T ce 5%6‘7//01 N

January 1981

This manual describes the use of the BASIC-PLUS-2 Compiler on the RSX,
IAS, and VMS operating systems. It includes descriptions of compiler com-
mands, resident libraries, file operations, utilities, and system-specific usage.

BASIC-PLUS-2
RSX/AAS/VMS User’s Guide
Order No. AA-0157C-TC
Including AD-0157C-T1, T2

OPERATING SYSTEM AND VERSION: RSX-11M V3.2
RSX-11M PLUS V1.0
IAS V3
VMS V1.6

SOFTWARE VERSION: BASIC-PLUS-2 V1.6

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754

digital equipment corporation - maynard, massachusetts

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsibility for any errors that
may appear in this document.

The software described in this document is furnished under a license, and
may only be used or copied in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equip-
ment that is not supplied by DIGITAL or its affiliated companies.

Copyright © 1979, 1980, 1981 Digital Equipment Corporation

The postage-paid READER’S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

DEC FOCAL
DECnet IAS
DECsystem-10 MASSBUS
DECSYSTEM-20 PDP
DECtape RSX
DECUS UNIBUS
DIBOL VAX

DIGITAL VMS

Contents

Preface

Page
Chapter 1 Using the BASIC-PLUS-2 Compiler
1.1 Compiler Commands. 0o 1-2
1.1.1 APPEND Command v v v v v v v v v o 1-5
1.1.2 BRLRES Command« . v v v v .. 1-6
1.1.3 BUILD Command 1-7
1.1.4 COMPILE Command« 1-10
1.1.5 DELETE Command 1~12
116 DSKLIBCommand 1-13
1.1.7 EXIT Command. v v v v .. 1-18
1.1.8 IDENTIFY Command« v v v v v v .. 1-14
1.1.8A INQUIRE Command o« o o v v o .. 1-14
1.19 LIBRARY Command. 1-14.1
1.1.10 LISTCommand« .« 1-15
1.1.11 NEWCommand. 1-15
1.1.12 ODLRMS Command. 1-16
1.1.13 OLD Command v v v v v v 1-17
1.1.14 RENAME Command. 1-18
1.1.15 REPLACE Command 1-18
1.1.16 RMSRES Command. 1-18
1.1.17 SAVE Command. 1-19
1.1.18 SCALECommand. 1-20
1.1.19 SEQUENCE Command 1-21
1.120 SHOW Command 1-21
1.1.21 UNSAVE Command 1-22
1.2 Editing, Debugging, and Running Source Programs 1-22
1.2.1 Editing e e e 1-22
1.22 Debugging. e e e e e e e e 1-23
1.2.2.1 BREAK, UNBREAK, and BREAK ON Commands. . . 1-24
1222 STEPCommand 1-25
1.2.2.3 PRINT and LET Commands 1-26
1.2.24 TRACE and UNTRACE Commands 1-27
1225 ERRCommand. 1-27
1226 ERLCommand. 1-27
1.227 ERNCommand. L. . 1-28
1228 EXITCommand v v v v v ... 1-28
1.2.29 RECOUNT Command. 1-28
1.2.2.10 STATUS Command.« 1-28
1.2.2.11 I/O BUFFER Command. 1-29
1.2.2.12 STRINGCommand. 1-29
1.2.2.13 FREECommand v« 1-29
1.2.2.14 CORE Command v v v v e v v v v v 1-29
1.2.3 Running the Program 1-29

i

Chapter 2 Memory Resident Libraries

2.1
2.2

BASIC2 Resident Library 2-1
BASIC-PLUS-2 Object Libraries. 2-2
2.2.1 BASIC2 Object Library 2-2

2.2.2 BASRMS Object Library. 2-2

Chapter 3 Files

w

3.1

3.2

3.3

3.4

Introduction to BASIC-PLUS-2FILES 3-1
3.1.1 Native File Organizations 3-2
3.1.2 RMS File Organizations 3-2
3.1.2.1 Terminal-Format Files 3-2
3122 BlockI/OFiles 3-2
3.1.2.3 Virtual Array Files 3-2
3.1.2.4 Sequential Files. 3-2
3125 RelativeFiles. 3-2
3126 IndexedFiles 3-2
3.1.3 Record Format Types 3-3
3.1.4 Opening a File (OPEN Statement) 3-4
3.15 FileOperations 3-8
3.1.5.1 Completing File I/O (CLOSE Statement). 3-8
3.1.5.2 Renaming Files (NAME AS Statement) 3-8
3.1.5.3 Deleting a File (KILL Statement) 3-9
3.1.5.4 'Truncating Records (SCRATCH Statement) 3-9
3.1.5.5 Restoring Files (RESTORE # Statement). 3-10
Terminal-Format Files 3-10
3.2.1 Opening a Terminal-Format File 3-10
3.2.2 Record Operations 3-11
3.2.2.1 Writing Records to the File (PRINT # and PRINT # USING) 3-11
32211 PRINTH. o v it 3-11
3.2.21.2 PRINT#USING. 3-11
3.2.2.2 Reading Records fromthe File. 3-11
Block JOTFleS o o oo oo e 3-13
331 OpeningaBlock /OFile. 3-13
3.3.2 Record Operations 3-14
3.3.2.1 Writing Data to the File (PUT) 3-14
3.3.2.2 Reading Data from the File (GET). 3-14
Virtual Array Files. o 3-14
3.41 Opening a Virtual Array File 3-14
3.4.2 Dimensioning the Array (DIM # Statement). 3-15
3.43 Record Operations 3-16
3.43.1 Writing DatatotheFile. 3-16
3.4.3.1.1 Assigning Single Array Elements (LET) 3-17
3.4.3.1.2 Justifying Array Elements (LSET and RSET) . 3-17
3.4.3.1.3 Assigning Values to All or Part of an Array . . 3-17

3.5

3.6

3.7

3.4.3.2 Reading Data fromtheFile 3-18
3.4.3.2.1 Reading Single Array Elements (LET Statement)3-18

3.4.3.2.2 Reading All or Part of an Array (Loops) 3-18

3.4.4 Using Multiple Arrays 3-19
3.4.5 Accessing Virtual Arrays Across Subprograms 3-19
RMS Sequential Files, .. 3-20
3.,56.1 Opening an RMS Sequential File. 3-20
3.5.2 Record Operations 3-21
3.5.2.1 Writing Records to the File (PUT). 3-21

3.5.2.2 Locating Records in the File (FIND) 3-22

3.5.2.3 Reading Records from the File (GET) 3-22

3.5.2.4 Replacing Records in the File (UPDATE) 3-23

3.5.3 Stream Format Records in Sequential Files 3-23
3.5.3.1 Writing Records to a Stream Format File. 3-24

3.5.3.2 Reading Records from a Stream Format File 3-25
35321 GET. 3-25

35322 INPUT. 3-25

3.56.3.2.3 INPUT LINE and LINPUT. 3-26

3.5.3.3 Optimizing Stream Format Record Operations 3-27

3.5.3.4 Stream Format File Compatibility 3-27

3.5.4 Truncating Sequential Files (SCRATCH) 3-27
RMS Relative Files 3-28
3.6.1 Opening an RMS Relative File 3-28
3.6.2 Record Operations 3-29
3.6.2.1 Writing Records to the File (PUT) 3-29

3.6.2.2 Locating Records in the File (FIND) 3-30

3.6.2.3 Reading Records from the File (GET) 3-30

3.6.2.4 Replacing Records in the File (UPDATE) 3-392

3.6.2.5 Deleting Records from the File (DELETE) 3-392

3.6.2.6 Locking Buckets e e e e e e e 3-33

RMS Indexed Files 3-33
3.71 Opening an RMS Indexed File 3-33
3.7.2 Creating and Using Index Keys. 3-34
3.7.2.1 Assigning Key Names 3-34

3.7.2.2 Creating Data Fields MAP). 3-35

3.7.3 Record Operations 3-35
3.7.3.1 Writing Records to the File (PUT). 3-35

3.7.3.2 Locating Records in the File (FIND) 3-36

3.7.3.3 Reading Records from the File (GET) 3-37

3.7.3.4 Replacing Records in the File (UPDATE) 3-39

3.7.3.,56 Deleting Records from the File (DELETE) 3-39

3.7.3.6 Locking Buckets L. 3-39

3.7.4 Restoring an Indexed File (RESTORE) 3-40

vi

3.8

3.9

3.10

3.11

Buffer Control and File Optimization. 3-40

3.8.1 OPEN Statement Keywords 3-40
3.8.1.1 Blocksize.o 3-40

3.8.1.2 Bucketsize oo 3-41

3.8.2 Statically Allocating Buffer Space (MAP) 3-45
3.8.2.1 Single MAP Statements. 3-46

3.8.2.2 Multiple MAP Statements. 3-47

3823 FILLItems. 3-47

3.8.3 Dynamically Allocating Buffers (RECORDSIZE). 3-49
384 RecordBlocking 0. 3-50
3.84.1 MOVE Statement. 3-50

3.8.4.2 FIELD Statement. 3-52

3.8.4.3 Writing Blocked Records 3-53

3.8.4.4 Reading Blocked Records 3-54

3.8.5 Mixing MAP and MOVE Statements 3-55
3.8.6 MAP Statements vs. FIELD and MOVE 3-56
Advanced File Operations 3-56
39.1 OPEN Statement Keywords 3-56
39.1.1 WINDOWSIZE. 3-57

3.9.1.2 TEMPORARY 3-57

3.9.13 FILESIZE 3-57

39.1.4 SPAN 3-58

3.9.1.5 CONTIGUOUS. 3-58

39.16 CONNECT. 3-58

3.9.1.7 UNDEFINED. 3-58

392 FileSharing. e 3-569
Memory Allocation. o oL 3-61
3.10.1 I/O Allocation 3-62
3.10.1.1 Record Buffer. e 3-62
3.10.1.2 DeviceBuffer. 3-62
3.10.1.3 Control Blocks 3-63
3.10.1.4 RMS Control Structures. 3-64
3.10.1.5 Miscellaneous Allocations 3-64

3.10.2 Order of Memory Allocation 3-64
3.10.3 FIELD Statements. v v v v v 3-64
Magnetic Tape Operations 3-64
3.11.1 RMS File-Structured Magnetic Tapes. 3-64
3.11.1.1 Opening an RMS Magrietic Tape for OUTPUT. 3-65

3.11.1.2 Opening an RMS Magnetic Tape for INPUT 3-65

3.11.1.3 Positioning an RMS Magnetic Tape 3-65
3.11.1.4 Record Operations 3-66
3.11.1.4.1 Writing Records to the File (PUT). 3-66

3.11.1.4.2 Reading Records from the File (GET) 3-66

3.11.1.5 Record Blocking. 3-67

3.11.1.6 Closing an RMS Magnetic Tape File (CLOSE) 3-67

3.11.1.7 OPEN Statement Keywords 3-67
3.11.1.71 RECORDSIZE 3-67

3.11.1.72 BLOCKSIZE. 3-68

3.11.1.7.3 NOREWIND. 3-68

3.11.2 Native Mode Magnetic Tapes 3-68
3.11.2.1 Opening a Native Mode Tape FOR OUTPUT 3-68

3.11.2.2 Opening a Native Mode Tape FOR INPUT. 3-69

3.11.23 MODE Values 3-69

3.11.2.4 Positioning the Tape (MAGTAPE Function) 3-69
3.11.2.4.1 Off-Line (Rewind and Off-Line) Function . . . 3-70

3.11.2.4.2 WRITE End-of-File (EOF) Function. 3-70

3.11.2.43 Rewind Function 3-70

3.11.2.44 Skip Record Function. 3-71

3.11.2.4.5 Backspace Function 3-71

3.11.2.4.6 Set Density and Parity Function 3-1

3.11.2.4.7 Tape Status Function. P 3-72

3.11.2.5 Record Operations 3-73
3.11.2.5.1 Writing Records to the File (PUT). 3-73

3.11.2.5.2 Reading Records from the File (GET) 3-73

3.11.2.6 Closing a Native Mode Magnetic Tape. 3-173

3.12 File Related Functions 3-74
3121 STATUS Function. 3-74
3122 COUNTC Clause v v v v v v v e e e e e 3-75
3.12.3 RECOUNT Function. 3-75
3124 CCPOS Function v ... 3-76
3.125 FSP$ Function. 3-77
3.12.6 FSS$ Function. o 3-78
3127 CVT Functions 3-82

Chapter 4 Program Segmentation

4.1 Subprogramming Lo 4-1
41.1 BASIC to BASIC Subprogramming 41
4111 Calling a BASIC Subprogram 4-2
41.12 Passing Data to a BASIC Subprogram 4-4
41.1.21 Passing Array Elements and Arrays4-6
41122 Passing Virtual Arrays. 4-8
4113 SharingData, 49
41131 COMMONsand MAPs. 49

41132 Files. C.. . 4413

4114 Functions, 4-15

4115 DATA and READ Statements 4-16

4116 HandlingErrors. 4-17

4117 BuildingtheTask 4-18

vii

4.2

4.1.2 BASIC to MACRO Subprogramming. 4-22

4121 Calling a MACRO Subprogram 4-22
4.1.22 Passing Parameters 4-24
4.1.2.3 Sharing Data: COMMON and MAP 4-32
4124 BuildingtheTask 4-36
4125 HandlingErrors. 4-38
4.1.3 BASIC to COBOL Subprogramming 4-39
Chaining 4-40

Chapter 5 BASIC-PLUS-2 Utilities

Chapter 6

viii

5.1

5.2

5.3

Translator. e 5-1
5.1.1 Using the Translator. 5-2
5.1.1.1 Calling the Translator. 5-2
5.1.1.2 Specifying Variable Names 5-2
5.1.1.3 Translator Sample Run 5-3
5.1.2 Translation of BASIC Program Elements 5-6
5.1.2.1 Program Elements Translated to BASIC-PLUS-2. 5-6
5.1.2.2 Program Elements Not Requiring Translation. 5-9
5.1.3 Translator Limitations 5-9
5.1.3.1 Incomplete Translations. 5-9
5.1.3.2 Unresolved Problems in Translation 5-9
5.1.3.3 Incompatible BASIC-PLUS Statements 5-10
5.1.3.4 System Incompatibilities 5-10
5.1.4 Translator Error Messages « <« v v « v v« o o .. 5-11
Resequencer. o000 5-12
5.2.1 Invoking the Resequence Utility 5-13
5.2.2 Running the Resequencer. 5-13
5.2.2.1 Resequence Utility Dialogue 5-13
5.2.2.2 Command File Input to Resequencer Dialogue 5-14
5.2.3 Error Messages o o0t e e e e e 5-15
Cross Reference Program 5-16
5.3.1 Invoking B2XREF o o e 5-16
532 Running B2XREF 5-17
533 B2XREF OQutput. o 5-19
534 B2XREF Sample Run 5-19

BASIC-PLUS-2 on RSX-11M

6.1
6.2

Invoking the Compiler 0oL 6-1
BASIC-PLUS-2 Statements « v v v v v v v v v v 6-1
6.2.1 CHAIN Statement. v v v v v v .. 6-1
6.2.2 NAME AS Statement 6-2
6.2.3 SLEEP Statement. oo 6-2

Chapter 7 BASIC-PLUS-2 on IAS

7.1 Invoking the Compiler
7.2 BASIC-PLUS-2 Statements
7.21 CHAIN Statement.
7.22 NAME AS Statement
7.2.3 SLEEP Statement.
7.3 Restrictions e
731 CTRL/C Trapping
732 IASBatchStream
7.3.3 Post Mortem Dumps.

Chapter 8 BASIC-PLUS-2 on VMS (Compatibility Mode)

8.1 Invoking the Compiler
8.2 BASIC-PLUS-2 Statements
8.2.1 CHAIN Statement.
8.2.2 NAME AS Statement
8.2.3 SLEEP Statement.
8.24 KILL Statement.
8.3 Compiler Commands.
84 Restrictions
8.4.1 Invalid Compiler Commands
842 FileSharing.

Chapter 9 BASIC-PLUS-2 on RSX~-11M PLUS

9.1 Invoking the Compiler
9.2 BASIC-PLUS-2 Statements

9.2.1 NAME AS Statement
9.2.2 SLEEP Statement.

9.3 Restrictions

Chapter 10 BASIC-PLUS-2 on TRAX

10.1 TRAX Environments

10.1.1 Application Environment
10.1.2 Support Environment

10.2 Invoking the Compiler
10.3 BASIC-PLUS-2 Statements.

10.3.1 CHAIN Statement.
10.3.2 NAME AS Statement
10.3.3 SLEEP Statement.

......

Cix

10.4 Restrictions « « v v v i e e e e e e e e e e .. 104

10.4.1 Compiler Commands 104
10.4.2 Task-building 104
10.4.3 TRANSLATOR Utility 104
Appendix A BASIC-PLUS-2 Language Elements
Al Program Elements.00 000 A-1
A2 Commands e e e e e e e e e e e A-3
A3 Statements e e e e e e e e e e e e e e e A-4
A4 Functions L .00 e e e e e e e e e e e e e A-20
Appendix B Compile-Time Error Messages
Appendix C RUN-Time Error Messages
C.1 Common RUN-TIME Errors. C-1
C.2 Debugging Procedures and Error Messages C-18
C.2.1 Debugging Procedures C-18
C.2.2 Error Messages v v v v v v v i e e e e e e e C-19
Appendix D ASCII Codes and Data Representation
D.1 ASCII Character Codes. v v v v v v i D-1
D.2 RADIX-50 Character Set. D-4
D.3 Integer Format, D-7
D.4 Floating-Point Formats. D-7
D.4.1 Real Format (2-Word Floating-Point) D-8
D.4.2 Double-Precision Format (4-Word Floating-Point) D-8
D.5 String and Array Format. D-9
D.5.1 String Format oo D-9
D.5.2 Array Format Word D-9
D.5.3 Array Descriptor Word D-11
Appendix E Reserved Words in BASIC-PLUS-2
Appendix F Program and Subprogram Coding Conventions
F.1 Program and Subprogram Organization and Documentation F-1
F.2 Sample Program Coding Template F-4
Figures
3-1 Memory Allocation 3-61
3-2 Allocation of I/O Buffers and String Space. 3-62
3-3 Order of Memory Allocation. 3-63
4-1 Passing Array Elements and Arrays to BASIC Subprograms. 4-7
4-2 Sharing Datain COMMONs. 4-13

Tables

4-3

45
46

47

48

49

410
411
D-1
D-2
D-3
D4
D-5
D-6
D-7

[
Mo

>

[ITTI
Nelie -BEN B rINv)]

C».')OJCTJC»JHH
B =

|

}
- W

TEEEELLLY
— - = O 00 3 (o)
HP—‘O *

wlwNwlwl- gl g
-lkoomrl—twwv—ﬂ

Sharing Datain Files, 4-14

Tree Figure Representing the Overlay Structure. 4-20
Nonoverlay and Overlay Memory Requirements 4-20
Argument List Format 4-25
CALL BY REF with MACRO Subprogram. 4-926
CALL Statement with MACRO Subprograms 4-30
MAP Statement with MACRO Subprogram 4-32
MACRO Code for MAP Statement. 4-33
Using the CHAIN Statement 4-40
Integer Formato o D-7
Real Format (2-Word Floating Point) D-8
Double Precision Format D-8
Dynamic String Format D-9
Format of Arrays in Memory e e e D-9
Format of Virtual Arrays D-10
Dynamic String Array Pointers D-10
BASIC-PLUS-2 Commands 1-2
BASIC-PLUS-2 BUILD and COMPILE Switches 1-4
BUILD Switches. 1-8
BASICODL Values 1-9
COMPILE Switches 1-12
BREAK Command Formats 1-24
UNBREAK Command Formats. 1-25
Command Sequence 1-31
System Differences and Program Execution 1-32
File Access Specifications 3-6
Terminal-Format File Input Statements. 3-12
Valid Stream Format Record Line Terminators . . : 3-24
Relative File Default Bucket Size. 3-43
Indexed File Default Bucket Size. 3-44
FILL Item Formats, Representations, and Allocations 3-48
File Sharing. 3-59
Magnetic Tape Status Word L. 312
File Name String: Flag Word Bytes 1-30 3-78
File Name String: Scan FlagWord 1 3-79
File Name String: Scan FlagWord 2 3-80
Parameter Passing with CALL and CALLBYREF 4-29
Resequence Commands. 5-14
Arithmetic Operators. A-25
Logical Operators e A-26
Relational Operators. e e e e e e e e e e e A-26
ASCH Codes.« s, D-1
RADIX-50 Character Set.D-s5
ASCII/RADIX-50 Equivalents D-6

Array Descriptor Word e e D-11

Commercial Engineering Publications typeset this manual using DIGITAL’s
TMS-11 Text Management System.

157ALL

xi

Preface

Document Objective

The BASIC-PLUS-2 RSX/IAS/VMS User’s Guide describes how to use
the BASIC-PLUS-2 Language Processor on the following operating
systems:

RSX-11M V3.2

RSX-11M PLUS V1.0

IAS V3

VMS V1.6

Intended Audience

This manual is not a tutorial. You should be familiar with the RSX/IAS
operating system and the BASIC-PLUS-2 language before reading the
User’s Guide.

Document Structure

Chapters 6 through 10 describe system-specific usage of BASIC-PLUS-2.
Read the chapter pertaining to your operating system before you read
Chapters 1 through 5.

Chapter 1 describes the BASIC-PLUS-2 Compiler, compiler com-
mands, command formats, and the building of programs for
execution as task images.

Chapter 2 describes the BASIC-PLUS-2 memory resident library.

Chapter 3 explains device specific (RSX) and Record Management
Services (RMS) file handling.

Chapter 4 = explains subprogram calling conventions and linkage.

Chapter 5 describes the BASIC-PLUS-2 utilities: the Translator, Rese-
quencer, and Cross-reference program.

Chapter 6 describes system-specific usage of BASIC-PLUS-2 on RSX.
Chapter 7 describes system-specific usage of BASIC-PLUS-2 on IAS.

X1l

Chapter 8

Chapter 9

Chapter 10

describes system-specific usage of BASIC-PLUS-2 on VMS
(Compatibility Mode).

describes system-specific usage of BASIC-PLUS-2 on
RSX-11M PLUS.

describes system-specific usage of BASIC-PLUS-2 on
TRAX.

The manual also contains six appendices:

Appendix A

Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

summarizes BASIC-PLUS-2 commands, statements, func-
tions, and operators.

lists compile-time error messages.

lists run-time error messages.

summarizes data formatting and character representation.
lists reserved keywords.

is a coding template for BASIC programs.

Associated Documents

Users unfamiliar with RSX should read the RSX System documentation.
Those unfamiliar with BASIC-PLUS-2 should read the PDP-11
BASIC-PLUS-2 Language Reference Manual, which explains language ele-
ments, commands, statements and functions.

Conventions

xiv

This manual uses the following conventions:

RET,

A

color

[brackets]

{braces}

represents a carriage return/line feed.

(circumflex) represents a control character. For example, "C
represents pressing the keyboard “Control” character and the
letter C simultaneously. Depending on the context, the circum-
flex could also indicate exponentiation.

indicates information that you must type into sample
programs.

enclose an optional portion of a general format. When they
enclose vertically stacked entries, brackets indicate that you

can select one of the enclosed elements.

enclose a mandatory portion of a general format. When they

“enclose vertically stacked entries, braces indicate that you

must choose one of the enclosed elements.

Chapter 1 |
Using the BASIC-PLUS-2 Compiler

The RSX family of operating systems supports a BASIC-PLUS-2 language
processor. The processor contains a compiler and a memory-resident
library/disk library combination. This chapter describes the BASIC-PLUS-2
compiler, commands and source line input to the compiler, program editing,
and debugging aids. Chapter 2 explains the memory-resident library.

NOTE

Throughout this manual, ‘“‘BASIC’’ refers to
“BASIC—PLUS—Q” unless otherwise indicated.

The BASIC-PLUS-2 Combpiler:

® Checks each program line for syntax errors and returns error messages.

¢ Generates linkable object modules from your source programs. You then
task build these modules. Task building is described in the RSX-11M Task
Builder Reference Manual.

To invoke the compiler, type:

RUN $BASICZ

Depending on installation options, you can also use the short form “BP2.” An
identification line and a prompt then appear on your terminal, and the com-
piler awaits your input. If this command does not work, ask the system mana-
ger how your system invokes BASIC-PLUS-2.

Input to the BASIC-PLUS-2 Compiler can be a command or a source pro-
gram line. Section 1.1 describes BASIC commands. Section 1.2 describes
BASIC source programs.

1-1

1.1 Compiler Commands

1-2

BASIC-PLUS-2 supports the commands listed in Tables 1-1 and 1-2. BASIC
returns the error message “?What?’’ for all other commands. Note that com-
mands and their arguments have no line numbers. “Filespec” refers to the
standard RSX file specification. File specifications have the format:

dev:[group,member|filename.ext;version

where:

dev:

group,member

is the device designator. Use two ASCII characters
optionally followed by a one- or two-digit octal unit
number. The default is SYO:.

is the octal group number and member number asso-
ciated with the user file directory (UFD). The default
is the current account.

filename is a one- to nine-character file name. The default is
NONAME.

.ext is a one- to three-character file extension. The default
is .B2S.

;version is an octal number indicating the generation number
of the file. The default is the most recent version of
the file.

Table 1-1: BASIC-PLUS-2 Commands
Command Function

APPEND Merges the specified program with the program currently in memory.

BRLRES Enables you to specify a resident library to be linked to your program during
task building.

BUILD Creates an indirect command file and an overlay description language file to
specify input to the task builder. See Table 1-2 for BUILD command
options.

COMPILE Converts a BASIC source program into an object module with a default
extension of OBJ. See Table 1-2 for COMPILE command options.

DELETE Ereses a specified line or lines from a BASIC source program.

' DSKLIB Enables you to select BASIC2 or your own disk library to link to your
program during task building.

EXIT Clears memory and returns control to the operating system.

LIBRARY Enables you to select a BASIC-PLUS-2 memory resident library to be
linked to your program. ' '

IDENTIFY Causes BASIC-PLUS-2 to print an identification message on terminal.

LIST Prints a copy of the current program or specified lines on the terminal.

(continued on next page)

Using the BASIC-PLUS-2 Compiler

Table 1-1: BASIC-PLUS-2 Commands (Cont.)
Command Function

LOCK/sw Allows you to specify default switches (sw) for later commands. These
switches are for:
¢ Task extend size
* Scale factor
¢ Precision
¢ MAP/NOMAP
¢ DUMP/NODUMP
e CHAIN/NOCHAIN
¢ DEBUG/NODEBUG
¢ Qutput type
¢ File organizations

NEW Clears memory for the creation of a new program.

ODLRMS Enables you to select an RMS-11 ODL file when you build the program.

OLD Loads a specified program into memory.

RENAME Changes the name of the program currently in memory.

REPLACE Stores a new program in place of an old one of the same name.

RMSRES Enables you to specify the RMS-11 resident library that will provide code
for RMS-11 file and record operations.

SAVE Copies a source program from memory to a specified device.

SCALE Controls the scale factor for double-precision (4-word) floating-point
format.

SEQUENCE | Enters program line numbers beginning at a number you specify. You can
also specify the increments between line numbers.

SHOW Prints the current compiler defaults on your terminal.

UNSAVE | Deletes a specified file.

All switches in Tables 1-1 and 1-2 have two forms: /sw and /NOsw. You can
shorten these commands and switches to a minimum of three letters each: for
example, COM/DEB and COM/NODEB.

You can use the commands listed in Tables 1-1 and 1-2 by typing them at
your terminal, or you can include them in an indirect command file you
create. An indirect command file allows you to execute a series of commands
with a single command file. The file specification format is:

@filename.CMD

Using the BASIC-PLUS-2 Compiler 1-3

Table 1-2: BASIC-PLUS-2 BUILD and COMPILE Switches

Function

BUILD/ODLRMS:filespeé
BUILD/REL
BUILD/RMSRES:filespec
BUILD/SEQ

BUILD/VIR
COMPILE/DEBUG
COMPILE/DOUBLE
COMPILE/IJiN E
COMPILE/MACRO

COMPILE/OBJECT

Command/switch

BUILD/BRLRES:filespec Enables you to specify a resident library to be linked to
your program during task building.

BUILD/DSKLIB:filespec Enables you to select BASIC2, or your own disk library
to link to your program during task building.

BUILD/DUMP Instructs the operating system to generate a binary
dump of memory contents in the event of an abnormal
exit from your program.

BUILD/EXTEND:n Increases run-time program storage by a minimum of n
words.

BUILD/LIBR:filespec Allows you to select the memory resident library to link
to the executable file image.

BUILD/IND Links in the code necessary to use RMS-11 indexed
files.

BUILD/MAP Causes the task builder to create a memory allocation

map file with a default extension of .MAP.

Allows you to select an RMS-11 ODL file when you
build the program.

Links in the code necessary to use RMS-11 relative
files.

Instructs the task builder to link your program to the
specified RMS-11 resident library.

Links in the code necessary to use RMS-11 sequential
files.

Links in the code necessary for virtual and block 1I/0
files.

Converts a BASIC source program to object code and
enables you to use the debugging aid.

Converts a BASIC program to object code and enables
you to use the double-precision math package.

Converts a BASIC source program to object code and
retains line information.

Converts a BASIC source program into a MACRO
source file with a default extension of .MAC.

Converts a BASIC source program into an object mod-
ule with a default extension of .0BJ.

For example, if you create a file called COMP1.CMD that contains these

commands: -

OLD mMOD1
COM/MAC
OLD mMODZ2
COmM

OLD MOD3
COM/DEB

1-4 Using the BASIC-PLUS-2 Compiler

the BASIC Compiler creates MOD1.MAC, MOD2.0BJ, and MOD3.0BJ;
MOD3.0BJ includes the debugging aid.

A switch in an indirect command file affects its corresponding command only.
There are four ways to specify switches. In their order of precedence, they are:

1. Switches specified inside individual command file commands (for exam-
ple, COM/MAC). These switches operate only when executing the indi-
rect command file.

These override:

2. Switches specified in a LOCK command inside a command file. These
remain in force until you: (1) exit from BASIC-PLUS-2, (2) specify an-
other LOCK, or (3) finish processing the command file.

These override:

3. Switches specified in command file specifications outside a command file
(for example, @file/sw). These switches operate only when executing the
indirect command file.

These override:

4. Switches specified in a LOCK command outside the command file.
Switches set by LOCK remain in force until you exit from
BASIC-PLUS-2 or specify another LOCK.

NOTE

Switches set outside the command (.CMD) file are global; us-
ing them saves time when you must specify options for files
containing many commands. However, make sure these
switches match those you specify inside the command file, or
they will be overridden.

1.1.1 APPEND Command

The APPEND command (APP) merges an existing BASIC source program
with a program currently in memory. It does not change the name of the
program in memory. To use APPEND, type:

APPEND filespec

where:

filespec is the file specification of the program to be appended.

The compiler opens the specified source program as secondary input and
reads it into memory. It then adds the contents to the current program, based
on line number order. If both programs contain identical line numbers, the
appended program line replaces the current program line.

If you type APPEND without a filespec, the compiler prompts:

APPEND FILE NAME-

Using the BASIC-PLUS-2 Compiler 1-5

1-6

and awaits the name of the program you want to merge. If you type a carriage
return, the compiler searches for a source program called NONAME.B2S. If
no program is found, BASIC prints:

?Can‘t find file or account

If both programs are on the current system disk, one of them must be brought
into memory before giving the APPEND command. You do this with the OLD
command.

In this example, two programs, named AP1 and AP2, are on disk:

Program AP1 Program AP2
10 LET B=5 35 LET D=A"C
20 LET C=2 40 PRINT AD
30 LET A=B"C

40 PRINT A

a0 END

An OLD command brings program AP1 into memory and sets the program
name. An APPEND command merges AP1 with AP2, and the output is:

OLD AP1L RET

BASICZ

APPEND AP2 @

BASICZ
LISTNH G
10 LET B=5

20 LET C=2
30 LET A=B"C
33 LET D=A"C
40 PRINT A3D
30 END

The name of the program remains AP1. Line 40 of the appended program
replaces line 40 of the program in memory; line 35 is merged sequentially.

1.1.2 BRLRES Command

The BASIC shared Resident Library (BRL) command enables the compiler to
generate the proper task builder commands to link your program to a resident

“library. You can access the distributed BASIC2 memory resident library with

either the BRLRES or LIBR commands.
To link to a resident library, type:

BRLRES {gs(e):;\l I};Iame}

Using the BASIC-PLUS-2 Compiler

where:

User Name is your own resident library. Only experienced pro-
grammers should create resident libraries.

NONE is an option of no BASIC-PLUS-2 resident library.

If you enter BRLRES without the file specification, BASIC prompts for one. If
none is supplied, BASIC retains the current default value.

Enter BRLRES before BUILD. The command remains in effect until: (1) you
give a new library command, or (2) you exit from the compiler, at which time
the system returns to the original default value. You can override BRLRES
with a switch added to the BUILD command. This new value remains in
effect for one BUILD only, however. The system then returns to the previous
default value.

If a resident library you select is not available, the task bu1lder returns an
error message. Your system manager can prov1de information about the resi-
dent libraries available to you.

1.1.3 BUILD Command

The BUILD (BUI) command generates a command (CMD) and an overlay
description language (ODL) file for the specified program. The command file
is a set of instructions for the task builder. The command file takes the name
of the main program and a default extension of .CMD. The ODL file specifies
how segments of the task-built program will overlay when you run it. The
BUILD command has the format:

BUILD MAIN [,SUBL, SUB2,...][/sw]

where:

MAIN ‘represents the name of an object module (a previously
compiled program).

SUBI, SUB2 represent the names of one or more previously compiled
subprograms. Separate these names with commas.

[sw is one or more BUILD command switches.

NOTE

The command line must fit on a single, 80-character line.

In addition to object module names and BUILD switches, BUILD accepts
defaults from previously specified BRLRES, DSKLIB, LIBR, ODLRMS, or
RMSRES commands.

A BUILD switch permits special operations on object modules at task build-
ing; for example, RMS I/O or linking to libraries. You can use any combina-
tion of these switches on the command line, depending on the content of the
- modules. Table 1-3 summarizes BUILD Sw1tches

Using the BASIC—PLUS—2 Compiler 1-7

1-8

Table 1-3: BUILD Switches

Command/switch

Function

/BRLRES:filespec

/DSKLIB:filespec

/DUMP

/EXTEND:n

/LIBR:filespec

/IND

/MAP
/ODLRMS:filespec

/REL

/RMSRES:filespec

/SEQ

/VIR

Enables you to specify your own resident library to be linked to
your program at task building.

Enables you to select BASIC2 or your own disk library to link to
your program at task building.

Instructs the operating system to generate a dump of memory con-
tents if there is an abnormal exit from your program.

Increases the program’s storage space by a minimum of n words,
where n is rounded up to the nearest 32 word boundary. The maxi-
mum allowable program space is 32K words.

Enables you to select the memory resident library to link to the
executable file image.

Links in the code needed for indexed file operations. This switch
sets automatically when you compile a program containing an or-
ganization INDEXED clause in an OPEN statement.

Generates a memory allocation map of the resulting task.

Enables you to select an RMS of user-created ODL file when build-
ing your program.

Links in the code needed for relative file operations. This switch
sets automatically when you compile a program containing an or-
ganization RELATIVE clause in an OPEN statement.

Allows you to specify an RMS resident library to link to your
program to provide code for RMS-11 record and file operations.

Links in the RMS-11 code needed for sequential file operations.
This switch sets automatically when you compile a program con-
taining an organization SEQUENTIAL clause in an OPEN
statement.

Links in the RMS-11 code needed for virtual array and block 1/0
file operations. This switch is set automatically when you compile
a program containing an organization VIRTUAL clause in the
OPEN statement.

BUILD generates CMD and ODL files using the name of the main object
module. For example: '

BUILD MAIN, SUB1, SUBZ2

creates two filess—MAIN.CMD and MAIN.ODL. By specifying the indirect
command file (MAIN.CMD) to the task builder, you create: (1) an executable

~ task image file with a default extension of .TSK, and (2) an optional memory
allocation map with a default extension of .MAP. Creating a map file is a
BASIC-PLUS-2 installation option; if NOMAP is the default, you must use
the BUILD/MAP command to generate a memory allocation map.

Using the BASIC-PLUS-2 Compiler

The BUILD command also generates an overlay description language file
(MAIN.ODL). The ODL file has this form if you perform device specific I/O:

+ROOT USER

USER: +FCTR SY¥:NONAME - LIBR
LIBR: +FCTR LB:[1,11BASIC2/LB
+END

This ODL supports INPUT/PRINT operations from TI: (the terminal). When
you use virtual, sequential, relative, or indexed files on disk, the ODL form is:

+ROOT BASICZ-RMSROT-USER-RMSALL
USER: +FCTR SY:NONAME - LIBR
LIBR: +FCTR LB:L1:11BABIC2/LB
@LB:C1,+1IBASICn
@LB:L1,11RMEL1S

+END

In this ODL file:

ROOT defines the task linkages.

BASIC2 is a factor label in the specified ODL file
(@LB:[1,11BASICn).

RMSROT, RMSALL are factor labels in the RMS ODL file
‘ (@LB:[1,11RMS118).

USER links in your modules.

The USER line ends with a LIBR reference line. All lines you add to an ODL
should end with a reference to the LIBR to retrieve OTS modules from the
BASIC library.

The BASIC ODL line (@LB:[1,11BASICn) tells the task builder to retrieve
modules needed to support file OPEN statements from BASRMS.ODL. You
set the value of “n”: (1) implicitly by specifying a file organization in the
OPEN statement, or (2) explicitly by specifying BUILD switches. Table 1-4
summarizes the values of n and their meanings.

Table 1-4: BASIC ODL Values

Value | ODL File Name File Types Supported
0 BP2IC0.0DL Virtual
1 BP2IC1.0DL Sequential
2 BP2IC2.0DL | Relative
3 BP2IC3.0DL Sequential, Relative, Indexed
4 BP2IC4.0DL Indexed
5 BP2IC5.0DL Sequential, Indexed
6 BP2IC6.0DL Relative, Indexed
7 BP2IC7.0DL Sequential, Relative, Undefined

Using the BASIC-PLUS-2 Compiler 1-9

1-10

The ODL line (@LB:[1,11RMS118) is controlled by the ODLRMS command
to the compiler. You can edit this file to generate program overlay segments.
The RSX-11M Task Builder Reference Manual describes the overlay syntax.

Output from BUILD/DUMP helps you to check programs. DUMP instructs
the system to generate a dump of memory contents if there is an abnormal
exit from your program during execution. The system generates a file with an

extension of PMD. See your Task Builder Manual for more information on
PMD files.

1.1.4 COMPILE Command

The COMPILE (COM) command converts a source program into a linkable
object module or a MACRO source program. The default output (.OBJ or
.MAC) is set by your system manager at installation.

You must bring a program into memory to COMPILE it. The COMPILE
command does not execute a program; it converts the source program to
object format and writes that file to disk. For example:

COMPILE

compiles the program currently in memory. You can also type:
COMPILE filespec
where:

filespec is an RSX file specification. The filespec defaults to the pro-
 gram name on the current system disk and account.

The command compiles the current program, assigns the specified name, and
appends the .OBJ or .MAC extension. Table 1-5 summarizes the COMPILE
switches.

In most cases, you can combine COMPILE command switches. The excep-
tions are /OBJECT and /MACRO switches. For example: ’

COMPILE/OBJECT/DEBUG/DOUBLE

is a valid specification, but:

COMPILE/OBJECT /MACRO

is not.

You can use the LOCK command to specify any valid combination of com-
piler switches. These then become the defaults for COMPILE commands.
Thus, you prevent having to respecify switches for each compilation. Use the
LOCK command without arguments to disable all switches.'Note that a
COMPILE command with no arguments retains the current defaults.

Using the BASIC-PLUS-2 Compiler

For example:

LOCK/0OBJECT/NOLINE/NODEBUG

OLD PROG1
BASICZ

COMPILE

BASIC2

OLD PROGZ2

BASICZ2

COMPILE

BASIC2

OLD PROG3
BASIC2

COMPILE/MAC

BASICZ
LOCK

OLD PROG4

BASICZ2

COMPILE/MACRO

BASICZ

In this example, the OLD command brings four programs into memory. The
first LOCK sets the /OBJECT, /NOLINE, and /NODEBUG compiler
switches as the defaults. The compiled PROG1 and PROG2 become object
modules with /NOLINE and /NODEBUG enabled. When you compile
PROGS3, however, you specified the creation of a macro file. This overrides the
/OBJECT default and creates a compiled program with a .MAC extension.
The /NOLINE and /NODEBUG switches remain enabled. Finally, the LOCK
command with no arguments disables all defaults, and PROG4 is compiled as
a MACRO file with default switches. The result of these four compilations is:

PROG1.0BJ (NOLINE and NODEBUG enabled)
PROG2.0BJ (NOLINE and NODEBUG enabled)
PROG3.MAC (NOLINE and NODEBUG enabled)
PROG4.MAC (default switches enabled)

You could also specify:

LOCK/0BJECT/NOLINE/NODEBUG

+

LOCK/MACRO
BASIC2

OLD PROG4
COMPILE

Using the BASIC-PLUS-2 Compiler 1-11

and generate the same results. The LOCK command, with or w1thout switches,
supersedes previous LOCK commands.

Table 1-5: COMPILE Switches

Command Function

COMPILE/DEBUG (COM/DEB) Converts the program into object code and enables
the BASIC-PLUS-2 debugging aid. The /DEBUG
switch significantly increases the size of the mod-
ule being compiled. Therefore, when the module
has been debugged, recompile it without /DEBUG
to reduce the module’s size. You cannot specify

/NOLINE with a /DEBUG option.

COMPILE/DOUBLE (COM/DOU) Converts the program into object code and uses
double-precision format (4-word) for all floating-
point operations. If an object task contains both
single and double-precision formats, .you receive
the error “?Wrong math package” (ERR=125).
The BASIC default is set at installation time.

COMPILE/MACRO (COM/MAC) Converts the program into MACRO source code
and saves it with a .MAC default extension.

COMPILE/NOLINE (COM/NOLIN) | Is an installation option that disables program line
headers in memory and reduces program memory
needs by:

— Two words per line.
— Four words per function definition.
— Two words per DIM statement.

— Four words per FOR NEXT, WHILE, or UN-
TIL NEXT loop or clause.

Do not specify /NOLINE when using an ERL
function, a debugging program, or a RESUME
statement without a line number specification. In
each case, a warning message will indicate that

/NOLINE is overridden.

COMPILE/OBJECT (COM/OBJ) Converts a program into object code, saves it as an

: object module, and adds an OBJ extension to the
program name. You must task build the object
modules to create a runnable program.

1.1.5 DELETE Command

The DELETE (DEL) command removes specified lines from the program
currently in memory. To delete a series of lines, specify the line numbers and
separate them with commas. To delete a consecutive group of lines, type the
first and last line number of the group, separated by a hyphen.

1-12 Using the BASIC-PLUS-2 Compiler

For example:

DEL 50 removes line 50 from the program.
DEL 50 80 removes lines 50 and 80 from the program.
DEL 50-80 removes lines 50 through 80 from the program.

DEL 50, BO» 90-110 removes lines 50, 60, and 90 through 110 from the
program.

If you do not specify a line in the DELETE command, BASIC returns an error
message (“Illegal Delete Command”). If you specify a range of lines, BASIC
removes all lines in that range. Thus, if you type DELETE 50-80, BASIC
erases all of the lines between 50 and 80, inclusive. An invalid line specifica-
tion such as DELETE 80-50 returns the error message ‘“Bad Line Number
Pair.”

1.1.6 DSKLIB Command

The Disk Library (DSK) command makes a disk-resident library of object
modules available to your program at task build time. Every system must
have a disk library default set at installation. To select a library, type one of
the following:

DSKLIB {LB:[I,I]BASIC2 [.OLB]}
dev:name [.OLB]

where:

LB:[1,1]BASIC2 is a disk object library of run-time routines used with
BASIC2.

dev:name is the name of a user-created library. User names
need full file specifications.

[.OLB] is an optional object library file extension.

If you enter DSKLIB without a file specification, BASIC prompts for one. If
none is supplied, BASIC retains the current default value.

Enter DSKLIB before BUILD. The command remains in effect until: (1) you
give a new disk library command, or (2) you exit from the compiler, at which
time the system returns to the original default value. You can override the
DSKLIB command with a switch added to the BUILD command, but this
remains in effect for one BUILD only.

If the library you select is not available, the task builder will return an error
message. Your system manager can provide information about the disk
libraries available to you.

1.1.7 EXIT Command

The EXIT (EXI) command ends access to the BASIC-PLUS-2 Compiler and
returns control to the operating system.

Using the BASIC-PLUS-2 Compiler ~ 1-13

1-14

1.1.8 IDENTIFY Command

The IDENTIFY (IDE) command prints a header containing the
BASIC-PLUS-2 name and version number. This header is displayed only if
you have invoked the compiler.

For example:

IDENTIFY @D
PDP-11 BASIC-PLUS-2 Yi.6 BL-01,B0
BASICZ

EXIT RET)

» IDENTIFY @ED

MCR - Illedgal function

If the response to IDENTIFY is “BASIC-PLUS-2”, BASIC-PLUS-2 is avail-
able. The MCR error message indicates a return to the RSX monitor.

1.1.8A INQUIRE Command

INQUIRE is an installation option on all systems. During installation,
you must answer YES to the “Generate Help Files” BASBLD prompt. The
INQUIRE command is automatically installed on TRAX.

The INQUIRE command displays information about BASIC-PLUS-2 com-
mands, statements, and functions. The format is:

INQUIRE topic(s)/sw
where:

topic(s) is one or more BASIC-PLUS-2 commands, statements, or
functions. Separate multiple topics with commas.

/sw is one of the optional switches, /TEX[T] or /EXA[MPLE].
NOTE
The INQUIRE command must fit on a single 80—character
line.

Using the BASIC-PLUS-2 Compiler

If you do not specify a topic, BASIC returns a list of topics for which infor-
mation is available. To obtain information for all the topics in the
INQUIRE list, type an asterisk after the INQUIRE command.

If you use neither of the INQUIRE command switches, BASIC returns both
explanatory text and examples for the topics you specify. To display only
the text, append the /TEXT switch to the command line. To display only the
examples, use the /EXAMPLE switch. The switch modifies all the topics in
the command line.

For example:

ING MAP»ARRAYS/TEXT

1.1.9 LIBRARY Command

The LIBRARY (LIBR) command enables you to select the memory resident
library to be linked to your program. To select a library, type one of the
following:

BASIC2
NONE
where:

BASIC2 is an 8KW memory resident library of BASIC-PLUS-2
routines.

NONE disables the memory resident library linkage.

You can also specify your own memory resident library. User names require
full file specifications.

For example:

LIBR @ET
NAME [BASICZ1 - NONE
ACCOUNT [LB:[1,111 - @D

In this example, the LIBR command displays the current resident library
(BASIC2). Specifying NONE disables linking to BASIC2.

Using the BASIC-PLUS-2 Compiler 1-14.1

The BASIC2 library has these advantages:

1. Maximum shareable code. The entire 8KW is shareable among all users.
This minimizes the memory needs of your system.

2. Faster linking. Because most of the modules are in the LIBR, the task
builder accesses the disk library less often.

However, because the allowable system space is set by the system manager,
you must see him to determine if the library is available.

1.1.10 LIST Command

The LIST (LIS) command displays a copy of the program currently in memo-
ry, with line numbers correctly sequenced.

If you type:

LIST @D

BASIC prints the program, along with a header containing the program name,
the current time, and the date. To suppress this information and print the
program only, type: ‘

LISTNH

where NH specifies no header.

You can print single lines by specifying their line numbers. For example:
LIST 30, 70 prints a header and lines 30 and 70 on your terminal.
LISTNH 30-70 suppresses the header and prints lines 30 through 70.

1.1.11 NEW Command

The NEW command allows you to create programs and assign names to them.
Type the command followed by the name. For example, typing:

NEW PROGI1

assigns the name PROGI1 to your program. A program name can be a maxi-
mum of six alphanumeric characters.

If you do not specify the program name, the system prompts:

NEW
NEW FILE NAME-

You can then specify the name or enter a carriage return. The program also
becomes the file name. File names permit up to nine characters; program
names permit only six. Therefore, if you assign a program name longer than
six characters, BASIC truncates it. NONAME is the default.

Using the BASIC-PLUS-2 Compiler 1-15

1-16

NOTE

When you type the NEW command, any source code currently
in memory is lost.

1.1.12 ODLRMS Command

The Overlay Description Language (ODL) command enables you to select an
ODL file to describe the RMS overlay structure used when your program is
task built. The default for ODLRMS is the installation option. See the
RMS-11 User’s Guide for more information. To select an ODL file, type one of

the following: .

ODLRMS|LB:(1,1IRMSRLS[.ODL)]
LB:[1,1IRMSRLX][.ODL]
LB:[1,11RMS11S[.ODL]
LB:[1,11RMS11X[.ODL]
LB:({1,11RMS12X[.0DL]
User-Created

NONE

A

\
where:

RMSRLS

RMSRLX

RMS11S8

RMS11X

RMS12X

User-Created

N

v

is an ODL file structured to overlay the 8KB of the
RMSSEQ resident library. You need not have RMS-11K
available on your system.

is an ODL file structured to overlay the 48KB of the
RMSRES resident library. You must have RMS-11K
installed on your system.

is an ODL file structured to add a little more than 8KB
to task size. RMS11S features only sequential and rela-
tive file organization routines in 19 overlay segments.
RMS11S does not require a resident library, and
RMS-11K need not be available on your system.

is an ODL file structured to add a little more than 9KB
to task size. RMS11X features sequential, relative, and
indexed file organization routines in 57 overlay seg-
ments. RMS11X does not require an RMS resident
library, but you must have RMS-11K available on your
system.,

is an ODL file structured to add no more than 12KB to
task size. RMS12X features sequential, relative, and in-
dexed file organization routines in 17 overlay segments.
RMS12X does not require an RMS resident library, but
you must-have RMS-11K available on your system.

is an ‘option of defining your own overlay structure for

RMS code.

Using the BASIC-PLUS-2 Compiler

NONE is an option of no RMS-11 code.

[.ODL} is an optional file extension.
NOTE

RMS ODL file names can change. The RMS
distribution kit will indicate if any ODLs have
new names.

If you enter the ODLRMS command without a file specification, BASIC
prompts for one. If none is supplied, BASIC retains the current default value.

Enter ODLRMS before BUILD. The ODL you select remains in effect until:
(1) you give a new ODLRMS command, or (2) you exit from the compiler, at
which time the system returns to the original default value. You can override
the ODLRMS command with an ODL switch added to the BUILD command.
This remains in effect for one BUILD only.

If the file you select is not available, the task builder will return an error
message. Your system manager can provide information about the files avail-
able to you.

1.1.13 OLD Command

The OLD command allows you to bring a previously created source program
into memory. Type the command followed by the file name. For example,

typing:

OLD PROGI

brings PROG1 into memory.

If you do not provide a file name, the system prompts:

OLD GED
OLD FILE NAME-

You can then enter the name or a carriage return; when you enter a carriage
return, the system searches for a source program called NONAME.B2S,
where .B2S is the system default extension.

If you specify a program that does not exist, the system returns the error
message:

?Can’t find file or account

NOTE

When you type the OLD command, any source code currently
in memory is lost. Also, the system does not check the syntax of
the program it brings into memory.

Using the BASIC-PLUS-2 Compiler 1-17

1-18

1.1.14 RENAME Command

The RENAME (REN) command changes the name of a program currently in
memory. For example, if you bring a saved program named FILE1 from disk
to memory and type:

RENAME FILEZ @

the program becomes FILE2 in memory, but retains the name FILE1 on disk.

1.1.15 REPLACE Command

The REPLACE (REP) command replaces a program on the current system
disk or on a specified device with the one in memory. For example, if a
program named FILE.B2S needs modification, you can bring it into memory,
change it, and type:

REPLACE

This replaces the contents of the original program named FILE.B2S with the
contents of the newly edited program.

You can also specify a new name for the edited program in the REPLACE
command. For example:

\REPLACE FILEL

saves the edited version of FILE under the name FILE1.B2S.

If the program named FILE is in memory and there are no other programs
with that name, REPLACE performs the same function as SAVE.

1.1.16 RMSRES Command

The RMS Resident Library command causes the compiler to generate the
command line so the task builder will link your program to an RMS-11
resident library; this library supplies code for RMS-11 file and record opera-
tions. An RMS library saves physical memory space only if multiple tasks
using that library run at the same time. The default for RMSRES is an
installation option. RMSRES sets defaults for later BUILD:s.

To select a resident library, type one of the following:

RMSRES | LB:(1,1JRMSRES
LB:(1,11JRMSSEQ
dev: name

NONE

Using the BASIC-PLUS-2 Compiler

where:

LB:[1,1]RMSRES is an RMS-11 resident library that contains code for
sequential, relative, and indexed file operations.
You must use the RMSRLX.ODL file when using
the RMSRES Resident Library.

LB:[1,11RMSSEQ is an RMS-11 resident library that contains code for
sequential file operations only. You must use the
RMSRLS.ODL file when using the RMSSEQ Resi-
dent library.

dev: name is a user-created resident library. User names need
full file specifications.
NONE is an option of no RMS resident library.
NOTE

Do not use RMSSEQ, RMSRES, or RMS
ODL files if your program does not per-
form RMS-11 operations. For more infor-
mation on RMS Resident Libraries, see
the RMS-11 User’s Guide.

If you enter the command without a file specification, BASIC prompts for a
new one. If none is supplied, BASIC retains the current default value.

Enter RMSRES before BUILD. The command remains in effect until: (1) you
give a new library command, or (2) you exit from the compiler, at which time
the system returns to the original default value. You can override the
RMSRES command with a switch added to the BUILD command. This
switch remains in effect for only one BUILD, however.

If you specify an RMS resident library that is not available, the task builder
will return an error message. Your system manager can advise you on the
availability and names of RMSRES options.

1.1.17 SAVE Command

The SAVE (SAV) command transfers a source program from memory into a
file on a specified device or the current system disk. For example, if you have
a program in memory and type:

SAVE @D

BASIC-PLUS-2 sequentially orders the line numbers of the program. It then
stores the program on the current system disk as source code under the cur-
rent name with a .B2S extension. To specify a storage device, extension, or
program name, type:

SAVE filespec GED

Using the BASIC-PLUS-2 Compiler 1-19

1-20

where:

filespec -is a RSX-11M file specification.

If you have not specified a name for the program currently in memory, the
program becomes NONAME.B2S.

You cannot save a program with the same file specification as one already
saved or the system prints the error message:

PFile exists - RENAME or REPLACE
This error prevents erasing a program by mistake.

1.1.18 SCALE Command

The SCALE (SCA) command controls the scaled arithmetic features of
BASIC-PLUS-2 on double-precision systems. It can overcome accumulated
round-off and truncation errors in fractional computations performed on sys-
tems with floating point format. SCALE enables the system to maintain the
decimal accuracy of fractional computations to the number of places you
specify.

To specify a scale factor, type:
SCALE [int]

where:

int is an integer in the range 0 to 6. If you do not supply a value,
BASIC displays the current SCALE factor.

For example:

SCALE 2

BASICZ

The SCALE 2 command sets the current scale factor to 2. All programs then
compiled for that job have floating point numbers: (1) multiplied by 100, or
(2) divided by 100, where required. If you do not compile all program modules
with the same scale factor, you receive the error message:

"?S5cale factor interlocK",

The scale factor you specify remains in effect until: (1) you exit from the
compiler, or (2) you specify a different SCALE factor. A SCALE command
with no factor specification causes the system to print the current scale factor.

All modules in a program must have the same scale factor.

Using the BASIC-PLUS-2 Compiler

1.1.19 SEQUENCE Command

The SEQUENCE (SEQ) command automatically enters line numbers as you
type a BASIC-PLUS-2 program. The format is:

SEQUENCE [n [,m]]
where:

n is the starting line number. The default is 10.

m is the increment between line numbers. The default is 10.

For example:

SEQUENCE 1000,30

numbers your program in increments of 50 starting at line 1000.

The SEQUENCE command remains in effect until: (1) you enter a null line
(a carriage return only), or (2) you enter an END or SUBEND statement, or
(3) the next line number would exceed 32767. The compiler does not check
program syntax when you use the SEQUENCE command.

1.1.20 SHOW Command

The SHOW (SHO) command allows you to display the current compiler
defaults. To use this command, type:

SHOMW

after the BASIC prompt. In this example, sample SHOW output is on the left,
and alternate values you can specify are on the right:

EXAMPLE ALTERNATE VALUES

SHOW

RS¥-11M Basiec Plus 2V1.,6 BL-01.,60 Using EIS -19-
Installed on 20-DEC-79 at 12:46PM

Library for BUILD is BASICZ NONE

BASIC+2 Resident Library is NONE User-created
Disk LLibrary is LB:[1+11BASICZ

RMS ODL file is LB:[1+1IRMB11X RMSRLS, 118, 12X, RLX,
NONE
RMS Resident Library is NONE RMSRES, RMSSEQ
TasK extend size = 512 Any integer
Scale factor = 0 Integers from O to 6
Precision: Sindle Double
Switch Settings: Switches can be on (:LINE)
ND:MAP or off (NO:MAP)
NO:DUMP
NO:CHAIN
:LINE
NO:DEBUG
Dutput:0BJ MAC
File Ords:Sequential Sequential (SEQ),

Relative (REL), Indexed
(IND), Virtual (VIR) or

device specific..

Using the BASIC-PLUS-2 Compiler 1-21

1.1.21 UNSAVE Command

The UNSAVE (UNS) command deletes a file from the current system disk.
For example, if you type: =~

UNSAVE RET)

the file associated with the source program currently in memory is deleted
from your account. If you type:

UNSAVE filesrec RET)

the specified file is deleted from the current system disk or specified device
whether or not it is in memory. You can use this command to erase unwanted
files.

If the source program specified in UNSAVE is not found, the system prints
the error message:

PCan’t find file or account

To delete a compiled or non-source program, you must type the program’s
name and extension. For example:

UNSAVE FILE.TSK

1.2 Editing, Debugging, and Running Source Programs

1-22

Programs are ready for execution when you have edited, debugged, and com-
piled them. The following sections describe these procedures.

1.2.1 Editing

You can edit BASIC program lines once the program is in memory. This
section describes how to remove or replace unwanted lines.

To edit an incorrect line, retype the same line number followed by a corrected
version of the line. This deletes the old, incorrect line from memory and
replaces it with the new one. In this example:

10 LAD A = 7\ B = 9 \ C = SQR(144) RET
?Misspelled Kevword at line 10 statement 1

the carriage return enters an incorrect line into memory, causing the compiler
to print an error message. Typing:

10 LET A= 7 VB = 9\ C = SQR(144)

erases the previous line 10 from memory and replaces it with the corrected
version.

Using the BASIC-PLUS-2 Compiler

You can also delete a line currently in memory by typing the line number with
no text. For example, you can delete:

10 LET D = A + B*xC

from the source program by typing:

10 @

You can also use the DELETE command to perform this function.

1.2.2 Debugging

BASIC provides interactive debugging commands to help you locate run-time
errors in your program. These commands allow you to check program opera-
tion and make corrections. They are:

BREAK EXIT STATUS
CONTINUE FREE STEP
CORE I/0 BUFFER STRING
ERL LET TRACE
ERN PRINT UNBREAK
ERR RECOUNT UNTRACE

You can use these commands only on programs or subprograms that have
been compiled with the /DEBUG switch. After you have debugged the pro-
gram and edited the source file, recompile the program without the /DEBUG
switch. This saves memory. You can DEBUG individual subprograms in a
main program by specifying /DEBUG for that subprogram only.

When you run a program, execution stops the first time you enter a module
compiled with the /DEBUG switch. After execution stops, the debugging aid
prints an identifying message and prompt:

DEBUG: module name
#

where:

module name is the name of the program or subprogram compiled
with the /DEBUG switch.

signals you to enter debugging aid commands.

Then, to continue the program and execute the command, type the
CONTINUE (CON) command. For example:

DEBUG: ARCTR
#BREAK 10
#CON @

In this example, the CON command resumes program execution until line 10.

Using the BASIC-PLUS-2 Compiler 1-23

‘Following the successful execution of a debugging command, a message iden-
tifies your current position in the program or subprogram:

command AT LINE n [jname]

where:

command

name

is the last executed debugging command (for example,
BREAK or STEP) that stops execution.

is your current line number in the program or subprogram.

is the name of the currently executing subprogram. This
name is not displayed if you are executing the main
program.

After this message, the debugger gives the # prompt, and you can enter any
valid debugger command.

1.2.2.1 BREAK, UNBREAK, and BREAK ON Commands — The BREAK com-
mand allows you to stop program execution before a specified item in a pro-
gram or subprogram compiled with the /DEBUG switch. Type the command
in response to the debugger prompt:

BREAK [arg]

where:

arg is an optional command argument or breakpoint. See Table 1-6.

Table 1-6: BREAK Command Formats

Command Meaning

BREAK Specifies a command with no arguments that sets a breakpoint at
each program line number. BASIC stops execution at each line
number and reissues the # prompt.

BREAK n Stops execution at line n and gives the prompt when it finds that
line number in any module with debugging enabled.

BREAK n; Specifies that line number n is a breakpoint only in the currently
executing program or subprogram that has debugging enabled.

BREAK n;name Specifies that line number n is a breakpoint only in the named
program or subprogram.

You can specify a maximum of ten breakpoints as arguments in the BREAK
command. If you specify several arguments, separate them with semicolons or
commas. For example:

BREAK 10, 3003 310iPROC, BO @

1-24 Using the BASIC-PLUS-2 Compiler

stops execution at these points:

1. Line 10 when found in a /DEBUG enabled program, regardless of whether
it is the main program or a subprogram.

2. Line 300 in the currently executing program.
3. Line 310 in the program named PROC.

4. Line 60 when found in a /DEBUG enabled program, regardless of whether
it is the main program or a subprogram.

If you specify more than ten breakpéints, BASIC prints the error message:

No room

To disable the breakpoints, use the UNBREAK command. Table 1-7 summa-
rizes UNBREAK formats.

Table 1-7: UNBREAK Command Formats

Command Meaning
UNBREAK Disables all breakpoints.
UNBREAK n Disables the breakpoint set at all lines numbered n.
UNBREAK n; Disables the breakpoint set at line number n in the current
program or subprogram.
UNBREAK n;name Disables the breakpoint set at line number n in the named
program.

In addition to line number breakpoints, the BREAK command allows you to
specify a stop on CALL statements, user-defined functions, and loops. The
BREAK ON arguments for these stops are CALL, DEF, and LOOP. Their

formats are:

BREAK ON (CALL
DEF
LOOP

where:

CALL stops execution each time BASIC executes a CALL statement
to a subprogram compiled with the /DEBUG switch. The stop
occurs immediately before execution of the subprogram’s first
statement.

DEF stops execution each time BASIC enters a user-defined function
in a module compiled with the /DEBUG switch. The stop oc-
curs immediately before the execution of the first statement in
the function.

Using the BASIC-PLUS-2 Compiler 1-25

1-26

LOOP stops execution each time BASIC finds a FOR, WHILE, or
UNTIL statement or modifier. Stops occur after the loop is
initialized (but before execution of the loop body) and after exit
from the loop.

The BREAK ON command allows you to specify one argument only. You can
combine it with other breaks. For example:

BREAK 45, ON CALL» 3303%F @

stops execution at these points:

1. Line 45 when found in a /DEBUG enabled program, regardless of whether
it is the main program or a subprogram.

2. After a CALL to any subprogram compiled with the /DEBUG switch and
immediately before the execution of the subprogram’s first statement.

3. Line 330 in the currently executing program.

1.2.2.2 STEP Command — The STEP command causes execution on a state-
ment-by-statement basis. You type the command in response to the debugger
prompt:

STEP [n]
where:

STEP executes the next statement in the current program or
subprogram.

n is an optional argument that specifies the statements to be exe-
cuted. It must be a positive integer in the range 1 to 32767.

Like other debugging commands, STEP has effect only on programs or sub-
programs compiled with the /DEBUG switch. Therefore, the first statement
executed by the STEP command is the first statement found in a /DEBUG
enabled routine.

NOTE

Typing a carriage return in response to a # debugger prompt is
the same as typing STEP without an argument.

1.2.2.3 PRINT and LET Commands — The PRINT and LET commands allow
you to test and change the contents of variables in programs and subprograms
compiled with the /DEBUG switch.

The PRINT command has the form:
PRINT var

Using the BASIC-PLUS-2 Compiler

where:

var is the variable you want to test. You can specify only one
variable or argument. This command prints the current contents of
the variable.

The LET command has the form:
LET var=value
where:

var is the variable you want to change. You can specify only one varia-
ble or argument. The PRINT and LET debugging commands allow
constants or variables as arguments, but not expressions.

You cannot set string variables to null string with the LET command. You:
can, however, set a variable to the null string in your source program (for
example: NUL$ = “). Then, while the debugger runs, set another string
variable equal to the null string. For example: LET A$ = NULS.

1.2.2.4 TRACE and UNTRACE Commands — The TRACE command allows
you to track by line number the execution of a program or subprogram com-
piled with the /DEBUG switch. You type the command in response to the
debugger prompt:

TRACE
where:

TRACE causes the number of each line to print as the line executes.

To disable the TRACE command, type UNTRACE after the prompt.

1.2.2.5 ERR Command — The ERR command allows you to display the error
number of the last error found. Type the command in response to the de-
bugger prompt:

ERR
where:

ERR - returns the number of the last error in the format:
ERR = nn

where nn is the decimal error number.

Refer to Appendix C for a list of errors and their numbers.

1.2.2.6 ERL Command — The ERL command allows you to display the line
number of the last error found. Type the command in response to the de-
bugger prompt:

ERL

Using the BASIC-PLUS-2 Compiler 1-27

1-28

where:
ERL displays the line number of the last error in the format:
ERL = nn

where nn is the line number containing the error.

1.2.2.7 ERN Command — The ERN command allows you to display the name
of the module that was executing when the latest error was found. Note that
ERN does not return a value unless an error has occurred. Type the command
in response to the debugger prompt:

ERN
where:

ERN returns the name of the module containing the last trapped error,
. in the format:

ERN = mod nam

where mod nam is the one-to-six character module name.

1.2.2.8 EXIT Command — The EXIT command returns you from the debugger
to the monitor level. Type the command in response to the debugger prompt:

4 EXIT

1.2.2.9 RECOUNT Command — The REC(OUNT) command allows you to
display the number of characters transferred by the latest input operation.
Type the command in response to the debugger prompt:

RECOUNT

where:

RECOUNT displays the number of characters returned by the last
input statement, in the format:

RECOUNT = nn

where nn is the number of characters, including termina-
tors, from the last input statement.

1.2.2.10 STATUS Command — The STA(TUS) command allows you to dis-
play the status word reflecting: (1) characteristics of the last opened file, or
(2) additional RMS file information. Type the command in response to the
debugger prompt:

STATUS

Using the BASIC-PLUS-2 Compiler

where:

STATUS returns a word that indicates the device containing the last
opened file’s characteristics. The format is:

STATUS = nn
where nn is encoded as described in the STATUS descrip-
tion in Chapter 3.

1.2.2.11 1/0 BUFFER Command — The I/O Buffer command returns the num-
ber of words currently allocated for I/O buffer space. The format is:

1/0 BUFFER
See “Memory Allocation” in Chapter 3 for more information on the allocation
of I/O buffer space.
1.2.2.12 STRING Command — The STRING command returns the number of
words currently allocated for string space. The format is:

STRING
See “Memory Allocation” in Chapter 3 for more information on the allocation
of string space.
1.2.2.13 FREE Command — The FREE command returns the number of
words currently available in free space. The format is:

FREE
See “Memory Allocation” in Chapter 3 for more information on how BASIC
allocates free space.
1.2.2.14 CORE Command — The CORE command returns the number of
words currently allocated for your task. The format is:

CORE
See “Memory Allocation” in Chapter 3 for more information on how BASIC

allocates space for your task.

1.2.3 Running the Program

The following sections explain how to BUILD, compile, task build, and exe-
cute programs on the RSX family of operating systems. Because you cannot
generate a task image directly from the source program, you must:

e Create one or more object modules with the COMPILE command.
¢ Generate a command file for the task builder with the BUILD command.

¢ Specify the command file in response to the task builder prompt.

Using the BASIC-PLUS-2 Compiler 1-29

For example:

RUN $BASICZ

PDP-11 BASIC-PLUS-2

Yi.,6 BL-01.,B80

==

NEW
NEW FILE NAME-SORTO2
BAGICZ
10 DIM SORT(100) ! MAX NUMBER OF ELEMENTS
20 INPUT "NUMBER OF ENTRIES"S§ CNTZ ! GET NUMBER OF ELEMENTS
A\ IF CNTZ < 2% OR CNTZ 1007 ! CHECRKR CORRECT NUMBER
THEN PRINT ‘LIMITS - 2 TO 1007 I WRONG - INFORM UBER
\ GO TO 20 : I TRY AGAIN
ELSE INPUT SORT(IZ) FOR I% = 1% TO CNT%
30 REM
BUBBLE SO0RT

CHECK EACH PAIR OF ELEMENTS

IF IN WRONG ORDER: SWITCH THEM

SORT.FLG IS SET TO FALSE (0) WHEN A SWITCH IS5 MADE

PASS OVER THE ENTIRE LIST UNTIL NO SWITCH IS MADE
31 JFLG%Z = 17 ' S8ET TO TRUE INITIALLY
\ WHILE SORT.FLGY% <x 0% ! LOOP UNTIL SORT JFLG IS FALSE
\ SORTWFLGY. = 0% ! BET TO FALSE BEFORE PASS
\ FOR I7=1% TO CNTZ-1% ! LOOP THROUGH ENTIRE LIST
\ IF SORT(IZ)«=80RT(I%Z+1%) | CHECK A PAIR

THEN SORT.FLGZ=-1% I IF WRONG-FORCE ANDTHER PAGS

\ T=80RT(I%) ! SWAP ELEMENTS
\ SORTC(IY)=80RT(I%+1%)
\ SORT(IZN+1%)=T
40 NEXT I%
30 NEX
B0 PRINT SORT(IZ) FOR I%=1% TO CNTZ I PRINT ELEMENTS IN ORDER
32767 END
SAVE
BASICE
COMPILE
BASICZ2
BUILD
BASIC2
EXIT

TKB @SORTOZ

RUN SORTO2
NUMBER OF ENTRIES? 6

? 0 :

7 -5.5

? 10

? 20

? -5.B

7 -100 ,

20 10 8} -0.5
1-30 Using the BASIC-PLUS-2 Compiler

-100

The program accepts up to 100 numbers as input, sorts them, and prints them
in descending order. Table 1-8 summarizes the command sequence.

Table 1-8: Command Sequence

Command Explanation

NEW Clears a space in the temporary buffer for creation of the
NEW FILE NAME—SORTO02 | source program. When you type NEW, you lose any
source code then in memory. Typing SORTO2 assigns that
name to your program.

BASIC2 Indicates that the previdus command has been success-
fully executed and that the compiler is ready to accept
input.

SAVE Copies the program and saves it as a source file with the
extension B2S.

COMPILE Converts your program into object code and adds the de-
fault extension .OBJ to the program name.

BUILD Creates command (CMD) and ODL files that reference
the libraries and options required for the task builder.

EXIT Returns control to the operating system.

TKB @SORT02 Uses the indirect command file to create an executable

task image of the program with the extension .TSK.
RUN Executes the program.

The BUILD command file contains instructions for task builder input. For
example:

SY:BORTOZ/CP=8Y:S50RTOZ/MP
LIBR=BASICZ:RO

UNITS = 14

AGG = TI:13

ASG = B8Y:5:6:7:8:8:10:11:12
EXTTEK= 832

/7

The BUILD command also generates an ODL file that describes the
program’s overlay structure:

+ROOT BASIC2-RMSROT-USERRMSALL
USER: +FCTR SY:S50RTOZ-LIBR
LIBR: +FCTR LB:L[1,13IBASICZ/LB
@LB:C1,11BPRICO
BLB:L1,1IRME11X

+END

All operating systems follow a similar method for compiling, building, and
linking, and running a program. Table 1-9 summarizes system-specific
differences.

Using the BASIC-PLUS-2 Compiler 1-31

1-32

Table 1-9: System Differences and Program Execution

System " Specific Im'plemenéation

IAS You invoke the compiler with:
RUNLB:[1,11BASICZ

IAS Do not invoke the task builder explicitly (TKB). The first line of the command
file has a line that calls for linking. You enter “@SORT02”.

VMS The command file has no LIBR line. VMS-Compatibility Mode does not sup-
port resident libraries.

VMS Include the MCR command before the TKB command. For example:
MCR TKB BS0ORTOZ

TRAX Use the command LINK @SORTO02 or LINK/BASIC SORTO02 to create an
executable task image. Do not use the TKB command.

Using the BASIC-PLUS-2 Compiler

Chapter 2
Memory Resident Libraries

Memory resident libraries let all BASIC-PLUS-2 users share OTS code.
Shared code saves system memory space.

This chapter describes the BASIC2 Resident Library and its related object
library.

2.1 BASIC2 Resident Library

The BASIC2 memory resident library enables all BASIC-PLUS-2 users to
share 8KW of the BASIC-PLUS-2 Object Time System (OTS).

The BASIC2 library has these advantages:

~ o Maximum shareable code. The entire 8KW is shareable among all users,
which minimizes the memory needs of your system,

¢ Faster linking. Because many of the modules are in the library, the task
builder accesses the disk library less often.

The LIBRARY command enables you to use the memory resident library. For
example:

LIBR
Name [BASICZ]1 -~
Account [LB:C1,117--~

The LIBRARY command shows that the memory resident library, BASIC2, is
the current default. In addition to BASIC2, you can select NONE (for no
resident library) or your own resident library. User names require full file
specifications. See Chapter 1 for more information.

2.2 BASIC-PLUS-2 Object Libraries

2-2

An object library is a disk-resident collection of object modules the task
builder links to your program. The task builder links only those modules
needed for program execution, or those explicitly referenced in the ODL com-
mand file. ' '

BASIC-PLUS-2 provides two object libraries: BASIC2.0LB and
BASRMS.OLB. The task builder uses these libraries to locate routines not
found in a memory resident library (if you use one). Use the DSKLIB com-
mand to specify the object library you want to link with. For example:

DSKLIB
File spec [LB:[1,11BASICZ2]--

2.2.1 BASIC2 Object Library

The BASIC2 object library contains all BASIC-PLUS-2 routines except those
that interface to RMS.

2.2.2 BASRMS Object Library

The BASRMS object library provides software routines to interface
BASIC-PLUS-2 and RMS. Adding /VIR, /SEQ, /REL, or /IND to the BUILD
command references BASRMS indirectly. When using the BASRMS library,
you should also specify an RMSODL file to match program requirements and
the RMS options available to you. For example:

ODLRMS
File spec [LB:[1+1IRMB11IX]-~

In this case, the BUILD command references the BASRMS object library to
provide BASIC-PLUS-2 access to RMS code for all RMS file organizations.
The RMS11X.ODL file overlays code from the RMS disk library
(RMSLIB.OLB) and makes its routines available for file and record opera-
tions. The task builder can now extract the needed RMS modules.

Memory Resident Libraries

Chapter 3
Files

This chapter explains BASIC-PLUS-2 file organizations and operations. For
a thorough understanding of file organization and file and record operations,
see the RMS-11 User’s Guide.

3.1 Introduction to BASIC-PLUS-2 Files

BASIC supports RSX and RMS-11 file organizations. RSX provides support
for device-specific file I/O. RMS-11 provides these file organizations:

¢ Terminal-format
e Block I/O

e Virtual array

¢ Sequential

¢ Relative

¢ Indexed

BASIC associates each file with a distinct channel number when you OPEN
it. These channel numbers are integers between one and twelve. Your
terminal is always channel zero. After you open the file, you make all refer-
ences to it with the channel numbers.

BASIC does not check the file designation you specify. Before opening the file,
check all file specification syntax for your operating system, including device
names, upper case letters, and so forth.

BASIC stores data in physical records, or blocks. A block is the smallest
number of bytes BASIC transfers in a read or write operation. On disk, a block
is 512 bytes. On magnetic tape, it is between 18 and 8192 bytes; 512 is the
default. ,

BASIC stores one or more data records (logical records) in each block. A data
record is a group of fields your program treats as a unit. Data records can be
less than, equal to, or greater than blocks.

3-2

Files

3.1.1 Native File Organizations

BASIC-PLUS-2 works with the RSX operating system to provide an interface
for device-specific I/0. Device-specific I/O is used for:

¢ Non-file structured data input and output (QIO interface).
¢ Accessing terminals (for example, opening a terminal as a file).

3.1.2 RMS File Organizations

3.1.2.1 Terminal-Format Files — Terminal-format files store ASCII characters
sequentially in variable-length records with the implied carriage return
(®D) attribute. You access terminal-format files with INPUT and PRINT
statements. ‘

3.1.2.2 Block I/O Files — Block I/O files are sequential or random access files
that contain a series of blocks. BASIC treats each block as one record contain-
ing a stream of characters (data). You access the data with GET or PUT
statements. Your program specifies the location and format of data in the
block with MAP and MOVE statements.

3.1.2.3 Virtual Array Files — Virtual arrays provide a simple disk storage
structure for small data bases. You can access them like arrays in
memory—randomly or sequentially. Virtual arrays can contain integer, real,
or string data referenced by array name and subscript.

3.1.2.4 Sequential Flles — A sequential file contains logically contiguous re-
cords stored in the order that they were written. Your program specifies the
record format, and GET and PUT statements access data. You usually read a
sequential file from beginning to end only. Therefore, sequential files are most
useful when you access the data in the file sequentially each time you use it.

3.1.2.5 Relative Files — A relative file contains a series of cells. Each cell
contains a single record. For fixed length records, the length of each cell
equals the record length plus one byte. For variable length records, the length
of the cell equals the maximum record size plus three bytes. Your program:
(1) determines the record format, and (2) interprets the data and its divisions
inside each record. You access data with GETs and PUTS, either randomly by
cell number, or sequentially by omitting cell numbers.

Relative files are most useful when: (1) randomly accessed, and (2) record
contents correspond to cell numbers (for example, when inventory numbers
correspond to cell numbers).

3.1.2.6 Indexed Files — Indexed files contain data records sorted in ascending
order by primary index key value. They can also contain one or more alternate
indexes. Your program determines the format of data records, and GETs and
PUTSs access the data randomly by specific key value, or sequentially accord-
ing to ascending key value.

Indexed files are most useful when: (1) randomly accessed, and (2) you want
to access the records in more than one way. For example, you can specify
index keys to access a file by one of several record fields.

3.1.3 Record Format Types

The record format determines how RMS stores a record in the block. You
specify record format in the OPEN statement. Select one of three formats:
1. Fixed length | |
2. Variable length

3. Stream

Fixed-length records are all the same length. RMS stores fixed-length records
as they appear in the record buffer, including padded spaces after the record.
Processing these records involves less overhead than other record formats.
However, this format uses storage space less efficiently than variable-length
records. ‘

Variable-length records can have different lengths. No record can exceed a
maximum size you set for the file. RMS adds a one-word record length header
to each record. This count gives the length of the record in bytes. It is trans-
parent to your program, and the record buffer does not include it.

While variable-length records usually make more efficient use of storage
space, the record length headers generate processor overhead.

Specifying variable-length format for relative files does not save disk space.
BASIC always writes a fixed length record to the file. Specifying variable
length records will, however, help prevent unwanted data from being dis-
played when you access a record. -

A stream-format file contains a series of contiguous ASCII characters. The
following terminators end a stream-format record:

e Carriage return-line feed
e CTRL/Z

e Escape

¢ Form feed

¢ Line feed

Use stream format records on RMS sequential files only.

Stream format files use storage space efficiently because they store each
character contiguously. However, they generate the most processing overhead,
because the system must test each character to see if it terminates the record.

The file organization you select determines the record formats available to
you. Sequential files permit all three formats. Relative and indexed files do
not permit stream format; terminal-format files are in sequential variable
format.

NOTE

RSX recognizes the carriage return (<CR>) and escape
(<ESC>) line terminators only.

Files 3-3

3-4

Files

3.1.4 Opening a File (OPEN Statement)

Opening a file with the OPEN statement: (1) creates new files, and (2) makes
records available for processing. This section presents the general format of
the OPEN statement. Specific syntax appears with the description of each file

type.

The OPEN statement defines all aspects of a file OPEN operation, including
the structure of the file and its file-sharing restrictions. OPEN syntax includes
keywords that describe file attributes. These attributes are usually followed
by a name or numeric expression and separated by commas.

BASIC supplies no file specification defaults. If you do not specify a device
name, the channel remains assigned to: (1) the device used in a previous
OPEN on that channel, or (2) SY: as specified in the task builder command
file. In addition, BASIC does not recognize logical UICs, file names, or file
types, and all file names must be in upper case.

The format for the OPEN statement is:

OPEN filespec-exp} \ FOR INPUT
FOR OUTPUT

]AS FILE [#lnum-exp%

SEQUENTIAL) ||FIXED
,IORGANIZATION]\RELATIVE VARIABLE
INDEXED STREAM
UNDEFINED
VIRTUAL
READ
,ACCESS | WRITE
MODIFY
SCRATCH
i APPEND

NONE
,ALLOW)READ

WRITE

MODIFY

[LMAP mapname]
LRECORDSIZE num-exp]
[LSPAN]

LNOSPAN]

LBLOCKSIZE num-exp%]
,FILESIZE num-exp%]
LBUCKETSIZE num-exp%]
L,TEMPORARY]
LWINDOWSIZE num-exp]
LNOREWIND]
[,CONTIGUOUS]

[, CONNECT num-exp%]
,BUFFER num-exp%]
LMODE num-exp%]}
,PRIMARY [KEY] name][

DUPLICATES
NODUPLICATES

LALTERNATE [KEY] name]| |[DUPLICATES] [CHANGES]
INODUPLICATES] (NOCHANGES]

NOTE

The ORGANIZATION clause must be the first attribute speci-
fied. If you specify no ORGANIZATION clause, you can
perform native mode I/O operations only.

where:

filespec-exp
FOR INPUT
FOR OUTPUT

[#inum-exp%

,[ORGANIZATION] VIRTUAL
,IORGANIZATION] SEQUENTIAL
,IORGANIZATION] RELATIVE

,[ORGANIZATION] INDEXED -
,[ORGANIZATION] UNDEFINED

[FIXED]

[VARIABLE]
[STREAM]

LACCESS{READ
WRITE
MODIFY
SCRATCH
APPEND

is an RSX file specification.
OPENSs an existing file for modify operations.

creates a new file with the name you specify,
or destroys an existing data file of the same
name.

NOTE

The FOR INPUT and FOR
OUTPUT clauses have no af-
fect on how your program can
use the file or how others can
share it.

associates the file with a channel number be-
tween 1 and 12. Channel number 0 is your
terminal, and cannot be opened.

specifies a block I/O or virtual array file.

specifies an RMS file of sequential records
stored in the order they were written.

specifies an RMS file of fixed-length record
cells that stores records by physical location.

specifies an RMS file of records sorted in as-
cending order by primary key value and one
or more indexes that point into the records.

specifies an existing file whose organization is
not known. You must open the file FOR

'INPUT only.

specifies fixed-length records.

specifies variable-length records. This is the
default format for all RMS file organizations.

specifies ASCII stream records for RMS se-
quential files. ’

specifies the record operations you can per-
form on the file. These are summarized in
Table 3-1.

Files 3-5

Table 3-1: File Access Specifications

RMS RMS ‘ RMS
Sequential | Relative Indexed
Access Mode Files Files Files
Unspecified GET GET GET
PUT PUT PUT
UPDATE UPDATE UPDATE
DELETE DELETE
READ GET GET GET
WRITE PUT PUT PUT
MODIFY GET GET GET
PUT PUT i PUT
UPDATE UPDATE UPDATE
DELETE DELETE
SCRATCH GET None None
PUT
UPDATE
TRUNCATE
APPEND PUT EOF None None
(End-of-File)

,ALLOW|NONE specifies what other users can do to the file
READ when you are using it. NONE and READ
WRITE specify a file that others cannot write to. This
MODIFY is the default for relative and indexed files.

WRITE and MODIFY allow shared read and
write access. You cannot share RMS sequen-
tial files for writing.

[LMAP mapname] references a MAP statement. The map you
reference declares the primary divisions of
data in the record (by type and size) and the
-size of the record buffer.

LRECORDSIZE num-exp] defines the maximum record size (in charac-
ters) in the file. You must specify RECORD-
SIZE if you do not specify a MAP clause.

NOTE

If you specify both a MAP
and a RECORDSIZE,
RECORDSIZE overrides the
record buffer size BASIC cal-
culates from the MAP. If the
RECORDSIZE is larger than
the MAP, a fatal run-time er-
TOr occurs.

Files

[,SPAN]
[LNOSPAN]

[,FILESIZE num-exp%!}
[,TEMPORARY]
[,LBLOCKSIZE num-exp%]
,LBUCKETSIZE num-exp%]

[LNOREWIND]

[,CONTIGUOUS)
LWINDOWSIZE num-exp]

[,CONNECT num-exp%¢]

,BUFFER num-exp9c}

,LMODE num-exp¢c]

,PRIMARY (KEYI]

LALTERNATE [KEY))

signifies whether records in an RMS sequen-
tial file can cross block boundaries. The de-
fault is SPAN.

allocates an integer number of disk blocks

‘when you create a file.

opens a temporary file that is deleted when
you close the file.

defines the number of records in a block on
magnetic tape.

specifies the number of records in each
bucket. RMS relative and indexed files only.

specifies that the magnetic tape volume con-
taining the file is not to be rewound before
you open or create the file.

specifies’ physically adjoining disk blocks for
file storage. '

specifies the number of retrieval pointers to
be used for the file.

establishes additional record access streams
that allow your program to process (in paral-
lel) more than one record of a file. Each
stream represents an independent and con-
currently active sequence of record opera-
tions. The numeric argument (num-exp%) is
the original channel number for the file. Each
connect established in an OPEN statement
uses an I/O channel. Because there are 12 I/O
channels available, you can have a maximum
of 11 connects to a file. RMS relative and in-
dexed files only.

specifies the number of I/O buffers main-
tained for indexed file keys.

specifies MODE values for files. BASIC ig-
nores this attribute except for magnetic tape
files.

specifies a MAP statement field as the Pri-
mary Key for an indexed file. The primary
key appears first in the MAP statement, and
is key 0 in the file. Use strings only. For pri-
mary keys, you can specify DUPLICATES,
but not CHANGES.

allows you to define the names of 1 to 254
alternate keys for indexed files. Alternate
keys must also be strings.

Files 3-7

INODUPLICATES]) allows an indexed file to contain more
(DUPLICATES] than one record with the same key value.
' NODUPLICATES is the default.

[CHANGES] allows you to change the key value for alter-

INOCHANGES] nate keys only. NOCHANGES is the default.
The combination CHANGES and NODU-
PLICATES is invalid.

3.1.5 File Operations

3.1.5.1 Completing File I/O (CLOSE Statement) — ‘All programs should close
files before terminating. However, BASIC automatically closes files:

e While executing a CHAIN statement
e At an END statement
e When it completes the highest numbered line in the program

e When you open another file on the same channel

BASIC does not close files after executing a STOP or SUBEND statement.
The CLOSE statement has the format:
CLOSE [#) file-expressions

where:

file-expressions are one or more channel numbers separated by com-
mas. If you do not specify expressions, BASIC returns
a syntax error,

For example:

10 CLOSE =17 I Closes the file associated with file #
20 BY% = 4%

30 CLOSE #2%y B%,» 6% + 1% I Closes file rnuimbers 2 4+ and 7

40 CLOSE #I% FOR I% = 12% to 1% STEP-1% ! Closes all file numhers

The CLOSE statement closes files and disassociates these files and their
buffers from the file numbers. Because BASIC allocates I/O buffer space from
the dynamic area, you should close files in reverse order: close the last opened
file first, and so forth. This returns buffer space to the free space area and
makes it available for string or I/O use. See ‘“Memory Allocation” for more
information.

3.1.5.2 Renaming Files (NAME AS Statement) — You can change the name of
a file with the NAME AS statement if the protection code permits. The
format is:

NAME “stringl” AS “string2”

3-8 Files January 1981

where:
stringl is the old file name.
string2 is the new file name.

For example:

10 NAME "MONEY.DAT" AS "ACCNTS.DAT"

changes the name of the file named MONEY.DAT to ACCNTS.DAT.

Do not omit file extelisions. There is no default. If you use the NAME AS
statement on an open file, the new name does not take effect until you close
the file. : |

Because BASIC uses the NAME AS statement as a native-mode operation, it
is subject to the operating system file naming rules. The System User’s Guide
explains these rules.

3.1.5.3 Deleting a File (KILL Statement) — You can delete a file with the KILL
statement if the protection code permits. The KILL statement has the format:

KILL filespec

where:

filespec is the file specification of the file you want deleted. You can
delete only one file at a time. Do not omit file extensions.
There is no default.

For example:
’310 KILL "TEST.BPZ2"
deletes the file TEST.BP2. KILL takes effect when all programs that have

opened the file close it. You cannot open or access a file after you have deleted
it. However, others using the file when you KILL it can continue to use it.

Because BASIC-PLUS-2 uses KILL as a native mode file operation, it is
subject to operating system restrictions. Refer to the System User’s Guide.

3.1.5.4 Truncating Records (SCRATCH Statement) — The SCRATCH state-
ment deletes RMS sequential file records from the current record to the file’s
end. You must open the file with ACCESS SCRATCH. SCRATCH has the

format:
SCRATCH I[#ifile-number

where:

- file-number is the channel number of an open RMS sequential file.
For example:

50 SCRATCH #7%

Files 3-9

deletes all records beginning with the current record. The file’s physical
length remains the same after a SCRATCH.

3.1.5.5 Restoring Files (RESTORE # Statement) — The RESTORE # state-
ment returns the current record pointer to the beginning of the file.
RESTORE does not change the file. The RESTORE # statement has the

format: ,
RESTORE #file-expression [, KEY # num-exp]
where:
file-expression is the channel number of the file you want to restore.

,KEY # num-exp resets an RMS indexed file by key of reference. KEY
0 is the primary key, KEY # 1 is the first alternate,
~ and so forth. When you RESTORE an indexed file,
specify the key you want restored. The default is the
primary key.

For example:

70 RESTORE #3%, KEY #27%

All RMS file organizations can use the RESTORE statement.

RESTORE without a channel number resets the data pointer for READ and
DATA statements and does not affect any files.

3.2 Terminal-Format Files

3-10

Files

Terminal-format files are RMS sequential variable files that store ASCII
characters in a record size you specify. The default record size equals the
terminal width. Each record ends with an implicit [CR] as the line terminator,
and is stored exactly as printed on the terminal.

3.2.1 Opening a Terminal-Format File

This syntax opens a terminal-format file:

OPEN filespec-expl | FOR INPUT
FOR OUTPUT

] AS FILE [#num-exp%

,ACCESS|\READ
WRITE

MODIFY

LWINDOWSIZE num-exp]
[, FILESIZE num-exp%]
[,CONTIGUOUS]

LRECORDSIZE num-exp]

Filespec follows the rules for full RSX file specifications. See your System
User’s Guide for more information.

3.2.2 Record Operations

You write records to terminal-format files with PRINT # and PRINT #
USING statements. You read records with INPUT #, INPUT LINE #, and
LINPUT # statements.

3.2.2.1 Wiriting Records to the File (PRINT # and PRINT # USING)

3.2.2.1.1 PRINT # — Use PRINT # to write single records (lines of data) to
the file. The program:

10 OPEN "TEXT.FIL" AS FILE #27%
20 WHILE A$<>"FINI"

30 LINPUT A%

40 PRINT #2%, A%

50 NEXT

60 CLOSE #27

70 END

prompts you for a line of text and stores it in the file. The loop at line 50
repeats the prompt until “FINI” signifies the end of file.

3.2.2.1.2 PRINT # USING — PRINT # USING stores formatted data. For
example: :

10 OPEN "FILE.DAT" AS FILE #1%

6O PRINT #17 USING "mus,.u", 456

80 PRINT #1% USING "# # #", 1, 2, 3
90 CLOSE #11%

899 END

stores the data like this:

456.0
1 23

The program line:

6O PRINT =#2% USING "‘LLLLL", "CONTINUE"

prints “CONTINUE”, left justified and truncated beyond six characters. See
the BASIC-PLUS-2 Language Reference Manual for information on PRINT
USING formats.

Every PRINT operation sets a counter for the CCPOS function; CCPOS
marks the character position of an output line in the record buffer. See section
3.12.4 for information on CCPOS.

3.2.2.2 Reading Records from the File — INPUT #, INPUT LINE #,
LINPUT#, MAT INPUT #, and MAT LINPUT # access data sequentially in
terminal-format files. Table 3-2 summarizes these statements.

Files 3-11

3-12

Files

Table 3-2: Terminal-Format File Input Statements -

Statement Function

INPUT # Reads a record and assigns it to a specified program variable.

INPUT LINE # { Reads a line of text, including the line terminator, and assigns it to a
. string variable.

LINPUT # Reads a line of text, but without the line terminator, and assigns it to a
string variable.

MAT INPUT # | Reads records and assigns them to elements of an array.

MAT LINPUT # | Reads lines of text, without the line terminator, and assigns them to
elements of a string array.

Every input operation sets the RECOUNT variable. RECOUNT contains the
number of characters read by the last input. See section 3.12.3 for more
information.

When the program accesses a record, you can tell BASIC to print that record
at your terminal. For example, the program:

10 OPEN "FI.DAT" FOR OUTPUT AS FILE %1%
20 PRINT #1%, 233" :"3"STRINGB"

30 PRINT #1%, "STRINGA" + CHR$(13%)

40 PRINT #1%s "STRINGC"

S50 CLOSE =17

60 OPEN "FI.DAT" FOR INPUT AS FILE #1%
70 INPUT =1%, A:B$\PRINT A.B%

80 INPUT LINE #17%7 As\PRINT As%

90 LINPUT #1%, C$\PRINT C#

100 CLOSE =17

110 END

writes three variable-length records to the file, accesses them, and outputs
them to the terminal. The file looks like this:

23 +STRINGB@®
STRINGAG @O
STRINGC@ED

and the printed output like this:
23 STRINGB

STRINGA

STRINGC

In this program, BASIC includes the comma (line 20) in the file. However, the
INPUT statement at line 70 interprets the comma as a line terminator, and so
BASIC prints the record as:

23 STRINGB

The MAT LINPUT # statement reads string data from the file until a speci-
fied string array is filled. You can then print the array and display the data.
For example:

3.3 Block

70 DIM TEST.SITES$(125%)

80 OPEN "EXP.FIL" FOR INPUT AS FILE #G%
90 MAT LINPUT #6%, TEST.SITESS

100 MAT PRINT TEST.SITESS,

110 CLOSE 6%

120 END

reads in lines of string data to the array TEST.SITES$ and prints the list in
separate print zones.

Terminal-format files enable you to read records one at a time:

10 OPEN “TEXT.FIL" FOR INPUT AS FILE =47
20 LINPUT #d4%, A$ \ PRINT A$%

30 INPUT "NEXT RECORD"iB$

40 IF B$ = "YES" THEN Z0

S0 CLOSE =47

60 END

or output an entire file:

5 ON ERROR GOTOD 40

10 OPEN "TEXT.FIL" FOR INPUT AS FILE =47

20 LINPUT =4%, A% \ PRINT A%

30 GO TO 20

40 IF ERR = 11% THEN RESUME 50 ELSE ON ERROR GOTO ©
50 CLOSE =47

60O END

I/O Files

Block I/0 files access data in units of one or more 512 character records. These
blocks are a series of logically contiguous records, accessed sequentially or
randomly by record (block) number.

Your program must define data and block and deblock records. For more
information, see Section 3.8.

3.3.1 Opening a Block I/O File
This syntax opens a block I/O file:

OPEN filespec-explJFOR INPUT [|AS FILE #num-expS:
OR OUTPUT

,JORGANIZATION] VIRTUAL

,ACCESS|READ
MODIFY

NONE

MODIFY
LRECORDSIZE num-exp]
LWINDOWSIZE num-exp]

fALLOW

[,MAP mapname]
LCONTIGUOUS]
,FILESIZE num-exp‘]
,MODE num-exp‘]

January 1981 , Files 3-13

Filespec follows the rules for full RSX-11M file specifications, as defined in
the RSX-11M System User’s Guide.

3.3.2 Record Operations
Block I/0 files use PUT and GET statements to write and access data.

3.3.2.1 Writing Data to the File (PUT) — The PUT statement writes data from
the record buffer to the file. Use PUT with the channel number and record
number. For example: ‘

PUT #12%, RECORD 187

writes the contents of the record buffer into the 18th record of the file.

For sequential entry into the file, omit the RECORD clause. Successive PUTs
write sequential records. PUT overwrites existing records, and BASIC does
not return an error message if a record already exists.

3.3.2.2 Reading Data from the File (GET) — The GET statement reads data
from the disk into the record buffer. Type GET with the channel number and
the record number. For example:

100 GET #3%, RECORD 7%

reads the seventh record (record 7%) into the buffer. For sequential access,
omit the RECORD clause. Successive GET's read successive records.

After a successful GET, the RECOUNT variable contains the number of
characters read. See Section 3.12.3 for information on RECOUNT.

3.4 Virtual Array Files

3-14

Files

Virtual arrays exist only on disk, and allow array operations when an array is
too large to fit in memory. You can store data in array elements and access
that data as you would an array in memory.

Virtual array files assume these definitions:
e A “list” is a one dimensional array.

e A “matrix” is a two dimensional array.

¢ A “row” is data arranged horizontally.

¢ A “column” is data arranged vertically.

3.4.1 Opening a Virtual Array File

You must use the DIM # statement with virtual array files. The DIMv#
statement:

» Associates the array with a channel number.
¢ Defines the types of data you store.

¢ Defines where the record is located in the block, and therefore how you can
block or deblock records.

The OPEN statement defines the file attributes.

This syntax opens a virtual array file:
DIM # num-exp%, array(s)| = number]

FOR INPUT AS FILE #num-exp%
FOR OUTPUT!

,JIORGANIZATION] VIRTUAL

,ACCESS|READ
MODIFY

NONE
MODIFY

LWINDOWSIZE num-exp]

[,CONTIGUOUS]

OPEN filespec-ex

|EALLOW

[, FILESIZE num-exp%]
Filespec follows the rules for full RSX file specifications, as defined in the
System User’s Guide. -

3.4.2 Dimensioning the Array (DIM # Statement)

When opening a virtual array file, you must describe the arrays in the file with
the DIM # statement. Place the DIM # statement before the OPEN statement -
in your program. You cannot specify a DIM # statement as part of a condi-
tional expression. The DIM # format is:

DIM # num-constant, array(s)[= number]
where:

num-constant is the channel number associated with the virtual array
file. . :

array(s) is a 1 or 2 dimensional subscripted array. Separate mul-
tiple arrays with commas.

number is the maximum length of a string array. This value
must be a power of 2. The default is 16 characters.

The “num-constant” associates the DIM # statement with the file. For exam-
ple, the array:

DIM #B,» A(750)
dimensions this virtual array file:

20 OPEN ‘VIR.DAT‘ AS FILE =#B% &
+ORGANIZATION VIRTUAL

The maximum size for a list is 32766; the maximum size for a matrix is 32766
by 32766.

Files 3-15

3-16

Files

The DIM # statement can also provide multiple arrays for the same file. For
example:

10 DIM #2%, A(15,20), B(50), C$(18) = 8%

dimensions three arrays: (1) matrix A, with space for 336 numeric elements,
(2) list B, with space for 51 numeric elements, and (3) Array C$, with space
for 19 string elements, each 8 characters long.

The array dimensions in the DIM statement start at the beginning of the
opened file. Therefore: -

100 DIM #1%: AC100), B(100)

and

10 DIM #17%, ACL100)
20 DIM #1%, B(100)

do not perform the same function. Line 100 allocates two arrays of 101 ele-
ments (the 100 shown plus the 0 element) on channel number 1. Lines 10 and
20 together allocate one array of 101 elements on file number 1. That array,
however, has two names. You can reference the elements with either name.

You can specify a string length in virtual arrays. The default is 16 characters.
If you specify a length, it should be a power of 2 (2, 4, 8, 16,...). BASIC rounds
other numbers up to the next power of two and truncates strings longer than
the actual length. Virtual array strings are left justified and null-filled.

BASIC does not pre-initialize virtual arrays. You can initialize an array with a
program similar to:

10 DIM #17% A$(32766) = 32%
15 OPEN "PARTS.DAT" FOR OUTPUT AS FILE #12%
20 OPEN "ARR.FIL" FOR OUTPUT AS FILE #=1%

30 A$(I7%) = SPACE$(32%) FOR I% = 32786% TO O% STEP -1%
40 PRINT "ARRAY INITIALIZED"
S50 END

Initializing a file in reverse order forces all file overhead to occur at one time.
The file system allocates space for the entire file, and no future extensions are
necessary.

3.4.3 Record Operations

Virtual array files allow you to input values and access them as you do an
array in memory. In addition, you can access array elements across subpro-
grams. The following sections describe these operations.

3.4.3.1 Writing Data to the File — You store data in virtual array files by
assigning numeric or string values to the array elements.

3.4.3.1.1 Assigning Single Array Elements (LET) — Use the LET statement to
assign single array values. For example:

30 LET C%(3%,177%) = 48S%

assigns the value 485 to element (3,177).

Because LET overwrites existing data, you can update array elements. For
example:

BO LET A%$(4%,32%) = "JONES"
enters JONES in element (4,32) and replaces the previous value.

3.4.3.1.2 Justifying Array Elements (LSET) and RSET) — You can also use the
LSET and RSET statements when updating single array elements. These

statements left justify (LSET) or right justify (RSET) strmg elements, and -

limit their size to a specified length. For example

50 DIM #d%, CH(S%L10%)
GO INPUT "NAME"; B$%
70 LSET C$(3%,7%) = B$

writes a new record (B$) into array element (3,7). The string B$ is left
justified.

3.4.3.1.3 Assigning Values to All or Part of an Array — You can use a
FOR/NEXT loop to write to selected array elements. For example:

10 DIM #12%, FA(BYL»10%)
20 FOR I7% = 5% TO G%

30 FOR J% = 7% 70 10%

a0 INPUT "PART NUMBER"3 PART.NUMY
45: LET FZCIZ»d%) = PARTNUMY

50 NEXT J7%

GO NEXT I7%
70 CLOSE #127
80 END

writes data you input to elements (5,7), (5,8), (5,9), (5,10), (6,7), (6,8), (6,9)
and (6,10). The other elements are unchanged. -

A FOR/NEXT loop also writes data to the entire array. For example:

10 DIM #3537, C(4,225)
20 OPEN "ID.NUM" FOR OUTPUT AS FILE #3537

30 FOR BLDG.NUMZ = 0% TO 4%

40 FOR TIME.CARD.NUMZ = 0% TO 2257

50 INPUT "EMPLOYEE NAME"§{ 2%

55 LET C(BLDG.NUMZ .TIME.CARD.NUMZ) = 2%
B0 NEXT TIME.CARD.NUMZ

70 NEXT BLDG.NUMZ
80 CLOSE #=57%
90 END

Files 3-17

3-18

requests employee names and stores them in row order. Because of BASIC’s
storage methods, accessing by row is more efficient.

You can read string records from a terminal-format file and write it to a string
array with the MAT LINPUT # statement. For example: -
90 MAT LINPUT #4%, RECORD.DATS$

reads string data from a terminal-format file open on channel 4 and reads the
elements into array RECORD.DATS.

3.4.3.2 Reading Data from the File — When you open a virtual array file FOR
INPUT, the DIM # statement must specify the same data type and subscript
values as those in the program that created the file. For example:

10 DIM #2%, F$(15%,50%)
20 OPEN "URTARY.DAT" FOR INPUT AS FILE #27 &
' +DRGANIZATION VIRTUAL

opens the file “VRTARY.DAT” and associates it with channel #2. The DIM
statement specifies the same subscripts used to create the file.

3.4.3.2.1 Reading Single Array Elements (LET Statement) —

You access array elements by assigning them to a variable, and accessing this
variable in the program. For example:

GO LET EMP.NAME$ = A$(7%4,12%)

assigns the array element (7,12) to the variable EMP.NAMES. You can then
use the PRINT statement to dlsplay the value of the variable on your
terminal:

70 PRINT EMP.NAMES
BO PRINT A$(7%,12%)

3.4.3.2.2 Reading All or Part of an Array (Loops) — You can use the LET
statement in a FOR/NEXT loop to access all or part of an array. For example:

20 DIM #2%, A$(LID%,25%) = G4%
-30 FOR I7% = 3% TO 10%

40 FOR J%4 = 0% TO 23%

50 PRINT A®CIZ»J%)

S5 LET A$CIZ»J%) = "V

GO NEXT J%4

70 NEXT I%

Files

accesses and prints the 6th to 11th rows of array A$ and sets the original data
to null. By changing line 30:

30 FOR I% = 0% TO 1S%

you can access and print the entire array.

You can display the contents of an array on your terminal with the MAT
PRINT statement. Similarly, you can write the array to a terminal format file
with the MAT PRINT # statement.

January 1981

3.4.4 Using Multiple Arrays

You can use one array to index data in another. This permits faster access to
records. For example, the following program accesses employee badge num-
bers stored in one virtual array file, and the corresponding employee’s master
record stored in another. Searching the badge number file locates records
faster than searching the master file, because the badge number records are
shorter.

10 DIM #1, THE.BADGE .NUMBER.ON,FILEZ(1000)

20 DIM #2, THE.MATCHING.EMPLOYEE$(1000) = 3J32% :
30 OPEN "BADGE.VYRT" FOR INPUT AS FILE #1%., VIRTUAL
40 OPEN "EMPL.VURT" FOR INPUT AS FILE #27, VIRTUAL
50 CANT.FIND.EMPLOYEEZ = 17

60 PRINT "What is the badde number"3j

70 INPUT THE.BADGE .NUMBER.I.WANTYZ

80 FOR I%Z = 1% WHILE I%< 1001%

90 IF THE.BADGE.NUMBER.ON,FILEZ(1%) = &
THE .BADGE +NUMBER . I .WANTY &
THEN PRINT “The emplovee’s name is "3 B:
THE .MATCHING.,.EMPLOYEE$(I%) &
A\ I%4 = 1001% . &:
\ CANT.FIND.EMPLOYEEYZ = Q%
100 NEXT I%) .
110 IF CANT.FIND.EMPLOYEEZ - : &

THEN PRINT "No such emplovee"
120 CLOSE #2% 1%
32767 END

The program requests a badge number. It then searches the array dimen-
sioned in line 10 until it finds a matching badge number. The program then
prints the master file record that corresponds to the subscripts of the badge
number record. If the badge number is not found, the program prints the
message: “No such employee.”

3.4.5 Accessing Virtual Arrays across Subprograms

The DIM # statement declares the array and allows cofnpil’e-time definitions
of the elements. Because you compile subprograms separately, each must
make data definitions and associate itself with the file.

Once you open a virtual array file in a main program, you can reference that
array in subprograms. For example:

10 DIM #2%, A$(107)

20 OPEN "VATEST.DAT" AS FILE #2%

30 A%$(I%) = SPACE$(10%) FOR I%Z = 10% TO 0% STEP -1%
40 CALL SUBVAT

S0 PRINT A$(3%)

32767 END

dimensions the array A$ and opens the file “VATEST.DAT". Line 30 initial-
izes the array, and line 40 calls the subprogram SUBVAT. The SUBVAT
program: ‘

10 SUB SUBVAT

20 DIM #2%, B$(10%)
30 B$(3%) = "SUNK®
40 SUBEND

Files 3-19

® Restates the DIM statement at line 20.

¢ Assigns the string SUNK to array element B$(3%)—which is actually
A$(3%). ‘

® Returns control to the main program.

You must specify the DIM # statement in all subprograms accessing the
virtual array. Otherwise, statements will reference an array in memory.

3.5 RMS Sequential Files

3-20

Files

Sequential files contain virtually contiguous records stored in the order in
which they were written. You can specify fixed, variable, or stream format
records.

Sequential files permit BASIC dynamic buffering or user buffering. See
Section 3.8.

3.5.1 Opening an RMS Sequential File

This syntax opens a sequential file:
OPEN filespec-exp}FOR INPUT lAS FILE #num-exp%

FOR OUTPUT!
,IORGANIZATION] SEQUENTIAIAFIXED
VARIABLE
STREAM
,ACCESS{READ
WRITE
MODIFY
SCRATCH
APPEND

[LMAP mapname]

LRECORDSIZE num-exp]
LWINDOWSIZE num-exp]
[,LBLOCKSIZE num-exp%]

LSPAN]
[LNOSPAN]

[, NOREWIND)

[, CONTIGUOUS]

[FILESIZE num-exp%]
[TEMPORARY]

You cannot share sequential files for writing, but you can share them for
reading.

The following program opens a sequential file with user-controlled buffering.
The record pointers point to the end of the file:

20 MAP (MAP1) NA.ME$ = 32%, DEPT.NUMZ%, SSN

30 OPEN "CASE.DAT" FOR INPUT AS FILE #37% &
' +ORGANIZATION SEQUENTIAL VARIABLE &
+ACCESS APPEND. ALLOW NONE &

+MAP MAP1

The MAP clause at line 30 references the MAP statement at line 20. The
MAP statement defines the data types and declares the record size. The data
record is one string, one integer, and one real number. The record size is the
total of these fields, or 38 bytes. BASIC statically allocates a record buffer 38
bytes long; all record operations use this buffer for I/O to the file.

The following program opens a sequential file for reading only (ACCESS
READ), with a dynamically assigned record buffer:

10 OPEN "CASE.DAT" FOR INPUT AS FILE #1% &
yORGANIZATION SEQUENTIAL YARIABLE &
+ACCESS READ ‘) &
+RECORDSIZE 100%

BASIC allocates an area for the record buffer out of the program’s free space.
Your program must then use MOVE TO and MOVE FROM statements to
move data elements to and from the record buffer.

3.5.2 Record Operations |

BASIC permits four record operations on sequential files: PUT, FIND, GET
and UPDATE.

3.5.2.1 Writing Records to the File (PUT) — The PUT statement transfers data
from the record buffer to the file. Use PUT to write records for the first time.
You can change records after writing (and then reading) them with the
UPDATE statement. Because sequential files store records in the order in
which they were written, you can write new records only at the end of the file.
You can go directly to the end of the file by specifying ACCESS APPEND in
the OPEN statement, or by executing FIND or GET operations until you
receive the “?End of File” error message.

To add records, type PUT with the channel number. For example:

110 PUT #3%

writes the next record. If you are not at the end of the file, you receive the
error message ‘“?Not at end of file” (ERR = 149). After a PUT operation, there
is no current record. The next record pointer is set to the end-of-file.

Files 3-21

3-22

Files

When processing variable-length records, you can use the COUNT clause to
specify the number of bytes to be written. For example:

110 PUT #3%, COUNT B60O%

writes a 60-byte record to the file opened on channel 3. Without the COUNT
clause, BASIC writes a record equal to the MAP or RECORDSIZE clause.

3.5.2.2 Locating Records in the File (FIND) — FIND locates records but does
not move them into the record buffer. You can use FIND to check if a record
exists, and adjust the current record pointer so you can GET or UPDATE that
record. Successive FINDs locate successive records. For example:

10 OPEN "EXAM.PLE" FOR INPUT AS FILE #8% &
+SEQUENTIAL VARIABLE

20 FIND #8% FOR I% = 1% TO 350%

30 GET #=8%

locates the 50th record and GETs it. An error message indicates thaf you have
reached the end-of-file (EOF).

FIND locates records faster than GET. Although both locate the record and
update the current and next record pointers, GET also moves the data into
the record buffer.

3.5.2.3 Readlng Records from the File (GET) — The GET statement reads a
record from the file into the record buffer. Type GET with the channel num-
ber. For example:

30 GET #7%

reads the record specified by the next record pointer unless the previous
record operation was a successful FIND. If you found the record, GET reads
that record.

A successful GET sets the current record pointer to the record read and the
next record pointer to the current record plus 1. Successive GET's read succes-
sive records. '

Your program can read a file and end the program after the last record. For
example:

Q0010 ON ERROR GO TO 189000

00015 MAP (DAT) PROD.NAM$ = 30%, NUMXZ, REQ.CODE$%

00020 OPEN "RST.DAT" FOR INPUT AS FILE #1% 8
'ORGANIZATION SEQUENTIAL» MAP DAT

00030 GET #17%

00040 PRINT "THE PRODUCT NAME IS", PROD.NAM$

000350 PRINT "THE CALL NUMBER IS" s NUMZ

000680 - PRINT "THE REQUISITION CODE IS", REQ.CODES$

00070 GO TO 30
19000 IF (ERR = 11%) AND (ERL = 30%) B
THEN RESUME 18010 B

ELSE ON ERROR GO TO ©
18010 PRINT "END OF FILE"
19020 CLOSE #1%
32767 END

3.5.2.4 Replacing Records In the File (UPDATE) — The UPDATE statement
replaces an existing record at the position indicated by the current record
pointer. However:

¢ The file containing the record must be on disk.
® The new record must be the same size as the one it is replacing.
e The record format cannot be STREAM.

e A successful FIND or GET must position the target record before an
UPDATE. The error message ‘“?Record not found” (ERR = 155) indicates
that the record you specified does not exist.

For example:

10 ON ERROR GOTO 18000

30 MAP (AAA) L.NAME$ = BO%L,» F.NAME$ = 207, RM.NUME& = 8%

40 OPEN "STU.,DAT" FOR INPUT AS FILE #9%, B
SEQUENTIAL » MAP AAA

50 INPUT "LAST NAME"3§ SEARCH.NAME$

60 SEARCH.NAME$ = SEARCH.NAME4+SPACE$(BO%-LEN(SEARCH.NAME%))

70 GET #897%

80 GOTO 70 IF SEARCH.NAME$<:L .NAMES$

g0. INPUT "ROOM NUMBER"3§ RM.NUM$

100 UPDATE #97%

110 GOTOD S0

18000 RESUME 18010

189010 CLOSE #89%

19020 PRINT "UPDATE COMPLETE"
19030 END :

reads the third record into the record buffer and updates it with a new record
field, LNAMES.

The current record pointer is destroyed during the UPDATE operation. The
next record pointer is unchanged.

NOTE

When updating records, include error trapping in your program
to make sure you complete FINDs and GETs successfully.

3.5.3 Stream Format Records in Sequential Files

A stream format record is a contiguous series of ASCII characters terminated
by a line terminator.

Table 3-3 summarizes valid line terminators.
The record length is the data’s length — up to and including the line termina-

tor. This length is limited only by the buffer size, as defined by a MAP
statement or RECORDSIZE clause.

Files 3-23

3-24

Files

Table 3-3: Valid Stream Format Record Line Terminators

Terminator Symbol
Carriage Return CR
Control Z | W/
Escape ESC
Form Feed FF
Line Feed . LF
Vertical Tab | vr

3.5.3.1 Writing Records to a Stream Format File — You can write records with
the PRINT # and PUT statements:

e If the last character of the record is a valid terminator, the record (including
the terminator) is written to the file.

e If the last character is not a valid terminator, BASIC adds a carriage
return/line feed combination to the end of the record and writes it to the file.

For example:

10 OPEN "TI:® FOR OUTPUT AS FILE #1%., &
SEQUENTIAL STREAM, RECORDSIZE 132%

20 INPUT A%

30 A% = A% + LF !'ADD A LINE FEED FOR TERMINATOR

40 INPUT LINE B$![ALREADY HAS TERMINATORI]

50 PRINT #1%, A%

60 PRINT #1%, B%

70 PRINT "DONE

80 END

RUN

NOTE

A record that: (1) is the same length as the buffer, and (2) has
no terminator, becomes longer than the buffer when BASIC
adds the carriage return/line feed combination. This returns
the error “?Line too long” (ERR = 47) when you read the record
from a file.

3.5.3.2 Reading Records from a Stream Format File — You can read records
with GET, INPUT, INPUT LINE, and LINPUT statements. BASIC reads
the record with or without line terminators, depending on the statement you
use.

3.5.3.2.1 GET — When executing a GET, BASIC scans each character in the
record to see if it is a line terminator. During this process, BASIC discards
nulls and:

¢ Reads the record with the terminator if the terminator is a:

- Control Z (*Z)

- Escape (ESC)

- Form Feed (FF)

- Line Feed (LF)

-~ Vertical Tab (VT)

e Checks the next character if the string scan finds a carriage return. If the
next character is a:

- Null — both the carriage return and the null are discarded, and the
search for a valid terminator continues. The record read is the data
between valid terminators.

- Line feed — the record is read and returned without the carriage return
and line feed.

- Another character — the carriage return is included in the record, and
the search continues for a valid terminator. The record read is between
valid terminators.

After BASIC reads the record, you can access the data with a MAP statement
if the record fields were predefined at compile time. If the record fields were
not predefined, access the data with MOVE FROM.

3.5.3.2.2 INPUT — When executing an INPUT statement, BASIC reads the
record and discards the line terminator.

Each INPUT statement reads the next record from the file. Make sure you
specify enough variables to equal the number of fields in the record. For
example:

90 INPUT #4%Z,» STRG.DATA%: REAL.NUM, INTDATITEMZ

reads the first three fields of the next record. The variables in the INPUT
statement must match the data types in the record fields.

Files 3-25

3-26

Files

If the record does not contain enough data to assign a value to each variable in
the INPUT statement, BASIC issues the error message ‘“?Not enough data in
record” (ERR = 59). BASIC does not wait for additional data. For example:

10 ON ERROR GOTO 19000

20 OPEN ‘STV.DAT’ FOR OUTPUT AS FILE #1%, &
SEQUENTIAL STREAM., RECORDSIZE 132%

30 PRINT #1%, ‘AA,BB.CC’ ! 1 RECORDS 3 FIELDS

40 PRINT #1%, ‘DD:EEsFF’ I WRITE ZND RECORD

30 PRINT #1%, 12% 7' 247% ! RECORD 3 HAS 2 FIELDS

60 PRINT #1%, 144% ! RECORD 4 HAS 1 FIELD

70 PRINT #1%, 288% ! LAST RECORD HAS 1 FIELD

80 CLOSE #=#17%

g0 DPEN ‘STV.DAT’ FOR INPUT AS FILE #27%, ’ 8
SEQUENTIAL STREAM: RECORDSIZE 132%

100 INPUT #2%, A% ! GET 18T RECORD.s 18T FIELD

110 INPUT #2%, DE,F$! GET RECORD 2

120 INPUT #2% ., DOZ%.DOZ2Y% ! GET RECORD 3

130 PRINT A%$:D%E%$.F$,D0Z% DOZ2Y

140 INPUT #2%,» GROSS%,GROS2% ! TRY FOR MORE DATA. RECORD 4

150 GO TO 327867

189000 IF ERR = 3589% AND ERL = 140% &
THEN PRINT ‘EXPECT ERROR 59 WHEN YOU TRY THIS' &
ELSE PRINT ‘ERROR‘JERRI‘AT LINE’JERL

18010 RESUME 32767

32767 END

RUN

AR DD EE FF 12 24
EXPECT ERROR 59 WHEN YOU TRY THIS

3.5.3.2.3 INPUT LINE and LINPUT — When executing a LINPUT statement,
BASIC reads the record and discards the line terminator. When executing an
INPUT LINE statement, BASIC reads the record and includes the line termi-
nator. For example:

10 OPEN ‘TEST.DAT’ FOR OUTPUT AS FILE #1%, &
SEQUENTIAL STREAM

20 PRINT #1%, ‘ALL LINES ARE WRITTEN TO THE FILE'

30 PRINT #1%, ‘WITH TERMINATORS IF NONE IS SPECIFIED,’

40 PRINT =17, ‘A CR/LF IS APPENDED TO'

50 PRINT %1%+ ‘THE LAST RECORD’ + LF

B0 CLOSE 31%

70 END

100 OPEN ‘TEST.DAT’ FOR INPUT AS FILE #1%., B
SEQUENTIAL STREAM

110 LINPUT #1%, A% IND TERMINATOR RETURNED HERE

120 INPUT LINE %1%, B$ ICR/LF RETURNED ON RECORD

130 INPUT LINE #1%, C$ ICR/LF RETURNED ON END OF RECORD

140 LINPUT #1%, D ITERMINATOR NOT RETURNED

150 PRINT A$ \ PRINT B$%$

160 PRINT C$ \ PRINT D%

170 CLOSE #17%

32767 END

RUN

ALL LINES ARE WRITTEN TO THE FILE
WITH TERMINATORS., IF NONE IS5 SPECIFIED

A CR/LF IS APPENDED TO

THE LAST RECORD

3.5.3.3 Optimizing Stream Format Record Operations — If your records con-
tain distinct data fields accessed as separate items, use the RMS GET, PUT,
and UPDATE operations. In contrast, use PRINT, INPUT, INPUT LINE,
- and LINPUT statements when the entire record is treated as a single data
item; the statements execute faster than GETs, PUTs, and UPDATES. For
example:

Retrieving Stream Records from a ‘Mapped Buffer

30 MAP (BUFF) Z%
BOGET #1%, \ A%
70 GET =#1%, \ B$%

8% BZy» C%» F$, Xi Y
74) .
2% .

Retrieving Stream Records with INPUT and PRINT Statements

S0 INPUT LINE #1%.: A%
60 LINPUT #1%, B¢

3.5.3.4 Stream Format Flle Compatibllity — BASIC supports stream format
files for BASIC-PLUS compatibility. Because they generate processor over-
head, consider their use carefully. For non-file-structured device-specific 1/0
(for example, paper tape), it is an efficient method to store records.

In contrast, the use of stream files for file-structured I/0 differs for each
operating system. This hinders their transportability. On the RSTS/E system,
stream files are a native file operation, and are compatible with system
utilities.

On RSX systéms, they are non-native, and thetefore are not compatible with
system utilities (for example, PIP). RSX system utilities require the carriage
control file attributes supplied by BASIC w1th the FIXED and VARIABLE

keywords.

3.5.4 Truncating Sequential Files (SCRATCH) ._

Although you cannot delete single records from a sequential file, you can
delete (truncate) all records starting with the current record. To do this, you
must specify ACCESS SCRATCH in the OPEN syntax.

To truncate the file, position the current reéord pointer with either FIND or
GET after the last desired record and then issue a SCRATCH. For example:

10 OPEN "MMM.DAT" AS FILE #2% B
'SEQUENTIAL FIXED, ACCESS SCRATCH
30 FIND #2%, FOR I%7 = 1% TO 33%
50 SCRATCH #2%
- B0 CLOSE #=2%
70 END

locates the 33rd record and truncates the file beginning with that record.
SCRATCH does not change the physical size of the file, however, and you can
PUT records immediately after a SCRATCH.

Files 3-27

3.6 RMS Relative Files

3-28

Files

Relative files store records in fixed-length record cells. You can access an
individual record sequentially or randomly according to its position in the file.

Each cell contains one record or is empty.

You cannot OPEN a relative file without defining the maximum record
length. The MAP option implicitly declares the record length and uses static
(user) buffering. The RECORDSIZE option explicitly declares the record
length (for example, RECORDSIZE 128%) and uses dynamic buffering.

The cell length for fixed-length records equals the record length plus one byte.
The cell length for variable length records equals the record length plus three

bytes. Stream-format records are not permitted.

3.6.1 Opening an RMS Relative File

This syntax opens a relative file:

FOR OUTPUT

S FILE jmum-exp%

OPEN ﬁlespec-ex‘pﬂFOR INPUT

VARIABLE

LIORGANIZATION] RELATIVEI}I""IXED {]

LACCESS
L

LALLOW (NONE |]|

WRITE
MODIFY

READ ;T

READ
WRITE
MODIFY

[LMAP mapname]
LRECORDSIZE num-exp]
[,FILESIZE num-exp%)
,LBUCKETSIZE num-exp%]
LWINDOWSIZE num-exp]

[,CONTIGUOUS]
,TEMPORARY]
[,CONNECT num-exp%]

This program opens a relative file with user controlled buffering:

110

120 OPEN

MAP (TEST) PART.NUMBERZ» INV.NAME® .,

UNIT.PRICE

"RELATV.FIL" FOR OUTRUT AS FILE #1%
+ORGANIZATION RELATIVE FIXED:,
+ALLOW READ,» MAP TEST

ACCESS MODIFY,

8
&

The MAP clause at line 120 references the MAP statement at line 110. The
MAP statement defines the data types and declares the record size. The data
record is one integer, one string, and one real number. The record size is the
total of these fields, or 22 to 26 bytes, depending on the system’s precision. At
OPEN time, BASIC statically allocates space for the required record buffer.
All record operations use this buffer for I/0 to the file.

This program opens a relative file with a record buffer dynamically assigned
by BASIC:

110 OPEN "RELATV.FIL" FOR OUTPUT AS FILE #17% 8

+ORGANIZATION RELATIVE FIXED. ACCESS MODIFY, &
+ALLOW READ+ RECORDSIZE 2207

BASIC allocates an area for the record buffer out of the program’s free space.
Your program must then use MOVE TO and MOVE FROM statements to
move data record elements to and from the record buffer.

After an OPEN statement, there is no current record pointer. The next record
pointer is set to the first record.

3.6.2 Record Operations

Relative files permit sequential and random PUT, FIND, and GET opera-
tions. In addition, you can UPDATE, DELETE, and UNLOCK records.

3.6.2.1 Writing Records to the File (PUT) — PUT writes records sequentially or
randomly. For sequential PUTs, type PUT with the file’s channel number:

90 PUT #10%

BASIC writes the new record in the location specified by the next record
pointer. If a record already exists, you receive the error message ‘“?Record
already exists” (ERR = 153). :

A sequential PUT destroys the current record pointer. The next record pointer
is set to the new record plus 1.

For random PUTSs, specify the record cell number:

90 PUT #10%,» RECORD 1347%

BASIC writes the new record in the location specified by the relative record
number. If a record already exists, you receive the error message ‘“?Record
already exists” (ERR = 153).

A random PUT destroys the current record pointer and leaves the next record
pointer unchanged. For example, in the program:

310 PUT #1%
320 PUT #1%7, RECORD 20%

Files® 3-29

3-30

the PUT in line 320 does not change the next record pointer set in line 310.

When processing variable length records, you can use the COUNT clause to
specify the number of bytes written to the file. For example:

90 PUT #10%, RECORD 134%, COUNT 56%

 writes a 56-character data record into logical record (block) 134. The num-

ber specified in the COUNT must not exceed the size in the MAP or
RECORDSIZE clause. Setting the record length prevents unwanted data
when retrieving the record. See the RECOUNT variable and CCPOS function
for more information.

3.6.2.2 Locating Records in the File (FIND) — FIND locates records sequen-
tially or randomly, and updates the current and next record pointers. For

“sequential FINDs, type FIND with the channel number:

Files ,

70 FIND #35%

BASIC finds the record specified by the next record pointer. If the record does
not exist, you receive the error message ‘“?Record not found” (ERR = 155). A
sequential FIND sets the current record pointer to the record found. The next
record pointer is set to the current record plus 1.

For random FINDs, specify the record cell number:

70 FIND #35%, RECORD 2B8%

If no record exists, you receive ERR = 155, and the record pointers are unde-
fined. Random finds set the current record pointer to the record found. The
next record pointer is unchanged.

FIND is useful: (1) to determine if the record exists or (2) if the next opera-
tion is GET, DELETE, or UPDATE. For example, the program:

100 FIND %1%+ RECORD ZO%
110 GET #17% i
20 UPDATE #17%

updates RECORD 20.
Use FIND instead of GET to save time. It is especially useful when:

® Using a loop to skip over records in a file
® Determining the existence of a record for a GET or UPDATE
¢ Establishing the current record for an UPDATE or DELETE

3.6.2.3 Reading Records from the File (GET) — GET reads records sequen-
tially or randomly. For sequential GETs, type GET with the channel number:

40 GET #17%

January 1981

GET reads the record specified by the next record pointer unless the last
record operation was a successful FIND. In that case, GET reads the record
you found. Successive GET's read successive records.

After a sequential GET, BASIC sets the record pointers depending on any
previous FIND operations:

¢ A GET with no preceding FIND sets the current record pointer to the new
record. The next record pointer is set to the new record plus 1.

e A GET preceded by a FIND leaves the current record pointer unchanged.
The next record pointer is set to the current record plus 1.

Your program can read all records sequentially and then close the file when
finished. For example:

10 ON ERROR GOTO 18000

20 MAP (CRE) STATE$., MAIN.OFF$: NUM.SPL%Z,» SCODE

30 OPEN "REC.DAT" FOR INPUT AS FILE #1%, 8:
ORGANIZATION RELATIVE: MAP CRE

40 FOR I% = 1% TO 32767%

S0 GET #17

B0 PRINT "REPORT FOR"» STATES$

70 PRINT "THE OFFICE FOR"3 STATE$3 "I5": MAIN,OFF%

80 PRINT MAIN.OFF&i "HAS"» NUM.,SPL%} "EMPLOYEES"

90 PRINT "THE SALES AREA CODE IS", SCODE

100 NEXT 1%

18000 IF (ERR = 11%) AND (ERL = 30%) &

THEN RESUME 32000 ELSE ON ERROR GOTO ©
32000 PRINT "END OF FILE"
33000 CLOSE #1%
32767 END

For random GETs, specify the record cell number:

40 GET =#1%, RECORD 88%

or use a variable to access a record:

10 MAP (BEC) VEH.NUMZ ., SERIAL.NUM$ = 227, OWNER$ = 30%

20 OPEN "VEH.IDN" FOR INPUT AS FILE %27, &
ORGANIZATION RELATIVE FIXED,» MAP BEC

30 INPUT "WHICH RECORD DO YOU MWANT" §A%

40 GET #2%, RECORD A%

S0 PRINT "THE VEHICLE NUMBER IS": VEH.NUMZ

B0 PRINT "THE SERIAL NUMBER IS", SERIAL.NUM$

70 PRINT "THE OWNER OF VEHICLE"3§ VEH.NUMZ "IS", OWNER%

B0 INPUT "NEXT RECORD=ijiA%Z :

80 IF A% = 0% THEN 100 ELSE 40

100 CLOSE #27%

110 END

Random GETs change the value of the current record pointer to that of the
record read. The next record pointer is set to the current record plus 1. In the
program: '

10 GET #2%, RECORD 10%
20 GET #2%

Files 3-31

3-32

Files

line 10 GETSs record 10, and line 20 GET' record 11.

3.6.2.4 Replacing Records In the File (UPDATE) — UPDATE writes a new
record at the location indicated by the current record pointer. You can
UPDATE records only after a successful FIND or GET. Therefore, UPDATE
needs no RECORD clause. The error message “?Record not found” (ERR =
155) indicates that the FIND or GET was unsuccessful. For example:

10 MAP (UPD) ENRDAT$ = 8%, INVOCYZ, SH.NUMYZ: COST

20 OPEN "REC.,ING" FOR INPUT AS FILE #B%, &
o . RELATIVE FIXED: MAP UPD

30 INPUT "WHICH RECORD TO UPDATE" A%

40 FIND #B%.,» RECORD A%

50 INPUT "REVISED COST IS"3iCOST

60 UPDATE #81%

70 INPUT "NEXT RECORD"3A%Z

80 IF A%>5000 THEN 80 ELSE 40

890 CLOSE =BY%

100 END

UPDATEs the records you specify.

The current record pointer is destroyed after an UPDATE operation. The next
record pointer is unchanged.

You can use the COUNT clause to specify the size of the new record. For
example:

50 GET #3%
60 INPUT "NEW DATA"S NEW.DATAZ
70 UPDATE #3%, COUNT -80%

writes a record with a length of 80 bytes. You can specify a léngth equal to the
latest input operation with the RECOUNT variable. For example:

S0 GET #8%, RECORD 404%
60 INPUT "NEW DATA"§ NEW.DATAZ
70 UPDATE #8%, COUNT RECOUNT

writes a record exactly equal to the length of NEW.DATA%. In this example:

S0 INPUT "TYPE IN NEW NAME"S EMP.NAME$
60 GET #8%, RECORD 5917% ,
70 UPDATE #8%, COUNT RECOUNT

the recount vaﬁable is set to the length of record 591, and the UPDATE
operation writes EMP.NAMES$ with a length equal to that record.

3.6.2.5 Deleting Records from the File (DELETE) — You can delete records in a
relative file. You must successfully FIND or GET the record before deleting it.
The error message “?Record not found” (ERR = 155) indicates that the FIND
or GET was unsuccessful. For example:

40 GET #1%, RECORD 67%
S50 DELETE =1%

locates record 67 and deletes it. Since the cell itself is not deleted, you can
PUT a new record after deleting an old one. For example:

PUT #1%, RECORD G7%

writes a new record in place of the old one.
There is no current record after a delete operation. The next record pointer is
unchanged. '

3.6.2.6 Locking Buckets — To protect file integrity, BASIC causes RMS to
perform bucket locking on files that are write shared (opened with ALLOW
WRITE or ALLOW MODIFY). When your program FINDs or GETs a record,
BASIC locks the bucket containing the record to prevent other programs from
using the same record. BASIC unlocks a bucket when:

® Your program performs another record operation.

® Your program explicitly unlocks it.
For example:

60 UNLOCK #8%

unlocks the buckét associated with channel #8%. Use UNLOCK if two or more
users must simultaneously WRITE to the file.

NOTE
Locking records with the LOCK clause is a TRAX only feature.

3.7 RMS Indexed Files

Indexed files contain data records stored in ascending order by key value.
They also contain one or more indices that provide access paths to these
records by primary and alternate key values. When indexed files are created
you must specify: (1) a record buffer, (2) the primary key and, and (3) all
duplicate keys. When opening an existing indexed file, specify either: (1) no
keys or (2) all keys.

Although indexed organization is the most versatile, it generates the most
overhead in disk space and 1/0.

3.7.1 Opening an RMS Indexed File

This syntax opens an indexed file:

FOR OUTPU
,[ORGANIZATION] RELATIVE||FIXED u

OPEN ﬁlespec-expﬂFOR INPUT (|AS FILE jnum-exp%

ARIABLE

Files 3-33

3-34

Files

,ACCESS \READ |-
- {WRITE .
ODIFY

[ALLOW (NONE
READ

WRITE
MODIFY/|

=3

[[MAP mai)name]'
LRECORDSIZE num-exp]

[, FILESIZE num-exp%]
[BUCKETSIZE num-exp%l
LWINDOWSIZE num-expl
[, CONTIGUOUS]
,TEMPORARY] -
[,CONNECT num-exp%])

,PRIMARY [KEY] name{{DUPLICATES
NODUPLICATES

LALTERNATE [KEY] name

[DUPLICATES] [CHANGES]
[NODUPLICATES] [INOCHANGES]

For example:

10 OPEN " INVEN.TOR" FOR INPUT AS FILE #17% &
+ORGANIZATION INDEXED: PRIMARY KEY A% &
'MAP PRT, ALLOW NONE: ACCESS READ

After an OPEN statement, the next record pointer is set to the first record.

3.7.2 Creating and Using Index Keys
BASIC requires one primary key and permlts up to 254 alternate keys for

multiple access paths. A separate index is created for each defined key. The

key assignments appear in the OPEN FOR OUTPUT and accompany a MAP
statement defining the key fields.

You must declare the primary and all alternate keys when the file is created.
When you open an existing file, specify either: (1) .no keys, or (2) all keys
declared when you created the file.

3.7.2.1 Assigning Key Names — Primary and alternate keys must be mapped
string variables. You specify keys in the OPEN statement. For example:

10 MAP (INV) RECNO%,» INV.NAME$ = 4%, PRDJECT.NUM$ = 8% &
»JOB.SUPERVISORS® = 32% .

20 OPEN "INDEX.DAT" FOR OUTPUT AS FILE #8%
+ORGANIZATION INDEXED FIXED
'PRIMARY KEY RECNO$
+sALTERNATE KEY INV.NAMES$
'ALTERNATE KEY PROJECT.NUM$
'ALTERNATE KEY JOB.,SUPERVISOR$%
tMAP INV

° e

BASIC assumes that the primary key has no duplicate values. If you allow
duplicates, specify that attribute in the OPEN statement. For example:

+PRIMARY KEY RECNO$ DUPLICATES

Alternate keys can also have duplicates. In addition, you can allow key values
to change by specifying CHANGES with DUPLICATES:

+ALTERNATE KEY JOB.SUPERVISOR$ DUPLICATES CHANGES

3.7.2.2 Creating Data Fields (MAP) — The MAP statement creates a record
buffer for input and output, defines data fields in the records, and positions
these fields in each record. Each key in the file open must have a correspon-

ding field in the MAP statement. You cannot open an indexed file without
defining the MAP.

For example:

50 O0OPEN "ACCNT.DAT" FOR INPUT AS FILE #4% 8.
+ORGANIZATION INDEXED VARIABLE B:
+ACCESS MODIFY sALLOW NONE &
yPRIMARY KEY B%s ALTERNATE KEY WAGES$ &
+MAP BUFF1

opens a file ACCNT.DAT and names the MAP BUFF1. You then define
the MAP. Specify lengths for string fields. The default is 16 characters. For
example:

B0 MAP (BUFF1) NA.ME$ = 287, EMP.NUMYZ, AGEY

You can use FILL items to reserve space in a MAP; for example:

B0 MAP (BUFF1) NA.ME$ = 2B6%, EMP.NUMZ, FILLs FILL%$: AGEYZ

reserves space for a floating point number (FILL) and a string of sixteen
characters (FILLS$).

3.7.3 Record Operations

BASIC indexed files permit five record operations: PUT, sequential and ran-
dom FINDs and GETs, UPDATE, and DELETE.

3.7.3.1 Writing Records to the File (PUT) — BASIC stores records in order of
ascending key value. Therefore, you do not specify a random or sequential
PUT. Type PUT with the channel number. For example:

20 MAP (XXX) R.NUM$, DEPT.NAME%,» PUR.DATS%

+

.

30 INPUT "REQUISITION NUMBER“§ R.NUMS
40 INPUT "DEPARTMENT NAME"S DEPT.NAME$
50 INPUT "DATE OF PURCHASE"3§ PUR.DAT$
B0 PUT #27%

Files 3-35

3-36

Files

The error message “?Record already exists” (ERR = 153) indicates that a
record with a matching primary key field already exists.

3.7.3.2 Locating Records in the File (FIND) — FIND determines if a record
exists, so you can GET, UPDATE, or DELETE it. FIND locates records in the

file but does not move them into the record buffer.

To FIND records sequentially, type FIND and the file’s channel number. For
example:

70 FIND #G%

locates the record with the next highest key value.

70 FIND #5%, KEY #27%

locates the record with the next highest key value according to the second
alternate key. Successive FINDs locate successive records.

A sequential FIND updates the current record pointer and sets the next record
pointer to the record that logically follows the current record. The “next
logical record” depends on the key you are using.

For random FINDs, specify a target key value. BASIC then searches the
records until it locates the one that matches your specification. The format for
a random FIND is: ' EQ

FIND #num-exp%, KEY # num-exp%{GT} string expression
GE

where:

KEY # num-exp% is the reference number of the key. Zero is the
reference number of the primary key, 1 is the refer-
ence number of the first alternate key, and so forth.

EQ specifies a search for the first record with a key value
equal to “‘string expression.”

GT specifies a search for the first record with a key value
greater than that of “string expression.”

GE specifies a search for the first record with a key value
equal to or greater than “string expression.”

string expression is a string field. You can specify an expression or a
variable.

With the exact key match (EQ), RMS looks for the first record in the file that
equals the key value given in string-expression. For example:

150 FIND #3%+ KEY #0% EQ "KATHY HARPER"

If no match is possible, BASIC returns the error message ‘“?Record not found”
(ERR = 155).

With the greater than (GT) key match, BASIC searches for the record with
the next highest key value specified by “string expression.” If no GT record
exists, you receive the EOF error message.

If you specify greater than or equal to (GE), and an exact key match is
possible, BASIC locates the first record that equals the key value in the string
expression. For example:

90 FIND #3% s KEY #2% GE "S347H2A"

If you specify GE and no exact match is possible (that is, no record in the file
has a value for KEY # num-exp% that equals string expression), BASIC
locates the first record whose key value is higher than the string expression.
For example:

40 FIND #3%, KEY #0%7 GE "JONES"
50 FIND #5%, KEY #07% GT "ABRAMSON"

If the file contains the names ABELL, ABRAMSON, ADAMS,
HOTCHKISS, JONES, KNIGHT, and SMITH, statements 40 and 50 find
the records JONES and ADAMS. Line 40 identifies the key as the primary
‘key (#0) and searches for the first record whose primary key is equal to or
greater than JONES. JONES is the first record to meet this condition. A
sequential FIND after line 40 locates Knight and Smith. Line 50 also uses the
primary key and searches for a record greater than ABRAMSON. ADAMS is
~ the first record to meet this condition. ‘

The string expression can contain fewer characters than the key of the record
you hope to find. The statements on lines 40 or 50 could have specified values
of fewer characters, such as “JO” in line 40 or “ABR” in line 50. Note,
however, that if line 50 specified “AB”, ABELL is the target record. This
process is called ‘“‘generic key searching.”

A random FIND updates the current record pointer but leaves the next record
pointer unchanged.

3.7.3.3 Reading Records from the File (GET) — You can read records sequen-
tially by specifying GET with the file’s channel number. For example:

90 GET #1%

reads the record with the next higher key value. Successive GETs read records
sequentially.

Files 3-37

Your program can read through an entire file and CLOSE after printing all
the records. For example:

10 ON ERROR GOTO 300
20 MAP (CRE) STATE$, MAIN.OFF$, NUM.SPL%,» SCODE
30 OPEN "REC.DAT" FOR INPUT AS FILE #1%, &
ORGANIZATION INDEXED s MAP CRE, &
PRIMARY KEY STATE$,» ALTERNATE MAIN.OFF$
40 FOR 1% = 1% TO 32766%
50 GET #1%
B0 PRINT "REPORT FOR", STATES$
70 PRINT "THE OFFICE FOR"} STATE$} “IS", MAIN,OFF$
B0 PRINT MAIN.OFF$; "HAS", NUM,SPL%} "EMPLOYEES"
90 PRINT "THE SALES AREA CODE IS", SCODE
100 NEXT 1%
300 IF (ERR = 11%) AND (ERL = 50%) &
THEN RESUME 400 ELSE ON ERROR GOTO ©
400 PRINT "END OF FILE"
500 CLOSE #1%
B0O END

Specifying another key reads successive records according to that key value.
For example:

90 GET #1%, KEY #17% GE "ARK"

reads the next record with the next highest value according to the current
key of reference.

If the last record operation was not a FIND, GET positions the current record
pointer to the record read. The next record pointer is set to the record logically
following the current record in the key of reference.

If the last operation was a FIND, the current record pointer is unchanged, and
the next record pointer is set to the record logically following the current
record in the key of reference.

For random searches, you must specify a target key value. The format for

GET is: ‘ EQ
GET #num-exp%, KEY #num-exp% |GT | string expression
GE

See FIND for a description of generic key searching. You can read records
randomly by specifying the target string:

360 GET =47, KEY 0% GT "COLUMBUS"

or use a variable to read a number of different records:

10 MAP (BEC) OWNER$ = 30% VEH.NUM%,» SERIAL .NUM$ = 227%

20 OPEN "VEH.IDN" FOR INPUT AS FILE #2%, &
ORGANIZATION INDEXEDs MAP BEC

30 INPUT "WHICH RECORD DO YOU MWANT" 1A% -

40 GET #2%, KEY #0% EQ A%

50 PRINT "THE VEHICLE NUMBER IS": YEH.NUMZ

B0 PRINT “THE SERIAL NUMBER IS", SERIAL.NUM$

70 PRINT "THE OWNER OF VEHICLE"S VEH.NUMZ "IS", OWNER$

80 INPUT "NEXT RECORD"iA$

90 IF A% = "DONE" THEN 100 ELSE 40

100 CLOSE #2%

110 END

3-38 Files

A random GET sets the current record pointer to the record read. The next
record pointer is set to the record logically following the current record in the
index of reference. ‘

3.7.3.4 Replacing Records in the File (UPDATE) — UPDATE writes a new
record at the location indicated by the current record pointer. Because
UPDATE depends on a previous successful FIND or GET, your program does
not need to specify a record number or key value with UPDATE. The error
message ‘“?Record not found” (ERR = 155) indicates the record you specified
does not exist. Use UPDATE with the file’s channel number. For example:

30 INPUT "WHAT IS THE EMPLOYEE NAME" 3 TARGET.NAMES$
40 GET #2%,» KEY =1% EQ TARGET.NAME$

50 INPUT "TYPE IN THE NEW ID"§i EMP.,ID.NUMBERS$

60 UPDATE =2%

enters a new identification number for the employee name you specify.

When the file permits duplicate primary keys, the new record must be the
same length as the old one. When the program does not permit duplicate
primary keys, the new record:

e Can be no longer than the maximum record size.

e Must include at least the primary key field.

If the new record omits one of the old record’s alternate key fields, the OPEN
statement must specify CHANGES for that key field.

After an UPDATE operation, there is no current record. The next record

pointer is unchanged.

3.7.3.5 Deleting Records from the File (DELETE) — A successful FIND or GET
must precede the DELETE operation. These operations make the target rec-
ord available for deleting. The error message “?Record not found” (ERR =
155) indicates that the FIND or GET was unsuccessful. For example:

30 GET #27%, KEY #0 EQ "421-56-9012"
40 DELETE #2%

deletes the record with the primary key value equal to 421-56-9012.
An error message indicates the record you specified does not exist.
After a DELETE operation, there is no current record. The next record

pointer is unchanged.

3.7.3.6 Locking Buckets — To protect file integrity, BASIC performs bucket
locking on files that are write shared (opened with ALLOW WRITE or
ALLOW MODIFY). When your program FINDs or GETs a record, BASIC
locks the bucket containing the record to prevent other programs from using
the same record. BASIC unlocks a bucket when:

¢ Your program performs another record operation.

¢ Your program explicitly unlocks it.

Files 3-39

For example:

B0 UNLOCK =81%

unlocks the bucket associated with channel #8%. Use UNLOCK if two or more
users must simultaneously WRITE to the file.

NOTE
Locking records with the LOCK clause is a TRAX only feature.

3.7.4 Restoring an Indexed File (RESTORE)

Because an indexed file can have alternate access paths, you must specify the
access path (key) you want restored. You can restore the primary key or an
alternate key. For example:

890 RESTORE #3%., KEY 0%

restores the file’s primary key only. You can restore an alternate key by
naming that key in the RESTORE statement. For example:

220 RESTORE =4%, KEY 8%

restores the 8th alternate key.

After a RESTORE, there is no longer a current record pointer, and the next
record pointer points to the first record in the file.

If you have been processing records sequentially according to 1st alternate key
value, you continue to FIND and GET records according to that key after
restoring it. To begin record operations on another key, you must specify that
key. For example:

GET =d4%, KEY 0%

begins record operations on the primary key. Specifying no key restores the
primary key.

3.8 Buffer Control and File Optimization

3-40

Files

Controlling the I/O and record buffers helps you to optimize file handling and
program size. This section describes (1) the OPEN statement keywords affect-
ing the I/0 buffer size, (2) mapping the record buffer, and (3) record blocking.

3.8.1 OPEN Statement Keywords

3.8.1.1 BLOCKSIZE — A block on magnetic tape is between 18 to 8192 bytes.
With RMS sequential tapes, you specify this size in the BLOCKSIZE clause
as a positive integer divisible by four.

- You must specify BLOCKSIZE as an integer number of records. For example,
a file on tape with 126 byte records has a block size between 1 and 64. The
default is 512 bytes. For example, in the OP_EN statement:

10 OPEN "MMO:[100,1001TEST,.SEQ" FOR OUTPUT AS FILE #12% &
+ORGANIZATION SEQUENTIAL,» RECORDSIZE 890% &
+BLOCKSIZE 12%

the RECORDSIZE attribute defines the size of the largest record in the file as
90 bytes, and BLOCKSIZE defines the size of a block as 12 records (1080
bytes). Thus your program contains an I/O buffer of 1080 bytes. Each physical
read or write moves 1080 bytes of data. Every 12th GET or PUT causes a
physical read or write. The previous GETs or PUTSs only move data into or out
of the I/O buffer. Specifying a BLOCKSIZE larger than the default can re-
duce overhead by eliminating some physical reading and writing to the tape.
In the example, a BLOCKSIZE of 12 saves time by accessing the tape only
after the 12th record operation.

3.8.1.2 BUCKETSIZE — A bucket is a logical storage structure that BASIC
uses to build and maintain files on disk devices. It contains from one to fifteen
blocks. Although a bucket contains blocks, you define a bucket by the number
of records it contains. For example:

+BUCKETSIZE 12%

specifies a bucket of 12 records.

If you spec1fy a BUCKETSIZE other than that originally assigned to the file,
you receive the error message “File attributes not matched” (ERR = 160)
when re-opening that file.

NOTE

“ Although you specify buckets in terms of records, the RMS
DISPLAY utility returns bucketsxze in terms of the number of
blocks.

Your program cannot change the length of a block on disk. It is always 512
bytes. A bucket, however, is a logical structure that you can tailor to file
requirements.

Records cannot span bucket boundaries. Therefore, when you specify bucket
size in your program, you must consider the size of the largest record in the
file.

There are two ways to establish the humber of blocks in a bucket. The first is
to use the BASIC default. The second is to specify the number of records you

- want in each bucket. BASIC then calculates a BUCKETSIZE based on that
number.

The default BUCKETSIZE assigned to relative and indexed files is as small
as possible. A small bucket minimizes memory buffer space and the number

Files 3-41

3-42

Files

of records locked when a file is shared. However, it also forces more disk
transfers, especially when you are accessing records sequentially.

BASIC selects a default bucket size depending on:
¢ The record length. |
¢ The file organization (relative or indexed).

e The record format (fixed or varlable)

If you do not define the BUCKETSIZE clause in the OPEN statement,
BASIC: ,

o Assumes that there is a minimum of one record in the bucket.
e Calculates a size.

¢ Assigns the number of blocks.

If you define BUCKETSIZE and specify the number of records, BASIC uses
formulas to derive the necessary number of blocks.

BASIC determines the default bucket size for relative files from these formulas:
Fixed-length records without BUCKETSIZE specification:
Bnum = (1+Rlen)/512
Fixed-length records with BUCKETSIZE specified:
Bnum = ((1+Rlen)*Rnum)/512
Variable-length records without BUCKETSIZE specification:
Bnum = (3+Rmax)/512 N
Variable-length records with BUCKETSIZE specified:
Bnum = ((3+Rmax)*Rnum)/512
where:

Bnum is the number of blocks for each bucket, rounded up to an
integer.

Rlen isthe length in bytes of the file’s fixed-length records, as defined
in the RECORDSIZE clause.

Rmax is the length in bytes of the largest variable-length record in the
file, as defined in the RECORDSIZE clause.

Rnum is the number of records you want in each bucket, as deﬁned in
the BUCKETSIZE clause.

1 is the byte RMS uses to determine deleted records in the file.

3 represents the existence byte plus two bytes that indicate the
count field.

Table 3-4 shows the default bucket sizes selected by BASIC when the bucket
contains the default of one record.

Table 3-4: Relative File Default Bucket Size

Record Length, | Maximum Record Size,

Number Fixed Length Variable Length
of Blocks Records Records

1 1-511 1-509

2 512-1023 510-1021

3 1024-1535 1022-1533

4 1536-2047 1534-2045

5 2048-2559 2046-2557

6 2560-3071 2558-3069

7 3072-3583 3070-3581

8 3584-4095 | ' 3582-4093

9 4096-4607 - 4094-4605

10 4608-5119 4606-5117

11 5120-5631 5118-5629

12 5632-6143 ‘ 5630-6141

13 6144-6655 © 6142-6653

14 6656-7167 6654-7165

15 7168-7679 - 7166-7677

BASIC derives the default bucket size for indexed files from the following
formulas: ,

Fixed-length records without BUCKETSIZE specified:
Bnum = (22+Rlen)/512

Fixed-length records with BUCKETSIZE specified:
Bnum = (((7+Rlen)*Rnum)+15)/512

Variable-length records without BUCKETSIZE specified:
Bnum = (24+Rmax)/512

Variable-length records with BUCKETSIZE specified:
Bnum = (((9+Rmax)*Rnum)+15)/512

Files 3-43

3-44

Files

where:

Bnum
Rlen

Rmax
Rnum

22

24

is the number of blocks for each bucket rounded up to an
integer. - ,

is the length in bytes of the file’s fixed-length records, as de-
fined in the RECORDSIZE clause.

" is the length in bytes of the largest variable-length record in

the file, as defined in the RECORDSIZE clause.

is the number ef records you want in each bucket, as defined in
the BUCKETSIZE clause.

is a 15-byte RMS bucket overhead plus 7 bytes for the fixed-
format record header length. When you define BUCKETSIZE,
BASIC allocates 7 bytes to each record in the bucket and 15
bytes to the complete bucket.

is a 15-byte RMS bucket overhead plus 9 bytes for the varia-
ble-format record header length. When you define BUCKET-
SIZE, BASIC allocates 9 bytes to each record in the bucket

-~and 15 bytes to the complete bucket.

Table 3-5 shows the bucket sizes selected by BASIC when the number of
records is undefined.

Table 3-5: Indexed File Default Bucket Size

Record Length, | Maximum Record Size,
Number Fixed Length Variable Length
of Blocks Records Records
1 1-490 1-488
2 491-1002 489-1000
3 1003-1514 1001-1512
4 1515-2026 1513—2024
5 2027-2538 - ' 2025-2536
6 2539-3050 2537-3048
7 © 3051-3562 3049-3560
8 - 3563-4074 3561-4072
9 4075-4586 4073-4584
10 B 4587-5098 | "7 4585-5096
11 5099-5610 ‘ 5097-5608
12 5611-6122 5609-6120
13 6123-6634 6121-6632
14 6635-7146 - 6633-7144
15 7147-7658 7145-7656

For example, if a BASIC-PLUS-2 program OPENSs an indexed file with fixed-
length records of 100 bytes and a bucketsize of 5, the run-time system makes
these calculations when creating the file:

100 bytes for the data: for example, MAP (ABC) A$ = 100
+ 7 bytes for the record header

107 bytes for the complete record

535 bytes for the records in a bucket (5*107 = 535)
+15 bytes for the bucket overhead

550 bytes specified for each bucket

BASIC requires that buckets be an integral number of blocks; therefore, the
bucketsize for this file is two blocks instead of one. This means that each
bucket can hold at least five records. BASIC continues to fill the bucket with
as many records as possible. '

When you specify a bucket size for files in your program, keep in mind the
space versus speed trade-offs. A large bucket size increases file processing
speed because a greater amount of data is available in memory at one time.
‘However, it also increases the memory space needed for buffer allocation.
Likewise, a small bucket size minimizes buffer requirements, but can also
~decrease the speed of operations.

In addition to record buffer space, your program needs overhead space for
internal control structures. These control structures (FAB, RABs, buffer de-
scriptor blocks, and so forth) are allocated when the file is opened. See Section
3.9.4 for more information. ‘

3.8.2 Statically Allocating Buffer Space (MAP)

MAP statements statically allocate record buffer space and define data at
compile time. The MAP referenced in the OPEN statement also defines rec-
ord length. Define the MAP before: (1) the OPEN statement, and (2) you

reference any mapped variables.
The format for the MAP statement is:

MAP (map name) argument list

where:
MAP is a required keyword.
map name is one to six characters beginning with a letter. You

must include this name in the OPEN statement also.
You cannot specxfy a MAP as part of a conditional
expression. :

argument list defines the name, size, and data type of each record in
the file. The length of the record buffer equals the sum
of all fields in the argument list.

Files 3-45

3-46

Files

For example:

110 MAP (ASA) NA.ME$ = BO%, ADD.RESS$ = BO%

defines two string fields of 60 characters and a record size of 120 bytes. Later
MAPs cannot exceed this record size.

NOTE

Avoid using a MAP and a RECORDSIZE specification in the
same OPEN statement. Because RECORDSIZE overrides
MAP, it is possible to define a record size and cause a record
operation to overwrite mapped areas.

You can use additional MAP statements to redefine the fields in the record.
These statements assign new variables to the same fields, and allow, for
example, the variable “ADD.RESS$” to include the fields “STREETS$”,
“CITY$”, “STATES$” and “ZIP$”. You cannot, however, assign the same
variable name to more than one field.

Because MAP statements define data at compile time, execution time is
faster. In addition, record buffers are in the program space. This can use less
space than buffers assigned dynamically with the RECORDSIZE attribute.
MAPs have two other advantages:

e Because MAPs point into the buffer but do not actually move data, you
eliminate the overhead of the MOVE statement.

* You do not, as in FIELD statements, have to change integers and real
numbers to string format before moving them to the buffer. MAP state-
ments define all data types.

3.8.2.1 Single MAP Statements — When all records in the file are alike in
content and format, you can specify one MAP statement to define the record
buffer. You name the MAP in the OPEN statement and describe it elsewhere
in the program. For example:

100 MAP (ASA) F.NAME$ = 30%. L.NAME$ = 30%, ADD.RESS$ = BO%
110 OPEN "ARAA.DAT" FOR INPUT AS FILE #3% &
+ORGANIZATION SEQUENTIAL &
+MAP ASA, ACCESS APPEND

You can then input data and associate that data with variables in the argu-
ment list. For example:

110 MAP (ASA) F.NAME$ = 30%, L.NAME$ = 30%, ADD.RESS$ = GOZ
120 INPUT “FIRST NAME"j§ F.NAME$ '

130 INPUT "LAST NAME"§ L.NAME$

140 INPUT "ADDRESS"§ ADD.RESS$

150 PUT #1%\GDTO 120

inputs data for the three data fields defined in the OPEN statement and
writes the record in the file.

Because the OPEN statement associates the MAP with a channel number,
you can FIND, GET, PUT, UPDATE, and DELETE records without any
further reference to the buffer.

3.8.2.2 Muitiple MAP Statements — Because multiple MAPs permit multiple
record definitions at the same time, you can redefine the record buffer. This
can: (1) optimize space in the file, (2) permit different types of records in the
same file, or (3) allow for variations in record fields. For example:

500 MAP (ASA) NAME$ = BO0%Z.,» ADD,RESS$ = GO%, EMP.INFO$ = 38%

defines a record with three fields with a total length of 158 characters. You can
redefine these fields with later MAPs. For example:

1060 MAP (ABA) F.NAME$ = 28%, FILL% = 2%, L.NAME$ = 30% B
+STREET$ = 34%, FILL$® = 1%, CITY$% = 13%,s FILL$ = 1%
+STATE® = 2%, FILLS = 1%, ZIP% = 7%, FILLS = 2%
1SALARY .REVIEW.DATE$ = B% . FILL$% = 2%, SUPER.VISOR%

n e e

3
]
B

defines the same data as the MAP in line 500 with 14 fields. You can then
reference any variable in either statement without further reference to the
MAPs:

1070 INPUT “FIRST NAME"§ F.NAME®$

1080 INPUT "LAST NAME"3F L.NAME$%

1090 PRINT "EMPLOYEE NAME IS" SNAMES$
1100 INPUT "IS SPELLING CORRECT"3 B%
1110 IF Bs = "NO" GOTO 1070

1120 INPUT "STREET ADDRESS" i STREET®
1130 INPUT "CITY"3 CITY$

1140 INPUT "STATE"3i STATE$

1150 INPUT "ZIP CODE"3 ZIP$

11680 PRINT "ADDRESS IS5"iADD.RESGs
1170 INPUT "IS THAT CORRECT"S B%

1180 IF B$ = "NO" GOTO 1120

1190 INPUT "SALARY REVIEW DATE"§ SALARY.REVIEW.DATE$
1200 INPUT "SUPERVISOR"§ SUPER.VISOR$
1210 PUT #17%

Make sure the MAP with the largest actual size is referenced by the OPEN
statement. You should include all MAPs before the variables they reference.

3.8.2.3 FILL items — FILL items mask parts of the record buffer and enable
you to: (1) access portions of a record, (2) skip over record fields, and (3)
reserve space within or between data elements.

Files 3-47

3-48

Files

FILLs are available for all data types. Table 3-6 summarizes their formats
and allocations. <

Table 3-6: FILL Item Formats, Representations, and Allocations

| FILL Format Representation ‘Bytes Used

| FILL | Real (single or double precision) ~ 4or8
,FfLL(n) - n real elements ” " 4norén
FILL% Integer ' 2
FILL%(n) n integer elements _ 2n
FILLS String ' | 16
FILLS$(n) ' n string elements 16n
FILL§=m | String o o om
FILL$(n) = m n string elements, each m bytes long m*n

NOTE

In the applicable formats of FILL, n represents a repeat count,
not an array subscript. FILL(n), for example, represents n real
elements, not n+1. :

For example:

540 MAP (ASA) NA.ME$.: FILL$ = BO%, SALARY.REVIEW.DATE$ = B%Z, &
FILLS = 20U -)
530 PRINT NA.ME$, SALARY.REVIEW.DATES

accesses only two fields in the record, and prints a listing of the employee
name and salary review date. The field FILL$ = 60% skips over the em-
ployee’s address. '

The FILL field in:
STATE$ = 2%, FILL$ = 2%, ZIP$ = 5%

reserves a two-character space between the state and zip code fields.

The FILL field in:
STATE$ = 2%, FILL%L(S%Z), ZIP$ = 5%

reserves space for five integers (ten bytes) between the STATE$ and ZIP$
fields.

3.8.3 Dynamically Allocating Buffers (RECORDSIZE)

The RECORDSIZE option makes dynamic reallocation of record buffer space
when data definitions cannot be made until run-time. For example, the
program:

50 OPEN "SEQ.DAT" FOR OUTPUT AS FILE #1%, &
: SEQUENTIAL VARIABLE, RECORDSIZE 100%
B0 INPUT "PROJECT MANAGER"3S PROJ.MGR$% ‘
70 A% = LEN(PROJ.MGR$) o
80 IF A%>30% THEN PRINT "NAME TOO LONG"\GOTO GO
90 INPUT "PROJECT NAME"3 PROJ.NAMS$
100 B% = LEN(PROJ.NAM$) ,
110 IF B%Z»68% THEN PRINT “NAME TOO LONG"\GOTO 80
120 INPUT "PROJECT NUMBER"3S PROJ.NUMY
130 PROJ.MGR$ = PROJ.MGR$+SPACE$(30%-A%)
140 PROJ.NAM$ = PROJ.NAM$+SPACE$(GBY%-BY%)
150 MOVE 7O #1%, PROJ.MGR$ = 30%, PROJ.NAM$ = BB%Z,» PROJ.NUMYZ
160 PUT #1%, RECORD PROJ.NUMY
170 INPUT "MORE RECORDS"; C$
180 IF C$ = "YES" THEN B0
190 CLOSE =17
200 END '

assigns field lengths at run-time based on data you input.

In contrast, MAP statements define all data locations and resolve data defini-
tions at compile time. They have the disadvantage of fixing record buffer
space in the program, and not allowing for dynamic redefinition. However,
you can overcome this disadvantage by re-using the record buffer area for
other files and connecting to more than one record stream.

When opening files with dynamic buffering, BASIC allocates record buffers
from the free space in your program area. This free space is the difference, in
words, between your task image and:

¢ 32K words (the maximum program size).

or

e The maximum program size set by your system manager.

BASIC uses free space <for both dynamic string handling and I/O buffers.

The amount of space reserved for the dynamic record buffer depends on the
record size, block and bucketsize, file organization, record type, and the
device. The RECORDSIZE clause allocates more record buffer space by speci-
fying an even integer number of bytes.

Use RECORDSIZE with MOVE TO, MOVE FROM or FIELD statements to
perform run-time association of data elements with record buffer positions.
RMS indexed files cannot use dynamic buffermg because you must map their
key variables. :

Files 3-49

3-50

Files

3.8.4 Record Blocking

You can reduce disk abcessing by filling disk blocks completely. This also
makes ‘more records available for processing at one time.

For example, a file of 128 byte records can store four records in each virtual
block. One disk access makes four records available for processing. In con-
trast, a file with a separate block for each record requires four times as much
disk activity.

Through RMS; BASIC—PLUS—2 performs all blocking and deblocking on
sequential, relative, and indexed files. You can, however, do your own block-
ing and deblocking with FIELD and MOVE statements on:

e RMS sequential files.
® Terminal-format files.

¢ Block I/O files.

The individual sections for each file type explain the valid record operations
you can perform.

3.8.4.1 MOVE Statement — The MOVE statement defines data fields and
moves them to and from the dynamic record buffer. The format of the MOVE
statement is:

MOVE {FROM| [#Inum-exp%, I/O list
TO
where:
FROM moves the data from the record record buffer associated

with the channel number and places it in the variables in
the I/O element list.

TO moves the data from the variables in the 1/0 element list
and places them in the record buffer associated with the
channel number.

num-exp% is the file number associated with the opened file.
I/O list is a list of the variables you move. Separate them with
commas.

For example:

30 MOVE FROM =97, A%, COST,» NA.ME$, ID.NUMZ

moves a record with four data fields from the record buffer to the elements in
the I/0O list. This includes: a string field with a default length of 16 characters
(A$), a real number field (COST), a second 16-character string field
(NA.MES$), and an integer field (ID.NUM%).

You can input values to the I/O list in your program. For example:

20 INPUT "“NAME"§ A%
30 INPUT "COST PER UNIT"3 COST

Valid I/O list variables are:

¢ Scaler variables
® Arrays
¢ Array elements

e FILL items
You can specify string length in the I/O list. For example:

NAME$ = 307

Because BASIC dynamically assigns space for string variables, the default
string length during a MOVE TO is the length of the string; the default for
MOVE FROM is 16 characters.

An array specified in a MOVE statement must have the format:

A(), A%() or A$() for a list
A(,), A%(,) or A$(,) for a matrix

For example:

60 MOVE FROM #37, A$()y C(s) s DACy) s LISTEC(s) » NUMC)

moves two lists (A$ and NUM) and three matrices from the buffer into the
specified variables.

'NOTE

The MOVE statement moves the contents of row zero and col-
umn zero.

You specify an array element by naming the array and the subscripts of that
element; for example, A$(25) or B(3,2).

Successive MOVE statements to or from the buffer start at the beginning of
the record buffer. If a MOVE TO only partially fills the buffer, the rest of the
buffer is unchanged.

Use the GET statement to read a record from the file. Then MOVE the data
FROM the buffer to assign the data values to the variables in the I/O list, and
reference the variables in your program.

A MOVE TO transfers data from the variables into the I/O buffer. A PUT or
UPDATE statement then moves the data from the buffer to the file.

Files 3-51

3-52

Files

For example:

5 DIM B%(3:+3)

10 OPEN "MOV.DAT" AS FILE #1% &
'RELATIVE VARIABLE &
+ACCESS MODIFY» ALLOW NONE &
+RECORDSIZE 100%

20 GET #17%

25 0 = Q@ + 1

30 MOVE FROM #1%Z, A, B%(,) s C% = 10%

40 A = A + Q\ B%(3:3) = 128% &

\ Cs = "NEW RECORD"

50 MOVE TO #1%s Ay BUC(+) s C$ = 10%

60 UPDATE #1%

70 CLOSE #1%

80 END

opens file MOV.DAT, reads the first record into the buffer, modifies part of
the buffer, and moves the data from the buffer into the variables specified in
the MOVE FROM statement. The string length of C$ (line 50) is set to 10
characters.

The MOVE TO statement moves the data from the named variables into the
buffer. The UPDATE statement writes the record back into file #1
(MOV.DAT). Line 70 closes the file.

FILL items are valid elements in MOVE statements. They mask parts of the
record buffer and enable you to: (1) access portions of a record, (2) skip over
fields, and (3) reserve space in or between data elements. FILLs are available
for all data types. Table 3-6 summarizes their formats and allocations.

3.8.4.2 FIELD Statement — The FIELD statement associates string names
with all or part of a record buffer.

NOTE

BASIC-PLUS-2 supports the FIELD statement for
BASIC-PLUS compatibility only and 1t is not recommended
for new program development.

The FIELD statement has the format:
FIELD num-exp%, expression AS string variable

[,expression AS string variable...]

where:
num-exp% ~ is the channel number of the file.
expression is an integer that represents the length of the data field.

string variable is a unique string variable name.

A previous GET of the record associates the variables with fields in the record
buffer. For example:

40 GET #27%
50 FIELD #2%, 107 AS A%, 207 AS B%, 37 AS F$%

associates three contiguous strings in the récord buffer, A$, B$, and F$, with
lengths of 10, 20, and 3 characters. The total number of characters repre-
sented is 33. This total must be less than or equal to the record buffer size.

NOTE

The data in block I/O files must be in string format; therefore,
you must convert integers and real numbers for string storage.
The CVT functions perform these conversions.

You can then PUT the record (buffer) into the file:

300 PUT %47

3.8.4.3 Wiriting Blocked Records — You write blocked records with the MOVE
statement by skipping over any previous records and inserting the new record
in the next available position in the block. For example:

30 OPEN "FILES" FOR OUTPUT AS FILE #B% &
+RECORDSIZE S12%

40 INPUT "HOW MANY BLOCKS DO YOU WANT TO WRITE"iNZ

50 FOR I% = 1% TO N%

60 FOR J%Z = 0% TO 15% !16 RECORDS. PER BLOCK
70 INPUT "NAME"3; NA.ME$

80 INPUT "PART NUMBER"3 NUMBERZ

90 INPUT "COST PER UNIT"3§ COST

100 MOVE TO #8% ., FILL$ = J%*32%, NA+ME$ = 26%., NUMBERZ.,» COST
110 NEXT J%

120 PUT #8% !PUT 16 RECORDS

- 130 NEXT 1% a

Each pass through the loop increments the FILL$ field. The program skips
over all previous records and writes the new record in the file.

The FIELD statement operates similarly. Your program can fill and PUT
blocks automatically with a FOR/NEXT loop. For example, this program fills
a block with 64 byte records and PUTSs the block in the file:

100 OPEN "LOCATE.INVY" FOR OQUTPUT AS FILE #1%;
110 INPUT "HOW MANY ITEMS IN THE FILE"S N%
120 FIELD #1%, 3% AS L&\LSET L% = STR$(NL)

130 C% = 1% VINITIALIZE COUNTER
140 UZ% = N7%/8% + 1% !'U = NUMBER OF BLOCKS IN THE FILE
150 F%Z = 1% IF%Z IS THE FIRST DATA RECORD

160 FOR R% = 1% TO U%

170 FOR J%4 = F%4 TO 7%

180 PRINT "LOCATION DATA FOR PART NUMBER"3 C%
190 INPUT "FLOOR: BIN, RACK"S S1%, S2%, 83%

Files 3-53

3-54

200 PRINT "NOW THE NAME OF THE ITEM"}

210 LINPUT Xs

220 FIELD #1%, JZ % G4% AS D%, 1% AS F$, 2% AS B¢ &
12% AS R$,» 587 AS N$

230 LSET F¢$ = CHR$(S1%)

240 LSET B$ = CUTY$(SZ2%)

250 LBET R$ = CVUTZ4$(83%)

260 LSET N$% = X&

270 C% = C%4 + 1

- 280 GO TO 330 UNLESS C% < = NZ

Files

290 NEXT J%

300 PUT #1%, RECORD R%
310 F%4 = Q%

320 NEXT R%

330 PUT #1%

340 CLOSE #1%

350 PRINT "ALL DONE"
360 END

Each pass through the loop increments the dummy variable, D$, 64 bytes (the
length of one record). This enables BASIC to skip over previous records and
write the new record in the next available position. However, the FIELD
statement generates the additional overhead of CVT conversions that the
MOVE statement does not need.

The MAP statement cannot block records directly. Because the MAP state-
ment defines the record buffer, you must use multiple MAPs to define each
different record in that buffer. To do this, you must use different variable
names in each MAP. For example:

60 MAP (ASA) A% = BO0%, FILL$ = 422
100 MAP (ASA) FILL% 80%,s Al% = 8

%
0% FILLS = 342%
140 MAP (ASA) FILL$ 1680% A2 = 8

0% FILLS = 28B27%

and so on. This consumes programmer time and program space.

3.8.4.4 Reading Blocked Records — MOVE and FIELD statements can de-
block records by incrementing a dummy variable or FILL field to skip over
previously read records. For example, in the program:

730 INPUT "HOW MANY RECORDS DO YOU WANT TO READ"iNZ

740 FOR I% = 17 TO N%

745 GET #1%

750 FOR J% = 0% TO 31%

760 MOVE FROM #2%, FILLS$ = J%*16., NA.ME$ = 2B6%, NUMBERYZ,» COST
770 PRINT NA,ME%$, NUMBERY . COST

780 NEXT J%

790 NEXT I%

BASIC (1) increments the FILL field FILLS$, (2) skips over previously ac-
cessed records to remap the buffer, and (3) displays the values of the I/O list
on your terminal.

The FIELD statement reads records similarly. For example, in the program:

130 INPUT "HOW MANY BLOCKS DO YOU WISH TO READ"§ N%
140 FOR I% = 1% TO N7%Z

145 GET %B6%

150 FOR J% = 0% TO 7%

160 FIELD #B%, JZ*B4% AS D%, 1% AS F$, 27 AS B% &
2% AS R$,» 587 AS N&

170 S17 = CVUTS$L(F$)

180 S2% = CVUT$7(Bs%)

190 83% = CVUTSZ(R%$)

200 X = N$

210 PRINT S17%, 82%, 83%» N$

220 NEXT J%

230 NEXT I%

BASIC (1) increments the dummy variable in the FIELD statement, (2) skips
over previously accessed records, (3) reads a new record, and (4) displays the
values of the I/O list on your terminal.

The MAP statement cannot deblock records directly. You must use multiple
MAPs and respecify the variables for each record. For example:

790 GET #27%
800 MAP (ASA) A% = B4%Z., AGEZ., FILL$ = 44G6%
840 MAP (ASA) FILL$% = G4%, Al$ = B4%, AGELZ, FILL$ = 3827%

and so on. You cannot automatically increment FILL fields and use the MAP
statement in a loop.

3.8.5 Mixing MAP and MOVE Statements

You can often process records more quickly by mixing dynamic (MOVE) and
static (MAP) buffering. This is true if: (1) your records have a variety of
formats, but (2) at least one group of records has an identical format.

By branching, you can:

¢ Process the records with identical formats through MAPs (and gain the
advantage of compile-time data definitions).

e Process the records with different formats through MOVE statements (and
define the data at run-time).

For example:

5 ON ERROR GOTO 19000

10 MAP (MASTER) M,EMP.,NUMZ, REGULAR.HRS

20 MAP (WEEK) EMP.NUMZ%Z, HRS.THIS.WEEK

30 OPEN "EMP.MST" AS FILE #1%, RELATIVE, MAP MASTER
40 DPEN "EMP.WEK" AS FILE #2%, SEQUENTIAL, MAP WEEK
50 OPEN "EMP.UPD" AS FILE #3%, SEQUENTIAL

G0 GET #2%

70 GET #17,» RECORD EMP.NUMZ

Files 3-55

80 IF REGULARHRS > HRS.THIS.WEEK &
THEN MSG# = "EMPLOYEE HAS ND OVERTIME" &

\ MOVE TO =#3%, EMP.NUMZ, MSG$, ZERZ &
ELSE MSG$¢ = "EMPLOYEE HAS OVERTIME" + SPACE$(27)
\ OVER.TIME = HRS.THIS.,WEEK - REGULAR.HRS &
\ T.OVER.TIME = T.OVER.TIME + OVER.TIME &
\ MOVE TO #3%, EMP.NUM%, MS5G$,» OVER.TIME
80 PUT #37%
100 GOTO S0
19000 IF ERR = 11% &
THEN MSG$ = "TOTAL OVERTIME HOURS" + SPACE®(4%) &
\ MOVE TO #3%, MSG$, T.OVER.TIME B
\ PUT #3% &
\ RESUME 32000 &
ELSE ON ERROR GO TO O
32000 CLOSE #3% s #2%, w1
2767 END

3.8.6 MAP Statements vs. FIELD and MOVE

In most applications, the MAP statement has these advantages over FIELDs
and MOVEs: ’

¢ Data definitions are made at compile time. Programs with MAP statements
run faster than those with FIELD or MOVE statements.

e MAPs point to the record buffer, but do not move data. In contrast, MOVEs
maintain data in its original format and take tlme to move data to or from
the record buffer.

e MAPs permit all data types. When using FIELD statements, you must
convert data to or from string format before your program can use it.

e When processing similar records, multiple MAPs allow redefinition of the
record buffer without data conversions or MOVEs.

MAPs have two disadvantages:

® When you do your own record blocking, MAPs require constant reiteration,
and consume programmer time and program space w1thout significantly
improving run tlme

e If your program design does not allow other files to re- -use static buffers,
MAP statements can waste program space.

3.9 Advanced File Operations

3-56

Files

You can improve file efficiency with OPEN statement keywords and by con-
trolling file sharing. The following sections describe these operations.

3.9.1 OPEN Statement Keywords

This section explains the OPEN statement keywords that enable you to struc-
ture your file more efficiently on RSX. These keywords are: WINDOWSIZE,
TEMPORARY, FILESIZE, SPAN, CONTIGUOUS, and CONNECT.

&

3.9.1.1 WINDOWSIZE — A window is a set of retrieval pointers BASIC main-
tains for virtual to logical block mapping. From the structure and content of a
file’s pointers, the system can equate virtual and logical blocks.

The file processor stores retrieval pointers in a file header, using enough file
headers to cover the file. A file can contain up to 102 pointers. Each pointer
records:

¢ The number of blocks the pointer maps.

® The logical block number where the group of blocks starts.

One pointer can map a maximum of 256 blocks. Therefore, a file header can
map a maximum of 26,112 logical blocks.

When you open a file, the system reads in a set of retrieval pointers and uses
them to create a ‘“window’’ to map the file. As additional blocks of the file are
read in, new pointers are read in as part of the window. This process of
bringing in new pointers to the window is called “window turning.” In this
way, the entire file can be mapped to its physical location on the disk.

When you reduce window turning, you improve petforménée. In RSX, you can
reduce window turning by:

e Specifying a windowsize larger than the system default with the
WINDOWSIZE keyword.

e Initializing the disk volume containing the file with a windowsize greater
than the default of seven pointers per window. Your system manager can
help you with this procedure.

¢ Mounting the volume containing the file with the /WIN switch to specify a
windowsize greater than the volume default. Again, your system manager
can help.

3.9.1.2 TEMPORARY — Specifying TEMPORARY in the OPEN statement
tells BASIC to delete the file when you close it. TEMPORARY should be
used only in the creation of files. '

3.9.1.3 FILESIZE — With the FILESIZE attrlbute you can allocate disk space
for a file when you OPEN it. For example:

100 OPEN "VALUES.DAT" FOR OUTPUT AS FILE #3%, FILESIZE 350%

allocates 50 blocks of disk space for thé file “VALUES.DAT”. Specify
FILESIZE as an integer number of blocks.

Pre-extension has several advantages. First, the system can create a complete
directory structure for the file, instead of allocating and mapping additional
windows when needed. Second, you reserve the needed disk space for your
application. ‘You will not run out of space when the program is running.
Third, pre-extension can make some of the file’s windows contiguous. This
can permit contiguous retrieval entries.

Pre-extension can be a disadvantage if it allocates disk space needed by other
users, however.

Files 3-57

3-58

Files

3.9.1.4 SPAN — The SPAN attribute for sequential files allows records to
cross block boundaries. If records cross block boundaries, BASIC packs re-
cords into the file end-to-end, allowing for control information and padding.

If you do not allow records to SPAN blocks, BASIC packs records into each
block, allowing for control information and padding. You will waste space in
the file if: (1) you do not allow records to span blocks, and (2) your records do
not exactly fit into a block. SPAN is the default.

When block boundaries restrict records, each record must be less than 512
bytes. This can waste extra bytes at the end of the file. When records SPAN
block boundaries, however, BASIC can write:

o More than one record in each block (for records shorter than 512 bytes).
¢ A partial record in each block (for records longer than 512 bytes).

¢ Records end-to-end without regard to block boundaries.

For example, with NOSPAN, only four 120-byte records fit into a disk block.
When you specify SPAN, BASIC begins writing the fifth record in the block,
and continues that record in the next block. This minimizes wasted disk space
and increases the file’s capacity.

3.9.1.5 Contiguous — The physically adjoining blocks of a contiguous file
minimize disk searching, and so decrease file access time. Once the system
knows where a contiguous file starts on the disk, it need not use as many
retrieval pointers to locate windows in that file. Rather, it can access data by
calculating the distance from the beginning of the file to the desired data. You
may find, however, that not enough contiguous disk space exists for your file.

Be sure to pre-extend the file with the FILESIZE option. This enables
RSX-11M to find enough contiguous space to store the file.

3.9.1.6 Connect — A record access stream can handle only one series of
records at a time. However, you can connect more than one record access
stream to a relative or indexed file and maintain more than one context
during file processing.

Each stream represents an independent, active sequence of record operations.
For example, a program can open an indexed file and connect to two record
access streams. In one stream, the program can use the primary key to access
records randomly; in the other, you can access records sequentially in the
order specified by the alternate key.

3.9.1.7 UNDEFINED — When you do not know the attributes of a file, you can
OPEN it with ORGANIZATION UNDEFINED. You must BUILD the pro-
gram that opens the file with all file switches. For example:

BUILD UNKNON/SEQ/REL/IND/VIR

~ You then open the file FOR INPUT and with ACCESS READ. For example:

1000 OPEN "TEST.DAT" FOR INPUT AS FILE #%., &
ORGANIZATION UNDEFINED,» ACCESS READ

Use MAP or MOVE statements to deblock records, and you read them with
FIND and GET statements. You can also use the FSP$ function to return the
characteristics of the file. See. FSP$ for more information.

3.9.2 File Sharing

Except for sequential files on non-disk devices, programs can share read
access to all files. The ACCESS and ALLOW keywords control file sharing.
The OPEN FOR INPUT and OPEN FOR OUTPUT clauses have no effect.

Table 3-7 summarizes file sharing.

Table 3-7: File Sharing

. User Access: User Access:
File Type Reading Writing
Sequential Single User Single User
Non-disk ‘
Sequential Single/Multiple Single User
Disk Device Users
| Relative Single/Multiple Single/Multiple
Users - Users
Indexed Single/Multiple -Single/Multiple
Users Users

The ALLOW attribute in the OPEN statement specifies the types of opera-
tions you permit other programs to perform on the file while you have it open.
The specifications you can make in the ALLLOW attribute, and the operations
they permit other users to perform, are:

READ or NONE permits others to READ ‘the file only. READ is the

default.
MODIFY permits full access to other users.
'WRITE permits others to WRITE to the file, but prevents

UPDATE operations.

NOTE

Multiple programs that share the same file must specify
ALLOW MODIFY or ALLOW WRITE. Also, you cannot ex-
tend any file opened with ALLOW MODIFY.

Files 3-59

3-60

Files

The ACCESS attribute in the OPEN statement specifies the record opera-
tions you perform on the file. The specifications you can make in the ACCESS
attribute, and the operations they refer to, are:

READ specifies GET and FIND operations on records in the file.
WRITE specifies PUT operations on the file.

MODIFY specifies GET, FIND, PUT, and UPDATE operations on
records in sequential, relative, and indexed files; it specifies
DELETE operations on records in relative and indexed files.

SCRATCH specifies GET, FIND, PUT, UPDATE, and SCRATCH opera-
tions on records in sequential files on disk.

APPEND specifies PUT operations at the end of an existing sequential
file on disk.

FIND and GET operations on relative and indexed files lock the bucket con-
taining the accessed record. This ensures that other programs do not disrupt
the modifications you make to a record. The lock remains in effect until you
specify another record operation.

You can explicitly unlock a bucket after a FIND or GET by specifying an
UNLOCK statement. For example:

70 UNLOCK #17%

makes the last record accessed by a GET or FIND on channel 1 accessible to
other users.

If another program attempts an operation on a locked bucket, the operation
fails. BASIC returns ERR = 154:

?Record/bucket locKed

If you plan to extend a relative or indexed file after creating it, specify READ
as the ALLOW attribute. You cannot extend a shared file. You generate the
“Protection violation” error message if you try to extend a file that specifies a
WRITE or MODIFY clause in the ALLOW attribute.

NOTE

On RSX-11M, if the first program has specified ACCESS
WRITE and ALLOW READ, other programs with ACCESS
READ, allow no-write declarations can still open the file. How-
ever, the reading programs are not protected from changes
being made by the writing program.

See the RMS-11 User’s Guide for more information.

3.10 Memory Allocation

You can improve program design by understanding how BASIC allocates
internal buffers and memory. In general, your program’s task image has three
parts when first loaded into memory, as shown in Figure 3-1:

Figure 3-1: Memory Allocation

32KwW
Memory-resident Library
Unused
Space
Top of Task
Programk
PKW

The memory-resident library contains the OTS routines shared by all users.
Because the library is an installation option, see your system manager to see if
it is available on your system.

The program area contains: (1) compiled BASIC code (threads), (2) the
BASIC Object-Time System (OTS), and (3) record buffer space, if your pro-
gram includes a MAP statement.

During execution, BASIC uses any unused space at load time for string space
and to establish buffers for I/O operations.

The EXTEND TASK system service permits your program to grow by adding
the unused space to the program space. BASIC divides the unused space into
two areas: (1) I/O space, allocated from the top of the program toward the
memory-resident library, and (2) string space, allocated from the top of the
currently mapped memory downwards. This mapping creates free space be-
tween the I/0 and string space. See Figure 3-2.

BASIC allocates free space when the program needs dynamic space for either
I/O or string operations. If there is not enough free space, the strings are
compressed to create the needed area. If the string compression fails, BASIC
issues another EXTEND TASK directive to extend the task. BASIC cannot
extend the task beyond 32KW. In this case, the program aborts with a “Maxi-
mum memory exceeded’’ error message. If the expansion succeeds, string
space moves to the top of the newly extended task, thereby creating a larger
free space area. BASIC then allocates this area for I/O or string use and the
program continues.

.Files 3-61

3-62

Files

3.10.1 I/O Allocation

For each open file, BASIC allocates I/O buffers and control blocks for input
and output. BASIC allocates these areas from dynamic space.

3.10.1.1 Record Buffer — If your program includes a MAP statement, the
record buffer comes from the program space. In contrast to buffers in dynamic
space, buffers in the program area (user-buffers) eliminate overhead in the
BASIC space manager. In addition, this arrangement allows easier interface
to MACRO subroutines.

The compiler creates all MAPs as PSECTs. Because both BASIC and
MACRO know this PSECT name, MACRO subprograms can access data in
the record buffer.

If your program has no MAP statement, BASIC allocates the record buffer
from the dynamic space. There is no user mapping to dynamic space.

3.10.1.2 Device Buffer — Through the device buffer, the system’s file services
can read and write physical records (blocks) for BASIC programs. On disk,
the buffer size is 512 bytes. On magnetic tape, the size is between 18 and 8192
bytes.

Figure 3-2: Allocation of I/O Buffer and String Space

32KW

Memory-resident Library

' Unused Space

Top of Task

String

Space
Dynamic

Space

Free
Space

1/0 Buffer
Space

Program
Space

AKW

Figure 3-3 represents the memory allocation of a task that opens channels 1,
5, and 6, in that order. -

Closing the last opened file first makes more free space available to your
program. For example, closing channel 1 while channel 5 and 6 are open
creates a second hole in the dynamic buffer space. BASIC maintains a linked
list of these holes in ascending memory address order. When you attempt to
open a new file, BASIC checks this list to try and satisfy the request from an
existing secondary hole. If it cannot, BASIC allocates from free space.

When your program closes a file and returns the buffers to the free space,
BASIC checks the linked list to see if it can return any holes below those
buffers to the free space as well. For example, closing channel 5 in the previ-
ous example leaves a hole between the buffers allocated for channels 1 and 6.
Closing channel 6 returns the buffer space associated with channel 6 to free
space, and returns the buffer of channel 5 as well.

Figure 3-3: Order of Memory Allocation

32KW

Memory-resident Library

Unused Space

Top of Task

String
Space

Free
Space

Channel 6 Buffers

Channel 5 Buffers

Channel 1 Buffers

Channel 0 Buffers

Program
Space

Akw
3.10.1.3 Control Blocks — For each opened channel, BASIC maintains a
control block of 156 bytes. This block is a buffer header that stores pointers

and counters for the file. The pointers point to the record buffer, the device
buffer, and any RMS control blocks. '

Files 3-63

3.10.1.4 RMS Control Structures — BASIC allocates dynamlc space for RMS
file control blocks. These blocks include: -

¢ Buffer descriptor blocks (BDBs)

e Internal File Attribute Blocks (IFABs)
¢ Internal Record Attribu_te Blocks (IRABs)
. nybte,nded Attﬁbute Blocks (XABs)

3.10.1.5 Miscellaneous Allocations — Dynamic Space is also allocated for:

¢ A native mode file for channel 0 of your task. This file is always open, and is
treated like other file I/O channels.

e A channel header for an imaginary channel used to handle READ DATA

statements.

e An internal scratch area for data conversions, PRINT USING operations,
and element transmissions.

3.10.2 Order of Memory Allocation

BASIC allocates buffer space in the order your program opens the files.

3.10.3 FIELD Statements

FIELD statements allow direct access to the record buffer. BASIC supports
FIELD for BASIC-PLUS compatibility.

FIELDs present a major obstacle to normal memory allocation. It is possible
to FIELD into a closed channel. This forces BASIC to lock the FIELDed
buffer and all buffers below, preventing a return of those buffers to free space.
The linked list solves some of these problems, but using FIELD can also
fragment the dynamic space. If your program uses FIELD statements, try to
FIELD into the first opened channel(s) only.

3.11 Magnetic Tape Opérations

3-64

Files

BASIC provides both sequential and device-specific files on magnetic tape.
RMS tapes are ANSI formatted and file structured; native mode tapes are
unformatted and non-file structured.

3.11.1 RMS File-Structured Magnetic Tapes

RMS magnetic tape files are sequential access only. You can read or write
only one file at a time, and the files are not available to other users.

3.11.1.1 Opening an RMS Magnetic Tape FOR OUTPUT — You create and open
the magnetic tape for output with the syntax:

OPEN “dev:filename” FOR OUTPUT AS FILE [#num-exp%
‘ ,IORGANIZATION] SEQUENTIAL

[,MAP mapname]

[, BLOCKSIZE num-exp%]
LNOREWIND]
LRECORDSIZE num-exp]

For example:

40 OPEN "MT1:PARTS.DAT" FOR OUTPUT AS FILE #2% &
+RECORDSIZE Z56%

opens the file “PARTS.DAT”’ and writes 256 byte records. A file opened FOR
OUTPUT permits WRITE access only.

3.11.1.2 Opening an RMS Magnetic Tape FOR INPUT — You open the mag-
netic tape for input with the syntax:

OPEN “dev:file name” FOR INPUT AS FILE (#Inum-exp%
JORGANIZATION] SEQUENTIAL

LACCESS APPEND]
[,MAP mapname]
,LBLOCKSIZE num-exp%]
LNOREWIND]
LRECORDSIZE num-exp]

For example:

100 OPEN "MTZ2:PAYROLL.DAT" FOR INPUT AS FILE #47 &
+RECORDSIZE 1024%

opens the file “PAYROLL” and specifies 1024 byte records. A file opened
FOR INPUT permits READ access only. BASIC positions the magnetic tape
at the start of the file unless you specify ACCESS APPEND.

3.11.1.3 Positioning an RMS Magnetic Tape — Use NOREWIND to position
the tape for reading and writing:

e Specifying NOREWIND when the file is created positions the tape at the

logical end-of-tape and leaves the unit open for writing. If you omit

- NOREWIND, you start writing at the beginning of the tape (BOT), logi-
- cally deleting all subsequent files.

e Specifying NOREWIND when the file is OPEN FOR INPUT starts a search
“for the file at the current position. The search continues to the logical end-
of-tape. If the record is not found, BASIC rewinds and continues the search

Files 3-65

3-66

until reaching the logical end-of-tape again. Omitting NOREWIND tells
BASIC to rewind the tape and search for the file name until reaching the
end-of-tape. In either case, you receive an error message if the file does not
exist.

3.11.1.4 Record Operations — You write records to an RMS sequential file
with PUT statements. You read records with GET statements.

3.11.1.4.1 Writing Records to the File (PUT) — The PUT statement writes
sequential records to the file. For example:

70 OPEN "MMO:TEST.DAT" FOR OUTPUT AS FILE #2%., &
ORGANIZATION SEQUENTIAL s RECORDSIZE 207, &
BLOCKSIZE 4%

80 INPUT "NAME"iA%

g0 MOVE TO #2%,» A% = 20%

100 PUT #2%

110 INPUT "WRITE ANOTHER RECORD" iB$%

120 IF B$ = "YES" THEN 80

130 CLOSE #2%

140 END

writes a record to the file. Successive PUTs write successive records.

Each PUT writes one buffer, or tape block, to the file. If your OPEN state-
ment specifies a RECORDSIZE clause, the record buffer length equals
RECORDSIZE. For example:

RECORDSIZE GO%
specifies a record length and a record buffer size of 60 bytes. You can specify a

record length between 18 and 8192 bytes. The default is 512 bytes. BASIC
converts any value less than 19 to 18.

If you also specify BLOCKSIZE, the buffer equals BLOCKSIZE. For
example:

RECORDSIZE G0%s BLOCKSIZE 47

specifies a record length of 60 bytes and an I/O buffer size of 240 bytes (60*4).

Files

You specify BLOCKSIZE as an integer number of records. This integer must
be divisible by 4. The total I/O buffer length cannot exceed 8192 bytes. The
default is a buffer (tape block) of 512 bytes.

3.11.1.4.2 Reading Records from the File (GET) — The GET statement reads
one block of records into the buffer. For example:

240 OPEN "MMO:TEST.DAT" FOR INPUT AS FILE #3%., &
ORGANIZATION SEQUENTIAL s RECORDSIZE Z0% . &
BLOCKSIZE 4% .

230 GET =37

2B0 MOVE FROM #3%, A% = Z0%

270 PRINT A%

280 INPUT “DO YOU WANT ANODTHER RECORD"3iB%
290 IF B% = "YEE" THEN Z50

300 CLOSE #=#357%

310 END

January 1981

reads a block of records from the file on channel 5. Successive GETs read
successive records.

3.11.1.5 Record Blocking — Through RMS, BASIC controls the blocking and
deblocking of records. BASIC checks each PUT operation to see if the speci-
fied record fits in the tape block. If it does not, RMS fills the rest of the block
with blanks and starts the record in a new block. Records cannot span blocks
in magnetic tape files.

When you read blocks of records, your program can issue successive GETs
until it locates the fields of the record you want. For example:

110 MAP (XXX) NA.ME$ = 5% ADDRESS$ = 207

120 OPEN "MMO:FILE.DAT" FOR INPUT AS FILE #47, &
SEQUENTIAL » MAP XXX

130 GET #=4%

140 IF NA.ME$ = "JONES" THEN &
PRINT NA.ME$§ "LIVES AT"3i ADDRESS$ &
ELSE 130

150 CLOSE #47%

180 END

finds and displays a record on the terminal. You can test the RECOUNT
variable to see how many bytes were read in the GET operation.

3.11.1.6 Closing an RMS Magnetic Tape File (CLOSE) — The CLOSE state-
ment ends I/O to the file. For example:

590 CLOSE #G6%

ends input and output to the ﬁle open on channel 6.

If the file is OPEN FOR INPUT, CLOSE has no further effect. If the file is
OPEN FOR OUTPUT, BASIC:

e Writes file trailer labels (2 end-of-file marks) following the last record.

* Backspaces over the last end-of-file mark.

¢ Releases allocated buffer space.

e Awaits further output.

BASIC does not rewind the tape.

3.11.1.7 OPEN Statement Keywords — RECORDSIZE and BLOCKSIZE
control the size of the record and I/O buffers. NOREWIND controls the way
BASIC positions your magnetic tape. The following sections describe these
keywords.

3.11.1.7.1 RECORDSIZE — The RECORDSIZE attribute defines record
length. You can specify a RECORDSIZE between 18 and 8192 bytes. The
default is 512 bytes. For example:

120 OPEN "MTZ2:TEST.DAT" FOR OUTPUT AS FILE #B% &
+RECORDSIZE 887%

Files 3-67

3-68

Files

opens the file TEST.DAT and allows you to write records 88 bytes long. When
you omit the BLOCKSIZE attribute, RECORDSIZE defines the length of the
record buffer as well.

3.11.1.7.2 BLOCKSIZE — The BLOCKSIZE attribute defines the number of
records in each block. The default is one 512 byte record in each block. You
specify BLOCKSIZE in the OPEN statement as an integer number of records.
This BLOCKSIZE must be divisible by four. For example:

10 OPEN "MMO:[100,1001 TEST,SEQ" FOR OUTPUT AS FILE #12% &
sORGANIZATION SEQUENTIAL » RECORDSIZE 90% &
+BLOCKSIZE 12%

opens the file “TEST.SEQ” with a RECORDSIZE of 90 bytes. BLOCKSIZE
defines the size of a block as 12 records (1080 bytes). Therefore, your program
contains a buffer of 1080 bytes. Every 12th GET or PUT causes a physical
read or write, which moves 1080 bytes of data. The previous GETs or PUTs
only move data into or out of the block buffer. The total BLOCKSIZE cannot
exceed 8192 bytes. '

3.11.1.7.3 NOREWIND — NOREWIND prevents BASIC from rewinding a
magnetic tape when you open the file. For example:

10 OPEN "MT1:PAYROL.DAT" FOR OUTPUT AS FILE #1% B
+ORGANIZATION SEQUENTIAL» NOREWIND

opens “PAYROL.DAT” after advancing the tape to the logical end-of-tape.

The default is REWIND. If you omit NOREWIND, the file opens at the
beginning of the tape (BOT), logically deleting all subsequent files.

3.11.2 Native Mode Magnetic Tapes

Native mode permits non-file structured magnetic tape file operations. You
OPEN a physical device and transfer data between the tape and your
program.

3.11.2.1 Opening a Native Mode Tape FOR OUTPUT — You can OPEN a
magnetic tape FOR OUTPUT with the syntax:
OPEN “dev:” FOR OUTPUT AS FILE [#num-exp%

LRECORDSIZE num-exp]
[,LBLOCKSIZE num-exp%]
[, MODE num-exp%]

For example:

190 OPEN “MTi:" FOR OUTPUT AS FILE #1%, MODE 25B8%

opens tape drive MT1: for writihg at 1600 bits per inch. A file opened FOR
OUTPUT permits write access only.

3.11.2.2 Opening a Native Mode Tape FOR INPUT — You can OPEN a tape
FOR INPUT with the syntax:

OPEN “dev:” FOR INPUT AS FILE [#num-exp%

,LRECORDSIZE num-exp]
[,LBLOCKSIZE num:-exp%]
[,LMODE num-exp%]

For example:

140 OPEN "MTZ2:" FOR INPUT AS FILE #2%

opens tape unit MT2: for reading. Opening a tape FOR INPUT permits
READ access only.

3.11.2.3 MODE Values — MODE values in magnetic tape operations describe
tape characteristics, but do not position the magnetic tape. Your program
controls the position of the magnetic tape through the MAGTAPE function.

You determine the value of MODE with the formula:
MODE =E + P
where: o o
E (phase encoded) in bits per iﬁch (BPI) is:
256 = 1600 BPI, phase encoded
0 = system default
P (parity) is:
0 = odd parity
1 = even parity
If you do not specify a MODE value, BASIC uses the system defaults.
3.11.2.4 Positioning the Tape (MAGTAPE Function) — The MAGTAPE func-

tion permits program control over magnetic tape files. The format of the
MAGTAPE function is:

1% = MAGTAPE(F%,P%,U%)
where:
F% is the function code (1 to 9).

P% is the integer parameter.

U% is the internal channel number assigned to the selected open mag-
netic tape.

1% is the value returned by the function.

Files 3-69

3-70

The function code (F%) determines the effect of the MAGTAPE function.
The following sections assume that magnetic tape unit 1 is open on internal
channel 2. : .

The explanation of each of these functions includes the word IMMEDIATE or
WAIT. IMMEDIATE indicates that the monitor initiates the action and im-
mediately returns control to the program. WAIT indicates that the program
continues after completing the operation.

3.11.2.4.1 Off-Line (Rewind and Off-Line) Function

IMMEDIATE .
Function code =1
Parameter = unused

‘ Value Returned =0

The Off-line function rewinds the specified magnetic tape and sets it to
OFF-LINE (thus clearing READY). For example:

200 I7% = MAGTAPE(1%,0%+2%)

rewinds and sets the magnetic tape open on channel 2 to OFF-LINE.

-

3.11.2.4.2 WRITE End-Of-File (EOF) Function

WAIT
Function code =2
Parameter = unused
Value returned =0

The WRITE End-of-File function writes one EOF record at the current mag-

netic tape position. For example:

Files

200 I% = MAGTAPE(2%,0%,2%)
writes an EOF on the MAGTAPE that is open on channel 2.

3.11.2.4.3 Rewind Function

IMMEDIATE
Function code =3
Parameter ='unused °
Value returned =0

The Rewind function rewinds the selected magnetic tape. For example:

200 I% = MAGTAPE(3% 0% 2%)

rewinds the magnetic tape open on channel 2, but does not take the tape
off-line. ’

3.11.2.4.4 Skip Record Function

WAIT
Function code =4
Parameter = number of records to skip (1 to 32767)
Value returned . = number of records not skipped

The Skip Record function advances the magnetic tape until: (1) the specified
number of records is skipped, or (2) the tape reaches the end of the file. For
example: ‘ o

200 1% = MAGTAPE(4%,50%+2%)
skips 50 records in the file open on channel 2.

3.11.2.4.5 Backspace Function

WAIT
Function code =5
Parameter = number of records to backspace (1 to 32767)
Value returned = number of records not backspaced

" The backspace operation backspaces records until: (1) the specified number of
records is skipped, or (2) the load point (BOT) is reached.

For example:

200 I%Z = MAGTAPE(S5%+1%+2%)
backspaces one record on the magnetic tape opened on channel 2.

3.11.2.4.6 Set Density and Parity Function
IMMEDIATE

Function code
Parameter
Value returned

+D*4+P

[/
oo

where:
E (phase encoded) in bits per inch (BPI) is: v
256 = 1600 BPI, phase encoded

0 = values of D and P

D (density) in bits per inch (BPI) is:
0 = 200 BPI (7 track only)
1= 556 BPI (7 track ohly)
2 = 800 BPI (7 track only)
3 = 800 BPI (9 track only)

Files 3-71

3-72

Files

The density and parity function changes the density and/or parity of a mag-
netic tape drive. For example:

10 OPEN "MTO:" AS FILE #2%
20 I% = MAGTAPE(BZ,» Z24x4%+1%, 2%)

changes the density and parity of the 7 track magnetic tape drive to 800 BPI,
even parity.

3.11.2.4.7 Tape Status Function

IMMEDIATE
Function code =17
Parameter = unused

Value Returned status

Tape Status returns the status of the specified magnetic tape as a 16 bit
integer. The bits that determine the status are summarized in Table 3-8. For
example, you can test the value of 1% in:

200 I% = MAGTAPE(T7% 0% +2%)

to determine the status of the magnetic tape opened on channel 2.

Table 3-8: Magnetic Tape Status Word

Bit Test Meaning
15 1% < 0% Last command caused an error.
14-13 (I% AND 24576%)/8192% | 0 = 200 BPI
1. = 556 BPI

2 = 800 BPI, 7 Track
3 =800 BPI, 9 Track -

12 * | (1% AND 4096%) = 0% | 9 track tape.

(I% AND 4096%)<>0% | 7 track tape.

11 (1% AND 2048%) = 0% | Odd parity.

(1% AND 2048%) <>0% Even parity.

10 (I% AND 1024%)<>0% Magnetic tape is physically write locked.

9 (1% AND 512%)<>0% Tape is beyohd end-of-tape marker.

8 (1% AND 256%){>0% Tape is at beginning-of-tape (Load Point).

7 (I% AND 128%)<>0% Last command detected an EOF.

6 Reserved -

5 (I% AND 32%)<>0% Unit is off-line.

4 (I% AND 16%)<>0% Unit is TU16, TE16, TU45, or TU77

3 (I% AND 8%)<>0% ‘| Mode is 1600 BPI phase encoded (TU16).
2-0 ' Reserved

3.11.2.5 Record Operations — You write and read records with PUT and
GET operations.

3.11.2.5.1 Writing Records to the Flle (PUT) — The PUT statement writes
records to the file in sequential order. For example:

10 OPEN "MTO:" FOR QUTPUT AS FILE #9897 [INON-FILE STRUCTURED
20 I%Z = MAGTAPE(3%,0%,9%) IREWIND TAPE _

30 INPUT “NAME"iNA.ME$!GET DATA FROM USER

40 MOVE TO #9%, NA.ME$!PLACE DATA IN BUFFER

50 PUT #9% WRITE BUFFER TO TAPE

writes the contents of the buffer to the file. Successive PUTs write successive
records.

The default record length (and therefore, the size of the buffer) is 512 bytes.
The RECORDSIZE attribute tells BASIC to read or write records longer than
512 bytes. For example:

100 OPEN "MTO:" FOR INPUT AS FILE #17, RECORDSIZE 900%

opens tape unit MTO0: and processes records of 900 characters. You must
specify an even integer larger than 512. If you specify a buffer length less than
512, BASIC uses the default of 512 bytes. If you try to PUT a record longer
than the buffer, you receive the ‘“Magtape record length error’” message.

To write records shorter than the buffer, include the COUNT clause with the
PUT statement. For example:

50 PUT #B%, COUNT SBY%
writes a 56 character record to the file open on channel 6. If you do not specify

COUNT, BASIC writes a full buffer. You can specify a minimum COUNT of
14, and a maximum COUNT equal to the buffer size.

3.11.2.5.2 Reading Records from the File (GET) — The GET statement reads
records into the buffer. For example:

S0 DPEN "MM1:" FOR INPUT AS FILE #17%
60O GET #1%

70 MOVE FROM #1%, A%

80 PRINT A%

90 I%7 = MAGTAPE(9Z,0%1%)

- 100 CLOSE #17

reads a record into the buffer, prints a string field, and rewmds the file when
closed. Successive GETs read successive records.

3.11.2.6 Closing a Native Mode Magnetic Tape — The CLOSE statement ends
I/O to the file. For example:

300 CLOSE #127%

Files 3-73

ends input and output to the file open on channel 12.

If the file is OPEN FOR INPUT, CLOSE has no further effect. If the file is
OPEN FOR OUTPUT, BASIC:

e Writes trailer end-of-file records following the last record.
¢ Backspaces one record.
¢ Releases allocated buffer space.

¢ Positions the magnetic tape for further output.

The tape is not rewound unless you specified MAGTAPE(9%,0%,n%) in your
program.

3.12 File Related Functions

3-74

Files

3.12.1 STATUS Function

The STATUS function accesses: (1) the status word containing characteris-
tics of the last opened file, or (2) additional RMS file information. The
STATUS function has the following format:

A% = STATUS
where:
A% is:

(1) the RMS “STV” variable, as described in the RMS-11
User’s Guide, Appendix B.

(2) an FSP$ device variable.

(3) The RMS “DEV” variable immediately after the file open.
See the RMS-11 MACRO Manual for more information.

The STATUS variable after an FSP$ function is set depending on the pres-
ence of a device in the file name string. '

e When the string contains no device name, the STATUS is undefined. This
condition exists when bit 12 of flag word 2 equals 0. .

¢ When the device name is logical and untranslatable (an actual device is not
assigned), STATUS is undefined. This condition exists when bits 12, 13,
and 14 of flag word 2 test as not equal to 0, and bit 15 tests as (S1%<0%).

e When the device name is either an actual device name or is logical and
untranslatable (an actual device is assigned), STATUS is set for the device.
This condition exists when bit 12 tests as not equal to 0, and bit 15 tests as
equal to 0 (S1%> = 0%).

3.12.2 COUNT Clause

The COUNT clause specifies the number of bytes written in a PUT or UP-
DATE operation. The default is the maximum record size (MRS). The format
is:

PUT num-exp% [, RECORD num-expl‘] ,COUNT num-exp2
UPDATE num-exp% [, RECORD num-expl] ,COUNT num-exp2

where:
num-exp is the channel number associated with the file.
num-expl is the record (block) number of the data record.

num-exp2 is the number of bytes written in the operation.

For example:

PUT #3%, RECORD 62%, COUNT 122%

writes a record 122 bytes long into block number 62 of the file opened on
channel 5. The COUNT clause must:

e Equal the record size in fixed-length records.

e Be less than or equal to the record size in variable- or stream-format
records.

You can use COUNT on any RMS file that has fixed- or variable-length
records, and on RMS sequential files that have stream format records.
COUNT guarantees a true variable record by writing only the length you
specify. BASIC automatically blocks and deblocks variable-length records.

Omitting COUNT defeats the purpose of variable-length records. BASIC
writes the record, but also includes any data past the record up to the maxi-
mum record size.

3.12.3 RECOUNT Function

The RECOUNT function returns the number of characters transferred by the
latest input operation. This equals the size of that record.

The format is:

A% = RECOUNT
where:

A% is the number of characters from the last input operation.

Files 3-75

3-76

Files

The input operations are:

e INPUT and INPUT # \

¢ INPUT LINE and INPUT LINE # (RECOUNT includes a terminator)
e LINPUT and LINPUT #

e GET |

e Matrix input bperationé

Your program must execute RECOUNT immediately after an input opera-
tion. For example:

10 ON ERROR GO TO 100 : ' :
20 OPEN "INPUT.FIL" FOR INPUT AS FILE #1%7 ,SEQUENTIAL
30 OPEN "OUTPUT.FIL" FOR OUTPUT AS FILE #2% »SEQUENTIAL
40 GET #17%
50 PUT #2%, COUNT RECOUNT
B0 GO TO 40
100 IF ERL = 40%, AND ERR = 117 (M
THEN RESUME 110 ELSE ON ERROR GO TO 0
110 CLOSE #2%, #17%
120 PRINT "FILE COPIED"
‘327687 END :

You can access RECOUNT with the PRINT statement:

55 PRINT RECOUNT

The RECOUNT variable is set for all input operations. For RMS files,
RECOUNT equals the size of the record in the record buffer. For native files,
RECOUNT equals the size of the last physical read. Your program must then
deblock the records. If you are using a dynamic buffer and MOVE FROM and
MOVE TO statements, you can use the CCPOS function to determine the
current character position in the buffer.

3.12.4 CCPOS Function

CCPOS returns the current character position on an output line. The format
is:

CCPOS(X)

where:

X is a file I/0 channel.

Specifying CCPOS(0%) returns the character position of a line output on your
terminal. For example:

40 PRINT "TEST LINE"SCCPOS(O%)

returns:

TEST LINE 8

because LINE ends at the eighth character position on your terminal.

Specifying a file channel number returns the current character position in the
record buffer. For example: ‘

410 GET #4%
420 MOVE TO #=#4%, LOCATIONS: NUMZ. JOBBER$ = BOZ
430 PRINT CCPOS(4%)

returns the current character position in the record buffer.

3.12.5 FSP$ Function

The function FSP$ returns file organization data for an opened file. This
function is intended for files OPENed as ORGANIZATION UNDEFINED,
and your program must execute it immediately after the OPEN statement.
The syntax of the FSP$ function is:

X$ = FSP$(channel-number)
In this program:

10 MAP (A) A% = 32

20 MAP (A) ALCLD)

30 OPEN "FIL.DAT" FOR INPUT AS FILE #1%. &
ORGANIZATION UNDEFINED, ACCESS READ

40 A% = FSP$(1%)

50 REM AZ(O%Z) = FILE CHARACTERISTICS

FSP$ generates the following values:

® A%(0%), which returns file characteristics:
High Byte contains the RMS Record Attributes (RAT) field.

Low byte contains the: RMS Organization (ORG) and Record Format
(RFM) Fields. : '

e A%(1) returns the RMS maximum record size (MRS) field.
® A%(2) and A%(3) return the RMS allocation quantity (ALQ) field.

® A%(4) returns the RMS bucketsize (BKS) field for disk files, or the RMS
blocksize (BLS) field for magnetic tape files.

e A%(5) returns the number of keys.

* A%(6) and A%(7) return the RMS maximum record number (MRN) if the
file is relative.

* A%(8) and A%(9) return the current block/record number.

Files 3-77

A file opened with ORGANIZATION UNDEFINED must: (1) be open
FOR INPUT only, and (2) include switches for all file types accessed by the
program. For example, BUILD/SEQ/REL/IND.

I Presence of the FSP$ and FSS$ functions in the same module generates an
“Ambiguous symbols” error when you task-build the module.

3.12.6 FSS$ Function

FSS$ performs a filename scan on the argument string. The format for FSS$
is:

FSS$(A$,B%)

where:

A$ is the filename string.

B% is the starting position of the scan in the string.

The output is a 30-character string encoded as shown in Tables 3-9 through
3-11. On RSX: (1) omitting file name fields or (2) using wildcards returns a
zero value for those fields.

I Presence of the FSP$ and FSS$ functions in the same module generates an
“Ambiguous symbols” error when you task-build the module.

Table 3-9: File Name String: Flag Word Bytes 1-30

Byte Meaning
1 Job number multiplied by two
2 Version Number. If the version number is undefined, the byte returns zero.
RSX only.
3-4 Seventh through ninth characters of the file name. RSX only.
5-6 Project and programmer number.

7-10 File name in RADIX-50 format.

11-12 File extension name in RADIX-50 format.

13-14 FILESIZE switch specification. RSTS/E only.
15-16 CLUSTERSIZE switch specification. RSTS/E only.
17-18 MODE specification. RSTS/E only.

19-20 Undefined

21 Zero—unless a protection code is specified or default exists. RSTS/E only.
22 Protection code if byte 21 is non-zero.

23-24 Device name if specified.
25 Unit number of device. If no unit device is given, byte 25 returns a zero.
26 255 if the unit number was specified.

27-28 Flag Word 1. See Table 3-10.
29-30 Flag Word 2. See Table 3-11.

3-78 Files

A

Chapter 4
Program Segmentation

BASIC offers two ways to divide large tasks into smaller, more manageable
modules: subprogramming and chaining. In subprogramming, control
passes from a calling program to one or more subprograms within a single,
executable image. In chaining, control passes from one executable program
to another executable program. This chapter explains subprogramming and
chaining. ’ ' RS 3

4.1 Subprogramming

Subprogramming allows you to write frequently used procedures as small
modules. You create and compile these modules separately, then build
them into a single task image. Thus, subprogramming gives you the execu-
tion speed of the same task, while also giving you the coding and debugging
advantages of modular construction.

BASIC programs or subprograms can call subprograms written in BASIC,
MACRO, or COBOL. BASIC programs cannot call FORTRAN subprograms
nor can programs written in other languages call a BASIC subprogram.

4.1.1 BASIC to BASIC Subprogramming

BASIC programs or subprograms can call BASIC subprograms. BASIC does
not allow recursion: that is, a subprogram cannot call itself nor can a called
subprogram call the subprogram that called it. For example:

Main Program

10 CALL suB1l

+

32767 END

(continued on next page)

4-1

4-2

Subprogram 1

10 SUB SUB1
20 CALL suBz
’

+

32767 SUBEND

Subprogram 2

10 SUB suBZ
20 CALL suB1

4+

32767 SUBEND

The compiler returns the error message:

PRecursive subroutine call

4.1.1.1 Calling a BASIC Subprogram — BASIC transfers control from a call-
ing program (or subprogram) to a subprogram by executing the CALL

statement. Its format is:

CALL name [(paraml,...param8)]

where:

name

paraml...param8

is the subprogram name. The name must be a
unique, one- to six-character string. A subpro-
gram name cannot be the same as another subpro-
gram, a COMMON, or a MAP within a single task
image.

represent one to eight optional parameters BASIC
passes from the calling program to the subpro-
gram. The parameters must agree in data type
and number with the parameters you define in the
SUB statement of the subprogram. These parame-
ters can be referred to as actual parameters.

A parameter is a value that can be passed from one routine to another. A
routine can be a program, subprogram, or function. The value can be any
numeric data or string data except for virtual arrays. See Section 4.1.1.2 for
more information on parameters.

Program Segmentation

For example:

Calling Program
10 A% = 5%
20 BY% = 10%
30 C% = 15%

40 CALL SUBPRG (BY)
30 PRINT A% B%s CH4
327687 END

Subprogram

10 8UB SUBPRG (B%)
20 B% = 57
32767 SUBEND

When executed, the task returns:

5 3 15

The subprogram name can be either a quoted or an unquoted string. For
example, these are valid subprogram names:

10 CALL "SUBPRG"
10 CALL ‘SUBPRG’
10 CALL SUBPRG

You can include a dollar sign ($) or a period (.) in a subprogram name.
However, if either of these is the first character in the name, the name
must be enclosed in quotes.

You cannot use string variables to call a subprogram. BASIC interprets the
string variable as the actual subprogram name. In this example:

10 NAME = "SUBPRG"
20 CALL NAM$

BASIC tries to call the subprogram named NAMS.
When BASIC executes a CALL statement it:

® Transfers control from the calling program to the SUB statement in the
subprogram

¢ Passes the parameters you define in the CALL statement to the
subprogram

The SUB statement must be the first statement of a BASIC subprogram. Its
format is:

SUB name [(paraml...param8)]

Program Segmentation 4-3

44

where:

name is the same one- to six-character name you use in
the CALL statement.

paraml...param8 represent one to eight optional parameters BASIC
passes from the calling program to the subpro-
gram. The parameters must agree in data type
and number with the parameters you define in the
CALL statement. These parameters can be re-
ferred to as formal parameters.

BASIC suprograms must begin with the SUB statement and must end with
the SUBEND statement.

The SUBEND statement tells BASIC to return control to the statement
immediately following the CALL statement in the calling program.
SUBEND must be the highest-numbered statement in the subprogram. For
example:

10 SUB SUBPRG (STRI.NG$,RE.AL)

20 PRINT "THE VALUES OF THE FORMAL PARAMETERS ARE:"
30 PRINT STRI.NG$3IRE.AL

32787 SUBEND

The SUBEXIT statement transfers control to the calling program.
SUBEXIT is equivalent to an unconditional branch to the SUBEND state-
ment. For example:

10 8UB SUB1 (A%)

20 A% = INT(10% % RND)

30 IF A% < 5% THEN SUBEXIT
40 A% = A% + 4%

32767 SUBEND

In line 30, if A% is less than 5, BASIC transfers control to line 32767 and
line 40 is not executed.

4.1.1.2 Passing Data to a BASIC Subprogram — You can pass data from the
calling program to the subprogram as parameters in a CALL statement or
share data between program modules as elements of a COMMON or MAP
or as records within a file.

Parameters can be modifiable or nonmodifiable. If the parameter is modifi-
able, the value you assign to the parameter in the subprogram replaces the
value you assign in the calling program.

Modifiable parameters include:
¢ Entire arrays

® Simple string variables -

Program Segmentation

¢ Simple numeric variables

¢ COMMON or MAP elements

The term “simple” means unsubscripted.

If the parameter is nonmodifiable, the value you assign the parameter in
the subprogram does not replace the value assigned in the calling program.

Nonmodifiable parameters include:

¢ Constants
¢ Expressions
¢ User-defined and system-defined functions

¢ Individual array elements

You can force a modifiable parameter to be nonmodifiable by enclosing the
parameter in parentheses.

In the following example, the calling program passes modifiable parame-
ters to the first subprogram, and nonmodifiable parameters to the second
subprogram.

Calling Program

S DIMYL(LIO%10%) s X$(10%,10%)
10 PRINT "BEGIN CALLING PROGRAM"
20 A% = "FIRST VALUE ="

30 BZ = 124%

40 PRINT A%i BY

50 CALL suB1(A%.B%)

B0 PRINT A%i BY%

70 X$(17%,1%) = A%

80 YA (SU3%) = B%

90 CALL SUBZ(X$(1%4,1%)»Y4(3%,3%))
100 PRINT X6 (1% 1% 5 Y4(S%,3%)
32767 END

Subprogram 1

10 5UB SUB1 (A% ,B%)

20 PRINT "SUBPROGRAM 1"
30 A% = "SECOND VALUE ="
40 BY = 3677

32767 SUBEND

Subprogram 2

10 5UB SUB2(A%:B%)

20 PRINT "SUBPROGRAM 2"
30 A% = "THIRD VALUE ="
a0 BY = 7427%

32767 SUBEND

Program Segmentation 4-5

4-6

When executed, the task returns:

BEGIN CALLING PROGRAM
FIRST VALUE = 124
SUBPROGRAM 1

SECOND VALUE = 3B7
SUBPROGRAM 2 .

SECOND UALUE 567

In the preceding example:

1. The calling program prints the values of the variables A$ and B%, then
calls the first subprogram and passes the variables to it.

2. The first subprogram changes the values of the variables and returns
those values to the calling program for printing.

3. The calling program redefines the variables as array elements and
passes them to the second subprogram.

4. The subprogram prints the string “SUBPROGRAM 2” and changes the
values of A$ and B%; however, the values are not returned to the call-
ing program because array elements are nonmodifiable.

5. When the calling program prints the values of A$ and B% for the final
time, the values you assigned in the first subprogram: are reprinted.

4.1.1.2.1 Passing Array Elements and Arrays — Single array elements are
nonmodifiable when passed to the subprogram as parameters in the CALL
statement. However, if you pass an entire array as a parameter, you can
change one or all of the elements in that array.

NOTE

While BASIC allows you to pass an entire array, you cannot
pass a virtual array as a parameter.

To pass arrays as parameters, specify the array name followed by a set
of parentheses. Include a comma in the parentheses if the array is two-
dimensional. For example:

10 CALL SUB1 (ARRAY . .NAM(,)) Passes a two-dimensional array
10 CALL SUB1 (ARRAY.NAM()) Passes a list

In Figure 4-1, the calling program passes two string arrays, A$ and BS$, to
the subprogram. BASIC allows you to modify array A$ when you pass the
entire array A$(,) as a parameter to the subprogram. BASIC does not allow
you to modify array B$ when you pass a single array element B$(1%,1%) as
a parameter to the subprogram.

Program Segmentation

Figure 4-1: Passing Array Elements and Arrays to
Subprograms

Calling Program

10
20
30
40
30
60
70
80
90

100
110
120
130
140
180
160
170
180
190

DIM A$(35%s0%) +BS (3% +3%)

FOR 1% =

1% T0 5%

FOR J% = 1% TO 3%

AS (I +JU)
B (I%+J%)

NEXT J%
NEXT I%

"AAQA"

([B 2o A1)
2ZZZ

PRINT "HERE ARE THE INITIAL VALUES OF THE ARRAYS:"
PRINT "ARRAY A"

32787 END

Subprogram

MAT PRINT A%+ \ PRINT
PRINT "ARRAY B"
MAT PRINT B$s+ \ PRINT

CALL SUBL(AS(+) sBS(1%+1%))

PRINT "BACK TO THE CALLING PROGRAM"

PRINT "HERE ARE THE VALUES AFTER THE CALL:"
PRINT \ PRINT "ARRAY A"

MAT PRINT A%, \ PRINT

PRINT "ARRAY B"
MAT PRINT B%,» \ PRINT

10 5UB SUB1(DUMS$ () »8TR.DUMS)
PRINT "BEGIN SUBPROGRAM"

20
30
40
50
GO
70
80
20

STR.DUM$ = "ARRAY

PRINT STR.DUMS$

FOR I% =

1% 70 9%

FOR J%4 = 1% 7O 5%
DUMS(IZ »Jd%) = "NEW"

NEXT J%
NEXT I%

32767 SUBEND

ELEMENT B$(1%,1%) DOES NOT CHANGE"

When executed, the task returns:

HERE ARE THE INITIAL VALUES OF THE ARRAYS:

ARRAY A

AAAA ARAA
AAAA AAAA
AAAA AAAA
AAAA AAAA
AARAA AAAA

AAAA AAAA
AAAA ARAAA
AARAA AAAA
ARAA AAAA

ARAA AAAA

AAAA
AAAA
AARAA
AAAA

AAAA

BASIC

(continued on next page)

Program Segmentation

47

4-8

ARRAY B

2222 2222 ZZZZ ZZLZ ZZEZZ
2222 2227 ZZIT ZIZZ ZZEZ
2222 2222 222 Zziz ZZEZ
2222 2222 ZZZZ ZILE EZEZ
2222 ZZZT ZZIZ ZZZE ZZEL

BEGIN SUBPROGRAM

ARRAY ELEMENT B%(1%+1%) DOES NOT CHANGE
BACK TO THE CALLING PROGRAM

HERE ARE THE VALUES AFTER THE CALL:

ARRAY A
NEW NEW NEW NEW NEW

NEW NEW NEW NEW NEW
NEW NEW NEW NEW NEMW
NEW NEW NEW NEW NEW

NEW NEW NEW NEW NEMW

AY4

ARRAY B

- -y 2 R A] -7 b B Ao B b el 2o]
2222 [Sy Ay LL&Z £ b b £ Lo B b
Ty el A i] el 2 i el B] b]
[y Ay Ay 4 [y Ay ay . [y Lo Lo b L LAy -
rr - g - b i e B 4 v e B B vl B e 4
LLZL LZLZ [y Ay Ay - [y Ay Ay - [y
T i B e e 3 v i B B § b i B B § T
LaLl LLLL Ay - i b Ay .
b e B B 4 i B - b4 e B B bt e B e 3
Ll il LLLZ LZZL [y Ay [y 4y 4y

4.1.1.2.2 Passing Virtual Arrays — DIGITAL strongly recommends you do
not pass virtual arrays as parameters in the CALL statement. Passing
virtual arrays as parameters can cause unpredictable results. Instead, you
can share the data in a virtual array between a calling program and a
subprogram by opening a virtual file in either program and dimensioning
the array in both programs using the same channel number.

NOTE

It is good programming practice to dimension a virtual array
before opening the corresponding virtual file.

The two programs need not call the virtual array by the same name or
dimensions but using the same dimensions reduces the risk of error. Any
array redimensioned in a subprogram is redimensioned in the main pro-
gram as well.

You cannot close the file before exiting in one program module if you want
to access the data without opening the file in another program module.

Program Segmentation

In the following example, the calling program cannot access the virtual
arrays on channel 2 until the subprogram opens the virtual file on channel
2 and returns control to the calling program. However, the subprogram can
access the arrays on channel 1 because the calling program has opened the
virtual file containing the array before transferring control to the
subprogram:

Callihg Program

10 DIM #1%, AS(11%) s XL(15%)

20 DIM #2% s BA(L12%) » Y$(15%)

30 OPEN "UIRFIL,DAT" FOR OUTPUT AS FILE #1%, VIRTUAL
40 A$(11%) = "11128T"

50 CALL USUB1

BO BY(12%) = 12%

70 CLOSE #1%, #27%

32767 END

Subprogram

10 5UB VSUB1L

20 DIM #1%, X$(11%)» ZUC15%)

30 DIM #2%, CNTZ(12%)» ADR$C1IS%)

40 OPEN "OLDFIL.DAT" FOR INPUT AS FILE #2%, VIRTUAL
50 X$(3%) = ADR$ (3%

GO FOR I% = 14 TO 127%

70 ZUCIN) = CNTZ I

80 NEXT I%

32767 SUBEND

4.1.1.3 Sharing Data — There are three ways to share data between the
calling program and the subprogram:

® Data in COMMONSs
® Data in MAPs

® Data in files

COMMONSs should be used to share data, whereas MAPs should be used for
I/0 operations and string manipulation. Use files to share data between
programs when accessing a large data base.

41.1.3.1 COMMONs and MAPs — COMMON and MAP statements enable
you to share data between the calling program and subprograms. These
statements define a named area of memory called a program section
(PSECT) containing data which may be shared between a BASIC program and
subprogram.

There are advantages to using a COMMON or MAP to exchange data
rather than passing parameters in a CALL statement. This is because: (1)
BASIC can access the data more quickly, and (2) you can share a larger
amount of data.

Program Segmentation 4-9

4-10

The COMMON statement has the format:
COMMON (name) varl,...varn

where:

name is a one- to six-character name you assign to the
COMMON. COMMONSs cannot have the same name as
a subprogram within a single task image. COMMONSs
can have the same name as a MAP provided they are
not defined in the same program segment.

varl,..varn represent the variables whose values aré stored in the
COMMON.

Define the COMMON or MAP area in your main program and include the
same COMMON or MAP statement in your subprogram to access the data.
For example:

Main Program

10 COMMON (RESERV) STRI.NG$ = 44%,RE.AL

20 STRIWNG$ = "HERE IS5 THE VALUE IN THE CALLING PROGRAM:"
30 RE.AL = 123

40 PRINT STRIWNG$3IRE.AL

30 CALL suB1

B0 PRINT STRI.NG$IRE.AL

32767 END

Subprogram

10 SUB 8SUB1

20 COMMON (RESERV) STRI.NG% = 447 RE.AL

30 STRI.NG$ = "HERE IS THE YALUE AFTER THE CALL:"
40 RE,AL = 345

32767 SUBEND

When executed, the task returns:

HERE IS5 THE VALUE IN THE CALLING PROGRAM: 123
HERE I8 THE VALUE AFTER THE CALL: 345

The MAP Statement has the format:
MAP (name) varl,var2...varn

where:

name is a one- to six-character name you assign to the
MAP. MAPs cannot have the same name as a sub-
program within a single task image. MAPs can
have the same name as a COMMON provided they
are not defined in the same program segment.

varl,var2..varn represent the variables whose values are stored in
the MAP.

Program Segmentation

For example:

Calling Program

10 MAP (RESERY) BTRI.NGS®RE.AL
20 CALL SuB1

Subprogram

10 SUB SUB1
20 MAP (RESERV) STRI.NG$,,RE.AL

The variables in a MAP or COMMON statement can be:

¢ Simple numeric variables
e Simple string variables

® Arrays

¢ FILL items

See Table 3—6 in Section 3.8.2.3 for more information on FILL items.

In both COMMONSs and MAPs, simple numeric variables reserve: (1) two
bytes of storage for integer values, (2) four bytes of storage for single-
precision floating-point variables, and (3) eight bytes for double-precision
floating-point variables.

NOTE

Examples and explanations in this section assume single-
precision, floating-point variables are used.

String variables reserve fixed amounts of storage. The default amount is 16
bytes. You can reserve more or less space by defining lengths for the string
variables in the MAP or COMMON statement. For example:

10 COMMON (RESERV) A% = 10%,B%,C%

In this example, BASIC reserves a total of 28 bytes for the COMMON
named RESERV: 10 bytes for A$, 16 bytes for B$, and 2 bytes for C%.

You can redefine the area of a COMMON or MAP between program mod-
ules. For example:

Calling Program

10 COMMON (RESERV) A% = 10%,B%,C%

Subprogram

10 COMMON (RESERYV) Al$ = 47, AZ2% = 67 +B%,C%

Program Segmentation 4-11

4-12

In the calling program, A$ is a 10—character string. In the subprogram, A$
is subdivided into A1$ which contains the first 4 characters and A2$ which
contains the next 6 characters.

Each numeric variable in a COMMON or MAP should start on a word
boundary. If the total storage allocation preceding the numeric variable is
an odd number of bytes, use the FILL$ keyword to align the numeric varia-
ble on a word boundary. For example:

COMMON (RESERV) A% = O%FILL% = 1%.,B%,C

String variables in a COMMON or MAP can start on any byte boundary.
However, when numeric variables do not start on a word boundary, as in
the following example:

10 MAP (RESERV) A% = 3% X%

The compiler returns the error message:

4Unaligned COM or MAP variable X% in (RESBERV)

There are different ways of allocating space for multiple COMMONSs and

-MAPs of the same name when they are in the same program module.

BASIC concatenates the data stored in multiple COMMONSs of the same
name, whereas the data stored in multiple MAPs of the same name are
overlaid.

The size of a COMMON PSECT containing multiple COMMONS of the
same name is the total of the lengths of each COMMON area. The size of a
MAP PSECT containing multiple MAPs of the same name is the length of
the longest single MAP area. The order of variables in the COMMON and
the order of multiple COMMONSs of the same name determine the order of
values in the shared area. For example: _

Program with COMMON Program with MAP

10 COMMON (RESER1) A% = 10% 10 MAP (RESERZ) A% = 107
20 COMMON (RESER1) A% B%.CZ%Z.D%E% 20 MAP (RESERZ) A%LBYLCL DL HEY

These COMMON statements reserve 20 bytes of storage: 10 bytes for string
A$ and 2 bytes for each of 5 integers. The MAP statements reserve a total
of 10 bytes: 10 bytes for string A$, then those same 10 bytes for each of 5
integers (2 bytes for each integer).

In Figure 4-2, the calling program and the subprogram access an array
stored in a COMMON named ALPHA. The subprogram changes one of the

Program Segmentation

elements in the array, then returns the changed value to the calling pro-
gram. You do not have to access the data in the subprogram using the same
variable names or lengths that you specify in the calling program:

Figure 4-2: Sharing Data in COMMONSs

Calling Program

10 COMMON (ALPHA) A%(5%5%)
20 FOR 1% = 1% TO 5%
30 FOR J% = 1% TO 5%
40 Vo= Y4+ 1%
50 ALCTZ s J%) = Y%
8O NEXT J%
70 NEXT I%
75 PRINT "HERE ARE THE INITIAL VALUES OF THE CALLING PROGRAM:"
BO MAT PRINT A% &
\ PRINT
90 PRINT "NOW TO THE SUBPROGRAM"
100 CALL SUB1
110 PRINT
120 PRINT "THE CHANGED VALUE OF ARRAY ELEMENT (3,3) I§:";A%(3%,3%)
32767 END
Subprogram
10 SUB SUBIL
20 COMMON(ALPHA) C%(S%5%)
30 PRINT "HERE ARE THE UVALUES AFTER THE CALL TO THE SUBPROGRAM:"
40 CU(3%s3%) = 0%

50

MAT PRINT C%»s» \ PRINT

327687 SUBEND

When executed, the task returns:

HERE ARE THE INITIAL VALUES OF THE CALLING PROGRAM:

1
B
11
16
21

2 3 4 5

7 8 9 10
12 13 14 15
17 18 19 20
22 23 24 25

NOW TO THE SUBPROGRAM

1
6

11
16

21

HERE ARE THE VALUES AFTER THE CALL 7O THE SUBPROGRAM:
2

2 3 4 S

7 9 10
12 14 15
17 18 18 20
22 23 24 23

THE CHANGED VALUE OF ARRAY ELEMENT (3,3) I8: O

4.1.1.3.2 Files — You can also share data between the calling program and
the subprogram by opening a file in either program. The following condi-
tions apply:

¢ If you open the file in the calling program, you do not need to reopen the
file in the subprogram to access the data. Files remain open until: (1) you

Program Segmentation 4-13

open another file on that channel (2) you close the file, or (3) the END
statement is executed.

® The file data can be accessed elther statically with the MAP statement or
dynamically with the FIELD statement. For more 1nformat10n see Sec-
tions 3.2 and 3.3. ‘ :

¢ The file pointer for a channel is the same for both the calling program
and subprogram. Each time you sequentially access the file, whether it be
in the calling program or the subprogram, you get the next record.

In Figure 4-3, the main program: (1) defines the MAP, (2) opens a sequen-
tial file, and (3) writes three records to the file. The subprogram redefines
the MAP, then writes records to the file based on user input. Note that the
subprogram does not reopen the file.

Figure 4-3: Sharing Data in Files

Main Program

10 MAP (BUF) ID% = 9% NAME® = 267

20 PRINT "BEGIN MAIN PROGRAM"

30 OPEN "DATA.FIL"™ FOR OUTPUT AS FILE #1%., SEQUENTIAL s MAP BUF

40 READ TEMP#%

50 WHILE TEMP$ <> "DONE"

60 ID% = TEMPS

70 READ NAME$ » TEMPS

80 PUT #1%

80 NEXT

100 CALL SUB1(SUCCESS%)

110 IF SUCCESSY% = -17% THEN &
PRINT "ERROR IN SUB1L"

120 CLOSE #17%

10000 DATA 1008-2222, PETER FINKLE

10001 DATA 2223-1234, LEE DAUGHT

10002 DATA B712-3940, PHIL ERUP

10003 DATA DONE

32767 END

Subprogram

10 SUB SUB1(INFO%) 8
\ ON ERROR GO TO 18000
20 MAP (BUF) ID$% = 9% FIRST.NAME$ = 8%, LAST.NAME$ = 18%
30 INFO%Z = 0%
40 WHILE 1%
50 PRINT
60 INPUT "DO YOU WISH TO SUPPLY MORE RECORDS [Y/NI1"iANSS%
70 IF ANSS (> "Y" THEN SUBEXIT
80 LINPUT "SUPPLY 9 CHARACTER ID"35 ID%
90 LINPUT "SUPPLY FIRST NAME IN {= 8 CHARACTERS"SFIRST.NAME$
100 LINPUT "SUPPLY LAST NAME IN {= 18 CHARACTERS“ iLAST .NAMES
110 PUT #1%
120 NEXT
19000 INFO%Z = -1%
19010 RESUME 32767
‘32767 SUBEND

4-14 Program Segmentation

When executed, the task returns:

BEGIN MAIN PROGRAM

DO YOU WISH TO SUPPLY MORE RECORDS LY/NI? Y
SUPPLY 9 CHARACTER ID? 1234-3B678

SUPPLY FIRST NAME IN <= 8 CHARACTERS? JOE
SUPPLY LAST NAME IN <= 18 CHARACTERS® SMITH

DO YOU WISH TD SUPPLY MORE RECORDS [Y/NI7 Y
SUPPLY 9 CHARACTER ID? 9899-8888

SUPPLY FIRST NAME IN <= 8 CHARACTERS®? JILL

SUPPLY LAST NAME IN <{= 18 CHARACTERS"Y JONES

DO YOU WISH TO SUPPLY MORE RECORDS [Y/NI? N

The output file “DATA.FIL” now contains the following records:

1009-2222 PETER FINKLE
2223-1234 LEE DAUGHT
8712-3940 PHIL ERUP
1234-5678 JOE SMITH
9999-8888 JILL JONES

4.1.1.4 Functions — A function can be defined in either the calling program
or the subprogram, but it is local to the program that defines it. The value
of a function can be passed to a subprogram as a parameter in the CALL
statement. You can change that value in the subprogram; however, you
cannot return that value to the calling program. For example:

Calling Program

10 DEF FNBL(AL)

20 FNBY = A% * 2%

30 FNEND

40 CALL SUB1 (FNB%(3%))

50 PRINT "THE VALUE IN THE MAIN PROGRAM IS"3iFNB%(37%)
32767 END

Subprogram

10 SUB SUBL(A%)

20 A% = AT * 2%

30 PRINT "THE SUBPROGRAM CHANGES THE VALUE TO"iAY%
32767 SUBEND

When executed, the task returns:

THE SUBPROGRAM CHANGES THE VALUE TO 12
THE VALUE IN THE MAIN PROGRAM IS 6

Program Segmentation 4-15

You cannot use a variable name in the function definition if it is one of the
SUB statement’s parameters. For example:

10 SUB SUBWDF (A%,B%.,C)

+

+

15000 DEF FNDUM(A% B ,C)

+

15020 FNEND
32767 SUBEND

The parameters in the function definition attempts to reallocate the storage
space that has been set aside for the parameters in the SUB statement and
results in the error message:

?Illedal dummy ardument at line 13000

4.1.1.5 DATA and READ Statements — You can use DATA and READ state-
ments in both the calling program and the subprogram. DATA statements
are local to the program module that contains them. READ statements in
either program module do not affect the data pointer of the other program
module. Each time the calling program calls a subprogram, the data
pointer returns to the beginning of the DATA sequence in that subprogram.
For example:

Calling Program

3 C% = 0%

10 READ A%

20 PRINT A%

30 CALL SUBt

40 Ch = C4 + 1%

50 IF C%4 = 3% GO TO 32767 ELSE GO 70 10
B0 DATA MAINDATL » MAINDATZ,, MAINDAT3
327687 END

Subprogram

10 5UB suBl

20 READ B%

30 PRINT B$

40 DATA SUBDAT1L » SUBDATZs» SUBDAT3
32767 SUBEND

When executed, the task returns:

MAINDATI
SUBDATIL
MAINDATZ
SUBDAT1
MAINDAT3
SUBDATIL

4-16 Program Segmentation

4.1.1.6 Handling Errors — In BASIC, you can process errors using either: (1)
the system or (2) user-defined error-handling routines. If you do not specify
an ON ERROR statement, the default is ON ERROR GOTO 0. This means
that when an error occurs, BASIC prints an error message describing the
nature of the error and returns to command level without completing
execution.

The user can define error-handling routines in either the calling program
or subprogram. The ON ERROR GO TO 0 statement is the default for both
the calling program and the subprogram. ON ERROR GO TO <line-
number> lets you specify an error handler’s starting line number. When an
error occurs, BASIC transfers control to your error handler. User-written
error handlers are terminated with a RESUME statement.

In subprograms, you can handle errors with the ON ERROR GO BACK
statement. The ON ERROR GO BACK statement returns control to the
calling program’s error handler when an error occurs. Remember, the call-
ing program can either be the “main” program or another subprogram. In
the case of an error occurring in one subprogram that was called by another
subprogram, the ON ERROR GO BACK statement in the called subpro-
gram transfers control to the error handler in the subprogram that called it.

If an error occurs in a subprogram that does not have an error handler or
an ON ERROR GO BACK statement, the system defaults to ON ERROR
GOTO 0 and causes execution to abort. For more information on error-
handling routines see Section 4.8 in the PDP-11 BASIC-PLUS-2

Language Reference Manual.

In the following example, an error in the subprogram causes BASIC to
transfer control to line 19000 and evaluate the error, then either: (1) trans-
fer control to the calling program’s error handler or (2) abort the task.

10 SUB ERRTRP(X+Y)
20 ON ERROR GOTO 18000
30 INPUT 1%+ G.LINS

+

19000 PRINT ERR+ERL

18010 IF (ERR = 11%) AND (ERL = 30%) THEN B
RESUME 32767 &
ELSE &
ON ERROR GOTOD O

32767 SUBEND

In applications where handling errors is crucial, put the error handler on
the same line as the SUB statement. This procedure minimizes the time
between the start of the subprogram and the setting up of the error-
handling routine. For example:

10 SUB ERRTRP (X Y) &
\ ON ERROR GO BACK

Program Segmentation 4-17

4-18

4.1.1.7 Building the Task — To create an executable subprogram, you must:
(1) compile the calling program and the subprograms separately and (2)
build the program into a single task image.

1. Compile your programs separately. For example:

OLD MAIN
COMPILE

OLD suUB1
COMPILE

0OLD suBz2
COMPILE

The compile command generates an object module for each program:

MAIN.OBJ
SUB1.0BJ
SUB2.0BJ

2. Use the BUILD command to combine your main program and subpro-
grams, placing the name of the main program first:

BUILD MAIN.SUB1 SUBZ

This command generates two indirect files: the command (CMD) file
and the Overlay Descriptor Language (ODL) file which the Task
Builder uses.

MAIN.CMD
MAIN.ODL

3. Task-build the command file. Check with your system manager for the
command for your operating system. For example:

TKB @MAIN,CMD
Task-building your command file generates an executable image:

MAIN.TSK

4. Now you can execute your task:

RUN MAIN

The Task Builder:

® Combines the object modules generated by the COMPILE command into
a single, executable task image

¢ Searches the library to resolve global references made by the program

¢ Allocates virtual address space needed by the task

Program Segmentation

The system imposes restrictions on the size of a task that can be placed in
memory at once. If the task image defined by the ODL file is too large to
handle at once, you can accommodate it by changing its overlay structure.

BASIC creates an Overlay Descriptor Language (ODL) file that allows the
user to describe the overlay structure of a task. The overlay structure is the
way program code is brought into memory as the program executes. Chang-
ing the overlay structure of a task enables you to decrease the amount of
memory space for your task.

The ODL file defines the root and branches in the task image. The root is
the portion of the task that remains in memory throughout task execution.
It includes the code for the main program, data local to the main program,
data shared between program modules, and the object library modules
needed to resolve the symbols in the generated code. The branches are the
region of memory which contains the program code for subprograms, data
local to the subprogram, and the object library modules needed to resolve
symbols not already resolved in the main program.

In the following example, the main program calls two subprograms, SUB1
and SUB2, and SUB2 calls SUB3.

Main Program

10 PRINT "THIS IS5 THE MAIN PROGRAM"

20 CALL SUB1 (STRI.NG$,RE.ALINTE.GERY)
30 CALL SUBZ (A%:B.C%)

32767 END

Subprogram 1

10 8UB SUB1 (STRI.NG$RE.AL+INTE.GERZ)
20 STRILNG$ = "THIS IS SUBPROGRAM 1"
32787 SUBEND

Subprogram 2

10 SUB SUBZ (D$+EF%)

© 20 A% = "THIS IS5 SUBPROGRAM 2"

30 CALL SUB3
32787 SUBEND

Subprogram 3

10 8UB SUB3
20 A% = "THIS IS8 SUBPROGRAM 3"
32767 SUBEND

The following illustration shows one possible relationship between the call-
ing program or root segment and the subprograms or branch segments.

Program Segmentation = 4-19

4-20

Figure 4-4: Tree Figure Representing the Overlay Structure

SUB3
SUB1 SUIBZ

CALLING

Each branch of the tree represents a program segment. Parallel branches at
the same level represent program segments whose instructions and data
are overlaid in memory as the program executes.

Compare the amounts of memory space the task needs (1) if the four pro-
grams are included in the root of the ODL file and (2) if the subprograms
are included in the branches of the ODL file.

Figure 4-5: Nonoverlay and Overlay Memory Requirements

Subprograms Not Overlaid Subprograms Overlaid
S
| SuB3
z
E
sSuB2 : SUB3
o}
F .
SuB1 SUB1 suB2
T
A
S CALLING CALLING
K
0 n 0 n
Processing Time Elapsed Processing Time Elapsed

Figure 4-5 shows you how large the task is at a given time during process-
ing, and what parts of the program are in memory at that time. Comparing
them, you can see the nonoverlaid version needs more memory than the
overlaid version. In the figure that shows subprograms overlaid, SUB2 and
SUB3 overlay the memory reserved for SUB1 as the program executes.

To change the overlay structure defined for a task, you must change the
contents of the ODL file before you build your task. To do this, edit the ODL
file. See your system’s Task Builder manual for more information about
ODL files.

Program Segmentation

The ODL file for the task illustrated above where the ‘subprograms are not
overlaid looks like this:

+ROOT USER

UBER: +FCTR 8Y:MAIN-SUB1-5UBZ-8UB3-LIBR
LIBR: +FCTR LB:L1+11BASICZ2/LB
+END

You can edit your ODL file to overlay your subprograms reducing the
amount of memory space required for the task:

+ROOT USER

USER: +FCTR SY:MAIN-LIBR-*#(BR1,BR2)
BR1: +FCTR 8Y:5UB1-LIBR
BRZ: +FCTR 8Y:5UBZ-5UB3-LIBR
LIBR: +FCTR LB:[1,11BASICZ2/LB
+END

The ODL file defines:

® The root portion of the task:
USER: FCTR SY:MAIN-LIBR-*(BR1BR2)

¢ Two overlaid branches:

+FCTR 8Y:5UB1-LIBR
+FCTR 8Y:5UBZ-5UB3-LIBR

The main program is concatenated to the BASIC disk library and to the two
subprograms: BR1 and BR2. Check your file to make sure the autoload
operator (*) is included in the file. The autoload operator tells the Task
Builder to generate autoload code to automatically load the appropriate
program segment into memory as the program executes. See your system’s
Task Builder manual for more information on the autoload operator.

Check your ODL file to make sure that each branch and root segment is
concatenated to the BASIC disk library so that the Task Builder can re-
solve program code. Failure to concatenate object modules with the disk
library may cause the Task Builder to return the error message:

“Undefined symbol

If you intend to use MAPs or COMMONSs to share data between main
programs and subprograms, make sure the COMMON or MAP is defined in
the main program. The main program is located in the root of the ODL file
and the data contained within is not overlaid.

For more information on task-building and overlay procedures, see your
system’s Task Builder manual.

Program Segmentation 4-21

4-22

4.1.2 BASIC to MACRO Subprogramming

Any BASIC program or subprogram can call a MACRO subprogram. The
MACRO subprogram can be either system-supplied or user-created.

MACRO subprograms have these advantages over BASIC subprograms:

¢ You can pass more parameters to a MACRO subprogram than to a BASIC
subprogram.

® You can use the CALL BY REF statement to pass parameters to a
MACRO subprogram.

e Some MACRO subprograms run faster thaﬁ comparable BASIC
subprograms. '

¢ MACRO subprograms enable you to perform tasks that are difficult or
impossible with BASIC.

However, BASIC does not support the following operations in MACRO
subprograms:

¢ Calling BASIC subprograms
¢ Performing I/0 or monitor operations
o Accessing virtual arrays or other kinds of files

¢ Creating strings, or altering the lengths of existing strings

These operations may overwrite portions of the main pregram with subpro-
gram instructions and data. They can, therefore, cause the main program to
abort or generate unpredictable results. For the same reason, BASIC pro-
grams cannot call executive directives that require null parameters.

4.1.2.1 Calling a MACRO Subprogram — To transfer control from a BASIC
main program to a MACRO subprogram, use either the CALL or the CALL
BY REF statement.

The CALL statement passes parameters to the subprogram either by refer-
ence or by descriptor, depending on the type of parameter. (For information
on parameter passing, see Section 4.1.1.2.) The format for the CALL
statement is:

CALL name (paraml,param2...paramn)

where:

name is - the one- to six-character name of
the MACRO subprogram. A subprogram
cannot have the same name as any other
subprogram, MAP, or COMMON within
the same task. The name can be a quoted
or unquoted string. It cannot be a string

~ variable. _
: (continued on next page)

Program Segmentation

paraml,param2..paramn represent zero to n optional arguments, or
parameters, passed from the main pro-
gram to the subprogram. The number of
parameters you can include is limited by
the size of the temporary storage area
(stack) allocated in your task image.

For example:

CALL SUBPRG (A% +B%.,CH(1%,1%))

If the subprogram name contains a dollar sign ($) or period (.) in the left-

most position, you must enclose the name in quotation marks when you use
it in a CALL or CALL BY REF statement.

The CALL BY REF statement passes all parameters by reference. Its
format is:

CALL name BY REF (param]l,param2...paramn)
where:

name is the one- to six-character name of the
MACRO subprogram. A subprogram
cannot have the same name as any other
subprogram, MAP, or COMMON within
the same task. The name can be a quoted
or unquoted string. It cannot be a string
variable.

paraml,param2...paramn represent zero to n optional arguments, or
parameters. The number of parameters
you can include is limited by the size of
the temporary storage area (stack) allo-
cated in your task image.

For example:

CALL SUBPRG BY REF (A% ,B%,C$C1%1%))

The name in the CALL or CALL BY REF statement must correspond to the
name of the MACRO subprogram, as defined by the subprogram’s global
entry-point label. This can be different from the name of the file containing
the code, and the name defined by the .TITLE assembly directive. However,
‘if the subprogram includes only a single entry-point, it is a good idea to use
the same name for the entry-point label and the title. For example, suppose
a main program mcludes the statement:

50 CALL INSRT

Program Segmentation = 4-23

4-24

The code of the MACRO subprogram called should include the title and
label-name INSRT, as in the example below:

+TITLE INSBRT

i MODULE FUNCTION:
i THIS MODULE DEMONSTRATES
i THE FORMAT FOR MACRO SUBPROGRAMS

+PSECT INSBRT

INSRT:: § SUBPROGRAM NAME
RTS PC $ RETURN TO MAIN PROGRAM
+END

The RTS PC (or RETURN) instruction returns control to the main program.
It corresponds to the SUBEND statement of a BASIC subprogram.

NOTE

The last statement in any MACRO program or subprogram
must be the .END assembly directive.

4.1.2.2 Passing Parameters — You can pass data from a BASIC main pro-
gram to a MACRO subprogram by including parameters in the CALL or
CALL BY REF statement of the main program. BASIC imposes two restric-
tions on the kinds of parameters that main programs can pass to MACRO
subprograms:

¢ BASIC main programs cannot pass virtual arrays to MACRO
subprograms.

¢ MACRO subprograms cannot change the length of strings passed to them
as parameters by BASIC main programs, nor can they create new strings.

If you need to access virtual arrays or to change string lengths in a MACRO
subprogram, place the string and array data in a COMMON or MAP area
before calling the subprogram. Once the subprogram has performed its
operations on the data and has returned control to the main program, the
main program can move the data back into arrays and strings. For informa-
tion on using COMMONs and MAPs with MACRO subprograms, see
Section 4.1.2.3.

MACRO subprograms do not have SUB statements to define the parame-
ters they receive. Therefore, in order to access those parameters, you need
to know where the main program stores them.

Like BASIC subprograms, MACRO subprograms that receive parameters
from a main program receive an argument list containing information
about those parameters. The information in the argument list varies, de-
pending on whether a given parameter is passed by reference or descriptor:

¢ The first word of the argument list always contains, in its low-order byte,
the number of arguments in the list. The high-order byte in this word is
undefined.

Program Segmentation

¢ Each word after the first contains a pointer to one of the parameters in
the CALL statement, in the same order as the parameters appeared in
the CALL statement. If you pass a parameter by reference, the subpro-
gram receives in the argument list the address at which that parameter,
or a local copy of it, is located. If you pass a parameter by descriptor, the
subprogram receives in the argument list the address of a descriptor
block. The descriptor block contains information about the parameter or
its local copy, including the address at which the parameter or copy is
located, and the length of the parameter. (See Appendix D for more expla-
nation of descriptor blocks.)

As the explanation above indicates, “pass by reference” means that the
subprogram receives only the addresses of any parameters passed to it.
“Pass by descriptor” means that the subprogram receives both the ad-
dresses of the parameters, and certain other information such as parameter
length.

NOTE

BASIC does not support passing parameters by immediate
value. That is, the argument list cannot contain the parame-
ters themselves.

In general terms, then, argument lists look like this:

Figure 4-6: Argument List Format

number
undefined of
arguments
address #1
address #2
address #n

Whenever BASIC encounters a CALL or CALL BY REF statement, it
stores the address of the argument list’s first word in general register R5.
Subprograms can, therefore, express parameter addresses as offsets from
the value stored in register R5.

When you use a CALL statement, BASIC passes most parameters by
reference. However, it automatically passes certain parameters, such as
string data and arrays, by descriptor. When you use the CALL BY REF
statement, on the other hand, BASIC passes all parameters to the subpro-
gram by reference. Therefore, all the addresses in the argument list gener-
ated by a CALL BY REF statement refer to the parameters themselves, or

Program Segmentation 4-25

4-26

to local copies of them. If the subprogram needs to know a string length,
you must pass that information as a parameter. For example, a main pro-
gram might contain the following CALL BY REF statement:

19000 CALL MACSUB BY REF (STR.NG$ sLEN.STRZ A% (1%,53%))

This statement would generate an argument list like the following:

ADDRESS VALUE

022060 000003
022062 004560 ARGUMENT LIST
022064 005632
022066 035766

The actual addresses, and the values stored in them, depend on your pro-
gram. In this example, memory location 22060 contains the octal value
000003, since there are three parameters in the argument list. Locations
22062 and 22064 contain the addresses of string variable STR.NG$ and
integer variable LEN.STR%. Location 22066 contains the address of a local
copy of string array element A$(1%,5%).

General register R5 contains the value 22060, the address of the first word
in the argument list. Therefore, to access the parameters, define their loca-
tions as offsets from R5. For example, use this MACRO statement to move
the first two bytes of variable STR.NG$ into general register R1:

MOV B2(R3)1R1 i BET R1 = 85TR.NG%$

Figure 4-7 shows how a subprogram accesses and modifies parameters
passed by reference from a BASIC main program. Note that the parameters
passed in the CALL BY REF statement include the lengths of strings A$
and B$. ’

Figure 4-7: CALL BY REF with MACRO Subprogram

Main Program (BASIC)

10 PRINT "THIS PROGRAM WRITES SUBSTRING B$ INTO STRING A" &
\ PRINT "STARTING AT CHARACTER POSITIONC,* &
\PRINT

20 INPUT "ENTER STRING A%" A% &
\IF A% = "DONE" GOTO 32767

30 INPUT "ENTER SUB-STRING B4$" iB%

40 INPUT "ENTER C "3iC%

20 CALL INSRT BY REF (A%$,LEN(A%) sB$LEN(B%) ,C%)

60O IF C% = 0% THEN PRINT "NEW VALUE OF A% IS "iA% &

ELSE &
PRINT "ATTEMPT UNSUCCESSFUL"
70 PRINT \ PRINT "DO YOU WANT TO CONTINUE?"
80 PRINT "IF NOT TYPE ‘DONE’+" /PRINT
80 GOTO 20 -
327687 END

(continued on next page)

Program Segmentation

Subprogram (MACRO)

+TITLE INSRT
+ IDENT 701/

MODULE FUNCTION:
i THIS SUBPROGRAM WRITES SUBSTRING B%
i INTO STRING A%, BEGINNING AT CHARACTER C%

.
s

iLOCAL MACROS:

i LOCAL DATA BLOCKS:
i

+PSECT DATA D +RW

i
i LOCAL OFFSETS:

A = 2.
LNA = 4,
B = B
LNB = B,
C = 10,

FUNCTION DETAILG:

H
H
3
H INPUTS:
H ARG1 = ADDRESS OF A%
3 ARGZ2 = ADDRESS OF LENGTH OF A%
; ARG3 = ADDRESS OF B¢
H ARG4 = ADDRESS OF LENGTH OF B%
3 ARGS = ADDRESS OF C%
H QUTPUTS:
H C% = 0 IF OPERATION SUCCESSFUL
H C% = -1 IF OPERATION UNSUCCESSFUL
+ PAGE
+SBTTL
+PSECT INSRT
INSRT::
MOV BC(RS) +1R2 i R2 = C%
BLE ERREX i GOTO ERREX IF C <= 0
ADD BLNB(RS) sR2 i RZ2 = C% + LEN(B%)
DEC R2 i MAKE R2 A LENGTH
CMP RZ2BLNA(RD) i DOES B$ FIT INTO A%$?
BGT ERREX i IF NOT, GOTO ERREX
Moy A{RS3) sRO i RO = ADDRESS OF A%
MoV BC(R3) sR2 i SET R2 = C%
DEC R2 $ SETR2 =C% - 1
ADD RZ2 RO i SET RO = ADDRESS OF A% + C%
Moy BLNB(RS) sR2 i SET R2 = LEN(B%)
BEQ ERREX i GO TO ERREX IF LEN(B%) = 0
Moy B(RD) sR1 i BET R1 = ADDRESS OF B¢
1%:
MOUB (R1)Y+,(RO) + 3 INSERT CHAR FROM B$ INTO A%
508 R2:1% i REPEAT FOR REMAINING CHARACTER
CLR BC(RS) 5 SUCCESS, SETC%Z =0
RTS PC i RETURN TO MAIN PROGRAM

(continued on next page)

Program Segmentation 4-27

4-28

ERREX:

Moy -tC(RS) i FAILURE. SET C% = -1
RTS PC i RETURN TO MAIN PROGRANM
+END ‘

Compile the main program with the BASIC compiler. Assemble the subpro-
gram with the MACRO assembler. Then build and run them as you would
any multi-segment BASIC task, by including the MACRO object module
with the main program in the BUILD command.

When you run the program, it returns the following:

*RUN MNPROG

THIS PROGRAM WRITES SUBSTRING B$% INTD STRING A%,
STARTING AT CHARACTER POSITION C.

ENTER STRING A$? ABCDEF
ENTER SUB-STRING B%? XYZ
ENTER C? 1

NEW VALUE OF A% I8 XYZDEF

DO YOU WANT TO CONTINUE? DONE

NOTE

Unmatched parameter boundaries or data types in the main
program and subprogram generate ?0Odd address trap or
?Memory management violation error messages.

Simple variables and entire arrays are modifiable parameters. For exam-
ple, the subprogram above changes A$, and then returns the changed value
to the main program.

All constants, expressions, and array elements, however, are nonmodifi-
able. That is, when a subprogram receives these parameters, the addresses
in the argument list point to local copies of the parameters rather than to
the actual data. A MACRO subprogram can change local-copy values. But
such changes do not affect the constants, expressions, and arrays of the
main program.

You can pass local copies of simple variables and entire arrays by enclosing
the individual variable and array names in parentheses. In the example
below, A$ is a modifiable parameter but B$ is nonmodifiable.

19000 CALL MACSUB BY REF (A$.:(B%))

Unlike the CALL BY REF statement explained above, the CALL statement
passes certain parameters by descriptor instead of by reference. Table 4-1

Program Segmentation

summarizes these differences between the CALL and CALL BY REF state-
ments. Note that certain data types cannot be used as parameters in BASIC
to MACRO subprogramming.

Table 4-1: Parameter Passing with CALL and CALL BY REF

CALL CALL BY REF

NUMERIC DATA
variable

constant

expression

function

array element

entire array
virtual-array element

virtual array

passed by ref
by ref (copy)
by ref (copy)
by ref (copy)
by ref (copy)
by desc

by ref (copy)

passed by ref
by ref (copy)
by ref (copy)
by ref (copy)
by ref (copy)
by ref

by ref (copy)

STRING DATA
variable
constant
expression
function

array element
entire array

virtual-array element

by desc

by desc (copy)
by desc (copy)
by desc (copy)
by desc (copy)
by desc |
by desc (copy)

by ref

by ref (copy)
by ref (copy)
by ref (copy)
by ref (copy)

virtual array

When the CALL parameter is a string variable, constant, array element, or
expression, the corresponding value in the argument list points to the ad-
dress of a two-word descriptor block. The first word of this block contains
the address of the first byte in the string. The second word expresses the
length of the string, in bytes. : ‘

For example, suppose a main program includes the statement:

50 CALL INSRT (A$,B%$,CY)

This generates a four-word argument list:

ADDRESS YALUE

022060 000003

022082 004532 ARGUMENT LIST
022064 023462 '
022066 026534

Program Segmentation = 4-29

4-30

The actual addresses, and the values stored in them, depend on your pro-
gram. In this example, the second word in the argument list contains the
address of the descriptor block for A$. If A$ were a six-byte string, such as
“ABCDEF”, the descriptor block would look like this:

ADDRESS VALUE

004532 020632 DESCRIPTOR BLOCK
004534 000006

If you include an array in a CALL statement, the argument list contains
the address of the second word of the descriptor block. This word in turn
contains the address of the first element in the array. (The first word in the
descriptor block is the Array Descriptor Word, which defines the array type

and length. See Appendix D for more information on the Array Descriptor
Word.)

Figure 4-8 shows how a MACRO subprogram can access parameters passed
by descriptor.

Figure 4-8: CALL Statement with MACRO Subprograms

Main Program

10 PRINT "THIS PROGRAM WRITES SUBSTRING B$% INTOD STRING’A$" &

\ PRINT "STARTING AT CHARACTER POSITION C," &
\ PRINT
20 INPUT "ENTER STRING A" 1A% &

\ IF A% = "DONE" GOTO 32767
30 INPUT "ENTER SUB-STRING B$"3iB%
40 INPUT "ENTER C "iC%
50 CALL INSRT (A%,B%.,C%)
B0 IF C% = 0% THEN PRINT "NEW VALUE OF A% IS "iA% &
ELSE &
PRINT "ATTEMPT UNSUCCESSFUL"
70 PRINT \ PRINT "DO YOU WANT TO CONTINUE?"
80 PRINT "IF NOT, TYPE 'DONE’."
90 GOTO 20
32767 END

Subprogram

+TITLE INSRT
+ IDENT /01/

MODULE FUNCTION:

H
i THIS SUBPROGRAM OVERWRITES SUBSTRING B$%
i INTO STRING A%+ BEGINNING AT CHARACTER C%.,

LOCAL MACROS:

e ae ww am

(continued on next page)

Program Segmentation

i LOCAL DATA BLOCKS:

-

+PSECT DATADsRHW

DCAL OFFSETS:

2

4,

L
=6,

OGO D s s

FUNCTION DETAILS:

INPUTS:
ARG1L
ARGZ
ARG3

E AN AW AEN N AEW EE

OUTPUTG:
C#4
C%

P)

+ PAGE

+SBTTL

+PSECT INSRT
INSRT::

MOY A(RS) 1RO

Moy B(RS) sR1

Moy BC(RS) sR2

BLE ERREX

ADD 2I(R1)HR2

DEC R2

CHMP R212(R0O)

BGT ERREX

Moy (RO) 4RO
Mo BC(RS) sRE
DEC RZ2

ADD R2 4RO
MoV 2(R1)R2
BEQ ERREX

O IF SUCCESSFUL
-1 IF UNSUCCESSFUL

AHE AEE SR AEE AEE RS RS NS ER MR SRR XN AEE EE aEE

¥
'

ADDRESS OF A% STRING DESCRIPTOR
ADDRESS OF B% STRING DESCRIPTOR
ADDRESS OF C%

SET RO = ADDRESS OF A% DESC
SET R1 = ADDRESS OF B$ DESC
SET R2 = C%

GO TO ERREX IF C <= 0

SET R2 = C% + LENGTH OF B%
MAKE R2 A LENGTH

DOES B$ FIT INTO A%*

IF NOT» GO TO ERREX

SET RO = ADDRESS OF A%

SET R2 = C%

SET R2 = C% -1

SET RO = ADDRESS OF FIRET CHA
SET R2 = LENGTH OF B%

IF B$ = 0s GO TO ERREX
SET R1 = ADDRESS OF B#

INSERT A CHAR FROM B%$ INTO A%
REPEAT

i SUCCESS, SET C% = 0

RTS PC3 RETURN TO MAIN PROGRAM

MOy (R1)+R1
1%:
MOVB (R1)+ (RO +
s0oB R2+1%
CLR BC(RS)
ERREX:
MOy #-1,BC(R3)
RTS PC
+END

.
1
.
k]

FAILURE. SET C%4 = -1
RETURN TO MAIN PROGRAM

R

In this example, the lengths of A$ and B$ are part of the descriptor blocks
instead of being passed as parameters in the CALL statement.

NOTE

Use the CALL BY REF statement, rather than the CALL
statement, when passing parameters from a BASIC program
to an executive directive or library module.

Program Segmentation

4-32

4.1.2.3 Sharing Data: COMMON and MAP — BASIC allows you to access
COMMON and MAP areas from MACRO subprograms. This enables you to
share large amounts of data between your BASIC main programs and your
MACRO subprograms. In addition, you can use MACRO subprograms to
initialize COMMON or MAP areas in BASIC main programs.

You can rewrite the main program and subprogram in Figure 4-7 so that
they share data by means of a MAP statement rather than by passing
parameters in the CALL statement. Figure 4-9 show the BASIC code of the

main program.

Figure 4-9: MAP Statement with MACRO Subprogram

Main Program

10 MAP (RESERV) A% LNA% B$=8% LNBY%,C%
20 PRINT "THIS PROGRAM WRITES SUBSTRING B$ INTO STRING A$" &

\ PRINT "STARTING AT CHARACTER POSITIONC." &
\ PRINT
30 INPUT "ENTER 1G6-CHARACTER STRING A$" 1A% &

\ IF A% = "DONE" GOTO 32767

40 INPUT "ENTER B-CHARACTER SUB-STRING B$" iB%
S0 INPUT "ENTER C "iC%
55 LNA% = LEN(A$) LNBY% = LEN(B%)
60 CALL INSRT
70 IF C% = 0 THEN PRINT "NEW VALUE OF A% IS "jA% &

ELSE &

PRINT "ATTEMPT UNSUCCESSFUL"

80 PRINT \ PRINT "DO YOU WANT TO CONTINUE?"
90 PRINT "IF NOTs TYPE ‘DONE’,"
100 GOTO 20

- 32767 END

The MAP statement in this program sets the size of the A$ and B$ strings
to a pre-determined 16 and 8 bytes.

When the BASIC compiler generates object code from the BASIC source
program, it creates a data storage area for every COMMON and MAP
statement. You can see this most clearly if you compile the BASIC source
program above with the COMPILE/MACRO command. The compiler gen-
erates the following MACRO code for the MAP statement in that program:

+PSECT RESERV sRW D +GBL »REL yOVR
RESERV:

+PSECT RESERVY

+BLKW 15,

In order for the MACRO subprogram to access the data stored in MAP area
RESERYV, you have to define a subprogram PSECT of the same name and
attributes as that created by the MAP statement of the main program. The
subprogram can then assign variable names to the data in that PSECT, and
use those variables as operands in its instructions. The subprogram in
Figure 4-10 shows how to do this.

Program Segmentation

1%:

ERREX:

Figure 4-10:

+TITLE INSRT
+IDENT 701/

1]

iMODULE FUNCTION:
THIS SUBPROGRAM USES A MAPPED AREA

TO ODVERWRITE SUBSTRING B$ INTO STRING A%,
BEGINNING AT CHARACTER C.

.
k]
.
k]
.
’

.
3

i LOCAL MACROS:

s

.
’

i LOCAL DATA BLOCKS:

A
LNA:
B:
LNB:
C:

NS AEE NER AN B8 S RE S AN AR

k]

MACRO Code for MAP Statement

+PSECT RESERV RW+DGBL +REL sOVR

+BLKB 16,
+BLRHW
+BLKB 8.
+BLKW
+BLKW

FUNCTION DETAILS:

INPUTS:

PSECT RESERY CONTAINS A% .LNAY
BsLNB%s» AND C%

OUTPUTS:
C#%
C%

i CODE BEGINS HERE:

+ PAGE
+SBTTL
+PBECT INBRT

INSRT::

Moy
BLE
ADD
DEC
CMP
BGT
Mov
DEC
MOy
ADD
Moy
BEG
Moy

MouB
s0B
CLR
RTS

Moy
RTS
+END

C:R2
ERREX
LLNB:R2Z
R2
RZ2LNA
ERREX
CsR2
RZ

#A RO
RZ RO
LNBRZ
ERREX
#BR1

(R1)+,(RO)+
RZ2+1%

(M

PC

#-1,C
PC

B EN AEE AR ARE AN NS NN ARE ANR AN RE NN

an e mm mw

0 IF OPERATION WAS SUCCESSFUL
-1 IF OPERATION FAILED

SET R2 = C%

IFC <=0, GO TO ERREX
SET R2 = C% + LEN(B%)

MAKE R2 A LENGTH

DOES B$ FIT INTO A$?

IF NOT» GO TO ERREX

SET R2Z = C%

SET R2 =C% -1

SET RO = ADDRESS OF A

SET RO = ADDRESS OF FIRST CHAR REPLACED
CSET R2 = LENGTH OF B%

IF B$ = 0, GO TO ERREX
SET R1 = ADDRESS OF B%

INSERT CHARACTER FROM B% IN As%
REPEAT

SUCCESS., SET C¥ = 0

RETURN TO MAIN PROGRAM

FAILURE., SET C% = -1
RETURN TO MAIN PROGRAM

Program Segmentation

4-34

When you build this multi-segment task, the Task Builder defines a single
area named RESERV. If the buffer allocations in the main program and
subprogram differ, the Task Bullder defines an area equal to the larger
allocation.

The Task Builder does not check to see that the main program and subpro-
gram define the same data types and boundaries in their common areas. If
the areas do not correspond, you may receive ?0dd address trap or ’Memory
protection violation error messages when you run the task. For this reason,
be sure you properly align your data definitions in the main program and
subprogram. Remember that COMMON statements of the same name
within a single program section are concatenated. For example:

10 COMMON (RESERV) UR.B5TR$% = 30%, FX.,8TR% = 307
20 COMMON (RESERWY) A% B%

These statements generate a single PSECT:

+PSECT RESERV sRW D »GBL +REL »OVUR
RESERV: '
+PSECT RESERV
+BLKW 39,

The total area set aside for RESERYV is 78 decimal bytes (39 words), the
sum of the two COMMON statements. Variable A$ begins at byte location
60 of RESERYV, not at location 0. If these were MAP statements, the area
set aside for RESERV would equal the larger allocation (30 words). Varia-
bles VR.STR$ and A$, in that case, would both begin at byte location 0.

In using MAP or COMMON areas to share data between main programs
and subprograms, remember that:

® You must check the lengths of your string and integer elements to make
sure that you correctly line up the areas reserved by your main and
subprograms

e If you compile your BASIC program with double precision, you must re-
serve eight bytes of storage for each floating-point variable in the corre-
sponding PSECT of your MACRO subprogram

® You must assign the same name and attributes to a MAP or COMMON
area of the main program, and the correspondmg PSECT of the
subprogram ,

You can use MACRO routines to initialize MAPs and COMMONSs in a
BASIC main program. For example, a main program could begin with
COMMON statements, in which it stored data that both the main program

Program Segmentation

and subprogram want to use in printing error messages or checking maxi-
mum values. If you were to assign values to those COMMON areas by
means of statements in the main program, the first lines of the BASIC
source code would look like this:

10%, B

10 COMMON (FIXSTR) OUT.STR% =
BAD.INFO$ = 247, B
ATLINS = 8%
20 COMMON (FIXDAT) MAXNUMY » &
MAXVAL » &
BADNUMY + k &
: FUN.S5TR% = G%

30 DUT.8TR$ = "OUTPUT IS" &
BAD.INFO$ = "BAD INFORMATION SUPPLIED" B
ATLINS = " AT LINE"

40 MAXNUMZ = 100% B
MAXVALY = 2EG 8
BADNUMZ = -1% B
FUN.STR$ = " FUNNY"

In this example, seven statements are executed to initialize variables in the
COMMON area. In addition, each constant is allocated storage before being
placed in the COMMON, and none of this storage is recovered. The follow-
ing MACRO code performs the same initialization procedure as the BASIC
code above:

+TITLE INIT
i MODULE FUNCTION:
i THIS MODULE INITIALIZES THE COMMON
§ AREAS OF THE MAIN PROGRAM

i INITIALIZE FIXSTR

+ENABLE LC iENABLE LOWER CASE
+PSECT FIXSTR»RW D »GBL »REL »OUR

+ASCII /OutpPut is / $0UT.STR% len = 10
+ASCII /Bad information supplied/ iBAD.INFO% len = 24
+ASCII / at line/ FATLINS len = B

i INITIALIZE FIXDAT
+PSECT FIXDAT +RW D sGBL +REL +OUR

+WORD 100, FMAXNUMY

+FLT2 2EB iMAXVAL

+ WORD -1 iBADNUM

+ASCII / FUNNY/ iFUNJGTR% len = B
+END

This routine is not, strictly speaking, a subprogram. The main program
cannot call it, as it does not contain any executable statements. But if you
build this module into your task as though it were a subprogram, you can
omit statements 30 and 40 in the main program. An initialization routine
like this one, therefore, can save you both time and memory space when
you run the task.

Program Segmentation 4-35

4-36

NOTE

Because this routine contains no code and is not a subpro-
gram, you cannot call it later in the main program to reini-
tialize values in the COMMON.

4.1.2.4 Building the Task — Follow this general procedure when you build
your multisegment task:

¢ Compile the BASIC modules and assemble the MACRO modules.

¢ Include in the BUILD command all the object modules you wish to com-
bine into a single task image, or modify the BUILD-generated ODL file
to include individual subprograms in the task. If your program includes
RMS file operations, use the appropriate BUILD command switch to in-
corporate RMS code into your task.

¢ Use the TKB or LINK command, depending on your operating system, to
build the task image.

The ODL file generated by the BUILD command causes the Task Builder to
concatenate all the modules in the root of the task. Since the operating
system and hardware impose restrictions on task size, you may need to
design an overlay structure for the task. For more information on overlay
structures, see Section 4.1.1.8 of this chapter, and your Task Builder or
Linker manual. In general, when designing an overlay structure for a task
including either BASIC or MACRO subprograms, bear these considerations
in mind:

BASIC or MACRO subprograms, bear these considerations in mind:

1. Think about overlay structure in the early stages of programming. De-
sign your task to take advantage of overlay.

2. Test each module separately, writing small programs to call the mod-
ules and supply whatever data they need.

3. Be sure you know where global symbols will be resolved, and when
overlays will be brought into memory when you run the task.

4. Be sure to align MAP and COMMON varlables in the main program
and subprograms.

5. Use co-trees (that is, overlay structures w1th independent root seg-
ments) only when necessary.

Program Segmentation

In most ways, designing an overlay structure for a task that includes a
MACRO subprogram is the same as designing an overlay structure for a
task that includes a BASIC subprogram. However, a knowledge of MACRO
may enable you to take advantage of BASIC threaded code to decrease task
size and enhance performance.

When the BASIC compiler translates a source program into object code, it
generates threaded, rather than in-line, code. That is, the compiler gen-
- erates out of the BASIC source program a series of global symbols and
arguments. These symbols are names of routines that will perform the
operations the user task requires. When you build the task image, the Task
Builder resolves the global symbols by searching within the modules of the
task itself, and within the BASIC object library and resident library, for the
routines they refer to.

By compiling a BASIC program with the COMPILE/MACRO command,
you can find out what global symbols the Task Builder will have to resolve.
For example:

20 PRINT A%

From this line, the compiler generates the following threaded code:

L20: LINS 120 io#Z0
CLI%$S
IPT#
MOI$MS 1$IDATA+B0O i AL
PUI%SI 10 i #0
EOL®

The code generated by the COMPILE/MACRO command is not the same as
MACRO code you might use when programming the task. Rather, it is the
MACRO equivalent of the object code generated by the compiler. In this
example, L20: is a label identifying this particular block of code, while
LINS, CLI$ and so on are global symbols representing BASIC routines. The
Task Builder follows a prescribed sequence to resolve these global symbols:

e It first searches within the module itself, and within other modules in the
same segment, for a resolution of the symbol.

o It then searches in modules along the same branch toward the root, in the
root module, and in the memory resident library if there is one.

¢ It then searches in modules along the same branch away from the root.
¢ It then searches co-trees.

e It finally searches in the BASIC object library.

Program Segmentation 4-37

4-38

When designing the overlay structure for a task, remember this resolution
sequence. If you do not, your task may not be executable. For example,
suppose you design an overlay structure in which one subprogram calls a
second subprogram. The second subprogram contains an undefined symbol
that you expected the executive to resolve by searching the BASIC object
library. However, the executive resolves that symbol by bringing a third
subprogram into memory and overlaying that third subprogram on the first
one. When the second subprogram is finished, and attempts to return to the
first subprogram, the task aborts with a ?7Memory management violation or
?20dd address trap error.

You can avoid this problem, and at the same time conserve space in
the task, by placing in the root any threads needed to resolve global sym-
bols, especially potentially ambiguous ones. Inspect your task map
(filename.MAP) to find the OTS module that contains the thread you need.
Then edit your ODL file to put the module in the root segment. The ODL
file below, for example, shows how an RSX-11M system uses the $IQNMA
module to force the NAME AS (NMAS$) into the root segment of the task
MNPROG.

+ROOT BASIC2-RMSROT-USER »RMSALL

UBER: +FCTR SY:MNPROG-LB:[1,11BASICZ/LB:$IQNMA-LIBR-*(BR1.:BR2)
BR1: +FCTR 5Y:SUBPR1-LIBR
BR2: +FCTR SY:SUBPRZ-LIBR

LIBR: +FCTR LB:L[1,11IBASICZ/LB
eLB:C1,11BP2ICI1
@LB:C1,1IRME11S

+END

The file specifications in the ODL file vary, depending on the operating
system. See your Task Builder or Linker manual for more information.

4.1.2.5 Handling Errors — MACRO subprograms should not contain error-
handling routines that will abort the task. If a fatal error occurs in a
MACRO subprogram, the subprogram should return control to the main
program, and signal to it that an error has occurred.

You can use parameters or COMMON areas to return status information to
the calling program. Or you can use ERR, ERL and ERN$ functions in the
BASIC program to determine the kind and source of error. The information
returned by ERN$ and ERL differs, depending on whether the BASIC pro-
gram uses a CALL or CALL BY REF statement:

¢ If the program uses a CALL statement, ERNS$ returns the name of the
subprogram called and ERL returns a value of 0.

Program Segmentation

o If the program uses a CALL BY REF statement, ERN$ returns the name
of the calling program and ERL returns the line number of the CALL BY
REF statement.

4.1.3 BASIC to COBOL Subprogramming

BASIC can call subprograms written in PDP-11 COBOL V4.1. The name of
the subprogram in the BASIC CALL statement must correspond to the
name in the PROGRAM-ID line of the COBOL program. For example:

Main Program (BASIC)

10 PRINT "BEGIN MAIN PROGRAM"

20 CALL COBSUB

30 PRINT \ PRINT "RESUME MAIN PROGRAM"
40 END

Subprogram (COBOL)

IDENTIFICATION DIVISION,
PROGRAM-ID. COBSUB.
ENVIRONMENT DIVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER. PDP-11.
OBJECT-COMPUTER. PDP-11.
DATA DIVISION.
PROCEDURE DIVISION,
PO1-BEGIN,

DISPLAY "ENTER SUBPROGRAM".
POZ-END.

EXIT PROGRAM,

Use the COBOL/SUB command to compile the COBOL subprogram. To
build the task image, edit the ODL file generated by the BUILD command
to include the COBOL library of object modules. For example:

+ROOT USER

USER: +FCTR SY:MAINPR-SUBPR-LIBR

SUBPR: +FCTR SY:COBSUB-LIBC

LIBC: +FCTR LB:C1,11COBLIB/LB

LIBR: +FCTR LB:L1,11BASICZ/LB
+END

ODL syntax varies, depending on the operating system. See your Task
Builder or Linker manual for more information.

In general, BASIC and COBOL do not have the same type of data represen-
tation. However, BASIC string and integer data types correspond to
COBOL display and computational data types. By using these data types
and converting data as necessary, you can pass parameters from a BASIC
program to a COBOL subprogram.

Program Segmentation 4-39

BASIC does not support I/O operations in COBOL subprograms.

NOTE
COBOL main programs cannot call BASIC subprograms.

4.2 Chaining

The CHAIN statement transfers control from the current program to an-
other, executable program. The format is:

CHAIN string-expression
where:

string-expression represents the file specification of the new pro-
gram’s task image.

When BASIC encounters a CHAIN statement, it closes all open files and
then requests the new program to begin execution. If it cannot find the new
program, BASIC prints the error message “?File not found”. Figure 4-11
shows how you use the CHAIN statement to transfer program control.

Figure 4-11: Using the CHAIN Statement

Program 1

10 PRINT "PROGRAM 1 IS WORKING"

Z0 OPEN "DATAL.DAT" FOR ODUTPUT AS FILE #17%
30 FOR I% = 1% TO 100%

40O PRINT #1%, 1% * 2%

S0 NEXT I%

60 CLOSE #1%

70 CHAIN "PROGZ"

80 END

Program 2

10 PRINT "PROGRAM 2 IS5 WORKING"

20 OPEN "DATAL" FOR INPUT AS FILE #17%
30 FOR I% = 1% TO 100%

40 INPUT #1%, 17

S0 Th = T4 +1%

B0 NEXT I%

70 PRINT "THE TOTAL IS "3iT%

80 CLOSE #17

80 END

Compile and task-build these programs separately. When you run them,
they return the following data:

PROGRAM 1 IS RUNNING
PROGRAM 2 I5 RUNNING
THE TOTAL IS 10100

4-40 Program Segmentation

NOTE

The procedure and format for the CHAIN statement vary,
depending on your operating system. See Chapters 6 through
10 of this manual for more information. DIGITAL recom-
mends that you use subprogramming rather than chaining
whenever you segment your programs.

Program Segmentation

441

Chapter 5
BASIC-PLUS-2 Utilities

The BASIC-PLUS-2 utilities are: ‘
Translator helps convert BASIC-PLUS programs to

BASIC-PLUS-2.
Resequencer renumbers program lines according to a specified
increment.

Cross Reference Program creates a cross reference file of: (1) line numbers,
’ variables, user-defined functions, COMMONs,

and MAPs, and (2) where they are referenced in

the program.

The utilities are installation options. See your system manager if you cannot
invoke them. V

5.1 Translator

The translator utility converts BASIC-PLUS programs, written in either
EXTEND or NOEXTEND mode, to BASIC-PLUS-2. In addition, it detects
and issues warnings about potential 1ncompat1b1ht1es between the two
languages.

NOTE

The translator provides only a migration aid for converting
programs from BASIC-PLUS to BASIC-PLUS-2. Using the
translator can create inefficient BASIC-PLUS-2 programs.
Therefore, you should recode your BASIC-PLUS programs into
BASIC-PLUS-2.

5-2

5.1.1 Using the Translator

5.1.1.1 Calling the Translator — The translator utility program is in the sys-
tem library account. To access it, type:

RUN $TRANS

and the translator prints an identification header. The translator then prints:

INPUT FILE®?

To answer, type the name and extension of the BASIC- PLUS program you
want to convert, in the format:

dev:[account-number|filename.extension. *

The default extension is .BAS. The specified input program must be error
free. If the program contains immediate mode statements, the translator is-
sues a message that it has removed them. Syntax errors create unpredictable
translator output.

You can enter only one program to the INPUT FILE prompt. Following this
prompt, the translator prints:

DUTPUT FILE?

which lets you assign a different name and extension to the converted pro-
gram. The default is the input file name with an extension of .B2S. The
output file also uses default device and account specifications.

Following the OUTPUT FILE? prompt, the translator prints:
XTEND MODE<NO3>?

If your BASIC-PLUS program is written in EXTEND mode, respond to this
prompt with YES. This converts any syntactic differences between
BASIC-PLUS EXTEND and BASIC-PLUS-2. The translator shifts to the
connect mode if it encounters an EXTEND or NOEXTEND statement in the
input program. ‘

NOTE

Typing /HELP in response to a prompt displays a brief descrip-
tion of that prompt (and those that follow) on your terminal.

5.1.1.2 Specifying Variable Names — If you select NOEXTEND, the transla-
tor requests the BASIC- PLUS variable name(s) you want to change. For
example:

 EXTEND MODE<ND3? -

OLD NAME?

BASIC-PLUS-2 Utilities

If you do not want to change any variable names, type a carriage return.
Otherwise, type the existing BASIC-PLUS variable name. The translator
then prompts for the new name (a BASIC-PLUS-2 name of up to 30 charac-
ters). You cannot include function, array subscript, string, or integer designa-
tions in the new name-—for example, FN, (, $, or %. Consider the following:

OLD NAME? FNTL17%
NEW NAME? TEMP1

When you have typed all the names you want to convert, type a carriage
return.

The translator changes the variable names, but not the variable type or any
subscripts. For example:

OLD NAME? Al
NEW NAME? AARRAY

changes A(in the BASIC-PLUS program to AARRAY(in the
BASIC-PLUS-2 program. You can also build a command file contamlng the
variable names you want to convert by specifying:

OLD NAME? @filespec[.CMD]

You can prepare this file with an editor. Place the old variable name on the
line before the new name. For example:

ALZ(
NEW.ARRAY
FNW$
NEW.FUNCTION

5.1.1.3 Translator Sample Run — This is a sample BASIC-PLUS program
translation:

103 1% = 2%

110 ALCTAY s 1% = 107

120 B% = S%

130 AL BLCTLYALCTIZ) = 1%

140 AZLCCZ)Y sA%L(CZ + 1) = QU

210 INPUT A% BY% C%

220 PRINT A% sBY%C% .

230 PRINT "KEY WORD WITH IMBEDDED SPACES AND TABS"
305 B% = 4%

308 PRINT " BRACKETS IN A LITERAL [1 ARE LEFT ALONE"
310 K% = BU*[3% - BZL1 + 2%

312 ANLLZ2%] = Q%

315 PRINT X%

410 OPEN "DATA" FOR OUTPUT AS FILE #1, CLUSTER SIZE 47
420 OPEN "DATAZ2" FOR OUTPUT AS FILE #2%, RECORD SIZE 512
S02 DIM A(BO)

5035 A=5+d568

506 A(S B) = 10 153 . B

510 PRINT 5 6 7

320 PRINT 5 B

33 O PRINT B8 8 !

535 PRINT " 5 4 3 2 "

BASIC-PLUS-2 Utilities 5-3

540 PRINT 43
G110 PRINT 5 E 4

G20 PRINT 3E - 4

630 PRINT SE 4

640 PRINT 5 E4 :
703 OPEN "DATA" FOR OUTPUT AS FILE #2%
710 FIELD #2%, 107 AS A%

720 A% = SYS(B%)

730 A% = PEEK(BZ)

810 CHANGE A% TO A%

815 AZ (D) = B%

817 A% = "LUCKY"

820 CHANGE A% TO AZ

830 CHANGE B TO B%

835 B$ = "FROG"

837 B(2) = 10

840 CHANGE B% 7O B

a10 MAT PRINT A%

915 AZL(B%)Y = OU

1008 OPEN "DATA" FOR OUTPUT AS FILE #1%
1010 PRINT #1,:A%

1020 PRINT #1., :

1030 PRINT USING "#s#,sxx" 100000
1040 PRINT #1,USING "##s#,ssx" 100000
1105 A% = 3%

1110 PRINT 4 + A%/2

1215 END

The following dialogue converts this program to BASIC-PLUS-2. Variable
names are extended.

RUN $TRANS

PDP-11 BP2 TRANSLATOR V1.6 BL-01.60
INPUT FILE? TRXY1S5.BAS

OUTPUT FILE? TRXY15.B2S

EXTEND MODE<NO:7

OLD NAME? A%

NEW NAME? ASCALER

OLD NAME? BY .

NEW NAME? BSCALER ’

OLD NAME?T A%<

NEW NAME? ARRAYA

OLD NAME? B(

NEW NAME? ARRAYB

OLD NAME® .

“Multiple assidnments at line 110

ZMultirple assignments at line 130

“Multiple assignments at line 410

#Possible system incompatibility: CLUSTERSIZE at line 40
“Possible svstem incompatibility: 8YS at line 720
%Possible system incompatibility: PEEK at line 730
ZAmbiguous division at line 1110

INPUT FILE®™ <ret> '

¥

5-4 BASIC-PLUS-2 Utilities

If you list the converted program (TRXY15.B2S), it appears as:

105
110
120
130
140
210
220
230
3095
308
310
312
318
410
420
302
309
506
510
S20
330
535
540
610
B20
630
G40
705
710
720
730
810
8195
817
820
830
83s
837
840
910
915
1005
1010
1020
1030
1040
1103
1110
1215

This‘program did not translate with complete accuracy. As in any program
translation, you should check the code and a sample run. This program re-

% = 2%

ARRAYAZLCTIZA) »I% = 107

BSCALERYZ = 5%

ASCALERY +BSCALERY »C% +ARRAYAL(I) . = 1%
ARRAYAZC(CZ) »ARRAYAL(CZ + 1) = 0%

INPUT ASCALERY +BSCALERYZ »C%

PRINT ASCALERZ sBSCALERY +C%

PRINT "KEY WORD WITH EMBEDDED SPACES AND TABS"
BSCALERYZ = 4%

PRINT "BRACKETS IN A LITERAL [1 ARE LEFT ALONE"
Ki = BU*(3% - BSCALERZ) + Z%

ASCALERZ (2%) = 0%

PRINT X% .
OPEN "DATA" FOR OUTPUT AS FILE =1, CLUSTERSIZE 4%
OPEN "DATAZ®" FOR OUTPUT AS FILE #2%, RECORDSIZE 512
DIM A(BO)

A = 5 + 4568

A(SB) = 10 15 B

PRINT 567

PRINT 36

PRINT 88 !

PRINT " 5 4 3 2 "

PRINT 45

PRINT BSE4

PRINT 3E - 4

PRINT 3E4

PRINT SE4

OPEN "DATA" FOR OUTPUT AS FILE #Z2%

FIELD #2%, 107 AS A%

A% = SYS5(B%)

ASCALERY = PEEK(BSCALERY)

CHANGE ARRAYAZ TO A%

ARRAYAZ(S%) = 8%

A$ = "LUCKY"

CHANGE A% TO ARRAYAYZ

CHANGE ARRAYB TO B#%

Bs = "FROG"

ARRAYB(2) = 10

CHANGE B$ TO ARRAYB

MAT PRINT ARRAYAZ

ARRAYAZ (BSCALERZ)Y = 0%

OPEN "DATA" FOR OUTPUT AS FILE =1%

PRINT #1,A%

PRINT #1,

PRINT USING "ss#s,sss", 100000

PRINT #1 USING "ssx,ssz", 100000

ASCALERYZ = 3%

PRINT 4 + ASCALERZ/Z

END

quires the following corrections:

1. Examine lines 110, 130, and 140 for multiple assignment problems. Sepa-

rate line 110 into two statements.

2. Remove the statements using CLUSTERSIZE, SYS, or PEEK if they are

not valid keywords on your system.

BASIC-PLUS-2 Utilities

5-6

3. Eliminate the ambiguous constant division at line 1110 by adding a per-
cent sign (%) after the 2. '

5.1.2 Translation Of BASIC Program Elements

This section describes: (1) program elements that translate to
BASIC-PLUS-2, and (2) program elements that are fully compatible without
translation.

5.1.2.1 Program Elements Translated To BASIC-PLUS-2 — The translator
changes BASIC-PLUS syntax to BASIC-PLUS-2 syntax in these areas:

Continuation Lines

BASIC-PLUS continues program lines with a line feed or an ampersand
(&) followed by a line terminator. BASIC-PLUS-2 continuations can be
made only with an ampersand (&) followed by a line terminator.

In NOEXTEND mode, BASIC-PLUS does not recognize the ampersand
as a continuation character. You can include it in comment fields with no
effect. Since BASIC-PLUS-2 recognizes all ampersands followed by a line
terminator as continuation characters, the translator encloses in quotation
marks ampersands that appear in comment fields.

DEF Statements

BASIC-PLUS and BASIC-PLUS-2 user-defined functions differ in the
way they pass arguments. However, BASIC-PLUS-2 supports the
BASIC-PLUS method. The translator adds an asterisk to BASIC-PLUS
DEF statements (DEF*) to indicate BASIC-PLUS argument passing.

PRINT Synonym .

BASIC-PLUS accepts an ampersand as a synonym for PRINT. The trans-
lator changes all BASIC-PLUS ampersands to PRINT statements unless
they are in string literals or are continuation characters.

CHAIN Statements

BASIC-PLUS CHAIN statements do not have the keyword LINE before
line numbers. The translator therefore inserts this word.

Statement Separators

BASIC-PLUS separates multiple statements with a colon or a backslash.
BASIC-PLUS-2 allows only a backslash. The translator converts all
BASIC-PLUS statement separators to backslashes. -

Embedded Spaces and Tabs

BASIC-PLUS ignores embedded spaces and tabs in unquoted string
literals. BASIC-PLUS-2 considers them significant. The translator
removes embedded spaces and tabs from numeric constants, line num-
bers, keywords with optional spaces in BASIC-PLUS (for example,
CLUSTER SIZE), data statements, and exponential format numbers.

BASIC-PLUS-2 Utilities

Functions

The translator changes:
e The BASIC-PLUS POS function to CCPOS
o The BASIC-PLUS CVT$$ function to EDIT$

Long Variable Names

BASIC-PLUS does not permit “long format” variable names.
BASIC-PLUS-2 permits variable names of up to 30 characters. The trans-
lator provides you with prompts to change variable names. You can also
create a command file containing BASIC-PLUS and BASIC-PLUS-2
names and change the names from the file.

Spaces

Because BASIC-PLUS-2 allows long variable names, it requires spaces or
tabs between keywords, variable names, and literals to avoid ambiguity.
The translator inserts spaces between these BASIC-PLUS elements.

Comment Separators

BASIC-PLUS comments begin with an exclamation point and end with a
line terminator. BASIC-PLUS-2 comments begin and end with an excla-
mation point, which permits you to write comments at any point in a
program line. The translator removes all but the first exclamation point
from BASIC-PLUS lines and replaces them with asterisks to preserve
spacing. If a BASIC-PLUS program uses the BASIC-PLUS-2 method of
inserting comments, the translator will replace the second exclamation
point with an asterisk. When you run the program, any program state-
ments after the comment field will be ignored, and your program can
return erroneous results. This does not apply to string literals.

You cannot continue BASIC-PLUS-2 comments; the translator inserts
exclamation points to convert BASIC-PLUS continued comments.

Unterminated String Literals

BASIC-PLUS delimits string literals with a line terminator.
BASIC-PLUS-2 requires matching single or double quotation marks on
both sides of the string. The translator adds the correct delimiter to
BASIC-PLUS string literals.

Multiple Assignment Statements

BASIC-PLUS evaluates multiple assignment statements from right to
left. BASIC-PLUS-2 evaluates them from left to right. The translator
issues a warning when multiple assignment statements contain array
references, since the reverse order of evaluation may affect program
execution.

Ambiguous Constants

BASIC-PLUS treats ambiguous constants (for example, 100 as opposed to
100% or IQO.) as integers if an integer value appears to the left of the

BASIC-PLUS-2 Utilities 5-7

constant in the expression. If such an integer were not pi‘esen’c,
BASIC-PLUS would treat the ambiguous constant as a floating-point
number.

BASIC-PLUS-2 always treats ambiguous constants as floating-point
numbers. ‘

The translator prints a warning message if it encounters an ambiguous
constant division (for example, A%/100).

Semicolons

In certain cases, BASIC-PLUS allows an implied semicolon in PRINT
and INPUT statements. BASIC-PLUS-2 requires a comma or semicolon
between items in a PRINT statement list and assumes a comma by de-
fault in INPUT statements. For example:

10 PRINT "SN" X =

s legal in BASIC-PLUS, but returns a syntax error in BASIC-PLUS-2.

The translator inserts required semicolons in BASIC-PLUS PRINT and
INPUT statements.

Line numbers

The translator removes percent signs from line numbers in BASIC-PLUS
programs. For example:

1007 PRINT

converts to:

100 PRINT
However, the percent sign remains in line number references (for example,

GOTO 100%), but this does not affect execution.

Numeric Constants

BASIC-PLUS allows blanks and tabs in a numeric constant;
BASIC-PLUS-2 does not. For example:

100 PRINT S 32

in a BASIC-PLUS program outputs the constant 532. The same line in a
BASIC-PLUS-2 program returns a syntax error. The translator
compresses blanks and tabs in numeric constants.

RND Function Arguments

BASIC-PLUS permits an argument with the RND function.
BASIC-PLUS-2 does not. The translator strips RND function arguments.

5-8 BASIC-PLUS-2 Utilities

Null Arguments in Functions

BASIC-PLUS allows null arguments in user-defined functions;
BASIC-PLUS-2 does not. The translator removes null arguments in func-
tions. For example:

10Y = FNAQ)

converts to:
10 Y = FNA
Files

BASIC-PLUS accepts BLOCK and RECORD clauses in record I/0 state-
ments. In BASIC-PLUS-2 these keywords are synonymous, and the trans-
lator converts BLOCK to RECORD.

In BASIC-PLUS, the comma is optional after the channel number. In
BASIC-PLUS-2 they are required except for the PRINT # USING state-
ment. The translator inserts commas where required.

5.1.2.2 Program Elements Not Requiring Translation — BASIC-PLUS-2 sup-
ports the following BASIC-PLUS features only on RSTS/E systems.

1. OPEN statements
2. Foreign buffers
3. Most SYS function calls

4. PEEK function calls

5.1.3 Translator Limitations

These sections describe translator limitations, including: (1) incomplete
translations, (2) unresolved problems, and (3) incompatible BASIC-PLUS
statements.

5.1.3.1 Incomplete Translations — The translator cannot completely trans-
late: (1) continued statements longer than 512 characters, or (2) long and
complex program lines.

* Continued statements cannot exceed 512 characters. After the first 512
characters, the translator issues an error message and goes to the next
statement.

e Long and complicated lines exhaust available space in the translator’s in-
ternal tables; the translator issues an error message and does not finish
translating the line.

BASIC-PLUS-2 Utilities 5-9

5-10

5.1.3.2 Unresolved Problems In Translation — These translation problems are
unresolved:

1. Transfer into a FOR loop.

2. Array subscript checkmg BASIC-PLUS checks the total, while
BASIC-PLUS-2 checks each subscript. The following example is accept-
able in BASIC-PLUS, but returns a “?Subscript out of range” error in
BASIC-PLUS-2:

10 DIMAZ(40,10)
20 PRINT AZ(41,0)

3. SYS function calls. Certain SYS calls return an undefined result. In
BASIC-PLUS, the value is the input string, while BASIC-PLUS-2 re-
turns the null string as the function value.

4. PRINT USING statements. The formatting allowed by BASIC-PLUS-2
is more complex than that allowed by BASIC-PLUS. Therefore,

BASIC-PLUS-2 accepts, as formatting dlrectlves certain constructs that
BASIC-PLUS treats as literals.

5. FIELD and CVT functions. BASIC-PLUS-2 supports these functions on
all systems. However, BASIC-PLUS-2 CVT functions reverse the order of
the bytes when moving them to or from a string. Thus, you can mix MAP
and MOVE statements, but you cannot use FIELD and CVT functions on
a file if you also plan to use MAP or MOVE.

6. Exiting from a function via the wrong FNEND statement. You can exit
from a function in BASIC-PLUS by executing any FNEND statement. In
BASIC-PLUS-2, however, you must exit via the FNEND statement asso-
ciated with the DEF* statement that begins the function.

7. String length declarations. BASIC-PLUS permits you to declare lengths
for any string or string array. BASIC-PLUS-2 does not permit string
length declarations outside of virtual arrays, COMMONSs, or MAPs. You
must remove invalid length declarations before running the program.

8. LSET and RSET statements. Because BASIC-PLUS and
BASIC-PLUS-2 handle string assignments differently, the string varia-
bles assigned in an LSET or RSET can produce unexpected results. The
translator flags LSET and RSET for your review.

9. String concatenation with the null string. In BASIC-PLUS, the statement
C$ = C$ + “ ” manipulates the string header. In BASIC-PLUS-2, this
manipulation is optimized out. Recode the statement so that the null
string is replaced with an unused string variable.

5.1.3.3 Incompatible BASIC-PLUS Statements — BASICfPLUS—Z does not
support: h

1. PRINT # USING with RECORD clauses
2. GET USING statements '
They cannot translate into valid BASIC-PLUS-2 statements.

BASIC-PLUS-2 Utilities

5.1.3.4 System Incompatibilities — The keywords CLUSTERSIZE, LOCK,
MSGMAP, PEEK, POKE, SYS, CHAIN (with a line number), MODE, TST,
TSTEND and WRKMAP are system-specific in BASIC-PLUS-2. During
translation, you receive the warning message ‘“%Possible system incompati-
bility” to indicate that the program might not run on some operating systems.
If you plan to run programs on a system that does not support these words,
remove them.

5.1.4 Translator Error Messages

The translator prints a warning message when it detects an error or potential
translation problem. The messages are:

%Ambiguous constant division at line n

WARNING- The program contains an ambiguous constant as a divisor
(for example, A%/100) that can cause unexpected results when the pro-
gram is run. ~

%Bad file specification - Please use form [#,# NAME.EXT

WARNING- The format of the input or output file is not correct. The
translator then reprompts for the input or output file.

?Can’t find file or account
FATAL- The translator cannot find your input file.
%Entry already exists

WARNING- You entered a duplicate variable name in response to the
NEW NAME? prompt. After printing this message, the translator uses
the first name you specified. :

%Illegal switch

WARNING - A slash (/) is not a valid response except when specified with
the /HELP request.

%Immediate mode statement removed

WARNING- Because BASIC-PLUS-2 does not support immediate mode,
the translator removes immediate mode statements from BASIC-PLUS
programs. It then prints the warning message with a list of the statements
it has removed.

%Internal Space Exhausted at line n

WARNING - Long and complicated lines exhaust available space in the
translator’s internal tables. The current line is incompletely translated.

%Invalid variable name

WARNING - The translator prints this message during the variable name
substitution dialogue if:

1. A response to the NEW NAME? prompt ends in %, ., $, or (

BASIC-PLUS-2 Utilities 5-11

2. You enter an illegal variable name

3.. You enter a variable name that is too long

- The trénslator then répeats the OLD NAME? prompt.

" %LSET or RSET used at line n

WARNING - Because BASIC-PLUS and BASIC-PLUS-2 handle string
assignments differently, the string variables assigned in an LSET or
RSET can produce unexpected results.

%Multiple assignments at line n

WARNING - This message points out an array with a variable subscript
(for example, A%(I1%)) in an assignment list. It does not mean that an
error will occur when you run the program; rather, an error might occur
because the the order of assignments differ in BASIC-PLUS and
BASIC-PLUS-2.

%Possible system incompatibility

WARNING - Your program contains one of these system-specific words:
CLUSTERSIZE, LOCK, MSGMAP, PEEK, POKE, SYS, CHAIN (with
a line number specification), MODE, TST, TSTEND or WRKMAP. If
these words are invalid on your operating system, remove them.

%PRINT USING used at line n

WARNING - BASIC-PLUS-2 permits more complex formatting strings
than does BASIC-PLUS. Literals in BASIC-PLUS formatting strings can
be interpreted as formatting characters.

%Statement too long at line n

WARNING - The translator cannot.completely translate a single contin-
ued statement longer than 512 characters.

%Static String declaration at line n

WARNING - BASIC-PLUS permits declared lengths for any string or
string array. BASIC-PLUS-2 does not permit such declarations outside
virtual arrays, COMMONSs, or MAPs. You must remove invalid string
declarations before running the program.

5.2 Resequencer

5-12

The resequence utility renumbers program lines (and references to those lines)
throughout a specified program. You can reorder up to 2500 program lines at
one time. You can divide these lines in up to ten segments and specify a
different resequencing scheme for each segment. In this way, you can rese-
quence large programs piece by piece until your program has the numbering
order you want.

BASIC-PLUS-2 Utilities

5.2.1 Invoking the Resequence Utility

The command:

RUN $BZRESQ

invokes the Resequence Utility. If it does not work, see your system manager
for the way to invoke this on your system.

5.2.2 Running the Resequencer

The resequencer prompts you for information about renumbering. You can
respond to these prompts individually, or specify a indirect command file
instead. The following sections describe these procedures.

5.2.2.1 Resequence Utility Dialogue — The resequence utility prompts for a
file name and line number specification(s) as follows:
® ENTER BASIC-PLUS-2 Prodram To Reseauence?

Enter the name of the file you want to renumber. The default extension is
.B2S.

® ENTER OUTPUT FILE?
asks for the name of the renumbered file. Respond with a new output file
name. The default extension is .B2S.

® Number of Prodram Sesﬁents to be Reseaquenced?
asks for the number of program segments you want resequenced. You can
respond by typing:
- H — prints a help file list of resequence utility commands.

- A carriage return (GED) — resequences the entire program starting at
line 10 and incrementing by 10

- An indirect command file name — specifies resequencing instructions.
‘ See Section 5.2.2.2. If you specify an indirect command file, you do not
~ receive the next four prompts.

- A number — specifies how many segments you want to resequence. You
then receive the next four prompts for each program segment.

® SEGMENT n OLD BEGINNING LINE NUMBER™

asks for the number where resequencing begins. The default is line 1.

BASIC-PLUS-2 Utilities 5-13

5-14

® OLD END LINE NUMBER?

asks for the line number that ends the segment you are resequencing. The
default is line 32767,

® NEW BEGINNING LINE NUMBER?
asks for the segment’s new starting line number. The default is line 10.
® NEW INCREMENT THIS SEGMENT?

asks for the increment between line numbers. The default is 10 (for exam-
ple: 10, 20, 30, and so forth).

After the last prompt, the resequence utility renumbers the program accord-
ing to the segment definitions. It then updates line number references in
control statements (for example, GOTO and THEN) to reflect the new order.

5.2.2.2 Command File input to Resequencer Dialogue — Instead of responding
to dialogue prompts, you can include your answers in an indirect command
file. You specify this file as input to the NUMBER OF PROGRAM
SEGMENTS TO BE RESEQUENCED prompt. The format for resequence
commands is:

command:[,command[:...command]]

where:

command is one of four resequence commands summarized in Table
5-1. You can continue commands on the next line with the
ampersand (&) continuation character.

colon (3) is a command separator. You end each command except
the last with a colon.

comma (,) is a segment separator. A segment is a unique group of
program lines.

Table 5-1: Resequence Commands

Command Meaning

O m-n Resequence the segment defined as line numbers m through n. The default
for m is 1; the default for n is 32767.

Nm Begin resequencing the segment at line m. The default for m is line 10.

Id Increment line numbers by a value of d. The defgult is 10.

For example:

01-100:N10:11,0150-200:N30, &
01000-10000:N1000: IS0

BASIC-PLUS-2 Utilities

resequences the program with these changes:

Command Change

01-100:N10:I1 resequences old line numbers 1 through 100 (01-100:), starting
at line 10 (N10:) and incrementing by 1 (I1).

0150-200:N50 resequences old line numbers 150 through 200 (0150-200:),
starting at line 50 (N50). Because the command line specified
no increment value, the default is 10.

01000-10000:N1000:150 resequences old line numbers 1000 through 10000
(01000-10000:), starting at line 1000 (N:1000) and incrementing
by 50 (150).

After creating the file, type:
@filespec

in response to the NUMBER OF PROGRAM SEGMENTS TO BE
RESEQUENCED? prompt. The resequence utility then renumbers your pro-
gram. If the filespec contains no extension, the default is .CMD.

You will not receive the rest of the resequence dialogue.

5.2.3 Error Messages

The Resequence Utility prints an error message when it detects a resequenc-
ing error. The messages are:

%Bad program format. A line number was expected and not found

The input file contains a non-continued line that does not start with a line
number.

?File not found
The Resequence Utility cannot find your input file.
?Input line numbers are out of strictly ascending order

The line numbers in the file are not in ascending order. You can re-order
program lines by:

e Invoking the BASIC-PLUS-2 compiler.
¢ Bringing the program into memory with the OLD command.
e Issuing the REPLACE command to save the program.

The compiler re-orders the line numbers and returns the corrected pro-
gram to your directory. You can then resequence the corrected program.

?Invalid segment parameters

You specified an end line number lower than the starting line number.

BASIC-PLUS-2 Utilities 5-15

5.3 Cross

%Line # not found, resequencing continuing

The input program contains a transfer to a non-existent line number. This
line number reference remains unchanged in the output file.

?Proposed resequencing out of integer bounds

The line numbers of a segment will exceed 32767 when requuenced.
?Proposed resequencing overlaps

The new program segments will overlap each other when resequenced.
?Resequenced segment encompasses unresequenced line

A segment being resequenced will overlap a line you did not specify for
resequencing.

?Segment descriptors overlap
-You entered a line number in more than one segment.
?Specification file error - expecting more command data
Your command file is not correcﬂy formatted.
?Specification file not found
The Resequence Utility cannot find your indirect command file.
?Syntax error, number foo large for integer

The command line contained an integer outside the valid range
(1%-32767%). ' '

?Syntax error
The command line input contained an error.
?Two segments have identical new beginning value

Two program segments cannot start with the same line number.

Reference Program
The cross-reference utility (B2XREF) creates an index of keywords, functions,

and variables in a BASIC-PLUS-2 program. Your input program must be
error free and in ascending line-number order.

5.3.1 Invoking B2XREF

The command:

RUN $B2XREF

5-16 BASIC-PLUS-2 Utilities

accesses the B2XREF Utility. In response, B2XREF prints an identification
header. If the prompt does not work, see your system manager.

5.3.2 Running B2XREF

B2XREF asks for file information with the “B2X" prompt. To respond, use
the format:

outfile = infile / switches

For example:

TESTPG = TESTPG/FUN/SQU/OFF

You must specify an input file name. There is no default. If you specify no
extension, B2XREF adds the default extension .B2S to the input file name.

The default output file name is the input file name with the extension .CRF.
The available B2XREF switches are:

/APPIENDABLE-LIST] prints a variable list you can append to a BASIC
program. This switch suppresses references to line
numbers, library functions, and keywords. The
output file’s extension becomes .APP, and its
width is 80 characters.

/BAS[IC-PLUS] specifies a BASIC-PLUS input file. The default
\ extension becomes .BAS.

/FUN[CTIONS] includes a reference for all library functions.

/HEL[P] ' prints a help file of the B2XREF command line
and switches. If you specify /HELP, BASIC ig-
nores the current command line.

/ISO[LATE]:arg prints line numbers, variables, user-defined func-
tions, and subprogram calls referenced in the line
numbers specified by the argument.

The argument can be a single line number or a
pair of line numbers. A dash separates multiple
line numbers. Up to 20 multiple arguments are
-valid for each /ISOLATE:arg switch. A comma
separates multiple arguments. For example:

/ISOLATE:100-400,650-690,1240-1580

You can specify additional /ISOLATE:arg
switches if needed.

/KEY[WORDS] v includes a reference to all BASIC keywords.

/MIC[ROFICHE] prints the input file name as the first six charac-
ters on each page. This file name can then become
part of a microfiche index.

BASIC-PLUS-2 Utilities ~ 5-17

/MORE

/NOF[LAGS]

/OFF[SET]

/REP[ETITION]

/SOUIRCE]

/SUPIRESS-SPACING]

/WID[E]

/WID[TH]:n

BASIC-PLUS-2 Utilities

prompts for additional input. /MORE must be the
last switch on the current command line.

suppresses printing of the #, @, and P flags in the
output file. The pound sign {(#) indicates that a
function, array, or subprogram is defined at the
specified program line. The at sign (@) indicates a
new value assigned to a variable. P indicates a
variable used as a parameter ina subprogram call.

prints references in the format:
n:o
where:
n is the program line number.

. is the number of the statement on the
line.

For example:
80:3

refers to line 80, statement 3.

prints references in the format:
n(r)
where:
n is the program line number.

r is the occurrence of the reference on the
line.

For example:

350(2)

indicates that the language element occurred
twice on line 350.

includes a source listing with the output file. The

default extension for the source file is .LST.

eliminates the blank line between variable names
in the output file.

specifies a width of 132 characters in the output
file.

specifies a width of n characters. The minimum
width is 72. The default for a terminal is 80; for
other devices, 132.

5.3.3 B2XREF Output

If you specify no switches with the input file name, the output is a list of line
numbers only. Depending on the switches you select, the output appears in
the following order:

e Variables

The at sign (@) indicates that the variable was assigned a value at that line
number. A “P” indicates that the variable is a parameter in a subprogram
CALL. The value of that variable can change in the subprogram.

e User-defined Functions
¢ Subprograms
e COMMON and MAP Areas

The names of COMMON and MAP areas are listed first, followed by the
variables contained in them.

e Keywords

¢ Library Functions

® Variables not Assigned Values

¢ Distinct Identifiers and Number of Identifier References

e Number of Work Entries and Disk Blocks Required

5.3.4 B2XREF Sample Run

The following program illustrates the B2XREF program output.
RUN $BZXREF

PDP-11 BPZ CROSS REFERENCER V1.8 BL - 01,B0

2X: TESTRF = TESTRF/FUN/SOU/OFF

B2X» 2

PIP TESTRF.CRF/LI

Cross-Reference Listing of TESTRF on 24-Jan-80 at 04:32 PM

) REM THIS IS5 A SAMPLE PROGRAM TO DEMONSTRATE B2XREF
10 DEF FNACX,Y) = Y**2
20 FOR I = 20 TO -20 STEP -1
30 FOR J = -20 TO Z0
40 JIF T = FNA (I+d) &
THEN PRINT ‘*’35 &
ELSE IF I = 0 OR J = 0 &
THEN PRINT ‘+73% &
ELSE PRINT * ‘3
70 NEXT J
80 PRINT
90 NEXT I
100 PRINT
110 END

BASIC-PLUS-2 Utilities 5-19

Cross-Reference Listing of TESTRF 0n>24—JAN—80 at 04:32 PM
Yariables ’ o . : } :

1 Bzo 40 4o 4013 T
J @30 40 -) "avcf:ﬁ | 70

X 1o | | |

10 10

User-defined functions

FNAC() #10 40
Please check the use of the following:
X ¥

There were 5 identifiers listeds, and 14 references to them. 8
work-file entries (2 disK blocKs) were used,

RUN TESTPG

+ 4+ + ++++ A+ A+

+

>+ %
R R N R R R R R R b R R P S A R A A A
+

++ A FFF A+t

5-20 BASIC-PLUS-2 Utilities

Chapter 6
BASIC-PLUS-2 on RSX-11M

This chapter describes system-specific usage of BASIC-PLUS-2 on
RSX-11M. This kincludes:

¢ Invoking the compiler.

¢ Using the CHAIN, NAME AS, and SLEEP statements.

6.1 Invoking the Compiler
To invoke the BASIC-PLUS-2 compiler, type:

RUN $BASIC2

Depending on how your system was installed, you can also invoke the com-
piler with the concise command ‘“BP2”. See your system manager for the
concise command form used on your system.

After you invoke the compiler, BASIC-PLUS-2 prints an identifying line and
awaits your input. You can then create BASIC source programs and object
modules (see Chapter 1).

6.2 BASIC-PLUS-2 Statements

This section describes the implementation differences for the CHAIN, NAME
AS and SLEEP statements.

6.2.1 CHAIN Statement

The BASIC-PLUS-2 CHAIN statement enables chaining at specified points
in the program. RSX-11M requires that you chain at the first line of the
program. Use the syntax:

CHAIN “‘task name”

6-1

6-2

You can use only six characters for the task name.

Chaining uses the RQSTS$ system directive. This directive requires:

e Task image format. You can chain to an executable task image only.

¢ MCR installation. Tasks must be installed with the MCR INSTALL com-
mand. "

¢ A unique copy of the task. You cannot have more than one running copy of
the task when you chain to it.

6.2.2 NAME AS Statement

The NAME AS statement enables you to rename an existing file. It has the
format:

NAME string 1 AS string 2

where:
string 1 is the file specification of the old file.
string 2 is the new file specification.

On RSX-11M:

¢ You must have write access to the directory of the target file.
e The specified files must reside on the same physical device.

e The PSECT $3FSR2 must be in the root segment of the task. You can: (1)
rework the ODL file to force $3FSR2 into the root, or (2) include NAME AS
in the root.

The NAME AS statement renames the file without changing its contents. For
open files, the new name takes effect when the file is closed.

6.2.3 SLEEP Statement

The SLEEP statement suspends program execution for a specified time. The
format is:

SLEEP num-exp%

where:

num-exp% is the number of seconds that execution is suspended.

By enabling CTRL/C trapping (CTRLC function), you can awaken the job
before the time period expires.

BASIC-PLUS-2 on RSX-11M

Chapter 7
BASIC-PLUS-2 on IAS

This chapter describes system-specific usage of BASIC-PLUS-2 on the IAS
operating system. These system-specific uses include:

e Invoking the compiler.

¢ Using the CHAIN, NAME AS, and SLEEP statements.

® Restrictions on use.

7.1 Invoking the Compiler
To invoke the BASIC-PLUS-2 compiler, type:

RUN LB:[11,11BASICEZ

Depending on how your system was installed, you can also invoke the com-
piler with the concise command “BP2”. See your system manager for the
concise command form used on your system.

BASIC-PLUS-2 prints an identifying line and awaits your input. You can
then create BASIC source programs and object modules (see Chapter 1).
7.2 BASIC-PLUS-2 Statements

This section ‘descrribes the implementation differences for the CHAIN, NAME
AS, and SLEEP statements.

7.2.1 CHAIN Statement

BASIC-PLUS-2 implements the CHAIN- statement as an RQST$ system
directive. Your system manager must provide the privileges for RQSTS$.

7.2.2 NAME AS Statement

The NAME AS statement enables you to rename an existing file. It has the
format:

NAME string 1 AS string 2
where: ’
string 1 is the file specification of the old file.
string 2 is the new file specification.
On IAS:
¢ You must have write access to the directory of the target file.
¢ The specified files must reside on the same physical device.

¢ The PSECT $$3FSR2 must be in the root segment of the task. You can: (1)
- rework the ODL file to force $$FSR2 into the root, or (2) include NAME AS
in the root.

The NAME AS statement renames the file without changing its contents. For
open files, the new name takes effect when the file is closed.

7.2.3 SLEEP Statement

The SLEEP statement suspends program execution for a specified time. The
format is:

SLEEP num-exp%

where:

num-exp% is the number of seconds that execution is suspended.

7.3 Restrictions

The following sections describe system specific restrictions for
BASIC-PLUS-2 running on IAS.

7.3.1 CTRL/C Trapping
BASIC-PLUS-2 does not recognize CTRL/C trapping on IAS systems.

7.3.2 IAS Batch Stream

In batch streams, BASIC requires a terminal device (TI:). In IAS batch,
however, TI: is invalid, and BASIC cannot assign it.

7-2 BASIC-PLUS-2 on IAS

To compile programs from batch, use an indirect command file. For example:

$J0B MYACCT EXAMPLE 20
$BP2Z @IND.CMD

$E@TESTPRG

$RUN TSTPRG

$EO0J

The indirect command file, IND.CMD, contains the BASIC commands that
OLD, COMPILE, and BUILD the program.

Batch streams also prevent your using terminal control functions such as
RCTRLO and CTRLC. BASIC disables these functions when you run in IAS
batch. Your program then behaves identically in IAS batch and from the
terminal.

7.3.3 Post Mortem Dumps

The post mortem dump of memory contents is not available on IAS systems.
Therefore, you cannot use the /DUMP switch when compiling.

BASIC-PLUS-2 on IAS 7-3

Chapter 8 |
BASIC-PLUS-2 on VMS (Compatibility Mode)

This chapter describes system-specific usage of BASIC-PLUS-2 on the
VAX/VMS operating system. This includes:

¢ Invoking the compiler.
e Using the CHAIN, NAME AS, SLEEP, and KILL statements.
e Compiler commands. |

e Restrictions on use.

8.1 Invoking the Compiler
To invoke the BASIC-PLUS-2 compiler,.type:
BASIC
or
BASIC/RSX

After you invoke the compiler, BASIC-PLUS-2 prints an identifying line and
awaits your input. You can then create BASIC source programs and object
modules (see Chapter 1).

8.2 BASIC-PLUS-2 Statements

This section describes the implementation differences for the CHAIN, NAME
AS, SLEEP, and KILL statements.

8.2.1 CHAIN Statement

BASIC-PLUS-2 implements the CHAIN statement with the RQST$ system
directive. This directive is invalid on VMS-Compatibility Mode. Therefore,
VMS-Compatibility Mode does not support chaining.

8.2.2 NAME AS Statement

The NAME AS statement enables you to rename an existing file. It has the
format:

NAME string 1 AS string 2
where:
string 1 is the fi}e specification of the old file.
string 2 is the new file specificatidn.
On VMS-Compatibility Mode:
¢ You must have write access to the directory of the target file.

¢ The specified files must reside on the same physical device.

¢ The PSECT $$FSR2 must be in the root segment of the task. You can: (1)
rework the ODL file to force $$FSR2 into the root, or (2) include NAME AS
in the root.

The NAME AS statement renames the file without changing its contents. For
open files, the new name takes effect when the file is closed. :

8.2.3 SLEEP Statement

The SLEEP statement suspends program executlon for a specified time. The
format is:

SLEEP num-exp%

where:

num-exp% is the number of seconds that execution is suspended.

By enabling CTRL/C trapping (CTRLC function), you can awaken the job
before the time period expires.

8.2.4 KILL Statemeynt

The KILL statement is invalid on an open file. You must close the file before
deleting it.

8-2 BASIC-PLUS-2 on VMS (Compatibility Mode)

8.3 Compiler Commands

Whenperformingbatchl/O, youcanusethe LOCK/ECHOand LOCK/NOECHO
commands to enable and disable the display of characters in your
BASIC command file in the batch stream. If you do not want the BASIC
commands displayed, type LOCK/NOECHO.

Specifying LOCK/ECHO for your terminal displays all compiler commands
twice: once for the terminal echo, and a second time when the compiler
reprints the command line.

8.4 Restrictions

The following sections describe system specific restrictions for
BASIC-PLUS-2 running on VMS-Compatibility Mode.

8.4.1 Invalid Compiler Commands

VMS-Compatibility Mode does not support disk resident libraries. Therefore,
you cannot use the BRLRES, LIBRARY, or RMSRES commands.

8.4.2 File Sharing

RMS-11 running in VMS-Compatibility Mode does not let you share files for
writing. Therefore, two users cannot write at the same time, nor can one write
while the other reads.

BASIC-PLUS-2 on VMS (Compatibility Mode) 8-3

Chapter 9 _‘
BASIC-PLUS-2 on RSX-11M PLUS

This chapter describes system-specific usage of BASIC-PLUS-2 on
RSX-11M PLUS. This includes:

¢ Invoking the compiler.
¢ Using the NAME AS and SLEEP statements.

¢ Restrictions on use.

9.1 Invoking the Compiler
To invoke the BASIC-PLUS-2 compiler, type:

RUN $BASIC2

Depending on how your system was installed, you can also invoke the com-
piler with the concise command “BP2”. See your system manager for the
concise command form used on your system.

After you invoke the compiler, BASIC-PLUS-2 prints an identifying line and
awaits your input. You can then create BASIC source programs and object
modules (see Chapter 1).

9.2 BASIC-PLUS-2 Statements

This section describes the implementation differences for the NAME AS and
SLEEP statements.

9.2.1 NAME AS Statement

The NAME AS statement enables you to rename an existing file. It has the
format:

NAME string 1 AS string 2

where:
string 1 is the file specification of the old file.
string 2 is the new file specification.
On RSX-11M PLUS:
¢ You must have write access to the directory of the target file.
* The specified files must reside on the same physical device.

¢ The PSECT $$FSR2 must be in the root segment of thé task. You can: (1)
rework the ODL file to force $3FSR2 into the root, or (2) include NAME AS
in the root.

The NAME AS statement renames the file without changing its contents. For
open files, the new name takes effect when the file is closed.

9.2.2 SLEEP Statement

The SLEEP statement suspends program executlon for a specified time. The
format is:

SLEEP num-exp%

where:

num-exp% is the number of seconds that execution is suspended.

By enabling CTRL/C trapping (CTRLC function), you can awaken the job
before the time period expires.

9.3 Restrictions

9-2

Under RSX-11M PLUS, the BASIC library (BASIC2) cannot be in supervisor
mode. All BASIC libraries run out of user mode.

BASIC-PLUS-2 on RSX-11M PLUS

Chapter 10
BASIC-PLUS-2 on TRAX

This chapter describes the use of BASIC-PLUS-2 on the TRAX operating
system. This includes:

e Separate application and support environments

¢ Invoking the compiler | . |

¢ Using the CHAIN, NAME AS, and SLEEP statements

® Restrictions on use of BASIC—PLUS—2 in the TRAX support environment

10.1 TRAX Environments

Unlike RSX~-11M, IAS, or VMS, TRAX has two programming environ-
ments: application and support. These environments offer different
resources and restrictions.

10.1.1 Application Environment

TRAX application environment programs perform common business
processing functions, such as data base inquiry and update, input valida-
tion, and mathematical calculation. Programming for the application
environment, however, requires a different approach than conventional
programming. You write the code for each transaction as a series of short,
independent subroutines, called transaction step tasks (TST). Each TST
performs only part of the transaction.

The TRAX application -environment offers these special features for
BASIC-PLUS-2 TSTs

] TST and TSTEND statements to define transactlon step tasks

] MSGMAP and WRKMAP statements to describe the exchange message
and transaction workspace data

10-1

¢ LOCK, UNLOCK, and FREE statements to enable and disable record-
locking

e Library routines such as PRCEED and GETRAN, available through
CALL BY REF statements

The application environment imposes these restrictions on BASIC—
PLUS-2 TSTs:

e They cannot use terminal I/O statements such as PRINT and INPUT.
e They cannot access virtual files.
e They cannot perform magnetic tape operatlons

See the TRAX Applzcatzon Programmers Guide for detailed information
on the programming techniques, resources, and restrictions for
BASIC-PLUS-2 TSTs.

10.1.2 Support Environment

The TRAX support environment is primarily used for system management,
batch processing, and program development. You can also run programs in
this environment.

In general, BASIC-PLUS-2 programs written for the support environment
should conform to the rules and syntax explained in Chapters 1 through 5.
The remainder of this chapter explains additions and exceptions specific to
the TRAX support environment.

10.2 Invoking the Compiler

To invoke the BASIC-PLUS-2 compiler from a TRAX support environment
terminal, type:

> RUN $BP2

or

> BASIC

BASIC-PLUS-2 prints an identifying line and returns the prompt

“BASIC2.” You can then create BASIC source programs and object modules
(see Chapter 1).

10.3 BASIC-PLUS-2 Statements

10-2

This section describes how to use the CHAIN, VNAME AS, and SLEEP
statements in TRAX support environment programs.

NOTE

Do not use these BASIC-PLUS-2 statements in TRAX appli-
cation environment TSTs.

BASIC-PLUS-2 on TRAX

10.3.1 CHAIN Statement

The CHAIN statement transfers control from the current program to the
first line of another program. The format is:

CHAIN “task”
where:

task is the name of the program to which you wish to chain. The
name must be a string expression of one to six alphanumeric
characters.

BASIC implements the CHAIN statement with an RQST$ system directive.
This directive requires:

® Task image format. You can chain to an executable task only.

¢ A unique copy of the task. You cannot have more than one running copy
of the task you chain to.

® An installed task. You must install the task to which you will chain
before running the chaining program. Consult your system manager for
information on the privileges this requires.

10.3.2 NAME AS Statement

The NAME AS statement lets you rename an existing file. It does not
change the file’s contents. The format is:

NAME “stringl” AS “string2”
where:

stringl is the file specification of the old file

string2 is the new file specification
TRAX requires that you have write access to the directory of the file you
are renaming. In addition, the old and new files must reside on the same

physical device. For open files, the new name takes effect only when you
close the file.

Either the program segment containing the NAME AS statement or
the $$FSR2 routine from the BASIC-PLUS-2 library must be in the non-
overlayable root segment of the task. See Chapter 4 for more information
on program segmentation.

BASIC-PLUS-2 on TRAX 10-3

10.3.3 SLEEP Statement

The SLEEP statement suspends program execution for a specified length of
time. The format is: .

SLEEP num-exp%

~ where:

num-exp% is the number of seconds that execution is suspended.

By enabling CTRL/C trapping (CTRLC functlon) you can awaken the job
before the time period ends.

10.4 Restrictions

104

The following sections describe restrictions specific to BASIC-PLUS-2 pro-
grams written for the TRAX support environment.

10.4.1 Compiler Commands

TRAX does not supply the RMS and BASIC-PLUS-2 memory resident
libraries for support environment programs. Therefore, TRAX does not sup-
port the RMSRES, LIBRARY, and BRLRES compiler commands.

10.4.2 Task-Building

The TKB command is not available on TRAX. To link your program, use
either:

* LINK Bfilespec
or
*» LINK/BASIC filesrec

where:

filespec is the indirect command file created by the BUILD com-
mand or text editor.

See the TRAX Linker Reference Manual and the TRAX Support Environ-
ment User’s Guide for more information.

10.4.3 TRANSLATOR Utility
The BASIC-PLUS-2 Translator Utility is not available on TRAX.

BASIC-PLUS-2 on TRAX

Appendix A
BASIC-PLUS-2 Language Elements

This appendix summarizes the program elements, commands, statements,
operators, and functions supported by BASIC-PLUS-2. More information on
language elements is available in the BASIC-PLUS-2 Language Reference
Manual.

A.1 Program Elements

BASIC-PLUS-2 programs contain:

1.

Arrays

An array is an ordered arrangement of elements (subscripted variables) in
one or two dimensions. You specify an array with a floating-point, integer,
or string variable followed by integer subscripts in the range zero to 32767.
Enclose subscripts in parentheses. Non-integer subscripts are truncated to
an integer value. A single subscript indicates a 1-dimensional array, or
list; two subscripts, separated by commas, indicate a 2-dimensional
array, or matrix. '

You should explicitly initialize all variables in virtual arrays at the start of
your program.

Backslash Statement Separators

The backslash statement separator (\) separates statements in a multi-
statement line.

Characters

BASIC-PLUS-2 accepts the full ASCII character set (see Appendix D). It
ignores null characters and accepts non-printing, non-control characters
in string literals, but generates warning messages otherwise. BASIC
changes all lower-case letters to upper case, except those in string literals.

A-2

10.

11.

12.

Comments

Comments begin with an exclamation point (!) and end with an exclama-
tion point or a line terminator. You can insert comments before, in, or
between all statements except the DATA statement. Comments have no
effect on execution speed or program size.

Constants

BASIC-PLUS-2 accepts three types of constants: floating-point, integer,
and string. Floating-point constants are decimal numbers in the range
1E-38 to 1E38. Integer constants are also decimals in the range -32767 to
+32767, but they end with a percent sign. String constants are alphanu-
meric characters delimited by matched pairs of single or double quotation
marks. Quoted strings can contain from zero to 255 characters.

Continued Lines

Program lines continue to the next line if they end with an ampersand (&)
followed by a line terminator.

Expressions

Expressions contain constants, variables, or functions separated by
operators.

Functions

Functions perform a series of numeric or string operations on the argu-
ments you specify and return the result to your program. Functions are
multi-character names followed by optional parentheses. The parentheses
contain one-to-eight function arguments separated by commas. A null
argument is not allowed. User-defined functions follow this general for-
mat; however, the function name begins with FN followed by 1-to-30
letters, digits, or periods.

Line Length

A physical line can contain up to 256 characters, but continuations can
logically extend the line. The line length is restricted only by the maxi-
mum program size.

Line Numbers

All program lines except continuation lines need line numbers.
BASIC-PLUS-2 line numbers are positive integers in the range 1 to 32767.
Numbers outside this range, fractional line numbers, line numbers with
embedded spaces or line numbers with percent signs generate errors.
Leading zeroes are ignored.

Line Terminators
A carriage return/line feed or an escape key (ESC) ends a program line.
Operators

BASIC-PLUS-2 accepts arithmetic, relational, and logical operators. See
Tables A-1 through A-3 at the end of this appendix.

BASIC-PLUS-2 Language Elements

13. Variables

BASIC-PLUS-2 accepts three types of variables: floating-point, integer,

and string.

¢ Floating-point variables contain a single letter, followed by up to 29
optional letters, digits, and periods.

¢ Integer variables also contain a single letter, followed by up to 29 op-
tional letters, digits, and periods, followed by a percent sign. If a percent
sign is not specified, the variable is considered floating-point.

e String variables contain a single letter, followed by up to 29 optional
letters, digits, and periods, followed by a dollar sign.

* You can use any alphanumeric combination except keywords for a vari-
able name. Using keywords generates compilation errors. Variables are
initialized to zero or a null string at the start of program execution.

Variable names cannot start with FN unless defining or calling a

function.

A.2 Commands

Commands allow you to perform operations on your program. They do not
need line numbers. You can type them directly to BASIC along with any valid

arguments.

The following is a short description of the BASIC commands, including their

format and use.

Command
APPEND filespec

BRLRES filespec
BUILD filespec/sw
COMPILE filespec/sw

DELETE line number(s)
_DSKLIB filespec
EXIT

“HISEG

IDENTIFY

Use

merges a previously saved source program (filespec) with the pro-
gram in memory.

allows you to specify the BASICS shared library or a user-created
shared library to be linked to your program during task building.
User names need full file specifications.

generates a command file from specified object modules. This file
contains all of the task builder command input needed to create a
task image and memory allocation map.

converts the current program. You can add switches to this com-
mand to specify the form of the output. If you specify a file name,
the program is compiled under that name. '

erases specified lines from the current program.

allows you to select BASIC2, BP2COM, or a user-created disk li-
brary to be linked to your program during task building.

ends access to the BASIC-PLUS-2 Compiler and returns you to the
default run-time system.

allows you to select one of two BASIC-PLUS-2 run-time systems.
RSTS/E only.

prints a header that identifies the BASIC-PLUS-2 Compiler.

BASIC-PLUS-2 Language Elements A-3

Command
LIBR

LIST[NHIline number(s)
LOCK/sw
NEW filename

ODLRMS filespec

OLD filename
RENAME filename
REPLACE filespec
RMSRES filespec

RUN
SAVE filespec

SCALE val

_ SEQUENCE

SHOW
UNSAVE filespec

A.3 Statements

Statements are used in program lines. They allow you to assign values, input
data, transfer program control, and so forth. Each statement in the following
section includes formatting rules, a sample program line, and an explanation

A-4

of use.
CALL

CALL BY REF

Use

associates the task with a resident shareable library. IAS, RSX,
TRAX, and VAX-C only.

prints a copy of all (or part) of the current program.
sets. BUILD and COMPILE switch specifications as defaults.

clears the user area of memory for the creation of a program. If you
specify a file name, the new program is assigned that name.

allows you to select an RMS overlay description language (ODL)
file when you build the program. ‘

brings a program from disk into memory.
changes the name of the program in memory to the specified name.
saves the current program by overriding any file with that name.

allows you to specify the RMS resident library that will be linked to
your program to supply code for RMS file and record operations.

executes a specified program.

stores the current program (as source code) under the current name
unless another name is specified.

sets the scale factor to a specified integer value or prints the current
value if none is specified. The range of val is zero to 6.

enters program line numbers beginning at a number you specify.
You can also specify the increments between line numbers. The
default starting point is 100 and the default increment is 10.

prints the current compiler defaults on the terminal.

deletes a specified file.

CALL name [(actual arguments)]
200 CALL SUB1 (AB)

The CALL statement transfers control to a specified
subprogram, transfers parameters, and maintains the
status of the calling program. Parameters contained in
the argument list must agree in type and number with
parameters in the corresponding SUB statement.

CALL name BY REF (variable or array)
150 CALL SUBZ BY REF (ARRAY1(+) +B%)

CALL BY REF allows you to transfer variables and
entire arrays to a subprogram. These values are used in
computations, and the results are returned to the main
program.

BASIC-PLUS-2 Language Elements

CHAIN

CHANGE

CLOSE

COMMON

DATA

DEF (single-line)

CHAIN string [LINE line number]

15 CHAIN "SEE" LINE 70

The CHAIN statement transfers control to a specified
program. If no line number is indicated, execution
starts at the beginning of the program.

Chaining to a specific line number is a RSTS/E only
feature.

CHANGE list TO string variable
CHANGE string expression TO list

25 CHANGE A TO A%

The CHANGE statement converts a list of integers
into a character string, and vice versa; it truncates real
numbers. The length of the string depends on the value
found in element zero of the list.

CLOSE [#] expression(s)
150 CLOSE #6%, 8%

The CLOSE statement writes data from active buffers
to your terminal or to the file. It then ends I/O to the
device.

COMMON (name) element(s)
G0 COMMON (RESERV)AYB%

The COMMON statement defines a named, shared
area of storage. This area stores values that may be
read or changed by any other program module.

DATA constant(s)
SO DATA 4.3, "ABC", 18, 7.9 'HYZ’

The DATA statement allows you to supply data to
your program without waiting for input prompts. An
accompanying READ statement instructs the program
when to access this data. A DATA statement must be
the only statement on a line. If you specify more than
one data item, you must separate them with commas.

DEF FNa [(b1,b2,b3,...b8)] = expression

where:
a is 1 to 30 letters, digits, or periods.

(b1,b2,b3,...b8) are function arguments that can
be integer, floating point, or string
variables. A function can have
from zero to eight arguments. If a
function has no arguments, the
parentheses must also be omitted.

BASIC-PLUS-2 Language Elements A-5

A-6

DEF (multi-line)

DEF*

DELETE

expression can contain any dummy variable.
The expression is evaluated every
time the function is used.

10 DEF FNX (A+B) = A *B

Make sure the expression is the same data type (string
or numeric) as the function name. If the expression is
floating point and the function name is integer, or vice-
versa, the expression will be changed to the type speci-
fied by the function name.

DEF FNa [(b1,b2,b3,...b8)]
where:

a represents 1 to 30 letters, digits, or
periods followed by an optional
percent sign (%) for integers or
dollar sign ($) for string function
values.

(b1,b2,b3,...b8) can be zero to eight dummy argu-
ments. If no arguments are used,
the parentheses must also be
omitted.

10 DEF FNX7Z (A+B)

20IFA B THENC = 3. 4ELSEC =0

30 REM C IS ASSIGNED A VALUE OF 3.4 IFA : B
40 FNX7Z = A+ B + C

30 FNEND

Single and multi-line DEF statements have similar
formats. However, multi-line DEFs do not set the func-
tion equal to an expression on the first line. Instead,
the function is set equal later in the definition (in this
example, at line 40). If the function is not set equal to

an expression, the function value is zero or a null
string. All multi-line DEFs end with FNEND.

DEF* FNa [(b1,b2,b3,...b8)]
40 DEF* FNC (XY ,2)

DEF* indicates the BASIC-PLUS argument passing
method. You can use it in place of any DEF, making
all BASIC-PLUS-2 functions acceptable to
BASIC-PLUS.

DELETE #num-exp%
GO DELETE #5%

The DELETE operation erases a record from a relative
or indexed file.

BASIC-PLUS-2 Language Elements

DIMIENSION]

DIM #

END

FIELD

FIND

DIM array name (subscripted variable(s))
30 DIMB(2,3)

The DIM statement reserves storage for arrays. The
size of the reserved storage depends on the subscripts.
One subscript dimensions a list; two subscripts dimen-
sion a matrix.

DIM #num-exp%, array name (variable(s)) [=integer]
SO DIM #2%, AC10,15) » B(50)

The DIM # statement: (1) declares a virtual array, (2)
specifies how many dimensions the array has, and (3)
specifies the maximum value of each subscript.

Line 50 allocates space for two arrays on the file associ-
ated with logical number 2. Because no integer value
was specified, the default string storage length is 16
bytes. You cannot use DIM as part of a conditional
expression.

END
100 END

The END statement stops program execution and
closes all files. END must be the last statement in a
program module.

FIELD #num-exp%, expression AS string variable
[,expression AS string variable...]
75 FIELD #2%, 10% AS A%, 20% AS B$, 3% AS F$

The FIELD statement dynamically associates string
names with all or part of an I/O buffer. FIELD state-
ments do not move data; they permit direct access to
sections of the I/0 buffer by means of string variables.
FIELD is an executable statement, not a compiler
directive.

FIND #num-expl% [LRECORD num-exp2]

or
FIND #num-expl%, KEY #num-exp3%
GT
GE|{string exp
EQ
40 FIND #7%

40 FIND #7%» RECORD 25

40 FIND #7%, KEY#2% GE "JONES"

BASIC-PLUS-2 Language Elements A-7

A-8

FNEND

FNEXIT

FOR

FOR (conditional)

FREE

FIND locates a record in the specified file. For sequen-
tial FINDs, BASIC starts at the beginning of the file
and locates successive records. Relative files permit
random FINDs with the specification of a record num-
ber. Indexed files permit random FINDs with the spec-
ification of a key value.

FNEND
40 FNEND

The FNEND statement causes an exit from a multi-
line DEF and signals the function’s logical and physi-
cal end.

FNEXIT
70 FNEXIT

The FNEXIT statement permits early exit from a mul-
ti-line DEF.

FOR variable = num-exp1% TO num-exp2% [STEP
num-exp3%]

25 FOR I =1T05S5 STEP 2

The FOR statement starts and controls a loop. You
must use a simple numeric variable after the FOR, and
the same variable must be used in the accompanying
NEXT statement. The first numeric expression is the
initial loop value; the second is the terminating loop
value. The optional STEP expression is the loop incre-
ment; +1 is the default. Do not transfer into the middle
of a loop.

FOR variable = num-expl1%[STEP num-exp2%]

WHILE |condition

UNTIL

BOFOR I =1 UNTIL I » 10
80 FOR I =1 WHILE I < =25

A conditional FOR loop ends when the WHILE clause
is false or the UNTIL clause is true.

FREE #num-exp%
40 FREE #17%

The FREE statement unlocks all records in a file.
TRAX only.

BASIC-PLUS-2 Language Elements

GET

GOSUB (GO SUB)

GOTO (GO TO)

IF

GET #num-expl% [RECORD num-exp2]
or

GET #num-expl1%, KEY #num-exp3%

GE
GT

EQ

50 GET #5%

string exp

50 GET #5%,» RECORD B%
S0 GET #57% +» KEY #37% EQ "HT1-544"

GET reads records in the specified file. For sequential
GETs, BASIC starts at the beginning of the file and
reads successive records. Relative files permit random
GETs with the specification of a record number. In-
dexed files permit random GETs with the specification
of a key value.

GOSUB line number
25 GOSUB 120

The GOSUB statement transfers control to a subrou-
tine that begins at the specified line number.

GOTO line number
40 GOTO 85

The GOTO statement unconditionally transfers con-
trol to a specified line number.

23 IF A = O THEN PRINT "A EQUALS O"

statement
line number

IF cond-exp THEN

statement
line number

[ELSE

or

IF cond-exp GOTO line number

25 IF A = 0 THEN PRINT "A EQUALS 0" ELSE 330

The IF statement allows branches in a program. It can

also execute most statements, with the exception of:
DIM, REM, DATA, END, DEF, FNEND, MAP and
SUB.

BASIC-PLUS-2 Language Elements A-9

A-10

IFEND

IFMORE

IMAGE

INPUT

INPUT #

IFEND #num-exp%

THEN {line number
restricted statement

or
IFEND #num-exp% GOTO line number
120 IFEND #3% THEN PRINT "DATA ENTRY COMPLETE®

The IFEND statement executes a restricted statement
or transfers control to a specified line number at the
end of the file. DECsystem-20 Only

IFMORE #num-exp%

THEN |line number
-{restricted statement

or
IFMORE #num-exp% GOTO line number
40 IFMORE #1% THEN CLOSE #17%

40 IFMORE #1% GOTO 200

IFMORE executes the restricted statement or transfers
control to the specified line number if there are more
records in the file. DECsystem-20 Only

: unquoted string

or
IMAGE unquoted string
10: s#as, ##

20 PRINT USING 10, 234,9783

70 IMAGE ++ ‘LLL ++ 'CCCCCC
B0 PRINT USING 20, A% ,B%

IMAGE formats numeric and string data for output.
It is non-executable without PRINT USING.
DECsystem-20 Only

INPUT [“string constant’(,)] variable(s)

’
.

’

23 INPUT A4BC%

The INPUT statement prompts for program data with
a question mark and an optional string expression you
provide.

INPUT #num-exp%, variable
25 INPUT #G%» A

The INPUT # statement reads a value from a terminal
format file and assigns it to a program variable.

BASIC-PLUS-2 Language Elements

INPUT LINE

INPUT LINE #

KILL

LET

LINPUT

LINPUT #

LOCK

INPUT LINE [“string constant”,] string variable
15 INPUT LINE A%

The INPUT LINE statement permits you to input a
character string to a specified variable. The line termi-
nator is included. The optional string constant prints
as part of the prompt for data.

INPUT LINE #num-exp%, string variable
10 INPUT LINE #4%) A%

The INPUT LINE # statement reads a string value
from a terminal format file and assigns that value, in-
cluding the line terminator, to a program variable.
BASIC does not check the syntax of file contents.

KILL string expression

10 KILL "SALARY.DAT"

The KILL statement deletes the specified file. KILL
does not take effect until all users have completed I/O
and the file is closed.

(LET) variable(s) = expression

10 LET A = 65

The LET statement assigns constants and expressions
to variables. The keyword LET is optional.

LINPUT [“string constant’,] string variable

40 LINPUT NEXT.LINES

The LINPUT statement permits you to input a charac-
ter string to a specified variable. The line terminator is
not included as part of the string. The optional string
constant is printed as part of the prompt for data.

LINPUT #num-exp%, string variable
BO LINPUT #1%, EXAMPLES

The LINPUT # statement reads a string value from a
terminal format file and assigns that value to a string
variable. The line terminator is not included with the
string. BASIC does not check line syntax.

GET #num-exp% [, RECORD num-exp] [,LOCKI
or
GET #num-expl% [, KEY #num-exp2%]

GT
GE
EQ

390 GET #4% RECORD 77% + LOCK

string-exp] [, LOCK]

460 GET #2%, KEY #0% GT "BLACKWELL" , LOCK
TRAX only.

BASIC-PLUS-2 Language Elements A-11

A-12

LSET

MAP

MARGIN

MARGIN ALL

MAT INPUT

MAT INPUT #

LOCK makes the record you GET unavailable to other
users. If you do not specify LOCK, the record you GET
remains unlocked. TRAX only.

LSET string variable(s) = string expression
10 LSET A% B% = X$ + V$

The LSET statement assigns string expressions to
string variables. The data is left-justified, and the
length of the target string is not changed.

MAP (name) element(s)
10 MAP (BUFF1) A%+ B%, C,» D$ = 25%

The MAP statement defines the data fields in the rec-
ord buffer and associates them with program variables.
A GET moves data from the file to the buffer so you
can access MAP statement variables. A PUT writes
the buffer to the file. You cannot specify a MAP as
part of a conditional expression.

MARGIN [#num-exp%]|, |num-exp%

b
.

90 MARGIN #27%, 80O%

MARGIN modifies margin settings for terminal format
files. The default is the user’s current terminal width.
DECsystem-20 Only

MARGIN ALL|,|num-exp%

’
.

30 MARGIN ALL » 757%

MARGIN ALL specifies the same margin width for all
currently opened terminal format files. DECsystem-20
Only

MAT INPUT array(s)
50 MAT INPUT A

The MAT INPUT statement assigns data you input to
the elements of a specified array. Elements are stored
in row order as they are typed.

MAT INPUT #num-exp%, array name
100 MAT INPUT #2%, ARN

The MAT INPUT # statement reads values from a
terminal format file and assigns them to a specified
array. The elements are stored in the destination array
in row order.

BASIC-PLUS-2 Language Elements

MAT LINPUT

MAT LINPUT #

MAT PRINT

MAT PRINT #

MAT READ

MATRIX
ASSIGNMENT

MOVE

MSGMAP in TSTs

MAT LINPUT string array name
300 MAT LINPUT VECTOR.NAMES$

The MAT LINPUT statement assigns data you input
to elements of a string array.

MAT LINPUT #num-exp% string array name
90 MAT LINPUT #1%, A%

The MAT LINPUT statement reads string data from a
terminal format file and assigns it to elements of a
string array. MAT LINPUT # does not include the

string’s line terminator as part of the array element.
MAT PRINT array(s)
120 MAT PRINT A’

The MAT PRINT statement prints all elements of a
specified array.

MAT PRINT #num-exp%, array name
B0 MAT PRINT #5%, TESTAR

MAT PRINT # prints the contents of an array to a
terminal format file.

MAT READ array(s)
S0 MAT READ B»C

The MAT READ statement reads data statement val-
ues into elements of a 1- or 2-dimensional array.

MAT array name = array name
15 MAT A =B

In matrix assignment, the MAT statement sets each
entry of Array A equal to the corresponding entry of
Array B. A is redimensioned to the size of B.

MOVE |FROM
TO

15 MOVE TO #5, A%+ By C()» FILLYZ

#num-exp%, 1/0 list

The MOVE statement moves data in a record to or
from the variables you specify in the I/O list.

MSGMAP variable list

The MSGMAP statement is used in TSTs to describe
the exchange message area. See the TRAX documenta-
tion for rules on formatting the list of variables. TRAX
only.

BASIC-PLUS-2 Language Elements A-13

A-14

NAME AS

NEXT

NODATA

ON ERROR

ON GO SUB
(ON GOSUB)

NAME stringl AS string2
15 NAME "MONEY" AS "ACCNTS"

NAME AS renames a file without changing its con-
tents. IF the file is open, NAME AS assigns the new
name when the file is closed.

NEXT variable
15 NEXT 1%

The NEXT statement ends a FOR, WHILE, or UNTIL
loop. The variable must correspond to the variable in
the accompanying FOR statement.

NODATA [#num-exp%], line number
50O NODATA» 110

NODATA transfers control to the specified line num-
ber if all DATA for a program or subprogram is
exhausted. If a channel number is specified (num-
exp%), the statement is the same as:

IFEND #num-exp% THEN line number
DECsystem-20 Only

ON ERROR GOTO line number
or

ON ERROR GO BACK

2% ON ERROR GOTO 50

25 ON ERROR GO BACK

The ON ERROR GOTO statement transfers program
control to a specified line that contains an error-
handling routine. ON ERROR GOTO should be the
first line in the program.

The ON ERROR GO BACK statement allows a sub-
program containing an error to return to the calling
program for error handling.

ON num-exp% GOSUB line number(s)
SO ON A+ B GOSUB 80, 85, 100

The ON GOSUB statement conditionally transfers
program control to subroutines or to entry points in
subroutines.

BASIC-PLUS-2 Language Elements

ON GOTO

ON THEN

OPEN

GOTO
THEN

ON num-exp% line number(s)

20 ON J% GOTO 85, 90, 85, 100

The ON GOTO statement transfers program control to
a location that depends on the value of num-exp%.

See ON GOTO

(FOR OUTPUT |
OPEN filespec-exp |[FOR INPUT)

[LORGANIZATION] { SEQUENTIAL (FIXED]
RELATIVE (VARIABLE]
INDEXED [STREAM]
UNDEFINED
VIRTUAL

AS FILE [#] num-exp%

LACCESS READ]
WRITE]

{ MODIFY]

SCRATCH]

APPEND]

LALLOW NONE]
READ]

1 WRITE]

MODIFY]

[,MAP mapname]

LMODE)

LRECORDSIZE num-exp]

LBLOCKSIZE num-exp%)

,FILESIZE num-exp%])

[LSPAN]

LNOSPAN]

[L,CONTIGUOUS)

,TEMPORARY]

LBUCKETSIZE num-exp%]

[,CONNECT)

LNOREWIND]

, WINDOWSIZE num-exp%]

[,CLUSTERSIZE num-exp}

,LBUFFERSIZE num-exp%]

,PRIMARY [KEYname [DUPLICATES]
INODUPLICATES]

LALTERNATE [KEYname [DUPLICATES [CHANGES]]
INODUPLICATES [NOCHANGES]]

10 OPEN "FILA4.DAT" FOR INPUT AS FILE #47%

The OPEN statement enables you to create a new file
or access an existing file, and specify that file’s attrib-
utes. CLUSTERSIZE is available only on RSTS/E.
WINDOWSIZE is available on all other systems.

BASIC-PLUS-2 Language Elements A-15

A-16

PAGE

NOPAGE

PRINT

PRINT #

PRINT USING

PRINT # USING

PUT

PAGE [#num-exp%](,)num-exp%

’

15 PAGE #8% 5B%

PAGE sets a page size in lines for terminal format files.
This page size (num-exp%) remains in effect until:

e The page size is set again by the PAGE statement

e The file is set to nopage mode by the NOPAGE
statement

e Execution ends
e The file is closed

When program execution ends, the terminal returns to
its previous default page setting. DECsystem-20 Only

NOPAGE #num-exp%
B0 NOPAGE #87%

NOPAGE stops automatic paging of the specified ter-
minal format file. DECsystem-20 Only

PRINT [expression(s)]
30 PRINT A + B

PRINT outputs specified data to the terminal. The
expression list can be expressions, variables, or quoted
strings separated by a comma or a semicolon. Commas
cause output to terminal print zones; semicolons sup-
press spacing between elements.

PRINT #num-exp%, list
B0 PRINT 6%, A%

The PRINT # statement writes data to a specified ter-
minal format file.

PRINT USING format string, list
10 PRINT USING "#*%s#s, 88", A,B,C

The PRINT USING statement formats data for out-
R}Jt. S?e the BASIC-PLUS-2 Language Reference
anual.

PRINT #num-exp% USING format string, list
90 PRINT #47% USING "# # # & 8", 4, 2, 8, 23,

PRINT # USING writes records to terminal format
files in a format you specify.

PUT #num-expl% [[RECORD num-exp2] [,COUNT
num-exp3]

15 PUT #77%
15 PUT #77 » RECORD 15%

15 PUT #7% 4 RECORD 20% » COUNT B0O%

BASIC-PLUS-2 Language Elements

RANDOMIIZE]

READ

REM[ARK]

RESTORE (#

RESUME

RETURN

RSET

The PUT statement writes a record from the record
buffer to a specified file. Sequential files allow PUT
operations only at the end of the file. The RECORD
clause is used for random PUTs to relative or block I/O
ﬁl(eis. The COUNT clause redefines the size of the rec-
ord.

RANDOMIZE
10 RANDOMIZE

The RANDOMIZE statement changes the starting
Foint of the RND function to a new and unpredictable
ocation.

READ variable(s)
75 READ A+BY%C$ s D(5)

The READ statement directs BASIC to input values
from a DATA statement.

REM comment
30 REM THIS IS A COMMENT

The REM statement documents a program with user-
written comments. It has no effect on program execu-
tion.

RESTORE #num-exp% [KEY num-exp%]
30 RESTORE #37%

80 RESTORE #3% s KEY B%

The RESTORE # statement resets the specified file to
its first record. The RESTORE # statement with the
KEY clause resets an indexed file to the beginning of
the specified key. RESTORE without a file expression
restores the data in a DATA statement.

RESUME [line number]
50 RESUME 35

The RESUME statement is the last statement in an
error-handling routine. It shifts control from that rou-
tine to a specified line number in the program. If no
line number is specified, control shifts back to the
point of error generation.

RETURN
60 RETURN

The RETURN statement is the last statement in a
subroutine. It shifts control to the statement following
the last executed GOSUB statement.

RSET string variable(s) = string expression
10 RSET A% +1B% = X$ + Y4

The RSET statement assigns new values to string vari-
ables. The new data is right-justified and the target
string’s length is not changed.

BASIC-PLUS-2 Language Elements A-17

A-18

SCRATCH

SLEEP

STOP

SUB

SUBEND

SUBEXIT

TST, TSTEND

UNLESS

SCRATCH #num-exp%
25 SCRATCH #B%

The SCRATCH statement deletes a sequential file
from the current record to the end-of-file. You can use
SCRATCH only if the file was opened with ACCESS
SCRATCH.

SLEEP num-exp%
10 SLEEP 30%

The SLEEP statement causes a temporary halt in exe-
cution. The length of delay (in seconds) depends on the
value of the expression.

STOP
110 STOP

The STOP statement halts program execution and
prints a message indicating the location of the halt.
STOP does not close opened files.

SUB name [(formal argument(s))]
40 SUB TEST (AsB%)

The SUB statement starts a subprogram and defines
the type and number of subprogram parameters.

SUBEND
25 SUBEND

The SUBEND statement ends a subprogram and re-
turns control to the calling program.

SUBEXIT
899 SUBEXIT

The SUBEXIT permits early exit from a subprogram.
It is equivalent to GO TO a SUBEND statement.

TST TSTEP(ARG1S, ARG2S)
TSTEND

40 TST TSTEP(EXPA% EXPB%)
70 TSTEND

The TST statement is the first statement in a TST
module. The module ends with TSTEND. See the
TRAX documentation for more information on TST
and TSTEND. TRAX only.

statement UNLESS condition
15 PRINT A UNLESS A = 0

A statement with an UNLESS modifier will execute
only if the condition 1is false. The
UNLESS modifier simplifies the negation of a logical
condition.

BASIC-PLUS-2 Language Elements

UNLOCK

UNTIL

UPDATE

WAIT

WHILE

WRKMAP

UNLOCK #num-exp%
30 UNLOCK =17

The UNLOCK statement unlocks all buckets in a
stream designated by a channel number.

UNTIL conditional exp

SOFOR I = 1 UNTILI =A\NB *G6
GO PRINT I
70 NEXT

The UNTIL modifier permits execution of a loop until
the condition is true. An accompanying NEXT state-
ment is required.

UPDATE #num-exp% [,COUNT num-exp%¢]
50 UPDATE #17%

The UPDATE statement replaces a record in the file.
For sequential files, the new record must be the same
size as the old one.

When the file permits duplicate primary keys, the new
record must be the same length as the old one. When
the program does not permit duplicate primary keys,
the new record:

¢ Can be no longer than the maximum record size

¢ Must include at least the primary key field. If the
new record omits one of the old record’s alternate
key fields, the OPEN statement must specify
CHANGES for that key field.

WAIT num-exp%
S0 WALT 15%

The WAIT statement specifies the maximum number
of seconds allowed for input before BASIC generates an
error. A zero or null value disables the WAIT.

WHILE conditional exp

70 FOR 1% = 20% WHILE I7 < 125%
80 PRINT I7%
90 NEX

The WHILE modifier sets up a loop that executes until
the condition is false. WHILE must have an accompa-
nying NEXT statement.

100 WRKMAP list

WRKMAP describes the work area of a TST. See the
Tl}AX documentation for more information. TRAX
only.

BASIC-PLUS-2 Language Elements A-19

A.4 Funétlons

A-20

This section describes the numeric and string functions available in BASIC.

Function

ABORT (N%)

ABS(X)
ABS%(X%)
ACCESS#$(filespec)
ASCII(X$)

ATN(X)
BUFSIZ(N%)

CCPOS(N%)

CHR$(X%)
CLK$

COMP%(X$,Y$)

CON
COS(X)
COUNT

Usage

causes an exit to the editor if N% = zero. If N% = 1, the program
exits to an editor and the current working buffer is scratched. In
either case, no READY prompt is printed on the terminal.
DECsystem-20 Only

returns the absolute value of X for real numbers (ABS(X)) or
integers (ABS%(X%)).

returns access privilege information for a specified file.
DECsystem-20 Only

returns the decimal ASCII value of the first character of a speci-
fied string.

returns the arctangent of X in radians.

returns an integer value, which is the size of the buffer in bytes.
If the file channel is closed, BUFSIZ equals zero.

The BUFSIZ format is:

BUFSIZ(N%)
where:
N% equals the channel number.

returns the current position on the output line for the given

channel number. The CCPOS format is:

CCPOS(N%)
where:
N% is the I/O channel number. It can range from zero

to 12. CCPOS(0%) prints the character position of
the current output line.

returns the character equivalent of the ASCII value X%.

returns the time of day in the form HH:MM:SS. The hours are
based on a 24—hour clock. DECsystem-20 Only

compares two numeric strings and returns:
1if X$ > Y$
0if X$=Y$
-1if X$ < Y$
sets the elements of an array to a value of one.
returns the cosine of X in radians.

specifies the number of bytes written in a PUT or UPDATE
operation. The default is the maximum record size (MRS). The
COUNT clause must equal the recordsize for fixed length
records, and be less than or equal to the recordsize for variable
length records.

BASIC-PLUS-2 Language Elements

Function
CTRLC

CVT$$(string,B%)

CVT$%(X$)

CVT3F(X$)

CVT%$(X%)
CVTF$(X)

DATE$(0%)
DATES$(X%)

DET
DIF$(X$,Y$)
ECHO(N%)

EDIT$(string, N%)
ERL

ERNS$
ERR

ERT$(N)

EXP(X)

FILL
FILL$
FILL¢?

FIX(X)
FORMATS$(A,B$)

January 1981

Usage
enables CTRL/C trapping.

manipulates a character string and generates a new one. CVT$$
does not change the internal format of the data. See EDITS.
RSTS/E Only

maps the first two characters of a string into an integer. If the
string has fewer than two characters, BASIC pads it with nulls.
RSTS/E compatible

maps the first four characters of a string into a floating point
number. If the math package is double precision, the first eight
characters are mapped. If the string has fewer than the required
number of characters, BASIC pads it with nulls. RSTS/E
compatible

maps an integer into a 2-character string. RSTS/E compatible

maps a floating-point number into a four or eight character
string, depending on the system’s math package. RSTS/E
compatible ‘

returns the current date.

returns a calendar date according to the formula:

(Day of year) + [(years since 1970) * 1000]
returns the determinant of a matrix.
subtracts string Y$ from string X$ and returns the difference.

enables terminal echo of characters sent to the system from your
terminal.

formats the string using the flag N%. The values for N% are
shown in Table 5-1 (EDIT$ Conversions) in the
BASIC-PLUS-2 Language Reference Manual.

returns the line number at which an error occurred.
returns the name of the subprogram in which an error occurred.

returns the number of the run-time error your program
generated.

returns the text error message associated with a given value of
N¢:. N¢% equals the error code for the current error (see
Appendix C).

returns the value of:
e'X
where:

e = 2.71828, the base of natural logarithms.

masks parts of a record or buffer to hold space for future use, or
to skip over data not used in a routine. FILL items are accept-
able in MAP, COMMON and MOVE TO statements.

returns the value of X truncated to an integer.

returns a numeric variable formatted according to the contents
of the associated string. See PRINT USING for formatting
rules. :

BASIC-PLUS-2 Language Elements A-21

A-22

Function

FNAMES (filespec)

FSP$(N%)

FSS$(A$,B%)
IDN

INSTR(Z%,X$,Y$)

INT(X)

INV.

LEFT$(X$,Y%)
LEFT(X$,Y%)

LEN(X$)
LINO(N%)

LOG(X)

LOG10(X)

MAGTAPE(X%,Y%,Z%)

MAR¢e(#num-expc)
MAR(#num-exp©e)

MID$(string,n1%,n2¢%)

MID(X$,Y%,Z%)
MOD¥%%(A, B)

MOD(A, B)

NOECHO(N¢?)

Usage

returns the file specification assigned to your channel. If you
specify FNAME$ with a channel number not assigned to an
opened file, BASIC returns an error message. DECsystem-20
Only :

returns a string that describes the file opened on a given chan-
nel. N% is the channel number.

performs a filename string scan on A$, starting at position B%.

sets up an identity matrix: all elements are zero except for those
on the (LI) diagonal, which are set to one.

returns the position of substring Y$ in the main string X8$, start-
ing at position Z%.

returns the integral part of X. INT(X) returns the same value as
FIX(X) for equal values of X, but INT(X) does not change X.

generates a matrix that is the inverse of another. For example,
MAT N = INV(M) makes Matrix N the inverse of Matrix M.
Matrix M must be a square matrix.

returns a substring of X$, beginning at the leftmost position, for
a total length of Y% characters.

returns the number of characters in X§$.

returns line number N% to RESEQUENCE for full use of the
ERL function. DECsystem-20 Only

returns the natural logarithm of X. If:
eX=Y

then:
InY =loge) Y =X

returns the common logarithm of X. Common logarithms, un-
like natural logarithms, have a base of 10, not 2.71828.

provides flexibility in non-file structured processing by permit-
ting the program to control magtape functions such as rewind or
tape density. In this function:

X¢e is the function code (1 to 9).
YCe is the integer parameter.

Z% is the channel number on which the selected mag-
netic tape is open.

returns the margin width currently associated with the file-
expression. DECsystem-20 Only

returns a substring n2¢: characters long, starting at position
nl% of the string.

returns the remainder of A/B (A mod B) in integer form.
DECsystem-20 Only

returns the remainder of A/B (A mod B) in real number form.
DECsystem-20 Only

disables terminal echo.

BASIC-PLUS-2 Language Elements

Function

NULS$
NUM

NUM2

NUMS$(N)

NUMI1$(N)

ONECHR(X%)
PEEK

PI
PLACES$(X$,N%)
POS(X$,Y$,2%)

PPS(X)

PRODS$(X$,Y$,N%)
QUO$(XS,Y$,N%)

RADS$(X %)
RCTRLC
RCTRLO(N%)

RECOUNT

RIGHT$(X$,Y%)
RIGHT(X$,Y%)

RND
SEG$(X$,Y%,2%)

Usage

sets the value of all elements in a string array to null string.
NULS$ does not set row zero or column zero. DECsystem-20
Only

contains the number of rows input to a matrix. For a one dimen-
sional array (list) NUM contains the number of elements
entered.

contains the number of elements entered in the last row of a
matrix.

returns the value of N as it is printed by a PRINT statement.
Forexample, NUM$(1.000) = (space)1(space) and NUM$(-1.000)
= —-1(space).

returns N as PRINT would write it, but without spaces or E
format.

enters single-character input mode on channel X¢%.

allows a privileged user to check any word location in the moni-
tor part of memory. The user program can check words in small
or large buffers in the resident portion of the file processor, and
in the low memory and tables of memory. The function does not

allow a user program to check the contents of another user’s
program. RSTS/E only.

returns a constant value: 3.14159.
returns X$ with precision according to N%.

returns the position of substring Y$ in that portion of the main
string X$ that extends from position Z% to the end of the main
string. See also INSTR

returns the page count on channel X. DECsystem-20 Only

returns the product of X$ and Y$, with precision depending on
N%.

divides X$ by Y$ and returns the quotient, with precision de-
pending on N%.

converts the integer X% to its RADIX-50 equivalent.
disables CTRL/C trapping.

cancels the effect of typing CTRL/O on channel N%. See your
System User’s Guide for a description of the effect of CTRL/O
on your system.

contains the number of characters transferred by the latest in-
put operation.

returns a substring of X$ that extends from the Yth character to
the end of the string.

returns a random real number between zero and 1.

returns the substring of X$ that extends from the Yth character
to the Zth character. See MID$

BASIC-PLUS-2 Language Elements A-23

A-24

Function

SGN(X)

SIN(X)
SPACE$(X%)
SPEC%(W%,X,Y%,Z%)

SQR(X)
SQRT(X)

STATUS

STR$(N)

STRING$(X%,Y%)

SUMS$(XS$,Y$)
SWAP%(X%)

SYS(Y¢%)

TAB(X%)
TAN(X)
TIME$(X %)
TIMES$(0%)
TIME(0%)
TRM$(A$)
TRN

TYP(file-exp%, X$)

Usage

returns the following values:
1 if X is positive
0 if X is zero
-1 if X is negative
returns the sine of X in radians.
generates and returns a string X spaces long.

performs special operations on peripheral devices. For more
information, see the RSTS/E Programming Manual. RSTS/E
only.

returns the square root of the absolute value of X.

returns a 16-bit variable that contains information about the
last channel on which your program executed an OPEN state-
ment. Your program can test each bit to determine the status of
the channel.

returns the value of N as it is printed by a PRINT statement,
but without the leading and trailing blanks. See also NUM$(N)

creates and returns a string X% characters long that represents
the ASCII value of Y%. See also ASCII

returns the sum of X$ and Y$.

reverses the bytes in an integer word. The low byte takes the
high byte position, and vice versa.

allows system function calls in your program to: (1) perform
special I/O functions, (2) establish special characteristics for a
job, (3) set terminal characteristics, and (4) cause the monitor
to execute special operations. RSTS/E only.

moves the print head to the Xth position.

returns the tangent of X in radians.

returns the time as X minutes before midnight.
returns the present time in a system-defined format.
returns the clock time in seconds since midnight.
trims the trailing blanks from a string.

creates a new array that is the “transpose” of the originai. If
Matrix A has m rows and n columns, MAT C = TRN(A) will
generate an array with n rows and m columns.

determines if the file specified by file-exp% is the same type as
indicated by X$. TYP returns:

+1 if file-exp% is the same as X$.

0 if the file types are not the same.

-1 if the file type is invalid or the specified file does
not exist.

BASIC-PLUS-2 Language Elements

Function

TYPES$(file-exp%)

USEAGES$(file-exp%)

USR$

VAL(X$)
VAL%(X$)

VPS%(X %)

XLATE(A$,B$)
ZER

Usage
The file type X$ can be:

SEQUENTIAL
RELATIVE
INDEXED
TERMINAL
VIRTUAL

DECsystem-20 Only

identifies the current file type as one of the following:

SEQUENTIAL
RELATIVE
INDEXED
TERMINAL
VIRTUAL

TYPE$ returns a null string if the file type is not known.
DECsystem-20 Only

indicates the file’s usage by returning one of the following:

INPUT
OUTPUT
I/0
APPEND

USEAGES returns a null string if the file’s usage is not known.
DECsystem-20 Only

returns the user I.D. for the current job. DECsystem~20 Only

computes the numeric value of the numeric string X$; X$
must be acceptable numeric input.

returns the vertical position on channel X%. DECsystem-20
Only

translates one string to another using a translation table, B$.

initializes all elements of an array to zero. This condition is true
of all arrays when first created, except those in a virtual array,
MAP, or COMMON area.

Table A-1: Arithmetic Operators

Operator Use Meaning
® or ** 5°2 or 5*¥*2 exponentiation
* A*B multiplication
/ A/B division
+ A+B addition,

i unary plus,

string concatenation
- A-B subtraction, unary
minus

BASIC-PLUS-2 Language Elements

A-25

Table A-2: Logical Operators

Operator Use Meaning

NOT NOT A logical negative of A.

AND A AND B logical product of A and B.

OR AORB logical sum of A and B.

XOR A XORB logical exclusive OR of A and B.

EQV AEQVB logical equivalence between A
and B.

IMP AIMPB logical implication of A and B.

Table A-3: Relational Operators

Operator Use Meaning

= A=B A is equal to B.

< A<B A is less than B.

> A>B A is greater than B.

<= or =< A<=B A is less than or equal to B.
>= or => A>=B A is greater than or equal to B.
<> or >< A<>B A is not equal to B. ‘
== ==B A is approximately equal to B.

Note that A is approximately equal to B (A==B) if the difference between A and B is less than
10°(-6). If A$ and B$ are strings, the relation (==) is true if the contents of A$ and B$ are the
same in length and composition. '

A-26 BASIC-PLUS-2 Language Elements

Appendix B
Compile-Time Error Messages

BASIC-PLUS-2 diagnoses compile-time errors and indicates the program
line that generated the error. The error message format is:

<message> at line X statement n

where:

<message> is the text of the message‘.
at line X is the location of the error.

statement n. is the statement in line X that contains the error.

Error messages contain either a percent sign (%) or a question mark (?) prefix.
A percent sign is a warning; compilation can continue, but the result is not
predictable. A question mark indicates a fatal error; compilation can contin-
ue, but the compiler will produce no task or object module.

The following is an alphabetized list of compilation error messages:
?Arguments don’t match |

FATAL - The function céll arguments differ in quantity or type from
those defined for the function. Check the function definition. Change the
arguments or definition to conform.

- ?Arguments don’t match in x() at linen

FATAL - The argument in a user-defined function call does not match
the type (string or numeric) or number of the dummy argument defined in
the DEF statement. In this message, x is the user-defined function name
and n is the line number of the call. Check the program to make sure that
function arguments agree with those defined in the DEF statement.

B-2

% CALL/SUB forces OBdJ output

WARNING - You cannot produce a task image file from programs that
contain CALL or SUB statements. You must produce object modules
(COM/OBJ) and task build them. The compiler automatically generates

an object module when it encounters CALLS or SUBS in a program.
RSTS/E Only

2COM/MAP cannot have modifer

FATAL - You cannot add the modifiers FOR, IF, UNLESS, UNTIL, or
WHILE to a COMMON or MAP statement.

2COM/MAP without list

FATAL - The program contains a COMMON or MAP statement without
an accompanying variable list.

% COMMON and MAP with same name (x)

WARNING - There is a potential problem in the redefinition of a
COMMON or MAP. Determine if the COMMON and MAP should over-

lay each other.

% Compile time variable .x redefined
WARNING - The variable .x appears in more than one .DEFINE.

% /DEB forces OBJ output

WARNING - You cannot produce a task image file from programs con-
taining /DEBUG switches. You must produce an object module and task
build the program. RSTS/E Only

?DEF with no contents

FATAL - A DEF statement is immediately followed by FNEND. BASIC
expects one or more program lines to accompany the DEF.

?DEF without name

FATAL - A DEF statement has no function name. You must supply one.

% Division by zero
WARNING - You should not divide by the constant zero.

?END statement without a program -
FATAL - The END statement has no accompanying program.

?END/SUBEND not last statement

FATAL - END or SUBEND must be the last statement in a program
module.

% ERL overrides /NOLINE

WARNING - A program compiled with the /NOLINE switch contains an
error handler that references the ERL function. The /NOLINE switch is
nullified.

Compile-Time Error Messages

?ERROR n at line m in x, compiling line p
FATAL - This message indicates a severe compiler error.
'n represents the value of the ERR variable.
m is the line number where the error originated in the compiler.
x is the name of the compiler module that contains the error.

p is the currently compiling program line number in the user
modules.

This error causes the loss of your program, an exit from BASIC, and a
return to the operating system command level. Submit a Software Per-
formance Report to DIGITAL and include all relevant output.

. 7Expression too complex at line n

FATAL - You have written an expression that is too complex to compile.
Rewrite the expression as two or more assignment statements and
recompile. -

?FNEND cannot have modifier

FATAL - You cannot add the modifiers FOR, IF, UNLESS, UNTIL, or
WHILE to the FNEND statement.

?FNEND without DEF

FATAL - A FNEND statement has no preceding DEF statement. Define
the function before inserting a FNEND statement in the program.

?FNEXllT'wvhile not in DEF

FATAL - A FNEXIT statement has no preceding DEF statement. Define
the function before inserting a FNEXIT.

?Loops or conditional expressions nested too deep

FATAL - Internal space is exhausted for loops and conditional
expressions.

- ?Mllegal argument passing in CALL

FATAL - You are incorrectly passing an argument in a CALL statement;
for example, a string array in a CALL BY REF. Check all elements for
proper format.

,?Ivlleégal Assignment List

FATAL - You cannot place a non-variable on the left-hand side of the
equal sign (=).

% Illegal character

WARNING - Your program contains illegal or incorrect characters. Ex-
amine the program line for correct usage of the BASIC-PLUS-2 character
set.

Compile-Time Error Messages B-3

B-4

?1llegal clause in I/O statement
FATAL - You cannot:

¢ Include a RECORD clause with other than FIND, GET, or PUT

¢ Include a COUNT clause with other than PUT or UPDATE

¢ Include a KEY clause with other than GET or FIND

¢ Include a LOCK clause with other than GET, FIND, PUT, or UPDATE

?1llegal clause in OPEN

FATAL - You have specified illegal attributes for the file type being
opened. Substitute valid attributes.

?1llegal COM/MAP/SUB name

FATAL - A MAP, COMMON, or subroutine name exceeds six characters
or contains a percent sign. Correct the program line.

?1llegal dummy argument
FATAL - Either:

¢ The same variable appears more than once in a SUB statement argu-
ment list. Assign unique variables.

or

¢ A DEF statement argument is used as a parameter in a SUB statement.
Select a new SUB statement parameter.

?1llegal FIELD variable

FATAL - You cannot include a FIELD variable in a COMMON, MAP, or
virtual array.

?1llegal file number

FATAL - You must include a pound sign (#), number, percent sign (%)
and commay(,) in your file number. Check for these elements.

?1llegal FILL Specification

FATAL - You cannot specify a length in a FILL or FILL% specification
(for example, FILL% = 10%). Each FILL or FILL% specification allocates
a fixed amount of space. Specify additional FILL or FILL% fields to
allocate more space.

?1llegal FN redefinition

FATAL - A.function can be defined only once in a program. Use a differ-
ent function name for each function definition.

Compile-Time Error Messages

?Illegal KEY specification
FATAL - You cannot:

* Specify a string array element as a key in an indexed file OPEN
statement S

or

¢ Specify CHANGES for the primary key

?1llegal loop nesting

FATAL - The program contains nested loops that overlap. Examine the
program logic to make sure that all nested loops start and end correctly.

?1llegal MAP statement

FATAL - You have not named a MAP. Omitting the name is allowed for
COMMON:Ss only. :

% Illegal matrix operation

WARNING - You have attempted a matrix division. The operation is
treated as a MAT multiply, and the program continues.

?1llegal mode mixing

FATAL - You cannot mix string and numeric operands. Use a function to
convert the data types.

% Illegal number
WARNING - You cannot:

* Specify an integer or real number outside the legal range. Legal integers ‘
are in the range -32767 to +32767. Legal floating—point numbers are in
the range 1E-38 to 1E38.

¢ Specify a real exponent for a number in E format.

?Tllegal READ statement
FATAL - You cannot use a channel number with a READ statement. Use
proper syntax to access the file type.

?1llegal redefinition of COM or MAP variable x in (y)

FATAL - You have defined the variable x in: (1) more than one
COMMON, or (2) more than once in a COMMON or a MAP.

?1llegal relative operator

FATAL - You havé specified an invalid relative Operator; for example,
¢‘<<” OI‘ (‘>>”.

Compile-Time Error Messages B-5

?1llegal reserved word <word>

FATAL - You have assigned a reserved word as a variable name. You
must rename this variable.

?1llegal string operator

FATAL - The program contains an incorrect string operator; for example,
A$=B$-CS$.

?Illegal subscript

FATAL - An array reference contains a subscript of an incorrect data
type.

% Inconsistent function usage in x() at line n

WARNING - You have called the function with a floating-point argu-
ment, although the corresponding dummy argument in the function defi-
nition is integer. The floating-point argument is truncated to an integer
value, and the compilation continues.

?Inconsistent subscript usage

FATAL - You have referenced an array with an incorrect number of sub-
scripts. Specify single or double subscripts as required.

?Input with no arguments

FATAL - Your input statement has specified no variable list after the
channel number.

?Logical operation on non-integer quantity

FATAL - The program contains an incorrect data type in a logical opera-
tion (for example, A%=B where B must be an integer). Use consistent data
types in logical operations.

% Loop will not execute

WARNING - The program contains a FOR/NEXT loop that is not execut-
able; for example, FOR I = 1 TO 0. The program compiles correctly, but
ignores the loop.

% MAP <map-name> not defined

WARNING - You have referenced a nonexistent MAP in the OPEN state-
ment. You must define every MAP with the MAP statement.

% MAT INV forces OBJ output

WARNING - You cannot produce a task image file from programs that
contain a MAT INV statement. You must produce an object module and
task build the program. RSTS Only

Compile-Time Error Messages

% Matrix dimension error

WARNING - You cannot:

o Perform a MAT IDN, MAT TRN, MAT INV on a one-dimensional
array (list)

or
e Perform any MAT operation on arrays of different subscripts.

?Missing FNEND
FATAL - A multi-line DEF statement has no terminating FNEND.

?Missing NEXT

FATAL - A FOR, WHILE, or UNTIL loop has no accompanying NEXT
statement.

?Missing SUBEND
FATAL - A subprogram has no corresponding SUBEND statement.

?Misspelled keyword
FATAL - A keyword in the program requires correct spelling.

?Multiply allocated variable

FATAL - You cannot define a variable in more than one COMMON,
MAP, DIM, or any combination of these. Define a variable once.

?Nested FOR loops with same index

FATAL - Two or more FOR/NEXT loops cannot have the same index, as
in: :

10 FOR 1 1 70 10
20 FOR I = 1 70 S
30 NEXT I

40 NEXT 1
In nested loops, each index must be unique.

?Nesting too deep at line x
FATAL - The compiler’s internal storage is exhausted because there
are too many nested FOR/NEXT. WHILE/NEXT, UNTIL/NEXT, or
IF-THEN-ELSE constructions in the program.

?NEXT without FOR
FATAL - A NEXT statement has no preceding FOR statement.

?NEXT without WHILE/UNTIL

FATAL - A NEXT statement has no preceding WHILE or UNTIL
statement.

January 1981 Compile-Time Error Messages B-7

?Numeric array has size in MOVE

FATAL - You cannot specify a string length for a numeric array in a
MOVE statement.

50 MOVYE FROM 1%+ A()=3

?Program data space too big

FATAL - You cannot compile a program with data definitions that exceed
the allowable memory space. Recompile the program as two or more object
modules.

?Program too big to compile

FATAL - You cannot compile a source program that generates a program
larger than the machine allows. Recompile the program as two or more
object modules.

% RESUME overrides /NOLINE

WARNING - A program compiled with the /NOLINE switch contains a
RESUME statement. The /NOLINE switch is nullified.

?Stack error in x, compiling line n

FATAL - This message indicates a severe compiler error. This error causes
the loss of your program, an exit from BASIC, and a return to the opera-
ting system command level. Submit a Software Performance Report to
DIGITAL and include all relevant output.

?SUB cannot have modifier

FATAL - You cannot add a FOR, IF, UNLESS, UNTIL, or WHILE
modifier to the SUB statement.

?2SUB with no contents

FATAL - There is no intervening text between SUB and SUBEND.

?SUB without name

FATAL - You have not named a SUB program.

?SUBEND cannot have modifier

FATAL - You cannot add a FOR, IF, UNLESS, UNTIL, or WHILE
modifier to the SUBEND statement.

?SUBEND without SUB

FATAL - You have a SUBEND statement without a preceding SUB.
? SUBEXIT while not in SUB

FATAL - A SUBEXIT statement has no prior SUB statement.

Compile-Time Error Messages

?Syntax error

FATAL - A program line contains illegal syntax or illegal format. Correct
the line to conform to BASIC-PLUS-2 syntax requirements.

?Too few arguments

FATAL - A function call contains fewer arguments than are defined for
that function.

?Too many arguments

FATAL - A function call contains more arguments than are defined for
that function.

2TSK OUTPUT not possible

FATAL - You cannot produce a task image (COM/TSK) when one of the
following is present in the program module:

® A subprogram

e A CALL statement that references an external subprogram

e RMS 1/0 operations

e The /DEBUG option, when DEBUG is not in the BASIC2 HISEG

¢ A matrix inversion statement

Instead of a task image, you must produce object modules (COM/OBJ)
and task build them. RSTS/E Only

% Unaligned COM or MAP variable x in (y)

WARNING - A string, composed of an odd number of characters and
preceding a numeric variable, has caused a COMMON or MAP variable
to fall on an odd address. The compiler aligns the variable to the next
highest word boundary and continues compiling.

% Undefined compile time variable .x
WARNING - The variable .x has not been defined by a .DEFINE.
?Undefined function x() called at line n

FATAL - You have not defined the function x(). Make sure that user-de-
fined functions are defined with a DEF statement.

% Undefined line number n

WARNING - A control statement directs the program to a nonexistent
line (represented by n). The compiler assumes that the next highest line
number is the control destination.

?Unmapped variable x in key clause at line n

FATAL - Your MAP statement does not define a KEY included in the
OPEN statement.

Compile-Time Error Messages B-9

B-10

?Unsupported feature in TST environment
FATAL - INPUT and PRINT are not allowed in TST mode. TRAX Only
?Unterininated string '

FATAL - You have mixed single and double quotation marks in delimit-
ing a string. For example: “ABC’ and ‘ABC” are both invalid; a correctly
terminated string would be: “ABC” or ’ABC’.

?Variable or function name too long

FATAL - You cannot:

¢ Specify a variable that exceeds 30 characters (excluding a percent or
dollar sign) :

or

¢ Specify a function name that exceeds 30 characters (excluding FN and a
percent or dollar sign)

?Virtual array space exceeded

FATAL - You have created an array larger than the allowable area. Re-
duce the array dimensions.

Compile-Time Error Messages

Appendix C
Run-Time Error Messages

BASIC returns run-time error messages when executing a program. If you
compile your programs with the /DEBUG switch, BASIC also generates error
messages from debugging routines. Error messages are either: (1) warnings or
(2) fatal. Warning error messages contain a percent sign (%) prefix; they
indicate that program execution can continue, but the results will be unpre-
dictable. Fatal error messages contain a question mark (?) prefix; they indi-
cate that program execution has been aborted. You can recover from most
fatal errors by writing an error-handling routine.

Section 1 describes common run-time errors; section 2 describes debugging
errors.

C.1 Common Run-Time Errors
1 ?BAD DIRECTORY FOR DEVICE

The device directory does not exist or is unreadable.
2 7ILLEGAL FILE NAME

You cannot specify a file name that contains embedded blanks or unaccept-
able characters.

3 ?ACCOUNT OR DEVICE IN USE

The specified operation cannot be performed because the file device has al-
ready been opened by another user.

4 ?NO ROOM FOR USER ON DEVICE
No user storage space exists on the specified device.
5 ?CAN’T FIND FILE OR ACCOUNT

The specified file or current user account numbers are not on the device.

C-2

6 ?NOT A VALID DEVICE

The device is illegal or non-existent.

7 71/0 CHANNEL ALREADY OPEN

The specified I/O channel is already open for input or output.

8 ?DEVICE NOT AVAILABLE

The requested device is in use.

9 ?1/0 CHANNEL NOT OPEN .;

You cannot perform I/0 unless your program has opened a channel.

10 ?PROTECTION VIOLATION :

You are not allowed to perform the requested operation on ’the specified file.
11 ?END OF FILE ON DEVICE

You cannot perform input ‘beyond the end of a data file.
12 ~ 9FATAL SYSTEM I/O FAILURE

An I/O error has occurred at the system level. The last operation will not be
completed. '

13 ~ 7USER DATA ERROR ON DEVICE

One or more characters may have transmitted incorrectly because of a parity

- error, bad punch combination on a card, or similar error.

14 ?DEVICE HUNG OR WRITE LOCKED

A hardware device cannot function properly; check tape drives, line printers,
card punches, and similar devices. :

15 ?7KEYBOARD WAIT EXHAUSTED
No input was received duringv the execution of a WAIT statement.

16 ’NAME OR ACCOUNT NOW EXISTS

You cannot store a program or insert an account code if duplicate names or
codes already exist in the system.

17 ?TOO MANY OPEN FILES ON UNIT

Only one open DECtape output file is permitted per DECtape drive. Only one
open file per magtape drive is permitted.

18 ?ILLEGAL SYS() USAGE
Illegal use of the SYS system function. RSTS/E only
19 ?DISK BLOCK IS INTERLOCKED

The requested disk block segment is already in use (locked).

Run-Time Error Messages

20 ?PACK IDS DON'T MATCH

You have specified an incorrect identification code for the disk pack. RSTS/E
only

21 ?DISK PACK IS NOT MOUNTED

No disk pack is mounted on the specified disk drive. RSTS/E only

22 ?DISK PACK IS LOCKED OUT

The specified disk pack is mounted, but is temporarily disabled. RSTS/E only
23 ?ILLEGAL CLUSTER SIZE

The specified cluster size is unacceptable. The cluster size must be a power of
2. For a file cluster, the size must be equal to or greater than the pack cluster
size, and must not be greater than 256. For a pack cluster, the size must be
equal to or greater than the device cluster size, and must not be greater than
16. The device cluster size is fixed by type. RSTS/E only :

24 7DISK PACK IS PRIVATE
You do not have access to the specified disk pack. RSTS/E only
25 %DISK PACK NEEDS ‘CLEANING’

A non-fatal disk mounting error has occurred; use the CLEAN operation in
UTILTY. RSTS/E only

26 ?FATAL DISK PACK MOUNT ERROR
Your disk cannot be successfully mounted. RSTS/E only
27 ?1/0 TO DETACHED KEYBOARD

You cannot perform I/O to a hung-up dataset or to a detached console key-
board. RSTS/E only

28 7PROGRAMMABLE “C TRAP
You entered a CTRL/C which invoked the ON ERROR GOTO error handler.
29 ?2CORRUPTED FILE STRUCTURE

(1) A fatal error in a CLEAN operation has occurred (RSTS/E only), or
(2) RMS has detected an invalid file structure on disk. '

30 ?DEVICE NOT FILE—STRUCTURED

You cannot access a non-disk device that is not file-structured. This error
occurs, for example, when you try to gain a directory listing for a non-direc-
tory device. :

31 ?ILLEGAL BYTE COUNT FOR I/O

The buffer size specified in the RECORDSIZE option of the OPEN statement
does not match the I/O you attempted.

Run-Time Error Messages C-3

C-4

32 ?NO BUFFER SPACE AVAILABLE

No buffer is available for file access. Possible causes are: (1) the receiving
program has exceeded the pending message limit, or (2) the sending program
has attempted to send a message and no small buffer is available for the
operation. RSTS/E only

33 20DD ADDRESS TRAP

You cannot address: (1) nonexistent memory, or (2)an odd address using the
PEEK function. Submit an SPR if this message appears for any other reason,
and include all relevant output.

. 34 ?RESERVED INSTRUCTION TRAP

If floating point hardware is not available, you cannot execute an illegal,
reserved, or FPP instruction. If you have floating point hardware, submit an

‘SPR and include all relevant information.
.35 "MEMORY MANAGEMENT VIOLATION

You cannot specify an illegal Monitor address when using the PEEK function.
Submit an SPR if this message appears for any other reason, and include all
relevant information.

36 ?SP STACK OVERFLOW

You cannot extend the program stack beyond its legal size. If you generate
this error, submit an SPR and include all relevant information.

37 9DISK ERROR DURING SWAP

The system has swapped your job into or out of memory. The contents of your
job area are lost, but the job remains logged into the system and is reinitial-
ized to run the NONAME program. Report such occurrences to the system
manager. RSTS/E only

38 "MEMORY PARITY FAILURE

The memory occupied by your job has a parity error. Contact your System
Manager.

39 PMAGTAPE SELECT ERROR
The specified magtape drive is off-line. RSTS/E only
40 "MAGTAPE RECORD LENGTH ERROR

A magtape record was longer than the buffer designated to handle it. RSTS/E
only

41 ?NON-RES RUN-TIME SYSTEM

The run-time system is not resident in memory. RSTS/E only
42 ?VIRTUAL BUFFER TOO LARGE

Virtual memory buffers must be at least 512 bytes long.

Run-Time Error Messages

43 ?VIRTUAL ARRAY NOT ON DISK

You cannot reference a virtual array on a non-disk device.

44 ?MATRIX OR ARRAY TOO BIG
- Your: array is too large for memory.
45 - 2VIRTUAL ARRAY NOT YET OPEN
- You cannot use a virtual array before you open its corresponding disk file.
46 ?ILLEGAL /O CHANNEL
~ You have specified an 1/0 ch‘annel outside the legal range.
47 7LINE TOO LONG

You cannot input a line longer than the record buffer. To expand the buffer,
specify a larger value for RECORDSIZE in the OPEN statement.

48 %FLOATING POINT ERROR

Floating point overflow or underflow has occurred. If your program does not
transfer to an error handling routine, BASIC returns (1) a zero as the
floating-point value for underflow, and (2) the system’s maximum positive
number for overflow.

49 %ARGUMENT TOO LARGE IN EXP

A value in your program is outside of the legal range.

50 %DATA FORMAT ERROR

J‘A”You' haVe specified the wrong data type in an INPUT or READ statement.
51 %INTEGER ERROR *

You cannot use a number as an integer when it is outside the allowable integer
range. If your program does not transfer to an error handling routine, a zero is
returned as the integer value.

52 9ILLEGAL NUMBER

Your input is impropérly formed. For example, ““1..2” is an improperly formed
number. ‘ .

53 %ILLEGAL ARGUMENT IN LOG

You cannot pass a negative or zero argument to a log function.
54 %IMAGINARY SQUARE ROOTS

You cannot take the square root of a number less than zero. If your program
does not transfer to an error handling routine, the value returned is the square
root of the absolute value of the argument.

55 ?SUBSCRIPT OUT OF RANGE

You cannot reference an array element beyond its DIMensioned limits.

Run-Time Error Messages C-5

C-6

56 9CAN'T INVERT MATRIX

You cannot invert a singular matrix.

57 ?20UT OF DATA
A READ requested additional data from an exhausted DATA list.
58 70N STATEMENT OUT OF RANGE

The index value in an ON GOTO or ON GOSUB statement is less than lor
greater than the number of line numbers in the list.

59 ‘INOT ENOUGH DATA IN RECORD

An INPUT statement did not find enough data in one lme to satisfy all the
specified variables.

60 , ?INTEGER OVERFLOW, FOR LOOP

Your FOR loop has exceeded its index limit.

61 - %DIVISION BY 0

You cannot divide a quantity by zero. If your program does not transfer to an
error handling routine, zero is returned as the result.

62 ?NO RUN-TIME SYSTEM

The run-time system you requested is not part of the operating system.
RSTS/E only

63 ?FIELD OVERFLOWS BUFFER

You cannot use FIELD to access more space than exists in the specified
buffer.

64 NOT A RANDOM ACCESS DEVICE

You cannot use random access on the specified device.

65 ILLEGAL MAGTAPE() USAGE

Your MAGTAPE function arguments are not properly formatted.
66 MISSING SPECIAL FEATURE

Your program employs an unavailable system feature. RSTS/E only
67 ?ILLEGAL SWITCH USAGE

The switch operation or specification is illegal. RSTS/E only
68 UNUSED ’

69 UNUSED
70 UNUSED
71 ?STATEMENT NOT FOUND

You cannot CHAIN into a program at a nonexistent line mnnber RSTS/E
only

Run-Time Error Messages

72 RETURN WITHOUT GOSUB
Your program contains a RETURN statement before a GOSUB.

73 ?FNEND WITHOUT FUNCTION CALL
Your program contains a FNEND statement before a function call.
74 ?UNDEFINED FUNCTION CALLED

Your program has called a function that has not been defined. BASIC-PLUS
only «

75 ?ILLEGAL SYMBOL

Your program contains an unrecognizable character: for example, a line con-
sisting of a # character. BASIC-PLUS only

76 ?ILLEGAL VERB

A verb in your statement is either misspelled or otherwise incorrect.
BASIC-PLUS only

77 ?ILLEGAL EXPRESSION

Your program contains double operators, missing operators, mismatched
parentheses, or some similar error. BASIC-PLUS only

78 ?ILLEGAL MODE MIXING
You cannot mix string and numeric operations.

79 - NMLLEGAL IF STATEMENT
Your IF statement is incorrectly formatted. BASIC-PLUS only

80 ?2ILLEGAL CONDITIONAL CLAUSE
Your conditional expression is incorrectly formatted. BASIC-PLUS only

81 ?ILLEGAL FUNCTION NAME
You have used an illegal name to define a function. BASIC-PLUS only

82 ?ILLEGAL DUMMY VARIABLE

One of thé dummy variables is not a legal variable name. BASIC-PLUS only
83 ?ILLEGAL FN REDEFINITION

You cannot redefine a user function. BASIC-PLUS only

84 TILLEGAL LINE NUMBER(S)

You have made a line number reference outside the legal range of 1 to 32767.
BASIC-PLUS only

85 ?MODIFIER ERROR

You have: (1) used one of the statement modifiers (FOR, WHILE, UNTIL, IF,
or UNLESS) incorrectly, or (2) placed an OPEN statement specifier, such as
RECORDSIZE, out of the correct order. BASIC-PLUS only

Run-Time Error Messages C-7

C-8

86 ?CAN’'T COMPILE STATEMENT
The statement cannot be compiled. Check its syntax. BASIC-PLUS only

87 ?7EXPRESSION TOO COMPLICATED
Parentheses are nested too deeply for the given expression. BASIC-PLUS only
88 ?ARGUMENTS DON’T MATCH

The arguments in a function call do not match the arguments defined for the
function, either in number or in type.

89 ?TOO MANY ARGUMENTS
A user-defined function can have a maximum of eight arguments.
90 %INCONSISTENT FUNCTION USAGE

You cannot reference a function with a different number of arguments than
specified in its definition. BASIC-PLUS only

91 ?ILLEGAL DEF NESTING

The range of one function definition cannot cross the range of another.
BASIC-PLUS only

92 ?FOR WITHOUT NEXT

A FOR statement was encountered without a corresponding NEXT statement
to terminate the loop. BASIC-PLUS only

93 INEXT WITHOUT FOR

A NEXT statement was encountered without a previous FOR statement.
BASIC-PLUS only

94 9DEF WITHOUT FNEND

One of your function definitions requires an accompanying FNEND state-
ment. BASIC-PLUS only

95 9FNEND WITHOUT DEF
Your program contains a FNEND statement before a DEF statement.
96 ?LITERAL STRING NEEDED

You used a variable name where a numeric or character string was necessary.
BASIC-PLUS only

97 ?TOO FEW ARGUMENTS

You cannot call a function with fewer arguments than were defined for the
function.

98 ?SYNTAX ERROR
A statement is incorrectly formatted. BASIC-PLUS only

Run-Time Error Messages

99 ?STRING IS NEEDED

You used a number or variable name where a character string was required.
- BASIC-PLUS only

100 ?NUMBER IS NEEDED

You used a character string or variable where a number was required.
BASIC-PLUS only

101 ?DATA TYPE ERROR

You used a floating point, integer, or character string format variable or
constant where some other data type was required.

102 71 OR 2 DIMENSIONS ONLY
You cannot assign more than two dimensions to a matrix.
103 ' ?7PROGRAM LOST-SORRY

A fatal system error caused your program to be lost. This error can indicate
hardware problems or the use of an improperly compiled program. Consult -
your system manager.

104 - 7RESUME AND NO ERROR

Your program has encountered a RESUME statement w1thout having trans-
ferred into an error handling routine.

105 REDIMENSIONED ARRAY
Your program has implicitly redimensioned an array. BASIC-PLUS only

106 %INCONSISTENT SUBSCRIPT USE
You have specified the wrong number of subscripts.
107 70N STATEMENT NEEDS GOTO

A statement beginning with ON does not contain a GOTO or GOSUB clause.
BASIC-PLUS only .

108 ?END OF STATEMENT NOT SEEN

" Your statement contains too many elements to be processed correctly.
BASIC-PLUS only

109 YWHAT?

Your command or immediate mode statement could not be processed. Check
for illegal verbs or improper formats.

110 ?BAD LINE NUMBER PAIR

You have incorrectly formatted line numbers spec1ﬁed ina LIST or DELETE
command. BASIC-PLUS only

Run-Time Error Messages C-9

C-10

111 ?NOT ENOUGH AVAILABLE MEMORY

Your program exceeds the job’s allowable memory size. Your program must be

privileged, or your system manager must increase the job’s memory size.
BASIC-PLUS only

112 ?EXECUTE ONLY FILE

You cannot add, delete, or list a statement in a compiled program.
BASIC-PLUS only

113 ?PLEASE USE THE RUN COMMAND

You cannot transfer control (as in a GOTO, GOSUB or IF—GOTO statement)
while in immediate mode.

114 ?CAN’T CONTINUE
You have stopped or ended your program. Execution cannot be resumed.
115 ?FILE EXISTS-RENAME/REPLACE

You cannot SAVE a file that already exists. Type REPLACE to save the file
under the same name, or RENAME the file before saving it.

116 ?PRINT-USING FORMAT ERROR

You made an error in formatting the PRINT-USING string used to specify
the output format of a PRINT-USING statement.

117 ?MATRIX OR ARRAY WITHOUT DIM

You referenced a matrix or array element outside the range of an implicitly
defined array.

118 ?BAD NUMBER IN PRINT USING

You cannot use a format specified in the PRINT-USING string to print one or
more values. BASIC-PLUS only

119 ?ILLEGAL IN IMMEDIATE MODE

You have issued an immediate mode statement that is executable only in a
program.

120 ?PRINT-USING BUFFER OVERFLOW

You cannot specify a format that contains a field too large to be manipulated
by the PRINT-USING statement.

121 ?ILLEGAL STATEMENT

You cannot execute a statement with unresolved compilation errors.
BASIC-PLUS only

122 ?ILLEGAL FIELD VARIABLE

The FIELD variable SpeCIﬁed is unacceptable; for example, a COM/MAP
string or a parameter in a SUB.

Run-Time Error Messages

123 STOP

A STOP statement was executed. Continue program execution by typing
CONT and a carriage-return.

124 ?MATRIX DIMENSION ERROR

You have: (1) assigned more than two dimensions to a matrix, or (2) made a
syntax error in a DIM statement.

125 ?WRONG MATH PACKAGE

Your main program was compiled with floating point precision different from
that of one of your subprograms.

126 MAXIMUM MEMORY EXCEEDED

Your program has insufficient string and I/O buffer space because: (1) its
allowable memory size has been exceeded, or (2) the system’s maximum
memory capacity has been reached.

127 ?SCALE FACTOR INTERLOCK

You cannot execute a subprogram with a scale factor that does not match that
of the main program.

128 ?TAPE RECORDS NOT ANSI

The records in the magtape you accessed are neither ANSI D nor ANSI F
format.

129 ?TAPE BOT DETECTED

You cannot perform a rewind or backspace operation on a tape already at the
beginning of the file.

130 ?KEY NOT CHANGEABLE

Your UPDATE operation has tried to change the value of a key field that does
not have the CHANGES attribute specified in the OPEN statement.

131 ?NO CURRENT RECORD

A previous GET or FIND is missing or was unsuccessful. The current
DELETE or UPDATE therefore fails.

132 ?RECORD HAS BEEN DELETED

A record previously located by its Record File Address (RFA) has been
deleted.

133 ?ILLEGAL USAGE FOR DEVICE

The requested operation cannot be performed because:

® The device specification contains illegal syntax.

® The specified device does not exist on your system.

Run-Time Error Messages C-11

C-12

¢ The specified device is inappropriate for the requested operation (for exam-
ple, magtape for an indexed file).

134 ?DUPLICATE KEY DETECTED

You cannot duplicate key fields for indexed file PUT operations if duplicate
key values were not permitted when the file was created.

135 ?ILLEGAL USAGE

You either: (1) opened a file of undeclared organization, or (2) did not specify
the record operation in the ACCESS clause.

136 ?ILLEGAL OR ILLOGICAL ACCESS

The requested access is impossible because:

e The attempted record operafion and the ACCESS clause in the OPEN
statement are incompatible.

e The ACCESS clause is inconsistent with the file organization.

¢ READ or APPEND was specified when the file was created. Change the
ACCESS clause.

137 ?7ILLEGAL KEY ATTRIBUTES

An illegal combination of key characteristics has occurred. Check the OPEN
statement for either:

NODUPLICATES and CHANGES
CHANGES without DUPLICATES
138 ?FILE IS LOCKED

The file has been locked by another user, or by the system in a program that
does not allow shared access.

139 ' 9INVALID FILE OPTIONS

You have selected invalid file options in the OPEN statement.
140 ?7INDEX NOT INITIALIZED

You cannot GET or FIND in an empty indeked file.

141 | 7ILLEGAL OPERATION

The requested operation is illegal because:

* An OPEN statement specifies a file organization that was not included in
the BUILD.

¢ You have task built the program with the wrong RMS file support.
o DELETE cannot be pérformed on a sequential file.
¢ UPDATE cannot be performed on a magtape file.

Run-Time Error Messages

¢ Block I/O cannot be performed on an RMS file. (Block I/O requires
virtual organization.)

e RMS I/0O cannot be performed on a block I/0 file. (RMS I/O requires |
sequential, relative, or indexed organization.)

142 ?ILLEGAL RECORD ON FILE
The count field record in the file is invalid.
143 7BAD RECORD IDENTIFIER

The requested operation cannot be performed because:

e Random access operations cannot be performed with a zero or negative
record number specification.

¢ A GET or FIND on an indexed file cannot contain a null key value.

144 ?INVALID KEY OF REFERENCE

You cannot perform a GET, FIND, or RESTORE with an invalid key of
reference value.

145 9KEY SIZE TOO LARGE

The key length on a GET or FIND is either zero or larger than the key length
defined for the target record.

146 ?TAPE NOT ANSI LABELLED
BASIC supports only ANSI-labelled magtape for file structured access.
147 ?RECORD NUMBER EXCEEDS MAXIMUM

Either the maximum record number at file creation is negative, or the speci-
fied record number exceeds the maximum specified for this file.

148 ?BAD RECORDSIZE VALUE ON OPEN
The value in the RECORDSIZE clause in the OPEN statement is zero.
149 INOT AT END OF FILE

You attempted a PUT operation (1) on a sequential file before the last record,
or (2) without opening the file for WRITE access.

150 ?NO PRIMARY KEY SPECIFIED

You cannot create an indexed file without a primary key.

151 ?KEY FIELD BEYOND END OF RECORD

The position given for the key field exceeds the maximum size of the record.
152 ?ILLOGICAL RECORD ACCESSING

You cannot perform the specified operation on the file type. For example, a
random access on a sequential file.

Ruh-Time Error Messages C-13

C-14

153 ?RECORD ALREADY EXISTS

An attempted random access PUT on a relative file has encountered a pre-
existing record.

154 ?RECORD/BUCKET LOCKED
Another program has locked the target bucket.
155 PRECORD NOT FOUND

A random access GET or FIND was attempted on a deleted or nonexistent
record.

156 ?SIZE OF RECORD INVALID

The COUNT specification is invalid because:

e COUNT equals zero.
e COUNT exceeds the maximum size of the record.

e COUNT conflicts with the actual size of the current record during a sequen-
tial file UPDATE on disk.

¢ COUNT does not equal the maximum record size for fixed format records.

157 ?RECORD ON FILE TOO BIG
The record accessed is larger than the input buffer.
158 ?PRIMARY KEY OUT OF SEQUENCE

You cannot PUT a record with a key value lower than the previous record
when performing sequential access on an indexed file.

159 ?7KEY LARGER THAN RECORD
The key specification exceeds the maximum record size.

160 ?FILE ATTRIBUTES NOT MATCHED

The following attributes in the OPEN statement do not match the corre-
sponding attributes of the target file:

ORGANIZATION
BUCKETSIZE
BLOCKSIZE
RECORDSIZE
KEY
record format
161 ?"MOVE OVERFLOWS BUFFER

The combined length of the elements in the MOVE statement I/0 list exceeds
the RECORDSIZE defined for the file. (This error occurs when you attempt to
MOVE data to/from the record buffer.)

Run-Time Error Messages

162 ?CANNOT OPEN FILE

Your file cannot be opened. Check the STATUS variable for system error
codes.

163 ?NO FILE NAME

Your file cannot be opened. Check spelling, syntax, and so forth.
DECsystem-20 only

164 ?TERMINAL FORMAT FILE REQUIRED
PRINT and INPUT statements require a terminal format file.
165 ?CANNOT POSITION TO EOF

The operating system could not find the end of a sequential file opened with
ACCESS APPEND. The file could be corrupted.

166 ?NEGATIVE FILL OR STRING LENGTH

You cannot use FILL elements with a value less than zero in a MOVE state-
ment 1/0 list.

167 ?ILLEGAL RECORD FORMAT

The record format is illegal because:
¢ The record given is illegal for the file’s organization.

¢ The record given is illegal for the operating system on which this file resides.
e There are embedded carriage control characters in variable length records.

168 ?ILLEGAL ALLOW CLAUSE

The value specified for the ALLOW clause is illegal for the type of file organi-
zation or for the operating system on which the file resides.

169 UNUSED
170 ?INDEX NOT FULLY OPTIMIZED

Your record was successfully 'written, but the index was not optimized. This
will slow record access. :

171 ?RRV NOT FULLY UPDATED

RMS wrote your record successfully, but did not update one or more Record
Retrieval Vectors. Therefore, you cannot retrieve any records associated with
those vectors. Delete the records and reinsert them.

172 ?RECORD LOCK FAILED

You have read a locked record; the RLK bit in the ROP field has failed.
(TRAX only)

173 ?INVALID RFA FIELD

During a FIND or GET by RFA, an invalid record’s file address was contained
in the RAB. Please submit an SPR and include relevant output.

Run-Time Error Messages C-15

C-16

174 ?FILE EXPIRATION DATE NOT YET REACHED
You cannot write to a file before its expiration date. (VAX/VMS only)
175 INODE NAME ERROR

You have included a node name in your file specification that: (1) is in error
(it is part of a network and exists on another system), or (2) is nonexistent.
(VAX/VMS only)

176-178 UNUSED

179 UNEXPIRED FILEDATE

180-229 UNUSED

230 . ?NO FIELDS IN IMAGE STRING

Your image string does not contain proper symbols. DECsystem-~20 only
231 ?ILLEGAL STRING IMAGE

DECsystem-20 only

232 ?NULL IMAGE

You have not included an image field in your string image line. For example,
the image string “ ”’ generates this error. DECsystem—20 only

233 ?ILLEGAL NUMERIC IMAGE

DECsystem-20 only

234 ?NUMERIC IMAGE FOR STRING

You cannot PRINT a string USING a numeric image. DECsystem-20 only
235 ?STRING IMAGE FOR NUMERIC

You cannot PRINT a numeric character USING a string image.
DECsystem-20 only

236 ?TIME LIMIT EXCEEDED

You have exceeded the time limit set for your job by the operating system.
DECsystem-20 only

237 ?71ST ARG TO SEG$ > 2ND

You cannot specify a starting point in a string search that is greater than the
end point. DECsystem-20 only

238 ?ARRAYS MUST BE SAME DIMENSION

You cannot perform matrix addition or subtraction on arrays of different
dimensions.

239 ?ARRAYS MUST BE SQUARE

You cannot perform a matrix inversion (MAT INV) on an array that is not
square.

Run-Time Error Messages

240 ?CAN’T CHANGE ARRAY DIMENSIONS

You cannot redimension a one dimensional array to two dimensions.
DECsystem-20 only

241 ?FLOATING OVERFLOW

You have exceeded the upper range of the system’s math capability. This is a
fatal error. DECsystem-20 only

242 ?FLOATING UNDERFLOW

You have exceeded the lower range of the system’s math capability. This is a
fatal error. DECsystem-20 only

243 ?CHAIN TO NONEXISTENT LINE NO.

The line number in the CHAIN statement does not exist. If the program was
compiled with the /NOLINE switch, recompile it without that switch.
DECsystem-20 only

244 7EXPONENTIATION ERROR

The attempted exponentiation is illegal. The result is a value of zero and the
program continues. DECsystem-20 only

245 ILLEGAL EXIT FROM DEF*

You cannot exit from a multi-line DEF* function directly to an END or
SUBEND statement. :

246 ?ERROR TRAP NEEDS RESUME

The error handler has run off the end of: (1) a program unit, or (2) a DEF or
DEF* where the error occurred. You must include a RESUME statement
before the END, SUBEND, or FNEND statement.

247 ' ?ILLEGAL RESUME TO SUBROUTINE

You cannot use RESUME without a line number if the current module name
does not match the error module name.

248 9ILLEGAL RETURN FROM SUBROUTINE

Your program contains an external subroutine RETURN statement before a
CALL. :

249 ?ARGUMENT OUT OF BOUNDS
250 NOT IMPLEMENTED

You have referenced a language element that does not exist in your version of
BASIC-PLUS-2.

251 ?RECURSIVE SUBROUTINE CALL

Your program contains a subroutine that attempts to call itself. This is illegal.
Correct the flow of control in the program. (Not applicable to VAX/VMS)

Run-Time Error Messages C-17

252 ?FILE ACP FAILURE

The Operating System’s file handler reported an error to RMS. The corre-
sponding value is in STATUS.

253 ?DIRECTIVE ERROR

An executive directive reported an error. The corresponding value is in
STATUS.

254 UNUSED
255 UNUSED

C.2 Debugging Procedures and Error Messages

C-18

BASIC provides interactive debugging commands to help you locate run-time
errors in your program. These commands allow you to check program opera-
tion and make corrections. This section describes: (1) debugging procedures
and (2) common debugging error messages. This section does not apply to
VAX. For more information, see Chapter 1.

C.2.1 Debugging Procedures

The debugging commands are:

BREAK CONTINUE I/0 BUFFER
UNBREAK ERL STRING
STEP ERR FREE
TRACE ERN CORE
UNTRACE RECOUNT

PRINT STATUS

LET EXIT

You can use these commands only on programs or subprograms that have
been compiled with the /DEBUG switch.

When you run a program, execution stops the first time you enter a module
that was compiled with the /DEBUG switch. After execution stops, the de-
bugging aid prints an identifying message and prompt:

DEBUG: module name

where:

module name is the name of the program or subprogram compiled
with the /DEBUG switch.

signals you to enter debugging aid commands.

Then, to continue the program and execute the command, type the
CONTINUE (CON) command:

DEBUG: module name
#BREAK 10
#CON @)

Run-Time Error Messages

In this example, the CON command resumes program execution until line 10.

Following the successful execution of a debugging command, a message iden-
tifies your current position in the program or subprogram:

command AT LINE n [,name]

where:

command is the last executed debugging command (for example,
BREAK or STEP) that stops execution.

n is your current line number in the program or subprogram.

name is the name of the currently executing subprogram. This
name is not displayed if you are executing the main
program.

After this message the debugger gives the # prompt.

C.2.2 Error Messages
This section lists debugger error messages and their possible causes.
What ?

The debugger does not understand your command. Check spelling, syn-
tax, and so forth.

% Stop at line n in subprogram x

A STOP statement in your program halted debugging. Type CONTINUE
to proceed.

% Illegal Syntax in LET
Your LET statement formatting is incorrect. The format for LET is:
LET variable=value

where:

variable is the name of the variable whose content you want to
change. You can specify one constant or a variable as an
argument. You cannot specify expressions.

% Illegal Syntax in PRINT

Your PRINT statement formatting is incorrect. The format for the PRINT
command is:

PRINT n

where:

n is the variable whose contents you PRINT. You can specify one
constant or variable as an argument. You cannot specify an
expression.

Run-Time Error Messages C-19

‘% ON ERROR entry in debugging
A CTRL/C trap or program error has started the debugger.
% Can’t Continue or STEP ' |

Your program encountered an error it cannot handle. Execution cannot
continue.

% Data Error in LET or PRINT

The debugger encountered a data conversion error while processing a LET
or PRINT statement.

% Bad line spec in (UN)BREAK

You have: (1) specified a non-existent line number, (2) used incorrect
syntax in specifying a program or subprogram, or (3) used incorrect syntax
when listing multiple arguments.

% No room

You specified too many breakpoints for a BREAK or UNBREAK com-
mand. The maximum is 8.

C-20 Run-Time Error Messages

Appendix D

ASCIl Codes and Data Representation

D.1 ASCII Character Codes

Table D-1: ASCII Codes
7-Bit
Decimal Octal
Code Code Character Remarks

0 000 nul Null, tape feed, shift, "P

1 001 SOH Start of heading, start of message, "A

2 002 STX Start of text, end of address, "B

3 003 ETX End of text, end of message, "C

4 004 EOT End of transmission, shuts off TWX
machine, "D

5 005 ENQ Enquiry, WRU, "E

6 006 ACK Acknowledge, RU, “F

7 007 BEL Bell, "G

8 010 BS Backspace, format effector, "H

9 011 HT Horizontal tab, "I

10 012 LF Line feed, "J

11 013 vT Vertical tab, "K

12 014 FF Form feed, page, "L

13 015 CR Carriage return, "M

14 016 SO Shift out, "N

15 017 SI Shift in, "O

16 020 DLE Data link escape, "P

17 021 DC1 Device control 1, "Q

18 022 DC2 Device control 2, "R

19 023 DC3 Device control 3, °S

20 024 DC4 Device control 4, T

- (continued on next page)

D-1

D-2

Table D-1:

ASCII Codes (Cont.)

7-Bit
Decimal Octal

Code Code Character Remarks
21 025 NAK Negative acknowledge, ERR, "U
22 026 SYN Synchronous idle, "V
23 027 ETB End-of-transmission block, logical end of

medium, "W

24 030 CAN Cancel, "X
25 031 EM End of medium, Y
26 032 SUB Substitute, "Z
27 033 ESC Escape, prefix, shift, "K
28 034 FS File separator, shift, "L
29 035 GS Group separator, shift, "M
30 036 RS Record separator, shift, "N
31 037 Us Unit separator, shift, "O
32 040 Sp Space
33 041 ! Exclamation point
34 042 “ Double quotation mark
36 043 # Number sign
36 044 $ Dollar sign
37 045 % Percent sign
38 046 & Ampersand
39 047 ’ Apostrophe
40 050 (Left parenthesis
41 051) Right parenthesis
42 052 * Asterisk
43 053 + Plus sign
44 054 X Comma
45 055 - Minus sign, hyphen
46 056 . Period, dot
47 057 / Slash, statement separator
48 060 0 Zero
49 061 1 One
50 062 2 Two
51 063 3 Three
52 064 4 Four
53 065 5 Five
54 066 6 Six
55 067 7 Seven
56 070 8 Eight
57 o7 9 Nine
58 072 : Colon
59 073 ; Semicolon
60 074 < Left angle bracket
61 075 = Equal sign
62 076 > Right angle bracket
63 077 ? Question mark
64 100 @ At sign
65 101 A Upper-case A
66 102 B Upper-case B
67 103 C Upper-case C

ASCII Codes and Data Representation

(continued on next page)

Table D-1: ASCII Codes (Cont.)

7-Bit
Decimal Octal
Code Code Character Remarks
68 104 D Upper-case D
69 105 E Upper-case E
70 106 F Upper-case F
71 107 G Upper-case G
72 110 H Upper-case H
73 111 I Upper-case 1
74 112 J Upper-case J
75 113 K Upper-case K
76 114 L Upper-case L
77 116 M Upper-case M
78 116 N Upper-case N
79 117 (6] Upper-case O
80 120 P Upper-case P
81 121 Q Upper-case Q
82 122 R Upper-case R
83 123 S Upper-case S
84 124 T Upper-case T
85 125 U Upper-case U
86 126 \Y% Upper-case V
87 127 w Upper-case W
88 130 X Upper-case X
89 131 Y Upper-case Y
90 132 Z Upper-case Z
91 133 { Left bracket, shift K
92 134 \ Backslash, shift L
93 135 1 Right bracket, shift M
94 136 " Caret, circumflex
95 137 — Underscore
96 140 : Accent grave
97 141 : a Lower-case a
98 142 b Lower-case b
99 143 c Lower-case ¢
100 144 d Lower-case d
101 145 e Lower-case e
102 146 f Lower-case f
103 147 g Lower-case g
104 150 h Lower-case h
105 151 i Lower-case i
106 152 j Lower-case j
107 153 k Lower-case k
108 154 1 Lower-case 1
109 155 m Lower-case m
110 156 n Lower-case n
111 157 0 Lower-case o
112 | 160 P Lower-case p
113 161 q Lower-case q
114 162 r Lower-case r
115 163 8 Lower-case s

(continued on next page)

ASCII Codes and Data Representation D-3

Table D-1: ASCII Codes (Cont.)

7-Bit
Decimal ~ Octal
Code Code Character Remarks

116 164 t Lower-case t
117 165 u Lower-case u
118 166 v Lower-case v
119 - 167 w Lower-case w
120 © 170 X Lower-case x
121 1m y Lower-case y
122 172 z Lower-case z
123 173 { Left brace
124 174 ! Vertical line
125 175 } Right brace
126 176 - Tilde
127 177 DEL Delete, rubout

NOTES

1. Teleprinters manufactured by Teletype Corporation,
Skokie, Illinois, have used codes 175 (ALT) and 176 for
ESC. Programs should avoid including 175 and 176 if you
wish to use these codes for ESC on older teleprinters.

2. ASCII is a 7-bit character code with an optional parity bit
(200) added for many devices. Programs normally use seven
bits internally; the extra bit is either stripped or added so
the program will operate with either parity or non-parity
generating devices.

ISO Recommendation R646 and CCITT Recommendation
V.3 (International Alphabet No. 5) are identical to ASCII
except that: (1) the number sign (043) is represented as
instead of #, and (2) certain characters are reserved for
national use.

- D.2 Radix-50 Character Set

Many items in RSTS/E, such as filenames and extensions, are stored in
Radix-50 format. This format allows 3 characters of data to be stored as a
2-byte integer (one 16-bit word).

Table D-2 lists the characters representable in Radix-50 format, together
with their ASCII octal and Radix-50 octal equivalents.

D-4 ASCII Codes and Data Representation

Table D-2: Radix-50 Character Set

ASCII Octal Radix-50 Octal
Character Equivalent Equivalent
space 40 0
A-Z 101-132 1-32
$ 44 33
56 34
0-9 60-71 36-47

Radix-50 evaluates a character according to the format:

X=Y=*50"Z

where:
X is the value of the character.
Y is the Radix-50 octal equivalent of the character.
50 is a constant (in octal).

Z is the character’s position in the string. The leftmost digit is as-
signed position #2, the middle character is assigned position #1, and
the right-most character is assigned position zero.

To represent a 3-character string in Radix-50 format, the first character of a
string (or a single character) is placed in the leftmost position of the Radix-50
word. For example, in the string “X2B,” the character X (30 octal) is multi-
plied by 50°2 to give 113000 (octal). The character 2 (40 octal) is multiplied by
501 to give 002400. The character B (2 octal) is multiplied by 50°0 to give
000002. Adding the value of each character gives the full octal value of the
Radix-50 word.

X = 30 * 50"2 = 113000

2 = 40 * 50”1 = 002400

B = 02 * 50"0 = 000002
TOTAL = 115402 (octal)

Note that addition is also carried out in octal.

Table D-3 simplifies this process by listing the value of each Radix-50 charac-
ter for each position.

ASCII Codes and Data Representation D-5

Table D-3: ASCII/Radix-50 Equivalents

First .
or Single , Second Third
Character Character Character
space 000000 space (000000 space 000000
A 003100 A 000050 A 000001
B 006200 B 000120 B 000002
C 011300 C 000170 C 000003
D 014400 D 000240 D 000004
E 017500 E 000310 E 000005
F 022600 F 000360 F 000006
G 025700 G 000430 G 000007
H 031000 \ H 000500 H 000010
I 034100 I 000550 I 000011
J 037200 J 000620 J 000012
K 042300 K 000670 K 000013
L 045400 L 000740 L 000014
M 050500 M 001010 M 000015
N 053600 N 001060 N 000016
O 056700 O 001130 0 000017
P 062000 - P 001200 P 000020
Q 065100 Q 001250 Q 000021
R 070200 R 001320 R 000022
S 073300 S 001370 S 000023
T 076400 T 001440 T 000024
U 101500 U 001510 U 000025
V 104600 V 001560 V 000026
W 107700 W 001630 W 000027
X 113000 X 001700 X 000030
Y 116100 Y 001750 : Y 000031
Z 121200 Z 002020 Z 000032
$ 124300 $ 002070 $ 000033
127400 . 002140 . 000034
0 135600 0 002260 0 000036
1 140700 1 002330 1 000037
2 144000 2 002400 2 000040
3 147100 3 002450 3 000041
4 152200 4 002520 4 000042

(continued on next page)

D-6 ASCII Codes and Data Representation

Table D-3: ASCII/Radix-50 Equivalents (Cont.)

First
or Single Second Third
Character Character Character
space (000000 space 000000
5 155300 5 002570 5 000043
6 160400 6 002640 6 600044
7 163500 7 002710 7 000045
8 166600 8 002760 8 000046
9 171700 9 003030 9 000047

D.3 Integer Format
Figure D-1: Integer Format

Sign

0 -+

] Binary number

15 14 0

Q-MK-00084-00

Integers are stored in two’s complement representation. For example:
+6 = 000006 (octal)
+22 = 000026 (octal)
-7 = 1777 (octal)
-1 = 177777 (octal)
Integer constants must be in the range -32767 TO +32767.

D.4 Floating-Point Formats

® The exponent for both 2-word and 4-word floating-point formats is sfored in
excess 128 (200 octal) notation. Binary exponents from -128 TO +127 are
represented by the binary equivalents of zero through 255 (zero through 377
octal).

¢ Fractions are represented in sign-magnitude notation, with the binary
Radix point to the left.

¢ Numbers are assumed to be normalized. The most significant bit is as-
sumed to be 1 and is not stored. However, if the exponent is zero, the bit is
also zero. The value zero is represented by two or four words of zeros. For
example:

ASCII Codes and Data Representation D-7

NUMBER 2-WORD FORMAT 4-WORD FORMAT

+1.0 40200 , : 40200
0 * 0
0
0
-b 140640 140640
0 0
0
0

D.4.1 Real Format (2-Word Floating-Point)
Figure D-2: Real Format (2-Word Floating Point)

Sign

0 Binary excess High-order
word 1: .

1 - 128 exponent mantissa

15 14 7 6 0
word 2: Low-order mantissa

15 0

Q-MK-00085-00

Because the high-order bit of the mantissa is always 1, it is discarded. This
gives an effective precision of 24 bits (7 digits of accuracy). The magnitude
range is .29E-38 to .17E39.

D.4.2 Double-Precision Format (4-Word Floating-Point)

Figure D-3: Double Precision Format

Sign

0 Binary ex?;ess High-order
word 1: .

1 - 128 exponent mantissa

15 14 7 6 ' 0
word 2: . Low-order mantissa

15 ’ 0
word 3: Lower-order mantissa

15 - 0
word 4: . Lowest-order mantissa

15 ' 0

Q-MK-00086-00

D-8 ASCII Codes and Data Representation

The effective precision is 56 bits (17 decimal digits of accuracy). The magni-
tude range is .29E-38 to .17E39. ’

D.5 String and Array Format
D.5.1 String Format

Figure D-4: Dynamic String Format

code ———] FPTR

Y

Y

LEN

STRING HEADER _ ' BPTR

STRING
Q-MK-00087-00

Dynamic strings contain a 2-word string header. The first word is a forward
pointer (FPTR) that points to the first byte of the string. The second word
represents the length (LEN) of the string in bytes. Following the data in the
string and aligned on the next higher word boundary is a word that points
back to the free pointer. This word is internally specific and should not be
accessed.

D.5.2 Array Format

Figure D-5: Format of Arrays in Memory

ADW ' o ADW
code—{ subscript 1(lim+1) A code —»{ subscript 2(lim+1) A
) R -subscript 1(lim+1) R
PTR R R
~ A PTR A
max. no. of elements Y Y
max. no. of elements
One-Dimensional Two-Dimensional
Array Descriptor Array Descriptor

Q-MK-00088-00

ASCII Codes and Data Representation D-9

Figure D-6: Format of Virtual Arrays

ADW 1 ADW

code —] subscript 1(lim+1) ° code—3| subscript.2(lim+1)
subscript 1(lim+1)

block offset

block number block offset

block number

max. no. of elements max. no. of elements
One-Dimensional Two-Dimensional
Array Descriptor Array Descriptor

Q-MK-00089-00

Every array in a file begins in a new block. An array can occupy one or more
blocks, depending on the length of each element and the number of elements.
For example, if Array A is the first array in the file, it begins in block #1.
Array B could begin in block #2, Array C in block #5, and so forth.

Array elements are positioned according to the number of bytes from the start
of the array’s block. This is known as “offset.” For example, the array:
D(3,3) = 2
has 16 elements, and each element is two words long. When they are stored,
the elements are read into the block in row order, with element (0,0) offset
zero words. The next element, (0,1), would be offset two words; element (0,2)
would be offset four words, and so forth. The last element, (3,3) would have an
offset of 30. :
With the exception of dynamic string arrays, the pointer (PTR) points to the
array elements. For dynamic string arrays PTR pomts to a list of string
headers as follows:

Figure D-7: Dynamic String Array Pointers

FPTR element 0
Free Space

/ LEN element O
PTR) ; T

FPTR element 1 - ///ELEMENT 1

LEN element 1

FPTR element 2
LEN element 2

Free Space

Ve 7
. EL NT O
/// /EME Z /J

Free Space

///ELEMENT 2//

Q-MK-00090-00 . Free Space

D-10 ASCI Codes and Data Representation

D.5.3 Array Descriptor Word

The array descriptor word (ADW) is a 16 bit word used by the operating
system to describe the characteristics of an array. The bits of the ADW are
explained in Table D-4.

Table D-4: Array Descriptor Word

Bits
Array Type 151413112 | 11 10|98 | 7)6]|5]4}3|2|1]0
Numeric Memory | O{ L| 0} S T |0j0} O0fj0jO}j0O|O]O]|O|O
Numeric Virtual 0]0j1]S8 T |0]0 Channel Number
StringMemory | 1] ofofs | o]olofo] ofo]o]o[o]o]o]o0
String Common 1110} S Element Length in bytes
String Virtual 110]1]S] LOG, (Len) Channel Number

Code:
T - Data Type

S - Number of subscripts minus 1 (0 is one-dimensional, 1 is two-dimensional)
L - Location (memory or common)

Each array sets the bits of the ADW as follows:

Numeric memory -

Numeric virtual -

String memory -

String common -

String virtual -

Bits 0 through 9 are set to 0. Bits 10 and 11 set the data type (for
example, 00 for integer, 01 for floating point, 10 for double precision).
Bit 12 sets the number of subscripts minus 1. Bit 13 is set to 0. Bit 14 is
set to O if the array is in memory and 1 if the array is a COMMON. Bit
15 is set to 0.

Bits 0 through 7 represent the channel number. Bits 8 and 9 are set to 0.
Bits 10 and 11 set the data type. Bit 12 sets the number of subscripts
minus 1. Bit 13 is set to 1. Bits 14 and 15 are set to 0.

Bits 0 through 11 are set to 0. Bit 12 sets the number of subscripts minus
1. Bits 13 and 14 are set to 0. Bit 15 is set to 1.

Bits 0 through 11 represent the element length in bytes. Bit 12 sets the
number of subscripts minus 1. Bit 13 is set to 0. Bits 14 and 15 are set to
1.

Bits 0 through 7 represent the channel number. Bits 8 through 11 repre-
sent LOG; (i.e., the string length). Bit 12 sets the number of subscripts
minus 1. Bit 13 is set to 1. Bit 14 is set to 0. Bit 15 is set to 1.

The maximum number of elements is present in the array descriptor only

when the array is

redimensioned or when the array is used as a subroutine

argument. The number of elements is stored as a double-precision integer.

ASCI Codes and Data Representation D-11

Appendix E
Reserved Words in BASIC-PLUS-2

ABORT

ABS

ABS%
ACCESS
ACCESS%
ALL
ALIGNED
ALLOW
ALTERNATE
AND
APPEND

AS

ASCII

ATN

ATN2

BACK

BEL

BIN

BIN%

BIN$
BINARY

BIT

BLOCK
BLOCKSIZE
BROADCAST
BS
BUCKETSIZE
BUFFER
BUFFERSIZE
BUFSIZ

BY

CALL
CALLR
CCPOS
CHAIN
CHANGE
CHANGES
CHRS$
CLK$
CLOSE
CLUSTERSIZE
COM
COMMON
COMP%
CON
CONNECT
CONTIGUOUS
COS

CoT
COUNT
CR

CTRLC
CVT$$
CVT$%
CVT%$
CVTF$
DAT

DATS$
DATA
DATE

DEF

- DEF*

DEFAULTNAME

DEL
DELETE
DELIMIT
DENSITY
DESC

DET

DEF$

DIM
DIMENSION
DOUBLE
DOUBLEBUF
DUPLICATES
ECHO

EDIT$

ELSE

END

EQ

EQV

ERL

ERN$

ERR

ERROR

ERT$

ESC

EXP
EXTEND
EXTENDSIZE
EXTERNAL
FF

FIELD

FILE
FILESIZE
FILL
FILL%
FILL$
FIND

FIX
FIXED
FNEND
FNEXIT
FOR
FORCEIN
FORMATS$
FREE
FROM
FSP$
FSS$
FUNCTION
GE

GET

GO
GOSUB
GOTO

GT
HANGUP
HEX
HEX%
HEX$

HT

IDN

IF

IFEND
IFMORE
IMAGE
IMP
INDEXED
INIMAGE
INPUT
INSTR
INT
INTEGER
INV
INVALID
KEY
KILL
LEFT
LEFT$
LEN

LET

LF

LINE
LINO
LINPUT
LOC

LOCK

LOF

LOG
LOG10
LONG

LSA

LSET
MAGTAPE
MAP
MAR
MAR%
MARGIN
MAT

MAX

MID

MID$

MIN

MOD
MOD%
MODE
MODIFY
MOVE
MSGMAP
NAME
NEXT
NOCHANGES
NODATA
NODUPLICATES
NOECHO
NOEXTEND
NOMARGIN
NONE
NOPAGE
NOQUOTE
NOREWIND
NOSPAN
NOT
NOTAPE
NULS$

NUM
NUMS$
NUMI1$
NUM2

OCT

OCT%
OCTS$

Reserved Words in BASIC-PLUS-2

ON
ONECHR
ONENDFILE
ONERROR
OPEN

OR
ORGANIZATION
OUTPUT
PAGE

PEEK

PI

PLACES
POKE

POS

POS%

POS$
PRIMARY
PRINT
PRODS$

pPUT

QuUO3$
QUOTE
RAD%

RADS$

RAN
RANDOM
RANDOMIZE
RCTRLC
RCTRLO
READ

REAL
RECORD
RECORDSIZE
RECOUNT
REF
RELATIVE
REM

RESET
RESTORE
RESUME
RETURN
RIGHT
RIGHT$
RND

RSET
SCRATCH
SEG$
SEQUENTIAL
SGN

SHIFT

SI

SIN
SINGLE
SLEEP
SO

SP
SPACE$
SPAN
SPEC%
SQR
SQRT
STATUS
STEP
STOP
STR$
STREAM
STRING
STRING$
SUB
SUBEND
SUBEXIT

SUBPROGRAM

SUM$
SWAP%
SYS
TAB
TAN

TAPE

TASK
TEMPORARY
TERMINAL
THEN

TIM

TIME
TIME$

TO

TRM$

TRN

TST
TSTEND
TYP

TYPE

TYPE$
UNALIGNED
UNDEFINED
UNLESS
UNLOCK
UNTIL
UPDATE
USEAGE
USEAGES$
USEROPEN
USING

USR

Reserved Words in BASIC-PLUS-2

USR$
VAL
VAL%
VALUE

VARIABLE

VFC
VIRTUAL
VPS%

VT

WAIT
WHILE

WINDOWSIZE

WITH
WORD
WRITE
WRKMAP
XLATE
XOR
ZER
.ABORT
.DEFINE
.ENDC
INDENT
IF

JFDF
IFF
IFNDF

E-3

Appendix F
Program and Subprogram Coding Conventions

This appendix presents a recommended format for writing and documenting
BASIC-PLUS-2 programs and subprograms. Section F.1 explains how you
should organize and document the program. Section F.2 is a sample template
summarizing these coding conventions. Both main programs and subpro-
grams have the same organization and require similar documentation.

F.1 Program and Subprogram Organization and Documentation
In order of coding, the sections of your program should be:
e TITLE - Line 1
Include:
- A comment field with the program name
— An ON ERROR GOTO statement to enable error handling
- A comment field containing:
* The program version number
* The program edit level

* The date of the most recent edit

* The program’s author
¢ COPYRIGHT - Line 11

Include a comment field containing:
- The word COPYRIGHT
- A legal copyright symbol and date

- The copyright holder’s name
-~ Statements of reservation of rights

- Caveats for use
e CALL FORMAT - Line 14

Include a CALL format for subprograms only. The comment field should
contain:

- The words CALL FORMAT
- An explanation of the format for calling the subprograms
- The names of subprogram arguments

- An explanation of each subprogram argument
e MODIFICATION HISTORY LOG - Line 20

Include a comment field containing:

- The words MODIFICATION HISTORY LOG

- The moduie’s version number

- The date of the most recent change

- Initials of the programmer who made the last change

- Reasons for the change
¢ PROGRAM OR SUBPROGRAM DESCRIPTION - Line 100

Include a comment field containing:
- The words [SUB-JPROGRAM DESCRIPTION
- A summary of the program’s purpose

- An explanation of the program’s logic (optional)
e CHANNEL ASSIGNMENTS - Line 300

Include a comment field containing:
- The words CHANNEL ASSIGNMENT
- A list of the file I/O channel numbers used by the program

- A description of each channel number’s purpose and use
e VARIABLES AND ARRAYS - Line 400

Include a comment field containing:
- The words VARIABLES AND ARRAYS USED
- The name of each variable and array in the program

- An explanation of what the data in each variable or array represents

F-2 Program and Subprogram Coding Conventions

¢ SUBROUTINES - Line 700

Include a comment field containing:
- The words SUBROUTINE USED

- The name of each subroutine in the program module
- The starting line number of the subroutine

- A description of the subroutine’s function
¢ FUNCTIONS - Line 750

Include a comment field containing:
- The words FUNCTIONS USED

- The name of each function in the program module
- The line number where each function is defined

- A description of what the function does
e DATA DECLARATIONS - Line 800

Include:
- A comment field with the words COMMON/MAP DECLARATIONS

- All COMMON statements

- All MAP statements
¢ DIMENSION DECLARATIONS - Line 900

Include:
- A comment field with the words DIMENSION DECLARATIONS

- Local dimension declarations

- Virtual array dimension declarations
e MAIN PROGRAM - Line 1000

Include:

- A comment field with the words MAIN PROGRAM LOGIC or
SUBPROGRAM LOGIC

- The program or subprogram source code

- A standard default error trap
e LOCAL SUBROUTINES - Line 10000

Include:

- A comment field with the words SUBROUTINES LOCAL TO THIS
(SUB-JPROGRAM

- Each subroutine referenced by main the program and described in the
subroutines section

Program and Subprogram Coding Conventions F-3

e LOCAL FUNCTIONS - 14000
| Include:

- A comment field with the words FUNCTIONS LOCAL TO THIS
(SUB-IPROGRAM

- Each multi-line function and its definition as described in the function
section

e STANDARD ERROR HANDLING - Line 19000
Include:

- A comment field with the words STANDARD ERROR HANDLING

- Error handling routines appropriate for your program logic (error texts,
error numbers, branching, and so forth)

e END OF PROCESSING - Line 32000

Include a comment field with the words END OF PROCESSING to mark
the end of the module’s main logic

e END OF PROGRAM - Line 32767
Include:
- A comment field with the words END OF [SUB-]JPROGRAM
- An END statement, if the program is the main module

- A SUBEND statement, if the program is a subprogram

F.2 Sample Program Coding Template

This section presents a format for coding BASIC programs. The recom-
mended program order and documenting procedures clarify the program’s
history, purpose, and logical development. This organization should help
the program to run with fewer errors.

i IEZZ XIS SRS XIS S AR RS S XSS R R EE TSR R YT RSN

!
! : \
' 8UB-PRODGRAM TITLE
!
!
]

8
8
B
8
8
! 8:
SUB XHKXXXX ! Start sub-prodram here 8
\ ON ERROR GOTO 19000 8
1 8
! 8
! 8
I Yersion: WY &
I Edit level: EE 8
! &
! &
! &

*

Edit date: DD-MMM-YY
Author{(s): AARA

1336 36 36 36 36 36 39 06 34 36 06 96 96 36 36 36 36 3 36 36 36 36 96 36 96 36 36 3 I 396 3 36 96 36 3 0 I 636 36 3 I 36 36 3 36 36 3 I I I I 3 3 I 3 K X K

F-4 Program and Subprogram Coding Conventions

11

15

100

!***&

COPYRIGHT

(C) Copyright 1977, 1978, 1979
Digital Equipment Corporation, Mavnard, Massachusetts

I
|
|
i
|
1
|
|
1
! This software is furnished under a license for use only
! on a sindle comPuter system and mav be copied only with
! the inclusion of the above copyridht notice. This

! softwaresy or any other cories thereof, may not be Pro-
! vided or otherwise made available to any other person

! excert for use- on such system and to one who adrees to
! these license terms. Title to and ownershirp of the

! software shall at all times remain in DIGITAL.

1

|

1

i

|

1

1

1

i

The information in this software is subdect to chande
without notice and should not be construed as a commit-
ment by Didital Equipment Corrporation.

DIGITAL assumes no responsibility for the use or relia~
bility of its software on eaquipment that is not sup-
plied by DIGITAL.

ool "ol cadl "ol "ol "ol * " 0 ol "ol "ol "ol ol o "o ol ~ e el - -

IES 2T I XTSI IS LL L LSRR XIS ST SIS TSRS LY S
KX 2IE T II LTS LIRS ISR SR SIS LSS SR SRS S S SRR LT ST LR R L L L R TN

CaAaLL FORMAT

|
i
1
[
I
I CALL XXXXXX({ardument list, if Present?)
1
1
1
]

200 00 20 08 50 e P 00 o po oo £o

PRRREEREREEERRRREEREEERERERRRRRE R RRREERRRERRREEERRRRRARERXRRRRRRR
PR RRRREERERREREEERRERREERRRRRRERRXEERREERE RN RRERRRRRREH RN NERHRRHR
!

!
' M ODIFICATTION HISTORY LOG
|
!
!
!

VER/ED DATE INITIAL REASON

e e — e —————
!

1 :
P RRRRREERERREREERRERERERNRRRRERRERRRERRRFER R ERRFRRERFRRRHRRNR
1B 3 36 36 96 3 96 36 0 3 3 96 3 3 3 0 3 3 3 3 9 I 3 36 36 36 36 36 36 36 6 3 36 36 36 36 3 3 36 36 36 3 3 I3 I I I I I I 36 M6 XN H X% %D
! &

ool ol "o~ " "0 ol "ol "l *d

SsuUB-PROGRAM DESCRTIPTTION

8
&
&
&
(A2 S A X XX L LR R RS R AR X222 AR R R R X X]

Program and Subprogram Coding Conventions F-5

300

400

700

750

800

900

F-6

!5**&

!
!
' CTHANNEL ASSIGNMENTS
!
!
1
1

CHANNEL ASSIGNMENT
| e e e e ———————————

i
TRERERERREEREREEEREEERERERRERREEEREREEERREEEREEEREREEERREERERERRER KRR
IR RREEERRERREREEEEEREELREREERERRERRRERRRREREERRRRERERERRERNERE X%

ol ol -l o~ " "

! &
! 8:
'YV ARIABLES AND ARRAYS USED 8
! &
! &
1 8:
! NAME DESCRIPTION 8
| e e e e &
! &
l B:

136 9 96 36 36 96 3 36 9 9 36 36 36 36 36 36 3 36 36 36 96 36 3 I 3 I I I I I K IR N K KRN
Db 3 336 36 06 36 36 0 36 3636 06 36 36 0 36 96 36 36 06 36 3 06 36 96 96 36 96 96 36 36 36 36 3 9 36 9 96 96 96 36 3 9 3 9 0 36 6 96 96 0 36 9 0 K K ¥ ¥ KD,
]

]
! SUBROUTINES USED
|
!
'
!

NAME/L INE DESCRIPTION
| e e e e

!
! :
1 36 96 96 36 96 36 3 9 9 % 3 36 36 36 36 36 36 36 36 36 3 3 3 3 3 9 9 3 26 36 I 363 I 3 3 3 36 6 MK I 0 I I I I I K KK KKK KN KN

!***&
|

PR

!
' FUNCTTIONS UsED
!
!
!
!

LINE NAME DESCRIPTION

1
!
PRERRERE AR ERRRRRRRERRRERRRRERXRERRRFRRRRRRRRRRRRRRRRRRRRRERR RS
TEERERREEXREAER R RRRERRRRRREERRE AR RERRRRRRRERERRRRRRRRE RN AR X% %B
[8
! &
' COMMEON DECLARATTIONS 8
! B
! : 8
PRERRRREERERERERERRRRRRRRE RN RRHRRREHE RN NN R E RN NN NI RN NN
PR EEEERRERRER LR EEEERRRRREEERRRERRRRREERRRRRRERRRRRRE RN XD

PR

!) . %
1 8
' DI MENSTION DECLARATTIONS &
1 &
! &
! &
! Lines 901-929 denote local dimension declarations. 8:
' Lines 930-949 denote library dimension declarations. B
! Lines 950-979 denote MAP statements, &
! &
Ty I I TR P T R R Ry Ry Y Y Iy I T IR Y Ry

Program and Subprogram Coding Conventions

1000

10000

15000

19000

18800

32000

32767

D636 9636 036 9 0636 360036 06 96 3 3626 36 96 36 6 06 36 3 06 36 9 3 3 9 36 K K I W N W NN NN R NN

! &
| &
' M AIN SuUB-PROGRAM LOGIC 8
! &
! 8:
D363 360203636 36 2 06 326 2 263 30 3620 96 36 96 3 0 36 36 96 36 6 0 36 36 3 36 36 36 6 36 06 36 9 3 0 9 3 3 0 6 9 3 % K X HRR
! 8:
! &
! Set up standard default error trar &
Ky Iy Yy Yy I T T R e
! &
! &
' SUBROUTTINESS LOCAL To B
! 8
I T HTIS SuUB-PROGRAM 8
| &
! 8

THERFRREEEEEEEEREERRREEEEEEREEERLEERRELEERRRRRXERERXX XX RFRRR R R R
T HRRREREEREEERERRERERERRRRARRFRTREEREERERNR NI ENN NN RRRERENRERRR,

| &
I 8:
' FUNCTTI ONS LOCAL &:
! &
' THIS SsuUB-PROGRAM &
| &
1 &

136 36 9 3636 3 3 36 36 3 9 36 3 9 36 36 36 9 36 3 9 36 36 6 3 9 36 3 0 I A I 36 0 I 36 96 3 I I K I I I 6K I I K I I KK KKK HRK
(E TR LTSI ST E I R LRSS SRS SIS IS L EE LR Y YN

$***

END 0F PROCESSING

! 8:
! 8:
' S TANDARD ERROR HANDLTING 8
! 8:
1 8
I RRRRRERREREERERERERRREEEEREREREREERE R R RERHRERRERERERRERRR RS
PRINT 8
\ ERR.MESSAGE$ = ERT$(ERR) &
\ PRINT "?7Error "JERR.MESSAGE®$ &
\ PRINT "in "SERN%$3i" at line "JERL B
\ ERR.MESSAGE$ = "*" &
\ ERR.INDZ = -17 8
\ RESUME 32787 &
1 B:
' For all unaccounted for errors: Print the line and 8
! error number, as supPplied by the BASIC-PLUS-Z2 8:
! variabless ERR and ERL. 8:
! Exit throudh the SUBEND statement. 8:
I
1
1
1
1
]

[-aall ol "ol "ol *

|**
TR RERREEREERRREREEEREEREREEREEREREREREERRARRERRRERERERXNERRERRE X RRD
!

END 0F SsUB-PROGRAM

!
]
]
1
PR RRRRR RN RRERRRRERERER AR R RERERERRRAER R XA AR RRRRRR RN RS
!
\

["ol "o~~~ o

SUBEND

Program and Subprogram Coding Conventions F-7

Index

ACCESS, 3-59
APPEND, 3-60
MODIFY, 3-60
READ, 3-60
SCRATCH, 3-60
WRITE, 3-60

ALLOW, 3-59
MODIFY, 3-59
NONE, 3-59
READ, 3-59
WRITE, 3-59

APPEND, 1-2t
defaults, 1-6
format, 1-5
OLD command, 1-6
purpose, 1-5

Application Environment, TRAX, 10-1

Argument list
addresses, 4-26

Argument List Format, 4-25f

Arrays
definition, 3-14
MOVE statement, 3-50
multiple, 3-19
passing, 4-6
subprograms, 4-6
Arrays, virtual, 4-8.

See also Virtual arrays

Backspace function, 3-71
BASIC ODL files, 1-9
BASIC ODL Values, 1-9t

BASIC-PLUS-2 object libraries, 2-2. See

also Object libraries

BASIC-PLUS-2 subprograms, 4—

compiling, 4-18

task—building, 4-18
BASIC2 library, 2-1

purpose, 2-2 "

using, 2-2
BASRMS library

purpose, 2—2

using, 2-2

Batch streams
IAS, 7-2
BDB, 3-64
Block
definition, 3-1
disk, 3-1
magnetic tape, 3-1
Block boundaries, 3-58
Block I/0 files
definition, 3—2
opening, 3-13
reading records, 3-14
record operations, 3-14
writing records, 3—14
BLOCKSIZE, 3-40, 3-68
fill optimization, 3—40
RECORDSIZE, 3-40

RMS magnetic tape ﬁleé, 3-66

specifying size, 3—40
BREAK, 1-23

command formats, 1-24
BREAK ON, 1-26

formats, 1-25
BRLRES, 1-2t

defaults, 1-7

format, 1-6

options, 1-7

purpose, 1-6

return to previous values, 1-7

BUCKETSIZE
defaults, 3-42
definition, 3—41
indexed files, 3-42
purpose, 3—41
relative files, 3—41
selection, 3—41

Buffers
channel, 3-64
control, 3—40
device, 3-62

dynamic allocation, 3—48, 3—49
dynamic buffering, 3-20, 3-29

1/0, 3-50, 3-61

MAP statements, 3-45
record, 3-62

record blocking, 3-50
RECORDSIZE, 3-49

Index-1

Buffers, (Cont.)
static allocation, 3—45
static buffering, 3-20, 3-29
BUILD, 1-2t
BASIC ODL filenames, 1-9
BASIC-PLUS-2 subprograms, 4-18
CMD files, 1-8
defaults from compiler commands, 1-7
format, 1-7
input to the task builder, 1-9
memory allocation maps, 1-9
ODL files, 1-8
purpose, 1-7
RMS file support, 1-9
switches, 1-8t
BUILD command switches
defaults, 1-4t
DSKLIB, 1-4t, 1-8t
DUMP, 1-4t, 1-8t
EXTEND, 1-4t, 1-8t
forms, 1-4t
IND, 1-4t, 1-8t
indirect command files, 1-4t
LIBR, 1-4t, 1-8t
LOCK, 1-8t
LOCK command, 1-4t
MAP, 1-4t, 1-8t
ODLRMS, 1-4t, 1-8t
REL, 1-4t, 1-8t
RMSRES, 1-4t, 1-8t
SEQ, 1-4t, 1-8t
VIR, 1-4t, 1-8t

C
CALL, 4-2
MACRO subprograms, 4-22
naming restrictions, 4-3
restrictions, 4-2
subprograms, 4-2
- with MACRO subprogram, 4-30f
CALL BY REF, 4-23
MACRO subprograms, 4-23 to 4-26
CCPOS
format, 3-76
purpose, 3—-76
CHAIN, 440
IAS, 7-1
program segmentation, 440
RSX-11M, 6-1
TRAX, 10-3
VMS, 8-2
Channel numbers, 3-1
CLOSE, 3-10
disk files, 3-8 .
native mode magnetic tapes, 3-73
RMS magnetic tape files, 3-67

Index-2

CMD files, 1-8
COBOL subprograms, 4-39
Command sequence
source programs, 1-31
Command switches
BUILD, 1-4t, 1-8t
COMPILE, 1-4t
Commands
APPEND, 1-2t
BRLRES, 1-2t
BUILD, 1-2t
COMPILE, 1-2t
DELETE, 1-2t
DSKLIB, 1-2t
EXIT, 1-2t
IDENTIFY, 1-2t
LIBRARY, 1-2t
LIST, 1-2t
LOCK, 1-3t
NEW, 1-3t
ODLRMS, 1-3t
OLD, 1-3t
RENAME, 1-3t
REPLACE, 1-3t
RMSRES, 1-3t
SAVE, 1-3t
SCALE, 1-3t
SEQUENCE, 1-3t
SHOW, 1-3¢t
UNSAVE, 1-3t

COMMON, 4-10

subprograms, 4-10

COMMON and MAP

advantages, 4-9

MACRO subprograms, 432

memory allocation, 4-11

restrictions in MACRO subprograms, 4-34
subprograms, 4-9

COMMON PSECT, 4-12, 4-34
COMPILE, 1-2t

BASIC-PLUS-2 subprograms, 4-18
format, 1-10

LOCK, 1-11

MACRO subprograms, 4-36
purpose, 1-10

switch restrictions, 1-11

switches, 1-10

COMPILE command switches

DEBUG, 1-4t

defaults, 14

DOUBLE, 1-4t

forms, 1-4t

indirect command files, 1-4
LINE, 14t

LOCK command, 1-4t

COMPILE command switches, (Cont.)

MACRO, 14t
OBJECT, 1-4t
Compiler
commands, 1-1
function, 1-1
input, 1-1
invoking, 1-1
invoking on IAS, 7-1
invoking on RSX-11M, 6-1

invoking on RSX-11M PLUS, 9-1

invoking on VMS, 8-1
Compiler, invoking the, 10-2
Compiling, subprograms, 4-18
CONNECT, 3-58
CONTIGUOUS, 3-58
CONTINUE, 1-23
CORE, 1-23, 1-29
COUNT

format, 3—75

function, 3-75

indexed files, 3-35

PUT, 3-75

relative files, 3-31, 3-32

sequential files, 3-22

UPDATE, 3-75
Cross Reference Program

input and output file parameters, 5-18

invoking, 5-16

output, 5-19

sample run, 5-19

switches, 5-17
CTRL/C trapping on IAS, 7-2
CVT

CVT$%, 3-82

CVTS$F, 3-82

CVT%$, 3-82

CVTF$, 3-82

format, 3-82

purpose, 3—82

D

DATA, subprograms, 4-16 -
/DEBUG, 1-4t
Debugging, 1-23

BREAK command formats, 1-24

BREAK ON formats, 1-24
commands, 1-23
format, 1-23

maximum number of breakpoints, 1-24

procedures, 1-23
purpose, 1-23

UNBREAK command formats, 1-25

DELETE, 1-2t
format, 1-12
indexed files, 3-39
purpose, 1-12

DELETE, (Cont.)
relative files, 3-32
DIM #, 3-15, 3-18
Disk libraries, 2-2. See also Object libraries
/DOUBLE, 1-4t
/DSKLIB, 14t
DSKLIB, 1-2t
defaults, 1-13
format, 1-13
overriding with BUILD switch, 1-13
purpose, 1-13
/DUMP, 14t
DUMPs on 1AS, 7-3

E
Editing, 1-22
Environments, TRAX, 10-1
ERL, 1-23, 1-28
ERN, 1-23, 1-28
ERR, 1-23, 1-27
Errors
MACRO subprograms, 4-38
subprograms, 4-17
Executing programs, 1-22, 1-29
on IAS, 1-30
on RSX-11M, 1-30
on RSX-11M PLUS, 1-30
on VMS, 1-30
EXIT, 1-2t, 1-13, 1-23, 1-28
/EXTEND, 1-4t

F
FIELD
compatibility issues, 3-52
format, 3-52

function, 3-52
memory allocation, 3-64
File Name String Flag Word Bytes 1-30,
3-78t :
File Name String Flag Word Bytes 27 and 28,
3-79t
File Name String Flag Word Bytes 29 and 30,
3-80t
File operations
CLOSE, 3-8
KILL, 3-9
NAME, 3-8
RESTORE, 3-10
SCRATCH, 3-9
File organizations
native, 3-2
RMS, 3-2
File-related functions, 3-74
File sharing, 3-59
locking buckets, 3-60
UNLOCK, 3-60
File specification
format, 1-1

Index-3

File specification, (Cont.)
RSX, 1-1

File Types and Valid Record Operations, 3—-6t

Files, 3-2. See also Kind of file
restrictions, 4-13
subprograms, 4-13

FILESIZE, 3-57

FILL
MAP statements, 3—47
space allocation, 3—47
valid data types, 348

FIND
indexed files, 3-36
relative files, 3-31
sequential files, 3-22
undefined files, 3-59

Fixed-length records, 3—-3

Flag Word, 3-78. See also FSS$

FREE, 1-23, 1-29

Indexed files, (Cont.)
creating index keys, 3-34
definition, 3-2, 3-33
deleting records, 3—-39
generic key searching, 3-37
locating records, 3-36
locking buckets, 3-39
mapping keys, 3-35
opening, 3-33
reading records, 3-37
record operations, 3—35
replacing records, 3-39
restoring the file, 340
unlocking buckets, 3-39
writing records, 3-35

Initializing variables in MACRO

subprograms, 4-34

INPUT #
stream-format files, 3-25
terminal-format files, 3—11

FSP$, 3-59
format, 3-77 INPUT LINE # ;
purpose, 3-77 stream-format records, 3—-26
FSS$ terminal-format files, 3—11
flag word, 3-78 INQUIRE
format, 3-78 help files, 1-14
purpose, 3-78 purpose, 1-14
values, 3-78 IRAB, 3“64
Functions K
subprograms, 4-15 Keys, 3-35. See also Indexed files
G Keywords
GET OPEN statement, 3-56
block 1/0 files, 3-14 KILL, 3-10
indexed files, 3-37 VMS, 8-2
native mode magnetic tapes, 3-73 L
relative files, 3-31 = LET, 1-26, 3-17
RMS magnetic tape files, 3-66 /LIBR, 14t

sequential files, 3-23

Libraries, 2-1. See also Memory resident

stream-format records, 3-25 libraries
undefined files, 3-59 BASIC resident, 2-1
H BASIC2, 2-2
Handling errors B_ASRMS’ 2-2
subprograms, 4-17 disk, 2-2)
memory resident, 2-2
I object, 2-2 .
I/0 BUFFER, 1-23, 1-29 LIBRARY, 1-2t
IAS ; advantages of resident libraries, 1-14.1
restrictions on BASIC-PLUS-2, 7-1 format, 1-14.1
system-specific implementations, 7-1 options, 1-14.1
IDENTIFY, 1-2t purpose, 1-14.1
example, 1-14 /LINE, 1-4t
purpose, 1-14 LINPUT #
IFAB, 3-64 stream-format records, 3—26
/IND, 1-4t S terminal-format files, 3—-11
Indexed files LIST, 1-2t S
assigning key names, 3-34 definition, 3—14

Index—4

format, 1-15 : Memory allocation, (Cont.)

purpose, 1-15 channel headers, 3—-64
LOCK, 1-3t, 1-5 control blocks, 3-63
COMPILE switches, 1-12 device buffers, 3-62
LSET, 3-17 dynamic space, 3-63
M FIELD, 3-64
/MACRO, 14t ;/O buffer space, 3—-61
MACRO subprograms, 4-22 internal scratch space, 3-64

program area, 3—61

code for MAP Statement, 4-33f record buffers, 3-62

COMMONSs and MAPs, 4-32 subprograms, 4-20

COMMONSs and MAPs, restrictions, 4-34 Memory allocation maps, 1-9. See also
handling errors, 4-38 MAPs . . .

initializing variables, 4-34 Memory resident libraries

naming restrictions, 4-23 advar.ltages,'?,—l' .
ODL files, 4-37 , associated disk libraries, 2-2

BASIC2, 2-1
BRLRES command, 1-6
default values, 2-1

advantages, 4-22

overlay structure, 4-37
passing parameters, 4-24
passing parameters restrictions, 4-24

resolution sequence, 4-37 options, 2—1

resolving global symbols, 4-37 r};‘urpose, 2-1

restrictions, 4-22 M gAX’ 104

task-building, 4-36 ODE, 3-69 .

threaded code, 4-37 Mod}ﬁa'lble and nonmodifiable parameters, 4-5
Magnetic Status Word, 3-72t Modifying arrays, 4-6
M i MOVE

agnetic tape

blocks, 3-1 format, 3-50

file-structured, 3-64 1/0 buffer, 3-50

purpose, 3-50

Magnetic tape files, 3—64, 3—68. See also
Native mode tapes
BLOCKSIZE, 3-40

string declarations, 3-50
undefined files, 3-59

MAGTAPE values, 3-69 - Multiple arrays, 3-19
/MAP, 1-4t N
MAP, 4-10 NAME AS
advantages, 3-56 IAS, 72
FIELD and MOVE, 3-56 RSX-11M, 6-2
FILL items, 3—47 RSX-11M PLUS, 9-2
format, 3—45 TRAX, 10-3
MOVE, 3-55 VMS, 8-2
multiple statements, 3—47 Native files
purpose, 3—45 SR definition, 3—-1
sequential files, 3—-21 device specific I/0, 3-1
single statements, 3-46 Native mode tapes. -
subprograms, 4-10 closing files, 3-73
undefined files, 3-59 MAGTAPE function, 3-69
MAP PSECT, 4-12,4-34 opening files, 3-68
MAPs, memory allocation, 1-9 positioning, 3-69
MAT INPUT #, 3-11 reading records, 3-73
MAT LINPUT #, 3-11, 3-18 writing records, 3-73
MAT PRINT, 3-18 NEW, 1-3t
MAT PRINT #, 3-18 defaults, 1-15
Matrix, definition, 3—-14 . format, 1-15
Memory allocation, 3—-61 program names, 1-15
channel buffers, 3-64 purpose, 1-15

Index-5

Nonoverlay and Overlay Memory
Requirements, 4-20f

NOREWIND, 3-68

NOSPAN, 3-58

/OBJECT, 1-4t
Object libraries
BASIC2.0LB, 2-2
BASRMS.OLB, 2-2
ODL files, 1-8, 1-9. See also specific ODL file
name
MACRO subprograms, 4-37
subprograms, 4-19, 4-21
/ODLRMS, 1-4t
ODLRMS, 1-3t
defaults, 1-17
format, 1-16
options, 1-16
overriding value with BUILD switch, 1-17
purpose, 1-16
returning to system default, 1-17
OLD, 1-3t
defaults, 1-17
format, 1-17
purpose, 1-17
OPEN
block I/0 files, 3-13
format, 3—4
indexed files, 3—-33
native mode magnetic tapes, 3-68
purpose, 3—4
relative files, 3-28
RMS magnetic tape files, 3-65
sequential files, 3—20
terminal-format files, 3-10
virtual array files, 3-14
Overlay structure
MACRO subprograms, 4-37
subprograms, 4-19
Overlaying subprograms, 4-19

P

Parameter Passing with CALL and CALL BY
REF, 4-29t
Parameters
arrays, 4-6
modifiable, 44
nonmodifiable, 4-5
passing, 44, 4-29t
types, 44
Passing arrays, 4-6 to 4-7
Passing parameters
by descriptor, 4-25
MACRO subprograms, 4-24

Index—6

MACRO subprograms, memory allocation,
4-32
by reference, 4-25
subprograms, 4—4
by value, 4-25
Passing virtual arrays, 4-8 to 4-9
restrictions, 4-8
Pointers, 3-56. See also Retrieval pointers
Pre-extension of files, 3-57
PRINT, 1-23, 1-26
PRINT #
stream-format records, 3-24
terminal-format files, 3—-11
PRINT # USING, terminal-format ‘files, 3—-11
Program segmentation, 4-1
advantages, 4-1
CHAIN, 440
chaining, 4-1
MACRO subprograms, 4-22
subprograms, 4-1
Programs
debugging, 1-23
editing, 1-23
executing, 1-23, 1-29
system differences during execution, 1-32
PUT
block 1/0 files, 3-14
COUNT, 3-75
indexed files, 3-35
native mode magnetic tapes, 3-73
relative files, 3—-29
RMS magnetic tape files, 3-66
sequential files, 3-21
stream-format records, 3—-24

READ, subprograms, 4-16
Record blocking
FIELD statement, 3-52
file types, 3-50
mixing MAPs and MOVE, 3-55
MOVE statement, 3-50
reading, 3-54
writing, 3-53
Record operations, 3-73
block I/0 files, 3—14
by file type, 3-T7t
and file types, 3-6t
indexed files, 3-35
relative files, 3-29
RMS tapes, 3-66
sequential files, 3-21
virtual array files, 3-16
Records
data, 3-1

fixed-length, 3-3
format types, 3-3
logical, 3-1
physical, 3-1
stream-format, 3-3
variable-length, 3-3
RECORDSIZE, 3-67
RMS magnetic tape files, 3-66
RECOUNT, 1-23, 1-28
block I/0 files, 3-14
format, 3-75
purpose, 3-75
relative files, 3-32
terminal-format files, 3—12
valid input operations, 3-76
/REL, 1-4t
Relative files
definition, 3-2, 3-28
deleting records, 3-32
dynamic buffering, 3-29
locating records, 3—30
locking buckets, 3—-33
opening, 3-28
reading records, 3-30
record operations, 3—29
replacing records, 3-32
static buffering, 3-29
unlocking buckets, 3-33
writing records, 3-29
RENAME, 1-3t, 1-18, 3-10
REPLACE, 1-3t
format, 1-18
purpose, 1-18
Resequencer
command file input, 5-14
dialogue, 5-13
error messages, 5-15
invoking, 5-13
Resequencer utility, 5-12
Resident libraries
advantages, 1-15, 1-19
TRAX, 10-4
using, 1-19
Resolution sequence of MACRO subprograms,
4-37
Resolving global symbols in MACRO
subprograms, 4-37
RESTORE, 3-10
indexed files, 3-40
Restrictions, RMS, on BASIC-PLUS-2, 6-1
Rewind, 3-70
and off-line function, 3-70
RMS-11M PLUS
BASIC2 Library, 9-1
restrictions on BASIC-PLUS-2, 9-2

RMS control structures
BDB, 3-64 '
IFAB, 3-64
IRAB, 3-64
XAB, 3-64 .
RMS indexed files, 3-33. See also Indexed
files
RMS relative files, 3-28. See also Relative
files
RMS sequential files, 3-20. See also
Sequential files
RMS tapes
closing files, 367
opening, 3—65
positioning, 3-65
reading records, 3—66
record blocking, 3-67
record operations, 3—66
writing, 3-66
RMSI11S, 1-16
RMS11X, 1-16
RMS12X, 1-16
/RMSRES, 1-4t
RMSRES, 1-3t
advantages of RMS resident libraries, 1-18
default values, 1-19
format, 1-18
options, 1-18
overriding value with BUILD switches,
1-19
purpose, 1-18
resident library, 1-19
returning to system default values, 1-19
on TRAX, 104
using resident libraries, 1-19
RMSRLS, 1-16
RMSRLX, 1-16
RMSSEQ, 1-19
RSET, 3-17
RSX-11M
restrictions on BASIC-PLUS-2, 6-1
system-specific implementations, 6-1
RSX-11M PLUS,; system-specific
implementations, 9-1
S
SAVE, 1-3t
format, 1-19
purpose, 1-19
SCALE, 1-3t
default values, 1-20
format, 1-20
purpose, 1-20
values, 1-20
SCRATCH, 3-9, 3-27
/SEQ, 1-4t

Index-7

SEQUENCE, 1-3t
defaults, 1-21
format, 1-21
options, 1-21
purpose, 1-21
syntax checking, 1-21
Sequential files
definition, 3-2
dynamic buffering, 3-20
FIND, 3-22
GET, 3-22
MAP, 3-21
opening, 3-20
PUT, 3-21
reading records, 3—22
record operations, 3-21
replacing records, 3-23
SCRATCH, 3-27
static buffering, 3-20
stream-format records, 3-23
truncation, 3-27
UPDATE, 3-23
writing records, 3-21

Set density and parity function, 3-71

Sharing data
in files, 4-9 to 4-14
subprograms, 4-9
SHOW, 1-3t
format, 1-21
purpose, 1-21
Skip function, 3-71
SLEEP
IAS, 7-2
RSX-11M, 6-2
RSX-11M PLUS, 9-2
TRAX, 104
VMS, 8-2
SPAN
advantages, 3-58
NOSPAN, 3-58
STATUS, 1-23, 1-28
format, 3-74
purpose, 3—74
STEP, 1-23, 1-26
Stream-format records, 3—-3
advantages, 3-3 ‘
disadvantages, 3-3
file compatibility, 3-27
file optimization, 3-27
GET, 3-25
INPUT, 3-25
INPUT LINE #, 3-26
line terminals, 3-3

Index-8

LINPUT #, 3-26
PRINT #, 3-24
PUT, 3-24
reading, 3-25
valid terminators, 3-23
writing, 3-24
STRING, 1-23, 1-29
SUB, 4-3
naming restrictions, 44
subprograms, 4—-3
SUBEND, 44
SUBEXIT, 44
Subprograms
arrays, 46
BASIC-PLUS-2, 4-1
CALL, 42
COBOL, 4-39
COMMONSs and MAPs, 4-9
DATA and READ, 4-16
data storage, 4-9
error defaults, 4-17
files, 4-13
functions, 4-15
handling errors, 4-17
MACRO, 4-22
ODL files, 4-19, 4-21
overlay structure, 4-19
overlaying, 4-19
passing data, 44
passing parameters, 4—4
SUB, 4-3
SUBEND, 4-4
SUBEXIT, 44
virtual arrays, 4-8

Support Environment, TRAX, 10-2

Switches
BUILD command, 1-4t, 1-8t
COMPILE, 1-11 ‘
COMPILE command, 1-4t

System differences during program execution,

1-32

T
Tape status function, 3-72
Task Builder

input from BUILD CMD files, 1-9
Task-building subprograms, 4-18

TEMPORARY, 3-57
Terminal-format files
definition, 3-2
opening, 3-10
reading records, 3-11
record operations, 3—-11

RECOUNT, 3-12
and virtual array files, 3-18
writing records, 3-11

TRACE, 1-23, 1-27

Translator
BASIC program elements, 5-6
error messages, 511
extend mode, 5-2
incompatibilities, 5-10
invoking, 5-2
limitations of translation, 5-9
sample run, 5-3
TRAX, 104

TRAX
compiler commands, 10—4
resident libraries, 104
restrictions, 104
task-building, 104

Tree structure, 4-20. See also

BASIC-PLUS-2 sub%n“ograms

U
UNBREAK, 1-23, 1-25
UNDEFINED, 3-58
UNLOCK
indexed files, 340
relative files, 3-32
UNSAVE, 1-3t
format, 1-22
purpose, 1-22
UNTRACE, 1-23, 1-27
UPDATE
COUNT, 3-75
indexed files, 3-39
relative files, 3-32
sequential files, 3-23
Utilities, 5-1. See also Translator,
Resequencer, and Cross Reference
Program

v

Variable-length records, 3-3
Variables, COMMON and MAP, 4-11
/VIR, 1-4t
Virtual array files

assigning elements, 3—17

definition, 3-2

dimensioning, 3-15

initialization, 3-16

LET, 3-17, 3-18

LSET, 3-17

MAT PRINT, 3-18

MAT PRINT #, 3-18

multiple arrays, 3—-19

opening, 3-14

output, 3-18

reading data from terminal-format files,

3-18

reading records, 3—18

record operations, 3-16

RSET, 3-17

string lengths, 3-15

subprograms, 3-19

writing data to terminal-format files, 3—18

writing records, 3-16
Virtual arrays

subprograms, 4-8
VMS

compiler commands, 8-3

file sharing, 8-2

restrictions on BASIC-PLUS-2, 8-3

system-specific implementations, 81

w
Window turning, 3-57
WINDOWSIZE, 3-57
Write EOF function, 3-70

X
XAB, 3-64

Index-9

BASIC-PLUS-2
RSX/IAS/VMS
User’s Guide
AA-0157C-TC
AD-0157C-T1, T2

Reader’'s Comments
Note: This form is for document comments only. Digital will use comments submitted on this form at

the company’s discretion. If you require a written reply and are eligible to receive one under
Software Performance Report (SPR) service, submit your comments on an SPR form.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for
improvement.

Did you find errors in this manual? If so, specify the error and the page number.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

Cooooo

Other (please specify)

Name Date

Organization

Street

. Zip Code
City State or
Country

- — ==Do Not Tear - Fold Here and Tape — — — ~ — — — — — — ———— e — e — — — — -

, No Postage
t Necessary
_ i it Mailed in the

United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN: Commercial Engineering Publications MK1-2/2H3
DIGITAL EQUIPMENT CORPORATION

CONTINENTAL BOULEVARD

MERRIMACK N.H. 03054

| .
I
I
I

— — Do Not Tear - Fold Here and Tape — — — — — — — — — — — — —_—

