EK-KDJ1B-UG-001

W KDJ11-B
CPU Module

User's Guide

dlilgliltiall |

EK-KDJ41B-UG-001

» KDJ11-B
CPU Module

User's Guide

Prepared by Educational Services
of Digital Equipment Corporation

Preliminary Edition, January 1986
1st Edition, November 1986

© Digital Equipment Corporation 1986.
All Rights Reserved.
Printed in U.S.A.

The material in this manual is for informational purposes and is subject to change without notice. Digital
Equipment Corporation assumes no responsibility for any errors that may appear in this manual.

Digital Equipment Corporation assumes no responsibility for the use or reliability of its software on
equipment that is not supplied by Digital.

* The manuscript for this book was created on a VAX-11/780 system and, via a translation program, was
automatically typeset by Digital’'s DECset Integrated Publishing System. The book was produced by
Educational Services Development and Publishing in Marlboro, MA. ,

The following are trademarks of Digital Equipment Corporation:

olilglitlal MicroPower/Pascal RSX

DEC MINC-11 RT
DECmate OMNIBUS RT-11
DECnet 0S/8 TOPS-10
DECsystem-10 PDP TOPS-20
DECSYSTEM-20 PDT UNIBUS
DECUS P/OS _ VAX
DECwriter Professional VAXstation
DIBOL Q-Bus VAXstation I1
EduSystem Q22-Bus VMS

IAS Rainbow vT

MASSBUS RSTS Work Processor

PREFACE

CHAPTER 1

AN B W — O~INnNn B W —
W N =

N —

AhrrppbabnprbrbnbbprbbbLbbhbLLbbbLDDDDL-

NNNNNNNNoo RN -

IR RV GO NS

CONTENTS

ARCHITECTURE
DESCRIPTIONcociiiiiiiiiiniiniiiiiiiiiiiiciniestniniee st 1-1
DCJI11-A FEATURES ...ttt srae s e s annaes 1-2
Stack Limit ProteCtioncccoceieviiiiieiiiieiies sttt e sere e sreesbesesineesasaeesnns 1-3
Kernel Protectionccueeennnnn. e r et e — e e e sa et e e e e e e sarbrareeenrtraaeas reeeeeeneees 1-3
General REZISTEIS .oiivvvveeiiiiiee ittt st e seteee s sira e s esabaaeessessaeesssanassasnns 1-4
SEACK POIHET ...oeiiviieeiiicciee ettt s eerre e rre e seee e sebeeessnessse e srnesanseesnnens 1-4
Program COUNTET....c..ciiiiiiriiiiiee ettt sire e e setrreessraeessessesessrsnneessnnsneasss 1-4
Processor Status Word (17 777 T76).....ccovvvveeivireiieiiirrennereninesoreveeresesensesesnnes 1-4
CPU Error Register (17 777 TO6).uuuiivviiiiieiirriereeesirieeceesirrnesisnsesseessssessssessssaes 1-6
Program Interrupt Request Register (17 777 772)....... e eeereereeeeeeeaeaanrraeaeseaannns 1-7
INTERRIUPTS. ...ttt sttt eerte e st esssae e sstn e st e e bsaessnnessanaesssaaesnsesennes 1-8
SUNSEE LLOODS. .. uiieiieiiiie ittt ettt ere e sre e st e e saeeseesessbeessreessreeessseessnnesssseensanes 1-8
Red StaCK ADOITS....ccviiiieiiiiieiii et ctee et e sveesrre e rneeseaneesereesvaesnaessssnennns 1-10
AAAresSing EITOIS.....cuvviiiiiiiiiiiiiee e siriee s iiiiesseirereesenreessisresesssssresssesresssssssressanes 1-10
Bus TimeoUt EITOIS......coiiiiiiiiiiiiiiiiiiieceiiiieeccrresesirre s ssnrs e s esebreesssneraesssasbaaessnnes 1-10
Interrupt Vector TImeEOULSccveieriiieiiriiieeiiiirreerrieeeesireereesaeeessbieeeseabeeee e 1-10
NO SACK TIMEOULS.....cuvviirieiiiieciieerieeieeeecieeesrrresseesreesssvessssessrssesssseessvesensns 1-10
MEMORY MANAGEMENT ..o SRR 1-10
MeEMOTY MaPPINE.....c.vviiiiiiieiiiiieiesiiiee e iireesssrereessseeesssssaeaesssseessssseessssssreesenns 1-11
L6-Bit MaPPINg.....ccvveiiviiieririiieeeiieretecirenesssnenessemraeeesssensessesseesssonmeeessnnenessans 1-11
18-Bit MAPPINE.....viviveeieiieiereereereetteteereesieseesessesesessessessessessessessesssseeseereesens 1-12
22-Bit MaPPING...c.evviiiiiiiiiiciieie e scireeeerttre e eeirreseenreeesbnreesssatbaesssssneessnnreeeeenins 1-12
COMPALIDILLY ...veeieveiiie e ere s s e e e s bbb e e bt e e sbeesbeee e 1-13
Virtual Addressing.......ccvovvirivenieniieiieiieenienie st ee et st ree s sre e 1-13
Interrupts Under Memory Management........ooccvveernrreeriinneeessrieeeeenneeeeesnoneenaens 1-14
Construction of a Physical Address.......ccecvvevcieerivernieniiieniee e sieeenreesnee e 1-14
- Memory Management RegIStErsc.ccoiiiiiniiniiniiiiiiicic 1-16
Page Address REGISIETS......oviecuiieiieiriieenirecire ettt et 1-18
Page Descriptor Register.......covvvieeciiieiiiiiiiiniiieeeie et 1-18
Fault Recovery REZISLEIS ...uvvvvuuieriiiiieeniieeeieeree ettt 1-20
Memory Management Register O (17 777 572)..cccicvceiiniinieieinieniennneen 1-20
Memory Management Register 1 (17 777 574)..cccccoieivniienieeieeeeeeeenne 1-20
Memory Management Register 2 (17 777 576)..c.ccccevireciiveniveneeneenennnns 1-20
Memory Management Register 3 (17 772 516)..c.ccccivcrivciecennveneeniencnnnne 1-22
Instruction Back-Up/Restart RECOVErYoccvviiiiiinieriieiieeeivenieesieeniienns 1-23
Clearing Status Registers Following Abort...........ccocceveiiinineeesionnieeennecnnees. 1-23
Multiple FAUItscccvviieiiiieiecieceeeete ettt st sree e s ssae e 1-23

iii

"o 20 90 00 0
W N —

DN = ==
W — N

SN M el
W~ o=

2w~

[\ I

L i e e T e S o SNy S O GO S S e Tl T e T e S e e O I I e
WORXXXXXXXLILIIILINRANT ML LB BB
B LW N —

—

CHAPTER 2

Typical Usage Examples.......cocovveviveiiiiiiccin i, 1-23

Typical Memory Page.......cccoooeviiiiiiiiicci i 1-24
Nonconsecutive Memory Pagescoevvviiiiiiiinicenee e 1-25
Stack MemOry Pagesocoviiviiiiiiiie ettt s eniae e 1-26
. TTANSPATEIICY ..uvvviieriiiieiiities e e eiire e e st e st e e st baee e e s o bban e s e s ssasnaneeeseennnnns 1-26
CACHE MEMORY ..ottt ettt e e 1-27
PaTTLY oo et 1-29
Parity BIrOrS. .ottt 1-29
Multiple Cache Parity Errors. ..ot 1-29
Memory System REZISLEIS ...uvvivueeiiiireeriiee ettt sneee s 1-30
Cache Control Register (17 777 746) cooovviiviieeiirireeerriie e s 1-30
Hit/Miss Register (17 777 752) oottt 1-32
Memory System Error Register (17 777 744) oo 1-32
PRIVATE MEMORY INTERCONNECTccooiiiiee et 1-34
PMI ProtoCOl... ..ottt e sttt e e e e esereeeee s 1-34
Bus Device NPR ... e s 1-34
Bus Device INterrupt .. .ooooiiiiiiiie e e 1-34
PMI Data Transferscooviriiiiiiiiieiiicee e seree s et eireeeesreeesseeee e 1-34
Data In/Data In Pause.....cc.ccooovviiiiiiiiiiciie e evree s rereeenn 1-34
Block Data In..ccoooviiiiiiiiiciiee et 1-35
Data Out/Data Out Byte......coooeviiviiiiiiieie et eveens 1-35
TERMINAL INTERFACE ..ottt see et 1-35
Receiver Control/Status Register (17 777 560)......cccccvviivviiiiiiiiieeieerie e, 1-36
Receiver Buffer Register (17 777 562) cviiiiiiiicciiee e eeereee e 1-37
Transmitter Control/Status Register (17 777 564).....ccccccivveiririiieniierieecnnns 1-38
Transmitter Buffer Register (17 777 566)ocoovvvvimioeeeeeeeieecieeeeeee e 1-39
BOOT AND DIAGNOSTIC FACILITY oottt 1-39
Control/Status Register (17 777 520) ..ot 1-40
Page Control Register (17 777 522) ittt 1-42
Configuration and Display Register (17 777 524) .c.cocoovviiviiiiecieeieeieeeeen 1-43
Boot and Diagnostic Configuration Registercccooevviiiiiinicnnienieen, 1-43
Boot and Diagnostic Display Register........cccceviiviirinriiiiiirienie e 1-43
Maintenance RegiSter (17 777 T50) i ccrne et e 1-43
LINE TIME CLOCK ...ttt este ettt et s svas v e enbesstvesenre s v 1-45
Line Time Clock Register (17 777 546) .ccouveveeceeeieeeeeeeeee e 1-45
CONFIGURATION
INTRODUCGTION ...ttt st st svtesreessae s s s en e e eaneens 2-1
MODULE CONFIGURATION ..ottt ettt st e 2-1
Jumper Wirescoovvveeviveiiicineeeccneeeinnenens e rttettttetteratetaeeaeraerer s it e e rrarranrane 2-1
W0 JUMPCT...ooiiiiiiiiiiieecieie e riree e s sire e eiree s eesae s et e e abae e ereaes 2-1
W20 JUIMPLT ...ttt ettt emnesene e 2-1
W40 Jumper................ et etteeetbteatteireeeatee e teeeatetettaesareaastesbraeeetae e nreeereeensneenns 2-3
SWILCRPACK ... vt eiiie ettt et e e st e s rae e e st e e ssaaeesreeernnens 2-3
Baud Rate SeleCtion.......cccccvviiiiiiiiiiecciesie et ec e see e rvnessae s v s 2-4
DiIalog MOE.......ioiiieciiiec e s et earr e e 2-5
Device Bootstrap Programs..........ccocvioeioniniiiieiie et en e 2-5
Console Enable ..o e 2-6
DIagnoStiC LEDS.....ccccciiiiiiiiiieiii ettt e e satreessrne e ennrae e sareaesserneeaeaas 2-6
EEPROM CONFIGURATION PARAMETERScccoviiieeee e, 2-7
Enable Halt-on-Breakcccocvvenveininninnnnnnn, reeeteeeeerteeenareee s reeeebbreesantaaeans 2-9
Disable User Friendly Format..........ccoccciviiiiiiiiiiiiiiciee e 2-9
ANSI Video Terminal........ccccciiieiiiiiiiiiie it ser e s 2-9

iv

N ERRRN
BN

OV PhWNN—O

[N I e e N e Y T S Sy G G G Y

M N N N S A A S A S S T SE S)
2
)
—

NN
Bl o
=

CHAPTER 3

—

[N

Lhbhbbbsbrbbrbsnnrbbibb=——
(o BN o R N S S

LA W —

Dialog MOGE ... 2-9
AUtOMALIC MOGEoviviriiiiiiieieeeeeee e ee e 2-10

ODT MOGEccoouiiiiriniiteieice oot s e e 2-10
MOGE 24 ..ot 2-10
RESTATT .ocviec et 2-10
I8N0TE BALEIY......ooveviiiiiiiiic e 2-10
PMG COUNL ...t e 2-10
Disable Clock CSR......c.coruimniiiiiiiiieeeeeee e, 2-10
Force Clock INTEITUPLS c.vvvviceiiececeeteteeee e, 2-11
CIOCK SEIECE........uviieieieieiriiietct ettt e oo 2-11
Enable ECC TStooiiieiiriiieeiciceceeee e 2-11
Disable Long MemOory TeSt........coovvuuiuiriuieiiireieeeeeeeeeeeese s seseesee oo e 2-11
Disable ROM...........ociiiiininniiiiiieeeeeee et ees oo, 2-11
Enable Trap-on-Halt.........cccccooiiioiiiiieieiiceeeee oo, 2-12
Allow Alternate Boot BIOCKc.cvovvieieieeeeeeeeeeeeeeeee oo 2-12
Disable SEtup MOc.coevieivieiieieeeeeeeeeeee e, SUT, 2-12
Disable All TESHNG......ccovrieriiiiiiiieitititeeet oo oo 2-12
Enable Unibus Memory TeStcooveverereeeeeeeeeeoeeeeeeees oo, 2-12
Disable UBA ROM ...ttt eeeeeeeee e s 2-12
Enable UBA CaCheovoviuiuiiirieieiieceeeee oo 2-12
Enable 18-Bit MOcoueuriiiiieiieiiieiecceeeeee e eee oo 2-12
SYSTEM INSTALLATIONcoooitiiiieiiiteeeeeeee e e eeeee oo 2-13
LSI-11 Based SYSTEIMSv.viuiviviviiireecitceceeeceeeeeee oot eeeee e 2-13
Restricted LSI-TT SYSTEIMS ...euiiiiiiiiiiiieeieceeeeeee et eeee oo 2-15
Unibus Based SYSTEIMS.......cvuiuiiiiiiiiieeeeeeeeeeee e ee oo ee oo oo 2-16
MODULE CONTACT FINGER IDENTIFICATIONoooooovooeeoeoeoe, 2-18
MODULE INSTALLATION PROCEDUREcccocoeemreooieeeeeseeeoeseseosoi 2-21
SPECIFICATIONS........cootitiiuititereete et eesee e eeeeees e es e s e ses e, 2-21

INTRODUCGCTIONcootiiiiiiiietis oot e oo 3-1
Terminal INtEIfaCE.coueviiiiiiiiiciiice et e e 3-1
ODT OPERATION OF THE CONSOLE SERIAL LINE INTERFACE............ 32
Console ODT INPUt SEQUENCE.......ovvieieiieeeeeeeeeeeeee e eee oo ees oo 3-2
Console ODT Output Sequence......................... R e e 3-2
CONSOLE ODT ENTRY CONDITIONS ...t 3-2
CONSOLE ODT COMMAND SETooovioieieteeeeeeeeeeeeee oo oo 3-3
/ (ASCII 057) = SIashcvvvveeieeeeeeeeeeeeeeee oo e, et 34
<CR> (ASCII 15) — Carriage REtUIN.....c.coovovereeeeeeeeeeeeeeeoeoee oo, . 344
<LF> (ASCII 12) = LinE FEed.......coouocveveeeieeeeeeeeeeeeeeees oo 3-5
$ (ASCII 044) or R (ASCII 122) - Internal Register Designator...................... 3-5
S (ASCII 123) - Processor Status Word Designatoroooovveeverereerevererererennns 3-5
G (ASCII 107) = GOuuerrererireriiieieeeeeieteeeeeeee et e e e es s et et 3-6
P (ASCII 120) = PrOCEEAovveeeeeeeeeeeeeeeeeeeeeeeer oo 3-6
<CTRL> <SHIFT> S (ASCII 23) - Bmary Dump....cccovvvivviminieeiiece e, 3-6
KDJ11-B ADDRESS SPECIFICATION......ooveuioteeeeeeeeeee oo 3-7
Processor I/O AdAressescoviveviviuieeeeeeeeeeee oo oo e oo 3-7
Stack Pointer SlECtionc...civivvvriviriieiiiee et ee e e ee o 3-7
Entering Octal DIILScccoveuiiiiiiiiiiieieciceeee e e 3-8
ODT TIMEOUL....evitietiiitiiri ettt sttt e e et e et s e e et e s oo 3-8
General REGISELSc.cvvvieivieieireresiectetete ettt ee e ee e seres s 3-8

CHAPTER 4

4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4

BOOT ROMS AND DIAGNOSTICS

INTRODUCTION.....coiiotiiiteeree et eeteeeteesnsresste e sttt ssreesreeesmneesrnaessanssastisensnssressns 4-1
POWER-UP OR RESTART ..ottt ettt s snceeineans 4-1
Dialog (MOde 0)cccvveiieiieiieieeieeieenree sttt 4-1
Automatic (MOde 1).c..oiviiiriiiiiiiciiiiiii e 4-2
ODT (MOGE 2) oeveiieiereeeeiriee e eirreessirteesssbatessabraeessreeesesreee s smres e e saneressobanessbbstesanes 4-2
24726 (MOGE 3)inriireiieiieiirreeviirecreecreeeieeeeveeesnaeesiteesraesnnees e ———— 4-2
FORCED DIALOG MODEccoooiiiiteieirieeieeetee e eree et saveeeneeeeinessree e 4-2
HELP COMMAND ..ottt tressiree e sstbaeessrrre s sstreesasbsaeessareeesanbetesemseeenans 4-2
BOOT COMMAND ...ttt s e 4-3
LIST COMMAND.......cooviiieeeeee et it ee e i et bs e rte e bt e taeeartaaaneas 4-4
SETUP MODE ...ttt eerteesstsae e s reraee s snras e stbesessbeaeessabteesasbneeeennrneenns 4-5
EXIE (1) oiietiiiiiee ettt ettt ettt e et e e e e e e e s rae e stba e et eeabeeesteeengeenareesanees 4-5
Select Configuration Parameters (2).......cccceevesienniniiniiniiiiiiniicciccicinnc s 4-6
Select Bootstrap Translations (3)cveevveviireiieeniceie e e 4-8
Select Automatic Boot SeqUENCe (4)veiiiiiieiiiiiee et 4-8
Select Console MeSSAZE (5) ..iivvvriiiiiiieiiiieeeiiree e ernrer et eereeee e 4-10
Define Switchpack Boot Selections (6).......cccveeevrrererrireiieeriie e seeeneeeens 4-11
List Available Bootstrap Programs (7)c.ccoevveeveeriiiierienienieneseenieseeeeeene s 4-12
Setup Table Initialization (8)cccvevoiieiiiieiieeere e 4-12
Save the Setup Table in the EEPROM (9)....ccoooiiiviiiiniiiieiiieins 4-12
Load EEPROM Data Into the Setup Table (10)....ccccceiivvievveenicniniicreneee 4-12
Delete a Boot Program From the EEPROM (11)cccooiiiiiiiiiiiiciiecie 4-12
Load an EEPROM Boot Program Into Memory (12)......cocceevieivecrienieneencen. 4-12
Edit or Create a Boot Program in the EEPROM (13).....ccccoevviiiiiiiinveeeniens 4-12
Save a Boot Program in the EEPROM (14)........coooiiiiiiiiiiieeeeecceene 4-13
Enter ROM ODT (15) ittt e et verre e e e s eiisaene e e e s 4-14
MAP COMMAIND ..ottt ettt st e et et e e e tee e et eanseeeabeesaneeenas 4-15
TEST COMMAND ...ttt ete ettt ettt sre et svaeersae e reeeaneeeeeeeeneeens 4-16
DIAGNOSTIC TESTS ...ttt ettt svee e st seenn e s s baaessbbaeesnes 4-16
CPU or Halt SWitch (Test 77)...ccciiieeeieiiecie ittt eeeee s 4-18
CPU and MMU (TSt 76) ...ccovrieeceireririeeeeireeeiirree e siteeessirresesnneeasssasseessvsassenes 4-18
Turn on MMU, Run CPU and MMU (Test 75)coviviiiiiieieciieeeceeeeenneneennes 4-18
Turn on PMI, Check UBA Reboot Bit (Test 74)cooeiiviiiiviiieeieinieeeiireeens 4-18
Power-Up to Mode 2: ODT (TeSt 73) .eeivieiiiiiiiieieeieereeeie et 4-18
Power-Up to Mode 3: 24 (TeSU 72) coveeiiieeieeiieeee ettt 4-19
EEPROM Checksum (Test 71)..cccviiviiiiiiiiiieecireeseiieeesiees s sincee s nireee e 4-19
CPU ROM Checksum and PCR (Test 70)......coovirviimiereiiriereinirieeerrieeesiveeannns 4-19
Miscellaneous CPU and EIS (TeSt 67)....cccciiiiiiiiiiieiiiiee e ceiieeseeieeeesieee e 4-19
Console SLU Test 1 {TESt 600).uuuuuuimmiiiiiiiiiiiiiiiiiiiiiieiiireeeeeeeeeeaverasrereeneeeeas 4-19
Console SLU Test 2 (TeSt 05) vttt sre e e 4-19
Console SLU Test 3 (TSt 64) ..ouveviiieeiiiiieeee et e e eevrrreaee s 4-19
MMU Aborts (Test 63) c.voviieeereiiieieeieiee e SO e —— 4-20
Cache Memory (Test 62)c.coerviineiiriieiii ettt 4-20
Line CIOCK (TSt 61) ..eiiiieiiiiereiee ettt eir s evve e e eavbe e st e e s stbre e e seraeesaans 4-20
Floating-Point Instruction (Test 60)........cccccvvveeviieviecciiecreenen. e 4-20
RESEIVEA (TESE 57) nuvreiiieiieiieieii et e eeet e e e e ere e e e e e seevaeaeeaeanees 4-20 .
Exit Standalone Mode (TeSt 56).......ovviiiiiiiiiiiiieieeeeeeeeee et eeeiaree e 4-20
UBA Register Response (TeSt 55)....ciuiiiiiiiiiiiiirieeeiiee st eevrae e e sivna e 4-20
Memory Sizing Routine (Test 54)cccooviiiiiiiniiiniinieie e 4-21
Memory Location 0 (Test 53).....cccviiiiiiiiiiiec e e 4-21
Memory Locations 0 to 4K Words (Test 52)....cccvvvviviviiiiiiieeeirieeesireesiiee s 4-21
Cache Operation With Memory (Test 51) ..cooiriiiiieriiiiiiirecccieeeerreeesneeeens 4-21

Complete Memory Data/Byte Exercise (Test 50).....ccccccviviiiiinceciiieeneenen. 4-21

vi

bEaERRLL
B W=

AhhabsabbbbAbBAAPRARRRAD DR DBED
Do —

(O NS 3 N I S I i e e e e

CHAPTER 5

RO
NS

NANDDAADNL AU U A AU DD LG
O 01N L AW —

M N N S S S S
WwwbLLLLNNND DN DD D -

R T NI N

Memory Parity/ECC (TeSt 47)coooviiiiiieeeiiieeeeeeieeeteeeeeeeeee e 4-21

Memory Address SHOItS (TSt 46).......veeeieeeeeeeeeeeeeeeeeseseeressireeeeseesireeseesesnns 4-22
UBA B00t ROM (TSt 45) ..cuviiiiiiiieieiceeeceecee et ettt eeae e 4-22
UBA Map Registers Data Path (Test 44)cooovevviviiiviviiieeeeeeeeeeeeee s 4-22
UBA Unmapped Diagnostic Data (Test 43)......cccccoevvviiviiniiniiireiiecseeneessien 4-22
UBA Mapped Diagnostic Data (Test 42)cccooviiiiiiiiiiiiieiiieeeeee e 4-22
UBA Floating Address/Data (Test 41)oocuvivviireeoieeeeeeeeeeeeceeece e eeeeereans 4-22
UBA Address Overflow (Test 40)ccoovviiiiiiiiiiiiiieeeieeeeeeeeieeeeeeeeeeeeeeens 4-23
UBA Cache Data (Test 37) .cuooiviiiiiiiieeieieie ettt ee e e e e eveseraes 4-23
UBA Cache LRU (TSt 36)......cciiiiiiiiiiiiiiiiicecciccec ettt 4-23
UBA Cache Tag Store (Test 35).....ccccvieeiiiiinininiicneieieineieeiense e 4-23
UBA Cache Parity Error (Test 34)ccccoiviiiiiiiiieeieeeie oo 4-23
Unibus Memory Data/Byte Exercise (Test 33)....cccooviviinrerveeereeeeeeeeeeeneenen, 4-23
Unibus Memory Parity (Test 32) ..c.ooviioiiiiiiiiiiiiiieieeee e 4-23
Unibus Memory Address Shorts (Test 31)...cuvioiiioiiiieeeieieeeeeeeeeeeeeeeeeeee s 4-23
EXIE (TESE 30) 11iiiiiiiirii ittt ettt ettt e e e e e e st e e et e e eete e e s reeesaeeeens 4-23
DIAGNOSTIC TEST ERROR MESSAGESccoooiviiiiiieeeeeeeeeeven e 4-24
TESt INUMDET ...ttt ettt et et seteane e 4-24
Address of the EITOrooiiiiiiiiiiicicee e 4-24
Register Set I........... ettt et e e et e s ae b b e e e e tbe e e et b b e e eeatbessenbeessarreeas 4-24
Optional User Commands.............. SRR e G224
Rerun Test............ e bttt e s bt b e e e ettt ee s e bt aeesetrreseeerrsseeabbeesstres 4-24 .
- Loop on Test c..ccovvvviveieeiieicicceee, s 4-24
Map Memory and 1/O Page........ccoovevveeveiiiiinicen, s 4-25
AAVANCE £0 the NEXE TESE ooivuiiiieeiieeeeeee e e e eereeeseeee e e esreeseeeressaons 4-25
TypPIcal DISPLAYScviiviiiiiieieiect ettt 4-25
ROM CODE BOOT PROGRAMS........ootiiitieeceeteeeeeee e 4-26
Error Messages for Bootstrap Programs...........cccccevvvciiiiiiiiviiiiiieie e 4-28
LSI Bus Selected Error MesSagesvoviiieiieiiiiiiiiciecei et evenes 4-28
MESSAGE DISPLAY CONSTRAINTScooiiiiiieiee ettt 4-29

FUNCTIONAL THEORY

INTRODUCTIONcoiiiiiiitie ittt ettt ettt e s e e eeaeas 5-1
DCJ11-A MICROPROCESSORcooiiiiiciee e 5-2
INItIAHZATION ...t eeaean 5-2
OULPUL SIZNALIS ..ottt ettt e et e e ereereeneee 5-2
Address Input/Output (MAIO <3:0> H) coovoeveeeieeeeeeeeee e eeeeeeee e 5-2
Bank Select (MBS1 H, MBSO H)......ooovviiiiiiiicicecceeeee 5-4
Address Latch Enable (MALE L).....c.ooooiiiiiii e 5-4
Stretch Control (MSCTL L) ..oovviieiieeeeeeeeeee et e e eeeeas 5-4
Strobe (MSTRB L) ..ooiiiiiiiieeeceee et 5-4
"Buffer Control (MBUFCTL L)...cc.oooviiviiiiiciicei e eee e 5-4
Predecode Strobe (MPRDC L).....ooviiiiiiiieeeeeeeeeeeeeee e eeeean s 5-5
1/O Map Enable (JMAP L) c..coveeooeeereeeeeoeeeeeeeeeeeeoeoeeeeeeeeoeoeeooeeeooeoeooeo 5-5
Clock (MCLK H)...ooviitieiiicieiececee et 5-5
INPUL SIZNALS ettt ettt 5-5
IMMISS L ettt e e erns 5-5
Data Valid (MDV L)oot 5-5
Continue (MCONT L) .ooooiiiiiiiiiiic e 5-5
DMA Request (MDMR L)oooiiiiiiiiiiiiiceeeceeee et e, 5-5
MIRQ <7:4> Hcovvveven ettt et et e be e be e be e reeeteeeaeeetseenes 5-5
MHALT H oottt ettt eeaee e s e eeeeneee e 5-5
MEVNT H oottt sttt eeereeesaeneenas 5-5

vii

“
Mo N
W W
o o

o
N

= bbb hbhne®w
[«) RNV N R UL I S B —

=

BPLLLLLLWWWN -~
O ~J O\ bWk —

qoanmhnbne bbb EEAERRARRRLLDODNDNMDD
NN P W

[\

L au s
“oaoo
N - AN AW

MU N LA LUU L LK
==obbbormaa
DN —

Qow[\)»—

MPWR FAIL L ..ot 5-5

MPARITY Lottt st e s e e te e s vee st e e saeaeenennne 5-5
MABORT L.ttt ettt e are e en e eatns 5-6
FPA FPE L ..ottt et vee e 5-6
MDAL <2100 ettt e et cree et 5-6
DCITT1-A TTransactiONscccueervieiviieiiriesrieesiiesiieeesreeaeeeesssessossesseseeseeesessssesennes 5-6
INOP o e ettt e et e et e e ts st ae e tr e e tresearaesreseareas 5-6
BUS REAd ...t 5-7
BUS WIIEE oottt ettt et e e e e ette e e e eaenee s 5-8
General Purpose Read.......coooiiiiiiiiiic et 5-8
General Purpose WIite......coooviiiiiiiiie e e 5-9
TACK ettt st e e ettt e an e e etna e aaeeeaaeeas 5-10
BUS ARBITRATORocoiiiiiiie ettt s eanee s ssbaee e earae s 5-10
PMI Cycle REQUESE......eoeeiieiiiiiciii ettt 5-12-
DATA PATH CONTROLLERcoccoiiiiiiie ettt 5-12
CyCle ENCOUET ..ottt ettt ettt eareas 5-12
OBSCHIALOT.....eeeiiiee e ettt e et eerte s eesrre s s earreeserareae e 5-15
Next Address MUK ...t s ettt e eavaeen 5-17
DefaUlto e 5-17
External Read/WTILE ...oooiivviiiieiiiii ettt s 5-17
LSI/URIDUS. ..ceeitveieiie ettt ettt ettt et et erreeetre s sareeseneseneea 5-18
Interrupt Vectorccovvvvvnneennne, et e eee e bbbt te et et taeaeeeaaaeaaaaeeaetaaaaas 5-18
DC350/394 ACCESSES ...eeiivvieeitieeeeeee ettt ettt e et e et e e e eate e eaaes 5-18
Byte ALIOCAtION.....ccciiiiiiiciie ettt sttt et et 5-18
DMA MODILOT 1ovtitieiiiee e ctis sttt et eeae e e bt e e sateeetbe e eateeereeserteeanns 5-18
Standalone MoOde...........oooviiiiiiiiiii e 5-18
CONETOL STOTE ..ttt ettt e e et e et e b e e ette s reesabeeeaaeas 5-18
CACHE MEMORY AND DMA STOREcoooiiieiieieeceeeecveee e, 5-22
CACHE MEITIOTY ..vvveiiiiie ettt ettt e et e e s ettt eseentneasennnees 5-24
CACKE TAZ SLOTE ..ottt ettt et esensen e eseneens 5-24
Cache Data Parity LOZIC.....cccocviviiiiiiiiiececceecee et 5-25
Valid Tag Bil...iciiiiiiiciecie ettt ettt et ete e ebee s 5-26
DMA TAEZ STOTE ..iiieeciiee ettt ettt sttt e e tbe e e stre s eesbaeeessrseessrreeesas 5-26
CaChe CONLIOL...ccuiiiiciie it e e e b e sabe e s tbe e saae e nreas 5-26
DC350/394 GATE ARRAY ...ooviiiiiceee s everre e 5-28
A-Multiplexer U OO PO SO U TS U SRR UUPURUPUPPRPPRO 5-30
Cache Data Path ..ot 5-30
Parity Interrupt and ADOITooovveiiiiiceicree et 5-31
Address Decode...........cooiiiiiiiiiiiii e 5-32
CYCIE DECOART ..oveeviiii ittt ettt ete e e e s ebae e s etree e e srree s 5-33
MISCELIANEOUSveeriie ettt ettt ettt e ete e et e e eaeeebeeeteeesebeseaveas 5-33
DC351 GATE ARRAY ..ottt et e 5-34
DMA Tag Data Path..........cccocoovvviiiiir e, eeiereeereeesenenaenn 5-35
Clock Start LOZIC ...ccviiviiiiiiiieiieieeieeteet et e 5-35
FIUSh COUNET ..ottt e ettt ves et s 5-35
. Main Memory Parity Error ..o 5-35
TIMEOUT ..ottt e te e ettt e s ab e eab e eareeateeans 5-36
DMA REQUESESceoivieiieiiii et sree et eveeerteseteeebaeeteeestresstbeeetesesaeeeeaneas 5-36
NXM or Interrupt REGUESESccueveiiiiiiiiiiiiciie ettt cveserreenree s 5-36
BUS DISTRIBUTION ..ottt sve et ettt e ennes 5-37
Internal Bus Control.........cccoooiieeeiiiiiieiii ettt 5-37
LSI-11 Bus CONtIOl .ottt s 5-38
PMI BUs CONLIOL.....coiriieeiiicieccie et e st cre e sbe s cvr s erteseetae e veesbeeenbrees 5-38
CONSOLE SERIAL LINE UNITccooiiiiiiieeneeeiee ettt eeiee e veeenee s 5-38
Halt-0n-Breakcoociieiiiiie ettt sresssae s enans 5-41

W h o a
ARLN—O

‘CHAPTER 6.

hn L B L0 W L LD Lo Lo R
— ottt i .
W —

o
o

6.0.4

6.6.4.1
6.6.4.2
6.6.4.3
0.6.4.4

N
o
W

BRI IS B R R R e e T I IS IER IR
NNNUNNO VR W~

DO NS
n ik wi—

W N -

Console Interrupt Arbitrationovcvviriviieee e e s serneeessrrreesans 5-41

CONFIGURATION AND DISPLAY ..cooiiiiiiiiiiinieeeeree et 5-42
BOOT AND DIAGNOSTIC ROMScooiiiiieciccieetenit s reesve e 5-42
CONFIGURATION EEPROM.......ccociniiiniiiiniiniiieeieeie et 5-43
FLOATING-POINT ACCELERATORcotvvtiiiieeiieniereece et 5-44

FPA OPCIationcveeevviiiiiiiiiieiiiieeesiiiereesrreeesseraeesseneesessmseaesesmneeesossnneessannesesnns 5-44

EXTENDED LSI-11 BUS

INTRODUCGCTION......ooiitiiiieie ettt s et siae st sbaesias s i 6-1
BUS SIGNAL NOMENCLATUREcccooiiiiiiniecrenrecsieeeesee e e 6-2
DATA TRANSFER BUS CYCLESooi ottt e 6-3
Bus Cycle ProtoCol.......coiiviiiiiiiiiieiiiiioirieeieesee ettt sercessne st e enaesaraes 6-4
Device Addressing.............. e e eeeereeeeirtereeeeseeaeesrseeesesrtresaibereearraeenaraeeentrreenns 6-4
157N 1 (PP PTOROTUPRTOTI .6-5
DATOB) ..ottt ettt r e e bt e s s nesba e e s b aesbaesbbeesabessabeeenrresnnes 6-7
DATIOB) ..ottt e raee et ss e e ee e setnenasaesarbeesateesmneesbaseas 6-10
DIRECT MEMORY ACCESS ..ottt ettt 6-12
INTERRUPTSottt erae s rtte e ste e st e s sibeesiaaesebaeesabeesbenessressneesenessnne 6-14
DEVICE PrIOTitY . ccoiiiiiiiiiiiiire et e s ree e e e s rreeasee s e sasbanes s s ssbnnbees 6-14
INTETTUPL PrOtOCOL....cuviiiiiiiiiit ittt et sae e esne s 6-15
4-Level Interrupt Configurations........cccvveceeereeerreeenerenieenree e sieennsesneessiens 6-18
CONTROL FUNCTIONS ...ttt eree et svae e sire e st s eneeeones 6-19
Memory Refresh. ... e 6-19
Halt .o e eeehrteteeeeeirettreeeeeiirhbaraaeeeeeenhtrraeeseeanrrees 6-19
INItIAHZABION ... iiviee e trre e et b ae e et e e st e s sabe e e e s e e e ae e sarnes 6-19
POWET STALUS....eiiiiiiiiiii e itre e e ebr e e e s s ssibrre e e e e e e e s ssmnnrcasesssanaraess 6-19
BDCOK H ..ottt san e s sna e e 6-19
BPOK H ..ottt sttt et st 6-19
POWET-UD. oottt et s s 6-20
POWET-DOWIL....uiiriiiiiir sttt seebb et st sre s 6-20
BEVINT Lot seee e s sneens FUSTRRORN 6-21
BUS ELECTRICAL CHARACTERISTICS tetereeeernenseeesnesnesressrnesares 6-21
Signal Level SpecifiCationc.oiivvvriiiiisiiienerriee et 6-21
AC Bus Load Definitionccccceeeeeeennnnn, e herer e ee et eeee e e rraaareeannirraees 6-21
DC Bus Load Definition.........coiieriiiiiiniiiee et seesesnis s sneees 6-21
120 Q LSIFT1 BUS.iiiiiiiiieeeciieeeie ettt e saassensas b nanes 6-21
BUS DIFIVEIS 11iiieieiiii ittt esre ettt a e srar e s srr e s sanbe s 6-22
BUS RECEIVEIS .uviivriicirieiireieireeiiee et e et steesbe e e sete e sttt ssaneeenttssnaassabessnbessanees 6-22
KDJ11-B Bus Termination........cccecceeeeieiriieenieeniieenieceiieesniesnnessinessrneesesnesnnns 6-23
Bus Interconnection Wiring......cccoovviiieviiieiinniieiiii e csnnee ...6-23
Backplane WIrNgcocvviiiiiiiieeiienies e seeesmee s snaessises b sans s sbessnee e 6-23
Intrabackplane Bus Wiringcccccovvvieiviiniiieiee et 6-24
Power and Groundccoccveviiienineinrnensie e seeeeeressine it esnnes 6-24
Maintenance and Spare PinS........cocccoiviiiiiniineninineeeerieeeenieeeesinecc e 6-24
SYSTEM CONFIGURATIONScctiiiiiiiiiieteieeeesiecnte et snee e 6-24
Rules for Configuring Single-Backplane Systems........c.ccccvvviinniinininiiiiiinnn, 6-25
Rules for Configuring Multiple-Backplane Systems........cccoccevrvveviiniiniiiiiinninnne. 6-26
Power Supply Loadingcccovveviieviiiiiiciesienec i 6-27

ix

CHAPTER 7

CHAPTER 8

90 00 00 00 00 00 00 00 00 GO 0O 00 00 00 90 0O
RN —
D W — Wbt —

CHAPTER 9

9.1
9.2
9.3
9.4
9.5
9.5.1
9.5.2
9.53
9.5.4
9.6
9.6.1
9.6.2

PRIVATE MEMORY INTERCONNECT BUS

DESCRIPTIONoootiiiiitiicteieireeee s sreee e st bt satesseesreesmsesseesanesasesaansrasaraeaaeas 7-1
PMI INTERFACEoooiiiiieteeteee et sn e 7-1
PMI Bus Master Signalsccceeereeieeriieiiie sttt esree e 7-1
PMI SIave SIZNALSeeiuviiiiiieiieeieercereee et rtee st ere et eebee e ineesareessaeennes e 7-1
PMI Unibus Adapter Signals.........ccccvvvrirnieiniiiiiicieeie et 7-1
LST BUS SIZNALS ..oeiiiiiiiieciee ettt et eeee sttt s e e st eneneseneens 7-1
PMI OPERATION IN AN LSI-11 SYSTEM.....ooiiiiiiiiiiiiiineeneenee e 7-6
PMI OPERATION IN A UNIBUS SYSTEMcccoooiiiiriiniinieeeeecceee 7-6
Bus Device NPR 0r DMA ...ttt ettt e 7-6
PMI Bus Device INterrupt........cccciiiiimmiiiiiiiniieicreectee e 7-8
PMI DATA TRANSFERSccooviiieiinereen et be bt eeaeerrans 7-9
PMI Data In/Data In PausSe......c.ccoovvveiiviiieiiiiiiiiriiccieieeseieeesrree s ssnanesnnee 7-9
PMI Block Data IN........ocveiiiiieiiiiieeeecee et 7-11
PMI Data Out/Data Out Byte ..c.coeeveriiiiiiiieiiir e e 7-13
PMI INTERRUPT PROTOCOLocciiiiiiiiiiiiiitce et 7-15
PMI POWER-UP/POWER-DOWNccocoitiiiiiirit e e 7-15

ADDRESSING MODES

INTRODUCTION ...ttt et et sra s s saneenees 8-1
ADDRESSING MODESoo oottt ettt 8-1
Single-Operand AdAresSingcoovevvieeiirerrirreriireeeriieeeeieeeeseeeereeeesreee e e 83
Double-Operand Addressing.........c..occuverirerieniiieiiericenereeiteeeie e e 8-3
Direct AdAresSiNg........ccciueivieeeeireiieieeeeie e e seresaeeteresreeesseeesteeeneeeteeeabneeseeesanee 8-4
ReEZISTEr MOAEooceiiiieiiiiiiece e s sneees 8-6
Autoincrement Mode [OPR (RN)4]..ccovriiiiiiiiieieee e 8-8
Autodecrement Mode [OPR —(Rn)}....cccccoiiviiiiiiiniieee e 8-9
Index Mode [OPR X(RN)] ..oiioviiiiiiiieiiieeiie it eer e eere e eieesinee e 8-11
Deferred (Indirect) AdAresSingccccvverereriiniieiirieecieeesereeeserreessnrreessnnesanns 8-12
Use of the PC as a General Purpose Registerccceeveveiiiiiiiiiciiiciniceeen, 8-16
Immediate Mode [OPR #0,DD]......c..ccoiiiiiiiiicceeee e 8-16
Absolute Mode [OPR @#A] c..ocoooviieeiiieiecieee e e ———— 8-17
Relative Addressing Mode [OPR A or OPR X(PO)]...cc.ccoovviviiiiviiicrienne. 8-18
Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)]............. 8-19

Use of the General Purpose Registers as a Stack Pointerccccoeoveeeene 8-19

BASE INSTRUCTION SET

INSTRUCTION SET.....oooiiiiiieeieieiieeieeeenireeecnre e sensree e envnees et e s e e araens 9-1
INSTRUCTION FORMATS ..ottt sttt 9-4
BYTE INSTRUCTIONS ...ttt sae e stee s 9-7
LIST OF INSTRUCTIONSottt seesevee st e s e snesesiae e e e 9-8
SINGLE-OPERAND INSTRUCTIONS ..ottt 9-12
L€ 15 (13 -1 LU SRS 9-12
Shifts and ROALES ...oveviiiieeiereece ettt e snaeesaaeens 9-17
MUTtIPLE-PreciSion........cccovriiiiiieeie e s 9-22
PSW OPCIatOrs.....cccvveeciieieiieeieeiie e sie et ste s eve e rtesvaeets e e stbeenireestteesseaesseennres 9-24
DOUBLE-OPERAND INSTRUCTIONS ...ttt 9-26
GIENETAL ...ttt 9-26
LLOZICAL ...t e ae e st e ea e erteeas 9-32

101000 V11V VYWY
LN NN9N
K IN N W —

CHAPTER 10

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.3
10.4
10.5
10.6
10.7

CHAPTER 11

11.1
11.2
11.2.1
11.2.2
11.3

11.3.

_.
-
NNNoooUuLhLo—

PROGRAM CONTROL INSTRUCTIONS.........ccceovtmrirereieieieceeeeeeeeeenn, 9-34

BranChies........ocviiiiiiiicic et ettt e e e e et en e e enaens 9-34
Signed Conditional Branches...........ccccoovvevevvevvennnnn.. e e e e b e earaes 9-39
Unsigned Conditional Branches...............ccoovoiviiiiiiiiiinieieeeeeeeeeeeeeeeeeeeeneeas 9-41
Jump and Subroutine INStrUCHIONSc.c.ovviiiviiiiiiieeee et e e 9-43
TEAPS ..ttt et r et eeae e aeseaeaareetean 9-47
Miscellaneous Program ControlS.............cccovvviiiviieierieeeeeeeeeeeeeeeeeeeeseeees s 9-51
Reserved INStruction TTaPSc..oievecrerriiiriiee ettt eee e eaesre e esraneas 9-54
TTACE TTAD..cvcviviiiicr et 9-54
MISCELLANEOUS INSTRUCTIONS.......cooviiitiiieeieteietee ettt 9-55
CONDITION CODE OPERATORS........cooooiieiiteeeeeeeeeeeeee e 9-59

FLOATING-POINT ARITHMETIC

INTRODUCTION ..ottt ettt ee e e et e e e aveaes 10-1
FLOATING-POINT DATA FORMATScooiiiiiiicieeeceeceee et 10-1
Nonvanishing Floating-Point Numbers..........c..ocoevevvivivieiieeieeeeeeeeeee e, 10-1
Floating-PoINt Zerocccooiviiiiiiieniisieiietii ettt 10-1
Undefined Variablesccociviriiriiiiiiiiiieeee ettt et 10-2

: Floating-Point Datac..ccccoeiiiiiiniiniiiii et 10-2
FLOATING-POINT STATUS REGISTER (FPS)......c.cccvcvveeeeeeverreeererereresininnn 10-2
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS................... 10-6
FLOATING-POINT INSTRUCTION ADDRESSING........ccoeoceoeveeereeeeerenenn, 10-7
ACCURACY oottt ettt st st s b st es et e e eaeeas 10-8
FLOATING-POINT INSTRUCTIONS........coovtiiiiiieieecteceeeeee e 10-9

INTRODUCTION......ooiiiiiiiiiiceeeee ettt ere e e sae s e esesaeeeaes 11-1
POSITION-INDEPENDENT CODE........cc.ccooiiiiieiiiiieceeeeeeee e 11-1
Use of Addressing Modes in the Construction of Position-Independent Code ... 11-1
Comparison of Position-Dependent and Position-Independent Code................. 11-3
STACKS ..ttt et e sttt erte et eereseeeseen 11-5
Pushing onto @ Stack.......ccccoviiiiiiiioiiiirecce et 11-5
Popping from @ StaCkcocvieiveiieiieiiicieecc et 11-6
Deleting Items from @ StacK.......ccceevevieiiieiiiiiciice ettt 11-6
StACK USES ...vviviriiiiirieiierii ittt ettt ettt ettt sttt et esnesetesaasesennesaea 11-7
Stack Use EXAMPIES.....ccoriirriiiiiiiiiiiciei et 11-8
Subrouting LiNKagecoccevuiriiriiiiiiiiiicicececce et 11-9
Return from a Subroutine..........ccccoecvveiiiiiiiiiiiicceccccccceeeee e 11-10
Subrouting Advantages.............ceeceveeiviiirieiieinieirrceieere e SUUUU 11-10
INEEITUPLS ..ottt et e rr e et s tae e e e s e e reeeeaes 11-10
Interrupt Service ROULINESccoocvviiieiiiiiiiciccceece e 11-10
INESLIIIE ..ottt sttt sttt e b e s aeesb e e be et e eteeabeeteeaeeeseetseneeneens 11-11
RECNITANCY ...coitiiiitticiie ettt ettt be s srbeeesbeeeenaessneoens 11-12
Reentrant Codecccovieiiiiiieieciec ettt 11-12
Writing Reentrant Code.........ovvvviveeniiiiinieiiecieeieeecctee e 11-13
COTOULIMES ...cuvveiieeiieeiierteetee bbbttt et e b e e b beeste s b e eneeessssasesnnsontsesssenseas 11-13
Corouting Calls.......ccceeeciieeiiiiiiieccie et seb e e e e seeees 11-13
Coroutines Versus SUDTOUINES.cc..cvvververiiinieniiieieciieceeeeeeeeeeeeesrreeeeas 11-14
USINE COTOULINESeveeireeirieerieeiereerireerreeestneesreeeereeerresesneessssseessasesereesaneeas 11-15
RECUISION ...eeiiieieiie ettt ettt ettt s eb e e erbe s e sabe e s e e seneseeneeeemees 11-17
ProCESSOT TTAPS vvvveiereiiiieerrreeireeinee et iesieee ettt esteeeebes e ettssetteeseeessraeesreesseeenenan 11-19

xi

— e —
BN = —
N —

Bk ek kot e pmed ot
[el e
B I o WLV, IS SNLUS JEVS 8

APPENDIX A

Al
A2
A2l
A22
A23
A24
A.2.5
A.2.6
A2
A.2.8
A.29
A.2.10
A2.11
A.2.12
A2.13
A2.14
A2.15
A.2.16
A.2.17
A.2.18
A.2.19
A.2.20
A.2.21
A2.22
A.2.23
A.2.24
A.2.25
A.2.26
A.2.27
A.2.28
A.2.29
A.2.30
A.2.31
A.2.32
A.2.33
A.2.34
A.2.35
A.2.36
A.2.37
A.2.38
A.2.39
A.2.40
A.2.41

Trap INSTIUCHIONS 1..euveveeeiiiiciieict et 11-20

Use OF MACEO CAllS ooovieieeeeeeeee e ceirererrrieerrereer e e s e e s s e s essesssssssssssssassanenes 11-20
CONVETSION ROULITIES ..oeeieeveeeeeeeeesoeteeeeeirerseeeeessssreesesssoneraseeereeannrsssaeassssnnsnenees 11-21
PROGRAMMING THE PROCESSOR STATUS WORD ..o 11-25
PROGRAMMING PERIPHERALS ... 11-25
PDP-11 PROGRAMMING EXAMPLES. ... 11-26
LOOPING TECHNIQUEScoiiiteieimine ettt 11-32

ROM CODE DIFFERENCES

GEINER AL oottt et s et eeab e e s b e e st esan e e e st e sb s s b s b be e s an e saaseanbaesaneesaneeeas A-1
V6.0 AND V7.0 DIFFERENCESooooioiireiieiiiiiie e A-1
Boot Support for Tape MSCP Devices (TKS0/TUBL)....cccovvviiiniincininninen. A-1
Disk MSCP Automatic Boot ROULINE.......evevriviiiiiiiiiiiiiin i A-1
Dialog Mode Boot Command for Disk MSCP B0oOt......coccooniiiiiiiiiinins A-2
Disk MSCP B0t (DU) ...ocviiviiiiiiciecieeiesiesieeeeee e A-2
8-Unit Restriction for MSCP Automatic Boot.........ccovvrviiiiiiiiiiniiiin A-2
Irregular Monitoring of Keyboard During Automatic Boot Sequence............... A-2
Addition of Single-Letter Mnemonic in Automatic Boot List........c.cocccoevini. A-2
Setup Mode DISAbIEc.ceriiiiiiiiiiiii A-3
Disable All Testing Parameter........ccoovviiiiiiiiiirininee e A-3
Edit/Create COMMANG.........ccooceirirmirmiiiiiiieiiei e b A-3
Initialize Command for the PMG COUNLETc.cccooviiiiiiiiniiiieriiie e A-4
PMG Parameter WAarNiNg........ccvveeveeeriiecniiiniiieinisiieessses s siessies st A-4
Setup Command 4 Printout ..o A-4
MU (TKS50/TUSBL) DEVICE ..evevvieiieiiininiereiieii st A-4
Setup CommANd S......ciririeiiiiiiiee s A-5
Memory Initialization at POWer-Up ... A-5
Power-Up Option Set to 3 with Battery Backed Up Memory.........cccoeviiinnnn. A-6
Halt-on-Breakcoovvvivivemeciii e, rree e e e reerreeens A-6
Local Language SUPPOTTc.cccciiiiiimiieriiieisieir e A-6
Addition of Map Command Featurecccooveiiiiniiii A-6
EEPROM Load Error Before Dialog Mode.......cccovvvveviiiiiiiiiiiiniiieiee A-6
Test Command Decimal NUumberscccovvieeiiii i A-6
Test Command Execution of a Single Test......cccoovevvriiiiiiiiiiniiiiiiiineennees A-7
Test Errors in TESES 72 10 75 i iiiireiireeeiiiteeenirecernneeesrinnsenbs s ssisas s snieeesneeee s A-7
Bypass Errors for Test Failures........coooiiriiiiiiiiiniin A-7
Test 76 and 75 EITOr MESSAZESvveeereriierrierrieiirestessneeeseeasiase st e sences A-7
Starting Automatic Boot Sequence Messagecocovveeiiiinininiii A-7
Device Name and Number After MesSagecooovvveviiiiireniiiniiinniiicieieees A-8
Incorrect Message for Invalid Unit Number.........ccocviiiiiie A-8
Dialog Mode Header MeSSageccoviiiimmniniiniinniiien s A-8
Map Command MESSAZEcceuiuriiririiinimrieesisesiet e A-8
List Device DESCIIPIONS ...c..evveeeeeeiiriiiieiiiiieiere e A-8
Loss of the First Line in a List Headercccovviiiiiieiiiiiiincis A-8
<CTRL> R and <CTRL> U Echo.....cccccccvvcrievniiiniiniiiinienann. erreeer e raen A-8
Power-Up or Restart Mode Set to 3 (LSI Bus Only).......ccooooviieriininiinenn A-10
Automatic Boot Misleading Error Message (LSI Bus Only)........cccocovvininnne. A-10
APT Halt-on-Break Detect (LSI Bus Only)ocoeveeniiciinniniiniiiieiicninneens A-10
B Mnemonic for ROM Boots (Unibus Only)ccceevvevveneeniininninniiininininn, A-10
Error in List Command When Unknown ROM is Found (Unibus Only)....... A-10
Power-Up or Restart Mode Set to 3 (Unibus Only)ccoovniiiinniniinnnnnenee. A-10

Saving KMCR Bits <5:0> in the EEPROM (Unibus Only).......cccccocvviniiennes A-11

Xii

Z >

0NN B W —

APPENDIX B

APPENDIX C

DR NN = = = = e = O 00 I ON W B N —

IRV~ OLCOIN WD WN—O

Pt b bk et et ot bt Pk ok b ot bk ek ek i ot ek pd il i i e ek ek i i ek ek e

V7.0 AND V8.0 DIFFERENCEScccoiiiiiiiiiieeeece et A-11

M9312 MultiROM Bootstrap Support (PDP-11/84 Only).........cc.coevevvvvnnann. A-11
Small Memory Automatic Boot Problem for RQDX3.......cccccovvvvviiviiiiiinnnnn, A-11
RAnn Disk Spinup Time Delay for Automatic Boot.......ccocovvvvvveveveereneeene.. A-11
Addition of RESET Instruction at Beginning of Code..........ccccovvvvevvvrvennnnne. A-12
Addition of New Setup Command 5..........c..cccooviiviiiiiineicieciceee e A-12
Memory Test Coverage Problemccooviiviiniiiiiiiiiiecc e, A-12
List Command Device DesCriptions...........cc.coeeverivreeriereeeeviisieceseeseeseeven e A-12
Manufacturing Test Loop Problem...........ccocooiivuiiiiiiiiiicceeseeceeee e A-12

SETUP PARAMETER WORKSHEETS

PURPOSE ..ottt ettt ettt ettt ettt see st eanenen B-1
FUNGCTION L.ttt ettt et ettt et sta s e nes B-1
MNEMONICS
FIGURES

Programming Model..........cooiviiiiiiiiiiiiiiiiii ettt 1-2
Processor Status Word RegIStEr.......coviviiiiiiiiiiiiiicc e 1-4
CPU Error REGISTET ...vveuiiiiiiiiiciccicete ettt vttt ettt ettt et sae e 1-6
Program Interrupt Request Register........coooviviiiiiiiiiiiiiiicie e 1-7
L6-Bit MaADDING. ..t itieieiieiese ettt ettt ettt s v e ettt e eas st e erteaeeeas 1-11
18-Bit MaAPPING.....iitiiiiiiiiiiiieiiciinieeteei ettt a ettt st eer e srsesbeere e e eteerteereeeseneens 1-12
22-Bit MAPDINE . ..iiiiiiiiiieiie ettt ettt ettt e ert e tesnresaes 1-12
Virtual Address Mapping into Physical Address.......ccccovvvviiiviviiiieeceeeceenene 1-13
Interpretation of a Virtual Address........cccoovivviiiiiiiiiiiiiiieie v 1-14
Displacement Field of a Virtual Address...........ocoevviiviiiiiiiiiiiie e 1-14
Construction of a Physical Address....... ettt he e bttt ettt ra e et e sbeeesraeenrees 1-15
ACtIVE Page REISIEr.....cciiiiiiieiieie ettt re s s sb e 1-16
Page Address REGISTET.....cuiiiiiiiiiiiiiiiiiceccie ettt ettt ereene o 1-18
Page Descriptor REGISTErcccviiiiiiiiiiieciceee ettt eae e 1-19
Memory Management Register 0 (MMRO)ccoovviviiiiiciieeic e 1-20
Memory Management Register 1 (MMRI1) ..o e 121
Memory Management Register 3 (MMR3)ccccooviiiiiiiiiiiin e 1-22
Typical MemOry Pagec.vcoviiiiiiiiiiiiiiiii et re e eree s 1-24
Nonconsecutive Memory Pagesccoccieiiiiiiiiiiiiccecccce e eveens 1-25
Typical Stack Memory Page........ccoivivviiiiiiiiiiiii ettt 1-26
Cache Physical AQAIEsScovvviiiiiiiiiriiiiiicee ettt era s see s sbe s ssaresnnes 1-27
Cache Data FOrmat.......ccoooiviiiiiiiiiieie e st va e 1-27
Cache Control Register (CCR) ..c.ooovviiiviiiiiiiitieie ettt sras e 1-30
Hit/Miss Register (HMR).......ooooiiiiiiiiiirceeeceeceeee et er e 1-32
Memory System Error Register (MSER).......ccccocooiiviiiiiiiiecece e 1-32
Receiver Control/Status REZISIErcovivviiviiiiiiiiecieicceee et eve s 1-36
Receiver Buffer REGISIErcoviiiieiiiciciiciie et n v re e ere e 1-37
Transmitter Control/Status RegIStErccoovviiiiiiiiiiiiiiccecee e eee s 1-38
Transmitter Buffer Register......ococoeviiiiiiiiiiiiiiie e 1-39

Xiil

BB DD R NN —— - —

RV RV RV EVEV RV RV RV RV RV RV RV RV RV RV VRV RV RV RV RV RV RV RV RV NV N RV R R, R A e o o o i o o

RO CRAFRNR U —~DOORARNND W — O

Controller Status REZISTETocoviviiiiriiiiiiiiiiii e 1-40

Configuration and Display Register.......ccovrimiiiiiiiniininii 1-43
Maintenance REGISTETcoueiviiiiiiiiiiiiiiie et 1-43
Line Time Clock ReEZISTETccvvvieiiiiiiciiiiiiitiiiine e 1-45
KDJ11-B Module Layout.......cccuvvrieiiereeiiieiiiiiiieniie e 2-2
Pin Assignments for Connectors J2 and J3 ... 2-3
KDJ11-B MoQUIE CONEACES ...eeevveiiirieeiieeieieenieenneeeniinesnesssiesennesesseesiassntssseessenes 2-18
Help COMMANGScuerviiiieieiiiiniirierie et 4-2
Booting an RLOT/RLO2Z......cciiiiiiiiiiiiiiiiiie et 4-3
Available BOOt PrOZrams........ceuereeierieriieiiiiiiiiie et 4-5
Typical Translation Table ... 4-9
Automatic Boot Sequence Example.........cocooiviiiiiiiiiiiiiii 4-9
Select Console Message EXamplecccoecveriniiiiiiiiiiiniiiccee s 4-10
Switchpack Boot SeleCtionccoirimiiiiiiiiiie 4-11
Edit/Create an EEPROM BOOt........cccccoiiiiiiiiiiiiieee 4-13
Typical Map Mode Display.........cccovvmmminiininiie e 4-15
Continuous Testing Display.........c.cccevcirieiiiiiiiiiiii e 4-16
LoOP Test DISPIAY .evuveneeiieiieiiececiiiiit et 4-16
Typical Diagnostic Error Display..........cccooeiiniioi, 4-25
Typical Memory Test Error Display.......ccoooooiin 4-26
Typical Unexpected Trap Error Display.........ccooverininiiiis 4-26
General Bootstrap Error MeESSages........cccovivviiiiiinimniniiicr e 4-28
User Friendly Error MeSSagecoeoveiviiiiiiiiiiiieie e 4-28
KDJ11-B Functional Block Diagramccccoovviniininiiiiiii e 5-1
DCJ11-A Microprocessor LOZIC.......covviiimiiiiiiiiiieiiinieieieissr e 5-3
INOP TrANSACHON. c..eeeveveeeieiitieietieeiresiereesseesnreeseeeesmessareessbeessnttsssbnssrrseessbeessssessneansasas 5-6
Stretched NOP TransaCtioniiveccrierierercererrenrerereeentieeistennseessreesseasssessseresseesas 5-6
Bus Read TTanSACIONccevveveeiereeireesiererereeeeesieeenireeesasesiesssinsssnsssssnsesnseesssssssssesssees 5-7
Stretched Bus Read Transaction..........ooiveveveceenierciiiee e e 5-7
BUS WIte TranSACHON. . .civevvreertreeeitteeeetirrarsreeesiteeeenreeeenaeeeesaassesanaeesennntaesestnaessnnes 5-8
General Purpose Read Transaction..........occeveviiiiiiiiiiinnissnennnnecc 5-9
General Purpose Write Transaction...........ccceeviviiimviiniinieieiieei e 5-9
Interrupt Acknowledge Transaction...........cccouvevieiiieiiiiniiiiise e 5-10
BUS ATDITTALOL coiieieiiiitieeeeitreee vt e et esir e st e s aee e st beecesbbe s e s erans s asbaessarssasesaneneenns 5-11
PMI Cycle REQUESEcoveirirriiiiiiiiiic it 5-12
Data Path COontroller.......coooiiiiiiiiiiiiiiecie ettt 5-13
CYCle ENCOGET ...ttt 5-13
OSCHIALOr OULPULS....eerieeiieeiie ettt e st et 5-15
OSCIlIAtOr CONMLIOL c.vviiiveeireeirtre ettt et en s et e et s e e bn e sssaees 5-16
Next Address MUltIPIEXErcoviiveiieniinieneeeeniciie e 5-17
L0011 00 1) £ IO P O SUOUPTPPPR 5-19
Internal Bus Control Signalscccovoierienieniniiiiiii e 5-22
Cache MemOTY SYSIEIM ...ccuveruiiiiirireeireciiieee e 5-23
Cache Physical AdAressccvovvvveiiiiiiiiiiiiic i 5-23
Cache Data FOTMAL......oooviiiier ettt eercesire e sttt eare e saeaasee s 5-23
CAChE MEIMOTY ..ottt sttt 5-24
CaAChE TAZ StOTC...uuiiiiesieieetie ettt 5-24
Cache Data Parity LOZIC......ccoveiiiiiiiiiiie ettt 5-25
Valid Tag Bit..ceooiioiiieriiriieeeeee ettt 5-27
DMA TaZ SLOTE .vovieiiiteieereireetierete ettt ettt en e 5-27
Cache Control SIgNals..........cccovviiiieiiriiicee et 5-27
DC350/394 GaAte ATTAY..ccciieeiireiiieriee ettt eiereartssrreeentssnaesrnae e erbe s s sbestseeaneeas 5-28
DIC351 GALE AITAY..ccovrieeriereerireeeeiiee et ee st teeeaeeeesetbaesssrtseesibbb s s s ensbaseesnteessneeeess 5-34
NXM/Interrupt Timeout LOGIC......ccovovvirriiriiieiiieireciiiieii e 5-36
Internal Bus COntrol.......oooi oottt et 5-37

Xiv

tor Y 7 o1 1 1 1 1y
SO0 QAN LN AW

[o Mo N BV RV RV RV RV NV NI NN

1
NP oo = BN W W W W w

?\O\O\O.\O\O\O\O\O\O\O\

AN AR WN~O

SO OO0 OO0 OO OO0 00 OO0 SN N

I I A e | lo.oOIOOIO?OOlOC?O?OOOOO
W DR RN R DI DI DI DD = = e e

—OVOIOANUNMBEWN—RL,O ORI WL WND—O

OO0 OO0 OO0 OO0 OO0 Q0 OO0 0O Q0 OO0 00 00 OO0 OO OO

LSI-11 Bus Control SIgRalS.............cooivivieieioreieeeeeeeeeeeeeeee oo eeee e e eees e 5-38

PMI Bus Control SigNals..........o.ovviiiiiiiiiiieiceeeeeeeeeeseere e see e eeseseeeessseseeaeesens 5-39
Console Serial Line LOZICoiiiiviriiiiierieciieeieteeeeeee ettt 5-39
Console Interrupt Arbitration............c.ooivviviiiiiiiieiieie e ee e e e eeeer e 5-41
Configuration and Display Circuits..........ccooovevvveveeeerreeeereerann, —— e 5-42
Boot and Diagnostic ROM LogiC.........c.cccovvviviieiviiiieeeeeeeeeeee e e 5-43
Configuration EEPROM LOZIC.........ccocoiviiiiiiieiicecet oo eeres e eeraeas 5-43
Floating-Point ACCEIEIAtOrcviiieiiiiecceieec ettt e e e s e 5-44
DATI BUS CYCI....coiiiiiiiiiiiiieii ettt e enn 6-5
DATI Bus Cycle TIMINGooviiieiiiiiiiieieeiceee ettt e e e e saeean 6-6
DATO or DATO(B) BUs CYCIEoocuviiieiiiieeieeeeeeeeeeeeeeee e e 6-8
DATO or DATO(B) Bus Cycle TImMiNg.......ccovcveeeeeeeeeeereeeee e ees e eeeeeeereeseseerenns 6-9
DATIO or DATIO(B) BUS CYCIE....cccuiiiiiiiiiiiieiie oot eee e eereeee e 6-10
DATIO or DATIO(B) Bus Cycle TIming.......ccccoevivvieiiieeiieeeeeeeeseeeeeeeeeeeeeeeee e 6-11
DMA Request/Grant SEQUENCE...........ceoveiviiiiieiiieeeeseeeseeeeeeeeeeee s e eeeseressssreenaes 6-12
DMA Request/Grant Bus Cycle Timing.........ccocvoviiiiiiiiieeeeee et see e eeeeaas 6-13
Interrupt Request/Acknowledge SeqUENCE...........ocvovvvveveeieiee e, 6-15
Interrupt Protocol TImingc.ocivviviiiiieiiiieeeceecee et 6-16
Position-Independent Configurationc.ooviveiioeeeeeeeeeeeeeee e eeeeeeee e eer e 6-18
Position-Dependent Configuration...........c.ocvoioveoeeiireiieeeeeeeeereeese oo 6-18
Power-Up/Power-Down TiIming..........ccovviiiuiiriiiiiiieeieeeeceeeeeeeeeeeeeeeee e een e 6-20
Bus Line Termination.........c..occeevuiiiiriiiiieciiieec ettt e e e eeaeseeae s 6-23
Single-Backplane Configurationcccceecoviiiiiiiiiiiiiiceeceeee et 6-25
Multiple-Backplane Configuration...........c.cooovivviiiiiiiiiiiiie oo e eeaeenean 6-26
Single-Operand AdAresSingccveiiiieriioiiiiceiet et 8-3
Double-Operand AdAresSing..........oueevueeeiiiiiiiiciiiiireeiee et eee s 8-3
MOdE 0, REGISTET ...c..eiviiiitiiiierieiee ettt ettt ettt et er e eee e 8-4
Mode 2, AULOINCIEMENT L..vviuiiieeiiieeeeiest ettt et e e e e et e et e sereeeseeereeeseeaeeannas 8-5
Mode 4, AULOAECTEMENT ...oeovviviieiieeiieiiee ettt ee e e et e e e eeee s oo eeans 8-5
MOAE 6, INACK ...ouviiiiniieiieie ettt ettt e e 8-5
INC R3 INCIEMENL ..ottt ettt ettt e s eeeeneees 8-6
ADD R2,R4 Addooiieiieiieiece et s 8-7
COMB R4 Complement BYLe.........cocoevvierieriiiiiiiiiieieeeeee e 8-7
CLR (RE)H CleAT ittt ettt et e et e e ee s 8-8
CLRB (RS54 Clear BYte......cueouieiiiuiiieiiiere ittt 8-8
ADD (R2)H,R4 Add ..ottt en e 8-9
INC —(RO) INCIOMENTcoitiiiiiiieiieeiiiee ettt eeenen 8-9
INCB —(RO) INCIement BYLecooviiiiiiiieeiiiee et ee e ee e e s e eseeeesereseneeens 8-10
ADD —(R3),RO Add......ccoiiiiiiiiiieieiceecce e 8-10
CLR 200(R4) CIEATeoueeviiviirirriieireteet ettt et eteeeeeeeet et eeeeneaenes 8-11
COMB 200(R1) Complement Byteccocviiviiiirioiieeee et eeeeeeeee e, 8-11
ADD 30(R2),20(R5) Add....ccoovieieieiiiiiiiicecieteeee e 8-12
Mode 1, Register-Deferred...........coovviiiiiiiiiiiieeeee e e eeeeeee o 8-12
Mode 3, Autoincrement-Deferred............oovivvviieiiiieieiiee e, 8-13
Mode 5, Autodecrement-Deferredoovviiiiiiiiiiiiiiiiiiiee e, 8-13
Mode 7, Index-Deferredooviiiiiiiiiiii e 8-13
CLR @RS ClEAT ... ioiiiiiecieeie ettt et 8-14
INC @(R2)+ Increment................. et r e ettt e et bt e e et e et et e s e aere e e e et eesetaaessaaees 8-14
COM @—(RO) COMPIEMENT...tiiiviiiiiiiiiiiiiiceee e ee s 8-15
ADD @I000(R2),R1T Add ...ocveiiiieiieiiceeee e 8-15
ADD #10,R0 AdQ.....coooiiiiiiiiiiiieiet ettt 8-17
CLR @#1100 Clear........ccooviiiiiiiiiiiiiiieiiiciceccee e SO SN 8-17
ADD @#2000 Add.......c.coiiiieieeieieeiieeee et e 818
INC A INCTCMENT....uiiiiiiiiie ittt ettt eee et e e e e e e e e eeeeeereeesearnens 8-18
CLR @A CleaT. .ottt e et e e 8-19

XV

X ST - YV R VCR N
Fon—O

1 1
1 i i [ey

p—p—-»—-»—-»—»-,——-»—)———‘\O\O\O\O\P\O\O\O\O\O\O\O\O\O\O\O
oL dbbb U Arbrdbbawm

—
]

11-10
11-11
11-12
A-1

A3
A-4
A-S

A-7
A-8

SINGIE-OPErand GrOUPccovererieuiiii it 9-4

Double-Operand GIoup ©...cooeoveeiiiiiieieieie s 9-4
Double-Operand GrOUP 2......eeeeveverrerieiiiiiieiiiieieeere e 9-4
Program Control Group Branch...........cccooiiiiiiiiiin 9-4
Program Control Group JMP ..o 9-5
Program Control Group JSR ..o 9-5
Program Control Group RTSccoiiii s 9-5
Program Control Group Traps.......cccoooiiiiiiiiiiii i 9-5
Program Control Group Subtractccocovviiiiiiiiiine 9-5
Y 1 G U U OO PO O P PSUUPPP PRSP 9-6
Call to SUpervisor MOdecocviiiiiiiiiiiiii 9-6
Set PrOTItY LeVEl .oiiiiiiieieiieeieiie it 9-6
OPETALE GIOUD...vetiietenienieeeieent ettt b et eb bttt 9-6
CONAITION GIOUP ..cuvtiereieerreeieetiente ettt sttt 9-6
Move To and From Previous Instruction/Data Space Group.........ccoeceevveeirieciiennnns 9-7
Byte INSTIUCTIONS .. .cvvivieiiiiiiiiiiei et 9-7
Single-Precision FOrmat.. ..o 10-2
Double-Precision FOrmat. ..o 10-3
2’s Complement FOrmat........oocovvriiiiiiiiiiiii i 10-3
Floating-Point Status ReGISter..........ooviiviiiiiiiiiiii 10-3
Floating-Point Addressing Modesccooiiiiiiiiiiiii e 10-9
Word and Byte SACKScccociiviiriierieeeiceccceise e 11-5
Push and Pop OPerationscceveeieieriiiiiiiiiiiiirieieie e 11-6
Byte Stack Used as a Character Buffer ... 11-9
JSR Stack Condition EXampPle.....c.ocovviiriiiiiieiiiiiice e 11-9
Nested Interrupt Service Routines and Subroutines............coccocevenreneninennns 11-11
Reentrant ROULINES.......ooivvieiiriieiirireeeitiee et staa s enae s erbe s e sbn e s airae e 11-12
Sharing Control of @ ROULINE.....c..ccccuiiiiiiiiiiiiiii e 11-13
Coroutine Example......cccoooiiviiiiiiii e eertr e 11-14
Coroutines Versus Subroutings.........ccocceeeevvveeenneiernnnen, et e e e e aetreeenae 11-15
COoroutineg Pathoooiiiiiiiee ettt 11-16
Coroutineg INtEIaCION.cveeeeeierieiiree e it ie e ieee e s ee st e e st reseinesessiraesesbae e e ensbaresens 11-16
Recursive Routing FIOWcooiiiiiiiiiiiicce i 11-17
Program for Continuous LOOPcccooiiiiiiiiiiniiic e A-3
PMG Count Value Warning MeSSagecooceeervvreriiiiiiiniiininin it A-4
Single-Letter Description for Command 4..........ccooveviniiiiiniie A-5
Automatic Boot Sequence MESSAZEc.cueerveeririiieiciiiiiiin it A-7
V6.0 INCOTTECE IMESSAZE .. vveierrierenieeeeieee ittt ertree e eeee st ibe e e snnae s aanee A-8
V7.0 Correct Error MESSAZEccuivevreieieiriiieiiii ittt A-9
V6.0 List Header ErrOr...c..ooooiiiiiieii ittt et ans A-9
V7.0 Correct List Headerooooiiiiviiieireiiee ettt A-9

Xvi

—

—
1 '
OO\ BWN —

1 1 1

—
Nel

—

1 1

F—

DAahbALLALLLL AL L L L
W~ OO0XASCUNH W — S

[NS (N 2 N6 T (N5 T (N5 T (NG T (N T S g U U G U S

1 1] 1 1 1 L})
L N
o

Y YI-PA-&A-&&MI\)NN

= \D 00 1O\ h b LN —

— O

L hh o o b o e

TABLES

General PUrpose REZISLETS..........v.ivuivveceeeieeeeeeeeieeeseees oo oo 1-3
Stack Pointer (PSW <15:14> 0or <I13:125) wuoeouoooieeeeeeeeeoeoeoooeooeooooo 1-4
Processor Status Word Bit DeSCription..............ooveeeveveereeesseoeoeoeoooooooooo 1-5
CPU Error Register Bit DeSCription..............cocevrvevoereveeeeeeeeeooosoooooooooooooo 1-6
Program Interrupt Request Bit DeSCription..........coooeovoveeoeemeoooooooeoooooo 1-7
KDJ11-B INteITuptS coovevveieivreeieieeeeeeeeeeereeeee e, e 1-8
KDJ11-B Compatibility.......cocvueveveveriteiiiieceeeeeeeee oo 1-13
Memory Management Register AddIessese.eeemrorereroreeeeoeeeeeoeeeoeoooooeooeoe 1-17
Page Descriptor Register Bit DeSCriPtioncoceoveevovevooeeooeoeoeoeooeooooooo 1-19
MMRO Bit DESCIIPUON.c.vvvvvreceiieieceeeeeeeeee oo 1-21
MMR3 Bit DeSCIIPTON. .. .ottt 1-22
Cache ReSponse MatriX......oovoviieieieiuieieceeeeeeeete e 1-28
Cache Parity EITOS.........ccoovinieiniiriie oot 1-29
. Cache Control Register Description........... et e e et enee s 1-31
Memory System Error Reglster DesSCriptionccovveiiiiiiiiiicceeee e, 1-33
Baud Rate SEIeCtionc..iumiiriuiuiiiieiieecee e e 1-35
RCSR Bit DESCIIPON ...ttt oot 1-36
RBUF Bit DESCIIPOMN ...cvvevivitiiiiescieiceeeeeeeeeeeee e 1-37
XCSR Bit DESCIIPHON ...t ernterarenees 1-38
XBUF Bit DESCIIPHON ...c.evturtitreectieeee et e 1-39
Control/Status Register Bit DeSCriPtionoceueveeeereeeeooeoeeeeeoeooooo, 1-40
Maintenance Register Bit DeSCIiPtion.ocoeveveievereeeeseeees oo 1-44
Line Time Clock Register Bit Description......... ettt eaes 1-45
Jumper Wire FUNCHONSoviveieiiiieieieccccceeee e e 2-2
©J2:and J3 CONNECLOTSiviviiiiiiiieiee e e 2-4
+ Baud RAte SElCCtONS.vv.vveveceeeeeeeeeeeee oo oo 2-4.
Bootstrap Program SeleCtion................iueueeieeeeeoeeee oo 2-5
Diagnostic and System Status LED Dlsplay ... 2-6
Configuration Parameters........o.o.ovovviviieeieeeeeeeeee oo oo 2-8
LSI-11 Compatible OPtions............oceveeeveeeeeeeeeereeeeeeeeeeeeeeeeeeoeeoeoeeeoeeeeeeeeee, 2-13
Unibus Compatible OPtionsc.vvuiuieieeeieeeeeeeeeeeeeeeee oo 2-16
KDJ11-B Module and LSI-11 Bus Signals ettt e e s et sbeeneees 2-19
Module PMI Signal Assignments.................... e e st e e e s saateaerane e b b e s besssns 2-20
Console ODT COMMANAS.......cvverieieeiieieieieeseeeeee oo 3-3
Setup Mode COMMANGScovvevivieireirieieeeeceeee oo ere e e, 4-6
Configuration Parameters...........ouiuiviviiivceiieieeeeeeeeeeeee oot 4-6
SWItchPack SElECtIONS.cveviviiiviieieieceeeeeeeee oo, 4-11
ROM ODT COMMANGS......ccovririuriirieieiriiieeeeeeeee e e e e et s oo 4-14
Diagnostic LED DISPIAYS.......cvoioveviviiieieeeieeeeeeeeeeee oo es oo, 4-17
Bootstrap Error LED Displays...........coccoeevivveveernennn.. et ... 4-27
MATO COQING.....oeiiiiiieie et 5-3
Bank Select Address Codes.coviviiiiriiiiireteeeeeee et eeeee e e e e oo enesns 5-4
General Purpose Read Codes..........o.oviviviveveiieeeeeeeeeeee oo 5-8
General Purpose WIite COUES............uivivviueeeereeeereeeeeceeeee oo esese e, 5-9
Control SIZNALScoeiiiiriieiiie et 5-11
Cycle ENCOAer Statusccuivivieiiiiciiieeceeee e e oot 5-14
Transactions Selected by LCYCCD OULPULSovvvevereeeeeeeeeeeeeeeeese e, 5-14
Oscillator Control SIGNALS..........vveveieieivirivieceieeeeeeeee e e ee e s e ese s 5-16
Selection of NA <1:0> STAtUS......c.ovoviiieieeeeeereeeee e oo 5-17
Control SLOre OULPULSeuvveieiviveieiiieies et e e e s e 5-20
CaChe Paritycociiiiiiiiic et r oo 5-26

Xvii

DO st et et et bt et ek st
QOO IV AWM

1 1 [] 0

LTC INEEITUPLS c..eeenrieeieeiiereieeiee st seeeenie s sbe st b e s e st sne e ene e 5-29

AMUX SelECLIONSvvveiiiieiiieeciee et ceies e e steeeree sttt et e st e s ea e e saneesans 5-30
Parity Interrupt and Abort LogIiCccceevirriveeiiiiiiiiniii e 5-31
CCR Register SeleCtionsccovveiiiviiirieiiiiecereeireeie et 5-31
AAAress DECOTING.........vvvviiiiiirieiiiie e esre ettt ettt es e senbs s s e enaasaane 5-32
DEVCD OQULPULSoooviieiiieecieeerree e eries e cenee e e sneesbscobesstesestesesraesesssassssannsnas 5-32
(@) v) [B 1Tt |1 1V USSP 5-33
Register SeleCtioncccoecciiiiiiiiiiecr et 5-40
Baud Rate SeleCtions.........ccovvirviricieiniecieerceerce i e 5-40
Summary of Signal Line Functionsccccecvviiiniiiiiiiiiiiiiiiies 6-1
Data Transfer Bus CYCIEScccivviiiriieniieenrieeeree et 6-3
Data Transfer Bus Signals..........ccccoeveiiiriiieiieiic et 6-4
Position-Independent, Multilevel Device Requirements.........ccccooiiiniiinieninnnne. 6-17
PMI Bus Master SIZNals..........icoiieciiiiiiiieeiieecr ettt eieeesebecsaeeeisessinasenane s 7-2
PMI Slave Signalsceeoeeiiiriinieeniieireeieeeeeer sttt st 7-3
PMI Unibus Adapter Signals.........ccecverienenneiniiniiniiciiecci e 7-4
LSI BUs SINAIS ...c..ooiiiiiiiiieieeceenireneenrcereees st ae st 7-5
Sample KDJ11-B INStIUCLIONScevveriirieriiiiieneniieiciericeecsiee e 8-4
INSEIUCHION SELvvviiiioireiiieirreserrtreeseirereseesrrerarrrressbbeeesabeeeeeanteeseaneeressnneeeessnsaesssaanns 9-1
FPS Register Bit DesCriptioncocccecviviirninniniiiiiciie e 10-4
ROM Part NUMDETSvviiiririeiecveeesiiereeeiieeesetaeeesereeestnnessssbeeesesssnessssseeesennnseessann A-1
Setup Command 4 Automatic Boot Lists......ccccoooeeriiiiiiiiiiiiniciiciiie A-5
ROM Code TeSt SEleCHONS.....cccovviiiiiiieeeeiiieireeeeriieeesiireesbirresebeeeeeerneeesesnneesesnns A-6
New List Command Device DeSCriptionsccccvvveieeiiiiiieeeeeieieerrieeeeereivireenaeaens A-13

Xviii

PREFACE

This user’s guide contains descriptions of the KDJ11-B CPU module architecture, configuration, system
requirements and programming. The module architecture is described in Chapter 1 and is supported by
the description of functional theory in Chapter 5. The configuration requirements are described in Chapter
2 and are selected from the preprogrammed ROMs described in Chapter 4. These ROMs also contain the
bootstrap programs and diagnostic testing for the module. Additional testing can be accomplished by using
the ODT techniques found in Chapter 3.

The system requirements for the extended LSI-11 bus (Q22-Bus) are covered in Chapter 6 and the private
memory interconnect bus operation is described in Chapter 7.

The base instruction set is described in Chapter 9 and the floating-point instruction set in Chapter 10. The
addressing modes are covered in Chapter 8 and some of the programming techniques for the instruction
sets are given in Chapter 11.

Appendix A details the changes incorporated in V7.0 and V8.0 of the ROM code. Appendix B provides

worksheets to record the configuration being used for a system. Appendix C lists the mnemonics fre-
quently used in this guide.

Xix

CHAPTER 1
ARCHITECTURE

1.1 DESCRIPTION

The KDJ11-B is a quad-height processor module for LSI-11 bus systems. It is designed for use in high
speed, real-time applications and for multiuser, multitasking environments. The module can also function
as a CPU in PDP-11 Unibus systems, when it is used in conjunction with the KTJ11-B Unibus adapter
module. . :

The module interfaces to the standard 22-bit LSI bus and has the additional control signals necessary for
communication via the Private Memory Interconnect (PMI). The PMI protocol uses the C/D interconnect
bus and allows high speed data transfers across the bus, including double word reads. The LSI bus can
address up to 4 Mbytes of main memory. Block mode Direct Memory Access (DMA) transfers — allowed
on the extended bus, are supported by the KDJ11-B module. The MSV11-J memory module and the
KTJ11-B Unibus adapter module are compatible with the PMI protocol.

The KDJ11-B module executes the complete PDP-11/70 base instruction set, including the Extended
Instruction Set (EIS) and the MTPS, MFPS, MFPT, CSM, TSTSET, and WRTLCK instructions. It also
supports the FP11 floating-point instruction set that is compatible with FP11-A, -C, -E, and -F floating-
point processors. Full 22-bit memory management is provided for both instruction references and data
references in three protection modes: kernel, supervisor, and user.

The three protection modes provide the ability to implement layered software protection. Memory
management separately manages the three modes, allowing each one to access different sections of main
memory. Furthermore, each section can have different access protection rights. Each mode uses a separate
. system stack pointer that offers an additional degree of isolation. The protection modes are organized so
that a higher protection mode can always enter a lower protection mode, while a lower protection mode
can never accidentally enter a higher protection mode. Kernel mode has full privileges and can execute all
instructions. Supervisor mode and user mode, the two lower privileged modes, cannot execute certain
instructions. . '

The module uses a DCJ11-A microprocessor chip as a central processor having memory management and
floating-point processing capability. It also has an 8-Kbyte cache memory, a line time clock, a console
serial line unit, and a boot facility with diagnostics.

The 8-Kbyte write-through direct map cache has a dual tag store that allows concurrent operations of the
CPU and DMA. The cache is transparent to user programs and acts as a high speed buffer between the
processor and main memory. The data stored in the cache represents the most active portion of the main
memory in use. The processor accesses main memory only when data is not available in the cache.

The full-duplex console serial line unit provides an interface for the console terminal. The unit is a DC319

Digital Link Asynchronous Receiver/Transmitter (DLART) that partially supports the RS-423, and fully
supports the RS-232-C EIA standards.

1-1

The KDJ11-B module supports console emulation (micro-ODT). This allows users to interrogate and write
main memory and CPU registers as if a console switch panel and display lights were available.

The boot and diagnostic facility features two sockets for Read-Only Memory (ROM) chips that contain
the boot and diagnostic programs. It also has a third socket for an Electrically Erasable Programmable
ROM (EEPROM) chip that contains configuration data and space for the user’s loadable boot code. The
operation of the boot and diagnostic facility is described in detail in Chapter 4.

The KDJ11-BB and -BF modules provide sockets for the installation of the optional FPJ11 Floating-Point
Accelerator (FPA) chip. This is a coprocessor that significantly improves the execution speed of floating-
point instructions. The KDJ11-BC (M8190-00) version of the module cannot use the FPJ11 optional FPA
chip.

Self-diagnostic display LEDs are provided on the KDJ11-B module. They indicate the status of the module
and system when the module is powered up. The LEDs aid in troubleshooting module failures.

The user-visible registers are shown in Figure 1-1 and are classified as general purpose, system control,
memory system, floating-point and Memory Management Registers (MMRs).

1.2 DCJ11-A FEATURES

The DCJ11-A microprocessor operates in three modes: kernel, supervisor, and user. A program operating
in the kerrel mode has complete control of the system and incorporates protection mechanisms against any
external interferences. Programs operating in the supervisor and user modes can be inhibited from
executing certain instructions and can be denied direct access to the system peripherals. This feature is
used to provide complete executive protection in a multiprogram environment.

There are 16 general purpose registers, as listed in Table 1-1, but only 8 are visible to the user at any given
time. The zeneral purpose registers provide a Stack Pointer (SP) for each of the three operating modes and
a Progran: Counter (PC). The remaining 12 registers are divided into two groups of general purpose
registers, RO-R5 and RO’-R5’. All of these registers can be used as accumulators, deferred addresses,
index references, autoincrement, autodecrement, and stack pointers.

GENERAL PURPOSE SYSTEM CONTROL MEMORY SYSTEM SLU CONSOLE
RO ! RO’ KsP [psw | [tnectock] [cAche cTRL] | RCSR |
R1_° R1’ sSSP
R2 . R2’ UsP [_pra 1 [mant] [memsvserr] | RBUF]
R3 - R3’
R4 rRe | | pc] [cruERROR | I [xcsm]
RS RS’ :
F LOATING POINT MEMORY MANAGEMENT L XBUF |
[res [rec] [Fea] [wmro] [wwR1] [wmrz] [wwrs |
ACCUMULATORS (64 BIT) BOOT AND DIAGNOSTICS
PAGE REGISTERS (32 BIT) . | conTrOL/sTATUS 1
KERNEL (00) SUPERVISOR (01) USER (11)
PAR | PDR PAR | PDR PAR | PDR [_PacEe conTROL |

| conrFanDDISP |

o b T

81 SPACE AND 8 D SPACE MR-16833

Figure 1-1 Programming Model

1-2

Table 1-1 General Purpose Registers .

Register

Number Designation

0 RO RO’ -

1 R1 RI’ -

2 R2 R2 -

3 R3 R3’ -

4 R4 R4’ -

5 RS RS’ -

6 KSP SSP USP
7

PC - -

The system control registers are the Processor Status Word (PSW), the Program Interrupt ReQuest
(PIRQ), and the CPU error register.

1.2.1 Stack Limit Protection

The DCJ11 monitors the kernel stack references against the fixed limit of 400. A yellow stack trap occurs
at the end of the current instruction when the address of the stack reference is less than 400. A yellow
stack trap can only occur in the kernel mode during a stack reference. This is defined as a mode 4 or 5
reference through R6, a JSR trap, or an interrupt stack push.

The microprocessor also checks for kernel stack aborts during interrupts, traps, and abort sequences.
When a kernel stack push causes an abort during one of these conditions, a red stack trap occurs. This type
of stack trap sets bit 2 in the CPU error register and loads virtual address 4 into the kernel stack pointer
(R6). A trap through location 4 in the kernel space now occurs and the old PC and PSW are saved in
locations 0 and 2, respectively, of the kernel space.

1.2.2 Kernel Protection
The following mechanisms are used to protect the kernel operating system against external interference.

e In the kernel mode, the HALT, RESET, and SPL instructions are executed as specified. In the
supervisor or user modes, the HALT instruction causes a trap through location 4, but the
RESET and SPL instructions are treated as NOPs.

® In the kernel mode, the RTI and RTT instructions can freely change bits <15:11> and <7:5>
of the PSW register. In the supervisor or user modes, these instructions can only change bits
<15:11> of the PSW register.

e In the kernel mode, the MTPS instruction can change bits <7:5> of the PSW register. In the
supervisor or user modes, the MTPS instruction cannot change bits <7:5> of the PSW register.

e All the trap and interrupt vector addresses are classified as kernel space addresses, no matter
what memory management mode the system is using or the contents of the PSW at the time the
interrupt or trap occurs.

e The kernel stack references are checked for stack overflow, but the supervisor and user stack
references are not checked.

1.2.3 General Registers

There are two groups of six registers designated RO-RS and R0O-RS’. The group currently in use is
selected 9y bit 11 in the PSW. When bit 11 is set (1), the RO’-RS’ group is selected, and when bit 11 is
cleared (0), the RO-R5 group is selected.

1.2.4 Stack Pointer

Register six (R6) is designated as the system stack pointer. There are three stack pointers available, one for
each cor-esponding protection mode. However, only one is visible to the user at a given time. Processor
status bits 14 and 15 select the active stack pointer used for all instructions except MFPI, MFPD, MTPI,
and MTPD. When these instructions select R6 as the destination register, bits 12 and 13 of the PSW select
the activs stack pointer. In both cases, the 2-bit selection codes described in Table 1-2 are used to select
the active register.

1.2.5 Program Counter

The PC :ontains the 16-bit address of the next instruction stream word to be accessed. It is designated as
R7 and controls the sequencing of instructions. The PC is directly addressable by single- and double-
operand instructions and is a general purpose register, although it is normally not used as an accumulator.

1.2.6 Processor Status Word (17 777 776)

The PSW ‘provides the current and previous operational modes, the general purpose register group being
used, the current priority level, the condition code status, and the trace trap bit used for program
debuggirg. The PSW is initialized at power-up and is cleared with a console start. The PSW register is
defined in Figure 1-2 and is described in Table 1-3.

Table 1-2 Stack Pointer (PSW <15:14> or <13:12>)

Code Selected R6
00 Kernel Stack Pointer (KSP)
01 Supervisor Stack Pointer (SSP)
10 Illegal — User stack pointer selected
11 User Stack Pointer (USP)
15 14 13 12 " 10 09 08 07 05 04 03 02 01 00
I T T T T
REG St
%/IUOHD':(EE NT :anEE\)/E SET| o NIU ol o :;E‘\I/%TT‘Y T N Z VY€

MR-11042

Figure 1-2 Processor Status Word Register

Table 1-3 Processor Status Word Bit Description

Bit(s)

Name

Status

Function

<15:14>

<13:12>

11

<10:9>

<7:5>

Current mode

Previous mode

Register set

Not used
Suspended information

Priority

Trap*

Negaﬁvc
Zero
Overflow

Carry

R/W

R/W

R/W

R/W

R/W

R/W

R/W
R/W
R/W

R/W

-0

Indicates the current operating mode and is coded
as follows.

Bits
15 14 Mode

0 0 Kernel

0 1 Supervisor
| 0 Illegal
1 1 User

Indicates the prévious operating mode and is coded
the same as bits <15:14>.

Selects the group of general purpose registers being
used. When the bit is set, the RO’-R5’ group is
selected and when cleared, the RO-R5 group is
selected.

Read as zeros.
Reserved.

Indicates the current priority level of the processor
and is coded as follows.

Bits
7

1

1
1
1

0

0

0

n

Priority Level

S =N Wh LA

oo =—oO0oOo~ &
C—~O—~O— O —

The trap bit is inactive when it is cleared. When set,
the processor traps to location 14 at the end of the
current instruction. It is useful for debugging pro-
grams and setting breakpoints.

Condition code N is set when the previous opera-
tion result was negative.

Condition code Z is set when the previous operation
result was zero.

Condition code V is set when the previous operation
resulted in an arithmetic overflow.

Condition code C is set when the previous operation
caused a carry out.

*

1-5

The T-bit cannot be set by explicitly writing to the PSW. It can only be changed by the RTI/RTT instructions.

1.2.7 CPU Error Register (17 777 766) ,

The CPU error register identifies the source of any trap or abort condition that caused a trap through
location 4. Six separate error conditions are identified in Figure 1-3 and are described in Table 1-4. The
register is cleared by any write reference, by power-up, or by console start. It is not changed by the
RESET instruction.

15 08 07 06 05 04 03 02 01 00
T T T T T T T
NOT USED ILL | ADD 10B NU
0,0 0,0 0 0,0 ofnr|enr|VM o |YV]RVI 5",
Figure 1-3 CPU Error Register
Table 1-4 CPU Error Register Bit Description

Bit(s) Name Status Function

<15:8> Not used Read Read as zeros.

7 [llegal HALT Read Set when execution of a HALT instruction is
attempted in user or supervisor mode.

6 Address error Read Set when word access to an odd byte address or an
instruction fetch from an internal register is
attempted.

5 - Nonexistent Read Set when a reference to main memory times out.

memory

4 I/0 bus Read Set when a reference to the I/O page times out.

timeout

3 Yellow stack -Read Set on a yellow stack overflow trap. (Kernel mode

violation stack reference less than 400 octal).

2 Red stack Read Set on a red stack trap — a kernel stack push abort

violation during an interrupt, abort, or trap sequence.
<1:0> Not used Read Read as zeros.

1-6

1.2.8 Program Interrupt Request Register (17 777 772) :

The PIRQ register implements a software interrupt facility. A request is initiated by setting one of the bits
<15:9>, which corresponds to a program interrupt request for priority levels 7 through 1. Bits <7:5> and
<3:1> are set by hardware to the encoded value of the highest pending request set. When the interrupt is
acknowledged, the processor vectors to address 240 for a service routine. It is the responsibility of the
service routine to clear the interrupt request. The PIRQ register is defined in Figure 1-4 and is described in
Table 1-5. The PIRQ register is cleared at power-up, by a console start, or by the RESET instruction.

15 14 13 12 1 10 09 08 o7 05 04 03 01 00
U 1 1 T

PIR | PIR PIR PIR PIR PIR | PIR NU ENCODED NU ENCODED NU

7 6 | 5 4 3 2 1 o] VIALUE , 0 VIALUE . | O

MR 9013

Figure 1-4 Program Interrupt Request Register

Table 1-5 Program Interrupt Request Bit Description

Bit(s) Name Status Function

15 Level 7 R/W Requests an interrupt priority of level 7.

14 Level 6 R/W Requests an interrupt priority of level 6.

13 » LeQel 5 R/W Requests an interrupt priority of level 5.

12 Leve! 4 R/W Requests an interrupt priority of level 4.

11 Level 3 R/W Requests an interrupt priority of level 3.

10 Level 2 R/W Requests an interrupt priority of level 2.

9 Level 1 R/W Requests an interrupt priority of level 1.

<7:5> Encoded value R/W Bits <7:5> represent the encoded value of the high-

est priority level set in bits <15:9>.

<3:1> Encoded value R/W Bits <3:1> represent the encoded value of the high-
est priority level set in bits <15:9>. It is the same
value as bits <7:5>.

0 Not Used Read as zero.

1-7

1.3 INTERRUPTS

The KDJ11-B module uses a variety of trap, hardware, and software interrupts. Their order of priority is
given in Table 1-6. Four interrupt request lines allow external hardware to interrupt the processor on four
interrupt levels using an externally supplied vector. Seven levels of software interrupt requests are
supported through use of the PIRQ register. A variety of internally vectored traps are provided to flag
error conditions, and certain instructions result in a trap condition.

Interrupts and traps are requests that cause the KDJ11-B to temporarily suspend the execution of the
current program and service the device or condition that caused the interrupt or trap. The KDJ11-B has
eight levels of interrupt priority and the current priority level is defined by bits <7:5> of the processor
status register. Therefore, only interrupts with a higher priority than the current priority can interrupt the
current program. The only exception to this is the nonmaskable interrupt or trap that occurs independent
of the processor priority. These nonmaskable interrupts have their own priority structure (Table 1-6).

1.3.1 Sunset Loops
A sunset loop is an infinite loop caused by illegally mapped vectors. The following sunset loops can be
exited by asserting the BHALT input.

Interrupts Cause
Parity error Bad parity in the parity vector
Trace trap Trace vector has T-bit set
. All PIRCs PIRQ vector priority level does not block that level
Aborts ' Any abort that occurs during a service routine such as reading the vector or

pushing onto the stack. These include nonexistent memory, I/O timeouts,
MMU aborts, parity aborts, and odd address aborts.

Sunset loops that cannot be exited are caused by external inputs that are not being reset or cleared. These
can be MPWRF L, MFPE L, MIRQ <3:0> H, and MEVNT L.

Table 1-6 KDJ11-B Interrupts

Internal/ Vector " Priority
Interrupt External Address Level
Red stack. trap Internal 4 NM*
(CPU error register, bit 2)
Address crror Internal 4 ' NM
(CPU error register, bit 6)
Memory management violation Internal 250 NM
(MMRUO, bits <13:15>)
Timeout/nonexistent memory Internal 4 NM
(CPU error register, bits <4:5>)
Parity error (PARITY, ABORT) External 114 NM
Trace (T-bit) trap (PSW, bit 4) Internal 14 NM
Yellow stack trap Internal 4 NM

(CPU error register, bit 3)

1-8

\

Table 1-6 KDJ11-B Interrupts (Cont)

Internal/ Vector Priority
Interrupt External Address Level
Power fail (PWRF) External 24 NM
FP exception (FPE) | External 244 NM
PIR 7 (PIRQ, bit 15) Internal 240 7
IRQ 7 | External User defined 7
PIR 6 (PIRQ, bit 14) Internal 240 - 7
BEVNT (LTC) External 100 6
IRQ 6 : | ' External User defined 6
PIR 5 (PIRQ, bit 13) Internal 240 .5
IRQ 5 External User defined 5
PIR 4 (PIRQ, bit 12) Internal 240 . 4
IRQ 4 External User defined 4
PIR 3 (PIRQ, bit 11) Internal 240 3
PIR 2 (PIRQ, bit 10) Internal 240 2
PIR 1 (PIRQ, bit 9) _ Internal 240 1
Halt line (HALT)+ External None
FP instruction exception 244
TRAP (trap instruction) 34
EMT (emulator trap instruction) 30
10T (I/O trap instruction) | ‘ | 20
BPT (breakpoint.trap instruction) 14
CSM (call to supervisor mode instruction) 10
HALT instruction 4
WAIT (wait-for-interrupt instruction) Does not trap, but frees the bus when

waiting for external interrupt.

NM = Nonmaskable

T The halt line usually has the lowest priority. However, it has highest priority during vector reads. This allows the user to break
out of potential infinite loops called sunset loops. A sunset loop could occur if a vector has not been properly mapped during
memory management operations.

1-9

1.3.2 Red Stack Aborts

A red stack abort happens when an abort occurs while pushing the PC and PSW onto the kernel stack
while in the process of servicing an interrupt, an abort or a trap routine. This type of abort sets bit 2 of the
CPU er-or register, loads the kernel stack pointer (R6) with virtual address 4, and then traps through
location 4 in the kernel space. The old PC and PSW are saved in locations 0 and 2 of the kernel space.

The service routine to clear bit 2 of the CPU error register reads the vector at virtual address 4 in the
kernel space. An emergency stack is then set up in the new mode at virtual address 4 and executes a trap
through virtual address 4. This insures that the old PC and PSW are saved in kernel space locations 0
and 2.

1.3.3 Addressing Errors

An addressing error occurs when an odd address is used with a word reference (odd address error), or an
instruction stream fetch attempts to access an internal processor register. The internal processor registers
are the PDRs, PARs, CPU error, PSW, PIRQ, MMRO0-MMR 3, Hit/Miss, and CCR. When an address-
ing error happens, it sets bit 6 of the CPU error register and traps through virtual address 4 of the kernel
data space.

1.3.4 Bus Timeout Errors ,

A bus timeout error occurs if the BRPLY L bus signal is not asserted within 10 useconds after the
KDJ11-B asserts the BDIN L or BDOUT L signals. The I/O page timeout error sets bit 4 of the CPU
error register if the address references the /O page. The nonexistent memory timeout error sets bit 5 of
the CPU error register for all other address errors. As a result of the error condition, the KDJ11-B traps
through virtual address 4 of the kernel space. In a Unibus system, the KDJ11-B does not time out, but
relies on the Unibus adapter module to assert the PMI timeout signal.

1.3.5 Interrupt Vector Timeouts

An interrupt vector timeout occurs if the BRPLY L bus signal is not asserted within 10 useconds after the
KDJ11-B acknowledges an interrupt by asserting the BIAK L bus signal. The timeout is ignored by the
KDJ11-B and it continues as if the interrupt request did not occur. In a Unibus system, the KDJ11-B does
not time out, but relies on the Unibus adapter module to assert the PMI timeout signal.

1.3.6 No SACK Timeouts

The no SACK timeout occurs when the BSACK L bus signal is not asserted within 10 useconds after the
KDJ11-B grants a DMA request by asserting BDMG L. The timeout is ignored by the KDJ11-B and it
continues as if the DMA request did not occur.

1.4 MEMORY MANAGEMENT

KDJ11-B memory management provides the hardware for complete memory management and protection.
It is designed to be a memory management facility for accessing all of physical memory and for multiuser,
multiprcgramming systems where memory protection and relocation facilities are necessary.

In multiprogramming environments, several user programs arc resident in memory at any given time. The
tasks of the supervisory program include the following.

e Control the execution of the various user programs

® Manage the allocation of memory and peripheral device resources
e Safeguard the integrity of the system as a whole by control of each user program

1-10

In a multiprogramming system, memory management provides the means for assigning memory pages to a
user program and for preventing that user from making any unauthorized access to pages outside his
assigned area. Thus, a user can effectively be prevented from accidental or willful destruction of any other
user program or the system execu‘give program.

The following are the basic characteristics of KDJ11-B memory management.

16 user mode memory pages

16 supervisor mode memory pages

16 kernel mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 64 to 8192 bytes

Each page provided with full protection and relocation
Transparent operation

3 modes of memory access control

Memory access to 4 Mbytes

1.4.1 Memory Mapping
The processor can perform 16-, 18-, or 22-bit address mapping. The I/0 page, which is the uppermost 4K
words of memory, always uses the physical address locations 17 760 000 to 17 777 777.

1.4.1.1 16-Bit Mapping - There is a direct mapping relocation from virtual to physical addresses. The
lowest 28K virtual addresses are the same corresponding physical addresses. The 1/O page physical
addresses are located in the upper 4K block as shown in Figure 1-5.

17777777
4K
- 17760000

177777
160000

00167777
VIRTUAL !
(16 BITS) 28K
000000 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)

MR-11045

Figure 1-5 16-Bit Mapping

1.4.1.2 18-Bit Mapping - Each of the three modes: kernel, supervisor, and user, are allocated 32K
addresszs that are mapped into 128K words of physical address space. The lowest 124K words of physical
memory, or the /O page, can be referenced as shown in Figure 1-6.

1.4.1.3 22-Bit Mapping — This mode uses the full 22-bit address to access all of the physical memory.
The upoer 4K block is still the I/O page as shown in Figure 1-7.

17777777
4K
17760000
00757777
177777
124 K
VIRTUAL I -
(16 BITS) MGMT
000000 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)
MR-11046
Figure 1-6 18-Bit Mapping
17777777
4K
17760000
17757777
2044K
177777
VIRTUAL MEM
(16 BITS) MGMT ’
000000 00000000
INCOMING PHYSICAL ADDRESS
ADDRESS SPACE (22 BITS)
MR-11047
Figure 1-7 22-Bit Mapping

1-12

1.4.2 Compatibility
The operation of 16-, 18-, and 22-bit mapping can be used to provide compatibility among other PDP-11

computers. This means that software written and developed for any PDP-11 computer can be run on the
KDJ11-B without modification. Refer to Table 1-7.

1.4.3 Virtual Addressing _

When memory management is operating, the normal 16-bit address is no longer interpreted as a direct
physical address, but as a virtual address containing information to be used in constructing a new 22-bit
physical address. The information contained in the virtual address is combined with relocation information
contained in the page address register to yield a 22-bit physical address, as shown in Figure 1-8. Using
memory management, memory can be dynamically allocated in pages, each composed of from 1 to 128
integral blocks of 64 bytes.

The starting physical address for each page is an integral multiple of 64 bytes, and each page has a
maximum size of 8192 bytes. Pages may be located anywhere within the physical address space. The
determination of which set of 16 page registers is used to form a physical address is made by the current
mode of operation (i.e., kernel, supervisor, or user mode) and by whether the reference is for instructions
or data., ,

Table 1-7 KDJ11-B Compatibility

Memory
Mapping Management System
16-bit Off PDP-11/05, 11/10, 11/15, 11/20, 11/03
18-bit On 'PDP-11/35, 11/40, 11/45, 11/50, 11/23
22-bit On PDP-11/70, 11/44, 11/24, 11/23 PLUS
PHYSICAL
ADDRESS SPACE
PAGE §
VIRTUAL
INSTRUCTION/DATA
ADDRESS SPACE PAGES
32K PAR 7
. PARG ° .
» PAR 5 . PAGE 7
- PAR 4
PAR 3 \
PAR 2 1 PAGE 4
PAR 1 .
0 ‘ PAR 0 0
VIRTUAL ADDRESS PAGE ADDRESS REGISTERS PHYSICAL ADDRESS
{16 BITS) (22 BITS)

PAR = PAGE ADDRESS REGISTER

MR-11048

Figure 1-8 Virtual Address Mapping into Physical Address

1-13

1.4.4 Interrupts Under Memory Management

Memory management relocates all addresses. When it is enabled, all traps, aborts, and interrupt vectors
are mapped using the kernel mode data space mapping registers. Therefore, when a vectored transfer
occurs, the new PC and PSW are obtained from two consecutive words physically located at the trap
vector, and are mapped using kernel mode data space registers.

The stack used for the “push” of the current PC and PSW is specified by bits <15:14> of the new PSW.
The PSW mode bits also determine the new mapping register set. This allows the kernel mode program to
have complete control over servicing all traps, aborts or interrupts. The kernel program may assign the
service of some of these conditions to a supervisor or user mode program by simply setting the mode bits of
the new PSW in the vector to return control to the appropriate mode.

1.4.5 Construction of a Physical Address

All addr:sses with memory relocation enabled either reference information in instruction (I) space or data
(D) space. I space is used for all instruction fetches, index words, absolute addresses, and immediate
operands; D space is used for all other references. I space and D space each have eight Page Address
Registers (PARs) in each mode of CPU operation (kernel, supervisor, and user). MMR3 can disable
D space and map all references (instructions and data) through I space, or can enable D space and map all
references through both I and D space.

The basic information needed for the construction of a physical address comes from the virtual address,
which is illustrated in Figure 1-9, and the appropriate PAR set.

The Virtual Address (VA) consists of the following.

e The Active Page Field (APF). This 3-bit field determines which of the eight page address
registers from the set PARO-PART7 is used to form the physical address.

e The displacement field. This 13-bit field contains an address relative to the beginning of a page.
The longest page length is 8 Kbytes as determined by the 13 bits. The displacement field is
further subdivided into two fields as shown in Figure 1-10.

15 14 13 12 . 00
T T T T T T T T T T T T T T
APF DF
L | | 1 1 L | 1 g 1 1 t y)
' J o v J
ACTIVE PAGE DISPLACEMENT FIELD
FIELD

MR-11049

Figure 1-9 Interpretation of a Virtual Address

12 00
1 ¥ T 1 1 1 T 1 i ¥ I
BN DiB
])] L) 1] 1 L) 1
- I\ J
Y Y
BLOCK NUMBER DISPLACEMENT IN BLOCK

MR-11050

Figure 1-10 Displacement Ficld of a Virtual Address

1-14

The displacement field consists of the following.

The block number. This 7-bit field is interpreted as the block number within the current page.

The displacement in block. This 6-bit field contains the displacement within the block referred
to by the block number.

The remainder of the information needed to construct the physical address comes from the contents of the
PAR referenced by the Page Address Field (PAF). This 16-bit register specifies the starting address of the
memory page. The PAF is actually a block number in the physical memory. For instance, PAF = 3
indicates a starting address of 96 (3 X 32 words in physical memory).

The construction of the Physical Address (PA) is illustrated in Figure 1-11. The logical sequence involved
in constructing a PA is as follows.

1.

Select a set of PARs. This depends on the space being referenced and the protection mode being
used.

The APF of the VA selects one of eight page address registers (PARO-PAR7) from the
appropriate set.

The PAF of the selected PAR contains the starting address of the currently active page as a
block number in physical memory.

The block number from the VA is added to the PAF to yield the number of the block in
physical memory. These are bits <21:6> of the PA being constructed.

The displacement in block from the displacement field of the VA is joined to the physical block
number to yield a true 22-bit PA.

15 00
T T T T T T T 1 T T T T T T T
VIRTUAL ADDRESS |
i I)]] 1 !) L L]] i]]
15 13
T 1
SELECT PAR |
1 I
12 00
t 1 1 T T T T) T i T 1
OFFSET INTO _
PAGE (VA) ! I] |) !] ! ! ! I)
15 14 13 05 04 03 02 01 00
T | — T T T T T T
+ PAF L
| i] 1)] !]
21 00
T T T T T T T T T T T T T Y T
PHYSICAL ADDRESS ‘{/
l |) l L 1 1]])] ! 1 1

MR-11051

Figure 1-11 Construction of a Physical Address

1-15

1.4.6 Memory Management Registers

Memory management implements 3 sets of 32 16-bit registers as shown in Figure 1-12. One set of registers
is used in kernel mode, another in supervisor mode, and the third in user mode. The protection mode in use
determines which set is to be used. Each set is subdivided into two groups of 16 registers. One group is
used for references to instruction (I) space, and one to data (D) space. The I space group is used for all
instruction fetches, index words, absolute addresses, and immediate operands. The D space group is used
for all other references, providing it has not been disabled by MMR3. Each group is further subdivided
into two parts of eight registers. One part is the PAR whose function was described previously. The other
part is the Page Descriptor Register (PDR). PARs and PDRs are always selected in pairs by the top three
bits of the virtual address. A PAR/PDR pair contains all the information needed to describe and locate a
currently active memory page.

The MMRs are located in the uppermost 8 Kbytes of physical address space, which is designated as the
I/O page. The addresses allocated to the MMRs are listed in Table 1-8.

PROCESS STATUS WORD }
1
15 14
KERNEL (00) SUPERVISOR (01) USER (11)
PAR PDR | PAR PDR PAR PDR
| SPACE
L v ' L v |
PAR | PDR PAR PDR) PAR PDR
D SPACE
v v y] v [

MR-11062

Figure 1-12 Active Page Register

1-16

Table 1-8 Memory Management Register Addresses

Register

Address

Memory management register 0 (MMRO)
Memory management register 1 (MMR1)
Memory management register 2 (MMR2)
Memory management register 3 (MMR3)

User 1 space descriptor register (UISDRO)

User I space descriptor register (UISDR7)

User D space descriptor register (UDSDRO)

User D space descriptor register (UDSDR7)

User 1 space address register (UISARO)

User I space address register (UISAR7)

User D space address register (UDSARDO)

User D space address register (UDSAR7)

Supervisor I space descriptor register (SISDRO)

Supérvisor I space descriptor register (SISDR7)

Supervisor D space descriptor register (SDSDRO)

Supervisor D Space descriptor register (SDSDR7)

Supervisor I space address register (SISARO)

Supervisor I space address register (SISAR7)

17 777 572
17 777 574
17 777 576
17 772 516

17 777 600

17 777 616

17 777 620

17 777 636

17 777 640

17 777 656

17 777 660

17 777 676

17 772 200

17 772 216

17 772 220

17 772 236

17 772 240

17 772 256

1-17

Table 1-8 Memory Management Register Addresses (Cont)

Register Address
Supervisor D space address register (SDSARO) 17 772 260
Supervisor D space address register (SDSAR7) ' 17 772 276
Kernel I space descriptor register (KISDRO) 17 772 300
i(crnel 1 space descriptor register (KISDR7) 17 772 316
" Kernel D space descriptor register (KDSDRO) 17 772 320
i(ernel D) space descriptor register (KDSDR7) .17 772 336
Kernel 1 space address register (KISARO) 17 772 340
i(ernel I space address register (KISAR7) '17 772 356
Kernel D space address register (KDSARO) 17 772 360
i(crnel D space address register (KDSAR?7) .17 772 376

1.4.6.1 Page Address Registers — The PAR contains the PAF, a 16-bit field that specifies the starting
address of the page as a block number in physical memory.

The PAR (Figure 1-13) contains the PAF that may be alternatively thought of as a relocation register
containing a relocation constant, or as a base register containing a base address. These registers are not
changed by either console starts or by the RESET instruction. They are undefined at power-up.

1.4.6.2 Page Descriptor Register — The PDR contains information relative to page expansion, page
length, and access control. The register is shown in Figure 1-14 and is described in Table 1-9.

MR-11053

Figure 1-13 Page Address Register

1-18

15 14 08 07 06 05 04 03 02 01 00
I 1 T 1 T T T
PAGE LENGTH FIELD (PLF) 0o | w 0 0 | ED ACF 0
1 { § 1 1 L 1
«
‘ T PAGE LENGTH T f ACCESS
BYPASS FlEiD PAGE EXPANSION oonedn,
CACHE WRITTEN DIRECTION Firp

Figure 1-14 Page Descriptor Register

MR-8920

Table 1-9 Page Descriptor Register Bit Description

Function

Bit(s) Name Status

15 Bypass R/W
cache

<14:8> Page length R/W
field

7 Not used RO

6 Page RO
written

- <5:4> Not used RO

3 Expansion R/W
direction

<2:1> Access control R/W
field

0 Not used RO

This bit implements a conditional cache bypass
mechanism. If the PDR accessed during a reloca-
tion operation has this bit set, the reference goes
directly to main memory. Read or write hits result
in invalidation of the accessed cache location.

This field specifies the block number that defines
the page boundary. The block number of the vir-
tual address is compared against the page length
field to detect length errors. An error occurs when
expanding upwards, if the block number is greater
than the page length field, and when expanding
downwards, if the block number is less than the
page field.

Read as zero.

The written into (W) bit indicates whether the page
has been written into since it was loaded in
memory. When this bit is set, it indicates a modi-
fied page. The W-bit is automatically cleared when
the PAR of that page is written.

Read as zeros.

This bit specifies the direction in which the page
expands. If it = 0, the page expands upward from
block number 0 to include blocks with higher
addresses; if it = 1, the page expands downward
from block number 127 to include blocks with
lower addresses. ‘

This field contains the access code for this particu-
lar page. The access code specifies the manner in
which a page may be accessed and whether or not a
given access should result in an abort of the current
operation. Implemented codes are as follows.

00 Nonresident — abort all accesses
01 Read only - abort on write

10 Not used - abort all accesses

11 Read/write access

Read as zero.

1-19

1.4.7 Fault Recovery Registers
Aborts generated by the memory management hardware are vectored through kernel virtual location 250.
MMRs), 1, 2, and 3 are used to determine why the abort occurred and to allow for program restarting.

NOTE
An abort to a location which is itself an invalid
address causes another abort. Thus, the kernel pro-
gram must ensure that kernel virtual address 250 is
mapped into a valid address. Otherwise, a loop
requiring console intervention occurs.

1.4.7.1 Memory Management Register 0 (17 777 572) - MMRO provides control and records memory
management unit status. The register contains abort and status flags as shown in Figure 1-15 and described
in Tablc 1-10.

1.4.7.2 Memory Management Register 1 (17 777 574) - MMRI records any autoincrement or
autodecrement of a general purpose register, including explicit references through the PC. The increment
or decrement amount by which the register was modified is stored in 2’s complement notation. The lower
byte is used for all source operand instructions and the destination operand may be stored in either byte,
dependiag on the mode and instruction type. The register is cleared at the beginning of each instruction
fetch. The register is defined in Figure 1-16. '

1.4.7.3 Memory Management Register 2 (17 777 576) - MMR2 is loaded with the program counter of
~ the current instruction and is frozen when any abort condition is posted in MMRO.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 0O
1 T T
0 0 0 0 0 0

| 1 Il

ABORT READ-ONLY . . . J

ACCESS VIOLATION r

ABORT PAGE f

LENGTH ERROR PAGE MODE PAGE NUMBER

- ABORT
NON-RESIDENT , PAGE ADDRESS ENABLE RELOCATION
SPACE 1/D

MR-8926

Figure 1-15 Memory Management Register 0 (MMRO)

1-20

Table 1-10 MMRO Bit Description

Bit(s) Name Status Function
15% Nonresident R/W Bit 15 is set by attempting to access a page with an
abort access control field key equal to 0 or 2. It is also set
by attempting to use memory relocation with a
processor mode (PSW <15:14>) of 2.
14* Page length R/W Bit 14 is set by attempting to access a location in a
abort page with a block number (virtual address bits
<12:6>) that is outside the area authorized by the
page length field of the PDR for that page.

13* Read only R/W Bit 13 is set by attempting to write in a read-only

abort page. Read-only pages have access keys of 1.
<12:7> Not used RO Read as zeros.

<6:5> Processor RO Bits <6:5> indicate the processor (kernel, supervi-

mode sor, user, illegal) associated with the page causing
the abort (kernel = 00, supervisor = 01, user = 11,
illegal = 10). If the illegal mode is specified, an
abort is generated and bit 15 is set.

4 Page space RO Bit 4 indicates the address space (I or D) associated
with the page causing the abort (0 = I space, 1 =D
space).

<3:1> Page number RO Bits <3:1> contain the page number of the page
causing the abort.

0 Enable R/W Bit O enables relocation. When it is set to 1, all

relocation addresses are relocated. When it is set to 0, mem-

ory management is inoperative and addresses are
not relocated.

*

Bits <15:13> can be set by an explicit write. However, such an action does not cause an abort. Whether set explicitly or by an

abort, setting any bit in bits <15:13> causes memory management to freeze the contents of MMRO <6:1>, MMR1, and
MMR2. The status registers remain frozen until MMRO <15:13>> is cleared by an explicit write.

10

09

08

07

06

05

04

03

02

01

00

AMOUNT CHANGED
1 |]

|

T

T

T T
REGISTER
NUMBEE!
1

AMOUNT CHANGED
1 . 1 1

T T

REGISTER

NUMBER
1 1

Figure 1-16 Memory Management Register | (MMR1)

1-21

MR 8924

1.4.7.4 Memory Management Register 3 (17 772 516) - MMR3 enables the data space for the kernel,
supervisor, and user operating modes. It also selects either 18- or 22-bit mapping and enables the request
for the supervisor macroinstruction (CSM). MMR3 is cleared during power-up, by a console start, or by a
RESET instruction. The register is shown in Figure 1-17 and is defined in Table 1-11.

10 09

08

07 06 05 04 03 02 00

0 0

0

I |
MODE
| |

o] 0

UNINTERPRETED —I

ENABLE 22-BIT MAPPING

ENABLE CSM INSTRUCTION
ENABLE KERNEL DATA SPACE
ENABLE SUPERVISOR DATA SPACE
ENABLE USER DATA SPACE

MR-8925

Figure 1-17 Memory Management Register 3 (MMR3)

Table 1-11 MMRS3 Bit Description

Bit(s) Name Status Function

<15:6> Not used RO Read as zeros.

S Uninterpreted R/W This bit can be set or cleared under program con-

trol, but it is not interpreted by the KDJ11-B.

4 Enable 22-bit R/W This bit enables 22-bit memory addressing (the

. mapping default is 18-bit addressing).

3 Enable CSM R/W This bit enables recognition of the Call Supervisor
instruction Mode (CSM) instruction.

2 Kernel data R/W This bit enables the data space mapping for the
space kernel operating mode.

1 Supervisor R/W This bit enables the data space mapping for the
data space supervisor operating mode.

0 User data R/W This bit enables the data space mapping for the
space user operating mode.

1-22

1.47.5 Instruction Back-Up/Restart Recovery — The process of “backing up” and restarting a partially
completed instruction involves the following.

1. Performing the appropriate memory management tasks to alleviate the cause of the abort (e.g.,
loading a missing page).

2. Restoring the general purpose registers indicated in MMR 1 to their contents at the start of the
instruction, by subtracting the “modify value” specified in MMRI.

3. Restoring the PC to the “abort-time” PC by loading R7 with the contents of MMR2, which
contains the value of the virtual PC at the time the “abort-generating” instruction was fetched.

Note that this back-up/restart procedure assumes that the general purpose register used in the program
segment will not be used by the abort recovery routine. This is automatically the case if the recovery
program uses a different general purpose register set.

1.4.7.6 Clearing Status Registers Following Abort — At the end of a fault service routine, bits <15:13>
of MMRO must be cleared (set to 0) to resume error checking. On the next memory reference following
the clearing of these bits, the various registers resume monitoring the status of the addressing operations.
MMR?2 is then loaded with the next instruction address, MMRI1 stores the register change information,
and MMRO logs the memory management status information.

1.4.7.7 Multiple Faults — Once an abort occurs, any subsequent errors occurring while the memory
management registers are still frozen does not change MMRO, MMR 1, or MMR2. The information saved
in MMRO-MMR?2 always refers to the first abort that it detected.

1.4.8 Typical Usage Examples

The memory management unit provides a general purpose memory management tool. It can be used in a
manner as simple or as complex as desired. It can be anything from a simple memory expansion device to a
complete memory management facility.

The variety of meaningful ways to use the facilities offered by the memory management unit means that
both single-user and multiprogramming systems have complete freedom to make whatever memory
management decisions best suit their individual needs. Although a knowledge of what most types of
computer systems seek to achieve may indicate that certain methods of using the memory management
unit are more common than others, there is no limit to the ways to use these facilitics.

In typical applications, the control over the actual memory page assignments and their protection resides in
a supervisory program that operates in kernel mode. This program sets access keys in such a way as to
protect itself from willful or accidental destruction by other supervisor or user mode programs. The
facilities are also provided in such a way that the kernel mode program can dynamically assign memory
pages of varying sizes in response to system needs.

1-23

1.4.8.1 Typical Memory Page - When the memory management unit is enabled, the kernel, supervisor,
and user mode programs each have eight active pages described by the appropriate PARs and PDRs for
data anc eight pages for instructions. Each segment is made up of from 1 to 128 blocks and is pointed to
by the PAF of the corresponding PAR as illustrated in Figure 1-18.

The memory segment illustrated in Figure 1-18 has the following attributes.

e Page length: 40 blocks

e Virtual address range: 140000-144777

e Physical address range: 312000-316777

e Nothing has been modified (i.e., written) in the page
e Read-only protection

e Upward expansion

These a:tributes were determined according to the following scheme.

1. Page address register (PAR6) and page descriptor register (PDR6) were selected by the APF of
the VA. (Bits <15:13> of the VA = 68.)

. PA 331777

VA 157777 ¢

BLOCK 177g (1271¢0)
Z A
BLOCK 176g (12610 %

%

s
-

N

N\

N

\

%
.

VA 144777 PA 316777
BLOCK 47g (381q)

A\

BLOCK 1

BLOCK O PA 312000
PAR 6 3120
VA 140000 3910 PAF
PLF w ED ACF

Figure 1-18 Typical Memory Page

1-24

2. The initial address of the page was determined from the PAF of PAR6 (312000 = 31208
blocks X 408 (3210) words per block X 2 bytes per word).

NOTE
The PAR that contains the PAF constitutes what is
often referred to as a base register containing a base
address or a relocation register containing a reloca-
tion constant.

3. The page length (478 + 1 = 4010 blocks) was determined from the Page Length Field (PLF)
contained in PDR6. Any attempt to reference beyond the 4010 blocks in this page causes a
page length error, which results in an abort, vectored through kernel virtual address 250.

4. The PAs were constructed according to the scheme illustrated in Figure 1-11.

5. The W-bit indicates that no locations in this page have been modified (i.e., written). If an
attempt is made to modify any location in this particular page, an access control violation abort
occurs. If the page is involved in a disk swapping or memory overlay scheme, the W-bit is used
to determine whether the page has been modified and therefore requires saving before overlay.

6. The page is read-only protected (i.e., no locations in the page may be modified). The mode of
protection was specified by the access control ficld of PDR6.

7. The expansion direction is upward (ED bit set to 0). If more blocks are required in thls segment,
they must be added by assigning blocks with higher relative addresses.

The attributes that describe the page shown in Figure 1-18 are determined under software control. The
parameters describing the page are loaded into the appropriate PAR and PDR under program control. In a
normal application, the page, which itself contains these registers, is assigned to the control of a kernel
mode program.

1.4.8.2 Nonconsecutive Memory Pages — Higher virtual addresses do not necessarily map to higher
physical addresses. It is possible to set up the PAFs of the PARs so that higher virtual address blocks may
be located in lower physical address blocks as illustrated in Figure 1-19.

Although a single memory page must consist of a block of contiguous locations, consecutive virtual
memory pages do not have to be located in consecutive physical address locations. The assignment of
memory pages is not limited to consecutive nonoverlapping physical address locations.

VA 037777 PA 467777

'

]

]

o
AR 7 VA 020000 PA 460000

PAF

VA 017777 PA 560777

H

1

1

1

PART | PAF

PAR O PAF ————____ VA000000 PA 541000

—
MR-11066

Figure 1-19 Nonconsecutive Memory Pages
1-25

1.4.8.3 Stack Memory Pages - When constructing programs, it is often desirable to isolate all program
variables from pure code (i.e., program instructions) by placing them on a register indexed stack. These
variables can then be “pushed” or “popped” from the stack area as needed. Since stacks expand by adding
locations with lower addresses, when a memory page containing “stacked” variables needs more room, it
must “expand down” by adding blocks with lower relative addresses to the current page. This mode of
expansicn is specified by setting the expansion direction bit of the appropriate PDR to a 1. Figure 1-20
illustrates a typical stack memory page and has the following parameters.

PARG6: PAF = 3120

PDR6: PLF = 1758 or 12510 (12810-3)

ED =1

W=0orl

ACF = nnn (to be determined by programmer as necessary)

In this case the stack begins 128 blocks above the relative origin of the memory page and extends
downward for a length of three blocks. A page length error abort is generated by the hardware whenever
an attemrpt is made to reference any location below the assigned area (i.e., when the block number from
the VA s less than the PLF of the appropriate PDR).

NOTE
The W-bit is set by hardware.

1.4.9 Transparency

In a mu:tiprogramming application, it is possible for memory pages to be allocated so that a program
appears 1o have a complete 64 Kbyte memory configuration. Using relocation, a kernel mode supervisory-
type program can perform all memory management tasks entirely transparent to a supervisor or user mode
program. In effect, a system can use its resources to provide maximum throughput and response to a
number of users, each of whom seems to have a powerful system all to himself.

VA 167777 PA 331777
BLOCK 177g (12710)

BLOCK 176g (1261q)

BLOCK 175g {12570)

VA 157500 |, PA 331500

VA 140000 PA 312000

ACF

MR-11056

Figure 1-20 Typical Stack Memory Page

1-26

1.5 CACHE MEMORY

The statistics from executing programs clearly indicate that at any given moment, a program spends most
of its time within a relatively small section of code. The KDJ11-B cache memory exploits this phenomenon
by using a small amount of high speed memory to store the most recently accessed memory locations.
Cached code executes much faster than noncached code because of the large difference between the access
times of the cache memory and the LSI-11 bus main memory.

Figure 1-21 illustrates how the KDJ11-B cache is constructed. It is a direct map (set size one; block size
one), 8-Kbyte cache. Each physical address is logically subdivided into a 9-bit label, 12-bit index, and 1-bit
byte select ficld.

The index field is used to select one of 4096 separate cache entries. Each cache entry contains a 9-bit tag
field (TAG), tag parity bit (P), tag valid bit (V), two bytes of cache data (BO and Bl1) and two
corresponding byte parity bits (PO and P1). (See Figure 1-22.)

A physical address is considered cached when the tag field of the cache entry specified by the index field
equals the label field, the valid bit is set, and no parity errors are seen. When a cache read hit occurs (i.e.,
the address is cached during a read operation), Bl and BO are used as the source of the data. When a cache
read miss occurs (i.e., the address is not cached), main memory is accessed to obtain the data.

A physical address is stored in the cache whenever the cache is allocated. To allocate the cache, the tag
field of a cache entry specified by the index field is set equal to the label field, the V-bit is set, Bl and BO
are loaded with the fresh data, and the parity bits are correctly calculated. This guarantees that the next
access to this address will report a cache hit. It should be noted that allocating the cache typically destroys
a previously allocated valid cache entry. The cache is allocated whenever a read miss or word write miss
occurs.

21 13 12 01 00

BYTE SELECT —T

MR-11057

LABEL] INDEX

Figure 1-21 Cache Physical Address

08 00

P I V] TAG

P1 B1 PO } BO

MR-11058

Figure 1-22 Cache Data Format

1-27

Write cycles are separated into word write and byte write operations. Main memory is always updated
during writes. A cache hit causes the proper byte(s) to be written in both the cache and in main memory.
This is called writing through the cache. A cache miss during a word write allocates the cache, but because
two bytes are allocated together, a byte write only updates main memory. The cache response matrix is
summarized in Table 1-12.

The I/0 page (top 8 Kbytes) is never cached and therefore always reports misses. This is because the I/O
page contains dynamic status registers, which, when read, must always convey the latest information.

When the system is powered up, the cache must be cleared and correct parity written into each entry. This
is called flushing the cache.

A potential stale data problem can occur when a DMA device writes to a cached location. Therefore, a
DMA TAG store, which is an identical copy of the cache TAG store, is maintained and monitors each
DMA transaction. When DMA writes references to a cache stored location, the processor is interrupted
and the overwritten cache entry is invalidated.

Table 1-12 Cache Response Matrix

Operation DMA Hit DMA Miss CPU Hit CPU Miss
Read Read memory, Read memory, Read cached Read memory
. no cache no cache data, allocate
change change cache
Write Invalidate Update memory, Write through Write memory,
word cache, update no cache cache to allocate
memory change memory cache
Write Invalidate Update memory, Write through Write memory,
byte cache, update no cache cache to no cache
memory change memory change
Read N/A N/A Read memory, Read memory,
bypass invalidate . no cache
cache change
Write N/A N/A Write memory, Write memory,
bypass invalidate no cache
cache change
Read N/A N/A Read memory, Read memory,
force no cache no cache
miss change change
Write N/A N/A Write memory, Write memory,
force no cache no cache
miss change change

1-28

For both diagnostic and availability reasons, it is important to be able to turn off the cache via software.
The cache is disabled by setting either of the force cache miss bits (2 and 3) in the cache control register.
When disabled, all references are forced to miss the cache. That is, main memory is always accessed,
cache parity errors are ignored, and no cache allocation is performed. The cache is essentially removed
from the system. This is different from bypassing the cache. Bypass references access the main memory,
check cache parity, and invalidate the cache entry if previously allocated. Read references that bypass the
cache check for parity errors and invalidate any address hits.

1.5.1 Parity

The KDJ11-B module has a main memory parity error detection mechanism that is in the DC351 gate
array. The BDAL 16 and 17 data lines arec sampled by the negation of either TDIN H or RDSTRB H
when the 16 bits of data are read into the module. These parity bits are used to generate the MEM PERR
H output that initiates an abort via the DC350/394 gate array. BDAL bit 16 is the parity error signal and
BDAL bit 17 is the parity abort error signal. When both are asserted (1), an abort occurs through the
vector at virtual address 114 in kernel space.

The cache memory also has a parity error detection mechanism. A parity error in the cache is not
considered fatal because the main memory system has a backup copy of the data. The cache uses even
parity for the even data bytes stored in the cache memory and odd parity for the odd data bytes stored in
the cache memory. It also uses even parity for the tag field stored in the cache memory.

1.5.1.1 Parity Errors — A parity error is indicated when a single bit error occurs. Parity errors can occur
in either the main memory or the cache memory. A main memory parity error is always fatal since the
data stored in this memory is wrong and it cannot be restored. This type of parity error always causes an
abort through virtual address 114 in the kernel space. Cache parity errors are not considered to be fatal
since the data in the cache memory can be updated with the correct data from the main memory. When
they occur, the KDJ11-B module aborts, interrupts, or continues without an abort or interrupt. The action
is determined by the state of bits 7 and 0 in the cache control register as defined in Table 1-13.

1.5.1.2 Multiple Cache Parity Errors — If a cache parity error occurs before the error status from a
previous cache parity error is cleared from the memory system error register, then no abort or interrupt
occurs. The main memory is accessed again to retrieve the correct data and the corrupted cache entry data
is updated with the correct data. This prevents a cache hardware failure from generating an infinite series
of interrupt or abort service loops.

Table 1-13 Cache Parity Errors

CCR <7> CCR <0> Action

0 0 Update cache, interrupt through 114

0 1 ' Update cache only

1 X* Update cache, abort through 114 used only for
diagnostics

* X = Either 1 or 0.

1-29

1.5.2 Memory System Registers

The memory system registers consist of the Cache Control Register (CCR), the Memory System Error
Register (MSER), and the Hit/Miss Register (HMR). These registers are used by modules to control the
memory system and report any errors that occur.

1.5.2.1 Cache Control Register (17 777 746) - The CCR controls the operation of the cache memory.
The cache bypass, abort, and force miss functions can be controlled by software via this register. The CCR
is shown in Figure 1-23 and is described in Table 1-14. The register is cleared by either a power-up or a
console start. It is unaffected by the RESET instruction.

15 14 13 12 1 10 09 08 07 06 05 04 03 02 01 00

WRITE WRONG [)
TAG PARITY '

UNCONDITIONAL
CACHE BYPASS

FLUSH CACHE

PARITY ERROR ABORT

WRITE WRONG DATA PARITY

UNINTERPRETED

FORCE CACHE MISS

DIAGNOSTIC MODE

DISABLE CACHE PARITY INTERRUPT

MR-11059

Figure 1-23 Cache Control Register (CCR)

1-30

Table 1-14 Cache Control Register Description

Bit(s)

Name

Status

Function

<15:11>

<5:4>

<3:2>

Not used

Write wrong
tag parity

Bypass cache

Flush cache*

Enable parity
error abort

Write wrong
data parity

Uniiiterpreted

Force miss

Diagnostic mode

Disable cache
parity interrupt

R
R/W

R/W

R/W

R/W

R/W

R/W

R/W

R/W

Read as zeros.

When set (1), this bit causes the cache tags to be
written with wrong parity on all update cycles. This
causes a cache tag parity error to occur on the next
access to that location.

When set (1), this bit forces all CPU memory refer-
ences to go directly to main memory. Read hits
result in invalidation of accessed locations in the
cache.

When set (1), this bit causes the entire contents of
the cache to be declared invalid. Writing a 0 into
this bit has no effect.

This bit is used with bit 0 to define the action taken
as a result of a parity error. This bit is reserved for
diagnostic purposes.

When set (1), this bit causes high and low parity
bytes to be written with wrong parity on all update
cycles. This causes a cache parity error to occur on
the next access to that location.

These bits can be set or cleared under program
control, but are not interpreted by the KDJ11-B.

When either bit is set, all CPU memory references
go directly to main memory. The cache tag and
data stores are not changed. The parity is not
checked. When set (1), these bits remove the cache
memory from the system.

When set (1), all nonbypass and nonforced miss
word writes allocate the cache, irrespective of
NonExistent Memory (NXM) errors. In addition,
NXM writes do not trap.

Bits <7:0> specify the action to take following a
cache parity error. If both bits are cleared (0) and a
parity error occurs, an interrupt through vector 114
is generated. If bit 7 is cleared and bit 0 is set, a
cache parity error neither aborts the reference nor
generates an interrupt. In any case, all cache parity
errors force a memory reference, and update the
cache with the fresh data.

* It takes approximately | millisecond to flush the cache. During this time DMA and interrupt requests are not serviced and no
data processing occurs.

1-31

1.5.2.2 Hit/Miss Register (17 777 752) — The HMR records the status of the most recent cache
accesses. The HMR is a shift register that records a hit as a | and a miss as a 0 for the most recent
memory reads. A hit represents data located in the cache memory and a miss means the data is located in
the main memory. Bit O represents the most recent memory access and is shifted to the left on successive
memory access. The HMR is a read-only register and is shown in Figure 1-24.

1.5.2.3 Memory System Error Register (17 777 744) — The MSER is a read-only register. The register
monitors parity error aborts and records the type of parity error. The MSER is shown in Figure 1-25 and is
descrited in Table 1-15. The MSER is cleared by any write reference, during power-up, and by a console
start. It is unaffected by the RESET instruction.

MR-8899

15 14 13 12 11 10 09 08 07 06 05 04 03 02 O Q0
I ! I T T U 1
NOT USED NOT USED
t I | | 1 | 1 1
PARITY DTS PARITY TAG
ERROR PAR ERROR PARITY
ABORT HIGH ERROR
DTS
Cmp PARITY DMA
ERROR TAG
LoW PARITY
ERROR

MR-16834

Figure 1-25 Memory System Error Register (MSER)

1-32

Table 1-15 Memory System Error Register Description

Bit(s)

Name

Status

Function

15

14

13

<12:8>

7%

6*

5*

4*

<3:0>

CPU abort

DTS CMP

DTS PAR

Not used

Cache high bytc
parity error

Cache low byte
parity error

Cache CPU
tag parity error

Cache DMA
tag parity error

Not used

R

This bit is set (1) when a cache or main memory
parity error aborts on instruction. Cache parity
errors cause an abort only when bit 7 of the CCR is
set. Main memory parity errors always cause an
abort.

The DTS CMP bit is set by the output of the DMA
tag store comparator when a cache miss occurred
for the previous non-I/O page reference while in
the standalone mode (BCSR bit 8 set). When'
BCSR bit 8 is clear, DTS CMP is also clear.

The DTS PAR bit is set by the output of the DMA
tag store parity check logic when an error occurred
for the previous non-I/O page reference while in
the standalone mode (BCSR bit 8 set). When
BCSR bit 8 is clear, DTS PAR is clear.

Read as zeros.

The cache high byte parity error bit is set when a
parity error is detected in the high byte data during
a CPU cache read. This bit is also set by a low byte
parity error and by the set conditions of MSER bits
5 or 4, when bit 7 of the CCR is cleared.

The cache low byte parity error bit is set when a
parity error is detected in the low byte data during
a CPU cache read. This bit is also set by a high
byte parity error and by the set conditions of
MSER bits 5 or 4, when bit 7 of the CCR is
cleared.

The cache CPU tag parity error bit is set when a
parity error is detected in the CPU tag field during
a CPU cache read. MSER bits 6 or 5 are also set
by a high or low byte parity error, when bit 7 of the
CCR is cleared.

The cache DMA tag parity error bit is set when a
parity error is detected in the DMA tag fle]d during
a DMA write operation.

Read as zeros.

*

DMA parity errors are lgnored by MSER bits <7:4>,

1-33

If a force miss condition is set by CCR bits 3 or 2, or if the CPU tag valid bit is cleared, then cache parity errors and cache

1.6 PRIVATE MEMORY INTERCONNECT

The PMI is a unique Q22-Bus protocol that provides a high performance data path between the KDJ11-B
module aad the MSV11-J memory modules. These modules comprise the private memory and interface
with the KDJ11-B via a backplane structure that uses the Q22-Bus as the A/B slots and an interconnecting
interface 1s the C/D slots. This backplane structure allows data and address information to be multiplexed
and transmitted via the Q22-Bus BDAL <21:0> data/address lines, while the PMI protocol nonmulti-
plexed coatrol lines use the C/D interconnecting interface. The PMI protocol functions in a Unibus system
by using the KTJ11-B Unibus adapter module designed to interface with a PMI system. The PMI
interface consists of 14 control signals used on the C/D interface, 6 Q22-Bus control signals, the bank 7
select signal (BBS7) and the 22 data/address lines (BDAL <22:0>). A complete description of the PMI
operation is provided in Chapter 7.

1.6.1 PMI Protocol

In a Q22-Bus system, the KDJ11-B CPU is the default Q22-Bus master and PMI master. Any device on
the Q22-Bus that has the capability to be a bus master can take control of the bus and execute normal data
transfers over the Q22-Bus. However, it does not become the PMI master.

In a Unibus system, the KDJ11-B CPU is the default PMI master and the KTJ11-B Unibus adapter is the
default Unibus master. When the CPU addresses the Unibus memory or 1/O page as the PMI master,
the Unibus adapter responds as a slave to the CPU and controls the Unibus side of the transaction as the
Unibus master.

The Unitus adapter can become the PMI master when the CPU issues a DMA grant or performs an
interrupt transaction. The DMA or interrupt grant is accepted by the Unibus adapter and it becomes the
PMI master and the Unibus slave. It also passes the DMA or interrupt grant onto a Unibus device, which
then becomes the Unibus master. In Unibus systems, the bus master and PMI master can be requested by
a NonProcessor Request (NPR) or interrupt request from a Unibus device, or a DMA or interrupt request.

1.6.1.1 Bus Device NPR - Any Unibus device that is capable of being a bus master can issue an NPR
request and become the bus master to control data transfers. During these data transfers, the Unibus
adapter is the PMI master and responds as a slave if the device accesses the PMI memory, the PMI 1/0
page or the Unibus adapter 1/O page.

1.6.1.2 Bus Device Interrupt - Any Unibus device that is capable of being a bus master can issue a BR7
through 4 request and become the bus master to control data or interrupt vector transfers. In both cases,
the Unibus adapter is the PMI master and responds as a slave if the device performs an interrupt vector
transaction or accesses the PMI memory, the PMI I/O page or the Unibus adapter 1/O page.

1.6.2 PMI Data Transfers

There are three general categories for the PMI data transfer cycles. These are the Data In/Data In Pause
(DATI/DATIP), the Block Data In (DATBI), and the Data Out/Data Out Byte (DATO/DATOB) cycles.
They are described in the following paragraphs.

On the Q22-Bus, the bus master can perform a read-modify-write cycle that transmits an address, reads a
data worc or byte and then writes the data word or byte. The PMI read-modify-write is performed by a
DATIP cycle that is followed by a DATO/DATOB cycle. The PMI bus master has the respon31b111ty to
control the bus for the duration of both cycles.

1.6.2.1 Data In/Data In Pause - The DATI and DATIP cycles are used to read one or two words when
the PMI bus master accesses the PMI memory. When the PMI bus master accesses the 1/O page or the
Unibus memory it can only read one word. The PMI bus master detects an I/O page reference by the
assertion of TBS7 and a Unibus memory reference by the assertion of RPUBMEM.

The PMI DATIP is identical to the DATI cycle except that TPBYT is asserted with TADDR to indicate
that the cycle immediately following the current cycle is going to be a DATO cycle to the same address.

1-34

1.6.2.2 Block Data In — The DATBI cycle is used to read up to 16 words of data when the PMI bus
master accesses the PMI memory. The PMI bus master cannot use the DATBI cycle when accessing the
1/0 page or the Unibus memory. The PMI bus master detects an I/O page reference by the assertion of
TBS7, and a Unibus memory reference by the assertion of RPUBMEM.

The PMI bus master can only start DATBI transfers on even word boundaries. This means that address
bits <1:0> must be equal to zeros. The PMI bus master cannot use the DATBI cycle to transfer across 16-
word address boundaries. This means that the PMI bus master must terminate DATBI data transfers when
it reaches a memory location where the address bits <4:1> are all equal to ones.

1.6.2.3 Data Out/Data Out Byte - The DATO and DATOB cycles are used by the PMI bus master to
transfer a single word or byte to a PMI slave.

1.7 TERMINAL INTERFACE :

The KDJ11-B provides a DLART serial line interface on the module. The console is connected to the
module directly or via an interfacing panel. The transmit and receive baud rates are always identical and
are determined by the status of bits <2:0> of the Boot and diagnostic facility Configuration Register
(BCR). These bits can be selected directly by the configuration switches (8, 7 and 6), or remotely via an

external connector that is mounted on the module. The bit settings to select the baud rate are described in
Table 1-16.

The DLART uses four registers designated as the Receiver Control/Status Register (RCSR), Receiver
BUFfer (RBUF), Transmitter Control/Status Register (XCSR), and the Transmitter BUFfer (XBUF).
These registers are described below.

Table 1-16 Baud Rate Selection*

Switches (Bits)

6 7 8
-(2) 1) 0) Baud Rate
1 1 1 300
1 1 0 600
1 0 1 1,200
1 0 0 2,400
0 1 | 4,800
0 1 0 9,600
0 0 1 19,200
0 0 0 38,400
* 1 = switch off; 0 = switch on.

1-35

1.7.1 Receiver Control/Status Register (17 777 560)

The RCSR is used to receive console On-line Debugging Technique (ODT) commands and input charac-
ters. The console ODT does not execute output bus cycles to this address; the RCSR responds only to input
bus cycles. The system software may affect certain bits, such as interrupt enable (bit 6), but the console
ODT ignores this. The RCSR is shown in Figure 1-26 and is described in Table 1-17.

15 14 13 12 " 10 09 08 07 06 05 04 03 02 01 00
0 0 0 0 0 0 0 0 0 0 0 0 0
RCV ACT RX DONE T
RXIE

MR-16825

Figure 1-26 Receiver Control/Status Register

Table 1-17 RCSR Bit Description

Bit(s) Name Status Function
<15:12> Not used RO ‘Read as zeros.
11 RCV ACT RO The RCV ACT bit is set by the start bit of the serial input

data and is cleared by the stop bit at the end of the serial
input data. The RX DONE bit is set by the next bit time
after RCV ACT is cleared.

<10:8> Not used RO Read as zeros.

7 RX DONE RO The RX DONE bit is set when a character is received and
- is ready to be read from the RBUF register. The bit is
cleared by reading the RBUF register and by power-up.

6 RX IE RW The RX IE bit is set when RXIRQ is enabled and a
program interrupt is requested while RX DONE is set
with this bit. The bit is cleared by BUS INIT and by
power-up.

<5:0> Not used RO Read as zeros.

1-36

1.7.2 Receiver Buffer Register (17 777 562)
The RBUF is used to receive console ODT commands and input data. The console ODT does not execute
output to this address; the RBUF responds only to input bus cycles. The system software operates
similarly, but the diagnostics may cause output cycles and may not operate properly. The RBUF is shown
in Figure. 1-27 and is described in Table 1-18.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
i I 1 1 LB 1 I
[¢] (0] 0 0]
1 1 ! | | 1 1 1
ERR T FRM ERR . INPUT DATA ’
OVR ERR RCV BRK
Figure 1-27 Receiver Buffer Register
Table 1-18 RBUTF Bit Description

Bit(s) Name Status Function i

15 ERR RO The ERR bit is set when the OVR ERR bit or the FRM
ERR bit is set. This bit does not generate a program
interrupt and is clear when both of these bits are clear.

14 OVR ERR RO The OVR ERR bit is set when a previous character was
received but was not read before it was overwritten by th
current character. '

13 FRM ERR RO The FRM ERR bit is set when the current character has
no stop bit. This bit is used to detect breaks.

12 Not used RO Read as zero.

11 RCV BRK RO The RCV BRK bit is set when the end of the serial data
input remains in the space condition for all 11 bits. The
bit remains set until the serial data input returns to the
mark condition.

<10:8> Not used RO Read as zeros.

<7:0> Input data RO These eight bits are an ASCII character read as input

when RCSR bit 7 is set.

1-37

1.7.3 Transmitter Control/Status Register (17 777 564)

The XCSR is used to transmit data for the console ODT. The console ODT does not execute input bus
cycles to this address; the XCSR responds only to output bus cycles. The system software may cause
output cycles that affect certain bits, such as interrupt enable (bit 6), but the console ODT ignores this.
The XCSR is shown in Figure 1-28 and described by Table 1-19.

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
[o] 0 o] 0 (] o] (o] [¢] 0 0 [o] o]
TX RDY I MAINT XMIT BRK
TXIE
MR-16827
Figure 1-28 Transmitter Control/Status Register

Table 1-19 XCSR Bit Description

Bit(s) Name Status Function

<15:8> Not used RO Read as zeros.

7 TX RDY RO The TX RDY bit is set when the XBUF is cleared and
can receive another character. The bit is cleared when the
XBUF is full. It is also set by power-up and by BUS INIT.

6 TX IE RW The TX IE bit is set when TXIRQ is enabled and a
program interrupt is requested while TX RDY is set with
this bit. The bit is cleared by BUS INIT and by power-up.

<5:3> Not used RO Read as zeros.

2 MAINT RW The maintenance bit is set during a self-test that discon-
nects the external serial input and connects it to the inter-
nal serial output. This bit is cleared by BUS INIT and by
power-up.

1 Not used RO Read as zero.

0 XMIT BRK RW The XMIT BRK bit is set when the output serial data is

forced into the space condition. The bit is cleared by BUS
INIT and by power-up.

1-38

1.7.4 Transmitter Buffer Register (17 777 566)

The XBUF is used to transmit data for the console ODT. The console ODT does not execute input bus
cycles to this address; the XBUF responds only to output bus cycles. The system software operates
similarly, but the diagnostics may cause input cycles and may not operate properly. The XBUF is shown in
Figure 1-29 and is described in Table 1-20.

.)

Y
OUTPUT DATA

MR-16828

Figure 1-29 Transmitter Buffer Register

Table 1-20 XBUF Bit Description

Bit(s) Name Status Function
<15:8> Not used NA Read as zeros.
<7:0> Output data wO These eight bits are an ASCII character transmitted as

output when XCSR bit 7 is set.

1.8 BOOT AND DIAGNOSTIC FACILITY

The boot and diagnostic facility consists of two sockets that accommodate 8K, or 16K words of 16-bit
ROM and another socket that can accommodate 2, 4, or 8 Kbytes of either 8-bit ROM or 8-bit EEPROM
memory. The Control/Status Register (CSR), Page Control Register (PCR), maintenance register, Con-
figuration and Display Register (CDR), and the boot and diagnostic facility are described in detail in
Chapter 4.

The KDJ11-B module populates the first two sockets with 16K words of 16-bit ROM. This ROM contains
the standalone diagnostics, the configuration routines, the memory diagnostics, and the boot programs
for the various standard devices. This ROM can be replaced by the user for special purpose applications,
but the user should include the configuration routines and the standalone diagnostics in the new ROM.

The remaining socket is normally populated with 2 Kbytes of 8-bit EEPROM containing the module
configuration data and space for optional user provided boot programs. The configuration data uses 105
bytes of space. The remaining space is left available for user programs. This EEPROM can be replaced
with 4 or 8 Kbytes of EEPROM and when the application does not require the erasable feature, the user
can provide an 8 Kbyte ROM.

1-39

1.8.1 Control/Status Register (17 777 520)

The CSR allows the ROMs to test battery backup and reboot status. It can set the parameters for the
Processor Mastership Grant (PMG) counter and the Line Time Clock (LTC). It also enables the console
halt-on-break feature, and controls the entry and exit to the standalone mode. The CSR is shown in Figure

1-30 and is described in Table 1-21.

The CSR allows the programs to selectively disable the ROM response to addresses 17 765 000 through
17 765 776 and/or 17 773 000 through 17 773 776 and to control the read/write access to the EEPROM.
Any program that accesses the I/O page can use the CSR to alter the PMG and the LTC parameters and
also to control access to the ROM and EEPROM memory.

10 09 08 07 06 05 04 03 02 01 00

I T

NOT
USED PMG CNT
1 1
BBRBE FRC LCIE I SA MODE DIS 65 ROM3 WE ;
CLK SELECT PMG
RBT PLS DIS LKS ENB HOB DIS 73 ROM3 65

MR-16829

Figure 1-30 Controller Status Register

Table 1-21 Control/Status Register Bit Description

Bit(s)

Name

Function

15

14

13

12

Battery backup
reboot enable -

Reboot pulse

Force line
clock interrupt
enable

Line clock
status register
disable

When this bit is set (1), it indicates that the battery backup
voltage failed to maintain the memory system during the last
power failure. When this bit is clear (0), it indicates that the
battery backup voltage maintained the system memory during
the last power failure or that there is no battery backup for the
system. ‘

This read-only bit is set (1) when the DCOK input is pulsed while
the. POK input remains asserted. This condition can only occur in

- Q22-Bus systems and indicates that a system reboot was requested

by the control panel switch or by a special Q22-Bus device. This
bit is cleared (0) by the negation of the POK input. A similar bit
for Unibus systems is used in the KTJ11-B CSR.

This bit is set (1) to enable the clock selected by bits <11:10> to
unconditionally request interrupts. When this bit is clear (0), the
selected clock can only be enabled by setting bit 6 of the LTC
register under program control to request interrupts. This bit is
cleared by the negation of the DCOK input.

This bit is set (1) to disable the LTC register. When cleared (0),
the LTC is enabled and responds to address 11 777 546. This bit
is cleared by the negation of the DCOK input.

1-40

Table 1-21 Control/Status Register Bit Description (Cont)

Bit(s)

Name

Function

<[1:10> *

6

Clock
select

Enable
Halt-on-Break

Standalone mode

Disable
17 773 000

Disable

ROM socket 3 at
17 765 000

ROM socket 3
write enable

These read/write bits select the clock used by the LTC as an
interrupt request. These bits are cleared by the negation of the
DCOK input. The clock is selected as follows.

Bits
11 10 Clock Selection

"External BEVNT line
On-board 50 Hz*
On-board 60 Hz*
On-board 800 Hz

—_a— OO
— o — O

This read/write bit is set (1) to enable the console Serial Line Unit
(SLU) halt-on-break feature. When clear (0), this feature is dis-
abled. This bit is cleared by the negation of the DCOK input.

This read/write bit is set (1) to enable the standalone mode by
which the KDJ11-B operates using only the cache memory. The
external memory and peripherals are disabled. When this bit is
clear (0), the standalone mode is disabled and the system is opera-
tional. This bit is reset by the negation of the DCOK input.

When this read/write bit is set (1), the ROM memory addresses
17 773 000 through 17 773 776 are disabled. An external ROM
responds to these addresses. When this bit is clear (0), the on-
board ROMs respond to these addresses using the high byte of the
PCR as the most significant address bits. This bit is cleared by the
negation of the DCOK input.

When this read/write bit is set (1), the ROM memory addresses
17 765 000 through 17 765 776 are disabled. An external ROM
responds to these addresses. When this bit is reset (0), the boot
and diagnostic ROM memory is enabled. This allows the ROM
memory selected by bit 5 of the CSR to use the low byte of the
PCR as the most significant address bits. This bit is cleared by the
negation of the DCOK input.

When this read/write bit is set (1), the 8-bit ROM in socket 3
responds to addresses 17 765 000 through 17 765 776, provided
that bit 6 of the CSR is clear. When this bit is clear (0), the 16-bit
ROM is selected to respond to these addresses. In either case, the
low byte of the PCR provides the most significant bits of the
address. This bit is cleared by the negation of the DCOK input.

When this read/write bit is set (1), and CSR bit 5 is set while
CSR bit 6 is clear, the program can write to ROM socket 3, which
normally contains the EEPROM. This bit is cleared by the power-
up and initialize routines.

1-41

Table 1-21 Control/Status Register Bit Description (Cont)

Bit(s) Name Function

3 Not used Read as zero.

<2:0> Processor These read/write bits are coded to select the length of time for the
mastership PMG counter to overflow. If any bit is set (1), the PMG counter
grant count begins counting whenever the KDJ11-B accesses the 1/O page or

external memory. When the counter overflows, the KDJ11-B has
bus mastership during the next DMA arbitration cycle and it
suppresses all DMA requests. When bits <2:0> are clear (0), the
PMG counter is disabled, and the KDJ11-B is blocked from bus
mastership as long as DMA requests are pending. These bits are
cleared by the negation of DCOK.

PMG Count Bits

2 1 0 Count Time

0 0 0 Disabled¥

0 0 1 0.4 useconds
0 1 0 0.8 useconds
0 1 1 1.6 useconds
1 0 0 3.2 useconds
1 0 1 6.4 useconds
1 1 0 12.8 useconds
1 1 1 25.6 useconds.

* Recormrmended for clock.
t The PMG count of zero (disabled) is not recommended for most systems and is reserved for special applications.

1.8.2 Page Control Register (17 777 522)

The PCR is a read/write register that is word and byte addressable. Only bits <14:9> and <6:1> can be
used and the remaining bits are always read as zero. The high byte provides the most significant bits of the
16-bit ROM address (sockets 1 and 2) when accessed by bus addresses 17 773 000 through 17 773 776.
The low byte provides the most significant bits of the 8-bit EEPROM or 16-bit ROM (socket 3) when
accessed by bus addresses 17 765 000 through 17 765 776. The CSR register bits <7:4> control access to
the ROM and EEPROM sockets and memory.

The PCR bits <14:9> are used as address bits <14:9> for addresses within 17 773 000 through
17 773 776 and the actual address bits <8:0> are used to form a 15-bit address for the ROM memory in
sockets 1 and 2. The PCR bits <6:1> are used as address bits <14:9> for addresses within 17 765 000
through 17 765 766 and the actual address bits <8:0> are used to form a 15-bit address for the ROM
memory in socket 3. When the 8-bit EEPROM is used in socket 3, the PCR bits <5:1> are used as
address tits <13:9> for addresses within 17 765 000 to 17 765 776 and bits <8:0> of the actual address
are used to form a 14-bit address. This register is cleared by the negation of the DCOK input.

1-42

1.8.3 Configuration and Display Register (17 777 524)

The CDR (Figure 1-31) consists of two independent registers: the read-only boot and diagnostic configura-
tion register and the write-only boot and diagnostic display register. These registers are accessed by the
same address and are described in the following paragraphs.

1.8.3.1 Boot and Diagnostic Configuration Register — This read-only register reflects the status of the
configuration switchpack (switches 8 to 1) located on the module. The status of switches 5 to 8 can be
remotely controlled via the J2 connector of the module and a cable connecting it to an external control
panel. The status of switches 1 to 4 can be remotely controlled via the J3 connector.

1.8.3.2 Boot and Diagnostic Display Register — The display register allows the boot and diagnostic
programs to control and update the eight LEDs mounted on the module. These LEDs can also be used to
enable a display on an external control panel via the J2 connector. The register uses bits <7:0> to drive the
LEDs. A 0 written into one these bits causes the respective LED to be illuminated. Writing a 1 into one of
these bits turns off the respective LED. All bits <7:0> are cleared by the negation of DCOK and then all
the LEDs are illuminated. ,

1.8.4 Maintenance Register (17 777 750) : '

The maintenance register is a 16-bit word that is read by the DCJ11-A during the power-up sequence,
where the CPU executes a general purpose read. The word contains the power-up code, the halt/trap
option bit, and the FPA (if this option is installed). This data is used by the DCJ11-A microprocessor; the
remaining bits provide information on the module and system parameters for use by the operating system
and the diagnostics. The read-only maintenance register is shown in Figure 1-32 and is described in
Table 1-22.

The code for the power-up mode is hardwired as mode 2 to use the standard bootstrap operation. This sets
the PSW to 340 and begins program execution at 173 000. This address starts the boot and diagnostic
code that runs the standalone diagnostics before initiating the user specified, power-up option stored in the
EEPROM as part of the configuration data. Since the bootstrap address is always the same, bits <15:9>
of this register are not used to reference a bootstrap program and are now available to define some of the
system parameters. o

15 14 13 12 11 10 09 08 a7 06 05 04 03 02 01 ‘00
. T LG LI T T

0 [0} o] oyt o0of o0} 0} 0{ o0 0 6 BIT DISPLAY

1 | 1 | 1

—v
CONFIGURATION R/0

MR-16830

15 14 13 12 11 10 09 08 07 06 05 04 03 02 Ol 00
1 1 T T
o | o ol o 0 0 0 0 1 0 1 0
1 1 1]
_T ‘ - v J \ v J
UNIBUS SYSTEM MODULE TYPE PWR UP MODE
FPA AVAILABLE (FIXED)

HALT/TRAP OPTION BPOK

MR-16831

Figure 1-32 Maintenance Register

1-43

Table 1-22 Maintenance Register Bit Description

Bit(s) Name Function
<15:11> Not used Read as zeros.
10 Reserved Reserved for future use.
9 Unibus This read-only bit monitors the status of the external Unibus adépter line.
system When set (1), it indicates that the system includes a Unibus adapter
module. When reset (0), it indicates that it is a Q22-Bus system.
8 FPA This read-only bit is set (1) only if an FPA chip is installed on the module.
available
<7:4> Module ID The 0010 code identifies this module as a KDJ11-B microprocessor.
3 Halt/Trap This read/write bit determines how the HALT instruction is used in the
option kernel mode. When set (1), the trap option is selected causing the CPU to
trap to location 4. When reset (0), the halt option is selected and the CPU
halts and enters the console ODT mode. The trap option is not intended
for normal use and is reserved for controller applications. This bit is
cleared by the negation of the DCOK input and is set when the boot and
diagnostic code selects the trap option by setting a bit in the configuration
ROM.
<2:1> Power-up These two bits are hardwired to always read as 2. Af power-up, these bits
code cause the microprocessor to set the PSW to 340 and start executing the
program at address 173 000. This is the starting address for the boot and
diagnostic ROM program. These programs execute diagnostics to check
the functions of the module and to implement the user’s selected power-up
routine as specified by the configuration data.
0 BPOK H This bit is set (1), when the Q22-Bus signal BPOK H is asserted mdlcat-

ing that the ac power is okay.

1.9 LINE TIME CLOCK .

The LTC provides the system with a timing reference of fixed intervals that are determined by the
Q22-Bus BEVNT line or by one of the on-board clock frequency signals, as programmed by bits <11:10>
of the CSR. The BEVNT line cycles at the ac line frequency and produces intervals of 16.7 milliseconds
for a 60 Hz input or 20.0 milliseconds for a 50 Hz input. The three on-board clock frequencies are 50 Hz,
60Hz, and 800 Hz. When enabled, these clocks are used to generate a program interrupt request with a
priority level of BR6 and an interrupt vector address of 100. The on-board clock is recommended.

1.9.1 Line Time Clock Register (17 777 546)

The LTC register allows line clock interrupts to be enabled or disabled under program control. These line
clock interrupts can be unconditionally enabled by setting bit 13 of the CSR register. Program recognition
of the LTC register can be disabled by setting bit 12 of the CSR register. The normal configuration used
for the KDJ11-B has both of these bits cleared. They are set by the boot and diagnostic ROM programs as
selected by the configuration data. The LTC register is shown in Figure 1-33 and is described by
Table 1-23. ” ‘

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
| | | I I ! T 1 I 1 I I
NOT USED NOT USED
| I 1 1 1 1 1 | 1] | 1

LINE CLOCK MONITOR-j t—LINE CLOCK INTERRUPT EN

MR-16832

Figure 1-33 Line Time Clock Register

Table 1-23 Line Time Clock Register Bit Description

Bit(s) Name Function
<15:8> Not used Read as zeros.
7 LCM The LCM bit is set (1) by the leading edge of the external BEVNT L

signal, the bus INIT signal, or one of the three on-board clocks. The bit is
- cleared automatically by processor interrupt acknowledges. It is also
cleared by writing a 0 into it.

6 LCIE When the LCIE read/write bit is set (1), it allows the set condition of bit 7
to initiate a program interrupt request. When this bit is cleared (0), the
line clock interrupts are disabled. This bit is forced when bit 13 of the
Boot and diagnostic Control/Status Register (BCSR) is set. This bit is
cleared by power-up and by the bus INIT signal.

<5:0> Not used Read as zeros.

1-45

CHAPTER 2
CONFIGURATION

2.1 INTRODUCTION }

This chapter discusses the configuration requirements and other factors to consider when configuring the
KDJ11-B module and installing it into an LSI-11 system. The module must be installed in a backplane that
has the extended LSI-11 bus in the A/B rows and the interconnecting bus in the C/D rows. A 22-bit LSI
bus utilizes the full capability of the module and the interconnecting bus is required because of the PMI
feature of the module. :

The H9278-A backplane is designed to accommodate the module in LSI-11 based systems. The H9277-A

backplane is designed to accommodate the module and adapt it to a Unibus based system. The UniBus
- Adapter module (UBA) provides the interface requirements necessary to interface Unibus modules with
the LSI-11 bus. In addition, the MSV11-J memory modules are designed to function with the PMI
capability of the module. : _

The user must consider the following items to determine the configuration requirements for the module. If
the module is installed in a prepackaged system, the user should be aware of the system components and
their intended use.

Select the features controlled by the jumpers and switches located on the module.
Define the type of system and the mass storage devices being supported.

Select the desired configuration parameters available in the EEPROM.
Determine the bootstrap programs necessary to support the system.

Know the system differences if an existing system is being upgraded.

LA LN

2.2 MODULE CONFIGURATION

The KDJ11-B module has 3 jumper wires and 8 switches mounted in a switchpack on the module as shown
in Figure 2-1. Also, there are six red LEDs to monitor the diagnostic testing and a green LED to monitor
the 5 Vdc applied to the module. The six red LEDs and switches 5 through 8 are wired to the J2 connector.
Switches 1 through 4 are wired to the J3 connector. This allows the user to remotely monitor and control
their status.

2.2.1 Jumper Wires

The 3 jumper wires are designated as W10, W20 and W40. The W10 jumper uses TP10 and TP11 to
connect the on-board oscillator to the SLU. The W20 jumper is reserved and uses TP20, TP21 and TP22.
The W40 jumper uses TP40, TP41 and TP42 to select the size of the EEPROM. The jumper is a push-on
connector that provides a connection between two of the test points. The jumper configurations and uses
are defined below and are summarized in Table 2-1.

2.2.1.1 W10 Jumper — The W10 jumper is used by manufacturing personnel to disable the on-board
oscillator and connect an external oscillator during final test. This jumper is not optional to the user and is
always used to connect TP10 to TP11.

2.2.1.2 W20 Jumper - The W20 jumper is always connected to TP20 and TP21.

2-1

DDDDDDDD DIP SWITCHPACK LED 0 1 2 3 45

SWITCH 87 65 43 2 1 DIAGNOSTIC
—e ED 3
= — / LEDS
— L | M|
J1
T (o z
TP10 TP11
\th/ DCJ11-A FPA
b DC319 | | Y2 I SOCKET
EPROM
| EPROM
P41 .
EEPROM/PS? _ DC351

Figure 2-1

]

TP4O TP42

DC350

O8N

TP20 - TP21 TP22

[| [J

MR 17058

KDJ11-B Module Layout

Table 2-1 Jumper Wire Functions

Jumper

Function

W10 installed*
(TP10 and TP11)

W10 removed
(TP10 and TP11)

W20 installed*
(TP20 and TP21)

W20 installed
(TP21 and TP22)

W40 installed*
(TP40 and TP41)

W40 installed
(TP41 and TP42)

The on-board 614.4 kHz oscillator drives the SLU.
This condition is reserved for factory testing.

The module is a single processor.

This condition is reserved.

The standard 2K EEPROM is used.

The user selects an 8K EEPROM.

* Standard factory configuration.

2-2

2.2.1.3 W40 Jumper - The W40 jumper is used to provide an additional address bit when the user
wishes to use an 8K EEPROM in place of the standard 2K EEPROM. When the jumper connects TP40
and TP41, the standard 2K EEPROM is installed in the socket, and when the jumper connects TP41 to
TP42, the user can install either a 4K or 8K EEPROM in the socket. Note that when a 2K EEPROM is
used, it is offset in the socket by two pins.

2.2.2 Switchpack

The switchpack contains 8 individual switches that are used to select the baud rate of the console SLU, a
device bootstrap program, the dialog mode and the operating mode at power-up. The switches are wired to
the read-only configuration register, where bit 7 corresponds to switch 1 and bit O corresponds to switch 8.
A switch placed in the on position is read as a 0 and a switch placed in the off position is read as a 1.

The switches are wired to connectors J2 and J3 to allow the user to remotely -monitor the status of the
switches. They can also be remotely controlled or selected via these connectors. When using this mode, all
the switches must be placed in the off position. Then the user can remotely turn a switch on by grounding
the corresponding pin on the connector cabling. The pin identifications for the J2 and J3 connectors are
shown in Figure 2-2 and are listed in Table 2-2. The functions controlled by the switches are described in
the paragraphs that follow.

o
w

YV ——o\ s T2 18IT2 r
~_SWE e SW 4 A CLEY
> 2 |siTs
~_SW 7 3,74 [gito Sws — 5
> SW 2 3 |BIT6
~_SW 8 . 4 —>
o p————— '5
SW5 /_FRCEDLG °
6
4 7 8 °
° ° I 7
9 10 =
' LED 05
BV — -———
~ 11_~12 |LED 04
-
/'LEDO(&
< 13,14 |
—/ LED 02
15 . *
——\ 16 [LED 01
< "o oo
——
-{ 17 718
-
19 20

MR-17059

Figure 2-2 Pin Assignments for Connectors J2 and J3

2-3

Table 2-2 J2 and J3 Connectors

J2 Connector J3 Conrecter

Pin Signal Pin Signai
1 +5.0 V fused 1 Switch 4
2 Switch 8 2 Switch 3
3 Switch 7 3 Switch 2
4 Switch 6 4 Switch 1
5 NC 5 NC
6 Switch 5 6 GND
7 NC 7 GND
8 NC
9 GND

10 GND

11 LED 05 MSB

12 LED 04

13 LED 03

14 GND

15 LED 02

16 LED 01

17 LED 00 LSB

18 GND

19 NC

20 GND

2.2.2.1 Baud Rate Selection — The baud rate for the SLU is selected by switches 6, 7 and 8. The baud
rate selections and the switch conditions are listed in Table 2-3.

Table 2-3 Baud Rate Selections

Switches Register Bits

6 7 8 2 1 0 Baud Rate
On On On 0 0 0 38,400
On On off 0 0 1 19,200
On Off On 0 1 0 9,600
On Ooff Off o 1 1 4,800
Off On On 1 0 0 2,400
Off On Off 1 0 1 1,200
Ooff Off On 1 1 0 600
Ooff Off Off 1 1 1 300

2-4

2.2.2.2 Dialog Mode - Sctting switch 5 in the off position sets BCR register bit 3 and unconditionally
forces the ROM code to enter the dialog mode when the diagnostic tests are completed. The switch in the
off position also disables the automatic boot sequence and the bootstrap options associated with switches 2,
3, and 4. The dialog mode allows the user to establish a dialog with the system via the console terminal by
using the six dialog commands that are described in Chapter 4. When switch 5 is set in the on position,
register bit 3 is reset and the user can select any one of the power-up routines.

2.2.2.3 Device Bootstrap Programs — Up to six programs used to boot the mass storage devices in the
system can be predetermined and stored in the EEPROM. The user determines the types of devices that
need bootstrap programs and is able to select these programs by using setup command 4. This procedure is
described in detail in Chapter 4. The following example shows the selections for typical LSI-11 and Unibus
systems.

Boot

Selection - LSI-11 System Device Unibus System Device
Boot 1 A MSCP sniffer A MSCP sniffer
Boot 2 DLO RLO1/RL0O2 DLO RLO1/RL02
Boot 3 MS0 TSV05/TK25 MSO - TS11/TUS80
Boot 4 E End auto boot E End auto boot
Boot 5 Blank Not used Blank - Not used

Boot 6 Blank Not used Blank ~ Not used

When enabled by setup command 6, switches 2, 3 and 4 are used to select a single bootstrap program for a*
device in the system. When switches 2 through 4 are set from 1 to 6 as shown in Table 2-4, the ROM code
enters the auto boot mode and attempts to boot only the device selected by the switches. If the boot is
unsuccessful, the ROM code displays the normal error message and enters the dialog mode.

If all three switches are on and the console is enabled by switch 1 off, the module immediately powers up
in the ODT mode. If the console is disabled by switch 1 on, the module loops on the standalone mode tests.
If all three switches are off and the console is enabled by switch 1 off, the module powers up in dialog,
automatic, ODT or 24 mode, as determined by the configuration parameter selected in the EEPROM. If
all three switches are off and the console is disabled by switch 1 on, the ROM code automatically tries to
boot the devices in the sequence determined by setup command 4.

NOTE :
When the dialog mode is selected by switch 5, the
bootstrap program options are disabled and the sys-
tem enters the dialog mode. ‘

- Table 2-4 Bootstrélp Program Selection

Switches Register Bits

2 3 -4 6 5 4 EEPROM Boot

On On On 0 0 0 Determines power-up status
On On Off 0 0 1 Selects boot #1

On Off On 0 1 0 Selects boot #2

On off Off 0 1 1 Selects boot #3

Off On On 1 0 0 Selects boot #4

Off On Off 1 0 1 Selects boot #5

Off Off On 1 1 0 Selects boot #6

Off Off Off 1 1 1 Determines boot status

2-5

2.2.2.4 Console Enable — The system console is enabled by setting switch 1 to the off position. This also
sets a 1 in register bit 7. If the switch is in the on position, the system console is disabled and bit 7 is reset
to 0. If the system console is disabled, the output line to the console is suppressed. Any input from the
console results in an error message to inform the user that the console is disabled.

2.2.3 Diagnostic LEDs

The six red LEDs are mounted on the module edge in order to be visible to the user. They are also wired to
connector J2 so they can be remotely monitored. The LEDs are coded as two octal numbers to represent
the diagnostics or the system status listed in Table 2-5. A complete description of the diagnostics is in
Chapter 4.

Table 2-5 Diagnostic and System Status LED Display

LED Code Diagnostic
77 CPU or halt switch
76 CPU and MMU
75 Turn on MMU, run CPU and MMU
74 Turn on PMI, check UBA reboot bit
73 Power-up to mode 2: ODT
72 Power-up to mode 3: 24
71 EEPROM checksum
70, CPU ROM checksum and PCR
67 Miscellaneous CPU and EIS
66 Console SLU test |
65 Console SLU test 2
64 Console SLU test 3
63 MMU aborts
62 Cache memory
61 Line clock
60 ' Floating-point instruction
57 Reserved
56 Exit standalone mode
55 . UBA register response
54 Memory sizing routine
53 Memory location 0
52 Memory locations 0 to 4K words
51 Cache operation with memory
50 Complete memory data/byte exercise
47 Memory parity/ECC
46 Memory address shorts
45 UBA boot ROM
44 UBA map registers data path
43 UBA unmapped diagnostic data
42 UBA mapped diagnostic data
41 UBA floating address/data
40 UBA address overflow
37 UBA cache data
36 UBA cache LRU
35 UBA cache tag store
- 34 UBA cache parity error
33 Complete Unibus memory data/byte exercise
32 Unibus memory parity
31 Unibus memory address shorts
30 Exit

2-6

Table 2-5 Diagnostic and System Status LED Display (Cont)

LED Code System Status

27 ’ Not used

26 Not used

25 Not used

24 ' DECNET boot (DLV11-E/F, DUV11) waiting for host reply

23 - XON not received after XOFF, type <CTRL> Q to correct

22 . Xmit ready bit does not set

21 Drive error

20 Controller error _

17 Invalid boot device selection (i.e., AA)

16 ' Invalid unit number selection

15 Nonexistent drive

14 Nonexistent controller

13 No tape

12 No disk

11 Invalid boot block

10 Drive not ready

07 No bootable device found in automatic boot mode

06 Console disabled by switch 1 on, and no force dialog or APT break received;
ROM code has entered ODT for APT

05 Not used

04 Dialog mode

03 UBA ROM boot in progress

02 EEPROM boot in progress

01 CPU ROM boot in progress

00 Start secondary boot with display blanked

2.3 EEPROM CONFIGURATION PARAMETERS

The general configuration parameters are stored in the EEPROM and can be modified or changed by the
user to meet the requirements necessary for the intended use of the module. The user can determine the
parameters by entering the dialog mode and selecting the setup command. The dialog mode is entered by
setting switch 5 to the off position and powering up the system, or by typing a <CTRL> C while running
the diagnostics. The setup mode is entered by typing S followed by <RETURN>. The system then prints
a list of all the setup commands with a short description of each. The second command provides a list of all
_ the parameters available and the current status of these parameters. The second command is selected by
typing 2 and pressing <RETURN->. The system then prints a list of the parameters as shown in Table 2-6.
The last column provides the current status. The status described represents the default status.

When the setup mode command 2 is executed and the list of parameters with the current status is printed
out, the first parameter is repeated for the user’s approval or change. To change the parameter, the user
types in the new value and presses the Return key. Note that the first two parameters apply only to LSI-11
systems and the last four parameters apply only to Unibus systems. Therefore, the parameters printed out
are dependent on the type of system, but they are printed sequentially from A to B to C, etc.

The user can select the next parameter by pressing <RETURN> repeatedly until the parameter to be
changed is reached. Another way to reach the desired parameter is to type the item reference letter
(Table 2-6) and press the Return key. Tlic user can proceed to the next parameter by pressing <Return>,
<Line Feed> or <. >, and can return to the preceding parameter by typing < A > or < - >. The setup
mode command 2 is exnted by typing <CTRL> Z.

2-7

Table 2-6 Configuration Parameters

Item Parameter Selectinns Status
A Enable halt-on-break (0) = No (1) = Yes =]
B Disable user friendly (0) = No (1) = Yes =1
format
C ANSI video terminal (0) = No (1) = Yes =1
Power-up (0) = Dialog =1

(1) = Automatic

(2) = ODT

(3)=24
E Restart Same as power-up =1
F [gnore battery (0) = No (1) = Yes =0
G PMG count Select from 0-7 =7
H Disable clock CSR (0) = No (1) = Yes =0
I Force clock interrupts (0) = No (1) = Yes =0
J Clock frequency (0) = Power supply =0

(1) =50 Hz

(2) = 60 Hz

(3) = 800 Hz
K Enable EEC test (0) = No (1) = Yes =1
L Disable long memory test (0) = No (1) = Yes =0
M Disable ROM (0) = No =0

(1) = Disable 165

(2) = Disable 173

(3) = Disable both
N Enable trap-on-halt (0) = No (1) = Yes =0
O Allow alternate_ boot block (0) = No (1) = Yes =0
P Disable setup mode (0 =No (I)= Yes =0
Q Disable all testing (0) = No (1) = Yes =0
R Enable Unibus memory test (0) = No (1) = Yes =1
S Disable UBA ROM (0) = No (1) = Yes =0
T Enable UBA cache (0) = No (1) = Yes =1

2-8

Table 2-6 Configuration Parameters (Cont)

Item Parameter Selections Status

U Enable 18-bit mode ©=No (1) = Yes =0
Type <CTRL> Z to exit or press <RETURN> to proceed.
A Enable halt-on-break (0) = No (1) = Yes =1

2.3.1 Enable Halt-on-Break

When this parameter is set to 1, it enables the processor to halt if the console SLU detects a break
condition. When it is reset to 0, the processor ignores console break conditions. This parameter is enabled
only when the first break or valid character is received after the system is powered up or restarted. This
parameter only applies to LSI-11 systems. The Unibus systems enable the halt-on-break parameter by
setting the front panel key switch to the enable position.

2.3.2 Disable User Friendly Format :

The type of messages sent to the console during power-up is determined by this parameter. Both conditions
of this parameter provide user friendly messages, but the messages are more friendly when the parameter
is set to 0. The user friendly mode is normally used when the automatic boot mode is selected. The
standard format is always selected for Unibus systems. This parameter is only used for LSI-11 systems.

2.3.3 ANSI Video Terminal ‘

When this is set to 1, it indicates that the console terminal is an ANSI video terminal. If it is reset to 0, the
console terminal must be a hard-copy terminal or a non-ANSI video terminal. When an ANSI video
terminal is selected, use of the Delete key erases the previous character on the screen. This is accomplished
by the ROM code sending a backspace, a space and then another backspace to the console terminal. If a
hard-copy terminal is selected, the Delete key is interpreted by the ROM code as a slash character and the
deleted character is identified by the slash character. When the system is powered up and an ANSI video
terminal is selected, the ROM code clears the video screen and positions the cursor at line 9 and column |.
This parameter is only used by the ROM code and not by the operating system.

NOTE
A VTS52 terminal is not an ANSI video terminal and
if a VTS2 is selected, the parameter must be set.to 0

in order to prevent the clear screen command from
locking up the VT52.

2.3.4 Power-Up Modes

There are four power-up mode selections available to the user. When the system is started, the ROM code
checks a status bit to determine if the system is powering up or being restarted. The ROM code then
checks the status of the selected parameter and uses the mode sclected for that parameter. The same
modes are used by both the power-up parameter and the restart parameter.

2.3.4.1 Dialog Mode - After the diagnostics are completed, the ROM code enters the dialog mode. This
mode is selected by keying in a 0.

2-9

2.3.4.2 Automatic Mode - At the completion of the diagnostics, the ROM code enters the automatic
boot routine and tries to boot the predetermined device or devices. The devices are previously selected and
loaded into the EEPROM. The user can select up to six individual devices to be automatically booted. The
system attempts to sequentially boot the devices on the list until a device is successfully booted or the end
“of the list is reached. The factory setting or default list consists of A, DLO and MS0. The A device is a
special mnemonic letter that tries to boot a Mass Storage Control Protocol (MSCP) device in the range of
0 to 7. This mode is selected by keying in a 1.

2.3.4.3 ODT Mode - In this mode, a limited set of diagnostics is run and the ROM code executes a halt
instruction and passes control to the DCJ11-A micro-ODT code. The user can continue the diagnostic
testing and enter the dialog mode by typing P, as long as none of the register data was changed. This mode
is normally used only for debugging and is selected by keying in a 2.

2.3.4.4 Mode 24 - After a limited set of diagnostics is run, the ROM code loads the contents of location
26 into the PSW and then transfers control to the address referenced by the contents of location 24. This
mode is used when the memory uses battery backup or when nonvolatile memory is present and it is
necessary to recover from a power fail condition. This mode is selected by keying in a 3.

2.3.5 Restart

The selections for the restart mode are identical to those used in the power-up mode. However these
sclections are independent of each other and the selection for the restart mode can be different than that
selected for the power-up mode.

2.3.6 ignore Battery :

This parameter is used in conjunction with mode 24 during power-up or restart. When the user selects 0,
the battery OK signal must be present in order to execute mode 24. When a 1 is selected, mode 24 is
executed regardless of the battery status. If this parameter is reset to 0, and the battery OK signal is not
present for power-up mode 24, the restart mode then determines the action taken. If the restart mode is
also mode 24, the system defaults to the dialog mode.

2.3.7 PMG Count

This parameter has a range of 0 to 7, and it determines the value of the PMG counter in the BCSR. When
a 0 is sclected, the counter is disabled. The counter enables the KDJ11-B to suppress DMA requests and
make the processor the busmaster during the next DMA arbitration cycle after the counter overflows. The
different values of the PMG counter are listed below. This parameter is normally set to 7, and it is
recommended that the O value not be used because it may cause erratic operation.

Value Overflow Time
0 Disabled

1 0.4 useconds

2 0.8 useconds

3 1.6 useconds

4 3.2 useconds

5 6.4 useconds

6 12.8 useconds
7 25.6 useconds

2.3.8 Disable Clock CSR

The LTC status register DIS LKS function is controlled by the status of this parameter. The BCSR
register uses bit 12 for this feature and when the parameter is set to 1, the feature is disabled. When reset
to 0, the bit is cleared and the LTC register responds with address 17 777 546. This parameter is normally
set to 0.

2-10

2.3.9 Force Clock Interrupts

FRC LCIE bit 13 of the BCSR register is controlled by this parameter. When set to 1, the clock
unconditionally requests interrupts provided that the priority of the processor is 5 or less. When reset to O,
the clock can request interrupts only when the clock CSR is enabled, bit 6 of the LTC register is set to 1,
and the priority of the processor is 5 or less. This parameter is normally reset to 0. If this parameter is set
to 1, it is recommended that the user disable the clock CSR parameter.

2.3.10 Clock Select
This parameter selects the frequency used to drive the clock mterrupts This functlon is also controlled by
bits <11:10> of the BCSR register. The 4 selections are described in the following chart.

Select Clock Frequency

0 External BEVNT LSI-11 bus 1nput
1 Internal 50 Hz clock

2 Internal 60 Hz clock

3 Internal 800 Hz clock

2.3.11 Enable ECC Test

The ECC memory test is enabled when this parameter is set to 1. This test uses bit 4 of the memory CSR
to determine if the type of memory is ECC or parity. The test is automatically aborted if parity memory
exists. The test tries to read and write into bit 4 and if it is successful, the ROM code assumes that it is an
ECC memory. When the parameter is reset to 0, the ECC test is bypassed. Normally the ECC test is
always enabled — even when the system only has parity memory. The ECC test is never used for Unibus
memory. .

2.3.12 Disable Long Memory Test

This test checks the memory addresses for shorts in reading data from memory. When the parameter is set
to 1, the tests are limited to only the first 256 Kbytes of memory, and if it is reset to 0, the test is executed
on all available memory. This parameter is normally reset to O to test all the memory for the system.

NOTE
If the long memory test is disabled and parity type
memory exists above the 256 Kbyte limit, then

parity errors are very likely to occur in the memory
-above 256 Kbytes.

2.3.13 Disable ROM

The user is allowed to selectively disable all or part of the boot ROM code. The ROM code uses two pages
of 256 words in the 1/O page. One page responds to the 17 773 000 through 17 773 777 addresses and the
other page responds to the 17 765 000 through 17 765 777 addresses. These pages are automatically
enabled during power-up and restart. One or both of these pages can be disabled by the ROM code. The
user can select a choice as described below, but normally none of the pages are disabled.

Value Disabled ROM Pages
0 None*

1 Page 17 765 00t

2 Page 17 773 00+

3 Both pages

* Default.
1 Recommended.

2-11

2.3.14 [Enable Trap-on-Halt

When this parameter is set to 1, the processor traps to location 4 when a halt instruction is executed in the
kernel mode. If the parameter is reset to 0, then the processor enters the DCJ11-A micro-ODT mode when
a halt instruction is executed in the kernel mode. Normally this paramcter is reset to 0.

2.3.15 Allow Alternate Boot Block .

During the boot process, the boot block of the device is loaded into memory and the ROM code checks
location 0 to determine if the device is bootable. If set to 0 and the data is incorrect, the ROM code types
out an er-or message indicating that the device is not bootable. When this parameter is set to 1, the ROM
code checks location O for any value other than 0. If it is reset to 0, the ROM code checks location 0 for a
value within the range 240 to 277 and then checks location 2 for a value within the range 400 to 777. This
parameter is normally reset to O for standard bootstraps, but may be set to 1 to allow the proper booting
requiremants for some users’ operating systems.

2.3.16 Disable Setup Mode

This parameter is used to enable the user to enter the setup mode from the dialog mode when set to 0, and
it disables this feature when set to 1. The setup mode command is not available. This parameter is set to 1.
Setup mcede is unconditionally enabled, regardless of how this parameter is set, if the force dialog mode is
enabled. This parameter is used to prevent unauthorized entry into the setup mode and assumes that the
forced dialog switch or switch 5 on the module is on to prevent entry into forced dialog mode. This
parameter is only available for the V7.0 version of the ROM code.

2.3.17 Disable All Testing '

This parameter is set (1) to prevent the diagnostic testing by the ROM code, provided that the forced
dialog mode is not selected. The ROM code does not change any memory locations unless they are
changed by the selected boot program. This parameter was installed because there are times when the user
needs an almost immediate response at power-up or needs the memory to remain unaltered. This parame-
ter should only by used when necessary. ’

NOTE
If the testing is disabled and memory parity is being
used, then memory parity errors are possible after
power-up.

2.3.18 Enable Unibus Memory Test
This parameter is set (1) specifically to test any Unibus memory in the system and is disabled when reset to
0. This feature is only used in Unibus systems.

2.3.19 Disable UBA ROM . : ‘

* This parameter is used to control the ROMs located on the UBA by copying its status into bit 3 of the
UBA Diagnostic Control/Status Register (DCSR) after a normal boot. When it is set to 1, the ROMs on
the UBA are disabled and ROMs located on other Unibus modules are enabled. If it is reset to 0, the UBA
ROMs are enabled. This parameter is normally reset to 0, and only applies to Unibus systems. It is ignored
when the user tries to boot the UBA or the M9312 boot ROM:s.

2.3.20 FEnable UBA Cache .

The cache located on the UBA is enabled and tested by the ROM code when this parameter is set to 1. If a
failure occurs during the testing of the cache, then the cache is disabled. When the parameter is reset to 0,
the UBA cache is always disabled. This parameter is normally set to 1 and is only used for Unibus systems.

2.3.21 Enable 18-Bit Mode
This parameter is used to select 18- or 22-bit addressing modes and its status is copied into bit 5 of the
UBA KTJ11 Memory Configuration Register (KMCR). When set to 1, the memory uses 18-bit address-
ing and when reset to 0, the memory uses 22-bit addressing. This parameter is normally reset to 0, and is
only used for Unibus systems.

2-12

2.4 SYSTEM INSTALLATION

The KDJ11-B module can be used in any system that incorporates a backplane with the extended LSI-11
bus in rows A and B, and the interconnecting bus in rows C and D. The Micro PDP-1 1/73 system is a
prepackaged LSI-11 based system that uses the H9278-A backplane. The PDP-11/84 system is a
prepackaged Unibus system that uses the H9277-A backplane. Both of these systems use the MSV11-J
memory modules as a private memory and utilize the PMI feature of the KDJ11-B module.

2.4.1 LSI-11 Based Systems

An LSI-11 based system can be custom designed using the KDJ11-B module and compatible LSI-11
components. These systems can incorporate the PMI feature by using the MSV11-J memory modules. A
list of compatible LSI-11 options is provided in Table 2-7.

NOTE
It is recommended that the ac and dc loading for the
final configuration be checked for conformance with
the LSI-11 bus loading rules. It is also recommended
to check for overloading on the +5 V and +12 V
power supplies.

Table 2-7 LSI-11 Compatible Options

Name Option Identification
Backplanes
H9276 4%x9 LSI-11/CD
H9278-A 4 X8 3 LSI-11/CD slots and
5 LSI-11/LSI-11 slots

Memory »
MCV11-D M8631 CMOS nonvolatile memory
MSVI11i-L M8059 MOS memory
MSV11-J M8637 MOS memory
MSV11-P M8067 - MOS memory
MSV11-Q . M7551 MOS memory

- MRVII-D M8578 PROM/ROM module
Options -
AAVI1I-C - A6008 D/A converter
ADV11-C A8000 A/D converter
AXV11-C - A0026 D/A and A/D combination converter
DEQNA-K M7504 Adapter, Q22-Bus to Ethernet
DLVI11 - M7940 Asynchronous serial line interface
DLVI1-E M38017 Asynchronous serial line interface .
DLVI1I-F - MB8028 Asynchronous serial line interface

- DLV11-J M8043 Four asynchronous serial line interfaces

(CS Rev. E or later, ECO M8043-MRO002 installed)

DZQl11-M M3106 4-line asynchronous multiplexer
DLVIJI-M M8043 4-line asynchronous multiplexer
DHV1I-M M3104 8-line asynchronous multiplexer

2-13

Table 2-7 LSI-11 Compatible Options (Cont)

Name Option Identification
DMVI11-AC M8053-MA Synchronous communications interface
DMV1I-AF M8064-MA Synchronous communications interface
DPV11 M8020 Programmable synchronous EIA line
DRVI11 M7941 Parallel interface
DRV11-J M8049 Parallel interface
DUVI11 M7951 Programmable synchronous EIA line
DZV11 M7957 4-line asynchronous EIA multiplexer
IBVII-A M7954 IEEE instrument bus interface
KLESI-Q M7740 Adapter, Q22-Bus to LESI
KPVI1I-A M8016 Power-fail and LTC generator
(KPV11-B and -C are not compatible)
KWVili-C M4002 Programmable real-time clock ,
LAV11 M7949 L.A180 line printer interface
LPVI1 M8027 LA180/LPO05 printer interface
RLVI2 M8061 RLO1/2 controller
RQDX1 M8639 MSCP controller for RX50 floppy disk and RD51 Winchester
drive
KDAS50-QA M7164/ Adapter, Q22-Bus to SDI
M7165
RDQX:-E M7512 RD/RX extender
RXV21 M8029 RXO02 controller
TQK25 M7605 TK25 controller
TQKS0 M7503 TK50 controller
TSVOS - M7196 Magnetic tape interface
RQDX2 M8639-YB Controller, MicroPDP-11 systems
RQDX3-M M7555 Controller, MicroPDP-11 and MicroVAX 11 systems

Bus Cable Cards

M9404
M9405

Cable connector
Cable connector

When building a custom LSI-11 system, the placement of the KDJ11-B module is dependent upon the use
of the MSV11-J module and the following rules.

1. When two MSV11-J modules are used in the system, they are inserted into the first two slots,
and the KDJ11-B module is inserted into the third slot of the backplane.

2. When one MSV11-J module is used in the system, it is inserted into the first slot, and the
KDJ11-B module is inserted into the second slot of the backplane.

3. If no MSV11-J modules are used, the KDJ11-B module is inserted into the first slot of the

backplane.

2-14

Any additional LSI-11 options are inserted below the KDJ11-B module and must conform to the following

rules.

1.

2.

All options must be inserted below the KDJ11-B module.
No dual options may be inserted in the C and D rows used as the interconnecting bus.
Dual options can only be inserted in slots designated as A and B rows.

Any open A rows, or C and D rows of a slot must be filled with an M9047 grant module if any
modules follow the grant chain.

The terminating resistors on the backplane should be removed when using an extended back-
plane system.

2.4.2 Restricted LSI-11 Systems -

There are many LSI-11 options that are not compatible because they were designed primarily for 16- and
18-bit systems or for a particular application. The LSI-11 options not compatible are backplanes, memo-
ries, or I/O devices that are not capable of 22-bit addressing. They may generate or decode erroneous
addresses if used in systems that implement 22-bit addressing. Memory and memory addressing devices
that implement only 16- or 18-bit addressing may be used in a 22-bit backplane, but the size of the system
memory must be restricted to the address range of these devices (64 Kbytes for systems with a 16-bit
device, 256 Kbytes for systems with an 18-bit device). Consider the following when adding restricted
LSI-11 options to the system.

1.

The option must not use pins BC1, BD1, BE! or BF1 except as the required BDAL 18-21
connections. Some early LSI-11 options were allowed to use these pins as test points or for user
provided interconnections.

If the option is a DMA device, it must support the full 22-bit addressing requirement.

If the option responds to non-I/O page addresses, it must also decode the BDAL 18-21 address
lines as part of the address. .

The power requirements for each option must be considered to avoid overloading the power
supply.

The switching and electrical parameters of the option must conform to the LSI-11 specification
of DEC STD 160.

The speed differences between the KDJ11-B and other Q22-Bus processors, operating systems,
and diagnostics may cause problems.

NOTE
DMA devices having 18 bits can potentially work in
a 22-bit system by buffering I/O in the 18-bit
address space.

2-15

2.4.3 Unibus Based Systems

A Unibus based system can be custom designed by using the KDJ11-B CPU module, the MSV11-J
memory module, the KTJ11-B UBA and compatible Unibus components. This type of system must be
installed in the H9277-A backplane and incorporates the PMI feature. A list of cormpatitic Unibus
modules is provided in Table 2-8.

The following requirements must be considered when adding a Unibus option to the system.
1. The timing and electrical parameters of the option must conform to the Unibus specification of
DEC STD 158.
2. The ac and dc loading of the Unibus must be within the allowable specifications.

3. The power requirements must not exceed the ratings of the power supply and hardware. The
speed differences between Unibus processors, diagnostics, and operating systems may cause

problems.
Table 2-8 Unibus Compatible Options

Name Identification
Communications
DHUI11-AP 16-line DMA multiplexer
DLI11-XP Single channel modem
DNI11-XP Auto dial unit
DUP11-AP Synchronous interface
DMP11-XP Synchronous multidrop interface
DMRI11-XP DDCMP interface
DEUNA-AA Ethernet interface
KMC11-MP I/O processor
KMSI11-BX X.25 packet switch interface
DZS11-EA Statistical multiplexer

Disk and Tape

RC25-XA
RA60-CX
RA81-AX/CX
RA80-AX/CX
TU80-AX
TU8I-AX
TK50

2-16

Table 2-8 Unibus Compatible Options (Cont)

Name Identification

Options

DH11-XP 16-channel DMA multiplexer
DZ11-XP 16-channel muitiplexer

DMCI11-AL, AR, DA
DR11-B
DR11-K
IEC11-AB, BA
KG11-A
KMC11-B
DVI11-AP, 1P, 2P, 3P
KWI11-A
PCLI11-B
RX211-BX
RHI11

RK611
RL211-AK
TS11-AA
TIE16

TIU77
AA11-KT
ADI11-KT
AMI11-K
ARI11-KT
RAS0
TUS58-DX
DB11-MP
BA1l-K, L
BA23-CC/CD
H9642-XX

DDCMP channel interface
DMA parallel interface
Digital I/0O bit interrupt
IEEE interface

CRC arithmetic unit

I/O processor

- Synchronous multiplexer

Dual programmable clock
Interprocessor bus

RPOS5, 6 and RMO02 disks
RKO07 disk
Tape unit -

Real-time 1/0

Unibus repeater

- Expansion boxes

FCC expander cabinet
Option cabinet

2-17

2.5 MODULE CONTACT FINGER IDENTIFICATION :

The LSI-11 type modules, including the KDJ11-B, all use the same contact (pin) identification system.
The contacts used on a quad-height module are identified in Figure 2-3. The LSI-11 bus signals are
assigned to rows A and B, each with 18 contacts on the component side and the solder side. The KDJ11-B
bus signals are identified along with the LSI-11 bus signals in Table 2-9 and the pins are identified as
follows.

AE2 Module side, identifier side (solder side)
Pin identifier (Pin E)
Row identifier (Row A)

The pos:tioning notch between the two rows of pins mates with a protrusion on the connector block for
correct module positioning. A complete description of the backplane and bus operation is provided in
Chapter 6.

&3

W) g nm g

PIN I

\

W

=
A
> z

AA2

ROW A

>
<

/!
B

ROW B

< 9
l§ ‘\aj/n v, /! .
. Z . -
. d
% cat cA2 é
§ ROW C) Z /"‘)’
/ -
‘~,§ et cvz /‘,' 7
|\ ~J L
N § ‘?\ | D g' Z
COMPONENT S1DE N D o % - SOLDER SiDE
9 % row 0 é B
< _

/s
:%

Figure 2-3 KDJ11-B Module Contacts

2-18

Table 2-9 KDJ11-B Module and LSI-11 Bus Signals

Component Side Solder Side
Pin L.SI-11 Bus KDJ11-B Pin LSI-11 Bus KDJ11-B
AAl BIRQ 5 L "BIRQ S5 L AA2 +5V +5V
ABI1 BIRQ 6 L . BIRQ 6 L AB2 =12V - Not used
AC1 BDAL 16 L - BDAL 16 L AC2 GND GND
AD1 BDAL 17 L BDAL 17 L AD2 +12V Not used
AEl1 SSPARE 1 Not used AE2 BDOUT L BDOUT L
AFl1 SSPARE 2 SRUN L* AF2 BRPLY L BRPLY L
AHI1 SSPARE 3 Not used AH?2 BDIN L BDIN L
AJl GND GND AJ2 BSYNC L BSYNCL
AKl1 MSPARE A Not used AK2 BWTBT L BWTBT L
ALl MSPARE A Not used AL2 BIRQ 4L BIRQ 4 L
AMI1 . GND GND AM2 BIAKI L Not used
ANI1 BDMR L BDMR L -AN2 BIALO L BIAK L
AP1 BHALT L BHALT L AP2 BBS 7 L BBS 7 L
ARI1 BREF L Not used AR2 BDMGI L Not used
AS1 +12V Not used AS2 BDMGO L BDMGO L
ATl GND GND AT2 BINIT L BINIT L .
AUl PSPARE 1 Not used AU2 BDAL 0 L BDALOL
AV1 +5V +5V AV2 BDAL 1 L BDAL 1L
BA1 BDCOK H BDCOK H BA2 +5V +5V
BBI BPOK H BPOK H .BB2 —-12V Not used
BC1 SSPARE 4 BDAL 18 L BC2 GND GND
BD1 SSPARE 5 BDAL 19 L BD2 . +12V Not used
BE1 SSPARE 6 BDAL 20 L BE2 BDAL 2 L BDAL 2 L
BF1 SSPARE 7 BDAL 21 L BF2 BDAL 3 L BDAL 3 L
BH1 SSPARE 8 Not used BH2 BDAL 4 L BDAL 4 L
BJ1 GND GND BJ2 BDAL 5 L BDAL 5 L

" BKl1 MSPARE B Not used BK2 BDAL 6 L BDAL 6 L
BL1 MSPARE B Not used . BL2 BDAL 7L BDAL 7L
BM1 GND GND BM2 BDAL 8 L BDAL 8 L
BN1 BSACK L BSACK L BN2 BDAL 9 L BDAL 9 L
BP1 BIRQ 7L BIRQ 7L BP2 BDAL 10 L BDAL 10 L
BR1 BEVNT L BEVNT L BR2 BDAL 11 L BDAL 11 L
BS1 PSPARE 4 Not used BS2 BDAL 12 L BDAL 12 L
BT1 GND GND BT2 BDAL 13 L BDAL 13 L
BU1 PSPARE 2 Not used BU2 BDAL 14 L BDAL 14 L
BV1 +5V +5V BV2 BDAL 15 L BDAL 15 L

* The SRUN L signal is primarily used to drive a panel run light indicator. It is used for BA11-N and later systems. It indicates

that the processor is executing instructions.

2-19

The KDJ11-B module also uses rows C and D in the backplane for the PMI feature. The C and D rows
provide an interconnection between modules placed in adjacent slots. The signals assigned to the C and D
rows are identical for the KDJ11-B CPU module, the MSV11-J memory module and the KTJ11-B UBA.
The module signals are identified in Table 2-10.

Table 2-10 Module PMI Signal Assignments

Component Side Solder Side

Pin KDJ11-B Pin KDJ11-B
CAl Not used CA2 45V
CBl1 PSSEL L CB2 Not used
CCl1 SRUN L CcC2 GND
CD1 PUBMEM L CD2 Not used
CEl PBCYC L CE2 Not used
CF1 PUBSYS L CF2 Not used
CH1 PHBPAR L CH2 Not used
Cll PSBFUL L Cl2 Not used
CKl1 PLBPAR L CK2 Not used
CLt Not used CL2 Not used
CM1 PRDSTB CM2 Not used
CNI1 Not used CN2 Not used
CP1 PBLKM L CP2 Not used
CR1 PBSY L CR2 Not used
CS1 Not used CS2 Not used
CT1 GND CT2 Not used
CUI1 Not used CuU2 Not used
CVl1 PUBTMO L CvV2 Not used
DAI Not used DA2 +5V
DBI PWTSTB L ' DB2 Not used
DC1 ~ PBYTL DC2 GND
DD1 PMAPE L DD2 Not used
DEI Not used DE2 Not used
DF1 Not used DF2 Not used
DH1 Not used DH2 Not used
DJ1 Not used DJ2 Not used
DK1 Not used DK2 Not used
DL1 Not used DL2 Not used
DM1 Not used DM2 Not used
DNI1 CNSL LOCK L DN2 Not used
DP1 Not used DP2 Not used
DR1 Not used DR2 Not used
DS Not used DS2 Not used
DTI GND : DT2 Not used
DUI Not-used DU2 Not used

DV1 Not used DV2 Not used

2-20

2.6 MODULE INSTALLATION PROCEDURE
Certain guldelmes should be followed when installing or replacing the KDJ11-B module or any LSI-11
option used in the system. They are as follows.

1. Verify dc power before inserting the module in a backplane.

2. Ensure that no dc power is applied to the backplane when removing or inserting the module.

3. Verify the configuration of the module jumpers.

4. Insert the KDJ11-B module into the backplane with the component side facing up.

5. Ensure that cither the module or the selected system components provide the power-up

protocol.

6. Use a single switch to apply all power to the system.

2.7 SPECIFICATIONS
Identification

Size

Dimensions

Power Consumption

AC Bus Loads
DC Bus Loads
Environmental:

Storage

Operating

M8190
Quad .
26.5 cm X 22.8 cm (10.5 in X 8.9 in)

+5V + 5% at 5.5 A (maximum)
+12 V + 5% at 0.1 A (maximum)

1 unit load

1 unit load

—40°C to +65°C (—40°F to 150°F), 10% to 90% relative humid-
ity, noncondensing

For ambient temperatures above +55°C, sufficient air flow must
be provided to limit the module temperature to less than +65°C.
For inlet temperatures below +55°C, air flow must be provided to
limit temperature rise across the module to +10°C.

Derate maximum temperature by 1°C (1.8°F) for each 305 m
(1000 ft) above 2440 m (8000 ft).

2-21

CHAPTER 3
CONSOLE ON-LINE DEBUGGING TECHNIQUE (ODT)

3.1 INTRODUCTION

The console octal debugging techmque, normally called the console ODT, allows the KDJ11-B to respond
to commands and information entered via a console terminal connected to the module. The console
interface uses addresses 17 777 560 through 17 777 566 to communicate with the DCJ11 microprocessor.
The addresses of the console terminal are generated in the microcode and cannot be changed. Communica-
tion between the microprocessor and the user is a stream of ASCII characters interpreted as console
commands. These commands are a subset of the commands used in the ODT-11 software for
microcomputers. '

This feature is called the microcode on-line debugging technique, or micro-ODT. The KDJ11-B micro-
ODT accepts 22-bit addresses, allowing it to access 4088 Kbytes of memory, plus the 8 Kbyte 1/O page.
Micro-ODT provides a more sophisticated range of debugging techniques, including access to memory
locations by virtual address.

3.1.1 Terminal Interface

The KDJ11-B prov1des a DLART serial line interface on the module. The console is connected to the
module directly or via an interfacing panel. This allows the console to communicate with the KDJ11-B.
The DLART uses four registers designated as the RCSR, RBUF, XCSR and XBUF. These registers are
described in Chapter 1.

Console ODT uses bit 7 of the RCSR and the XCSR registers and the low bytes of the RBUF and XBUF
registers. The other bits used by these registers are ignored with the following exceptions.

The XCSR maintenance bit 2 and the XMIT break bit 0 must be cleared in order for the console ODT to
function. The interrupt enable bits 6 of the XCSR and RCSR registers have no effect during
console ODT.

CAUTION ‘
The user must not write any data into the XCSR
that will set bits 2 or 0 to a 1. That is, no data that
ends with 1, 3, 4, 5, 6 or 7 may be entered into this
register. If this is done, the user has to cycle the
power-up sequence or hit the restart switch.

3-1

3.2 ODT OPERATION OF THE CONSOLE SERIAL LINE INTERFACE

The processor microcode operates the serial line interface in half-duplex mode by using program I/O
techniques rather than interrupts. This means that when the ODT microcode is busy printing characters
using the output side of the interface, the microcede is rct monitoring the input side for incoming
characters. Any characters coming in while the ODT microcode is printing are iost. Overrun errors
detected by the DLART are ignored because the microcode docs not check any error bits in the serial line
interface registers.

Therefore, the user should not “type ahead” to ODT because those characters will not be recognized. If
another processor is at the end of the serial line, it must obey half-duplex operation. In other words, no
input characters should be sent until the processor output is finished.

3.2.1 Console ODT Input Sequence
The input sequence for ODT is as follows.

1. Test RCSR bit 7 (DONE flag) at 17 777 560 using a DATI bus cycle. If it is a 0, continue
testing.

2. If RCSR bit 7 is a 1, read the low byte of RBUF at 17 777 562 using a DATI bus cycle.

3.2.2 Console ODT Output Sequence
The output sequence of ODT is as follows.

1. Test bit 7 (DONE flag) of the XCSR at 17 777 564 using a DATI bus cyéle. IfitisaO,
continue testing.

2. If XCSR bit 7 is a 1, write to the XBUF at 17 777 566 using a DATO bué cycle. The desired
character is in the low byte.

3.3 CONSOLE ODT ENTRY CONDITIONS
The ODT console mode can be entered in the following ways.

e Execution of a HALT instruction in kernel mode, provided the trap optlon is not selected in the
maintenance register (address 17 777 750, bit 3) The trap option is reset by the negation of
DCOK.

® Assertion of the BHALT signal on the bus. Note that the signal must be asserted long enough to
be seen at the end of a macroinstruction by the service state in the processor. BHALT is

asserted if the halt-on-break feature is enabled by setting BCSR bit 9 to a 1, and then the SLU
console receives a break character.

® At power-up when the power-up option is selected or at power-up and restart if the halt switch is
depressed.

ODT causes the following conditions upon ehtry.
1. Performs a DATI from RBUF (input data buffer at 17 777 562) and then ignores the character
present in the buffer. This operation prevents the ODT from interpreting erroneous characters,
or user program characters as a command.

2. Prints a carriage return (<CR>) and line feed (<LF>) on the console terminal.

3. Prints the contents of the PC (program counter R7) in six digits.

4. Prints a <CR> and <LF>.
5. Prints the prompt character @.

6. Enters a wait loop for the console terminal input. The DONE flag (bit 7) in the RCSR at
17 777 560 is constantly being tested for a 1 via a DATI by the processor. If bit 7 is a 0, the
processor keeps testing.

3.4 CONSOLE ODT COMMAND SET

The ODT command set is listed in Table 3-1 and is described in the following paragraphs. The commands
arc a subset of ODT-11 and use the same command characters. ODT has 10 internal states and each state
recognizes certain characters as valid input and responds with a question mark (?) to all others.

The parity bit (bit 7) on all input characters.is ignored (i.e., not stripped) by console ODT, and if the input
character is echoed, the state of the parity bit is copied to the output buffer (XBUF). Output characters
internally generated by ODT (e.g., <CR>) have the parity bit equal to 0. All commands are echoed except
for <LF>.

In order to describe the use of a command, other commands are mentioned before they have been defined.
For the novice user, these paragraphs should be scanned first for familiarization and then reread for detail.
The word “location,” as used in the following paragraphs, refers to a bus address, processor register, or

The descriptions of the ODT commands include examples of the printouts that the processor outputs to the

console terminal in response to the commands entered by the user. In the examples that follow, the
processor output portions are boldface. :

Table 3-1 Console ODT Commands

Command Symbol Function

Slash ' | / Prints the contents of a specified location.
Carriage return ' . <CR> Closes an open location.

Line feed ’ <LF> . Closes an open location and then opens the

next contiguous location.

Internal register . $orR Opens a specific processor register.

designator ‘

PSW designator : S Opens the PSW; must follow a $§ or R
command.

Go G Starts execution of a program.

Proceed ' P Resumes execution of a program.

Binary dump <CTRL> <SHIFT> S Manufacturing use only. '

3-3

3.4.1 / (ASCII 057) - Slash

This command is used to open a bus address, processor register, or PSW and is normally preceded by othe
characters that specify a location. In response to /, ODT prints the contents of the location (six characters
and then a space (ASCII 40). After printing is complete, ODT waits for either new data for that locatio
or a valid close command. The space character is issued so that the contents of the location and possibl:
new contents entered by the user are legible on the terminal.

Example: @00001000/012525 <SPACE>
Where: @ = ODT prompt character.
00001000 = octal location in the Q22-Bus address space desires
by the user (leading Os are not required).
/ = command to open and print contents of location.
012525 = contents of octal location 1000.
<SPACE> = space charactef generated by ODT.

The / command can be used without a location specifier to verify the data just entered into a previousl
opened location. The / produces this result only if it is entered immediately after a prompt character tha
follows a location previously closed by a <CR>. A / issued immediately after the processor enters OD"
mode causes ? <CR> <LF> to be printed because a location has not yet been opened.

Example: @1000/012525 <SPACE> 1234 <CR> <CR> <LF>
@/001234 <SPACE>

Where: first line = new data of 1234 entered into location 1000 an«
: location closed with <CR>.

second line = a / entered without a location specifier and th
previous location opened to reveal the new content
~ correctly entered into memory. -

3.4.2 <CR> (ASCII 15) - Carriage Return

This command is used to close an open location. If the contents of a location are to be changed, the use
must precede the <CR> with the new data. If no change is desired, <CR> closes the location withou
altering its contents.

Example: @‘R1/004321 <SPACE> <CR> <CR> <LF>
@ ‘ :

Processor register R1 was opened and no change was desired, so the user issued <CR>, In response to th
<CR:>, ODT printed <CR> <LF> @.

Example: @R1/004321 <SPACE> 1234 <CR> <CR> <LF>
@

In this case, the user desired to change R1. The new data, 1234, was entered before the <CR>. OD"
deposited the new data into the open location and then printed <CR> <LF> @. ODT echoes the <CR>
entered by the user before it prints <CR> <LF> @.

3.4.3 <LF> (ASCII 12) - Line Feed

This command is used to close an open location and then open the next contiguous location. Bus addresses
and processor registers are incremented by two and one, respectively. If the PSW is open when an <LF> is
issued, it is then closed, <CR> <LF> @ is printed, and no new location is opened. If the open location
contents is to be changed, the new data must precede the <LF>. If no data is entered, the location is closed
without béing altered. :

Example: - @R2/123456 <SPACE> <LF> <CR> <LF>
@R3/054321 <SPACE>

In this case, the user entered <LF> with no data preceding it. In response, ODT closed R2 and then
opened R3. When a user has the last register, R7, open, and issues <LF>, ODT “rolls over” to the first
register, RO. ODT opens location 0 if the last location in the 1/O page (17 777 776) is open and the user
issues an <LF>. '

Unlike other commands, console ODT does not echo the <LF=. Instead, it prints <CR>, then <LF>, so
that terminal printers operate properly. In order to make this easier to decode, console ODT does not echo
ASCII characters in the range 0 to 17 (octal), but responds with ? <CR> <LF> @.

3.4.4 $ (ASCH 044) or R (ASCII 122) - Internal Register Designator

Either character, $ or R, when followed by a register number (0 to 7) or PSW designator (S), opens the
processor register specified. The $ character is recognized to be compatible with ODT-11. The R character
was introduced as a one-key-stroke representation of its function. Lower case r (ASCII 162) is treated the
same as R.

Examples: @$0 /000123 <SPACE>

@R7/000123 <SPACE> <LF>
@R0/054321 <SPACE>

If more than one character (digit or S) follows the R or $, ODT uses the last character as the register
designator. An exception: if the last three digits are 077 or 477, ODT opens the PSW rather than R7.

3.4.5 S (ASCII 123) - Processor Status Word Designator
This designator is for opening thé PSW and must be used after the user has entered an R or $ register
designator. Lower case s (ASCII 163) is treated the same as S.

Example: @RS/100377 <SPACE> 0 <CR> <CR> <LF>
, @/000010 <SPACE>

Note that the trace bit (bit 4) of the PSW cannot be modified by the user. This is to prevent the PDP-11
program debugging utilities (e.g., ODT-11) that use the T-bit for single-stepping from being accidentally
harmed by the user. If the user issues an <LF> while the PSW is open, the word is closed and ODT prints
<CR> <LF> @. No new location is opened in this case.

3-5

3.4.6 G (ASCII 107) - Go
This command is used to start program execution at a location entered immediately before the G. This
function :s equivalent to the Load Address and Start switch sequence on other PDP-11 consoles.

Example: @200 G <NULL> <NULL>
The ODT sequence for a G, after echoing the command character, is as follows.

1. Print two nulls (ASCII 0) so the bus initialize that follows does not flush the G character from
the double buffered UART chip in the serial line interface.

2. Load R7 (PC) with the entered data. If no data is entered, 0 is used. (In the above example, R7
equals 200 and that is where program execution begins.)

3. The Floating-Point Status register (FPS) and the PSW are cleared to 0.

4. The LSI-11 bus is initialized by the processor asserting BINIT L for 12.6 useconds, negating
BINIT L, and then waiting for 110 useconds.

5. The service state is entered by the processor. Anything to be serviced is processed. If the
BHALT L bus signal is asserted, the processor reenters the console ODT state. This feature is
used to initialize a system without starting a program (R7 is altered). If the user wants to single-
step a program, he/she issues a G and then successive P commands, all with the BHALT L bus
signal asserted.

3.4.7 P (ASCII 120) - Proceed
This command is used to resume execution of a program and corresponds to the Continue switch on other
PDP-11 consoles. No machine state visible to the programmer is altered using this command.

Example: @P

Program execution resumes at the place pointed to by R7. After the P is echoed, the ODT state is left and
the processor immediately enters the state to fetch the next instruction. If a halt request is asserted, it is
recognized at the end of the instruction (during the service state) and the processor then enters the ODT
state. Upon entry, the contents of the PC (R7) is printed. In this fashion, a user can single-step through a
program and get a PC “trace” displayed on the terminal.

3.4.8 <CTRL> <SHIFT> S (ASCII 23) - Binary Dump

This command is used for test purposes by manufacturing and is not a normal user command. The
commanc is normally received from another computer and not the system console. It is recommended that
this command not be issued from the terminal because the console ODT echoes back the ASCII 23 code,
and this ray cause the keyboard to lock up, preventing data from being displayed on the screen. There is
no reason to issue this command from a terminal because it then dumps the binary data. The terminal is
intended to receive ASCII data. This command is intended to more efficiently display a portion of the
memory, as compared to using the / and <LF> commands.

This command can accidentally be entered on many terminals by typing <CTRL> S, <CTRL> s,
<CTRL> 3, or in many cases by pressing <NO SCROLL>, since all these conditions normally generate
the ASCII 23 code. If the user accidentally enters this command, it is recommended that the user reset the
terminal and type an “a” at least three times in order to ensure that the console ODT is ready to accept
commancs again. The command protocol is as follows,

1. After a prompt character, ODT receives a <CTRL> <SHIFT> S command and echoes it.

3-6

2. The host system at the other end of the serial line must then send two 8-bit bytes, which ODT
interprets as a starting address. These two bytes are not echoed. The first byte specifies starting
address <15:08>, and the second byte specifies starting address <07:00>. Bus address bits
<21:16> are always forced to 0; the dump command is restricted to the first 32K words of
address space. The starting address may be even or odd.

3. After the second address byte is received, ODT outputs 10 bytes to the serial line, starting at the
address previously specified. When the output is finished, ODT prints <CR> <LF> @.

3.5 KDJ11-B ADDRESS SPECIFICATION

The KDJ11-B micro-ODT accepts 22-bit addresses, allowing it to access 4088 Kbytes of memory, plus the
8 Kbyte 1/O page. All I/O page addresses must be entered by users with the full 22 bits specified. For
example, to open the RCSR of the SLU (DLART), the user must enter 17 777 560, not 17 7 560 or
777 560.

3.5.1 Processor I/O Addresses
Certain processor and memory management registers have I/O addresses assigned to them for program-
ming purposes. If referenced in ODT, the PSW responds to its bus address, 17 777 776. Processor registers
RO through R7 do not respond (i.e., timeout occurs) to bus addresses 17 777 700 through 17 777 707 if
referenced in ODT.
The MMRs and PAR/PDR pairs can be accessed from ODT by entering their bus address.

Example: ‘ @17777572/000001 <SPACE>
In this case, MMRO is opened to show the memory management enable bit set.
The FP11 accumulators cannot be accessed from ODT. Only FP11 instructions can access these registers.
3.5.2 Stack Pointer Selection
Accessing kernel, supervisor and user stack pointer registers is accomplished in the following way.
Whenever R6 is referenced in ODT, it accesses the SP specified by the PSW current mode bits
(PSW <15:14>). This is done for convenience. If a program operating in kernel mode
(PSW <15:14> = 00) is halted and R6 is open, the KSP is accessed.
Similarly, if a prograni is operating in user mode (PSW <15:14> = 11), the R6 command accesses the
USP. If a different SP is desired, PSW <15:14> must be set by the user to the appropriate value, and then
the R6 command can be used. If an operating program has been halted, the original value of
PSW <15:14> must be restored in order to continue execution.

Example: © PS = 140000
@R6/123456 <SPACE>

The USP has been opened.
@RS/140000 <SPACE> 0 <CR> <CR> <LF>
@R6/123456 <SPACE> <CR> <CR> <LF>
@RS/000000 <SPACE> 140000 <CR> <CR> <LF>
@P
In this case, the KSP was desired. The PSW was opened and PSW <15:14> was set to 00 (kernel mode).

Then R6 was examined and closed. The original value of PSW <15:14> was restored, and then the
program was continued using the P command.

3-7

3.5.3 Entering Octal Digits

When the user is specifying an address, console ODT uses the last eight digits if more than eight have been
entered. When the user is specifying data, console ODT uses the last six octal digits if more than six were
entered. The user need not enter leading Os for either address or data; console ODT forces Os as the
default. If an odd address is entered, console ODT responds to the error by printing ? <CR> <LF> or @.

3.5.4 ODT Timeout
If the user specifies a nonexistent address or causes a parity error, ODT responds to the bus timeout by
printing 7 <CR> <LF> or @.
3.5.5 General Registers
Whenever RO through R5 are referenced in console ODT, they access the general register set currently
specified by PSW bit 11. If a program is operating in general reglster set 0 (PSW bit 11 set to 0), the
program is halted. A general register is opened and register set 0 is accessed. Similarly, if a program is
operating in register set 1, references to RO through RS access register set 1.
If a specific register set is desired, PSW bit 11 must be set by the user to the appropriate value, and then
the RO through R5 commands can be used. If an operating program has been halted, the original value of
PSW bit 11 must be restored in order to continue execution.
Example: PSW = 000000
@R4/052525<SPACE> <CR> <CR> <LF>
R4 in register set 0 has been opened.
@RS/000000<SPACE> 4000 <CR> <CR> <LF>
@R4/177777<SPACE> <CR> <CR> <LF>
@RS/004000<SPACE> 0 <CR> <CR> <LF>
@P
In this case, R4 in register set 1 was desired. The PSW was opened and PSW bit 11 was set to | (selecting

register set 1). Then R4 was examined and closed. The original value of PSW bit 11 was restored and the
program was continued by using the P command.

3-8

CHAPTER 4
BOOT ROMS AND DIAGNOSTICS

4.1 INTRODUCTION

The boot and diagnostic ROMs consist of two FErasable Programmable ROMs (EPROMs) and one
EEPROM that provides either 2 Kbytes or 8 Kbytes of memory. The two EPROM:s contain the basic boot
and diagnostic code used for the diagnostics, the standard boot programs, the EEPROM setup programs
and the general support routines. The EEPROM stores all the variable parameters, such as the hardware
configuration, boot device selections and any special user bootstrap programs.

During power-up or restart, the KDJ11-B passes control to the ROM code. This code establishes the
configuration of the module, runs the diagnostics to test the KDJ11-B, tests all available memory and tests
the UBA in Unibus systems. After all the diagnostics are complete, the ROM code determines if a
previously sclected device is ready to be booted or to enter the dialog mode, which will allow the user to
input the device to be booted via the console terminal.

The user is able to select and edit the contents of the EEPROM by using the commands established by the
dialog mode. In this mode, the Help, Boot, List, Setup, Map, and Test commands allow the user to custom
select the features of the ROM code to meet the boot and diagnostic requirements of any LSI bus or
Unibus based system that can support a variety of devices. The commands used in the dialog mode and the
diagnostics are described in detail in this chapter.

NOTE
There are three versions of the ROM code. Version
V6.0 was used with some of the earlier modules.
Versions V7.0 and V8.0 are currently being used.
The differences between these code revisions are
described in Appendix A.

4.2 POWER-UP OR RESTART

The ROM code checks a status bit to determine if the system is powering up or being restarted. The
system checks the status of the reboot pulse bit in the BCSR for LSI bus operation and the same bit in the
KMCR for Unibus operation. When this bit is set, the system enters the restart routine and if it is clear,
the system powers up. There are four selections for the power-up or restart routines available to the user
that can be designated by the configuration parameters. The ROM code checks the status of the selected
mode and enters the mode selected for either the power-up or the restart routine. The selections for the
restart mode are identical to those used in the power-up mode. However, these selections are independent
of each other and the selection for the restart mode can be different than that selected for the power-up
mode.

4.2.1 Dialog (Mode 0)

The ROM code executes the diagnostics as determined by the EEPROM and then automatically enters
the dialog mode. The user is now able to boot a device, select the setup mode or run more diagnostics.

4-1

4.2.2 Automatic (Mode 1)

At the completion of the diagnostics, the ROM code enters the automatic boot routine and then tries to
boot the predetermined device or devices. The devices are previously selected and loaded into the
EEPROM The user can select up to six individual devices to be automatically booted. The system
attempts to sequentially boot the devices on the list until a device is successfully booted or the end of the
list is reached. The factory setting or default list consists of A, DLO and MSO0. The A device tries to boot
an MSCP device in the range of 0 to 7.

4.2.3 ODT (Mode 2)

In this mode, a limited set of diagnostics is run and the ROM code executes a halt instruction and passes
control to the DCJ11-A micro-ODT code as described in Chapter 3. The user can continue the diagnostic
testing anc enter the dialog mode by typing P and pressing the Return key, provided none of the register
data was changed. This mode is normally used for debugging.

4.2.4 24/26 (Mode 3)

After a lmuted set of diagnostics is run, the ROM code loads the contents of location 26 into the PSW and
then transfers control to the address referenced by the contents of location 24. This mode is used when the
memory uses battery backup or when nonvolatile memory is present and it is necessary to recover from a
power fail condition. .

4.3 FORCED DIALOG MODE

The forcec dialog mode allows the user to enter the dialog mode when the module is powered up in a mode
other than the dialog mode. The user can select the forced dialog mode when the module is powered up in
the ODT, 24/26 or the automatic mode by using switch 5 (BCR bit 3) of the module switchpack. When
this switch is off, BCR bit 3 is set (1), and the module automatically enters the dialog mode when the
diagnostics are complete. When this switch is on, BCR bit 3 is cleared, and the module does not enter
dialog mode.

However, if the switch is on and the module is powered up in the automatic mode while the diagnostics arc
enabled, t1e user may force entry into the dialog mode by typing <CTRL> C or <CTRL> P. The
<CTRL> C or <CTRL> P commands are keyed after the “Testing in progress — Please wait” message is
displayed, but before the “1 2 3 4 56 7 8 9 message is completely displayed. The <CTRL> C and
<CTRL> P entries are not echoed and after the diagnostics are complete, the dialog mode is entered.
<CTRL> C is the preferred command. Recognition of the <CTRL> P command provides compatibility
. with the PDP-11 ROM code.

4.4 HEIP COMMAND

A complete list and brief descrxptlons of all the help commands are shown in Figure 4-1. A command is
executed by typing H and pressing the Return key or by keying ? only. The system returns to the dialog
mode after the list is displayed.

Commands are: [Help, Boot, List, Setup, Map, Test]

Type a command then press the RETURN key: H
Command Description

Help Type this message

Boot Load and start a program from a device
List List boot programs

Setup Enter Setup mode

Map Map memory and I/0 page

Test Continuous self test - Type CTRL C to exit

MR-17235

Figure 4-1 Help Commands

4-2

4.5 BOOT COMMAND ’

This command allows the user to boot a device. The command is executed by typing B, pressing the space
bar, then typing the device name followed by the unit number of the device. The command uses arguments
for the device name and the unit number to assist the user. When the name of the device is not used, the
program prompts the user for it, and if the unit number is not used, the program assumes that it is zero.
The unit numbers can range from 0 to 255, depending on the device and the boot program. Figure 4-2 is
an example of how to boot an RLO1 or RLO2 device with the name DL and the unit number 2.

The boot command also uses three qualifiers to further define the situation when a nonstandard condition
is used in booting a device. The qualifiers use a slash with a letter, as follows.

/A Identifies that the CSR address is nonstandard and requests the user for the actual address.

/O Identifies that the unit number given is an octal number rather than a decimal number for unit
numbers above 7.

/U In a Unibus system, if the boot exists in the base ROM and also in the UBA, the base ROM
boot is overridden and the boot from the UBA module or the M9312 module is used.

The format used for a qualifier is to type the device name, the unit number followed by a / and the type of
qualifier. If more than one qualifier is being used, only one / is used as shown in the examples.

When the ROM code has a device name, it searches for the first boot program with the same device name.
The ROM code sequentially searches in the areas listed below while attempting to match the device name.
If the /U qualifier is used, the first two areas are skipped because the boot program is located on the UBA
or M9312 module.

Ist area * Searches the EEPROM

2nd area Searches the KDJ11-B ROM code

3rd area Searches the UBA module (Unibus only)
4th area Searches the M9312 module (Unibus only)

Commands are: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: B DL2

Trying DL2

Starting system
RT-11FB (S)VV05.01
SET TT QUIET

.R DATIME
Date? [dd-mmm-yy]?

MR-17236

Figure 4-2 Booting an RLO1/RL02

The following examples of the boot mode commands are provided to show the user how to interpret the
variations. If the user types a colon after the unit number, it is ignored as shown in the last example.

B DL Boot DLO

B DL1 Boot DL1

B DU8 Boot DU unit 8

B DU10/0O Boot DU unit 8

B DU/A .

Address = 17 760 400 Boot DUO with nonstandard CSR address of 17 760 400

B DU3/U Boot DU3 using boot from UBA or M9312 module, instead of
KDJ11-B module

B DUI11/UO Boot DU unit 9 using UBA or M9312 boot, instead of
KDJ11-B boot

B DU11/U/O Invalid format; causes an invalid entry error message

B DU3 Boot DU unit 3

The single letter B implements a method of supporting non-Digital boot devices on the LSI bus or Unibus.
If either one of the following cases does not meet all of the conditions, then the ROM code prmts out an
invalid device message.

In an LSI bus system, the letter B causes the ROM code to disable the KDJ11-B ROM and check location
17 773 200 for the existence of a ROM on the bus. If one is located, and location 17 773 000 of the ROM
is not 0 (halt), then the ROM code passes control to location 173 000, memory management is turned off
and RO is set to the unit number of the bus device.

In a Unibus system, the letter B causes the ROM code to transfer control to the address stored in location
17 773 024 of a ROM located on the Unibus, provided there is a storcd address and it is 165 000 or
greater.

4.6 . LIST COMMAND ‘ ‘

A list of the bootstrap programs available to the user is displayed by using the list command in the dialog
mode. The command is executed by typing L and pressing the Return key. This command provides a
listing of the available bootstrap programs and returns to the dialog mode after the list is completed. The
user can change the contents of the EEPROM by using the setup commands and thereby changing the list
of available programs.

The list contains all the bootstrap programs available in the ROM code and also those stored in the
EEPROM as shown in Figure 4-3. The information in the list describes the device name, the range of unit
numbers, the type of device and where the program is stored. The device name is normally a two-letter
mnemonic, but in some cases it may only be a single letter. This name must always use the letters from A
to Z. Any lower case letters are automatically converted to upper case letters by the ROM code. The unit
number range is a list of valid unit numbers that can be used with a particular boot program. The range
varies from a single device designated as 0, up to as many as 255 multiple devices, depending on the type
of device. The type of device that is associated with a name is usually the actual name of the device. For
example, a device named as a DL would actually be an RLOI or RLO2.

Commands are: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: L
Device Unit

name Numbers Source Device Type

DU 0-255 CPUROM MSCP (RA80/81/60, RD51/52, RX50, RC25,)
DL 0-3 CPU ROM RLO1/RLO2

DX 0-1 CPU ROM RX01

DY 0-1 CPU ROM RX02

DD 0-1 CPU ROM TU57

DK 0-7 CPU ROM RKO5

MS 0-3 CPU ROM TK25, TSO5

XH 0-1 CPU ROM DECNET DEQNA
NU 0-15 CPU ROM DECNET DUV11
NE 0-15 CPU ROM DECNET DLV11-E
NF 0-15 CPU ROM DECNET DLV11-F

MR-17237 -

Figure 4-3 Available Boot Programs

In a Unibus system, the list also contains any bootstrap programs that are stored on the UBA and the

M9312 module (if it is present in the system). These programs are identified in the source listing as either
UBA ROM or M9312. '

4.7 SETUP MODE

The setup mode is entered by the user keying S and pressing the Return key. This mode allows the user to
list and change most of the configuration parameters and the bootstrap programs. These commands are
used to select the configuration parameters and the bootstrap programs required for the system devices.

The ROM code loads the first 105 bytes of the EEPROM into memory, starting at location 2000. This
area of memory is referred to as the setup table and it contains all the configuration parameters described
in Chapter 2. The EEPROM also contains the resident boot programs and various types of information
used. by the system. The first 105 bytes of information are needed by the ROM code to determine the
configuration of the module, the boot program for the device, and the test selections and modes. Setup
mode allows the user to change the setup table and the bootstrap programs.

Setup mode has fifteen commands that allow the user to select, edit, create and change the contents of the
EEPROM. Whenever the setup mode is entered, the commands are listed and described as shown in
Table 4-1. To execute a command, the user keys-the command number (1 to 15) and presses the Return
key. A description of these commands is included in this section. Command 1 is the exit command that
returns the user to the dialog mode. The user can also exit the setup mode by typing <CTRL> C. To exit a
command and remain in the setup mode, the user types <CTRL> Z. When in the process of editing or
changing the contents of the EEPROM, always terminate the process by keying the Return character. If
the process is terminated by a <CTRL> C or <CTRL> Z, the changes are ignored and lost.

4.7.1 Exit (1)
The exit command (1) allows the user to exit the setup mode and return to the dialog mode. This can also
be accomplished by typing <CTRL> C.

Table 4-1 Setup Mode Commands

. Command Description

1 Exit

2 Select configuration parameters

3 Select bootstrap translations

4 Select automatic boot sequence

5 Select console message

6 Define switchpack boot selections

7 List available boot programs

8 Setup table initialization

9 Save the setup table in the EEPROM
10 Load EEPROM data into the setup table
1t Delete a boot program from the EEPROM
12 Load an EEPROM boot program into memory
13 Edit or create boot program in the EEPROM
14 Save a boot program in the EEPROM
15 Enter ROM ODT

4.7.2 Select Configuration Parameters (2)
The configuration parameters controlled by this command are listed in Table 4-2 and are printed out when
command 2 is entered. The user is then able to change the configuration parameters to meet the desired
system requirements. Chapter 2 defines the parameters and explains how they are changed or selected.

Table 4-2 Configuration Parameters

Item Parameter Selections Status
A Enable halt-on-break (0) = No (1) = Yes =1
B Disable user friendly (0) = No (1) = Yes =]
format
C ANSI video terminal (0) = No (1) = Yes =1
D Power-up (0) = Dialog =]
(1) = Automatic
(2) =0ODT
3)=124
E Restart Same as power-up =1
F Ignore battery (0) = No (1) = Yes =0

4-6

c 4 wnun o o=®m O T

Table 4-2 Configuration Parameters (Cont)
Item Parameter Selections Status
G PMG count Select from 0-7 =17
Disable clock CSR {0) = No (1) = Yes =0
I Force clock interrupts (0) = No (1) = Yes =0
J Clock frequency (0) = Power supply =0
(1) =50 Hz
(2) = 60 Hz
_ (3) = 800 Hz
K Enable EEC test (0)=No (1) = Yes — 1
L | Disable long mefnory test (0) == No (1) = Yes =0
M Disable ROM (0) = No ~0
(1) = Disable 165
(2) = Disable 173
(3) = Disable both
N Enable trap-on-halt (0)=No (1) = Yes =0
0] Allow alternate boot block (0) = No (1) = Yes =0
Disable setup mode (0) = No (1) = Yes =0
Disable all testing" (0) = No (1) = Yes =0
Enable Unibus memory test (0) = No (1) = Yes =1
Disabie UBA ROM (0) = No (1) = Yes =0
Enable UBA cache (0) = No (1) = Yes =1
Enabie 18-bit mode (0) = No (1) = Yes =0
Type <CTRL> Z to exit or press the Return key to proceed.
A Enable halt-on-break (0) = No (1) = Yes =]

4-7

4.7.3 Select Bootstrap Translations (3)

The bootstrap translation table lists the devices in a system that use a nonstandard CSR address. The table
is needed to allow multiple MSCP devices with different controllers to be booted. When a bootstrap
program is entered, the device unit number is stored in RO and the device name (mnemonic) is stored in
R2. The translation table is referenced by the bootstrap program trying to find a match for the device
name ard unit number. If a match is found, the CSR address is defined in the table, and if no match is
found, the bootstrap program defaults to the standard CSR address. The translation table is printed out
when ccmmand 3 is executed and then the user can change the table based on the particular system
requirements.

An exaraple of a translation table is shown in Figure 4-4. In this system, the user has an RD52 and an
RX50 using an RQDX1 controller at the standard address of 172 150. The system also has an RC25 with
a KLESI controller. Since the RQDX1 and KLESI controllers both use the same standard CSR address,
one of them must respond to a different address. In this example, the KLESI controller is set to respond to
CSR address 17 760 500. The RC25 has a unit number plug set for units 4 and 5, requiring that there be
two entries into the translation table. The RD52 is unit 0 and the RXS50 is units 1 and 2.

The user can select an entry by pressing the Return key. If there are no changes required for that entry,
pressing the Return key again sclects the next entry. When a new entry is required, the user keys the
device name, the unit number and the nonstandard CSR address.

4.7.4 Select Automatic Boot Sequence (4)

The automatic boot sequence is created by sclecting up to six devices and hstmg the order in which they
are to be booted. The list is printed out when command 4 is executed. The user can change the list to meet
the particular system requirements. If there is no existing list, the code prompts the user for a device name.
The user responds by typing in the single- or double-letter mnemonic associated with the selected device.
The code then prompts for the unit number of the device and the user responds by typing the unit number.
This prompting continues until there are six devices entered or until the letter E is entered after the last
device. Fach entry in the list is defined by a device name and a unit number. If the same device is used
more than once with a different unit number, each unit number requires a separate entry. A, B and E are
special characters and are interpreted by the ROM code as follows.

A The ROM code searches for up to eight MSCP devices, unit numbers 0-7, at the standard CSR
address and then determines if they have fixed or removable media. First, it attempts to boot
the removable media devices one at a time, and then to boot the fixed media devices one at a
time. Any MSCP devices that use nonstandard CSR addresses are not included in this sequence
and must be individually selected by a separate entry.

B The ROM code checks for a ROM located off the KDJ11 module and responds to address
17 773 000. If the ROM exists and the first location is not zero, the ROM code aborts its
internal code and jumps to location 17 773 000 in the external ROM.

E ~ When the user lists five or fewer devices in the automatic boot sequence, the sixth or next entry
must use the letter E. The ROM code interprets an E as the end of the automatic boot sequence
and does not try to boot any other devices.

An example of the automatic boot sequence is shown in Figure 4-5. The prompt sequence used to add a
DY device with the unit number 0 is also shown. Note how the list is terminated by the letter E.

4-8

™ blank

Device name = DU <CR>

Unit number =4 0 <CR>

CSR address = 17760500 <CR>
™ DU 4 =address 17760500

TT2 blank

Device name = DU <CR>

Unit number =5 <CR>

CSR address = 17760500 <CR>
TT2 DUb =address 17760500

TT3 blank
Device name = <CTRL>Z

MR-17238

Figure 4-4 Typical Translation Table

KDJ11-B Setup mode)
Press the RETURN key for Help
Type a command then press the RETURN key: 4

List/change the Automatic boot selections in the Setup table

Boot 1 = A MSCP Automatic boot
Boot 2 = DLO
Boot 3 = MSO

Boot4 = E Exit Automatic boot
Boot 5 = blank

Boot 6 = blank
Type CTRL Z to exit or press the RETURN key for No change

Boot 1 = A MSCP Automatic boot
Device name =

Boot 2 = DLO =
Device name

Boot 3 = MSO =
Device name

Boot 4 = DY
Device name
Unit number

[}

0

Boot5 = E Exit Automatic boot

Device name

Boot 6 = blank
Device name

Il

KDJ11-B Setup mode
Press the RETURN key for Help
Type a command then press the RETURN key:

MR-17239

Figure 4-5 Automatic Boot Sequence Example

4.7.5 Seclect Console Message (5)

The user is allowed to select a console message to be sent to the terminal at the start of the ROM code and
at any time a <CTRL> Q is received by the console that is not a normal response to a previous
<CTRL:>- Q (i.e., not an XON or XOFF). This message is normally used for systems having terminals that
do not pcwer up with the current language characters selected. There are two messages — one for English
and another for the resident foreign language (if there is one). Only one message is sent and that is the one
that matches the current selected language. Each message is allowed to contain up to ten bytes and these
are listed when command 5 is executed. A typical listing is shown in Figure 4-6. The user must enter the
message in octal code. Therefore an A is entered as 101 and an ESCape (ESC) character is entered as 033.
The default code for both messages is all ten bytes set to 000, and the first byte of 000 terminates the
message. Any time the current language is changed, the appropriate message is also changed.

NOTE
This feature is seldom used.

Type a command then press the RETURN key: 5

List/change the terminal Setup message in the Setup table

Non

ENGLISH ENGLISH
0 =000 0 =000
1 =000 1 =000
2 =000 2 =000
3 =000 3 =000
4 = 000 4 = 000
5 =000 5 =000
6 = 000 6 = 000
7 = 000 7 = 000
8 = 000 8 = 000

9 = 000 9 = 000

Type CTRL Z to exit or press the RETURN key for No change

Non ENGLISH ENGLISH

0 = 000 New = 031 0 = 000 New =
1 = 000 New = 042 1 = 000 New =
2 = 000 New = 2 = 000 New =
3 = 000 New = 3 = 000 New =
4 = 000 New = 4 = 000 New =
5 = 000 New = 5 = 000 New =
6 = 000 New = 6 = 000 New =
7 = 000 New = 7 = 000 New =
8 = 000 New = 8 = 000 New =
9 = 000 New = 9 = 000 New =

MR-17240

Figure 4-6 Select Console Message Example

4-10

4.7.6 Define Switchpack Boot Selections (6)

The user can select the bootstrap program for a device by setting switches 2, 3 and 4 of the switchpack
located on the module. These switches can be set on the module or remotely controlled via the J3
connector. The selected bootstrap programs are designated as SB1 through SB6, and any bootable device
can be assigned to these designations. When a program is selected via SB1 through SB6, the ROM code
attempts to boot only the device selected. When command 6 is executed, the switch selections are enabled
as shown in Table 4-3. The typical types of devices assigned are shown in Figure 4-7. The special
configuration is used for the automatic boot sequence.

Table 4-3 Switchpack Selections

SW2 SW3 SW4 Selected Device

On On On Special configuration

"~ On On Off SBI

On Off On SB2

On Off Off SB3

Off On On SB4

Off On Off SBS

Ooff Off On SB6

Off Off Off EEPROM sclects ODT mode or loops the diagnostic tests at power-up.

KDJ11-B Setup mode
Press the RETURN key for Help
Type a command then press the RETURN key: 6

List/change the switch boot selections in the Setup table

Switches 2,3,4 on on off = DX0
Switches 2,3,4 on off on = DL2
Switches 2,3,4 on off off = DLO
Switches 2,3,4 off on on = EO
Switches 2,3,4 off off off = blank
Switches 2,3,4 off on on = blank
Type CTRL Z to exit or press the RETURN key for No change
Switches 2,3,4 on on off = DXO0

Device name =

Switches 2,3,4 on off on =DL2
Device name =

MR-17241

Figure 4-7 Switchpack Boot Selection

4-11

4.7.7 List Available Bootstrap Programs (7)

A list of the bootstrap programs available to the user is displayed when command 7 is executed. This list
contains all the bootstrap programs available in the ROM code and also those stored in the EEPROM. The
information in the list describes the device name, the range of unit numbers, the type of device and where
the program is stored.. The device name is normally a two-letter mnemonic, but in some cases it may only
be a single letter. This name must always use the letters from A to Z. Any lower case letters are
automatically converted to upper case letters by the ROM code. The unit number range is a list of valid
unit numbers that can be used with a particular boot program. The range varies from a single device
designated as 0, up to as many as 255 multiple devices, depending on the type of device. The type of
device that is associated with a name is usually the actual name of the device. For example, a device
named as a DL would actually be an RLOI or RLO2.

4.7.8 Setup Table Initialization (8)

The setup table is initialized to the default values when command 8 is executed. This command does not
change 1he contents of the table stored in the EEPROM, but the contents do change if the save command
is also executed.

4.7.9 Save the Setup Table in the EEPROM (9)
The current contents of the setup table in memory is stored in the EEPROM when command 9 is

executed. This is the only command that can actually write anything into the first 105 bytes of the
EEPRCM.

4.7.10 Load EEPROM Data Into the Setup Table (10)
The setup table data that is stored in the EEPROM is read into the current setup in memory when
command 10 is executed.

4.7.11 Delete a Boot Program From the EEPROM (11)

The user is prompted for the device name of the bootstrap program to be deleted when command 11 is
executed. After the device name is keyed, the ROM code searches for that boot program in the EEPROM
and deletes it when it is found. All the boot programs that follow the deleted program are then automati-
cally moved up into the space made available by the deleted boot program.

4.7.12 Load an EEPROM Boot Program Into Memory (12)

The user is prompted for the device name of the bootstrap program to be loaded into memory when
commard 12 is executed. After the device name is keyed, the ROM code searches for that boot program
and loads it into the memory when it is found. This command is used to allow access to the EEPROM boot
program so that it can be reviewed and edited.

4.7.13 Edit or Create a Boot Program in the EEPROM (13)

A boot program listing stored in the EEPROM can be edited or changed by updatmg its parameters. A list
of pararaeters and the current status are displayed, along with the amount of space available for boot
programs in the EEPROM (Figure 4-8), when command 13 is executed. The user can change the device
name and description, the beginning and ending address of the program in memory, and the start address
of the program. When the changes are complete, the ROM code enters ROM ODT, which is a code
version of the micro-ODT.

The beginning address is the first location used by the program in memory and the ending address is the
address of the last byte of code in memory. If in doubt, use the address -+ 2 of the last byte of code. Using
larger numbers wastes valuable space in the EEPROM. The start address is the address to which the ROM
code transfers control.

4-12

KDJ11-B Setup mode
Press the RETURN key for Help :
Type a command then press the RETURN key: 13

Edit/create an EEPROM boot
Type CTRL Z to exit or press the RETURN key for No change
1410 Bytes free in the EEPROM

Device name =AA New = EA
Beginning address = 000600 New = 10000
Last byte address = 000615 New = 10177
Start address = 000600 New = 10000
Highest Unit number =3 New = 255
Device Description = EA BOOT New = RM02/03

ROM ODT> 010000/000000 012705
ROM ODT> 010002/000000 101
ROM ODT> 010004/000000 012706
ROM ODT> 010006/000000 1000

MR-17242

Figure 4-8 Edit/Create an EEPROM Boot

The highest unit number defines the range of valid unit numbers for a particular device. If this value is set
at 3, then the range for that device is 0 to 3. The maximum range for any device is 0 to 255. An invalid
unit number error occurs at boot time, if a unit number that is not within the defined range is used.

The description of a device is optional, but use of a device description is recommended. The description is
normally the physical name located on the outside of the device, such as RX02 or RKO05. The description
is limited to 11 characters or spaces.

4.7.14 Save a Boot Program in the EEPROM (14)

The user can take a boot program that is stored in memory and write it into the EEPROM by executing
command 14. This is the only command that can actually write a program into the EEPROM. The other
commands are used to edit programs that reside in memory. The device name of a boot program that is
being written or stored in the EEPROM must not match the name of an existing program already stored
in the EEPROM. If this condition occurs, the user must delete the existing program or change the name of
the new program being stored. When there are two or more programs with the same name in the
EEPROM, only the first program is used to boot a device. '

4-13

4.7.15 Enter ROM ODT (15) :

‘The user enters the ROM ODT mode when command 15 is executed. The ROM code opens up the
addresses defined by the beginning address of the program. The ROM ODT is not the same as the console
ODT described in Chapter 3. The only addresses that can be accessed in ROM ODT are the memory
addresses from 0 to 28K words (0-157 776). Any attempt to address the I/O page, the internal registers or
any other address is not allowed. The commands used by the ROM ODT and their functions are listed in
Table 4-4. '

Table 4-4 ROM ODT Commands

Command Symbol Function

Slash / Displays the contents of a specified location or if no address is specified,
it displays the contents of the last location opened. If the open location is
an odd number, then the contents display is a byte. If the open location
is an even number, then the contents display is a word. Leading zeros are
assumed-and only the last six octal digits are interpreted.

Return <CR> Closes an open location.

Line feed <LF> Closes an open location and opens the next location. The location is
incremented by 2 if a word was read and by 1 if a byte was read.

Period . Alternate character for <LF>. It is useful for a VT2XX terminal and
convenient when using a keypad.

Up arrow 1 Closes an open location and opens the previous location. The location is
decremented by 2 if a word was read and by 1 if a byte was read.

Minus - — Alternate character for 1. It is useful for a VT2XX terminal and conve-
nient when using-a keypad.

Delete DELETE Deletes the previous character typed.

4-14

4.8 MAP COMMAND

The entire memory system is identified and all valid addresses in the /O page are displayed as shown in
Figure 4-9 . The command is executed by typing M and pressing the Return key. The system returns to
the dialog mode after the memory is mapped and the valid 1/0 page addresses are displayed.

The entire memory from location 0 to 17 756 000 is mapped in 1,024-byte increments, but not every
location is identified due to the amount of time required. The routine attempts to identify the size by the
start and end address of each memory, the CSR address for each memory (if applicable), the CSR type
(ECC or parity), and the general type of bus (PMI or Q22-Bus). The map command does not work if two
memories share some common addresses or have CSRs with the same address. After the memory is
mapped, all the addresses in the 1/O page that respond to an inquiry are displayed. The address range of
the 1/O page is from 17 760 000 to 17 777 776. All the addresses displayed that are on the KDJ11-B
module and those that are on the KTJ11-B module are briefly described. Addresses that are assigned to
the external bus have no descriptions unless a memory CSR is present.

Commands are: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: M

Memory Map

Starting Ending Size in CSR CSR Bus
Address address K Bytes address type type
00000000 - 00777776 256 17772100 Parity PMI
01000000 - 02777776 512 17772102 Parity Qbus
Press the RETURN key when ready to continue

1/0 page Map :

‘Starting’ = Ending

Address address

17765000 - 17765776 CPU ROM or EEPROM
17772100 - 17772102 Memory CSR's

17772200 - 17772276 -Supervisor | & D PDR/PAR’s -
17772300 - 17772376 Kernel | & D PDR/PAR’s
17772516 - MMR3

17773000 - 17773776 CPU ROM

17774400 - 17774416

17777170 - 17777172

17777520 - 17777524 BCSR, PCR, BCR/BDR
17777546 - - Clock CSR

17777560 - 17777566 Console SLU

17777572 - 17777576 MMRO,1,2

17777600 17777676 User| & D PDR/PAR’s
17777744 17777752 MSER, CCR, MREG, Hit/Miss

17777766 CPU Error
17777772 PIRQ
17777776 PSW

MR-17243

Figure 4-9 Typical Map Mode Display

4-15

4.9 TEST COMMAND

This command runs the diagnostic tests in a continuous loop until the user exits the loop by typing
<CTRL> C. The command is executed by typing T and pressing the Return key. If the user wishes to loop
on an individual test, the command is executed by keying T followed by the test number, and then pressing
the Rezurn key. The loop continues until an error is detected or the user stops it by typing <CTRL> C. If
the test number selected is not a loopable test, then the general test loop is run for all the tests.

The ROM code starts the loop at test 70, runs all the applicable tests to the end at test 30 and continues
the loop until the user exits by typing <CTRL> C. The system then displays the total number of loops
completed and if any errors are detected, the total number of errors is also displayed (Figure 4-10). If the
user loops on a single test, the display is as shown in Figure 4-11.

NOTE
The <CTRL> C commands are not echoed by the
ROM code on the console terminal.

4.10 DIAGNOSTIC TESTS

The diagnostic tests contained in the ROM code are executed as part of the power-up sequence or when
restarting the KDJ11-B module. Control is passed to the ROM code and the diagnostics check the module
and the available memory before passing control on to the boot program for a previously selected device.
These diagnostics are capable of testing both LSI-11 systems and Unibus systems that use the KDJ11-B
modulc as the CPU.

The diagnostic tests are numbered in octal from 77 to 30 and the diagnostic error messages are numbered
in octai from 27 to 00. The LEDs display the test number being executed and if a test fails, the LEDs blink
the failing test number. A complete list of all the tests and their LED codes is given in Table 4-5. If the
console device is working, an error message is displayed and the user is advised to take some appropriate
action. ‘

€ommands are: [Help, Boot, List, Setup, Map, Test]
- Type a command then press the RETURN key: T

Continuous self test - Type CTRL C to exit

Total Passes = 4
Total Errors = O

MR-17244

Figure 4-10 Continuous Testing Display

Commands aré: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: T 60

Looping on test 60 - Type CTRL C to exit

Total Passes = 1876
Total Errors = 0

MR-17245

Figure 4-11 Loop Test Display

Table 4-5 Diagnostic LED Displays

LED Code Diagnostic

77 CPU or halt switch

76 CPU and MMU

75 Turn on MMU, run CPU and MMU
74 Turn on PMI, check UBA reboot bit
73 Power-up to mode 2: ODT

72 Power-up to mode 3: 24

71 EEPROM checksum

70 CPU ROM checksum and PCR
67 Miscellaneous CPU and EIS

66 Console SLU test 1

65 Console SLU test 2

64 Console SLU test 3

63 MMU aborts

62 Cache memory

61 Line clock

60 Floating-peint instruction

57 Rescrved

56 Exit standalone mode

55 UBA register response

54 Memory sizing routine

53 Memory location 0

52 Memory locations 0 to 4K words
51 Cache operation with memory
50 Complete memory data/byte exercise
47 Memory parity/ECC

46 Memory address shorts

45 UBA boot ROM

44 UBA map registers data path

43 UBA unmapped diagnostic data
42 UBA mapped diagnostic data

41 UBA floating address/data
40 - UBA address overflow

37 UBA cache data

36 UBA cache LRU

35 UBA cache tag store

34 UBA cache parity error

33 Complete Unibus memory data/byte exercise
32 Unibus memory parity

31 Unibus memory address shorts
30 Exit

4-17

4.10.1 CPU or Halt Switch (Test 77)

The LEDs are set to 77 when the module is powered up or restarted. The LEDs continue to display 77 if
the DCJ11 microprocessor is not able to execute an instruction out of the ROM, or if the halt switch is on
to force a halt condition.

4.10.2 CPU and MMU (Test 76)

The LEDs are set to 76, indicating that the first instruction was executed. The CPU enters the standalone
mode, scts the PSW to priority 7, turns off the MMU, clears the PCR and sets up the SP. The CPU jumps
to the high page of the ROM, address 173 XXX, if not already there.

The switchpack on the module is read. If switch 1 is off and switches 2 and 3 are on, the CPU halts
immediately. If the switches are not set to produce a halt, the test continues. The CPU executes some
simple t2sts such as reading and writing the general register, branch instructions and a JSR instruction. All
48 PAEs are tested using a rotating ones pattern and a unique address pattern. PDR read/write bits
<14:8> and <3:1> are checked using a rotating ones pattern and a unique address pattern. At the end, all
the PDRs are set to 077 406 and KISDRO is set to 077 402.

The second page of the ROM is selected in the low byte of the PCR. The CPU jumps to the second page
of ROM at address 165 XXX. In all, the following functions are performed.

All three SPs are tested.

MMR?2 logs the address if the fetch instruction is verified.
MMR3 bits <5:0> are decremented from 77 to 0.

The CPU jumps to the high page at 173 XXX.

The CPU enables the trap area in the low page at 165 XXX.
The CPU turns on the MMU and enables 22-bit mapping.

The CPU verifies that the trap area is available with MMU on.

Nk wh -

4.10.3 Turn on MMU, Run CPU and MMU (Test 75)

This test verifies the ability to write data with MMU using all three modes and both spaces. It sets the
W-bit properly in a PDR and initializes all the free PARs and PDRs. For the remaining tests, the MMU
stays on, but only the kernel I space is used. All free PARs and PDRs are then used as flag storage, input
keyboard storage, the stack, etc.

The 10T, trap, BPT, and EMT instructions are tested and verify that the central subroutine call program
and the change page program function properly. The ROM now executes virtually all the tests from the
high page addresses (17 773 XXX), and uses the low page addresses (17 765 XXX) to handle all traps and
other instructions to virtual addresses O through 276. Jumping to another page and calling up a routine
from another page are accomplished by executing the EMT, trap, and BPT instructions, which also
transfer control to the lower page.

The routines transmit a null character to the system console and if the console address times out, that time
out is ignored for the moment. The next page of the ROM is read.

4.10.4 Turn on PMI, Check UBA Reboot Bit (Test 74)

If powe:-up mode 3 (24/26) is selected, the ignore battery status bit in the EEPROM is checked. When
the igncre battery parameter is selected, power-up mode 3 is unconditionally executed. When the ignore
battery mode parameter is not selected and the current condition is power-up, the restart mode is used to
determiae the current mode. If the restart mode is also mode 3, the default is to the dialog mode. If the
current condition is restart, then the default is to the dialog mode.

4.10.5 Power-Up to Mode 2: ODT (Test 73)

The selected mode is ODT and this is indicated by the LED display. If the user proceeds from the ODT
without changing any registers, the ROM code continues to run selected tests and enters the dialog mode
when completed.

4-18

4.10.6 Power-Up to Mode 3: 24 (Test 72)

The contents of location 24 is saved in memory and a rotating ones test is executed at location 24. The
original data is restored to location 24 if the test passes, and control is transferred to the address stored in
that location. The contents of locatlon 26 is used to set the PSW. The display is blanked before the control
is transferred.

4.10.7 EEPROM Checksum (Test 71)

This test sets bit 5 of the BCSR to select the 8-bit EEPROM while the program is running out of the high
byte PCR area (17 773 000-17 773 776). The 8-bit EEPROM is enabled into address area 17 765 000-
17765 776. This is verified by reading location 165 314 in the area and checking that the low byte is read
back as 252. The test verifies that the contents of location 165 022 is zero. If either of these locations is
incorrect, the first 105 bytes of the EEPROM are automatically initialized to the factory defaults. This
allows a module in production to automatically initialize itself. When this is complete, an 8-bit checksum is
read and accumulated for the first 105 bytes of the EEPROM and the result is verified as zero. If an error
occurs, the error is printed out in the selected language.

4.10.8 CPU ROM Checksum and PCR (Test 70)

Usmg the high byte PCR area (17 773 000-17 773 776) as the program area, the ROM is checksummed
by using the low byte of the PCR to select the 64 pages of ROM. The low byte of the PCR writes the
pages of ROM into address area 17 765 000-17 765 776. The PCR is validated each time it is loaded by
checking the next to the last location in each page and verifying that each byte contains the selected page
number. The only exceptions to this are pages 70 through 76(8), which do not contain page numbers, but
store ASCII text.

Using the low byte PCR area (17 765 000-17 765 776) as the program area, the 64 pages of ROM are
written into the high byte PCR area at 17 773 000-17 773 776. The page number is verified in each byte
of the next to the last word in each page.

4.10.9 Miscellaneous CPU and EIS (Test 67)
The JSR, RTI, RTS and the ASHC instructions are tested.

4.10.10 Console SLU Test 1 (Test 66)
All four of the console registers are tested for responses.

4.10.11 Console SLU Test 2 (Test 65)
The console DLART is set in the maintenance mode and a delay is allowed to settle any incoming
characters. The receive buffer is cleared, and two characters, 0 and 377, are transmitted and verified.

NOTE
- When the DLART is in the internal loopback mode,
the transmit output is still connected to the EIA
output driver. In order to prevent “garbage” charac-
ters from being printed on the console, the SLU test
transmits a null character and deletes characters
that are nonprinting.

4.10.12 Console SLU Test 3 (Test 64)
The transmitter and receiver are checked so that they can cause interrupts at the correct priority level. The
transmit logic is used to set receiver error bits and verifies that the error bits can be cleared.

If the terminal type in the EEPROM is ANSI video and the dialog mode is not forced, the screen is then

cleared and the cursor is positioned at line 8, column 1. The ‘Testing in progress — please wait’ message is
then sent to the screen.

4-19

4.10.13 MMU Aborts (Test 63)

The protection bits in the PDRs are tested to cause aborts when the conditions are violated. This test
verifies that aborts occur through virtual address 250 and that changes in the general purpose registers
affected by the abort are properly recorded in MMRI.

4.10.14 Cache Memory (Test 62)

The cache is not tested to see if it is flushed after power-up. The upper address bits of the CCR are loaded
into the cache tag fields at power-up. Since this address is in the I/O page, any access to it causes a miss
regardless of the valid bit. The following tests are run and any trap to location 114 is a parity error on the
CPU tag store.

Check the CCR read/write bit

Check the MSER timeout

Check the cache data path word

Check the hit/miss register timeout

Check the cache data pattern

Check the 4K word cache

Check the DMA tag store comparator

Check the CPU and DMA tag store timeouts
Check the cache flush

10. Check the hit/miss register

11. Check the cache tag store floating 1s and Os

12. Check the CPU and DMA tag store shorts and data
13. Check the unconditional bypass on reads and writes
14. Check data store parity errors

15. Check CPU/DMA tag store parity errors

A SR il

4.10.15 Line Clock (Test 61) 4

If the EEPROM indicates that the LTC register is enabled, bits 6 and 7 are checked so that they can be
set and cleared. The clock interrupt to location 100 is checked and the correct BR level is verified. When
an interrupt occurs and the clock is in sync, the test verifies that LCM bit 7 is cleared by the interrupt.

4.10.16 Floating-Point Instruction (Test 60)
Some of the floating-point instructions are executed.

4.10.17 Reserved (Test 57) _
This test space is reserved for future expansion.

4.10.18 Exit Standalone Mode (Test 56)
In the 22-bit mode, the exit standalone mode is checked by using the guaranteed timeout address of
17 760 000 to verify that the timeout logic works without hanging up the CPU.

4.10.19 UBA Register Response (Test 55)

The DCSR, KMCR and DDR registers in the UBA are addressed to verify that they respond properly via
the Unibus. With the UBA in the diagnostic mode, the test verifies that the address, data and control lines
available via the DDR register are turned off.

4-20

4.10.20 Memory Sizing Routine (Test 54)

The system is first tested for any memory available in a Unibus system. If there is a Unibus memory, the
KMCR register is set to the correct value to properly map the memory. The memory is sized in 4K word
increments and the testing is based on 4K word increments.

The LSI based memory is sized in 1K word increments from 0 to 2 megawords. This is done on a word
basis every 1K words. The routine starts at location 0 and sizes the memory consecutively upward. The
routine reads the contents of each location and writes the data back into that location. This is a
nondestructive sizing routine that proceeds upward until a timeout occurs or address 17 776 000 is
reached. :

When the first 128K word boundary is reached (while operating in the 22-bit mode), the routine verifies
that the first two locations, 0 and 2, can be uniquely addressed in the second 128K word boundary. If these
locations cannot be uniquely addressed, memory is defined as 18-bit mode and memory size is set at 124K
words.’

If there is any nonconsecutive memory found, the ROM code displays a message indicating that gaps are
present, but no errors oceur because of the gaps. The routine displays the applicable memory size messages
when the routine is completed, unless a user friendly mode is selected to suppress these messages.

4.10.21 Memory Location 0 (Test 53)
Memory location 0 is checked for a response without timing out.

4.10.22 Memory Locations 0 to 4K Words (Test 52)

The first 4K words of memory are completely verified before the main memory tests are loaded and
executed. A test of rotating ones and zeros is performed on physical address 0, and the ability to write
separate bytes into the word locations is verified. A short/data address test on address bits 0 to 10 is
executed for physical addresses from 0 to 17 776.

4.10.23 Cache Operation With Memory (Test 51)
This test verifies that the cache is allocated during a read to memory and that the cache is bypassed when
the cache bypass bit is set.

4.10.24 Complete Memory Data/Byte Exercise (Test 50)
The first two word locations for each 4K word block are sequentially tested as follows.

I. The physical addresses are tested using a rotating ones pattern and then a rotating zeros pattern.
2. The locations are tested for byte operation by using the 252 and 125 data patterns.

NOTE
The Unibus memory is not tested unless it is enabled
in the EEPROM. If it is enabled, then the testing is
delayed until the UBA tests are completed and the
UBA exits the diagnostic mode.

4.10.25 Memory Parity/ECC (Test 47)

The first two locations of each 4K word block are tested to determine which CSR controls the current
address range. If there is a CSR, its ability to log the address during an error is verified. The ability to
abort due to an error is also verified.

When ECC testing is enabled by the EEPROM and if bit 4 of the CSR is a read/write bit, then the ability
of the ECC logic to correct single bit errors for all 16 bits of a floating ones and zeros test is verified.
When this test is enabled, it is only run on 32K word boundaries.

4-21

4.10.26 Memory Address Shorts (Test 46)

This test can be looped on with the dialog mode test command. The test is relocated to the first 4K words
of memory. This allows the test to execute out of the cache to improve its speed. The MMU is set up so
that any memory address being tested has the cache bypass bit set in its PDR to prevent the cache from
responding to that memory location. During the test, PDR1 is set up to prevent any writes to the first 4K
words of memory, thus protecting the test in the cache memory. The following steps are performed.

1. From physical address O to the top of memory, test in 4K blocks. From first to last address in
block, test by 1 word. Write location with 125 252 pattern.

2. From physical address 0 to the top of memory, test in 4K blocks. From first to last address in
block, test by 1 word. Read 125 252 and write location with 025 252 pattern.

3. From physical address O to the top of memory, test in 4K blocks. From first to last address in
block, test by 1 word. Read location for 025 252 pattern.

4. At the end of the test, verify that none of the memory CSRs has bit 15 set to a one, indicating
that an error occurred.

4.10.27 UBA Boot ROM (Test 45)

All 256 words of the UBA ROM are verified by responding to the addresses from 17 773 000 to
17 773 776. The UBA ROM is then disabled and a check is made for the presence of a ROM module on
the Unitus. A flag is set if a ROM module responds to all these locations. This flag is used later to allow
the ROM code to search for a boot program on an M9312 module on the Unibus.

4.10.28 UBA Map Registers Data Path (Test 44)
All 32 Unibus map register pairs are tested with a rotating ones and zeros pattern and a unique address
pattern.

- 4.10.29 UBA Unmapped Diagnostic Data (Test 43)
With m: pping disabled, a floating ones and zeros test is executed through a floating address pattern, using
diagnost ¢ DATI and DATO cycles for 124K words of memory.

NOTE
Tests 42 to 34 are not executed if the 22-bit mode is
disabled in the KMCR by the EEPROM, or if the
Unibus memory is limited to 124K words.

4.10.30 UBA Mapped Diagnostic Data (Test 42) ,
This test verifies that each mapping register can be indirectly selected and can relocate a physical address

from the CPU. It also checks to ensure that if Unibus memory is present, the applicable mapping register
is disabl:d.

4.10.31 UBA Floating Address/Data (Test 41)

With mapping enabled, a floating ones and zeros test is executed through a floating address pattern using
diagnost ¢ DATI and DATO cycles for up to 2044K words of memory. This test floats a 1 and 0 across
both inputs of the UBA address summing logic.

4-22

4.10.32 UBA Address Overflow (Test 40)
This test verifics that a carry can be rippled across the adder. PA is set to 2, the map register is set to
17 777 776 and the resulting address is O.

- NOTE
Tests 37 to 34 are executed only if the cache enable
bit is set in the KMCR.

4.10.33 UBA Cache Data (Test 37)
The 32 cache locations are tested with a floating ones and zeros pattern, and the cache valid bits and the
hit logic are checked.

4.10.34 UBA Cache LRU (Test 36)
All 24 valid combinations of the Least Recently Used (LRU) logic in the cache are checked.

4.10.35 UBA Cache Tag Store (Test 35)
A floating ones and zeros pattern test is executed through the cache tag store.

4.10.36 UBA Cache Parity Error (Test 34)
This test verifies that if an ECC error occurs during a read from memory, the applicable set is invalidated.

4.10.37 Unibus Memory Data/Byte Exercise (Test 33)
The first two word locations for each 4K word block are sequentially tested as follows.

1. The physical addresses are tested using a rotating ones pattern and then a rotating zeros pattern.
2. The locations are tested for byte operation by using the 252 and 125 data patterns.

4.10.38 Unibus Memory Parity (Test 32)

The first two locations of each 4K word block are tested to determine which CSR controls the current
address range. If there is a CSR, then its ability to log the address during an error is verified. The ability to
abort due to an error is also verified.

4.10.39 Unibus Memory Address Shorts (Test 31)

Every location in memory is tested for shorts in its address. The test is relocated to the first 4K words of

memory. This allows the test to execute out of the cache memory to improve its speed. The MMU is set up

so that any memory address being tested has the cache bypass bit set in its PDR to prevent the cache from

responding to that memory location. During the test, PDR1 is set up to prevent any writes to the first 4K
words of memory, thus protecting the test in cache memory. The following steps are performed.

. From physical address 0 to the top of memory, test in 4K blocks. From first to last address in
- block, test by 1 word. Write location with 125 252 pattern.

2. From physical address 0 to the top of memory, test in 4K blocks. From first to last address in
block, test by 1 word. Read 125 252 and write location with 025 252 pattern.

3. From physical address O to the top of memory, test in 4K blocks. From first to last address in
block, test by 1 word. Read location for 025 252 pattern.

4, At the end of the test, verify that none of the memory CSRs has bit 15 set to a one, indicating
that an error occurred.

4.10.40 Exit (Test 30)
This is the test exit routine.

4-23

4.11 DIAGNOSTIC TEST ERROR MESSAGES

A diagnostic test error message is displayed when an error is detected during the execution of a diagnostic
test. When an error occurs, the ROM code displays the following data for the user and then waits for the
user’s response.

The number of the test that failed.

The test description.

A reference to the troubleshooting documentation.

The address of the error.

The contents of register set 0 (RO-R6) and kernel PAR3.

The failing address, good and bad data for some memory tests.
Up to four command options for the user.

Nk W -

4.11.1 Test Number
The er-or number is the number of the test that the ROM code is executing when failure occurs. The only
exception is when an unexpected trap occurs. In this case, the error is the test number plus 100. ‘An

unexpected trap occurring during test 62 displays an error number of 162. Unexpected traps are always
considered fatal errors.

4.11.2 Address of the Error
The address of the error is broken down to the actual PC, the page number in the ROM and the reference

address in the program listing. In the case of an unexpected trap, the error address is the address following
the unexpected error trap.

4.11.3 Register Set 1 :
The tests do not use register set 1 because this set is mainly used by the ROM code support routines.

4.11.4 Optional User Commands
There are up to four optional commands available to the user. They are displayed in the chart that follows.
To execute one of the commands, the user keys in the command number and presses the Return key.

: Command Description
1 Rerun test
2 Loop on test
3 Map memory and /O page
4 Advance to the next test

4.11.4.1 Rerun Test - If the test passes, the ROM code continues the testing routine. If all the other tests
successfully pass, the ROM code displays the total number of errors and enters the dialog mode, regardless
of the EEPROM mode selection. '

4.11.4.2 Loop on Test — This command causes the ROM code to continuously loop on the failed test.
The loops are generally very large and are not intended to be used as scope loops. The test continues to run
even if an error occurs or the end of the test is reached. In either case, the test is started again and loops
until the user types <CTRL:=> C at the console. At this time, the display contains the total number of errors
and the total number of successful passes. Both the error counter and the pass counter have a maximum
value of 65,535. If either counter reaches its maximum value, it locks up at that value and does not
overflow.

4-24

4.11.4.3 Map Memory and 1/0 Page — This command is normally used when a memory error occurs.
The map command may point to where the memory is not configured properly. In a multimemory system
where one of the memories fails, this command can identify the failing memory if it has a CSR. This
command is not available for tests 76 through 56 because the bus is not turned on,

4.11.4.4 Advance to the Next Test — The user can bypass the failing test by using this command to
continue the testing. This command is only allowed for errors that are generally considered nonfatal. If the
error is fatal and the user wants to bypass the error, the command is executed by typing <CTRL> 0,
typing 4 and pressing the Return key.

NOTE
It is important to warn the user that bypassing any
error, fatal or nonfatal, is an assumed risk.

4.11.5 Typical Displays

Three typical displays of diagnostic errors are shown in the following figures. A general type of error is
shown in Figure 4-12. A memory test error in which the failing address, good data and bad data are
displayed in addition to the standard error information, is shown in Figure 4-13. An unexpected trap error
is shown in Figure 4-14,

Testing in progress - Please wait
Memory Size is 256 K Bytes
9 Step memory test

Step1 2345678

Error 46
Memory CSR Error

See troubleshooting documentation
Error PC = 173436 PCR page = 15 Program listing address = 015436

RO = 060000 R1 = 052525 R2 = 172100 R3 =172344
R4 = 100000 R5 = 040000 R6 = 172300 Par3 = 010000
Command Description

1 Rerun test

2 Loop on test

3 Map memory and 1/0 page

4 Advance to the next test

Type a command then press the RETURN key:

MR-17246

Figure 4-12 Typical Diagnostic Error Display

4-25

Testing in progress - Please wait
Memory Size is 256 K Bytes
9 Step memory test

Step1 2 3

Error 46
Memory Error

Error PC = 173256 PCR page = 15 Program listing address = 015256

RO = 060000 R1 = 1252562 R2 = 000002 R3 = 052525
R4 = 000100 R5 = 040000 R6 = 172300 Par3 = 001000
Expected data = 125252
Bad data = 000002
Address = 00100000
Command Description

1 Rerun test

2 Loop on test

3 Map memory and 1,0 page

Type a command then press the RETURN key:

MR-17247

Figure 4-13 Typical Memory Test Error Display

Testing in progress - Please wait

Error 162
Unexpected trap to location 250 MMU

See troubleshooting documentation

Updated PC = 173436 PCR page = 15 Program listing address = 015436

RO = 101365 R1 =076410 R2 =177746 R3 = 177744
R4 = 101367 R5 = 000250 R6 = 172276 Par3 = 052400
Command Description

1 Rerun test

2 Loop on test

Type a command then press the RETURN key:

MR-17248

Figure 4-14 Typical Unexpected Trap Error Display

4.12 ROM CODE BOOT PROGRAMS
The boct and diagnostic ROMs provide the following primary bootstrap programs for Unibus devices and
LSI bus devices.

4-26

LSI Bus Bootstrap Programs Unibus Bootstrap Programs

Mnemonic Device Mnemonic Device

DU MSCP DU MSCP

DK RKO5 - DK RKOS5

DL RLO1/02 DL RLO2

DX RXO1 DX RXO1

DY RXO2 DY RXO2

DD TUS8 DD TUSS8

XH DEQNA NU DUVI1I
NE DLVI1I-E NF DLVI11-F -
MS TSO5/TK25 MU TKS50

The primary bootstrap program normally reads 256 words from the device into memory, starting at
location 0. When the secondary bootstrap program is loaded without any errors, the ROM code transfers
control to location 0 with the MMU turned off. The contents of RO is the unit number of the device, and
the contents of R1 is the base address of the device CSR. Sometimes the contents of R 1 is the base address
plus an offset. After secondary bootstrap program loading is complete, the display is blanked. Then the
ROM code displays the ‘Starting system’ message before transferring control to the secondary bootstrap
program.

During the execution of the bootstrap program, the ROM code attempts to detect any errors and take

appropriate action. A list of errors often detected by the ROM code is given in Table 4-6, along with the
associated LED displays.

Table 4-6 Bootstrap Error LED Displays

LED Code Module Function

27 Not used

26 Not used

25 Not used

24 DECNET boot (DLV11-E/F, DUV11) waiting for host reply

23 XON not received after XOFF, type <CTRL> Q to correct

22 Xmit ready bit does not set

21 Drive error

20 Controller error

17 : Invalid boot device selection (i.e., AA)

16 Invalid unit number selection

15 Nonexistent drive

14 Nonexistent controller

13 No tape

12 No disk

11 Invalid boot block

10 Drive not ready

07 No bootable device found in automatic boot mode

06 Console disabled by switch 1 on, and no force dialog or APT break received;
ROM code has entered ODT for APT

05 Not used

04 Dialog mode °

03 UBA ROM boot in progress

02 EEPROM boot in progress

01 CPU ROM boot in progress

00 Start secondary boot with display blanked

4-27

4.12.1 Error Messages for Bootstrap Programs

When an error is detected, the ROM code displays an error message on the console device. These error
messages are applicable to all CPU ROM resident boot programs and any EEPROM boot programs that
were wri'ten to pass these error messages back to the CPU ROM. Typical messages are shown in
Figure 4-15. Messages 14, 16 and 17 apply only to UBA or M9312 ROM boots.

4.12.2 1.SI Bus Selected Error Messages

The LSI bus systems can select user friendly mode with the automatic boot mode and receive error
messages that assist the user in determining what caused the error. These messages may request the user to
insert a disk, tell the user that the drive is nonexistent or explain where to seek help. A sample of this type

of message is shown in Figure 4-16.

Trying DU1
Message 14
Non existent controller, address 17772152

Commands are: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key:

Figure 4-15 General Bootstrap Error Messages

MR-17249

Commands are: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: B DL1

Trying DL1
Message 12
No disk present, or drive is not loaded

Command Description

1 Reboot
2 Go to Dialog mode

Type a command then press the RETURN key: 2

Figure 4-16 User Friendly Error Message

4-28

MR-17250

4.13 MESSAGE DISPLAY CONSTRAINTS

As a result of self-testing diagnostics being designed into the newer terminals, it may take up to 5 seconds
after power-up before a terminal is ready. This condition imposes constraints on the output of software
messages. The terminal must indicate that it is ready to accept data by transmitting an XON character
after the diagnostics are complete. Any data sent to the terminal before it is ready is ignored. Sometimes
the terminal may already be powered up and no XON character is transmitted. Older terminals may not
support the XON protocol. .

The KDJ11-B ROM code executes various tests upon power-up. A console test is executed using the
DLART maintenance feature and when it is complete (within a half second), the first message is sent to
the console. The ROM code assumes that the console is ready to receive messages. If the ROM code
receives an XON while it is testing, it retypes or sends only the most important message to the console. If, .
during an error, the ROM code receives an XON, the error message is retyped or sent. The user can get
the current message retyped or sent by pressing the Return key. The XON feature is ignored once the
dialog mode is entered.

4-29

CHAPTER 5
FUNCTIONAL THEORY

5.1 INTRODUCTION

The KDJ11-B is a quad-height microprocessor module that is designed for use in the LSI-11 based systems
and can be adapted to operate in a Unibus based system. The module is a multilayered printed circuit
board that uses both the LSI-11 bus (A and B rows) and the interconnecting bus (C and D rows) of the
LSI-11 backplane. Figure 5-1 shows the variety of interconnecting data paths between the primary and
secondary functional blocks of the module. These functional blocks include the following.

Primary Secondary

DCJ11 microprocessor Console SLU

Cache memory Boot and diagnostic ROMs

Bus arbitrator Configuration EEPROM

Data path controller Configuration switches and LEDs
DC350/394 gate array FPA option

DC351 gate array
Bus distribution

DC350 JADR BUS | BOOT AND
: QEQ,Z?ESR CACHE TAG GATE DIAGNOSTIC
A ARRAY ROMS
D XDAL BUS
_——
8
CACHE EPA L, YDAL BUS
MEMORY OPTION o
DC351 DMA TAG
GATE
MDAL . ARRAY |
€
DCITLA IDAT BUS
q ZDAL BUS D
CONFIG
D BLART SWITCHES LEDS
| .
BUS DATA PATH SDAL BUS
ARBITRATION CONTROLLER| q BUS TRAN

MA.17060

Figure 5-1 KDJ11-B Functional Block Diagram

5-1

The prirary control system is the DCJ11-A with cache memory, the bus arbitrator and the data path
controller. The DCJ11-A is a microprocessor chip that provides the memory management function and
executes the associated PDP-11 instruction set. All the KDJ11-B operations and data transfers are
initiated by the DCJ11-A. The cache memory is an on-board 8-Kbyte direct map cache memory. The
DC350/394 gate array contains the cache data path logic to support the cache memory. The cache
memory is transparent to all programs and is designed with high speed Random-Access Memory (RAM).
The memory locations currently being accessed by the DCJ11-A are automatically stored in the cache
memory from the PMI. The next time these locations are accessed, the data is retrieved from
the cache memory, eliminating the time-consuming LSI-11 bus transaction. Full parity protection is
providec for the cache memory. Many of the parity calculations are done by the DC350/394 cache data
path logic.

The DCJ11-A microprocessor normally operates with the cache memory to provide high speed execution
of the current program. While this is occurring, the data path controller monitors the DMA writes into the
private mmemory from the main memory system. The DMA tag store checks each DMA write address to
ensure t1at the data contained in the cache memory is not being updated. If the DMA address is cached,
then the DCJ11-A is interrupted and the cache memory is updated with the new data. The DC351 gate
array contains the DMA data path logic used to check the DMA address with the DMA tag store.

The bus arbitrator monitors the DCJ11-A operation and when a transaction requires it to access external
or interral data that is not cached, the bus arbitrator passes control over to the data path controller while
the DCJS11-A waits for the data. The data path controller recognizes the type of transaction being
executed and provides the control signals for the data to be routed from its source to the DCJ11-A or to a
destination selected by the DCJ11-A. The data is routed by the data path controller via the MDAL,
XDAL, YDAL, and the ZDAL busses while the IADR, DADR, DTAG, CTAG and IDAT busses are
controlled by the DC350/394 and DC351 gate arrays. In this way, all the internal and external addresses
can be zccessed. This includes all the registers described in Chapter 1.

_The secondary functional blocks allow the user to connect the system console and configure the module for
the user s requirements. The boot programs contained in the ROMs allow an automatic boot procedure to
be executed during power-up. The diagnostics evaluate the performance of the module at this time. Any
errors detected by the diagnostics are reported to the user by the system console and are displayed in the
LED codes on the module. This data, as well as the baud rate selection and the dialog mode, can be
remotelv monitored and controlled through the connectors on the module. The module also has a socket
that accepts the optional FPA chip.

5.2 DCJ11-A MICROPROCESSOR

The DCJ11-A is a microprocessor contained on a 60-pin VLSI chip. It prov1des many of the system timing
signals and performs all the arithmetic and logic functions. The 1/O pins are shown in Figure 5-2. The
signals 2nd bus transactions are described in the following paragraphs.

5.2.1 Initialization
The CDCOK H input is driven by the RDCOK H input, which is asserted by the LSI bus input BDCOK
H. The BDCOK H bus signal is asserted when stable dc power is applied to the bus.

5.2.2 Output Signals
The DCJ11-A output signals control the various module functions and are described in Paragraphs 5.2.2.1
through 5.2.2.9.

5.2.2.1 Address Input/Output (MAIO <3:0> H) - These four signals classify the current transaction as
a bus rzad, bus word write, bus byte write, general purpose read, general purpose write, interrupt
acknowledge, or NOP, as shown in Table 5-1. These signals are buffered as the JAIO <3:0> inputs to the
FPA socket. The JAIO <3:0> outputs are also latched as the LAIO <3:0> inputs to the DC350/394 gate
array ard the cycle encoder logic.

SAMODE H
> \ RIRQ7 H
BIRQ7 L
lq/
-) RIRQ6 H
81RQ6 L
—O
—O \ RIRQS5 H
BIRQS L
meost Lo)
e
BIRQ4 L . CIRQ4 H
XIRQ H
MEVNT L
——e
MPARITY L
—
H8PERR H MPWR FAIL L
——pe
LBPERRH MMISS L
CTG MISS H FPA FPE L
MDV L
CDCOK H
E——
MCONT L
FPASTLH —
MDMR L
DMA HITH "
M HALT H

RHALT H

JBSTH
JBSO H i >

I XTALO

<E)AL <21:00>

AlO<0> JAIO<O> H
| cAsU2

AIO<1> JAIO<I>H

Al0<2> JAIO<2> H

AIO<3> JAIO<3>H

ALE JALE L

SCTL BUFFER/ JSCTL L

DRIVERS

BFCTL JBFCTL L
p——

CLK JCLK L

ABORT JABORT L
— -

DCJ1T-A BS<0> JBS<O> H
MICRO PROCESSOR -

BS<1> JBS <1> H
LA b 1P

MABORT L

BS <0> H

BS <1> H

PROC L

l >0 S RUN L

JMAP L

4 JSTRBH

>(\f JSTRB L
JAIKO>H
JAII> H LAIKOZ H,
JAI<2> H
LAI<T> H
JAI<3> H DCITT-A
10 x P LATCHES LAI<2> H
LATCH LAI<3> H
JSTRB L TBSTLH

Figure 5-2 DCJ11-A Microprocessor Logic

Table 5-1

MAIO Coding

—_—

}WRITE H

IR

MAIO Signals

3 2 1 0 Transaction Type

1 1 1 1 Non-I/O (NOP)*

1 1 1 0 General purpose readt

1 1 0 1 Interrupt acknowledge (read vector)}
1 1 0 0 Instruction stream request read

1 0 1 1 Read-Modify-Write, no bus lock§
1 0 1 0 Read-Modify-Write, bus lock§

1 0 0 1 Data stream read

1 0 0 O Instruction stream demand read
o 1 1 - General purpose byte writet

o 1 0 - General purpose word writet

0o 0 1 - Bus byte write§

0 0 0 - Bus word write§

(77,0 o e S

An NOP transaction is an internal operation that does not require a bus transfer.
A general purpose transaction is used to access interface devices that are not directly addressable by the DAL bus.
Interrupt acknowledge (IACK) transactions are in response to the DCJ11-A granting an interrupt request.

A bus transaction uses the DAL bus to access memory, 1/0 devices or explicit addressable registers.

5-3

5.2.2.2 Bank Select (MBS1 H, MBSO H) - These signals are time multiplexed during the transaction.
During the first portion of a bus transaction, they are used to define the type of address on the MDAL bus.
The MBS1 H and MBSO H signals are inputs to the DC350/394 gate array and are buffered as the
JBS1 H and JBSO H outputs. These are ORed together and the output becomes the /O page signal TBS7
via the M to X bus latches. The addresses identified by the MBSO H and MBS1 H signals are defined in
Table 5-2.

The mermory types are all addresses below 17 600 000. The system board register types are bus
addressable registers in the range of 17 777 740 to 17 777 751. The internal register types are addressable
registers that reside within the DCJ11-A. The external 1/O types are addresses greater than 17 577 777
that are aeither internal registers nor system registers.

During the second half of the transaction, the MBS1 H signal indicates the cache bypass status and the
MBSO H signal indicates the cache force miss status as described below.

MBS1 H asserted — Cache bypass
MBS1 H negated - No cache bypass

MBSO H asserted ~ Cache force miss
MBSO H negated — No cache force miss

5.2.2.3 Address Latch Enable (MALE L) - The MALE L output is buffered and driven as the JALE L
output. I is asserted at the start of a transaction and latches the physical address from the MDAL bus to
the XDAL bus. It also latches the address, the MAIO <3:0> code and the MBS1 H, MBSO H code in the
FPA and the DC350/394 gate array.

5.2.2.4 Stretch Control (MSCTL L) - The MSCTL L output is buffered and driven as the JSCTL L
output to the FPA socket and the DC350/394 gate array. It is asserted for the stretched portion of a
transaction and negated when the DCJ11-A receives the MCONT L input. The JSCTL L is used by the
bus arbitration controller to enable the control store functions. It also activates the ABORT L I/O signal.

5.2.2.5 Strobe (MSTRB L) - The MSTRB L output is buffered and driven as the JSTRB H and the
JSTRB 1. outputs. The signal is asserted at the end of the second DCJ11-A clock period and is negated at
the end of the transaction. The STRB H output goes to the FPA socket and it latches the MCONT L input
from the control store. The STRB L output latches the XDAL address register, the DCJ11-A outputs, the
XDAL to the YDAL, and is used by the DC350/394 and DC351 gate arrays.

5.2.2.6 Buffer Control (MBUFCTL L) - The MBUFCTL L is buffered and driven as the JBUFCTL L

output. This output is negated to enable the MDAL bus output data on the XDAL bus and is asserted to
enable tre ZDAL bus input data on the MDAL bus.

Table 5-2 Bank Select Address Codes

MBS1 MBS0 Address Type

Memory

System board register
External I/O

Internal register

—_ 0 - O

5-4

5.2.2.7 Predecode Strobe (MPRDC L) - This signal is asserted for the first two DCJ11-A clock periods
of any transaction that decodes a PDP-11 instruction. It goes to the FPA socket. The MPRDC L output is
also inverted and drives the SRUN L output of the module.

5.2.2.8 1/0 Map Enable (JMAP L) - This signal is asserted when the DCJ11-A receives the DMA
request input MDMR L to stretch the next transaction. The JMAP L output goes to the DC350/394 gate
array.

3.2.2.9 Clock (MCLK H) - The MCLK H output is buffered and driven as the JCLK H output. This
signal is used by many of the functions as a timing reference.

5.2.3 Input Slgnals
The DCJ11-A receives status and control information from a variety of input signals. These signals and
their associated functions are dcscrlbed below.

5.2.3.1 MMISS L - The MMISS L input reports the cache memory hit and miss status during bus read
and write transactions. This input is enabled by either the HB PERR H or the LB PERR H output from
the cache data parity logic or the CTG MISS H output from the DC350/394 gate array.

5.2.3.2 Data Valid (MDV L) - The MDV L input is generated by the control store and is used to latch in
read data from the MDAL bus.

5.2.3.3 Continue (MCONT L) - The MCONT L input is generated by the control store to indicate that
the current stretched transaction can end.

5.2.3.4 DMA Request (MDMR L) - The MDMR L input is used to stall the DCJ11-A by stretching the
next transaction. It is asserted by the FPA STL H signal from the FPA socket or by the DMA HIT H
output from the DC351 gate array. The input is sampled at the beginning of the current transaction, and,
when present, it asserts the JMAP L output and stretches the next transdction until the MCONT L input is
received.

5.2.3.5 MIRQ <7:4> H - These inputs are coded priority levels from the external devices that drive the
LSI-11 bus signals BIRQ <7:4> L. The BIRQ <7:4> L inputs are inhibited by the SAMODE H input that
is asserted when the module is in the standalone mode. The XIRQ H input is asserted by the on-board
DLART and is a level 4 interrupt. The MIRQ <7:4> H inputs are interrupt requests to the DCJ11-A and
are coded to determine a priority level. The acknowledgment of these inputs is dependent on the current
priority level of the PSW.

5.2.3.6 MHALT H - The MHALT H input is driven by the LSI-11 bus signal BHALT L or the HOB H
input from the on-board DLART logic. This input is the lowest interrupt priority for an internal or
external device.

5.2.3.7 MEVNT H - The MEVNT H input is driven by the DC350/394 gate array and causes a trap to
location 100. This input is the line clock interrupt request and is asserted by the line clock logic in the
DC350/394 gate array. The line clock interrupt vector is stored at location 100.

5.2.3.8 MPWR FAIL L - This input is from the DC350/394 gate array and is asserted by the negation
of the LSI-11 bus signal BPOK H. It is used to generate the nonmaskable power fail interrupt. The
MPWR FAIL L input is negated when it is acknowledged by a general purpose write to address 140 or
when the LSI-11 bus signal BDCOK H is negated.

5.2.3.9 MPARITY L - The MPARITY L input is asserted by the DC350/394 gate array when a parity
error is detected. This input is a nonmaskable interrupt to the DCJ11-A.

5-5

5.2.3.10 MABORT L - The MABORT L signal is an I/O line that can be driven by the DCJ11-A or the
DC350/394 gate array. The MABORT L signal is buffered and driven as the JABORT L output to
the FPA socket, the cycle encoder logic and the next address MUItipleXer (MUX) logic. The signal is used
in conjunction with the MPARITY L input to determine when the DCJ11-A aborts the current
transaction.

5.2.3.11 FPA FPE L - The FPA FPE L input is driven by the FPA socket when a floating-point
exception occurs. This input is a nonmaskable interrupt request.

5.2.4 MDAL <21:01>

The MDAL <21:01> bus is a time-multiplexed data/address bus. The basic bus consists of DAL bits
<15:0> and is bidirectional. DAL bits <21:16> are outputs only and are used as the extended bus. The
data being transmitted or received is dependent on the type of transaction being performed by the DCJ11-A.

5.2.5 DCJ11-A Transactions

The DC.11-A controls the type of transaction being cxecuted and indicates this to the module circuits by
coding the MAIO <3:0> signals. The standard transactions only read and write to the cache memory. Any
other transaction requires a stretched cycle in which MSCTL L is asserted. The bus arbitration controller
monitors the MSCTL L output and when it is asserted, the data path controller is enabled. This controls
the data flow until it is ready for the DCJ11-A and then it asserts the MCONT L input. There are six basic
transactions performed and these are described in Paragraphs 5.2.5.1 through 5.2.5.6.

5.2.5.1 NOP - This transaction performs a DCJ11-A internal operation and does not require the use of
the MDAL bus. The normal transaction is shown in Figure 5-3. The stretched transaction (Figure 5-4)
occurs when MDMR L is asserted early in the transaction and remains stretched until the MCONT L
input is asserted to end the transaction.

e i Wi
= T ™

s /T \ N\

o AN XXX YRR

MR-17096

Figure 5-3 NOP Transaction

DATA PATH
CONTROLLER

ACE \nn ““/) T
§TRB : {2227 «S&\ ()_________ (I
wo T JI ~ocoor MWL J i :i:i‘_'_'_'_‘i; T
T S\ i R 7

BUFCTL \\\\\—S ___________ i Wi/

]
o W . —
% __________ i CONTINUE

MR-17087

Figure 5-4 Stretched NOP Transaction

5.2.5.2 Bus Read - The bus read transaction uses the MDAL bus to read data from cache memory, main
memory, I/O devices or the addressable module registers. These transactions occur during instruction
stream reads, data stream reads and the read portion of read-modify-writes. The transaction reads
complete words and if only a byte is required, the DCJ11-A ignores the excess byte. A bus read
transaction (Figure 5-5) occurs when the physical address scores a hit in the cache memory. The DCJ11-A
aborts the transaction if any memory management or address errors assert the MABORT L signal. When
this happens, all current information is ignored and the transaction is immediately aborted.

The noncache or stretched bus read transaction (Figure 5-6) is used when the data must be accessed via the
LSI-11 bus. This occurs when any of the following conditions exist.

Either MBS1 H or MBSO H is set to | indicating an 1/O address
Cache bypass is indicated ' ‘

Cache force miss is indicated

MDMR L is asserted

Cache MMISS L is reported

SN h W -

oar SRGRQUCERRRRL. oy cacke oata (UKL

PHYSICAL ADDRESS

ALE AN /14
BRR /NN AKX 4 XX

REQUEST

DMA REQUEST

BS N\, /O BANK SELECT . CACHE STATUS //Z/7
CACHE HIT

B AN v ,,,/,?

Miss NN

ABORT))X((’ MMU ABORT STATUS WU

BUFCTL AN /4

MR-12076

Figure 5-5 Bus Read Transaction

PHYSICAL ADDRESS -

T LK MMM LSI BUS DATA (€

i

ALE AN /)
DMA REQUEST— .
B 1 (0 it
«)7
/0 BANK SELECT — I
8S (@K WX{{ CACHE STATUS I8
CACHE MISS {(
MISS \ _)]
CACHE HIT (q
ABORT I MMU ABORT STATUS WL MMU AND SYSTEM ABORT STATUS
Bn
BUFCTL Y 7/BR\\ (f ' 777
sCTL W a7
)
{ (CONTINUE
CONT)
oV (umy W
| R

MR-12077

Figure 5-6 Stretched Bus Read Transaction

5-7

The MBUFCTL L and MSCTL L outputs are asserted during the stretched portion of the read trans-
action. The data is read by the DCJ11-A when data valid (MDV L) is asserted. When the transaction is
stretched only because the MDMR L input was asserted, MDV L is not asserted because it will overwrite
the valic data received from the cache. The transaction remains stretched until the MCONT L input
is assertcd to end the transaction.

5.2.5.3 Bus Write — The bus write transaction writes data to memory, 1/O devices, or other addressable
registers via the DAL bus. The transaction can write either bytes or words as determined by the MAIO
code. Tke DCJ11-A reports any memory management or address errors by enabling the MABORT L
signal. This causes the transaction to be terminated immediately and all data should be ignored.

The writ: transaction, as shown in Figure 5-7, and all bus write transactions are stretched. The MSCTL L
signal is asserted and the write data is on the bus during the stretched portion of the transaction. For byte
writes, an even address selects the low byte and an odd address selects the high byte. The data for the
remaining byte is not used.

5.2.5.4 General Purpose Read — The general purpose read transaction accesses non-user-addressable
module hardware. The MDAL address used for general purpose reads is in the form of 17 777 XXX,
where the XXX bits represent the general purpose read code described in Table 5-3. The codes use MDAL
bits <7:0> to access the hardware.

All general purpose read transactions (Figure 5-8) are stretched. The DCJ11-A reads the data when
MDV L is asserted. The transaction is stretched until MCONT L is asserted to end the transaction.

DATA PATH
CONTROLLER

YRR CCCCCCCCCCOCCCCCMMTIIN)))). ¥y vy o V(TSI t _CIITL)
L PHYSICAL ADDRESS ; .
e At it L '
BS (R I CACHE STATUS Jr :: :: : : :f,
L 1/0 BANK SELECT 7 .
ABORT W MMU ABORT STATUS N T MMU AND SYSTEM ABORT STATUS

w0 W , g
L] CONTINUE
CONT ! f §S‘m i izzp

MR-17099

Figure 5-7 Bus Write Transaction

Table 5-3 General Purpose Read Codes

Code Function

000 Reads the maintenance register during power-up
and determines the options selected by the user

001 Reserved

003 Reserved

DATA PATH
CONTROLLER

DAL S ap cooe JRMIMININNN GP 0ATA 2:_—_ T (

| G, (
ALE i&ﬁh 42“/) }
BUFCTL \m m *5 _______ 5; ; 7777
SCI - m——

| CONTINUE
) L\ /S
DV

S —;/ A

MR-17100

Figure 5-8 General Purpose Read Transaction

5.2.5.5 General Purpose Write — The general purpose write transaction accesses non-user-addressable
module hardware. The MDAL address used for general purpose writes is in the form 17 777 XXX, where
the XXX bits represent the general purpose write code described in Table 5-4. The codes use MDAL bits
<7:0> to access the hardware.

All general purpose write transactions (Figure 5-9) are stretched. The DCJ11-A writes the data when
MSCTL L is asserted during the stretched portion of the transaction. The transaction is stretched until
MCONT L is asserted to end the transaction.

Table 5-4 General Purpose Write Codes

Code Function

003 .Reserved

014 Asserts bus reset signal

034 Indicates exit from console ODT mode
040 Reserved for future use

100 Acknowledges EVNT interrupt
114 Negates bus reset signal

140 Acknowledges power fail

220 Microdiagnostic test 1 passed
224 Microdiagnostic test 2 passed
230 Microdiagnostic test 3 passed

234 Indicates entrance into console ODT mode

DATA PATH
CONTROLLER

e m [T Yottt '

m - \““___S _________ [/:;;; .

MR-17101

Figure 5-9 General Purpose Write Transaction

5-9

DATA PATH
CONTROLLER

oa (4 DOVDVINIIDIIY _Oevice vecron) ‘ {({{{

INTERRUPT LEVEL T

L (
ALE T 17 LA J
B (e ¢
ABOFT i ! TSvSTEM ABORT STATUS
\\ I S J—
BUFCTL I /AN e PR — ly 17
scTL T 5 . 77
"""""" T

MR-17102

Figure 5-10 Interrupt Acknowledge Transaction

5.2.5.6 [ACK - The read interrupt vector transaction acknowledges an interrupt request received on one
of the MIRQ <7:4> H inputs by reading a device interrupt vector. All interrupt vector transactions
(Figure 5-10) are stretched. The device interrupt vector is latched by the DCJ11-A when the MDV L input
is asserted.

5.3 BUS ARBITRATOR

The bus arbitrator controls the bus operations that occur between the DCJ11-A, the data path controller
and the DMA requests. It uses the JCLK H input to synchronize its operation with the DCJ11-A. With the
use of some external logic, it provides the five primary control signals to the data path controller, and
the DMA grant output to the LSI-11 bus, as shown in Figure 5-11. All 16 basic transactions performed by
the KDJ:1-B module use the DCJ11-A during the first portion of the cycle, the data path controller
during thz mid-range of the cycle and the DCJ11-A at the end of the cycle. The DCJ11-A SCTL L input
and the cata path controller input JC1:SEQ BSY H are the two primary control signals used by the bus
arbitrator. The SCTL L signal is asserted as an indication to give control of the bus to the data path
controller. The JC1:SEQ BSY H signal is asserted to indicate that the data path controller is using the bus
and is ne3ated to allow the bus arbitrator to return control of the bus to the DCJ11-A.

The LAID <3:0> inputs to the DC350/394 gate array are decoded to determine the current transaction
and the JSCTL L input is monitored to indicate the cycle is stretched. The PMG counter bits <2:0> of the
BCSR in the DC350/394 gate array are decoded and the counter is enabled whenever an I/O page
location or external memory is referenced by the DCJ11-A. All DMA requests are suppressed when
the counter overflows, and the DCJ11-A has bus mastership during the next DMA arbitration cycle. If the
counter is disabled, the DCJ11-A is blocked from bus mastership as long as DMA requests are pending.
The inpu:s to the bus arbitration logic represent the current status of the module activities and are used to
control the five signals used by the data path controller.

The internal transactions are defined by the assertion of the AUX CYC L output and the external
transactions are defined by the assertion of the EXT CYC (1) H output, as shown in Table 5-5. These are
the primary signals used to start the oscillator in the data path controller. The DMG H output is asserted
as the DMA grant signal to the external bus. The CPU MSTR L is used by the control store logic in the
data path controller.

5-10

TIACK H
PBSY L 5 FPA RDY H
TPBSYL CDCOKH |
——q CPU MSTR L
QDMA CYC H JCI: BUSAVL H
QSYNCH AUX CYC L
—
CSACK L JCI: CSACK L
TPSYNC H BUS | DMGH
! Jct:BuscYC L | ARBITRATOR
TSYNC H D TYPE D TvPe LOGIC
FLIP-FLOPS FLIP-FLOPS oce
RDMR H . JCI: RDMR H GATE ARRY
FPA FPEL JCI: FPA FPE L
TO: LAT CYCCD H i
JCI: SEQ BSY H
RRPLY H CPUACKH
Lyct: FLSH
FLSHRQ H Cl: FLSH RQ H EXTCYC (I H_
FPASTL H JCI: FPA STL H
5 of e 5 Ol 0E EXT CYC (1)L
CLK CLK o
JCLK H r l—. l_ ?

Figure 5-11 Bus Arbitrator

Table 5-5 Control Signals

CLREXTL

MR.17062

Code Transaction Bus Arbitrator Output
0 General purpose read from FPA AUX CYCL
1 General purpose write to FPA AUX CYCL
2 IDAT data read AUX CYCL
3 IDAT data write AUX CYCL
4 DC350/394 data/General purpose read AUX CYCL
5 DC350/394 data/General purpose write AUX CYCL
6 EXT bus data read EXT CYC (1) H
7 EXT bus data write EXT CYC(1)H
8 EXT bus L byte write EXT CYC (1) H
9 EXT bus H byte write EXT CYC (1) H
10 EXT bus FPA write EXTCYC(1)H
11 Q-Bus DATIO (DATOB) EXT CYC (1) H
12 Interrupt vector read AUX CYCL
13 Standalone mode cache write AUX CYCL
14 Non-I/O or ABORT recovery AUX CYCL
15 Moritor DMA write cycles

PDMA/QDMA CYC H

5-11

TPBCYCH

-

CPU ACK H

EXTCYC({1)H
T —4
UBSYSH
PSCYC H

DLYCYC L ‘
| 4> PSCYC L

ﬁ QDATIO L TP BSY H

SSELH — / JCLK H Ve

9 \ NPSLVCYC H_
v »-
EXTCYC (L o /

CLR SE: L
CDCOK H i >:

Figure 5-12 PMI Cycle Request

TPBCYCL

MR.17063

5.3.1 PMI Cycle Request

In addition to providing the oscillator signals to the data path controller, the CPU ACK H and CPU
MSTR L outputs are used to generate the NPSLVCYC H and the TPBCYC L control signals to the next
address MUX of the data path controller, as shown in Figure 5-12.

The JK input is set by the assertion of CPU ACK H and SSEL H, and is clocked by the JCLK input. This
sets the cutput low, and with the EXT CYC (1) L set, the NPSLVCYC H output is asserted.

The TPBCYC L output is set by one of the following conditions.

1. The assertion of CPU ACT H, provided TPBCYC L is already asserted.
2. The assertion of EXT CYC (1) H and UBSYS H, provided the DLY CYC L input is negated.
3. The JK output set low, provided DLY CYC L and Q DATIO L are asserted.

5.4 DATA PATH CONTROLLER

The data path controller provides the control signals necessary to execute the 16 basic transactions. The
bus arbitrator makes the data path controller the bus master whenever the DCJ11-A enters the stretched
cycle mode or DMA write cycles.

The data path controller consists of the cycle encoder, the oscillator, the next address MUX and the
control store, as shown in Figure 5-13. The cycle encoder and the next address MUX control
the addressing of the control store. The oscillator enables the control store outputs and provides the time
base for the sequencing of the control store outputs.

5.4.1 Cycle Encoder

The cycle encoder (Figure 5-14) is a programmable logic array that encodes the 12 input signals into the 4
LCYCCD outputs, which select one of the 16 basic transactions. The 12 inputs are encoded and the output
latch is opened by the assertion of TO:LATCYCCD H. The LCYCCD outputs are latched 20 ns later by
the assertion of LATCYCCD H input. The LCYCCD outputs enabled by the input status are shown in
Table 5-6, and the transactions selected by these outputs are shown in Table 5-7.

LCYCCD 8

LCYCCD 7

CYCLE

ENCODER LCYCCD 6

LCYCCD 5

OSCILLATOR

TO, T20, T40, T50

NA<4:2>
_—

MUX NA 1

NEXT

MUX NA 0

ADDRESS
MULTIPLEXOR

CONTROL
STORE

——» CONTROLLER

SIGNALS

NA<4:2>
-

NA 1

NA 0

NASEL 2

NASEL 1

NASEL 0

Figure 5-13 Data Path Controller

FPA FPE L

. JABORT L
b:a:> | uaso
—O

RT L+ FPA FPE L |

MR-17064

QDATIO H

WR FM FPA L
SET'RMW L I

T

QDATIO L
CLRSYNC L

SAMODE L
_LFPAOPL

LATCYCCD H
—]

O: LATCYCCD H
—

TPBSY H

FPLA
18X 32X 10

CPU MSTR L

CPUACT L

Figure 5-14 Cycle Encoder

DEVCD2 H
———
DEVCD1t H
LDALDO H
—_—
LAIO<3> u
LAIO<2> H
LAIO<1> H

LAIO<O> H
_—

_—_j > LCYCCD 8 H

j > LCYCCD 7 H

i > LCYCCD 6 H

LCYCCD 5 H

CDCOK L

MR-17065

Table 5-6 Cycle Encoder Status

LCYCCD
LAIO <3:0> DEVCD LDAL JABORT Outputs
LFPA QDATIO Standalone and
3210 2 1 0 opP (B) Mode FPA FPE TPBSY 8 7 6 5
1 1 10 X X L X X X 0 1 0 0 00
D1 XX XX l X X X 0 1 0 0 01
1 0 XX 0X X X X X 0 1 0010
1 1 00 0 X X X X X 0 1 006 10
0 0 XX 00X X X X X 0 1 00 1 1
1 0 X X 11 X X X X 0 1 01090
1100 1 1 X X X X 0 1 0100
1 1 1 0 X X 0 X X X 0 1 01 00
0 0 X X 11 X X X X 0 1 01 01
01 XX XX 0 X X X 0 1 0 1 01
1 0 X X 1 0 X X X 0 0 1 0110
1 I 00 1 0 X X X 0 0 1 01 10
0 0 0 X 1 0 X 1 0 0 0 | 01 11
00 1 X 10 0 1 0 0 0 1 1 000
0 01 X 1 0 1 1 0 0 0 1 1 0 0 1
0 0 XX 1 0 X 0 0 0 0 1 1 010
0 0 X X 1 0 X X 1 0 G 1 1 0 1 1
1 1 01 X X X X X X 0 1 1100
0 0 X X 1 0 X X X 1 0 1 1 1 0 1
1 1 1 1 X X X X X X X 1 1 110
XXX X XX X X X X 1 1 I 110
XX XX XX X X X 0 X 0 1 11
Table 5-7 Transactions Selected by LCYCCD Qutputs
LCYCCD Outputs
Code Transaction 8 7 6 5
0 General purpose read from FPA 0000
1 General purpose write to FPA 0001
2 IDAT data read 0010
3 IDAT data write 0011
4 DC350/394 data/General purpose read 0100
5 DC350/394 data/General purpose write 0101
6 EXT bus data read ' 0110
7 EXT bus data write 0111
8 EXT bus L byte write 1 000
9 EXT bus H byte write 1 0 01
10 EXT bus FPA write 1 010
11 Q-Bus DATIO (DATOB) 1 011
12 Interrupt vector read 1 100
13 Standalone mode cache write 1101
14 Non-1/O or ABORT recovery 1110
15 Monitor DMA write cycles 1111

5-14

5.4.2 Oscillator

The oscillator logic is used to start and stop an oscillator within an 85 ns period and its output drives a
multitap delay line to provide the TO H, T20 H, T40 H, T50 H, T70 H and T85 H outputs, as shown in
Figure 5-15. The T40 H output controls the duty cycle of the 85 ns period by turning the oscillator off
after 40 ns. The delayed outputs are used to sequence some of the control store signals during a single
period of the oscillator.

The logic is controlled by a variety of signals to provide the start, stop, and restart conditions for the
oscillator, as shown in Figure 5-16. The control signals for the 16 basic transactions are categorized as
primary start signals and secondary restart signals in Table 5-8. The primary start signals are generated by
the bus arbitrator as the AUX CYC L and EXT CYC (1) H inputs. The secondary signals are the restart
conditions when the KDJ11-B module must wait for a response from other bus devices. These are the reply
signal (RRPLY H) or the no reply/timeout signal (CRPLY H). The LAT RDSTRB H input is a restart
signal from the PMI bus when the read strobe is latched. The PDMA CYC H or the QDMA CYC H
inputs are the primary start signals for monitoring DMA write cycles. The JSTALL L input is enabled
when a DMA hit occurs and is the restart signal. The assertion of JSTALL L requires that the addressed
location in the cache memory be invalidated.

The oscillator is controlled by a variety of AND gates that are ORed together as part of the control logic.
During power-up, the CDCOK H input presets a flip-flop to start the oscillator and the T40 H output is
used to clear the flip-flop and establish the duty cycle by asserting the T40 L input. The control store
asserts the DL CONT H input and allows the oscillator to continue while the module is initialized. The
.control store negates the DL CONT H input and when the T20 H, T40 H and T50 H inputs become
negated, the DL BUSY L signal is negated, allowing the oscillator to be dormant, as shown in Figure 5-15.

The assertion of AUX CYC L clocks a flip-flop to start the oscillator. The assertion of EXT CYC (1) H
input also starts the oscillator, provided the DLYCYC L input is negated. The oscillator is turned off by
the control store negation of DL CONT H and DL BUSY L to enable the restart conditions. The
LAT RDSTRB H input from the PMI bus can also restart the oscillator, provided the DL BUSY L input is
negated. The control store asserts the WT4 RPLY H and the WT4 NRPLY H inputs, and these enable
the RRPLY H or the CRPLY H inputs to preset a flip-flop and restart the oscillator.

The PDMA H input is clocked into a flip-flop by RPBCYC H to enable the PDMA CYC H input to start
the oscillator. The QDMA CYC H input is able to start the oscillator, provided that SET STL L is

negated. The SET STL L input is asserted by the control store to enable JSTALL L to preset the flip-flop
and restart the oscillator.

[N p I s |

!
.
|
‘
T85 H [L__J L__j] ;

]
]
1

DL CONT H__J I |
1
1)

DL BUSY L I

MR-17066

Figure 5-15 Oscillator Outputs

5-15

CRPLY H
RPLY H

RPLY L ToH
NRPLY H +3VDC

&

AUXCYCL .
SETSTLL —
QDMA CYC H

CLRCLK L

Lg

CDCOK H

DLCONT H

+5VDC

T40 H Dc {
\‘D__ TOH
|
BUFFER | T20H
———

EXTCYC (1) H _| DELAY
—_——————
DLY CYC L

PDMA CYCH

PDMA H

RWTBT H
RPBCYC H

T20 H

SETSTL L ol
JSTALL L .

CLR PDMA L

DL CONT H

DL BUSY L
—————

R
T20H| >O ’

LAT RDSTRB H
e e !
185 H

Figure 5- ' 6 Oscillator Control

Table 5-8 Oscillator Control Signals

MR.17067

Code Transaction Primary Secondary

0 General purpose read from FPA AUX CYC L None
1 General purpose write to FPA AUX CYC L None
2 IDAT data read AUX CYCL None
3 IDAT data write AUX CYC L None
4 DC350/394 data/General purpose read AUX CYC L None
5 DC350/394 data/General purpose write AUX CYC L None
6

EXT bus data read

7 EXT bus data write

8 EXT bus L byte write

9 EXT bus H byte write

10 EXT bus FPA write

11 Q-Bus DATIO (DATOB)

12 Interrupt vector read

13 Standalone mode cache write
14 Non-I/O or ABORT recovery
15 Monitor DMA write cycles

EXT CYC (1) H

EXT CYC (1) H
EXT CYC (1) H
EXT CYC (1) H
EXT CYC (1) H
EXT CYC (1) H
AUX CYC L
AUX CYC L
AUX CYC L
PDMA CYC H
QDMA CYC H

CRPLY H, RRPLY H,
LAT RDSTRB H
CRPLY H, RRPLY H
CRPLY H, RRPLY H
CRPLY H, RRPLY H
CRPLY H, RRPLY H
CRPLY H, RRPLY H
CRPLY H, RRPLY H
None

None

"JSTALL L

5-16

5.4.3 Next Address MUX

The next address MUX is an 8-bit 2:1 multiplexer that allows the control store to branch within the
selected page to a routine that is determined by the conditions sampled at the multiplexer. The next
address select signals (NA SEL <2:0>) and the next address bits (NA <1:0>) are driven to the control
store as inputs to the multiplexer (Figure 5-17). The NA SEL <2:0> inputs select one of eight MUX input
conditions given in Table 5-9.

5.4.3.1 Default - The default condition selects the NA <1:0> signals as they were copied from the
control store.

5.4.3.2 External Read/Write - During external data reads and writes, the MUX NA 0 output de-
termines if the bus cycle is a PMI transfer by the status of TPBCYC. The MUX NA 1 output determines
if the cache memory should be allocated by the status of either the J CACHE DIS or UBMEM inputs.

SAMODE L

O
TBS7 H
___._o

DTS CMP'H
WR FR FPA H MUX NA1 L DTG PERR H MUX NAQ L
B —— | —— —_
FRCE MISS H
TRLE Moo Kl

7 7
6 TBYTE H 6
WRLB L 5 5
JABORT L
JREG REFH [| —] FLUSH H 4
—_—
RXVEC H 3 TXVEC H 3
PDMA CYC H NPSLVCYCH)
J CACHE DIS H —2 NPSLV Cve Q]
, TrBCYCL)
e
UB MEM K NATH NAO H o
———— O
———————— - ——— ——
NA SEL2 H
NASELZH fseio NASELZH seco
NASELTH Jsect NASELTH o skl
NA SELO H
NASELOH dcoeig ————— SELO
________ o I
COCOKL o COKL A en

MR-17068

Figure 5-17 Next Address Multiplexer

Table 5-9 Selection of NA <1:0> Status

NA SEL Input Bits

Condition Selected 2 1 0 MUX Inputs
Default 0 0 0 0
External Read/Write 0 0 1 1
LS1/Unibus 0 1 0 2
Interrupt vector 0 1 1 3
DC350/394 accesses 1 0 0 4
Byte allocation 1 0 1 5
DMA monitor 1 1 0 6
Standalone mode 1 1 1 7

5-17

5.4.3.3 LSI/Unibus - During external data reads and writes, the MUX NA 0 output determines if the
cycle should be an LSI bus or Unibus transfer by the status of NPSLV CYC. The MUX NA 1 output
determinzs if the cache should be invalidated during an interrupt vector read from the Unibus by
the status of PDMA CYC. The controller is stalled while waiting for the interrupt vector or RRPLY. If
the Unibus interrupt master performs a DMA transfer, the cache is invalidated.

5.4.3.4 Interrupt Vector - The MUX NA 0 output is determined by the status of TXVEC and the
MUX NA 1 output is determined by the status of RXVEC. These inputs have their respective vectors
read frora the DC350/394 gate array if asserted; otherwise, the vectors are read from the external bus.

5.4.3.5 DC350/394 Accesses - The MUX NA 0 output is determined by the status of FLUSH and if
asserted, the cache is flushed. The MUX NA 1 output is determined by the status of JREG REF
and if asserted, an internal register is read and the DCJ11-A is not stalled.

5.4.3.6 Byte Allocation — The MUX NA 0 output is determined by the status of TBYTE, provided
JABORT L is not asserted. The MUX NA 1 output is determined by the status of WRLB. During
external bus writes and standalone mode cache reads, these bits determine which byte may be accessed.
These bits are not used for external bus data, H byte and L byte write transactions. During Q-Bus DATIO
transactions, the MUX NA 0 output defines the cycle as a DATI transaction for a Read-Modify-Write
cycle and inhibits the negation of SYNC until the transaction is complete.

5.4.3.7 DMA Monitor - The MUX NA 0 output is determined by the status of DTS CMP and
DTG PERR. The MUX NA 1 output is determined by the status of FRCE MISS. When monitoring
DMA cycles, these outputs determine if the cache should be invalidated because of a DMA hit or the
assertion of FRCE MISS H.

5.4.3.8 Standalone Mode — The MUX NA 0 output is determined by the standalone mode input,
provided the TBS7 H input is negated. The MUX NA 1 output is determined by the status of
WR FM FPA. During DC350/394 transactions, the MUX NA 0 output specifies that the DMA tag store
parity bit and the tag store be validated if the cycle was a standalone mode read cache miss. During
standalone mode cache accesses, the MUX NA 1 output determines if the write data is obtained from the
DCJ11-A or the FPA.

5.4.4 Control Store

The control store is a 512 X 48 PROM that contains 16 pages. Each page has 32 entries that are 48 bits
wide, as shown in Figure 5-18. The 16 pages represent the 16 basic transactions selected by the cycle
encoder ‘ogic and those outputs are address bits <8:5>. Each entry in a page is sequenced to execute the
transaction by using the NA <4:2> outputs as address bits <4:2>. Address bits NA <1:0> are selected by
the NA SEL <2:0> outputs that select an output from the next address MUX. This allows the routine to
branch within a selected page. At the end of each page, the control store resets the system back to an
initialized state before exiting the page. The signals provided by the control store are listed in Table 5-10.
Some of them are modified by the time delay signals from the oscillator. '

5-18

LCYCCD 8
—-—n.—.._—._._.
LCYCCD 7
——
LCYCCD 6
LCYCCD 5
e

NA 4

NA 3
———eein}

NA 2
-

MUX NA 1
pat-dARLIANLS
MUX NA O
——e

CONTROL
STORE
(47:0)
512 x 48
PROM

24 DATA LINES

TO —

24 FLIP FLOPS

| GAFCN O
—_ -

| WR TAGH

NA 4

NA 3

NA 2
NA 1
‘NA O
NASEL 2
NA SEL 1
NA SEL O

GA FCN 1

DL CONTH
f—— -
UPDATE H
———
EN GTOX H
WT4 NRPLY
e
WT4 RPLY

TO: LATCYCCD H
TDIN H

QTST L

SEL CACH H
END CSEL L
'SEL.CDLB H
| SELCOHBH

 INCFLCNTR Y

24 DATA LINES

TO—

Figure 5-18 Control Store

5-19

24 FLIP FLOPS

TO: LDMSER L
GP STRB A2
GP STRB A1
GP STRB A0

WTSTB H
CLK HITH
JACK H
 TDOUT

EN YTOZ H

EN XTOY H

EN CDCOK H
EN MTOX L
END UPDT L

MDV L
[RWSTBL |
EN ADRH

CPU ACT L
b————

TO: YTOBH
F——————»

SETYTODE

|EN IBUS L

EN ATOX H

ENFTOZL

'TO: OPN YTOZ L
-

MR.17069

Table 5-10 Control Store Outputs

Signal Function
NA <4:2> Control store address bits <4:2>.
NA <1:0> Control store default next address bits <1:0> to MUX.
NA SEL <2:0> Next address MUX selection code.
GA FCN <1:0> DC350/394 gate array encodes the following functions.
0 Selects the address register
1 Selects the console RX vector
2 Selects the console TX vector
3 Selects another DC350/394 register
DL CONT H Clocked at T20, enables the oscillator to continue running.
UPDATE H Allows updating of the tag, parity and valid bits in the DMA and cache tag
store.
EN GTOX H Enables the DC350/394 gate array to drive the XDAL bus.
WT4 NRPLY H Used to restart the oscillator when there is no RPLY.
WT4 RPLY Used to restart the oscillator when there is RPLY.

TO:LAT CYCCD H

TDIN H
QTST L

WR TAG H
SEL CACH H
END CSEL L
SEL CDLB H
SEL CDHB H
INC FLCNTR H

TO:LD MSER L

Opens the latches for the CYCCD selections at TO and latches the data at
T20.

Clocked as TS0:DIN H, LSI-11 bus DATI strobe.

Enables the QSYNC and opens the XTOY bus on FPA /PMI write dumps.
Enables cache writes.

Selects both bytes of the cache.

Clocked as T20:END CSEL L to disable cache byte selects at T20.
Clocked as T50:SEL CDLB H to select cache low byte at T50.

Clocked as T50:SEL CDHB H to select cache high byte at T50.
Increments the flush counter

Clocked as T50:LD MSER L to load the error status into the MSER at
T50.

5-20

Table 5-10 Control Store Outputs (Cont)

Signal

Function

GP STRB <A2:A0>

CLR CLK L
SET RMW L

CLR LSYNC L

CLR YTOD L
CLR SEL L
SET STL L

CLR PDMA L

NC
WTSTB H
CLK HIT H
IACK H
TDOUT H
EN YTOZ H
EN XTOY H
EN CDCOK H
END UPDT L
EN MTOX L
MDV L
RWSTB L
EN ADR H
CPU ACT L
TO:YTOB H
SET YTOD L
EN IBUS L
EN ATOX H

TO:EN FTOZ L
T0:OPN YTOZ L

NSV R W — O

General purpose strobes encoded to select output signals as follows.
Resets the clock flip-flop

Sets the RMW flag for LSI-11 bus DATIO cycles
Resets SYNC, DHIT flip-flop and clears YTOD latch
Opens DMA address latch in the DC351 gate array -
Resets the external cycle requestflip-flop

Enables JSTALL to restart the oscillator

Clears the PDMA flip-flop

Not used

Write data strobe for PMI.

Samples the DMA tag comparator.

Interrupt acknowledge.

LSI-11 bus DATO strobe.

Enables the YDAL bus to the ZDAL bus.

Enables the XDAL bus to the YDAL bus.

Enables. the CDCOK H signal.

“Clocked as TS0:END UPDT L to disable various bus control signals.

Enables the MDAL bus to the XDAL bus.

" Enables the DCJ11-A data strobe.

Read/Write strobe for IADR bus or DC350,/394 gate array.

Enables BDAL addressing and is byte control for LSI-11 DATIO cycles.
Enables TPBCYC L signal during external bus cycles.

Clocked as T50:YTOB L to enable the YDAL bus to the BDAL bus.
Latches the DMA address buffer.

Enables the IDAT bus to and from the YDAL bus.

Clocked as T20:EN ATOX H to enable the address register to the XDAL
bus.

Clocked as T50:EN FTOZ L to enable the FPA to the ZDAL bus.
Clocked at T40 as OPN YTOZ (1) H to open the ZDAL buffer.

5-21

T50: END UPDT L
EN GTOXH

EN GTOX L

EN YTOZ L
EN YTOZ L

EN ATOX L
T20: EN ATOX H

TB0: ENFTOZ L Yo .

EN ZTOY L
TOY H

XTO I's

P17y

—): EN XTOY L
TPBSY H 2
POMA H
QSACK H) EN BDAL L
TIACK H]
T50: YTOB H .

TPBSY H YTOB L
EN ADR H

MR-17070

i

Figure 5-19 Internal Bus Control Signals

Additionz! internal bus control signals are generated from the control store output signals as shown in
Figure 5-19. The EN GTOX L, EN YTOX L and EN ATOX L signals are asserted by their respective
inputs; EN GTOX H, EN YTOX H and EN ATOX H are asserted when the TS0:END UPDT L input is
negated. The EN ZTOY L output is enabled by asserting T5S0:EN FTOZ L while the XTOY H
input is nzgated. The EN XTOY L output is asserted by having both the XTOY H and TPBSY H inputs
asserted.

The LSI-11 address and data bus transceivers are enabled to the YDAL bus by the assertion of
EN BDAL L, and the YDAL bus drives the BDAL bus when YTOB L is asserted. Whenever TPBSY H,
PDMA F, QSACK H or TIACK H is asserted, the EN BDAL L output is asserted. The YTOB L output
is asserted when either T50:YTOB H or EN ADR H inputs are asserted while TPBSY H is also asserted.

5.5 CACHE MEMORY AND DMA STORE

The cache memory consists of a 4K RAM for data storage, the cache tag store, the data parity generating
logic, the valid tag bit logic and the cache control logic, as shown in Figure 5-20. The cache memory is
used to temporarily store data received from the system memory that the DCJ11-A is currently using.
This allows the DCJ11-A to quickly access on-board data without performing external bus transactions.

The physical address is divided into three sections as shown in Figure 5-21. The byte select bit is used to
access either high or low bytes of data. The index bits are used as the address of the cache memory. The
label bits are stored as the tag store for valid cache entries. Each cache entry is organized as shown in
Figure 5-22. The high and low data bytes are stored as data. The label bits with a tag valid bit (V) and the
tag parity bit (P) as even parity are stored as tag store data. The low byte parity (PO) is stored as even
parity and the high byte parity (P1) is stored as odd parity in the tag store. The byte parity is predicted by
the cache data parity logic. The DMA store is an identical copy of the cache tag store and it is used to
monitor the main memory DMA updates while the cache tag store monitors the DCJ11-A requirements.

5-22

. DMA
XDAL <12:1> CACHE CACHE DATA DADR <12:1> TAG
— MEMORY PARITY LOGIC STORE
_CD HBP H
CD LBPH
CACHE
TAG .
STORE
CTAG PARH
CTAG VLD H
CTAG VLD H VALID
TAG BIT DTAG PAR H
CAGHE
CONTROL
LOGIC
MR-17071
Figure 5-20 Cache Memory System
21 13 12 01 00
LABEL INDEX
BYTE SELECT ——T
MR-110567
Figure 5-21 Cache Physical Address
08 00
P \Y) TAG
15 08. 07 00
P1 B1 PO BO

Figure 5-22 Cache Data Format

5-23

MR-11068

5.5.1 <Cache Memory

The cache data RAM (Figure 5-23) is 8 Kbytes of read/write memory addressed by the index field, that
is, XDAL bus bits <12:1>. These bits always access the data stored in an address location, but the data is
not validated until the label field of the address is verified as the tag store by the DC350/394 gate array.

The rea:1/write operations are controlled by the cache control signals CSEL CDHB L, CSEL CDLB L and
WR CACH L. The low byte of cache data is read when the CSEL CDLB L input is asserted and is written
when both the CSEL CDLB L and WR CACH L inputs are asserted. The high byte of cache data is read
when th: CSEL CDHB L input is asserted and is written when both the CSEL CDHB L and WR CACH L
inputs are asserted. The data is routed via the ZDAL bus to the DCJ11-A.

5.5.2 (Cache Tag Store

The tag RAM (Figure 5-24) is a 4K X 16 read/write memory that stores 13 bits of data and three bits that
are not 1sed. The data consists of the 9-bit label field (address bits <21:13>), the high and low byte data
parity bits (CDHBP H and CDLBP H), the tag parity bit (CTAGPAR H), and the tag valid bit (CTAG
VLD H:. The data is received from the cache data path in the DC350/394 gate array. The read/write
operations are controlled by the cache control signals CSEL CDHB L, CSEL CDLB L and WR CACH L.
The low byte of the cache tag store data is read when the CSEL CDLB L input is asserted and is written
when beth the CSEL CDLB L and WR CACH L inputs are asserted. The high byte of cache tag store
data is read when the CSEL CDHB L input is asserted and is written when both the CSEL CDHB L and
WR CACH L inputs are asserted. The high and low byte data parity bits (CDHBP H and CDLBP H) are
used by the cache data parity logic. The cache tag data, the tag parity bit (CTAG PAR H) and the tag
valid bit (CTAG VLD H) are used by the DC350/394 gate array.

XDAL <12:1> CACHE ZDAL <15:8>
— DATA
WR CACH L HIGH BYTE
4K x 8

CSEL CDHB L
— ¥

1

CACHE
DATA
WR CACH L LOWBYTE
e ™ 4Kx8

CSEL COLB L
pitelelidetediall

MR-17072

Figure 5-23 Cache Memory

XDAL <12:1> X

J

CSEL CDHB L CD HBP H
— ™ CACHE [—
TAG CDLBPH
CSEL TAG L STORE CTAGPARH
—_—— i j»>-——————
4K x 18 CTAG VLD H
e

CSELCDLB L
S

_WRCACHL

MR-12073

Figure 5-24 Cache Tag Store

5-24

5.5.3 Cache Data Parity Logic

The cache data parity logic provides an even parity bit (CDLBP H) for the low byte of data and an odd
parity bit (CDHBP H) for the high byte of data. It also checks these parity bits when the data is accessed
from the cache memory and reports any errors as the HB PERR H and LB PERR H outputs to the
DCJ11-A and the DC350/394 gate array.

The high byte parity bit (PHBPAR L) and low byte parity bit (PLBPAR L) signals are received from
memory when the cache memory is being updated, as shown in Figure 5-25. These inputs are buffered and
latched by the assertion of the COPN YTOZ H input. The latched outputs provide a correct parity bit
(HBPAR H, LBPAR H) and a wrong parity bit (HBPAR L, LBPAR L) as inputs to the 4-bit multiplexer.

The data from the cache memory is read via the ZDAL bus to the 9-bit parity generator. The respective
parity bit is also an input to the parity generator, provided the UPDATE L signal is negated. An odd
parity bit and an even parity bit are generated on the 9-bit input by the parity generator and both of these
bits are inputs to the 4-bit multiplexer.

The inputs to the multiplexer represent the original parity bit, a predicted parity bit and two wrong parity
bits. The EN PRD H input selects the predicted parity when asserted and the correct parity bit when
negated. The asserted WR WRONG PAR H input selects one of the two wrong parity bits, depending on
the status of EN PRD H. The selected output determines the status of the CDLBP H or CDHBP H
outputs, when they are enabled (Table 5-11), by asserting the UPDATE L output.

L HB PERR H
UPDATE 3—> 9.BIT

PARITY
ZDAL <15:8> > GENERATOR Z\SEN

PHB PAR L D S HB PAR H
1 — HBPARL

COPN YTOZ H LATCH
=0

4-BIT MUX

CDHBP H
—

ENPRD H

WR WRONG PAR H
UPDATE L

TPBCYCH

EN PRD H
LAIO<3> —

UPDATE] LBPERRH
—————L—} 9-BIT —
PARITY
oDD)
ZDAL <7:0> 3 GEnERATOR Vi 4-BIT MUX

PLBPAR L D ‘ 3 LBPARH
— LB PAR L

CDLBP H

Q
X LATCH
COPN YTOZ H e EW PRD H
WR WRONG PAR H
UPDATE L

MR-17074

Figure 5-25 Cache Data Parity Logic

5-25

Table 5-11 Cache Parity

EN PRD H WR WRONG PARH CDHBP H CDLBP H
) 0 Even parity Odd parity
1 0 HB PAR H LB PAR H
) 1 Odd parity Even parity
1 1 HB PAR L LB PAR L

5.5.4 Valid Tag Bit

The valid tag bits for the DMA tag store and the cache tag store are generated by the same logic, as shown
in Figurz 5-26. The DTAG VLD H and CTAG VLD H are driven by the tag valid bit logic and are
enabled by the assertion of the UPDATE L signal. The DTAG PAR H output is also copied from the
CTAG PAR H signal when UPDATE L is asserted. The valid bit output is good, provided the following
four conditions are valid.

1. The JBSI H signal is negated to indicate that the address is either for memory or system board
register.

2. The address is not a nonexistent memory (NXM L negate), or an address invalidated by DMFL
INV L negated. '

3. The COPN YTOZ H signal is negated, or parity address bit 17 or 16 is negated.

4. The COPN YTOZ L signal is asserted. The predict signal EN PRD H and the DATI signal
T50:DIN H are negated.

5.5.5 DMA Tag Store , ‘

The DM A tag store (Figure 5-27) is a 4K X 12 read/write memory that stores 11 bits of data and one bit
that is not used. The stored data is the same data stored in the cache tag store except for the two cache
memory parity bits. The DC351 gate array controls the operation of the DMA tag store. It is addressed by
bits <12:1> of the DADR bus and the data is read via DTAG bus. The DTAG VLD H and DTAG PAR H
outputs are used by the DC351 gate array to validate the DMA tag store data. This allows the DMA tag
store to operate independently from the cache memory and monitor DMA transfers while the DCJ11-A is-
using the cache memory.

5.5.6 Cache Control

The cache control signals are used to read and write the cache memory, the cache tag store, the DMA tag
store and enable the cache parity logic. The input signals used by the cache control logic (Figure 5-28) are
from the control store. The CSEL CDHB L, CSEL CDLB L and CSEL TAG L signals are all asserted by
asserting the SEL CACH H input. The high byte select signal CSEL CDHB L and the CSEL TAG L
signal are asserted when the T50:SEL CDHB H input is asserted while the T20:END CSEL L input is
negated The low byte select signal CSEL CDLB L and the CSEL TAG L signal are asserted when the
T50:SEL CDLB H input is asserted while the T20:END CSEL L input is negated. .

The WR CACH L signal is enabled by asserting WR TAG H while TSO:END UPDT L is negated.
UPDATE L is enabled by asserting UPDATE H while T50:END UPDT L is negated.

5-26

T60: DIN H

EN PRD H

COPN YTOZ L

YDAL 16 H

YDAL 17 H DTAG VLD H

JBSTH CTAG VLD H

BUFFER/ >

CTAG PARH DRIVERS DTAG PARH

DMFL INV L —_— ———————»

NXM L UPDATE L

Figure 5-26 Valid Tag Bit

DADR <12:1> K DTAG <21:13> »
DTAG VLD
DMA GVLDH
TAG STORE
DTAG PAR H
CSELTAG L
WR CACH L
.) . MR-17076
Figure 5-27 DMA Tag Store
T50: SEL CDHB H
T20: END CSEL L
CSEL CDHB L
SEL CACH H > - CSEL TAG L
s e e
CSEL CDCB L
T50: SEL CDLB H -
T20: ENDCSELL |
WR TAG H
WR CACH L
T50: END UPDT L
UPDATEL
UPDATE H o

MR-17077

Figure 5-28 Cache Control Signals

5-27

MR-17075

5.6 DC350/394 GATE ARRAY

The DC350/394 gate array (Figure 5-29) contains many of the functions of the KDJ11-B module. It
controls the cache data path, the address decoding for the on-board registers, the parity interrupts and
aborts, the KDJ11-B bus requests and the bus arbitrator logic, which is described in Paragraph 5.3.

A copy of the cache control register is stored in the gate array. In addition, the DC350/394 gate array
contains the following on-board registers and the console vector generator to access an 8:1 multiplexer
(AMUX) that drives the XDAL and CTAG busses.

On-Board Registers

Address

Boot and diagnostic Control/Status (BCSR)
Memory System Error (MSER)

Line Time Clock status (LTC)
Maintenance (MTRG)

Page Control (PCR)

Console Vector Generator

Receive vector 60
Transmit vector 64

FLREQH

CACHE F MISS H .
CONTROL [~ CMUX JCACHE DISH

WNG PAR H
XDAL<21,00> | > . cacHE
fADR -114:9> TIMEQUT H NXM L
>—l 29 CONTROL f—r———
Y N JSTRBL
CONTROL

LA12 NXTWD H
——| ADDRESS |—— :
BOOT AND | N XDAL<21.00>
| DIAGNOSTIC I 1
EN GTOX L
TINE AMUX
CLOCK . . I~
“l MAINTENANCE I—. UPDATE L E)
RECEIVE < I
VECTOR
TRANSMIT
VECTOR

CTAG<21.13>

CTAG VLD H TAG
—_——

XDAL <21:00> COMPARATOR |

PARITY
PREDICTOR

CTAG MISS H

DIGFERRH

PREDICTED
MEMORY
DTS (MP H SYSTEM — gag&‘f
T50: IDMSERL_| ERROR BMUX
— = UPDATE L
. PARITY {—.
GA F IN<1:0> P GENERATOR CTAG PAR H
REG SEL L DECODE CCR10~ lﬁj
ADRI: REG SEL DL L UPDATE L -
MBS1 H SEL ROMS L PARITY JSCTL L
MBS(H 1 HECK
SEL ROMI16 { D:GEPCERR ’ MABORT L
ALE L RD 1 —
—-; "Fﬂ--—- |oQIEVL . —————*] pARITY
WSiB L ADDRESS | WRIDEV L LAIO-.3:0™ LBPERRH INTERRUPT
DECODER | RDBCR L . FPAOP L CYCLE WR FMFPAH HBPERR H AND
W DISP L FPARDY H_|PECODER|DLYCYCL MEM PERR H ABORT
- ————— 106IC MPARITY L
DEV CD2 CLKHITH
i ——— ey
DEV CD1 TIMEQUT H
| DEVCOT TIMEOUT H
JREG REF H J_&EL__..

saic 1008

Figure 5-29 DC350/394 Gate Array

5-28

The address register latches the 22-bit physical address from the XDAL bus when the JSTRB L input is
asserted at the start of every cycle. Bits <22:13> of this register are used as the tag store data and bits
<12:0> are used for decoding the addresses of the explicitly addressable registers and addressing the cache
memory. Bit 12 is used to select a 2:1 multiplexer (CMUX) input from the PCR that drives bits <14:9> of
the IADR bus. .

The BCSR is used to control the boot and diagnostic ROMs. It asserts the standalone mode output
(SAMODE L) when bit 8 is set and the ENB HOB H output when bit 9 is set. The battery backup failure
input (BBRBE H) is used to set bit 15 when the RPOK H input is asserted.

The MSER monitors the status of parity errors in the memory system. The contents of the register is
updated from the parity/abort logic when the T50:LD MSER L input is asserted. The DTS CMP H input
is used to set bit 14 and the DTG PERR H input is used to set bit 13 when the CLK HIT H input is
asserted.

The LTC status register, enabled by setting bit 6, allows the clock logic to generate clock interrupts by
asserting the MEVENT L output. The interrupts are determined by clock select bits 10 and 11 of the
BCSR register, as shown in Table 5-12 . The logic uses REVNT H, KDJ800 H and KDJ60 H inputs as
the timing base of the interrupts.

The MTRG maintains the status of the system and is read by the DCJ11-A during the power-up routine.
The PSLV H, UBSYS H, FPA OP L and RPOK H inputs are used by bits <10:8> and 0 to indicate the
system status. ' '

The PCR uses bits <14:9> or <6:1> to drive the IADR bus via the CMUX, depending on the status of bit
12 in the address register. Boot ROM address 17 773 000 uses bits <14:9> as an address and boot ROM
address 17 765 000 uses bits <6:1> as an address.

The CCR is a copy of the cache control register in the DCJ11-A and is used to control the parity and abort
functions. The FLSHRQ H output is asserted when bit 8 is set and is the flush cache request to the DC351
gate array. The FRCE MISS H output is asserted when bit 3 or bit 2 is set and all DCJ11-A reads are
reported as misses. The WR WRONG PAR H output is asserted when bit 6 is set and the wrong data
parity is written for both bytes on DCJ11-A read misses and write hits.

The console vector generator provides the receive and transmit vectors when these interrupts are acknowl-
edged by the DCJ11-A.

Table 5-12 LTC Interrupts

CLK SEL 1 CLK SEL 0 Interrupt Source

0 0 REVNT H

0 1 KDJ800/16 or 50 Hz
1 0 KDJ60 or 60 Hz

1 1 KDJ800 or 800 Hz

5-29

Table 5-13 AMUX Selections

GAFCN1 GAFCNO BCSR MSER LTC MTRG PCR Selected Data

Address register
Receive vector 60
Transmit vector 64
Boot and configuration
Memory system error
Line time clock status
Maintenance

Page control

— ottt O O

0
1
0
1
1
1
1
1

Coo O XX
O OO — O XXM
DO — OO MM
ST
COOOO KKK

5.6.1 A-Multiplexer

The A-Multiplexer (AMUX) is a 16-bit, 8:1 multiplexer that interfaces to the XDAL bus. It is controlled
by the GAFCN1 and GAFCNO inputs, along with the address decode logic outputs for the BCSR, MSER,
LTC, MTRG, and PCR register selections. The AMUX is used to select a register or vector (Table 5-13)
and drive its contents onto the XDAL bus.

5.6.2 Cache Data Path

The Cache Data Path (CDP) uses the address register, the AMUX, the 2:1 B multiplexer (BMUX), a
parity generator, a parity predictor, a tag comparator and the cache control logic. When the cache is being
written, XDAL bits <12:1> are the index bits used via the XDAL bus to address the cache memory
location where the data is stored. The EN GTOX L input is asserted to enable the gate array or the
AMUX output to drive the XDAL bus. The NXT WD H input is asserted to increment the current
address and enable the second word from the system to be loaded into the next cache location. XDAL bits
<22:13> are the label data driven via the CTAG bus when the UPDATE L input is asserted and stored at
the same address in the tag store. An even parity bit is generated for the tag data and can be modified
when the write wrong tag parity bit (bit 10) in the CCR is set. The tag parity bit is stored with the label
data when the UPDATE L input is asserted.

An address from the DCJ11-A is received and the CDP must validate it as a hit or miss for the cache
memory. The address is latched in the address register and index bits <12:1> are driven onto the XDAL
bus via the AMUX to address the cache memory. The cache store data is read via CTAG bus bits
<21:13>, along with the CTAG PAR H and the CTAG VLD H bits. Address bits <21:13> are compared
with tag data bits <12:13> by the tag comparator and an error is reported to the DCJ11-A by the
assertion of the CTG MISS H output. A parity bit is predicted for address bits <21:13> and another
parity bit is produced for tag data bits <21:13> by the parity generator. Both of these parity bits are
checked with the CTAG PAR H input by the assertion of the CTAG VLD H input. An error in the
predicted parity enables the CTG MISS H output, and an error in the tag parity check is reported to
the parity interrupt and abort logic by the negation of the JALE L input.

The cache control logic asserts the NXM L output when the TIMEOUT H input is asserted, except for
word write cycles with bit 1 set in the CCR. The output is cleared at the end of the cycle by the assertion
of the JSTRB L input. The cache control also asserts the JCACHE DIS H output for any I/O page access,
force cache miss, read or write miss with bypass set for no parity errors or nonbypass miss with no tag
parity errors.

5-30

5.6.3 Parity Interrupt and Abort

The parity interrupt and abort logic drives the MPARITY L and MABORT L outputs to the DCJ11-A.
The MABORT L output is enabled only when the JSCTL L input is asserted; otherwise, it is used as an
input from the DCJ11-A. Asserting the MABORT L output alone results in an abort to location 4.
Asserting the MPARITY L output alone results in an interrupt to location 114. When both outputs are
asserted, a parity abort to location 114 is also generated.

The logic uses the DTG PERR H, HB PERR H, LB PERR H, MEM PERR H, CLK HIT H and
TIMEOUT H inputs. It also uses the internally generated tag parity error signal. These inputs represent
parity errors from the cache memory, the main memory, the cache tag and the DMA tag. The TIMEOUT
H input is asserted whenever nonexistent memory is addressed. These inputs are used with bits 7 and 0 of
the CCR and the read request (RD REQ) signal from the cycle decode logic. The operations of the parity
interrupt and abort logic are described in Table 5-14. The CPE status represents any cache parity error.

The parity interrupts and aborts can only occur if bits <7:4> of the MSER register were cleared after any
previous cache parity error. These bits represent cache parity error status. This allows the system to
respond to a nonfatal cache parity error without being interrupted for additional parity errors. When bit 4
of the MSER register is set, bits 7 and 0 of the CCR can enable the outputs as shown in Table 5-15.

The MPARITY L output is asserted for main memory or cache parity errors provided CCR bit O is clear
and CCR bit 7 is set. The MABORT L output is asserted when a cache parity error occurs during a
request read, for any main memory parity error, for a nonexistent address, and whenever a cache parity
error occurs when CCR bit 7 is set.

Table 5-14 Parity Interrupt and Abort Logic

REQRD CPE CCR7 CCRO NXM MEMPERR MPARITY L MABORT L

X 0 X X 0 0 Negated Negated
X X X X 1 X Negated Asserted
X X X X 0 1 Asserted Asserted
1 1 X X 0 0 X Asserted
0 1 0 0 0 0 Asserted Negated
0 1 0 1 0 0 Negated Negated
0 1 1 X 0 0 Asserted Asserted

Table 5-15 CCR Register Selections

CCR7 CCRO MPARITY L MABORT L

0 0 Asserted Negated
0 1 Negated Negated
1 X Asserted Negated

5-31

5.6.4 Address Decode

The on-board register addresses are decoded as shown in Table 5-16. The decoder uses address register bits
<12:1> and the bank select inputs MBS1 H and MBSO H. The BCSR bits 12 and <7:5> are monitored
since they can enable or disable the LTC register and the boot addresses.

The address decoder enables the SELDL L, SEL ROMS8 L or SEL ROM16 L outputs when addressed,
and the selected output is asserted when the JALE L input is asserted. The on-board device read and write
signals, RDIDEV L and WRIDEV L, are enabled by the read and write cycles and are asserted when the
RWSTE L input is asserted.

The CDR is read onto the IDAT bus when addressed and the RDBCR L output is asserted during a read
cycle. During a write cycle, the WRDISP L output is enabled and the data is written 1n the LED display
register when the RWSTB L input is asserted.

Registers that are external to the DC350/394 gate array are encoded by the DEVCD2 H and DEVCD1 H
outputs to the cycle encoder, as shown in Table 5-17. The JREG REF H output is asserted when a
DCJ11-A internal register is selected.

The address decode logic also enables the select decode logic to send the RWSTB L input to the internal
registers on a write cycle. The RWSTB L input also goes to the abort logic for nonexistent module
addresses, standalone mode bus read misses, bypass and force misses, and 1/0 page references not on the
module.

Table 5-16 Address Decoding

Address Bits <12:1> MBSI1 MBS0 Decoded Address

X XXX XXX XX0 00
X XXX XXX XX0 01

Nonexistent register
Nonexistent register

X XXX XXX XX0 10 MSER

XXX XXX XX0 11 CCR

{ XXX XXX XX1 00 MTRG
111 101 010 00 BCSR
111 101 010 Ol PCR
111101 010 10 CDR

111 101 100 11
111 101 110 XX
01T XXX XXX XX
101 XXX XXX XX

LTC register
Console SLU
Boot address 17 773 000
Boot address 17 765 000

—_— e - = OO OO O
COO O OO — —

Table 5-17 DEVCD Outputs

DEVCD2 DEVCDI1 Selection

Internal device decoded

No selection

Register within the gate array
DCJI11-A internal register

NXM abort during standalone mode

ket et
)—d»—-.—-ox

5-32

Table 5-18 Cycle Decoding

LAIO

3 2 1 0 Cycle Selected

11 1 1 Non-I/0

1 1 0 o0 Request read

1 0 X X Demand read

0 1 X X General purpose write
1 1 1 0 General purpose read
0 0 0 X Word write

0 0 1 X Byte write

5.6.5 Cycle Decoder

The cycle decoder decodes the LAIO <3:0> H inputs to control the various functions within the
DC350/394 gate array, as shown in Table 5-18. The read/write cycles go to the address decoder for
register selection and the request read and non-1/O cycles go to the parity/abort logic. A request read
forces an abort on cache parity errors and a non-I/O inhibits aborts on stretched non-1/O cycles. The
TBYTE L output is asserted for all read-modify-writes and external bus write byte cycles.

When any write cycle is decoded and the FPA OP L input is asserted, the FPA write cycle output WRFM
FPA L is asserted. The FPA DLY H output is asserted when the FPA data is not ready, causing the FPA
RDY H input to be negated while the WRFM FPA L output is asserted. The FPA DLY H or the
RSBFUL H signal is used as the DLYCYC L output to the delay oscillator and PMI cycle request logic.

5.6.6 Miscellaneous
The TINIT H output is asserted when the RPOK H input is negated or for any general purpose write to
location 14, and is negated on any general purpose write to location 214.

The MPWR FAIL L output, which is the power fail interrupt to the DCJ11-A, is asserted by the negation
of the RPOK H input. It is negated by a general purpose write to location 140 or when RPOK H is
asserted.

The Unibus map enable (PMAPE H) is asserted when the JMAP L input is asserted from the DCJ11-A.
The JMAP L input is sampled when the JALE L input is asserted, provided the MABORT L output is not
asserted. The PMAPE H output is negated when the RPOK H input is negated.

The JSTALL L output is used to stall the clock oscillator. The output is asserted, provided the JMAP L

input is asserted when sampled by the negation of the JALE L input. It is also asserted whenever the
JSCTL L input is asserted and whenever the LAIO H bit 3 input is negated for a write cycle.

5-33

5.7 DC351 GATE ARRAY

The DC351 gate array controls the DMA tag data path, the clock start logic, the flush counter, and the
main memory parity error logic, as shown in Figure 5-30. It uses the 9-bit bidirectional DTAG bus,
the 22-bit YDAL bus (16-bits are bidirectional and 6-bits are input only), and the 12-bit output-only
DADR bus and XDAL bus. The data from the flush counter and DMA tag data path uses a 12-bit 2:1
multiplexer to drive the outputs on the DADR bus and XDAL bus. The YDAL bus and the IDAT bus are
enabled and bidirectional when the EN IBUS L input is asserted. The YDAL bus drives the IDAT bus
when the WRITE H input is asserted, and the IDAT bus drives the YDAL bus when the WRITE H input
is negated.

INC FLCNTR H
———————

FLUSHH
FLUSH N DMFLINY L
COUNTER 1%
‘ET,RB,L
XDAL: 12:1>
SYNC H MUX L
N DADR-"12:1>
Q OMA CYCH
QOMACYCH 1 sLock |
COUNTER

<141

IDAT EN L

IDAT<(15:00>

. DTAG<21:13>
DTAG VLD H)
DATIEN L

DTAG PAR H DTG PERR H
YDAL <21:1> <21:5> N M PARITY)
| P GENERATOR
YTOD L
> ADDRESS | ypoarer BWTBTH
TPBSY H . TPBSY H OMA
———————® |LATCH —_— HIT HITL
CLR YTOD L R
e et] asyneH LOGIC
CLR LSYNC L . SAMODE L ’
WRITE H TAG |]
—_——! ‘
COMPARATOR DTAG VLD H {
NXT WD H
" : DTS CMP H
YDAL17H .
ITEH Y DAL 16 H
wR DATIEN L
e s TDINH MAIN
EN IBUS L MEMORY MEM PERR H
RDSTRB H PARITY -
IDATEN L ERROR
JSTRB L ROOUT H
TPBSY H
€LOCK | QDMACYCH,
CLKCLR L START
AL AL
CDCLK H

MR.17079

Figure 5-30 DC351 Gate Array

5-34

5.7.1 DMA Tag Data Path

The DMA tag data path writes YDAL bus bits <21:13> as the DMA tag data. This data is driven on the
DTAG bus to the DMA tag store by the assertion of the UPDATE L input. YDAL bus bits <12:1> are
used to address the DMA tag store and are driven on the DADR bus.

The DMA tag data path consists of address buffers and latches, a tag comparator, a parity generator and
the hit logic. Any address on the YDAL bus can be compared with the DMA tag store to determine if that
address is being used by the cache memory. The latching logic for the YDAL buffers is preset by asserting
the SET YTOD L input, and with the TPBSY H input asserted, the address is latched into the buffers by
the assertion of the SYNC H input. The latches are reset by asserting the CLR YTOD L input or the CLR
LSYNC L input. The NXT WD H input is asserted to increment the address in the buffer enabling the
second word address.

During DMA cycles, every address on the YDAL bus is compared with the DMA tag store. The DADR
bus addresses the DMA tag store and the data is compared to bits <21:13> of the YDAL bus. A parity bit
is also generated for these bits and is compared with the DTAG PAR H input — the stored DMA parity
bit. The results of these checks are enabled by the assertion of the DTAG VLD H input. The DTS CMP H
output is asserted when a valid comparison of the DMA tag data is made, and the DTG PERR H output is
asserted when a parity error is detected. The DMA HIT L output is asserted when there is a valid
comparison of data and parity, and the CLK HIT H input is asserted. The DMA HIT L output is also
asscrted when the RWTBT H and the TPBSY inputs are asserted and sampled by the assertion of the
QSYNC H input. The DMA HIT L output is inhibited when the SAMODE L input is asserted during
standalone operations. When a hit occurs, the current data is invalidated and the new data is written into
the cache memory.

5.7.2 Clock Start Logic

The clock start logic enables the QDMA CYC H output to trigger the delay oscillator during DMA write
cycles on the LSI-11 bus. The output is asserted by the assertion of the RDOUT H input, provided the
TPBSY H input is negated. The QDMA CYC H output is negated by the assertion of the CLR CLK L
input. The clock start logic is initialized by the assertion of the CDCOK H input.

5.7.3 Flush Counter

The contents of the cache memory is flushed or cleared during power-up and whenever bit 8 of the CCR is
set. This requires that each address location in the cache tag and DMA tag store is addressed and cleared
or invalidated. The DC350/394 gate array asserts the FL. REQ H input to initiate the flush sequence. This
input allows the 12-bit output from the flush counter to drive DADR <12:1> and XDAL <12:1> bus
outputs via the 2:1 multiplexer. It also asserts the FLUSH H output to the next address MUX logic, and
the DMFL INV L output is asserted to invalidate the tag valid bit for the tag stores. The flush counter is
cleared to zero by the assertion of the JSTRB L input. The DMA tag store is addressed by the DADR bus
and the cache tag store is addressed by the XDAL bus.

The flush counter is incremented by the assertion of the INC FLCNTR H input from the control store and
the next location in the tag stores is addressed. This cycle continues until all the locations are addressed
and cleared. Then the flush counter overflows and negates the FLUSH H output to the next address MUX
logic to end the cycle.

5.7.4 Main Memory Parity Error _

The parity bits from the main memory are received via YDAL bus bits 17 and 16. When both of these bits
are asserted high, the MEM PERR H output is asserted by the negation of the TDIN H input or the
RDSTRB H input. The MEM PERR H output indicates that there was a parity error in the read cycle
from the main memory. The output is cleared by the assertion of the JSTRB L input.

5-35

5.8 TIMEOUT

The KDJ11-B module has two timeout logic circuits — one for the DMA requests and the other for
nonexistent memory or interrupt acknowledge. Both of these timeout circuits (Figure 5-31) use the same
principle, but are controlled by different signals.

5.8.1 DMA Requests

The DMA request timeout logic uses a monostable multivibrator that is continuously clocked by the
TOUT CLK H signal, which is driven by the JCLK H input. The multivibrator is set by the assertion of
either RRPLY H, UBSYS H, or the combination of DMG H and TRPLY H. This sets the output low,
the CSACK L output is negated and the logic waits for the system to acknowledge the reply by
asserting the CSACK L input. The capacitive network allows the multivibrator to run for 10 useconds
before it automatically resets the output and asserts the CSACK L output. However, the CSACK L
output can be asserted anytime the QSACK H input is received as the acknowledgment for the reply
request.

5.8.2 NXM or Interrupt Requests

The NXM or interrupt request timeout logic uses the same type of logic that the DMA request timeout
uses. The multivibrator is set by the assertion of UBSYS H or the negation of WT4RPLY H and waits for
the system to acknowledge by asserting the RRPLY H input. The RRPLY H input asserts the CRPLY H
output, cr the multivibrator times out and asserts the CRPLY H and TIMEOUT H outputs. The assertion
of the Unibus timeout signal (PUBTMO H) is allowed to override the logic and assert the TIMEOUT H
and CRPLY H outputs.

R7
+5 VDC —WWA—
UB SYSH T ca5
RRPLY H
—
CSACK L
DMG H
TRPLY H
a TOUT QSACK H
+3 VDC CLK H
JCILKH
+3 vDC
R8
T ' 1
+5 VDC T Cc44
UB SYSH L N\
WT4 RPLY H)
TIMEOUT H

CRPLY H
PUBTMO H RRPLY H

MR- 17080

Figure 5-31 NXM/Interrupt Timeout Logic

5-36

5.9 BUS DISTRIBUTION

The bus distribution consists of the internal bus control logic, the LSI-11 bus control logic and the PMI bus
control logic. This distribution network allows the addressing of any internal register that may be located
in the DLART, the DC350/394 gate array, the boot and diagnostic ROMs, or the configuration and
display switches. It also allows access to the cache memory and tag stores, the FPA, and the DC351 gate
array. The LSI-11 bus can be accessed for standard LSI-11 bus transactions and the private memory,
located on the LSI-11 bus, can be accessed for high speed DMA transactions by the PMI control logic.

5.9.1 Internal Bus Control

The internal bus control network routes the addresses and data to and from the various module com-
ponents via the MDAL, XDAL, YDAL, ZDAL and BDAL busses, as shown in Figure 5-32. The MDAL
bus interfaces with the ZDAL input bus and the XDAL output bus to enable the DCJ11-A microprocessor
to read and write data within the system. The XDAL bus has an address register to store the current
address and is primarily driven by the DCJ11-A to access the cache memory and the YDAL bus. It also
provides a bidirectional data path to the DC350/394 and DC351 gate arrays. The ZDAL bus routes data
from the cache memory, the FPA and external data from the YDAL bus to the DCJ11-A. It also drives
the YDAL bus with cache memory and FPA data. The YDAL bus is a bidirectional bus that intcrfaces
with the BDAL bus and the ZDAL bus. It is also driven by the XDAL bus with the current address from
the DCJ11-A, and accesses the internal IADR bus and IDAT bus via the DC351 gate array.

Access to and from the individual busses is controlled by a group of latching drivers that are primarily
controlled by the DCJ11-A and the data path controller. A latch is opened and the data is latched by the
input signal to the Latch Enable (LE) input, and the data is driven onto the latched bus by the input signal
to the Output Enable (OE) input. For example, the COPN YTOZ H input latches the data from the
YDAL bus when asserted, and the EN YTOZ L input drives the data onto the ZDAL bus when asserted.

XDAL <21:01>|
ADDRESS
REGISTER
LATCHING
DRIVERS

JSTRB L
EN MTOX L

MDAL <21:00> > A XDAL <21:00> 8 YDAL <21:00> >
LATCHING LATCHING BUS BDAL<21:00>
8 R TRANSCEIVERS
DRIVERS DRIVERS vToB L SCl
—————=Q LE
JALEL 1 >O- LATXTOY L EN BD.
ket A MoliET""1 . LATXTOYL e == AL L
JBUF CTL L LE ——————=|LE == ENO
EN MTOX L 40) ENXTOYL | loe
MDAL<21:00>> € < ZDAL21:00> D YDAL <21:00>
LATCHING LATCHING
DRIVERS DRIVERS
C e ZH |- —— —
13VD »lTE COPNYTOZH =
A .
JBUFCTL L o o ENYTOZL oo
ZDAL <21:00> p c YDAL <21:00>
LATCHING
DRIVERS
+3VDC LE
EN
ZT0Y L ok

Figure 5-32 Internal Bus Control

5-37

5.9.2 LSI-11 Bus Control

The LSI-11 bus control signals establish the data communications path between the KDJ11-B module and
the rest of the devices in the system, as shown in Figure 5-33. The addressing and data lines are driven by
the bus transceivers that interface with the YDAL bus (Figure 5-32). The LSI-11 bus control signals are
used by the handshaking protocol necessary to execute the bus transactions. The operation of the LSI-11
bus is described in greater detail in Chapter 6. :

5.9.3 PMI Bus Control
The PMI bus control signals provide the interface between the KDJ11-B module and the PMI bus, as
shown in Figure 5-34. The operation of the PMI bus is detailed in Chapter 7.

5.10 CONSOLE SERIAL LINE UNIT

The console SLU is a DC319 DLART that provides the KDJ11-B module with a serial line I/O for the
system console terminal, as shown in Figure 5-35. The full-duplex unit interfaces via an RS-423 EIA
connector and is also RS-232C compatible. The SLU has four internal registers designated as RCSR,
RBUF, XCSR and XBUF. These registers transmit and receive serial line data via the console unit and
format the data for internal parallel communications using the IDAT bus. The contents of these registers
are described in Chapter 1.

LAIO 3 H o
TBYTEH >___.TWTBT k| = RWTBT H
l——
EN ADR H > RPOK H BWTETL
- =BPOK H
TSB7 H L »BBS7L
YIOBL o
EN BDAL L
—
SSEL H TSYNC H L >0 SYNCH
UBSYS H TDOUT H ROOUT H T oSYNCL
——
— - [=BDOUTL
EXT CYC (1) L TRPLY H L =R RPLY H
Em— = " =BRPLYL
QTsTL TDIN H —
——— = BDIN L
TINITH N
CLR LSYNC L ™ [®BINIT L
TDMG H I
TPBCYC L TIACK H * ———————=BDMGO L
UBSYS H g e [»BIACKOL
— ——RHALT H
b————— = BHALT L

BEVNT L Cl > REVNT H

BDCOK H R7 RDCOK H
c13 =
BSACK L :| > QSACK H
—_——

Figure 5-33 LSI-11 Bus Control Signals

MR-17082

5-38

PMI INPUTS

PSSEL L
Y SSEL H PMI OUTPUTS

PUBMEM L UBMEM H WTSTB H PWTSTB L

' TPBSY H
BTMO H PBYT L
TBYTE .

PUBSYS L JLUBSYS H

7

PUBTMO L

\j=

PMI TRANSCEIVERS

DMA HIT H RSB FUL H
—{ >0— TPBSY L .
- — PBSY L
PSB FUL L T ——CNSL ENB HOB H
RDSTRB H [1 . CNSL DISHOBH
: > 1 »CONSOLE LOCK L
LAT RDSTRB H —————=BBRBE H_BOOT ENL
— LAT RDSTE -
O
PRDSTB L i —e
TPBCYC L 7

TO: LAT CYCCD H 5 MR-17083

Figure 5-34 PMI Bus Control Signals

SERIAL INH
IDAT <15:00>
RDIDEV L
JAALA-L SN |

SELDLL | RXIRQ H -12vDC

WRIDEV L TXIRQH 5 -
GND - : 24

O
DADR 1 i
DADR 2 DC319 +12Vde L. o
————* DLART .
BCRO L | 70—

BCR1 L SERIAL OUT 24
— Sttt —o 3

Fa—

BCR2 L
KDJBOO H
KDJBO H -12Vde =
TINITH

CDCOK L

w10 CLK CNSL_ENB HOB H

614.4 KHz
O —-O
OSCILLATOR +3VDC

{ ENB HOB H
CNSL DisHOB P__I__ BRKIRQ H] HOB H

Jor 1

K 0 c70 D6 D8
+3 vg_c_l =

D5 43V Lcss

=

+3vDC —

© —-12VDC

Y
¥ 3

MR-17084

Figure 5-35 Console Serial Line Logic

5-39

The DLART is enabled by asserting the SELDL input and is initialized by asserting the TINIT input. The
transmit interrupt request (TXIRQ) output is asserted when the internal XMIT RDY and XMIT IE bits of
the XCSR are set. The receive interrupt request (RXIRQ) output is asserted when the internal
RCV DONE and RCV IE bits of the RCSR are set. These signals go to the console interrupt arbitration
logic and interrupt the DCJ11-A by enabling the CIRQ4 input. The transmitter interrupt vector is at
location 064 and the receiver interrupt vector is at location 060.

There are two real-time clock interrupts - the KDJ800 input at 800 Hz and the KDJ60 input at 60 Hz.
These inputs are controlled by bits 10 and 11 of the BCSR register.

The contents of the internal registers are read onto the IDAT bus when the RDIDEV input is asserted, and
the data on the IDAT bus is written into the internal registers when the WRIDEYV input is asserted. The
internal registers are addressed (Table 5-19) by the DADR1 and DADR?2 inputs, which represent bits 1
and 2 of the address on the DADR bus. Since there are no byte cycles, address bit 0 is grounded by pin 21
of the DLART.

The DLART transmits and receives data using a common baud rate that is determined by the status of the
BCRO, BCR1 and BCR2 inputs. The input conditions to select a baud rate are shown in Table 5-20. The
status of these inputs is selected by configuration switches 6, 7 and 8. Switch 8 selects the BCRO input,
switch 7 selects the BCR1 input, and switch 6 selects the BCR2 input. The baud rate frequencies are based
on the c.ock input frequency of 614.4 kHz.

. The gerialinput data is received via the SERIAL IN input and the serial output data is transmitted via the
SERIAL OUT output.” These signals are routed to and from J1 by the external drivers. The +12 Vdc
reference is from the 415 Vdc input on the backplane and the —12 Vdc reference is from the circuit shown
in Figure 5-33.

Table 5-19 Register Selection

Address DADR2 DADRI1 Register

7 777 560 0 0 Receiver status (RCSR)

17 777 562 0 1 Receiver Data Buffer (RBUF)

7 777 564 1 0 Transmitter Status (XCSR)

17 777 566 1 1 Transmitter Data Buffer (XBUF)

Table 5-20 Baud Rate Selections*

BCR2 BCRI1 BCRO Baud Rate
0 0 0 300

0 0 1 600

0 1 0 1,200

0 1 1 2,400

1 0 0 4,800

1 0 1 9,600

1 1 0 19,200

1 1 1 38,400

* I indicates the input is asserted low; 0 indicates the input is asserted high.

5-40

5.10.1 Halt-on-Break

The break detected interrupt request output (BRK IRQ H) is asserted when the RCV BRK bit of the
RBUF register is set. This bit is set when the console transmits a break condition to the DLART. The halt-
on-break function is enabled when bit 9 of the BCSR is set by allowing the ENB HOB H output from the
DC350/394 gate array to be asserted while the CNSL ENB HOB H input from the PMI interface is also
asserted. When these three inputs are asserted, the HOB H input to the DCJ11-A is asserted to enable the
halt condition. When the CNSL DIS HOB signal from the PMI interface is asserted, the BRK IRQ H
output is negated.

5.10.2 Console Interrupt Arbitration

The console interrupt arbitration logic (Figure 5-36) determines the sequence of the RXIRQ and TXIRQ
interrupt requests. If either request is asserted, the XIRQ output is asserted to the DCJ11-A as a level 4
interrupt request on the CIRQ4 input, and the DCJ11-A initiates an Interrupt ACKnowledge transaction
(TACK). The RXIRQ and TXIRQ inputs are latched by the flip-flops when the TDIN input is asserted
and provide the RXVEC and TXVEC outputs to the next address MUX. When the IACK input is
asserted, it is NANDed with RXVEC (if it is present) to negate the RXIRQ request. The TXVEC
is inhibited from being reset while the RXVEC is asserted. If TXVEC is asserted and RXVEC is negated,
the asserted IACK input negates the TXIRQ request. The asserted JACK input enables the TIACK
output, provided that neither the RXVEC nor the TXVEC outputs are asserted.

RXVEC H
+3 VDC — v
RXIRQ H
| —q " —
IACK H
5 XIRO H
L] [’:D\
|
YDAL 00 H L] —~ Do—
. +3
, vbe
= TXVEC H
TXIRQ H —JDO—O al® -
| TIACKH
9
TDIN H B D——’
1N|TL——fr

MR-17091

Figure 5-36 Console Interrupt Arbitration

5-41

5.11 CONFIGURATION AND DISPLAY

The configuration and display circuits consist of a switchpack having eight switches, six red LEDs and one
green LIED. The green LED monitors the +5 Vdc module supply voltage. The switches and red LEDs can
be remotely operated via the J2 and J3 connectors. The circuits are shown in Figure 5-37.

The switches select the EEPROM bootstrap programs, enable the dialog mode, select the console baud
rate and control the system console operation. The switch functions are described in Chapter 2. The
switchpack data is driven onto the IDAT bus by the buffer/drivers when the RDBCR input is asserted and
it goes to the CDR as bits <7:0=.

The red LEDs are encoded so that LEDs 0 through 2 and 3 through 5 are a binary representation of a two-
digit octal number display for the diagnostic tests and error messages described in Chapter 4. The IDAT
bus is used to drive the LED display using bits <15:8> of the CDR. The flip-flops are cleared by the
assertior. of RDCOK, and the IDAT bus data is latched to drive the display by the assertion of the WR
DISP input.

5.12 BOOT AND DIAGNOSTIC ROMS

The boct and diagnostic ROMs contain the ROM code to support the boot and diagnostic programs
discussed in Chapter 4. The ROMs are addressed by using IADR bus bits <14:9> from the DC350/394
and DADR bus bits <8:1> from the DC351. The IADR address bits are selected by the DC350/394 from
the PCR and depend on the address to be either 17 773 000 or 17 765 000. The ROMs are enabled by the
assertion of the SEL ROM16 input. The address decoder in the DC350/394 asserts this input when a
location in the ROM is addressed. The data is driven onto the IDAT bus by the DC350/394 assertion of
the RDIDEYV input. The boot and diagnostic ROM logic is shown in Figure 5-38.

o
N

BCRO L 4
BCR1 L 3 g
]
BCR2 L 21 5
FRCEDLGL 6
(]
SWITCH PAK
S—~o} BCROL LEDO5 L 1l 5
o2} BCRT L : LED 04 L] =
o] BCR2 L BUFFER/ IDAT <8:0> DTYPE |LEDO3L 13
= FRCEDLG L DRIVERS FLIPELOP [51 a
S ~od LED 02 L 51 o
o3 LEDO1 L 181 o
5—o® ' LEDOOL 7] g
~7
°\°3 WR DISP L
oo RDCOK H : '
RD BCR L RDCOKH D10
—_———
= D11
J3
1 D12
— 3
2 a @ D13
4 o D14
0
’i‘“ 0 D15
=
A D16
Q RDCOK H R9
GREEN U O

MR-17092

Figure 5-37 Configuration and Display Circuits

5-42

5.13 CONFIGURATION EEPROM

The configuration EEPROM provided with the module is a 2K X 8 EEPROM that is offset in a 28-pin
socket. In this mode of operation, the W40 jumper connects the TP40 and TP41 pins to provide the WR
IDEV input to the EEPROM. The user can optionally use a 4K or 8K EEPROM and use the W40 jumper
to connect the TP41 and TP42 pins. This connects IADR bus bit 12 to the socket. IADR bus bit 13 and
the WR IDEV input are connected to the pins not used by the 2K EEPROM. This condition provides the
two additional address bits required for the expanded EEPROM.

The EEPROM is addressed by using IADR bus bits <13:9> from the DC350/394 and -DADR bus bits
<8:1> from the DC351. The IADR address bits are selected by the DC350/394 from the PCR and
depend on the address to be either 17 773 000 or 17 765 000. The EEPROM is enabled by the assertion of
the SEL ROMBS input. The address decoder in the DC350/394 asserts this input when a location in the
EEPROM is addressed. The data is driven onto the IDAT bus by the DC350/394 assertion of
the RDIDEYV input. Data is written into the EEPROM when the DC350/394 asserts the WR IDEV input.
The configuration EEPROM logic is shown in Figure 5-39.

-DADR<8:1>

IADR<14:0> > IDAT<15:0> >

16 X 16
E PRCM

SEL ROM16 L
r—e—]
RDIDEV L

MR-17093

Figure 5-38 Boot and Diagnostic ROM Logic

Mﬁ——o 2K EEPROM
IADR 12 H wao
UM ATLEILA SN LA
4-8K EEPROM
28 PIN
IADR<13,11:9> SOCKET IDAT<15.0> >
FOR

USERS
DADR<8:1> ROM

SEL ROM8 L
—_—
RD IDEV L

MR-17094

Figure 5-39 Configuration EEPROM Logic

5-43

5.14 FLOATING-POINT ACCELERATOR

The FPA is an optional 40-pin chip that can be mounted on the module. The FPA is a floating-point
coprocessor that improves system performance (3 to 5 times greater speed) in floating-point applications.
The FPA chip informs the DCJ11-A microprocessor of its presence on the module by asserting the FPA
OP output during the power-up routine. The microprocessor then offloads all the floating-point functions
to the FPA chip. The operation of the FPA is transparent to the system, except for the increased speed.
The FPA socket and control signals are shown in Figure 5-40.

5.14.1 FPA Operation

When the DCJ11-A starts to decode an instruction, it asserts the MPRDC input and that is sampled by the
FPA whzn the JSTRB input is asserted. The FPA monitors the JAIO <3:0> inputs that are encoded to
represent the current microprocessor 1/O cycle (see Table 5-1). The XDAL <1:0> inputs are the two least
significant bits of the current address and are decoded by the FPA to determine the type of cycle
(Table 5-4). The JATIO <3:0> and XDAL <1:0> input data is latched by the assertion of the JALE H
input. The FPA loads the instruction stream data into a buffer and the DCJ11-A executes the bus cycles
necessary to obtain the operand data. The instructions and data are transmitted via the ZDAL bus. When
the data is valid on the ZDAL bus, the MDV input is asserted and the data is latched by the FPA. The
FPA proceeds to execute the floating-point instructions stored in its buffer.

When the results are ready in the FPA, it asserts the FPA RDY output and moves the data into an output
buffer. The control store acknowledges this condition by asserting the T50:EN FTOZ input that allows the
output buffer to move the data onto the ZDAL bus. The FPA asserts the FPA STL output to stall
the DCJ11-A until the data is gated onto the ZDAL bus. If a floating-point error or exception occurs
during the processing, the FPA asserts the FPA FPE output to the DCJ11-A and cancels the output cycle.
This condition is acknowledged by the control store assertion of MCONT to the DCJ11-A and a general
purpose read cycle is executed to clear the exception.

The FPA chip is initialized and the FPS is cleared by asserting the CDCOK input. The initialization
condition is cleared by the negation of the CDCOK input and the negation of the JSCTL input. The
JABORT input is monitored by the FPA while the JSCTL input is asserted during a stretched cycle. If
the JABORT input is asserted while JSCTL is asserted, the FPA does not complete the current I/O cycle.
This FPA functions on KDJ11-BB or KDJ11-BF modules.

JAIO<0>

— ZDAL<15:00>
JAIOL1>

JAIO<2> 1 FPA FPE L

JAI0<3> FPA RDY H
—————r

XDAL<O> |FPAOP L

xoAL<r>] FPASTL L
JALE L JALE H FPJI
FLOATING POINT
JSTRB H ACCELERATOR FPASTLH

MPRDC L

JABORT L
JSCTL L JSCTL H
cocokt |
‘ MDV L

_—
T50: EN FTOZ L

—_—

JCLK H

MR-17095

Figure 5-40 Floating-Point Accelerator

CHAPTER 6
EXTENDED LSI-11 BUS

6.1 INTRODUCTION

The processor, memory and 1/O devices communicate via signal lines that constitute the extended LSI-11
bus. The extended LSI-11 bus contains 4 extra address lines (BDAL <21:18>) in addition to the 38
original LSI-11 bus lines. The four additional address lines extend the 256-Kbyte physical address space of
the LSI-11 bus to 4 Mbytes. Addresses, 8-bit bytes or 16-bit data words, bus synchronization, and control
signals are sent along these 42 lines. Addresses may be 16-, 18-, or 22-bits wide, depending on the
addressing capability of the processor installed in the system. The 16-bit data and the first 16 address bits
are time-multiplexed over the same 16 data/address lines. Two additional address bits (<17:16>) and the
memory parity bits are also time-multiplexed over 2 signal lines. The signal lines are functionally divided
as listed in Table 6-1. Refer to Chapter 2 for a list of the extended LSI-11 bus signals.

The LSI-11 bus lines are treated as transmission lines that are terminated in their characteristic impedance

(Z0) at both the near and far ends of the bus. The near end of the bus is defined as the first bus interface
slot in the backplane; the far end is the last bus interface slot.

Table 6-1 Summary of Signal Line Functions

Quantity . Function " Bus Signal Mnemonic
16 Data/address lines ' ' BDAL <15:0>
2 Memory parity/address lines . " BDAL <17:16>
4 Address lines BDAL <21:18>
6 Address and data transfer BSYNC, BDIN, BDOUT,
control lines BWTBT, BBS7, BRPLY
3 DMA control lines BDMR, BDMG, BSACK
5 Interrupt control lines BIRQ4, BIRQS, BIRQ6,
' BIRQ7, BIAK
6 | System control lines BPOK, BDCOK, BINIT,

BHALT, BREF, BEVNT

Most LSi-11 bus signals are bidirectional and use a terminating resistor network connected between +5 V
and grouad to provide a negated (high) signal level. Devices may be connected to any point along the bus
to receive signals from the near or far end of the bus via high-impedance bus receivers, or to transmit
signals to the near or far end through gated open-collector bus drivers. A bus driver asserts a signal by
causing the line to go from a high level (approximately 3.4 V) to a low level (approximately 0.5 V). The
electrically bidirectional lines sometimes carry signals that are functionally unidirectional. These function-
ally unid rectional lines carry signals that are required to travel in only one direction. For example, when a
device asserts a bus request signal (BIRQ), the signal always travels from the requesting device to the
processor and never in the reverse direction.

The interrupt acknowledge (BIAK) and DMA grant (BDMG) signals are physically unidirectional signals
that are wired to each LSI-11 bus slot in a daisy-chain scheme. These signals are generated by the
processor in response to interrupt and DMA requests and are transmitted to the bus via output signal pins.
Each of the output signals (BIAKO or BDMGO) is received on a device input pin (BIAKI or BDMGI) and
is condit onally retransmitted via a device output pin (BIAKO or BDMGO). These signals are received
from higher-priority devices and are retransmitted to lower-priority devices on the bus.

Bus master/slave relationship communication between devices on the bus is asynchronous. A master/slave
relationship exists throughout each bus transaction. At any time, there is one device that has control of the
bus. This controlling device is termed the bus master. The master device controls the bus when communi-
cating with another device on the bus, termed the slave. The bus master (typically the KDJ11-B processor
or a DMA device) initiates a bus transaction. The slave device responds by acknowledging the transaction
in progress and by receiving data from, or transmitting data to, the bus master. The extended LSI-11 bus
control signals transmitted or received by the bus master or bus slave device must complete the sequence
according to the protocol established for transferring address and data information. The processor controls
bus arbitration (i.e., it “decides” which device is to be bus master at any given time).

A typical example of a master/slave relationship is the processor, as master, fetching an instruction from
memory. which is always a slave. Another example is a disk drive, as master, transferring data to memory,
again, as the slave. Any device except the processor can be master or slave depending on the circum-
stances. Communication on the extended LSI-11 bus is interlocked; for each control signal issued by the
master device, there must be a response from the slave in order to complete the transfer. It is
the master/slave signal protocol that makes the extended LSI-11 bus asynchronous. The asynchronous
operation allows both fast and slow devices to use the bus and eliminates the need. for synchronizing clock
pulses between the bus master and slave device. '

Since bus cycle completion by the bus master requires response from the slave device, each bus master
must inciude a timeout error circuit that aborts the bus cycle if the slave device does not respond to the bus
transaction within 10 us. The KDJ11-B has a bus timer that restarts the clock when no device responds to
BDIN L or BDOUT L within 10 us. An immediate trap to location 48 occurs. The slowest peripheral or
memory device must respond in less than 10 us to prevent a bus timeout error.

6.2 BUS SIGNAL NOMENCLATURE
Throughout the following protocol specifications, bus signals are referred to in several different ways.

1. In general discussions where timing, polarity, and physical location are unimportant, the base
signal name without any prefixes or suffixes is used. For example:

SYNC, WTBT, BS7, DAL <21:0> or the DAL lines

2. Most signals on the backplane etch are asserted low and are referred to with a prefix character
B, and a suffix (space) L. For example:

BSYNC L, BWTBT L, BBS7 L, BDAL <21:0> L
BPOK H and BDCOK H are asserted high.

3. Receivers and drivers are considered to be part of the bus. Signal inputs to drivers are referred
to with a prefix character T, for transmit. For example:

TSYNC, TWTBT, TBS7, TDAL <21:0>
4. Signal outputs of receivers are referred to with the prefix character R, for receive. For example:
RSYNC, RWTBT, RBS7, RDAL <21:0>

Whenever timing is important, the designations in items 3 and 4 above are used to reference timing to a
receiver output or driver input. For example, after receipt of the negation of RDIN, the slave negates its
TRPLY (0 ns minimum, 8000 ns maximum). It must maintain data valid on its TDAL lines until O ns
(minimum) after the negation of RDIN, and must negate its TDAL lines 100 ns (maximum) after the
negation of its TRPLY.

6.3 DATA TRANSFER BUS CYCLES
Data is transferred between a bus master and slave device to accomplish various functions. The data
transfer bus cycles and their functions are described in Table 6-2.

These bus cycles, executed by bus master devices, transfer 16-bit words or 8-bit bytes to or from slave
devices. The data to be written in the destination byte during byte output operations is valid on the
appropriate BDAL lines. For example, BDAL <15:8> contains the high byte, and BDAL <7:0> contains
the low byte. Table 6-3 describes the bus signals used in a data transfer operation.

Data transfer bus cycles can be reduced to three basic types: DATI, DATO(B) and DATIO(B). These

transactions occur between the bus master and one slave device selected during the addressing portion of
the bus cycle.

Table 6-2 Data Transfer Bus Cycles

Function
Bus Cycle - (with respect to
Mnemonic Description the bus master)
DATI Data word input Read
DATO Data word output Write :
DATOB Data byte output , Write byte
DATIO Data word input/output Read-modify-write
DATIOB Data word input/byte output Read-modify-write byte

Table 6-3 Data Transfer Bus Signals

Mnemonic Description Function

BDAL -<21:0> L. 22 data/address lines BDAL <21:18> L are used for 22-bit
extended addressing; BDAL <17:16> L are
used for 18-bit extended addressing, memory
parity error, and memory parity error cnable
functions; BDAL <15:0> L are used for
16-bit addressing, word and byte transfers.

BSYNC L Synchronize | Strobe signals
BDIN L Data input strobe

BDOUT L Data output strobe

BRPLY L Reply

BWTBT L Write/byte control Control signals
BBS7 L Bank 7 select

6.3.1 Bus Cycle Protocol

Before initiating a bus cycle, the previous bus transaction must be complete (BSYNC L negated) and the
device must become bus master. The bus cycle is divided into two parts — an addressing portion, and a data
transfer portion. During the addressing portion, the bus master outputs the address for the desired slave
device (1nemory location or device register). The selected slave device responds by latching the address bits
and holding this condition for the duration of the bus cycle (until BSYNC L becomes negated). During the
data transfer portion of the bus cycle, the operations performed vary slightly, depending on the type of
data transfer desired.

6.3.1.1 Device Addressing — The device addressing portion of a data transfer bus cycle comprises an
address etup/deskew time and an address hold/deskew time. During the address setup/deskew time, the
bus master does the following.

It asserts TDAL <21:0> with the desired slave device address bits.

It asserts TBS7 if a device in the I/O page is being addressed.

It asserts TWTBT if the cycle is a DATO(B) bus cycle.

It asserts TSYNC 150 ns (minimum) after gating TDAL, TBS7, and TWTBT onto the bus.

L=

During this time the address, RBS7, and RWTBT signals are asserted at the slave bus receiver for at least
75 ns before RSYNC becomes active. Devices in the 1/0 page ignore the 9 high-order address bits RDAL
<21:13> and, instead, decode RBS7 along with the 13 low-order address bits. An active RWTBT signal
indicates that a DATO(B) operation follows, while an inactive RWTBT indicates a DATI or DATIO(B)
operatiorn.

The address hold/deskew time begins after RSYNC is asserted. The slave device uses the active RSYNC
to clock RDAL address bits, RBS7 and RWTBT, into its internal logic. RDAL <21:0>, RBS7, and
RWTBT remain active for 25 ns (minimum) after RSYNC becomes active. RSYNC remains active for
the duration of the bus cycle.

6-4

Memory and peripheral devices are addressed similarly, except for the way they respond to RBS7.
Addressed peripheral devices must not decode address bits on RDAL <17:13>. Addressed peripheral
devices may respond to a bus cycle only when RBS7 is asserted during the addressing portion of the cycle.
When asserted, RBS7 indicates that the device address resides in the I/0 page (the upper 8-Kbyte address
space). Memory devices generally do not respond to addresses in the I/O page. However, some system
applications may permit memory to reside in the I/O page for use as DMA buffers, ROM bootstraps,
diagnostics, etc.

6.3.1.2 DATI - The DATI bus cycle is a read operation that inputs data from the slave device to the bus
master. The operations performed by the bus master and slave device during a DATI are shown in Figure
6-1. The DATI bus cycle timing is shown in Figure 6-2. Data consists of 16-bit word transfers over the bus.
During the data transfer portion of the DATI bus cycle, the bus master asserts TDIN 100 ns (minimum)
after it asserts TSYNC. The slave device responds to RDIN active by asserting:

1. TRPLY after receiving RDIN, and 125 ns (maximum) before TDAL bus driver data bits are
valid,

2. TDAL <17:0> L with the addressed data and error information.

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE OR MEMORY

* ASSERT BDAL <21:00> L WITH
ADDRESS AND

* ASSERT BBS7 IF THE ADDRESS
ISIN THE [/0O PAGE

* ASSERT BSYNC L

—
— -]
—
—_—
DECODE ADDRESS
* STORE“DEVICE SELECTED"”
OPERATION
. " -
REQUEST DATA -
* REMOVE THE ADDRESS FROM
BDAL <21:00> L. AND
NEGATE BBS7 L
¢ ASSERT BDIN L
—
—
—
INPUT DATA
* PLACE DATA ON BDAL < 15:00> L
.-+ ASSERT BRPLY L
/ "-/ - '
-—
TERMINATE INPUT TRANSFER
e ACCEPT DATA AND RESPOND
BY NEGATING BDIN L —_—
—_— _
—
T
TERMINATE BUS CYCLE OPERATION COMPLETED
* NEGATE BSYNC L - ¢ NEGATE BRPLY L

MR-6028

Figure 6-1 DATI Bus Cycle

6-5

TRDAL (4 T ADDR X () X R DATA X (4)
‘ 100 NS 200 NS _.‘
_’1 MINIMUM [* MAXIMUM

150 NS__1
TSYNS MINIMUN |&—————————————200 NS MINIMUM

CLOCK DATA
100 NS MINIMUM —am le—————200 NS MINIMUM
8 1S MAXIMUM
T DI /

R RPLY JL/

150 NS |q
™ MINIMUM
a)

200 NS
MINITMUM —#

300 NS MINIMUM———~

100 NS MINIMUM

X
TWTBT (4) A (4)

TIMING AT MASTER DEVICE

TBS,

R/T DAL (4))(R ADDR X (4) X T DATA x (4)
25 NS i [100 NS MAXIMUM
. MINIMUM > *—125 NS MAXIMUM —# I“ONSMINIMUM
R SYNC 4 oNS \ /
MINIMUM :
le— 75 NS +——200 NS MINIMUM 1 N
MINIMUM M|E,‘|O|MLSJM ha
R DIN i \

\ "ﬂ———300 NS MINIMUM ———

TRPLY

R B&7

Avl fe— 75 NS MINIMUM
v X \

- L——ZS NS MINIMUM

RWTBT (4) j((4)

TIMING AT SLAVE DEVICE

NOTES:

1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER QUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B” PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR 6037

Figure 6-2 DATI Bus Cycle Timing

When the bus master receives RRPLY, it does the following.

1. It waits at least 200 ns deskew time and then accepts input data at RDAL <15:0> bus receivers.
RDAL <17:16> are monitored for a possible parity error indication.

2. It negates TDIN 150 ns (minimum) after RRPLY becomes active.

The slave device responds to RDIN negation by negating TRPLY and removing read data from TDAL
bus drivers. TRPLY must be negated 100 ns (maximum) prior to removal of read data. The bus master
responds to the negated RRPLY by negating TSYNC.

Conditions for the next TSYNC assertion are as follows.
1. TSYNC must remain negated for 200 ns (minimum).
7 TSYNC must not become asserted within 300 ns of the previous RRPLY negation.

6.3.1.3 DATO(B) - DATO(B) is a write operation. Data is transferred in 16-bit words (DATO) or 8-bit
bytes (DATOB) from the bus master to the slave device. The data transfer output can occur after the
addressing portion of a bus cycle when TWTBT has been asserted by the bus master, or immediately
following an input transfer part of a DATIO(B) bus cycle. The operations performed by the bus master
and slave device during a DATO(B) bus cycle are shown in Figure 6-3. The DATO(B) bus cycle timing is
shown in Figure 6-4.

The data transfer portion of a DATO(B) bus cycle comprises a data sctup/deskew time and a data
hold/deskew time. During the data setup/deskew time, the bus master outputs the data on TDAL <15:0>
100 ns (minimum) after TSYNC is asserted. If it is a word transfer, the bus master negates TWTBT while
gating data onto the bus. If the transfer is a byte transfer, the bus master asserts TWTBT while gating
data onto the bus. During a byte transfer, the condition of BDAL 00 L during the address cycle selects the
high or low byte. If asserted, the high byte (BDAL <15:8> 1) is selected. Otherwise, the low byte (BDAL
<7:0> L) is selected. An asserted BDAL 16 L at data transfer time forces a parity error to be written into
memory (if the memory is parity memory). BDAL 17 L is not used for write operations. The bus master
asserts TDOUT L 100 ns (minimum) after the TDAL and TWTBT bus driver inputs are stable. The slave
device responds to RDOUT by accepting the input data and asserting TRPLY (8 us maximum to avoid
bus timeout). This completes the data setup/deskew time.

During the data hold/deskew time the bus master negates TDOUT 150 ns (minimum) after the assertion
of RRPLY. TDAL <21:0> bus drivers remain stable for at least 100 ns after TDOUT negation, The bus
master then negates TDAL inputs. The slave device senses RDOUT negation and negates TRPLY. The -
bus master responds by negating TSYNC. The processor, however, does not negate TSYNC for at least
175 ns after negating TDOUT. This completes the DATO(B) bus cycle. Before the next cycle, TSYNC
must remain unasserted for at least 200 ns. Also, TSYNC may not be asserted until 300 ns (minimum)
after RRPLY is negated.

BUS MASTER SLAVE
{PROCESSOR OR DEVICE)) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
ASSERT BDAL <21:00> L WITH
ADDRESS AND

ASSERT BBS7 L IFADDRESS IS
IN THE 1/0 PAGE

ASSERT BWTBT L (WRITE
CYCLE)

ASSERT BSYNC L

— —_
— _
— —
DECODE ADDRESS
/' STORE “DEVICE SELECTED"
_— OPERATION
/’
—
OUTPUT DATA
* REMOVE THE ADDRESS FROM
BDAL <21:00> L AND NEGATE BBS7 L
* NEGATE BWTBT L UNLESS DATOB
* PLACE DATA ON BDAL < 15:00> L
e ASSERT BDOUT L — —_—
— _
— -
TAKE DATA
* RECEIVE DATA FROM BDAL
LINES
—— * ASSERT BRPLY L
—
/
/
- -
TERMINATE OUTPUT TRANSFER
* NEGATE BDOUT L (AND BWTBT L
IFF A DATOB BUS CYCLE)
o REMOVE DATA FROM BDAL <15:00> L
—_— —_
—_— -
OPERATION COMPLETED
s NEGATE BRPLY L
v / -
/ -

TERMINATE BUS CYCLE
o NEGATE BSYNC L

MR-6029

Figure 6-3 DATO or DATO(B) Bus Cycle

r—O-NS MINtMUM

TDAL (4) X T ADDR X TDATA X ”
150 NS _ — |-—
|'M|N|MUM>I '~7100 NS MINIMUM - 1
EL /

T SYNC /
r¢—200 NS MIN{MUM—

8 uS 175 NS
'ﬁAxuvnun\T{ T MINIMUM

T DOUT

150 NS MINIMUM—DI 300 NS MINIMUM ———

R RPLY V

-» |- 100 NS MINIMUM
X X
—-' le——150 NS MINIMUM .

T WTBT (4) \ ASSERTION = BYTE K)
, L. 150 NS quoms MINIMUM -—<—l 100 NS L_

MINIMUM MINIMUM
TIMING AT MASTER DEVICE

Ly

T BS7 (4)

R DAL R ADDR X R DATA X (4)

25 NS MINIMUM —-’r L—25 NS MINIMUM

, J \ Y

25 NSMINIMUM e 100 NS M|N|MUM——L150 NS MINIMUM-o-
75 NS
MINIMUM

TRPLY MINIMUM

. 75 NS
MINIMUM
R 8S7 (4) X

25 NS MINIMUM +] e 25 NS MINIMUM

R WTBT (4) \/ ASSERTION =BYTE X (4)

R DOUT

150 NS

MINIMUM [+ r——‘300NSMINIMUM—->

(4)

75 NS g 25 NS MINIMUM
MINIMUM
TIMING AT SLAVE DEVICE
NOTES:
1. TIMING SHOWN AT MASTER AND SLAVE DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT

BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A “B” PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T =BUS DRIVER INPUT
R = BUS RECEIVER QUTPUT

MR-1179

Figure 6-4 DATO or DATO(B) Bus Cycle Timing

6-9

6.3.1.4 DATIO(B) — The protocol for a DATIO(B) bus cycle is identical to the addressing and data
transfer portions of the DATI and DATO(B) bus cycles. After addressing the device, a DATI cycle is
performed as explained in Paragraph 6.3.1.2, except TSYNC is not negated. TSYNC remains active for
an output word or byte transfer [DATO(B)]. The bus master maintains at least 200 ns between RRPLY
negation during the DATI cycle and TDOUT assertion. The cycle is terminated when the bus master
negates TSYNC, which follows the same protocol as described for DATO(B). The operations performed
by the bus master and slave device during a DATIO or DATIO(B) bus cycle are shown in Figure 6-5. The
DATIO and DATIO(B) bus cycle timing is shown in Figure 6-6.

BUS MASTER SLAVE
(PROCESSOR OR DEVICE) (MEMORY OR DEVICE)

ADDRESS DEVICE/MEMORY
e ASSERT BDAL <21:00> L WITH
ADDRESS
e ASSERT BBS7 L IF THE
ADDRESS IS IN THE 1/0 PAGE
® ASSERTBSYNC L

™ DECODE ADDRESS
e STORE “DEVICE SELECTED"

- OPERATION
— - - -
REQUEST DATA “
e REMOVE THE ADDRESS FROM
BDAL <21:00> L
e ASSERT BDIN L Y
T T INPUT DATA .
e PLACE DATA ON BDAL <15:00> L
e ASSERT BRPLY L
P — -
TERMINATE INPUT TRANSFER il
e ACCEPT DATA AND RESPOND BY
TERMINATING BDIN L
—
T —
COMPLETE INPUT TRANSFER
e REMOVE DATA
e NEGATEBRPLY L
— —
o -
OUTPUT DATA ull
e PLACE OUTPUT DATA ON BDAL <15:00> L
e (ASSERT BWTBT L IF AN OUTPUT
BYTE TRANSFER)
e ASSERT BDOUT L
\\
*
TAKE DATA
e RECEIVE DATA FROM BDAL LINES
e ASSERT BRPLY L
/o"
- -
TERMINATE OUTPUT TRANSFER
e REMOVE DATA FROM BDAL LINES
e NEGATE BDOUT L
S
OPERATION COMPLETED
__® NEGATEBRPLYL
— -
— - -

TERMINATE BUS CYCLE
e NEGATEBSYNCL
(AND BWTBT L IF IN
A DATIOB BUS CYCLE)

MR 6030

Figure 6-5 DATIO or DATIO(B) Bus Cycle

6-10

160 NS MINIMUM —.‘ "'ONSMINIMUM

R/T DAL (4} x TADDR)(-4 fﬂ DATA x (4) T T DATA x (4)

100 NS , !
—->1 100 NS MINIMUM

MINIMUM N o 200 NS MAXIMUM

200 NS
MINIMUM —™

TSYNC - A’\ ‘

150 NS _| 175 NS

100 NS MINIMUM TN IMURT MINIMUM

le— 200 NS

T DOUT M"\”MUMdr N\ \
, [, 200NS '

™ MINIMUM " /

TDIN __f ' /

R RPLY A F \\ F
MININOR -
TBS7 X >(

: —A le— 100 NS MINIMUM 100 NS MINIMUM— "“

TWTBT (4>\‘ i F . (4) x ASSERTION = BYTE X (4)

I F—-ISO NS MINIMUM

|

TIMING AT MASTER DEVICE

RT/DAL (4} AR ADD?Xv (4) J T DATA X (4 x R DATA f (4)

[25 NS - g L
-~ MINIMUM | : 25 NS MINIMUM
R SYNE / 100 NS \ /
_—' MAXIMUM ,
| _, toons |
Le— 75 NS MINIMUM ‘ - |25 NSMINIMUM r' MINIMUM

125 NS . 150NS e

R oouT —ﬂMAXlMUM R\ MINIMUM

Le-150 NS MINIMUM -

R DIN | | < \k\ _

150 NS o 300 NS -
MINIMUM - K MINIMUM
T RPLY Q\

—-‘ ft—75 NS MINIMUM

R 8S7 X f
’-l Le— 75 NS MINIMUM) *‘ e 25 NS MINIMUM —» l~—25 NS MINIMUM
RWTBT (4>\ (4) _X' ASSERTION = BYTE I (4)
—» 25 NS MINIMUM
TIMING AT SLAVE DEVICE
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
BUS DRIVER INPUTS AND BUS RECEIVER OUTPUTS SIGNAL NAMES INCLUDE A "“B” PREFIX.
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T = BUS DRIVER INPUT
R = BUS RECEIVER QUTPUT

MR 6036

Figure 6-6 DATIO or DATIO(B) Bus Cycle Timing

6-11

6.4 DIRECT MEMORY ACCESS

DMA capability allows direct data transfers between I1/0 devices and memory. This is useful when using
mass sworage devices (e.g., disk drives) that move large blocks of data to and from memory. A DMA
device only needs to know the starting address in memory, the starting address in mass storage, the length
of the transfer, and whether the operation is read or write. When this information is available, the DMA
device can transfer data directly to or from memory. Since most DMA devices must perform data
transfecs in rapid succession or lose data, DMA requests are assigned the highest priority level.

DMA is accomplished after the processor (normally bus master) has passed bus mastership to the highest-
priority DMA device that is requesting the bus. The processor arbitrates all requests and grants the bus to
the DMA device located closest (electrically) to the processor. A DMA device remains bus master until it
relinqu shes its mastership. The following control signals are used during bus arbitration.

Signal Name

BDMGI L DMA grant input
BDMGO L DMA grant output
BDMR L DMA request line
BSACK L Bus grant acknowledge

A DMA transaction is divided into three phases: the bus mastership acquisition phase, the data transfer
phase, and the bus mastership relinquish phase. The operations performed by the processor and bus master
during the DMA request/grant sequence are shown in Figure 6-7. The DMA request/grant bus cycle
timing is shown in Figure 6-8.

BUS MASTER
(CONTROLLER)

KDJ11-A PROCESSOR
(MEMORY IS SLAVE)

REQUEST BUS
—— " @ ASSERT BDMR L

GRANT BUS CONTROL -
® NEAR THE END OF THE = & —
CURRENT BUS CYCLE
(BRPLY L IS NEGATED).
ASSERT BDMGO L AND ~— _
INHIBIT NEW PROCESSOR ~

GENERATED BSYNC L FOR — ACKNOWLEDGE BUS

THE DURATION OF THE ~a MASTERSHIP

DMA OPERATION. ® RECEIVE BDMG

—— ® WAIT FOR NEGATION OF
P BSYNC L AND BRPLY L
o e ASSERT BSACK L

TERMINATE GRANT — ® NEGATE BDMR L
SEQUENCE

® NEGATE BDMGO L AND

WAIT FOR DMA OPERATION ™ ___

TO BE COMPLETED —~
® MONITOR TRANSACTION TO

INVALIDATE CACHE IF
CACHE HIT

—

T —a EXECUTE A DMA DATA
TRANSFER
® ADDRESS MEMORY AND
TRANSFER UP TO 4 WORDS
OF DATA AS DESCRIBED
FOR DAT!. OR DATO BUS
CYCLES
— ® RELEASE THE BUS BY
- TERMINATING BSACK L
— (NO SOONER THAN
— NEGATION OF LAST BRPLY L)

RESUME PROCESSOR AND BSYNC L.

OPERATION
® ENABLE PROCESSOR-
GENERATED BSYNC L

(PROCESSOR IS BUS WAIT 4 uS OR UNTIL

MASTER) OR ISSUE
ANOTHER GRANT IF BDMR
L IS ASSERTED

Figure 6-7 DMA Request/Grant Sequence

6-12

ANOTHER FIFO TRANSFER
IS PENDING BEFORE
REQUESTING BUS AGAIN.

MR 6031

During the bus mastership acquisition phase, a DMA device requests the bus by asserting TDMR. The
processor arbitrates the request and initiates the transfer of bus mastership by asserting TDMG.
The maximum time between BDMR L assertion by the DMA device and BDMGO L assertion by the
processor is DMA latency. This time is processor-dependent. The KDJ11-B asserts TDMG 1.4 us
(maximum) after the assertion of RDMR.

BDMGO L/BDMGI L is one of two signals that are daisy-chained through each module in the backplane.
The signal is driven out of the processor on the BDMGO L pin, enters each module on the BDMGI L pin
and exits on the BDMGO L pin. This signal passes through the modules in descending order of priority
until it is stopped by the requesting device. The requesting device blocks the output of BDMGO L and
asserts TSACK. If no device responds to the DMA grant, the processor clears the grant and rearbitrates
the bus.

NOTE
The KDJ11-B uses a no SACK timer that clears
BDMGO L if BSACK L is not received from the
DMA device within 10 us.

During the data transfer phase, the DMA device continues asserting BSACK L. If multiple data transfers
are performed during this phase, consideration must be given to the use of the bus for other system
functions, such as memory refresh (if required). The actual data transfer is performed in the same manner
as the data transfer portion of DATI, DATO(B) and DATIO(B) bus cycles.

SECOND
REQUEST
——' le— DMA LATENCY

Ay anyayanl el aly ek day ey day ey T 7T
\L/////////// VA A

L_////////// 4 L L L 7
—-—I -0 NS MINIMUM

N\ s

R DMG /'\ 7

T DMR

T SACK \
250 NS MINIMUM—] r—- —> e— 300 NS MAXIMUM
AT syie NN Y
L~ 250 NS MINIMIUM ONS MINIMUM—DI f-—
300 NS MINIMUM
R/T RPLY \\ \ \ \ \ / \
> O NS MINIMUM —» 100 NS MAXIMUM
— 0 NS MINIMUM
T DAL /< ADDR X DATA \
(ALSO BS7,
WTBT, REF)
NOTES:
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B PREFIX.

2. SIGNAL NAME PREFIXES ARE DEFINED BELOW:
T = BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR-3690

Figure 6-8 DMA Request/Grant Bus Cycle Timing

6-13

The DMA device can assert TSYNC L for a data transfer O ns (minimum) after it receives RDMGI L,
250 ns (minimum) after RSYNC is negated, and 300 ns (minimum) after RRPLY is negated.

During thz bus mastership relinquish phase, the DMA device relinquishes the bus by negating TSACK.
This occurs after the last data transfer cycle (RRPLY negated) is completed (or aborted). TSACK may be
negated up to 300 ns (maximum) before negating TSYNC.

6.5 INTERRUPTS '

The interrupt capability of the LSI-11 bus allows any I/O device to temporarily suspend (interrupt)
current program execution and divert processor operation for service of the requesting device. The
processor inputs a vector from the device to start the service routine (handler). As with a device register
address, the hardware fixes the device vector at locations within a designated range of addresses between
000 and 7778. The vector indicates the first of a pair of addresses. The content of the first address is read
by the processor; it is the starting address of the interrupt handler. The content of the second address is a
new PSW. PSW bits <7:5> can be programmed to a priority level from 0 to 78. Only interrupts on a level
higher than the number in the PSW priority level field are serviced by the processor. If the interrupt
priority level of the new PSW is higher than that of the original PSW, the new PSW raises the
interrupt priority level and thus prevents lower-level interrupts from breaking into the current interrupt
service routine. Control is returned to the interrupted program when the interrupt service routine is
complete. '

The original (interrupted) program address (PC) and its associated PSW are stored on a stack. The original
PC and PSW are restored by a return from interrupt instruction (RTT or RTT) at the end of the service
routine. The use of the stack and the LSI-11 bus interrupt scheme can allow interrupts to occur within
interrupts (nested interrupts) if the requesting interrupt has a higher priority level than the interrupt
currently being serviced.

Interrup's can be caused by LSI-11 bus options and can also originate in the processor. Interrupts
originating in the processor are called traps and are caused by programming errors, hardware errors,
special instructions, and maintenance features. The following are the LSI-11 bus signals used in interrupt
transactions.)

Signal Name

IRQ4 L Interrupt request priority level 4
BIRQ5S L Interrupt request priority level 5
BIRQ6 L Interrupt request priority level 6
BIRQ7 L Interrupt request priority levet 7
BIAKI L Interrupt acknowledge input
BIAKO L _ Interrupt acknowledge output

BDAL <15:0> L Data/address lines
BDIN L Data input strobe
BERPLY L Reply

6.5.1 Device Priority
The LSI-11 bus supports the following two methods of determining device priority.

e Distributed arbitration — Priority levels are implemented on the hardware. When devices of

equal priority level request an interrupt, priority is given to the device electrically closest to the
processor.

6-14

® Position-defined arbitration - Priority is determined solely by electrical position on the bus. The
device closest to the processor has the highest priority, while the device at the far end of the bus
has the lowest priority.

The KDJ11-B uses both methods - distributed arbitration, with four levels of priority, and position-defined
arbitration within each level. Interrupts on these priority levels are enabled/disabled by bits in the
processor status word (PSW <7:5>). Single-level interrupt (position-defined) devices that interrupt on
'BIRQ4 can also be used in KDJ11-B systems, but must be placed in a bus slot following the last bus slot in
which a position-independent device is installed.

6.5.2 Interrupt Protocol

Interrupt protocol has three phases: the interrupt request phase, the interrupt acknowledge and priority
arbitration phase, and the interrupt vector transfer phase. The operations performed by the processor and
interrupting device are shown in Figure 6-9. Interrupt protocol timing is shown in Figure 6-10.

PROCESSOR DEVICE

INITIATE REQUEST
——— ® ASSERT BIRQ L

-
STROBE INTERRUPTS -
® ASSERT BDIN L —
—
— e
| RECEIVE BDIN L
® STORE “INTERRUPT SENDING”
L IN DEVICE
GRANT REQUEST
e PAUSE AND ASSERT BIAKO L
— —_
—
—
RECEIVE BIAKI L
e RECEIVE BIAKI L AND INHIBIT
BIAKO L
® PLACE VECTOR ON BDAL < 15:00> L
e ASSERT BRPLY L
_—® NEGATE BIRQ L
— -
/
. “
RECEIVE VECTOR AND
TERMINATE REQUEST
e INPUT VECTOR ADDRESS
e NEGATE BDIN L AND BIAKO L
— —_—
—_—
—
COMPLETE VECTOR TRANSFER
e REMOVE VECTOR FROM BDAL BUS
- NEGATE BRPLY L
e - ’
-—

PROCESS THE INTERRUPT

® SAVE INTERRUPTED PROGRAM
PC AND PS ON STACK

® LOAD NEW PC AND PS FROM
VECTOR ADDRESSED LOCATION

® EXECUTE INTERRUPT SERVICE
ROUTINE FOR THE DEVICE

MR-1182

Figure 6-9 Interrupt Request/Acknowledge Sequence

6-15

INTERRUPT LATENCY
MINUS SERVICE TIME

TIRQ

150 NS MINIMUM——.I -

R DIN /

R 1AKI

TRPLY "l\

125 NS MAXIMUM——’I '1—— I‘—1OO NS MAXIMUM
T DAL (4) X VECTOR x (4)

R SYNC (UNASSERTED)
R BS7 {UNASSERTED)
NOTES: ‘
1. TIMING SHOWN AT REQUESTING DEVICE BUS DRIVER 3. BUS DRIVER OUTPUT AND BUS RECEIVER INPUT
INPUTS AND BUS RECEIVER OUTPUTS. SIGNAL NAMES INCLUDE A "B" PREFIX,
2. SIGNAL NAME PREFIXES ARE DEFINED BELOW: 4. DON'T CARE CONDITION.

T =BUS DRIVER INPUT
R = BUS RECEIVER OUTPUT

MR 1183

Figure 6-10 Interrupt Protocol Timing

The interrupt request phase begins when a device meets its specific conditions for interrupt requests (e.g.,
when the device is ready, done, or when an error has occurred). The interrupt enable bit in a device status
register must be set. The device then initiates the interrupt by asserting the interrupt request line(s).
BIRQ4 L is the lowest hardware priority level and is asserted for all interrupt requests for compatibility
with previous LSI-11 processors. The level at which a device is configured must also be asserted. (A special
case exists for level 7 devices that must also assert level 6.) The interrupt request line remains asserted
until the request is acknowledged.

Interrupt

Level Lines Asserted by Device
4 BIRQ4 L

5 BIRQ4 L, BIRQ5 L

6 BIRQ4 L, BIRQ6 L

7

BIRQ4 L, BIRQ6 L, BIRQ7 L

6-16

During the interrupt acknowledge and priority arbitration phase, the KDJ11-B acknowledges interrupts
under the following conditions.

1. The device interrupt priority is higher than the current priority level stored in PSW <7:5>.
2. The processor has completed instruction execution and no additional bus cycles are pending.

The processor acknowledges the interrupt request by asserting TDIN and, 225 ns (minimum) later, by
asserting TIAKO. The device electrically closest to the processor receives the acknowledge on its RIAKI
bus receiver.

On the leading edge of RDIN, each bus option capable of requesting interrupts decides whether to accept
or to pass on the RIAKI signal. A device that does not support position-independent, multilevel interrupts
accepts RIAKI if it is requesting an interrupt when RDIN asserts. A device that does support position-
independent, multilevel interrupts accepts RIAKI if it is requesting an interrupt and if there is no higher-
priority request pending when RDIN asserts. This decision must be clocked into a flip-flop, which settles
within 150 ns of TDIN. '

Devices that support position-independent, multilevel interrupts assert from one to three interrupt request
lines when requesting an interrupt. Table 6-4 presents the Interrupt ReQuest (IRQ) lines a device at each
level must assert in order to request an interrupt, and lists the lines it must monitor to determine whether a
higher-priority device is requesting an interrupt.

During the interrupt vector transfer phase, the responding interrupt device receives RIAKI and then
asserts TRPLY. The vector address must be stable at TDAL <8:2> 125 ns (maximum) after TRPLY is
asserted. The processor receives the assertion of RRPLY and, 200 ns (minimum) later, it inputs the vector
address and negates both TDIN and TIAKI. The interrupting device negates TRPLY after the negation of
RIAKI, and removes the vector address from TDAL <8:2> 100 ns (maximum) after TRPLY negates.
Since vector addresses are constrained between 000 and 7748, none of the remaining TDAL lines are used.

Table 6-4 Position-Independent, Multilevel Device Requirements

Interrupt

Level » IRQ Lines Asserted. IRQ Lines Monitored
4 TIRQ4 : : RIRQS, RIRQ6

5 TIRQ4, TIRQS5 RIRQ6

6 - TIRQ4, TIRQ6 RIRQ7

7 TIRQ4, TIRQ6, TIRQ7

6-17

6.5.3 4-Level Interrupt Configurations

Users having high-speed peripherals and desiring better software performance can use the 4-level interrupt
scheme. Both position-independent and position-dependent configurations can be used with the 4-level
interrurt scheme.

The position-independent configuration is shown in Figure 6-11. This configuration allows peripheral
devices that use the 4-level interrupt scheme to be placed in the backplane in any order. These devices
must send out interrupt requests and monitor higher-level request lines, as described in Paragraph 6.5.2.
The level 4 request is always asserted by a requesting device, regardless of priority, to allow compatibility
if an LSI-11 or LSI-11/2 processor is in the same system. If two or more devices of equally high priority
request an interrupt, the device physically closest to the processor wins arbitration. Devices that use the
single-level interrupt scheme must be modified or be placed at the end of the bus for arbitration to
functior: properly.

The position-dependent configuration is shown in Figure 6-12. This configuration is simpler to implement,
but has the following constraint: Peripheral devices must be ordered so that the highest-priority device is
located closest to the processor, with the remaining devices placed in the backplane in decreasing order of
priority.

With this configuration each device must only assert its own level and level 4 (for compatibility with an
LSI-11 or LSI-11/2). Monitoring higher-level request lines is unnecessary. Arbitration is achieved through
the physical positioning of each device on the bus. Single-level interrupt devices on level 4 must be
positioned last on the bus.

BIAK (INTERRUPT ACKNOWLEDGE) LEVEL4 [B|AK | LEVEL6 |glaKk | LEVEL5 |BlAK LEVEL 7
KDJ11 DEVICE DEVICE DEVICE DEVICE

Y
y
A

BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) [

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST)

BIRQ 7 {LEVEL 7 INTERRUPT REQUEST)

MR-2888

Figure 6-11 Position-Independent Configuration

BIAK (INTERRUPT ACKNOWLEDGE) | LEVEL7 |BIAk | LEVEL6 |BIAK | LEVELS |BIAK | LEVEL4
KbJ1 * DEVICE DEVICE DEVICE DEVICE
,
BIRQ 4 (LEVEL 4 INTERRUPT REQUEST) ! !

BIRQ 5 (LEVEL 5 INTERRUPT REQUEST)

BIRQ 6 (LEVEL 6 INTERRUPT REQUEST) y
BIRQ 7 (LEVEL 7 INTERRUPT REQUEST) y

MR-2889

Figure 6-12 Position-Dependent Configuration

6-18

6.6 CONTROL FUNCTIONS
The following LSI-11 bus signals provide system control functions.

Signal Name

BREF L Memory refresh

BHALT L Processor halt

BINIT L Initialize

BPOK H - Power OK

BDCOK H DC power OK

BEVNT L External event mterrupt request

6.6.1 Memory Refresh -

If BREF is asserted during the address portion of a bus data transfer cycle, it causes all dynamic MOS
memories to be addressed simultaneously. The sequence of addresses required for refreshing the memories
is determined by the specific requirements of each remory. The complete memory refresh cycle consists
of a series of refresh bus transactions. (A new address is used for each transaction.) The entire cycle must
be completed within 2 ms. Multiple data transfers by DMA devices must be avoided since they could
. delay memory refresh cycles. The KDJ11-B does not perform memory refresh.

6.6.2 Halt _ :
Assertion of BHALT L stops program execution and forces the processor unconditionally into console
" ODT mode. The processor does not assert the BHALT L bus line when it comes to a programmed halt.

6.6.3 Initialization

Devices along the bus are initialized when BINIT L is asserted The processor asserts the BINIT L signal
under the following conditions. :

1. During a power-down sequence

2. .‘ During a powérQup sequence

3. During the execution of a RESET instruction

4. After detection of a G character in ODT mode (if the procéésor features an ODT mode and a G
command within it), and before execution of the code starting at the address that preceded the

G command

6.6.4 Power Status , . '
Power status protocol is controlled by two signals, BDCOK H and BPOK H. These signals are driven by an
external device (usually the power supply) and are defined as follows.

6.6.4.1 BDCOK H - The assertion of this line indicates that dc power has been stable for at least 3 ms.
Once asserted this line remains asserted until the power fails.

6.6.4.2 BPOK H - The assertion of this line indicates that there is at least an 8 ms reserve of dc power
and that BDCOK H has been asserted for at least 70 ms. Once BPOK H has been asserted, it must remain
asserted for at least 3 ms.

The negation of this line indicates that power is failing and that only 4 ms of dc power reserve remains.
The negation of this line during processor operation initiates a power-fail trap sequence.

6-19

BINIT L

B POK H

BDCOK H

DC POWER

B 0 NS MINIMUM "1 ['— 8-20 uS
. S /
e 3Ms —»l 1uS

-

3MS
MINIMUM | Imaximum MAXIMUM

| /

70 MS 4 MS 70 MS l -
1 minvum [MINIMUM ™] "I MINIMUM
1 \ / |
5 uS
— f— um
-] 3 MS MINIM = MINIMUM r—
POWER-UP NORMAL POWER-DOWN POWER-UP NORMAL
SEQUENCE T power 1 SEQUENCE >Te SEQUENCE *T* POWER

NOTE:

ONCE A POWER-DOWN SEQUENCE IS STARTED,
IT MUST BE COMPLETED BEFORE A POWER-UP
SEQUENCE IS STARTED.

MR-6032

Figure 6-13 Power-Up/Power-Down Timing

6.6.4.3

Power-Up - The timing diagram for the power-up/power-down sequence is shown in

Figure 6-13. The following events occur during-a power-up sequence.

1.

Logic associated with the power supply negates BDCOK H during power-up and asserts
BDCOK H 3 ms (minimum) after dc power is restored to voltages within specification.

The processor asserts BINIT L after receiving nominal power and negates BINIT L 0 ns
(minimum) after the assertion of BDCOK H.

Logic associated with the power supply negates BPOK H during power-up and asserts BPOK H
70 ms (minimum) after the assertion of BDCOK H. If power does not remain stable for 70 ms,
BDCOK H is negated. Therefore, devices must suspend critical actions until BPOK H is
asserted. '

BPOK H must remain asserted for a minumum of 3 ms. BDCOK H must remain asserted 4 ms
(minimum) after the negation of BPOK H.

6.6.4.4 Power-Down — The following events occur during a power-down sequence.

1.

If the ac voltage to a power supply drops below 75% of the nominal voltage for one full line
cycle (15 to 24 ms), BPOK H is negated by the power supply. Once BPOK H is negated, the
entire power-down sequence must be completed.

A device that requested bus mastership before the power failure that has not become bus master
must maintain the request until BINIT L is asserted or the request is acknowledged (in which
case regular bus protocol is followed).

Processor softWare must execute a RESET instruction 3 ms (minimum) after the negation of
BPOK H. This asserts BINIT L for 8 to 20 us. Processor software executes a HALT instruction
immediately following the RESET instruction. '

BDCOK H must be negated a minimum of 4 ms after the negation of BPOK H. This 4 ms

allows mass storage and similar devices to protect themselves against erasures and erroneous
writes during a power failure.

6-20

4. The processor asserts BINIT L 1 us (minimum) after the negation of BDCOK H.
5. The dc power must remain stable for a minimum of 5 us aftcr.the negation of BDCOK H.

6. BDCOK H must remain negated for a minimum of 3 ms.

6.6.5 BEVNT L

The BEVNT L signal is an external line clock interrupt request to the processor. When BEVNT L is
asserted, the processor internally assigns location 1008 as the vector address for the BEVNT service
routine. Because the vector is internally assigned, the processor does not execute the protocol for reading in
the interrupt vector address (as is the case for other external interrupt requests).

6.7 BUS ELECTRICAL CHARACTERISTICS
This paragraph contains information about the electrical characteristics of the LSI-11 bus.

6.7.1 Signal Level Specification
Input Logic Levels

TTL logical low: 0.8 Vdc (maximum)
TTL logical high: 2.0 Vdc (minimum)

Output Logic Levels

TTL logical low: ' 0.4 Vdc (maximum)
TTL logical high: 2.4 Vdc (minimum)

6.7.2 AC Bus Load Definition .
The amount of capacitance a module presents to a bus signal line is the ac bus load. This capacitance is
measured between each module signal line and ground, and is expressed in ac unit loads, where each unit
load is defined as 9.35 pF.

6.7.3 DC Bus Load Definition v
The amount of leakage current a module presents to a bus signal line is the dc bus load. A dc unit load is
defined as 105 uA flowing into a module device when the signal line is in the unasserted (high) state.

6.7.4 120 Q LSI-11 Bus)

The electrical conductors interconnecting the bus device slots are treated as transmission lines. A uniform
transmission line, terminated in its characteristic impedance, propagates an electrical signal without
reflections. Insofar as bus drivers, receivers, and wiring connected to the bus have finite resistance and
nonzero reactance, the transmission line impedance becomes nonuniform, and thus introduces distortions
into pulses propagated along it. Passive components of the LSI-11 bus (such as wiring, cabling, and etched
signal conductors) are designed to have a nominal characteristic impedance of 120 €.

The maximum length of the interconnecting cable in multiple-backplane systems (excluding wiring within
the backplane) is limited to 4.88 m (16 ft).

NOTE
- The KDJ11-B processor (as well as all standard
Digital-supplied LSI-11 interfaces) connects to the
bus via special drivers and receivers described in
Paragraphs 6.7.5 and 6.7.6.

The KDJ11-B processor provides resistive (250)

pull-up on all bussed lines to 3.4 Vdc for this wired-
OR interconnecting scheme.,

6-21

6.7.5 Bus Drivers
Devices driving the 120 © LSI-11 bus must have open collector outputs and meet the specifications that

follow.

DC Specifications*

Vce may vary from 4.75 V to 5.25 V.
Output low voltage when sinking 70 mA of current: 0.7 V (maximum).

Output high leakage current when connected to 3.8 Vdc: 25 uA (even if no power is applied to
them, except for BDCOK H and BPOK H).

AC Specifications

Bus driver output pin capacitance load: Not to exceed 10 pF.
Propagation delay: Not to exceed 35 ns.

Driver skew (difference in propagation time between slowest and fastest bus driver): Not to
exceed 25 ns. : :

Rise/fall times: Transition time from 10% to 90% for positive transition, and from 90% to 10%
for negative transition, must be no faster then 5 ns.

6.7.6 Bus Receivers
Devices that receive signals from the 120 Q LSI-11 bus must meet the following requirements.

DC SpecificationsT

Vce may vary from 4.75 V to 5.25 V.
Input low voltage: 1.3 V (maximum).
Input high voltage: 1.7 V (minimum).

Maximum input leakage current when connected to 3.8 Vdc: 80 pA with Vee between 0.0 V
and 5.25 V.

AC Specifications

*

Bus receiver input pin capacitance load: Not to exceed 10 pF.
Propagation delay: Not to exceed 35 ns.

Receiver skew (difference in propagation time between slowest and fastest receiver): Not to
exceed 25 ns.

These conditions must be met at worst-case supply voltage, temperature, and input signal levels.

+ These conditions must be met at worst-case supply voltage, temperature, and output signal conditions.

6-22

6.7.7 KDJ11-B Bus Termination

The 120 Q@ LSI-11 bus should be terminated at each end by an appropriate resistive termination. A pair of
resistors in series from +5.0 V to ground is used to establish a voltage for each bidirectional line when that
line is not being driven (negated). The parallel impedance of this pair of resistors is 250 Q. The terminating
resistors are shown in Figure 6-14. The KDJ11-B contains terminating resistor networks in 18-pin single-
in-line packages to provide the 120 Q (terminations for the data/address, synchronization, and control
lines) at the processor end of the bus.

Some system configurations do not require terminating resistors at the far end of the bus. If the system
configuration does require such termination, it is typically provided by an M9404-YA cable connector
module.

6.7.7.1 Bus Interconnection Wiring — The bus interface for the module connectors is provided by one,
two, or three backplanes, depending on the system configuration. Since each backplane may contain up to
9 slots, a system may have a maximum of 27 module interfaces to the bus.

6.7.7.2 Backplane Wiring — The wiring that interconnects all device interface slots on the LSI-11 bus
must meet the following specifications. .

1. The conductors must be arranged so that each line exhibits a characteristic impedance of 120
(measured with respect to the bus common return).

2. Crosstalk from a pulse-driven line to an undriven line to which a constant 5 V is applied must be
less than 5% of the 5 V. Note that worst-case crosstalk is manifested by simultaneously dr1vmg
all but one signal line and measuring the effect on the undriven line.

3. The dc resistance of a bus segment signal path, as measured between the near-end terminator
and far-end terminator modules (including all intervening connectors, cables, backplane wiring,
connector-module etch, etc.), must not exceed 2 Q.

4. The dc resistance of a bus segment common return path, as measured between the near-end
terminator and far-end terminator modules (including all intervening connectors, cables, back-
plane wiring, connector-module etch, etc.), must not exceed an equivalent of 2 Q per signal path.
Thus, the composite signal return path dc resistance must not exceed 2 Q divided by 40 bus
lines, or 50 MQ. Note that although this common return path is nominally at ground potential,
the conductance must be part of the bus wiring; the specified low-impedance return path must
be provided by the bus wiring as distinguished from common.system or power ground path.

+5V +5V
178 Q 330 Q2
120 250 Q2
BUS LINE BUS LINE
TERMINATION TERMINATION
383 2 680 Q2

1%
MR.6033

Figure 6-14 Bus Line Termination

6-23

6.7.7.3 Intrabackplane Bus Wiring — The wiring that interconnects the bus connector slots within one
contiguous backplane is part of the overall bus transmission line. Due to implementation constraints, the
nomina! characteristic impedance of 120 Q may not be achievable. Distributed wiring capacitance in
excess of the amount required to achieve the nominal 120 Q impedance may not exceed 60 pF per signal
line per backplane.

6.7.7.4 Power and Ground - Each bus interface slot has connector pins assigned for the following dc
voltages.

Voltage Number of Pins

+5 Vdc Three pins, 4.5 A (maximum) per bus device slot
412 Vdc Two pins, 3.0 A (maximum) per bus device slot
Cround Eight pins, shared by power return and signal return

The meximum allowable current per pin is 1.5 A. The +5 Vdc must be regulated to +5% and the
maximum ripple should not exceed 100 mV peak-to-peak. The +12 Vdc must be regulated to +3% and
the marimum ripple should not exceed 200 mV peak-to-peak. '

NOTE
Power is not bussed between backplanes on any
interconnecting 1.SI-11 bus cables.

6.7.7.5 Maintenance and Spare Pins — There are four M SPARE pins per bus device slot assigned to
maintenance (AK1, ALI, BK1, BL1). The maintenance pins on the basic LSI-11 system are not bussed
from module to module. Instead, at each bus device slot, the maintenance pins are shorted together as
pairs. These pins must be shorted together for some modules to operate. This allows a module to use these
pins during initial testing as two separate points. This feature is used by Digital for manufacturing tests
only. Spare pins are allocated on the backplane as follows.

S SPARES - Four pins: AE1, AHI1, BH1, AF1 (with the exception of AF1 in slot 1), are reserved
for the particular use of a module or set of modules. They may be used as test points or for
intermodule connection. Appropriate wires must be added for intermodule communication since
these pins are not connected in any way. The processor uses AF1 in slot 1 as an output pin for the
SRUN signal. S SPARE lines cannot be used as bus connections.

P SPARES - Two pins: AU1 and BU1, are similar to the S SPARE pins except that they are located
in a manner that causes dc voltages to appear on them if a module is inserted backwards. Use of these
pirs is not recommended. :

6.8 SYSTEM CONFIGURATIONS

LSI-11 bus systems can be divided into two types. The first type comprises those systems that use only one
backplane, the second type comprising those systems that use multiple backplanes. Two sets of config-
uration rules are necessary to accommodate the different electrical characteristics of the two types of
systems.

Three characteristics of each component in an LSI-11 bus system must be known before configuring any
system.

® Power consumption ~ The total amount of éurrent drawn from the +5 Vdc and +12 Vdc power
supplies by all modules in the system.

6-24

® AC bus loading - The amount of capacitance a module presents to a bus signal line. AC loading
is expressed in ac unit loads, where one ac unit load equals 9.35 pF of capacitance.

® DC bus loading - The amount of dc leakage current a module presents to a bus signal when the
line is high (undriven). DC loading is expressed in terms of dc unit loads, where one dc unit load
equals 105 uA (nominal).

Power consumption, ac loading, and dc loading specifications for each module are included in the
Microcomputer Interfaces Handbook.

NOTE
The ac and dc loads and the power consumption of
the processor module, terminator module, and back-
plane must be included in determining the total bus
loading of a backplane.

6.8.1 Rules for Configuring Single-Backplane Systems

The following rules apply only to single-backplane systems. Any extension of the bus off the backplane is
considered a multiple-backplane system and must be configured accordingly. A single-backplane config-
uration diagram is shown in Figure 6-15.

1. The bus can accommodate modules that have up to 35 ac loads (total) before the termination is
required. The processor has on-board termination for one end of the bus. If more than 20 ac
loads are included, the other end of the bus must be terminated.

2. A 120 Q terminated bus can accommodate modules comprising up to 45 ac loads (total).

3. The bus can accommodate modules up to 20 dc loads (total).

4. The bus signal lines on the backplane can be up to 35.6 cm (14 in) long.

5. It is recommended that the far end of the bus be terminated with 240 Q.' -

}*——* géglému?’;‘flvfx;?\ﬂixnnﬁum _’(
L l

ONE ONE ONE OPTIONAL
12001 UNIT UNIT UNIT | 120/240 O
LOAD LOAD LOAD »
. +
34v < v ’ 34V
- 35 AC LOADS Y wiTH TERM L
= 20 DC LOADS } =
KDJ11-B TERM

PROCESSOR

MR-6034

Figure 6-15 Single-Backplane Configuration

6-25

6.8.2 Rules for Configuring Multiple-Backplane Systems
Multiple-backplane systems can contain a maximum of three backplanes. A configuration diagram for a

multiple-backplane system is shown in Figure 6-16.
1. The signal lines on each backplane can be up to 25.4 cm (10 in) long.
2. Each backplane can accommodate modules that have up to 20 ac loads (total). Unused ac loads
from one backplane may not be added to another backplane if the second backplane loading
will then exceed 20 ac loads. Loading backplanes equally is recommended.

3. The dc loading of all modules in all backplanes cannot exceed 30 loads (total).

I . BACKPLANE WIRE .
35.6 CM (14 IN) MAX

((

Y Y I CABLE
ONE ONE
120Q UNIT UNIT
LOAD LOAD
+
34V N
. v
20 AC LOADS MAX
KDJ11-B
PROCESSOR

|‘_ BACKPLANE WIRE |
25.4 CM (10 IN) MAX
1 R |

ONE ONE
g‘t&ﬂ UNIT UNIT 240 Q
LOAD LOAD 34A
CABLE N v o CABLE/TERM

20 AC LOADS MAX
MR 1086-1104

Figure 6-16 Multiple-Backplane Configuration

6-26

4. The first backplane must have an impedance of 120 { (obtained via the processor module). The
second backplane is terminated by 240 Q resistor networks contained on the backplane.

5. The cables connecting the backplanes must observe the following conditions.
a. The cable(s) connecting the two backplanes must be 61 cm (2 ft) or greater in length.
b. The length of the cables must not exceed 4.88 m (16 ft).

c. The cables used must have a characteristic impedance of 120 €.

6.8.3 Power Supply Loading

Total power requlrements for each backplane can be determined by obtaining the total power require-
ments for each module in the ‘backplane. Obtain separate totals for +5 V and +12 V power. Power
requirements for each module are specified in the Microcomputer Interfaces Handbook.

Do not attempt to distribute power via the LSI-11 bus cables in multiple-backplane systems. Provide
separate, appropriate power wiring from each power supply to each backplane. Each power supply should
be capable of asserting BPOK H and BDCOK H signals according to bus protocol. This is required if
automatic power-fail/restart programs are implemented or if specific peripherals require an orderly power-
down halt sequence. The proper use of the BPOK H and BDCOK H signals is strongly recommended.

6-27

CHAPTER 7
PRIVATE MEMORY INTERCONNECT BUS

7.1 DESCRIPTION

- The PMI bus provides a high performance communications path between the KDJ11-B CPU module, the
MSV11-J memory modules and the KTJ11-B UBA. The PMI bus consists of 14 signals that support
the PMI protocol and the additional LSI bus signals that are shared with the LSI bus protocol. The address
and data information is multiplexed using the same LSI bus data/address lines. The PMI protocol is
designed for LSI systems and unique LSI-controlled Unibus systems that use the UBA.

7.2 PMI INTERFACE

The PMI interface signals are defined as the PMI bus master signals, the PMI slave signals and the PMI
Unibus adapter signals. These interface signals are assigned to the C and D rows of the backplane and are
defined as the interconnect bus. The PMI interface signals on the C/D bus are normally assigned two pins
to provide an interconnection between the slots. The KDJ11-B module is only assigned one pin and
therefore its position in the backplane is critical. The LSI bus signals that are used with the PMI protocol
use the A and B rows of the backplane defined as the LSI bus.

7.2.1 PMI Bus Master Signals
The PMI bus master controls the PMI bus cycles by using the nonmultiplexed control signals described in
Table 7-1. These signals are asserted low and negated high.

7.2.2 PMI Slave Signals _
The PMI slave responds to the bus master by the nonmultiplexed signals listed in Table 7-2. These signals
are asserted low and negated high by any device that is capable of being a slave.

7.2.3 PMI Unibus Adapter Signals

The UBA is used exclusively for Unibus systems. The PMI incorporates a special group of signals to
establish communications between the KDJ11-B and the UBA. These signals are nonmultiplexed as
described in Table 7-3 and are not used in any LSI based system.

7.2.4 LSI Bus Signals
The PMI protocol uses some of the standard LSI bus signals in conjunction with the PMI high speed

control signals. These LSI bus signals may not be used exactly as they are used in an LSI bus operation.
The LSI bus signals used with the PMI are listed with their PMI functions in Table 7-4.

Table 7-1 PMI Bus Master Signals

Pin

Mnemonic

Function

DCl1

CEl

CP1

DBl1

PBYT L

PBCYCL

PBLKM L

PWTSTB L

PMI Byte
PBYT L is asserted or negated in conjunction with the BWTBT L LSI bus
signal to select the type of bus cycle as follows.

BWTBT L PBYT L Bus Cycle

H
H
L
L

DATI or DATBI
DATIP

DATO

DATOB

T

PMI Bus Cycle
The PMI bus master starts a PMI cycle by asscrtmg PBCYC L and ends a
PMI cycle by negating PBCYC L.

PMI Block Mode

To read more than two words, the PMI bus master uses PBLKM L and
PBCYC L to control the timing of the DATBI cycle. Both PBLKM L
and PBCYC L are asserted at the start of the DATBI cycle, and after
reading two words PBLKM L is negated. If there are more than two words
that remain to be read, PBLKM L is asserted and negated every time two
words are read (except for the last two words, where it remains negated).
After reading the last two words, PBCYC is also negated.

PMI Write Strobe
After the bus master gates the data onto the bus, PWTSTB is asserted to
latch the data into the write buffer of the PMI slave.

7-2

Table 7-2 PMI Slave Signals

Pin Mnemonic Function

CBl PSSEL L PMI Slave Selected ,
Whenever a slave is addressed by the BDAL bus lines, it responds by
asserting PSSEL L. The UBA does not assert this signal.

CH1 PHBPAR L PMI High Byte Data Parity
This signal is generated by the selected PMI memory module during DATI
and DATBI cycles. It provides an odd parity bit for the high data byte
transmitted on BDAL <«<15:8>.

CKl1 PLBPAR L PMI Low Byte Data Parity
This signal is generated by the selected PMI memory module during DATI
and DATBI cycles. It provides an even parity bit for the low data byte
transmitted on BDAL <«7:0>.

CM1 PRDSTB L PMI Read Strobe .
This signal is asserted and negated by the selected PMI memory module to
control data transfers during DATI and DATBI cycles. The bus master uses
the negating edge of PRDSTB L to latch the first data word. The second
data word is latched at a specified time after PRDSTB L is negated.

Cli PSBFUL L PMI Slave Buffer Full

The selected PMI slave asserts PSBFUL L during DATO and DATBO
cycles to indicate that its write buffer is full and, consequently, it cannot
respond to another cycle request. The bus master may output another
address while PSBFUL L is asserted, but it must not assert PBCYC L until
PSBFUL L is negated.

7-3

Table 7-3 PMI Unibus Adapter Signals

Pin

Mnemonic

Function

DDI

CF1

CDlI

Cvl

CR1

PMAPE L

PUBSYS L

PUBMEM L

PUBTMO L

PBSY L

PMI Unibus Map Enable

The KDJ11-B asserts this signal when bit 5 of MMR3 is set. The signal is
negated when bit 5 is cleared or reset. The UBA enables the Unibus map
when PMAPE L is asserted and disables the Unibus map when PMAPE L
is negated. The memory modules do not use this signal.

PMI Unibus System

In a Unibus system, PUBSYS L is asserted by the UBA to direct the
KDJ11-B to follow PMI protocol for all data transfers, whether PSSEL L is
asserted or not. LSI-11 bus protocol is disabled for all PMI devices when
PUBSYS L is asserted.

In an LSI-11 system, PUBSYS L is always negated. If PSSEL L is negated,
the KDJ11-B follows LSI-11 protocol and the PMI memory then responds
to the LSI-11 protocol by the LSI DMA devices.

PMI Unibus Memory

The UBA asserts PUBMEM L to indicate that Unibus memory space is
being addressed. The signal is latched when PBCYC L is asserted. When a
PMI slave is addressed, it asserts PSSEL L, but it must not respond to
the PMI control signals if PUBMEM L is asserted. The KDJ11-B ignores
the PSSEL L signal if PUBMEM L is asserted.

PMI Unibus Timeout
The UBA asserts PUBTMO L in response to any of the following
conditions.

e When an NXM timeout occurs and the KDJ11-B addresses the Unibus
® When a sack timeout occurs during an interrupt cycle

e When a Unibus interrupting device was granted bus mastership, but
fails to execute an interrupt transaction

PMI Busy

This signal is asserted by the PMI bus master (KDJ11-B or UBA) when it
gains control of the PMI bus. The PMI bus master negates this signal when
it relinquishes PMI mastership.

The KDJ11-B is the bus master at power-up and when the bus is idle.

Table 7-4 LSI Bus Signals

Pin Mnemonic Function

AK2 BWTBT L Write Byte (PMI Write Indlcatlon)
In a PMI system, BWTBT L is used in conjunction with PBYT L to define
the data transfer cycle. BWTBT L and PBYT L are asserted for this
purpose when the bus master gates the address onto the BDAL lines.
BWTBT L PBYT L Bus Cycle
H H DATI or DATBI
H L DATIP
L H DATO
L L DATOB

AF2 BRPLY L Reply
During PMI cycles, BRPLY L is asserted by the KDJ11-B and the PMI
slave to prevent the next bus master from gaining control of the bus too
soon. In a Unibus system, BRPLY L is asserted by the UBA as a slave
response during the PMI DATOB cycle and interrupt vector DATI cycle.

NOTE |
The PMI memory slave modules in a Unibus system
must have BRPLY L disabled at all times.

AH2 BDIN L - Data Input
The BDIN L signal is only used in PMI Unibus systems during interrupt
grant cycles. The KDJ11-B asserts BDIN L after it gates the interrupt
priority, BDAL bits <3:0>, onto the bus. The UBA then latches the
interrupt priority data using the leading edge of BDIN L.

AM2 BIAKI L Interrupt Acknowledge In

AN2 BIAKO L Interrupt Acknowledge Out
These signals are only used in PMI Unibus systems during the interrupt
grant cycles. The KDJ11-B asserts the BIAKI L signal and the UBA
acknowledges it by asserting one of the Unibus bus grant signals.

BBI BPOK H Power OK

This signal is only used in PMI Unibus systems for the Unibus
power-up/power-down protocol. This signal is asserted and negated by the
UBA in response to the Unibus AC LO signal. The assertion of AC LO may
be prolonged by the Unibus devices or the PMI memory during power-up.

7.3 PMI OPERATION IN AN LSI-11 SYSTEM

The KDJ11-B is the default bus master in an LSI-11 system. Any bus device that has the appropriate
circuits can become the bus master and control data transfers via the LSI-11 bus. The KDJ11-B relin-
quishes control of the bus by acknowledging a DMA request from a DMA device which then becomes bus
master. During the time that a DMA device is bus master, there is no PMI master. The standard LSI-11
bus operations are described in Chapter 6.

If the KIDJ11-B receives a DMA request while performing a PMI cycle or while gating an address onto the
bus, it must also perform the following relationships.

1. If the KDJ11-B has gated an address onto the bus for a PMI cycle or an LSI bus cycle and
wants to abort the cycle, it removes the address and control signals from the bus and asserts the
BDMG L signal.

2. In a PMI data transfer cycle, the KDJ11-B asserts the BDMG L signal after it asserts the
BRPLY L signal.

3. In a PMI DATIP cycle, the KDJ11-B negates the BRPLY L signal before the PMI slave
removes the data from the bus.

4. Ina PMI DATOB cycle, the KDJ11-B negates the BRPLY L signal before it removes the data
from the bus.

5. Ina PMI DATOB cycle, the PMI slave negates the BRPLY 1 signal before it is ready to receive
the BSYNC L signal from a DMA device.

The KDJ11-B can regain bus mastership only after BSYNC L and BSACK L have been negated by the
DMA device.

7.4 PMI OPERATION IN A UNIBUS SYSTEM

In a Unibus system the KDJ11-B CPU is the default PMI master and the KTJ11-B UBA is the default
Unibus master. When the CPU as the PMI master addresses the Unibus memory or 1/O page, the UBA
responds as a PMI slave while simultaneously controlling the Unibus side of the transaction as the bus
master.

The UBA can become the PMI master when the CPU issues a DMA grant or performs an interrupt
transaction. The DMA or interrupt grant is accepted by the UBA and passes the DMA or interrupt grant
onto a Unibus device, which would then become the Unibus master.

In Unibus systems, the bus master and PMI master can be requested by an NPR or interrupt request from
a bus device, or a DMA or interrupt request from the UBA.

7.4.1 Bus Device NPR or DMA

Any Unibus device that is capable of being a Unibus master can issue an NPR or DMA request to become
bus master and control data transfers. When a Unibus device becomes the bus master through an NPR or
DMA request, it can perform Unibus DATI, DATIP, DATO and DATOB cycles. The UBA responds as
a Unibus slave when accessing PMI memory, the PMI 1/O page or a UBA 1/0O page location on behalf of
a Unibus master. During the same cycle, the UBA also acts as the PMI bus master to control the PMI
portion of the data transfer for accesses to PMI memory or the PMI 1/0O page.

7-6

The KDJ11-B and the UBA use the following protocol to arbitrate an NPR.

1.

10.

11.

12

13.

14.

The UBA asserts the DMA request (DMR) after receipt of a Unibus NPR or when it is ready to
transfer data to or from memory.

The KDJ11-B bus arbitrator asserts the DMA grant (DMGO) after receiving the DMR input
and after the negation of BSACK by the UBA.

NOTE
The KDJ11-B does not always give DMA requests
unconditional priority. The KDJ11-B can be
programmed to retain top priority for a predeter-
mined amount of time while waiting to perform a
memory transfer or honor an interrupt request.

The UBA enters the DMA cycle if it is the highest requesting priority or it asserts the
nonprocessor grant (NPG) to the Unibus after receiving the DMG from the KDJ11-B.

Since the UBA does not have the required priority it cannot be the next bus master. Instead, it
negates bus busy (BBSY) after the assertion of DMR and clears the Unibus.

The device with the highest priority asserts select acknowledge (SACK) to the UBA and negates
the NPR after the UBA asserts NPG.

This device is now master of the Unibus and asserts BBSY and SACK when the previous bus
master relinquishes the bus by negating BBSY. The new bus master may then initiate data
transfer cycles.

The UBA asserts BSACK to the KDJ11-B after receiving Unibus SACK or because of a
timeout ocecurring 10 us after it asserts NPG. If Unibus SACK is not received within 10 us
after the assertion of NPG, the UBA automatically asserts BSACK.

The UBA asserts transmitted PMI busy (PBSY) after it is negated by the PMI bus master. The
UBA is now the PMI bus master and can initiate PMI data transfer cycles.

The KDJ11-B bus arbitrator negates DMGO after BSACK is asserted. Since the UBA provides
the timeout function, the KDJ11-B maintains DMGO until it receives BSACK.

The UBA negates NPG after the KDJ11-B negates DMGO.

The device that is the current bus master negates SACK after it asserts BBSY and receives the
negation of NPG.

The UBA negates BSACK after the Unibus SACK is negated and after BBSY is asserted. The
KDJ11-B bus arbitrator continues arbitration for 75 ns after BSACK is negated.

The bus master negates BBSY after it has cleared the bus.

If the KDJ11-B is the next PMI bus master, the UBA or the current bus master clears the bus,
the PMI control data and negates PBSY to relinquish control of the PMI bus.

7-7

7.4.2 PMI Bus Device Interrupt

Any Unibus device that is capable of being a bus master can issue a BR7 through 4 request and become
the bus master to control data or interrupt vector transfers. In both cases, the UBA is the PMI master and
responds as a slave if the device performs an interrupt vector transaction or accesses the PMI memory, the
PMI I/0 page or the UBA 1/0 page. When a Unibus device becomes the bus master through an interrupt
request, it can perform the same Unibus data transfers described for the NPR.

The KDJ11-B and the UBA use the following protocol to arbitrate an interrupt request.
1. In response to a Unibus device, the UBA asserts an interrupt request on BIRQ <7:4>,
2. The KDJ11-B bus arbitrator responds as follows.
a. Asserts interrupt level on BDAL <3:0>.
b. Asserts BDIN 150 ns after gating BDAL <3:0>.
c. Asserts the interrupt acknowledge grant (BIAKO) 250 ns after asserting BDIN.

3. The UBA latches BDAL <3:0> when BDIN is asserted and asserts the Unibus interrupt level
BG <7:4> after BIAKO is asserted.

4. Since the UBA does not have the highest priority, it negates BBSY after it asserts BG <7:4>
and clears the Unibus.

5. The Unibus device with the highest priority asserts select acknowledge (SACK) after it receives
BG <7:4> and negates its interrupt request.

6. The UBA asserts BSACK to the KDJ11-B after the device asserts SACK.

NOTE
The UBA asserts PUBTMO to indicate a timeout if
SACK is not received within 10 us after the asser-
tion of BG <7:4>. The KDJ11-B cancels the inter-
rupt cycle and becomes the PMI bus master by
receiving PUBTMO.

7. The UBA asserts PBSY after it asserts BSACK and after the previous PMI bus master negates
PBSY. The UBA now has control of the PMI and may initiate PMI data transfer or interrupt:
cycles after PBSY is asserted.

8. The UBA negates BG <7:4> after BSACK is asserted and negates BDGMO if BSACK is not
asserted within the 10 us timeout period.

9. The new Unibus master asserts BBSY after it asserts SACK and the previous bus master
negates BBSY.

10. The bus master negates SACK after the negation of BG <7:4> and after the assertion of BBSY.

7-8

11. The UBA negates BSACK to the KDJ11-B after the negation of SACK and the assertion of
PBSY.

12. The KDJ11-B resumes NPR arbitration for 75 ns after the negation of BSACK, but does not
resume BIRQ arbitration until the interrupt request is aborted by the assertion of PUBTMO or
the completion of the interrupt operation.

13. If a Unibus device responds to BG <7:4> with one or more DMA transfers, the UBA responds
as it would to a device that received bus mastership by an NPR request. The assertion of BDIN
and BIAKO by the KDJ11-B has no effect on the PMI protocol.

14. If the Unibus master relinquishes control without sending the interrupt vector, the UBA asserts
PUBTMO, indicating a timeout to the KDJ11-B, and the interrupt cycle is aborted.

15. The Unibus master negates BBSY after it clears the Unibus.

7.5 PMI DATA TRANSFERS
There are three general categories of PMI data transfer cycles. They are the DATI/DATIP, DATBI, and
DATO/DATOB cycles. They are briefly described below.

On the Q22-Bus, the bus master can perform a read-modify-write (DATIO or DATIOB) cycle that
transmits an address, reads a data word or byte, and then writes the data word or byte to the same address.
The PMI read-modify-write is performed by a DATIP cycle followed by a DATO or DATOB cycle. The
PMI bus master has the responsibility of controlling the bus for the duration of both cycles.

7.5.1 PMI Data In/Data In Pause

The DATI and the DATIP cycles are used to read one or two words when the PMI bus master accesses the
PMI memory. When the PMI bus master accesses the I/O page or the Unibus memory, it can read only
one word. The PMI bus master detects an I/O page reference by the assertion of TBS7 and a Unibus
memory reference by the assertion of PUBMEM. : '

The PMI DATIP cycle is identical to the DATI cycle except that TPBYT is asserted with TADDR to
indicate that the cycle immediately following the current cycle will be a DATO cycle to the same address.
The protocol used by the DATI and DATIP cycles is as follows.

1. When the PMI master assumes control of the bus, the BDAL <21:0> lines are addressed, BBS7
is asserted, and PBYT is asserted for DATIP cycles.

2. Each PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL <21:0> and
BBS7 signals, if necessary.

3. The UBA asserts PUBMEM within 100 ns ns after it receives the asserted BDAL <21:0> and
BBS7 signals, if necessary.

4. The PMI master receives PSSEL within 130 ns after gating the asserted BDAL <21:0> and
BBS7 signals.

5. The PMI master receives PUBMEM within 120 ns after gating the asserted BDAL <21:0> and
BBS7 signals.

7-9

6.

10.

11.

12.

13.

14.

If PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows.

a. The PMI master asserts PBCYC within 130 ns after gating the BDAL <21:0>, BBS7, and
PBYT signals and only after PSBFUL is negated.

b. The PMI master continues to assert the BDAL <21:0>, BBS7, and PBYT signals for a
minimum of 40 ns and a maximum of 100 ns after asserting PBCYC.

C. The UBA latches PUBMEM when PBCYC is asserted.

d. The PMI slave receives stable BDAL <21:0>, BBS7, and PBYT signals for 65 ns
(minimum) before PBCYC is asserted and for 30 ns after PBCYC is asserted.

e. The PMI slave receives a valid PUBMEM from 10 ns (minimum) before the assertion of
PBCYC and until 10 ns before PBCYC is negated.

If PSSEL is negated and the KDJ11-B is the PMI master, then PMI cycles are performed with
the UBA responding as a slave, and follow the routine listed above.

If PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it aborts the
PMI cycle and does not respond as a Unibus slave.

The assertion of BRPLY by the PMI slave is optional in LSI systems. Its protocol is as follows.
a. The PMI slave asserts BRPLY after PBCYC is asserted.
b. The PMI slave negates BRPLY within 100 ns after the negation of PRDSTB.
NOTE

In Unibus systems with PMI memory as a slave,

BRPLY must be disabled at all times.
The PMI slave gates the data onto the bus within 125 ns after the assertion of PBCYC.
The PMI slave gates PHBPAR and PLBPAR parity bits after the assertion of PBCYC. These
parity bits are generated only for the memory locations being cached on the KDJ11-B from the
main memory.
The PMI slave asserts PRDSTB after the assertion of PBCYC.
The PMI slave negates PRDSTB within 150 ns after the assertion of PBCYC. It is negated
within 75 ns after the first data word is gated on the bus and 55 ns after the PHBPAR and
PLBPAR bits are gated for the first word.

The PMI slave maintains the data word, PHBPAR and PLBPAR for 30 ns after negating
PRDSTB.

7-10

15. The PMI master receives the first data word from 10 ns before PRDSTB is negated and until
20 ns after PRDSTB is negated.

16. The PMI master receives PHBPAR and PLBPAR from 35 vns before PRDSTB is negated and
until 10 ns after PRDSTB is negated.

17. 1f the PMI master is executing a single word read, it negates PBCYC after PRDSTB is negated
and latches the data before PRDSTB is negated. The following process is used only with double
word reads.

a. The PMI slave gates the second word data onto the bus after PRDSTB is negated.

b. The PMI slave gates the second word PHBPAR and PLBPAR bits onto the bus within
100 ns after PRDSTB is negated.

¢. The PMI master receives the second data word within 145 ns after PRDSTB is negated.

d. The PMI master receives the second word PHBPAR and PLBPAR bits within 120 ns
after PRDSTB is negated.

e. If the PMI master is reading two words, it negates PBCYC after latching the second word.

f. The PMI slave removes the second word data from the bus within 50 ns after PBCYC is
negated.

7.5.2 PMI Block Data In

The DATBI cycle is used to read up to 16 words of data when the PMI bus master accesses the PMI
memory. The PMI bus master cannot use the DATBI cycle when accessing the I/O page or the
Unibus memory. The PMI bus master detects an I/O page reference by the assertion of TBS7, and a
Unibus memory reference by the assertion of PUBMEM. .

The PMI bus master can only start DATBI transfers on even word boundaries. This means that address
bits <1:0> must be equal to zeros. The PMI bus master cannot use the DATBI cycle to transfer across 16
word address boundaries. This means that the PMI bus master must terminate DATBI data transfers when
it reaches a memory location where the address bits <4:1> are all equal to ones. The protocol used by the
DATBI cycle is as follows.

1. When the PMI master assumes control of the bus, the BDAL <21:0> lines are addressed and
BBS7 is asserted. :

2. Each PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL <21:0> an
BBS7 signals, if necessary. '

3. The UBA asserts PUBMEM within 100 ns ns after it receives the asserted BDAL <21:0> and
BBS7 signals, if necessary.

4. The PMI master receives PSSEL within 130 ns after gating the asserted BDAL <21:0> and
BBS7 signals.

5. The PMI master receives PUBMEM within 120 ns after gating the asserted BDAL <21:0> and
BBS7 signals. B

6.

10.

11

12.

13.

14.

15.

16.

17.

if PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows.

a. The PMI master asserts PBCYC within 130 ns after gating the BDAL <21:0>, BBS7,
BWTBT and PBYT signals, and after PSBFUL is negated.

b. The PMI master continues to assert the BDAL <21:0>, BBS7, BWTBT and PBYT signals
for a minimum of 40 ns and a maximum of 100 ns after it asserts PBCYC.

¢. The UBA latches PUBMEM when PBCYC is asserted.

¢. The PMI slave receives stable BDAL <21:0>, BBS7, BWTBT and PBYT signals for 65 ns
(minimum) before PBCYC is asserted and for 30 ns after PBCYC is asserted.

¢. The PMI slave receives a valid PUBMEM from 10 ns (minimum) before the assertion of
PBCYC and until 10 ns before PBCYC is negated.

If PSSEL is negated and the KDJ11-B is the PMI master, the PMI cycles are performed with
the UBA responding as a slave, and follow the routine listed above.

I[f PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it aborts the
PMI cycle and does not respond as a Unibus slave.

The PMI master asserts PBLKM within 50 ns after PBCYC is asserted.
The assertion of BRPLY by the PMI slave is optional in LSI systems. Its protocol is as follows.
a. The PMI slave asserts BRPLY after PBCYC is asserted.
b. The PMI slave negates BRPLY within 100 ns after the negation of PRDSTB.
NOTE

In Unibus systems with PMI memory as a slave,

BRPLY must be disabled at all times.
The PMI slave gates the data onto the bus within 125 ns after the assertion of PBCYC.
The PMI slave gates PHBPAR and PLBPAR parity bits after the assertion of PBCYC. These
narity bits are generated only for the memory locations being cached on the KDJ11-B from the
main memory.
The PMI slave asserts PRDSTB after the assertion of PBCYC.
The PMI slave negates PRDSTB within 150 ns after the assertion of PBCYC. It is negated
within 75 ns after the first data word is gated on the bus and 55 ns after the PHBPAR and
PLBPAR bits are gated for the first word.

The PMI slave maintains the data word, PHBPAR and PLBPAR for 30 ns after negating
PRDSTB.

The PMI master receives the first data word from 10 ns before PRDSTB is negated and until
20 ns after PRDSTB is negated.

The PMI master receives PHBPAR and PLBPAR from 35 ns before PRDSTB is negated and
until 10 ns after PRDSTB is negated.

7-12

18.
19.

20.

21.

22.

The PMI slave gates the second word data onto the bus within 80 ns after PRDSTB is negated.

The PMI slave gates the second word PHBPAR and PLBPAR bits onto the bus within 100 ns
after PRDSTB is negated.

The PMI master receives the second data word within 145 ns after PRDSTB is negated.

The PMI master receives the second word PHBPAR and PLBPAR bits within 120 ns after
PRDSTB is negated.

If four or more data words are to be transmitted, the sequence proceeds as follows.

a. The bus master negates PBLKM within 240 ns after the negation of PRDSTB and after
latching the second word data.

b. The PMI slave removes the second word data when PBLKM is negated.
c. The PMI slave asserts PRDSTB after the negation of PBLKM.

d. The PMI master asserts PBLKM 40 to 70 ns after negaﬁng it.

e. Return to step 13 above.

If two more data words are to be transmitted, the sequence proceeds as follows.

a. The bus master negates PBLKM within 240 ns after the negation of PRDSTB and after
latching the second word data.

b. The PMI slave removes the second word data when PBLKM is negated.
c. The PMI slave asserts PRDSTB after the negation of PBLKM.

d. Return to step 13 above.

If the lasit data word is to be transmitted, the sequence proceeds as follows.
a. The bus master negates PBCYC after latching the last word data.

b. The PMI slave removes the last word data from bus within 50 ns after PBCYC is negated.

7.5.3 PMI Data Out/Data Out Byte
The DATO and DATOB cycles are used by the PMI bus master to transfer a single word or byte to a PMI
slave. The protocol used by the DATO and DATOB cycles is as follows.

1.

When the PMI master assumes control of the bus, the BDAL <21:0> lines are addressed, and
BBS7 and BWTBT are asserted for DATO cycles. In addition, PBYT is asserted for DATOB
cycles.

Each PMI slave asserts PSSEL within 45 ns after it receives the asserted BDAL <21:0> and
BBS7 signals, if necessary.

The UBA asserts PUBMEM within 100 ns ns after it receives the asserted BDAL <21:0> and
BBS7 signals, if necessary.

10.

11.

12.

13.

14.

15.

16.

17.

The PMI master receives PSSEL within 130 ns after gating the asserted BDAL <21:0> and
BBS7 signals.

The PMI master receives PUBMEM within 120 ns after gating the asserted BDAL <21:0> and
BBS7 signals.

If PSSEL is asserted and PUBMEM is negated, the PMI master proceeds as follows.

a. The PMI master asserts PBCYC within 130 ns after gating the BDAL <21:0>, BBS7,
BWTBT and PBYT signals, and after PSBFUL is negated.

b. The PMI master continues to assert the BDAL <21:0>, BBS7, BWTBT and PBYT signals
for a minimum of 40 ns and a maximum of 100 ns after it asserts PBCYC.

C. The UBA latches PUBMEM when PBCYC is asserted.

d. The PMI slave receives stable BDAL <21:0>, BBS7, BWTBT and PBYT signals for 65 ns
(minimum) before PBCYC is asserted and for 30 ns after PBCYC is asserted.

e. The PMI slave receives a valid PUBMEM from 10 ns (minimum) before the assertion of
PBCYC and until 10 ns before PBCYC is negated.

If PSSEL is negated and the KDJ11-B is the PMI master, the PMI cycles are performed with
the UBA responding as a slave, and follow the routine listed above.

If PSSEL is negated and PUBMEM is asserted, the UBA is the PMI master and it aborts the
PMI cycle and does not respond as a Unibus slave.

The PMI slave asserts BRPLY within 50 ns after the assertion of PBCYC (LSI bus systems
only).

NOTE
In Unibus systems with PMI memory as a slave,
BRPLY must be disabled at all times.
The PMI master gates the data onto the bus within 80 ns after the assertion of PBCYC.
The PMI master asserts PWTSTB within 75 ns after the data is placed on the bus.
The PMI maintains the data on the bus for 30 ns after it asserts PWTSTB.

The PMI slave receives the data from within 10 ns before the assertion of PWTSTB and until
20 ns after the assertion of PWTSTB.

The PMI slave asserts PSBFUL within 50 ns after the assertion of PWTSTB.
The PMI master negates PWTSTB 40 ns after asserting it.
The PMI master negates PBCYC after negating PWTSTB.

The PMI slave negates BRPLY within 300 ns (LSI systems) and cannot perform another PMI
or LSI bus cycle during this period.

7-14

7.6 PMI INTERRUPT PROTOCOL

The PMI interrupt protocol consists of the interrupt request, granting the interrupt and fetching the
interrupt vector to service the interrupt. The LSI requirements for an interrupt are defined in Chapter 6.
The Unibus requirements for the request and grant are described in Paragraph 7.4.2. The transfer of the
interrupt vector from the requesting Unibus device to the KDJ11-B requires a combination of the Unibus
and LSI bus protocols as follows.

1. Once the requesting device is the bus master, it places the interrupt vector on the Unibus after it
asserts BBSY.

2. The requesting device asserts INTR after the vector data is on the Unibus.
3. The UBA is the PMI bus master and asserts BRPLY after it receives INTR on the Unibus.

4. The UBA receives the interrupt vector and places it on the BDAL data lines within 75 ns after
BRPLY is asserted.

5. The UBA latches the mterrupt vector within 75 ns after INTR is asserted and then asserts
SSYN on the Unibus.

6. The requesting device is the bus master and it removes the vector after it receives SSYN. It also
negates INTR at this time.

7. The requesting device negates BBSY after negating INTR to relinquish bus mastership.
8. The KDJ11-B latches the vector data within 200 ns after the UBA-asserted BRPLY.
9. The KDJ11-B negates BDIN and BIAKO after it latches the vector data.
10. The UBA negates BRPLY after BIAKO is negated.

7.7 PMI POWER-UP/POWER-DOWN

The power- up/power down protocol for the PMI bus in an LSI system is described in Chapter 6. The
~ protocol used in a Unibus system is similar to that of the LSI system. The prlmary difference is that in an
LSI system, the BPOK sxgnal is negated by the power supply 3 ms after it is asserted, and in the Unibus
system, the KDJ11-B must ignore the assertion of AC LO for a minimum of 2 ms after it is asserted.
These delays allow the system software enough time to prepare for a power-down before the KDJ11-B can
execute the power-down sequence.

In the Unibus system, the KDJ11-B receives DC LO as the DCOK signal, and the BPOK signal is isolated
from AC LO by the UBA. The PMI memory interfaces to AC LO, but not to BPOK on the LSI bus.
Therefore, when a Unibus device asserts AC LO to the UBA, it asserts BPOK for a mimimum of 2 ms
before it allows AC LO to negate BPOK.

7-15

CHAPTER 8
- ADDRESSING MODES

8.1 INTRODUCTION :

The KDJ11-B utilizes the six addressing modes described below with the base instruction set to control or
program the operations executed by the microprocessor. Included in this chapter are specific examples
of how these addressing modes are used.

Single-Operand Addressing — One part of the instruction word specifies the registers; the other
part provides information for locating the operand.

Double-Operand Addressing — One part of the instruction word specifies the registers; the
remaining parts provide information for locating two operands.

Direct Addressing — The operand is the content of the selected register.

Deferred (Indirect) Addressing — The cbntcnts of the selected register is the address of the
operand.

Use of the PC as a General Purpose Register — The PC is different from other general purpose
registers in one important respect. Whenever the processor retrieves an instruction, it automat-
ically advances the PC by 2. By combining this automatic advancement of the PC with four of
the basic addressing' modes, the four special PC modes - immediate, absolute, relative, and
relative-deferred ~ are created.

Use of the General Purpose Registers as an SP — General purpose registers can be used for stack
operations.

8.2 ADDRESSING MODES _
Data stored in memory must be accessed and manipulated. Data handling is specified by a KDJ11-B
instruction (MOV, ADD, etc.), and usually includes the following.

The function to be performed (operation code)

The general purpose register to be used when locating the source operand, and/or destination
operand (where required)

The addressing mode, which specifies how the selected registers are to be used

A large portion of the data handled by a computer is structured (character strings, arrays, lists, etc.). The
KDJ11-B addressing modes provide for efficient and flexible handling of structured data.

A general purpose register may be used with an instruction in any of the following ways.
1. As an accumulator -~ The data to be manipulated resides in the register.

2. Asa pointer — The contents of the register is the address of an operand, rather than the operand
itself.

3. As a pointer that automatically steps through memory locations — Automatically steppmg
forward through consecutive locations is known as autoincrement addressing; automatically
stepping backward is known as autodecrement addressing. These modes are particularly useful
for processing tabular or array data.

4, As an index register — In this instance, the contents of the register and the word following the
instruction are summed to produce the address of the operand. This allows easy access to
variable entries in a list.

An important KDJ11-B feature that should be considered with the addressing modes is the following
register arrangement. '

e Two sets of six general purpose registers (R0O-R5 and R0’-RY’)
® A hardware SP register (R6) for each processor mode (kernel, supervisor, user)
e A PC register (R7)

Registers RO-R5 and RO’-R 5’ are not dedicated to any specific function. Their uses are determined by
decoded instructions and include the following.

e They can be used for operand storage. For example, the contents of two registers can be added
and stored in another register.

® They can contain the address of an operand or serve as pointers to the address of an operand.
e They can be used for the autoincrement or autodecrement features.
® They can be used as index registers for convenient data and program access.

The KDJ11-B also has instruction addressing mode combinations that facilitate temporary data storage
structures. These can be used for convenient handling of data that must be accessed frequently. This is
known -as stack manipulation. The register that keeps track of stack manipulation is called the stack
pointer, or SP. Any register can be used as an SP under program control. However, certain instructions
associated with subroutine linkage and interrupt service automatically use R6 as a hardware stack pointer.
For this reason, R6 is frequently referred to as the SP. The SP functions include the following.

e The SP keeps track of the latest entry on the stack.

e The SP moves down as items are added to the stack and moves up as items are removed.
Therefore, the SP always points to the top of the stack

e The hardware stack is used during trap or interrupt handlmg to store 1nformat10n, allowing an
orderly return to the interrupted program.

R7 is used by the processor as its PC. It is recommended that R7 not be used as an SP or accumulator.
Whenever an instruction is fetched from memory, the PC is automatically incremented by two to point to
the next instruction word.

8.2.1 Single-Operand Addressing

The instruction format for all single-operand instructions (such as CLR, INC, TST) is shown in Figure 8-1.
Bits <15:6> specify the operation code that defines the type of instruction to be executed. Bits <5:0> form
a 6-bit field called the destination address field. The destination address field consists of two subfields, as
follows.

® Bits <5:3> specify the destination mode. Bit 3 is set to indicate deferred (indirect) addressing. -

® Bits <2:0> specify which of the eight general purpose registers is to be referenced by this
instruction word.

8.2.2 Double-Operand Addressing

Operations that employ two operands (such as ADD, SUB, MOV, and CMP) are handled by instructions
that specify two addresses. The first operand is called the source operand; the second is called the
destination operand. Bit assignments in the source and destination address fields may specify different
modes and different registers. The instruction format for the double-operand instruction is shown in
Figure 8-2.

The source address field is used to select the source operand (the first operand). The destination is used
similarly, and locates the second operand and the result. For example, the instruction ADD A, B adds the
contents (source operand) of location A to the contents (destination operand) of location B. After
execution, B contains the result of the addition and the contents of A is unchanged.

Examples throughout this chapter use the sample KDJ11-B instructions given in Table 8-1. (A complete
list of KDJ11-B instructions appears in Chapter 9, Table 9-1).

15 06 05 04 03 02 00
¥ 1 1 L] T T T T Ll T LS T T
MODE Rn
A il 1 1 4 I i 1 ! I i
\ Al J
OP CODE DESTINATION ADDRESS

MR.5458

Figure 8-1 Single-Operand Addressing

15 12 11 10 09 08 06 05 04 03 02 00
¥ T T T T 1 T T ¥ T 1
OP CODE MODE Rn] MODE Rn
| { 1 { L . 1 | i 4
\ Al J
SOURCE ADDRESS DESTINATION ADDRESS

MR-5459

Figure 8-2 Double-Operand Addressing

8-3

Table 8-1 Sample KDJ11-B Instructions

Mnemonic Description Octal Code*

CLR Clear — Zero the specified destination. 0050DD

CLRB Clear byte —~ Zero the byte in the specified destination. 1050DD

INC Increment - Add one to the contents of the destination. 0052DD

INCB Increment byte — Add one to the contents of the destination byte. 1052DD

COM Complement — Replace the contents of the destination by its 0051DD
logical complement; each O bit is set and each 1 bit is cleared.

COMB Complement byte — Replace the contents of the destination byte 1051DD
by its logical complement; each 0 bit is set and each 1 bit is ‘
cleared.

ADD Add - Add the source operand to the destination operand and 06SSDD

store the result at the destination address.

* DD = Destination field (six bits)
SS = Source field (six bits)

8.2.3 Direct Addressing
The following summarizes the four basic modes used with direct addressing. These direct modes are
illustrated in Figures 8-3 to 8-6.

Mode
0

MR-5460

Figure 8-3 Mode 0, Register

Assembler
Name Syntax Function
Register Rn Register contains operand.
INSTRUCTION ——={ OPERAND

Mode

Mode

Mode

Assembler
Name Syntax Function

Autoincrement (Rn)+ Register is used as a pointer to sequential
data and then is incremented.

INSTRUCTION ADDRESS OPERAND

+2 FOR WORD,
+1 FORBYTE

MR-5461

- Figure 8-4 Mode 2, Autoincrement

Assembler
Name Syntax Function
Autodecrement -(Rn) Register is decremented and then used as a
pointer.
INSTRUCTION #1 ADDRESS »| -2 FOR WORD, OPERAND
[-1 FOR BYTE
Figure 8-5 Mode 4, Autodecrement
Assembler
Name Syntax Function
Index X(Rn) Value X is added to (Rn) to produce
address of operand. Neither X nor (Rn) is
modified.

INSTRUCTION > ADDRESS
1’;@_$ orEmAND
X

MR-5463

Figure 8-6 Mode 6, Index

8-5

8.2.3.1 Register Mode — With register mode (mode 0) any of the general registers may be used as simple
accumulators, with the operand contained in the selected register. Since they are hardware registers
(within the processor), the general registers operate at high speeds and provide speed advantages when
used for operating on frequently accessed variables. The assembler interprets and assembles instructions of
the form OPR Rn as register mode operations. Rn represents a general register name or number and OPR
is used to represent a general instruction mnemonic. Assembler syntax requires that a general register be
defined as follows.

RC = %0 (% sign indicates register definition)

R1 = %l

R2 = %2, etc.
Registers are typically referred to by name as R0, R1, R2, R3, R4, R5, R6, and R7. However, R6 and R7
are also referred to as SP and PC, respectively. Three register mode operations are illustrated in
Figures &7 to 8-9.
Register Mode Examples:
Symbolic Octal Code Instruction Name

INC R3 005203 Increment

Operation: Add one to the contents of R3.

T T T T T T T Y T T T T
| 0 0 0 0 1 0 1 0 1 0 0 o] 0 0 1 1+ - SELECT

, | . \ . . . ! i . REGISTER

OP CODE (INC(0052)) DESTINATION FIELD

RO

R1

R2

e e e e e e e e

R3 il

R4

R5

RG (SP)

R7 (PC)

MR-5467

Figure 8-7 INC R3 Increment

8-6

Symbolic : Octal Code Instruction Name
ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4. .

BEFORE AFTER
R2 000002 R2 000002
R4 000004 R4 000006

MR-5468

Figure 8-8 ADD R2,R4 Add

Symbolic Octal Code Instruction Name

COMB R4 105104 Complement byte

Operation: 1’s complement bits <7:0> (byte) in R4. When general registers are used, byte instructions
(with the exception of MOVB) operate only on bits <7:0>, that is, byte 0 of the register. MOVB to a
register, unique for byte instructions, extends the most significant bit of the low-
mto the high byte of the selected register. Otherwise, MOVB operates on b

operates on words.

BEFORE AFTER
R4 022222 R4 022155

MR-5469

order byte (sign extension)
ytes the same way MOV

Figure 8-9 COMB R4 Complement Byte

8-7

8.2.3.2 Autoincrement Mode [OPR (Rn)+] — This mode (mode 2) provides for automatic stepping of a
pointer through sequential elements of a table of operands. It assumes the contents of the selected general
purpose register to be the address of the operand. Contents of registers are stepped (by one for byte
instructions, by two for word instructions, always by two for R6 and R7) to address the next sequential
location. The autoincrement mode is especially useful for array processing and stack processing. It accesses
an element of a table and then steps the pointer to address the next operand in the table. Although
autoincrement mode is most useful for table handling, it is completely general and may be used for a
variety of purposes. Three autoincrement mode operations are illustrated in Figures 8-10 to 8-12.

Autoincrement Mode Examples:
Symbolic Octal Code Instruction Name
CLR (RS5)+ 005025 Clear

Operation: Use contents of R5 as the address of the operand. Clear the selected operand and then
increment the contents of R5 by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 005025 R5 | 030000 20000 | 005025 R5 030002
; |
30000 1111116 30000 000000

MR-5464

Figure 8-10 CLR (R5)+ Clear

Symbolic Octal Code Instruction Name
CLRB (R5)+ 105025 Clear byte

Operation: Use contents of R5 as the address of the operand. Clear the selected byte operand and then
increment the contents of R5 by one. .

BEFORE AFTER
) ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 105025 R5 030000 20000 105025 R5 030001
T '
30000 11 | 116 30000 | 111 | 000

MR-5465

Figure 8-11 CLRB (R5)+ Clear Byte

8-8

Symbolic Octal Code Instruction Name
ADD (R2)+,R4 062204 Add

Operation: The contents of R2 is used as the address of the operand, which is added to the contents of R4.
R2 is then incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS
10000 062204 R2 100002 10000 062204 R2 100004
R4 010000 R4 020000
100002 | 010000 100002 010000

MR.5470

Figure 8-12 ADD (R2)+,R4 Add

8.2.3.3 Autodecrement Mode [OPR —(Rn)] - This mode (mode 4) is useful for processing data in a list in
reverse direction. The contents of the selected general purpose register is decremented (by one for byte
instructions, by two for word instructions) and then used as the address of the operand. The postincrement
and predecrement features on the KDJ11-B are intended to facilitate hardware/software stack operations.
. Three autodecrement mode operations are illustrated in Figures 8-13 to 8-15. '

Autodecrement Mode Examples:
Symbolic o Octal Code Instruction Name

INC —(RO) 005240 Increment

Operation: The contents of RO is decremented by two and used as the address of the operand. The operand
is incremented by one. ' '

BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 005240 RO I 017776 1000 | 005240 RO |} 017774
17774 000000 17774 000001

MR.5466

Figure 8-13 INC —(RO0) Increment

8-9

Symbolic Octal Code Instruction Name

INCB —(RO) 105240 Increment byte

Operation: The contents of RO is decremented by one and then used as the address of the operand. The
operand byte is increased by one.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1000 105240 RO 017776 1000 105240 RO 017775
|
i * T
17774 | 000 | 000 17774 | 00t | 000
1 [l
T T
17776 | 17776 |
I 1

MR-§471

Figure 8-14 INCB —(RO) Increment Byte

Symbolic Octal Code Instruction Name

ADD —(R3),R0 . 064300 Add

Operation: The contents of R3 is decremented by two and then used as a pointer to an operand (source),
which is added to the contents of RO (destination operand).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10020 | 064300 RO | 000020 10020 { 064300 | Ro| 0000070
R3 | 077776 R3[| 077774
|
77774 | 000050 ' 77774 | 000050
77776 77776

MR-6472

Figure 8-15 ADD —(R3),R0 Add

8-10

8.2.3.4 Index Mode [OPR X(Rn)] - In this mode (mode 6), the contents of the selected general purpose
register and an index word following the instruction word are summed to form the address of the operand.
The contents of the selected register may be used as a base for calculating a series of addresses, thus
allowing random access to elements of data structures. The selected register can then be modified by a
program to access data in the table. Index addressing instructions are of the form OPR X(Rn), where X is
the indexed word located in the memory location following the instruction word, and Rn is the selected
general purpose register. Three index mode operations are illustrated in Figures 8-16 to 8-18.

Index Mode Examples:

Symbolic Octal Code Instruction Name
CLR 200(R4) 005064 Clear
000200

Operation: The address of the operand is determined by adding 200 to the contents of R4. The operand
location is then cleared. ‘

BEFORE AFTER

ADDRESS SPACE REGISTER ' ADDRESS SPACE REGISTER
1020 005064 R4 001000 1020 005064 R4 001000
1022 000200 1022 000200
1024 1000 1024
+200
‘ 1200
1200 177777 1200 000000
1202

MR-5473

Figure 8-16 CLR 200(R4) Clear

Symbolic Octal Code Instruction Name
COMB 200(R1) 105161 Complement byte
000200

Operation: The contents of a location determined by adding 200 to the contents of R1 is 1’s comple-
mented, that is, logically complemented. :

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 105161 R1 017777 1020 105161 R1 017777
1022 000200 1022 000200
017777
+200
- 020177 '
20176 | 011 | 000 | : 20176 | 166 | oo0
i i
L
20200 i 20200 [

MR-8474

Figure 8-17 COMB 200(R1) Complement Byte

8-11

Symbolic Octal Code Instruction Name

ADD 30(R2),20(R5) 066265 Add
000030
000020

Operation: The contents of a location determined by adding 30 to the contents of R2 is added to the
contents of a location determined by adding 20 to the contents of R5. The result is stored at the destination
address, that is, 20(R5).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 R2 | 001100 1020 066265 R2 001100
1022 000030 1022 | 000030
1024 000020 R5 002000 1024 000020 R5 002000
1130 [000001 1130 000001
2020 000001 2020 000002
1100 2000
+30 +20
1130 2020

MR-5475

Figure 8-18 ADD 30(R2),20(R5) Add

8.2.4 Deferred (Indirect) Addressing

The four basic modes may also be used with deferred addressing. While in register mode the operand is the
contents of the selected register, in register-deferred mode the contents of the selected register
is the address of the operand.

In the three other deferred modes, the contents of the register selects the address of the operand rather
than the operand itself. These modes are therefore used when a table consists of addresses rather than
operands. The assembler syntax for indicating deferred addressing is @, or () when this is not ambiguous.

The following summarizes the deferred versions of the basic modes. These deferred modes are illustrated
in Figures 8-19 to 8-22.

Assembler :

Mode Name Syntax Function
1 Register- @Rn or (Rn) Register contains the address of the

deferred operand.

INSTRUCTION |——»] REGISTER OPERAND

3

MR-5476

Figure 8-19 Mode 1, Register-Deferred

8-12

Mode

Mode

Mode

Assembler

Register is first used as a pointer to a word
containing the address of the operand, and
then is incremented (always by two, even

Name Syntax Function
Autoincrement- @(Rn)+
deferred
for byte instructions).
INSTRUCTION \ REGISTER ADDRESS . OPERAND

3

+2 —

MR-5477

Figure 8-20 Mode '3, Autoincrement-Deferred

Assembler
Name Syntax Function
Autodecrement- @-(Rn) Register is decremented (always by two,
deferred even for byte instructions) and then used as
a pointer to a word containing the address
of the operand.
INSTRUCTION > REGISTER > -2 ADDRESS OPERAND
t
Figure 8-21 Mode 5, Autodecrement-Deferred -
Assembler
Name Syntax Function
Index-deferred - @X(Rn) Value X (stored in a word following the
instruction) and (Rn) are added. The sum is
used as a pointer to a word containing the
address of the operand. Neither X nor (Rn)
is modified.
INSTRUCTION REGISTER
—]’i>—q ADDRESS OPERAND
X

Figure 8-22 Mode 7, Index-Deferred

8-13

MR-5479

The following examples (Figures 8-23 to 8-26) further illustrate use of the deferred modes.
Register-Deferred Mode Example:

Symbolic Octal Code Instruction Name

CLR @R5 005015 | Clear

Operation: The contents of a location specified in RS is cleared.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

1676 RS 001700 | 1676 R5 001700

1700 000100 1700 000000

MR-5480

Figure 8-23 CLR @RS5 Clear

Autoincrement-Deferred Mode Example:
Symbolic Octal Code Instruction Name
INC @(R2)+ 005232 Increment

Operation: The contents of R2 is used as the address of the address of the operand. The operand is
increased by one; the contents of R2 is incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
R2 010300 R2 010302
1010 000025 1010 000026
1012 . 1012
10300 | 001010 | 10300 001010

MR-5481

Figure 8-24 INC @(R2)+ Increment

Autodecrement-Deferred Mode Example:
Symbolic ‘ Octal Code Instruction Name

COM @—(R0) 005150 Complement

Operation: The contents of RO is decremented by two and then used as the address of the address of the
operand. The operand is 1’s complemented, that is, logically complemented.

BEFORE AFTER
ADDRESS SPACE REGISTER . ADDRESS SPACE REGISTER
10100 012345 RO 010776 | 10100 165432 RO 010774
10102 10102
10774 010100 10774 010100
10776 10776

MR-5482

Figure 8-25 COM @—(R0) Complement

Index-Deferred Mode Example:

Symbolic Octal Code Instruction Name
ADD @1000(R2),R1 067201 Add
001000

Operation: Location 1000 and the contents of R2 are summed to produce the address of the address of the
source operand, the contents of which are added to the contents of R1. The result is stored in R1.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 R1 ‘001234 1020 067201 g R1] 001236
1022 001000 1022 001000
R2 000100 R2 000100
1024 1024
1050 000002 1050 000002
1100 001050 1100 001050
1000
+100
] 1100

MR-5483

Figure 8-26 ADD @1000(R2),R1 Add

8-15

8.2.5 Use of the PC as a General Purpose Register

Although R7 is a general purpose register, it doubles in function as the PC for the KDJ11-B. Whenever
the processor uses the PC to acquire a word from memory, the PC is automatically incremented by two to
contain the address of the next word of the instruction being exccuted or the address of the next instruction
to be executed. (When the program uses the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard KDJ11-B addressing modes. However, with four of these modes the
PC can provide advantages for handling Position-Independent Code (PIC) and unstructured data. When
utilizing the PC, these modes are termed immediate, absolute (or immediate-deferred), relative, and
" relative-deferred. They are summarized in the following chart.

. Assembler

Mode Name Syntax Function

2 Immediate #n Operand follows instruction.

3 Absolute @#A Absolute address of operand follows
instruction,

6 Relative A Relative address (index value) follows the
instruction.

7 Relative- @A Index value (stored in the word after the

deferred instruction) is the relative address for the

address of the operand.

When a standard program is available for different users, it is often helpful to be able to load it into
different areas of memory and run it in those areas. The KDJ11-B can accomplish the relocation of a
program very efficiently through the use of PIC, which is written by using the PC addressing modes. If an
instruction and its operands are moved in such a way that the relative distance between them is not altered,
the same offset relative to the PC can be used in all positions in memory. Thus, PIC usually references
locations relative to the current location.

The PC also greatly facilitates the handling of unstructured data. This is particularly true of the immediate
and relative modes.

8.2.5.1 Immediate Mode [OPR #n,DD] - With the PC, immediate mode (mode 2) is equivalent in use to
the autoincrement mode. It provides speed improvements for accessing constant operands by including the
constant in the memory location immediately following the instruction word. An immediate mode
operation is illustrated in Figure 8-27.

Immediate Mode Example:

Symbolic Octal Code Instruction Name
ADD #10,R0 062700 Add
000010

Operation: The value 10 is located in the second word of the instruction and is added to the contents of
RO. Just before this instruction is fetched and executed, the PC points to the first word of the instruction.
The processor fetches the first word and increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to fetch the operand (the second word of the
instruction) before it is incremented by two to point to the next instruction.

8-16

1020 062700 \RO
1022 | 000010 PC
1024

Figure 8-27

BEFORE

ADDRESS SPACE

ADD #10,R0 Add

REGISTER

000020

AFTER

ADDRESS SPACE REGISTER
1020 062700 RO 000030
1022 000010 PC

1024

L

MR-6484

8.2.5.2 Absolute Mode [OPR @#A] - Using the PC, this mode (mode 3) is the equivalent of the
immediate-deferred or autoincrement-deferred modes. The contents of the location following the in-
struction are taken as the address of the operand. Immediate data is interpreted as an absolute address,
that is, an address that remains constant no matter where in memory the assembled instruction occurs.
Two absolute mode operations are illustrated in Figures 8-28 and 8-29.

Absolute Mode Examples:

Symbolic
CLR @#1100

Octal Code

005037
001100

Operation: Clear the contents of location 1100.

BEFORE
ADDRESS SPACE
20 005037 \
22 001100
24
1100 177777
1102

PC

Instruction Name

Clear
AFTER
ADDRESS SPACE

20 005037

22 001100 PC

24 /
1100 000000
1102

Figure 8-28 CLR @ #1100 Clear

8-17

MR-5485

Symbolic Octal Code Instruction Name

ADD @#2000,R3 063703 Add
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20 063703 R3 000500 20 063703 R3 001000
22 002000 PC 22 002000 PC
24 1 24 /
2000 000300 2000 000300

MR-5486

Figure 8-29 ADD @ #2000 Add

8.2.5.3 Relative Addressing Mode [OPR A or OPR X(PC)] - Usi ng R7, this mode (mode 6) is
assembled as index mode. The base of the address calculation, which is stored in the second or third word
of the instruction, is not the address of the operand, but the number which, when added to the PC,
becomes the address of the operand. This mode is useful for writing PIC since the location referenced is
always fixed relative to the PC. When instructions are to be relocated, the operand is moved by the same
amount. The instruction OPR X(PC) is interpreted as ‘X is the location of A relative to the PC.” A relative
mode operation is illustrated in Figure 8-30.

Relative Addressing Mode Example:

Symbolic Octal Code Instruction Name
INC A 005267 ' Increment
000054

Operation: To increment location A, the contents of the memory location immediately following the
instruction word is added to the PC to produce address A. The contents of A is increased by one.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE

1020 005267 1020 0005267
1022 000054 PC 1022 000054
1024 1024 j«—PC
1026 1026
1100 000000 1024 1100 000001

| _+54

1100

MR-5487

Figure 8-30 INC A Increment

8-18

8.2.5.4 Relative-Deferred Addressing Mode [OPR @A or OPR @X(PC)] - This mode (mode 7) is
similar to relative mode, except that the second word of the instruction, when added to the PC, contains
the address of the address of the operand, rather than the address of the operand. The instruction OPR
@X(PC) is interpreted as ‘X is the location containing the address of A, relative to the PC.” A relative-
deferred mode operation is illustrated in Figure 8-31.

Relative-Deferred Addressing Mode Example:

Symbolic Octal Code Instruction Name
CLR @A 005077 Clear
000020

Operatlon Add second word of instruction to the updated PC to produce the address of the address of the
operand. Clear the operand.

BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
(PC = 1020) 1020 005077 1020 005077
1022 000020 PC 1022 000020 PC
1024 | 1024 1024
+20
; 1044
1044 010100 1044 010100
10100 | 100001 10100 000000

MR-5488

Figure 8-31 CLR @A Clear

8.2.6 Use of the General Purpese Registers as a Stack Pointer

The processor SP (R6) is, in most cases, the general register used for the stack operations related to
program nesting. Autodecrement using R6 ‘pushes’ data onto the stack, and autoincrement using R6
‘pops’ data off the stack. Since the SP is used by the processor for interrupt handling, it has a special
attribute: Autoincrements and autodecrements are always done in steps of two. Byte operations using the
SP in this way leave odd addresses (upper bytes) unmodified.

8-19

CHAPTER 9
BASE INSTRUCTION SET

9.1 INSTRUCTION SET

This chapter describes the KDJ11-B instruction set. The explanation of each instruction includes the
instruction mnemonic, octal code, binary code, a diagram showing the format of the instruction, a
symbolic notation describing its execution and effect on the condition codes, a description, special
comments, and examples. Each explanation is headed by its mnemonic. When the word instruction has a
byte equivalent, the byte mnemonic also appears.

The instruction set is listed by functional groups in Paragraph 9.4, and an alphabetical list is given in Table
9-1 below. ' :

Table 9-1 Instruction Set

Mnemonic Instruction Op Code
ADC(B) - Add carry _ B 055DD
ADD Add source to destination 06SSDD
ASH Arithmetic shift 072RSS
ASHC Arithmetic shift combined 073RSS
ASL(B) Arithmetic shift left ’ mO063DD
ASR(B) Arithmetic shift right M062DD
BCC Branch if carry is clear ’ . 103000
BCS Branch if carry is set 103400
BEQ Branch if equal (to zero) ' 001400
BGE ‘Branch if greater than or equal (to zero) 002000
BGT Branch if greater than (zero) 003000
BHI Branch if higher 101000
BHIS Branch if higher or same 103000
BIC(B) Bit clear MW 4SSDD
BIS(B) Bit set W 5SSDD
BIT(B) Bit test W 3SSDD
BLE Branch if less than or equal (to zero) 003400
BLO Branch if lower 103400
BLOS Branch if lower or same 101400
BLT Branch if less than (zero)

Table 9-1 Instruction Set (Cont)

Mnemonic Instruction Op Code
BMI Branch if minus 100400
BNE Branch if not equal (to zero) 001000
BPL Branch if plus 100000
BPT Breakpoint trap 000003
BR Branch (unconditional) 000400
BVC Branch if overflow is clear 102000
BVS Branch if overflow is set 102400
CCC Clear all CC bits 000257
CLC Clear C 000241
CLN Clear N 000250
CLR(B) Clear destination W 050DD
CLV Clear V 000242
CLZ Clear Z 000244
CMP(B) Compare source to destination B 2SSDD
COM(B) Complement destination M051DD
CSM Call to supervisor mode 0070DD
DEC(B) Decrement destination W053DD
DIV Divide 071RSS
EMT Emulator trap 104000-104377
HALT Halt 000000
10T Input/output trap 000004
INC(B) Increment destination ‘W052DD
JMP Jump 0001DD
JSR Jump to subroutine 004RDD
MARK Mark “0064NN
- MFPD Move from previous data space 0065SS
MFPI Move from previous instruction space 1065SS
MFPS Move byte from PS 1067DD
MFPT Move processor type 000007
MOV(B) Move source to destination W ISSDD
MTPD Move to previous data space 1066SS
MTPI Move to previous instruction space 0066SS
MTPS Move byte to PS 1064SS
MUL Multiply 070RSS
NEG(B) Negate destination W 054DD
NOP No operation 000240
RESET Reset external bus 000005
ROL(B) Rotate left mO061DD
ROR(B) Rotate right W 060DD
RTI Return from interrupt 000002

Table 9-1 Instruction Set (Cont)

Mnemonic Instruction Op Code
RTS Return from subroutine 00020R
RTT Return from interrupt 000006
SBC(B) Subtract carry WO056DD
SCC Set all CC bits 000277
SEC Set C 000261
SEN Set N 000270
SEV Set V 000262
SEZ Set Z 000264
SOB Subtract one and branch (if # 0) 077R00
SPL Set priority level 00023N
SUB Subtract source from destination 16SSDD
SWAB Swap bytes 0003DD
SXT Sign extend 0067DD
TRAP Trap 104400-104777
TST(B) Test destination MO057DD
TSTSET Test destination, set low bit 0072DD
WAIT Wait for interrupt 000001
WRTLCK Read/lock destination 0073DD
XOR Exclusive OR 074RDD

The diagram that accompainics each instruction shows the octal op code, binary op code, and bit
assignments. Notice that in byte instructions, the most significant bit (bit 15) is always a one.

Symbols:

() = contents of = Boolean OR
SS or src = source address M = exclusive OR
DD or dst = destination address ~ = Boolean not
loc = location REG or R = register
«— = becomes B = byte
1 = “is popped from stack’ B = O for word, 1 for byte
| = ‘is pushed onto stack’ , =.concatenated

A = Boolean AND

9.2 INSTRUCTION FORMATS
The following formats include all instructions used in the KDJ11-B. Refer to individual instructions for
more detailed information.

1. Single-Operand Group: CLR, CLRB, COM, COMB, TNC, INCB,
(Figure 9-1) DEC, DECB, NEG, NEGB, ADC, ADCB,
SBC, SBCB, TST, TSTB, ROR, RORB,
ROL, ROLB, ASR, ASRB, ASL, ASLB,
JMP, SWAB, MFPS, MTPS, SXT,
TSTSET, WRTLCK

OP CODE DD(SS)

L s 1 | i I A 1 i 1 A 1

MR-5191

Figure 9-1 Single-Operand Group

2. Double-Operand Groups:

a. Group I: BIT, BITB, BIC, BICB, BIS, BISB,
(Figure 9-2) ADD, SUB, MOV, MOVB, CMP, CMPB
15 12 11 06 05 00
OP CODE ss) DD

MR-5192

Figure 9-2 Double-Operand Group 1

b. Group 2: - ASH, ASHC, DIV, MUL, XOR
(Figure 9-3)

15 09 08 06 05 00
J I I T 1 i T T T T T T T

OP CODE R §S (DD)
|- 1 1 | | | L A 1 1 1 - L

MR 115654

Figure 9-3 Double-Operand Group 2

3. Program Control Groups:

a. Branch (all branch instructions) (Figure 9-4)

15 08 07 00

T T T T T T T T T T T T T T
OP CODE OFFSET

1 { i L 1 i 1 i 4 4

I

MR.5193

Figure 9-4 Program Control Group Branch
9-4

Jump (JMP) (Figure 9-5)

15 06 00
T T T T T T T Y T T T T T

Le—— 1 | i 1 L)] 1 1 3 Il

MR-0586-0788

Figure 9-5 Program Control Group JMP

Jump to Subroutine (JSR) (Figure 9-6)

15 09 08 06 05 00

T 1 1 T ¥ T 1 T T L T] L

n L | | 4 i 1 1 ek L

MR-5194

Figure 9-6 Program Control Group JSR

Subroutine Return (RTS) (Figure 9-7)

15 03 02 00

T ¥ T T T Ll T T T T T T M T ¥

L . i 1 1 L A l L 1 4 4

MR.5195

Figure 9-7 Program Control Group RTS

Traps (breakpoint, IOT, EMT, TRAP, BPT) (Figure 9-8)

15 ‘ 00

T T T T 1 1 i T T T L T T T T

OP CODE

| q L 1 { 1 ©) [I I

MR-5196

Figure 9-8 Program Control Group Traps

Subtract 1 and Branch (if = 0) (SOB) (Figure 9-9)

15 09 08 06 05 00

T T T T T T T T T T T T T

i l i i L 4 1 1 1 b 4

MR.5197

Figure 9-9 Program Control Group Subtract

g. Mark (Figure 9-10)

15 06 05 00
I I T T T I T I T T T T T T
0 0 6 4 NN

i il L |]) L L I { | L I L

MR-11548

Figure 9-10 Mark

h. Call to Supervisor Mode (CSM) (Figure 9-11)

15 06 05 00
T I T 1 T T T 1 1 1 1 I T 1

1]] | 1 1] 1 I 1 1 | ol ¢

MR-11549

Figure 9-11 Call to Supervisor Mode

i. Set Priority Level (SPL) (Figure 9-12)

15 03 02 00
T ¥ i I 1 T T T T T ¥ 1 | T 1

1 1 L | 1 1 |] L } i 1 L 4

MR-11550

Figure 9-12 Set Priority Level

Operate Group: HALT, WAIT, RTI, RESET, RTT, NOP, MFPT
(Figure 9-13)

15 . a7 ' 00
! 1 ! 1 T ! I I I I L T T T
0 0 0 OP CODE

L 3 1 1 1 I] L d 1 |)] 1

MR-5198

Figure 9-13 Operate Group

Condition Code Operators: (all condition code instructions)
(Figure 9-14)

15 06 05 04 03 02 01 00

0 0 0 2 4 0N N z \ C

MR-6199

Figure 9-14 Condition Group

9-6

6. Move To/From
Previous
Instruction/Data
Space Group:
(Figure 9-15)

MTPD, MTPI, MFPD, MFPI

00

T I

T
DD(SS)
1

T

Figure 9-15 Move To and From Previous Instruction/Data Space Group

9.3 BYTE INSTRUCTIONS

The KDJ11-B includes a full complement of instructions that manipulate byte operands. Since all
KDJ11-B addressing is byte-oriented, byte manipulation addressing is straightforward. Byte instructions
with autoincrement or autodecrement direct addressing cause the specified register to be modified by one
to point to the next byte of data. Byte operations in register mode access the low-order byte of the specified
register. These provisions enable the KDJ11-B to perform as either a word or byte processor. The
numbering scheme for word and byte addresses in memory is shown in Figure 9-16.

MR 11551

The most significant bit (bit 15) of the instruction word is set to indicate a byte instruction.

Example:

Symbolic ‘ Octal Code
CLR 0050DD
CLRB ‘ 1050DD

Instruction Name

Clear word
Clear byte

HIGH BYTE

ADDRESS
002001 BYTE1 BYTE O
002003 BYTE 3 BYTE 2

Figure 9-16 Byte Instructions

WORD ORBYTE
ADDRESS

002000

002002

MR-5201

9.4 LIST OF INSTRUCTIONS
The following is a functional list of the KDJ11-B instruction set.

SINGLE-OPERAND

General
Mnemonic Instruction Op Code
CLR(B) Clear destination B 050DD
COM(B) Complement destination M 051DD
INC(B) Increment destination M 052DD
DEC(B) Decrement destination M 053DD
NEG(B) Negate destination B 054DD
TST(B) Test destination W 057DD
WRTLCK Read/lock destination,

write/unlock RO into destination 0073DD
TSTSET Test destination, set low bit 0072DD
Shift and Rotate
Mnemonic Instruction Op Code
ASR(B) Arithmetic shift right W 062DD
ASL(B) Arithmetic shift left W 063DD
ROR(B) Rotate right W 060DD
ROL(B) Rotate left M 061DD
SWAB Swap bytes 0003DD
Multiple-Precision
Mnemonic Instruction Op Code
ADC(B) Add carry B 055DD
SBC(B) Subtract carry M 056DD
SXT Sign extend 0067DD
PSW Operators
Mnemonic Instruction Op Code
MFPS Move byte from PSW 1067DD
MTPS Move byte to PSW 1064SS

9-8

DOUBLE-OPERAND

General
Mnemonic

MOV(B)
CMP(B)
ADD
SUB
ASH
ASHC
MUL
DIV

Logical
Mnemonic
BIT(B)
BIC(B)

BIS(B)
XOR

Instruction

Move source to destination

Compare source to destination

Add source to destination

Subtract source from destination

Arithmetic shift
Arithmetic shift combined
Multiply

Divide

Instruction

Bit test

Bit clear

Bit set
Exclusive OR

PROGRAM CONTROL

Mnemonic
Branch

BR
BNE
BEQ
BPL
BMI
BVC
BVS
BCC
BCS

Instruction

Branch (unconditional)
Branch if not equal (to zero)
Branch if equal (to zero)
Branch if plus

Branch if minus

Branch if overflow is clear
Branch if overflow is set
Branch if carry is clear
Branch if carry is set

Signed Conditional Branch

Mnemonic
BGE
BLT

BGT
BLE

Instruction

Branch if greater than or equal

(to zero)

Branch if less than (zero)
Branch if greater than (zero)
Branch if less than or equal
(to zero)

Op Code

B ISSDD
W 2SSDD
06SSDD
16SSDD
072RSS
073RSS
070RSS
071RSS

Op Code

W 3SSDD
W 4SSDD
B 5SSDD
074RDD

Op Code
or
Base Code

000400
001000
001400
100000
100400
102000
102400
103000
103400

Op Code
or
Base Code

002000

002400
003000

003400

Unsigned Conditional Branch

Op Code
or
Mnemonic Instruction Base Code
BHI Branch if higher 101000
BLOS Branch if lower or same 101400
BHIS Branch if higher or same 103000
BLO Branch if lower 103400
Jump and Subroutine
Op Code
or
Mnemonic Instruction Base Code
JMP Jump 0001DD
JSR Jump to subroutine 004RDD
RTS Return from subroutine - -00020R
SOB , Subtract one and branch (if # 0) 077RDD
Trap and Intefrupt
Op Code
or
Mnemonic Instruction Base Code
EMT ‘Emulator trap : 104000-104377
TRAP Trap : 104400-104777
BPT Breakpoint trap 000003
10T Input/output trap : 000004
RTI Return from interrupt 000002
RTT - Return from interrupt ' 000006
Miscellaneous Program Control
Op Code
or
Mnemonic Instruction Base Code
CSM Call to supervisor mode 0070DD
MARK Mark 0064NN
SPL Set priority level 00023N

MISCELLANEOUS

Mnemonic

HALT
WAIT
RESET
MFPT
MTPD
MTPI
MFPD
MFPI

' Instruction

Halt

Wait for interrupt

Reset external bus

Move processor type

Move to previous data space

Move to previous instruction space
Move from previous data space
Move from previous instruction space

CONDITION CODE OPERATORS

Mnemonic

CLC
CLV
CLZ
CLN
CcCC
SEC
SEV
SEZ
SEN
SCC
NOP

Instruction

Clear C

Clear V

Clear Z

Clear N

Clear all CC bits
Set C

Set V

Set Z

Set N

Set all CC bits
No operation

9-11

Op Code
or
Base Code

000000
000001
000005
000007
1066DD
0066DD
1065SS
0065SS

Op Code
or
Base Code

000241
000242
000244
000250
000257
000261
000262
000264
000270
000277
000240

9.5 SINGLE-OPERAND INSTRUCTIONS
The KDJ11-B instructions that involve only one operand are described in the paragraphs that follow.

9.5.1 General

CLR
CLRB
CLEAR DESTINATION 8050DD
15 06 05 00
o1 0 0 o 1 o0 1 0 o0 0 DD
"Operation: (dst) — 0
Condition Codes: N: cleared
Z: set
V: cleared
C: cleared
Description: Word: The contents of the specified destination are replaced with Os.
Byte: Same.
Example: CLR R1
Before After
R1) =177777 (R1) = 000000
NZVC NZVC
I 111 .0 100
COM
COMB
COMPLEMENT DST lOS‘IDb :
15 06 05 00
0/1 0 0 0 1 0 1 0 0] ‘ 1 DD
Operation: (dst) — ~ (dst)

Condition Codes: set if most significant bit of result is set; cleared otherwise
set if result is O; cleared otherwise
cleared

set

9-12

Description: Word: Replaces the contents of the destination address by its logical
complement. (Each bit equal to O is set and each bit equal to 1 is cleared.)
Byte: Same.

Example: COM RO
Before After
(R0O) = 013333 (RO) = 164444
NZVC NzZvVcC
0110 1 001

INC

INCB

INCREMENT DST ®052DD
15 06 05 00
0 0 1 0 1 0 1 0 DD

0/1 0

1 L 1 L " 1 1 L - i

Operation:

Condition Codes:

Description:

Example:

~ Before

MR-11806

(dst) — (dst) + 1

N:
Z:
V:
C:

set if result is < 0; cleared otherwise

set if result is 0; cleared otherwise.

set if (dst) held 077777; cleared otherwise
not affected

Word: Add 1 to the contents of the destination.
Byte: Same.

INC R2
After
(R2) = 000333 (R2) = 000334

NZVC
0000

NzZvVC
0000

9-13

DEC

DECB
DECREMENT DST =053DD
15 T i Ll T 06 05 T L T T 00
01 0 0 0 1 0 1 1 DD
Operation: (dst) — (dst) — 1
Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: set if (dst) was 100000; cleared otherwise
C: not affected
Description: Word: Subtract 1 from the contents of the destination.
Byte: Same.
Example: DEC R5
Before After
(RS) = 000001 (R5) = 000000
NZVC NZVC
1 000 0100
NEG
NEGB
NEGATE DST =054DD
15 . 06 05 00
0/1 0 0 0 1 0 0 DD
Operation: (dst) — — (dst)

Condition Codes:

Description:

N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise

V: set if result is 100000; cleared otherwise

C: cleared if result is 0; set otherwise

Word: Replaces the contents of the destination address by its 2’s com-
plement. Note that 100000 is replaced by itself. (In 2’s complement notation

the most negative number has no positive counterpart.)

Byte: Same.

Example: NEG RO

Before After

(R0O) = 000010 (RO) = 177770
NZVC NzZVC
0000 1 001

TST

TSTB

TEST DST ' =057DD
15 ‘ ‘ 06 05 00
1 0 0 0 1 0 1 1 1 1] DD

Operation: ' (dst) — (dst)

Condition Codes: N: set if result is < 0; cleared otherwise
Z: set if result is 0; cleared otherwise
V: cleared
C: cleared

Description: Word: Sets the condition codes N and Z according to the contents of the
destination address; the contents of dst remain unmodified.
Byte: Same.

Example: TST R1
Before After
(R1) = 012340 (R1) = 012340
NZVC NzZzVC
0011 0000

9-15

WRTLCK

READ/LOCK DESTINATION

WRITE/UNLOCK RO INTO DESTINATION 007300
15 <6 04 00
T T T T T T T T [R T 1 T
0o 0 0 o 1 1 1 1 1 0 l DD
1 | | } | l L 1 1 { 1 L 1 |
MR-11498
Operation: (dst) — (RO)
Condition Codes: N: setif RO<O0
Z: setif RO=0
V: cleared

C: unchanged

Description: Writes contents of RO into destination using bus lock. If mode is 0, traps to
10.
TSTSET
TEST DESTINATION AND SET LOW BIT 0072DD
15 06 05 00
| I I 1 4 I 1 1 1 T 1 | 1 I
0 o0 o 0 1 1 1T 0 1 o0 DD
L | L] 1 | L L 1 1 1 L L L
Operation: (RO) « (dst), (dst) — (dst) Vv 000001 (octal)
Condition Codes: N: setif RO<O0
Z: setif RO=0
V: cleared

C: gets contents of old destination bit 0.

Description: Reads/locks destination word and stores it in R0O. Writes/unlocks (R0) V 1
into destination. If mode is 0, traps to 10.

9-16

9.5.2 Shifts and Rotates

Scaling data by factors of two is accomplished by the shift instructions:

ASR - Arithmetic shift right

ASL - Arithmetic shift left

The sign bit (bit 15) of the operand is reproduced in shifts to the right. The low-order bit is filled with Os in
shifts to the left. Bits shifted out of the C-bit, as shown in the following instructions, are lost.

The rotate instructions operate on the destination word and the C-bit as though they formed a 17-bit
‘circular buffer.” These instructions facilitate sequential bit testing and detailed bit manipulation.

2062DD
00

ASR
ASRB
ARITHMETIC SHIFT RIGHT
15
L T 1
0/1 0]
Operation:

Condition Codes:

(dst) — (dst) shifted one place to the right

MR-11502

N: set if high-order bit of result is set (result < 0); cleared otherwise

Z: set if result = 0; cleared otherwise

V: loaded from exclusive OR of N-bit and C-bit

of the shift operation)

C: loaded from low-order bit of destination

(as set by the completion

Description: Word: Shifts all bits of the destination right one place. Bit 15 is reproduced.
The C-bit is loaded from bit 0 of the destination. ASR performs signed
division of the destination by 2.
Byte: Same.
Example:
l 15 00
' —_— > Cc |}—»
BYTE:
) 15 ODD ADDRESS 08 [_ 07 EVEN ADDRES! 00
—e

9-17

MR-5209

ASL

ASLB
ARITHMETIC SHIFT LEFT u063DD
15 06 05 00
T T T T | T 1 Ll L] T T T L 1
0/1 0 0 0 1 1 0 0 1 1 DD
J L 1 4 L | L L I 1 1 L ¢ I
Operation: (dst) — (dst) shifted one place to the left
Condition Codes: N: set if high-order bit of result is set (result < 0); cleared otherwise
Z: set if result = 0; cleared otherwise
V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of
the shift operation)
C: loaded with high-order bit of destination
Description: Word: Shifts all bits of the destination left one place. Bit 0 is loaded with a 0.
The C-bit of the PSW is loaded from the most significant bit of the destina-
tion. ASL performs a signed multiplication of the destination by 2 with
overflow indication.
Byte: Same.
Example:
WORD:
15 T L) T T T T T T T T L] T T T T 00
C | -+—0
A A I 1 s A d N 1 A A A
‘BYTE:
15 0DD ADDRESS 08 07 EVEN ADDRESS 00
T T L} L T T T T L 1 T L ¥ T
C e l¢-0] C -0
L I I 5 | 1 1 I | N 1 1 ¢ 1

MR.52"

9-18

ROR

RORB
ROTATE RIGHT 060DD
15 06 05 00
i I L I J 1 I I 1 1) I ¥ 1
0/1 0 0 1 1 0 0 0 0 DD
[T 1 | 1 1 L 1 | . i 1 L | |
MR-11500
Operation: (dst) < (dst) rotate right one place

set if high-order bit of result is set (result < 0); cleared otherwise

Condition Codes: N:
Z: set if all bits of result = 0; cleared otherwise
V: loaded with exclusive OR of N-bit and C-bit (as set by the completion of
the rotate operation)
C: loaded with low-order bit of destination
Description: Word: Rotates all bits of the destination right one place. Bit 0 is loaded into
the C-bit and the previous contents of the C-bit are loaded into bit 15 of the
destination.
Byte: Same, except the C-bit is loaded into MSB 7 or 15.
Example:
WORD:
]
15 00
c |[—»
BYTE:
[c l c
15 ‘ 08 07 00
oDD q EVEN

| i 1 | | 1 Il 4 i L 1 I

MR-5213

9-19

ROL

ROLB
ROTATE LEFT a610DD
15 06 05 00
T T T 1 L T Ll T T 1 T T ¥
0/ 0 0 1 1 [4] 0 0 1 DD
1 1 1 A A i L
MR-11509
Operation: (dst) — (dst) rotate left one place

Condition Codes:

N: set if high-order bit of result word is set (result < 0); cleared otherwise
Z: set if all bits of result word = 0; cleared otherwise

V: loaded with exclusive OR of the N-bit and C-bit (as set by the
completion of the rotate operation)

C: loaded with high-order bit of destination

Description: Word: Rotates all bits of the destination left one place. Bit 15 is loaded
into the C-bit of the PSW and the previous contents of the C-bit are
loaded into bit O of the destination.

Byte: Same, except the C-bit is loaded into LSB 8 or 0.
Example:
WORD:
v
15 DST 00
C ja—o
BYTE:

oDD : EVEN
.) \ . ; . A : . .

MR-5215

9-20

SWAB

SWAP BYTES

15

0003DD

06 05 00

0 0

T T T T 1 T T T L T T

I | b | &) 1 1 L |

Operation:

Condition Codes:

Description:

Example:

MR-11508

byte 1/byte 0 — byte 0/byte 1

N: set if high-order bit of low-order byte (bit 7) of result is set; cleared
otherwise

Z: set if low-order byte of result = 0; cleared otherwise
V: éleared
C: cleared

Exchanges high-order byte and low-order byte of the destination word. (The
destination must be a word address.)

SWAB R1

Before After

(R1) =077777 (R1) = 177577
NZVC NZvVC

1 111 0000

9-21

9.5.3 Multiple-Precision

It is sometimes necessary to do arithmetic operations on operands considered as multiple words or bytes
The KDJ11-B makes special provision for such operations with the instructions ADC (add carry) and SBC

(subtract carry) and their byte equivalents.

For example, two 16-bit words may be combined into a 32-bit double-precision word and added o

subtracted as shown below.

32-BIT WORD
f)
31 6 15 0
OPERAND Al A0
(A
31 16 15 0
OPERAND B1 80
31 18 15 0
RESULT
Example:
The addition of —1 and —1 could be performed as follows.
—1 =37777777777
R1) = 177777 (R2) = 177777 (R3) = 177777 (R4) = 177777
ADD R1,R2
ADC R3
ADD R4,R3
1. After (R1) and (R2) are added, 1 is loaded into the C-bit.
2. The ADC instruction adds the C-bit to (R3); (R3) = 0.
3. (R3) and (R4) are added.
4, The result is 37777777776, or —2.
ADC
ADCB
ADD CARRY =055D0D
15 06 05 00
04 0 0 0 1 0o 1 10 1 DD

9-22

MR-11575

Operation:

Condition Codes:

(dst) « (dst) + (C-bit)

N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if (dst) was 077777 and (C) was 1; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared otherwise

Description: Word: Adds the contents of the C-bit to the destination. This permits the
carry from the addition of the low-order words to be carried to the high-order
result.

Byte: Same.
Example: Double-precision addition may be done with the following instruction
sequence.
ADD AO0,BO ;add low-order parts
ADC B1 ;add carry into high-order
ADD Al,B1 ;add high-order parts
SBC
SBCB
SUBTRACT CARRY m056DD
15 T Ll 1 T T T 06 05 T ¥ L] 00
0/1 0 0 0 1 4] 1 1 1 0 DD

Operation:

Condition Codes:

Description:

Example:

MR-11576

(dst) — (dst) — (C)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V. set if (dst) was 100000; cleared otherwise

C: set if (dst) was 0 and C was 1; cleared otherwise

Word: Subtracts the contents of the C-bit from the destination. This permits
the carry from the subtraction of two low-order words to be subtracted from
the high-order part of the result.

Byte: Same.

Double-precision subtraction is done by:

SUB A0,BO
SBC Bl
SUB Al,B1

9-23

SXT

SIGN EXTEND

0067DD

00

T

Operation:

Condition Codes:

(dst) — 0 if N-bit is clear
(dst) — 1 if N-bit is set

N: not affected

Z: set if N-bit is clear
V: cleared .

C: not affected

MR-11574

Description: If the condition code bit N is set, a —1 is placed in the destination operand; if
the N-bit is clear, a 0 is placed in the destination operand. This instruction is
particularly useful in multiple-precision arithmetic because it permits the sign
to be extended through multiple words.

Example: SXT A
Before After
(A) = 012345 (A) = 177777
NZVC NzZVC

1 000 1 000
9.5.4 PSW Operators
MFPS
MOVE BYTE FROM PROCESSOR STATUS WORD 1067DD
15 06 05 ‘ 00
1 0 1 1 0 1 1 1 pDD
Operation: (dst) — PSW

Condition Codes:

dst lower 8 bits

N: set if PSW bit 7 = 1; cleared otherwise
Z: set if PSW <7:0> = 0; cleared otherwise
V: cleared

C: not affected

9-24

Description: The 8-bit contents of the PSW are moved to the effective destination. If the
destination is mode 0, PSW bit 7 is sign-extended through the upper byte of
the register. The destination operand address is treated as a byte address.

Example: MFPS RO
Before After
(RO)=0 (RO) = 000014
(PSW) = 000014 (PSW) = 000000
MTPS
MOVE BYTE TO PROCESSOR STATUS WORD 1064SS
15 . 06 05 00
1 0 0 0 1 1 0 1 0 0 sSS
Operation: PSW «— (src)
Condition Codes: Set according to effective SRC operand bits <3:0>
Description: The eight bits of the effective operand replace the current contents of the

lower byte of the PSW. The source operand address is treated as a byte
address. Note: The T-bit (PSW bit 4) cannot be set with this instruction.
The SRC operand remains unchanged. This instruction can be used to change
the priority bits (PSW <7:5>) in the PSW.only in kernel mode. If not in
kernel mode, PSW <7:5> cannot be changed.

Example: ‘ MTPS R1
Before : o After
(R1) = 000777 (R1) = 000777
(PSW) = XXX000 (PSW) = XXX357
NZvVC | NZVC

0000 1 111

9-25

9.6 DOUBLE-OPERAND INSTRUCTIONS
Double-operand instructions save instructions (and time), since they eliminate the need for load and save
sequences such as those used in accumulator-oriented machines.

9.6.1 General

MOV
MOVB
MOVE SOURCE TO DESTINATION 81SSOD
15 12 11 06 05 00
T T T T T T T Ll 1 T T
on 0 0 1 SS DD
{ 1 1 b A A A L 1
MR-11497
Operation: (dst) « (src)

Condition Codes:

Description:

Example:

N: set if (src) < 0; cleared otherwise
Z: set if (src) = 0; cleared otherwise
V: cleared

C: not affected

Word: Moves the source operand to the destination location. The previous
contents of the destination are lost. Contents of the source address are not

affected.

Byte: Same as MOV. The MOVB to a register (unique among byte
instructions) extends the most significant bit of the low-order byte (sign
extension). Otherwise, MOVB operates on bytes exactly as MOV operates on

words.

MOV XXX,R1

MOV #20,R0

MOV @#20,—~(R6)

MOV (R6)+,@#177566

9-26

;loads register 1 with the con-
tents of memory location;
XXX represents a program-
mer-defined mnemonic used
to represent a memory
location

:loads the number 20 into reg-
ister 0; # indicates that the
value 20 is the operand

;pushes the operand contained
in location 20 onto the stack

;pops the operand off a stack
and moves it into memory
location 177566 (terminal
print buffer)

MOV R1,R3 ;performs an inter-register
transfer

MOVB @#177562,@#177566 :moves a character from the
terminal keyboard buffer to
the terminal printer buffer

CMP
CMPB
COMPARE SRC TO DST a23SDD
15 12 11 . 06 05 00
0N 0 1 0 SS DD
b 1 i 4 n It 1 1 1 1)
Operation: (src) — (dst)
Condition Codes: N: set if result < 0; cleared otherwise
Z: set if result = 0; cleared otherwise
V: set if there was arithmetic overflow; that is, operands were of opposite
signs and the sign of the destination was the same as the sign of the
result; cleared otherwise
C: cleared if there was a carry from the most significant bit of the resuit;
set otherwise
Description: Compares the source and destination operands and sets the condition codes,

which may then be used for arithmetic and logical conditional branches. Both
operands are not affected. The only action is to set the condition codes. The
compare is customarily followed by a conditional branch instruction. Notice
that unlike the subtract instruction, the order of operation is (src) — (dst), not
(dst) — (src).

9-27

ADD

ADD SRCTO DST

15

06SSDD

12 11 06 05 00

T T T T T 1 1 T T i

1 1 1 i i 1 L 1 4 i

Operation:

Condition Codes:

MR-11563

(dst) «— (src) + (dst)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V: set if there was arithmetic overflow as a result of the operation, that is,
both operands were of the same sign and the result was of the opposite

sign; cleared otherwise

C: set if there was a carry from the most significant bit of the result;
cleared otherwise

Condition Codes:

Description: Adds the source operand to the destination operand and stores the result at
the destination address. The original contents of the destination are lost. The
contents of the source are not affected. 2’s complement addition is per- .
formed. Notice that there is no equivalent byte mode.
Example: Add to register: ADD 20,R0
Add to memory: ADD R1,XXX
Add register to register: ADD R1,R2
Add memory to memory: ADD @#17750,XXX
(XXX is a programmer-defined mnemonic for a memory location.)
.SUB
SUBTRACT SRC FROM DST 16SSDD
15 12 11 06 05 00
1 1] SS DD
Operation: (dst) — (dst) — (src)

N: set if result < 0; cleared otherwise

Z: set if result = 0; cleared otherwise

V. setif there was arithmetic overflow as a result of the operation, that is, if
operands were of opposite signs and the sign of the source was the same

as the sign of the result; cleared otherwise

C: cleared if there was a carry from the most significant bit of the result;
set otherwise

9-28

Description: Subtracts the source operand from the destination operand and leaves the
result at the destination address. The original contents of the destination are
lost. The contents of the source are not affected. In double-precision arith-
metic the C-bit, when set, indicates a ‘borrow.” Notice that there is no
equivalent byte mode.

Example: SUB R1,R2
Before After
(R1)=011111 (R1)=011111
(R2) = 012345 (R2) = 001234
NZVC NzZzvVcC
1 111 0000
ASH
ARITHMETIC SHIFT 072RSS
15 09 08 06 05 00
T ¥ i | T T ¥ T T 1 I I
0 1 1 1 0 1 0 R SS
Operation: R« R shifted arithmetically NN places to the right or left where NN = (src)
Condition Codes: N: set if result < 0
. Z: set if result = 0
Vi set if sign of register changed during shift
C: loaded from last bit shifted out of register

Description: The contents of the register are shifted right or left the number of times
: specified by the source operand. The shift count is taken as the low-order six
bits of the source operand. This number ranges from —32 to +31. Negative is

a right shift and positive (less than +31) is a left shift.

NOTE

A shift count of +31 shifts the contents of the regis-
ter to the right 31 times.

9-29

ASHC

ARITHMETIC SHIFT COMBINED u073RSS
15 09 08 06 05 00
0 1 1 1 0 1 1 R SS
i L 4 | 1 £ L 1 | i Il L
MR-11561
Operation: R,LRV1I—R,RVI

The double word is shifted NN places to the right or left where NN = (src)

set if result < 0

set if result = 0

set if sign bit changes during shift

loaded with high-order bit when left shift; loaded with low-order
bit when right shift (loaded with the last bit shifted out of the
32-bit operand)

Condition Codes:

Q<NZ

Description: The contents of the register and the register ORed with 1 are treated as one
32-bit word. R \/ 1 (bits <15:0>) and R (bits <31:16>) are shifted right or
left the number of times specified by the shift count. The shift count is taken
as the low-order 6 bits of the source operand; the upper 11 bits of the source
operand must be 0. This number ranges from —32 to +31. Negative is a right
shift and positive is a left shift.

When the register chosen is an odd number, the register and the register
ORed with 1 are the same. In this case, the right shift becomes a rotate. The
16-bit word is rotated right the number of times specified by the shift count.

NOTE
Bits <5:0> shift count. Bits <15:6> must be 0.

9-30

MUL

MULTIPLY

070RSS
09 08 06 05 00

! I I i I T | T I T

d L | 4 { |- 1 L | |

Operation:

Condition Codes:

Description:

DIV

DIVIDE

MR-11572

R,R vV 1 <R X (src)

set if product < 0

set if product = 0

cleared ‘

set if the result is less than —2 ** 15 or greater than or equal to
2 *¥*15 —-1.

The contents of the destination register and source taken as 2’s complement
integers are multiplied and stored in the destination register and the suc-
ceeding register, if R is even. If R is odd, only the low-order product is stored.
Assembler syntax is: MUL S,R. Notice that the actual destination is
R, R V 1, which reduces to just R when R is odd.

071RSS
09 -08 06 05 00

Operation:

Condition Codes:

Description:

MR-11573

R, RV 1—R,R V 1/(src)

N: set if quotient < 0

Z: set if quotient = 0

V: setif source = 0 or if the absolute value of the register is larger than the
absolute value of the instruction in the source. (In this case the in-
struction is aborted because the quotient would exceed 15 bits.)

C: set if divide by zero is attempted.

The 32-bit 2’s complement integer in R and R V 1 is divided by the source

operand. The quotient is left in R; the remainder is of the same sign as the
dividend. R must be even.

9-31

9.6.2 Logical

These instructions have the same format as those in the double-operand arithmetic group. They permit
operations on data at the bit level.

BIT
BITB
BIT TEST u3SSDD
15 12 11 06 05 00
T T T T T T T 1 T T T
0/1 0 1 SS DD
1 1 ! I A 1 1 j 1 L
MR-11565
Operation: (src) A (dst)

Condition Codes:

N: set if high-order bit of result set; cleared otherwise
Z: set if result = 0; cleared otherwise

V: cleared

C: not affected

Deséription: Performs logical AND comparison of the source and destination operands
and modifies condition codes accordingly. Neither the source nor the desti-
nation is affected. The BIT instruction may be used to test whether any of the
corresponding bits set in the destination are also set in the source, or whether
all corresponding bits set in the destination are clear in the source.

Example: BIT #30,R3 ;test bits three and four of R3 to see if

both are off.
R3 = 0 000 000 000 011 000
Before | - After
NZVC NzZzVC
1 111 0001
BIC
BICB
BIT CLEAR =4SSDD
15 12 11 06 05 00
o1 1 0 SS DD
Operation: (dst) — ~ (src) A (dst)

Condition Codes:

set if high-order bit of result set; cleared otherwise
set if result = 0; cleared otherwise

cleared

not affected

O<NZ

9-32

Description: Clears each bit in the destination that corresponds to a set bit in the source.
The original contents of the destination are lost. The contents of the

source are not affected.

Example: BIC R3,R4
Before After
(R3) = 001234 (R3) = 001234
(R4) =001111 (R4) = 000101
NzZvVcC NZVC
I 111 0001
Before: (R3) == 0 000 001 010 011 100

(R4) = 0 000 001 001 001 001

After: (R4) == 0 000 000 001 000 001

BIS

BISB

BIT SET #5SSDD
15 12 11 . 06 05 . r 00
0/1 1 0 1 SS DD

Operation: (dst) — (src) V (dst)

Condition Codes: N: set if high-order bit of .fesult set; cleared otherwise
Z: set if result = 0; cleared otherwise
V: cleared '
C: not affected

Description: Performs an inclusive OR operation between the source and destination
operands and leaves the result at the destination address, that is, corre-
sponding bits set in the source are set in the destination. The contents of the
destination are lost.

Exampie: BIS RO,R1
Before After

(RO) = 001234
(R1) = 001111

NZVC
0000

Before:

After:

(RO) = 001234
(R1) = 001335

NZvVC
0000

(RO) = 0 000 001 010 011 100
(R1) = 0 000 001 001 001 001

(R1) = 0000 001 011 011 101

9-33

XOR

EXCLUSIVE OR 074RDD
15 09 08 06 05 00
0 1 1 1 1 0 0 R DD
1 _ 1 1 1 I 1 1 . 1 s 1
Operation: (dst) «— (reg) + (dst)
Condition Codes: N: set if result < 0; cleared otherwise
7Z: set if result = 0; cleared otherwise
V: cleared

C: not affected

Description: The exclusive OR of the register and destination operand is stored in the
destination address. The contents of the register are not affected. The
assembler format is XOR R,D.

Example: XOR RO,R2

Before After

(RO) = 001234 (RO) = 001234
(R2) = 001111 (R2) = 000325
NZVC NZVC
1111 000 1

Before: (RO) = 0 000 001 010 011 100

(R2) = 0 000 001 001 001 001

After: (R2) = 0 000 000 011 010 101

9.7 PROGRAM CONTROL INSTRUCTIONS
The following paragraphs describe the KDJ11-B instructions that affect program control.

9.7.1 Branches
These instructions cause a branch to a location defined by the sum of the offset (multiplied by 2) and the
current contents of the program counter if:

1. The branch instruction is unconditional.

2. The branch instruction is conditional and the conditions are met after testing the condition
codes (N Z V C).

The offset is the number of words from the current contents of the PC, forward or backward. Note that
the current contents of the PC point to the word following the branch instruction.

9-34

Although the offset expresses a byte address, the PC is expressed in words. The offset is automatically
multiplied by 2 and sign-extended to express words before it is added to the PC. Bit 7 is the sign of the
offset. If it is set, the offset is negative and the branch is done in the backward direction. If it is not set,
the offset is positive and the branch is done in the forward direction.

The 8-bit offset allows branching in the backward direction by 200 octal words (400 octal bytes) from the
current PC, and in the forward direction by 177 octal words (376 octal bytes) from the current PC.

The KDJ11-B assembler typically handles address arithmetic for the user and computes and assembles the
proper offset field for branch instructions in the form:

Bxx loc

Bxx is the branch instruction and loc is the address to which the branch is to be made. The assembler gives
an error indication in the instruction if the permissible branch range is exceeded. Branch instructions have
no effect on condition codes. Conditional branch instructions where the branch condition is not met are
treated as NOPs.

BR
BRANCH (UNCONDITIONAL) 000400 PLUS OFFSET
15 08 07 . 00
0 0 0 0 0 0 0 1 | OFFSET
Operation: PC «— PC + (2 X offset)
Condition Codes: Not affected
Description: Provides a way of transferring program control within a range of —128 to
+127 words with a one word instruction.
New PC address = updated PC + (2 X offset)
Updated PC = address of branch instruction +2
Example: With the branch instruction at location 500, the following offsets apply.
New PC Address Offset Code Offset (decimal)
474 375 -3
476 376 -2
500 377 -1
502 000 0
504 001 +1
506 002 : +2

9-35

BNE

BRANCH IF NOT EQUAL (TO ZERO) oM0n0 PLUS OFFSET
15 08 07 00
T T T T T T T § e ———rT T T =T T
0 0 0 0 0 0 1 0 OFFSET
I 4 1 1 L I § 1 1 1 4 Il
Operation: PC — PC + (2 X offset) if Z =10
Condition Codes: Not affected
Description: Tests the state of the Z-bit and causes a branch if the Z-bit is clear. BNE is

the complementary operation of BEQ. It is used to test: (1) inequality
following a CMP, (2) that some bits set in the destination were also in the
source following a BIT operation, and (3) generally, that the result of the
previous operation was not 0.

Example: Branch to Cif A # B
CMP A,B ;compare A and B
BNE C ;branch if they are not equal

Branchto Cif A+ B # 0

ADD A,B ;add A to B
BNE C ;branch if the result is not
equal to 0
BEQ
BRANCH IF EQUAL {TO ZERO) 001400 PLUS OFFSET
15 08 07 00
L T T T T L) ¥ T T T T T T)
0 0 0 0 0 0 1 1 OFFSET
1 L 1 3 1 1 L) 1 1) i I 1
Operation: PC — PC + (2 X offset) if Z =1
Condition Codes: Not affected
Description: Tests the state of the Z-bit and causes a branch if Z is set. It is used to test:

(1) equality following a CMP operation, (2) that no bits set in the destination
were also set in the source following a BIT operation, and (3) generally, that
the result of the previous operation was 0.

9-36

Example:

Branch to Cif A =B

CMP AB ;compare A and B
BEQ C ;branch if they are equal

Branchto Cif A+ B=0

ADD AB ;add A to B
BEQ C ;branch if the result = 0
BPL
BRANCH IF PLUS 100000 PLUS OFFSET
15 08 07 . 00
1 0 0 0 0 0 0 0 OFFSET
Operation: PC — PC + (2 X offset) if N = 0

Condition Codes:

Description:

BMI

BRANCH IF MINUS

Not affected

Tests the state of the N-bit and causes a branch if N is clear (positive result).
BPL is the complementary operation of BMI.

100400 PLUS OFFSET

08 07 00

T T T T T T T T T T T
0 0 0 0 1 OFFSET

1 1 e n] l 1 i 4 A

Operation:
Condition Codes:

Description:

MR.5235

PC «— PC + (2 X offset) if N = 1
Not affected
Tests the state of the N-bit and causes a branch if N is set. It is used to test

the sign (most significant bit) of the result of the previous operation),
branching if negative. BMI is the complementary function of BPL.

9-37

BVC

BRANCH IF OVERFLOW IS CLEAR

102000 PLUS OFFSET
00

] 1 1 T T T T Lf T T T I T T

5 o A . i 1 1 n . 1 1 i 4 n

MR-5236

Operation: PC — PC + (2 X offset) if V=10

Condition Codes: Not affected

Tests the state of the V-bit and causes a branch if the V-bit is clear. BVC is
the complementary operation of BVS.

Description:

BVS

BRANCH IF OVERFLOW IS SET 102400 PLUS OFFSET

15 08 07 00

1 0 0 0 0 1] T OFFSET

1 r L . 1 1 | I d 1 1 4 i I

MR-5237

Operation: PC — PC + (2 X offset) if V = 1

Condition Codes: Not affected

Tests the state of the V-bit (overflow) and causes a branch if V is set. BVS is
used to detect arithmetic overflow in the previous operation.

Description:

BCC

BRANCH IF CARRY IS CLEAR 103000 PLUS OFFSET

15 08 07 00
T T T T T T T T T T T T T T

0 1 1 0 OFFSET

i A 4 1 1 1 4 4 l 1 1 1 4 I

MR-5238

Operation: PC — PC + (2 X offset) if C=0

Condition Codes: Not affected

Tests the state of the C-bit and causes a branch if C is clear. BCC is the
complementary operation of BCS.

Description:

9-38

BCS

BRANCH IF CARRY IS SET 103400 PLUS OFFSET
15 0807 00
T Ll T A | T T T T T 1 T T 1
1 0 0 0 0 1 1 1] OFFSET
[n I § 1 | i L { 1 1 A 4 Il
MR-5239
Operation: PC — PC + (2 X offset) if C =1
Condition Codes: Not affected
Description: Tests the state of the C-bit and causes a branch if C is set. It is used to test for

a carry in the result of a previous operation.

9.7.2 Signed Conditional Branches

Particular combinations of the condition code bits are tested with the signed conditional branches. These
instructions are used to test the results of instructions in which the operands were considered as signed (2’s
complement) values.

Note that the sense of signed comparisons differs from that of unsigned comparisons in that in signed,
16-bit, 2’s complement arithmetic, the sequence of values is as follows.

largest 077777
positive 077776
000001
000000
177777
177776
smallest 100001
negative 100000

Whereas, in unsigned, 16-bit arithmetic, the sequence is considered to be:

highest 177777
000002
000001
lowest 060000

9-39

BGE

BRANCH IF GREATER THAN OR EQUAL

(TO ZERO)
15

002000 PLUS OFFSET

e 07 - 00

C 0

AR S | T T T
0 0 1 0 0 OFFSET
d 1 1 A 1 | 1 1 L Il 1

Operation:
Condition Codes:

Description:

BLT

BRANCH IF LESS THAN (ZERO)

15

MR-6240

PC — PC + (2 X offset) if N & V=0
Not affected

Causes a branch if N and V are either both clear or both set. BGE is the
complementary operation of BLT. Thus, BGE will always cause a branch
when it follows an operation that caused addition of two positive numbers.
BGE will also cause a branch on a 0 result.

002400 PLUS OFFSET

08 07 00

L T T 1 T ¥ L 1 T T 1

i | 1 1 L | { 1 4 L 4

Operation:
Condition Codes:

Description:

BGT

BRANCH IF GREATER THAN (ZERO)

MR-5241

PC «— PC + (2 X offset) if N &% V =1
Not affected

Causes a branch if the exclusive OR of the N- and V-bits is one. Thus, BLT
will always branch following an operation that added two negative numbers,
even if overflow occurred. In particular, BLT will always cause a branch if it
follows a CMP instruction operating on a negative source and a positive
destination (even if overflow occurred). Further, BLT will never cause a
branch when it follows a CMP instruction operating on a positive source and
negative destination. BLT will not cause a branch if the result of the previous
operation was 0 (without overflow).

003000 PLUS OFFSET

08 07 00

T T L 1 T L L 1 T ! I

0 0 1 1 0 OFFSET

I § L [N n g 1 L L ¢)

Operation:
Condition Codes:

Description:

PC—PC+ (2 Xoffset)if Z vV (N ¥ V)=0
Not affected

Operation of BGT is similar to BGE, except that BGT will not cause a branch
on a 0 result.

9-40

BLE

BRANCH IF LESS THAN OR EQUAL (TO ZERO) 003400 PLUS OFFSET

15 08 07 00

T T T T 1 T T 1 T T 1 ¥ T 1

1 I L) 1 1 4 I] 1 1 1 I 1

MR-5243

Operation: PC — PC + (2 X offset) if Z V (N & V) =1

Coﬁdition Codes: Not affected

Description: Operation is similar to BLT, but in addition will cause a branch if the result
of the previous operation was 0.

9.7.3 Unsigned Conditional Branches
The unsigned conditional branches provide a means for testing the result of comparison operations in
which the operands are considered as unsigned values.

BHI
BRANCH IF HIGHER 101000 PLUS OFFSET
15 ‘ 08 07 00
T T 1 Ll T 1 1 T Ll T T T T)
1 0o o 0o 0 o0 1 0 OFFSET
i n)) Il { L n N 1 1 L N L
MR-5244
Operation: PC — PC + (2 X offset) if C=0and Z =0

Condition Codes: Not affected

Description: Causes a branch if the previous operation caused neither a carry nor a 0
result. This will happen in comparison (CMP) operations as long as the source
has a higher unsigned value than the destination.

BLOS

BRANCH IF LOWER OR SAME 101400 PLUS OFFSET

15

00

T
OFFSET
1

e

T

Operation:
Condition Codes: Not affected

Description:

PC — PC + (2 X offset) if C V Z =1

MR-5245

Causes a branch if the previous operation caused either a carry or a 0 result.

BLOS is the complementary operation of BHI. The branch will occur in
comparison operations as long as the source is equal to or has a lower

unsigned value than the destination.

9-41

BHIS

BRANCH IF HIGHER OR SAME

103000 PLUS OFFSET

00

Operation:
Condition Codes:

Description:

BLO

BRANCH IF LOWER

PC — PC + (2 X offset) if C=0

Not affected

BHIS is the same instruction as BCC. This mnemonic is included for

convenience only.

MR-5246

103400 PLUS OFFSET

00

Operation:
Condition Codes:

Description:

PC « PC + (2 X offset) if C =1

Not affected

BLO is the same instruction as BCS. This mne

convenience only.

9-42

MRA-5247

monic is included for

9.7.4 Jump and Subroutine Instructions

The subroutine call in the KDJ11-B provides for automatic nesting of subroutines, reentrancy, and
multiple entry points. Subroutines may call other subroutines (or indeed themselves) to any level of nesting
without making special provision for storage of return addresses at each level of subroutine call. The
subroutine calling mechanism does not modify any fixed location in memory, and thus provides for
reentrancy. This allows one copy of a subroutine to be shared among several interrupting processes.

JMP

JUMP 0001DD -

15 06 05 00

T Al T T T T 1 Ll T T T T T Ll

L { 1 L i I i i 1 J A '

MR-11556

Operation: PC. — (dst)
Condition Codes: Not affected

Description: JMP provides more flexible program branching than the branch instructions
do. Control may be transferred to any location in memory (no range limi-
tation) and can be accomplished with the full flexibility of the addressing
modes, with the exception of register mode 0. Execution of a jump with mode
0 will cause an illegal instruction condition, and will cause the CPU to trap to
vector address 4. (Program control cannot be transferred to a register.)
Register-deferred mode is legal and will cause program control to be trans-
ferred to the address held in the specified register. Note that instructions are
word data and must therefore be fetched from an even-numbered address.

Deferred-index mode JMP instructions permit transfer of control to the
address contained in a selectable element of a table of dispatch vectors.

Example: : First:

JMP FIRST stransfers to FIRST

.....

JMP @LIST ‘ stransfers to location
pointed to at LIST

List:
FIRST ;pointer to FIRST
JMP @(SP)+ ;transfer to location

pointed to by the top of
the stack, and remove the
pointer from the stack

9-43

JSR-

JUMP TO SUBROUTINE

004RDD

09 08 06 05 00

Ll 1] T T T T T T T ¥

1 1 1 & 4 1 1 4 A 1

Operation:

Description:

MR-11556

(tmp) — (dst) (tmp is an internal processor register)
| (SP) «— reg (pushes register contents onto processor stack)

reg — PC (PC holds location following JSR - this address now put in
register)

PC «— (dst) (PC now points to subroutine destination)

In execution of the JSR, the old contents of the specified register (the linkage
pointer) are automatically pushed onto the processor stack and new
linkage information is placed in the register. Thus, subroutines nested within
subroutines to any depth may all be called with the same linkage register.
There is no need either to plan the maximum depth at which any particular
subroutine will be called or to include instructions in each routine to save and
restore the linkage pointer. Further, since all linkages are saved in a reentrant
manner on the processor stack, execution of a subroutine may be interrupted.
The same subroutine may be reentered and executed by an interrupt service
routine. Execution of the initial subroutine can then be resumed when other
requests are satisfied. This process (called nesting) can proceed to any level.

A subroutine called with a JSR reg,dst instruction can access the arguments
following the call with either autoincrement addressing, (reg) +, if
arguments are accessed sequentially; or by indexed addressing, X(reg),
if accessed in random order. These addressing modes may also be deferred,
@(reg)+ and @X(reg), if the parameters are operand addresses rather than
the operands themselves.

JSR PC, dst is a special case of the KDJ11-B subroutine call suitable for
subroutine calls that transmit parameters through the general registers. The
SP and the PC are the only registers that may be modified by this call.

Another special case of the JSR instruction is JSR PC,@(SP) +, which
exchanges the top element of the processor stack with the contents of the
program counter. This instruction allows two routines to swap program
control and resume operation from where they left off when they are recalled.
Such routines are called coroutines.

Return from a subroutine is done by the RTS instruction. RTS reg loads the
contents of reg into the PC and pops the top element of the processor stack
into the specified register.

NOTE

JSR with register mode destination 0 is illegal and
traps to 10.

9-44

Example: |

SBCALL:
SBCALLA+4:

SBCALLA+2+2M:

CONT:

SBR.:

EXIT:

JSR R5,SBR
ARG 1
ARG 2

ARG M
Next Instruction

MOV (R5)+,dst 1
MOV (R5)+dst 2

MOV (R5)+,dst M
Other Instructions

RTS R5
JSR RS5, SBR
BEFORE: (PC) R7 PC
(SP) R6 n
R5| #1
AFTER: R7 SBR
R6 n—2
R5 PC+2
JSR PC, SBR
BEFORE: (PC) R7 PC
(SP) R6 n
AFTER: R7 SBR
R6 n—2

9-45

R5 R6
#1 n
#1 n
SBCALL+4 n—2
SBCALL+2+2M
CONT
CONT n—2
STACK
» DATAO
DATA O
#1
STACK
DATA O
DATAO
PC+2

MR-6250

R7
SBCALL

CONT

SBR

EXIT

RTS

RETURN FROM SUBROUTINE 00020R
15 03 02 00
0 0 0 0 0 0 0 0 0 0
L N | 1 | 1) i vl
Operation: PC — (reg)
(reg) — (SP) T
Description: Loads the contents of the register into the PC and pops the top elcmcnt of the

processor stack into the specified register.

Return from a nonreentrant subroutine is typically made through the same
register that was used in its call. Thus, a subroutine called with a JSR PC, dst
exits with an RTS PC, and a subroutine called with a JSR RS, dst may pick
up parameters with addressing modes (R5) +, X(RS5), or @X(R5), and finally
exits with an RTS RS.

Example: RTS RS
BEFORE: (PC) R7
(SPy R6 |
R5
AFTER: R7
R6
RS

RTS RS

SBR

STACK

DATAO

#1

PC

PC

n+2

DATAO

#1

9-46

MR-5252

SOB

SUBTRACT ONE AND BRANCH (IF #0) 077RNN
15 09 08 06 05 00
T T 1 T 1 T T ¥ T T T 1 T
0 1 1 1 1 1 1 R i OFFSET
b 4 A A 1 1 A 4 1 1 & A 4
(-]
MR-11552
Operation: (R) — (R) — 1; if this result # 0, then PC — PC — (2 X offset); if (R) =0
then PC — PC
Condition Codes: Not affected
Description: The register is decremented. If the contents does not equal 0, twice the offset

is subtracted from the PC (now pointing to the following word). The offset is
interpreted as a 6-bit positive number. This instruction provides a fast,
efficient method of loop control. The assembler syntax is SOB R,A where A
is the address to which transfer is to be made if the decremented R is not
equal to 0. Notice that the SOB instruction cannot be used to transfer control
in the forward direction.

9.7.5 Traps

Trap instructions provide for calls to emulators, I/O monitors, debugging packages, and user-defined
interpreters. A trap is effectively an interrupt generated by software. When a trap occurs, the contents of
the current PC and PSW are pushed onto the processor stack and are replaced by the contents of a 2-word
trap vector containing a new PC and new PSW. The return sequence from a trap involves executing an
RTI or RTT instruction, which restores the old PC and old PSW by popping them from the stack. Trap
instruction vectors are located at permanently assigned fixed addresses.

9-47

EMT

Operation:

EMULATOR TRAP 104000104377
15 08 07 00
1 0 0o o0 1 0 0 0
| (SP) — PSW
| (SP) — PC
PC — (30)
PSW — (32)

Condition Codes:

Description:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

All operation codes from 104000 to 104377 are EMT instructions and may
be used to transmit information to the emulating routine (e.g., the function to
be performed). The trap vector for EMT is at address 30. The new PC is
taken from the word at address 30; the new PSW is taken from the word at
address 32.

NOTE ,
EMT is used frequently by Digital system software
and is therefore not recommended for general use.

PS PS 1

PC PC1 STACK
BEFORE:

SP n DATA 1
AFTER: PS (32)

PC (30) DATA 1

PS 1
SP n—4 PC1

MR-5255

9-48

TRAP

TRAP 104400104777

15 08 07 00

1 v T L 0 T LB T T T T L v)

i i 1 | 1 L i I Il i 1 L L i

MR-6256

Operation: | (SP) — PSW
| (SP) — PC
PC — (34)
PSW — (36)
Condition Codes: N: loaded from trap vector

Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and
EMTs are identical in operation, except that the trap vector for TRAP is at
address 34.

NOTE
Since Digital software makes frequent use of EMT,
the TRAP instruction is recommended for general
use.

BPT

BREAKPOINT TRAP 000003

MR.5257

Operation: 1 (SP) — PSW
| (SP) — PC
PC — (14)
PSW — (16)

Condition Codes: N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 14. Used to call
debugging aids. The user is cautioned against employing code 000003 in
programs run under these debugging aids. (No information is transmitted in
the low byte.)

9-49

10T

INPUT/OUTPUT TRAP 000004
15 00
©o o o o © O © 0 O0 06 0 0 o0 1 0o o0
Operation: | (SP) «— PSW
| (SP) — PC
PC — (20)
PSW — (22)

Condition Codes:

N: loaded from trap vector
Z: loaded from trap vector
V: loaded from trap vector
C: loaded from trap vector

Description: Performs a trap sequence with a trap vector address of 20. (No information is
transmitted in the low byte.)
RTI
RETURN FROM INTERRUPT 000002
4
15 00
o] 0 o] 0 0 0 0 0 0 0 0 0 0 0 1 0
b 1 1 A & 1 1 L |)
Operation: PC — (SP) |
PSW — (SP) 1

Condition Codes:

Description:

N: loaded from processor stack
Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Used to exit from an interrupt or TRAP service routine. The PC and PSW
are restored (popped) from the processor stack. If the RTI sets the T-bit in
the PSW, a trace trap will occur prior to execution of the next instruction.

When executing in kernel mode, any legal mode can be stored in PSW
<15:14, 13:12>. When executing in supervisor mode, only supervisor or user
mode can be stored, and in user mode, only the user mode can be stored.

When executing in kernel mode, either a 1 or a 0 can be stored in PSW bit

11. When executing in supervisor mode, a stored 0 can be changed to a 1, but
a stored 1 cannot be changed to a 0.

9-50

RTT

Operation:

RETURN FROM TRAP 000006
15 00
T | T LB T T T L T T 1 L Ll T ¥
0 0 0 0 0 0 0 0 [4] 0 0 0 0 1 1 0
it 1 1 i | n 1 N n L 4 1
MR-5260
PC — (SP) 1
PSW — (SP) 1

Condition Codes:

Description:

N: loaded from processor stack

Z: loaded from processor stack
V: loaded from processor stack
C: loaded from processor stack

Operation is the same as RTI except that it inhibits a trace trap, whereas RTI
permits a trace trap. If the new PSW has the T-bit set, a trap will occur after
execution of the instruction following RTT.

When executing in kernel mode, any legal mode can be stored in PSW
<15:14, 13:12>. When executing in supervisor mode, only supervisor or user
mode can be stored, and in user mode, only the user mode can be stored.

When executing in kernel mode, either a 1 or a 0 can be stored in PSW bit
11. When executing in supervisor mode, a stored O can be changed to a 1,
but a stored 1 cannot be changed to a 0.

9.7.6 Miscellaneous Program Controls

MARK

0064NN

Operation:

Condition Codes:

Description:

MR-11566

SP « PC + 2 X NN
PC «— RS
R5 « (SP)+

(NN = number of parameters)
N: unaffected

Z: unaffected
V: unaffected

C: unaffected

Used as part of the standard subroutine return convention. MARK facilitates

the stack clean-up procedures involved in subroutine exit. Assembler format
is: MARK N.

9-51

Example: MOV RS5,—(SP) ;place old R5 on stack
MOV P1,—(SP) ;place N parameters on
MOV P2,—(SP) ;the stack to be used
Jhere vy e subroutine
MOV PN,—(SP)
MOV =MARKN,—(SP) ;place the instruction
;MARK N on the stack

MOV SP,R5 ;set up address at MARK N
;instruction
JSR PC,SUB ;jump to subroutine

At this point the stack is as follows.

OLD RS

P1

PN

MARK N

OLDPC

MR-11569

The program is at the address SUB, which is the beginning of the subroutine.

SUB: ;execution of the
;subroutine itself

RTS R5 ;the return begins:
;this causes the contents
;of RS to be placed in the
;PC which then results in
;the execution of the
;instruction MARK N. The
;contents of the old PC
;are placed in RS.

MARK N causes: (1) the stack pointer to be adjusted to point to the old RS
value; (2) the value now in R5 (the old PC) to be placed in the PC; and (3)
the contents of the old R5 to be popped into RS, thus completing the return
from the subroutine.

NOTE
If memory management is in use, the stack must be

mapped through both I and D space to execute the
MARK instruction.

9-52

SPL

SET PRIORITY LEVEL
16

00023N
03 02 00

Operation:

Condition Codes:

MR-11567

PSW bits <7:5> — priority
(priority = N)

N: unaffected
Z: unaffected
V: unaffected
C: unaffected

Description: ~ In kernel mode, the least significant three bits of the instruction are loaded
into PSW bits <7:5>, thus causing a changed priority. The old priority is lost.
In user or supervisor modes, SPL executes as an NOP.
Assembler syntax is: SPL N
CSM
CALL TO SUPERVISOR MODE ‘ V 0070DD
15) 06 05 00
1 | I | | I 1 I] I I ! I 1
0 0 0 0 1 1 1 0 0 0 DD
L | 1 | | L L { { { { L |
MR-11568
Operation: If MMR3 bit 3 =1, and

Condition Codes:

current mode = kernel, then
supervisor SP «— current mode SP
temp <15:4> — PSW <15:4>
temp <3:0> — 0

PSW <13:12> «— PSW <15:14>
PSW <15:14> — 1

PSW 4 — 0

—(SP) — temp

—(SP) — PC

—(SP) — (dst)

PC — (10);

otherwise, traps to 10 in kernel mode.

unaffected
unaffected
unaffected
unaffected

9-53

Description: CSM may be executed in user or supervisor mode, but is an illegal instruction
in kernel mode. CSM copies the current SP to the supervisor mode, switches
to supervisor mode, stacks three words on the supervisor stack (the PSW with
the condition codes cleared, the PC, and the argument word addressed by the
operand), and sets the PC to the contents of location 10 (in supervisor space).
The called program in supervisor space may return to the calling program by
popping the argument word from the stack and executing RTI. On return,
the condition codes are determined by the PSW on the stack. Hence, the
called program in supervisor space may control the condition code values
following return.

9.7.7 Reserved Instruction Traps

These are caused by attempts to execute instruction codes reserved for future processor expansion
(reserved instructions) or instructions with illegal addressing modes (illegal instructions). Order codes not
corresponding to any of the instructions described are considered to be reserved instructions. JMP and JSR
with register mode destinations are illegal instructions; they trap to virtual address 10 in kernel data space.
Reserved instructions trap to vector address 10 in kernel data space.

9.7.8 Trace Trap

Trace trap is enabled by bit 4 of the PSW and causes processor traps at the end of instruction execution.
The instruction that is executed after the instruction that sets the T-bit proceeds to completion and then
traps through the trap vector at address 14. The trace trap is a system debugging aid and is transparent to
the general programmer.

NOTE
Bit 4 of the PSW can only be set indirectly by
executing an RTI or RTT instruction with the
desired PSW on the stack.

The following are special cases of the T-bit.

NOTE
The traced instruction is the instruction after the
one that sets the T-bit.

1. Aninstruction that clears the T-bit — Upon fetching the traced instruction, an internal flag — the
trace flag — is set. The trap still occurs at the end of this instruction. The PSW on the stack,
however, has a clear T-bit.

2. An instruction that sets the T-bit — Since the T-bit is already set, setting it again has no effect.
The trap still occurs.

3. Aninstruction that causes an instruction trap — The instruction trap is performed and the entire
routine for the service trap is executed. If the service routine exits with an RTI, or in any other
way restores the stacked PSW, the T-bit is set again, the instruction following the traced
instruction is executed, and, unless it is one of the special cases noted previously, a trace trap
occurs.

4. Aninstruction that causes a stack overflow — The instruction completes execution as usual. The
stack overflow does not cause a trap. The trace trap vector is loaded into the PC and PSW and
the old PC and PSW are pushed onto the stack. Stack overflow occurs again, and this time the
trap is made.

9-54

5. Aninterrupt between setting the T-bit and fetching the traced instruction — The entire interrupt
service routine is executed and then the T-bit is set again by the exiting RTL The traced
instruction is executed (if there have been no other interrupts), and, unless it is a special case
noted above, a trace trap occurs.

6. Interrupt trap priorities — See Tablé 1-6.

9.8 MISCELLANEOUS INSTRUCTIONS

HALT
HALT 000000
12 T] T T T 1 1 L) 1 T L R T) T 00
o o o ©o © © 0 ©0 O0O 0 0 0 O0 0 o0 0
Operation: | (SP) — PSW
1 (SP) — PC
PC « restart address
PSW «— 340
Condition Codes: Not affected
Description: The effect of HALT depends upon the CPU operating mode and the state of

the trap-on-halt option (bit 3) in the maintenance register. Execution of the
HALT instruction in kernel mode with the trap-on-halt option cleared causes
the CPU to end the execution of instructions after the current instruction and
enter the DCJ11 micro-ODT mode. Execution of the HALT instruction in
kernel mode with the halt-on-trap option set, or at any time in supervisor or
user modes, causes a trap through virtual address 4 and also sets bit 7 of the
CPU error register.

NOTE
DMA activity may continue while the CPU is
halted, even if the Halt switch is on.

The state of the halt-on-trap option has no effect on

the operation of the Halt switch located on the oper-
ator console panel.

9-55

WAIT

WAIT FOR INTERRUPT 000001

15

Condition Codes:

Description:

RESET

MR-5262

Not affected

The WAIT instruction allows the processor to relinquish the bus while i
waits for an interrupt. During this time the processor does not compete for
instructions or operands from memory. This may permit higher transfer rates
between devices and memory, since there are no processor induced latencies
by requests from the devices.

In WAIT, as in all instructions, the PC points to the next instruction
following the WAIT instruction. Thus, when an interrupt causes the PC and
PSW to be pushed onto the processor stack, the address of the next instruc-
tion following the WAIT is saved. The exit from the interrupt routine causes
resumption of the interrupted process at the instruction following the WAIT.
The WAIT instruction executes as an NOP in supervisor and user modes.

RESET EXTERNAL BUS 000005

Condition Codes:

Description:

MR-5263

Not affected

The following sequence of events occurs: (1) a general purpose write cycle is
performed and a general purpose code of 014 is generated; (2) operation
is delayed for 69 microcycles; (3) a general purpose write is performed and a
general purpose code of 214 is generated; and (4) operation is delayed for 600
microcycles. If not in kernel mode, RESET operates as an NOP.

9-56

MFPT

MOVE FROM PROCESSOR TYPE WORD 000007
15 00
T Al T 1 ¥ T L T T T T T L) T
0 o 0o o o o0 0 0 O 0o 0 1 1 1
" 1 1 1 1 A
MR.7198
RO 5

Operation:
Condition Codes:

Description:

Not affected

The number 5 is placed in RO, indicating to the system software that the
processor type is a CPU designed to use the DCJ11 microprocessor.
The value returned by this instruction does not guarantee that the CPU is a
KDJ11-B. The KDJ11-A CPU also returns the same value because it too uses
the DCJ11 microprocessor. The system program should read the main-
tenance register and check bits <7:4> to determine the exact type of
microprocessor being used. The specific values contained in the maintenance
register are shown below:

Maintenance Register Bits

CPU Type 7 6 5 4
KDJ11-A 0 0 0 1
KDJ11-B 0 0 1 0

In addition, maintenance register bit 9 is used to further define the type of
system. If this bit is set, the system is Unibus based and if this bit is cleared,
the system is LSI bus based. :

' : NOTE
The following PDP-11 CPUs implement the MFPT
instruction. The chart shows the value returned to -
RO when the instruction is executed. The other
PDP-11 CPUs treat this instruction as a reserved
instruction and trap through virtual address 10.

Contents

of RO PDP-11 CPU Type Microprocessor
PDP-11/44

KDF11-A, -B, -UA DCF11
KXT11-AA, -AB, -CA DCTI11
KDJ11-A, -B DCJ11

[V, QNSO

9-57

MTPD/MTPI

MOVE TO PREVIOUS DATA SPACE (BIT 16= 1)

MOVE TO PREVIOUS INSTRUCT!ON SPACE (BIT 15 = 0) w066DD
15 06 05 00
| I T T T T T T T T T T T T
o1 o0 0 0 1 1 0 1 1 0 DD
| 4 4 - 1 | L L L i i 4 4 L
MR-11571
Operation: (temp) — (SP)+
(dst) — (temp)
Condition Codes: N: set if the source < 0
Z: set if the source = 0
V: cleared

Z: unaffected

Description: The instruction pops a word off the current stack determined by PSW
<15:14> and stores that word in an address in the previous space
(PSW <13:12>). The destination address is computed using the current
registers and memory map.

MFPD/MFPI

MOVE FROM PREVIOUS DATA SPACE (BIT 16 =1}

MOVE FROM PREVIOUS INSTRUCTION SPACE (BIT 156=0) m065SS
15 06 05 00
0/t 0 0 0 1 1 0 1 0 1 SS
i 4 4 L | i I L 4 | 1 A 4 ;
MR- 11570
Operation: (temp) — (src)
—~(SP) « (temp)
Condition Codes: N: set if the source < 0
Z: set if the source =0
V: cleared

Z: unaffected

Description: Pushes a word onto the current stack from an address in the previous space
determined by PSW <13:12>. The source address is computed using the
current registers and memory map. When MFPI is executed and both pre-
vious mode and current mode are user, the instruction functions as though it
were MFPD. »

9-58

9.9 CONDITION CODE OPERATORS

CLN SEN
CLZ SEZ
CLV SEV
CLC SEC
CCC ScC
CONDITION CODE OPERATORS 0002XX
15 05 04 03 02 01 00
0‘0|0'010'0'001 o 1 ot} N | Z [V | C
Description: Set and clear condition code bits. Selectable combinations of these bits may

be cleared or set together. Condition code bits corresponding to bits in the
condition code operator (bits <3:0>) are modified according to the sense of
bit 4, the set/clear bit of the operator. That is, set the bit specified by bit 0, 1,
2, or 3, if bit 4 = 1. Clear corresponding bits if bit 4 = 0.

Mnemonic¢ Operation * Op Code
CLC Clear C - 000241
CLV Clear V 000242
CLZ Clear Z 000244
CLN Clear N 000250
SEC Set C 000261
SEV Set V 000262
SEZ Set Z 000264
SEN Set N 000270
SCC Set all CCs 000277
CCC Clear all €Cs 000257
Clear V and C 000243
NOP No operation 000240

Combinations of the above set and clear operations may be ORed together to
form combined instructions.

9-59

CHAPTER 10
FLOATING-POINT ARITHMETIC

10.1 INTRODUCTION :

The KDJ11-B executes 46 floating-point instructions. The floating-point instruction set is compatible with
the FP11 instruction set for PDP-11 computers. Both single- and double-precision floating-point capa-
bilities are available with other features, including floating-to-integer and integer-to-floating conversion.

10.2 FLOATING-POINT DATA FORMATS

Mathematically, a floating-point number may be defined as having the form (2 ** K) * f, where K is an
integer and f is a fraction. For a nonvanishing number, K and f are uniquely determined by imposing the
condition 1/2 < f < 1. The fractional part (f) of the number is then said to be ‘normalized.” For
the number 0, f is assigned the value 0, and the value of K is indeterminate.

The floating-point data formats are derived from this mathematical representation for floating-point
numbers. Two types of floating-point data are provided. In single-precision, or floating mode, the data is
32 bits long. In double-precision, or double mode, the data is 64 bits long. Sign magnitude notation is used.

10.2.1 Nonvanishing Floating-Point Numbers

The fractional part (f) is assumed normalized, so that its most significant bit must be 1. This 1 is the
‘hidden’ bit. It is not stored explicitly in the data word, but the microcode restores it before carrying out
arithmetic operations. The floating and double modes reserve 23 and 55 bits, respectively, for f. These bits,
with the hidden bit, imply effective word lengths of 24 bits and 56 bits.

Eight bits are reserved for storage of the exponent K in excess 200 notation (i.e., as K + 200 octal), giving
a biased exponent. Thus, exponents from —128 to +127 may be represented by 0 to 377 (base 8), or 0 to
255 (base 10). For reasons given below, a biased exponent of 0 (the true exponent of —200 octal) is
reserved for floating-point 0. Therefore, exponents are restricted to the range —127 to +127 inclusive
(=177 to +177 octal) or, in excess 200 notation, 1 to 377.

The remaining bit of the floating-point word is the sign bit. The number is negative if the sign bit is a 1.

10.2.2 Floating-Point Zero

Because of the hidden bit, the fractional part is not available to distinguish between 0 and nonvanishing
numbers whose fractional part is exactly 1/2. Therefore, the KDJ11-B reserves a biased exponent of 0 for
this purpose, and any floating-point number with a biased exponent of O either traps or is treated as if it
were an exact 0 in arithmetic operations. An exact or ‘clean’ 0 is represented by a word whose bits are all
0s. A “dirty’ O is a floating-point number with a biased exponent of 0 and a nonzero fractional part. An
arithmetic operation for which the resulting true exponent exceeds 177 octal is regarded as producing a
floating overflow; if the true exponent is less than —177 octal, the operation is regarded as
producing a floating underflow. A biased exponent of 0 can thus arise from arithmetic operations as a
special case of overflow (true exponent = —200 octal). (Recall that only eight bits are reserved for the
biased exponent.) The fractional part of results obtained from such overflow and underflow is correct.

10-1

10.2.3 Undefined Variables
An undefined variable is any bit pattern with a sign bit of 1 and a biased exponent of 0. The term
‘undefined variable’ is used, for historical reasons, to indicate that these bit patterns are not assigned a
corresponding floating-point arithmetic value. Note that the undefined variable is frequently referred to as
—0 elsewhere in this chapter.

A design objective was to ensure that the undefined variable would not be stored as the result of any
floating-point operation in a program run with the overflow and underflow interrupts disabled. This is
achieved by storing an exact 0 on overflow and underflow if the corresponding interrupt is disabled. This
feature, together with an ability to detect reference to the undefined variable (implemented by the FIUV
bit discussed later), is intended to provide the user with a debugging aid: If —0 occurs, it did not result
from a previous floating-point arithmetic instruction.

10.2.4 Floating-Point Data
Floating-point data is stored in words of memory as illustrated in Figures 10-1 and 10-2.

The KDJ11-B provides for conversion of floating-point to integer format and vice versa. The processor
recognizes single-precision integer (I) and double-precision integer long (L) numbers, which are stored in
standard 2’s complement form. (See Figure 10-3.)

10.3 FLOATING-POINT STATUS REGISTER (FPS)

This register provides mode and interrupt control for the currently executing floating-point instruction and
also reflects conditions resulting from the execution of the previous instruction. (See Figure 10-4.) In this
discussion a set bit = 1 and a reset bit = 0. Three bits of the FPS register control the modes of operation as
follows.

Single/Double — Floating-point numbers can be either single- or double-precision.

Long/Short - Integer numbers can be 16 bits or 32 bits.

Chop/Round - The result of a floating-point operation can be either ‘chopped’ or ‘rounded.’” The
term ‘chop’ is used instead of ‘truncate’ to avoid confusion with truncation of series used in

approximations for function subroutines.

The FPS register contains an error flag and four condition codes (5 bits): carry, overflow, zero, and
negative, which are analogous to the CPU condition codes.

F FORMAT, FLOATING-POINT SINGLE PRECISION

15 00
+2 FRACTION <15:0>
L 1 1 I 1 1L i L] ul L i) 1 I
15 14 07 06 00
MEMORY +0} S EXP FRACT <22:16>
1 L i i]] 1 i 1 I] 1 1

MR-3604

Figure 10-1 Single-Precision Format

10-2

D FORMAT, FLOATING POINT DOUBLE PRECISION

15 00
+6 FRACTION <15:0>
1 1 L 1 L L L L 1 L 1 1 1
15 00
+4 FRACTION <31:16>
1 1 1 L 1 1 i L 1 1 1 1]
15 00
+2 |- FRACTION <47:32>
L 1 - i 1 1 1 1 N l 1 | 1 1
15 07 06 00
MEMORY +0 | S EXP FRACT <54:48>
L 1 L 1 i 1 1 1 1 L 1
S =SIGN OF FRACTION
EXP = EXPONENT IN EXCESS 200 NOTATION, RESTRICTED TO 1 TO 377 OCTAL
FOR NONVANISHING NUMBERS.
FRACTION = 23 BITS IN F FORMAT, 55 BITS IN D FORMAT PLUS ONE HIDDEN
BIT (NORMALIZATION). THE BINARY RADIX POINT IS TO THE LEFT.
MR-3605
Figure 10-2 Double-Precision Format
| FORMAT, SHORT-INTEGER SINGLE PRECISION
15 14 00
S NUMBER <15:0>>
1 1 1 il L 1 Il 1 i L 1 1 .
15 00
+2 | NUMBER <15:0>
1 1 1 1 1 1 1 1 1 1 A i 1
L FORMAT, LONG-INTEGER DOUBLE PRECISION
15 14 00
MEMORY +0 | S NUMBER <30:16>
1 L 1] 1 i L 1 1 1 L L

S =SIGN OF NUMBER

NUMBER = 15 BITS IN | FORMAT, 31 BITS IN L FORMAT.

Figure 10-3 2’s Complement Format

15 14 13 12 11 10 09 08 07 06

05

b

03

02 01 00

FID FIUV{ FIU | FIV | FIC FD FL

FT / FN

Fz | Fv | FC

e ——/
RESERVED

Figure 10-4 Floating-Point Status Register

10-3

RESERVED

MR.3607

MR-3606

The KDJ11-B recognizes the following six floating-point exceptions.

Detection of the presence of the undefined variable in memory
Floating overflow

Floating underflow

Failure of floating-to-integer conversion

Attempt to divide by 0

Illegal floating op code

For the first four of these exceptions, bits in the FPS register are available to individually enable and
disable interrupts. An interrupt on the occurrence of either of the last two exceptions can be disabled only
by setting a bit that disables interrupts on all six of the exceptions as a group.

Of the 13 FPS bits, 5 are set as part of the output of a floating-point instruction: the error flag and
condition codes. Any of the mode and interrupt control bits may be set by the user; the LDFPS instruction
is available for this purpose. These 13 bits are stored in the FPS register as shown in Figure 10-4. The FPS
register bits are described in Table 10-1.

Table 10-1 FPS Register Bit Description

Bit Name Function

15 FER The Floating ERror (FER) bit is set by the KDJ11-A if:
1. Division by zero occurs,
2. An illegal op code occurs,

3. Any one of the remaining floating-point exceptions occurs and the corre-
sponding interrupt is enabled.

Note that the above action is independent of whether the FID bit is set or
clear.

Note also that the KDJ11-A never resets the FER bit. Once the FER bit is
set by the KDJ11-A, it can be cleared only by an LDFPS instruction. (The
RESET instruction does not clear the FER bit.) This means that the FER bit
is up to date only if the most recent floating-point instruction produced a
floating-point exception.

14 FID If the FID bit is set, all floating-point interrupts are disabled.

NOTE
The FID bit is primarily a maintenance feature. It is
normally clear and it must be clear. if one wishes to
assure that storage of —0 by the KDJ11-A is accom-
panied by an interrupt.

Throughout the rest of this chapter, assume that the
FID bit is clear in all discussions involving overflow,
underflow, occurrence of —0, and integer conversion
€errors.

10-4

Table 10-1 FPS Register Bit Description (Cont)

Bit

Name

Function

13
12

11

10

Reserved
Reserved

FIUV

FIU

F1v

FIC

FD

FL

Reserved for future use.
Reserved for future use.

An interrupt occurs if FIUV is set and a —0 is obtained from memory as an
operand of ADD, SUB, MUL, DIV, CMP, MOD, NEG, ABS, TST, or any
LOAD instruction. The interrupt occurs before execution on all instructions.
When FIUV is reset, —0 can be loaded and used in any floating-point
operation.

Note that the interrupt is not activated by the presence of —0 in an AC
operand of an arithmetic instruction. In particular, trap on —0 never occurs in
mode 0. A result of —0 is not stored without the simultaneous occurrence of
an interrupt.

When the FIU bit is set, floating underflow causes an interrupt. The frac-
tional part of the result of the operation causing the interrupt is correct. The
biased exponent is too large by 400, except for the special case of 0, which is
correct. A special case is discussed later in the detailed description of the
LDEXP instruction.

When the FIV bit is set, floating overflow causes an interrupt. The fractional
part of the result of the operation causing the overflow is correct. The biased
exponent is too small by 400.

If the FIV bit is reset and overflow occurs, there is no interrupt. The
KDJ11-A returns exact 0.

Special cases of overflow are discussed later in the detailed descriptions of the
MOD and LDEXP instructions.

When the FIC bit is set and a conversion to integer instruction fails, an
interrupt occurs. When the interrupt occurs, the destination is set to 0 and all
other registers are left untouched.

If the FIC bit is reset, the result of the operation is the same as that detailed
above, but no interrupt occurs.

The conversion instruction fails if it generates an integer with more bits than
can fit in the short or long integer word specified by the FL bit.

The FD bit determines the precision that is used for floating-point calcu-
lations. When set, double-precision is assumed. When reset, single-precision is
used.

The FL bit is active in conversion between integer and floating-point formats.
When set, the integér format assumed is double-precision 2’s complement
(i.e., 32 bits). When reset, the integer format assumed is single-precision 2’s
complement (i.e., 16 bits).

10-5

Table 10-1 FPS Register Bit Description (Cont)

Bit Name Function

5 FT When the FT bit is set, the result of any arithmetic operation is chopped
(truncated). When reset, the result is rounded.

4 Reserved Reserved for future use.

3 FN FN is set if the previous floating-point operation result was negative; other-

wise it is reset.

2 FZ FZ is set if the previous floating-point operation result was 0; otherwise it is
reset.
1 FvV FV is set if the previous floating-point operation resulted in an exponent

overflow; otherwise it is reset.

0 FC FC is set if the previous floating-point operation resulted in a carry of the
most significant bit.

10.4 FLOATING EXCEPTION CODE AND ADDRESS REGISTERS
One interrupt vector is assigned to take care of all floating-point exceptions (location 244). The six possible
errors are coded in the 4-bit Floating Exception Code (FEC) register as follows.

Code Exception

Floating op code error

Floating divide by zero error

Floating-to-integer or double-to-integer conversion error
Floating overflow error

Floating underflow error

Floating undefined variable error

NOON AN

1
1
The address of the instruction producing the exception is stored in the Floating Exception Address (FEA)
register.

The FEC and FEA registers are updated only when one of the following occurs.

Division by zero

e [llegal op code
® Any of the other four exceptions with the corresponding interrupt enabled

10-6

This implies that the FEC and FEA registers are updated only when the FER bit is set.
NOTES

1. If one of the last four exceptions occurs with
the corresponding interrupt disabled, the FEC
and FEA are not updated.

2. If an exception occurs, inhibition of interrupts
‘ by the FID bit does not inhibit updating of the
FEC and FEA.

3. The FEC and FEA are not updated if no excep-
tion occurs. This means that the STST (store
status) instruction returns current information
only if the most recent floating-point instruc-
tion produced an exception.

4. Unlike the FPS, no instructions are provided
for storage into the FEC and FEA registers.

10.5 FLOATING-POINT INSTRUCTION ADDRESSING

Floating-point instructions use the same type of addressing as the central processor instructions. A source
or destination operand is specified by designating one of eight addressing modes and one of eight central
processor general registers to be used in the specified mode. The modes of addressing are the same as those
of the central processor, except in mode 0. In mode 0, the operand is located in the designated floating-
point processor accumulator rather than in a central processor general register. The modes of addressing
are as follows.,

0 = Floating-point accumulator
1 = Deferred

2 = Autoincrement

3 = Autoincrement-deferred

4 = Autodecrement

5 = Autodecrement-deferred

6 = Index

7 = Index-deferred

Autoincrement and autodecrement operate on increments and decrements of 4 for F format, and 10
(octal) for D format.

In mode 0, all six floating-point accumulators (ACO-ACS5) may be used as source or destination.
Specifying floating-point accumulators AC6 or AC7 results in an illegal op code trap. In all other modes,
which involve transfer of data to or from memory or the general registers, users are restricted to the first
four floating-point accumulators (AC0-AC3). When reading or writing a floating-point number to or from
memory, the low memory word contains the most significant word of the floating-point number, and the
high memory word the least significant word.

10-7

10.6 ACCURACY

General comments on the accuracy of the KDJ11-B floating-point instructions are presented here. The
descriptions of the individual instructions include the accuracy at which they operate. An instruction or
operation is regarded as ‘exact’ if the result is identical to an infinite precision calculation involving the
same operands. The a priori accuracy of the operands is thus ignored. All arithmetic instructions treat an
operand whose biased exponent is O as an exact 0 (unless FIUV is enabled and the operand is —0, in which
case an interrupt occurs). For all arithmetic operations except DIV, a 0 operand implies that the instruc-
tion is exact. The same statement holds for DIV if the 0 operand is the dividend. But if it is the divisor,
division is undefined and an interrupt occurs.

For nonvanishing floating-point operands, the fractional part is binary normalized. It contains 24 bits or 56
bits for floating mode and double mode, respectively. For ADD, SUB, MUL, and DIV, two guard bits are
necessary and sufficient for the general case, to guarantee return of a chopped or rounded result identical
to the corresponding infinite precision operation chopped or rounded to the specified word length. Thus,
with two guard bits, a chopped result has an error bound of one Least Significant Bit (LSB); a rounded
result has an error bound of 1/2 LSB. These error bounds are realized by the KDJ11-B for all instructions.
In the rest of this chapter, an arithmetic result is called exact if no nonvanishing bits would be lost by
chopping. The first bit lost in chopping is referred to as the ‘rounding’ bit. The value of a rounded result is
related to the chopped result as follows.

1. If the rounding bit is 1, the rounded result is the chopped result incremented by an LSB.

2. If the rounding bit is 0, the rounded and chopped results are identical.
It follows that

1. If the result is exact:

Rounded value = chopped value = exact value.

2. If the result is not exact, its magnitude is

always decreased by chopping,
decreased by rounding if the rounding bit is O,
® increased by rounding if the rounding bit is 1.

Occurrence of floating-point overflow and underflow is an error condition; the result of the calculation
cannot be correctly stored because the exponent is too large to fit into the eight bits reserved for it.
However, the internal hardware has produced the correct answer. In the case of underflow, replacement of
the correct answer with O is a reasonable resolution of the problem for many applications. This is done by
the KDJ11-B if the underflow interrupt is disabled. The error incurred by this action is an absolute rather
than a relative error; it is bounded (in absolute value) by 2 ** —128. There is no such simple resolution for
the case of overflow. The action taken, if the overflow interrupt is disabled, is described under FIV (bit 09)
in Table 10-1.

10-8

The FIV and FIU bits (of the floating-point status word) provide users with an opportunity to implement
their own correction of an overflow or underflow condition. If such a condition occurs and the corre-
sponding interrupt is enabled, the microcode stores the fractional part and the low eight bits of the biased
exponent. When the interrupt takes place, users can identify the cause by examination of the floating
overflow (FV) bit or the FEC. The reader can readily verify that (for the standard arithmetic operations
ADD, SUB, MUL, and DIV) the biased exponent returned by the instruction bears the following relation
to the correct exponent.

¢ On overflow, it is too small by 400 (octal).

® On underflow, if the biased exponent is 0, it is correct. If the biased exponent is not 0, it is too
large by 400 (octal).

Thus, with the interrupt enable, enough information is available to determine the correct answer. Users
may, for example, rescale their variables (via STEXP and LDEXP) to continue a calculation. Note that
the accuracy of the fractional part is unaffected by the occurrence of underflow or overflow.

10.7 FLOATING-POINT INSTRUCTIONS

Each instruction that references a floating-point number can operate on either single- or double-precision
numbers, depending on the state of the FD mode bit. Similarly, there is an FL mode bit that determines
whether a 32-bit integer (FL = 1) or a 16-bit integer (FL = 0) is used in conversion between integer and
floating-point representations. FSRC and FDST operands use floating-point addressing modes
(Figure 10-5); SRC.and DST operands use CPU addressing modes.

DOUBLE-OPERAND ADDRESSING

ocC FOC AC I FSRC,FDST,SRC,DST
i Il i 1 I | | I I i 1 |

SINGLE-OPERAND ADDRESSING
15 12 11 06 05 . 00

oC FOC FSRC, FDST, SRC, DST
1 | I ! l | 1 | I 1 1 1]

OC=OPCODE =17

FOC = FLOATING OPCODE

AC = FLOATING POINT ACCUMULATOR (ACO-AC3)
FSRC AND FDST USE FPP ADDRESSING MODES
SRC AND DST USE CPU ADDRESSING MODES

MR-3608

Figure 10-5 Floaﬁng—Point Addressing Modes

10-9

Terms Used in Instruction Definitions
oC = op code = 17

FOC = floating op code

AC = contents of accumulator, as specified by AC field of instruction
FSRC = address of floating-point source operand
FDST = address of floating-point destination operand
f = fraction
XL = largest fraction that can be represented:
1 — 2 ** (=24), FD = 0; single-precision
1 — 2 ** (=56), FD = 1; double-precision
XLL = smallest number that is not identically zero =
2 ** (—128)
XUL = largest number that can be represented =
2 ** (127) * XL
JL = largest integer that can be represented:

2 ** (15) — 1; FL = 0; short integer
2 ** (31) — 1; FL = 1, long integer

ABS (address) = absolute value of (address)

EXP (address) = biased exponent of (address)

.LT. = less than

.LE. _ = less than or equal to
.GT. = greater than

.GE. = greater than or equal to
LSB = least significant bit

Boolean Symbols

A = AND
Y = inclusive OR
v = exclusive OR
~ = NOT

10-10

ABSF/ABSD

MAKE ABSOLUTE FLOATING/DOUBLE 1706 FDST
15 12 1 06 05 00
I | 1 T I T T T T T T T T
1 1 1 1 0 0 0 1 1 0 FDST
L ¢ 1 1 | L 1 1 k
Format: ABSF FDST
Operation: If (FDST) < 0, (FDST) — — (FDST).

If EXP(FDST) = 0, (FDST) « exact 0.

For all other cases, (FDST) — (FDST).

Condition Codes: FC — 0
FV ~20
FZ — 1 if (FDST) =0, else FZ — 0
FN —0
Description: Set the contents of FDST to its absolute value.
Interrupts: If FIUV is enabled, trap on —0 occurs before execution. Overflow and

underflow cannot occur.

Accuracy: These instructions are exact.
ADDF/ADDD
ADD FLOATING/DOUBLE 172(AC)FSRC
15 12 11 08 07 06 05 00
T T T T T T i T T T T T T
1 1 1 1 0 1 0 0 AC FSRC
[L { | { L I Il 1 A 4
MR-11468
Format: ADDF FSRC,AC
Operation: Let SUM = (AC) + (FSRCQC).

If underflow occurs and FIU is not enabled, AC — exact 0.
If overflow occurs and FIV is not enabled, AC — exact 0.
For all others cases, AC «— SUM.

Condition Codes: FC 0
FV « 1 if overflow occurs, else FV — 0

FZ — 1if (AC) =0, else FZ — 0
FN «— 1 if (AC) <0, elsc FN « 0

10-11

Description:

Interrupts:

Accuracy:

Special Comment:

Add the contents of FSRC to the contents of AC. The addition is carried out
in single- or double-precision and is rounded or chopped in accordance with
the values of the FD and FT bits in the FPS register. The result is stored in
AC except for

® Overflow with interrupt disabled
e Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,
then for oppositely signed operands with exponent difference of 0 or 1, the
answer returned is exact if a loss of significance of one or more bits can
occur. Note that these are the only cases for which loss of significance of
more than one bit can occur. For all other cases the result is inexact with
error bounds of

e LSB in chopping mode with either single- or double-precision
® 1/2 LSB in rounding mode with either single- or double-precision

The undefined variable —0 can occur only in conjunction with overflow or
underflow. It is stored in AC only if the corresponding interrupt is enabled.

CFCC
COPY FLOATING CONDITION CODES 170000
15 12 1 00
T I 1 1 1 N I | I 1 1
1 t]o o o o o0 ©0o 0 ©0 ©0 O0 ©0 0°!
1 1 b 4 A i 1 i i n |
Format: CFCC
Operation: C — FC
V — FV
Z —FZ
N — FN
Description: Copy the floating-point condition codes into the CPU condition codes.

10-12

CLRF/CLRD

CLEAR FLOATING/DOUBLE 1704 FDST
15 12 11 06 05 00
) 1 | 1 1 1 T T T | T
1 1 0 0 0 1 0o o0 FOST
. 1 | L A L 1 { L L 1
MR-11470
Format: CLRF FDST
Operation: (FDST) «— exact 0

Condition Codes:

Description:
Interrupts:
Accuracy:

CMPF/CMPD

COMPARE FLOATING/DOUBLE

FC —0

FV —0

FZ — 1

FN —0

Set FDST to 0. Set FZ condition code and clear other condition code bits.
No interrupts occur. Overflow and underflow cannot occur.

These instructions are exact.

173(AC+4)FSRC

Format:
Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11471

CMPF FSRC,AC

(FSRC) — (AC)

FC — 0

FV —0

FZ — 1 if (FSRC) =0, else FZ — 0

FN «— 1 if (FSRC) < 0, else FN «— 0

Compare the contents of FSRC with the accumulator. Set the appropriate
floating-point condition codes. FSRC and the accumulator are left unchanged
except as noted below.

If FIUV is enabled, trap on —0 occurs before execution.

These instructions are exact.

An operand that has a biased exponent of 0 is treated as if it were an exact 0.

In this case, where both operands are 0, the KDJ11-B stores an exact 0 in
AC.

10-13

DIVF/DIVD

DIVIDE FLOATING/DOUBLE 174(AC+4)FSRC

1 1 0 0 1 AC FSRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11472

DIVF FSRC,AC

If EXP(FSRC) = 0, (AC) — (AC) and the instruction is aborted.
If EXP(AC) = 0, (AC) — exact 0.

For all other cases, let QUOT = (AC)/(FSRC).

If underflow occurs and FIU is not enabled, AC «— exact 0.

If overflow occurs and FIV is not enabled, AC — exact 0.

For all others cases, AC — QUOT..

FC —0

FV — 1 if overflow occurs, else FV — 0
FZ — 1if (AC)=0, else FZ — 0

FN — 1 if (AC) < 0, else FN — 0

If either operand has a biased exponent of 0, it is treated as an exact 0. For
FSRC this would imply division by 0; in this case, the instruction is aborted,
the FEC register is set to 4, and an interrupt occurs. Otherwise, the quotient
is developed to single- or double-precision with two guard bits for correct
rounding. The quotient is rounded or chopped in accordance with the values
of the FD and FT bits in the FPS register. The result is stored in the AC
except for '

e Overflow with interrupt disabled
e Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If (FSRC)
= 0, interrupt traps occur on an attempt to divide by 0. If overflow or
underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If none of these
occurs, the error in the quotient is bounded by 1 LSB in chopping mode and
by 1/2 LSB in rounding mode.

The undefined variable —0 can occur only in conjunction with overflow or
underflow. It is stored in AC only if the corresponding interrupt is enabled.

10-14

LDCDF/LDCFD

LOAD AND CONVERT FROM DOUBLE-TO-FLOATING

AND FROM FLOATING-TO-DOUBLE 177(AC+4)FSRC
15 12N 08 07 06 05 00
| 1 1 | T 1 | T T T T T
1 1 1 1 1 1 1 1 AC FSRC
| L 1 | L L 1 1 { | }
MR-11473
Format: . LDCDF FSRC,AC
Operation: If EXP(FSRC) = 0, AC «— exact 0.

If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, AC « exact 0.

In all other cases, AC — Cxy(FSRC), where Cxy specifies conversion from
floating mode x to floating mode y.

x =D, y = F if FD = 0 (single) LDCDF
y=F,y =D if FD = 1 (double) LDCFD

Condition Codes: FC — 0
FV «- 1 if conversion produces overflow, else
FV —0
FZ — 1if (AC)=0, else FZ — 0
FN « 1 if (AC) < 0, else FN — 0

Description: If the current mode is floating mode (FD = 0), the source is assumed to be a
double-precision number and is converted to single-precision. If the floating
chop bit (FT) is set, the number is chopped; otherwise, the number is
rounded.

If the current mode is double mode (FD = 1), the source is assumed to be a
smgle precision number and is loaded left-justified in AC. The lower half of
AC is cleared.

Interrupts: If FIUV is enabled, trap on —0 occurs before executlon Overflow cannot
occur for LDCFD.

A trap occurs if FIV is enabled and if rounding with LDCDF causes over-
flow. AC — overflowed result. This result must be +0 or —0. Underflow
cannot occur.

Accuracy: LDCFD is an exact instruction. Except for overflow (see above), LDCDF

incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB in
rounding mode.

10-15

LDCIF/LDCID/LDCLF/LDCLD

LOAD AND CONVERT INTEGER OR LONG INTEGER
TO FLOATING OR DOUBLE-PRECISION 177(AC)SRC

1 1 1 1 0 AC SRC

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11474

LDCIF SRC,AC

AC — Cjx(SRC), where Cjx specifies conversion from integer mode j to
floating mode x.

j=T1if FL=0,j=LifFL =1
x=Fif FD=0,x=Dif FD = 1

FC—0
FV —0
FZ — 1if (AC)=0,¢else FZ— 0
FN — 1 if (AC) <0, else FN «— 0

Conversion is performed on the contents of SRC from a 2’s complement
integer with precision j to a floating-point number of precision x. Note that j
and x are determined by the state of the mode bits FL and FD.

If a 32-bit integer is specified (L mode) and (SRC) has an addressing mode of
0 or immediate addressing mode is specified, the 16 bits of the source register
are left-justified and the remaining 16 bits are loaded with Os before
conversion.

In the case of LDCLF, the fractional part of the floating-point representation
is chopped or rounded to 24 bits for FT = 1 or 0, respectively.

None. SRC is not floating-point, so trap on —0 cannot occur.
LDCIF, LDCID, and LDCLD are exact instructions. The error incurred by

LDCLF is bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding
mode.

10-16

LDEXP

LOAD EXPONENT

176{AC+4)SRC
12 1 08 07 06 05 00

T T T T T T T~ T T
1 1 1 0 1 AC SRC

]] - .]] b .

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11475

LDEXP SRC,AR

(Note that 177 and 200, appearing throughout this instruction definition, are
octal numbers.)

If —200 < SRC < 200, EXP(AC) — SRC + 200 and the rest of AC is
unchanged.

If (SRC) > 177 and FIV is enabled, EXP(AC) — [(SRC) + 200]<7:0>.
If (SRC) > 177 and FIV is disabled, AC — exact 0.

If (SRC) < —177 and FIU is enabled, EXP(AC) «— [(SRC) + 200]<7:0>.
If (SRC) < —177 and FIU is disabled, AC — exact 0.

FC «— 0

FV — 1 if (SRC) > 177, else FV — 0
FZ — 1if (AC) =0, else FZ — 0
FN — 1 if (AC) <0, else FN — 0 -

Change AC so that its unbiased exponent = (SRC). That is, convert (SRC)
from 2’s complement to excess 200 notation and insert it into the EXP field
of AC. This is a meaningful operation only if ABS(SRC) LE 177.

If SRC > 177, the result is treated as overflow. If SRC < —177, the result is
treated as underflow.

No trap on —0 in AC occurs, even if FIUV is enabled. If SRC > 177 and FIV
is enabled, trap on overflow occurs. If SRC < —177 and FIU is enabled, trap
on underflow occurs.

Errors due to overflow and underflow are described above. If EXP(AC) =
and (SRC) = —200, AC changes from a floating-point number treated as
0 by all floating arithmetic operations to a nonzero number. This happens
because the insertion of the ‘hidden’ bit in the microcode implementation of
arithmetic instructions is triggered by a nonvanishing value of EXP.

For all other cases, LDEXP implements exactly the transformation of a

floating-point number (2 ** K) * f into (2 ** (SRC)) * f where 1/2 .LE.
ABS(f) .LT. 1.

10-17

LDF/LDD

LOAD FLOATING/DOUBLE 172(AC+4)FSRC

15

1 0 1 0 1 AC FSRC

Format:
Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11476

LDF FSRC,AC

AC « (FSRC)

FC «—~ 0

FV «—0

FZ — 1if (AC) =0, else FZ — 0
FN — 1 if (AC) <0, else FN — 0

Load single- or double-precision number into AC.

If FIUV is enabled, trap on —0 occurs before AC is loaded. Overflow and
underflow cannot occur.

These instructions are exact.

These instructions permit use of —0 in a subsequent floating-point instruction
if FIUV is not enabled and (FSRC) = —0.

LDFPS
LOAD FLOATING-POINT PROGRAM STATUS 1701 SRC
15 12 11 06 05 00
T] ! | i 1 [! I 1 {
1 1 0 0 0 0 0 1 SRE
1 1 ! Il " 1 1 [il

Format: LDFPS SRC
Operation: FPS — (SRC)
Description: Load floating-point status register from SRC.

Special Comment:

Users are cautioned not to use bits 13, 12, and 4 for their own purposes, since
these bits are not recoverable by the STFPS instruction.

10-18

MODF/MODD

MULTIPLY AND SEPARATE INTEGER

AND FRACTION FLOATING/DOUBLE 171(AC+4)FSRC
15 12 11 08 C7 06 05 00
i T l I | 1 i I I I I 1
1 1 1 1 0 0 1 1 AC FSRC:
- L 1] i | - 4 1 Il j— h
MR-11478
Format: MODF FSRC,AC
Description This instruction generates the product of its two floating-point operands,
and Operation: separates the product into integer and fractional parts, and then stores one or

both parts as floating-point numbers.
Let PROD = (AC) * (FSRC) so that in
Floating-point: ABS(PROD) = (2 ** K) * f, where
1/2 LE. f LT. 1, and EXP(PROD) = (200 + K).
Fixed-point binary: PROD = N + g, where
N = INT(PROD) = integer part of PROD, and

g = PROD — INT(PROD) = fractional part of PROD with 0 .LE. g
LT. 1.

Both N and g have the same sign as PROD. They are returned as follows.

If AC is an even-numbered accumulator (0 or 2), N is stored in AC + 1
(1 or 3), and g is stored in AC.

If AC is an odd-numbered accumulator, N is not stored and g is stored
in AC.

These two statements can be combined as:
N is returned to AC Vv 1 and g is returned to AC.

Five special cases occur, as indicated in the following formal description with
L = 24 for floating mode and L = 56 for double mode.

1. If PROD overflows and FIV is enabled, AC V 1 — N, chopped to L
bits, AC — exact 0. :

Note that EXP(N) is too small by 400 and that —0 can be stored in AC
Vv 1.

If FIV is not enabled, AC V 1 «— exact 0, AC — exact 0, and —0 will
never be stored.

10-19

Condition Codes:

Interrupts:

Accuracy:

2. If2**L LE. ABS(PROD) and no overflow, AC Vv 1 — N, chopped to
L bits, AC — exact 0.

The sign and EXP of N are correct, but low-order bit information is lost.
3. If 1 .LE. ABS(PROD) LT. 2 **L, AC V 1 — N, AC « g.

The integer part N is exact. The fractional part g is normalized and
chopped or rounded in accordance with FT. Rounding may cause a
return of + unity for the fractional part. For L = 24, the error in g is
bounded by 1 LSB in chopping mode and by 1/2 LSB in rounding mode.
For L = 56, the error in g increases from the limits above as ABS(N)
increases above 8, because only 59 bits of PROD are generated.

If 2 ** p LE. ABS(N) .LT. 2 ** (p + 1), with p > 2, the low order p — 2
bits of g may be in error.

4. If ABS(PROD) .LT. I and no underflow, AC V 1 «— exact 0 and AC ~ g.

There is no error in the integer part. The error in the fractional part is
bounded by 1 LSB in chopping mode and 1/2 LSB in rounding mode.
Rounding may cause a return of + unity for the fractional part.

5. If PROD underflows and FIU is enabled, AC V 1 — exact 0 and AC « g.

Errors are as in case 4, except that EXP(AC) is too large by 400g (if
EXP = 0, it is correct). Interrupt occurs and —0 can be stored in AC.

If FIU is not enabled, AC v 1 «— exact 0 and AC «— exact 0.
For this case the error in the fractional part is less than 2 ** (—128).
FC — 0
FV — 1 if PROD overflows, else FV «— 0
FZ — 1if (AC) =0, else FZ — 0
FN — 1 if (AC) < 0, else FN — 0

If FIUV is enabled, trap on —0 in FSRC occurs before execution. Overflow
and underflow are described above. '

Described above.

10-20

Applications:

1. Binary-to-decimal conversion of a proper fraction. The followmg
algorithm, using MOD, generates decimal digits D(1), D(2) - - - from
left to right.

Initialize: I—0;

X < number to be converted;
ABS(X) < 1;
While: X#0
Begin: PROD — X * 10;
[—1+1;
D(I) — INT(PROD);
X « PROD — INT(PROD);
End.

This algorithm is exact. It is case 3 in the description because the number of
nonvanishing bits in the fractional part of PROD never exceeds L, and hence
neither chopping nor rounding can introduce error.

2.

‘To reduce the argument of a trigonometric function.

ARG * 2/PI = N + g. The two low bits of N identify the quadrant, and
g is the argument reduced to the first quadrant. The accuracy of N + g
is limited to L bits because of the factor 2/PI. The accuracy of the
reduced argument thus depends on the size of N.

To evaluate the exponential function e ** x, obtain x * (log ¢ base 2) =
N + g, thene ¥* x = (2 ** N) * (¢ ** (g * 1n 2)).

The reduced argument is g * In2 < 1 and the factor 2 ** N is an exact
power of 2, which may be scaled in at the end via STEXP, ADD N to
EXP and LDEXP. The accuracy of N + g is limited to L bits because of
the factor (log ¢ base 2). The accuracy of the rcduced argument thus
depends on the size of N.

10-21

MULF/MULD

MULTIPLY FLOATING/DOUBLE 171(AC)FSRC
15 12 1 08 07 06 05 00
. T I | I { I T T 1 T
1 1 0o 0 1 0 AC FSRC
5 1 i 1 i 1 1 L I L
MR-11479
Format: MULF FSRC,AC
Operation: Let PROD = (AC) * (FSRC).

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

If underflow occurs and FIU is not enabled, AC «— exact 0.
If overflow occurs and FIV is not enabled, AC — exact 0.
For all others cases, AC — PROD.

FC — 0

FV — 1 if overflow occurs, else FV «— 0
FZ — 1 if (AC)=0, else FZ — 0

FN «— 1 if (AC) <0, else FN «— 0

If the biased exponent of either operand is 0, (AC) — exact 0. For all other
cases PROD is generated to 48 bits for floating mode and 59 bits for double
mode. The product is rounded or chopped for FT = 0 or 1, respectively, and
is stored in AC except for

e Overflow with interrupt disabled
e Underflow with interrupt disabled

For these exceptional cases, an exact 0 is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for

- underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,
the error incurred is bounded by 1 LSB in chopping mode and 1/2 LSB in
rounding mode.

The undefined variable —0 can occur only in conjunction with overflow or
underflow. It is stored in AC only if the corresponding interrupt is enabled.

10-22

NEGF/NEGD

NEGATE FLOATING/DOUBLE 1707 FDST
15 12 1 06 05 00
1 | | | 1 | 1 I 1 i | {
1 1 1o o o 1 1 1 FDST
' Il 1 ! A 1 1 L { I
Format: NEGF FDST
Operation: (FDST) « — (FDST) if (FDST) = 0, else (FDST) < exact 0.

Condition Codes:

FC —0
FV <0
FZ — 1 if (FDST) = 0, else FZ — 0
FN — 1 if (FDST) < 0, else FN «— 0

Description: Negate the single- or double-precision number and store result in same
location (FDST).
Interrupts: If FIUV is enabled, trap on —0 occurs before execution. Overflow and
underflow cannot occur. '
Accuracy: These instructions are exact.
SETD
SET FLOATING DOUBLE MODE 170011
15 12 1" 00
I 1 | 1 [1 T 1 ! i | 1 1
1 1 110 o o o © o 0 0 1 o o 1
A b 1 | - 4 I 1 1 L |
MR-11481
Format: SETD
Operation: FD — 1
Description: Set the KDJ11-B in double-precision mode.
SETF
SET FLOATING MODE 170001
15 12 " 00
I 1 I 1 | { | 1 1 | 1 I |
1 1 1 0 0 0 0 0 0 0 0 0 0 0 1
I i 1 | . oh d 1 i b
MR-11482
Format: SETF
| Operation: FD — 0
Description: Set the KDJ11-B in single-precision mode.

10-23

SETI

SET INTEGER MODE 170002
15 12 1 00
1 T I ¥ T 1 1 ! T 1 I i 1 T
1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
L 1 I i 1 i I L 1 L [L I
MR-11483
Format: SETI
Operation: FL —0
Description: Set the KDJ11-B for short-integer data.
SETL
SET LONG-INTEGER MODE 170012
15 12 11 00
T T T T T i [T 1 T i ! ! I
1 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0
1 | I 1 1 L | | I 1 i L | N
MR-11484
Format: SETL
Operation: FL — 1
Description: Set the KDJ11-B for long-integer data.

10-24

STCFD/STCDF

STORE AND CONVERT FROM FLOATING-TO-DOUBLE

AND FROM DOUBLE-TO-FLOATING 176 (AC) FOST

15

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11486

STCFD AC,FDST
If (AC) = 0, (FDST) < exact 0.
If FD = 1, FT = 0, FIV = 0 and rounding causes overflow, (FDST) — exact 0.

In all other cases, (FDST) — Cxy(AC), where Cxy specifies conversion from
floating mode x to floating mode y.

x = F, y = D if FD = 0 (single) STCFD
x =D,y =Fif FD = 1 (double) STCDF

FC —0

FV — 1 if conversion produces overflow, else
FV —0

FZ — 1 if (AC) = 0, else FZ — 0

FN — 1 if (AC) <0, else FN « 0

If the current mode is single-precision, the accumulator is stored left-justified
in FDST and the lower half is cleared.

If the current mode is double-precision, the contents of the accumulator are
converted to single-precision, chopped or rounded depending on the state of
FT, and stored in FDST.

Trap on —0 does not occur even if FIUV is enabled because FSRC is an
accumulator. Underflow cannot occur. Overflow cannot occur for STCFD.

A trap occurs if FIV is enabled and if rounding with STCDF causes overflow.
(FDST) « overflowed result. This result must be +0 or —0.

STCFD is an exact instruction. Except for overflow (see above), STCDF

incurs an error bounded by 1 LSB in chopping mode and by 1/2 LSB in
rounding mode.

10-25

STCFI/STCFL/STCDI/STCDL

STORE AND CONVERT FROM FLOATING OR DOUBLE
TO INTEGER OR LONG INTEGER 175(AC+4)DST

12 11 08 07 06 05 00

1 | 1 i T ¥ ¥ i i

1 | L I | 1 L 1 1

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

MR-11486

STCFI AC,DST

(DST) « Cxj(AC) if —JL — 1 < Cxj(AC) < JL + 1, else (DST) — 0, where
Cjx specifies conversion from floating mode j to integer mode x.

j=Tif FL=0,j=Lif FL=1
x=Fif FD=0,x=Dif FD =1

JL is the largest integer.

2* 15 —-1for FL=0
2%¥32 —1forFL =1

C,FC —0if -JL — 1 < Cxj(AC) < JL + 1, else
C,FC~1

V,FV <0

Z,FZ — 1if (DST)=0, else Z, FZ — 0

N, FN — 1 if (DST) < 0, else N, FN — 0

Conversion is performed from a floating-point representation of the data in
the accumulator to an integer representation.

If the conversion is to a 32-bit word (L mode), and an addressing mode of 0
or immediate addressing’ mode is specified, only the most significant 16 bits
are stored in the destination register.

If the operation is out of the integer range selected by FL, FC is set to 1 and
the contents of the DST are set to 0.

Numbers to be converted are always chopped (rather than rounded) before
they are converted. This is true even when chop mode bit FT is cleared in the
FPS register.

These instructions do not interrupt if FIUV is enabled, because the —0
(if present) is in AC, not in memory. If FIC is enabled, trap on conversion
failure occurs.

These instructions store the integer part of the floating-point operand, which

may not be the integer most closely approximating the operand. They are
exact if the integer part is within the range implied by FL.

10-26

STEXP

STORE EXPONENT

175(AC)DST

1 1 o 1 0 ac | DST

Format:
Operation:

Condition Codes:

MR-11487

STEXP AC,DST
(DST) — EXP(AC) — 200.

C,FC —0

V,FV <0

Z,FZ — 1if (DST) =0, else Z, FZ — 0
N, FN « 1 if (DST) < 0, else N, FN — 0

Description: Convert the AC exponent from excess 200 notation to 2’s complement and
store the result in DST.
Interrupts: This instruction does not trap on —0. Overflow and underflow cannot occur.
Aceuracy: This instruction is exact.
STF/STD
STORE FLOATING/DOUBLE 174(AC)FDST
15 12 11 08 07 06 05 00
I i 1 1 T 1 | l T |
1 1 LI | 0 0 0 AC FDST
[| 1 - 4 1 1 - h
Format: STF AC,FDST
Operation: (FDST) — AC
Condition Codes: FC — FC
FV «— FV
FZ — FZ
FN «— FN

Description:

Interrupts:

Accuracy:

Special Comment:

Store single- or double-precision number from AC.

These instructions do not interrupt if FIUV is enabled, because the —0
(if present) is in AC, not in memory. Overflow and underflow cannot occur.

These instructions are exact.

These instructions permit storage of a —0 in memory from AC. There are two
conditions in which —0 can be stored in an AC of the KDJ11-B. One occurs
when underflow or overflow is present and the corresponding interrupt is
enabled. A second occurs when an LDF or LDD instruction is executed and
the FIUV bit is disabled.

10-27

STFPS

Format:

Operation:

STORE FLOATING-POINT PROGRAM STATUS

1702 DST

12 11 00

1 1 I T T [! 1 T 1

Description:

Special Comment:

STST

Format:

Operation:

STORE FPP'S STATUS
15

MR-11489

STFPS DST
(DST) — FPS
Store the floating-point status register in DST.

Bits 13, 12, and 4 are loaded with 0. All other bits are the corresponding bits
in the FPS.

1703 DST
00

! I 1 ! 1 I 1 ! I |

Description:

MR-11490

STST DST
(DST) — FEC (DST + 2) — FEA.
Store the FEC and FEA in DST and DST + 2. Note the following.

e If the destination mode specifies a general register or immediate
addressing, only the FEC is saved.

e The information in these registers is current only if the most recently
executed floating-point instruction caused a floating-point exception.

10-28

SUBF/SUBD

SUBTRACT FLOATING/DOUBLE 173(AC)FSRC

12 11 08 07 06 05 00

Format:

Operation:

Condition Codes:

Description:

Interrupts:

Accuracy:

Special Comment:

MR-11491

SUBF FSRC,AC

Let DIFF = (AC) — (FSRC).

If underflow occurs and FIU is not enabled, AC «— exact 0.
If overflow occurs and FIV is not enabled, AC « exact 0.
For all others cases, AC — DIFF.

FC — 0

FV — 1 if overflow occurs, else FV — 0
FZ — 1if (AC)=0, else FZ — 0

FN — 1 if (AC) <0, else FN — 0

Subtract the contents of FSRC from the contents of AC. The subtraction is
carried out in single- or double-precision and is rounded or chopped in accor-
dance with the values of the FD and FT bits in the FPS register. The result is
stored in AC except for

¢ Overflow with interrupt disabled
e Underflow with interrupt disabled

For these exceptional cases, an exact O is stored in AC.

If FIUV is enabled, trap on —0 in FSRC occurs before execution. If overflow
or underflow occurs, and if the corresponding interrupt is enabled, the trap
occurs with the faulty result in AC. The fractional parts are correctly stored.
The exponent part is too small by 400 for overflow. It is too large by 400 for
underflow, except for the special case of 0, which is correct.

Errors due to overflow and underflow are described above. If neither occurs,
then for like-signed operands with exponent difference of 0 or 1, the answer
returned is exact if a loss of significance of one or more bits can occur. Note
that these are the only cases for which loss of significance of more than one
bit can occur. For all other cases the result is inexact with error bounds of

e LSB in chopping mode with either single- or double-precision
e 1/2 LSB in rounding mode with either single- or double-precision

The undefined variable —-0 can occur only in conjunction with overflow or
underflow. It is stored in AC only if the corresponding interrupt is enabled.

10-29

TSTF/TSTD

TEST FLOATING/DOUBLE 1705 FDST
15 12 1" 06 05 00
1 [I 1 I 1 T i 1 T T T |
1 1 1 1 0 0 0 1 0 1 FDST
L | { { 1 i 4 i 1 Il ! b
MR-11492
Format: TSTF FDST
Operation: (FDST)
Condition Codes: FC —~0
FV «~ 0

FZ «— 1 if (FDST) = 0, else FZ — 0
FN « 1 if (FDST) < 0, else FN — 0

Description: Set the floating-point condition codes according to the contents of FDST.

Interrupts: If FIUV is set, trap on —0 occurs before execution. Overflow and underflow
cannot occur.

Accuracy: These instructions are exact.

10-30

CHAPTER 11
PROGRAMMING TECHNIQUES

11.1 INTRODUCTION

The KDJ11-B offers a great deal of programming flexibility and power. Utilizing the combination of the
instruction set, the addressing modes, and the programming techniques, it is possible to develop new
software or to utilize old programs effectively. The programming techniques in this chapter show the
capabilities of the KDJ11-B. The techniques discussed involve PIC, stacks, subroutines, interrupts, reen-
trancy, coroutines, recursion, processor traps, programming peripherals, and conversion.

11.2 POSITION-INDEPENDENT CODE

The output of a MACRO-11 assembly is a relocatable object module. The task builder or linker binds one
or more modules together to create an executable task image. Once built, a task can only be loaded and
executed at the virtual address specified at link time. This is because the linker has had to modify some
instructions to reflect the memory locations in which the program is to run. Such a body of code is
considered position-dependent (i.c., dependent on the virtual addresses to which it is bound).

The KDJ11-B processor offers addressing modes that make it possible to write instructions that do not
depend on the virtual addresses to which they are bound. This type of code is termed position-independent
and can be loaded and executed at any virtual address. PIC can improve system efficiency, both in use of
virtual address space and in conservation of physical memory.

In multiprogramming systems like RSX-11M, it is important that many tasks be able to share a single
physical copy of common code (e.g., a library routine). To make optimum use of the virtual address space
of a task, shared code should be position-independent. Code that is not position-independent can also be
shared, but it must appear in the same virtual locations in every task using it. This restricts the placement
of such code by the task builder and can result in the loss of virtual addressing space.

11.2.1 Use of Addressing Modes in the Construction of Position-Independent Code
The construction of PIC is closely linked to the proper use of addressing modes. The remainder of this
explanation assumes the reader to be familiar with the addressing modes described in Chapter 6.

The following addressing modes, which involve only register references, are position-independent.

R Register mode

(R) Register-deferred mode

(R)+ Autoincrement mode

@(R)+ Autoincrement-deferred mode
—(R) Autodecrement mode

@—(R) Autodecrement-deferred mode

When employing these addressing modes, the user is guaranteed position independence, providing the
contents of the registers are supplied independently of a particular virtual memory location.

The following two relative addressing modes are position-independent when a relocatable address is
referenced from a relocatable instruction.

A Relative mode
@A Relative-deferred mode

Relative modes are not position-independent when an absolute address (that is, a nonrelocatable address) is
referenced from a relocatable instruction. In such a case, absolute addressing (i.e., @#A) may be employed
to make the reference position-independent.

Index modes can be either position-independent or position-dependent, according to their use in the
program.

X(R) Index mode
@X(R) Index-deferred mode

If the base, X, is an absolute value (e.g., a control block offset), the reference is position-independent. The
following is an example.

MOV 2(SP),R0 :POSITION-INDEPENDENT
=4
MOV N(SP),R0 ;POSITION-INDEPENDENT

If, however, X is a relocatable address, the reference is position-dependent, as the following example
shows.

CLR ADDR(R1) ;POSITION-DEPENDENT

Immediate mode can be either position-independent or not, according to its use. Immediate mode refer-
ences are formatted as follows.

#N Immediate mode
When an absolute expression defines the value of N, the code is position-independent. When a relocatable
expression defines N, the code is position-dependent. That is, immediate mode references are position-

independent only when N is an absolute value.

Absolute mode addressing is position-independent only in those cases where an absolute virtual location is
being referenced. Absolute mode addressing references are formatted as follows.

@#A Absolute mode

An example of a position-independent absolute reference is a reference to the PSW from a relocatable
instruction, as in this example.

MOV @#PSW,R0O ;RETRIEVE STATUS AND PLACE IN REGISTER

11-2

11.2.2 Comparison of Position-Dependent and Position-Independent Code

The RSX-11 library routine, PWRUP, is a FORTRAN-callable subroutine for establishing or removing a
user power failure, Asynchronous System Trap (AST) entry point address. Embedded within the routine is
the actual AST entry point that saves all registers, effects a call to the user-specified entry point, restores
all registers on return, and executes an AST exit directive. The following examples are excerpts from this
routine. The first example is modified to illustrate position-dependent references. The second example is
the position-independent version.

Position-Dependent Code

PWRUP::
CLR —(SP) ;ASSUME SUCCESS
CALL X.PAA ;PUSH (SAVE)
;ARGUMENT ADDRESSES
;ONTO STACK
.WORD 1.,$PSW ;CLEAR PSW, AND
;SET R1=R2SP
MOV $OTSV,R4 ;GET OTS IMPURE
;AREA POINTER
MOV (SP)+,R2 ;GET AST ENTRY
;POINT ADDRESS
BNE 10$;IF NONE SPECIFIED,
;SPECIFY NO POWER
CLR —(SP) ;RECOVERY AST SERVICE
BR 20% ;
10$: ; '
MOV R2,F.PF(R4) SET AST ENTRY POINT
MOV . #BA,—(SP) ;PUSH AST SERVICE
;ADDRESS
20$: ; ‘
CALL X.EXT ;ISSUE DIRECTIVE, EXIT.
.BYTE - 109.,2. ;
BA: MOV RO,—(SP) ;PUSH (SAVE) RO
MOV R1,—-(SP) ;PUSH (SAVE) R1
MOV R2,—(SP) ;PUSH (SAVE) R2

11-3

Position-Independent Code

PWRUP::
CLR
CALL

.WORD
MOV
MOV
BNE

CLR

BR
10$:

MOV

MOV

ADD

208$:
CALL
BYTE

BA: MOV
MOV
MOV

~(SP)
X.PAA
1.,$PSW
@#$OTSV,R4
(SP}+,R2

108

—(SP)
20%

R2,F.PF(R4)
PC,—(SP)
#BA—.(SP)

X.EXT
109.,2.

R0O,—(SP)
R1,—(SP)
R2,—(SP)

;ASSUME SUCCESS
;PUSH ARGUMENT
;ADDRESSES ONTO

; STACK

;CLEAR PSW, AND
;SET R1=R2-SP.

;GET OTS IMPURE
;AREA POINTER
;GET AST ENTRY
;POINT ADDRESS

;JIF NONE SPECIFIED,
;SPECIFY NO POWER
;RECOVERY AST SERVICE

;SET AST ENTRY POINT

;PUSH CURRENT LOCATION
;COMPUTE ACTUAL LOCATION
;OF AST

;ISSUE DIRECTIVE, EXIT.

'ACTUAL AST SERVICE ROUTINE:

; 1) SAVE REGISTERS

; 2) EFFECT A CALL TO SPECIFIED
; SUBROUTINE

; 3) RESTORE REGISTERS

; 4) ISSUE AST EXIT DIRECTIVE

;PUSH (SAVE) RO
;PUSH (SAVE) R1
;PUSH (SAVE) R2

The position-dependent version of the subroutine contains a relative reference to an absolute symbol
($OTSV) and a literal reference to a relocatable symbol (BA). Both references are bound by the task
builder to fixed memory locations. Therefore, the routine does not execute properly as part of a resident
library, if its location in virtual memory is not the same as the location specified at link time.

In the position-independent version, the reference to $OTSV has been changed to an absolute reference. In
addition, the necessary code has been added to compute the virtual location of BA based upon the value of
the PC. In this case, the value is obtained by adding the value of the PC to the fixed displacement between
the current location and the specified symbol. Thus, execution of the modified routine is not affected by its
location in the virtual address space of the image.

11-4

11.3 STACKS

The stack is part of the basic design architecture of the KDJ11-B. It is an area of memory set aside by the
programmer or the operating system for temporary storage and linkage. It is handled on a Last In, First
Out (LIFO) basis, where items are retricved in reverse of the order in which they were stored. A stack

starts at the highest location reserved for it and expands linearly downward to lower addresscs as items are
added.

It is not necessary to keep track of the actual locations into which data is being stacked. This is done
automatically through an SP. To keep track of the last item added to the stack, a general register is used to
store the memory address of the last item in the stack. Any register except R7 (the PC) may be used as an
SP under program control; however, instructions associated with subroutine linkage and interrupt service
automatically usc R6 as a hardware stack pointer. For this reason, R6 is frequently referred to as the
system SP. Stacks may be maintained in either full-word or byte units. This is true for a stack pointed to
by any register except R6, which must be organized in full-word units. Byte stacks (Figure 11-1) require
instructions capable of operating on bytes rather than full words.

11.3.1 Pushing onto a Stack
Items are added to a stack using the autodecrement addressing mode. Adding items to the stack is called
‘pushing,” and is accomplished by the following instructions.

MOV Source,—(SP) ;MOV CONTENTS OF SOURCE WORD
:ONTO THE STACK
_ OR
MOVB Source,—(SP) :MOVB SOURCE BYTE ONTO
;THE STACK
WORD STACK
007100 ITEM # 1
007076 ITEM # 2
007074 ITEM # 3
007072 ITEM #4 -« sp | 007072 1
007070
007066
007064
BYTE STACK
007100 { ITEM # 1
007077 ITEM # 2
007076 | ITEM # 3
007075 ITEM # 4 - 5P | 007075 |
NOTE:
BYTES ARE
ARRANGED IN

WORDS AS FOLLOWING:
BYTE 3 | BYTE 2
BYTE1 | BYTEO

———
WORD

MR.-3662

Figure’11-1 Word and Byte Stacks

11.3.2 Popping from a Stack
Removing data from the stack is called ‘popping.” This operation is accomplished using the autoincrement
mode.

MOV (SP)+,Destination :MOV DESTINATION WORD
:OFF THE STACK
OR
MOVB (SP)+,Destination ;:MOVB DESTINATION BYTE

;OFF THE STACK
After an item has been popped, its stack location is considered free and available for other use. The SP
points to the last-used location, implying that the next lower location is free. Thus, a stack may represent a
pool of shareable temporary storage locations. Refer to Figure 11-2.

11.3.3 Deleting Items from a Stack
The following techniques may be used to delete items from a stack.

To delete one item from a byte stack:
INC SP or TSTB(SP)+

To delete two items from a word stack:
ADD#2,SP or TST(SP)+

To delete 50 items from a word stack:

ADD#100.,SP
HIGH MEMORY
-+— SP
stack ¥ E0 -—Sp EO
AREA v E1 - SP
LOW MEMORY
1 AN EMPTY STACK AREA 2 PUSHING A DATUM 3 PUSHING ANOTHER
ONTO THE STACK DATUM ONTO THE
STACKS
EQ’ EO0 A E2)
E1 E1 3P E1 ,
) £2 - SP) E3 5P
4 ANOTHER PUSH 5 POP 6 PUSH
€3
)
E1 «—SP

7 POP

MR-3663

Figure 11-2 Push and Pop Operations

11-6

11.3.4 Stack Uses
A stack is used in the following ways.

1.

Often, one of the general-purpose registers must be used in a subroutine or interrupt service
routine and then be returned to its original value. The stack can be used to store the contents of
the registers involved.

The stack is used in storing linkage information between a subroutine and its calling program.
The JSR instruction, used in calling a subroutine, requires the specification of a linkage register
along with the entry address of the subroutine. The content of this linkage register is stored on
the stack, so as not to be lost, and the return address is moved from the PC to the linkage
register. This provides a pointer back to the calling program so that successive arguments may
be transmitted easily to the subroutine.

If no arguments need be passed by stacking them after the JSR instruction, the PC may be used
as the linkage register. In this case, the result of the JSR is to move the return address in the
calling program from the PC onto the stack and replace it with the entry address of the called
subroutine.

In many cases, the operations performed by the subroutine can be applied directly to the data
located on or pointed to by a stack without the need to move the data into the subroutine area.

Example:
' :CALLING PROGRAM
MOV SPRI ‘R1 IS USED AS THE STACK
JSR - PC,SUBR . .POINTER HERE.
:SUBROUTINE
ADD (R1)+(R1) -ADD ITEM #1 TO #2, PLACE

;RESULT IN ITEM #2,
;R1 POINTS TO
;ITEM #2 NOW

Since arguments may be obtained from the stack by using some form of register-indexed
addressing, it is sometimes useful to save a temporary copy of R6 in some other register that has
been saved at the beginning of a subroutine. If R6 is saved in R5 at the beginning of the
subroutine, R5 may be used to index the arguments. During this time, R6 is free to be
incremented and decremented while being used as the SP. If R6 is used directly as the base for
indexing and is not ‘copied,’ it may be difficult to keep track of its position in the argument list,
since the base of the stack changes with every autoincrement/decrement.

However, if the contents of R6 (SP) are saved in R5 before any arguments are pushed onto the
stack, the position relative to RS remains constant.

Return from a subroutine also involves the stack, as the return instruction, RTS, must retrieve
information stored there by the JSR.

When a subroutine returns, it is necessary to ‘clean up’ the stack by eliminating or skipping over
the subroutine arguments. One way this can be done is to insist that the subroutine keep the
number of arguments as its first stack item. Returns from subroutines then involve calculating
the amount by which to reset the SP, resetting the SP, and then storing the original contents of
the register that was used as the SP copy.

5. Stack storage is used in trap and interrupt linkage. The PC and the PSW of the executing
program are pushed on the stack.

6. When the system stack is being used, nesting of subroutines, interrupts, and traps to any level
can occur until the stack overflows its legal limits.

7. The stack method is also available for temporary storage of any kind of data. [t may be used as
a LIFO list for storing inputs, intermediate results, etc.

11.3.5 Stack Use Examples

As an example of stack use, consider this situation. A subroutine (SUBR) wants to use registers 1 and 2.
but these registers must be returned to the calling program with their contents unchanged. The subroutine
could be written as follows.

Not Using the Stack

Assembler v
Address Octal Code Syntax Comments
076322 010167 SUBR: MOV RI1,TEMPI :SAVE R1
076324 000074 *
076326 010267 MOV R2.TEMP2 :SAVE R2
076330 000072 * ‘
076410 016701 MOV TEMPI,RI :RESTORE RI1
076412 000006 *
076414 - 016702 MOV TEMP2,R2 ;RESTORE R2
076416 000004 *
076420 000207 RTS PC
076422 000000 TEMPI1:0
076424 000000 TEMP2:0

Using the Stack
Note that in this case, R3 is being used as an SP and has been previously set to point to the end of an
unused block of memory.

Assembler
Address Octal Code Syntax Comments
010020 010143 SUBR: MOV R1,—(R3) ;PUSH R1
010022 010243 MOV R2,—(R3) :PUSH R2
010130 012302 MOV (R3)+.R2 .POP R2
010132 012301 MOV (R3)+,R1 ;POP R1
010134 000207 RTS PC '

*Index constants

11-8

The second routine uses four fewer words of instruction code and two words of temporary stack storage.
Another routine may use the same stack space at some later point. Thus, the ability to share temporary
storage in the form of a stack is a way to save on memory usage.

As another example of stack use, consider the task of managing an input buffer from a terminal. As
characters come in, the user may wish to delete characters from the line. This is accomplished very easily
by maintaining a byte stack containing the input characters. Whenever a backspace is received, a
character is popped off the stack and eliminated from consideration. In this example, popping characters
to be eliminated can be done by using either the MOVB (move byte) or INC (increment) instructions.

Note that in this case the INC instruction is preferable to MOVB, since it accomplishes the task of
eliminating the unwanted character from the stack by readjusting the SP without the need for a destina-
tion location. Note also, that the SP used in this example cannot be the system SP (R6) because R6 may
point only to word (even) locations. Refer to Figure 11-3.

11.3.6 Subreutine Linkage

The contents of the linkage register are saved on the system stack when a JSR is executed. The effect is
the same as executing a MOV reg,—(R6). Following the JSR instruction, the same register is loaded with
the memory address (the contents of the current PC) and a jump is made to the entry location specified.
Figure 11-4 shows the conditions before and after the subroutine instruction JSR RS5, 1064 is executed.

Because hardware already uses general purpose register 6 to point to a stack for saving and restoring PC
and PSW information, it is convenient to use that stack to save and restore intermediate results and to
transmit arguments to and from subroutines. Usmg R6 this way permits nesting subroutines and interrupt
service routines.

001011
001010
001007 |

001006
001005 |
001004
001003
001002 §
001001

INC R3

DIMZJOjH| N C|O

<«R3| 001002 |

Nin|miz|{o|H|{w|ic|o

jer3| 001001 |

MR-3664

Figure 11-3 Byte Stack Used as a Character Buffer

BEFORE AFTER
{R5) = 000132 (R5) = 001004
(R6) = 001776 (R6) = 001774
(PC) = (R7) = 001000 (PC) = (R7) = 001064
002000 nnnnnn 002000 nnnnnn
001776 mmmmmm |«=SP|[001776 | 001776 | mmmmmm
001774 , 001774 000132 <sp| 001774 |
001772 001772

MR-3665

Figure 11-4 JSR Stack Condition Example

11-9

11.3.6.1 Return from a Subroutine - An RTS instruction provides for a return from the subroutine to
the calling program. The RTS instruction must specify the same register the JSR instruction used in the
subroutine call. When the RTS is executed, the register specified is moved to the PC, and the top of
the stack is placed in the register specified. Thus, an RTS PC has the effect of returning to the address
specified on the top of the stack.

11.3.6.2 Subroutine Advantages — The JSR instruction provides several advantages to the subroutine
calling procedure.

1. Arguments can be passed quickly between the calling program and the subroutine.

2. If there are no arguments, or the arguments are in a general register or on the stack, the JSR
PC,DST mode can be used so that none of the general purpose registers need to be used for
linkage. ‘

3. Many JSRs can be executed without the need to provide any saving procedure for the linkage
information, since all linkage information is automatically pushed onto the stack in sequential
order. Returns can be made by automatically popping this information from the stack in the
order opposite to the JSRs.

This linkage address bookkeeping is called automatic nesting of subroutine calls. This feature enables
construction of fast, efficient linkages in a simple, flexible manner. It also permits a routine to call itself.

11.3.7 Interrupts
An interrupt is similar to a subroutine call, except that it is initiated by the hardware rather than by the
software. An interrupt can occur after the execution of an instruction.

Interrupt-driven techniques are used to reduce CPU waiting time. In direct program data transfer, the
CPU loops to check the state of the done/ready flag (bit 7) in the peripheral interface. Using interrupts,
the CPU can handle other functions until the peripheral initiates service by setting the done bit in its CSR.
The CPU completes the instruction being executed, then acknowledges the interrupt, and vectors to an
interrupt service routine. The service routine transfers the data and may perform calculations with it.
After the interrupt service routine is complete, the computer resumes the program that was interrupted by
the high-priority request.

11.3.7.1 Interrupt Service Routines — With interrupt service routines, linkage information is passed so
that a return to the main program can be made. More information is necessary for an interrupt sequence
than for a subroutine call because of the random nature of interrupts. The complete machine state of the
program immediately prior to the occurrence of the interrupt must be preserved in order to return to
the program without any noticeable effects. This information is stored in the PSW. Upon interrupt, the
contents of the PC (address of next instruction) and the PSW are automatically pushed onto the R6
system stack. The effect is the same as executing: '

MOV PS,—(SP) ;PUSH PSW
MOV PC,—(SP) ;PUSH PC

The new contents of the PC and PSW are loaded from two preassigned consecutive memory locations
called vector addresses. The first word contains the interrupt service routine entry address (the address of
the service routine program sequence). The second word contains the new PSW that will determine the
machine status, including the operational mode and register set to be used by the interrupt service routine.
The contents of the vector address is set under program control. ’

11-10

After the interrupt service routine is complete, an RTI is performed. The top two words of the stack are
automatically popped and placed in the PC and PSW, respectively, thus resuming the interrupted
program. Interrupt service programming is intimately involved with the concept of CPU and device
priority levels.

11.3.7.2 Nesting — Interrupts can be nested in much the same manner that subroutines are nested. It is
possible to nest any arbitrary mixture of subroutines and interrupts without any confusion. When the
respective' RTI and RTS instructions are used, the proper returns are automatic. Refer to Figure 11-5.

1. PROCESS 0 iS RUNNING:; SP IS SP— PO 7. SUBROUTINE A RELEASES THE TEM- PO

POINTING TO LOCATION PO. PORARY STORAGE HOLDING TA1 AND PS0
TA2. PCO
0 TEOQ
! TE1
2. INTERRUPT STOPS PROCESS O WITH PO Pz:
PC = PCO, AND STATUS = PSO, STARTS PSO
PROCESS 1. »—» PCO ' 5P Fez
0 0
3. PROCESS 1 USES STACK FOR TEM- PO 8. SUBROUTINE A RETURNS CONTROL PO
PORARY STORAGE (TEO, TE1) PSO TO PROCESS 2 WITH AN RTS R7; PCIS PSO
PCO : RESET TO PC2. PCO
TEO TEO
SP —p TE1 TE1
PS1
0 SP —t» PC1
4. PROCESS 1 INTERRUPTED WITH PC = PO 0
PC1 AND STATUS = PS1; PROCESS 2 PSD
IS STARTED. PCO 9. PROCESS 2 COMPLETES WITH AN RTI PO
TEO INSTRUCTION (DISMISSES INTER- PSO
TE RUPT); PC IS RESET TO PC1 AND PCO
PS1 STATUS IS RESET TO PS1; PROCESS TEO
5P — pei 1 RESUMES. sp—» TE1
0 0
5. PROCESS 2 IS RUNNING AND DOES A PO 10. PROCESS 1 RELEASES THE TEM- PO
JSR R7, ATO SUBROUTINE A WITH PSO PORARY STORAGE HOLDING TEO AND S0
PC = PC2. PCO TE1. SP PCO
TEO
TE1 0
PS1
PC1 11. PROCESS 1 COMPLETES ITS OPERA- 5P — PO
SP—» Pc2 TION WITH AN RTI, PC IS RESET TO
. PCO, ANDF STATUS IS RESET TO PSO. 0
6. SUBROUTINE A IS RUNNING AND PO
USES STACK FOR TEMPORARY PSO
STORAGE. PCO
TEO
TE1
PS1
PC1
PC2
TA1
SP ——p» TA2
0

MR -3666

Figure 11-5 Nested Interrupt Service Routines and Subroutines

11-11

11.3.8 Reentrancy

Other advantages of the KDJ11-B stack organization occur in programming systems that handle several
tasks. Multitask program environments range from simple single-user applications that manage a mixture
of I/O interrupt service and background data processing (as in RT-11), to complex multiprogramming
systems that manage an intricate mixture of executive and multiuser programming situations (as in
RSX-11). In all these situations, using the stack as a programming technique provides flexibility and
time/memory economy by allowing many tasks to use a single copy of the same routine with a simple
straightforward way of keeping track of complex program linkages.

The ability to share a single copy of a program among users or among tasks is called reentrancy. Reentrant
program routines differ from ordinary subroutines in that it is not necessary for reentrant routines to finish
processing a given task before they can be used by another task. At any time, tasks can exist in various
stages of completion in the same routine. Thus, the situation shown in Figure 11-6 may occur.

11.3.8.1 Reentrant Code - Reentrant routines must be written in pure code (that is, any code that
consists exclusively of instructions and constants). The value of using pure code whenever possible is
that the resulting code has the following characteristics.

e It is generally considered easier to debug than standard code.
® It can be kept in read-only memory (is read-only protected).

Using reentrant code, control of a routine can be shared as follows. Refer to Figure 11-7.

Task A requests processing by reentrant routine Q.

Task A temporarily gives up control of reentrant routine Q before it completes processing.
Task B starts processing the same copy of reentrant routine Q.

Task B completes processing by reentrant routine Q.

Task A regains use of reentrant routine Q and resumes where it stopped.

kv =

MEMORY MEMORY

PROGRAM 1 " PROGRAM 1 SUBROUTINE A 7

PROGRAM 2 | SUBROUTINE A

PROGRAM 3 -
PROGRAM 2 [/ SUBROUTINE A
PROGRAM 3 [/ SUBROUTINE A

KDJ11-A APPROACH CONVENTIONAL APPROACH

PROGRAMS 1, 2, AND 3 CAN ASEPARATE COPY OF SUBROUTINEAMUST

SHARE SUBROUTINE A. BE PROVIDED FOR EACH PROGRAM.

MR 3667

Figure 11-6 Reentrant Routines

11-12

TASK A
' REENTRANT
»| ROUTINE Q

TASK B

MR-3668

A

Figure 11-7 Sharing Control of a Routine

11.3.8.2 Writing Reentrant Code - In an operating system environment, when one task is executing and
is interrupted to allow another task to run, a context switch occurs in which the PSW and current contents
of the general purpose registers are saved and replaced by the appropriate values for the task being
entered. Therefore, reentrant code must use the general purpose registers and the stack for any counters,
pointers, or data to be modified or manipulated in the routine.

The context switch occurs whenever a new task is allowed to execute. It causes all of the general purpose
registers, the PSW, and often, other task-related information to be saved in an impure area. It then reloads
these registers and locations with the appropriate data for the task being entered. Notice that one
consequence of this is that a new SP value is loaded into R6, thereby causing a new area to be used as the
stack when the second task is entered.

The following should be observed when writing reentrant code.
1. All data should be in or pointed to by one of the general purpose registers.

2. A stack can be used for temporary storage of data or pointers to impure areas within the task
space. The pointer to such a stack would be stored in a general purpose register.

3. Parameter addresses should be used by indexing and indirect reference rather than by putting
them into instructions within the code.

4. When temporary storage is accessed within the program, it should be by indexed addresses,
which can be set by the calling task in order to handle any possible recursion.

11.3.9 Coroutines

In some programming situations, several program segments or routines are highly interactive. Control is
passed back and forth between the routines, each going through a period of suspension before being
resumed. Since the routines maintain a symmetric relationship with each other, they are called coroutines.

Coroutines are two program sections, either one subordinate to the call of the other. The nature of the call
is, ‘T have processed all I can for now, so you can execute until you are ready to stop, then I will continue.’
The coroutine call and return are identical, each being a jump to subroutine instruction with the destina-
tion address on top of the stack and the PC serving as the linkage register, as follows.

JSR PC,@(R6)+

11.3.9.1 Coroutine Calls — The coding of coroutine calls is made simple by the stack feature. Initially,
the entry address of the coroutine is placed on the stack, and from that point the JSR PC,@(R6)+
instruction is used for both the call and the return statements. This JSR instruction results in an exchange
of the contents of the PC and the top element of the stack, permitting the two routines to swap control and
resume operation where each was terminated by the previous swap. An example is shown in Figure 11-8.
Notice that the coroutine linkage cleans up the stack with each control transfer.

11-13

11.3.9.2

ways.

ROUTINE A STACK ROUTINE B COMMENTS

LOC IS PUSHED
ONTO THE STACK
TO PREPARE FOR

MOV #LOC,-(SP} LOC «SP THE COROUTINE
. CALL.
LOC:
JSR PC,@(SP)+ PCO «SP . WHEN THE CALL
(PCO) . 1S EXECUTED,
THE PC FROM
ROUTINE A IS

PUSHED ON THE
STACK AND EXE-
CUTION CONTIN-

UES AT LOC.
JSR PC,@(SP)+ ROUTINE B CAN
PC1 SP (PC1) RETURN CONTROL
. TO ROUTINE A
BY ANOTHER

COROUTINE CALL.
PCO IS POPPED
FROM THE STACK
AND EXECUTION
RESUMES IN
ROUTINE A JUST
AFTER THE CALL
TO ROUTINE B,
I.E., AT PCO.

PC1 IS SAVED

ON THE STACK
FOR A LATER
RETURN TO
ROUTINE B.

MR-3669

Figure 11-8 Coroutine Example

Coroutines Versus Subroutines — Coroutines can be compared to subroutines in the following

A subroutine is considered subordinate to the main or calling routine, but a coroutine is
considered to be on the same level, as each coroutine calls the other when it has completed
current processing.

When called, a subroutine executes to the end of its code. When called again, the same code will
execute before returning. A coroutine executes from the point after the last call of the other
coroutine. Therefore, the same code will not be executed each time the coroutine is called. An
example is shown in Figure 11-9.

The call and return instructions for coroutines are the same.

JSR PC,@(SP)+
This one instruction also cleans up the stack with each call. The last coroutine call leaves an
address on the stack that must be popped if no further calls are to be made. Refer to Paragraph

11.3.6.1 for information on the return from subroutine instruction.

Each coroutine call returns to the coroutine code at the point after the last exit with no need for
a specific entry point label, as would be required with subroutines.

11-14

COROUTINES MAIN PROGRAMS SUBROUTINES

A B 1T LOC:
1 v
JSR PC,@ (SP)+ ——————— JSR Rn, LOC
Y
JSR PC,@ (SP)+ :
RTS
v
JSR PC,@ (SP)+
Y
JSR Rn, LOC
v
JSR PC,@ (SP)+
) v

MR-3670

Figure 11-9 Coroutines Versus Subroutines

11.3.9.3 Using Coroutines — Coroutines should be used in the following situations.

® Whenever two tasks must be coordinated in their execution without obscuring the basic struc-
ture of the program. For example, in decoding a line of assembly language code, the results at
any one position might indicate the next process to be entered. A detected label must be
processed. If no label is present, the operator must be located, etc.

e To add clafity to the process being performed, to ease in the debugging phase, etc.

An assembler must perform a lexicographic scan of each assembly language statement during pass 1 of the
assembly process. The various steps in such a scan should be separated from the main program flow to add
to program clarity and to aid in debugging by isolating details. Subroutines are not satisfactory in this case,
as too much information has to be passed to the subroutine each time it is called. Coroutines could be
effectively used, with one routine performing as the assembly pass 1 routine and the other extracting one
item at a time from the current input line. Figure 11-10 illustrates this example.

Coroutines can be utilized in I/O processing. Figure 11-10 shows coroutines used in double-buffered I/0
using IOX. The flow of events may be described as follows.

Write 01
Read 11 concurrently,
Process 12

then
Write 02
Read 12 concurrently,
Process 11

Figure 11-11 illustrates a coroutine swapping interaction.

11-15

ROUTINE A

START AND SKIP
BLANKS

NONBLANK
[

ROUTINE B

READ NAME

» PROCESS NAME

y

SKIP BLANKS

READ MNEMONICS

PROCESS MNEMONICS }e

y

' READ ADDRESSES
LINE

SEMICOLON

TERMINATOR

SKIP COMMENT

Figure 11-10 Coroutine Path

ROUTINE #1 1S OPERATING, IT THEN
EXECUTES:
MOV #PC2,-(R6)
JSR PC,@(R6)+
WITH THE FOLLOWING RESULTS:

1. PC2ISPOPPED FROM THE STACK
AND THE SP AUTOINCREMENTED.

2. SPISAUTODECREMENTED AND
THE OLD PC (1.E., PC1) IS PUSHED.

3. CONTROL {S TRANSFERRED TO THE
LOCATION PC2 (I.E., ROUTINE #2).

ROUTINE #2 1S OPERATING, IT THEN
EXECUTES:

JSR PC,@(R6)+
WITH THE RESULT THAT PC2 IS
EXCHANGED FOR PC1 ON THE
STACK AND CONTROL IS
TRANSFERRED BACK TO ROUTINE #1.

Figure 11-11 Coroutine Interaction

11-16

END
MR-3671
SP —» PC2
¢
SP —»
SP — PC1

MR-3672

When routine 1 is operating, it executes

MOV #PC2,—(R6)
JSR PC,@(R6)+

with the following results.

1. PC2 is popped from the stack and the SP is autoincremented.
2. SP is autodecremented and the old PC (i.e., PC1) is pushed.
3. Control is transferred to the location PC2 (i.e., routine 2).

When routine 2 is operating, it executes
JSR PC,@(R6)+
with the result that PC2 is exchanged for PC! on the stack and control is transferred back to routine 1.

11.3.10 Recursion

An interesting aspect of a stack facility, other than its providing for automatic handling of nested
subroutines and interrupts, is that a program may call on itself as a subroutine — just as it can call on any
other routine. Each new call causes the return linkage to be placed on the stack, which (as it is a LIFO
queue) sets up a natural unraveling to each routine just after the point of departure. Typical flow for a
recursive routine resembles that shown in Figure 11-12.

MAIN PROGRAM

SUB 1

SUB 2

SUB 2

MR-3673

Figure 11-12 Recursive Routine Flow

11-17

The main program calls function 1, SUB 1, which calls function 2, SUB 2, which recurses once before
returning.

Example:
DNCF: |
BEQ 1$.TO EXIT RECURSIVE LOOP
JSR R5,DNCF ‘RECURSE
1$,
RTS RS RETURN TO 1$ FOR

;EACH CALL, THEN TO
sMAIN PROGRAM

The routine DNCEF calls itself until the variable tested becomes equal to 0. Then it exits to 1$, where the
RTS instruction is executed, returning to the 1$ once for each recursive call and a final time to return to
the main program.

In geheral, recursion techniques lead to slower programs than the corresponding interactive techniques, but
recursion does produce shorter programs, and thus saves memory space. Both the brevity and clarity
produced by recursion are important in assembly language programs.

Uses of Recursion — Recursion can be used in any routine in which the same process is required several
times. For example, a function to be integrated may contain another function to be integrated, as in
solving for XM, where '

SM =1 + F(X)
and

F(X) = G(X).
Another use for a recursive function could be in calculating a factorial function, because

FACT(N) = FACT(N - 1) * N.
Recursion should terminate when N = 1.
The macroprocessor within MACRO-11 is itself recursive, since it can process nested macrodefinitions and
calls. For example, within a macrodefinition, other macros can be called. When a macro call is encoun-
tered within definition, the processor must work recursively (i.e., it must process one macro before it is
finished with another and then continue with the previous one). The stack is used for a separate storage

area for the variables associated with each call to the procedure.

As long as nested definitions of macros are available, it is possible for a macro to call itself. However,
unless conditionals are used to terminate this expansion, an infinite loop may be generated.

11-18

11.3.11 Processor Traps

Certain errors and programming conditions cause the KDJ11-B processor to enter the service state and
trap to a fixed location. A trap is an interrupt generated by hardware. Pending conditions are arbitrated
according to a priority. The following list describes the priority from highest to lowest.

Condition

Memory management violation*
(MMUERR)

Timeout error* (BUSERR)
Parity error* (PARERR)

Trace (T) bit*

Stack overflow* (STKOVF)

Power fail* (PFAIL)

Interrupt level 7 (BIRQ7)
Interrupt level 6 (BIRQ6)
Interrupt level 5 (BIRQS)
Interrupt level 4 (BIRQ4)

Halt line

Description

A memory management violation causes an abort and
traps to location 250g.

No response from a bus device during a bus transaction
causes an abort and traps to location 4g.

A parity error signal received by the processor during a
bus transaction causes an abort and traps to location 114g.

If PSW bit 4 is set at the end of instruction execution, the
processor traps to location 14g.

If the KSP was pushed below 400g during instruction
execution, the processor traps to location 4g at the end of
the instruction.

If the power OK bus signal (BPOKH) was negated during
instruction execution, the processor traps to location 24g
at the end of the instruction.

If device interrupt requests are asserted and PSW <7:5>
are properly set, the processor at the end of the present
instruction execution initiates an interrupt vector
sequence on the bus. These inputs are maskable by
PSW <7:5>,

PSW «7:5> Levels Inhibited
7 All

6 6, 5,4

5 5,4

4 4

0-3 None

If the BHALT L bus signal is asserted during the service
state, the processor enters ODT mode.

* Nonmaskable software cannot inhibit the conditon. MMUERR, BUSERR, PARERR are mutually exclusive when the

processor is executing a program.

11-19

11.3.11.1 Trap Instructions - Trap instructions provide for calls to emulators, I/O monitors, debugging
packages, and user-defined interpreters. When a trap occurs, the contents of the current PC and PSW are
pushed onto the processor stack and are replaced by the contents of a 2-word trap vector containing a new
PC and new PSW. The return sequence from a trap involves executing an RTI or RTT instruction, which
restores the old PC and old PSW by popping them from the stack. Trap vectors are located at perma-
nently assigned fixed addresses.

The EMT (trap emulator) and TRAP instructions do not use the low-order byte of the word in their
machine language representation. This allows user information to be transferred in the low-order byte. The
new value of the PC, loaded from the vector address of the TRAP or EMT instructions, is typically
the starting address of a routine to access and interpret this information. This routine is called a trap
handler.

A trap handler must accomplish several tasks. It must save and restore all necessary general purpose
registers, interpret the low byte of the trap instruction and call the indicated routine, serve as an interface
between the calling program and this routine by handling any data that needs to be passed between them,
and finally, cause the return to the main routine.

A trap handler can be useful as a patching technique. Jumping out to a patch area is often difficult
because a 2-word jump must be performed. However, the 1-word TRAP instruction may be used to
dispatch to patch areas. A sufficient number of slots for patching should first be reserved in the dispatch
table of the trap handler. The jump can then be accomplished by placing the address of the patch area into
the table and inserting the proper TRAP instruction where the patch is to be made.

11.3.11.2 Use of Macro Calls - The trap handler can be used in a program to dispatch execution to any
one of several routines. Macros may be defined to cause the proper expansion of a call to one of these
routines, as in the example below.

.MACRO SUB2 ARG
MOV ARG, RO
TRAP +1

.ENDM

When expanded, this macro sets up the one argument required by the routine in RO, and then causes the
trap instruction with the number 1 in the lower byte. The trap handler should be written so that it
recognizes a 1 as a call to SUB2. Notice that ARG here is being transmitted to SUB2 from the calling
program. It may be data required by the routine or it may be a pointer to a longer list of arguments.

In an operating system environment like RT-11, the EMT instruction is used to call the system or monitor
routines from a user program. The monitor of an operating system necessarily contains coding for many
functions, such as I/O, file manipulation, etc. This coding is made accessible to the program through a
series of macro calls that expand into EMT instructions with low bytes, indicating the routine or group of
routines to which the desired routine belongs. Often a general purpose register is designated to be used to
pass an identification code to further indicate to the trap handler which routine is desired. For example,
the macro expansion for a resume execution command in RT-11 is as follows.

.MACRO .RSUM
CM3, 2.
.ENDM

CM3 is defined:

.MACRO CM3 CHAN, CODE

MOV #CODE *400,R0

IIF NB CHAN,BISB CHAN,RO
EMT 374

.ENDM

11-20

Note that the EMT low byte is 374. This is interpreted by the EMT handler to indicate a group of
routines. Then the contents of RO (high byte) is tested by the handler to identify exactly which routine
within the group is being requested — in this case routine number 2. (The CM3 call of the .RSUM is set up
to pass the identification code.) '

11.3.12 Conversion Routines

Almost all assembly language programs require the translation of data or results from one form to another.
Code that performs such a transformation is called a conversion routine. Several commonly used conver-
sion routines follow.

Almost all assembly language programs involve some type of conversion routine. Octal-to-ASCII, octal-to-
decimal, and decimal-to-ASCII are a few of the most widely used.

Arithmetic multiply and divide routines are fundamental to many conversion routines. Division is typically
approached in one of two ways.

1. The division can be accomplished through a combination of rotates and subtractions.
Example:

Assume the following code and register data. To make the example easier, also assume a 3-bit

word.

DIV: MOV #3,—(SP) ;SET UP DIGIT COUNTER
CLR —(SP) ;CLEAR RESULT

1$ ASL (SP)
ASL R1
ROL RO
CMP RO,R3
BLT 2%
SUB R3,R0 ;RO CONTAINS REMAINDER
INC (SP) ; INCREMENT RESULT

2% DEC 2 (SP) ;,DECREMENT COUNTER

' BNE $1 '

Therefore, to divide 7 by 2:

RO = 000 remainder

Rl =111 7 (multiplicand)
R3 =010 2 (multiplier)
Cbit=0

Stack

011 ' counter

000 quotient

Following through the coding, the quotient, remainder, and dividend all shift left, manipulating
the most significant digit first, etc.

At the conclusion of the routine:

RO = 001 remainder
R1 = 000

R3 =010

Stack

000 counter
011 quotient

11-21

2. The second method of division works by repeated subtraction of the powers of the divisor,
keeping a count of the number of subtractions at each level.

Example:

To divide 221 by 10, first try to subtract powcis of 10 until a nonnegative value is obtaincd,
counting the number of subtractions of each power.

221
—-1000

Negative, so go to the next lower power, and count for 103 = 0.

221
-100
121 count for 102=1
—-100
21 count =2
—-100

Negative, so reduce power, and count for 102 = 2.

21
—10

11 count for 10! =1

11
-10

1 count =2
—-10

Negative, so count for 10! = 2,
No lower power, so remainder is 1.

“Answer = 022, remainder 1.

11-22

Multiplication is also approached in one of two ways.
1. Mulitiplication can be done with a combination of rotates and additions.
Example:

Assume the following code and a 3-bit word.

CLR RO ;HIGH HALF OF ANSWER
MOV #3,CNT ;SET UP COUNTER
MOV R1,MULT; sMULTIPLICAND
MORE: ROR R2
BCC NOW

ADD MULT,RO
;IF INDICATED,

ADD
;MULTIPLICAND
NOW; ROR RO
R04 R1
DEC CNT
BNE MORE
MULT: 0
CNT: 0
The following conditions exist for 6 X 3.
RO = 000 high-order half of result
R1 =110 multiplicand
R3 =011 multiplier
After the routine is executed:
RO =010 high-order half of result
R1 =010 low-order half of result
R2 =100
CNT =0
MULT =110

11-23

2. The second method of multiplication is repetitive addition.
Example:
Multiplication of RO by 50g(101000).

MULS50: MOV RO,—(SP)
ASL RO
ASL RO
ADD (SP)+,R0
ASL RO
ASL RO
ASL RO
RETURN

If RO contains 7:
RO=111
After execution:

RO = 100011000
(7% * 508 = 4303g)

ASCII Conversions — The conversion of ASCII characters to the internal representation of a number, as
well as the conversion of an internal number to ASCII in I/O operations, presents a challenge. The
following routine takes the 16-bit word in R1 and stores the corresponding 6 ASCII characters in
the buffer addressed by R2.

OUT: MOV #5,R0 ;LOOP COUNT
LOOP: MOV R1,—(SP) ;COPY WORD INTO STACK
BIC #177770,@SP ;ONE OCTAL VALUE
ADD #0,@SP ;CONVERT TO ASCII
MOVB (SP+,—(R2) ;STORE IN BUFFER
ASR R1 ;SHIFT
ASR R1 ;RIGHT
ASR R1 ;THREE
DEC RO ;TEST IF DONE
BNE LOOP - ;NO, DO IT AGAIN
BIC #177776,R1 ;GET LAST BIT
ADD #0,R1 ;CONVERT TO ASCH
MOVB R5,—(R2) ;STORE IN BUFFER
RTS PC ;DONE,RETURN

11-24

11.4 PROGRAMMING THE PROCESSOR STATUS WORD

The current processor status can be read and written using several programming techniques on the PSW.
The PSW has an I/O address of 17 777 776. The KDJ11-B and other PDP-11 processors implement this
address, whereas LSI-11 and LSI-11/2 processors do not. One technique is to use the I/O address as a
source or destination address with any instruction.

CLR @#17777776
MOV @#17777776, RO

The first instruction clears the PSW and the second instruction moves the contents of the PSW to general
register 0.

The PSW explicit address (17 777 776) can be accessed on a word or byte basis. The KDJ11-B recognizes
the PSW odd address (17 777 777) and the access result is identical to an odd memory address reference.

Another technique is to use the two dedicated PSW instructions, MTPS and MFPS. These instructions
only reference the even byte. If memory management is enabled, certain PSW bits are protected.

11.5 PROGRAMMING PERIPHERALS

Programming LSI-11 bus compatible modules (devices) is simple. A special class of instructions that deals
with I/O operations is unnecessary. The bus structure permits a unified addressing structure in which
control, status, and data registers for devices are directly addressed as memory locations. Therefore, all
operations on these registers (such as information transfer and data manipulation) are performed by
normal memory reference instructions,

The use of all memory reference instructions on device registers greatly increases the flexibility of I/0
programming. For example, information in a device register can be compared directly with a value and a
branch made on the result.

CMP RBUF, #101
BEQ SERVICE

In this case, the program looks for 101 in the DLV11 receiver data buffer register (RBUF) and branches if
it finds it. There is no need to transfer the information into an intermediate register for comparison.

When the character is of interest, a memory reference instruction can transfer the character into a user
buffer in memory or to another peripheral device. The instruction MOV DRINBUF LOC transfers a
character from the DRV11 data input buffer (DRINBUF) into a user-defined location.

* All arithmetic operations can be performed on a peripheral device register. For example, the instruction
ADD #10, DROUT BUF adds 10 to the DRV11 output buffer. All read/write device registers can be
treated as accumulators. There is no need to funnel all data transfers, arithmetic operations, and compari-
sons through one or a small number of accumulator registers.

11-25

11.6 PDP-11 PROGRAMMING EXAMPLES
The programming examples that follow show how the instruction set, addressing modes, and programming
techniques can be used to solve some simple problems. The format used is MACRO-11.

Program Program
Address Contents Label Op Code Operand Comments

;PROGRAMMING EXAMPLE
;SUBTRACT CONTENTS OF LOCS 700-710
;FROM CONTENTS OF LOCS 1000-1010

000000 R0=%0
000001 R1=%1
000002 R2=%2
000003 R3=%3
000004 R4=%4
000005 R5=%5
000006 SP=%6
000007 PC=%17
000500 =500
000500 012706 START: MOV #..SP ;INIT STACK POINTER
000500
000504 012701 MOV #700,R 1
000700
000510 012702 MOV #712,R2
000712
000514 012703 MOV #1000,R3
001000
000520 012704 MOV #1012,R4
001012
000524 005000 CLR RO
000526 005005 CLR RS
000430 062105 SUMI: ADD (RD+,R5 ;START ADDING
000532 020102 CMP R1,R2 ;FINISHED ADDING?
000534 001375 BNE SUMI ;IF NOT BRANCH BACK
000536 062300 SUM2: ADD (R3)+,R0 ;START ADDING
000540 020304 CMP R3,R4 ;FINISHED ADDING?
000542 001375 BNE SUM2 ;JF NOT BRANCH BACK
000544 160500 DIFF: SUB R5,R0 ;SUBTRACT RESULTS
000546 000000 HALT ;THAT'S ALL FOLKS
000700 -=700
000700 000001 WORD 1,2,3,4,5

000702 000002
000704 000003
000706 000004
000710 000005

001000 -=1000
001000 000004 WORD 4,5,6,7,8
001002 000005
001004 000006
001006 000007
001010 000010

000500 END

11-26

Program Program

Address

Contents Label

START:

CHECK:
BPL NEXT
INC RO

NEXT:
BNE CHECK
HALT:

VALUES:
.END

Op Code Operand Comments

;PROGRAM TO COUNT NEGATIVE NUMBERS
;IN A TABLE

;20. SIGNED WORDS

;BEGINNING AT LOC VALUES

;COUNT HOW MANY ARE NEGATIVE IN RO

RO0=%0

R1=%1

R2=%2

SP=%6

PC=%1

=500

MOV#.,SP - ;SET UP STACK

MOV #VALUE,R1 ;SET UP POINTER

MOV #VALUES+40.,R2 ;SET UP COUNTER

CLR RO

TST (R1)+ ;TEST NUMBER
;POSITIVE?
;NO, INCREMENT
;COUNTER

CMP R1,R2 ;YES, FINISHED?
;NO, GO BACK
;YES, STOP

0

11-27

Program Program
Address Contents Label

START:

CHECK:

NO:

Op Code Operand

R0=%0
R1=%1
R2=%2
R3=%3
SP=%6
PC=%17

=500

MOV #.,SP

MOV #16.,R1

MOV #SCORES,R2
MOV #AVERAGE,R3
CLR RO

CMP (R2)+,(R3)
BLE NO

INC RO

DEC R1
BNE CHECK
HALT

AVERAGE:65.

SCORES*

Comments

;PROGRAM TO COUNT ABOVE AVERAGE QUIZ SCORES
;LIST OF 16. QUIZ SCORES

;BEGINNING AT LOC SCORES

;KNOWN AVERAGE IN LOC AVERAGE

;COUNT IN RO SCORES ABOVE AVERAGE

;SET UP STACK
;SET UP COUNTER
;SET UP POINTER

;COMPARE SCORE AND AVERAGE
;LESS THAN OR EQUAL

;TO AVERAGE?

;NO, COUNT

;YES, DECREMENT COUNTER
;FINISHED? NO, CHECK

;YES, STOP

25.,70.,100.,60.,80.,80.,40.
55.,75.,100.,65.,90.,70.,65.,70.

.END

11-28

Program Program
Address Contents

OUT:

SAVE:

Label

START:
MOV

MOV
IN:

ECHO:

BPL
MOVB
MOVB
DEC
BNE

MOV
MOV

TSTB

BPL
MOVB
DEC
BNE
HALT

BYTE

END

Op Code

R0=%0
R1=%1
SP=%6
CR=15
LE=12
TKS=177560
TKB=TKS+2
TPS=TKB+2
TPB=TPS+2

.TITLE ECHO
.=1000

MOV
#SAVE+2,R0

#..SP

#20.,R1

TSTB @H#TKS
BPL IN

TSTB @#TPS
ECHO
@#TKB,@#TPB
@#TKB,(R0)+

Rl

IN

#SAVE,RO

#22.,R1

@#TPS

ouT
(ROY+,@#TPB
R1

ouT

CR,LF

Operand

Comments

;PROGRAMMING EXAMPLE

;ACCEPT (IMMEDIATE ECHO) AND
;STORE 20. CHARS

;FROM THE KEYBOARD, OUTPUT CR & LF
;ECHO ENTIRE STRING FROM STORAGE

;INITIALIZE STACK POINTER
;SA OF BUFFER

;BEYOND CR & LF
;CHARACTER COUNT

;CHAR. IN BUFFER?

;IF NOT BRANCH BACK
;AND WAIT

;CHECK TELEPRINTER
;READY STATUS

;ECHO CHARACTER
;STORE CHARACTER AWAY

;FINISHED INPUTTING?

;SA OF BUFFER INCLUDING
;CR & LF '

;COUNTER OF BUFFER
;INCLUDING CR & LF

;CHECK TELEPRINTER
;READY STATUS

;OUTPUT CHARACTER
;FINISHED OUTPUTTING?

11-29

Program Program

Address

Contents

Label

INPUT:

IN:
OUT:

SORT:
NEXT:

LOOP:
LT:

GT:

INSERT:

COUNT:
LINEI:

LINE2:

BUFFER:

Op Code Operand

MOV #BUFFER,RO

MOV #-10.,R1

TSTB @#TKS

BPL IN

TSTB @#TPS

BPL OUT

MOVB @#TKB,@#TPB
MOVB @#TKB,(R0)+
INC RI1

BNE IN

RTS PC

MOV #-10.,R4
MOV COUNT,R3
MOV #BUFFER+9.,R0
ADD R3,R0
MOVB (RO)+,R1
CMPB (RO)+,R1
BGE GT

MOVB —(R0),R2
MOVB R1,(R0)+
MOV R2,R1

INC R3

- BNE LOOP

Comments

;PROGRAMMING EXAMPLE
;SUBROGUTINE 10 INPUT TEN VALUES
;SET UP SA OF

;STORAGE BUFFER

;SET UP COUNTER

;TEST KYBD READY STATUS

;TEST TTO READY STATUS
;ECHO CHARACTER
;STORE CHARACTER

;INC COUNTER

;EXIT

;PROGRAMMING EXAMPLE
;SUBROUTINE TO SORT TEN VALUES

MOVB R1,BUFFER+10.(R4)

INC R4

INC COUNT

BNE NEXT

MOV #-9.,COUNT
RTS PC

.WORD -9.

;RESTORE LOCATION COUNT
;EXIT

.ASCII/INPUT ANY TEN SINGLE-DIGIT VALUES (0-9); I'LL/
.ASCII/SORT AND OUTPUT THEM IN/
.ASCII/SMALLEST TO LARGEST ORDER./

=.+10.
.END INITSP

;FINISHED!!!

11-30

Program Program
Address Contents

Label

INITSP:

Op Code

R0=%0
R1=%1
R2=%2
R3=%3
R4=%4
R5=%5
SP=%6
PC=%17
TKS=177560

Operand

Comments

;PROGRAMMING EXAMPLE

;SUBROUTINE EXAMPLE

;INPUT TEN VALUES, SORT, AND

;OUTPUT THEM IN SMALLEST TO LARGEST ORDER

(address of terminal control status register)

TKB=TKS+2 - (terminal data buffer register)
TPS=TKB+2 - (terminal output control and status registers)
TPB=TPS+2 - (terminal output data buffer)

.=3000

MOV #..SP
JSR PC,CRLF

JSR RS, OUTPUT

LINE1

69.

JSR PC,CRLF
JSR R5,0UTPUT
LINE2

26.

JSR PC,CRLF
JSR PC,INPUT
JSR PC,SORT
JSR PC,CRLF
JSR R5,0UTPUT
BUFFER

10.

JSR PC,CRLF
HALT

;INITIALIZE STACK POINTER
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;SA OF LINE 1 BUFFER
;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE
;GO TO OUTPUT. SUBROUTINE
;SA OF LINE 2 BUFFER
;NUMBER OF OUTPUTS

;GO TO CRLF SUBROUTINE
;GO TO INPUT SUBROUTINE
;GO TO SORT SUBROUTINE
;GO TO CRLF SUBROUTINE
;GO TO OUTPUT SUBROUTINE
;INPUT BUFFER AREA
;NUMBER OF OUTPUTS

;THE END!!!

11-31

Program Program
Address Contents

Label

CRLF:

LNFD:

OUTPUT:

AGAIN:

Op Code

TSTB @#TPS

BPL CRLF

MOVB #15,@#TPB
TSTB @#TPS

BPL LNFD

MOVB #12,@#TPB
RTS PC

MOV (R5)+,R0
MOV (R5)+,R1
NEG R1

TSTB @#TPS
BPL. AGAIN

MOVB (R0)+,@#TPB

INC R1
BNE AGAIN
RTS R5

11.7 LOOPING TECHNIQUES

Looping techniques are illustrated in the program segments below. The segments

word table.

1. Autoincrement (pointer address in general purpose register)

LOOP:

2. Autodecrement (pointer and limit values in general purpose register)

LOOP:

Operand

Comments

;PROGRAMMING EXAMPLE
;SUBROUTINE TO OUTPUT A CR & LF

;TEST TTO READY STATUS

;OUTPUT CARRIAGE RETURN
;TEST TTO READY STATUS

;OUTPUT LINE FEED
;EXIT

;SUBROUTINE TO OUTPUT A
;VARIABLE LENGTH MESSAGE
;PICK UP SA OF DATA BLOCK
;PICK UP NUMBER OF OUTPUTS
;NEGATE IT
;TEST TTO READY STATUS

;OUTPUT CHARACTER
;BUMP COUNTER

RO0=%0
MOV #TBL,R0
CLR (RO)+

CMP RO,#TBL+100.

BNE LOOP

R0=%0
R1=%1
MOV #TBL,RO

MOV #TBL+100.,R1

CLR - (R1)
CMP R1,RO
BNE LOOP

11-32

are used to clear a 50-

3. Counter (decrementing a general purpose register containing count)

RO=%0

R1=%1

MOV #TBL,R0

MOV #50.,R1
LOOP: CLR (RO)+

DEC R1

BNE LOOP

4. Index Register Modification (indexed mode, modifying index value)

RO=%0
CLR RO
LOOP: CLR TBL (RO)
' ADD #2,R0
CMP RO0,#100.
BNE LOOP

5. Faster Index Register Modification (storing values in general purpose register)

RO=%0
R1=%1
R2=%2
MOV #2,R1
MOV #100.,R2
CLR RO
LOOP: CLR TBL (RO)
ADD R1,R0
CMP RO,R2
BNE LOOP

6. Address Modification (indexed mode, modifying base address)

R0=%0
MOV #TBL,RO
LOOP: CLR 0(RO)
ADD #2,LOOP+2
CMP LOOP+2,#100.
BNE LOOP

11-33

APPENDIX A
ROM CODE DIFFERENCES

A.1 GENERAL

The KDJ11-B module uses two ROM:s that contain the boot and diagnostic coding described in Chapter 4.
The original version is designated as V6.0 and the revised or updated versions are V7.0 and V8.0. The user
does not have to remove the module from the system for identification because the version number is
shown in the upper right hand corner of the display whenever the setup mode is entered. The ROM part
numbers associated with each version are shown in Table A-1. The differences between V6.0 and V7.0 are
detailed in Paragraph A.2, while the differences between V7.0 and V8.0 are covered in Paragraph A.3.

Table A-1 ROM Part Numbers

Socket V8.0 Set V7.0 Set V6.0 Set
Low byte E116 23-168E5 23-116E5-00 23-077E5-00
High byte E117 23-169E5 23-117E5-00 23-078E5-00

A.2 V6.0 AND V7.0 DIFFERENCES

A.2.1 Boot Support for Tape MSCP Devices (TK50/TU81)
V7.0 has a built-in tape MSCP boot program for the TK50/TU81 devices and the device name is MU.
The tape MSCP boot and the disk MSCP boot are combined into one common boot program.

V6.0 does not have a tape MSCP boot program for the TK50/TU81 devices. Unibus systems could .boot
these devices if an M9312 type boot ROM for tape MSCP devices could be installed in the UBA module,
but this type of boot ROM is not available.

A.2.2 Disk MSCP Automatic Boot Routine _

In the V7.0 MSCP automatic boot, the program tries to boot removable media units from 0 to 255 and
then to boot fixed media units from 0 to 255. The program attempts to boot each unit at the standard
MSCP address and if this fails, the boot program attempts the same unit number from the first floating
disk MSCP device (if it is present) before continuing to the next unit number. The routine always makes
the first pass trying to boot the removable media units and the final pass trying the fixed media units.

In the V6.0 MSCP automatic boot (device name A), the program tries to boot removable media units
from 0 to 7 and then to boot fixed media units from 0 to 7. It only tries to boot the drives attached to the
controller at the standard address of 172 150. The MSCP automatic boot does not support unit numbers
above 7 and it hangs if the controller has a response from a unit number greater than 7.

The first floating controller (when present) is at address 160 334, if there are no devices from 160 010 to
160 330. The main advantage of V7.0 is to allow the user to add a second disk MSCP device without
making any entries into the translation table (as long as the controller address is set exactly according to
the floating CSR address rules).

A.2.3 Dialog Mode Boot Command for Disk MSCP Boot

V7.0 of the dialog mode lets the user execute the boot command for a DU device and the ROM code tries
to boot the selected unit number at the standard controller address. If the boot is not successful, the ROM
code then tries to boot the same unit number at the first floating controller address (if it is present). When
an error occurs on both controllers, the V7.0 ROM code prints out error messages for both controllers
starting with the standard address. Nonexistent error messages are not printed unless the unit is nonexis-
tent on both controllers. If the second controller does not exist at the proper floating address, the ROM
code prints out messages associated with the standard controller only. When the translation table or the /A
switch is used, only one controller is tried regardless of the existence of two or more controllers.

V6.0 of the boot routine tries the standard address only, unless otherwise directed by the translation table
or the /A switch. '

A.2.4 Disk MSCP Boot (DU)

The V7.0 disk MSCP boot always initializes the disk controllers when they are first accessed. The
controller is left on-line, unless it is necessary to take it off-line. This allows the boot to operate faster in
the automatic boot mode when many unit numbers and possibly multiple controllers are being tried. The
controller is always turned off before control is transferred to the secondary boot. The V7.0 DU/MU boot
requires a 16-Kword memory (minimum) and the V6.0 DU boot requires an 8-Kword memory
(minimum).

In V6.0, the controller is initialized only when the SA register is not zero. The controllers are usually left
on and are turned off before transferring control to the secondary boot. The controller is also turned off
before checking for a valid boot block. Therefore, if the automatic boot sequence ‘sees’ a lot of non-
bootable media before it gets to the device being booted, the boot code may be slow since it has to
reinitialize the controller after each nonbootable unit is found.

A.2.5 8-Unit Restriction for MSCP Automatic Boot

V6.0 is restricted to units O through 7 and if the first unit on the controller is unit 8 or greater, the boot
loops becatuse the automatic boot program does not correctly handle unit numbers greater than 7. V7.0
can handle unit numbers from O through 255.

A.2.6 Irregular Monitoring of Keyboard During Automatic Boot Sequence

As the ROM code proceeds through the devices during the V6.0 automatic boot, it does not check the
keyboard for a <CTRL> C unless a specific boot program does it. The keyboard is sometimes checked by
a boot when the boot program is in a potentially long loop waiting for some action to occur. V7.0 checks
the keyboard at least once between each boot in the automatic boot sequence.

A.2.7 Addition of Single-Letter Mnemonic in Automatic Boot List

A single-letter mnemonic (L) has been added to the boot command list for V7.0. The L command causes
the automatic boot sequence to loop continuously until one of the selected devices is successfully booted.
Normally, the last device in the automatic boot table is followed with the mnemonic E, which causes the
sequence to exit at the end of the table, and if no device is successfully booted, the ROM code displays an
error message and requests input before proceeding.

When the L follows the last device, the ROM code restarts the table at the beginning and continuously
tries each device in the table until one is booted or the user types <CTRL> C to abort the sequence. This
feature is useful for booting a fault-tolerant system that must be tried continuously until a successful boot
occurs.

A-2

.=10000 . ; Program is relocatable to another

; address.
START: tsth @#177560 ; Has any characters been typed
bpl 10% ; No-Go exit back to auto boot
; Yes-Check the character
movb @#177562,r5 ; Get the character from the RBUF
bic #177600,r5 ; Clear off all bits above bit 07
cmp r5,#3 ; Is the character a CTRL C ?
beq 20% ; Yes-Then return to ROM code with

; 15 set to 3 which will cause the
; boot sequence to be aborted.

10$: mov #301,r5 ; Load r5 with value for drive error
movb #100,@#177611 ; This will fake out the ROM code
; and make it restart the auto boot
; sequence
20% bic #760,@#177520 ; Make sure the ROMs are selected in
; the BCSR
jmp @#165762 ; Return to the ROM code.

; If rb is 301 then restart the auto

; boot sequence. If r5 is 3 then

; abort the sequence and go to Dialog
; mode.

MR-17272

Figure A-1 Program for Continuous Loop

The L command is not included in V6.0, but the user can implement it by writing a small EEPROM boot
to emulate the feature. The source code and the description of this program (to enable a continuous loop
function for V6.0) are shown in Figure A-1. When this feature is implemented, it must be noted that there
is no boot program using a device name of L, and if there is, the user has to delete or rename that boot
before. using the new program.

A.2.8 Setup Mode Disable

V7.0 includes a disable parameter on the list of parameters used by setup command 2. This command was
added to prevent unauthorized entry into setup mode and it allows the user to disable entry into setup
mode if the forced dialog mode is not selected. This change assumes that the forced dialog mode switch is
controlled or that switch 5 on the module is on to prevent unauthorized entry into setup mode. When the
ROM code is in dialog mode and setup mode is disabled, all references to the setup commands are
eliminated, and typing SETUP causes an invalid command response from the ROM code. In V6.0, the
setup mode can always be entered from dialog mode.

A.2.9 Disable All Testing Parameter

V7.0 includes a disable testing parameter on the list of parameters used by setup command 2. When this
parameter is set or selected, it disables all memory and cache testing if the forced dialog mode is not
selected. (The forced dialog mode causes the module to run the complete set of tests.) This reduces the
testing time to approximately 70 or 85 ms. This parameter is not available in V6.0.

A.2.10 Edit/Create Command
In V7.0, the edit/create command of the setup mode uses a decimal value for the highest unit number
entry on the EEPROM boots. V6.0 uses an octal number that is converted into a decimal number.

A.2.11 Initialize Command for the PMG Counter
The initialize command sets the PMG count value to 7 in V7.0. This value was set to 0 in V6.0. The
recommended value for the PMG count is 7 for all modules that use V6.0.

NOTE
It is recommended that users of V6.0 change the
PMG count value from the default value of 0 to a
value of 7.

A.2.12 PMG Parameter Warning

V7.0 prints a warning message if the PMG count value is set to 0 by the user. The warning was created to
prevent the user from operating the system with a PMG count value of 0. This ensures that the CPU is not
locked out from the bus for excessively long periods of time, which could cause some loss of data if it is
stalled for more than 250 ms. The message shows the PMG count value being changed and prints the
warning with the parameter line being reprinted, allowing the user to change the PMG count value.
The display also contains the current values associated with the selections available to the user (Figure
A-2) and thus eliminates the need to consult a reference document. V6.0 prints only the parameter
selected and the values the user may select (Figure A-2).

A.2.13 Setup Command 4 Printout

V7.0 prints descriptions of the single-letter mnemonics A, B, E, and L when they are used by setup
command 4. V6.0 prints only the descriptions for A and E because there are no descriptions for B and L.
The V7.0 descriptions are shown in Figure A-3.

A.2.14 MU (TK50/TU81) Device

V7.0 adds the device name MU for the TK50 or TUS81 to the list of devices in the automatic boot
selections table. This is also added to the list when the setup mode initialize command is executed. V6.0
does not have the MU device name. The setup command 4 automatic boot lists are shown in Table A-2 for
both versions. "

V6,0 PMG count parameter printout

PMG count (0-7) = 7 NEW =

V7,0 PMG count parameter printout

PMG 0-(7) 1=.4us, 2=.8, 3=1.6, 4=3.2,.7=2566 =7 NEW =

MR-17273

Figure A-2 PMG Count Value Warning Message

A-4

KDJ11-B Setup mode
Press the RETURN key for Help
Type a command then press the RETURN key: 4 <CR>

List/change the Automatic boot selections in the Setup table

A = MSCP automatic boot
B = External ROM boot
E = Exit automatic boot
L = Loop continuously

Boot 1 = A
Boot 2 = DLO
Boot 3 = MSO
Boot 4 = MUO
Boot5 = E
Boot 6 = blank

Type CTRL Z to exit or press the RETURN key for No change

Boot 1 = A
Device name =

MR-17274

Figure A-3 Single-Letter Descriptions for Command 4

Table A-2 Setup Command 4 Automatic Boot Lists

V7.0 V6.0
A A
DLO DLO
MSO0 MS0
MUO A

A .

A.2.15 Setup Command 5
Setup command 5 is eliminated in V7.0. The setup command 5 description is reserved and if the command
is selected, it is ignored.

In V6.0, this command allows different character sets in the console terminal to automatically be selected
by the ROM code when the user changes from English to a local text or from local to English text. The
command is no longer required since all text printed on the screen uses only the standard ASCII characters
generally available on all terminals. Special characters used in some languages are imitated by fallback
representations in standard ASCII.

A.2.16 Memory Initialization at Power-Up

V7.0 writes to all consecutive memory starting at location O at least once after the power-up sequence is
complete. This feature is disabled if the disable testing option is enabled. This option does not apply to
restarts. V6.0 may not write to locations above 248 Kbytes if the long memory test is disabled or
<CTRL> C is typed.

A.2.17 Power-Up Option Set to 3 with Battery Backed Up Memory

In V7.0, if the selected power-up mode is 3 and the battery indicates that the voltages are lost with the
ignore battery function turned off, the ROM code goes to the dialog mode regardless of the restart mode
selection. For the same conditions in V6.0, the ROM code executes the restart mode selection if it is not
mode 3 or it goes to the dialog mode. The battery OK signal is currently used only in Unibus systems.

A.2.18 Halt-on-Break :

V7.0 sets the halt-on-break bit in the BCSR immediately after the “Testing in progress — Please wait”
message is displayed. The halt-on-break feature, generally used in single-user environments, was not
needed.

V6.0 does not set the halt-on-break bit in the BCSR until a break is received and discarded, any valid
character is received except XON, or the ROM code gives up control of the CPU. This allows the ROM
code to ignore any breaks that come as a result of a terminal being powered up.

A.2.19 Local Language Support
V7.0 supports local language translations by using the <CTRL> L command. Local language is not
supported in V6.0. ‘

A.2.20 Addition of Map Command Feature

V7.0 adds an additional feature to the map command. This feature determines the clock speed of the CPU
by counting the number of SOB instructions that can be executed out of the cache memory during one 20
ms cycle of the internal DLART clock. This value is compared with a table of standard values and if it is
within 0.1% of any standard value, that value is displayed. If it does not match a standard value, the actual
value is displayed. The standard values are 15.206, 17, 18, 19, and 20. The speed is not calculated if any
errors are detected during testing.

A.2.21 EEPROM Load Error Before Dialog Mode

In V7.0, if the setup mode is entered and an error occurs in loading the EEPROM data into memory, the
dialog mode is restarted and no error message is generated. V6.0 does not check to verify the data is OK
and setup mode cannot be entered without testing memory. In either case, a timeout may occur and trap to
location 4 with an error message being generated.

A.2.22 Test Command Decimal Numbers

In V6.0 dialog mode, when the user selects a specific test with the test command, the ROM code selects a
different test number. The valid test numbers are in the range of 31 to 70 (octal) with the exception of
tests 64 to 66 and any Unibus test on LSI-11 bus systems. The only test numbers that may cause confusion
are illegal test numbers that end in 8 or 9 using the decimal system. Table A-3 lists the selectable (illegal)
test numbers and the actual test run by the ROM code.

Table A-3 ROM Code Test Selections

Selected Actual Test

Test

78 70

69 61

68 60

59 51

58 50

49 41 (Unibus only)
48 40 (Unibus only)
39 31 (Unibus only)

A-6

V6.0 does echo the correct and actual test being run. For example, if the user selects T 59, then V6.0
responds that it is looping on test 51. V7.0 corrects the problem.

A.2.23 Test Command Execution of a Single Test

In V7.0, if the test command is used and a specific test is selected, the memory size routine is run before
the selected test is run. Some of the memory size parameters have been lost and need to be replaced. V6.0
runs only the selected test when a single test is selected.

A.2.24 Test Errors in Tests 72 to 75

In V6.0, if an error occurs in tests 72 to 75, the user has a choice of either rerunning the test or looping on
the test. It does not matter what the user selects, however, because the ROM code unconditionally restarts
from the beginning if the user selects a valid choice. For V7.0, the user is only allowed to rerun the test,
but the ROM code still restarts the code from the beginning when this selection is made.

A.2.25 Bypass Errors for Test Failures

In V6.0, if an error occurs during testing, the user may bypass the test if the error is considered to be
nonfatal. Many times it is difficult to determine if an error is fatal or nonfatal and sometimes, if an error is
determined to be nonfatal, it may still cause a problem when overridden.

V7.0 considers all errors to be fatal and never provides the override command. However, the user can still
override the error in the same way used for V6.0. To override, the user types <CTRL> O and then types 4
<RETURN>. If <CTRL> O is not typed, the 4 is ignored and not echoed.

A.2.26 Test 76 and 75 Error Messages

During the first two major tests, 76 and 75, the printout for errors has been changed. These tests have a
simple printout because the normal printout routine has not been turned on at this time. V6.0 prints “Error
76” or “Error 75” and V7.0 prints “A 76” or “A 75.” This change was made for local language
applications since these printouts cannot be translated.

A.2.27 Starting Automatic Boot Sequence Message

V7.0 prints a message indicating when the automatic boot mode is selected and the sequence is starting.
This message (Figure A-4) indicates that all the testing is complete and the ROM code is starting the
automatic boot sequence.

NOTE
This does not apply to LSI-11 systems with the
friendly format feature selected by setup
command 2.

Testing in progress - Please wait
Memory size is 512 K Bytes
9 Step memory test

Step 123456789

Starting system

MR-17275

Figure A-4 Automatic Boot Sequence Message

A.2.28 Device Name and Number After Message
V7.0 prints the device mnemonic and unit number after the “Starting system” message shown in Figure
A-5. This has no affect on the printout when the user friendly printout feature is selected.

A.2.29 Incorrect Message for Invalid Unit Number
V6.0 responds with an incorrect message (Figure A-5) when the user types in a unit number greater than
255. V7.0 corrects this problem by printing a message (Figure A-6) indicating the invalid unit number.

A.2.30 Dialog Mode Header Message
V7.0 changes the dialog mode header message by deleting the brackets because they are not available on
all terminals.

A.2.31 Map Command Message
V7.0 changes the & symbol to “and” for the map command message in setup mode because the symbol is
not available on all terminals.

A.2.32 List Device Descriptions

V7.0 changes the descriptions for the device names in some of the mnemonics and also shows the TK25
and TSO05 devices under the mnemonic MS for Unibus systems. The differences are not listed here because
they are obvious. RA80/81/60, for example, is changed to RA80, RA81, and RAG60.

A.2.33 Loss of the First Line in a List Header

In V6.0 dialog mode, when the user types the boot command without the device and then types
<RETURN:= ? to get a list of boot devices, the ROM code does not send a line feed before the header of
the list and the header is lost in the rlght margin (Fi igure A- 7). The list is typed out correctly. V7.0 corrects
the problem and the message shown in Figure A-8 is displayed.

A.2.34 <CTRL> R and <CTRL> U Echo

V6.0 echoes the <CTRL> R and <CTRL> U commands as R and U, respectively. V7.0 does not echo
these commands because the symbols are not available on all terminals. These commands still function the
same way.

Testing in progress - Please wait
Memory size is 512 K Bytes
9 Step memory test

Step 123465667889

Starting automatic boot

Starting system from DUO

MR-17276

Figure A-5 V6.0 Incorrect Message

A-8

Commands are Help, Boot, List, Setup, Map, Test.
Type a command then press the RETURN key: B DL300 <CR>

Invalid unit number

Commands are Help, Boot, List, Setup, Map, Test.
Type a command then press the RETURN key:

Figure A-6 V7.0 Correct Error Message

MR-17277

Commands are: [Help, Boot, List, Setup, Map, Test]
Type a command then press the RETURN key: B <CR>

Enter the device name and unit numer then press the RETURN key: ?

)

name numbers Source Device type
DU 0-255 CPU ROM MSCP (RA80/81/60, RD51/52, RX50, RC25,
DL 0-3 CPU ROM RLO1/RL0O2

efc......

MR-17278
Figure A-7 V6.0 List Header Error
Commands are Help, Boot, List, Setup, Map, Test.
Type a command then press the RETURN key: B <CR>
Enter the device name and unit number then press the RETURN key: ?
Device Unit CPU ROM RA8O, RAB1, RAB0O, RD51, RD52, RX50,RC25
name numbers CPU ROM RLO1, RLO2
DU 0-255
DL 0-3
etC......
MR-17279

Figure A-8 V7.0 Correct List Header

A-9

A.2.35 Power-Up or Restart Mode Set to 3 (LSI Bus Only)
In V6.0, before executing a power recovery trap through location 24, the ROM code does the following.

1. Reads and stores the contents of location 24
2. Executes a read/write test on location 24
3. Restores the original contents of location 24

When the test is successfully completed, the ROM code loads the contents of location 26 into the PSW
and jumps to the location specified in location 24. Since this location was tested, the ROM code cannot be
present in the lower portion of memory.

V7.0 does not test location 24 and it is possible to have ROM code in the lower portion of memory. The
ROM code loads the contents of location 26 into the PSW and jumps to the location specified in location
24.

A.2.36 Automatic Boot Misleading Error Message (L.SI Bus Only)

In V6.0, RS is cleared at the end of the MSCP disk sniffer boot and this causes all errors that occurred
during the sniffer to appear to be correctable by the user. This minor problem only affects the message
sent to users operating in the friendly mode. V7.0 corrects the problem.

A.2.37 APT Halt-on-Break Detect (LSI Bus Only)

V6.0 can detect breaks coming from an APT system. This feature allows LSI type systems that have the
halt-on-break option disabled to halt, and enables the halt-on-break option if the APT is trying to down-
line-load. V7.0 eliminates this feature because it is implemented in the manufacturing process. If the
feature is not eliminated, there is a small chance that the system may be halted with halt-on-break disabled
if the terminal is a VT5X terminal (or possibly other terminals), but not if it is a VT1XX or VT2XX
terminal.

Note also that autobaud detect routines from remote hosts can cause halt-on-break when it is not desired.

A.2.38 B Mnemonic for ROM Boots (Unibus Only)

For V7.0 under the B mnemonic for ROM boots, the address located at 173 024 on the M9312 module in
the Unibus system must be an even address. This is the only check of the address data. For V6.0 under the
B mnemonic for ROM boots, the address located at 173 024 must be 165 000 or greater, but it can be
odd. In either case, if all the conditions are not met, an invalid device message is reported.

A.2.39 Error in List Command When Unknown ROM is Found (Unibus Only)

In V6.0, the ROM board for the Unibus must respond to all addresses from 17 773 000 to 17 773 776 for
the ROM code to transfer control using the B mnemonic, or else an invalid device message is reported. In
V7.0, only address 17 773 024 must respond.

A.2.40 Power-Up or Restart Mode Set to 3 (Unibus Only)
In V6.0, the ROM code checks for the presence of Unibus memory and sets up the KMCR before
executing a power recovery trap through location 24. Then the ROM code does the following.

I. Reads and stores the contents of location 24
2. Executes a read/write test on location 24
3. Restores the original contents of location 24

When the test is successfully completed, the ROM code loads the contents of location 26 into the PSW

and jumps to the location specified in location 24. Since this location was tested, the ROM code cannot be
present in the lower portion of memory.

A-10

V7.0 does not check for Unibus memory and assumes that by selecting mode 24 the system has the final
configuration of memory already installed. Therefore, location 24 is not tested and it is possible to have
ROM code in the lower portion of memory. The ROM code loads the contents of location 26 into the
PSW and jumps to the location specified in location 24.

A.2.41 Saving KMCR Bits <5:0> in the EEPROM (Unibus Only)

In V7.0, when the setup table is written into the EEPROM, the contents of KMCR bits <5:0> are always
copied into the EEPROM regardless of the power-up or restart modes. The EEPROM data is used to load
the KMCR when the ODT or 24/26 modes are selected. The ROM code autosizes for Unibus memory
when the automatic boot or dialog modes are selected. : '

In V6.0, KMCR bits <5:0> are copied into the EEPROM only when ODT is selected for the power-up or
restart mode. The ODT mode is the only mode that does not autosize for Unibus memory and con-
sequently must depend on the EEPROM to contain the correct KMCR information.

A.3 V7.0 AND V8.0 DIFFERENCES .

This paragraph describes.the changes made when V8.0 of the ROM code was created. The changes made
in V7.0 (as described in Paragraph A.2) are still true for V8.0 except as noted below. Paragraph A.2
describes the differences between V6.0 and V7.0 only.

A.3.1 M9312 MultiROM Bootstrap Support (PDP-11/84 Only) ‘ '

V6.0 and V7.0 do not support M9312 bootstrap programs, which require more than one ROM to
implement (multiROM bootstraps). The only way these programs can be supported for V6.0 and V7.0 is
to use a work-around program loaded into the EEPROM (refer to the PDP-11 /84 Technical Manual).
V8.0 corrects this problem and automatically supports M9312 multiROM bootstraps. :

NOTE
"This problem occurs only in PDP-11/84 systems.

A.3.2 Small Memory Automatic Boot Problem for RQDX3

V7.0 has a check in the MSCP initialize sequence that assumes the disk controller starts step 1 within 100
useconds of a hard initialize command. This is not true of many RQDX3 controller modules at power-up.
The problem happens in small memory systems (less than 1 Mbyte) and on large memory systems if some
of the memory tests are bypassed. The problem occurs only at power-up. V8.0 allows at least 10 seconds
for step 1 to start (as in V6.0).

A.3.3 RAnn Disk Spinup Time Delay for Automatic Boot ’ _

In V6.0 and V7.0, the disk MSCP bootstrap assumes that off-line error codes from the disk being booted
are correct. If the disk is an RAnn on a UDA/KDA controller, and if the disk is spinning up or down, it
may incorrectly identify a disk spinning up as being off-line (not available). This causes the ROM code to
skip this unit and try another even though there is no problem.

V8.0 works around this problem with the following strategy. It identifies the controller as a KDASO0,
UDAS50, or UDASOA. The identification is done in step 4 of the initialize sequence. If the device is not a
KDA/UDA controller, the delay is not present. If the controller type is UDA/KDA and the response
packet from the controller is an off-line code (3), the ROM code repeatedly tries to boot the device for a
period of at least 60 seconds. RAnn devices need this delay time to spin up and be ready to respond to the
host. If the RAnn is not ready to be booted after 60 seconds, the code reports the error and sets a flag
preventing this delay time from occurring again unless the code is rebooted. The next device specified in
the automatic boot setup table is then tried. The code responds to the terminal shortly if it cannot find a
bootable device.

A-11

In a case where the code enters dialog mode, it is assumed that the user has the RAnn spun up and ready.
The code does not wait 60 seconds for the device to spin up. The device promptly reports any errors if they
occur. Some RAnn devices (possibly RA60) work adequately without this change.

CAUTION

When a system is configured with RAnn disks (and
possibly with other non-RAnn MSCP disks), it is
important to realize that the wait loop in V8.0
delays the automatic boot process for 60 seconds or
more. It is recommended that the user remove A
(disk MSCP automatic boot) from the boot table in
the EEPROM using setup command 4. The user
should replace it with the desired order of devices to
be booted (i.e., DUO, DU2, etc.). This is especially
true when booting fixed media devices, since the disk
automatic boot ignores fixed media devices until it
has tried all removable media devices.

Remember that the disk automatic boot tries each
unit at the standard controller address and then at
the first floating address. This is also true for indi-
vidual unit numbers (i.e., DU2, DUO, etc.) unless the
unit number is described in the translation table (set-
up mode command 3).

A.3.4 Addition of RESET Instruction at Beginning of Code
V8.0 executes a RESET instruction (bus reset) at the beginning of the code. V6.0 and V7.0 do not include
this instruction. This change provides a bus reset after POK is asserted.

A.3.5 Addition of New Setup Command 5

V8.0 adds a new setup mode command 5, similar to the setup mode command 5 in V6.0. V7.0 does not
have a setup mode command 5. This new command in V8.0 allows the user to store up to 20 bytes of
information in the EEPROM. The data is stored in the same place in the EEPROM as for V6.0. However,
the information stored there is never sent to the console as it was in V6.0. The data must be entered as
octal numbers in the range of 0 to 377. This command may be used to store serial numbers, etc. The setup
mode initialize command resets this data to 0. The ROM code does not use this data for any purpose at all.

A.3.6 Memory Test Coverage Problem 4

V6.0 and V7.0 test only the first 4 Kwords of memory when running test 50. V8.0 corrects this and checks
all available consecutive memory. Test 50 checks two locations for floating 1s and Os and does byte
testing.

A.3.7 List Command Device Descriptions
Some of the messages printed during the V8.0 list command are new. The changes are given in Table A-4.

A.3.8 Manufacturing Test Loop Problem

The manufacturing test loop in V7.0 does not execute all of its tests. V8.0 corrects the problem. V6.0
always worked correctly. This change affects only those manufacturing sites that use the feature. The
manufacturing test loop can only be selected by using the switchpack on the CPU module.

A-12

Table A-4 New List Command Device Descriptions

Message
Type From: To: Comments
DU RD51, RD52, RDnn, RXnn,
RC25, RA80, RC25, RAnn
RAS81, RA60
XH DECnet DEQNA DEChnet Ethernet 11/73 or 11/83 only
) DECnet DEQNA DECnet Ethernet

XE

11/84 only (if ROM present)

A-13

APPENDIX B
SETUP PARAMETER WORKSHEETS

B.1 PURPOSE
The purpose of these worksheets is to report and confirm the setup parameters contained in the setup
EEPROM on the KDJ11-B CPU module.

B.2 FUNCTION

The worksheets are to be filled out when the KDJ11-B module is installed and should contain all pertinent
information on the setup parameters selected. When complete, they should be left with the system as a
reference and may also be used to program a replacement module in the future.

The original data should be written in ink and any new data should be added in pencil. The user sets the
configuration as follows.

1. Setup command 7 lists the original values to ensure that the changes are being programmed
correctly, and setup command 1 is used to exit. :

2. Setup command 9 copies any changes the user makes to the éetup table in the EEPROM.

3. Setup command 14 writes a boot program from memory into the EEPROM.

B-1

Setup Parameters

Type <CTRL> Z to exit or press <RETURN> to proceed.

Item Parameter Selections Original Currrent
A Enable halt-on-break (0)=No (1)= Yes =1
B Disable user friendly format (0)=No (1)= Yes =1
C ANSI video terminal (0)=No (1) = Yes =1
D Power-up (0) = Dialog =0
(1) = Automatic
(2) = ODT
(3)=24
E Restart Same as power-up =12
F Ignore battery (0) =No (1)= Yes =0
G PMG count Select from 0-7 =35
H Disable clock CSR (0)=No (1) = Yes =1
I Force clock interrupts (0)=No (1)= Yes =1
J Clock frcquericy (0) = Power supply =3
(1) =50 Hz
(2) = 60 Hz
(3) = 800 Hz
K Enable EEC test (0) = No
(1) = Yes =1
L Disable long memory test (0) = No (1) = Yes =0
M Disable ROM (0) = No =3
» (1) = Disable 165
(2) = Disable 173
(3) = Disable both
Enable trap-on-halt (0)=No (1) = Yes =1
0 Allow alternate boot block (0)=No (1)= Yes =0

Setup Command 3 Selections

Bootstrap

Original

Current

TT1

Device name
Unit #

CSR address

TT2

Device name
Unit #

CSR address

- TT3

Device name
Unit #

CSR address

TT4

Device name
Unit #

CSR address

TT5

Device name
Unit #

CSR address

TT6

Device name
Unit #

CSR address

TT7

Device name
Unit #

CSR address

TT8

Device name
Unit #

CSR address

TT9

Device name
Unit #

CSR address

[o oo e [(I I I (I (I

B-3

Setup Command 4 Selections

Program

Original

Current

Boot 1
Device name

Boot 2
Device name

Boot 3
Device name

Boot 4
Device name

Boot 5
Device name

Boot 6
Device name

Setup Command 5 Selections

Selection Original Current Selection Original Current
Non-English English
0= 0=
1= | =
2= 2=
3- 3=

4 = 4 =
5= 5 =

6 = 6 =
7= 7=

8 = 8 =

9 = 9 =

Setup Command 6 Selections

Switches Original Current

2 3 4

On On On Special
On On Off SB1
On Off On SB2
On Off Off SB3
Off On On SB4
Off On Off SB5
Off Off On SB6
Off Off Off Normal

Wnnnonn

B-5

AMUX - A-multiplexer

APF - active page field

ASCII - American Standard Code for Information Interchange

AST - asynchronous system trap

BCR - boot and diagnostic facility configuration register
BCSR - boot and diagnostic control/status register
BMUX - B-multiplexer

CCR - cache control register

CDP - cache data path

CDR - configuration and display register

CMUX -~ C-multiplexer

CSM - call supervisor mode

CSR - control/status register

DATBI - data block in

DATI/DATIP - data in/data in pause

DATO/DATOB - data out/data out byte

DCSR - diagnostic control/status register

DLART - digital-link asynchronous receiver/transmitter
DMA - direct memory access

EEPROM -electrically erasable programmable ROM

EIA - Electronic Industries Association

C-1

APPENDIX C
MNEMONICS

EIS - extended instruction set
EPROM - erasable programmable ROM
ESC - escape

FEA - floating exception address

FEC - floating exception code

'FER - floating error

FPA - floating-point accelerator

FPS - floating-point status register
HMR - hit/miss register

IACK - interrupt acknowledge

I/O - input/output

IRQ - interrupt requcst‘

KMCR - KTJ11 memory configuration register
KSP - kernel stack pointer

LE - latch enable

LIFO - last in, first out

LRU - least recently used

LSB - least significant bit

LTC - line time clock

MMR - memory management register
MSCP - mass storage control protocol
MSER - memory system error register
MUX - mulpiplcxer

NOP - non-I/O

NPR - nonprocessor request

NXM - nonexistent memory

ODT - on-line debugging technique
OE - output enable

PA - physical address

PAF - page address field

PAR - page address register

PC - program counter

PCR - page control register

PDR - page descriptor register
PIC - position-independent code
PIRQ - program interrupt request
PLF - page length field

PMG - processor mastership grant
PMI - private memory interconnect
PSW - processor status word
RAM - random-access memory
RBUF - receiver buffer

RCSR - receiver control/status register
ROM - read-only memory

SLU - serial line unit

SP - stack innter

SSP - supervisor stack pointer
UBA - UNIBUS adapter module
USP - user stack pointer

VA - virtual address

XBUF - transmitter buffer

%

XCSR - transmitter control/status register

A

A-multiplexer, 5-30
ABSF/ABSD, 10-11
Absolute addressing mode, 8-17
AC bus loading, 6-21
Accuracy, 10-8

ADC, 9-22

ADD, 9-28

ADDF/ADDD, 10-11
Address decode, 5-32
Addressing modes, 8-1
Advance to next test, 4-25
Alternate boot block, 2-12
ANSI video terminal, 2-9
ASH, 9-29

ASHC, 9-30

ASL, 9-18

ASR, 9-17

Autodecrement mode, 8-9
Autodecrement-deferred, 8-12
Autoincrement mode, 8-8
Autoincrement-deferred, 8-12
Automatic (Mode 1), 4-2
Automatic boot sequence, 4-8
Automatic mode, 2-10

B

B-multiplexer, 5-28
Back-up/restart, 1-23

Bank select address codes, 5-4
Basic transactions, 5-12

Baud rate, 2-4

" Baud rate selection, 1-35
BCC, 9-38

BCS, 9-39

BEQ, 9-36

BEVNT L, 6-21
BGT, 9-40
BHALT L, 6-19
BHI, 9-41
BHIS, 9-42
BIC, 9-32

BIS, 9-33

Bit, 9-32

BLE, 9-41

]

- BLO, 9-42

Block data in (DABTI), 1-35

BLOS, 9-41

BLT, 9-40

BMI, 9-37

BNE, 9-36

Boot mode commands, 4-3

Boot program, 4-3

Bootstrap
error LED display, 4-17
programs available, 4-12
translation table, 4-8

BPL, 9-37

BPT, 9-49

BR, 9-35

Break-detected interrupt request, 5-41

Bus arbitrator, 5-10
Bus cycle protocol, 6-4
Bus device NPR, 7-6
Bus distribution, 5-37
Bus master, 6-2

Bus read, 5-7

Bus termination, 6-23
Bus timeout, 1-10
Bus write, 5-8

BVC, 9-38

BVS, 9-38 .
Byte allocation, 5-18
Byte instructions, 9-6

INDEX-1

INDEX

C

C-multiplexer, 5-28
C/D interface, 1-34
Cache, 1-1 ‘
Cache control, 5-26
logic, 5-30
register, 1-30
signals, 5-24
Cache data parity logic, 5-25
Cache data path, 5-30
Cache data RAM, 5-24
Cache memory, 1-27, 5-24
Cache memory (test 62), 4-20
Cache operation with memory
(test 51), 4-21
Cache parity, 5-25
Cache response, 1-28
CCC, 9-59
CFCC, 10-13
CLC, 9-59
CLN, 9-59
Clock CSR, 2-11-
Clock interrupts, force 2-11
Clock select, 2-11
Clock start logic, 5-35
CLR, 9-12
CLRF/CLRD, 10-13
CLV, 9-59
CLZ, 9-59
CMP, 9-27
CMPF/CMPD, 10-13
COM, 9-12
Complete memory data/byte -
exercise (test 50), 4-21
Condition code operators, 9-11

Configuration and display circuits, 5-42

Configuration

parameters, 2-8

register, 1-43

requirements, 2-1
Connectors J2 and J3, 2-3
Console enable, 2-6
Console interrupt arbitration logic,

5-41

Console message, 4-10
Console ODT, 3-1
Console serial line unit (SLU), 5-38
Console SLU test 1 (test 66), 4-19
Console SLU test 2 (test 65), 4-19
Console SLU test 3 (test 64), 4-19
Contact (pin) identification, 2-18
Control store, 5-18
Control store outputs, 5-20
Control/status register, 1-40
Conversion routines, 11-21

Coroutines, 11-14
CPU and MMU (test 76), 4-18
CPU error register, 1-7
CPU or halt switch (test 77), 4-18
CPU ROM checksum and PCR
(test 70), 4-19
CSM, 9-53
<CTRL> C command, 4-16
Current transaction, 5-2
Cycle decoder, 5-33
Cycle encoder, 5-12
status, 5-14

D

D space group, 1-16
DADR bus bits, 5-43
Data in (DATI), 1-34
Data out (DATO), 1-35
Data path controller, 5-12
Data transfer bus cycles, 6-3
DATI bus cycle, 6-5
DATIO (B) bus cycle, 6-10
DATO (B) bus cycle, 6-7
DC bus loading, 6-21
DC350/394

accesses, 5-18

gate array, 5-28
DC351 gate array, 5-34
DEC, 9-14
Default, 5-17
Deferred (indirect) addressing, 8-12
Destination operand, 8-3 .
DEVCD outputs, 5-33
Device addressing, 6-4
Device priority, 6-14
Diagnostic tests, 4-16

error message, 4-24
Dialog (Mode 0), 4-1
Dialog mode, 2-9
Direct addressing, 8-4
Direct memory access (DMA), 6-12
Disable all testing, 2-12
Disable ROM, 2-11
Disable setup mode, 2-12
Disable UBA ROM, 2-12
Distributed arbitration, 6-14
DIV, 9-31
DIVF/DIVD, 10-14
DMA monitor, 5-18
DMA tag

data path, 5-35

store, 5-26
DMA transaction, 6-12
Double-operand addressing, 8-3

INDEX-2

ECC test, 2-12

EEPROM, 4-1
Create a boot program, 4-12
Delete a boot program, 4-12
Load a boot program, 4-12
Save a boot program, 4-13

EEPROM checksum (test 71), 4-19

Electrical characteristics, 6-21

EMT, 9-48

Enable 18-bit mode, 2-12

Enable trap-on-halt, 2-12

Enable UBA cache, 2-12

Enable Unibus memory test, 2-12

Enter ROM ODT, 4-14

EPROMs, 4-1

Error message, 4-28

Error number, 4-24

Exit (test 30), 4-23

Exit command, 4-5

Exit standalone mode (test 56), 4-20

Extended LSI-11 bus signals, 6-1

External read/write, 5-17

External transactions, 5-10

F

Floating exception register
address, 10-6
code, 10-6
Floating-point accelerator (FPA), 1-2,
5-44
Floating-point accumulators, 10-8
Floating-point data, 10-2
Floating-point exceptions, 10-6
Floating-point instruction (test 60),
4-18
Floating-point instructions, 10-9
Floating-point number, 10-1
Floating-point status register (FPS),
5-44, 10-2
Flush cache, 1-30
Flush counter, 5-35
Forced dialog mode, 4-2
FPA operation, 5-44
FPS register bits, 10-2
Functional blocks, 5-1

G

General purpose read, 5-8
codes, 5-8

General purpose registers, 1-2

General purpose write, 5-8
codes, 5-9

H

H9277-A backplane, 2-1
H9278-A backplane, 2-1
Halt, 9-51

Halt-on-break, 2-9

Help command, 4-2

High byte parity (P1), 5-22
High byte parity bit, 5-25
Hit logic, 5-35

Hit/miss register, 1-32

I

I space group, 1-16

IADR bits, 5-42

Ignore battery, 2-10

Immediate mode, 8-16

INC, 9-13

Index bits, 5-22

Index field, 1-27

Index mode, 8-11

Index-deferred, 8-13

Initialization, 5-2, 6-18

Input signals, 5-4

Installation procedure, 2-21

Instruction set list, 9-1

Internal bus control
network, 5-37
signals, 5-21

Internal transactions, 5-12

Interrupt-driven techniques, 11-10

Interrupt protocol, 6-15
Interrupts, 1-8, 6-12

Interrupt service routines, 11-10

Interrupt vector, 5-18

Interrupt vector timeout, 1-10

IOT, 9-50

JMP, 9-43

JSR, 9-44

Jump and subroutine, 9-10
Jumper wires, 2-1

K

Kernel, 1-2
Kernel protection, 1-3
Kernel stack, 1-3

INDEX-3

L

Label bits, 5-22
LDCDF/LDCFD, 10-15
LDCIF/LDCID/LDCLF/LDCLD,
10-16
LDEXP, 10-17
LDF/LDD, 10-18
LDFPS, 10-18
LED display, 4-16
Line clock (test 61), 4-20
Line time clock register, 1-45
List command, 4-4
Logical, 9-9
Long memory test, 2-11
Loop on test, 4-24
Looping techniques, 11-32
Low byte parity (P0), 5-23
Low byte parity bit, 5-22
LSI-11
bus signals, 2-19
bus systems, 6-24
compatible options, 2-13
control signals, 5-38
LSI-11 based system, 2-13
LSI/Unibus, 5-18

M

Main memory parity error, 1-29, 5-32,
5-35
Maintenance register, 1-44
MAIO coding, 5-2
Map command, 4-15
Map memory and I/O page, 4-25
MARK, 9-51
Master/slave relationship, 6-2
MBSI1 H and MBS0 H signals, 5-3
Memory address shorts (test 46), 4-22
Memory location 0 (test 53), 4-21
Memory locations 0 to 4K words
(test 52), 4-21
Memory management registers, 1-16
register 0, 1-20
register 1, 1-20
register 2, 1-20
register 3, 1-22
Memory mapping, 1-11
Memory parity/ECC (test 47), 4-21
Memory refresh, 6-19
Memory sizing routine (test 54), 4-20
Memory system error register, 1-32
Memory system registers, 1-30
MFPD/MFPI, 9-58
MFPS, 9-24

MFPT, 9-57

Microprocessor, 5-2

Miscellaneous CPU and EIS (test 67),
4-19

MMU aborts (test 63), 4-19

Mode 24, 2-10

24/26 (Mode 3), 4-2

Modes, 1-2

MODF/MODD, 10-19

MOV, 9-26

MSV11-J memory modules, 2-1

MTPD/MTPI, 9-58

MTPS, 9-25

MUL, 9-31

MULF/MULD, 10-22

Multiple faults, 1-23

Multiple-backplane systems, 6-24

Multiple-precision, 9-8

N

NEG, 9-14
NEGF/NEGD, 10-23
Nesting, 11-11
Next address multiplexer, 5-17
No SACK timeout, 1-10
NOP, 5-7
oDT
commands, 3-3
entry conditions, 3-2
mode, 2-10
timeout, 3-8
ODT (Mode 2), 4-2
Optional commands, 4-24
Oscillator, 5-15
control signals, 5-16
Output messages, 4-29

P

Page address register, 1-18
Page control register, 1-42
Page descriptor register, 1-18
Parity error, 1-29
detection, 1-29
Parity generator, 5-30
Parity interrupt and abort, 5-31
Physical address, 1-14
PMG count, 2-10
PMI bus control signals, 5-38
PMI bus master signals, 7-1
Block Mode, 7-1
Bus Cycle, 7-1
PMI Byte, 7-1
PMI Write Strobe, 7-1

INDEX-4

PMI cycle request, 5-12
PMI data transfers, 7-9
block data in, 7-11
data in/data in pause, 7-9
data out/data out byte, 7-13
PMI interrupt protocol, 7-15
PMI operation, 7-4
bus device interrupt, 7-6
PMI power-up/down, 7-15
PMI signal assignments, 2-18
PMI slave signals, 7-3
PMI High Byte Data Parity, 7-3
PMI Low Byte Data Parity, 7-3
PMI Read Strobe, 7-3
PMI Slave Buffer Full, 7-3
PMI Slave Selected, 7-3
PMI turned on and check UBA reboot
bit (test 74), 4-18
PMI Unibus adapter signals, 7-4
PMI Busy, 7-4
PMI Unibus Map Enable, 7-4
PMI Unibus Memory, 7-4
PMI Unibus System, 7-4
PMI Unibus Timeout, 7-4
Popping from a stack, 11-6
Position-defined arbitration, 6-14
Position-dependent code, 11-3
Position-independent code, 8-16, 11-1
Power status protocol, 6-18
Power-up modes, 2-9
Power-up to Mode 3: 24 Mode (test 72),
4-18
Power-up to Mode 2: ODT (test 73),
4-18
Power-up/power-down, 6-19
Predicted parity, 5-30
Primary bootstrap programs, 4-26
Primary control system, 5-1
Private memory interconnect (PMI),
1-34, 7-1 .
Processor status word (PSW), 1-4
Processor traps, 11-19
Program control, 9-7
Program counter, 1-4
Program interrupt request register, 1-7
Programming techniques, 11-1
Protection modes, 1-1
PSW operators, 9-8
Pushing onto a stack, 11-5

Q
Qualifiers, 4-3

R

ead interrupt vector, 5-10
teceiver buffer register, 1-37
eceiver control/status register, 1-36
Recursion, 11-17
leentrancy, 11-12
teentrant code, 11-12
egister mode, 8-6
Legister-deferred, 8-13
Lelative addressing mode, 8-18
Xelative-deferred addressing mode,
8-19

Xerun test, 4-24
Reset, 9-56
Xesident boot programs, 4-5
Restart, 2-10
Restricted LSI-11 options, 2-15
ROL, 9-20
ROM code, 4-1

disable, 2-11
ROM ODT commands, 4-15
ROR, 9-19
RTI, 9-50
RTS, 9-46
RTT, 9-51

SBC, 9-23
SCC, 9-59
SEC, 9-59
Secondary functional blocks, 5-2
Select configuration parameters (2), 4-6
Selection of NA <1:0> status, 5-17
SEN, 9-59
Serial line interface, 1-35
Serial line unit, 1-2
SETD, 10-23
SETF, 10-23
SETI, 10-24
SETL, 10-24
Setup mode, 4-5
disable, 2-12
Setup mode command 2, 2-7
Setup table, 4-12
SEV, 9-59
SEZ, 9-59
Shift and rotate, 9-8
Signed conditional branch, 9-9
Single-backplane systems, 6-25
Single-operand addressing, 8-3
SOB, 9-47
Source operand, 8-3

INDEX-5

SPL, 9-53
Stack, 11-5

uses, 11-8
Stack pointer, 1-4
Stale data, 1-32
Standalone mode, 5-18
Standard factory configuration, 2-2
Status LED display, 2-7
Status registers, clearing, 1-22
STCFD/STCDF, 10-25
STCFI/STCFL/STCDI/STCDL,

10-26

STEXP, 10-27
STF/STD, 10-27
STFPS, 10-28
Stretched bus read, 5-7
STST, 10-28
SUB, 9-28
SUBF/SUBD, 10-29
Subroutine advantages, 11-10
Sunset loop, 1-8
Supervisor, 1-2
Supervisory program, 1-10
SWAB, 9-21
Switchpack, 2-2
Switchpack boot selections, 4-11
SXT, 9-24

T

Tag comparator, 5-30
Tag field, 1-27

Tag parity bit (P2), 5-22
Tag RAM, 5-23

Tag store data, 5-22
Tag valid bit (V), 5-22

Time-multiplexed data/address bus, 5-6

Timeout logic, 5-36

Transactions, 5-3

Transmitter buffer register, 1-39

Transmitter control/status register,
1-38

Trap, 9-49

Trap and interrupt, 9-10

Trap-on-halt, enable, 2-12

TST, 9-15

TSTF/TSTD, 10-30

TSTSET, 9-16

Turn on MMU, run CPU and MMU

(test 75), 4-18
Typical displays, 4-25
Typical usage, 1-22

U

UBA address overflow (test 40), 4-22
UBA boot ROM (test 45), 4-21
UBA cache data (test 37), 4-23
UBA cache, enable, 2-12

UBA cache LRU (test 36), 4-23

UBA cache parity error (test 34), 4-23

UBA cache tag store (test 35), 4-23
UBA floating address/data (test 41),
4-22

UBA map registers data path (test 44),

4-21

UBA mapped diagnostic data (test 42),

4-22
UBA register response (test 55), 4-20

UBA unmapped diagnostic data

(test 43), 4-22
Unibus adapter module (UBA), 1-34
signals, 7-2
compatible options, 2-16
Unibus map enable, 5-34
Unibus memory address shorts
(test 31), 4-23
Unibus memory data/byte exercise
(test 33), 4-23
Unibus memory parity (test 32), 4-23
Unibus system, 2-16
Unsigned conditional branch, 9-10
User, 1-2
User friendly
format, 2-9
mode, 4-28
User program, 1-11

<

Valid tag bits, 5-
Version V6.0, 4-1
Version V7.0, 4-1
Version V8.0, 4-1,
Virtual address, 1

WAIT, 9-56
WRTLCK, 9-16
XOR, 9-34

INDEX-6

KDJ11-B CPU Module User's Guide
EK-KDJ1B-UG-001

READER’S COMMENTS

Your comments and suggestions will help us in our efforts to improve the quality and usefulness of our
publications.

1. Which of the following most closely describes your job? 1 ca> cb> cc> cd> ced
(a) Administrative support (d) Scientist/Engineer (g) Educator/Trainer cf> cg> ch> ci>
(b) Programmer/Analyst (e) Systems Manager (h) Computer Operator
(c) Software support (f) Sales (i) Other

2. How many years of experience do you have with computers? 2 ca> cb> ccd> cdd ce>

(a) Less than 1 (b)1to3 (c)4t06 (d)7t09 (e) 10 or more
3. What did you like most about this manuai?

4. What did you like /east about this manual?

5. How do you rate this manual?
Indicate your opinion of the quality of the manual. For each aspect of quality, darken your response on the five-point scale,
where (1) = POOR and (5) = EXCELLENT

(B) ACCUTACY ..ottt c1o c2> 3> 4y B>
(b) Completenessccviiiiiiii cl> 2> ¢3> cd> 5o
(c) Usefulness of Examples/Figures ... c1> 2> 3> 4> 5>
(d) Clearness of LanNgQuagecccovivviiiiiiiii c1y 2> 3 4> 5
(e) Helpfulness of Index/Table of Contents 1y 2> ¢35 cd> 5>
(f) Consistency in Presenting Information ... c1y ¢25 ¢3> cd> 5o
(g) Logical Organization...........c.c.oooiniiinnan c1> 23 ¢35 c4> o5y
(h) Visual Appeal.......c.cciiiiii s 15 2> ¢35 4> 5y
(i) Relevance of Information................cooin 1y 25 ¢35 4y 5»
(i) Ease 0f Learningccccooviiiiiiiiiiiii i 1, <25 3y ¢4y 5y
(K) Ease Of USe ... c1y <25 3 45 5
() YOUR OVERALL IMPRESSION 1y 2y (3> 4y 5
(m) Quality Relative to Other Digital Manuals 1, <2, 3> 4, 5

(n) Quality Relative to Other Companies’ Manuals............... <15 2, 3> 4, 5.
6. List any errors you found in the manual. (Reference page, table, or figure numbers.)

7. Do you have any additional comments?

Name Company
Title Department
Street City State/Country Zip

Telephone No. Date

FOLD HERE AND TAPE

——— e ———— — — ——— . ——— — —— . e o —— e et —— sl e e
Engnan | ” ” l No Postage
Necessary
if Mailed in the
United States
L]
R
L]
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 33 MAYNARD, MA [
]
POSTAGE WILL BE PAID BY ADDRESSEE S e——
L]
L]
DIGITAL EQUIPMENT CORPORATION [-,
" Educational Services/Quality Assurance R —
L]

12 Crosby Drive BUO/E08
Bedford, MA 01730

FOLD HERE

Digital Equipment Cormporation ® Marlboro, MA 01752

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	01-33
	01-34
	01-35
	01-36
	01-37
	01-38
	01-39
	01-40
	01-41
	01-42
	01-43
	01-44
	01-45
	01-46
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	09-55
	09-56
	09-57
	09-58
	09-59
	09-60
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	index-1
	index-2
	index-3
	index-4
	index-5
	index-6
	replyA
	replyB
	xBack

