
EK-FP11F-TM-002

FP11-F

floating-point processor

technical manual

digital equipment corporation - maynard, massachusetts

st Edition, August 1979

2nd Edition, November 1979

Copvright © 1979 by Digital Equipment Corporation.

All Rights Reserved.

nurposes and is subject to change without notice.

Digital Equipment Corporation assumes no re-

sponsibility for any errors which may appear in

this manuali.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000

computerized typesetting system.

The following are trademarks of Digital Equipment Corporation,

Maynard, Massachusetts:

DIGITAL DECsystem-10 MASSBUS

DEC DECSYSTEM-20 OMNIBUS

PDP DIBOL 0S/8

DECUS EDUSYSTEM RSTS

UNIBUS VAX RSX

VYMS [AS

CONTENTS

Page

INTRODUCTION

GENERAL......oo e e e e e e e e, 1-1
FEATURES ... ee e e e e et e e e e e 1-1

Floating-Point Instruction Set FEaturesoccovvvveeeiveieeeeeiieeeeeeieeeeeeieeeoo, 1-1
FPLI-F FeatUIes....ccooiiiiiiiei ete e e et e, 1-2

ARCHITECTURE ...ttte ee e e e e e 1-2
PHYSICAL DESCRIPTION L....ooiiiiiiiiiiii et ee oo eein s 1-2

RELATED DOCUMENTATIONooiiiiiiiiiie eeee e e eeeenens 1-3

DATA FORMATS

INTRODUCGTION ..ottte ee e e e e e e e e e e eeraeens 2-1
FP1I-FINTEGER FORMATSoooiiiiiiiiccet e e e e eeee s 2-1

FP11-F FLOATING-POINT FORMATSooiiiiiiiiiiee eeeee e 2-1

FP11-F Floating-Point Data Word.............ccooevveeieeieeeeeeeeeee eeeeeee e, 2-4
Floating-Point Fraction...........c.cc.coovviiiiiiiieiiiee e, 2-4

Floating-Point EXpOnent..............coocuviiiiiiiieeeeeeeee eeeeeeeaeeeeeene e, 2-7
FP11-F PROGRAM STATUS REGISTERocoooiieiieeeeeeeeoeeeeeeeee 2-8
PROCESSING OF FLOATING-POINT EXCEPTIONS ..ooovoiiieeeeeeeeeeeees 2-9

INTERFACING

GENERAL.ottte e et e e et e e e eeaees 3-1
INITIAL OPERATIONoootiiiiineeeeeeeeeeeeeeeeeee e 3-1
MICROCODE GENERATIONcooitiiiiiiiee et e e 3-1

ARITHMETIC ALGORITHMS

INTRODUCGTION ..ottte e e e e e e e e e e e 4-1
FLOATING-POINT ADDITION AND SUBTRACTION.......ccovvveveeeeeeciiinnn 4-1

Description of Sign Processing.........cc..ooovvuiiiiiioieeiiieee e eeeee e, 4-1
Relative MagnitUdeooovviiiiiiiiiiiiiiiiceeeeeeeeee e e e e 4-4
Testing for Normalizationccoovviiiiiiiiiiiiieie oo e e, 4-4
Floating-Point Addition.........cc..coooiiiiiiiiiiiiiieeeeee ee e, 4-4

Hardware Implementation of Addition...........cccooovveeeviiviiieieieeeesecsennn, 4-5

AN ooe e e 4-5
NOTMALIZE ..ote e 4-6
Truncate or ROUNAINGovovviiiiiiiiiiiiiiiiiiiieeiiieiee4-6

Adjusting Exponent During Normalization..........ccccceoeevvevivneeeeeeeenann.. 4-6
Floating-Point Subtraction....... et et ehett bt e et ettt tatanrtraeerantatnttantnnennesrasrs 4-6

Negative Exponent Difference..............cccccovvvviviiiniieeieeieeeee, 4-6

Determining Exponent Differencecooooovviiiiiieeeeeeieeeeeeeeeeeeeeennn, 4-7

Positive Exponent Difference............ccccvveiveiiiiiiiieiiineeeeeeeeeveeaee, 4-7
FLOATING-POINT MULTIPLICATION........ooiiiiiieieeeeeee e, 4-7

BaSIC COMCEPLS ...vvvriiiiieiieee itttee e e e e e e e e e e e e s aaaaeeens 4-7

Hardware Implementation of Multiplicationcccccvveveeeeeeeesreeeeeiireeennnn. 4-8
FLOATING-POINT DIVISION ...e e e e eeeaan e 4-8

BaSIC CONCEPLS ..eveviiiiiiiiriie ete e e e e e e e eee e e e, 4-8
Nonrestoring Division (Hardware Method) .. 4-9

i

CHAPTER 5

3
L
A

A

1
W
A

L
A

T
G

L

L
A
t

P
me

md

s

e

e

R

R

e

L
A

A
1

A

W

.

Y

N

-
NE

 V
A

N

N

W
A

W

L
A

L
A

L
A

W
A

L
o
l

U
A

e

W
i

e

i

b
l

(
o

Ga

d
Ga

d
L
l

s

L
k

B

B

B
d

B
N

B

D

g

e

(
A

L
A

L L

L
A

l
o
d

e

{HAPTER 6

6.1

6.2

6.3

6.3.1

6.3.2

$6.3.3

H.3.4

6.3.5

6.3.6

6.3.7

0.3.8

6.3.9

6.3.10

0.3.11

6.3.12

6.3.13

0.3.14

6.3.15

6.3.16

6.3.17

6.3.18

6.3.19

CONTENTS (Cont)

Page

THEORY OF OPERATION

GENER AL . ..o e e e e e e et e et eeaae e 5-1

DATA MANIPULATION LOGIC....... e 5-1

1\ BTo3 o7 0 o 1ol 1110) PRSPOPR PP 5-1

| 2 N BN Yot o] OPPUPPR PSR PPN 3-1

| E: T 3) TPPP PP 5-4

Data Manipulation...........oooiiiiiiiiii e 5-10

StatUS Bits ..o 5-11

Carry Look-Ahead LOogiC........cooiiiiiiiiii e 5-11

CONTROL STORE.... ..o ee e e 5-11

Floating-Point Instruction Starting Code............ccooviiiiiiriiiiiiine, 5-11

SeCtOr CONLIOL ... ie e eaes 5-14

Shift and Destination Control...........cccoeiiiiiiiiii e 5-15

RAM A /B Port Controlccooiiiiiiiiiiiiiiiiiiiiccceeeee 5-17

Fraction, Exponent Control..........c.oooiiiiiiiiii e 5-19

Miscellaneous Control.........cooouiiiiiiiiiiiie e 5-20

Constants GENETAtION.........u.iiiiiiiiiiie ee e et e e e et e e e e aaeaeees 5-21

13 = O0)114 o) F PR 5-21

Branch Under Test Control ..o 5-21

INSTRUCTION DECODING ...te e 5-25

DATA BUFFERING AND STORAGE ..., 5-25

Data Buffering..........oiiiiiiii e 5-25

| R BN 16} -1 PP 5-25

FLOATING-POINT INSTRUCTIONS

FLOATING-POINT ACCUMULATORS. ... 6-1

INSTRUCTION FORMAT S ee ea e e 6-1

INSTRUCGCTION SET ..ettt e eeea e e enaeees 6-4

ATithmetic INStrUCtIONS. ... covviiiiiiei ee 6-11

Floating-Module InStructionc.cooiiiiiiiiiiiiii e 6-11

L0ad INStrUCHION. ...tttei e e e e e e eas 6-12

N100] (3§18o 1 (o1 o) o DR 6-12

Load Convert (Double-to-Floating,

Floating-to-Double) Instructions............c.oeeviiiiiioniiiiiinnee, 6-12

Store Convert (Double-to-Floating,

I"'loating-to-Double) InStructions...........c.coviiviiiiiiii e 6-12

Clear INStIUCLIONoouiii et e e e e e e e e 6-13

TSt INSETUCHIONieiiii ee e e e e e e e e e e 6-13

AbSOIULE INStIUCTIONiiiiiiiiii ee e e e ea e 6-13

NeZate INStIUCION.....uuiitiiiiiiii i e e r e e e et e ar e eaeeees 6-13

Load Exponent INStruCtionccoeeviiiiiiiiiieeiiiev e e e e 6-14

Load Convert Integer-to-Floating Instruction............cccocoviiiiiiniiiniiinnnnn, 6-15

Store Exponent INStrucCtion.......c.ooiiiiiiiiiiiiiiii e 6-17

Store Convert Floating-to-Integer Instruction..............oooeiiiiiivin e, 6-18

Load FP11’s Program Statusccccooiiiiiiiiiiiiiiie e 6-21

Store FP11’s Program Statuscoooviiniiiiii e 6-21

Store FP LIS StatUsS.....ooviiiiiiie et 6-22

Copy Floating Condition Codesccoeiiiiiiiiiiieiiiinrine 6-22

Set Floating Modeooniiii e 6-22

6.3.20

6.3.21

6.3.22

6.4

CHAPTER 7

7.1

7.2

CHAPTER 8

8.1

8.2

8.2.1

8.2.2

8.2.3

8.3

8.4

Figure No.

N

=
—

1
1

1
1

]
]

]
]

1
b

M
M
M
M
M
M
M
M
M
%
M
M
W
N
N
N
N
N

—
_
—
—

=

O
O
~

N
N

R

W
N
—
=
—

O
V

W

N

-

O

CONTENTS (Cont)

Page

Set Double Mode........oooiviiiiii 6-22

Set Integer Mode e ettt a e aaas 6-22

Set Long-Integer Mode...... e e ettten e enas 6-22

FPI1-F PROGRAMMING EXAMPLES ... 6-22

INSTALLATION AND CHECKOUT

INSTALLATION ..o, e 7-1

CHECKOUT .o, 7-1

MAINTENANCE

INTRODUCGCTION L., 8-1

FPII-F DIAGNOSTICS Lo e 8-1

MAINDEC CKFPAA ... 8-1
MAINDEC CKFEPBA ... 8-1
MAINDEC CKFPCA ..o e R-2

ASCIT PROGRAMMER’S CONSOLE............cooi -2

FPLII-F FLOW DIAGRAMS ..., 8-3

FIGURES

Title Page

KDI11-Z/FPI1-F Signal Interface........ccccccooiiiiiiiiiiiiiie 1-2

Integer FOTMALS ...oooiiiiii e 2-2

Floating-Point Data FOrmats.........cooooiiiiiiiiiiiieeeee e, 2-3

Floating-Point Data Words.........coccciiiiiiii e 2-5

Interpretation of Floating-Point Numbers..............ccccooviiiioiii e 2-6

Unnormalized Floating-Point Fractionccccocviiiic e, 2-7

FPI1-F Status Register FOrmat..........ooooiiiiiiiiiiie oo, 2-8

FPLI1-F/CPU INtEIfaceuoooveviri i, 3-2

FPI1-F Block DIagramcoooiii inananan 02 52

Data Manip®ation LOZIC.......oooo oo 5-3

SECLOT/BYte LOZIC ...cuiiiiiiiiiiiiii e 5-5

RAM ReE@ISLET USAZE ...uuvuiiiiiiiiins otttvannrenennnn =0

CONLEOl STOTE LOZIC ...tanaees 5-12

CPU/FPI1-F Control Wordsccocviiiiiiiiiiiiiii e 5-13

SeCtOr Control LOZIC .ooiiiiiiiiiit et 5-14

RAM A /B Port Control LOZICcvvvieiiiiiiioiiicc e, 5-17

Miscellaneous Control LOZIC ... 5-20

BUT LOZIC .ot e, et 5-21
Instruction Decoding LOZICcooiiiiiiiiiii e, 5-26

Data Buffering and Storage LOZiC. ... 5-27

Figure No.

v
7T

7
1

1T
1

7
1
1

—
_
—
\
D

O
O
0

~
1

O
N

W

b

D
N

—

o
 s
l
i
o
 W
e

e

e

o

N
e

o

N
e

o

A

T
N

S
N

N

b

e

B
N

e

e

e

N

e

O

W

L
A

e

e

N
N

]
1

[}
H

[}
LIJ’

]
N
I

e
t

st

s

s

L
)

O
O

~
FIGURES (Cont)

Title

Floating-Point ACCUIMUIALOTScooiiiiiieiiiii i

INStruCtion FOTMATS ..o.ivniiiii ete s e e

Double-to-Single Precision Rounding............cccoooiiiiiiiii,

Single-to-Double Precision Appending..........cccoooviiiiiiiiiiiiiiiiiiiiee,

Integer Left-Shift Exampleccooooiiiiiiiii

Normalized Integer EXample........oo.ovviiiiiiiiiiii e

Store Exponent Example NO. 1.

Store Exponent Example NO. 2. ...

Store Convert Integer Example..........ooooiiiiiii

Display Information........ccoooviiiiiiiiii

TABLES

Title

FPLI-F Status RegISter.coiiuiiiiiiii ete ee e eae e s e e y

FPL1-F EXCeption Codescuuoiiiiniiiiiiiiiii ittt

F'P11-F/CPU Signal Interface...........ccccccoooiiiiiii

Add and Subtract Implementationsccc.ooooiiiiiiiiiiiiii

Source Operand and ALU Function Matrix ..., 5

ALU Logic Mode FUNCLIONSoiiuiiiiiiiii e)

ALU Arithmetic Mode FUNCLIONSooooviiiiiiiiiici e

Logic Equations for ALU FUNCLIONSoocoiiiiiiiiiiiiiis

SECtOT ENADIE ... eaaa

Shift and Destination Control ROM

Outputs — Data Transfer Operation.............ccooooiiiiine,

Shift and Destination Control ROM Output

TT T PSPPI

AAAAIESS ROM Lo et et et

B-Address ROM ..o ettt et e e enaas

Fraction and Exponent Control Fields...........coooiiiiiiiiiiien,

BUT Control (Branch on Test Enables) ..o,

BUT Control FUNCLIONS .uveniii ittte e e e e e e e eans

Format of FPLI-F INStrUCHIONS. ...couiiiiinit ie e e e e e aes

FPLI-F INSIIUCHION SEt .. eiininiiiniii ete e e e e e e ans

\3!

CHAPTER 1

INTRODUCTION

1.1 GENERAL

The FP11-F Floating-Point Processor is a hardware option that enables the PDP-11/44 central proces-

sor to execute floating-point arithmetic operations. The FP11-F performs all floating-point arithmetic

operations and converts data between integer and floating-point formats. Floating-point representa-

tion permits a greater range of number values than is possible with the conventional integer mode.

Thus, the FP11-F option provides a speedier alternative to the use of software floating-point routines,

and system speed is increased without complex arithmetic coding routines that consume valuable CPU

time. The FP11-F features both-single- and double-precision (32- or 64-bit) capability and floating-

point modes.

The FP11-F is an integral part of the central processor. It operates using similar address modes, and

the same memory management facilities as the central processor. Floating-point processor instructions

can reference the floating-point accumulators, the central processor’s general registers, or any location

in memory.

1.2 FEATURES

The following paragraphs summarize the features of the PDP-11/44 floating-point instruction set and

the FP11-F.

1.2.1 Floating-Point Instruction Set Features

* 32-bit (single-precision) and 64-bit (double-precision) data modes

* Addressing modes compatible with existing PDP-11 addressing modes

* Special instructions that can improve 1/0 routines and mathematical subroutines

* Allows execution of in-line code (i.e., floating-point instructions and other instructions can

appear in any sequence desired)

® Multiple accumulators for ease of data handling

* Can convert 32- or 64-bit floating-point numbers to 16- or 32-bit integers during the Store class

of instructions

* Can convert 32-bit floating-point numbers to 64-bit floating-point numbers and vice-versa

during the Load or Store class of instructions.

1-1

1.2.2 FP11-F Features

Performs medium-speed, floating-point operations on single- and double-precision data

Has 17 (decimal) digit accuracy

Contains its own microprogrammed control store

Contains six 64-bit floating-point accumulators

Contains error recovery aids¢

o

&

@&

O

1.3 ARCHITECTURE

The FP11-F contains scratchpad registers, a floating exception address pointer (FEA), status and error

registers, and six general-purpose accumulators (ACO0-ACS).

Each accumulator is interpreted to be 32 or 64 bits long, depending on the instruction and the status of

the floating-point processor. For 32-bit instructions, only the left-most bits are used. The remaining
bits are unaffected.

The six general-purpose accumulators are used in numeric calculations and interaccumulator data

transfers. The first four registers (AC0-AC3) are also used for all data transfers between the FPI1-F

and the central processor’s general registers or memory.

1.4 PHYSICAL DESCRIPTION

The FP11-F consists of a single hex board M7093. Figure 1-1 shows the basic signal paths between the
central processor and the FP11-F. The bidirectional data bus transfers instructions and data between
the processors. An expanded control store in the KD11-Z accommodates floating-point requirements.

KD11-Z

pop-11/44 K INSTRUCTIONS DATA >
CENTRAL 10 MICROPROGRAM ADDRESS LINES FP11-F
PROCESSOR »| FLOATING-

POINT

CLOCK PROCESSOR

INITIALIZE

TK-1592

Figure 1-1 KDI11-Z/FP11-F Signal Interface

1.5 RELATED DOCUMENTATION

The following documents supplement this manual on the FP11-F Floating-Point Processor.

Manual

KD11-Z Processor Manual (PDP-11/44)

PDP-11 Peripherals Handbook

PDP-11/04,34A,44,60,70 Processor Handbook

KD11-Z Processor Manual

‘Document Number

EK-KD11Z-TM

EB-05961

EB-17716

EK-KD11Z-MM

CHAPTER 2

DATA FORMATS

2.1 INTRODUCTION

The FP11-F requires its input data (operands) to be formatted. Formatting allows the FPI1-F to
process operands in a meaningful way and produce correct results. There are four different formats for
operands input to the FP11-F: short-integer format (I), long-integer format (L), single-precision for-
mat (F), and double-precision format (D).

Output data from the FP11-F is also formatted. This output data is in the form of:

. FPII-F status information and FP11-F exception information required by the CPU
2. Data sent to memory (via the CPU), which must be in I, L, F, or D format.

2.2 FP11-F INTEGER FORMATS

There are two integer formats, short (I) and long (L). The short-integer format is 16 bits long and the
long-integer format is 32 bits long. Data words (operands) in integer format are represented in 2’s
complement notation. In both I and L formats, the most significant bit (MSB) of the data word is the
sign bit. Figure 2-1 shows the integers 5 and -5 in both I and L formats.

Figure 2-2 illustrates the formats in which integers are arranged in memory. Integers sent to memory
must be in one of these formats. Integers received by the FP11-F are arranged and manipulated ac-
cording to the type of instruction being executed.

2.3 FPI11-F FLOATING-POINT FORMATS

There are two floating-point formats, single precision (F) and double precision (D). The single-preci-
sion format is 32 bits long and the double-precision format is 64 bits long. Figure 2-2 shows that the
MSB is the signof the fraction (and the floating-point number being represented). The next eight bits
contain the value of the exponent, expressed in excess 200 notation. The remaining bits (23 for single
precision, 55 for double precision) contain the fraction. The fraction and its associated sign bit are
expressed in sign and magnitude notation.

2-1

INTEGER =5

j¢———— WORD 1 —=

SHORT INTEGER (I) 15 14 0

ojlo|loOo|O|[O]5

SIGN BIT

j¢~——— WORD 1 ———= je————WORD 2 —*i

LONG INTEGER(L) 31 30 16 15 14 0

0] 0 O|l0O0}| O 0] O|l0O0]O Ol 0| 5

OGN BT INTEGER=-»
je—— WORD 1 —

SHORT INTEGER(I) 15 14 0

1 |7 17 7 713

i
SIGN BIT

j¢—— WORD 1 — j¢———WORD 2 ——

LONG INTEGER(L) 31 30 16 15 14 o)

1 7 717 717 1 717 7 7 3

SlGN BIT TK-1629

Figure 2-1 Integer Formats

2-2

_ MEMORY MEMORY

f— WORD 1 s o WORD 2 ~

31 30 23 22 16 15 0

SINGLE-PRECISION

FLOATING-POINT (F) S EXP

FORMAT

u _~— J

FRACTION

MEMORY MEMORY MEMORY MEMORY

Je- WORD 1 o/ |—WORD 2-+ |+~WORD 3+ |eWORD 4 -+

63 62 55 54 48 a7 ((32 31 ((16 15 ¢ ¢ O

DOUBLE-PRECISION =)) VT

FLOATING-POINT (D) | S EXP

FORMAT ((((((

-) T)] D T

FRACTION

S = Sign

EXP = Exponent in excess 200 notation

Fraction = 23 or 55 bit fraction in sign and magnitude

format.

Figure 2-2 Floating-Point Data Formats

TK-1565

2.3.1 FPI11-F Floating-Point Data Word

Figure 2-3 illustrates the formats in which floating-point numbers are arranged in memory. Floating-

point numbers sent to memory must be in one of these formats. Floating-point numbers received by

the FP11-F are arranged as illustrated in Figure 2-4.

The sign bit, exponent bits, and fraction bits in the FP11-F data word have the same values as the data
word in memory. Note, however, that the FP11-F data word has more bits than its counterpart in
memory. This is because the FP11-F has provisions for generating an overflow bit and a “*hiddenTM bit.

For purposes of discussion, the FP11-F data word can be thought of as being divided into two major

parts:

1. A fraction, with its associated sign bit, hidden bit, and overflow bit

2. An exponent.

2.3.1.1 Floating-Point Fraction - The fraction is expressed in sign and magnitude notation. The fol-
lowing simple example illustrates the idea behind sign and magnitude notation.

2’s Complement

Notation Sign and Magnitude Notation

+2 000010 _»000010
Sign ~“~Magnitude

-2 111110 _»100010

Sign “Magnitude

Only a change of sign bit is required to change the sign of a number in sign and magnitude notation.

Note that a positive number is the same in both notations.

Unnormalized floating-point fractions have a range from approximately 0 through 2 as shown in

Figure 2-5. The FP11-F, however, normalizes all unnormalized fractions. That is, the fractions are

adjusted such that there is a 0 to the left of the binary point (bit 63) and a 1 to the right of the binary

point (bit 62). Thus, normalized fractions range in magnitude from 0.1000 . ..to 0.1111 or from 1 /2 to

approximately 1.

The fraction overflow bit (bit 63) is set during certain arithmetic operations. For example, during

addition, certain sums will produce an overflow such as 0.1000 . .. + 0.100 . . . which yields 1.000

This result must be normalized, so the FP11-F right-shifts the fraction one place and increases the

exponent by one.

Bit 62 is called the hidden bit. Recall that since fractions are normalized by the FP1I-F, the bit

immediately to the right of the binary point (bit 62) is always a 1. This bit is dropped when a fraction is

sent to memory and appended when a fraction is received from memory. This procedure allows one

extra bit of significance in floating-point fraction representation.

FRACTION
SINGLE PRECISION K

15 14 7’6 0 15 0
MEMORY [s EXP ! | | |

T — 7 T == ==

— e —tl T
63_62" 6% —=—""4039 —— _8 76 T~ 0

INITIALLY LOADED [FRAJCTION ZEROES | [s EXP
INTO FP11-F hege——

T

\ —

\ \—I

FP11-F WORD O 62\61 0
INWORKING AREA || | FRACTION ZEROES |
OVERFLOW BIT ___]

HIDDEN BIT —| (EXP#0, BIT 62=1)

TK-1633

a. Single Precision

15 14 7 6 0 15 0 15 0 15 0

MEMORY | S| Exp | | F 1 L]]
——_ = / 7 S - =7\ — I ~¢ J // -~ _ —

/ [T~ LT~ - —
63762 56,55 40307" -24237 §7. 65— _ 0

INITIALLY LOADED 'INTO FP11E . LEL__FRACTION | | s| Eexp

\ /1] |

‘ /L]
\ e ol
\ | EXP |

63 62|61 76 0
FP11-F WORD -INWORKING AREA L | | FRACTION ZEROES|

OVERFLOW BIT —

HIDDE BIT ——— (EXP#0, BIT 62=1)

TK-1634

b. Double Precision

Figure 2-3 Floating-Point Data Words

9
-
C

SIGN EXPONENT FRACTION

} r —"~ N7 —
%5 14 13 122 11 10 9 8 7 6 &5 4 3 2 1 0

MEMORY 0 1 Q 0 0 0 1 1 0 0 0 0 0 0 0 0 NUMBER 32 REPRESENTED

IN SIGN AND MAGNITUDE

FORMAT (NUMBER ASSUMED

NORMALIZED)

SIGN

———————

FP11 1{ojojofol1|1]o0 ojla1/ofofo|o|o]|o]o ADDITIONAL |
OPERANDE h

S 7 6]5 4\fi3 2 1 0 63 62 61 60 59 58 57V56 55 210

EXPONENT FRACTION

HIDDEN

EXPONENT = 206 — 200 = 6 = 2° BIT FRACTION = 1/2 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER = 2° X 1/2= 32

SIGN j EXPONENT FRACTION
Vs — Ve .

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 o0

MEMORY ojol 11111111} 1}0]lo0o]o]lo]o

NUMBER 7/16 REPRESENTED

IN SIGN AND MAGNITUDE

FORMAT (NUMBER ASSUMED

NORMALIZED)

SIGN

FP11 RN E o] 1|1 ooooo--;;')fi'g'e“‘?“r—fll. OPERANDS

7 6|5 4 3|2 1 o 63 62 61 60 59 58 657 56 655 _”210
\ . —~— J | J

EXPONENT FRACTION

HIDDEN

EXPONENT = 177 — 200 = -1 = 2- BIT FRACTION = 1/2 + 1/4 + 1/8 = 7/8 (INSERTION OF HIDDEN BIT)

FLOATING POINT NUMBER =27 X 7/8 = 7/16
TK-1563

Figure 2-4 Interpretation of Floating-Point Numbers

63 62 61 60 3 2 1 0{ [

))

SMALLEST B

NON-ZERO NUMBER 0 0 0 0 0 0 0 1 APPROXIMATELY 0O

{ [

) H

63 62 61 60 ¢ - 3 2 1 0

) !’

LARGEST

NON-ZERO NUMBERI ! 1 1 1 1 1 1 1 APPROXIMATELY 2

{ [

))

TK-1567

Figure 2-5 Unnormalized Floating-Point Fraction

2.3.1.2 Floating-Point Exponent — The 8-bit floating-point exponent is expressed in excess 200 nota-
tion. The following chart illustrates the relationship between exponents in 2’s complement notation
and exponents in excess 200 notation.

2’s Complement Excess 200

r 177 Most positive exponent (" 377 Most positive exponent
‘\

Positive 4 Positive J
Exponents Exponents

‘l

. 0O Least positive exponent \. 200 Least positive exponent

(377 Least negative exponent " 177 Least negative exponent
A

Negative Negative 4
Exponents Exponents

|

\. 200 Most negative exponent . 0 Most negative exponent

Note that an exponent in excess 200 notation is obtained by simply adding 200 to the exponent in 2’s

complement notation. Thus, 8-bit exponents in excess 200 notation range from 0 to 377 (or from -200

to +177). A number with an exponent of =200 is treated by the FPI1-F as 0.

For example, the number 0.1; is actually 0.1 X 29, and the exponent is represented as 10 000 000

because 200g represents an exponent of zero. Figure 2-5 illustrates the range of floating-ppint numbers

that can be handled by the FP11-F. For simplicity, a fraction length of only three bits is shown.

2-7

2.4 FP11-F PROGRAM STATUS REGISTER

The FPI11-F contains a resident program status register that contains the floating-point condition

codes (carry, overflow, zero, and negative) that can be copied into the central processor. In other
words, FN, FZ, FV, and FC can be copied into the CPU’s N, Z, V, and C condition codes, respec-

tively. The program status register also contains three mode bits and additional bits to enable various

interrupt conditions. Figure 2-6 shows the layout of the program status register. Each bit shown in

Figure 2-6 is described in Table 2-1.

NOTE

The FP11-F has no Unibus addresses. All FP11-F

registers are accessed by floating-point instructions

only.

INTERRUPT ENABLES MODE BITS CONDITION CODES
r e N AN AN

N N)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

| | | l l l | |
FER NOT FIUV FIV FD FT FN FV

USED

FID NOT FIU FIC FL NOT Fz FC
USED USED

Figure 2-6 FPI11-F Status Register Format

Table 2-1 FP11-F Status Register

Bit Name Function

15 FER This bit indicates an error condition of the FP11-F.

14 FID Floating Interrupt Disable — All interrupts by the FP11-F are disabled
when this bit is on. Primarily for maintenance use. Normally clear.

13 Not Used

12 Not Used

11 FIUV Floating Interrupt on Undefined Variable - When this bit is set and a
-0 is obtained from memory, an interrupt occurs. If the bit is not set, -0

can be loaded and stored; however, any arithmetic operation treats it as

if it were a positive 0.

2-8

Table 2-1 FPI11-F Status Register (Cont)

Bit Name Function

FIU

FIV

FIC

FD

FL

FT

Not Used

FN, FZ, FV,

and FC

Floating Interrupt on Underflow — When this bit is set, an underflow
condition causes a floating underflow interrupt. The result of the oper-
ation causing the interrupt is correct except for the exponent, which is
off by 400g. If the FIU is not set and underflow occurs, the result is set
to zero.

Floating Interrupt on Overflow - When this bit is set, floating overflow
causes an interrupt. The result of the operation causing the interrupt is
correct except for the exponent, which is off by 400g. If the FIV bit is
not set, the result of the operation is the same; the only difference is that
the interrupt does not occur.

Floating Interrupt on Integer Conversion Error - When this bit is set
and the store convert floating-to-integer instruction causes FC to be set
(indicating a conversion error), an interrupt occurs. When a conversion
occurs, the destination register is cleared and the source register is un-
touched. When FIC is reset, the result of the operation is the same;
however, no interrupt occurs.

Double-Precision Mode Bit - This bit, when set, specifies double-preci-
sion format and, when reset, specifies single-precision format.

Long-Precision Integer Mode Bit - This bit is employed during con-

version between integer and floating-point format. If set, double-preci-
sion 2’s complement integer format of 32 bits is specified; if reset,
single-precision 2’s complement integer format of 16 bits is specified.

Truncate Bit - This bit, when set, causes the result of any floating-point
operation to be truncated rather than rounded.

These bits are the four floating-point condition codes, which can be
loaded in the N, Z, V, and C condition codes of the CPU, respectively.
This is accomplished by the copy floating condition codes (CFCC) in-
struction.

2.5 PROCESSING OF FLOATING-POINT EXCEPTIONS
Location 244 is the interrupt vector used to handle all floating-point interrupts. A total of six possible
interrupts can occur. These possible interrupt exceptions are encoded in the FP11-F exception code
(FEC) register. The interrupt exception codes represent an offset into a dispatch table, which routes
the program to the right error handling routine. The dispatch table is a function of the software. The
FEC for each exception is described briefly in Table 2-2.

Table 2-2 FP11-F Exception Codes

FP11-F

Exception

Code Definition

2 Floating Op Code Error — The FPII-F causes an interrupt

for an erroneous op code

4 Floating Divide by Zero - Division by zero causes an inter-

rupt if FID is not set

6 Floating (or Double) Integer Conversion Error

10 Floating Overflow

12 Floating Underflow

14 Floating Undefined Variable

NOTE

The traps for exception codes 6, 10, 12, and 14 can

be enabled in the FP11-F program status register.

All traps are disabled if FID is set.

Refer to the PDP-11/04, 344, 44, 60, 70 Processor Handbook for further details concerning FP11-F

exceptions.

In addition to the FEC register, the CPU contains a 16-bit floating exception address (FEA) register,

which stores the address of the last floating-point instruction that caused a floating-point exception.

2-10

CHAPTER 3

INTERFACING

3.1 GENERAL

The CPU loads floating-point instructions and operands into the FP11-F and then reads operands

from the FP11-F and stores them in memory. Figure 3-1 illustrates the CPU/FP11-F interface; Table

3-1 describes the interface signals.

NOTE

The FP11-F does not directly interface with the

Unibus; it connects to the CPU via a bus separate

from the Unibus and uses the internal CPU control

facilities for data transfers to and from memory.

When the FP1I1-F is installed in a system, it asserts an FP11-F ATTACHED signal that informs the

CPU that it is interfaced with an FP11-F module.

3.2 INITIAL OPERATION

Initially, the CPU fetches an instruction from memory and decodes it. If the four high-order bits

(12-17) are set, the instruction will have an operation code of 17XXXX. Thus, the instruction fetched

is a floating-point instruction that requires use of the FP11-F. The CPU next writes 50 on the FP11-F

MPC 0-10 microprogram counter. This MPC format is required to set up the FP11-F at the start of

every new floating-point instruction. The 50 is decoded by control store PROMs into a 104-bit field

that controls the microflow to the FP11-F microprocessor and CPU. The control word is clocked via

EXT CLK A L, which is received from the CPU.

Depending on the instruction, the CPU next sends the FP11-F AMUX 0-15 H. This is applied to an

instruction register that defines what type of floating-point instruction is to be used. The instruction

register is clocked by B PROC CLK L and LOAD IR L from the CPU.

3.3 MICROCODE GENERATION

The next microinstruction from the CPU informs the FP11-F how the second operand (data) received

is to be processed. When the second operand is received, a series of microcodes will be generated in the

FP11-F to control microprocessor operation on the second operand. After the second operand is

processed, the FP11-F will inform the CPU, via a microcode it asserts on the MPC 0-10 lines, that

data can now be read from the AMUX 0-15 lines. The FP11-F will also send the CPU a TRI STATE

AMUX L signal, which enables it to read data from the AMUX lines. The CPU then stores the data

(operand) and continues operation.

3-1

CPU FP11-F ATTACHED

PROC INIT L

EXTCLKAL

MPC 0-10L

BPROCCLK L

LOAD IR L

AMUX 0-15 H

TAP 90 L

TRISTATE AMUX L

FORCE FPP DATA L

FREE BUS H

P FAIL BR PEND H

FP11-F

Figure 3-1 FP11-F/CPU Interface

3-2

TK-1595

Table 3-1 FP11-F/CPU Signal Interface

Signal(s) Direction Function

MPC<00:10>L

AMUX<00:15>L

TBUS<00:15>L

PROC CLK L

PROC INIT L

LOADIR L

TRI-STATE AMUX L

PFAIL BR PEND H

TAP 90 L

FORCE FPP DATA L

FREE BUS H

EXT CLK AL

FP11-F ATTACHED L

Bidirectional

Bidirectional

Bidirectional

CPU to FP11-F

CPU to FP11-F

CPU to FP11-F

FP11-F to CPU

CPU to FP11-F

CPU to FP11-F

CPU to FP11-F

CPU to FP11-F

CPU to FP11-F

FP11-F to CPU

Microprogram address lines. Used to

sequence the CPU and FP11-F through

the microprogram. Derived from CPU

microcode, but can be altered by either

CPU or FPI11-F.

Data lines that are used to transfer instruc-

tions, operands, and FP11-F status

information between CPU and FPI11-F.

Buffered AMUX lines used internally

to the FP11-F.

CPU clock. Used to generate FP11-F

clock to load FP11-F registers and RAM.

CPU initialize. Used to initialize

FP11-F status registers in FP11-F.

Causes FP11-F to load its instruction

register from AMUX lines.

Causes CPU to remove data from

AMUX lines. Turns on drivers that

allow the FP11-F to drive the AMUX

lines.

When high, indicates that an interrupt

needs servicing. Used by FP11-F to abort

long instructions to maintain interrupt

latency of less than 20 us.

CPU delay line generated clock used

to skew FP11-F microprocessor output

data.

Console-generated signal to monitor

FP11-F status or T BUS data.

Console-generated signal to cause FP11-F

to release AMUX lines.

CPU clock that clocks control word

through FP11-F control logic.

Indicates to CPU that it is interfacing

with an FP11-F module.

3-3

CHAPTER 4

ARITHMETIC ALGORITHMS

4.1 INTRODUCTION

This chapter describes the arithmetic algorithms associated with the FP11-F. Addition and subtraction
are described first. Several basic concepts are described before multiplication and division to familiar-
ize the reader with the concepts utilized in the FP11-F. State diagrams and examples of the multi-
plication and division algorithms are provided.

4.2 FLOATING-POINT ADDITION AND SUBTRACTION

Floating-point addition and subtraction are performed in the ALUs of the AM2901s. The operands
are designated source and destination. The following chart lists the register associated with the expo-
nent, fraction, and sign of each operand.

Operand Exponent Fraction Sign

Destination EAC(X13) (X11) SD (AC:Bit 7)
Source EFRSC(X14) (X12) SS (X10:Bit 8)
Result EAC(X13) (X12) SD (AC:Bit 7)

For example, the exponent of the result of an addition or subtraction is found in the EAC, the fraction
is found in X12, and the sign is found in X10.

The source operand is located in an AC if mode 0 is specified; it is located in memory if mode 0 is not
specified. In the latter case, the operand in memory is transferred to the FP11-F and temporarily
stored in X10 and X12 (shift left one place).

4.2.1 Description of Sign Processing

To understand how the hardware implements sign calculations for floating-point addition and sub-
traction, refer to Table 4-1. The following text attempts to educate the reader in the use of this table.
Normally, SS (sign of source) represents the sign associated with the source operand (ACS) and SD
(sign of destination) represents the sign of the destination operand (ACD). The sign of the result is
stored in SD.

4-1

Table 4-1 Add and Subtract Implementations

Sign of Result

. Hardware | Positive Negative

Combination SS SD Instruction Performs Parentheses Parentheses

Add Instruction

] 0 0 ACD < +(JACDI|+IACS)) Add SD< SD

R 0] ACD < -(|JACDI|-]ACS)) Subtract SD < SD SD « SS

3 1 0 ACD < +(JACD|-|ACS)) Subtract SD < SD SD <SS

4 |] ACD < —(JACDI+|ACS)) Add SD < SD

Subtract Instruction

5 0 0 ACD < +(|ACDI|-]ACSDH Subtract SD < SD SD < ~S§S

6 0] ACD < -(JACD[+]ACS)) Add SD « SD

7] 0 ACD < +(JACD[+|ACS)D Add SD« SD

8]] ACD < -(|ACD|-[ACS]) Subtract SD < SD SD « ~SS

NOTE

The microprogram is implemented such that the

source can be subtracted from the destination but the

destination cannot be subtracted from the source.

When addition with quantities having like signs is specified, or subtraction with unlike signs is speci-

fied, the hardware performs an add operation. The sign of the result is positive if the quantities are

positive and is negative if the quantities are negative.

Example 1

+8

+7

+15

-8

-7

-15

When subtraction is specified with quantities having unlike signs, the hardware actually performs an

add operation. The sign of the result is the sign of the minuend.

Example 2

+8

~(-7)

+15

-8

-(+7)

-15

When additionis spe cified with quantities having unlike signs, the quantities are subtracted and the

sign of the resultis the sign of the quantity with the larger magnitude.

Example 3

+8 -8 +7 -7
-7 +7 - -8 +8

+1 -1 -1 +1

When subtraction is specified with quantities having like signs, the quantities are subtracted. This is

accomplished by changing the sign of the subtrahend and adding. The sign of the resultis then the sign

of the quantity with the larger magnitude.

Example 4

+8 -8 +7 -7

-(+7) -(=7) -(+8) -(-8)

+1 -1 -1 +1

The preceding concepts form the basis for determining the sign as shown in Table 4-1. Combinations |

through 4 are for the add instruction and 5 through 8 for the subtract instruction. In combination 1,

the operands have positive like signs (SS=0, SD=0); in combination 4, the quantities have negative

like signs (SS=1, SD=1). Consequently, the hardware performs an addition. In combination 2, the

source operand is positive (SS=0) and the destination operand is negative (SD=1), while in com-

bination 3 the source operand is negative and the destination operand is positive. Consequently, the

hardware performs a subtraction since the operands are of unlike signs. The sign of the result is the

sign of the quantity with the larger magnitude.

Combinations 5 through 8 define the subtract instruction. Combinations 6 and 7 deal with operands of

unlike signs, which means that the hardware performs an add operation. Combination 5 specifies

positive operands (SS=0, SD=0) and combination 8 specifies negative operands. Thus, the hardware

performs a subtraction, with the result getting the sign of the destination if that is the larger quantity,

or the complement of the source sign if that is the larger quantity. The source and destination operands

(ACS and ACD) are added or subtracted with respect to magnitude only as indicated by the absolute

value signs (IACDI + IACSI). Several examples illustrate this.

Example 1

Assume an add instruction is specified.

ACD = +3,SD =0

ACS = -5,8S =

ACD« + (ACD|-|ACS) = +(3 - 5) = -2

SD « SS because the quantity in parenthesesis negative. Therefore, ACDis loaded with a 2 and SDis

loaded with a 1.

4.3

Example 2

Assume a subtract instruction is specified.

ACD

ACS

-5,SD= |

23,8S= |

ACD « —(ACD|-|ACS)) = -(5 - 3) = -2

SD « SD if the quantity in parentheses is positive.

SD «~ SS if the quantity in parentheses is negative.

The quantity in parentheses is positive, so SD remains a 1.

4.2.2 Relative Magnitude

During fraction alignment (which occurs when the exponents are unequal), the relative magnitude of

the operands is detected by subtracting the exponents; the difference is the number of right shifts the

smaller number is to be shifted to effectively equalize the exponents. If the exponent of this number is

very small compared to the other number, it can be completely shifted out of the register in which it is

stored. Thus, it will have no significance in the operation. To avoid unnecessary shifting in these cases,

the relative magnitude of the numbers is tested. If the number of shifts required to align the fractions is

greater than 25 (single-precision) or 57 (double-precision), the FP11-F hardware will not attempt to

align the operands. In these cases, the unshifted operand is the answer.

4.2.3 Testing for Normalization

All floating-point numbers must be normalized. In order to normalize a number, bit 59 must be a 0

and bit 58 must be a 1. The result of any arithmetic operation must be normalized. In addition, the

fraction of the result is always positive; therefore, the hardware will simply normalize the number. In

subtraction, the fraction may be negative or 0, neither of which can be normalized. After a subtraction

operation has been performed in which X12 was not aligned, the result in X12 is tested to ensure that it

can be normalized. If the number in X12 is negative, it indicates that the number cannot be 0 and

cannot be normalized. If the number in X12 is positive, it may be 0. Consequently, 1 is subtracted from

the X12 and if the result is negative (change of signs), the number in X12 is known to be 0, which

cannot be normalized. If there is no sign change in the subtraction, X12 contains a positive number,

which can be normalized.

During normalization, the result is rounded or truncated, depending on the setting of the FT bit in the
program status register. The floating condition codes are also set.

4.2.4 Floating-Point Addition

For floating-point addition and subtraction, the exponents must be equal. In general, there are two
methods of accomplishing this. One is to left-shift the fraction of the larger number and decrease its
exponent accordingly. Each left shift represents multiplication by a power of 2, and consequently the
exponent must be decreased by 1. The disadvantage of this method is that the MSBs of the fraction are
shifted out of the register they are stored in and are lost.

A second method and the one used by the FP11-F is to right-shift the fraction with the smaller expo-
nent and increase the exponent accordingly. Each right-shift corresponds to division by a power of 2,
and consequently the exponent must be increased by 1. When the exponents have been made equal, the
addition or subtraction can be performed. The exponent of the result then becomes the larger of the
two exponents. After addition or subtraction, the fraction must be normalized. This means that bit 59
must be equal to 0 and bit 58 must be equal to 1. Addition and subtraction will first be described by the
addition of two numbers. This is the case where there is addition of two numbers with like signs or the
subtraction of two numbers with unlike signs. In both cases, the two arguments are actually added.
Several examples demonstrate this point.

4-4

Addition with Like Signs

+3 -3 -4

+3 4 6

+6 -7 -10

Subtraction with Unlike Signs

+3 -3 +6

-4 ~(+4) =(-2)

+7 -7 +8

In all examples, the two quantities are actually added. Paragraph 4.2.5 describes floating-point sub-

traction, which consists of the addition of two numbers with unlike signs or the subtraction of two

numbers with like signs. Several examples demonstrate this point.

Addition with Unlike Signs

+3 +6 -3

4 -7 +5

“1 -1 +2

Subtraction with Like Signs

23 +6 -7

(-4 H+2) =)

+1 +4 -2

In these cases, a subtraction operation is actually taking place. The operation of the data path for

floating-point subtraction is similar to that of floating-point addition, except that the following point

must be kept in mind.

The AM2901 ALU is performing A minus B for subtraction; therefore, the

result must be examined for the possible cases of 0 or negative results that

require special treatment by the FP11-F hardware.

4.2.4.1 Hardware Implementation of Addition - The difference between the two exponents is initially

stored in X13 and represents the destination exponent minus the source exponent. The destination

fraction is loaded in X 11 and the source fraction is loaded in X12.

4.2.4.2 Align - Certain operations, such as addition and subtraction, require that the exponent of a

number be aligned. For example, if two numbers are to be added, the exponent of the smaller number,

if different from the exponent of the larger number, must be aligned. That is, the exponent of the

smaller number must be increased until it equals that of the larger number; each increase of the

exponent must be accompanied by a right-shift of the smaller number’s fraction.

4-5

4.2.4.3 Normalize - A nonzero floating-point number is normalized by shifting the fraction to the left

until nonsignificant leading zeros are eliminated; each shift is accompanied by a subtraction from the

exponent. The number is normalized when the first two bits are different (i.e., 0.1 or 1.0) or when only

the first two bits of the fraction are 1s (i.e., the number is 6000).

4.2.4.4 Truncate or Rounding — If the FP11-F is in truncate mode and the shift-within-range flag is

asserted, the result is shifted the required number of shifts, routed through ALU, and stored in X12. If

the FP11-F is in round mode, a 1 is inserted in bit 34 (single-precision) or bit 02 (double-precision).

The result is now a normalized, rounded fraction. However, if the fraction contained all 1s, adding the

round bit to it causes an arithmetic overflow (bit 59=1). This condition is detected by the normaliza-

tion shift logic which now left-shifts the result by 1, causing bit 59 to go to 0 and bit 58 to go to 1 as the

fraction is stored in the destination accumulator.

4.2.4.5 Adjusting Exponent During Normalization - When the result of the addition is being normal-

ized, it is necessary to keep track of the number of shifts required to normalize so that the exponent of

the result may be adjusted properly. The EAC contains the larger of the two exponents, i.e., the

exponent of the answer. This exponent is updated during normalization by adding the number of right-

shifts (or conversely, subtracting the number of left-shifts) directly.

Example

Exponent in ER 1000010100

Sign extended input from BMX [RRRRRRRED

Exponent in ER 1000010100

2’s Complement of sign-extended input 40000000001

1000010101 This number is 1 greater

than previous exponent

in ER.

4.2.5 Floating-Point Subtraction

In floating-point subtraction, the source operand is subtracted from the destination operand. The

source operand is loaded into X11 and the destination operation is loaded in X12, which means that

the ALU will perform X12 - X11.

The EAC is loaded with the destination exponent minus the source exponent, which represents the
exponent difference between the two operands.

4.2.5.1 Negative Exponent Difference - If the exponent difference is negative, it means that the source

operand in X 12 is greater than the destination operand in X11. Since X11 is the smaller number, it is

right-shifted to align the fractions. When the fractions are aligned and then subtracted, the difference

will be a 2’s complement negative number. This number is 2’s complemented to make it a positive

number and the sign is adjusted to be the sign of the source operand. A simple example to demonstrate

this point follows.

4-6

Example

2510 11001
Subtract 31 11111 Take 2’s complement and add

-610

11001

2’s complement of 11111 +00001

11010 = 2610 which is not the correct result and which repre-
sents a 2’s complement negative number.

The answer must be 2’s complemented to acquire the proper result.

11010

00101 I’s complement

+1 Add 1

00110 = 610

4.2.5.2 Determining Exponent Difference - During addition of unlike signs or subtraction of like
signs, the ALU performs a subtract. To determine if the exponent difference is 0, the FP11-F logic
clocks the branch condition codes and checks BZ. If BZ is asserted, this indicates an exponent differ-
ence of 0. In this case, neither X12 nor X11 were shifted and the subtraction of the fractions could
result in a zero difference, a negative difference, or a positive difference. If bit 59=1, the resultant
fraction is a 2’s complement negative number and must be converted to a positive sign and magnitude
number.

If bit 59=0, the result of subtracting the fractions is either O or positive. The test for a result of O is done
by decrementing the result. If the result is 0, decrementing it will cause bit 59 to go to a 1 due to the
borrow rippling all the way through the result. The FP11-F will then store Os in the destination accu-
mulator. If decrementing the result causes bit 59 to remain a 0, the result of subtracting the fractions
was positive. With a positive result, the FP11-F will add 1 to the result to restore it to its original value
before storing it.

4.2.5.3 Positive Exponent Difference - If the exponent difference is positive (X11 - X12), it indicates
that the destination operand is larger than the source operand. Since X12 is the source operand and is
smaller than the destination operand, it means that X12 is right-shifted to align the fractions. The
fractions are then subtracted. This subtraction must result in a positive number in X12; therefore, the
FP11-F does not have to test it for 0 or negative, but instead normalizes it immediately.

4.3 FLOATING-POINT MULTIPLICATION

4.3.1 Basic Concepts

The FP11-F uses a straightforward multiplication scheme. In effect, the method employs a series of
shifts and additions to generate the final product.

4.7

The pencil and paper procedure for the multiplication of two binary numbers generally illustrates the
method:

110101 = 65 = 53

101 = 5 = 5

110101 265

1101010

100001001 = 411 = 265

The multiplier is examined on a bit-by-bit basis. If the bit is a 0, the multiplic.and is shifted left one

place. If the bit is a 1, the multiplicand is added to the partial product and shifted left one place.

Example

1 0 1

' l——‘ Shift and Add Multiplicand
Shift Multiplicand Left

- Shift and Add Multiplicand

The same result is obtained in the FP11-F by shifting the partial product and the multiplier right, as

opposed to shifting the multiplicand left.

4.3.2 Hardware Implementation of Multiplication

Multiplication begins with the calculation of the exponent. The exponent of the source in X14 is added

to the exponent of the accumulator in X13. The constant 200 is then subtracted to get the exponent

into proper form; the hidden and guard bits are inserted, the multiplier is routed to the Q-register, and

the sign is routed into X10. After clearing X12, which is used for the accumulation of the partial

product, the multiplication loop is entered. During each cycle the LSB of the multiplier is tested. If the

bit is a 1, the multiplicand is added to the partial product to generate a new partial product. The partial

product is then shifted one place toward the least significant bit (LSB) (shifted right) and the multiplier

is also shifted one place toward the LSB. The old LSB of the multiplier is discarded and the cycle

repeats until the shift count (56 or 24) is reduced to 0.

The multiplier is in the Q-register of the AM2901, the partial product is in X12 of the AM2901 RAM,

and the multiplicand is in X11 of the RAM.

4.4 FLOATING-POINT DIVISION

4.4.1 Basic Concepts

Floating-point division in the FP11-F is accomplished by a normalizing nonrestoring division method.
The nonrestoring method is a repeated subtraction-addition method. The initial remainder is the divi-
dend itself.

The quotient is formed in the Q-register with the dividend in X11 and the divisor in X12.

The exponent is computed by subtracting X13 (EFSRC) from X 14 (EAC). The constant 200 is then
added to X13 to complete the exponent calculation; hidden and guard bits are inserted, the sign is
routed to X10, and the divide loop is then entered.

4.4.2 Nonrestoring Division (Hardware Method)

In the nonrestoring method, the divisor is either added to or subtracted from the partial remainder,
depending on the sign of the divisor and that of the partial remainder. If the two signs agree, a
subtraction is performed and the quotient bit is a 1. If the signs do not agree, an addition is performed
and the quotient bit is 0. In both cases, a new partial remainder is next formed by a proper shift and the
process continues until the remainder is O or the desired number of quotient digits is obtained.

Example

X =dividend = 0.1000 (8/16)

Y =divisor = 0.1010 (10/16)

0.1000 = X

0.1010 = Y q=1

1.0000= 2r

1.0110=-Y

0.0110=r q=1

0.1100= 2r

1.0110=-Y

0.0010=r q=1

0.0100= 2r

1.0110=-Y

1.1010=r q=0

1.0100= 2r

0.1010=+Y

1.1110=r

1.110 =quotient digits (12/16)

+1.0001 =correction

Q = 0.1101 =13/16 = 0.8125

R = 2r =1.11111110

X

Y = 0.8000

The algorithm as implemented in the FP11-F does not require the correction of =1 +20 to the in-

dicated quotient Q. In this example, the 12/16 answer requires more quotient digits to converge on the

actual answer of 0.80.

4.9

CHAPTER 5§

THEORY OF OPERATION

5.1 GENERAL

The major circuit in the FP11-F (Figure 5-1) is the Data Manipulation Logic (DML) that processes
operands received as. T BUS 0-15 H. It is controlled via signals and instructions generated in the
control store logic.

Floating-point instructions received from the CPU as MPC 0-10 L are converted by the control store
logic into microcode instructions and control signals. These determine how the DML operates on T
BUS 0-15 H operands (received from the CPU as AMUX 0-15 L). The data buffering and storage
logic performs a bidirectional interface between the CPU and the DML. It can also store data when
the CPU cannot be interrupted to accept it. The instruction decoding logic monitors operation of the
DML and generates commands used in the control store logic.

5.2 DATA MANIPULATION LOGIC (FIGURE 5-2)

All floating-point operands that the CPU accesses from memory are processed in the FP11-F DML

(Figure 5-1). Operands are loaded into registers in the DML and, after several microstates have oc-

curred, the result is output on the T BUS 0-15 H or stored in an accumulator. During these micro-

states, data manipulation consists of adding, subtracting, shifting, and status operations required to

produce the required result. The DML is controlled by instructions and control signals from the 56-bit

control store logic and consists of 16 microprocessors and carry look-ahead logic.

5.2.1 Microprocessor

3.2.1.1 Data Sectors -~ Functionally, the 64-bit microprocessor consists of four 16-bit sectors (Figure

5-2), with each sector comprising two data bytes. Sector loading with T BUS 0-15 H data is deter-

mined by a 4-bit code (SECTOR CLOCK 0-3 L) received from the control store logic. Which byte is

to be loaded in a particular sector is determined by BYTE 0-7 ENABLE L. The operation of each byte

is controlled by ALU instructions Ip_g and RAM A/B PORT SELECT 0-3 L received from the

control store logic. Each byte in the four sectors is comprised of two 4-bit microprocessors.

Sector Content — Of the four sectors, sector 3 (Figure 5-2) contains the exponent, sign, and most

significant fraction bits; sectors 2, 1, and 0 contain progressively less significant fraction bits. The

microprocessor logic, controlled by the control store logic, ensures that transferred data is loaded into

the correct sector and that any unused sectors are cleared. During a single precision (32-bit) calcu-

lation, only sectors 3 and 2 contain data and sectors 0 and 1 (the 32 low-order bits of the DML) are

cleared. When the 32 low-order bits are being cleared or data is being transferred from the CPU, the

two or three low-order sectors are loaded with zeros simultaneously. If the data buffering logic has

received and loaded the required operand, the interface transfers are finished for that particular in-

struction. However, if the instruction is one of the Store class (send data to the CPU), the interface

logic must then select and transfer the data out of the FP11-F.

s

TO/

FROM

CPU <

FP11-F ATTACHED L

Y CONTROL
MPC 0-10 L STORE

EXTCLK AL (FIG.55)
CLEAR MPC L - ALU INSTRUCTIONS '0-8 DATA

B PROC CLK L o > MANIPU-
|Tl\l|(s)LRuc- RAM A/8 PORT SELECT O-3L | "o

DECODING j—2 0’2'6'7H> > (FIG. 5-2)
(FIG.5-11)

LOAD IR L _ < BUT 0-5H SECTOR CLOCK 0-3L >

T BUS 0-11,14H FL/ED(1)H BYTE EN 0-7L

: T BUS 6,7H :

BUFFERING

TAP 90L AND '
| STORAGE T BUS 0-15H

FORCE FPP DATA L |(Fig. 5.12)

FREE BUSH _

TK-1591

Figure 5-1 FP11-F Block Diagram

TN
[A

DATA

A:> BUFFERING
B . 2 4USO15 H AND STORAGE O Q

(FIG. 5-12)

MICROPROCESSOR @ @ @
. r . -I !-CARRY LOGIC _! — -

T TFALU INSTRUCTIONS Ig. g | SECTORO| | T T
0 T TFRAM A/B PORT SELECT 0-3L BYTE : SECTOR 0 CARRY

FROM > CARRY SECTOR 2
conTroL / SEcTorcrocko3a. |Vt L 0 v 1"tV bt vt 1 PR |

STORE . (FIG.5:3) | " R BYTE4 [SECTOR 2
(FIG.5-5) " . > CARRY CARRY

BYTE 0-7 ENABLE L . v] ricss [
- : _

| T] TBUSO-7H> >
"| svtET [/ "

| (F1G.5-3) BYTES [

T BUS 815 H - >

. | (FIG. 53) _
————— T BUS 8-15 H

SECTOR 1 _

"] BYTE2 »| SECTOR1

) CARRY SECTOR 3

I (FIG53) | ! TM| BYTE® . »| SECTOR 3
T BUS0-7 H > CARRY

- > i (FIG.5-3) r

T] TBUSO—7H> 1
TM BYTE3 [| > R

FROM | (FIG. 5-3) | TM BYTE7 | >
DATA | T BUS 8-15H >

BUFFERING ITBUSO-15H > A
AND STORAGE | (FIG.5-3) [.
Fmes122 L Ly T | TBUSS-15H |

-~ "L 'L »L EX ALU] I
INSTRUCTIONS

lo-8
3 5 FROM _ _I l_ -

CONTROL

@ 4 STORE EX RAM A/B PORT TK-1603
(FIG.5-5) |SELECTO-3L

Figure 5-2 Data Manipulation Logic

Sector Loading - One, two, or four 16-bit transfers are required to load the FP11-F microprocessor

sectors with memory data. Integer data in integer format (16 bits) requires one transfer and is loaded

into sector 2 of X12 floating-point accumulators. Integer data in long format (32 bits) requires two

transfers. The first transfer is used to load the most significant half into sector 2 of X12: the second

transfer loads the least significant half into sector 1 of X12. Floating-point data is loaded into X 10 in

two (float precision, 32 bits) or four (double precision, 64 bits) transfers. In both cases, the sign

exponent and 23 MSBs are loaded into sector 3 during the first transfer. During subsequent transfers

(1 or 3 per type of precision), progressively less significant fraction bits are loaded into sectors 2, 1, and

0.

Four data transfers are required to load floating-point data (32- or 64-bit format) from the micro-

processor sectors into memory. One or two data transfers are required to convert and store floating-

point data as integers. One or two data transfers are required to transfer control and status informa-

tion via a Store class instruction.

The DML normally operates on the whole 64-bit wide data path and unused sectors are cleared before

any computations begin. During integer transfers, all of X12 is initially cleared before the integer is

loaded into it. During all floating-point transfers, unused sectors are cleared after the data has been

loaded from memory.

5.2.1.2 Data Bytes — Each of the four sectors in the DML consists of two bytes. Each byte consists of

two 4-bit 2901A microprocessors. The 2901A (Figure 5-3) consists of a 16-word X 4-bit two-port

RAM, an ALU, a Q-register, and control circuitry.

RAM - The RAM register is illustrated in Figure 5-4. It is the scratchpad area where the results of

arithmetic and logical operations can be stored temporarily. The contents of the RAM are read into

the ALU per control signals (microcode) received from the control store logic. It consists of 16 64-bit

words [each of the 16 microprocessors (2901A) contains a 16 X 4-bit RAM].

Six of the 64-bit registers are allocated as accumulators and are accessible to the programmer. RAM

registers 6 and 7 are unused, while registers 10-17 are reserved for special functions. Registers 10-17

are accessed only by the control store logic. Registers 10-14 constitute a working storage area for the

microcode contained in the control store logic PROM. Other functions included are the floating-point

status register, condition codes, and exception codes.

Data in any of the 16 words of RAM can be read from the A-port, via the 4-bit RAM A PORT 0-3 H

input. The address applied to both A- and B-address lines will cause identical data to appear at each

RAM output port. The RAM A- and B-outputs are applied to latches. When write enabled, new data

is written into the RAM word selected by RAM B PORT 0-3 H. The RAM input data is received from

a 3-input multiplexer. The multiplexer inputs are from the ALU output and permit the ALU result to

be loaded into the RAM directly, or left- or right-shifted one place.

Before floating-point data is transferred to the CPU, it is initially loaded into RAM address 11g in the

DML microprocessor. The control store logic BYTE 0-7 ENB L output signal then selects and output

enables the particular byte or bytes of X113 to be transmitted to the CPU during any one transfer. The

byte(s) content is then loaded onto the T-bus, buffered, and then received by the CPU via its AMUX.

FROM

CONTROL

STORE

(FIG.5-5)

FROM

CONTROL

STORE/-

DATA

BUFFERING

AND STORAGE

FROM

CONTROL

STORE

(FIG.5-5)

MBYTEO (FIG5-
2,—— T L] ——— ——

4-BIT MICROPROCESSOR (FPI E40)

D REG/REG STACK

MUX Q REGISTER IS MUX ALU

—

—

=

L BYTEOENB L

DATA INPUT | IBIT CARRY GENERATE G -~

SELECT SHIFTER |—s- CARRY PROPAGATE P | | 0
fd P | ALU MSB F3 I\ CARRY

(Fle—g ‘\ DESTINA- J RAM LATCH LOOK-AHEAD
TION | TM (REG F(0+1+2+3)=0 LOGIC

DECODER j Ly MUX STACK) >

| > N
e v

SHIFTER |

' > MUX

A PORT 0-3 H I A PORT SELECT I
B PORT 0-3 H ! B PORT SELECT = || LATCH MUX I

SECTOROCLK L . CENTRAL PROCESSOR CLOCK CP J N
| - DRIVER]Y6-3 '

TBUSO-7H

! mE
i V

FSRC 02 H ALU INPUT SELECT lo—2 ALU INPUT
OPERAND

SELECT

'F ALU 0-2H ALU FUNCTION SELECT !3-5 ALU OUTPUT T BUS
DESTINATION Lo

DECODER

TO

caRmY SUFFERINGERI
BYTE OUTPUT ENABLE OE LOOK

. OENB L O
-AHEAD AND STORAGE

LOGIC (FIG. 5-12)
T BUSO0—15H I

" Fl6—s8 4-BIT MICROPROCESSOR N

A PORT 0-3 H -

B PORT 0-3 H
.

SECTOR O CLK L)
3 FP1 E48

TBU

8-15 H (SAME AS E40)

F SRCO-2 H

FALUO2H I

TK-1602

Figure 5-3 Sector/Byte Logic

5-5

:j///0000000000000 ZERI:)EC EFSRC
13///////////////////////S/R/{///77 /// 2RO | EAC

10

\
l

FSRC S| E

///
(s/////////////////////////////////////

ACH E

AC4

AC3

AC2

AC1

E

E

E

E

E

E ACO m
i
m
m
|
m

mS

S

S

S

S

SECTOR 3 SECTOR 2 SECTOR 1 SECTOR O SECTOR 3

BYTE 6 BYTE b BYTE 4 BYTE 3 BYTE 2 BYTE 1 BYTE O BYTE 7

F-REG E-REG

X-REG

Figure 5-4 RAM Register Usage

5-6

Arithmetic Logic Unit (ALU) - The ALU is the data path component that actually performs the
arithmetic/logical operation under command ofthe microcode (control word) (Table 5-1) contained in
the control store logic PROM. R-inputs are fed in via a 2-input multiplexer whose inputs are the direct
data inputs (T BUS 0-15 H) and the output of the A-port of the RAM. The S-inputs include the A-
and B-ports of the RAM and the Q-register outputs.

Table 5-1 Source Operand and ALU Function Matrix

I,,0Octal |0 1 2 3 4 5 6 7

ALU

Source

I;,;Octal | AQ A.B 0Q |OB |0A |DA D.Q D.O
ALU

Function

C, =L A+Q A+B Q B A D+A D+Q D

0 R Plus S

|C,=H A+Q+1 | A+B+1 | Q+1 [B+1 [A+l | D+A+1 | D+Q+1 | D+1

C, =L Q-A-1 [B-A-1 [Q-1 |B1l |[A1l | A-D-1 | Q-D-1 | -D-1
] S Minus R

C. =H Q-A B-A Q B A A-D Q-D -D

C, =L A-Q-1 | A-B-1 | -Q-1 | -B-1 | -A-1| D-A-1 | D-Q-1 | D-1

2 R Minus S

C.=H A-Q A-B -Q B -A D-A D-Q D

3 RORS AVQ AV B Q B A D-A DVQ D

4 R AND S ANAQ ANB 0 0 0 DAA DAQ 0

5 RAND S ANQ | ANB Q B A DvA | DvQ 0

6 R EX-OR S AVQ AV'B Q B A D¥A DVQ D

7 REX-NORS |AvQ | AvB Q B A D¥A |D¥Q | D

+ = Plus: - = Minus; V=0R, A= AND: ¥= EX OR

5.7

ALU output data (F) may be routed to the Q-register or RAM, or may be multiplexed with the A-port

output data from the RAM as Yo_3 (T BUS 0-15 H). The ALU function decode determines the

arithmetic or logical function to be performed, while the ALU destination decode determines which of

the indicated registers the data is routed to or whether it will be a data output of the device itself.

The ALU source operand decode performs the actual register selection. All three of these functions are

controlled by ALU instructions ig_g from the control store logic.

The ALU can perform three binary arithmetic and five logic operations on the two input words

received via the R- and S-inputs. The R-input is driven by a 2-input multiplexer and the S-input from a

3-input multiplexer. As Figure 5-3 illustrates, the R-input multiplexer can be used to select either

RAM A-port data or a direct data input as T BUS 0-15 H. The S-input multiplexer is from either the

Q-register or the RAM output (port A or B). Both multiplexers have an inhibit output capability that

produces a zero source operand.

ALU Logical and Arithmetic Functions - The ALU performs five logical and three arithmetic functions

on eight source operand pairs. ALU logic functions and appropriate control bit values (ALU INPUT

SELECT Ig_.y» ALU FUNCTION SELECT I3_5) are described in Table 5-2. The carry input (Cy) has

no effect in logic mode but does affect operations in arithmetic mode (Table 5-3). Both carry-in HIGH

(C,=1) are defined.

Table 5-2 ALU Logic Mode Functions

Octal Octal

Is45.1000 Group Function | (R PR Group Function

40 ANQ 7 4 Invert A

41 ANB 77 D

45 AND DAA

46 DAQ 62 Q
63 B

30 AVQ 64 Pass A

31 AVB 67 D

35 OR DVA

36 DVQ 32 Q
33 B

60 AYQ 34 Pass A

61 AVB 37 D

65 EX OR DYVA

66 D¥Q 42 0

43 0

70 AvQ 44 “Zero” 0

71 AV B 47 0

75 EX NOR DVA

76 DVQ 50 ANQ
L 51 ANB

72 Q 55 Mask DAA
73 B 56 B/\Q

5-8

Table 5-3 ALU Arithmetic Mode Functions

Octal Cnh =0 (Low) C,, =1 (High)

Is43.1,0 Group Function Group Function

00 A+Q A+Q+1

01 ADD A+B ADD plus A+B+1

05 D+A one D+A+1

06 D+Q D+Q+1

02 Q Q+1

03 PASS B Increment B+1

04 A A+l

07 D D+1

12 Q-1 Q

13 Decrement B-1 Pass B

14 A-1 A

27 D-1 D

22 -Q-1 -Q

23 1’s Comp. -B-1 Y’s Comp. -B

24 -A-1 (Negate) -A

17 -D-1 -D

10 Q-A-1 Q-A

11 Subtract B-A-1 Subtract B-A

15 (1’s Comp.) A-D-1 (2’s Comp.) A-D

16 Q-D-1 Q-D

20 A-Q-1 A-Q

21 A-B-1 A-B

25 D-A-1 D-A

26 D-Q-1 D-Q

ALU Logical Functions for G, P, Cn+4, and OVR - Signals G, P, Ch+4, and OVR indicate carry and
overflow conditions when the microprocessor is in the add or subtract mode. Table 5-4 indicates the
logic equations for these four signals for each of the eight ALU functions. The R- and S-inputs are the
two inputs selected according to Table 5-4.

Q-Register - The Q-register is a file loaded from the ALU that is used to accumulate the quotient
during division routines. It also functions as a temporary storage register. The Q-register output can be
loaded back into itself, shifted right or left, as during fraction and multiplication and division oper-
ations.

5-9

Table 5-4 Logic Equations for ALU Functions

Definitions (+ =OR)

P, =R, + S, Go = R, S,

P, =R, +85, G, =R,S,
P,=R,+S, G, =R,S,
P,=R,+S, G, =R,S,

C, =G, + P,G, +P,P,G, + P,P,P,G, + P,P,P, P,C,

5.2.1.3 Data Manipulation - After data has been parallel loaded into the DML microprocessor, both
the Q-register and any RAM address can be rotated or shifted either left or right. During a rotate, the

bit transferred out one end is transferred in on the far end. During a shift operation, the bit transferred

out is lost and a new bit must be generated and transferred in at the far end. To accomplish these shifts
and rotations, the MSB of each 4-bit microprocessor is connected to the LSB of the adjacent more
significant 4-bit microprocessor via a bidirectional transfer line. To complete the wraparound required

to rotate data, the MSB of the complete data path is connected to the LSB via a bidirectional transfer
line. To accomplish the shifts, the bidirectional transfer line between the MSB and LSB answer bit is

left-shifted into bit 4 of byte 7. After 56 left-shifts, the complete answer is in bits 61 to 4 of bytes 6 to 0

and 7. During a double-precision divide, the quotient bits are left-shifted and can be interrupted by

control logic. The same logic also generates the new bit for insertion into the LSB or MSB of the data

path.

Division - During a divide operation, the divide quotient is generated one bit at a time and then left-

shifted into the Q-register in the microprocessor. For a single-precision (float) quotient, the answer bits

are left-shifted into bit 36 (byte 3) and, after 24 shifts, the complete fraction quotient is in bits 63

through 36 (bytes 6 through 3).

For a double-precision quotient, the answer bit is left-shifted into bit 4 (byte 7) and, after 56 left-shifts,

the complete answer is in bits 61 to 4 (bytes 6 through 0 and 7). During a double-precision divide

operation, the quotient bits are left-shifted from bit 35 to 36.

Multiplication - During a multiply operation, the multiplier is parallel loaded into the microprocessor

Q-register in single- (float) or double-precision format. As the multiply operation is executed, the

multiplier bits are right-shifted out, one bit at a time, always from the LSB position. For a single-

(float) precision format, bit 40 is the LSB; for double-precision format, bit 8. The LSB (bit 40 or 8) is

then used to determine if the multiply step should be an add and shift (LSB = 1) or a shift (LSB = 0).

Because the LSB of byte 7 is in the LSB of the data path and the MSB of byte 6 is in the MSB of the

data path, special logic controls the transfer of data between these two bits. During a rotate right or

left, the LSB and MSB are connected by bidirectional transfer lines. During a left-shift, the LSB is

always zeroed; during a right-shift, a One or a zero can be loaded into the MSB.

5-10

5.2.1.4 Status Bits - Each DML 4-bit microprocessor generates two status bits: F=0 and F=3.

- The F=0 status bit provides zero detection by indicating when exponent or fraction data equals zero.

It goes high when all four ALU output bits are zero (low). It is an open-collector output that is

combined in both fraction (bytes 6 through 0) and exponent (byte 7) portions of the data.

The F=3 output is used to monitor the MSB of each 4-bit microprocessor and also the sign of both

exponent and fraction portions of the data path. Bit 7 is the exponent sign. It is the MSB of byte 7 and
is monitored via the F3 output ofthat particular 4-bit microprocessor. Bit 63 is the fraction sign and is
monitored via the F3 output of the byte 6 microprocessors. The F3 outputs of all other 4-bit micro-
processors are not used.

The F=3 status bit is the MSB and can be monitored without enabling the output driver in the 4-bit
microprocessor. The MSB output can be used as a sign bit during floating-point operations.

5.2.2 Carry Look-Ahead Logic

The DML contains full look-ahead carry logic that speeds instruction execution. Each of the sixteen
4-bit microprocessors generates both a carry generate (G) and a carry propagate (P) output. The four
pairs of G and P signals from a sector are combined in a single look-ahead carry generator; the outputs
of the four sector look-ahead carry generators are combined in a single generator, providing a second
level of look-ahead carry generation (Figure 5-2). This arrangement allows the FP11-F data path to

function with full 64-bit look-ahead carry generation.

5.3 CONTROL STORE (FIGURE 5-5)

During floating-point calculations, a sequence of microinstructions is applied (as control signals) to
the microprocessor in the DML (Figure 5-2). As the microprocessor performs the instructions, it
continually receives a new, revised set of instructions until an answer is sent to memory. These instruc-
tions are stored in PROM in the control store logic (Figure 5-5). They are read out of the PROM via
MPC 0-10 H addressing and control read/write of microprocessor sectors /bytes; cause constants to be
added as required; initiate branch testing; address RAM in the microprocessor; and also control frac-
tion/exponent calculations.

The FP11-F control store logic instructions are used jointly with those of the CPU. The FP11-F
control store logic PROM (twelve 1K X 4 bit) and the CPU control store ROM (seven 1K X 8 bit)
comprise a 96-bit word that controls CPU/FP11-F operation (Figure 5-6).

5.3.1 Floating-Point Instruction Starting Code
At the start of a floating-point instruction, the CPU sends the FP11-F a 050 operation code (via MPC
0-10 L lines). This code is a PROM address that causes a floating-point instruction latch to generate
FPX H. The FPX H signal is an enable for all the other latches in the control store logic. When
nonfloating-point instructions are applied to the FP11-F, the floating-point instruction latch output is
FPX L and, therefore, inhibits reading instructionsout of PROM into the other latches.

T\ SECTORO-3CLKL _ _~

- BYTE DISABLE L f_ BYTE
CONTROL]

_J L ATCH BYTE 0-7 ENBL

DML FP9

CONTROL E49
LATCH

FROM CONSTANT ROM ENABLE L CONSTANT T BUS 0-15 H
DATA B PROC CLK H ROM (CONSTANT) -
BUFFERING IR 0-2 H P9 >

STonace | BPROCCLKL FP7 FD/FL(1)H _| 5563
(FIG.5-12) E61,75 ROTATERL

FPS - 10RO0OSEL -

FROM E24 . —! F INSERTO L _
CARRY LI -

CPU CONTROL WORD FP9 CONTROL SHIFT L L -
E27,51, < ROTATE L L | TO

83,57 FP8 SHIFT R L | DATA
TO E13 B > | MANIP-

DATA | SHIFT L SING L ULATION

FLOATING— BUFFERING LOGIC
LPOINT AND STORAGE — SHIFTLDOUBL | F1¢652)

INSTRUCTION (FIG. 5-12) FRACTION/-
LATCH EXPONENT E/E 1x oH

TBUSOUT H - CONTROL 6—8 -

] PROM FP7 > FD(1)H
E59 . —

TER > FP8 E14
E69,70,71,78 | FALUO2H

i MPC FP8 CONTROL WORD - >
MPC 0-10L FP7 0-10H E72,76,80 FSRCO-2H >

E73,81,84 Fro |
>

q 85 E6E. 69 EX ALU 02 H .

EX SRC 0-2 H
-

[FPX L A REGQ-2H RAM
48-BIT FIELD \ B REGO0-2 H PORT A PORT 0-3H .

(FIG.5-6) SELECT >

ASEL H/BSELO,1H MUX 0
P -3H

IR 0,1,2,6,7H Fpg B PORT —
E21,22,50

CINH N

v’

BUT

| CONTROL
CLEAR MPC L

(FIG. 5-10)

TO

BUTO5H _ INSTRUCTION

CONTROL WORD DECODING

FROM
(FIG.5-11)

DATA ‘

BUFFERING AND STORAGE BPROCCLKL FP8
(FI1G.5-12)

E77

Figure 5-5 Control Store Logic

]
i N
9

T 1cN1
HHSRR-10

E122 E124 E125 E@ E127 E128
N L L ., N er Y Y Y Y Y Y A17 16 15 14 13 11 10 9 17 1615 14 13 11 10 & 17 16 1514 13 i1 10 917 1615 14 13 11 10 9 17 16 1514 1311 10 9 17 16 15 14 13 11 10 9 17 16 151413 11 10 9

103[102|101/100|99|98|97 |96 |95(94| 93|92 | 91|90|99|88|87| 86|95 |84|83(82|81|80| 79| 78| 77| 76| 75|74 | 73|72 | 71| 70| 69 68]67|66|65|64|63/62|61{60|59|58|57|56|55|54153{52]|51|50|49|48

01-—————————010000100101000000000000000001100000011111100

A —— A A —— —AeA A | e A A
RETURN NEXT ADDRESS AMUX MISC CNTL ALUB LEG BBX CNTL SSMUX BUS DSTSEL SRCSEL SRI ID RSPA SRCSEL SO0S1

CNTL SPACE CNTL
CYCLE AUX ENAB

I AN CNTL MAINT FORCE KERNEL SPARE

BA DATA BUT SERV

TRAN PREVIQUS MODE

FORCE RSH

A. CPU CONTROL WORD

E78 E71 E69 E70 E72 E80 E76 E79 E65 E67 E68 E66 <«—— PROM CHIP NUMBER

1112 13 14 1112 13 14 1112 13 14 1112 1314 11 12 1314 11 12 12 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 11 12 13 14 <=—PROM PIN NUMBER

MICRO FIELD BIT47146(454443(42|41|40{39|38|37(36|35|34(33|32{ 31| 30(29|28| 27| 26| 25|24|23|22| 21|20{19]|18|17]16 |15 |14 [13|12|11]10l 9 {8 | 7|6 |5 |al3]2 |1 |0 <— \UMBER

DEFAULT MICRO0j0jojof1f1fojofojojrjrjoj1j1|1f{ojoflofofojojojo|lojo|ofo|jo|o|1|o|loflo|l1{ojo|l1]lo]lolololotol1l1]1]1 FIELD STATE

\ — A —~—~———— | ——| \ ——— A ——— Ao —-A-A—AA—

FCTL ECTL BSEL DCTL BUT CONST MISC AROM BROM SECTOR

ECIN ASEL XTRA

TOUT

B. FP11-F CONTROL WORD

TK-1593

Figure 5-6 CPU/FP11-F Control Words

5-13

5.3.2 Sector Control

The sector control logic in the control store generates SECTOR 0,1,2 or 3 CLK L that selects one of

four sectors in the DML microprocessor. It generates SECTOR 0,1,2, or 3 CLK L in accordance with

a 4-bit sector field in the control word (Figure 5-6) that is read out of PROM. Within the DML each

sector clock causes data to be loaded into a RAM or a Q-register in the 2901A. The sector control logic

(Figure 5-7) consists of four NANDs and a DML control latch, synchronized via a buffered processor

clock.

SECTOR

PROM FIELD 0-3

MPC 0-10 H EPY CONTROL WORD) PML
CONTROL

E66 LATCH | SECTOR [0

FP9 0-3CLKL mmpu
E28 -

Egg LATION
— 7 LOGIC
FPX L

B PROC CLK L

B PROC CLK H

TK-1596

Figure 5-7 Sector Control Logic

An MPC 0-10 H address applied to PROM E66 selects one of four control words (SECTOR FIELD

0-3) that is loaded into latch E27. The B PROC CLK L clocked output of the latch is NANDed with B

PROC CLK H as sector 0/1/2/3 CLK L. In the DML (Figure 5-2), this input is applied as CLOCK

CP to RAM, two latches at the RAM output ports, and the Q-register.

Table 5-5 explains the octal coding of SECTOR FIELD 0-3 required to select a particular sector in the

DML microprocessor. Each bit corresponds to a sector clock; a logical 1 in the bit position enables a

clock for that sector and a 0 indicates no clock.

The sector clocks are independently controlled. The control word output coding of PROM can select

any combination of sector ciocks.

5-14

Table 5-5 Sector Enable

Octal

Sector Code Definition

S1 | Sector(s) O clocked

S2 2 Sector(s) 1 clocked

S3 3 Sector(s) 10 clocked

S4 4 Sector(s) 2 clocked

S7 7 Sector(s) 210 clocked

S10 10 Sector(s) 3 clocked

S14 14 Sector(s) 32 clocked

S17 17 Sector(s) 3210 clocked

NOTE

A zero octal code corresponds to no sectors being

clocked.

3.3.3 Shift and Destination Control

The Q-register and register stack (RAM) in the DML (Figure 5-3) receive an input that is selected via
I¢-g generated in the shift and destination control logic. This logic consists of two ROMs that are
addressed via a latch loaded with destination control (DCTL) word field bits 27-30 (Figure 5-5).

Table 5-6 lists ROM outputs versus PROM control word output (DCTL). The field mnemonics in
Table 5-2 are followed by the octal code for the mnemonic and a generalized data transfer operation.
For example, SLALUOQ has an octal value of 15 in the control word field. It affects both the fraction
and the exponent. The operation B » SLO (ALU)F - Y;Q - SLC63(Q) is interpreted as the B-port of
the DML microprocessor ROM and gets the value of the ALU shifted left one position with a 0
inserted into the LSB. The ALU output is selected to Y, and the Q-register, loaded with the Q-register
output shifted left one position with the carry-out bit, is inserted into the LSB of the Q-register.

Table 5-7 gives the field mnemonic (SLALUOQ) followed by its octal value (15), followed by the
ROM output values. The FDST value (6) is the value applied to F I¢_g fraction data path of the
microprocessor ALU destination decoder; EX DST value (6) is applied to E I¢-g of the exponent data
path, causing both sets of 4-bit microprocessors to perform a shift-left (up) and load the RAM and Q-
registers.

At the shift and destination control logic, output highs on signals ROTATE R L, SHIFT T L, RO-
TATE L L, and F INSERT 0 L cause shift gates in the DML to go to the high impedance state. The
low on SHIFT L L causes a 0 to be inserted into the LSB of the RAM shift path. The values of SHIFT
L DOUB L and SHIFT L SING L depend on the FD status bit value. One of these two signals would
be low, enabling the carry-out to be inserted into the Q-register shift path.

5-15

Table 5-6 Shift and Destination Control ROM

Outputs — Data Transfer Operations

Octal Fraction/

Function Code Exponent Data Transfer

NOP 0 Both ---

LDBT 1 Both B-ALU T-Y

LDBF 2 Both B-ALU F~Y

LDQF 3 Both Q-ALU F~Y

ROTL 4 Both B-ROTL(ALU) F=Y

ROTR 5 Both B-ROTR(ALU) F—Y

SLALUO 6 Both B-SLO(ALU) F~Y

SROALU 7 Both B-SRO(ALU) F=Y

SRIALU 10 Both B-SR1(ALU) F-Y

SLALUO.LDBF 11 Fraction B-SL1(ALU) F=Y; EXP B-ALU F->Y

SRIALU.LDBF 12 Fraction B-SRI(ALU) F=Y: EXP B-ALU F->Y

SROALUQ 14 | Both B-SRO(ALU) F~Y:; Q-SRO (Q)

SLALUOQ 15 Both B-SLO(ALU) F~Y: Q-SLC63 (Q)

Table 5-7 Shift and Destination Control ROM Output Values

-
= | =

oD) y— - -

e | £ = o | 4 |

Dest Field ; E E fi ; % °o‘ EE

Function F DST EX DST ZIZ|IZ|S8|5 (=2 |8
(3-Bit Field) | (3-BitField) | * [t |t [Y|t |t [T |

NOP (0) I 1 H|H|{H|H|H|H|H|H

LDBT (1) 2 2 H|H|H|H|H|H|H]H

LDBF (2) 3 3 H|H|H]J]H|H|H]|H]|H

LDQF (3) 0 0 H{H|H|H]|H|H|H]H

ROTL (4) 7 7 H{H|H|L|H|H|H]|H

ROTR (5) 5 5 H{H|{HJ|H|H|H|H]L

SLALU 0 (6) 7 7 H{H|H|H|L|H|H]|H

SROALU (7) 5 5 H{H|L|H|H|H|L]|H

SRTALU (10) 5 5 H{H|L|{H|H|H|H]I|H

SLALUOQ.LDBF (11) 7 3 H{H|H|H|HJ|]LJ|H]|H

SRIALU.LDBF (12) 5 3 H{H|L|'H|H|H|HI]H

SROALUQ (14) 4 4 H|H|L|H|H|H|LJH

SLALUQQ (15) 6 6 * t+{H|H}|L|H/|{H]H

* Lif FD(1)=1:H if FD(1)

t+ Lif FD(1) =0;H if FD(1)

0

1

5-16

5.3.4 RAM A/B Port Control

RAM A/B port control logic (Figure 5-8) generates A PORT 0-3 H, B PORT 0-3 H that control
RAM data flow in the DML (Figure 5-2). It consists of two multiplexers.

Multiplexers E50 and E21,22 receive an IR input from the instruction decoding logic and an A REG
0,1,2 H/B REG 0,1,2 H input from an A/B port select latch (E27, 51). The latch input is read out of
PROM as control word A ROM (7, 8, 9) and B ROM (4, 5). Control word bits A SEL (32) and B SEL
(33, 34) are clocked (via B PROC CLK L) out of an FP instruction latch (E59) to become A SEL H or
B SEL 0/1 H. These signals select one of the two multiplexers to apply A PORT 0-3 H or B PORT 0-3

Figure 5-8 RAM A/B Port Control Logic

5-17

H to the DML.

FROM IR 6,7 H
INSTRUCTION : = A PORT
DECODING MUX
LOGIC

FP8

E50

AROM,BROM

FIELD A REG 0,1,2H

PROM [(4-9)
| fic/)iw ASELH
MPC 0-10 H X FP9 CONTROL WORD SELECT

| £67,68, |-
70 LATCH

B REG B PORT

0,1,2H MUX

A SEL(32)
FPS

BSEL(33,34) £21 22

FLOATING—

POINT

INSTRUCTION BO,1H
LATCH

FP7

E59

FROM ,

INSTRUCTION IR 0,1,2,6,7H
DECODING

LOG!C

A PORT

0-3H

B PORT

0-3H

\

TO

DATA

MANIPU-

LATION

LOGIC

TK-1697

Table 5-8 explains octal coding of the A ROM control word output (bits 7-9) of PROM and Table 5-9

explains coding of the B ROM control word (bits 4-6).

Table 5-8 A-Address ROM

Octal

Address Code Description

ARI10 0

ARI11 1

AR12 2 Used to specify E. F, or X registers (e.g.. X12 = AR12)

on the A-port of the RAM.

ARI13 3

AR14 4

FEC 5 Corresponds to register 15 in the RAM

FCCR 6 Corresponds to register 16 in the RAM

FPS 7 Corresponds to register 17 in the RAM

Table 5-9 B-Address ROM

Octal

Address Code Description

BR10 0

BR11 1

BR12 2 Used to specify as E, F, or X register on the B-port

of the RAM.

BR13 3

BR14 4

FEC 5 Corresponds to register 15 of the RAM

FCCR 6 Corresponds to register 16 of the RAM

FPS 7 Corresponds to register 17 of the RAM

5-18

5.3.5 Fraction, Exponent Control

The fraction and exponent fields in the control word (Figure 5-6) are used to generate a 6-bit word that
controls the input and functions of the ALU in the DML microprocessor. It provides this control via

F/EX SRC 0-2 H and F/EX ALU 0-2 H. Within the DML microprocessor, these signals function as
ALU INPUT SELECT Ig_; and ALU FUNCTION SELECT I3_s, respectively.

The control word (Figure 5-6) in the control store PROM (E69, 71, 78) contains fraction control

FCTL bits 42-47 and exponent control EXCTL bits 36-41. These bits are applied as 6-bit addresses to
ROM. The ROMs are clocked by BPROC CLK L to apply either F ALU 0-2 H, F SRC0-2 H, or EX

ALU 0-2 H, EX SRC 0-2 H to the 4-bit microprocessors in the DML. Here, the signals are ALU
INPUT SELECT Iy (applied to an ALU operand select circuit) and ALU FUNCTION SELECT

I3_5 (applied to an ALU output destination decoder).

Because the fraction and exponent portions of the microprocessor T BUS 0-15 H input lines are

independently controlled, the fraction and exponent can be manipulated individually during a single
microstate. However, the complete data input (all eight bytes) of the microprocessor can be used as a

unit by placing the same fraction and exponent codes on both sets of control lines.

Table 5-10 shows the octal value of the control store logic control word (Figure 5-6) and the octal value

for control of the source operand ALU function in the microprocessor.

Table 5-10 Fraction and Exponent Control Fields

Source Operand Octal Code Source Operand Octal Code

ALU Function for Field ALU Functions for Field

A AND Q 40 DBAR 77

A ANDB 41

D AND A 45 QPASS 62

D AND Q 46 BPASS 63

APASS 64

AORQ 30 DPASS 67

AORB 31

DORA 35 ZERO 42

DORQ 36

ABAR AND Q 50

A XORQ 60 ABAR AND B 51

A XOR B 61 ABAR AND A 55

D XOR A 65 ABAR AND Q 56

D XOR Q 66

APLUS Q 0

A XNOR Q 70 APLUSB 1

A XNOR B 71 D PLUS A 5

D XNOR A 75 D PLUS Q 6

D XNOR Q 76

Q PLUS 2

QBAR 72 B PLUS 3

BBAR 73 A PLUS 4

ABAR 74 D PLUS 7

Table 5-10 Fraction and Exponent Control Fields (Cont)

Source Operand Octal Code Source Operand Octal Code

ALU Function for Field ALU Functions for Field

Q-1 12 Q-A-1 10

B-1 13 B-A-1 11

A-1 14 A-D-1 15

D-1 27 Q-D-1 16

A-Q-1 20

-Q-1 22 A-B-1 21

-B-1 23 D-A-1 25

~-A-1 24 D-Q-1 26
-D-1 17

5.3.6 Miscellaneous Control

A 4-bit miscellaneous field read out of the control store logic PROM controls data direction flow in

the data buffering logic and also provides byte control in the DML. Miscellaneous control is per-

formed by two latches (Figure 5-9).

MISCELLANEOUS FIELD 10-13

PROM MISC TO
LATCH MISC 1-4 H DATA

MPC 0-10H FP9 CONTROL WORD = BUFFERING AND
E65,67 FP9 STORAGE LOGIC

E51,57

FPX L

BPROCCLKL

TK-1594

Figure 5-9 Miscellaneous Control Logic

MPC 0-10 H addressing causes PROM (E64, 67) to apply miscellaneous field bits 10-13 of the control
word (Figure 5-6) to latches ES1 and 57. Signal MISC 1, 2, 3, or 4 H is clocked as an address into a bus

control ROM (E20) in the data buffering and storage logic (Figure 5-12). E20 causes an AMUX 0-15

L data transfer into the FP11-F data buffering logic, loads the data buffers, and then loads the buf-

fered data onto the T BUS as T BUS 0-15 H.

5-20

5.3.7 Constants Generation

Two ROMs in the control store logic contain various fixed-value numbers (constants) required during

floating-point calculations. These constants include excess 200 bias, iteration counts, rounding bytes,

correlation factors, and index numbers. The control word loaded into the DML control latch is ap-

plied to the constant ROMs along with status bits [FD (1)/FL (1) H], and IR 0-2 H. These inputs are

combined into a ROM address that selects a certain constant output to be applied as T BUS 0-15 H to

the DML. The constant output is a correction word for calculations being performed in the DML

mIiCroprocessor.

Two ROMs contain the constants required for floating-point calculations. One ROM (low-byte con-

stant) drives T-bus bits 0-7, the other ROM (high byte) drives bits 8-15. Many of the constants

accessed are relatively small numbers; as a result, only 28 out of 256 locations in the high-byte ROM

are nonzero. When they are enabled, the ROMs output a 16-bit constant on the T-bus.

The 6-bit constant field PROM output generates most of the ROM pair addresses, with the FD, FL,

and PC address mode bits completing the address. Of the three inputs applied to the ROMs, the

FD/FL bits indicate which data format is being used. FD indicates either single- or double-precision

format. FL indicates either integer (16-bit) (FL=0) or long (32-bit) (FL=1) format for integer num-

bers. Constant generation also defines the floatingpoint instruction. Thus determining single, immedi-

ate, or double mode operation.

5.3.8 Byte Control

The byte enable ROM BYTE 0-7 ENB L output enables one of eight individual data bytes to be

loaded from the DML onto the T-bus. The byte enable ROM (E49) and the constant ROM (ES5, 63)

are both controlled by the 6-bit constant field read out of PROM. The MSB of the constant field (bit

19) is the enable for these ROM:s.

5.3.9 Branch Under Test Control

The control store logic generates a BUT 0-5 H output that is used in the instruction decoding logic

(Figure 5-11) to modify the base MPC 0-10 L it generates. In the instruction decoding logic, BUT 0-5

H may be combined with IR 0-11 H to select a particular address in one or two of four branching

ROMs. The address accessed in the ROMs contains a mask that selects the conditions to be monitored

and combined with MPC 0-10 L.

BUT

LATCH

PROM {1 BUT FIELD 20-25 UT 05

| wmpco-10H > epg |CONTROL WORD BUTOS R
E76,80 Fpg

E77

FPX L _

O

I L
CLEAR MPC L

B PROC CLK L

TK-1598

Figure 5-10 BUT Logic

5-21

The BUT logic (Figure 5-10) consists of latch E77 that is loaded from PROM E76, 80 with BUT bits

20-25. It is clocked by BPROC CLK L. The CLR MPC L input is a factory test only signal input.

Table 5-11 lists the mnemonics and octal values of control word BUT bits 20-25, followed by the

definition of the bits (or bits under test). For example, EZBT.Y8.Y9 corresponds to a field value of 62
and indicates that branching is on three possible values of the exponent zero bit, T-bus 0 bit (corre-

sponding to Y8) and the T-bus 1 bit (corresponding to Y9). The X.Y nomenclature does not mean that
a branch on the ANDed value is occurring, but that a simultaneous branch is occurring on the two
values. Thus, a branch to one of four locations is possible with X.Y.

Table 5-11 BUT Control (Branch on Test Enables)

Octal

Function Code Definition

NOP 0

ENBT 54 Exponent Sign Bit

EZBT 52 Exponent Zero Detect Bit

BUSRQ 55 Bus Request-Grant Pending

ENBT 56 Fraction Sign Bit

XZBT 57 Combined Zero Detect Bit

Q8.Q40 60 LSB of Multiplier

COouTe63 61 Fraction Carry-Out

EZBT.OPIA 13 EZBT.OP1A

FID 41 Floating Interrupt Disable

EZBT.Y8.Y9 62 EZBT, TBUSO, TBUSI

EZBT.Y8 63 EZBT, TBUSO

ENBT.YS8 64 ENBT, TBUS1

ENBT.EZBT.FNBT 65 See Above

FNBT.XZBT 66 See Above

FIV 4?2 Interrupt on Over Flow

Y62 43 TBUS 6

FIU 45 Interrupt on Under Flow Bit

FIUV 46 Interrupt on Undefined Variable

FIC 47 Interrupt on Integer Conversion Error Bit

FT 44 Truncate Bit

ENBT.EZBT 67 See Above

Y8 50 TBUS O

Y61 44 TBUS 5

FD.FIV 2 Floating Double Bit, Interrupt on Overflow

Y62.0P1A 3 TBUS 6

BREAKOUT 31 Initial Instruction Decode

FD 32 Floating Double Mode Bit

OPIB 349

OPI1C 35

OPID 36 » Instruction Decode

OPIE 37

OP2A 77

5-22

Table 5-11 BUT Control (Branch on Test Enables) (Cont)

Octal

Function Code Definition

FDST 71 Decodes Floating Destination

FSRC 71 Decodes Floating Source

DST 72 Decodes Destination

SRC 72 Decodes Source

GR7 73 General Register 7

GR7.FLBAR 74 General Register 7, FL Bit =0

FL 75 FL Bit =1

FLBAR 76 FL Bit=0

Some of the branches are branches on T-bus bits but are indicated by other mnemonics. A T-bus bit

value depends on what device is enabled onto the T-bus; the mnemonic thus reflects what is being

enabled onto the T-bus at that time. Table 5-12 may be referenced for the possible bits that are

branched on by enabling onto the T-bus. For example, a branch on T BUS 5 is actually occurring on a

branch of the FT bit or Y61.

Table 5-12

(X = Don’t Care)

(Z=

BUT Control Functions

Bits to be decoded)

(A = corresponds to address lines of ROM)

BUT Field Functions

5 4 3 2 1 0 T-Bus BUT ROM not decoding; CC BUT ROM decodes

A5 A4 A3 A2 Al A0 bits 0,1.2 and generates proper BUT.

X 0 1 Z 7 7

O 0 O Y8&8/T-Bus O

0O O 1 Unused

0 1 0 EZ Bit

0 | 1 Unused

1 0 O EN Bit

1 0 1 PFAIL BR PEND (BUS RQST)

1 1 0 FN Bit

1 1 1 FZ Bit

0 0 O

0O o0 1

0 1 0

CC BUT ROM not decoding; T-Bus BUT ROM decodes

bits 0,1,2 and generates proper BUT.

T-Bus 14 (FID)

T-Bus 9 (FIV)

5-23

Table 5-12 BUT Control Functions (Cont)

BUT Field Functions

5

AS A4 A3

X

4

]

3

0

[
\

A2

N
>

N
> 0

_
—
—
=

=

O

O

O

O

N

>
N

2
>

o
0

—
_
—
—
_
—
0

O

=

—

0
O

C

o
>

N

2
>
<

—
_

o

-

0
O

—

0
O

—

0
0

N
—
_
—

o
=

0
O

-
0

=
0

T-Bus 6 (Y62)

T-Bus 5 (Y61/FT)

T-Bus 10 (FIU)

T-Bus 11 (FIUV)

T-Bus 8 (FIC)

Both CC and T-Bus ROMS to decode bits 0,1,2 and

generate proper BUT.

0Q8.Q40

COUT 63

EZ Bit, T-Bus 0 (Y8), T-Bus 1 (Y9)

EZ Bit, T-Bus 0 (Y8)

EN Bit, T-Bus 0 (Y8)

EN Bit, EZ Bit, FN Bit

EN Bit, XZ Bit

EN Bit, EZ Bit

Neither CC BUT ROM or T-Bus BUT ROM Enabled

OP1 ROM (Decodes Upper 6 Bits of IR Register)

OP1 ROM Enabled

NOP

BUT Breakout

BUT FD

OPIA

OPIB

OPI1C

OoPID

OPIE

OP2 ROM (Decodes Lower 6 Bits of IR Register)

OP2 ROM Enabled

NOP

FDST/FSRC

DST/SRC

GR7

GR7.FL BAR

FL

FL BAR

OP2A

5-24

5.4 INSTRUCTION DECODING (FIGURE 5-11)

The instruction decoding logic generates operation codes as MPC 0-10 L. These codes are applied to

the control store logic which, in turn, generates control signals and instructions for the DML. The

instruction decoding logic also generates IR 0-2,6,7 H that are used in the addressing of constant

ROMs in the control store logic. The instruction decoding logic consists of an instruction register and

four ROMs.

Instructions received as T BUS 0-15 H from the CPU or the DML are decoded in the instruction

register (E58, 62) as IR 0-11 H. This output is applied to the control store logic constant ROMs. It is

also applied to two (OP1, OP2) operation code ROM:s.

The OP1 and OP2 ROMs are used for branching based on IR 0-1 H coding. The OP1 ROM is

addressed via IR 6-1 H and is used when branch decisions must be based on operation code and

accumulator content. The OP2 ROM is addressed via IR 0-5 and branches on address mode and the

special no-argument instruction.

The condition code ROM (E83) and the T-bus branch ROM (E85) are used for signal monitoring. The

condition code ROM monitors eight hardware status bits that can be viewed directly. The T-bus

branch ROM monitors signals stored or generated in the DML. Both ROMs are addressed via BUT

0-5. They control the MPC bits in two different ways. The condition code and T-bus ROMs each

contain 32 8-bit masks. These masks either enable or prevent a particular signal from affecting MPC

0-8. The ROMs control only eight signals each and each signal can affect only one MPC bit.

5.5 DATA BUFFERING AND STORAGE (FIGURE 5-12)

The data buffering and storage logic provides bidirectional buffering of data transfers to and from the

CPU and also temporary storage of data to be transferred. It consists of a bus transceiver, latch, and

T-bus control.

5.5.1 Data Buffering

AMUX 0-15 L data received from the CPU is buffered by the transceiver (E17,25). Conversely, the T

BUS 0-15 H output of the DML microprocessor is buffered and then applied to the CPU as AMUX

0-15 L. The bus transceiver is enabled by T BUS OUT L, which is generated in the T-bus control.

In the T-bus control (E9, 20), TAP 90 L from the CPU clocks a flip-flop (E9), the low output of which

is ANDed with FREE BUS H.

NOTE

TAP 90 L is generated via a delay line in the CPU

and provides signal skew. Skew provides enough

settling time in the 2901As when loading data.

The resultant signal output is ORed with FORCE FPP DATA L to produce T BUS OUT L. T BUS

OUT L enables the bus transceiver.

5.5.2 Data Storage

A latch provides temporary T-bus data storage when the CPU cannot be interrupted to receive data

from the DML microprocessor. The latch consists of four 4-bit data registers (E30, 54, 56, 64). They

are loaded from the T-bus during B PROC CLK L and are enabled by IN H/L ENB L from the T-bus

control. Data in the latches is gated to the T-bus by OUT ENB L. Signal IN L ENB L is used to load

the buffer with condition code status information.

9
¢
-
¢

P FAIL BRPENDH

EN BIT H/E Z BIT H/N 63 BIT H/Z BIT H/Q N 8—40 H/FAST COUT H

TK-1600

CONDITION

CODE 8-BIT MASK

ROM

BUT 05

FP6

E83

T-BUS

BRANCH | 28T MASK
ROM

MPC1 L

BUT 05 BUT 05 014

FP6 '
E85

6-BIT MASK

MPC 2-BL

1,5,6-11

FL(1)H

OPERATION

sur | CODE 2
TBUSOTTH > —— Egg \ ROM ENABLE | ROM

LOAD TION 345H __/ (BUT 3,4,5 H) -
IR L REGISTER EEo

PROC FP6 | CLK
IRO-11 H IR 0-5H MPC 0—3 L MPC 0-8

CLK L E2
—=n FP6

| E58,62
B PROC INIT L

IRO,2,6,7H

f|> OPERATION

ROM

"TM FP6

BUT 5 H (ROM ENABLE) E60

FD(1)H

Figure 5-11 Instruction Decoding Logic

L
T
S

TO/FROM

CPU

FROM

CONTROL 1

STORE

(F1G.5-5)

FROM

CPU

-

>

“~

TBUS4-7H TO

Figure 5-12 Data Buffering and Storage Logic

CONTROL

STORE

BUS TBUSO] (FIG55)

XCVR 5,6,8-11,14H

iNSTRUCTION

FP5 DECODING

E17,25 (FIG.5-11)

TO

DATA

AMUXO15L T BUS 0-15 H MANIPU-
LATION

(FIG.5-2)

LATCH

T BUS OUT H TBUSOUTL
" BUS

B PROC INIT L EPG IN H/L ENB L FP5
i E30,64

FORCE FPP DATA L OUT ENB L 54 56

B PROC CLK H N

FREE BUS H FROM BPROCCLKL

_ CONTROL

TAP 90L STORE B PROC INIT H
> (F1G.5-5)

FPSCLKL

TK-1599

CHAPTER 6

FLOATING-POINT INSTRUCTIONS

6.1 FLOATING-POINT ACCUMULATORS

The FP11-F contains six general-purpose accumulators (AC0O-AC5). These accumulators are 64-bit

read /write scratchpad memories with nondestructive readout.

Each accumulator is interpreted as being either 32 or 64 bits long, depending on the instruction and the

FP11-F status . If an accumulator is interpreted as being 64 bits long, 64 bits of data occupy the entire

accumulator. If an accumulator is interpreted as being 32 bits long, 32 bits of data occupy only the left-

most 32 bits of an accumulator as shown in Figure 6-1.

The floating-point accumulators are used in numeric calculations and interaccumulator data transfers.

ACO-ACS3 are used for all data transfers between the FP11-F and the CPU or memory.

64 BIT ACCUMULATOR

- A

32 BIT ACCUMULATOR | A
.

r N
.

0

1

2
ACCUMULATORS {

4

5

MSB LSB

TK-1561

Figure 6-1 Floating-Point Accumulators

6.2 INSTRUCTION FORMATS

An FP11-F instruction must be in one of five formats. These formats are summarized in Figure 6-2.

The 2-bit AC field (bits 6 and 7) allows selection of scratchpad accumulators O through 3 only.

If address mode 0 is specified with formats F1 or F2, bits 2-0 are used to select a floating-point

accumulator. Only accumulators 5-0 can be specified in mode 0. If 6 or 7 is specified in bits 2-0 in

mode 0, the FP11-F traps if floating-point interrupts are enabled (FID = 0). The FEC will indicate an
illegal op code error (exception code 2).

<
9

F1

F2

F3

Fa

FS

15 12 11 87 6 5 0

OoC = 17 FOC AC FSRC/FDST

15 12 1 & 5 0

oc =17 FOC FDST

15 12 11 8 7 65 0

oC =17 FOC AC SRC/DST

15 12 11 65 0

OC = 17 FOC SRC/DST

15 12 1 0

0C=17 FOC

Figure 6-2 Instruction Formats

TK-1628

The fields of the various instruction formats (as summarized in Table 6-1) are interpreted as follows.

Mnemonic Description

OC Operation Code - All floating-point instructions are designated by a 4-bit op

code of 17g.

FOC Floating Operating Code - The number of bits in this field varies with the

format; the code is used to specify the actual floating-point operation.

SRC Source — A 6-bit source field identical to that in the PDP-11 instruction.

DST Destination - A 6-bit destination field identical to that in a PDP-11 instruc-

tion.

FSRC Floating Source - A 6-bit field used only in format F1. It is identical to SRC,

except in mode 0, when it references a floating-point accumulator rather than

a CPU general register.

FDST Floating Destination — A 6-bit field used in formats F1 and F2. It is identical

to DST, except in mode 0 when it references a floating-point accumulator

instead of a CPU general register.

AC Accumulator - A 2-bit field used in formats F1 and F3 to specify FPI11-F

scratchpad accumulators 0-3.

Table 6-1 Format of FP11-F Instructions

Instruction

Format Instruction Mnemonic

F2 ABSOLUTE ABSF FDST

ABSD FDST

Fl ADD ADDF FSRC, AC

ADD FSRC, AC

F2 CLEAR CLRF FDST

CLRD FDST

F4 COMPARE CMPF FSRC, AC

CMPD FSRC, AC

F5 COPY FLOATING CONDITION CODES CFCC

Fl DIVIDE DIVF FSRC, AC

DIVD FSRC, AC

Fl LOAD LDF FSRC, AC

LDD FSRC, AC

Fl1 LOAD CONVERT LDCFD FSRC, AC

FDCDF FSRC, AC

F3 LOAD CONVERT INTEGER LDCIF SRC, AC

LDCID SRC, AC

LDCLF SRC, AC

LDCLD SRC, AC

6-3

Table 6-1 Format of FP11-F Instructions (Cont)

Instruction

Format Instruction Mnemonic

F3 LOAD EXPONENT LDEXP SRC, AC

F4 LOAD FP11I’'S PROGRAM STATUS LDFPS SRC

Fl MODULO MODF FSRC, AC

MODD FSRC, AC

F1 MULTIPLY MULF FSRC, AC

MULD FSRC, AC

F2 NEGATE NEGF FDST

NEGD FDST

F5 SET DOUBLE MODE SETD

F5 SET FLOATING MODE SETF

F5 SET INTEGER MODE SETI

F5 SET LONG INTEGER MODE SETL

F1 STORE STF AC, FDST

STD AC, FDST

Fl STORE CONVERT STCFD AC, FDST

STCDF AC, FDST

F3 STORE CONVERT STCFI AC, DST

FLOATING TO INTEGER STCFL AC, DST

STCDI AC, DST

STCDL AC, DST

F3 STORE EXPONENT STEXP AC, DST

F4 STORE FP11’'S PROGRAM STATUS STFPS DST

F4 STORE FP11’'S STATUS STST DST

F1 SUBTRACT SUBF FSRC, AC

SUBD FSRC, AC

F2 TEST TSTF FDST

TSTD FDST

6.3 INSTRUCTION SET

Table 6-2 contains the instruction set of the FP11-F. Some of the symbology may not be familiar.

Therefore, a brief description follows.

1. A floating-point flip-flop, designated FD, determines whether single- or double-precision

floating-point format is specified. If the flip-flop is cleared, single-precision is specified and

is designated by F. If the flip-flop is set, double-precision is specified and is designated by D.
Examples are NEGF, NEGD, and SUBD.

NOTE

Only the assembler or compiler differentiates be-

tween NEGF and NEGD or LDCID or LDCLD in-

structions. The floating-point does not differentiate

between the instructions but depends on the value of

FD and FL as usually controlled by SETD, SETF,

SETC, and SETI instructions (i.e., LDCID — SETI
- SETD - LDCLD).

An integer flip-flop, designated FL, determines whether short-integer or long-integer format
is specified. If the flip-flop is cleared, short-integer format is specified and is designated by I.

If the flip-flop is set, long-integer format is specified and is designated by L. Examples are

SETI and SETL.

Several convert-type instructions use the symbology defined below.

CiLrp — Convert integer to floating

Crp,IL - Convert floating to integer

Cg,p or Cpr - Convert single-floating to double-floating or convert double-floating to
single-floating

UPLIM is defined as the largest possible number that can be represented in floating-point
format. This number has an exponent of 377 (excess 200 notation) and a fraction of all 1s.
Note the UPLIM is dependent on the format specified. LOLIM is defined as the smallest
possible number that is not identically 0. This number has an exponent of 001 and a fraction

of all Os except for the hidden bit.

The following conventions are used when referring to address locations.

(xxxx) = the contents of the location specified by xxxx

ABS (address) = absolute value of (address)

EXP (address) = exponent of (address) in excess 200 notation

Some of the octal codes listed in Table 6-2 are in the form of mathematical expressions.

These octal codes can be calculated as shown in the following examples.

Example 1: LDFPS Instruction

Mode 3, register 7 specified (F instruction format).

170100 + SRC

SRC field is equal to 37

Basic op code is 170100

SRC and basic op code are added to yield 170137.

Example 2: LDF Instruction

AC2, mode 2, and register 6 specified (F1 instruction format).

172400 + C * 100 + FSRC

AC =2

2 * 100 = 200

172400 + 200 = 172600

FSRC is equal to 26

172600 + 26 + 172626

6-5

7. AC v 1 means that the accumulator field (bits 6 and 7 in formats Fl and F3) 1s logically
ORed with 01.

Example:

Accumulator field = bits 6 and 7 = AC2 = 10. ACv 1 = 11.

The information in Table 6-2 is expressed in symbolic notation to provide the reader with a quick
reference to the function of each instruction. The following paragraphs supplement the information in
Table 6-2.

Table 6-2 FP11-F Instruction Set

Mnemonic Instruction Description Octal Code

ABSF FDST Absolute 170600+ FDST

ABSD FDST FDST « minus (FDST) if FDST < 0; other- | F2 Format

wise FDST « (FDST)

FC«0

FV «0

FZ « 1 if exp (FDST) = 0; otherwise FZ « 0

FN <0

- ADDF FSRC, AC Floating Add 172000+A C*100+FSRC

ADDD FSRC, AC AC « (AC) + (FSRQ) if [AC| + (FSRC) F1 Format

< LOLIM; otherwise AC « 0

FC 0

FV «1if|AC |2 UPLIM; otherwise FV <0

FZ « if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

CLRF FDST Clear 170400+ FDST

CLRD FDST FDST <0 F2 Format

FC «0

FV «0

FZ « 1

FN «0

CMPF FSRC, AC Floating Compare 173400+ AC*100+FSRC

CMPD FSRC, AC FC«~0 F1 Format

FV «0

FZ « 1 if (FSRC) - (AC) = 0; otherwise

FZ <0

FN « 1 if (FSRC) - (AC) < 0; otherwise

FN «0

6-6

Table 6-2 FP11-F Instruction (Cont)

Mnemonic Instruction Description Octal Code

CFCC Copy Floating Condition Codes 170000

C«FC FS5 Format

V « FV

Z « FZ

N « FN

DIVF FSRC, AC Floating Divide 174400+ AC*100+FSRC
DIVD FSRC, AC AC « (AC)/(FSRCQ) if | (AC)/(FSRQO)| F1 Format

2 LOLIM; otherwise AC « 0

FC «0

FV « 1if| AC|> UPLIM; otherwise FV «0
FZ «~ 1 if EXP (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

LDF FSRC, AC Floating Load 172400+ AC*100+FSRC
or AC « (FSRC) F1 Format

LDD FSRC, AC FC <0

FV «0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

LDCDF FSRC, AC Load Convert Double-to-Floating or 177400+ AC*100+FSRC

LDCFD FSRC, AC Floating-to-Double F1 Format

AC « Cg p or Cpr (FSRQC)

FC 0

FV « 1 if | AC| > UPLIM; otherwise
FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

If the current format is single-precision float-

ing-point (FD = 0), the source is assumed to

be a double-precision number and is con-

verted to single-precision. If the floating-trun-

cate bit is set, the number is truncated;

otherwise, it is rounded. If the current format

is double-precision (FD = 1), the source is as-
sumed to be a single-precision number and

loaded left-justified in the AC. The lower half

of the AC is cleared.

F, D-single-precision to

double-precision float-

ing

D, F-double-precision to

single-precision float-

ing

6-7

Table 6-2 FP11-F Instruction (Cont)

Mnemonic Instruction Description Octal Code

LDCIF SRC, AC Load and Convert from Integer to Floating | 177000+AC*100+SRC

LDCID SRC, AC AC « CyLrp (SRC) F3 Format

LDCLF SRC, AD FC~0

LDCLD SRC, AC FV <0
o FZ « 1 if (AC) = 0; otherwise FZ « 0

L?féli:nglesg;g; Integer FN « 1 if (AC) < 0; otherwise FN « 0
LDCID = Single Integer CIL,FD specifies cqnversiox} .from a 2’s com-

to Double Float plempnt integer with precision I orL toa

LDCLF = Long Integer floatmg-pomt number of precision F or D. !f

to Single Float integer flip-flop IL = 0, a 16-bit integer (I) is

LDCLD = Long Integer double specified, and if IL = 1, a 32-bit in-

teger (L) is specified. If floating-point flip-flop
to Double Float , , , .

FD = 0, a 32-bit floating-point number (F) is

specified, and if FD = 1, a 64-bit floating-

point number (D) is specified. If a 32-bit in-

teger is specified and addressing mode O or

immediate mode is used, the 16 bits of the

source register are left justified, and the re-

maining 16 bits are zeroed before the con-

version.

LDEXP SRC, AC Load Exponent 176400+A C*100+SRC
AC SIGN « (AC SIGN) F3 Format

AC EXP « (SRC) + 200 only if ABS (SRC)

< 177

AC FRACTION « (AC FRACTION)

FC «0

FV « 1 if (SRC) > 177, otherwise FV « 0

FZ « 1 if EXP (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

LDFPS SRC Load FP11-F’s Program Status Word 170100+ SRC
FPS « (SRC) F4 Format

MODF FSRC, AC Floating Modulo 171400+ AC*100+FSRC
MODD FSRC, AC AC v | « integer part of (AC)*(FSRC) F1 Format

AC « fractional part of (AC)*(FSRC)

- (AC v 1) if | (AC)*(FSRC)|
2 LOLIM or FIU = 1; otherwise AC « 0

FC «0

FV « 1if|AC |2 UPLIM; otherwise FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

6-8

Table 6-2 FP11-F Instruction (Cont)

Mnemonic Instruction Description Octal Code

MODF FSRC, AC The product of AC and FSRC is 48 bits in
MODD FSRC, AC single-precision floating-point format or 59

(cont) bits in double-precision floating-point format.
The integer part of the product

[(AC)*(FSRCQO)] is found and stored in ACv 1.

The fractional part is then obtained and

stored in AC. Note that multiplication by 10

can be done with zero error, allowing decimal

digits to be stripped off with no loss in preci-

sion.

MULF FSRC, AC Floating Multiply 171000+AC*100FSRC

MULD FSRC, AC AC « (AC)*(FSRC) if | (AC)*(FSRC)| F1 Format

2 LOLIM; otherwise AC « 0

FC 0

FV «1if| AC|2> UPLIM; otherwise FV « 0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

NEGF FDST Negate 170700+ FDST

NEGD FDST FDST « minus (FDST) if EXP (FDST) # 0; F2 Format

otherwise FDST « 0

FC <0

FV ~0

FZ « 1 if EXP (FDST) = 0; otherwise FZ

«0

FN « 1 if (FDST) < 0; otherwise FN « 0

SETD Set Floating Double Mode 170011

FD « 1 FS Format

SETF Set Floating Mode 170001

FD « 0 F5 Format

SETI Set Integer Mode 170002

FL <0 FS Format

SETL Set Long-Integer Mode 170012

FL « 1 F5 Format

STF AC, FDST Floating Store 174000+ AC*100+FDST

STD AC, FDST FDST « (AC) F1 Format

FC « FC

FV « FV

FZ « FZ

FN « FN

6-9

Table 6-2 FP11-F Instruction (Cont)

Mnemonic Instruction Description Octal Code

STCFD AC, FDST Store Convert from Floating-to-Double or |176000+AC*100+FDST

STCDF AC, FDST Double-to-Floating F1 Format

STCFI AC, DST

STCFL AC, DST

STCDI AC, DST

STCDL AC, DST

STCFI = Single Float to

Single Integer

STCFL = Single Float to

Long Integer

STCDI = Double Float

to Single Integer

STCDL = Double Float

to Long Integer

STEXP AC, DST

FDST « Cg p or Cp r (AC)

FC 0

FV <1 if| AC|> UPLIM; otherwise FV «0

FZ « 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

The STCFD instruction is the opposite of the

LDCDF instruction; thus, if the current for-

mat is single-precision floating-point (FD =

0), the source is assumed to be a single-preci-

sion number and is converted to double-preci-

sion. If the floating truncate bit is set, the

number is truncated; otherwise, it is rounded.

If the current format is double-precision (FD

= 1), the source is assumed to be double-pre-

cision number and loaded left-justified in the

AC. The lower half of the AC is cleared.

Store Convert from Floating-to-Integer

Destination receives converted AC if the re-

sulting integer number can be represented in

16 bits (short integer) or 32 bits (long integer).

Otherwise, destination is zeroed and C-bit is

set.

FV «0

FZ < 1 if (DST) = 0; otherwise FZ « 0

FN « 1 if (DST) < 0; otherwise FN « 0

C «FC

V « FV

Z - FZ

N « FN

When the conversion is to long integer (32

bits) and address mode 0 or immediate mode

is specified, only the most significant 16 bits

are stored in the destination register.

Store Exponent

DST « AC EXPONENT - 200g

FC «0

FV «0

FZ « 1 if (DST) = 0; otherwise FZ « 0

FN « 1 if (DST) < 0; otherwise FN « 0

C«FC

V «FV

Z « FZ

N « FN

F, D-single-precision to

double-precision float-

ing

D, F-double-precision to

single-precision float-

ing

175400+ AC*100+DST

F3 Format

1750004+ C=*100+DST

F3 Format

6-10

Table 6-2 FP11-F Instruction (Cont)

Mnemonic Instruction Description Octal Code

STFPS DST Store FP11-F’s Program Status Word 170200+ DST

DST « (FPS) F4 Format

STST DST Store FP11-F’s Status 170300+DST

DST « (FEC) F4 Format

DST + 2 «(FEA) if not mode O or not imme-

diate mode

SUBF FSRC, AC Floating Subtract 173000+ AC*100+FSRC

SUBD FSRC, AC AC « (AC) - (FSRCQ) if | (AC) - (FSRC)| F1 Format

2 LOLIM; otherwise AC « 0

FC <0

FV « 1 if AC UPLIM; otherwise FV « 0

FZ 1 if (AC) = 0; otherwise FZ « 0

FN « 1 if (AC) < 0; otherwise FN « 0

TSTF FDST Test 170500+ FDST

TSTD FDST Floating F2 Format

FC«0

FV «0

FZ « 1if EXP (FDST) = 0; otherwise FZ « 0

FN « 1 if (FDST) <« 0; otherwise FN « 0

6.3.1 Arithmetic Instructions

The arithmetic instructions (add, subtract, multiply, divide) require one operand in a source (a float-

ing-point accumulator in mode 0, a memory location otherwise) and one operand in a destination

accumulator. The instruction is executed by the FP11-F and the result is stored in the destination

accumulator.

The compare instruction also requires one operand in a source and one operand in a destination

accumulator. However, the two operands remain in their respective locations after the instruction is

executed by the FP11-F, and there is no transfer of the result.

6.3.2 Floating-Modulo Instruction

The Floating-Modulo (MOD) instruction causes the FP11-F to multiply two floating-point operands,

separate the product into integer and fractional parts, and store one or both parts as floating-point

numbers. The whole-number portion goes into an odd-numbered accumulator and the fraction goes

into an even-numbered accumulator.

The whole-number portion of the number, when expressed as a floating-point number, contains an

exponent greater than 201 in excess 200 notation, which means that the whole number has a decimal

value of some number greater than one and less than UPLIM, where UPLIM is the greatest possible

number that can be represented by the FPI11-F.

The fractional portion of the number, when expressed as a floating-point number, contains an expo-

nent less than or equal to 201 in excess 200 notation. This means that the fraction has a value less than

one and greater than LOLIM, where LOLIM is the smallest possible number that can be represented

by the FP11-F.

6.3.3 Load Instruction

The load instruction causes the FP11-F to take an operand from a source and copy it into a destination

accumulator. The source is a floating-point accumulator in mode 0 and a memory location otherwise.

6.3.4 Store Instruction

The store instruction causes the FP11-F to take an operand from a source accumulator and transfer it

to a destination. This destination is a floating-point accumulator in mode 0 and a memory location

otherwise.

6.3.5 Load Convert (Double-to-Floating, Floating-to-Double) Instructions

The Load Convert Double-to-Floating (LDCDF) instruction causes the FP11-F to assume that the

source specifies a double-precision floating-point number. The FP11-F then converts that number to

single-precision, and places this result in the destination accumulator. If the floating-truncate (FT)

status bit is set, the number is truncated. If the FT bit is not set, the number is rounded by adding a | to

the single-precision segment if the MSB of the double-precision segment is a 1 depending on the prior

conditions set up by the FD bit (Figure 6-3). If the MSB of the double-precision segment is 0, the

single-precision word remains unchanged after rounding.

The Load Convert Floating-to-Double (LDCFD) instruction causes the FP11-F to assume that the

source specifies a single-precision number. The FP11-F then converts that number to double-precision

by appending 32 zeros to the single-precision word, and places this result in the destination accumula-

tor.

Note that for both load convert instructions, the number to be converted is originally in the source (a

floating-point accumulator in mode 0, a memory location otherwise) and is transferred to the destina-

tion accumulator after conversion.

6362 48 47 3332 313 16 15 0

S 1

SINGLE PRECISION DOUBLE PRECISION
SEGMENT SEGMENT

TK-1564

Figure 6-3 Double-to-Single Precision Rounding

6.3.6 Store Convert (Double-to-Floating, Floating-to-Double) Instructions
The Store Convert Double-to-Floating (STCDF) instruction causes the FP11-F to convert a double-
precision number located in the source accumulator to a single-precision number. The FP11-F then
transfers this result to the specified destination. If the floating-truncate (FT) bit is set, the floating-
point number is truncated. If the FT bit is not set, the number is rounded. If the MSB (bit 31) of the
double-precision segment of the word is a 1, 1 is added to the single-precision segment of the word,
depending on the prior conditions set up by the FD bit (Figure 6-3); otherwise, the single-precision
segment remains unchanged.

The Store Convert Floating-to-Double (STCFD) instruction causes the FP11-F to convert a single-
precision number located in the source accumulator to a double-precision number. The FP11-F then
transfers this result to the specified destination. The single-to-double precision is obtained by append-
ing zeros equivalent to the double-precision segment of the word (Figure 6-4).

‘Note that for both store convert instructions, the number to be converted is originally in the source

accumulator and is transferred to the destination (a floating-point accumulator in mode 0, a memory

location otherwise) after conversion.

63 62 48 47 - 32 31 . 16 15 - 0

S ALL O'S ALL O'S

— ~ J |\ —~— ‘ J
SINGLE PRECISION DOUBLE PRECISION

SEGMENT SEGMENT
TK-3278

Figure 6-4 Single-to-Double Precision Appending

6.3.7 Clear Instruction

The clear instruction causes the FP11-F to clear a floating-point number by setting all its bits to 0.

6.3.8 Test Instruction

The test instruction causes the FP11-F to test the sign and exponent of a floating-point number and

update the FP11-F status accordingly. The number tested is obtained from the destination (a floating-

point accumulator in mode 0, a memory location otherwise). The FC and FV bits are cleared. The FN

bit is set only if the destination is negative. The FZ bit is set only if the exponent of the destination is

zero. If the FIUYV status bit is set, a trap occurs (after the test instruction is executed) if a minus zero is

encountered.

6.3.9 Absolute Instruction

The absolute instruction causes the FP11-F to take the absolute value of a floating-point number by

forcing its sign bit to 0. If mode 0 is specified, the sign of the number in the floating-point destination

accumulator is forced to 0. The exponent of the number is tested, and if it is 0, zeros are written into

the accumulator. If the exponent is nonzero, the accumulator is unaffected.

If mode 0 is not specified, the sign bit of the specified data word in memory is zeroed. The exponent of

this word is tested: if it is O, the entire data word in memory is zeroed. If the exponent is nonzero, the

integer exponent is restored to memory.

Absolute and negate instructions are the only instructions that can read and write a memory location.

6.3.10 Negate Instruction

The negate instruction causes the CPU (or the FP11-F, in mode 0) to complement the sign of an

operand. If mode O is specified, the sign of the number in the floating-point destination accumulator is

complemented. The exponent of the number is tested; if it is 0, zeros are written into the accumulator.

If the exponent is nonzero, the accumulator is unaffected.

6-13

If mode O is not specified, the sign bit of the specified data word in memory is complemented. This

word is then transferred from memory to a floating-point accumulator. The exponent of this word is

tested, and if it is 0, the entire data word is zeroed and transferred back to memory. If the exponent is

nonzero, the original fraction and exponent are restored to memory.

6.3.11 Load Exponent Instruction

The load exponent instruction causes the floating-point processor (FPP) to load an exponent from the

source (a floating-point accumulator in mode 0, a memory location otherwise) into the exponent field

of the destination accumulator. In order to do this, the 16-bit, 2’s complement exponent from the

source must be converted to an 8-bit number in excess 200 notation. This process is described further

in the following text.

Assume that the 16-bit, 2’s complement exponent is coming from memory. The possible legal range of

16-bit numbers in memory is from 000000 to 177777g. On the other hand, the possible legal range of

exponents in the FP11-F falls into two classes.

1. Positive exponents (0 through 177) - When 200 is added to any of these numbers, the sum

stays within the legal 8-bit exponent field (i.e., from 200 through 377).

2. Negative exponents (177601 through 177777) - When 200 is added to any of these numbers,

the sum stays within the legal 8-bit exponent field (i.e., from 1 through 177).

Notice that all legal positive exponents coming from memory have something in common: their nine

high-order bits are all Os. Similarly, all legal negative exponents from memory have their nine high-

order bits equal to 1. Therefore, to detect a legal exponent, only the nine high-order bits need be

examined for all Is or all Os.

Any number from memory outside these ranges is illegal and will result in either an overflow or an

underflow trap condition.

Example 1: LDEXP 000034

Exponent of 34 00000000 00011100

200 + 10000000

IOOIIIQQ_

2 3 4

The upper nine bits all equal 0, so this is a legal positive exponent. The number 234 is set to the 8-

bit exponent field of the specified accumulator.

Example 2: LDEXP 201

2 0 1

Exponent of 201 00000000 10000001
200 + 0 10000000

A 00000001

Overflow

This is an illegal positive exponent. Notice that when 200 is added to the exponent, an overflow
occurs.

6-14

Example 3: LDEXP 100200

2 0 0
A —~—

Exponent of 100200 10000000 10000000
200 + 10000000

_ /I 1 00000000

Underflow

This is an illegal negative exponent. Notice that when 200 is added to the exponent, a result is
produced that is more negative than can be expressed by the 8-bit exponent field. Thus, an under-
flow occurs.

Example 4: Special Case — Exponent of 0: LDEXP 177600

Exponent of 177600 11111111 10000000

+ 0 | 10000000

00000000 | 00000000

This is the one case where the nine high-order bits are all equal, but the exponent is illegal. This is

because 177600 represents an exponent of 0. This exponent causes an underflow condition to

exist; that is, it is treated as an illegal negative exponent.

6.3.12 Load Convert Integer-to-Floating Instruction

The load convert integer instruction takes a 2’s complement integer from memory and converts it to a

floating-point number in sign and magnitude format. If short-integer mode is specified, the number

from memory is 16 bits and is converted to a 24-bit fraction (single-precision) or a 56-bit fraction

(double-precision), depending on whether floating or double mode is specified. If long-integer mode is

specified, the number from memory is 32 bits and is converted to a single- or double-precision number,

depending on whether floating or double mode is specified. The integer is loaded into bits 55-40 if

short integer is specified or into bits 55-24 if long integer is specified. It is then left-shifted eight places

so that bit 55 is transferred to bit 63 (Figure 6-5).

The integer is then assigned an exponent of 217 short integer. This is the result of adding 200g (since

the exponent is expressed in excess 200 notation) to 17g, which represents 159 shifts. This number of

shifts is the maximum number required to normalize a number. If long-integer mode is specified, the

integer is assigned an exponent of 237g, which represents 319 shifts.

The 2’s complement integer is tested by examination of bit 63 to see if it is a positive or negative

number. The number is then normalized by left-shifting until bit 63 becomes a 1. If bit 63 is | (negative

number), the integer is negative, the sign bit is set, the number is 2’s complemented, and then normal-

ized.

To normalize a number, bit 63 (MSB) of the fraction must be equal to 0 and bit 62 must be made equal

to 1. To do this, the integer is shifted the required number of places to the left and the exponent value is

decreased by the number of places shifted (Figure 6-6).

EXP= 217g Shift integer 15 places to the left to normalize.

-17g Bit59 = 0, bit 58 = 1

200g Decrease exponent by 159, which is 17g.

When loading a long integer with an FD = 0, if the long integer contains more than 24 significant

digits, then less significant digits will be truncated with some loss of accuracy.

6-15

9
1
-
9

63 62 61 60 59 58 57 56 655 54 53 b2 51 50 49 48 47 46 45 44 43 42 41 40

0o 0 o o o 0 0o 0o 1 1 1 1 1 0o 0 1 1 1 1 1 0 0 0 1

1 1 1| 1 110} 0] 1 1 1 1 11 0}l o0 |1 1 0 ol ol ol ol o] o} o

TK-1630

Figure 6-5 Integer Left-Shift Example

63 62 61 60 59 58 57 56 565 54 b3 b2 b1 50 49 48 47 46 45 44 43 42 41 40.

o,] O 0 0 0o 0o 0 0o o 0 o 0o o 0 0 1 0 0o 0 0 0 0 0o 0)

Figure 6-6 Normalized Integer Example

TK-1631

6.3.13 Store Exponent Instruction

The Store Exponent (STEXP) instruction causes the CPU to access a floating-point number in the

FPII-F, extract the 8-bit exponent field from this number, and subtract a constant of 200 (since the

exponent is expressed in excess 200 notation). The exponent is then stored in the destination as a 16-

bit, 2’s complement, right-justified number with the sign of the exponent (bit 7) extended through the

eight high-order bits.

The legal range of exponents is from 0 to 377, expressed in excess 200 notation. This means that the
number stored ranges from -200 to 177 after the constant of 200 has been subtracted. The subtraction

of 200 is accomplished by taking the 2’s complement of 200 and adding it to the exponent field (Figures

6-7 and 6-8).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLOATING POINT EXPONENT (8 BITS)

NUMBERINFP11-Al S | 1 o o o o 1 1 1 FRACTION

SIGN EXTENSION

EXPONENT

TRANSFERRED 1
TO MEMORY ooooooooo\oooo

(OR ACCUMULATOR)
16 14 13 12 11 10 9'%6 5 4 3 2 1 0

BIT 7 IS EXTENDED TO

THE 8 HIGH ORDER BITS.

TK-1568

Figure 6-7 Store Exponent Example No. |

16 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLOATING POINT EXPONENT (8 BITS)
NUMBER IN FP11-F S 0 0 1 0 0 0 1 0 FRACTION

SIGN EXTENSION

EXPONENT

TRANSFERRED

TO MEMORY 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 0

(OR ACCUMULATOR) \ N
15141312111093“6543210

' BIT 7 IS EXTENDED TO
THE 8 HIGH ORDER BITS.

TK-1568

Figure 6-8 Store Exponent Example No. 2

Two examples that illustrate the process follow: one using an exponent greater than 200 and the next

using an exponent less than 200.

Example 1: Exponent = 207

Exponent of 207 10000111

2’s Complement of 200 + 10000000

Result = 7 / OOOOOLIJ

Sign' Bit 7

Example 2: Exponent = 42

Exponent of 42 00100010

2’s Complement of 200 + 10000000

Result = -42 /10100010

Sign Bit 4 2

6.3.14 Store Convert Floating-to-Integer Instruction

The Store Convert Floating-to-Integer (STCFI) instruction causes the FPP to take a floating-point

number and convert it to an integer for transfer to a destination.

The four classes of this instruction are as follows.

STCFI - Convert single-precision, 24-bit fraction to a 16-bit integer (short-integer mode).

STCFL - Convert single-precision, 24-bit fraction to a 32-bit integer (long-integer mode).

STCDI - Convert double-precision, 56-bit fraction to a 16-bit integer (short-integer mode).

STCDL - Convert double-precision, 56-bit fraction to a 32-bit integer (long-integer mode).=

The (normalized) floating-point number to be converted is transferred to the FPP. The FPP works

with the sign bit and one of the following.

1. The 15 MSBs of the fraction for floating-to-integer and double-to-floating conversion

2. The 31 MSBs of the fraction for double-to-long conversion

3. The entire fraction for floating-to-long conversion.

The FPP subtracts 201 from the exponent to determine if the floating-point number is a fraction. If the

result of the subtraction is negative, the exponent is less than 201, and the absolute value of the

floating-point number is less than 1. When converted to an integer, the value of this number is 0; a

conversion error occurs, the FZ bit is set, and Os are sent to the destination. If the result of the

subtraction is positive (or zero), it indicates that the exponent is greater than (or equal to) 201, and the

floating-point number can be converted to a nonzero integer (Figure 6-9).

A second test is made by the FPP to determine if the floating-point number to be converted is within

the range of numbers that can be represented by a 16-bit integer (I-format) or 32-bit integer (L-

format).

Consider the range of integers that can be represented in I- and L- formats and their floating-point

equivalents.

6-18

BEFORE

SHIFTING

AFTER

SHIFTING] O 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

13 PLACES . e y

4

MSB

TK-1662

Figure 6-9 Store Convert Integer Example

I-Format Floating--Point L-Format Floating-Point

(16 bits) Equivalent (32 bits) Equivalent

Most Positive 077777 +.1111...%x 215 17777777777 +.1111...%x 231
Integer

Least Positive 000001 +.100...x 21 00000000001 +.100...X 2!
Integer

Least Negative 177777 —.1111...x 216 37777777777 —.1111...%x 232
Integer

Most Negative 100000 —.1000...Xx 216 20000000000 —.100...X 232
Integer

NOTE

MSB of integer = sign of integer.

Thus, the exponent of a positive floating-point number to be converted must be less than 1619 (220 in

excess 200 notation) to convert to I-format or 32, (240 in excess 200 notation) to convert to L-format.

The exponent of a negative number to be converted must be less than or equal to 1619 or 32)¢ to

convert to I- or L-formats, respectively.

The FPP tests whether the floating-point number to be converted is within the range of integers that

can be represented in I- or L-format by subtracting a constant of 20g (for short integers) or 40g (for

long integers) from the result of the first test (result of first test = biased exponent — 201g = unbiased

exponent - 1). If the result of the subtraction is positive or 0, it indicates that the floating-point number

is too large to be represented as an integer. In that case, a conversion error occurs and Os are sent to the

destination. If the result of the subtraction is a negative number other than -1, the floating-point

number can be represented as an integer without causing an overflow condition. If the result of the

subtraction is -1, the exponent of the floating-point number is either 220 (short) or 240 (long), and

conversion proceeds. However, the floating-point number is within range only if its sign is negative

and its fraction is .100 . . . (i.e., if it is the most negative integer; see the preceding table). If, in this case,

the number is not the most negative integer, it will be detected by a third conversion error test (follow-

ing) after conversion.

6-19

To convert the fraction to an integer, the FPP shifts it right a number of places as specified by the

following algorithms.

Short integer: No. of right shifts = 20g + 201g - biased exponent — 1

Long integer: No. of right shifts = 40g + 2014 - biased exponent — 1

Regardless of the condition of the FT bit, the fractional part of the number is always truncated during

this shifting process.

If the floating-point number is positive, the integer conversion is complete after shifting, and the

number is transferred to the appropriate destination. If, however, the floating-point number is nega-

tive, the integer must be 2’s complemented before being sent to its destination.

After conversion, the FPP performs a third test for a conversion error by comparing the MSB of the

(converted) integer with the sign bit of the original (unconverted) number. If these signs are not equal,

there has been a conversion error and the FPP traps if the FIC bit is set. This test is performed to detect

a floating-point number with an exponent of 220 (short) or 240 (long) that has not been converted to

the most negative integer.

Example 1: Store Convert Floating-to-Integer (STCFI)

Exponent = 203

Sign=10

Fraction (24 bits) = .100000000000000000000000

15 MSBs of fraction = .100000000000000

203 (excess 200) = 2

Fraction=1/2 Integer to be stored = 1/2 X 2 =4

1. Test 1: Is the number to be converted a fraction?

Exponent: 203g

-201

No 2 Since this result is positive, the given floating-point

number is not a fraction and conversion may pro-

ceed without error.

2. Test 2: Is the floating-point number to be converted within range? (We are working with a

positive short integer.)

Result of Test 1: 2

=20

Yes -16 Indicates that the number to be converted is within

range and can be represented as a 16-bit integer.

No conversion error occurs.

How many right-shifts? Use algorithm:

208 + 2018 - 2035 -1 = 208 - 33 = 158 = 139

= 13 right shifts

This example involves a positive number, so conversion is complete after 13 right-shifts. If

the number had been negative, the integer would have been 2’s complemented.

6-20

3. Test 3: The MSB of the converted integer and the sign bit of the original floating-point

number are compared. Since they are equal, no conversion error occurs.

Example 2: Store Convert Floating-to-Integer (STCDL)

Exponent = 240g

Sign=0

31 MSBs of fraction = .1000000000000000000000000000000

1. Test 1: Is the number to be converted a fraction?

Exponent: 2403

-201

No 37g Since this result is positive, the given floating-point

number is not a fraction, and conversion may pro-

ceed (i.e., no conversion error occurs).

2. Test 2: Is the floating-point number to be converted within range? We are working with a

positive long integer.)

Result of Test 1: 37

-40

-1 We know the number is out of range by examining

the sign bit (in fact, this number is one greater than

the most positive integer that can be represented).

However, the FPP does not know this yet, and con-

version proceeds without error at this point.

How many right-shifts? Use algorithm:

408 + 201g-240g3-1 = 0

= No right shifts

Converted 32-bit integer = 20000000000g

Since the number is positive, conversion is now complete (i.e., no need for 2’s com-

plementing).

3. Test 3: The MSB of the converted integer (which is 1) and the sign bit of the original float-

ing-point number (which is 0) are compared. Since they are not equal, a conversion error

occurs, which we predicted in Step 2.

6.3.15 Load FP11’s Program Status

This instruction causes the FPP to transfer 16 bits from the location specified by the source to the

floating-point status (FPS) register. These 16 bits contain status information for use by the FP11-F in

order to enable and disable interrupts, set and clear mode bits, and set condition codes.

6.3.16 Store FP11’s Program Status

This instruction causes the FPP to transfer the 16 bits of the FPS register to the specified destination.

6-21

6.3.17 Store FP11’s Status

The Store FP11’s Status (STST) instruction causes the FPP to read the contents of the floating excep-

tion code (FEC) and floating exception address (FEA) registers when a floating-point exception (error)

occurs.

If mode O addressing is enabled, only the FEC is sent to the destination accumulator. If mode 0

addressing is not enabled, the FEC is stored in memory followed by the FEA. In memory, the FEA

data occupies all 16 bits of its memory location, while the FEC data occupies only the lower four bits

of its location.

When an error occurs and the interrupt trap in the CPU is enabled, the CPU traps to interrupt vector

244 and issues the STST instruction to determine the type of error.

NOTE

The STST instruction should be used only after an

error has occurred, since in all other cases the in-

struction contains irrelevant data or contains the

conditions that occurred after the last error.

6.3.18 Copy Floating Condition Codes

The Copy Floating Condition Codes (CFCC) instruction causes the FPP to copy the four floating

condition codes (FC, FZ, FV, FN) into the CPU condition codes (C, Z, V, N).

6.3.19 Set Floating Mode

The Set Floating Mode (SETF) instruction causes the CPU to clear the FD bit (bit 7 of the FPS

register) and indicate single-precision operation.

6.3.20 Set Double Mode

The Set Double Mode (SETD) instruction causes the FPP to set the FD bit (bit 7 of the FPS register)

and indicate double-precision operation.

6.3.21 Set Integer Mode

The Set Integer Mode (SETI) instruction causes the FPP to clear the IL bit (bit 6 of the FPS) and

indicate that short-integer mode (16 bits) is specified.

6.3.22 Set Long-Integer Mode

The Set Long-Integer Mode (SETL) instruction causes the FPP to set the IL bit (bit 6 of the FPS) and

indicate that long-integer mode (32 bits) is specified.

6.4 FP11-F PROGRAMMING EXAMPLES

This paragraph contains two programming examples using the FP11-F instruction set. In example 1, A

is added to B, D is subtracted from C, the quantity (A + B) is multiplied by (C - D), the product of this

multiplication is divided by X, and the result is stored. Example 2 calculates DX? + CX? + BX + A,

which involves a 3-pass loop.

Example 1: [(A + B) * (C - D)]/X

SET F

LDF A,ACO ;LOAD ACO FROM A

ADDF B,ACO ;ACOHAS (A + B)

LDF C,ACI :LOAD AC1 FROM C

SUBF D,AC]I :AC1 HAS (C - D)
MULF ACI,ACO :ACOHAS (A + D)*(C - D)

DIVF X, ACO :ACOHAS (A + D)*(C - D)/X

STF ACO,Y :STORE (A + D)*(C-D)/XIN Y

0-22

Example 2: DX3 + CX2 + BX + A

Loop2
_A

s N\

ACO=[(D*X+C)*X+B]l*X + A

Loop |
v

Loop 3

ACO=[DX?+CX +B]*X + A

ACO = DX? + CX2 + BX + A

SET F

MOV #3,%0

MOV #D+4,%]

LDF (6)+,AClI

CLRF ACO

LOOP; ADDF —(4),AC0

MULF AC1,ACO

SOB %0,LOOP

ADDF —-(4),ACO

STF ACO,~(6)

;SET UP LOOP COUNTER

;SET UP POINTER TO COEFFICIENTS

;POP X FROM STACK

;CLEAR OUT ACO

;ADD NEXT COEFFICIENT

;TOPARTIAL RESULT

;MULTIPLY PARTIAL RESULTBYX

;DO LOOP 3 TIMES

;ADD X TO GET RESULT

;PUSH RESULT ON STACK

CHAPTER 7

INSTALLATION AND CHECKOUT

7.1 INSTALLATION

Determine that +5 Vdc current is adequate prior to installation. If current is adequate, install FP11-F
in backplane slot 3.

NOTE

Current calculation must include use of BA11-A box

as a host to the PDP-11/44 backplane.

7.2 CHECKOUT

Checkout consists of turning on power and running the diagnostics in the following order.

PDP-11/44 CPU Test

PDP-11/44 Traps Test (At least Rev. C)

PDP-11/44 EIS Test DFKAC

PDP-11/44 FPP Diagnostic, Part 1 CKFPAA

PDP-11/44 FPP Diagnostic, Part 2 CKFPBA

PDP-11/44 FPP Diagnostic, Part 3 CKFPCA

1
[-

CHAPTER 8

MAINTENANCE

8.1 INTRODUCTION

This chapter describes some of the maintenance tools and techniques available for maintenance of the

FP11-F floating-point option. Descriptions of the diagnostics, programmer’s console, display features,

and documentation aids are also included.

8.2 FPI11-F DIAGNOSTICS

Three diagnostics are available to validate and diagnose the FP11-F. However, since the KD11-Z data

path is used extensively on floating-point instructions, CPU tests should be run prior to running

floating-point diagnostics if there is any doubt about the CPU. Successful running of CPU tests does

not rule out the possibility that a KD11-Z failure may cause only floating-point instructions to fail.

The three FP11-F diagnostics are listed below with a short description of each. The diagnostics should

be run in the same order as they are listed because succeeding diagnostics have been run successfully.

Otherwise, faulty diagnosis of the failed microstep and where the problem is located may result.

8.2.1 MAINDEC CKFPAA

This diagnostic tests the following floating-point instructions.

LDFPS

STFPS

CFCC

SETF, SETD, SETI, and SETL

STST

LDF and LDD (all source modes)

STD (mode 0 and 1)

ADDF, ADDD, and SUBD (most conditions)

8.2.2 MAINDEC CKFPBA

This diagnostic tests the following floating-point instructions.

ADDF, ADDD, and SUBD (all conditions not listed in DFFPAA)

CMPD and CMPF

DIVD and DIVF

MULD and MULF

MODD and MODF

8-1

8.2.3 MAINDEC CKFPCA

This diagnostic tests the following floating-point instructions.

STF and STD (all modes)

STCFD and STCDF

CLRD and CLRF

NEGF and NEGD

ABSF and ABSD

TSTF and TSTD

NEGF, ABSF, and TSTF (all source modes)

LDFBS (all source modes)

LDCIF, LDCLF, LDCID, and LDCLD

LDEXP

STFPS (all destination modes)

STCFL, STCFI, STCDL, and STCDI

STEXP

STST

I and D Space Tests

Auto Increment/Decrement Check - SR1

8.3 ASCII PROGRAMMER’S CONSOLE

Normal console and maintenance features provided by the programmer’s console to debug and diag-

nose the KD11-Z processor are directly extendable in use to the FP11-F floating-point option. These

features include the normal console functions of examining and depositing into memory and general

registers; single-instruction stepping; the console maintenance features of single micro-instruction

stepping; and displaying MPC lines, Unibus data, floating-point data and machine dependent regis-

ters.

The console displays MPC 0--10 L if the proper command is selected at the programmer’s console.

Thus, single microstepping the machine through floating-point microcode is possible.

A change in the KD11-Z processor from the KD11-E processor enables the AMUX lines onto the

Unibus data lines.

NOTE

Refer to the 11/44 Serial Console Specification for

full use of the console.

8-2

8.4 FPI11-F FLOW DIAGRAMS

Each microstep in the FPI1-F flow diagrams denotes what will be displayed on the Unibus data lines
when the manual clock is enabled. This information is given just below the dotted line in each block.

The information may be a constant (such as 100000) or may be defined in a general way such as
Q(B7:B0), which indicates that bytes 7 and 0 of the Q-register will be displayed. Refer to Figure 8-1.

For a detailed description in microflow symbology, refer to Sheet 2 of FP11-F flows (FD-FP11-F-2).

1457 l 8-L
F12 « SR1 (F12)

E12 « ZERO

————————— JUMP/8-M

D « ZERO: F12 (B6)

DISPLAY INFORMATION {
TK-1627

Figure 8-1 Display Information

FP11-F FLOATING-POINT PROCESSOR |

TECHNICAL MANUAL Reader’s Comments

EK-FP11F-TM-002

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of our

publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized, well

written, etc.? Is it easy to use?

What features are most useful?

What faults or errors have you found in the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? Why?

O Please send me the current copy of the Technical Documentation Catalog, which contains information on

the remainder of DIGITAL'’s technical documentation. ‘

Name Street

Title City

Company State/Country

Department Zip

Additional copies of this document are available from:

Digital Equipment Corporation

444 Whitney Street

Northboro, Ma 01532

Attention: Communications Services (NR2/M15)

Customer Services Section

Order No. EK-FP11F-TM-002

~— ———~ +~— — —— —— — —— Do Not Tear - Fold Here and Staple¢ — — — — — — — —

Eflanflan No Postage
Necessary

if Mailed in the

United States

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO.33 MAYNARD, MA.

POSTAGE WILL BE PAID BY ADDRESSEE

Digital Equipment Corporation

Educational Services Development and Publishing

1925 Andover Street

Tewksbury, Massachusetts 01876

	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	7-01
	7-02
	8-01
	8-02
	8-03
	replyA
	replyB

