be used at any time to return the text associated with a specified
error number.

3. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Examples

2020 PRINT 'Error';ERR;' on line';ERL
PRINT ERT$CERR>

BASIC Reference Manual 315

EXP

23.0 EXP

Function

The EXP function returns the value of the mathematical constant "e", raised to a specified power.

Format

real-vbl EXP(real-exp)

Syntax Rules

None.

General Rules

1. The EXP function returns the value of "e" raised to the power of real-exp.

2. When the default size is SINGLE or DOUBLE, EXP allows arguments between -88 and 88,
inclusive. In VAX-11 BASIC, if the default size is GFLOAT, EXP allows arguments in the
range -709 to 709, inclusive; if the default size is HFLOAT, the arguments can be in the
range -11356 to 11355. When the argument exceeds the upper limit of a range, BASIC
signals an error. When the argument exceeds the lower limit of a range, the EXP function
returns zero and BASIC does not signal an error.

3. BASIC expects the argument of the EXP function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Examples

100 A = EXP<a.s>

316 BASIC Reference Manual

FIX

24.0 FIX

Function

The FIX function truncates a floating-point value at the decimal point and returns the integer portion
represented as a floating-point value.

Format

real-vbl FIX(real-exp)

Syntax Rules

None.

General Rules

1. The FIX function returns the integer portion of a floating-point value, not an integer value.

2. BASIC expects the argument of the FIX function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

3. If real-exp is negative, FIX returns the negative integer portion. For example, FIX(-5.2)
returns -5.

Examples

200 FIX_VALUE = FIX<-3.333)
210 PRINT FI}<C2ll.566), FD{_l,lALUE

BASIC Reference Manual 317

FORMAT$

25.0 FORMAT$

Function

The FORMAT$ function converts an expression to a formatted string.

Format

str-vbl FORMAT$(exp, str-exp)

Syntax Rules

None.

General Rules

1. The rules for building a format string are the same as those for printing numbers with the
PRINT USING statement.

Examples

500 PRINT FORMAT$(12345t "##t###")

318 BASIC Reference Manual

FSP$

26.0 FSP$

Function

The FSP$ function returns a string describing an open file on a specified channel.

Format

str-vbl = FSP$(chnl-exp)

Syntax Rules

1. A file must be open on chnl-exp. You cannot include a pound sign (#) in chnl-exp.

2. The FSP$ function must come immediately after the OPEN statement for the file.

General Rules

1. In BASIC-PLUS-2, byte 1 returns the RMS record format field (RFM). In VAX-11 BASIC,
byte 1 is undefined.

2. In BASIC-PLUS-2, bytes 9 and 10 in the returned string contain the RMS Bucketsize (BKS)
or RMS Blocksize (BLS) for magnetic tape. Byte 12 is the number of indexes (keys) in the
file. In VAX-11 BASIC, the FSP$ function returns zeros in bytes 9 through 12.

3. Use the FSP$ function with files opened as ORGANIZATION UNDEFINED. Then use
multiple MAP statements to interpret the returned data.

4. See the BASIC User's Guide and the RMS User's Guide for more information on FSP$
values.

Note

VAX-11 BASIC supports the FSP$ function for compatibility with BASIC-PLUS-2.
However, you can access the information in bytes 9 through 12 in the returned string
more efficiently in VAX-11 BASIC by using the USEROPEN clause in the OPEN
statement.

Examples

500 A$ FSP$(1)

BASIC Reference Manual 319

FSS$

27.0 FSS$ (BASIC-PLUS-2 Only)

Function

The FSS$ function scans a file name string beginning at a specified position and returns a
30-character string describing the file name and status. Because file specifications differ from system
to system, the returned string contains system-specific information. See BASIC on RSX-11 MI M-PLUS
Systems or BASIC on RSTS IE Systems for more information on the values returned by the FSS$
function.

Format

str-vbl FSS$(str-vbl, int-vbl)

Syntax Rules

1. Str-vbl names the file name string to be scanned.

2. Int-vb/ specifies the character position at which scanning starts.

General Rules

1. If you specify a floating-point variable for int-vb/, BASIC truncates it to an integer of the
default size.

2. Str-vbl is a 30-character string. See BASIC on RSX-11 MI M-PLUS Systems and BASIC on
RSTS IE Systems for information on the encoding of str-vbl.

Note

VAX-11 BASIC does not support the FSS$ function. However, the DEFAULTNAME
clause in the OPEN statement supplies default file specification components.

Examples

100 Y$ FSSCAtBZ>

320 BASIC Reference Manual

ftft ft "r"""T"rtr"" A
~o.u uc 1 nrK

Function

GETRFA

The GETRFA function returns the Record File Address (RFA) of the last record accessed in an RMS file
open on a specified channel.

Format

rfa-vb! = GETRFA(chnl-exp)

Syntax Rules

1. Rfa-vbl is a variable of the RFA data type.

2. Chnl-exp is the channel number of an open RMS file. You cannot include a pound sign (#)
in the channel expression.

3. You must access a record in the file with a GET, FIND, or PUT statement before using the
GETRFA function, or BASIC signals "No current record" (ERR= 131).

General Rules

1. There must be a file open on the specified chnl-exp or BASIC signals an error.

2. You can use the GETRFA function with RMS sequential, relative, indexed, and (except on
RSTS IE systems) block I /0 files.

3. The RFA value returned by the GETRFA function can be used only for assignments to and
comparisons with other variables of the RFA data type. Comparisons are limited to equal to
(=) and not equal to (<>) relational operations.

4. RFA values cannot be printed or used for any arithmetic operations.

Examples

100 DECLARE RFA R_ARRAYC89)

500 FOR 1% = 1% TD 100%

NEXT !%

February 1984

PUT #1
R_ARRAY (1%) GETRFACl)

BASIC Reference Manual 321

I

I

INSTR

29.0 INSTR

Function

The INSTR function searches for a substring within a string. It returns the position of the substring's
starting character.

Format

int-vbl INSTR(int-exp, str-exp1, str-exp2)

Syntax Rules

None.

General Rules

322

1. The INSTR function searches str-expl, the main string, for the first occurrence of a
substring, str-exp2, and returns the position of the substring's first character.

2. Int-exp specifies the character position in the main string at which BASIC starts the search.

3. INSTR returns the character position in the main string at which BASIC finds the substring,
except in the following situations:

• If only the substring is null, and if int-exp is less than or equal to zero, INSTR returns a
value of one.

• If only the substring is null, and if int-exp is equal to or greater than one and less than or
equal to the length of the main string, INSTR returns the value of int-exp.

• If only the substring is null, and if int-exp is greater than the length of the main string,
INSTR returns the main string's length plus one.

• If the substring is not null, and if int-exp is greater than the length of the main string,
INSTR returns zero.

• If only the main string is null, INSTR returns zero.

• If both the main string and the substring are null, INSTR returns one.

4. If BASIC cannot find the substring, INSTR returns zero.

5. If int-exp does not equal one, BASIC still counts from the beginning of the main string to
calculate the starting position of the substring. That is, BASIC counts character positions
starting at position one, regardless of where you specify the start of the search. For exam­
ple, if you specify 10 as the start of the search and BASIC finds the substring at position 15,
INSTR returns the value 15.

6. If int-exp is less than one, BASIC assumes a starting position of one.

7. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

BASIC Reference Manual February 1984

INSTR

Note

VAX-11 BASIC supplies the INSTR function only for compatibility with
BASIC-PLUS-2 and BASIC-PLUS. DIGITAL recommends that you use the POS func­
tion for substring searches.

Examples

300 Y INSTRC1 t ALPHA$t "JKLMN">

BASIC Reference Manual 323

INT

30.0 INT

Function

The INT function returns the floating-point value of the largest whole number less than or equal to a
specified expression.

Format

real-vbl INT(real-exp)

Syntax Rules

None.

General Rules

1 . If real-exp is negative, BASIC returns the largest whole number less than or equal to
real-exp. For example, INT(-5.3) is -6.

2. BASIC expects the argument of the INT function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

3. This example contrasts the INT and FIX functions:

Examples

10 TEST_NUM = -32.7
20 PRINT "INT OF -32.7 IS: "; INT<TEST_NUM>
30 PRINT "FIX OF -32.7 IS: "; FIX<TEST_NLJM)
40 END

RUNNH

INT OF -32.7 IS: -33
FIX OF -32.7 IS: -32

850 RESULT = INT<8.887)

324 BASIC Reference Manual

INTEGER

31.0 INTEGER

Function

The INTEGER function converts a numeric expression or numeric string to a specified or default
INTEGER data type.

Format

I
I

int-vb I INTEGER(exp

r. LONG l

l' BYTE J
, WORD

Syntax Rules

1. Exp can be either numeric or string. A string expression can contain the ASCII digits 0
through 9, a plus sign (+), or a minus sign (-).

General Rules

1. BASIC evaluates exp, then converts it to the specified INTEGER size. If you do not specify a
size, BASIC uses the default INTEGER size.

2. If exp is a string, BASIC ignores leading and trailing spaces and tabs.

3. The INTEGER function returns a zero when a string argument contains only spaces and
tabs, or when it is null.

Examples

100 INPUT "Enter a floatin9-Point nurT1ber 11 ;F_P
PRINT INTEGERCF_Pt WORD>

BASIC Reference Manual 325

LEFT$

32.0 LEFT$

Function

The LEFT$ function extracts a specified substring from a string's left side, leaving the main string
unchanged.

Format

str-vbl

Syntax Rules

None.

General Rules

I LEFT l
LEFT$ \ (str-exp, int-exp)

1. The LEFT$ function extracts a substring from the left of the specified str-exp and stores it in
str-vbl.

2. Int-exp specifies the number of characters to be extracted from the left side of the str-exp.

3. If int-exp is less than one, LEFT$ returns a null string.

4. If int-exp is greater than the length of str-exp, LEFT$ returns the entire string.

5. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Note

VAX-11 BASIC supplies the LEFT$ function only for compatibility with BASIC-PLUS
and BASIC-PLUS-2. DIGIT AL recommends that you use the SEG$ function for sub­
string extraction.

Examples

410 SUB-STRING$ = LEFTS<ALPHASt 51)

326 BASIC Reference Manual

LEN

33.0 LEN

Function

The LEN function returns an integer value equal to the number of characters in a specified string.

Format

int-vbl LEN(str-exp)

Syntax Rules

None.

General Rules

1. If str-exp is null, LEN returns a value of zero.

2. The length of str-exp includes leading, trailing, and embedded blanks. Tabs in str-exp are
treated as a single space.

3. The value returned by the LEN function is an integer of the default size.

Examples

200 LENGTH LENCALPHA$)

BASIC Reference Manual 327

I

I

LOC

34.0 LOC (VAX-11 BASIC Only)

Function

The LOC function returns a longword integer specifying the virtual address of a simple or subscripted
variable. For dynamic strings, the LOC function returns the address of the descriptor rather than the
address of the data.

Format

int-vbl LOC(vbl)

Syntax Rules

1. Vb/ can be any local or external, simple or subscripted variable.

2. Vb/ cannot be a virtual array element.

General Rules

1. The LOC function always returns a LONG value.

Examples

100 DECLARE LONG Bt A
200 A = LOC

328 BASIC Reference Manual February 1984

LOG

35.0 LOG

Function

The LOG function returns the natural logarithm (base "e") of a specified number. The LOG function
is the inverse of the EXP function.

Format

real-vbl LOG(real-exp)

Syntax Rules

None.

General Rules

1. Real-exp must be greater than zero. An attempt to find the logarithm of zero or a negative
number causes BASIC to signal "Illegal argument in LOG" (ERR= 53).

2. The LOG function uses the mathematical constant "e" as a base. BASIC approximates "e"
to be 2.718281828459045 (double precision).

3. The LOG function returns the exponent to which "e" must be raised to equal real-exp.

4. BASIC expects the argument of the LOG function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Examples

10 EXPONENT LDG<l00.35)

BASIC Reference Manual 329

LOG10

36.0 LOG10

Function

The LOG10 function returns the common logarithm (base 1 O) of a specified number.

Format

real-vbl LOG10(real-exp)

Syntax Rules

None.

General Rules

1. Real-exp must be larger than zero. An attempt to find the logarithm of zero or a negative
number causes BASIC to signal "Illegal argument in LOG" (ERR= 53).

2. The LOG10 function returns the exponent to which 10 must be raised to equal real-exp.

3. BASIC expects the argument of the LOG10 function to be a real-exp. When the argument is
a real-exp, BASIC returns a value of the same floating-point size. When the argument is not
a real-exp, BASIC converts the argument to the default floating-point size and returns a
value of the default floating-point size.

Examples

600 EXP_BASE_lO = LOG10C250)

330 BASIC Reference Manual

MAG

,..._, ft a• A,.._
.>I .U IVll-\U

Function

The MAG function returns a number that equals the absolute value of a specified expression. The
returned value has the same data type as the expression.

Format

vb! MAG(exp)

Syntax Rules

None.

General Rules

1. The returned value is always greater than or equal to zero. The absolute value of zero is
zero. The absolute value of a positive number equals that number. The absolute value of a
negative number equals that number multiplied by minus one.

2. The MAG function is similar to the ABS function in that it returns the absolute value of a
number. The ABS function, however, takes a floating-point argument and returns a
floating-point value. The MAG function takes an argument of any numeric data type and
returns a value of the same data type as the argument.

Examples

100 DECLARE LONG A
200 PRINT MAG<A>

BASIC Reference Manual 331

MAGTAPE

I 38.0 MAGT APE

I

Function

The MAGTAPE function permits your program to control unformatted magnetic tape files.

Format

int-vbl1 MAGTAPE(int-const, int-vbl2, chnl-exp)

Syntax Rules

1. lnt-const is an integer between 1 and 9, inclusive, that specifies the code for the MAGTAPE
function you want to perform. Function codes are described in Table 23. See BASIC on
RSX-11 MI M-PLUS Systems or BASIC on RSTS IE Systems for more information on mag­
netic tape function codes.

2. VAX-11 BASIC supports only function code 3, rewind tape. Table 24 explains how to
perform other MAGT APE functions on VAX /VMS Systems.

3. lnt-vb/2 is an integer parameter for function codes 4, 5, and 6.

• lnt-vb/2 for function 4 is a value from 1 to 32767, inclusive, that specifies the number of
records to skip.

• lnt-vb/2 for function 5 is a value from 1 to 32767, inclusive, that specifies the number of
records to backspace.

• lnt-vb/2 for function 6 specifies the density and I or parity of the magnetic tape drive. See
BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS IE Systems for information on
setting the density and parity of the magnetic tape drive.

4. The chnl-exp associated with the magnetic tape must be open.

Table 23: MAGTAPE Function Codes

Code Meaning

1 Rewind and take tape off-line

2 Write end-of-file (EOF) mark

3 Rewind tape

4 Advance tape a specified number of records

5 Backspace tape a specified number of records

6 Set density and parity

7 Return status of tape

8 Return characteristics of file open on tape (RSTS IE only)

9 Rewind when file is closed (RSTS IE only)

332 BASIC Reference Manual February 1984

MAGTAPE

1. You cannot use the MAGTAPE function with RMS files.

2. Function codes 8 and 9 are valid only on RSTS IE systems.

3. If int-const equals 1, 2, 3, 6, or 9, int-vb/1 always equals zero.

4. If int-canst equals 4, int-vb/1 is an integer of the default size that equals the number of
records not skipped.

5. If int-const equals 5, int-vb/7 is an integer of the default size that equals the number of
records not backspaced.

6. If int-canst equals 7, int-vb/ 1 is a 16--bit integer that reflects the status of the specified
magnetic tape. See BASIC on RSX-1 JM!M-PLUS Systems or BASIC on RSTS/E Systems for
information on bit values and meaning.

7. If int-canst equals 9, int-vb/7 is a 16-bit integer that describes the file characteristics of the
specified magnetic tape. See the RSTS IE Programming Manual for information on bit
values and meaning.

8. On RSTS IE systems, the "rewind when file is closed" function (9) must _appear after the @
OPEN statement and before the CLOSE statement associated with the specified magnetic
tape.

Table 24: Performing MAGTAPE Functions in VAX-11 BASIC

I MAGTAPE Function VAX-11 BASIC Actions

Write EOF Close channel

Skip records Perform GETs, ignore data until reaching de­
sired record

Backspace

Set density

Status

Examples

200

February 1984

Rewind tape, perform GETs, ignore data until
reaching desired record

Use the DCL MOUNT command qualifiers
(!DENSITY and /FOREIGN), or the $MOUNT
system service

Use the USEROPEN clause in the OPEN state­
ment to access the RAB$L_STS and the
RAB$L_STV

MAGTAPE (1 tO t2)

•

I

BASIC Reference Manual 333

MAR

39.0 MAR (V AX-11 BASIC Only)

Function

The MAR function returns the current margin width of a specified channel.

Format

int-vbl

Syntax Rules

None.

General Rules

I MAR j
MAR% (chnl-exp)

1. The file associated with chnl-exp must be open. You cannot include a pound sign (#) in
chnl-exp.

2. If chnl-exp specifies a terminal, the MAR function returns zero if you have not set a margin
width with the MARGIN statement. If you have set a margin width, the MAR function
returns that number.

3. The value returned by the MAR function is an integer of the default size.

Examples

200 WIDTH = MARCO>

334 BASIC Reference Manual

MID$

Function

The MID$ function extracts a specified substring from the middle of a string, leaving the main string
unchanged.

Format

str-vbl

Syntax Rules

None.

General Rules

(MID

lMID$ (str-exp, int-exp1, int-exp2)

1 .. The MID$ function extracts a substring from str-exp and stores it in str-vbl. lnt-exp1 speci- I
fies the position of the substring's first character. lnt-exp2 specifies the length of the sub-
string.

2. If int-exp1 is less than one, BASIC assumes a starting position of one.

3. If int-exp1 is greater than the length of str-exp, MID$ returns a null string.

4. If int-exp2 is greater than the length of str-exp, BASIC returns the string that begins at
int-exp1 and includes all characters remaining in the string.

5. If int-exp2 is less than or equal to zero, MID$ returns a null string.

6. If you specify a floating-point expression for int-exp 1 or int-exp2, BASIC truncates it to an
integer of the default size.

Note

VAX-11 BASIC supplies the MID$ function only for compatibility with BASIC-PLUS
and BASIC-PLUS-2. DIGIT AL recommends that you use the SE:G$ function for sub­
string extraction.

Examples

220 NEW_STRING$ MID$COLD_STRING$t St 8)

February 1984 BASIC Reference Manual 335

NO ECHO

41.0 NOECHO

Function

The NOECHO function disables echoing of input on a terminal.

Format

int-vbl NOECHO(chnl-exp)

Syntax Rules

None.

General Rules

1. Chnl-exp must specify a terminal. You cannot include a pound sign (#) in chnl-exp.

2. If you specify NOECHO, BASIC still accepts characters typed on the terminal as input, but
the characters do not echo on the terminal.

3. The NOECHO function is the complement of the ECHO function; that is, NOECHO dis­
ables the effect of ECHO and vice versa.

4. NOECHO always returns zero.

Examples

500 y NOECHO<O>

336 BASIC Reference Manual

NUM

42.0 NUM

Function

The NUM function returns the row number of the last data element transferred into an array by a MAT
I /0 statement.

Format

int-vbl NUM

Syntax Rules

None.

General Rules

1. NUM returns zero if it is invoked before BASIC has executed any MAT I /0 statements.

2. For a two-dimensional array, NUM returns an integer specifying the row number of the last
data element transferred into the array. For a one-dimensional array, NUM returns the
number of elements entered.

3. The value returned by the NUM function is an integer of the default size.

Examples

10 ROltLCOUNT NUM

BASIC Reference Manual 337

NUM2

43.0 NUM2

Function

The NUM2 function returns the column number of the last data element transferred into an array by a
MAT I I 0 statement.

Format

int-vbl NUM2

Syntax Rules

None.

General Rules

1. NUM2 returns zero if it is invoked before BASIC has executed any MAT I /0 statements or
if the last array element transferred was in a one-dimensional list.

2. The NUM2 function returns an integer specifying the column number of the last data
element transferred into an array.

3. The value returned by the NUM2 function is an integer of the default size.

Examples

100 COLUMN_COUNT NUMZ

338 BASIC Reference Manual

NUM$

44.0 NUM$

Function

The NUM$ function evaluates a numeric expression and returns a string of characters in PRINT
statement format, with leading and trailing spaces.

Format

str-vbl NUM$(num-exp)

Syntax Rules

None.

General Rules

1. If num-exp is positive, the first character in the string expression is a space. If num-exp is
negative, the first character is a minus sign.

2. The NUM$ function does not include trailing zeros in the returned string. If all digits to the
right of the decimal point are zeros, NUM$ omits the decimal point as well.

3. When num-exp has an integer portion of six digits or less (for example, 1234.567), BASIC
rounds the number to six digits (1234.57). If num-exp has seven decimal digits or more,
BASIC rounds the number to six digits and prints it in E format.

4. When num-exp is between 0.1 and 1, BASIC rounds it to six digits. When num-exp is
smaller than 0.1, BASIC rounds it to six digits and prints it in E format.

5. If num-exp is a longword integer, the returned siring can have up to iO digits.

6. The last character in the reiurned siring is a space.

Examples

660 NUMBER$ NUM$C34.55000/32.4>

BASIC Reference Manual 339

NUM1$

45.0 NUM1$

Function

The NUM 1 $ function changes a numeric expression to a numeric character string without leading
and trailing spaces.

Format

str-vbl NUM1$(num-exp)

Syntax Rules

None.

General Rules

1. The NUM1 $function returns a string consisting of numeric characters and a decimal point
that corresponds to the value of num-exp. Leading and trailing spaces are not included in
the returned string.

2. The NUM1 $function returns:

•Three digits for BYTE integers

• Five digits for SINGLE floating-point numbers and WORD integers

• Ten digits for LONG integers

• Sixteen digits for DOUBLE floating-point numbers

• Fifteen digits for GFLOAT floating-point numbers (VAX-11 BASIC only)

•Thirty-three digits for HFLOAT floating-point numbers (VAX-11 BASIC only)

3. The NUM1 $ function does not produce E notation.

Examples

750 NUMBER$ NUM1$CPI/2)

340 BASIC Reference Manual

ONECHR

4R n n~t1=~MC IA A ~If' _DI 11~ 'l n-1u\ ----·- __ ,._....,I 11 I \-'"'"'l..,,,--1 '-"'~' 'UlllJJ

Function

The ONECHR function allows single-character input (ODT submode) on a specified channel. This
function must be used in conjunction with the GET statement.

Format

int-vbl = ONECHR(chnl-exp)

Syntax Rules

1. Chnl-exp must refer to an open terminal. You cannot include a pound sign (#) in chnl-exp.

2. The ONECHR function must be used immediately before the GET statement.

General Rules

1. BASIC disables the ONECHR function immediately after a GET statement executes. There­
fore, your program must invoke the ONCHR function for each single character input you
want to perform.

2. Control passes to the program as soon as you enter a character. You do not have to type a
line terminator.

Examples

100 OPEN "TI:" FOR INPUT AS FILE #1%
110 YI = ONECHRC1%)
120 GET #1%

MOVE FROM #l?t A$ = 1%
PRINT A$

Note

VAX-11 BASIC does not support the ONECHR function. To perform this function in
VAX-11 BASIC, you must use the system service SYS$QIO.

BASIC Reference Manual 341

PLACE$

47.0 PLACE$

Function

The PLACE$ function explicitly changes the precision of a numeric string. PLACE$ returns a numeric
string, truncated or rounded, according to the value of an integer argument you supply.

Format

str-vbl PLACE$(str-exp, int-exp)

Syntax Rules

1. Str-exp specifies the numeric string you want to process. It can contain up to 60 ASCII
digits and an optional decimal point and leading sign.

2. If str-exp consists of more than 60 characters, BASIC signals the error "Illegal number"
(ERR= 52).

3. Int-exp specifies the numeric precision of str-exp. Table 25 shows examples of rounding
and truncation and the values of int-exp that produce them.

General Rules

1. Str-exp is rounded and /or truncated according to the value of int-exp.

2. If int-exp is between -60 and 60, rounding and truncation occur as follows:

• For positive integer expressions, rounding occurs to the right of the decimal place. For
example, if int-exp is 1, rounding occurs one digit to the right of the decimal place (the
number is rounded to the nearest tenth). If int-exp is 2, rounding occurs two digits to the
right of the decimal place (the number is rounded to the nearest hundredth), and so on.

• If int-exp is zero, BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the decimal point. If
int-exp is -1, for example, BASIC moves the decimal point one place to the left, then
rounds to units. If int-exp is -2, rounding occurs two places to the left of the decimal
point; BASIC moves the decimal point two places to the left, then rounds to tens.

3. If int-exp is between 9940 and 10060, truncation occurs:

• If int-exp is 10000, BASIC truncates the number at the decimal point.

• If int-exp is greater than 10000 (10000 plus n) BASIC truncates the numeric string n
places to the right of the decimal point. For example, if int-exp is 10001 (10000 plus 1),
BASIC truncates the number starting one place to the right of the decimal point. If int-exp
is 10002 (10000 plus 2), BASIC truncates the number starting two places to the right of
the decimal point, and so on.

342 BASIC Reference Manual

PLACE$

• if int-exp is less than 10000 (10000 minus n), BASiC truncates the numeric string n piaces
to the left of the decimal point. For example, if int-exp is 9999 (10000 minus 1), BASIC
truncates the number starting one place to the left of the decimal point. If int-exp is 9998
(10000 minus 2), BASIC truncates the number starting two places to the left of the
decimal point, and so on.

4. If int-exp is not between -60 and 60 or 9940 and 10060, BASIC returns zero.

5. If you specify a floating-point expresstion for int-exp, BASIC truncates it to an integer of the
default size.

6. Table 25 shows examples of rounding and truncation and the values of int-exp that pro­
duce them. The number used is 123456.54321.

Examples

500 NUMBER$ = PLACE$COLO_NUMBER$t 10001)

BASIC Reference Manual 343

PLACE$

Table 25: Rounding and Truncation of 123456.654321

Int-exp Effect Value Returned

-5 Rounded to 100,000s and truncated 1

-4 Rounded to 1 O,OOOs and truncated 12

-3 Rounded to 1 OOOs and truncated 123

-2 Rounded to 1 00s and truncated 1235

-1 Rounded to 1 Os and truncated 12346

0 Rounded to units and truncated 123457

1 Rounded to tenths and truncated 123456.7

2 Rounded to hundredths and truncated 123456.65

3 Rounded to thousandths and truncated 123456.654

4 Rounded to ten-thousandths and truncated 123456.6543

5 Rounded to hundred-thousandths and truncated 123456.65432

9,995 Truncated to 100,000s 1

9,996 Truncated to 1 O,OOOs 12

9,997 Truncated to 1 OOOs 123

9,998 Truncated to 100s 1234

9,999 Truncated to 10s 12345

i0,000 Truncated to units 123456

10,001 Truncated to tenths 12345.6

10,002 Truncated to hundredths 123456.65

10,003 Truncated to thousandths 123456.654

10,004 Truncated to ten-thousandths 123456.6543

10,005 Truncated to hundred-thousandths 123456.65432

344 BASIC Reference Manual

POS

48.0 POS

Function

The POS function searches for a substring within a string and returns the substring's starting character
position.

Format

int-vbl POS(str-exp1, str-exp2, int-exp)

Syntax Rules

None.

General Rules

1. The POS function searches str-exp 1, the main string, for the first occurrence of str-exp2, the
substring, and returns the position of the substring's first character.

2. Int-exp specifies the cbaracter position in the main string at which BASIC starts the search.

3. If int-exp is greater than the length of the main string, POS returns zero.

4. POS always returns the character position in the main string at which BASIC finds the
substring:

• If only the substring is null, and if int-exp is less than or equal to zero, POS returns a
value of one.

• If only the substring is null, and if int-exp is equal to or greater than one and less than or
equal to the length of the main string, POS returns the value of int-exp.

• If only the substring is null and if int-exp is greater than the length of the main string, POS
returns the main string's length plus one.

• If only the main string is null, POS returns zero.

• If both the main string and the substring are null, POS returns one.

5. If BASIC cannot find the substring, POS returns zero.

6. If int-exp is less than one, BASIC assumes a starting position of one.

7. If int-exp does not equal one, BASIC still counts from the string's beginning to calculate the
starting position of the substring. That is, BASIC counts character positions starting at
position one, regardless of where you specify the start of the search. For example, if you
specify 10 as the start of the search and BASIC finds the substring at position 15, POS
returns the value 15.

BASIC Reference Manual 345

POS

8. If you know that the substring is not near the beginning of the string, specifying a starting
position greater than one speeds program execution by reducing the number of characters
BASiC must search.

9. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Examples

400 Y = POSCALPHA$t "JKLMN"t 1)

346 BASIC Reference Manual

PROD$

49.0 PROD$

Function

The PROD$ function returns a numeric string that is the product of two numeric strings. The precision
of the returned numeric string depends on the value of an integer argument.

Format

str-vbl PROD$(str-exp1, str-exp2, int-exp)

Syntax Rules

1. Str-exp 1 and str-exp2 specify the numeric strings you want to process. They can contain up
to 60 ASCII digits and an optional decimal point and leading sign.

2. If str-exp consists of more than 60 characters, BASIC signals the error "Illegal number"
(ERR= 52).

3. Int-exp specifies the numeric precision of str-exp. Table 25 shows examples of rounding
and truncation and the values of int-exp that produce them.

General Rules

1. Str-exp is rounded and I or truncated according to the value of int-exp.

2. If int-exp is between -60 and 60, rounding and truncation occur as follows:

• For positive integer expressions, rounding occurs to the right of the decimal place. For
example, if int-exp is 1, rounding occurs one digit to the right of the decimal place (the
number is rounded to the neaiest tenth}. If int-exp is 2, rounding occurs two digits to the
right of the decimal place (the number is rounded to the nearest hundredth), and so on.

• If int-exp is zero, BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the decimal point. If
int-exp is -1, for example, BASIC moves the decimal point one place to the left, then
rounds to units. If int-exp is -2, rounding occurs two places to the left of the decimal
point; BASIC moves the decimal point two places to the left, then rounds to tens.

3. If int-exp is between 9940 and 10060, truncation occurs:

• If int-exp is 10000, BASIC truncates the number at the decimal point.

• If int-exp is greater than 10000 (10000 plus n), BASIC truncates the numeric string n
places to the right of the decimal point. For example, if int-exp is 10001 (10000 plus 1),
BASIC truncates the number starting one place to the right of the decimal point. If int-exp
is 10002 (10000 plus 2), BASIC truncates the number starting two places to the right of
the decimal point, and so on.

(continued on next page)

BASIC Reference Manual 347

PROD$

• If int-exp is less than 10000 (10000 minus n), BASIC truncates the numeric string n places
to the left of the decimal point. For example, if int-exp is 9999 (10000 minus 1), BASIC
truncates the number starting one place to the left of the decimal point. If int-exp is 9998
(10000 minus 2), BASIC truncates the number starting two places to the left of the
decimal point, and so on.

4. If int-exp is not between -60 and 60 or 9940 and 10060, BASIC returns zero.

5. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

6. Table 25 shows examples of rounding and truncation and the values of int-exp that pro­
duce them. The number used is 123456.654321.

Examples

300 PRODUCT$ = PROD$C"88793" t Z$t 0)

348 BASIC Reference Manual

QUO$

50.0 QUO$

Function

The QUO$ function returns a numeric string that is the quotient of two numeric strings. The precision
of the returned numeric string depends on the value of an integer argument.

Format

str-vbl QU0$(str-exp1, str-exp2, int-exp)

Syntax Rules

1. Str-exp 1 and str-exp2 specify the numeric strings you want to process. They can contain up
to 60 ASCII digits and an optional decimal point and leading sign.

2. If str-exp consists of more than 60 characters, BASIC signals the error "Illegal number"
(ERR=52).

3. Int-exp specifies the numeric precision of str-exp. Table 25 shows examples of rounding
and truncation and the values of int-exp that produce them.

General Rules

1. Str-exp is rounded and /or truncated according to the value of int-exp.

2. If int-exp is between -60 and 60, rounding and truncation occur as follows:

• For positive integer expressions, rounding occurs to the right of the decimal place. For
example, if int-exp is 1, rounding occurs one digit to the right of the decimal place (the
number is rounded to the nearest tenth). If int-exp is 2, rounding occurs two digits to the
right of the decimal place (the number is rounded to the nearest hundredth), and so on.

• If int-exp is zero, BASIC rounds to the nearest unit.

• For negative integer expressions, rounding occurs to the left of the decimal point. If
int-exp is -1, for example, BASIC moves the decimal point one place _to the left, then
rounds to units. If int-exp is -2, rounding occurs two places to the left of the decimal
point; BASIC moves the decimal point two places to the left, then rounds to tens.

3. If int-exp is between 9940 and 10060, truncation occurs:

• If int-exp is 10000, BASIC truncates the number at the decimal point.

• If int-exp is greater than 10000 (10000 plus n), BASIC truncates the numeric string n
places to the right of the decimal point. For example, if int-exp is 10001 (10000 plus 1),
BASIC truncates the number starting one place to the right of the decimal point. If int-exp
is 10002 (10000 plus 2), BASIC truncates the number starting two places to the right of
the decimal point, and so on.

(continued on next page)

BASIC Reference Manual 349

QUO$

• If int-exp is less than 10000 (10000 minus n), BASIC truncates the numeric string n places
to the left of the decimal point. For example, if int-exp is 9999 (10000 minus 1), BASIC
tiUncates the number starting one place to the left of the decimal point. if int-exp is 9998
(10000 minus 2), BASIC truncates the number starting two places to the left of the
decimal point, and so on.

4. If int-exp is not between -60 and 60 or 9940 and 10060, BASIC returns zero.

5. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

6. Table 25 shows examples of rounding and truncation and the values of int-exp that pro­
duce them. The number used is 123456.654321.

Examples

200 QUOT I ENT$ = QUO$ (11 453. 221 11 t II 30 II t 10000)

350 BASIC Reference Manual

RAD$

51.0 RAD$

Function

The RAD$ function converts a specified integer to a 3-character string in Radix-SO format.

Format

str-vbl RAD$(int-vbl)

Syntax Rules

None.

General Rules

1. The RAD$ function converts int-vb/ to a 3-character string in Radix-SO format and stores it
in str-vbl. Radix-SO format allows you to store three characters of data as a 2-byte integer.

2. See Appendix C in BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS IE Systems for
information on the Radix-SO character set and ASCII /Radix-SO equivalents.

3. VAX-11 BASIC supports the RAD$ function, but not its complement, the FSS$ function. ~
DIGITAL recommends that you use Run-Time Library routines for Radix-SO operations. V

4. If you specify a floating-point variable for int-vb/, BASIC truncates it to an integer of the
default size.

Examples

100 RADIX$ RAD$C888)

BASIC Reference Manual 351

RCTRLC

52.0 RCTRLC

Function

The RCTRLC function disables CTRL/C trapping.

Format

int-vbl = RCTRLC

Syntax Rules

None.

General Rules

1. After BASIC executes the RCTRLC function, a CTRL/C typed at the terminal returns you to
command level (BASIC or monitor).

2. RCTRLC always returns a zero.

Examples

200 Y RCTRLC

352 BASIC Reference Manual

1:'2 n Dt"TDI n .,,,,.,,,,.u nv 1 "'

Function

RCTRLO

The RCTRLO function cancels the effect of a CTRL/O typed on a specified channel.

Format

int-vbl RCTRLO (chnl-exp)

Syntax Rules

None.

General Rules

1. Chnl-exp must refer to a terminal.

2. RCTRLO has no effect if the specified channel is open to a device that does not use the
CTRL/O convention.

3. If you type a CTRL/O to cancel terminal output, nothing is printed on the specified termi­
nal until your program executes the RCTRLO or until you type another CTRL/O, at which
time normal terminal output resumes.

4. The RCTRLO function always returns a zero.

Examples

10 PRINT 11 A11 FOR I'.X. = l'X. TO 100'X.
YI = RCTRLOCCi'i!)
PRINT 11 Nor1r1al outPut is resu1r1ed 11

BASIC Reference Manual 353

I

REAL

54.0 REAL

Function

The REAL function converts a numeric expression or numeric string to a specified or default floating­
point data type.

Format

real-vb I REAL(exp [: ~~~~~El
, GFLOAT (VAX-11 only)

, HFLOAT (VAX-11 only)

Syntax Rules

1. Exp can be either a numeric expression or a numeric string. If a numeric string, exp can
contain the ASCII digits 0 through 9, uppercase E, and an optional decimal point and
leading sign.

General Rules

1. BASIC evaluates exp, then converts it to the specified REAL size. If you do not specify a
size, BASIC uses the default REAL size.

2. BASIC ignores leading and trailing spaces and tabs if exp is a string.

3. The REAL function returns a zero when a string argument contains only spaces and tabs, or
when the argument is null.

Examples

100 INPUT "Enter a nu!Tlber" ;INT_NUM
PRINT REAL<INT_NUMt DOUBLE>

354 BASIC Reference Manual February 1984

RECOUNT

hh n DCl"nt ltJT
-.1-.I • V I • ._"'"' V I ... I

Function

The RECOUNT function returns the number of characters transferred by the last input operation.

Format

int-vbl RECOUNT

Syntax Rules

None.

General Rules

1. The RECOUNT value is set by every input operation on any channel, including channel
zero.

•After an input operation from your terminal, RECOUNT contains the number of charac­
ters (bytes), including line terminators, transferred.

•After accessing a file record, RECOUNT contains the number of characters in the record.

2. Because RECOUNT is reset by every input operation on any channel, use the RECOUNT
function to copy the RECOUNT value to a different storage location before executing
another input operation.

3. If an error occurs during an input operation, the value of RECOUNT is undefined.

4. RECOUNT is unreliable after a CTRL/C interrupt because the CTRL/C trap may have
occurred before BASIC set the value for RECOUNT.

5. The RECOUNT function returns a LONG value in VAX-11 BASIC and a WORD value in
BASIC-PLUS-2.

Examples

200 CHARACTER_COUNT = RECOUNT
PRINT CHARACTER_COUNT;' characters received'

BASIC Reference Manual 355

RIGHT$

56.0 RIGHT$

Function

The RIGHT$ function extracts a substring from a string's right side, leaving the main string
unchanged.

Format

str-vbl

Syntax Rules

None.

General Rules

I RIGHT I
RIGHT$ (str-exp, int-exp)

1. The RIGHT$ function extracts a substring from str-exp and stores the substring in str-vbl.
The substring begins with the character in the position specified by int-exp and ends with
the rightmost character in the string.

2. If int-exp is less than or equal to zero, RIGHT$ returns the entire string.

3. If int-exp is greater than the length of str-exp, RIGHT$ returns a null string.

4. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Examples

800 NEW_STRING$ RIGHT$<ALPHA$, 21)

Note

VAX-11 BASIC includes the RIGHT$ function only for compatibility with BASIC-PLUS
and BASIC-PLUS-2. DIGITAL recommends using the SEG$ function for substring
extraction.

356 BASIC Reference Manual

RND

57=0 RND

Functions

The RND function returns a random number greater than or equal to zero and less than one.

Format

real-vb I AND

Syntax Rules

None.

General Rules

1. The RND function returns a pseudorandom number if not preceded by a RANDOMIZE
statement; that is, each time a program runs, BASIC generates the same random number or
series of random numbers.

2. If the RND function is preceded by a RANDOMIZE statement, BASIC generates a different
random number or series of numbers each time a program executes.

3. In BAS/C-PLUS-2, the RND function returns a floating-point value of the default size. In
VAX-11 BASIC, RND always returns a single-precision value.

Examples

880 R_NUM = RND

BASIC Reference Manual 357

SEG$

58.0 SEG$

Function

The SEG$ function extracts a substring from a main string, leaving the original string unchanged.

Format

str-vbl SEG$(str-exp, int-exp1, int-exp2)

General Rules

1. BASIC extracts the substring from str-exp, the main string, and stores the substring in
str-vbl. The substring begins with the character in the position· specified by int-exp 1 and
ends with the character in the position specified by int-exp2.

2. If int-exp 1 is less than one, BASIC assumes a value of one.

3. If int-exp 1 is greater than int-exp2 or the length of str-exp, the SEG$ function returns a nul I
string.

4. If int-exp 1 equals int-exp2, the SEG$ function returns the character at the position specified
by int-exp 1.

5. Unless int-exp2 is greater than the length of str-exp, the length of the returned substring
equals int-exp2 minus int-exp 1 plus one. If int-exp2 is greater than the length of str-exp, the
SEG$ function returns all characters from the position specified by int-exp 1 to the end of
str-exp.

6. If you specify a floating-point expression for int-exp 1 or int-exp2, BASIC truncates it to an
integer of the default size.

Examples

300 CENTER$ = SEGS<ALPHA$t 15t 20)

358 BASIC Reference Manual

SGN

"an ~r.tJ --·- __
Function

The SGN function determines whether a numeric expression is positive, negative, or zero. It returns a
one if the expression is positive, a minus one if the expression is negative, and zero if the expression
is zero.

Format

int-vbl SGN(real-exp)

Syntax Rules

None.

General Rules

1. If real-exp does not equal zero, SGN returns ABS(real-exp) I real-exp.

2. If real-exp equals zero, SGN returns zero.

3. SGN returns an integer of the default size.

Examples

750 SIGN SGN<-4535/8-3000)

BASIC Reference Manual 359

SIN

60.0 SIN

Function

The SIN function returns the sine, in radians, of an angle.

Format

real-vbl SIN(real-exp)

Syntax Rules

None.

General Rules

1. The returned value is between minus one and one.

2. BASIC expects the argument of the ABS function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Examples

100 St-ANGLE= SIN<PI/2)

360 BASIC Reference Manual

61.0 SPACE$

Function

The SPACE$ function creates a string containing a specified number of spaces.

Format

str-vbl SPACE$(int-exp)

Syntax Rules

None.

General Rules

1. Int-exp specifies the number of spaces in the returned string.

2.. BASIC treates an int-exp less than zero as zero.

SPACE$

3. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Examples

880 FILLER$ SPACE$(32)

BASIC Reference Manual 361

SQR

62.0 SQR

Function

The SQR function returns the square root of a positive number.

Format

real-vb I l SQRT!
SOR (real-exp)

Syntax Rules

None.

General Rules

1. VAX-11 BASIC signals the error "Imaginary square roots" (ERR= 54) and program execu­
tion stops when real-exp is negative.

2. BASIC-PLUS-2 returns the warning message "%Imaginary square roots" and the square
root of the absolute value of the expression when real-exp is negative. The program does
not stop executing.

3. BASIC assumes that the argument of the SQR function is a real-exp. When the argument is
a real-exp, BASIC returns a value of the same floating-point size. When the argument is not
a real-exp, BASIC returns a value of the default floating-point size.

Examples

425 ROOT SQRC35*37)

362 BASIC Reference Manual

STATUS

63.0 STATUS

Function

The STATUS function returns an integer value containing information about the last opened channel.
Your program can test each bit to determine the status of the channel.

Format

int-vbl STATUS

Syntax Rules

None.

General Rules

1. The STATUS function returns a WORD integer in BASIC-PLUS-2 and a LONG integer in
VAX-11 BASIC.

2. The value returned by the STATUS function is undefined until BASIC executes an OPEN
statement.

3.

4.

The STATUS value is set by every input operation on any channel. Therefore, the STATUS
value should be copied to a different storage location before your program executes
another input operation.

The syntax for STATUS is the same for VAX-11, RSTS IE, and RSX-11 MI M-PLUS systems.
However, the returned information is different on every system.

Depending on the error, the STATUS function on RSX-11l'v1/M-PLUS systems displays a I RSX I
value representing one of the following:

•The RMS-11 primary status field (STS) or the RMS secondary status field (STV). See the
RMS-11 MACRO User's Guide for more information.

• The device characteristics after an RMS-11 OPEN file operation (set by the DEV field of
the FAB). See the RMS-11 MACRO User's Guide for more information.

• The Directive Status Word ($DSW) and its corresponding error code, in the event of a
directive error. See the RSX-11 MI M-PLUS Mini Reference for the error codes.

•The STATUS field of a QIO. See the RSX-11M!M-PLUS 110 Drivers Reference Manual
for more information.

•The first word of a GETLUN directive describing device characteristics. See the
RSX-11 MI M-PLUS Executive Reference Manual.

See BASIC on RSX-11 MI M-PLUS Systems for information on STATUS values set for an
OPEN file operation with no errors.

BASIC Reference Manual 363

STATUS

6. Depending on the error, the STATUS function on RSTS IE systems displays a value repre­
senting one of the following:

• The RMS--11 primary status field (STS) or the RMS secondary status field (STV). See the
RMS-11 MACRO User's Guide for more information.

• The device characteristics after an RMS--11 OPEN file operation (set by the DEV field of
the FAB). See the RMS-11 MACRO User's Guide for more information.

For OPEN operations where no errors occur, the status word describes the device charac­
teristics of the FIRQB and FQFLAG field. The first 7 bits describe the device, and bits 7
through 15 describe characteristics of the OPEN statement. See the BASIC-PLUS Language
Manual and the RSTS IE System Directives Manual for more information on STATUS
values.

7. In VAX-11 BASIC, if an error occurs during an input operation, the value of STATUS is
undefined. When no error occurs, the six low-order bits of the returned value contain
information about the type of device accessed by the last input operation. Table 26 lists
ST A TUS bits set by VAX-11 BASIC.

Table 26: VAX-11 BASIC STATUS Bits

Bit Set Device Type

0 Record-oriented device

1 Carriage-control device

2 Terrninal

3 Directory device

4 Single directory device

5 Sequential block-oriented device (magtape)

Examples

150 Yl = STATUS

364 BASIC Reference Manual

STR$

64.0 STR$

Function

The STR$ function changes a numeric expression to a numeric character string without leading and
trailing spaces.

Format

str-vbl STR$(num-exp)

Syntax Rules

None.

General Rules

1. If num-exp is negative, the first character in the returned string is a minus sign.

2. Like the NUM$ function, the STR$ function produces E notation. Unlike the NUM$ func­
tion, the STR$ function does not return leading or trailing spaces.

3. Like the NUM1 $ function, the STR$ function does not return leading or trailing spaces.
Unlike the NUM1 $function, the STR$ function produces E notation.

4. When you print a number whose integer portion is six digits or less (for example,
1234.567), BASIC rounds the number to six digits (1234.57). If a number has seven integer
digits or more, BASIC rounds the number to six digits and prints it in E format.

5. When you print a number with magnitude between 0.1 and 1, BASIC rounds it to six digits.
When you print a number with magnitude smaiier than 0.1, BASIC rounds it to six digits
and prints it in E format.

Examples

800 Z$ STR$C85)

BASIC Reference Manual 365

STRING$

65.0 STRING$

Function

The STRING$ function creates a string containing a specified number of identical characters.

Format

str-vbl STRING$(int-exp1, int-exp2)

Syntax Rules

None.

General Rules

1. Int-exp 1 specifies the character string's length. VAX-11 BASIC signals the error "String too
long" (ERR= 227) if int-exp 1 is greater than 65535. BASIC-PLUS-2 signals the error
"Integer error" (ERR= 51) if int-exp is greater than 32767.

2. If int-expl is less than or equal to zero, BASIC treats it as zero.

3. lnt-exp2 is the decimal ASCII value of the character that makes up the string. This value is
treated modulo 256.

4. BASIC treats all arguments as unsigned 8-bit integers. Negative numbers are treated as the
two's complement (for example, -1 is treated as 255).

5. !f either int~exp 1 or int-exp2 is a floating-point expression, BASIC tiUncates it to an integei
of the default size.

Examples

340 A_STRING$ STRING$(10t 65)

366 BASIC Reference Manual

SUM$

66.0 SUM$

Function

The SUM$ function returns a string whose value is the sum of two numeric strings.

Format

str-vbl SUM$(str-exp1, str-exp2)

Syntax Rules

1. Str-exp 1 and str-exp2 specify the numeric strings you want to process. They can contain up
to 54 ASCII digits and an optional decimal point and leading sign.

General Rules

1. BASIC adds str-exp2 to str-exp 1 and stores the result in str-vbl.

2. If str-exp 1 and str-exp2 are integers, str-vbl takes the precision of the larger string unless
trailing zeros generate that precision.

3. If str-exp 1 and str-exp2 are decimal fractions, str-vbl takes the precision of the more precise
fraction unless trailing zeros generate that precision.

4. SUM$ omits trailing zeros to the right of the decimal point.

5. The sum of two floating-point numbers takes precision as follows:

• The sum of the integer parts takes the precision of the larger part.

• The sum of the decimal fraction part takes the precision of the more precise part.

6. SUM$ truncates leading and trailing zeros.

Examples

600 SIGMA$ SUM$< 11 23a.aaa 11
t A$>

BASIC Reference Manual 367

SWAPo/o

67.0 SWAP%

Function

The SWAP% function transposes a WORD integer's bytes.

Format

int-vbl = SWAP%(int-exp)

Syntax Rules

1. SWAP% is a WORD function. BASIC evaluates int-exp and converts it to the WORD data
type, if necessary.

General Rules

1. BASIC transposes the bytes of int-exp and returns a WORD integer.

Examples

500 s_zs = SWAP%(3)

368 BASIC Reference Manual

SYS

58.0 SYS {BASIC-PLUS-2 on RSTS IE Only)

Function

The SYS function lets you perform special I /0 functions, establish special characteristics for a job, set
terminal characteristics, and cause the monitor to execute special operations.

Format

str-vbl = SYS(str-exp)

Syntax Rules

1. Str-exp is a RSTS IE SYS call code. See the RSTS IE Programming Language manual for a
complete list of SYS call codes and their meanings.

General Rules

1. Because SYS calls request that the RSTS/E monitor perform an operation, often the function
performed has no counterpart on other host systems. However, for compatibility with
RSTS!E BASIC-PLUS, VAX-11 BASIC supports a subset of SYS calls. Table 27 lists the
VAX-11 BASIC subset of RSTS IE SYS cal ls.

Table 27: VAX-11 BASIC Subset of RSTS/E SYS Calls

Code Function

0 Cancel CTRL/O

1 I Not implemented

2 Enable echo

3 Disable echo

4 Not implemented

5 Exit with no prompt

6 Call File Processor

7 Get core common; can be used only between BASIC images

8 Put core common; can be used only between BASIC images

9 Exit and clear program

10 Reserved

11 Cancel type ahead

12 Not implemented

13 Reserved

14 Not implemented

(continued on next page)

BASIC Reference Manual 369

SYS

Table 27: VAX-11 BASIC Subset of RSTS/E SYS Calls (Cont.)

These FIP caiis (and oniy these) are aiso supported:

Code Function

-23 Terminate file name string scan

-13 Set priority (can set only priority; requires ALTPRI privilege)

-10 Begin file name string scan

-7 Enable CTRL IC trap

9 Get error message (VAX-11 BASIC error message)

10 Assign a device

11 Deassign a device

12 Deassign all devices

18 Send/receive message (requires SYSNAM privilege)

22 Send /receive message (cannot get job number, privileges,
or receive selection; cannot use DECnet; requires PRMMBX
privilege)

Examples

100 OPEN User_Keyboard$ AS FILE #1
200 TMP$ = SYS<CHR$C11)) ! Cancel anY tYPeahead froM user
300 LINUT 'Enter the first line of text';User_inPut$

370 BASIC Reference Manual

TAB

RQ n TAR-._..

Function

When used with the PRINT statement, the TAB function moves the cursor or print mechanism right to
a specified column.

Format

str-vbl TAB(int-exp)

Syntax Rules

1. Int-exp specifies the column number of the cursor or print mechanism.

General Rules

1. You cannot TAB beyond the current MARGIN restriction.

2. The leftmost column position is zero.

3. If int-exp is less than the current cursor position, the TAB function has no effect.

4. The TAB function can move the cursor or print mechanism only from the left to the right.

5. You can use more than one TAB function in the same PRINT statement.

6. Use semicolons to separate multiple TAB functions in a single statement. If you use com­
mas, BASIC moves to the next print zone before executing the TAB function.

7. The TAB function is valid only for terminals.

8. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

Examples

200 PRINT A$;TAB<15) ;5$;TAB<30) ;"HELLO"

BASIC Reference Manual 371

TAN

70.0 TAN

Function

The TAN function returns the tangent, in radians, of an angle.

Format

real-vbl = TAN(real-exp)

Syntax Rules

None.

General Rules

1. BASIC expects the argument of the ABS function to be a real-exp. When the argument is a
real-exp, BASIC returns a value of the same floating-point size. When the argument is not a
real-exp, BASIC converts the argument to the default floating-point size and returns a value
of the default floating-point size.

Examples

550 X = TAN<2*PI>

372 BASIC Reference Manual

TIME

71 n TIMS: .. ·- . ····-
Function

The TIME function returns the time of day (in seconds) as a floating-point number. On VAX-11 and
RSTS IE systems the TIME function can also return CPU time and device connect time.

Format

real-vbl = TIME(int-exp)

Syntax Rules

None.

General Rules

1. The value returned by the TIME function depends on the value of int-exp.

2. If int-exp equals 0, TIME returns the number of seconds since midnight.

3. BASIC-PLUS-2 on RSX-11 MI M-PLUS systems accepts only an argument of zero. All I RSX I
other arguments to the TIME function are undefined and cause BASIC to signal "Not
implemented" (ERR= 250).

4. VAX-11 BASIC and BASIC-PLUS-2 on RSTS IE systems also accept arguments from 1
through 4 and return values as shown in Table 28. All other arguments to the TIME
function are undefined and cause BASIC to signal "Not implemented" (ERR= 250).

5. In BASIC-PLUS-2, the TIME function returns a floating-point vaiue of the default size. In
VAX-11 BASIC, TIME always returns a single-precision value.

6. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the
default size.

BASIC Reference Manual 373

TIME

Table 28: TIME Function Values

Argument VAX-11 BASIC BASIC-PLUS-2 on
Value: Returns: RSTS IE Systems Returns:

1 The current job's CPU time in tenths The current job's CPU time in tenths
of a second of a second

2 The current job's connect time in The current job's connect time in
minutes minutes

3 Zero Kilo-core ticks

4 Zero Device time in minutes

Examples

150 PRINT TIME<O>

374 BASIC Reference Manual

72.0 TiME$

Function

The TIME$ function returns a string displaying the time of the day.

Format

Syntax Rules

None.

General Rules

1. If int-exp equals zero, TIME$ returns the current time of day.

2. Int-exp is the number of minutes before midnight. Str-vb/ is the time of day.

TIME$

3. The value of int-exp must be in the range 0 to 1440, inclusive, or BASIC signais an error.

4. In VAX-11 BASIC the TIME$ function uses a 12-hour, AM/PM clock. Before 12:00 noon,
TIME$ returns HH:MM AM, and after 12:00 noon, HH:MM PM.

5. In BASIC-PLUS-2 the TIME$ function uses either an AM/PM or a 24-hour clock. The
clock type is an installation option.

6. On RSTS IE systems only, the clock type can also be set by the system manager at system

•

start-up time. I
7. If you specify a floating-point expression for int-exp, BASIC truncates it to an integer of the

default size.

Examples

200 CURRENT_TIME$ TIMES CO>

February 1984 BASIC Reference Manual 375

TRM$

73.0 TRM$

Function

The TRM$ function removes all trailing blanks and tabs from a specified string.

Format

str-vbl = TRM$(str-exp)

Syntax Rules

None.

General Rules

1. The returned str-vbl is the same as str-exp with all the trailing blanks and tabs removed.

Examples

600 NE!ALSTR I NG$ TRM$(0LD_STRING$)

376 BASIC Reference Manual

VAL

74.0 VAL

Function

The VAL function converts a numeric string to a floating-point value.

Format

real-vbl = VAL(str-exp)

Syntax Rules

1. Str-exp can contain the ASCII digits 0 through 9, uppercase E, and an optional decimal
point and leading sign.

2. BASIC ignores leading, trailing, and embedded spaces and tabs.

General Rules

1. If str-exp is null, or contains only spaces and tabs, VAL returns a zero.

2. The value returned by the VAL function is of the default floating-point size.

Examples

100 REAL_NUM I.JAL(II 990 + 32 II)

BASIC Reference Manual 377

VAL%

75.0 VAL%

Function

The VAL% function converts a numeric string to an integer.

Format

int-vbl = VAL%(str-exp)

Syntax Rules

1. Str-exp can contain the ASCII digits 0 through 9 and an optional leading sign.

2. BASIC ignores leading, trailing, and embedded spaces and tabs.

General Rules

1. If str-exp is null or contains only spaces and tabs, VAL% returns a value of zero.

2. The value returned by the VAL% function is an integer of the default size.

3. If str-exp contains a decimal point, BASIC signals the error "Illegal number" (ERR= 52).

Examples

100 A = VAL%<"999")

378 BASIC Reference Manual

XLATE

76.0 XLATE

Function

The XLATE function translates one string to another by referencing a table string you supply.

Format

str-vbl XLATE(str-exp1, str-exp2)

Syntax Rules

1. Str-exp 1 is the input string. Str-exp2 is the table string, and str-vbl is the returned string.

General Rules

1. Str-exp2 can contain up to 256 ASCII characters, numbered from 0 to 255; the position of
each character in the string corresponds to an ASCII value. Because zero is a valid ASCII
value (null), the first position in the table string is position zero.

2. XLATE scans str-exp 1 character by character, from left to right. It finds the ASCII value n of
the first character in str-exp 1 and extracts the character it finds at position n in str-exp2.
XLATE then appends the character from str-exp2 to str-vbl. XLATE continues this process,
character by character, until the end of str-exp 1 is reached.

3. The output string may be smaller than the input string.

Examples

• XLATE does not translate nulls. If the character at position n in str-exp2 is a null, XLATE
does not append that character to str-vbl.

• if the ASCii vaiue of the input character is outside the range of positions in str-exp2,
XLA TE does not append any character to str-vbl.

100 OUTPUT$ XLATE<INPUT$t TABLE$)

BASIC Reference Manual 379

PART VI
BASIC-PLUS-2

Debugger Commands

Note

This section describes BASIC-PLUS-2 debugger commands. See BASIC on VAX I VMS
Systems for information on the VAX-11 Symbolic Debugger.

BASIC-PLUS-2 debugger commands help you locate run-time errors and debug program modules
interactively in the BASIC environment or from monitor level. To use debugger commands, you must
compile or run at least one program module using the /DEBUG qualifier.

When you run a task-built program, execution stops at the first line number of the first module
compiled with the I DEBUG qualifier and control passes to the debugger. When you run a program in
the BASIC environment, control passes to the debugger when the first line number of the program
executed with the RUN /DEBUG command is encountered or when the first line number of an object
module compiled with the /DEBUG qualifier and loaded with the LOAD command is encountered.

When control passes to the BASiC-PLUS-2 debugger, an identifying message and prompt are
displayed:

DEBUG:module-name

Module-name is the name of the first program module encountered that was compiled with the
/DEBUG qualifier or executed with the RUN /DEBUG command. The pound sign(#) prompt signals
you to enter debugger commands. For example:

•BREAK 300 @)

•TRACE @)

•CONTINUE @)

BASIC Reference Manual 381

In the example on the previous page, the BREAK command will cause execution to stop at the first
statement on line 300; the TRACE command will cause the line numbers and statement numbers to
be displayed as they execute. The CONTINUE command causes the program module to execute until
line 300; input, output, and the processing proceeds as usual until the breakpoint is reached. When
the BREAK command has successfully executed, the debugger displays a message identifying your
current position in the program module and prompts for another debugger command. For example:

at line 100 statement 1

at line 100 statement 2

at line 100 statement 3

at line 200 statement 1

at line 200 statement 2

BREAK at line 300 statement 1 DEBT ST

The identifying message names the debugger command that stopped program execution (BREAK), the
line number and statement where execution stopped, and the name of the currently executing mod­
ule (DEBTST in the above example). If the main program is executing, no module name is displayed.
The# prompt signals you to enter more debugger commands.

Use the EXIT command to exit from the debugger and end program execution.

When you compile a program with the I DEBUG qualifier, BASIC links the debugger program module
from the BASIC-PLUS-2 OTS to your program. This increases the size of your task by at least 4K
bytes. When you task-build the program, the debugger records are included in the executable task
image. When you run the executable image, BASIC-PLUS-2 accesses these records and you can use
the debugger commands described in the following sections.

No debugger records are generated for program modules not compiled with the I DEBUG qualifier.
Thus, you cannot access information, trace module execution, or establish breakpoints in modules
not compiled with the /DEBUG qualifier. You can, however, use debugger commands to access
information about the entire task if you compile at least one program module with the /DEBUG
qualifier.

After you have debugged your module and changed the source code where necessary, compile the
module without the /DEBUG qualifier to reduce memory requirements.

Debugger commands are described on the following pages. All debugger commands except BREAK
ON can be abbreviated to three letters.

For an example of a complete debugging session and more information on using the BASIC-PLUS-2
debugger, see BASIC on RSTS/E Systems or BASIC on RSX-11 MI M-PLUS Systems.

382 BASIC Reference Manual

BREAK

.. I\ rtn~ AV /rt A ~II' l'H I It' ft~
1.u gncHn. \gH~l\,-l"""LU~~,

Function

The BREAK command lets you stop program execution at program line numbers, particular state­
ments, or at the beginning of CALL statements, user-defined functions, and FOR, UNTIL, and WHILE
loops. The program stops before executing the specified breakpoint.

Format

BREAK 1 ON block I
1 [ON] stmnt-break, ...

CALL

block: DEF

LOOP

stmnt-break: lin-num [.stmnt-num] [;mod-nam]

Syntax Rules

1. The BREAK command with no parameters sets a breakpoint at each line number. The
program stops at each line number before executing any statements on the .line.

2. Block specifies a block statement. The ON keyword is required. You can specify only one
block statement in a BREAK ON statement:

• BREAK ON CALL stops execution each time BASIC executes a CALL statement to a
subprogram. The program stops before any statements in the subprogram execute. If you
are executing a task-built program, both the calling and the called program must be
compiled with the /DEBUG qualifier or the BREAK ON CALL command has no effect. If
you are executing a program in the BASIC environment, the called program must be
compiled with the /DEBUG qualifier.

• BREAK ON DEF stops execution each time BASIC encounters a user-defined function in a
module compiled with the /DEBUG qualifier. The statement stops before any statements
in the function execute.

• BREAK ON LOOP stops execution each time BASIC encounters a FOR, WHILE, or
UNTIL statement or modifier. The program stops each ti me the program loops back to
the loop statement. The program stops after the loop is initialized or incremented, but
before any statements in the loop execute.

BASIC Reference Manual 383

BREAK

3. Stmnt-break specifies a particular line number or statement where execution is to stop.

• Un-num specifies a program iine.

• Stat-num specifies a particular statement associated with lin-num. The period (.) is re­
quired and must immediately follow the line number. BASIC signals an error if you
include a space between lin-num and stat-num. The cross-reference listing file lists state­
ments on multi-statement lines by number.

• Mod-nam specifies that the preceding breakpoint is a breakpoint only in the named
program module. The semicolon (;) is required.

• You can specify a maximum of 10 stmnt-break breakpoints. If you specify more than 10
breakpoints, BASIC signals the error, "No room".

General Rules

1. If you specify a stmnt-break or block that does not exist, no break occurs, BASIC does not
signal an error or warning, and the program executes normally.

2. To disable program breakpoints, use the UNBREAK command.

Examples

#BREAK 30.2, soo;PROGBt 2000.3;pRQGC

#BREAK ON CALL

#CON

BREAK at line 30 statement 2

384 BASIC Reference Manual

Function

The CONTINUE command continues program execution.

Format

CONTINUE

Syntax Rules

None

General Rules

CONTINUE

1. When you have finished entering debugger commands, type CONTINUE to resume pro­
gram execution.

Examples

#BREAK ON LOOP

#CON

BASIC Reference Manual 385

CORE

3.0 CORE (BASIC-PLUS-2)

Function

The CORE command returns the number of words currently allocated in memory for your entire task.
Use the CORE command in conjunction with the FREE, STRING, and I /0 BUFFER commands to
determine how memory is allocated for your task.

Format

CORE

Syntax Rules

None.

General Rules

1. The CORE command displays the total number of words currently allocated to your task.

2. The maximum allowable program space is 32K words on RSX-11 M /M-PLUS systems and
31 K words on RSTS/E systems, minus the size of your resident library. Consult BASIC on
RSX-11 MI M-PLUS Systems or BASIC on RSTS/E Systems for more information on program
space and resident libraries.

3. You can use the CORE command only when at least one program module has been
compiled with the /DEBUG qualifier. Note, however, that the number returned by the
CORE command reflects the memory allocation for the entire task, not just the module
compiled with I DEBUG.

4. Knowing the size of core memory can help you control the size of your program and
optimize accordingly. Consult BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTSIE
Systems for information on optimization.

Examples

#CORE
CORE 7Ga7

386 BASIC Reference Manual

4.0 ERL (BASIC-PLUS-2)

Function

The ERL command returns the number of the line executing when the last error occurred.

Format

ERL

Syntax Rules

None.

General Rules

ERL

1. The ERL command tells you the number of the line executing when the last error occurred.

2. If no errors have occurred, the result returned by ERL is undefined.

Examples

#ERL
ERL = 1050

BASIC Reference Manual 387

ERN

5.0 ERN (BASIC-PLUS-2)

Function

The ERN command returns the 1- to 6-character name of the program module that was executing
when the last successfully handled error occurred. If a fatal error was not successfully trapped,
control passes from the debugger to command level.

Format

ERN

Syntax Rules

None.

General Rules

1. The ERN command returns a module name only when an error has been successfully
handled.

2. If no errors have occurred, the result returned by ERN is undefined.

Examples

•ERN
ERN$ = CHECKS

388 BASIC Reference Manual

1: n coo 1a AS'""- n1 • •~ ~' V•V ... 1 u--. \..,,'"' l~r l.U..,-C.J

Function

The ERR command returns the error number of the last error that occurred.

Format

ERR

Syntax Rules

None.

General Rules

1. The ERR command tells you the number of the last error.

2. If no errors have occurred, the result returned by ERR is undefined.

ERR

3. Refer to Appendix Bin BASIC on RSTS!E Systems or BASIC on RSX-11 MI M-PLUS Systems
for a list of errors and their numbers.

Examples

•ERR
ERR 55

BASIC Reference Manual 389

EXIT

7.0 EXIT (BASIC-PLUS-2)

Function

The EXIT command returns control to BASIC if you are executing a program in the BASIC environ­
ment and to command level if you are executing a task-built program.

Format

EXIT

Syntax Rules

None.

General Rules

1. The EXIT command does not close open channels.

Examples

•EXIT

390 BASIC Reference Manual

FREE

8.0 FREE (BASIC-PLUS-2)

Function

The FREE command returns the number of words currently available in memory for I /0 and string
operations before BASIC must perform another memory extension. Use the FREE command in con­
junction with the CORE, STRING, and I /0 BUFFER commands to determine how memory is allo­
cated for your task.

Format

FREE

Syntax Rules

None.

General Rules

1. The FREE command returns an integer corresponding to the number of free words available
in memory for I /0 and string operations.

2. When string or I 10 operations exceed the available free space, BASIC extends the amount
of memory allocated for your task.

3. Knowing the amount of free space available can help you control the size of your program
and optimize accordingly. Consult BASIC on RSX-11 MI M-PLUS Systems or BASIC on
RSTS!E Systems for information on optimization.

Examples

#FREE
FREE = 18£1

BASIC Reference Manual 391

1/0 BUFFER

9.0 I I 0 BUFFER (BASIC-PLUS-2)

Function

The I /0 BUFFER command returns the number of words currently allocated for I /0 buffer space. Use
the I /0 BUFFER command in conjunction with the CORE, STRING, and FREE commands to deter­
mine how memory is allocated for your task.

Format

1/0 BUFFER

Syntax Rules

None.

General Rules

1. The I /0 BUFFER command tells you the total number of words allocated for I /0 buffer
space.

2. Knowing the size of the I /0 buffer can help you control the size of your program and
optimize accordingly. Consult BASIC on RSX-11 MI M-PLUS Systems or BASIC on RSTS/E
Systems for information on optimization.

Examples

#!I 0 BUFFER
I/O BUFFERS= 1765

392 BASIC Reference Manual

LET

10.0 LET (BASIC-PLUS-2)

Function

The LET command allows you to change the contents of program variables.

Format

LET vbl1 I vbl2 I
const .

Syntax Rules

1. Vb/1 specifies the numeric or string variable you want to change. If you attempt to create a
new variable with the LET command, BASIC signals 11 lllegal syntax in LET".

2. Const or vb/2 specifies the new value for vb/1. The LET command allows constants or
variables as arguments but does not al low expressions.

3. You cannot set string variables to a null string with the LET command. If you try to do so,
BASIC signals "Illegal syntax in LET". However, you can set a variable to the null string in
your source program and then assign that variable to another variable with the LET
debugger command. For example:

1000 NULL$= 1111

1010 A$= 11 HELL0 11

1020 PRINT A$

Compile or run the program with the /DEBUG qualifier, establish a breakpoint at line
1020, and set A$ to the null string with the LET command:

BREAK at line 1020

#LET A$ = NULL$

General Rules

1. You can change only one variable with each LET command. To change more than one
program variable, you must enter more than one LET command.

2. When executing a task-built program, you can change program variables only in program
modules compiled with the I DEBUG qualifier.

3. You cannot access program variables across program modules. That is, you cannot access
a variable in SUB1 from the main program or from another subprogram, and you cannot
access a variable in the main program from a subprogram.

4. BASIC signals "Illegal syntax in LET" when you try to access a variable across modules or
in a module not compiled with the /DEBUG qualifier.

BASIC Reference Manual 393

LET

Examples

•LET A%=15%

•LET NAME$= 11 MITCHELL 11

394 BASIC Reference Manual

PRINT

11.0 PRINT (BASIC-PLUS-2)

Function

The PRINT command allows you to display the current contents of program variables.

Format

PRINT vbl

Syntax Rules

1. Vb/ specifies the numeric or string variable you want to display.

2. The PRINT command does not allow constants or expressions as arguments.

General Rules

1. You can display only one variable with each PRINT command. To display more than one
program variable, you must enter more than one PRINT command.

2. When executing a task-built program, you can access only those variables contained in
program modules that have been compiled with the /DEBUG qualifier.

3. You cannot access variables across program modules. That is, the variable you want to
display must exist in the current program module. If you try to display a variable in another
program module, BASIC signals "Illegal syntax in PRINT".

Examples

#PRINT C
23

BASIC Reference Manual 395

RECOUNT

12.0 RECOUNT (BASIC-PLUS-2)

Function

The RECOUNT command tells you how many characters were transferred by the last I /0 operation.

Format

RECOUNT

Syntax Rules

None.

General Rules

1. The RECOUNT command tells you how many characters, including blanks and termina­
tors, were transferred by the last input or output statement.

2. If your program has open files and reaches the end of the file before closing open channels
or executing the END statement, the debugger signals "End-of-file on device". If you then
try to continue program execution by typing the CONTINUE command, the debugger
signals "Can't CONTINUE or STEP". When you then EXIT the debugger mode, files are not
closed, and data is not transferred. If you include an error handler to pass control to the
END statement, BASIC will close files and transfer data.

Examples

•RECOUNT
RECOUNT = 18

396 BASIC Reference Manual

REDIRECT

13.0 REDIRECT (BASIC-PLUS-2\
' I

Function

The REDIRECT command allows you to direct all debugging 1/0 operations to a specified terminal.

Format

REDIRECT term-nam

Syntax Rules

1. Term-nam specifies the name of an unattached terminal. It must be an unquoted string that
corresponds to a terminal name, or BASIC signals the error "Cannot open device".

General Rules

1. After you type the REDIRECT command in response to the debugger prompt, all debugger
I /0 is directed to the terminal you specify. The program executes on the terminal that
issued the RUN command.

2. Use another REDIRECT command to direct debugger I /0 back to the terminal on which
the program is executing.

3. You can use the REDIRECT command only when at least one program module has been
compiled with the /DEBUG qualifier.

4. If the specified terminal is allocated, the debugger will signal "Cannot open device" on
RSTS/E systems. On RSX-11 MI M-PLUS systems, the debugger stops executing until the
specified terminal is available and does not signal an error.

Examples

#REDIRECT KBZ:

BASIC Reference Manual 397

STATUS

14.0 STATUS (BASIC-PLUS-2)

Function

The STATUS command returns a word-length integer that contains information about the last opened
file.

Format

STATUS

Syntax Rules

None.

General Rules

1. The debugger returns the last STATUS word.

2. Depending on the error, the STATUS word on RSX-1 lM/M-PLUS systems displays a value
representing one of the following:

• The RMS-11 primary status field (STS) or the RMS secondary status field (STV). See the
.~MS-11 MACRO User's Guide for more information.

• The device characteristics after an RMS-11 OPEN file operation set by the DEV field of
the FAB. See the RMS-11 MACRO User's Guide for more information.

• In the event of a directive error, the Directive Status Word ($DSW) and its corresponding
error code. See the RSX-11 MI M-PLUS Mini Reference for the error codes.

•The STATUS field of a QIO. See the RSX-1lM/M-PLUS110 Driver's Reference Manual
for more information.

• The first word of a GETLUN directive describing device characteristics. See the
RSX-11 MI M-PLUS Executive Reference Manual for more information.

• See BASIC on RSX-11 MI M-PLUS Systems for information on STATUS values set for an
OPEN file operation with no errors.

3. Depending on the error, the STATUS word on RSTS/E systems displays a value representing
one of the following:

• The RMS-11 primary status field (STS) or the RMS secondary status field (STV). See the
RMS-11 MACRO User's Guide for more information.

• The device characteristics after an RMS-11 OPEN file operation set by the DEV field of
the FAB. See the RMS-11 MACRO User's Guide for more information.

• For OPEN operations where no errors occur, the status word describes the device charac­
teristics of the FIRQB and FQFLAG field. The first 7 bits describe the device, and bits 7
through 15 describe characteristics of the OPEN statement. See the BASIC-PLUS
Language Manual and the RSTS/E System Directives Manual for more information on
STATUS values.

398 BASIC Reference Manual

STATUS

Examples

#STATUS
STATUS 31

BASIC Reference Manual 399

STEP

15.0 STEP (BASIC-PLUS-2)

Function

The STEP command causes the program module to execute statement by statement, stopping after a
specified number of statements have executed.

Format

STEP [int-const]

Syntax Rules

1. Int-canst specifies the number of statements to be executed before the program stops. It
must be a positive integer from 1 to 32767.

2. STEP with no int-const is the. same as specifying STEP 1. Only one statement executes and
the program then stops.

3. If you do not include a space between the command and the int-canst, only one statement
executes.

General Rules

1. When executing a task-built program, only statements in program modules compiled with
the /DEBUG qualifier in effect are counted. If a module not compiled with the /DEBUG
qualifier executes before a module compiled with the /DEBUG qualifier, the program does
not stop until the specified number of statements in the module compiled with /DEBUG
have executed.

2. Typing a carriage return in response to the # prompt is the same as typing STEP 1 or STEP
with no int-canst. The next statement executes and the program stops.

3. Typing a line feed in response to the # prompt has no effect. The debugger waits for a
carriage return and then signals an error.

Examples

BREAK at line 1050 statement 1

•STEP 2

•CON

STEP at line 1050 statement 3

400 BASIC Reference Manual

STRING

16.0 STRIN~ (RASIC-PLUS-2)

Function

The STRING command tells you how many words are currently allocated for string storage. Use the
STRING command in conjunction with the CORE, I /0 BUFFER, and FREE commands to determine
how memory is al located for your task.

Format

STRiNG

Syntax Rules

None.

General Rules

1. The STRING command tells you how many words are allocated for string operations for
your entire task, not just for the currently executing program module.

2. Knowing how much memory is allocated to string operations can help you control the size
of your program and optimize accordingly. See BASIC on RSX-11 MI M-PLUS Systems or
BASIC on RSTSIE Systems for information on optimization.

Examples

•STRING
STRING 2086

BASIC Reference Manual 401

TRACE

17.0 TRACE (BASIC-PLUS-2)

Function

The TRACE command displays line numbers and statement numbers as the program executes.

Format

TRACE

Syntax Rules

None.

General Rules

1. The TRACE command does not affect program execution or breakpoints.

2. When executing a task-built program, you can use the TRACE command only in program
modules that have been compiled with the /DEBUG qualifier.

3. The TRACE command remains in effect until the program module finishes executing, until
you specify UNTRACE after a program breakpoint, or until BASIC reaches a module not
compiled with the /DEBUG qualifier. When BASIC returns to a module compiled with
DEBUG, tracing resumes.

Examples

#TRACE

#BREAK 300

#CONT

at line 100 stateMent 1

at line 100 stateMent 2

at line 200 stateMent

BREAK at line 300 stateMent

#BREAK 500

#CONT

402 BASIC Reference Manual

UN BREAK

1A n llNAD~.All' /ClAClf"_DI 11~-~\
• -·- -··-· ._,,,, , ... ,.,w1~.- .. u~l::.J

Function

The UNBREAK command disables previously set breakpoints in programs and subprograms.

Format

UNBREAK l ~~:7 stmnt-break, ... I
block: I ~~~L !

LOOP

stmnt-break: lin-num [.stmnt-num] [;mod-nam]

Syntax Rules

1. The ON keyword is required to disable block breakpoints.

2. UNBREAK with no parameters disables all previously specified stmnt-break breakpoints.
Block breakpoints are not disabled.

3. Stmnt-break specifies a particular line number or statement where execution is to stop.

• Lin-num specifies a program line.

• Stat-num specifies a particular statement associated with /in-num. The period (.) is re­
quired and must immediately follow the line number. BASIC signals an error if you
include a space between /in-num and stat-num. The listing file lists statements on multi­
statement lines by number.

• Mod-nam specifies that the preceding breakpoint is a breakpoint only in the named
program module. The semicolon (;) is required.

• You can disable more than one stmnt-break breakpoint with the UNBREAK command,
but you must separate them with commas.

• Mod-nam specifies a program module compiled with the /DEBUG qualifier in effect.
When mod-nam is specified, the line number specified is disabled as a breakpoint only
in the named program. If the breakpoint has not been previously set, BASIC signals an
error.

• If lin-num or stat-num do not exist, the debugger signals the error "Bad line spec in
(UN)BREAK".

BASIC Reference Manual 403

UN BREAK

General Rules

None.

Examples

•UNBREAK ON LOOP

•UNBREAK 1oo;GAMESt 500. 600.2

•CON

404 BASIC Reference Manual

19.0 UNiRACE (BASiC-PLUS-2j

Function

The UNTRACE command disables the TRACE command.

Format

UNTRACE

Syntax Rules

None.

General Rules

UNTRACE

1. Enter the UNTRACE command when the program stops executing after encountering a
specified breakpoint.

Examples

#UNTRACE

#CON

BASIC Reference Manual 405

Appendix A
Reserved BASIC Keywords

%ABORT BACK CTR LC ERT$
%CDD BASE CVT$$ ESC
%CROSS BEL CVT$% EXIT
%ELSE BINARY CVT$F EXP
%END BIT CVT%$ EXPLICIT
%FROM BLOCK CVTF$ EXTEND
%1DENT BLOCKSIZE DAT EXTENDSIZE
%IF BS DAT$ EXTERNAL
%INCLUDE BUCKETSIZE DATA FF
%LET BUFFER DATE$ FIELD
%LIST BUFSIZ DECIMAL FILE
%NOCROSS BY DECLARE FILESIZE
%NOLIST BYTE DEF FILL
%PAGE CALL DEFAUL TNAME FILL$
%SBTIL CASE DEL FILL%
n111 1ra..1
7o 1 ncr'j CCPOS DELETE Fi ND
%TITLE CHAIN DESC FIX
%VARIANT CHANGE DET FIXED
ABORT CHANGES DIF$ FLUSH
ABS CHECKING DIM FNAME$
ABS% CHR$ DIMENSION FNEND
ACCESS CLK$ DOUBLE FNEXIT
ACCESS% CLOSE DOUBLEBUF FOR
ACTIVE CLUSTERSIZE DUPLICATES FORMAT$
ALIGNED COM DYNAMIC FORTRAN
ALLOW COMMON ECHO FREE
ALTERNATE COMP% EDIT$ FROM
AND CON ELSE FSP$
ANY CONNECT END FSS$
APPEND CONSTANT EQ FUNCTION
AS CONTIGUOUS EQV FUNCTION END
ASC cos ERL FUNCTION EXIT
ASCII COT ERN$ GE
ATN COUNT ERR GET
ATN2 CR ERROR GETRFA

A-1

GFLOAT NEXT RETURN UNTIL
GO NOCHANGES RFA UPDATE
GO BACK NODATA RIGHT USAGE$
GOSUB NODUPLICATES RIGHT$ USEROPEN
GOTO NOE CHO RND USING
GROUP NOEXTEND ROUNDING USR$
GT NOMARGIN RSET VAL
HFLOAT NONE SCALE VAL%
HT NOPAGE SCRATCH VALUE
IDN NOREWIND SEG$ VARIABLE
IF NOS PAN SELECT VARIANT
IFEND NOT SEQUENTIAL VFC
IF MORE NUL$ SETUP VIRTUAL
IMAGE NUM SGN VPS%
IMP NUM$ SI VT
INACTIVE NUM1$ SIN WAIT
INDEXED NUM2 SINGLE WHILE
INPUT ON SIZE WINDOWSIZE
INSTR ONECHR SLEEP WORD
INT ON ERROR so WRITE
INTEGER OPEN SP XLATE
INV OPTION SPACE$ XOR
INVALID OR SPAN ZER
ITERATE ORGANIZATION SPEC%
KEY OTHERWISE SQR
KILL OUTPUT SQRT
LEFT OVERFLOW STATUS
LEFT$ PAGE STEP
LEN PEEK STOP
LET Pl STR$
LF PLACE$ STREAM
LINE POS STRING
LINO POS% STRING$
LINPUT PPS% SUB
LIST PRIMARY SU BEND
LOC PRINT SUBEXIT
LOCKED PROD$ SUBSCRIPT
LOG PUT SUM$
LOGlO QUO$ SWAP%
LONG RAD$ SYS
LSET RANDOM TAB
MAG RANDOMIZE TAN
MAGTAPE RCTRLC TEMPORARY
MAP RCTRLO TERMINAL
MAR READ THEN
MAR% REAL TIM
MARGIN RECORD TIME
MAT RECORDSIZE TIME$
MAX RECORDTYPE TO
MID RECOUNT TRM$
MID$ REF TRN
MIN REGARDLESS TYP
MOD RELATIVE TYPE
MOD% REM TYPE$
MODE REMAP UNALIGNED
MODIFY RESET UNDEFINED
MOVE RESTORE UNLESS
NAME RESUME UNLOCK

A-2 Reserved BASIC Keywords

Appendix B

This appendix presents a suggested format for coding BASIC programs. The recommended program
order and documenting procedures clarify the program's history, purpose, and logical development.
This organization also helps the program to run faster and with fewer errors.

This format is by no means intended to represent the only way of coding BASIC programs. It is a
sample format that can be adapted and modified to suit individual applications.

10 lTITLE "(Module-naMe) - <terse functional descriPtion>"
ISBTTL "Overall descriPtion and Modification history"
IIDENT "X00.00"

COPYRIGHT Cc) 1982 BY
DIGITAL EQUIPMENT CORPORATIONt MAYNARDt MASS.

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY BE USED AND
COPIED ONLY IN ACCORDANCE WITH THE TERMS OF SUCH LICENSE AND WITH
THE INCLUSION OF THE ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY
OTHER COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE MADE AVAIL­
ABLE TO ANY OTHER PERSON. NO TITLE TO AND OWNERSHIP OF THE SOFT­
WARE IS HEREBY TRANSFERRED.

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO CHANGE WITHOUT NO­
TICE AND SHOULD NOT BE CONSTRUED AS A COMMITMENT BY DIGITAL EQUIP­
MENT CORPORATION.

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR RELIABILITY OF
ITS SOFTWARE ON EQUIPMENT WHICH IS NOT SUPPLIED BY DIGITAL.

8-1

!++

FACILITY:

<Facility naMe>

ABSTRACT:

A short 3-6 line abstract of the function of the module. If a
full functional specification can be given in 3-6 lines, rePlace
"ABSTRACT" above bY "FUNCTIONAL DESCRIPTION1 11 and delete the
"FUNCTIONAL DESCRIPTION" section below.

[Margins and tabs]

ENVIRONMENT:

[Pick one:J
PDP-11 user Mode [with <OPerating sYsteM> dePendenciesJ
VAX-11 user Mode.
PDP-11 and VAX-11 user Mode.

AUTHOR: <Your naMe), CREATION DATE: <dd MMMMMMMMM YYYY>

MODIFIED BY:

<Your naMe), <dd-MMM-YY): VERSION X00.00
000 - Original version of Module.

!--
'%SB TTL "'Fu l l d e s c r i P t i on 11

[Pick at Most one of FUNCTION or SUB below. Include ParaMeters on
either. For Main PrograMst oMit FUNCTION or SUB stateMent and
Parameters.]

FUNCTION <datatYPe> <naMe>
SUB <naMe>

++

<<datatYPe> <ParaM),
<datatYPe> <ParaM))

<DescriPtion>
<DescriPtion>

FUNCTIONAL DESCRIPTION:

A detailed functional descriPtion of the routine. This should
detail the steps of the Processt the use of external functions
and subPrograMs (including sYsteM services t RTL routines, SYSLIB
routines>, and so forth.

[Margins and tabs]

FORMAL PARAMETERS:

<name>.<access tYPe><data tYPe>.<arg mech><arg form>
A descriPtion of the Meaning bf the Parameter, its legal
values, etc. Repeat for each ParaMeter. If a Main PrograM
rather than a function or subroutine, use the COMMAND
STRUCTURE section.
<access tYPe> is Mt r, or w for modify, readt or write.
<datatYPe} is bt dt gt ht 11 Pt St tt or w for BYTEt DOUBLEt

GFLOAT, HFLOAT, LONG, PacKed <DECIMAL>, SINGLE t text
<STRING>, or WORD.

<arg mech> is dt rt or v for BY DESCt BY REFt or BY VALUE.
<arg form> is <null> or a for scalar or arraY+

[margins and tabs]

B-2 Program and Subprogram Coding Conventions

IMPLICIT INPUTS:

Describe all uses of the values of global storage obJects used
by the routine.

[Margins and tabs]

IMPLICIT OUTPUTS:

Describe all Modifications to the values of global storage ob­
Jects used bY the routine.

[Margins and tabs]

FUNCTION VALUE:
COMPLETION CODES:

If a functiont describe the value returned. If the value re­
turned is a status indicatort use COMPLETION CODE and delete
FUNCTION VALUE; if the result of soMe coMPutationt use FUNCTION
VALUE and delete COMPLETION CODE.
If a SUBt delete FUNCTION VALUE and enter "None."

[Margins and tabs]

SIDE EFFECTS:

Describe all functional side effects that are not evident froM
the invocation interface. This includes changes in storage al­
location t Process status, file operations (including the coMMand
terMinal), errors signalledt etc.

[Margins and tabs]

!--
?.SBTTL "Declarations"

! ENVIRONMENT SPECIFICATION:

OPTION
<oPtion clause),
<oPtion clause>

DATATYPE SPECIFICATION:

RECORD <naMe)
<record declaration>

END RECORD

! INCLUDE FILES:
!
%INCLUDE "<FilesPec>"

! EQUATED SYMBOLS:
!
DECLARE <datatYPe> CONSTANT

<naMe> <value),
<naMe> = <value>

LOCAL STORAGE:

DECLARE
<datatYPe>

<narr1e>t
<naMe>t

<datatYPe>
<naMe>t
<name>

<DescriPtion>

<DescriPtion>
<DescriPtion>

<DescriPtion>
<DescriPtion>

<DescriPtion>
<DescriPtion>

Program and Subprogram Coding Conventions B-3

! GLOBAL STORAGE:
!
COMMON «naMe»

<datatn=e>
<naMe>t
<naMe>t

<datatYPe>
<naf!!e>•
<naMe>

MAP «naMe>>
<datatYPe>

<nat11e>1
<nat11e>1

<datatYPe>
<naMe)t
<naMe>

! EXTERNAL REFERENCES:
!
EXTERNAL <datatYPe> CONSTANT

<naMe>
EXTERNAL <datatYPe>

<naMe>
EXTERNAL <datatYPe> FUNCTION

<naMe>
<<datatYPe> BY (Mech>t
<datatYPe) BY (Mech>>

EXTERNAL SUB
<naMe>

((datatYPe) BY (Mech>t
<datatYPe) BY (Mech>>

INTERNAL REFERENCES:

DECLARE <datatype) FUNCTION
<naMe>

C<datatYPe>t
<datatYPe»

<Description>

<DescriPtion>
<DescriPtion>

<DescriPtion>
<DescriPtion>
<DescriPtion>

<DescriPtion>
<DescriPtion>

<DescriPtion>
<DescriPtion>

<Des c r i Pt i o·n >

<DescriPtion>

<Function descriPtion>
<Ar!tuMent descriPtion>
<Ar!tuMent descriPtion>

<Function descriPtion>
<Ar!tuMent descriPtion>
<Ar!tuMent descriPtion>

<Function descriPtion>
<Ar!tuMent descriPtion>
<Ar!tuMent descriPtion>

lSBTTL "EnvironMent initialization"
!+
! Set UP !tlobal error handler
! -
ON ERROR GO TO 31000
[AlternatelYt local error handlers can be set UP where needed.]
lSBTTL "<MaJor section naMe>"

<MaJor section naMe>:
!+

<Section descriPtion>
! -
[RePeat once for each MaJor section.]
lSBTTL "Internal subroutine: <sYMbolic naMe)"
[Access via GOSUB <sYMbolic naMe>J

<sYMbolic naMe>:
+

FUNCTIONAL DESCRIPTION:

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

8-4 Program and Subprogram Coding Conventions

&
s.
8c
&
&
&

8c
s.
&
&
s.
8c

s.

s.

s.
8c
s.

8c
8c
&

! SIDE EFFECTS:

! -
RETURN
lSBTTL "Internal function - <naMe>"
[Access via <naMe) ((paraMs))J
DEF (datatYPe> <naMe>

+

!
! -

((datatYPe> <naMe>t
<datatYPe) <naMe))

FUNCTIONAL DESCRIPTION:

FORMAL PARAMETERS:

IMPLICIT INPUTS:

IMPLICIT OUTPUTS:

FUNCTION VALUE:

SIDE EFFECTS:

END DEF
lSBTTL "RSTS/E CCL entry Point"

<DescriPtion>
<DescriPtion>

[This section is for RSTS/E CCL's only]
30000 !+

! CCL entrY Point:
!-
%SBTTL "CoMmon error handlin~"

31000 !+
! CoMMon error handlin~:
! -
lSBTTL "Module end"

32767 END <FUNCTIONt nullt or SUB>

&
&

Program and Subprogram Coding Conventions 8-5

The Master Index contains a list of the major references to subjects in the BASIC Reference Manual, the
BASIC User's Guide, and the system-specific manuals. The index uses the fotlowing conventions:

Example Explanation

1-8t

4-36f

A page number followed by a t indicates a table.

A page number followed by an f indicates a figure.

Entries in the Master Index are also preceded by an acronym indicating which manual the page number
refers to:

Acronym Title

LM BASIC Reference Manual

UG BASIC User's Guide

RSTS BASIC on RSTS!E Systems

RSX BASIC on RSX Systems

VMS BASIC on VAX/VMS Systems

Where a subject references more than one manual, references to the BASIC Reference Manual appear
first, the BASIC User's Guide second, and the system-specific manuals appear last in alphabetical order.

For a more complete list of references, see the individual indexes in the back of each manual.

:::J
a.
CD x

Index

This index provides a complete cross-reference to the information in this manual. In the index the
following convention is used:

Example Explanation

12t A page number followed by a t indicates a table.

For material not covered in this manual, see the Master Index in the back of the BASIC Reference
Manual. The Master Index contains a list of the major references to information throughout the BASIC
documentation set.

A

Abbreviations
debugger command, 382
qualifier, 83

%ABORT, 113
ABS, 293
ABS%, 294
Absolute value

ABS, 293
ABS%, 294
MAG, 331

ACCESS clause, 241, 258
APPEND, 241
MODIFY, 173, 191, 241
READ, 173, 191, 241
SCRATCH, 173, 241
WRITE, 241

Accessing
COD record definitions, 263
RECORD items, 264, 265

ACTIVE clause, 249
Allocating storage

for arrays, 159
for FILL items, 14 lt, 227, 268
for RECORD structures, 264
for VARIANT fields, 265
with COMMON, 139, 142
with MAP, 210
with MAP DYNAMIC, 213
with REMAP, 2 68

February 1984

ALLOW clause, 241
MODIFY, 174, 192, 241
NONE, 174, 192, 241
READ, 174, 192, 241
WRITE, 241

Alphanumeric label, 2
See also Labels

ALTERNATE KEY clause, 240, 244
Ampersand (&)

as a continuation character, 4, 6, 7
in DATA statements, 143

AND, 38
N~Sl 1V\inimal BASIC Standaid, 84
ANSLSTANDARD qualifier, 84
APPEND, 43 to 44
Arc tangent, 296
Arithmetic operators, 30, 30t
Arrays, 27 to 29

array elements, 27, 159
assigning values to, 206, 217, 219, 221,

225, 261
bounds, 159, 217, 219, 221, 223, 225
bounds checking, 84
converting with CHANGE, 136
creating with COMMON, 140
creating with DECLARE, 145
creating with DIM, 158
creating with MAP, 210
creating with MAT statements, 216, 219,

221, 223, 225
data type of, 158
definition of, 27

lndex-1

Arrays (Cont.)
dimensions of, 28 1 158
dynamic, 158, 159, 160
element zero, 28, 159, 218, 220, 222, 224,

226, 228
initialization of, 161, 217
inversion of, 218
matrix arithmetic, 21 7
naming, 29
redimensioning with MAT statements, 217,

218, 219, 221, 225
size limits, 28
static, 158, 159
transposition of, 218
virtual, 29, 147, 158, 159, 170

ASCII
character set, 10
characters, 24, 36, 299
conversion, 136, 295, 299
function, 295
stream files, 245

ASSIGN, 45
Assigning logical names, 45
Assigning string data

with LSET, 209
with RSET, 274

Assigning values
to array elements, 206, 217, 219, 221, 225,

261
to lexical constants, 121
with INPUT, 199
with INPUT LINE, 202
with LET debugger command, 393
with LET statement, 206
with LINPUT, 207
with LSET, 209
with MAT INPUT, 219
with MAT LINPUT, 221
with MAT READ, 225
with READ, 261
with RSET, 274

Asterisk (*)

in PRINT USING format field, 255
with HELP, 69

Asterisk-filled field
in PRINT USING, 255

ATN, 296
AUDIT qualifier, 84

B

Backslash ()
in continued lines, 6
in multi-statement lines, 5

lndex-2

Backslash () (Cont.)
in PR!NT USING format field, 256
statement separator, 5

BASIC character set, 10
BEL, 23
Binary radix, 21
Blank-if-zero field

in PRINT USING, 255
Block I /0 files, 94

finding records in, 17 4
opening, 240
retrieving records sequentially in, 191
writing records to, 258

Block statements
ending, 162
exiting, 164

BLOCKSIZE clause, 243
Bounds, 27

default for implicit arrays, 159, 217, 219,
221, 223, 225

maximum, 28
BOUNDS_CHECK qualifier, 84
BREAK debugger command, 383 to 384
BRLRES command, 46 to 47

BUILD default, 48
BRLRES qualifier, 90
BS, 23
Buckets

BUCKETSIZE clause, 244
locking, 174, 192
unlocking, 174, 182, 192

BUCKETSIZE clause, 244
BUFFER clause, 243
BUFSIZ, 297
BUILD, 48

BASIC-PLUS-2 qualifiers, 90t
BY clauses

BY DESC, 131, 168, 185, 282
BY REF, 131, 168, 185, 282
BY VALUE, 131, 168

BYTE data type, 11
BYTE qualifier, 84, 90

c
C formatting character

in PRINT USING, 256
CALL, 129 to 133

as a debugger breakpoint, 383
with SUB; 281

Calling subprograms, 129, 281
Caret()

in PRINT USING format field, 255
CASE clause, 276

February 1984

CASE ELSE clause, 277
CCPOS, 298
CD

in PRINT USING format field, 255
CDD

accessing definitions in, 263
including definitions from, 7, 84, 88, 119

Centered field
in PRINT USING, 256

CHAIN qualifier, 90, 134
CHAIN statement, 134 to 135
CHANGE, 136 to 137

with NOSETUP, 87
CHANGES clause, 244
CHARACTER data type, 23
Character position

CCPOS, 298
of substring, 322, 345

Character sets
ASCII, 10
BASIC, 10
translating with XLA TE, 3 79

Characters
ASCII, 24, 36, 295, 299
data type suffix, 13
format in PRINT USING, 255 to 257
lowercase, 58, 64, 66, 256
nonprinting, 23
processing of, 10
uppercase, 58, 64, 66, 256
wildcard, 69

CHR$, 18, 299
Clauses

ACCESS, 173, 191, 241, 258
ACTiVE, 249
ALLOW, 17 4, 192, 241
ALTERNATE KEY, 240, 244
BLOCKSIZE, 243
BUCKETSIZE, 244
BUFFER, 243
BY, 131, 168, 185, 282
CASE, 276
CHANGES, 244
CLUSTERSIZE, 246
CONNECT, 245, 246
CONTIGUOUS, 242, 244, 245
COUNT, 258, 289
DEFAUL TNAME, 240, 243
DUPLICATES, 244, 259
ELSE, 197
END IF, 197
EXTENDSIZE, 243, 245, 246
FILESIZE, 242
FOR INPUT, 240

February 1984

Clauses (Cont.)
FOR OUTPUT, 240
GROUP, 264
KEY, 172, 190, 271

MODE, 246
NOREWIND, 243, 245, 247
NOSPAN, 243
ORGANIZATION, 240
OTHERWISE, 236, 237
PRIMARY KEY, 240, 244, 247
RECORD, 172, 190, 258, 259
RECORDSIZE, 212, 242, 258
RECORDTYPE, 241
REGARDLESS, 174, 192
RFA, 172, 190
STEP, 179
TEMPORARY, 242
THEN, 197
UNLOCK EXPLICIT, 173, 175, 191, 245
UNTIL, 180
USEROPEN, 240, 243
VARIANT, 264
WHILE, 180
WINDOWSIZE, 242

CLOSE, 138
Closing files, 138

with END, 162
CLUSTER qualifier, 90
CLUSTERSIZE clause, 246
CMD file, 48
Colon(:)

in labels, 2
Comma(,)

in DATA, 144
in DELETE command, 54
in INPUT, 199
in INPUT LINE, 202
in LINPUT, 207
in LIST, 75
in MAT PRINT, 224
in PRINT, 251
in PRINT USING format field, 255

$ command, 49 to 50
Command qualifiers, 83 to 94

BASIC-PLUS-2, 90t
VAX-11 BASIC, 84t

Comment
field, 8, 267
in DATA statements, 9, 143
processing of, 10
REM, 9, 267
transferring control to, 8

lndex-3

COMMON, 139 to 142
size, 141
with FIELD, 170

Common Data Dictionary, 7
See also COD

rr-..~ Anni ~r\r\
~v1v1r 7o 1 .)UV

Comparing
numeric strings, 300
strings, 36

Comparisons
EQ, 173, 191
GE,173,191
GT, 173, 191

Compilation
conditional, 11 7, 128
control of, 7, 108
control of listing, 114, 122, 123, 124, 125,

126, 127
controlling with OPTION, 249
including from COD, 7, 84, 88, 119
including source code, 7, 119
terminating with %ABORT, 113

Compilation qualifiers, 83 to 94
BASIC-PLUS-2, 90t
VAX-11 BASIC, 84t

COMPILE, 51 to 52
BASIC-PLUS-2 qualifiers, 90t
DEBUG qualifier, 381
VAX-11 BASIC qualifiers, 84t

Compiler directives, 7
Components, 264
CON, 217
Concatenation

of COMMON areas, 141
string, 5, 30, 34

Conditional branching
with IF, 197
with ON-GOSUB, 236
with ON-GOTO, 237
with SELECT, 276

Conditional compilation, 7
%VARIANT, 128
with %IF, 117

Conditional expressions, 34 to 40
definition of, 34
in %LET, 121
in FOR, 180
in IF, 197
in UNLESS, 286
in UNTIL, 288
in WHILE, 292

Conditional loops, 179, 288, 292
CONNECT clause, 245, 246

lndex-4

Constants, 14 to 24
declaring, 146
default data type, 15
definition of, 14
external, 166
floating-point, i 5
integer, 17
lexical, 117, 121
named, 19 to 21
numeric, 15 to 18
packed decimal, 17
predefined, 23 to 24
string, 18 to 19
types of, 14

CONTIGUOUS clause, 242, 244, 245
Continuation characters

ampersand, 6
backslash, 6

CONTINUE command, 53
with RUN, 103

CONTINUE debugger command, 385
Continued

lines, 5
statements, 4, 5
string literals, 5

Conversion
of array to string variable, 136
of string variable to array, 136

Conversion functions
CVT$%, 304
CVT$F, 304
CVT%$, 304
CVTF$, 304
DECIMAL, 307
INTEGER, 325
NUM$, 339
NUM1 $, 340
RAD$, 351
REAL, 354
STR$, 365
VAL, 377
VAL%, 378
XLATE, 379

Copying BASIC source text, 7, 119
CORE debugger command, 386
COS, 301
Cosine, 301
COUNT clause

with fixed-length records, 258, 289
with variable-length records, 258, 289

CPU time, 373
CR, 24

February 1984

Creating
arrays, 140, 145, 158, 159, 210, 216, 219,

221, 223, 225
object modules, 51, 87, 93
output listing, 86, 92
strings, 361, 366

Credit-debit field
in PRINT USING, 255

%CROSS, 114
Cross-reference table

%CROSS, 114
CROSS_REFERENCE qualifier, 84, 90
%NOCROSS, 123

CROSS_REFERENCE qualifier, 84, 90
CTRL/C

resuming after, 302
trapping, 302, 352
with RECOUNT function, 355
with RESUME, 272

CTRL/Z, 68
editing command, 63
with INPUT, 201
with INPUT LINE, 203
with LINPUT, 208

CTRLC, 302
See also RCTRLC

Cursor position
CCPOS, 298
TAB, 371

CVT$$, 303
See also EDIT$

CVTxx

D

CVT$%, 304
CVT$F, 304
CVT%$, 304
CVTF$, 304
with FIELD, 169

DATA, 143 to 144
See also READ
comment fields in, 9
in DEF functions, 151
in DEF* functions, 155
in multi-statement lines, 7
with MAT READ, 225
with READ, 261
with RESTORE, 271

Data types, 10 to 14
BYTE, 11
CHARACTER, 23
DECIMAL, 11
decimal overflow checking, 87, 249

February 1984

Data types (Cont.)
defining with RECORD, 263
DOUBLE, 11
GFLOAT, 11
HFLOAT, 11
in LET, 206
in logical expressions, 37
in numeric expressions, 31
INTEGER, 11
integer overflow checking, 87, 249
keywords, 11, 12
LONG, 11
numeric literal notation, 21
precision, 12
precision in PRINT, 252
precision in PRINT USING, 254
promotion rules, 31 to 34
range, 12
REAL, 11
results for DECIMAL data, 33t
results for GFLOAT and HFLOAT, 32t
results in expressions, 32t
RFA, 12
setting defaults with OPTION, 249
SINGLE, 11
size, 12
storage of, 11, 12
STRING, 11
suffix characters, 13
WORD, 11

Data typing
explicit, 13, 14
implicit, 13
with declarative statements, 14
with suffix characters, 13

Data-type defaults, 13, 14
BYTE qualifier, 84, 90
constants, 15
DECIMAL_SIZE qualifier, 84
DOUBLE qualifier, 85, 91
GFLOAT qualifier, 86
HFLOAT qualifier, 86
LONG qualifier, 87, 92
SINGLE qualifier, 88, 94
TYPE_DEFAULT qualifier, 89, 94
WORD qualifier, 89, 94

Data-type functions
DECIMAL, 307
INTEGER, 325
REAL, 354

Data-type keywords, 11
Date and time functions

DATE$, 306
TIME, 373

lndex-5

Date and time functions (Cont.)
TIME$, 375

DATE$, 306
Debit-credit field

in PRINT USING, 255
DEBUG qualifier, 84, 9i

with COMPILE, 381
with RUN, 103, 279, 381

Debugger
BASIC-PLUS-2 commands, 381 to 405
command abbreviations, 382
effect on task size, 382
prompt, 381

Debugging
changing variable values, 393
DEBUG qualifier, 84, 91
disabling of TRACE, 405
disabling program breakpoints, 384, 403
displaying program values, 395
redirecting I /O operations, 397
resuming execution, 385
setting program breakpoints, 383
TRACEBACK qualifier, 88
tracing statement execution, 402
with debugger commands, 103, 279

DECIMAL data type, 11
constants, 1 7
format of, 1 3
overflow checking, 87, 249
promotion rules, 32
rounding, 87, 249
storage of, 11

DECIMAL function, 307
Decimal radix, 21
DECIMAL_SIZE qualifier, 84
Declarative statements

COMMON, 140
DECLARE, 145
EXTERNAL, 166
MAP, 210

DECLARE, 145 to 148
CONSTANT, 20, 24, 146, 147
FUNCTION, 146, 147

Declaring
constants, 20, 146
DEF functions, 146, 149
DEF* functions, 153
external constants, 1 66
external subprograms, 185
external subroutines, 166
external variables, 166
RECORD structures, 264
variables, 145

Declining features, 85, 91

lndex-6

DEF, 149 to 152
as a debugger breakpoint, 383
ending, 162
error handling in, 151, 163, 233, 234, 272
exiting, 164
multi-line, 150
parameters, 150, 151
recursion in, 151
transferring control into, 151, 236, 237
with INPUT, 199
with INPUT LINE, 202
with LINPUT, 207
with NOSETUP, 87
with READ, 261

DEF*, 153 to 156
error handling in, 155, 163
multi-line, 154
parameters, 154, 155
recursion in, 155
transferring control into, 155

DEFAUL TNAME clause, 240, 243
Defaults

BRLRES, 46
BUCKETSIZE clause, 244
BUILD, 48
CLUSTERSIZE clause, 246
COMMON name, 140
COMPILE, 51
constants, 15
data type, 13, 14, 249
DEFAUL TNAME clause, 243
displaying, 109
DSKLIB, 55
EDIT, 57
error handling, 233
file name, 79, 82, 95, 97, 102, 104, 111,

134, 240
floating-point constants, 15
implicitly declared variables, 26, 27
integer constants, 17
LIBRARY, 73
listing file, 51, 84, 86, 90, 92
LOAD, 77
numeric constants, 15
object module name, 51, 87, 93
ODLRMS, 80
overriding with BUILD, 48
overriding with COMPILE, 51
overriding with RUN, 102
parameter passing mechanisms, 132t, 133t,

168, 185, 282
radix, 21
RECORDSIZE clause, 242
RESEQUENCE, 98

February 1984

Defaults (Cont.)
RMSRES, 100
SCALE, 105
scale factor, 249
SEQUENCE, i 07
SET, 108
setting with BRLRES, 46
setting with DSKLIB, 55
setting with LIBRARY, 73
setting with ODLRMS, 80
setting with OPTION, 248
setting with RMSRES, 100
SHOW, 109
WINDOWSIZE clause, 242

DEFINE editing command, 61
Defining

COMMON storage, 139
data structures, 263
labels, 2
bAAP DYNAMIC storage; 213
MAP storage, 210

DEL, 24
DELETE command, 54
DELETE statement, 15 7

with UNLOCK, 287
Deleting

files, 111, 205, 242
program lines, 54
records, 157, 275

Delimiter
EDIT, 57
in DATA, 144
string literal, 18
SUBSTITUTE editing command, 66

Descripiors, i31, 168, 185, 282
DET, 308
Determinant, 308
DIF$, 309
DIM, 158 to 161

executable, 159, 160
nonvirtual, nonexecutable, 159
used with MAT statements, 217, 218, 219,

221, 223
virtual, 159
with NOSETUP, 87

DIMENSION, 158 to 161
See also DIM

Dimensions
of arrays, 28, 158

Disk-resident libraries
overriding defaults, 91
setting defaults, 55

Displaying
defaults, 109

February 1984

Displaying (Cont.)
program lines, 75,

Documentation
on-line, 69

Dollar sign ($)
in DECLARE, 145, 146
in DEF names, 149, 150
in DEF* names, 153, 154
in FUNCTION names, 184
in MAP DYNAMIC variables, 213
in PRINT USING format field, 255
in SUB names, 281
in variable names, 25, 26
suffix character, 1 3

DOUBLE data type, 11
DOUBLE qualifier, 85, 91
DSKLIB command, 55 to 56

BUILD default, 48
DSKLIB qualifier, 91
DUMP qualifier, 91
DUPLICATES clause, 244, 259
Dynamic

E

arrays, 158, 159, 160
mapping, 169, 213, 268
storage, 213, 268, 269

E formatting character
in PRINT USING format field, 256

E mathematical constant, 316
E notation, 16

field in PRINT USING, 255
in numeric !itera! notation, 21
in PRINT USING format field, 256
numbers in, 16t
with PRINT, 252
with STR$, 365

ECHO, 310
See also NOECHO

EDIT, 57 to 60
EDIT$, 311

values, 31 lt
Editing

program lines, 57
strings, 311, 376
with a text editor, 58
with editing commands, 58

Editing commands, 60t
DEFINE, 61
EXECUTE, 62
EXIT, 63
FIND, 64

lndex-7

Editing commands (Cont.)
INSERT, 65
SUBSTITUTE, 66

ELSE clause, 197
END, 162 to 163

DEF, 150, 154, 162
FUNCTION, 162, 184
GROUP, 162
IF, 162, 197
RECORD, 162
SELECT, 162, 277
SUB, 162, 281
v ARIANT I 162

Ending
multi-line DEF, 150, 162
multi-line DEF*, 154
programs, 162
statement blocks, 162
subprograms, 162, 184, 281

EQ, 173, 191
Equivalence name, 45
EQV, 38
ERL debugger command, 387
ERL function, 312

with labels, 2
with NOLINE qualifier, 86, 92
with RESEQUENCE, 99

ERN debugger command, 388
ERN$, 313
ERR debugger command, 389
ERR function, 314
Error

number, 314
text, 315

Error handling
disabling, 235
ERL, 312
ERN$, 313
ERR, 314
ERT$, 315
in DEF functions, 151, 163, 233, 234
in DEF* functions, 155, 163
in FOR-NEXT loops, 272
in subprograms, 163, 164, 185, 233
in UNTIL loops, 272
in WHILE loops, 272
ON ERROR GO BACK, 233
ON ERROR GOTO, 234
ON ERROR GOTO 0, 235
recursion in, 234
RESUME, 272

Error handling functions
CTRLC, 302
ERL, 312

lndex-8

Error handling functions (Cont.)
ERN$, 313
ERR, 314
ERT$, 315
RCTRLC, 352

ERT$, 315
ESC, 24
Evaluation

of expressions, 40 to 42
of logical expressions, 38 to 40
of numeric relational expressions, 35
of operators, 40
of SELECT statements, 277
of string relational expressions, 36

Exclamation point (!)
in comment fields, 8
in PRINT USING format field, 256

Executable
DIM, 159
statements, 3

EXECUTE editing command, 62
Execution

continuing, 53, 103, 385
of multi-statement lines, 5
of statements, 5
of system commands, 49
program, 102
stopping, 53, 103, 279, 383, 400
suspending, 278, 291

EXIT command, 68
EXIT debugger command, 390
EXIT editing command, 63
EXIT statement, 164 to 165

DEF, 164
FUNCTION, 164
SUB, 164

Exiting
DEF functions, 164
loops, 164
statement blocks, 164
subprograms, 164

EXP, 316
Explicit

creation of arrays, 158
data typing, 13, 14, 89, 94, 248
declaration of variables, 27
literal notation, 21 to 23
loop iteration, 204
record locking, 157, 173, 174, 175, 191,

192, 245
Exponential notation, 16, 252

in PRINT USING, 255
numbers in, 16t
with PRINT, 252

February 1984

Exponentiation, 316
Expressions, 30 to 42

conditional, 34 to 40
conditional in %LET, 121
definition of, 30
evaluation of, 40 to 42
lexical, 117, 121, 128
logical, 3 7 to 40
mixed-mode, 31 to 34
numeric, 30 to 34
numeric relational, 35
operator precedence in, 40, 4 1 t
parentheses in, 41
relational, 35 to 37
string, 34
string relational, 36
types of, 30

EXTEND qualifier, 91
Extended field

in PRINT USING, 256
EXTEN DSIZE clause, 243, 245, 246
EXTERNAL, 166 to 168

BASIC-PLUS-2 parameter passing
mechanisms, 133t

CONSTANT, 20, 166
FUNCTION, 166
parameters, 167
SUB, 166
V AX-11 BASIC parameter passing

mechanisms, 132t
with NOSETUP, 87

External
constants, 20, 166
functions, 166
subroutines, 166
variables, 26, 166

Extracting substrings
with LEFT$, 326
with MID$, 335
with RIGHT$, 356
with SEG$, 358

F

Features
declining, 85, 91

FF, 24
FIELD, 169
Fields

asterisk-filled, 255
blank-if-zero, 255
centered, 256
comment, 8
credit or debit, 255

February 1984

Fields (Cont.)
exponential, 255
extended, 256
floating dollar sign, 255
rDrtl ID '1t::.A
\.Jl"\.'-JUI I £..V""T

left-justified, 256
one-character, 256
right-justified, 256
trailing minus sign, 255
VARIANT, 264
zero-fill, 255

File attributes
BLOCKSIZE clause, 243
CLUSTERSIZE clause, 246
CONTIGUOUS ciause, 242
EXTENDSIZE clause, 243
FILESIZE clause, 242
magnetic tape, 243
MODE clause, 246

File names
BUILD default, 48
CHAIN statement default, 134
COMPILE default, 51
LOAD default, 77
NEW defau It, 79
OLD default, 82
OPEN default, 240
RENAME default, 95
REPLACE default, 97
RUN default, 102
SAVE default, 104
UNSAVE default, 111

File-related functions
BUFSIZ, 297

FSP$, 319
FSS$, 320
GETRFA, 321
MAGTAPE, 332
MAR, 334
ONECHR, 341
RECOUNT function, 355
STATUS, 363

Files
ASCII stream, 245
block 1/0, 94, 174, 191, 240, 258
closing, 138
deleting, 111, 205, 242
deleting records in, 157, 275
finding buffer size, 297
%INCLUDE, 98, 119, 120
indexed, 92, 157, 174, 191, 240, 243, 244,

258, 271, 290
magnetic tape, 243, 271, 332

lndex-9

Files (Cont.)
opening, 238
relative, 93, 157, 173, 191, 240, 242, 244,

258, 290
renaming, 230
restoring data, 271
RMS sequential stream, 245
sequential, 93, 173, 191, 240, 242, 243,

251, 258, 275, 289
terminal-format, 199, 202, 207, 215, 219,

221, 223, 232, 244, 251
virtual, 94, 242, 271

FILESIZE clause, 242
FILL, 139, 210, 227, 268
FILL items

formats and storage, 141 t
in COMMON, 139
in MAP, 210
in MOVE, 227
in REMAP, 268

FILL$, 139, 210, 227, 268
FILL%, 139, 210, 227, 268
FIND editing command, 64
FIND statement, 171 to 176

with PUT, 259
with UNLOCK, 287
with UPDATE, 289

Finding
records, 17 4
string length, 327
substrings, 322, 345
virtual address, 328

FIX, 317
compared with INT, 324

FLAG qualifier
BP2COMPATIBILITY, 85
DECLINING, 85, 91

Floating dollar sign field
in PRINT USING, 255

Floating-point
constants, 15
data types, 11
promotion rules, 31
variables, 26

FNEND, 177
See also END

FNEXIT, 178
See also EXIT

FOR clause
INPUT, 240
OUTPUT, 240

FOR statement, 1 79 to 1 81
FOR-NEXT loops, 179 to 181, 231

conditional, 1 79

lndex-10

FOR-NEXT loops (Cont.)
error handling in, 272
exiting, 164
explicit iteration of, 204
nested, 179
tiansferring control inio, i 80, 195, 196, 236,

237
unconditional, 179

Format
characters in PRINT USING, 255
E, 16, 252
explicit literal notation, 21
exponential, 16, 252
for SET qualifiers, 83
of comment field, 8
of compiler directives, 7
of data, 11
of data in DATA statements, 144
of DECIMAL data, 13
of empty statements, 10
of external constant name, 21
of external variable names, 26
of FILL items, 141 t
of floating-point constants, 15
of implicitly declared variables, 26, 27
of integer constants, 17
of internal constant name, 19
of internal variable names, 25
of keywords, 3
of labels, 2
of line numbers, 1
of logical expressions, 37
of multi-line RE1\r1, 9, 267
of multi-statement lines, 6, 7
of numeric expressions, 30
of packed decimal constants, 17
of program lines, 1 to 8
of relational expressions, 35
of statements, 3
of string constants, 18
of subscripted variables, 28
Radix-SO, 351

FORMAT$, 318
Formatting

MAT PRINT output, 224
numeric output, 255 to 256
PRINT output, 251, 253
storage with LSET, 209
storage with RSET, 274
string output, 256 to 257
with FORMAT$, 318
with PRINT USING, 254 to 257

FREE debugger command, 391
FREE statement, 1 82

February 1984

FSP$, 319
FSS$, 320
FUNCTION, 183 to 186

BASIC-PLUS-2 parameter passing
mechanisms, 133t

parameters, 184
VAX-11 BASIC parameter passing

mechanisms, 132t
Function codes

MAGTAPE, 332t
FUNCTIONEND, 187

See also END
FUNCTIONEXIT, 188

See also EXIT
Functions

G

declaring, 146, 149, 153
external, 166
initialization of, 151, 155
invocation of, 151 , 155
lexical, 89, 94, 117, 121, 128
naming, 149, 153
parameters, 150, 154
user-defined, 149, 153

GE, 173, 191
GET, 189 to 194

with PUT, 259
with UNLOCK, 287
with UPDATE, 289

GETRFA, 321
GFLOAT data type, 11
GFLOAT quaiifier, 86
GOSUB, 195

with RETURN, 273
GOTO, 196
GROUP clause, 264
GT, 173, 191

H

Halting program execution, 53, 279, 383, 400
HELP, 69 to 70
Hexadecimal radix, 21
HFLOAT data type, 11
HFLOAT qualifier, 86
HT, 23
Hyphen (-)

in DELETE command, 54
in LIST command, 75

February 1984

110
characters transferred, 355
dosing files, 138, 162
deleting records, 157
dynamic mapping, 268
finding records, 173
getting records, 191
I /0 BUFFER debugger command, 392
locking records, 173, 174, 191, 192, 245
matrix, 337, 338
moving data, 227
opening files, 238
RECOUNT debugger command, 396
retrieving records, 191
STATUS debugger command, 398
unlocking records, 182, 245, 287
updating records, 289
with CHAIN, 135
writing records, 258

I /0 BUFFER debugger command, 392
%!DENT, 115 to 116
IDENTIFY, 71
Identifying module version, 115
Identity matrix, 21 7
ION, 217
%IF-% THEN-%ELSE-%END %IF, 117 to 118

with RESEQUENCE, 98
IF-THEN-ELSE, 197 to 198

labels in, 2
multi-line format, 6

Immediate mode, 53, 103
IMP, 38

continuation of lines, 6
creation of arrays, 159, 217, 219, 221, 223,

225
data typing, 13, 147
declaration of variables, 26 to 27

%INCLUDE, 119 to 120
with RESEQUENCE, 98

IND qualifier, 92
Indexed files

ALTERNATE KEY clause, 244
BUCKETSIZE clause, 244
CHANGES clause, 244
deleting records in, 157
DUPLICATES clause, 244
finding records in, 174
IND qualifier, 92
MAP clause, 243
opening, 240
PRIMARY KEY clause, 244

lndex-11

Indexed files (Cont.)
restoring data in, 271
retrieving records sequentially in, 191
segmented keys in, 244
updating, 290
writing recOids to, 258

Initialization
in subprograms, 185, 282
of arrays, 21 7
of DEF functions, 151
of DEF* functions, 155
of dynamic arrays, 161
of variables, 29, 147
of variables in COMMON, 142
of variables in MAP, 212
of virtual arrays, 160

INPUT, 199 to 201
INPUT LINE, 202 to 203
Inputting data

ONECHR, 341
with INPUT, 199
with INPUT LINE, 202
with LINPUT, 207

INQUIRE, 72
See also HELP

INSERT editing command, 65
Instance, 264

RECORD, 264
INSTR, 322 to 323

See also POS
INT, 324
Integer

constants, 17
data types, 11
overflow checking, 87, 249
promotion rules, 31
suffix character, 13
variables, 27

INTEGER data type, 11
INTEGER function, 325
INV, 218
Inverting arrays, 218, 308
ITERATE, 204
Iteration

J

of FOR loops, 180
of loops, 204
of UNTIL loops, 288
of WHILE loops, 292

Justifying strings
with LSET, 209
with RSET, 274

lndex-12

K

KEY clauses
ALTERNATE, 240, 244
in FIND, 172
in GET, 190
in RESTORE, 271
PRIMARY, 240, 244, 247
segmented keys, 244

Keywords
data-type, 11
definition of, 3
function of, 3
in RECORD, 264
restrictions, 3
spacing requirements, 4, 4t

KILL, 205

L

L formatting character
in PRINT USING, 256

Labels
defining, 2
format of, 2
function of, 2
referencing, 2
transferring control to, 195, 196, 236, 237
with ITERATE, 204

LEFT$, 326
See also SEC$

Left-justification
PRINT USING format field, 256
with LSET, 209

LEN, 327
Length

label, 2
of STRING data, 12
variable names, 25

%LET, 121
LET debugger command, 393 to 394
LET statement, 206
Letters

lowercase, 10, 58, 64, 66, 256
uppercase, 10, 58, 64, 66, 256

Lexical
constants, 117, 121
expressions, 11 7, 121, 128
functions, 89, 94, 117, 121, 128
operators, 117, 121
order, 8

LF, 24
Libraries

clustering, 90

February 1984

Libraries {Cont.)
disk-resident, SS
memory-resident, 46, 73
RMS, 1001 101t
setting defauits wiih BRLRES, 46
setting defaults with DSKLIB, SS
setting defaults with LIBRARY, 73

LIBRARY command, 73 to 74
BUILD default, 48

LIBRARY qualifier, 92
Line numbers

automatic sequencing, 107
format of, 1
function of, 2
in %INCLUDE file, 98, 119
in object modules, 86, 92
in RESEQUENCE, 98
range of, 1

LINE qualifier, 86, 92, 134
with debugger commands; 387, 388
with ERL, 312

Line terminator, 1, 7, 10
with DATA statements, 143
with INPUT, 200
with INPUT LINE, 203
with LINPUT, 208

Lines
continued, S
deleting, S4
displaying, 7S
editing, S7
elements of, 1
format of, 1 to 8
length of, 1
muiii-siaiernent, 5 to 7
order of, 8, 98
single-statement, 4
terminating, 1, 7, 10

LINPUT, 207 to 208
%LIST, 122
LIST command, 7S to 76
LIST qualifier, 86, 92
Listing file

control of, 7, 88, 114, 122, 123, 124, 12S
creating, 86, 92
%CROSS, 114
CROSS_REFERENCE qualifier, 84, 90
defaults, Sl, 84, 86, 90, 92
included code, 119
%LIST, 122
%NOCROSS, 123
%NOLIST, 124
%PAGE, 12S
%SBTTL, 126

February 1984

Listing file (Cont.)
setting page size, 93
setting width, 94
subtitle, 126
Of TITI C 1 ")7
/0 I I I LL/ I LI

title, 127
version identification, 11 S

LISTNH, 7S
See also LIST

Literal
explicit notation, 21
numeric, 1 S
string, S, 10, 18, 37, 2SS, 2S7

LOAD, 77
with RUN, 103
with SCRATCH, 106

LOC, 328
Local copy, 1 31
Locating records

by KEY, 172, 174, 190, 192
by RECORD number, 172, 190
by RFA, 172, 174, 190, 192
sequentially, 172, 173, 190, 191
with FIND, 171
with GET, 189

LOCK, 78
See also SET

Lock checking
REGARDLESS clause, 174, 192

Locking records, 24S
with FIND, 173, 174, 17S
with GET, 191, 192

LOG, 329
LOG10, 330
Logarithms

common, 330
naturai, 329

Logical expressions, 3 7 to 40
compared with relational, 40
data types in, 37
definition of, 34
evaluation of, 38 to 40
format of, 37
logical operators, 38t
truth tables, 38t
truth tests, 38

Logical name, 4S
Logical operators, 38t
LONG data type, 11
LONG qualifier, 87, 92
Loops

as debugger breakpoints, 383
conditional, 179
exiting, 164

lndex-13

Loops (Cont.)
FOR-NEXT, 179
iteration of, 180, 204, 288, 292
nested FOR-NEXT, 179
unconditional, 179
UNTIL, 288
WHILE, 292

Lowercase letters
in EDIT, 58
in FIND editing command, 64
in PRINT USING, 256
in SUBSTITUTE editing command, 66
processing of, 10

LSET, 209

M

MACHINE_CODE qualifier, 87
MACRO qualifier, 92
MAG, 331
Magnetic tape files

BLOCKSIZE clause, 243
MAGT APE, 332
NOREWIND clause, 243
RESTORE, 271

MAGTAPE, 332 to 333
function codes, 332t
performing functions in VAX-11 BASIC,

333t
MAP clause, 212, 243
MAP DYNAMIC, 213 to 214

with REMAP, 268, 269
MAP qualifier, 93
MAP statement, 210 to 21 2

FILL item formats and storage, 141t
with FIELD, 170
with MAP DYNAMIC, 214
with REMAP, 268

Mapping
dynamic, 169, 213, 268
static, 210

MAR, 334
MAR%, 334
MARGIN, 215

See also NOMARGIN
with PRINT, 251

Margin
width, 215, 232, 251, 334

MAT, 216 to 218
with DET, 308
with FIELD, 170
with NOSETUP, 87

MAT INPUT, 219 to 220
with NOSETUP, 87

lndex-14

MAT LINPUT, 221 to 222
with NOSETUP, 87

MAT PRINT, 223 to 224
with NOSETUP, 87

MAT READ, 225 to 226
with NOSETUP, 87

Matrix, 28
identity, 21 7

Matrix functions
DET, 308
NUM, 337
NUM2, 338

Matrix operations
arithmetic, 217
assigning values, 219, 221, 225
I /O, 337, 338
inversion, 218, 308
printing, 223
redimensioning, 219, 221, 223, 225
scalar multiplication, 218
transposition, 218

Memory
allocation, 386, 391, 392, 401
clearing with SCRATCH, 106
DUMP qualifier, 91
effect of debugger on, 382

Memory-resident libraries
clustering, 90
overriding defaults, 90, 92
setting defaults with BRLRES, 46
setting defaults with LIBRARY, 73

Merging programs, 43
1\110$, 335

See also SEC$
Minus sign (-)

in numeric literal notation, 21
in PRINT USING format field, 255

Mixed-mode expressions, 31 to 34
MODE clause, 246
Modifiable parameters, 131
Modifiers

FOR, 179
IF, 197, 198
UNLESS, 286
UNTIL, 288
WHILE, 292

MOVE, 227 to 229
FILL item formats and storage, 141t
with FIELD, 170
with NOSETUP, 87

Multi-line
DEF, 149, 150
DEF*, 153, 154

February 1984

Multi-statement lines, 5 to 7
backslash in, 5

N

branching to, 6
execution of, 5
format of, 6, 7
implicit continuation, 6
transferring control to, 5

NAME AS, 230
Named constants, 19 to 21

changing, 19
external, 20, 166
internal, 19, 146

Naming
arrays, 29
COMMON areas, 140
constants, 15, 19, 146
DEF functions, 149
DEF* functions, 153
external constants, 20, 166
external functions, 166
external subroutines, 166
external variables, 26, 166
FUNCTION subprograms, 184
functions, 146
internal constants, 19, 146
internal variables, 25
lexical constants, 121
MAP areas, 210
programs, 79, 95
SUB subprograms, 281
subprograms, 130
vaiiables, 145

Nesting
FOR-NEXT loops, 179
IF, 197
SELECT, 277

NEW, 79
NEXT, 231

with FOR, 180
with UNTIL, 288
with WHILE, 292

%NOCROSS, 123
NOECHO, 336

See also ECHO
NOLINE qualifier, 279
%NOLIST, 124
NOMARGIN, 232

See also MARGIN
Nonexecutable DIM, 1 59
Nonexecutable statements, 3, 8

COMMON, 141

February 1984

Nonexecutable statements (Cont.)
DATA, 143
DECLARE, 147
DIM, 159
EXTERNAL, 168
MAP, 211
MAP DYNAMIC, 214
REM, 267
with UNLESS, 286

Nonmodifiable parameters, 131
Nonprinting characters

processing of, 10
using, 10

Nonvirtual DIM, 159
NOREWiND clause, 243, 245, 247
NOSPAN clause, 243
NOT, 38

evaluation of, 41
Notation

E, 16, 16t, 252, 255, 256
explicit literal, 21 to 23
exponential, 16, 252

NUL, 10, 18
NUL$, 217
NUM, 337

after MAT IN PUT, 220
after MAT LINPUT, 221
after MAT READ, 225

NUM$, 339
NUM1$, 340

compared with STR$, 365
NUM2, 338

after MAT INPUT, 220
after MAT LIN PUT, 222
after MAT RE.AD; 226

Numbers
random, 260, 357
sign of, 359

Numbers in E notation, 16t
Numeric constants, 15 to 18
Numeric conversion, 136
Numeric expressions, 30 to 34

format of, 30
promotion rules, 31 to 34
result data types, 32t
results for DECIMAL data, 33t
results for GFLOAT and HFLOAT, 32t

Numeric functions, 304
ABS, 293
ABS%, 294
DECIMAL, 307
FIX, 317
INT, 324
LOG, 329

lndex-15

Numeric functions (Cont.)
LOG10, 330
MAG, 331
RND, 357
SGN, 359
SQR, 362
SWAP%, 368

Numeric literal notation, 21 to 23
Numeric operator precedence, 41 t
Numeric precision

with PRINT, 252
with PRINT USING, 254

Numeric relational expressions
evaluation of, 35
operators, 35t, 35

Numeric string functions
CHR$, 299
COMP%, 300
DECIMAL, 307
DIF$, 309
FORMAT$, 318
INTEGER, 325
NUM$, 339
NUM1$, 340
PLACE$, 342
PROD$, 347
QUO$, 349
REAL, 354
STR$, 365
SUM$, 367
VAL, 377
VAL%, 378

Numeric strings
comparing, 300

0

precision, 309, 342, 347, 349, 367
rounding, 342, 347, 349
rounding and truncation values, 344t
truncating, 342, 347, 349

Object module
creating, 51, 87, 93
default name, 51, 87, 93
line numbers in, 86, 92
loading, 77
version identification, 115

OBJECT qualifier, 87, 93
Object Time System (OTS), 55
Octal radix, 21
ODL file, 48, 81 t

overriding defaults, 93
RMS libraries, 101 t
setting defaults, 80

lndex-16

ODLRMS command, 80 to 81
BUILD default, 48

ODLRMS qualifier, 93
OLD, 82

with RUN, 103
ON ERROR GO BACK, 233

with END, 162
with NOSETUP, 87

ON ERROR GOTO I 234
with END, 162
with NOSETUP, 87

ON ERROR GOTO 0, 233, 235
with END, 162
with NOSETUP, 87

ON-GOSUB-OTHERWISE, 236
with RETURN, 273

ON-GOTO-OTHERWISE, 237
On-line documentation, 69
One-character

input, 341
PRINT USING format field, 256

ONECHR, 341
OPEN, 238 to 247

with STATUS, 363
Opening files, 238 to 247

with USEROPEN clause, 243
Operator precedence, 30, 40, 41t
Operators

arithmetic, 30, 30t
evaluation of, 40
lexical, 117, 121
logical, 38t
numeric operator precedence, 41 t
numeric relational, 35t
precedence of, 30, 40, 41 t
string relational, 37t

OPTION, 248 to 250
OR, 38
Order

lexical, 8
ORGANIZATION clause, 240
OTHERWISE clause, 236, 237
Output

formatting with FORMAT$, 318
formatting with PRINT USING, 254 to 256

Output listing
creating, 86, 92
cross-reference table, 84, 90, 114, 123
default, 51, 84, 90
%LIST, 122
%NOLIST, 124
%PAGE, 125
%SBTTL, 126
setting page size, 93

February 1984

Output listing (Cont.)
setting width, 94
%TITLE, 127

Overflow checking, 87, 249
OVERFLOW quaiifier

DECIMAL, 87
INTEGER, 87

Overlay description file, 80
See also ODL file

Overlaying
COMMON areas, 142
MAP areas, 211

Overriding defaults

p

with BRLRES qualifier, 90
with BUILD, 48
with COMPILE, 51
with DECLARE, 145, 148
with DSKLIB qualifier, 91
with EXTERNAL, 166
with LIBRARY qualifier, 92
with ODLRMS qualifier, 93
with RMSRES qualifier, 93
with RUN, 102

Packed decimal, 11
See also DECIMAL data type

Padding
in string relational expressions, 36
in virtual arrays, 160

%PAGE, 125
PAGE_SIZE qualifier, 93
Parameter passing mechanisms

BASiC-PLUS-2, i 33i
CALL, 131
DEF, 151
DEF*, 155
EXTERNAL, 168
FUNCTION, 185
SUB, 282
VAX-11 BASIC, 132t

Parameters
CALL, 131
DEF, 150, 151
DEF*, 154, 155
EXTERNAL, 167
function, 150, 154
FUNCTION subprograms, 184
modifiable, 131
nonmodifiable, 131
SUB subprograms, 281

Parentheses
in array names, 27

February 1984

Parentheses (Cont.)
in expressions, 30, 40

Percent sign (%)

in DATA statements, 17, 143
: __ r-.. r .r-1 A n r -. A r- '1 A r
Ill UCLL/"\f'\C, I Lt:J, I LtO

in DEF names, 150
in DEF* names, 154
in FUNCTION names, 184
in MAP DYNAMIC variables, 213
in PRINT USING format field, 255
in SUB names, 281
in variable names, 25, 26
suffix character, 13

Period (.)
in PRINT USING format field, 255
in variable names, 25

Pl, 24
PLACE$, 342 to 344

rounding and truncation values, 344t
Plus sign ()

in string concatenation, 34
POS, 345 to 346
Pound sign ()

debugger prompt, 381
in PRINT USING format field, 255

Precedence
numeric operator, 4 lt
operator, 30, 40

Precision
in PRINT, 252
in PRINT USING, 254
NUM$, 339
NUM1 $, 340
of data types, 12
of numeric strings, 309, 342, 347, 349, 367

Predefined constants, 23 to 24
function of, 23

PRIMARY KEY clause, 240, 244, 247
PRINT debugger command, 395
PRINT statement, 251 to 253

with TAB, 371
PRINT USING, 254 to 257
Print zones

in MAT PRINT, 224
in PRINT, 251

Printing
to a terminal, 251
to a terminal-format file, 251

Processing
INPUT data, 200
INPUT LINE data, 203
LINPUT data, 208
multiple record streams, 245
of comments, 10

lndex-17

Processing (Cont.)
of lowercase letters, 10
of nonprinting characters, 10
of statements, 8
of string constants, 18
of string literals, 10
of uppercase letters, 10
records, 189, 258, 289

PROD$, 347 to 348
rounding and truncation values, 344t

Program control statements
END, 162
EXIT, 164
FOR, 179
GOSUB, 195
GOTO, 196
IF, 197
ITERATE, 204
ON-GOSUB, 236
ON-GOTO, 237
RESUME, 272
RETURN, 273
SELECT, 276
SLEEP, 278
STOP, 279
UNTIL, 288
WAIT, 291
WHILE, 292

Program documentation, 8 to 10
Program elements, 1 to 42
Program execution

continuing, 53, 103, 385
initiating with RUN, 102
stopping, 53, 103, 279, 383, 400
suspending, 278
waiting for input, 291

Program input
INPUT, 199
INPUT LINE, 202
LINPUT, 207
waiting for, 291

Program lines
automatic sequencing, 107
deleting, 54
displaying, 75
editing, 57
elements of, 1
format of, 1 to 8
length of, 1
numbering, 1
order of, 8, 98
resequencing, 98
terminating, 1, 7, 10

lndex-18

Programs
compiling, 51
continuing, 53, 103
debugging, 84, 91, 103
deleting, 111
editing, 57
ending, 162
executing, 102
halting, 53, 103, 279
merging, 43
naming, 79
optimizing, 87
renaming, 95
saving, 97, 104
stopping, 53, 103, 279

Promotion rules
data type, 31 to 34
DECIMAL, 32
floating-point, 31
integer, 31

Prompt
after STOP, 279
debugger, 381
INPUT, 199
INPUT LINE, 202
LINPUT, 207
MAT INPUT, 219
MAT LINPUT, 221

PSECT, 139, 210
PUT, 258 to 259

Q

Qualifiers, 83 to 94
abbreviated form, 83
ANSl_STANDARD, 84
AUDIT, 84
BASIC-PLUS-2 command, 90t
BOUNDS_CHECK, 84
BRLRES, 90
BYTE, 84, 90
CHAIN, 90, 134
CLUSTER, 90
CROSS_REFERENCE, 84, 90
DEBUG, 84, 91, 103, 381
DECIMAL_SIZE, 84
DOUBLE, 85, 91
DSKLIB, 91
DUMP, 91
EXTEND, 91
FLAG, 85, 91
GFLOAT, 86
HFLOAT, 86
IND, 92

February 1984

\

Quaiifiers (Cont.)
LIBRARY, 92
LINE, 86, 92, 134, 387, 388
L!ST, 86
LONG, 87, 92
MACHINE_CODE, 87
MACRO, 92
MAP, 93
NOLINE, 279
OBJECT, 87, 93
ODLRMS, 93
OVERFLOW, 87
PAGE_SIZE, 93
REL, 93
RMSRES, 93
ROUND, 87
SEQ, 93
SETUP, 87
SHOW, 88, 120
SINGLE, 88, 94
SYNTAX_CHECK, 88, 94
TRACEBACK, 88
TYPE_DEFAULT, 89, 94
VARIANT, 89, 94, 128
VAX-11 BASIC command, 84t
VIR, 94
WARNINGS, 89
WIDTH, 94
WORD, 89, 94

QUO$, 349 to 350
rounding and truncation values, 344t

Quotation marks
in string literals, 18

R

R formatting character
in PRINT USING, 256

RAD$, 351
Radix

binary, 21
decimal, 21
hexadecimal, 21
in explicit literal notation, 21
octal, 21

Radix-SO, 351
Random numbers, 260, 357
RANDOMIZE, 260

See also RND
Range

of data types, 12
of subscripts, 28

RCTRLC, 352
See also CTRLC

February 1984

RCTRLO, 353
READ, 261 to 262

See also DAT A
with DATA, 1431 144
with NOSETUP, 88

REAL data type, 11
REAL function, 354
Receiving parameters

FUNCTION subprograms, 184
SUB subprograms, 281

Record attributes
MAP clause, 243
RECORDSIZE clause, 242, 243
RECORDTYPE clause, 241

Record buffers
DATA pointers, 271
MAP DYNAMIC pointers, 214, 269
moving data, 227
REMAP pointers, 268, 269
setting size, 243

RECORD clause, 172, 190, 258, 259
Record File Address, 12, 172, 190, 321
Record Management Services, 80

See also RMS
Record pointers

after FIND, 173, 174
after GET, 191, 192
after PUT, 259
after UPDATE, 289
REMAP, 269
RESTORE, 271
WINDOWSIZE clause, 242

RECORD statement, 263 to 266
Records

deieting with DELETE, 157
. deleting with SCRATCH, 275

finding RFA of, 172, 190
locating randomly, 1 7 4
locating sequentially, 173
locating with FIND, 171
locking, 173, 174, 191, 192, 245
processing of, 245
retrieving by KEY, 190, 192
retrieving by RECORD number, 190
retrieving by RFA, 190, 192
retrieving randomly, 192
retrieving sequentially, 190, 191
retrieving with GET, 189
size of, 258
unlocking, 157, 174, 182, 192, 245, 287
writing with PRINT, 251
writing with PUT, 258
writing with UPDATE, 289

RECORDSIZE clause, 212, 242, 258

lndex-19

RECORDTYPE clause
ANY, 241
FORTRAN, 241
LIST, 241
NONE, 241

RECOUNT debugger command, 396
RECOUNT function, 355

after GET, 192
after INPUT, 200
after INPUT LINE, 203
after LINPUT, 208

Recursion
in DEF functions, 151
in DEF* functions, 155
in error handlers, 234
in subprograms, 132, 282

Redimensioning arrays
dynamic, 160
with executable DIM, 159
with MAT statements, 217, 218, 219, 221,

225
REDIRECT debugger command, 397
Referencing labels, 2
REGARDLESS clause

with FIND, 174
with GET, 192

REL qualifier, 93
Relational expressions, 35 to 37

compared with logical, 40
definition of, 34
format of, 3 5
in SELECT, 276, 277
numeric, 35
string, 36
truth tests, 35, 36

Relational operators
numeric, 35t
string, 37t

Relative files
BUCKETSIZE clause, 244
deleting records in, 157
finding records in, 173
opening, 240
record size in, 242
REL qualifier, 93
retrieving records sequentially in, 191
updating, 290
writing records to, 258

REM, 267
in multi-statement lines, 7
multi-line format, 9, 267
transferring control to, 9

REMAP, 268 to 270
FILL item formats and storage, 141 t

lndex-20

REMAP (Cont.)
with MAP DYNAMIC, 2 i 4
with NOSETUP, 88

RENAME, 95 to 96
Renaming

files, 230
programs, 95

REPLACE, 97
with RENAME, 95

RESEQUENCE, 98 to 99
Reserved words, 3
RESET, 271

See also RESTORE
RESTORE, 271
Restoring

data, 271
files, 271

Resu It data types
for DECIMAL data, 33t
GFLOAT and HFLOAT, 32t
mixed-mode expressions, 32t

RESUME, 272
after CTRL/C, 272
to INPUT, 200
to INPUT LINE, 203
to LINPUT, 208
with CTRLC, 302
with END, 162
with ERL, 312
with ERN$, 313
with ERR, 314
with labels, 2
with NOLINE qualifier, 86, 92
with NOSETUP, 88

Retrieving records
randomly by KEY, 190, 192
randomly by RECORD number, 190
randomly by RFA, 190, 192
sequentially, 190, 191
with GET, 189

RETURN, 273
RFA clause, 172, 190
RFA data type

allowable operations, 12
storage of, 1 2

RIGHT$, 356
See also SEC$

Right-justification
PRINT USING format field, 256
with RSET, 274

RMS
files, 238
libraries, 93, 100, 101t
ODL files, 80, 81t

February 1984

RMSRES command; 100 to 101
BUILD default, 48

RMSRES qualifier, 93
RND, 357

See also RAl\JQQtv1fZE
ROUND qualifier, 87
Rounding

controlling with OPTION, 249
controlling with SCALE, 105
DECIMAL values, 87, 249
in numeric strings, 342, 344t, 347, 349
NUM$, 339
with PRINT, 252
with PRINT USING, 255

RSET, 274
RSTS/E SYS calls, 369
RUN, 102 to 103

BASIC-PLUS-2 qualifiers, 90t
DEBUG qualifier, 381

Run-Time Library, 87
RUNNH, 102

See also RUN

s
SAVE, 104

with RENAME, 95
Saving programs

with REPLACE, 97
with SA VE, 104

%SBTIL, 126
SCALE, 105
Scale factor

setting with OPTION, 249
setting with SCALE, 105

SCRATCH, 106, 275
SEG$, 358
Segmented keys, 244
SELECT, 276 to 277

transferring control into, 236, 237
Semicolon (;)

in INPUT, 199
in INPUT LINE, 202
in LINPUT, 207
in MAT PRINT, 224
in PRINT, 251

SEQ qualifier, 93
SEQUENCE, 107
Sequential files

deleting records in, 275
finding records in, 173
NOSPAN clause, 243
opening, 240
record size in, 242

February 1984

Sequential files (Cont.)
retrieving records in, 191
SEQ qualifier, 93
updating, 289
writing records to, 251, 258

SET, 108
BASIC-PLUS-2 qualifiers, 90t
BUILD default, 48
qualifier format, 83
VAX-11 BASIC qualifiers, 84t

Setting defaults
for data types, 13
with BRLRES, 46
with DSKLIB, 55
with LiBRARY, 73
with ODLRMS, 80
with OPTION, 248
with RMS RES, 1 00
with SCALE, 105
with SET, 108

SETUP qualifier, 87
SGN, 359
SHOW, 109 to 110
SHOW qualifier

CDD_DEFINITIONS, 88, 120
ENVIRONMENT, 88
INCLUDE, 88, 120
MAP, 88
OVERRIDE, 88

SI, 24
SIN, 360
Sine, 360
SINGLE data type, 11
SINGLE qualifier, 88, 94
~inolP-linP
~·· ·o·- _

DEF, 149
DEF*, 153
loops, 179, 288, 292
statements, 4

Single-statement lines, 4
Size

of numeric data, 12
of STRING data, 11

SLEEP, 278
so, 24
SP, 24
SPACE$, 361
Spacing in keywords, 4
SQR, 362
SQRT, 362
Square roots, 362
Statement modifiers

FOR, 179
IF, 197, 198

lndex-21

Statement modifiers (Cont.)
UNLESS, 286
UNTIL, 288
WHILE, 292

Statements
backslash separator, 5
block, 162, 164, 179, 197, 264, 277
BP2 compatible, 85
components of, 3
continued, 4, 5
data typing, 14
declarative, 145
declining, 85, 91
empty, 10
executable, 3
execution of, 5
format of, 3
labelling of, 2
multi-statement lines, 5 to 7
nonexecutable, 3, 8, 141, 143, 147, 159,

1 68 I 211 / 21 4 I 2 6 7
order of, 8, 98
processing of, 8
single-line, 4

Static
arrays, 158, 159
mapping, 210
storage, 139, 210, 269

STATUS debugger command, 398 to 399
STATUS function, 363 to 364

VAX-11 BASIC STATUS bits, 364t
STEP clause, 179
STEP debugger command, 400
STOP, 279

See also CONTINUE command
with RUN, 103

Stopping program execution, 53, 279, 383,
400

Storage
allocating with REMAP, 268
COMMON and MAP, 141, 211
dynamic, 213, 268, 269
for arrays, 159
for FILL items, 14 lt, 227, 268
for RECORD structures, 264
for VARIANT fields, 265
in COMMON, 142
in MAP, 211
of data, 12
of DECIMAL data, 11
of RFA dat~, 12
of STRING data, 11
shared, 139, 210
static, 139, 210, 269

lndex-22

STR$, 365
String arithmetic functions

DIF$, 309
PLACE$, 342
PROD$, 347
QUO$, 349
SUM$, 367

String constants, 18 to 19
STRING data type, 11

length, 12
storage of, 11

STRING debugger command, 401
String expressions, 34

relational, 36, 37
String functions, 304

ASCII, 295
EDIT$, 311
INSTR, 322
LEFT$, 326
LEN, 327
MID$, 335
POS, 345
RIGHT$, 356
SEG$, 358
SPACE$, 361
STRING$, 366
TRM$, 376
with NOSETUP, 87
XLATE, 379

String literals, 37
continuing, 5
delimiter, 18
in PRiNT USiNG format fieid, 257
processing of, 10
quotations marks in, 18

String relational expressions
evaluation of, 36
operators, 37t, 37

String variables, 27
formatting storage, 209, 274
in INPUT, 200
in INPUT LINE, 203
in LET, 206
in LINPUT, 208
with NOSETUP, 87

STRING$, 366
Strings

comparing, 36, 300
concatenating, 5, 30, 34, 88
converting, 136
creating, 361, 366
editing, 311, 376
extracting substrings, 326, 335, 356, 358
finding length, 327

February 1984

Strings (Cont.)
finding substrings, 322, 345
justifying with FORMAT$, 318
justifying with LSET, 209
justifying with PRiNT USiNG, 256
justifying with RSET, 274
numeric, 300, 309, 325, 342, 347, 349,

354, 367, 377, 378
suffix character, 13

SUB, 280 to 283
BASIC-PLUS-2 parameter passing

mechanisms, 133t
parameters, 281
VAX-11 BASIC parameter passing

mechanisms, 132t
SUBEND, 284

See also END
SUBEXIT, 285

See also EXIT
Subprograms

calling, 129
declaring, 166
ending, 162, 184, 281
error handling in, 163, 164, 185, 233
exiting, 164
FUNCTION, 183
naming, 130, 281
recursion in, 132, 282
returning from, 273
SUB, 280

Subroutines
external, 1 66
GOSUB, 195
RETURN, 273

Subscripted variables, 27 to 29
format of, 28
range checking, 84, 249
subscript range, 28

Subscripts, 27
range of, 28

SUBSTITUTE editing command, 66 to 67
Substrings

extracting, 326, 335, 356, 358
finding, 322, 345

Suffix characters
integer, 13
string, 13

SUM$, 367
Suspending program execution, 278
SWAP%, 368
SYNTAX_CHECK qualifier, 88, 94
SYS, 369 to 370

VAX-11 BASIC subset, 369t
System command, 49

February 1984

T

TAB, 371
TAN, 372
T~~~~~<- ')/')
I ctl 15c:11l1 J/ L..

Template, 264
TEMPORARY clause, 242
Tensor, 28
Terminal

printing to, 251
Terminal control functions

ECHO, 310
NOECHO, 336
RCTRLO, 353
TAB, 371

Terminal-format files, 244
input from, 199, 202, 207, 219, 221
margin, 215, 232
writing records to, 223, 251

Terminating
automatic sequencing, 107
comment fields, 8
compilation, 113
DATA statements, 143
program lines, 1, 7, 10
REM statements, 9, 267

THEN clause, 197
TIME, 373 to 374

function values, 37 4t
TIME$, 375
% TITLE, 127
TRACE debugger command, 402
TRACEBACK qualifier, 88
Trailing minus sign field

in PRl~H USING format field, 255
Transferring control

into DEF functions, 151, 236, 237
into DEF* functions, 155
into FOR-NEXT loops, 180, 195, 196, 236,

237
into SELECT blocks, 236, 237
into UNTIL loops, 195, 196, 236, 237
into WHILE loops, 195, 196, 236, 237
to a label, 195, 196, 236, 237
to comment fields, 8
to multi-statement lines, 5
to REM, 9
with CALL, 129
wllnTHAIN, 134
with GOSUB, 195
with GOTO, 196
with IF, 197
with ON-GOSUB, 236
with ON-GOTO, 237

lndex-23

Transferring control (Cont.)
with RESUME, 203, 208, 272
with RETURN, 273

Transferring data
with MOVE, 227

Translating character sets, 379
Transposing arrays, 218
Trigonometric functions

ATN, 296
COS, 301
SIN, 360
TAN, 372

TRM$, 376
TRN, 218
Truncation

in numeric strings, 342, 344t, 347, 349
in PRINT USING, 256
with FIX, 31 7

Truth tables, 38t
Truth tests

in logical expressions, 38
in relational expressions, 35
in string relational expressions, 36

TYPE_DEFAUL T qualifier, 89, 94

u
UNBREAK debugger command, 403 to 404
Unconditional branching

with GOSUB, 195
with GOTO, 196

Unconditional loops, 179
Underscore(_)

in PRINT USING format field, 255
in variable names, 25

UNLESS, 286
UNLOCK, 287
UNLOCK EXPLICIT clause, 173, 175, 191,

245
Unlocking records, 245

with FREE, 182
with UNLOCK, 287

UNSAVE, 111
UNTIL clause, 180
UNTIL loops, 231

error handling in, 272
exiting, 164
explicit iteration of, 204
transferring control into, 195, 196, 236, 237

UNTIL statement, 288
UNTRACE debugger command, 405
UPDATE, 289 to 290

with UNLOCK, 287
Updating records, 289

lndex-24

Uppercase letters
in EDIT, 58
in FIND editing command, 64
in PRINT USING, 256
in SUBSTITUTE editing command, 66
processing of, 10

User-defined functions, 149, 153
USEROPEN clause, 240, 243

v
VAL, 377
VAL%, 378
Variable names

in COMMON, 142
in MAP, 211, 212
in MAP DYNAMIC, 213
in REMAP, 268
rules for, 25 to 26

Variables, 25 to 29
assigning values to, 199, 202, 206, 207,

261, 393
declaring, 145
definition of, 25
explicitly declared, 27
external, 166
floating-poinC 26
implicitly declared, 26 to 27
in MOVE, 228
in SUB subprograms, 282
initialization of, 29, 142, 147, 212
integer, 27
loop, i 79
naming, 25 to 26
string, 27, 200, 203, 206, 208
subscripted, 27 to 29

%VARIANT, 128
in %IF, 117
in %LET, 121

Variant, 264
VARIANT clause, 264
VARIANT qualifier, 89, 94, 128
VAX-11 BASIC ST A TUS bits, 364t
VAX-11 BASIC subset of RSTS/E SYS calls,

369t
Vector, 28
Version identification, 115
VIR qualifier, 94
Virtual address

finding, 328
Virtual arrays, 147, 158, 159

initialization of, 29, 160
padding in, 160
with FIELD, 170

February 1984

Virtual arrays (Cont.)
with NOSETUP, 88

Virtual files
record size, 242
ViR qualifiei, 94
with RESTORE, 271

VT, 24

w
WAIT, 291
WARNINGS qualifier, 89
WHILE clause, 180
WHILE loops, 231

error handling in, 272
exiting, 164
explicit iteration of, 204
transferring control into, 195, 196, 236, 237

WHILE statement, 292
Width

margin, 215, 232, 251, 334
of listing file, 94

WIDTH qualifier, 94
WINDOWSIZE clause, 242

February 1984

WORD data type, -11
WORD qualifier, 89, 94
Writing records

x

by RECORD number, 258
sequentiaiiy, 258
with PRINT, 251
with PUT, 258
with UPDATE, 289

XLATE, 379
XOR, 38

z
ZER, 217
Zero

array element, 28, 159, 218, 220, 222, 224,
226, 228

blank-if-zero field, 255
in PRINT USING format field, 255

Zero-fill field
in PRINT USING, 255

lndex-25

HOW TO ORDER ADDITIONAL DOCUMENTATION

I -

I DIRECT TELEPHONE ORDERS l
In Continental USA
and Puerto Rico
call 800-258-1710

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: A&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
A&SG Business Manager

c Io Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

BASIC
Reference Manual

AA I t'.>".>JIA TL('
f'\/"\-1-vv"'t'n- 1 1'

AD-L334A-T1

Note: This form is for document comments only. Digital will use comments submitted on this form at the
company's discretion. If you require a written reply and are eligible to receive one under Software
Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement. _________________________________ _

Did you find errors in this manual? If so, specify the error and the page number. ________ _

Please indicate the type of user/reader that you most nearly represent.

D Assembly language programmer

D Higher-level language programmer

D Occasional programmer (experienced)

D User with little programming experience

D Student programmer

D Other (please spec~y) _____ ~---------------~~~

Name Date __________ _

Organization _________________________________ _

Stree.__ ___________________________________ _

City ___________________ State ______ _ Zip Code
or

Country

I
I
I
I
I
I

-------Do Not Tear - Fold Here and Tape·-------------------------------------'

mnmnomn 111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: BSSG Publications ZK01-3 I J35

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, N.H. 03062

No Postage

Necessary

if Mailed in the

United States

-------Do Not Tear - Fold Here and Tape-------------------------------------

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094.0
	094.1
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168.0
	168.1
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256.0
	256.1
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272.0
	272.1
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	Index-00
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	Index-15
	Index-16
	Index-17
	Index-18
	Index-19
	Index-20
	Index-21
	Index-22
	Index-23
	Index-24
	Index-25
	Index-26
	replyA
	replyB

