EK-KD1EA-MM-001

KD11-EA
central processor
maintenance manual

digital equipment corporation - maynard, massachusetts

First Edition April 1977

Copyright © 1977 by Digital Equipment Corporation

The material in this manual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporation assumes no respon-
sibility for any errors which may appear in this
manual.

Printed in U.S.A.,

This document was set on DIGITAL’s DECset-8000
computerized typesetting system.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC DECtape PDP
DECCOMM DECUS RSTS
DECsystem-10 DIGITAL TYPESET-8
DECSYSTEM-20 MASSBUS TYPESET-11
UNIBUS

CHAPTER 1

CHAPTER 2

2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.6

CHAPTER 3

CHAPTER 4

4.1

4.2
42.1
422
423
42.4
425
4.2.6
4.3
43.1
432
433
434
4.4
44.1
442
443
4.5
45.1
452
453
453.1
4.5.3.2
4533
4.5.3.4
4535
4.6

4.7

CONTENTS

Page
OVERALL DESCRIPTION
INSTRUCTION SET
INTRODUCTION 2-1
ADDRESSING MODES e 2-1
PDP-11/34A INSTRUCTIONS i i e 2-4
INSTRUCTION EXECUTIONTIME 2-25
Basic Instruction Set Timing L. 2-25
Bus Latency Times e 2-30
EXTENDED INSTRUCTIONSET 2-30
INSTRUCTION SET DIFFERENCES 2-31
CPU OPERATING SPECIFICATIONS
DETAILED HARDWARE DESCRIPTION
INTRODUCTION e s e e e e 4-1
DATAPATH e e e 4-1
General Description Lo o 4-1
Arithmetic Logic Unit (ALU) 4-5
Scratchpad e 4-7
Bleg o e e 4-12
ALU Multiplexer (AMUX) 4-21
Processor StatusWord 4-21
CONDITION CODES e e e e e e e e 4-25
Instruction Categorizing ROM 4-25
Byte Multiplexer BYTEMUX) 4-25
Cand VDecode ROM 4-26
Condition Code Signal CCZH 4-26
UNIBUS ADDRESS AND DATA INTERFACE 4-26
Unibus Drivers and Receivers 4-26
Unibus Address Generation Circuitry 4-26
Internal Address Decoder oL 4-30
INSTRUCTION DECODING it i i i e 4-30
General Description s 4-30
Instruction Register oL 4-31
Instruction Decoder 4-31
Instruction Decoder Circuitry 4-31
Double-Operand Instructions 4-32
Single-Operand Instructions 4-34
Branch Instructions oo 4-35
Operate Instructionso 4-35
AUXILIARY ALUCONTROL 4-36
DATA TRANSFER CIRCUITRY 4-40

il

4.7.1
4.7.2
4.7.2.1
4.7.2.2
4723
4724
4.7.2.5
4.7.2.6
4.7.2.7
4.7.2.8
4.7.2.9
4.7.2.10
4.8

4.9

4.10
4.10.1
4.10.2
4.10.3
4.11
4.11.1
411.2
4.12
4.12.1
4.12.1.1
4.12.1.2
412.1.3
412.1.4
412.1.5
412.2
412.2.1
41222
4.12.2.3
4123
41231
41232
41233
4.12.4
4124.1
41242
4.12.5
4.12.5.1
41252
4.12.6
4.12.6.1

CONTENTS (CONT)

Page

General Description o .4-40
Control Circuitry 4-40
Processor Clock Inhibit 4-40

Unibus Synchronization 4-40
BusControl e 4-41
NO-SACK Timeout Circuitry 4-42
MSYN/SSYN Time-Out Circuitry 4-43
BusErrors L 4-46

Parity Errors L. 4-46

End of Transfer Circuitry 4-46
Data-in-Pause Transfer 4-46

Odd Address Detection Lo 4-46

POWER FAIL/AUTO RESTART 4-49
PROCESSOR CLOCK o o i e e it e e e e e s s e 4-50
PRIORITY ARBITRATION o o e 4-52
Bus Requestso L 4-52
Nonprocessor Requests (NPRs) 4-55

Halt Grant Requests o 4-55
SERVICE TRAPS e e 4-57
General Descriptiono Lo 4-57
Circuit Operation Lo 4-57
MEMORY MANAGEMENT e 4-58
General e e 4-58
Introduction Lo 4-58
Programmingo o 4-59

Basic Addressing oL Lo 0oL e 4-59

Active Page Registers 4-59
Capabilities Provided by Memory Management 4-60
Relocation e 4-60
Virtual Addressing oL 000 4-60

Program Relocation 4-61

Memory Units o e 4-63
Protection e e 4-63
Inaccessible Memoryo 4-63
Read-Only Memory 4-63

Multiple Address Spaceo oo 4-63

Active Page Registers oo 4-64
Page Address Registers (PAR), 4-65

Page Descriptor Registers 4-65

Virtual and Physical Addresses oL 4-70
Construction of a Physical Address 4-70
Determining the Program Physical Address 4-71

Status Registers Lo L e 4-72
Status Register O(SRO) L. 4-72

iv

4.12.6.2
4.12.7
4.12.8
4.13
4.13.1
4.13.2
4.13.3

CHAPTER 5

5.1
5.2

Figure No.

2-1
22
23
4-1
4-2
4-3
4-4
45
46
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23

CONTENTS (CONT)

Page
Status Register 2 (SR2) 4-74
Mode Descriptiono 4-74
Interrupt Conditions Lo L Lo 4-74
CONTROL STORE o e h e s 4-75
General Description Lo 4-75
Branching Within Microroutines 4-75
Control Store Fields, 4-77
MICROCODE
MICROPROGRAM FLOWS, 5-1
FLOW NOTATION GLOSSARY 5-1
FIGURES
Title Page
Addressing Mode Instruction Formats 2-2
PDP-11 Instruction Formats 2-24
Extended Instruction Set Number Formats 2-30
KD11-EA Block Diagram 4-2
Simplified KD11-EADataPath 4-3
ALU Block Diagram 4-6
Scratchpad Timing 4-8
Scratchpad Address Multiplexer (SPAM) 4-9
B Leg Block Diagram 4-12
BREG Block Diagram 4-13
BX REG Block Diagram 4-15
BMUX Block Diagram 4-16
B Leg Shift Logic 4-18
AMUX Block Diagram 4-22
Processor StatusWord Lo 4-24
Byte Multiplexer 4-25
Rotate Instructions 4-27
Cand VDecode ROM 4-28
Unibus Transceiver 4-28
Processor Clock Cycle Timing 4-29
Unibus Address Logic Block Diagram 4-29
Unibus Synchronizer 4-40
NO-SACK Timeout Circuitry 4-42
SSYN/MSYN Control i 4-44
Data Transfer Multiplexer 4-45
Error Logic 4-47

Figure No.

4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
4-35
4-36
4-37
4-38
4-39
4-40
4-41
4-42
5-1

Table No.

2-1
22
23
2-4
25
2-6
2-7
2-8
3-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7

FIGURES (CONT)

End-of-Transfer Logic
Odd Address Detection L e e e e e e e e e e
BUS AC LO and BUS DC LO Timing Diagram
Processor Clock Circuito
Priority Arbitration Synchronizer
Priority Bus Controlo
Active Page Registerso oo o
Simplified Memory Relocation Example
Relocation of a 32K Word Program into 124K-Word Physical Memory . . .
Page Address Register Lo
Page Descriptor Register
Example of an Upward-Expandable Page
Example of a Downward-Expandable Page
Interpretation of a Virtual Address
Displacement Field of Virtual Address
Construction of a Physical Address oo
Format of Status Register 0 (SRO)
Format of Status Register 2 (SR2)
Control Store Fields
KD11-EA Simplified Flow Diagram

TABLES

Addressing Modes L Lo e e
Single Operand Instructions oo
Double Operand Instructions oL
Program Control Instructions o oL
Miscellaneous Instructionso oo
Condition Code Operators« o v v v v it i b e e e
PDP-11/34A Instruction Seto o
Programming Differences 00000
Standard and Modified Unibus Pin Assignments
Function Units of the KD11-EA DataPath
ALU Functions and Control Signals
Scratchpad Enabling Configurationsand Modes
SPAM Input Data Sources oo
SPM Register Utilization oo e
B and BX Register Enabling Configurations and Modes
BMUX Enabling Configurations and Modes

vi

Page

4-48
4-48
4-50
4-51
4-54
4-56
4-60
4-61

. 4-62

4-65
4-65
4-67
4-68
4-70
4-70
4-71
4-72
474
4-76

5-2

Table No.

4-8

4-9

4-10
4-11
4-12
4-13
4-14

TABLES (CONT)

Title Page
Processor Status Word Register Bit Assignments 4-23
Auxiliary Control for Binary and Unary Instructions 4-38
Priority Service Order o 4-53
Vector Addresses e e e e 4-58
PAR/PDR Address Assignments oo u i e 4-64
Access Control Field Keys 4-66
Relating Virtual Address to PAR/PDR Set 4-72

vii

PREFACE

This manual describes the KD11-EA Central Processing Unit (M8265 and M8266). The user must
have a general knowledge of digital circuitry and a basic understanding of PDP-11 computers to
completely understand the contents of this manual.

The following related documents may be valuable as references:

PDP-11 Peripherals Handbook

PDP-11/34 Processor Handbook

PDP-11/34 System User’s Guide (EK-11034-OP)
KDI11-EA Print Set (MP00043)

iX

CHAPTER 1
OVERALL DESCRIPTION

The KDI11-EA is a 2-board central processing unit (CPU) that is combined with a memory system,
Unibus terminators, and optional peripherals in a DD 11-P backpanel to build a basic PDP-11/34A
computer. The unit connects directly to the Unibus as a subsystem, and is capable of controlling the
time allocation of the Unibus for peripherals, performing arithmetic and logic operations, and decod-
ing instructions. It can perform data transfers directly between 1/O devices and memory, do both
single- and double-operand addressing, handle both 16-bit word and 8-bit byte data, and address up to
128K of Unibus address space via a memory management system.

The KD11-EA is program-compatible with both the KD11-A (PDP-11/35 and PDP-11/40 computer
systems) and the LSI-11 (with the inclusion of the two special LSI-11 instructions). It contains the
KT11-D Memory Management System (optional with the KD11-A, not offered with the LSI-11) and
executes the Extended Instruction Set (EIS) instructions, which were optional with the KD11-A and
standard with the LSI-11. The KD11-EA, when used in conjunction with the FP11-A floating point
option, will execute the Full Floating Point Instruction Set (FP11-C compatible).

1-1

CHAPTER 2
INSTRUCTION SET

2.1 INTRODUCTION
The KDI11-EA is defined by its instruction set. The sequences of processor operations are selected
according to the instruction decoding. The following describes the PDP-11/34A instructions and

instruction set addressing modes along with instruction set differences from those of the KD11-A,
KDI11-B, and KD11-D.

2.2 ADDRESSING MODES _
Data stored in memory must be accessed and manipulated. Data handling is specified by a PDP-
11/34A instruction (MOV, ADD, etc.), which usually indicates:

1.
2.

3.

The function (operation code)

A general-purpose register to be used when locating the source operand and/or locating the
destination operand

An addressing mode (to specify how the selected register(s) is to be used)

Because a large portion of the data handled by a computer is usually structured (in character strings, in
arrays, in lists, etc.), the PDP-11/34A has been designed to handle structured data efficiently and
flexibly. The general registers may be used with an instruction in any of the following ways:

1.

2.

As accumulators. The data to be manipulated resides within the register.

As pointers. The contents of the register are the address of the operand, rather than the
operand itself.

As pointers, which automatically step through core locations. Automatically stepping for-
ward through consecutive core locations is known as autoincrement addressing; automat-
ically stepping backward is known as autodecrement addressing. These modes are
particularly useful for processing tabular data.

As index registers. In this instance the contents of the register and the word following the
instruction are summed to produce the address of the operand. This allows easy access to
variable entries in a list.

PDP-11/34As also have instruction addressing mode combinations that facilitate temporary data stor-
age structures for convenient handling of data which must be frequently accessed. This is known as the

“stack.”

2-1

In the PDP-11/34A, any register can be used as a “‘stack pointer” under program control; however,
certain instructions associated with subroutine linkage and interrupt service automatically use Register
6 as a “hardware stack pointer.” For this reason, R6 is frequently referred to as the “SP.”

R7 is used by the processor as its program counter (PC).

Two types of instructions utilize the addressing modes: single-operand and double-operand. Figure 2-1
shows the formats of these two types of instructions. The addressing modes are listed in Table 2-1.

* 9% * % K
T T =T T T T T T T T : T T
MODE | @ Rn
1 1 1 1 1 1 1 L 1 i i i 1
15 6 5 4 3 2 0
L ~ A v J
OP CODE DESTINATION ADDRESS FIELD
* =SPECIFIES DIRECT OR INDIRECT ADDRESS
#*%=SPECIFIES HOW REGISTER WILL BE USED
*#% = SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS
(a)
*3% * R K *% * . KN
T T T T 1 T | T T
OP CODE MODE @ Rn MODE ; (© Rn
. l i 1 ! 1 1 L
15 2 1" 10 9 8 6 5 4 3 2 0
u v A v J
SOURCE ADDRESS FIELD DESTINATION ADDRESS FIELD

» = DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
#%= SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED
*x% = SPECIFIES A GENERAL REGISTER

(b)
M-1227

Figure 2-1 Addressing Mode Instruction Formats

Table 2-1 Addressing Modes

Binary Assembler
Mode Code Name Syntax* Function
Direct Modes

0 000 Register Rn Register contains operand.

2 010 Autoincrement (Rn)+ Register contains address of oper-
and. Register contents incremented
after reference.

4 100 Autodecrement -(Rn) Register contents decremented
before reference register contains
address of operand.

6 110 Index X(Rn) Value X (stored in a word following
the instruction) is added to (Rn) to
produce address of operand. Nei-
ther X nor (Rn) is modified.

Deferred Modes
1 001 Register @Rnor (Rn) Register contains the address of the
Deferred operand.
3 011 Autoincrement @(Rn)+ Register is first used as a pointer to
Deferred a word containing the address of
the operand, then incremented
(always by two, even for byte
instructions).

5 101 Autodecrement @-(Rn) Register is decremented (always by

Deferred two, even for byte instructions) and
then used as a pointer to a word
containing the address of the
operand.

7 111 Index Deferred @X(Rn) Value X (stored in the memory

word following the instruction) and
(Rn) are added and the sum is used
as a pointer to a word containing
the address of the operand. Neither
X nor (Rn) is modified.

2-3

Table 2-1 Addressing Modes (cont)

Binary Assembler
Mode Code Name Syntax* Function
PC Addressing

2 010 Immediate #n Operand follows instruction.

3 011 Absolute @#A Absolute address follows
instruction.

6 110 Relative A Address of A, relative to the
instruction, follows the instruction.

7 111 Relative Deferred | @A Address of location containing
address of A, relative to the instruc-
tion, follows the instruction.

* Rn = Register
X, n, A = next program counter (PC) word (constant)

2.3 PDP-11/34A INSTRUCTIONS

The PDP-11/34A instructions can be divided into five groups:

DB

Single-Operand Instructions (shifts, multiple precision instructions, rotations)
Double-Operand Instructions (arithmetic and logical instructions)

Program Control Instructions (branches, subroutines, traps)

Operate Group Instructions (processor control operations)

Condition Code Operators (processor status word bit instructions)

Tables 2-2 through 2-6 list each instruction, including byte instructions for the respective instruction
groups. Figure 2-2 shows the six different instruction formats of the instruction set, and the individual
instructions in each format.

2-4

Table 2-2 Single Operand Instructions

Mnemonic OP Code Operation Condition Codes Description

CLR 0050DD* (dst)jL <0 N: cleared Contents of specified destination are replaced with zeroes.
CLRB 1050DD Z: sct
Clear V: cleared

C: cleared
COM 0051DD (dst) < n (dst) N: set if most significant Replaces the contents of the destination address by their
COMB 1051DD bit of result is O logical complement (each bit equal to O set and each bit equal
Complement Z: setif result is O to 1 cleared).

V: cleared

C: set
INC 0052DD (dst) < (dst) + 1 N: set if result is less than O Add 1 to the contents of the destination.
INCB 1052DD Z: setif resultis O
Increment V: set if (dst) was 077777

C: not affected
DEC 0053DD (dst) < (dst) - 1 N: set if result is less than O Subtract 1 from the contents of the destination.
DECB 1053DD Z: setif resultis O
Decrement V: set if (dst) was 100000

C: not affected
NEG 0054DD (dst) < - (dst) N: set if result is less than O Replaces the contents of the destination address by its 2’s com-
NEGB 1054DD Z: setif resultis O plement. Note that 100000 is replaced by itself.
Negate V: set if result is 100000

C: cleared if result is O
ADC 0055DD (dst) < (dst) + C N: set if result is less than O Adds the contents of the C-bit into the destination. This permits
ADCB 1055DD Z. set if result is O the carry from the addition of the low-order words/bytes to be
Add Carry V: setif (dst) is 077777 and | carried into the high-order results.

Cisl
C: setif (dst) is 177777 and

Cisl

2-5

Table 2-2 Single Operand Instructions (Cont)

Mnemonic

OP Code

Operation

Condition Codes

Description

SBC
SBCB
Subtract Carry

TST
TSTB
Test

ROR
RORB
Rotate Right

ROL
ROLB
Rotate Left

0056DD
1056DD

0057DD
1057DD

0060DD

0061DD
1061DD

(dst) < (dst) C

(dst) < (dst)

(dst) < (dst)
rotate right
one place.

(dst) < (dst)
rotate left
one place.

z

set if result is less than O
set if result is O

set if (dst) was 100000
cleared if (dst) is 0 and C
is 1

set if result is less than O
set if result is O

cleared

cleared

set if high-order bit of

the result is set

set if all bits of result

are 0

loaded with the exclusive-
OR of the N-bit and the
C-bit as set by ROR

. set if the high order bit of

the result word is set
(result < 0); cleared
otherwise

. set if all bits of the

result word = Q; cleared
otherwise

loaded with the exclusive-
OR of the N-bit and C-bit
(as set by the completion
of the rotate operation)
loaded with the high order
bit of the destination

Subtracts the contents of the C-bit from the destination. This
permits the carry from the subtraction of the low order words/
bytes to be subtracted from the high-order part of the result.

Sets the condition codes N and Z according to the contents of
the destination address.

Rotates all bits of the destination right one place. The low-
order bit is loaded into the C-bit and the previous contents of
the C-bit are loaded into the high-order bit of the destination.

Rotate all bits of the destination left one place. The high-
order bit is loaded into the C-bit of the status word and the
previous contents of the C-bit are loaded into the low-order
bit of the destination.

2-6

Table 2-2

Single Operand Instructions (Cont)

Mnemonic

OP Code

Operation

Condition Codes

Description

ASR
ASRB
Arithmetic
Shift Right

ASL
ASLB
Arithmetic
Shift Left

0062DD
1062DD

0063DD
1063DD

(dst) < (dst) N:

shifted one
place to the
right.

(dst) < (dst) N:

shifted one
place to the left.

set if the high order bit

of the result is set

(result < 0), cleared
otherwise

set if the result = 0;
cleared otherwise

loaded from the exclusive-
OR of the N-bit and C-bit
(as set by the completion
of the shift operation).

. loaded from low order bit

of the destination

set if high-order bit of the
(result < 0); cleared
otherwise

set if the result = Q; cleared
otherwise

loaded with the exclusive-
OR of the N-bit and C-bit
and C-bit (as set by the
completion of the shift
operation)

. loaded with the high-order

bit of the destination

Shifts all bits of the destination right one place. The high-
order bit is replicated. The C-bit is loaded from the low-order
bit of the destination. ASR performs signed division of the
destination by two.

Shifts all bits of the destination left one place. The low-order
bit is loaded with a 0. The C-bit of the status word is loaded
from the high-order bit of the destination. ASL performs a
signed multiplication of the destination by 2 with overflow
indication.

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
ASH 072RSS R < R Shifted N: set if result <0;cleared The contents of the register are shifted right or left
Arithmetic Arithmetically NN otherwise. the number of times specified by the source
Shift places to right or Z: set if result = 0; cleared operand. The shift count is taken as the low-order
left otherwise. 6 bits of the source operand. This number ranges
Where NN = (src) V: set if sign of register from -32 to +31. Negative is a right shift and posi-
changed during shift; cleared | tive is a left shift. See Paragraph 2.5 for example.
otherwise.
C: loaded from last bit shift
out of register.
ASHC 073RSS R, Rvl«< R, Rvl N: set if result <0; cleared The contents of the register and the register ORed
Arithmetic The double word otherwise. with one are treated as one 32-bit word. Rvl (bits
Shift Combined is shifted NN Z: set if result = O; cleared 0—15) and R (bits 16—31) are shifted right or left
places to the right otherwise. the number of times specified by the shift count.
or left, where NN = | V: set if sign bit changes The shift count is taken as the low-order 6 bits of
(src) during the shift; cleared the source operand. This number ranges from -32
otherwise. to +31. Negative is a right shift and positive is a
C: loaded with high-order bit | left shift.
when right shift (loaded with [When the register chosen is an odd number, the
the last bit shifted out of the | register and the register ORed with one are the
32-bit operand). same. In this case, the right shift becomes a rotate.
The 16-bit word is rotated right the number of bits
specified by the shift count. See Paragraph 2.5 for
example.
SXT 0067DD (dst) < Oif N bit N: unaffected If the condition code bit N is set then a -1 is placed
Sign Extend is clear Z: set if N bit clear in the destination operand: if N bit is clear, then a

(dst) < -1 N bit
is set

V: cleared
C: unaffected

0 is placed in the destination operand. This instruc-
tion is particularly useful in multiple precision
arithmetic because it permits the sign to be extended
through multiple words.

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
SWAB 0003DD Byte 1/Byte O N: set if high-order bit of Exchanges high-order byte and low-order byte of the
Swap Byte Byte O/Byte 1 low-order byte (bit 7) of destination word (destination must be a word
result is set; cleared address).
otherwise.
Z: set if low-order byte of
result = O; cleared otherwise.
V: cleared
C: cleared
Table 2-3 Double Operand Instructions
Mnemonic OP Code Operation Condition Codes Description
MOV 01SSDD* (dst) « (src) ¥ N: set if (sr¢) <O0; cleared Word: Moves the source operand to the destination location.
MOVB 11SSDD otherwise The previous contents of the destination are lost. The source
Move Z: set if (src) = 0: cleared operand is not affected.
otherwise Byte: Same as MOV The MOVB to a resistor (unique among
V: cleared byte instructions) extends the most significant bit of the low
C: not affected order byte (sign extension). Otherwise. MOVB operates on
bytes exactly as MOV operates on words.
CMP 02SSDD (src) - (dst) N: set if result < 0. cleared Compares the source and destination operands and sets the
DMPB 12SSDD [in detail, otherwise condition codes which may then be used for arithmetic and
Compare (sre) + ~ Z: setif result = 0; cleared logical conditional branches. Both operands are unaffected.
(dst) + 1] otherwise The only action is to set the condition codes. The compare is
V: set if there was arithmetic | customarily followed by a conditional branch instruction. Note
overflow (i.e., operands that unlike the subtract instruction the order of operation is
were of opposite signs (src) - (dst), not (dst) - (src).
and the sign of the des-
tination was the same
as the sign of the result);
cleared otherwise.
C: cleared if there was a

carry from the most sig-
nificant bit of the result;
set otherwise

2-9

Table 2-3 Double Operand Instructions (Cont)
Mnemonic OP Code Operation Condition Codes Description
BIT 03SSDD (src) A (dst) N: set if high order bit of Performs logical AND comparison of the source and destination
BITB 13SSDbD result set: cleared other- operands and modifies condition codes accordingly . Neither
Bit Test wise the source nor destination operands are affected. The BIT in-
Z: set if result = 0; cleared struction may be used to test whether any of the corresponding
otherwise bits that are set in the destination are clear in the source.
V: cleared
C: not affected
BIC 04SSDD (dst) < ~ (src) N: set if high order bit of Clears each bit in the destination that corresponds to a set bit
BICB 14SSDD A\ (dst) result set; cleared other- in the source. The original contents of the destination are lost.
Bit Clear wise The contents of the source are unaffected.
Z: setif result = O; cleared
otherwise
V: cleared
C: not affected
BIS 05SSDD (dst) < (src) N: set if high order bit of Performs inclusive-OR operation between the source and des-
BISB 15SSDD A\ (dst) result set; cleared other- tination operands and leaves the result at the destination
Bit Set wise address; i.e., corresponding bits set in the destination. The
Z: set if result = Q; cleared contents of the destination are lost.
otherwise
V: cleared
C: not affected
ADD 06SSDD (dst) < (src) N: set if result O: cleared Adds the source operand to the destination operand and stores
Add + (dst) otherwise the result at the destination address. The original contents of
Z: set if result = 0: cleared the destination are lost. The contents of the source are not

otherwise

affected. Two’s complement addition is performed.

2-10

Table 2-3

Double Operand Instructions (Cont)

Mnemonic

OP Code

Operation

Condition Codes

Description

ADD (Cont)

SUB
Subtract

16SSDD

(dst) < (dst) -
(src) in detail,
(dst) + ~ (src)
+ 1 (dst)

set if there was arithmetic
overflow as a result of the
operation (that is, both
operands were of the same
sign and the result was of
the opposite sign); cleared
otherwise.

. set if there was a carry from

the most significant bit of
the result; cleared other-
wise.

set if result < 0; cleared
otherwise

. set if result = 0; cleared

otherwise

set if there was arithmetic
overflow as a result of
the operation (i.e., if
operands were of op-
posite signs and the sign
of the source was the
same as the sign of the
result); cleared otherwise
cleared if there was a
carry from the most
significant bit of the
result; set otherwise

Subtracts the source operand from the destination operand and
leaves the result at the destination address. The original contents
of the destination are lost. The contents of the source are not
affected. In double precision arithmetic, the C-bit, when set,

indicates a borrow.

* SS = source (address mode and register)
t (src) = source contents

2-11

Table 2-3 Double Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
MUL 070RSS R, Rvl« Rx(src) N: set if product is <0; The contents of the destination register and source
Multiply cleared otherwise. taken as two’s complement integers are multiplied
Z: set if product is 0; and stored in the destination register and the suc-
cleared otherwise. ceeding register (if R is even). If R is odd, only the
V: cleared low-order product is stored. Assembler syntax is:
C: set if the result is less MUL S,R.
than -2'* or greater than (Note that the actual destination is R, Rvl which
or equal to 2'% -1. reduces to just R when R is odd.)
(See Paragraph 2.5.1 for example).
DIV 071RSS R, Rvl < R, Rvl N: set if quotient <0; The 32-bit two’s complement integer in R and Rvl
Divide (src) cleared otherwise. is divided by the source operand. The quotient is
Z: set if quotient = 0; left in R; the remainder is of the same sign as the
cleared otherwise. dividend. R must be even.
V: set if source = 0 or if the (See Paragraph 2.5.2 for example.)
absolute value of the register
is larger than the absolute
value of the source. (In this
case the instruction is
aborted because the quotient
would exceed 15 bits.)
C: set if divide O attempted;
cleared otherwise.
XOR 074RDD (dst) < Rv (dst) N: set if the result <0, The exclusive OR of the register and destination

cleared otherwise.
Z: set if result = 0;
cleared otherwise.
V: cleared

C: unaffected

operand is stored in the destination address. Contents

of register are unaffected. Assembler format is
XOR R,D.

2-12

Table 2-4 Program Control Instructions

Mnemonic OP Code Operation Condition Codes Description

BR 000400 PC «PC+ Unaffected Provides a way of transferring program control within a range

Branch XXX (2 X offset) of -128 to +127 words with a one word instruction. It is an
unconditional branch.

BNE 001000 PC < PC + Unaffected Tests the state of the Z-bit and causes a branch if the Z-bit is

Branch if not XXX (2 X offset) is clear. BNE is the complementary operation to BEQ. It is

equal ifZ=0 used to test inequality following a CMP, to test that some bits
set in the destination were also in the source, following a BIT,
and generally, to test that the result of the previous operation
was not 0.

BEQ 001400 PC«<PC + Unaffected Tests the state of the Z-bit and causes a branch if Z is set. As

Branch if equal XXX (2 X offset) if an example, it is used to test equality following a CMP opera-

Z=1 tion, to test that no bits set in the destination were also set in

the source following a BIT operation, and generally, to test
that the result of the previous operation was 0.

BGE 002000 PC «PC + Unaffected Causes a branch if N and V are either both clear or both set.

Branch if greater XXX (2 X offset) if BGE is the complementary operation to BLT. Thus. BGE

than or equal NvV=0 always causes a branch when it follows an operation that
caused addition to two positive numbers. BGE also causes a
branch on a 0 result.

2-13

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
BLT 002400 PC < PC + Unaffected Causes a branch if the exclusive-OR of the N- and V-bits are 1.
Branch if less XXX (2 X offset) if Thus, BLT always branches following an operation that added
than NVv=1 two negative numbers, even if overflow occurred. In particular,
BLT always causes a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even
if overflow occurred). Further, BLT never causes a branch when
it follows a CMP instruction operating on a positive source and
negative destination. BLT does not cause a branch if the result
of the previous operation was 0 (without overflow).
BGT 003000 PC < PC + Unaffected Operation of BGT is similar to BGE, except BGT does not
Branch if greater XXX (2 X offset) cause a branch on a 0 result.
than if Zv(Ny
V)=0
BLE 003400 PC < PC + Unaffected Operation is similar to BLT, but in addition will cause a branch
Branch if less than XXX (2 X offset) if if the result of the previous operation was 0.
or equal to Zv (N™V)
=1
BPL 100000 PC «<PC + Unaffected Tests the state of the N-bit and causes a branch if N is clear.
Branch if plus XXX (2 X offset) if BPL is the complementary operation of BML.
N=0
BMI 100400 PC «<PC+ Unaffected Tests the state of the N-bit and causes a branch if N is set. It is
Branch if minus XXX (2 X offset) if used to test the sign (most significant bit) of the result of the
N=1 previous operation. .

2-14

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
BHI 101000 PC «PC + Unaffected Causes a branch if the previous operation causes neither a carry
Branch if higher XXX (2 X offset) if nor a 0 result. This will happen in comparison (CMP) operations
C=0 as long as the source has a higher unsigned value than the

destination.

BLOS 101400 PC«<PC+ Unaffected Causes a branch if the previous operation caused either a carry

Branch if lower XXX (2 X offset) if or a 0 result. BLOS is the complementary operation to BHI.

or same CvZi=| The brar.ch occurs in comparison operations as long as the
source is equal to or has a lower unsigned value than the
destination. Comparison of unsigned values with the CMP
instruction to be tested for “higher or same” and ‘‘higher” by
a simple test of the C-bit.

BVC 102000 PC«<PC+ Unaffected Tests the state of the V-bit and causes a branch if the V-bit is

Branch if V-bit XXX (2 X offset) if clear. BVC is complementary operation to BVS.

clear V=0

BVS 102400 PC«PC + Unaffected Tests the state of V-bit (overflow) and causes a branch if the

Branch if V-bit set XXX (2 X offset) if V-bit is set. BVS is used to detect arithmetic overflow in the

V=1 previous operation.

BCC 103000 PC < PC + Unaffected Tests the state of the C-bit and causes a branch if C is clear.

BHIS XXX (2 X offset) if BCC is the complementary operation to BCS.

Branch if carry C=0

clear

Branch if higher

than the same

BCS 103400 PC«<PC+ Unaffected Tests the state of the C-bit and causes a branch if C is set. It is

BLO XXX (2 X offset) if used to test for a carry in the result of a previous operation.

Branch if carry set
Branch if lower

C=1

2-15

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
IMP 0001DD PC < (dst) Unaffected JMP provides more flexible program branching than provided
Jump with the branch instruction. Control may be transferred to any

location in memory (no range limitation) and can be accom-
plished with the full flexibility of the addressing modes. with
the exception of register mode 0. Execution of a jump with
mode O will cause an illegal instruction condition. (Program
control cannot be transferred to a register.) Register deferred
mode is legal and will cause program control to be transferred
to the address held in the specified register. Note that in-
structions are word data and must therefore be fetched from
an even numbered address. A boundary error trap condition
will result when the processor attempts to fetch an instruction
from an odd address.

2-16

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

JRS 004RDD (tmp) « (dst) Unaffected In execution of the JSR, the old contents of the specified

Jump to (tmp is an inter- register (the linkage pointer) are automatically pushed onto

subroutine nal processor the processor stack and new linkage information placed in
register) the register. Thus, subroutines nested within subroutines to any
{ (SP) < reg depth may all be called with the same linkage register. There
(push reg con- is no need either to plan the maximum depth at which any
tents onto proces- particular subroutine will be called or to include instructions
sor stack) in each routine to save and restore the linkage pointer. Further,
reg < PC PC since all linkages are saved in a re-entrant manner on the pro-
holds location fol- cessor stack, execution of a subroutine may be interrupted,
lowing JSR; this and the same subroutine re-entered and executed by an in-
address PC « terrupt service routine. Execution of the initial subroutine can
(tmp), now put in then be resumed when other requests are satisfied. This pro-
(reg) cess (called nesting) can proceed to any level.

JSR PC, dst is a special case of the PDP-11 subroutine call
suitable for subroutine calls that transmit parameters.

RTS 00020R PC « (reg) Unaffected Loads contents of register into PC and pops the top element

Return from (reg) < SP 1 of the processor stack into the specified register.

subroutine

Return from a non-re-entrant subroutine is typically made
through the same register that was used in its call. Thus, a
subroutine called with a JSR PC, dst exits with an RTS PC,
and a subroutine called with a JSR RS, dst may pick up
parameters with addressing modes (R5) +, X (R5), or @X (R5)
and finally exit, with an RTS RS.

2-17

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
MARK 0064NN SP < SP + 2xnn Unaffected Used as part of the standard PDP-11 subroutine return
PC < R5 convention. MARK facilitates the stack cleanup pro-
R5 < (SP) t cedures involved in subroutine exit. Assembler format
nn = number of is: MARK N
parameters
Example:MOV RS5,-(SP) ;place old RS on stack
MOV P1,<(SP) ;place N parameters on
MOV P2,-(SP) ;the stack to be used

;there by the subroutine

MOV PN, —(SP) ;places the instruction
MOV #MARKN,~(SP) ;MARK N on the stack

;set up address at Mark
MOV SP,R5 ;N instruction

JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD RS
Pl
PN
MARK N
OLD PC

And the program is at the address SUB which is the
beginning of the subroutine.
SUB: sexecution of the subroutine itself
RTS R5: ;the return begins

This causes the contents of R5 to be placed in the PC

which then results in the execution of the instruction
MARK N. The contents of old PC are placed in R5

MARK N causes: (1) the stack pointer to be adjusted to
point to the old R5 value; (2) the value now in R5 (the
old PC) to be placed in the PC; and (3) contents of the
old R5 to be popped into RS, thus completing the return
from subroutine.

2-18

Table 2-4 Program Control Instructions (Cont)
Mnemonic OP Code Operation Condition Codes Description
SOB 077R00 R«<R-1 Unaffected The register is decremented. If it is not equal to 0, twice
Subtract one and plus offset | if this result # the offset is subtracted from the PC (now pointing to the
branch if not 0 then PC < PC following word). The offset is interpreted as a six-bit
equal to O -(2 x offset) positive number. This instruction provides a fast, efficient
method of loop control. Assembler syntax is:
SOBR,A
where A is the address to which transfer is to be made if
the decremented R is not equal to 0. Note that the SOB
instruction cannot be used to transfer control in the
forward direction.
BPT 000003 1 (SP) < PS N: loaded from trap vector Performs a trap sequence with a trap vector address of 14.
Break-point Trap 1 (SP) « PC Z: loaded from trap vector Used to call debugging aids. The user is cautioned against
PC < (14) V: loaded from trap vector employing code 000003 in programs run under these
PS < (16) C: loaded from trap vector debugging aids.
10T 000004 { (SP) < PS N: loaded from trap vector Performs a trap sequence with a trap vector address of
IOT Trap { (SP) « PC Z: loaded from trap vector 20. Used to call the I/O executive routine I0X in the
PC < (20) C: loaded from trap vector paper-tape software system and for error reporting in the
PS < (22) disk operating system.

2-19

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
EMT 104000 J (SP) <« PS N: loaded from trap vector All operation codes from 104000 to 104377 are EMT
Emulator Trap { (SP) « PC Z: loaded from trap vector instructions and may be used to transmit information to
PC < (30) V: loaded from trap vector the emulating routine (e.g., function to be performed).
PS < (32) C: loaded from trap vector The trap vector for EMT is at address 30; the new central
processor status (PS) is taken from the word at address 32.
CAUTION
EMT is used frequently by DEC system software
and is therefore not recommended for general use.
TRAP 104400 to | (SP) < PS N: loaded from trap vector Operation codes from 104400 to 104777 are TRAP instruc-
104777 1 (SP) « PC Z: loaded from trap vector tions. TRAPs and EMTs are identical in operation, except
PC < (34) V: loaded from trap vector that the trap vector for TRAP is at address 34.
PS < (36) C: loaded from trap vector
NOTE
Since DEC software makes frequent use of EMT, the
TRAP instruction is recommended for general use.

NOTE: Condition Codes are unaffected by these instructions

*DD = destination (address mode and register)
1 (dst) = destination contents

2-20

Table 2-5 Miscellaneous Instructions

Mnemonic OP Code Operation Condition Codes Description
RTI 000002 PC < (SP) 1 N: loaded from processor Used to exit from an interrupt or trap service routine,
PSW « (SP) 1 stack The PC and PSW are restored (popped) from the pro-

Z: loaded from processor cessor stack. If the RTI sets the T-bit in the PSW, a
stack trace trap will occur prior to executing the next
V: loaded from processor instruction.
stack
C: loaded from processor
stack

RTT 000006 PC < (SP) t N: loaded from processor This is the same as the RTI instruction, except that it

PS < (SP) t stack inhibits a trace trap, while RTI permits a trace trap.

Z: loaded from processor If a trace trap is pending, the first instruction after the
stack RTT will be executed prior to the next “T” trap. In
V: loaded from processor the case of the RTI instruction, the “T” trap will
stack occur immediately after the RTI.
C: loaded from processor
stack

MFPI 0065SS (temp) < (src) N: set if the source <0, This instruction pushes a word onto the current stack

MFPD 106588 1 (SP) <« (temp) otherwise cleared from an address in previous space. Processor Status
Z: set if the source =0; (bits 13, 12). The source address is computed using
otherwise cleared the current registers and memory map.
V: cleared
C: unaffected

MTPI 0066SS (temp) < (SP) 1 N: set if the source <0; This instruction pops a word off the current stack

MTPD 1066SS (dst) < (temp) otherwise cleared determined by PS (bits 15, 14) and stores that word

Z: set if the source =0;
otherwise cleared

V: cleared

C: unaffected

into an address in previous space PS (bits 13, 12).
The destination address is computed using the cur-
rent registers and memory map.

2-21

Table 2-5 Miscellaneous Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description
MFPS 1067DD (DST) < PSW N: set if PSW bit 7=1; *The 8-bit contents of the PS are moved to the
DST Lower otherwise cleared. effective destination. If destination is mode 0, PS
8 bits Z: set if PS[0:7]=0; bit 7 is sign-extended through upper byte of the
otherwise cleared. register, and destination operand is treated as a byte
V: cleared address.
C: not affected
MTPS 1064SS PSW <« (SRC) Set according to *The 8 bits of the effective operand replace the
effective SRC operand current contents of the PSW. The source operand
0-3. address is treated as a byte address. Note that PSW
bit 4 cannot be set with this instruction. The SRC
operand remains unchanged.
*Because there is no hardware to prevent execution
of these instructions in User mode, it is necessary
for the system software to prevent any reference to
the PSW address by a user.
HALT 000000 Unaffected Causes the processor operation to cease. The console

is given control of the processor. The console data
lights display the address of the HALT instruction
plus two. Transfers on the Unibus are terminated
immediately. The PC points to the next instruction
to be executed. Pressing the CON key on the console
causes processor operation to resume. No INIT
signal is given.

2-22

Table 2-5 Miscellaneous Instructions (Cont)

Mnemonic

OP Code

Operation

Condition Codes

Description

WAIT

RESET

000001

000005

PC (SP)
PSW (SP)

Unaffected

Unaffected

Provides a way for the processor to relinquish use of
the bus while it waits for an external interrupt. Having
been given a WAIT command, the processor will not
compete for bus by fetching instructions or operands
from memory. This permits higher transfer rates
between device and memory, as no processor-induced
latencies will be encountered by bus requests from

the device. In WAIT, as in all instructions, the PC
points to the next instruction following the WAIT
operation. Thus, when an interrupt causes the PC and
PS to be pushed onto the stack, the address of the
next instruction following the WAIT is saved. The exit
from the interrupt routine (i.e., execution of an RTI
instruction) will cause resumption of the interrupted
process at the instruction following the WAIT.

Sends INIT on the Unibus for 100 ms. All devices on
the Unibus are reset to their state at power-up.

2-23

Table 2-6 Condition Code Operators

Op Code Instruction

Mnemonic
CLC 000241 Clear condition code C.
CLV 000242 Clear condition code V.
CLZ 000244 Clear condition code Z.
CLN 000250 Clear condition code N.
CCC 000257 Clear all condition code bits.
SEC 000261 Set condition code C.
SEV 000262 Set condition code V.
SEZ 000264 Set condition code Z.
SEN 000270 Set condition code N,
SCC 000277 Set all condition code bits.
NOTE

Selectable combinations of condition code bits may
be cleared or set together. The status of bit 4 controls
the way in which bits 0, 1, 2, and 3 are to be modi-
fied. If bit 4 = 1, the specified bits are set; if bit 4 =
0, the specified bits are cleared.

1. Single Operand Group (CLR,CLRB,COM,COMB,INC,INCB, DEC,DECB,NEG,NEGB, ADC, ADCB, SBC,SBCB, TST,TSTB,ROR,RORB, ROL ,ROLB,ASR, ASRB,

ASL,ASLB, JMP, SWAB)

L

OP Code Dst
I I] !] i i] { 1

15

2.Doubte Operand Group(BIT,BIT8,BIC,BICB,BIS,BISB,ADD,SUB)

3.Program Control Group

a.Branch(alil branch instructions)

b.Jump To Subroutine (JSR)

c.Subroutine Return (RTS)

d.Traps (break point, IOT,EM

4.0perate Groupe {HALT,WAIT,RTI,

OP Code Src dst
L | 1 1] | i 1 1 | | 1
15 12 11 6 5
OP Code offset
I \ 1] | i 1 L 1) L 4 1
15 8 7
reg Src/dst
) I L 1 i i ! I | I 1 I
0 o} s} 2 [¢] reg
| I 1 ! 1 1 ! L 1 | 1 L !
T,TRAP)
OP CODE
] L L | I I | 1 | | 1 | i)
RESET)
OP CODE
| L 1 | L 1 1 It i | L L | L
5.Condition Code Operators (all condition code instructions)
0 o o] 2 4 N 4 \

Figure 2-2 PDP-11 Instruction Formats

2-24

11-1226

2.4 INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself, the modes of addressing used,
and the type of memory being referenced. In the most general case, the instruction execution time is the
sum of a source address (SRC) time, a destination address (DST) time, and an execute, fetch (EF) time.

Instr Time = SRC Time + DST Time + EF Time
Some of the instructions require only some of these times, and are so noted in Paragraph 2.4.1. All
timing information is in microseconds, unless otherwise noted. Times are typical; processor timing can
vary +10%.
2.4.1 Basic Instruction Set Timing

Table 2-7 lists the PDP-11/34A instruction set, together with the timing characteristics and memory
cycles required. The timing requirements for determining instruction execution time are listed below.

Double-Operand (all instructions)

Instr Time = SRC Time + DST Time + EF Time
Single-Operand (all instructions)

Instr Time = DST Time + EF Time
Branch, Jump, Control, Trap, and Miscellaneous (all instructions)

Instr Time = EF Time

NOTES
1. The times specified apply to both word and byte

instructions, whether odd or even byte.

2. Timing is given without regard for NPR or BR
servicing.

3. If the memory management is enabled, instruc-
tion execution times increase by 0.12 us for
each memory cycle used.

4. All timing is based on memory with the follow-
ing performance characteristics:

Access Time Cycle Time

Memory (us) (us)
Core 0.510 1.1
(MM11-DP)

MOS 0.635 0.920
(MS11-JP)

2-25

Table 2-7 PDP-11/34A Instruction Set

SOURCE ADDRESS TIME
Source Memory Core MOS
Instruction Mode Cycles (MM11-DP) (MS11-JP)
us us
Double Operand 0 0 0.00 0.00
1 1 1.13 1.26
2 1 1.33 1.46
3 2 2.37 2.62
4 1 1.28 1.41
5 2 2.57 2.82
6 2 2.57 2.82
7 3 3.80 4.18
DESTINATION TIME
Destination Memory
Instruction Mode Cycles Core MOS
Modifying Single-Operand 0 0 0.00 0.00
and Modifying Double- 1 2 1.62 1.74
Operand (Except MOV, 2 2 1.77 1.89
SWAB, ROR, ROL, ASR, 3 3 2.90 3.15
ASL) 4 2 1.77 1.89
5 3 3.00 3.25
6 3 3.10 3.35
7 4 4.29 4.66
MOV 0 0 0.00 0.00
1 1 0.93 0.93
2 1 0.93 0.93
3 2 2.17 2.29
4 1 1.13 1.13
5 2 2.22 2.34
6 2 2.37 2.49
7 3 3.50 3.75
MTPS 0 0 0.00 0.00
1 1 0.95 0.95
2 1 1.13 1.26
3 2 2.26 2.51
4 1 1.13 1.26
5 2 2.26 2.51
6 2 2.44 2.69
7 3 3.57 4.20

2-26

Table 2-7 PDP-11/34A Instruction Set (Cont)
DESTINATION TIME
Destination Memory
Instruction Mode Cycles Core MOS
MFPS 0 0 0.00 0.00
1 1 0.64 0.64
2 1 0.64 0.64
3 2 1.95 2.08
4 1 0.82 0.82
5 2 1.95 2.08
6 2 2.13 2.26
7 3 3.26 3.51
EXECUTE, FETCH TIME
Destination ' Memory
Instruction Mode Cycles Core MOS
Double Operand
ADD, SUB, CMP, BIT, BIC, 1 2.03 2.16
BIS, XOR
MOV 1 1.83 1.96
Single Operand
CLR, COM, INC, DEC, ADC, 1 1.83 1.96
SBC, TST
SWAB, NEG 1 2.03 2.16
ROR, ROL, ASR, ASL 1 2.18 2.31
MTPS 2 2.99 3.12
MFPS 2 1.99 2.12
EIS Instructions (use with DST times)
MUL 8.82* 8.95*
DIV (overflow) 2.78 2.91
12.48 12.61
ASH 1 4.18** 4.31%*
ASHC 1 4.18** 4.31%*
Memory Management Instructions
MFPI(D) 2 3.07 3.14
MTPI(D) 2 3.37 3.34

2-27

Table 2-7 PDP-11/34A Instruction Set (Cont)

EXECUTE, FETCH TIME

Destination Memory

Instruction Mode Cycles Core MOS

SWAB, ROR, ROL, ASR, 0 0 0.00 0.00

ASL 1 2 1.42 1.54
2 2 1.57 1.69
3 3 2.70 295
4 2 1.62 1.74
5 3 2.80 3.05
6 3 2.90 3.15
7 4 4.09 446

Non-modifying 0 0 0.00 0.00

Single Operand and 1 1 1.13 1.26

Double Operand 2 1 1.28 1.41
3 2 2.42 2.67
4 1 1.33 1.46
5 2 2.52 2.77
6 2 2.62 2.87
7 3 3.80 4.18

MFPI(D) 0 0 0.00 0.00

MTPI(D) 1 1 0.98 1.24
2 1 1.32 1.44
3 2 2.20 2.45
4 1 1.18 1.44
5 2 2.20 2.45
6 2 2.40 2.65
7 3 3.59 3.96

Branch Instructions

BR, BNE, BEQ, (Branch) 1 2.18 2.31

BPL, BMI, BVC, BVS, BCC,

BCS, BGE, BLT, BGT, BLE,

BHI, BLOS, BHIS, BLO

(No Branch) 1 1.63 1.76
SOB (Branch) 1 2.38 2.51
(No Branch) 1 1.98 2.11

2-28

Table 2-7 PDP-11/34A Instruction Set (Cont)

EXECUTE, FETCH TIME

Destination Memory
Instruction Mode Cycles Core MOS
Jump Instructions
JMP 1 1 1.83 1.96
2 1 2.18 2.31
3 2 3.12 3.37
4 1 2.03 2.16
5 2 3.07 3.32
6 2 3.07 3.32
7 3 4.25 4.78
JSR 1 2 3.32 3.44
2 2 3.47 3.59
3 3 4.40 4.65
4 2 3.32 3.44
5 3 4.40 4.65
6 3 4.60 4.85
7 4 5.69 6.06
RTS 2 3.32 3.57
MARK 2 4.27 4.52
RTL, RTT 3 4.60 4.98
Set or Clear C,V,N,Z 1 2.03 2.16
HALT 1 1.68 1.81
WAIT 1 1.68 1.81
RESET 1 100 ms 100 ms
10T, EMT, TRAP, BPT 5 7.32 7.7

*Add 200 ns for each bit transition in serial data from LSB to MSB.

**Add 200 ns per shift.

2-29

2.4.2 Bus Latency Times »

Interrupts (BR requests) are acknowledged at the end of the current instruction. For a typical instruc-
tion, with an instruction execution time of 4 us, the average time to request acknowledgement would
be 2 us.

Interrupt service time, which is the time from BR acknowledgement to the first subroutine instruction,
is 7.32 us max for core, and 7.7 us for MOS.

NPR (DMA) latency, which is the time from request to bus mastership for the first NPR device, is 2.5
uS mMax.

2.5 EXTENDED INSTRUCTION SET

The Extended Instruction Set (EIS) provides the user with the capability of extended manipulation of
fixed-point numbers. Use of the EIS instructions does not degrade processor timing or affect NPR
latency. Interrupts are serviced at the end of an EIS instruction.

The EIS instructions are:

Mnemonic Instruction Op Code
MUL Multiply 070RSS
DIV Divide 071RSS
ASH Shift arithmetically 072RSS
ASHC Arithmetic shift combined 073RSS

The number formats are shown in Figure 2-3. Examples of the operation of each instruction are
presented in the paragraphs that follow.

15 14 0
16-BIT SINGLE WORD: S NUMBER
| | 1 1
15 14 0
S HIGH NUMBER PART
|] 1 1
32-BIT DOUBLE WORD: .
15
LOW NUMBER PART
! | 1 L 1

S is the sign bit.

S = 0 for positive quantities
S = 1 for negative quantities; number isin 2's
complement notation

11-4453

Figure 2-3 Extended Instruction Set Number Formats

2-30

Multiply Instruction - MUL 070RSS

Example: 16-bit product (R is odd)

000241 , CLC ;Clear carry condition code
012701,400 , MOV #400,R 1

070127,10 , MUL #10, R1

1034xx , BCS ERROR :Carry will be set if

;product is less than
;=2'% or greater than or ;equal to 2!
;no significance lost

Before After
(R1) = 000400 (R 1) = 004000

Divide Instruction — DIV 071RSS

Example; ’
005000 ,CLR RO
012701,20001 , MOV #20001,R 1
071027,2 , DIV #2 RO
Before After
(R0O) = 000000 (RO) = 010000 Quotient
(R1) = 020001 (R1) = 000001 Remainder

Arithmetic Shift Instruction - ASH 072RSS

Example: ASH RO, R3

Before After
(R3) = 000003 (R3) = 000003
(R0)= 001234 (R0O) = 012340

Arithmetic Shift Combined Instruction - ASHC 073RSS
Example: Similar to the example for the ASH instruction except that two registers are used.

2.6 INSTRUCTION SET DIFFERENCES
Table 2-8 lists the instruction set differences between the PDP-11/34A and other PDP-11 machines.

2-31

Table 2-8 Programming Differences

11/05 and 11/10

11/35 and 11/40

11/04

11/34A

GENERAL REGISTERS (including PC and SP)

OPR%R (R)+

or OPR%R,~R)
OPR%R ,@(R)+
OPR%R,@~«(R)

(Using the same register

as both source and

destination)

JMP(R)+ or JSR
register, (R)+ (jump
using autoincrement)

MOV PC, @#A or
MOV PC, A (Moving
the incremented PC

to a memory address
referenced by the PC)

Stack Pointer (SP),
R6 used for referenc-
ing.

Initial contents of R
are used as the source
operand.

Contents of R are
incremented by 2,
then used as the new
PC address.

Location A will con-
tain PC + 2.

Using the SP for
pointing to odd
addresses or non-
existent memory
causes a halt (double
bus error).

Contents of R are
incremented by 2 (or
decremented by 2),
before being used as
the source operand.

Initial contents of P
are used as new PC.

Location A will con-
tain the PC of the
move instruction +4.

0dd address or non-
existent memory
references with SP
cause a fatal trap with
a new stack created at
locations 0 and 2.

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/05

2-32

Table 2-8 Programming Differences (Cont)

11/05 and 11/10

11/35and 11/40

11/04

11/34A

GENERAL REGISTERS (including PC and SP) (Co

nt)

Stack Overflow

Stack limit fixed at
‘4004 overflow (going
lower) checked after
modes 4 and 5 using

R6, and JSR and traps.

Overflow serviced by
an overflow trap. No
red zone.

Variable limit with stack
limit option. Overflow
checked after JSR, traps,
and address modes 1, 2,
4, and 6. Non-altering
references to stack data
are always allowed.
There is a 16-word
yellow (warning) zone.

Red zone trap occurs if
stack is 16 words below
boundary; PS and PC
are saved at locations
0and 2.

Same as 11/05

Same as 11/05

TRAPS AND INTERRUPTS

RTI Instruction

RTT Instruction

Processor status odd
byte at location
777777

First instruction after
RTI instruction is
always executed.

Not implemented

0Odd byte of PS can be
addressed without a
trap.

If RTI sets the T-bit,

the T-bit trap is acknowl-
edged immediately after
the RTI instruction.

First instruction after
RTT is guaranteed to
be executed.

Same as 11/05

Same as 11/40

Same as 11/40

Same as 11/05

Same as 11/40

Same as 11/40

Same as 11/05

2-33

Table 2-8 Programming Differences (Cont)

11/05 and 11/10

11/35 and 11/40

11/04

11/34A

GENERAL REGISTERS (including PC and SP) (Cont)

T-bit of PS

Bus Errors

PC contains odd
address

PC contains an
address in nonexist-
ent memory

Register contains
odd address and
instruction mode 2

Register contains
address in nonexist-
ent memory and
instruction mode 2.

Interrupt service
routine.

T-bit can be loaded
by direct address of
PS or from console.

PC unincremented

PC incremented

Register unincremented

Register incremented.

The first instruction
will not be executed
if another interrupt
occurs at a higher
priority.

Only RTI, RTT traps

and interrupts can load

the T-bit

Same as 11/05

PC unincremented

Register incremented

Register incremented.

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/05

Register unincremented

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/40

Same as 11/05 except

for MOV mode 2 and

MTPI where the

register will be incremented.

Same as 11/04 except for
MOV mode 2 destination
and MTPI where the

register will be incremented.

Same as 11/05

2-34

Table 2-8 Programming Differences (Cont)

11/05and 11/10

11/35and 11/40

11/04

11/34A

GENERAL REGISTERS (including PC and SP) (Cont)

Priority order of
of traps and
interrupts

MISCELLANEOUS
Swab and V-bit

Instruction set

Memory management
violation during a
trap sequence

0Odd address
Time-out

Halt instruction
Trap instructions
Trace trap

Stack overflow
Power fail

Halt from console

V-bit is cleared.

Basic set

Does not apply

Halt instruction
0Odd address

Stack overflow (red)
Mem mgt error
Time-out

Parity

Trap instruction
Trace trap

Stack overflow (yellow)
Power fail

Halt from console

Same as 11/05

Basic set and Mark,
RTT, SOB, SxT, XOR.
EIS adds: MUL, DIV
ASH, ASHC.

FIS adds: FADD,
FSUB, FMUL, FDIV.
KT11-D adds: MTPI,
MFPI.

If a mem mgt viola-
tion occurs between
the first and second
push down of the stack
during a trap sequence,
the status of the CPU
before the violation is
placed as the PS on the
the Kernel stack.

Halt instruction

Bus error

Trap instruction
Trace trap

Stack overflow

Power fail

Halt from console
Interrupts

Next instruction fetch

Same as 11/05

Basic set and RTT

Does not apply

Same as 11/40
except no red
zone stack over-
flow

Same as 11/05

Basic set and Mark,
RTT, SOB, SxT, XOR,
MUL, DIV, ASH,
ASHC, MTPI, MFPI,
MTPS, MFPS. (MTPS
and MFPS are new
instructions used for
LSI-11))

If a mem mgt viola-
tion occurs between
the first and second
push down of the stack
during a trap sequence,
the status of the vector
+2 of the original trap
is placed as the PS on
the Kernel stack.

2-35

Operating Temperature
Relative Humidity |
Input Power

Physical Size

Interface Requirements

Power and Ground Pinouts

Number of Integrated
Circuits

CHAPTER 3
CPU OPERATING SPECIFICATIONS

5° to 50° C (41° to 122° F)

20 to 95% (without condensation)

+5 Vdc £5% at 4.5 A (typical) per module (M 8265 and M8266)
Two hex modules (8-1/2 X 15in.)

All 1/0 signals are available on connectors A and B. These sig-
nals are pin-compatible with modified Unibus pinout as shown
in Table 3-1. The bus loading on each of these Unibus lines is
equivalent to one bus load.

+5 V: pins AA2, BA2, CA2, DA2, EA2, EA2

GND: pins AC2, AT1, BC2, BT1, CC2, CT1, DC2, DT1, EC2,
ET1, FC2, FT1

231 (M 8265 = 123; M8266 = 112)

3-1

dInpow [onpuod Ajred Aq pasn suld .

AS- | ANNOYD | TAd 107104 107100 | a4 14dd T1dd | INV
TNASK TNASW | TAd 1010V 1010V | 149 «1d | ANNOYD | INV
100 100 | nd +13d *dvd Hvod | zad 151a 161a | TAV
TNASS TNASS | Ind «NASS INI | ANNO¥D | 1434 T1Vvd 1Vd | TV
110 110 | z1d 144 1vdd | tad 1€1d 1€ | TIV
dNNO¥D | AaNNO¥D | 114 AS+dIDVE LVE | ANNOYD | 1ad 1v1d 1via | 11V
191V 191V | Tsd aNNodo | ANNOo¥D | 7od 111d T11A | AV
TLIV TL1V | 184 15494 154949 | 104 1z1d 121 | IV
THIV 1¥1V | 2ud INIOd 1S4l | ANNO¥D | 4d 160d 160a | UV
TSIV TSIV | 144 JAVdS Hsod | 1499 101d 101 | IfV
121V 121V | zad AS+ AS+ | Tvd 1.0 1.0d | THV
1€V 1€V | 144 AAVdS H9Od | 1vd T804 1804 | IHV
101V 101V | N4 A0+ | ANNOID | TAV T1s0d 150a | AV
111V 111V | INd AOT+ HLD9 | IAV 1900 190a | 14V
180V 180V | T4 19494 19449 | NV 1€0d 1€0d | AV
160V T60V | TG AOT+ HOdN | [NV 10 1404 | 19V
190V 190V | 714 1.L49d 1L99 | TV 1 1040 1104 | tav
1 LOV TL0V | 174 dANNO¥D | ANNOYD | 1LV 1204 1704 | 1Qv
140V 190V | Tid T 4dN TUIN | TSV ANNO¥O | ANNO¥D | IV
150V 150V | 19 ASIHdNIOVE LV | ANNOUD | ISV 1000 100d | 1OV
120V 120V | U4 T0VS TAOVS | ¥V INIOd LSHL | ANNO¥O | 4V
1 €0V 10V rd AST+dNNOVE LV | ANNOYD | 1YV T ¥LNI TYINI | 19V
100V 100V | CHY T Asdd TASHd | TV AS+H AS+ | TVV
110V 110V | THA «0d | ANNOYD | 1dV T LINI TLINI | IVV
[eusis [eusis uid [euSIS [eudig ulg [eusig [eustg uig
palJipoN piepuelg PIJIPOI prepuels P3YIPON prepuel§

SjudWUSISSY uld snqiu(} pIYIPOIAl pue piepuelS [-€ qelL

3-2

CHAPTER 4
DETAILED HARDWARE DESCRIPTION

4.1 INTRODUCTION _

The following paragraphs contain a detailed circuit description of the KD11-EA Central Processing
Unit (CPU), which is used in the PDP-11/34A Computer. Segments of the CPU, shown in Figure 4-1,
are analyzed separately, using the block diagrams contained in this manual and the KD11-EA circuit
schematics.

4.2 DATA PATH

4.2.1 General Description

The simplified KD11-EA data path consists of six function units, as shown in Figure 4-2. Circuit
schematics K1-1 through K1-4 (D-CS-M8265-0-1) each contain one 4-bit slice of the data path. Table
4-1 briefly describes the function of each of the six function units.

Data flow through the data path is controlled, directly or indirectly, by the Control Store circuitry on
the control module (M8266). Each Control Store ROM location (microinstruction) generates a unique
set of outputs capable of controlling the data path elements and determining the ALU function to be
performed. Sequences of these ROM microinstructions are combined into microroutines, which per-
form the various PDP-11 instruction operations.

4-1

Z819-L 4

weidelq ¥oo|g VA-11AN

I-p 21n814

¢

ved

SNaINN v
31v0073Y
p— “
S 9
4/a (o= - ?-_xa 1)
ve _ le— X3S
XNW SS e dVMS STYNDIS | © |
VLvQ 90 T0HINOD 6 1
q ! HLVd viva 1X3 — wa
(9-11) a (6-2%°01-14) (P-iX = L-1)}e— XNAY JLVLS Iyl TR
vaA _ Q019071 22 XNWY [+ (0:)S XNWY % w mwww_wmm_m
1 — 1 1 Y—sinvisnoo —— 108.1NOD
(2-2%"1-2¥) a
NI —aftb-i=1-130) T10¥LNOD n
(6-1%) Je—8YN3 xnW (00:€)s NV mun Ny sne (6-23°L-2))
XNW 1y [+ Y0d-Hvd 300NNV > v g w|||w WOY 3501S
ouS Ly El J04.LNOD
— [5 ,
WoY S¥1
15 19
r h oﬂH hqwa 934 D0Md 4
) (P=2X) MSd .waﬂ_v.._v: Ju ‘
ouS WS voa (g-1) (2-zn'e-zw)] [(o-2w)
: MSd %9019 300030 [T0NLNOD
(0:1) 9318 T0Y1INOD in8 HONVYHE8-W
(Z-1%) (8-13) : X
5150 (-1 L-L)) (D=t -1 (-4 '1-130) ¢
¥vd
S o= (G-2)) (9-2))
o " e e Sun:%ol_l J08.LNOD 300030
N ol
<m>3ma Q ﬂr [) nv xnv 'l
o+ 3] vivaoo !
(6-1) (=1 (-t -130) {(p-l=1-1%)
24S Had 93y > D3y (G-2X)
; 8 X8 W1 avol— W1
vEA (0:1) 300N 8 (0:1) 300W 8§ 4

4-2

AN

ENABLE DATA
BUS DATA
SSMUX [15:00]
4 KT MODES VBA
2 A 15:00
g CC DATA
2
> Y
BMODE 1 MOCE
L SWAP BX MODE 1— SCRATCH PAD
T KT —_—— . VBA 15
AUX SWAP + SEX SP 1 mEmoRY k PAR'S PDR'S
— BXREG - BREG
CONTROL PSW MUX MUX ENAB (TRI STATE) SRO SR2 o vBA 14
L SEX BX MODE 0—— BMODE 0 VA 13
+1
; Yy yv
EXTERNAL DATA PATH BLEG 0
BMUX VBA
BLEG 1 L 4 ' KT 812
SRO !
KT MUX
— PAR + PDR
AMUX S1 (TRI STATE} R+PD '
LOAD PSW PSW A MUX —— TRI STATE AMUX f:-oo KT Mux
L — AMUX SO : COMPARATOR
A
4 4
CONSTANTS ‘
(VECTORS)
ALU CIN B8 A BUS CONTROL
ALUS3 —| vn:r;:;\é.szus LoAD Co, C1
D
ALU S2 ALY vBA) VBA e ACCESS CONTROL
< o
ALU S1 ED B8ITS ACFO, ACF 3
ALU SO ;’?‘2‘ PROCESSOR
- \ MODES
ALU MODE PSW 18, 14, 13, 12
BUS DATA BUS DATA 15:00 KT ERROR
ADDERS Lotie
ERRORS
PHYSICAL BUS CONDITION h—-— NON RESIDENT
ADDRESS 17:00 (PBA) CODE LOAD BA)
g USED IN INTERNAL LoGic __l READ ONLY
o
@ ADDRESS DECODE
z PAGE LENGTH
g LoGIC BA
:17
CC DATA 6 j ' ¥ ¥
ENABLE ADDRS VBA
0-5 RELOCATE
BUS ADDRS
v i
DEFINITIONS: SRO — MEMORY MANAGEMENT CONTROL REGISTER "0 o sz’ ;
SR2 —~ MEMORY MANAGEMENT CONTROL REGISTER "2 Ssans :*M -
PAR — PAG ADDRESS REGISTER TF:)EN ;RA; N
PDR - PAGE DESCRIPTION REGISTER sl

11-5183

Figure 4-2 Simplified KD1i-EA Data Path

Table 4-1 Function Units of the KD11-EA Data Path

Unit

Function

Arithmetic Logic Unit (ALU)

ALU Multiplexer (AMUX)

Processor Status Word Register
(PSW)

Swap Sign Extend Multiplexer
(SSMUX)

The heart of the data path is the ALU, which is the logic ele-
ment that manipulates the data. It is capable of performing 16
arithmetic or 16 logic (Boolean) operations on two 16-bit oper-
ands to produce a 16-bit result. The A input comes from either
the scratchpad memory or the memory management system; the
B input comes from the B leg. The ALU output is sent to the
AMUX.

The AMUX is a 4-to-1 tristate multiplexer that controls the
introduction of new data and the circulation of available data
through the data path. Input to the AMUX is both external
(from the Unibus data lines) and internal (from the ALU, PSW,
or constants). The AMUX output is sent to the SSMUX.

When the signal TRI STATE AMUX L is asserted, these multi-
plexers assume a high impedance state and external data can be
input to the SSMUX from the connector J1 on the M8265
module.

The PSW register is a 12-bit register that contains information
on the current processor priority, condition codes (C, V, Z, and
N) which indicate the results of the last instruction, a *‘trap” bit
(TBIT) which causes automatic traps after each fetch instruc-
tion used during program debugging, and both the current and
previous memory management modes (Kernel or User). PSW
input comes from the SSMUX or from condition code logic;
PSW output is sent to the AMUX.

This multiplexer controls the form in which data is output from,
or recirculated into, the data path. The SSMUX can pass the
data unchanged, swap the high and low bytes, sign-extend the
low byte into the entire word, or simultaneously swap high and
low bytes while sign-extending the high byte (which becomes the
new low byte) into the entire word. SSMUX input comes from
the AMUX or from the external data path (connector J1) if the
AMUX assumes a high impedance state. SSMUX output goes
to either the rest of the computer system (via the Unibus), the
other sections of the processor (the control section, via the
Instruction register, and the memory management system), or
to other portions of the data path (the PSW, the B leg, and the
scratchpad memory).

4-4

Table 4-1 Function Units of the KD11-E Data Path (Cont)

Unit Function

B Leg The B leg of the ALU consists of two 16-bit registers (B and BX)
and a 4-to-1 multiplexer (BMUX). Both registers can shift left
or right independently, or together they can perform full 32-bit
shifts. The BMUX selects one of the four functions (BREG,
BXREG, +1, +16) and connects to the B input of the ALU.
The B leg is used to store operands for the ALU, to implement
rotate and shift instructions, and to implement Extended
Instruction Set (EIS) instructions. B leg input comes from the
SSMUX. B leg output goes to the B input of the ALU.

Scratchpad Memory (SPM) This random access memory can store sixteen 16-bit words in
eight processor-dedicated registers and eight general-purpose
(user available) registers. One of the general-purpose registers is
used as a stack pointer, another as the program counter. Input
to the scratchpad memory is from the SSMUX. Output, which
can be buffered and latched to enable reading from one address
and modifying another during the same cycle, goes to the A
input of the ALU and to the Virtual and Physical Bus Address
registers.

4.2.2 Arithmetic Logic Unit (ALU)

The ALU (Figure 4-3) is divided into four 4-bit slices (K1-1, K1-2, K1-3, and K1-4 each contain a
slice), with each slice consisting of one 4-bit ALU chip (74S181) and part of a Look-Ahead Carry
Generator chip (745182).

ALU Inputs

The A input to each ALU chip comes from one of the scratchpad memory (SPM) registers or from the
KTMUX, as specified by the Control Store microinstruction being performed. (Refer to Paragraph
4.2.3 for details.) The B input comes from the B leg multiplexer (BMUX) logic, and can take the form
of the B register contents, the BX register contents, a constant 0, a constant 1, or a constant 16. (Refer
to Paragraph 4.2.4 for details.)

4.5

weiderq yooig NIV €-F 2ndig

LLi8S-11
_l....llllllllll..lnl.l.lllll..lll..I.IlIIlJ
(1¥21907 HO [
_ SILIWHLINY)
JA0W NV NOILONNA NIV
_ S$314193dS mmz_omaml/r _
XNWY 01 < GL-0 sli8 _
Ik .
a Si-9 siig]
_ - @ o | lw @] |o @
< wf | @ lw o
7 =E =1k a2 =
| ! S | ol || L e 2 |
W g L] w mmAWlu AW wm ~flo| [W mmAfu!c_
; L
W Lnoo _ 4 N 4 N 4 Ny 4 0y _
Y ——— -1 v (£-1)) v (2- 1) v (1-14) v
b1 _ d 9 2 @ d 9 2 @ d 9 2 @ d 9 NIy @ _
— — —~ =
w w (%) w
_ N ® » °l |
1 ¥
] = ~ .
_ Gi-9 sli8]
[]
_ 29 %9 9 gt 9 0y 99 _
- 1N0 4 NIy
HOLVHINIO A¥MYD AV3IHY YOO _

H 300W NV 8-2X

(8-2% Woy4d)
£S-0S NV

9371 8

(LN3W3IOVNYIN

AHOW3N

H0 WdS WO¥d)
DERN

T NI NV 8-2X

ALU Functions
The function performed by the ALU is controlled by the four Selection bits (S3, S2, S1, S0), the Mode

bit (M), and the Carry-In bit (CIN). Table 4-2 lists the ALU functions of the KD11-EA and the
corresponding bit patterns for the six control signals.

Table 4-2 ALU Functions and Control Signals

ALU Control Signals
ALU Function S3 S2 S1 SO CIN M
ZERO 0 0 1 1 0 1
A 0 0 0 0 0 1
Aplusl 0 0 0 0 0 0
A minus 1 1 1 1 1 1 0
A minus B 0 1 1 0 0 0
A 1 1 1 1 0 1
B 1 0 1 0 0 1
A plus B 1 0 0 1 1 0
AB 1 0 1 1 0 1
AB 0 0 1 0 0 1
A plusBplus1 1 0 0 0 0 0
Aplus A 1 1 0 0 1 0
B 0 1 0 1 0 1
A plus A plus 1 1 1 0 0 0 0
A+B 0 1 1 0 0 1

4.2.3 Scratchpad
The scratchpad consists of a random access memory that can store sixteen 16-bit words, and can be
used for various functions. Scratchpad operation is divided into four 4-bit slices, with K1-1, K1-2, K1-
3, and K1-4 (D-CS-M8265-0-1) each containing one slice. The scratchpad address multiplexer circuitry
is shown on K2-4.

Data Input
Data to be written into the scratchpad is channeled from the SSMUX and clocked into the scratchpad

registers.

Addressing the Scratchpad

The address of the scratchpad memory register to be accessed is generated by the scratchpad address
multiplexer (SPAM), located on the control module (K2-4). Depending on the state of the select lines
to the SPAM, the source of the address can be any of the following:

The Control Store ROM (ROMSPA03:ROMSPAQ0).
Instruction Register Source Field (IR08:IR06)
Instruction Register Destination Field (IR02:IR00)
Bus Address (PBA03:00)

e

47

Reading from the Scratchpad

If the Control Store circuitry forces a low on the K1-10 ENAB GR L line at the beginning of a
machine cycle, the tristate outputs of the scratchpad will be enabled. Ninety or 120 nanoseconds after
the cycle begins (allows the scratchpad address to set up), K1-5 TAP 30 H goes low, allowing data
stored in the selected scratchpad register to be latched in the output buffer SP15:SP0O lines. This data
will continue to be read during the rest of the machine cycle. (See Figure 4-4.) Table 4-3 shows the
various scratchpad enabling configurations and the modes they select.

le———— macHinE cvcLe -
TAP 30H | [

ENAB GR L |

SP WRITE L~ |

ENF

[}

!

i

|

I

i

1

1

T

PROC CLK L l \

READ SOURCE WRITE INTO
SCRATCH PAD DESIGNATION
REGISTER SCRATCH PAD REGISTER

LATCH SCRATCH PAD
OUTPUT BUFFERS

TAP 30 H 7

7

TAP 90 H | |] ,_
PROC CLK L |_J Bl L 1R
l— 180 —=
11 'l JT1 [
NOTE

Source and Designation Register do not
have to be the same. Register selected
may be changed (See SPA Mux description)

for second haif of machine cycle.
11-3878

Figure 4-4 Scratchpad Timing

Table 4-3 Scratchpad Enabling Configurations and Modes

OD | WE | CLK | OS |Mode Outputs
L X X L |OUTPUT STORE Data from last addressed location
X L 5 X | WRITE DATA Data being written (if OD = L and OS = H)
L X X H | READ DATA Data stored in addressed location
H X X L |OUTPUT STORE High-impedance state
H X X H |OUTPUT DISABLE | High-impedance state

4-8

Latching of Outputs

When the OD (pin 12) and OS (pin 13) inputs are both low, the data being read from the scratchpad
that is addressed is latched into the buffers on the output of scratchpad memory (SP15-00). Once those
outputs are stabilized, they are not affected by any modifications to the scratchpad memory address
lines for the remainder of the cycle.

Clocking the Scratchpad

The REG CLK H clock signal clocks data from the SSMUX lines into the scratchpad register and
writes that data into scratchpad memory. TAP 30 H unasserted, placing a high at the OS input (pin 13)
of the scratchpad, is all that is required for a read operation. Both a read and a write can take place
during the same machine cycle. Figure 4-4 shows the scratchpad timing for one machine cycle.

Scratchpad Address Multiplexer (SPAM)

The SPAM (Figure 4-5) generates the four address signals that select the desired scratchpad register, or
word. The SPAM (shown in print K2-4 of D-CS-M8266-0-1) consists of two 748153 dual 4-line-to-1-
line data multiplexers, or a total of four 4-to-1 multiplexers, all with a common strobe input signal
(GND) and common address input signals (S1 and 30). Four data input sources are connected so that,
when the SPAM is addressed and strobed, it generates one 4-bit output, selected from one of the four
sources. Table 4-4 lists the sources of SPAM input data and the address input signal configurations
that select them.

0
SPAM :> SPM
CONTROL A
STORE ROM s(1:0)
K2-9 SPA DST
SEL (1:0) (1) H (K2-4)
B
748157 F |
K2-9 SPA SRC
SEL (1:0) (1) H
: STB NOTE:
SPA = 6, forced to 16 for
user mode ROM,IR-SRC,
IR-DST.
K1-5 TAP 30 H 11-3880

Figure 4-5 Scratchpad Address Multiplexer (SPAM)

wreidoidodty Aq

H 9 1A 00:€0 sng vdd a uon9[ag 19)sI3ay

5]0SUO)) WIO1] UOT}IS[oS

1 | ored 00:€0 S1'd VdS WOY v 19)5130y asodIng-[erouan

UOTI9Jag 1975139y

H S-Zi 00:270 sig 191s13ay uondnnsuj) pueiad() uoneUNSa(

uono[ag 1935139y

1 (S| 90:80 siig 1315130y uononnsug d pueiadQ 201n0g
IS jung JdInog mdug uoljoungy

nog WVdS

seaImog eyeq Indu] WVJS ¥-b 219eL

4-10

Scratchpad Memory Organization

The scratchpad memory (SPM) is a 16-word-by-16-bit random access read/write memory composed
of four 16-word-by-4-bit bipolar (85568) memory units (K1-1 through K1-4). The 16-word-by-16-bit
organization of this memory provides 16 storage registers that are utilized as shown in Table 4-5.

Table 4-5 SPM Register Utilization

Register
Number | Description

RO
R1
R2
R3
R4
RS

General-Purpose Registers

R6 (Processor Stack Pointer)
R7 (Program Counter)

R10 Temporary Storage

R11 Unused

R12 Temporary Storage

R13 Temporary Storage

R14 | Unused

R15 Temporary Storage

R16 Processor Stack Pointer
(Memory Management User Mode)

R17 Temporary Storage

4-11

Scratchpad Outputs

Data outputs from the scratchpad are fed to the ALU as the A leg input and to the memory manage-

ment system.

424 B Leg

The B leg (Figure 4-6) of the ALU consists of three components: the B register, the BX register, and the
B leg multiplexer (BMUX). Each of these components is divided into four 4-bit slices, with circuit
schematic prints K1-1, K1-2, K1-3, and K1-4 each containing a slice. Data from the SSMUX can be
clocked into either register. Register contents can be shifted either individually as 16-bit words or

together as a double (32-bit) word.

B MODE 90

S1[50] F
B MODE @1 L | L |HoLD
SHIFT
ST SO SR L | H RigHT
B SHIFT
REG HL LEFT
BITSD-15) (K1-1*K1-4) H | H |LOAD
74194 F
CLK SL
PROC. CLK] o 3
SHIFT IN B +16 —2 B
, Mux T0
FROM ALC
sS (K1-1=K1-4)
Mux —T7 |BMODE o BITS u
— 0
B MODE @1 j> T‘ Sr
S1 SP SR BLEG@®! BLEG 0@
o stisp| F
arsgay REC
(K11 +K1-4) LiL| B
CLK SL L|H]|Bx
I 16
SHIFT IN BX s1[sg| F HjH [+1
L | L |Hotp
SHIFT
L | H lrigHT]
SHIFT
Hb e
H | H |LoAD
11-3881

Figure 4-6 B Leg Block Diagram

4-12

B Register Lo RO : . :

The B register (B REG) is a general-purpose storage register (Figure 4-7) on the B leg of the ALU,
consisting of four 4-bit bidirectional universal shift registers (74194). The mode control lines of the
four 4-bit registers are connected in parallel, so that the signals K2-8 B MODE 00 L and K2-8 B
MODE 01 L select the function that will be performed by the B register when clocked by K1-5 PROC
CLK L. Table 4-6 shows the various functions and the shift configurations that select them.

K2-8 BMODE 00 L -
K2-8 BMODE {ﬁ'
St S@ SR
B REG 1
BITS 12-15 (K1-4) |BITS 12-15
74194
cLK sL BIT 12
} t
oy Y

ST SOSR| g1

B REG
BITS 8-11 > (K1-3) [BITS 8-11)
74194

CLK SL
K-10 SHIFT IN 07 H —| L 1o BMUX
— 5
FROM SS MUX 31 S0 SR BIT7
B REG
BITS 4-7 > (k1-2) [BITS 4->
74194
cLk sL| [B'T4
K1-5 PROC CLK L — |—
L y l
St sO SR BIT 3
S1]S@ [FUNCTION
B REG
BITS 0-3 > (ki-1) [BITS 0-3) L|L | HOLD
74194 J SHIFT
L { H] RiGHT
CLK SL SHIFT
¥ HIL | CeFT
H|H| LOAD
K1-10 SHIFT IN B H

11.5184

Figure 4-7 BREG Block Diagram

4-13

Table 4-6 B and BX Register Enabling Configurations and Modes

Mode Mode

01 00 Function (when PROC CLK L goes high)

L L Hold Contents of register do not change.

L H Shift Right Contents are shifted right one bit.

H L Shift Left Contents are shifted left one bit.

H H Parallel Load Data from SSMUX is loaded into B register
and appears at output.

The B register can be shifted as an 8-bit byte or a 16-bit word. The signal K1-10 SHIFT IN B deter-
mines what is shifted into the B register. When the contents of this register and the BX register are
combined into a 32-bit word, the B register contains the upper 16 bits.

BX Register

The BX register (BX REG) is a general-purpose storage register (Figure 4-8) on the B leg of the ALU,
consisting of four 4-bit bidirectional universal shift registers (74194), similar to the B register. The
mode control lines of the four 4-bit registers are connected in parallel, so that the signals K2-8 BX
MODE 00 L and K2-8 BX MODE 01 L select the function to be performed when the BX REG is
clocked by K1-5 PROC CLK L. The BX register can be shifted as a 16-bit word or, in conjunction with
the B register, as a 32-bit word. In the latter case, the BX register contains the lower 16 bits of the 32-
bit word, and the shift right (SR) input of the most significant register in the BX register is connected
to the zero bit of the B register. Table 4-6 shows the various functions and the shift configurations of
K2-8 BX MODE 00 L and K2-8 BX MODE 01 L that select them.

B Leg Multiplexer (BMUX)

The BMUX (Figure 4-9) consists of three 2-to-1 multiplexers and a 4-to-1 multiplexer, and is used to
select the proper input to be used as an operand on the B leg of the ALU. The BMUX can select the
contents of either the B REG or BX REG, or can act as a constant generator (constants 16, 1, or 0),
depending on the configuration of signals K2-8 B LEG 00 H and B LEG 01 H (Table 4-7) and the state
of K2-4 DISAB MSYN +1 L.

4-14

K1-1 BREG 29 (1) H

51 S0 SR
BX REG | A
BITS 12-15 > (k1-4) [BITS12-15>
74194
P BIT 12
Ki-5 PROC CLK L — ¥ t
51 S0 SR BIT 11
BX REG
BITS 8-11 > (K1-3) [BITS 8-11'>
74194
CLK SL BIT8
K FROM SS MUX : TO BMUX
=
S1 S@ SR BIT 7
BX REG
BITS 4-7 1:) (k1-2) [BITS 4{i>
74194
CLK SL BIT 4
K2-8 BX MODE Of L — {
K2-8 BX MODE 00 L — | i
ST S0 SR BIT 3
S1 | SO |FUNCTION

BX REG
BITS 0-3 N (k1-1) [BITS o-:3> L {L | HOLD
74194 J SHIFT

RIGHT
CLK L SHIFT
; 3 HIL | LEFT
H | H | LOAD
K1-10 SHIFT IN BX H
11-3883

Figure 4-8 BX REG Block Diagram

4-15

(K1-4)
FROM BX REG BITS '2'L5>B
B MUX
FlBITS 12-15
74157
BITS 12-12I>A
ST8 S0
A —
(K1-3)
BITS 8-11 2B
B MUX
FIBITS 8-11
74157
FROM B REG BITS 8—1|:>A
STB S0
B o] I
K2-8 BLEG QOOH } TO ALU
K2-8 BLEG O1H
(K1-2) g
—
BITS 4-7 B S
V1 & Mux b P lFuNCTION
FIBITS 4-7 L | L |B-REG
74157 L H | BX-REG
BIT 3 BITS 4~7:>A HL |16
BIT 2 A A
A& B STB S0
K2-4 DISABLE BIT @ :[]
MSYN + 1 L
5 (K-
BIT 3
K2-8 AUX _BIT 2 N
CONTROL (1) H [giT 1 >c B MUX
OQEHLQ FiBITS 0-3
BITS 0-3 JB
74153
‘ BITS 0-3 JA
St s@
[

4-16

Figure 4-9 BMUX Block Diagram

11-3884

Table 4-7 BMUX Enabling Configurations and Modes

B Leg B Leg

01 00 Function Description

L L B REG Passes data from the B register to the BMUX out-
puts. This is the most common configuration.

L H BX REG Passes data from the BX register to the BMUX
outputs. This is used principally for EIS
instructions.

H L +16 Forces the constant +16 into the BMUX outputs
to preset a counter that is used for EIS instructions.

H H +1 Forces the constant +1 into the BMUX outputs

during operations in which the contents of a regis-
ter are being incremented or decremented by two.

- - 0 By asserting DISABLE MSYN +1 L, this con-
figuration forces the constant 0 into the BMUX
outputs during operations in which the contents of
a register are being incremented or decremented by
one. (The signal K2-8 ALU CIN L to the ALU
from the control module provides the one.)

B Leg Shift Capabilities

Each of the four shift registers (74194) that make up each register (B REG and BX REG) has the
capability of being shifted left or right, as indicated in Table 4-6 and Figure 4-10. The B register can be
shifted as an 8-bit byte or a 16-bit word; the BX register can be shifted as a 16-bit word or, in con-
junction with the B register, as a 32-bit word.

Byte Shifts

If the mode control lines (K2-8 B MODE 00 L and K2-8 B MODE 01 L) specify a shift left, B REG
15:00 are shifted one position toward the most significant bit at the clock pulse K1-5 PROC CLK L
going high. The signal K1-10 SHIFT IN B H is shifted into bit 00 via the SL input. This signal is
generated by the SHIFT MUX (E119 on print K1-10) as a function of the select signals K2-8 SHIFT
MUX 01 L and K2-8 SHIFT MUX 00 L. The shift right input to B REG bits 07:04 comes from the
BYTE MUX (E108 on print K1-10). Assertion of K2-5 BYTE L (indicating a byte instruction) causes
bit 07 of the B REG to be loaded directly by K2-5 SERIAL SHIFT H; if K2-5 BYTE L is high,
however, B REG bit 07 is loaded from B REG 08. B REG bit 15 is loaded from K1-10 SHIFT IN BH
during a shift right (just as B REG bit 00 is loaded during a shift left), and can be loaded with itself,
K2-5 SERIAL SHIFT H, ground, or BX REG bit 15, depending on the SHIFT MUX. For a shift
right, BX REG bits 15:01 are shifted one position toward the least significant bit, and BX REG bit 15
is loaded with B REG bit 00. Thus, for all right shifts, the BX REG acts as the low-order 16 bits of a
32-bit word made up of B REG and BX REG. For a shift left, BX REG bits 15:00 are shifted one bit
position toward the most significant bit. BX REG bit 00 is loaded with the signal K1-10 SHIFT IN BX
H, which is generated by the SHIFT MUX. Depending on the configuration of the SHIFT MUX
control lines K2-8 SHIFT MUX 00 L and K2-8 SHIFT MUX 01 L, the BX REG may be loaded with
any of four possible inputs: K1-4 ALU COUT H, the output of the EIS overflow detection logic (E100
on print K1-10), ONE, and ZERO.

4-17

—— et S g =
——’_—wl]
srR]_|
I 12-15 I
(K1-4) sL{] I
|
| —]
(K1-10) | 8-1 I
L 1g (K1-3) sL |
BYTE MUX I 74194
F I } '
g | [wrsip |
STB S0 | lw-2 st —_l |
=
K2-5 BYTE L | = |
N 1
(Ki-1) SL I
y I
K1-10 SHIFT INB H —ﬁ B REG_J
[—oe(KHO) '———SR———l
ce l 12-15
K2-5 SERIAL SHIFT H a Fo | (K1-4) St I
BO ¥
SHIFT I
AD MUX |
| 8-11SR 741 I
o1 74194
5 | lx-a s |
(K1-10) [

EIS +3D ¢ | |
OVERFLOW BI F1 . I
DETECTION ' 4 75”‘

LOGIC -

ENAB__ CLR ’_A1S1 50 | Lx1-2) S’L’_ :
? K1-4 ALU CONT H ' t |
K2-8 ENABOVXL | | s o ey | 0-3SR
K2-5 LOADIR H MUX 81 L | (K1-1) SL |
K2-8 SHIFT MUX §OL /_L—fB REG_J
K1-10 SHIFT IN BX H —_——

11-3885

Figure 4-10 B Leg Shift Logic

4-18

Specific Shift and Rotate Operations _
The shifting requirements for the ASL, ASR, ROL, ROR, ASH, and ASHC instructions are described

briefly below.

l.

Arithmetic Shift Left (ASL) - Shifts all bits of the destination left one place. The low-order
bit is loaded with a 0. The C-bit of the status word is loaded from the high-order bit of the
destination. ASL performs a signed multiplication of the destination by 2, with overflow
indication.

Arithmetic Shift Right (ASR) - Shifts all bits of the destination right one place. The high-
order bit is duplicated. The C-bit is loaded from the low-order bit of the destination. ASR
performs signed division of the destination by two.

Rotate Left (ROL or ROLB, depending on whether a word or byte operation) — Rotates all
bits of the destination left one place. The high-order bit is loaded into the C-bit of the status
word, and the previous contents of the C-bit are loaded into the low-order bit of the
destination.

Rotate Right (ROR or RORB) - Rotates all bits of the destination right one place. The low-
order bit is loaded into the C-bit, and the previous contents of the C-bit are loaded into the
high-order bit of the destination.

Arithmetic Shift (ASH) - Shifts the contents of the register right or left the number of times
specified by the source operand. The shift count is taken as the low-order six bits of the
source operand. This number ranges from -32 to +31. Negative is a right shift and positive
is a left shift.

Arithmetic Shift Combined (ASHC) - Treats the contents of the register and the register
ORed with one as one 32-bit word. Rv1 (bits 15:00) and R (bits 31:16) are shifted right or left
the number of times specified by the shift count. The shift count is taken as the low-order six
bits of the source operand. This number ranges from -32 to +31. Negative is a right shift
and positive is a left shift. (When the register chosen is an odd number, the register and the
register ORed with one are the same. In this case, the right shift becomes a rotate. The 16-bit
word is rotated right the number of bits specified by the shift count.)

NOTE
When R is an even-numbered register, Rvl will be
the next highest register. If R is an odd-numbered
register, Rvl will be the same register (e.g., if R =
R4, then Rvl = RS; if R = RS, then Rvl = RS).

4-19

BMUX Operation

Three 2-to-1 multiplexers (74157s) are used to switch B leg bits 15:04. Their select lines are tied in
parallel with each other and with the SO line of the 4-to-1 multiplexer (two 74153s) used to switch B leg
bits 03:00. The SO line is signal K2-8 B LEG 00 H. Signal K2-8 B LEG 01 H is connected to the enable
lines of the 2-to-1 multiplexers and to the S1 line of the 4-to-1 multiplexer. Table 4-7 describes the
enabling configurations and modes for these two select signals, which are logically determined as
follows:

1. If both K2-8 B LEG 00 H and K2-8 B LEG 01 H are low, the 4-to-1 multiplexer (E9 and E6
on print K1-1) selects the A input and the 2-to-1 multiplexers (E30 on print K1-2, E20 on
K1-3, and E40 on K1-4) select the A inputs; the data from the B REG is switched to the
BMUX output.

2. If K2-8 B LEG 01 H is low and K2-8 B LEG 00 H is high, the 4-to-1 multiplexer selects
input B, the 2-to-1 multiplexers remain enabled, and the data from the BX REG is switched
to the BMUX output.

3. If K2-8 BLEG 01 H is high and K2-8 B LEG 00 H is low, the 2-to-1 multiplexers are not
enabled. The 4-to-1 multiplexer selects input C, where bit 0 is low and bits 03:01 are con-
nected to K2-8 AUX CONTROL (1) L unasserted, generating a + 16 constant to the B leg.

4. If both K2-8 B LEG 01 H and K2-8 B LEG 00 H are high, the 2-to-1 multiplexers are still
disabled and the 4-to-1 multiplexer selects input D, where bits 03:01 are grounded and bit 00
is connected to K2-4 DISABLE MSYN +1 L unasserted, generating a constant of +1 to the
B leg.

5. If,in 4 above, K2-4 DISABLE MSYN +1 L is asserted, a constant of 0 is generated to the B
leg.

Constants +16, +1, and 0

The purpose of generating the constants +1 and 0 on the B leg input of the ALU is to aid the processor
to perform autoincrement and autodecrement operations. During either operation, if a word instruc-
tion is being performed, the specified register is incremented or decremented by two; if a byte instruc-
tion is being performed, the register is incremented or decremented only by one. The actual ALU
operation is: ‘

RESULT = A LEG DATA + B LEG DATA + ALU CIN.

The ALU always uses the K2-8 ALU CIN L signal to increment or decrement the A leg input by one;
thus, the B leg input must provide the constant +1 or 0 to obtain the correct autoincrement or auto-
decrement result for both byte and word instructions. A B leg constant of +1 is generated by enabling
the least significant bit of the BMUX output (bit 00) and forcing all other bits (15:01) to 0. To generate
a constant 0, even bit 00 is cleared. The actual constant generated is defined by the state of the K2-4
DISABLE MSYN +1 L signal, which is determined by the Control Store.

4-20

4.2.5 ALU Multiplexer (AMUX)

The AMUX (Figure 4-11) consists of four 4-to-1 tristate multiplexers (74S253s), each cne dedicated to
a 4-bit slice of the AMUX. If the signal K1-1 TRI STATE AMUX H is asserted, the STB input will be
high and each multiplexer will assume a high impedance state. This condition will allow external data
to be brought into the KD11-EA data path via connector J1. If the STB input is low, the output of
each multiplexer will follow one of the inputs, corresponding to the binary value of select lines S! and
SO (K1-10 AMUX S1 H and K1-10 AMUX S0 H, respectively), as follows:

1. Unibus Data Function - If both S1 and SO are low (binary 0), the 4-to-1 multiplexers select
input A, Thus, each 4-bit slice of the AMUX switches Unibus data into the data path.

2. Constant’s Function - Certain operations require the introduction of specific numbers into
the data path. (For example, the data path must generate a vector of 24 for a power-fail trap,
or 114 for a parity trap.) Access to these and other numbers is facilitated by storing certain
constants in a read-only memory and presenting them to the constant’s input of the AMUX.
If S1is low and SO is high (binary 1), the multiplexers select input B (the constant’s input).
Bits 11:08 are not used.

3. ALU Input - If Sl is high‘and S0 is low (binary 2), the multiplexers select the ALU inputs
(input C).

4. PSW Input - If both S1 and SO are high (binary 3), the multiplexers select the PSW input
(input D).

4.2.6 Processor Status Word

The Processor Status Word (PSW) register contains information on the current and previous memory
management mode, the current processor priority, a processor trap for debugging, and the condition
code results of the previous operation. The PSW bit assignments and uses are shown in Table 4-8.

The PSW (Figure 4-12) is a 12-bit register composed of three quad D-type flip-flops (74175s) and one
separate D-type latch. The first of these (E97 on print K1-1) stores the condition code bits (N, Z, V,
and C), and derives its input from the PSW MUX, a quad 2-line-to-1-line multiplexer (E98 on K1-1)
according to the state of the SO select line. When high, SO selects the B inputs (SSMUX bits 03:00);
when low, SO selects the A inputs, which come from the condition code logic (print K1-10). The
selected inputs are passed to the f-outputs of the multiplexer and into the PSW.

A second quad D-type flip-flop (E99 on K1-2) is used to store the three KD 11-EA processor priority
bits, which it obtains from SSMUX bits 07:05. A separate 74574 (E109 on K1-2) is needed to store the
Trace Trap flag (T-bit), which can be loaded from the K1-2 SSMUX 04 H line.

The third quad D-type flip-flop (E82 on K1-4) stores the bits containing the current and previous
status of the memory management mode. SSMUX bits 15 and 14 provide the innut for PSW bits 15
and 14, which are then rerouted through a quad 2-line-to-1-line multiplexer (E92 on K1-4) and multi-
plexed with SSMUX bits 13 and 12 according to the state of the SO select signal [K2-9 FORCE
KERNEL (1) H] to provide the input for PSW bits 13 and 12. Thus, PSW bits 15 and 14 reflect the
current status of the memory management mode, while PSW bits 13 and 12 indicate the previous
status,

All flip-flops in the PSW are clocked, directly or indirectly, by clocking signal K1-5 REG CLK L. All
of the enabling signals come from the Control Store.

4-21

S81S5-11

XAWSS 0L

(Z) 31viS
3ONVQA3dNI HOIH

msd

nlv

LINVISNOD

viva
SNAINN

NOILONNd

Ls

al1s

XNWv

weSelq Yoold XNV 11-p 2m8ig

HLVd V1va TYNH3ILX3

00:51 XNWV

e
[J
[]
[]
[]
[]
[]
[
[]
®
[]
[
_/
i
0s IS
K
| G
XNWv

K

K]

oal1s 1a1s]

LT

H 0S XNV 0L-L)

H LS XNV OL-L)

vivasngainn

SLNV1ISNOD

niv

H XNWV 31V1S 14l €I

4-22

Table 4-8 Processor Status Word Register Bit Assignments

PSW Bit Name Use
15:14 Memory Management Contain the current memory management modes.
Current Mode
13:12 Memory Management Contain the previous memory management modes.
Previous Mode
11:08 Unused
07:05 Priority Set the processor priority.
04 Trace When this bit is set, the processor traps to the trace
vector. Used for program debugging.
03 N Set when the result of the last data manipulation is
negative.
02 V4 Set when the result of the last data manipulation is
zZero.
01 \Y Set when the result of the last data manipulation
produces an overflow.
00 C Set when the result of the last data manipulation

produces a carry from the most significant bit.

4-23

$S MUX (15:14)

PSW (15:14)

SS MUX (13:12)

[(K1-4)
BITS (15:14)

E>B (K1-4) PSW(15:12) | MEM.MGMNT. MODE

ABITS (13:12)
PSW MUX CLR CLK

o 7

STB _s@
FORCE KERNAL (1) H % |
LOAD H PSW 7
(K1-2)
PSW(07:05)
sS Mux (07:05) | > PRIORITY
(REG. CLK) GLR X
[(LOAD PSW LOW)+(LOAD PSW 12 -15)] Ly I
(K1-2)

SS MUX P4

(REG CLK) - (LOAD

D

PSW@4 |T-BIT

PSW)

SS MUX (03:00)

CC LoGIC

(AUX CONTROL)-(LOAD PSW LOW)

CLK
CLR

9

:> B (K1-1) (K1:1)
PSW(0Z00)

PSW MUX ::> C.V,N,Z

-

l >A
STB___S® CLR CLK

PROC INIT L

{REG CLK)- [(LOAD PSW) +
(LOAD PSW LOW)+{ LOAD CC)]

Figure 4-12 Processor Status Word

4-24

11-3887

T0
AMUX

4.3 CONDITION CODES . .
The logic necessary for determining the condition codes is shown on sheets K1-ihansh &2+ 2ahdoani
be subdivided into three parts, each of which is discussed in some detail in this section. Gonstraints fofl
each condition code bit are shown in the instruction set specifications (Chapter 2). I

4.3.1 Instruction Categorfzing ROM

The Categorizing ROM (E68 on sheet K2-5) decodes the instructions in the IR and categorizes them
into eight groups, based on their effect on the carry and overflow condition codes. These groups are as
follows:

Group Instructions

MOV, BIT, BIS, BIC, and non-PDP-11 instructions
INC, DEC

CLR,TST,SWAB

ADD, ADC

NEG, CMP,COM

SUB, SBC

Rotate instructions

Unused

OO -J\ b W -

Three of the four outputs of the Categorizing ROM are used to provide a binary representation of one
of the above instruction categories for the C and V Decode ROM (E107 on K1-10). The fourth output
(K2-5 BYTE L) decodes the fact that the instruction in the IR is a byte instruction and is fed to the
select input of the BYTE MUX (E108 on K1-10).

4.3.2 Byte Multiplexer (BYTE MUX)

The BYTE MUX (E108 on K1-10) is a quad 2-line-to-1-line multiplexer (74S157) that determines the
N condition code bit and the K1-10 SHIFT IN 07 H signal for the B REG (Figure 4-13). A single select
input (K2-5 BYTE L) selects the A inputs when a byte operation is performed, and the B inputs when
the operation is not a byte.

(K1-10)
K1-3 BREG 8 ()'H ——{B@ 0 —— K1-10 SHIFT INO7 H
K2-5 SERIAL SHIFT H —— A®
Ki-4 ALU 15 H ——{ B1
f1 K1-10 CC N H
K1-2 ALU @7 H —— A BYTE
MUX
K1-4 SP 15 (1) H ——{ B2 (E108)
745157 £2
K1-2 SP@7 (1)H —{ A2 — 7O C +V DECODER
K1-4 BLEG 15 H ——{ B3 ROM
K1-2 BLEG @7 H — A3 £3 —m
STB Y

[

K2-5 BYTE L
11- 3888

Figure 4-13 Byte Multiplexer

4-25

Output signal K1-10 CC N H assumes the level of K1-4 ALU 15 H when the instruction being per-
fosmbdsis & Qdsheratibn, and the level of K1-2 ALU 07 H when the instruction is a byte operation.
Bytesopermiofy. miy be performed on either the high or low bytes of the input word, depending on
whether the processor microcode has already swapped bytes before the condition codes are detected.

For shift right operations, the K1-10 SHIFT IN 07 H output assumes the level of the K1-3 BREG 08
(1) H input when a word instruction is performed, and the level of the K2-5 SERIAL SHIFT H output
of the ROT/SHFT ROM (E62 on print K2-5) for a byte operation. The diagrams in Figure 4-14
indicate the operations performed by various instructions.

4.3.3 C and V Decode ROM

The C and V Decode ROM (E107 on K 1-10) determines the values of the carry and overflow condition
code bits as a function of the instruction being performed (Figure 4-15). Inputs to this ROM come
from the ROT SHIFT ROM (E62 on K2-5), the PSW [K1-1 CBIT (1) H], the BYTE MUX, and the
Categorizing ROM (E68 on K2-5). Outputs K1-10 CC V H and K1-10 CC C H are fed via the PSW
MUX (E98 on KI-1) to the PSW register.

4.3.4 Condition Code Signal CC Z H

Each 4-bit slice of the data path contains an ALU output via a gate (type 8815) reflecting whether all
four of the bits in that slice are ZERO. If the instruction being performed is a byte operation, condition
code signal K1-10 CC Z H assumes the combined state of signals K1-1 0-3=0 H and K1-2 4-7=0 H;
for a word operation, K1-10 CC Z H assumes the combined state of those signals together with K1-3
8-11=0 H and K1-4 12-15=0 H. Thus, K1-10 CC Z H is asserted if bits 00 through 07 = 0 for a byte
operation and if bits 00 through 15 = 0 for a word operation. Assertion of K2-5 BYTE L selects byte
operation.

4.4 UNIBUS ADDRESS AND DATA INTERFACE

4.4.1 Unibus Drivers and Receivers

Standard bus transceiver circuits (type 8641) are used to interface the processor data path to the
Unibus address (BUS A00:A17) and data (BUS D00:D15) lines. These circuits are shown on prints
K1-1 through K1-4, and on K1-6. Figure 4-16 shows the logic diagram for an 8641.

4.4.2 Unibus Address Generation Circuitry

A unique feature of the KD11-EA is that KT11-D equivalent memory management capability is built
into the 2-board processor. During Unibus transfers, virtual bus addresses are obtained from the
scratchpad memory (SPM) and the Physical Bus Address (PBA) register, if relocation is not enabled,
and latched in the Virtual Bus Address (VBA) register shown on print K1-6. Figure 4-17 shows the
actual VBA clock timing, while Figure 4-18 shows Unibus address logic in block diagram form.

If the memory management circuit is not enabled (K1-8 RELOCATE H is not asserted), the address
that was clocked into the Physical Bus Address register is used as address data for the 8641 transceivers
and driven onto the Unibus address lines.

When the memory management circuit is enabled (K1-8 RELOCATE H asserted), a selected reloca-

tion constant (detailed description in Paragraph 4.12) is added to the contents of the VBA before it is
latched into the BA and driven onto the Unibus.

4-26

RORB
WORD:
111111[111111111

15 }o
BYTE:
L, [] ' T B J
15 8 7
i o IR M |

ROL [nikly

ROLB
WORD:

Iil'_{ L 1 P TN SN T S
15 30
BYTE:
o0D EVEN
| *] I [I B l
5 N N S—
ASR ¢ c
|
ASRB
WORD:
[:!]_J TR R A I B | IHI
]
BYTE:
IJJJII JIlLill
15 ODD ADDRESS 8 i EVEN ADDRESS 0

ASL

AsLB
WORD:

B T
15 0
BYTE:
||11111I0411111|]0
15 0ODD ADDRESS 8 7 EVEN ADDRESS 0

11-3952

Figure 4-14 Rotate Instructions

4-27

K2-8 IR DECODE (1) L

K2-5 IR 15 (1) H
K2-5 IR 14 (1) H —
K2-5IR 13 (1) H ——
K2-5 TR 12 (1) H —

K2-5 IR 10 (1) H
K2-5 IR 09 (1) H —
K2-5 IR 08B (1) H ——
K2-51IR 07 {1) H ——
K2-5 IR 06 (1) H —

(K2-5)

CATEGORIZING
ROM

E68

+5V

K2-5 BYTE H

K2-5 CC CODE 02 H

K2-5 BYTE L

K2-5 CC CODE Ot H

K2-5 CC CODE OO H

FROM
BYTE MUX

K2-5 ROT CBIT (1) H—

K1-1 CBIT (1) H—

(K1-10)

cC+V
DECODE
ROM

E107

—K1-10 CCV H

+—K1-10 CCCH

Figure 4-15 C and V Decode ROM

UNIBUS LINES

g
N

11-5187

L

:} /i

>

>

D,

1YY

Figure 4-16 Unibus Transceiver

4-28

11-3891

LOAD VBA
INPUT TO [| [] [L___[_[_
DELAY LOAD VBA LOAD VBA
LOAD BA LOAD BA

TAP 30 H | f | f ! | | |
TAP 90 H | | [] |
TAP120 H ___} [|] | 1

proccLk L | § —|_fe—30ns | f Lt
|<—180ns-——!<——240ns—’|

< SHORT CYCLE —~—|~———— LONG CYCLE —»

11-3900

LOAD BA

Figure 4-17 Processor Clock Cycle Timing

:> K1-8
FROM PAR LPAGE ADDRESS FIELD BITS 1-0 ¢)

ADDER

K1-8) ErTsTa-0 BiTs1re Mg 176! (K1-6)

vBA BA [BITS 17-6_ M DRIVER
BITS 15-0] A E
cLk LR WS CLK
T T0
FROM 3 - B”'ﬁ}umaus
DATA PATH ITS_17-
K1-5 LOAD VBA H _ K1-8 RELOCATE H e
K2-2 PROC INIT L ———— K1-5 LOAD BAR L |
BITS 5-0 > ORIVER
BITIS — | BIT 17 £
8IT 14—
BIT 13 BIT 16
K2-1 ENAB ADDRS L
11-3892

Figure 4-18 Unibus Address Logic Block Diagram

4-29

4.4.3 Internal Address Decoder

The receiver haif of the bus transceivers continually monitors the Unibus address lines. If the processor
is running (HALT RQST L or BUS SACK L are not asserted), these transceivers allow the Internal
Address Decoder circuit (print K1-10) to detect transfers to or from the PSW and memory manage-
ment registers. Note, however, that the CPU does not allow access to its general registers through their
Unibus addresses while it is running.

While the processor is halted (BUS SACK L is asserted), this decoder circuit enables data transfers
between CPU registers and Unibus peripheral devices. A list of these CPU registers and their Unibus
addresses is shown below; the registers are discussed in Paragraph 4.12.

PSW 777776 R10 777710
RO 777700 RI11 777711
R1 777701 R12 777712
R2 777702 R13 777713
R3 777703 R14 777714
R4 777704 R15 177715
R5 777705 R16 777716
R6 777706 R17 777717
R7 777707

4.5 INSTRUCTION DECODING

4.5.1 General Description

Two methods are used to control instruction decoding, one using microroutine selection and the other
using auxiliary ALU control. Dual control is required because of the large number of instructions that
require source/destination calculations. Auxiliary ALU control is evoked whenever the microcode
executes the action X = Y OP B as a result of a specific instruction.

There are two prerequisites to a thorough understanding of the instruction decoding procedure. One is
a knowledge of the microbranching process, and the other is a knowledge of the PDP-11 instruction
format. '

The following facts pertain to the KD11-EA /PDP-11 instruction set:

1. In general, the PDP-11 operation code is variable from 4 to 16 bits.

2. A number of instructions require two address calculations; an even larger number require
only one address calculation. There are also a number of instructions that require address
calculations, but do not operate on data.

3. All op codes that are not implemented in the KD11-EA processor must be trapped.

4. There are illegal combinations of instructions and address modes that must be trapped.

5. There exists a list of exceptions in the execution of instructions having to do with both the
treatment of data and the setting of condition codes in the processor status word.

4-30

4.5.2 Instruction Register

Each PDP-11 instruction obtained from memory is stored in the 16-bit instruction register (IR). This
register consists of three 6-bit D-type 74174 registers (E56, E66, and E67 on K2-5) and one 74574 D-
type flip-flop (E34). The purpose of the IR is to store the instruction for the complete instruction cycle
so that the IR Decode and Auxiliary ALU Control circuits can decode the correct control signals
throughout the instruction cycle.

The IR latches data from the SSMUX 00-15 lines on K2-7 LOAD IR L and the leading edge of K1-5
PROC CLK L.

On the trailing edge of K2-9 BUT SERVICE (1) H, all the IR bits except K2-5IR15 (1) H are cleared.
[K2-5TR15 (1) H is set by the same signal transition.] This means that the IR Decode circuit will see a
conditional branch instruction in the IR after every service microstep. This action prevents the proces-
sor from decoding a HLT instruction after an Initialize condition.

If a bus error (BE) occurs while the Control Store output signal Enable Double Bus Error (K2-8
ENAB DBE L) is asserted, the whole IR is cleared (PDP-11 Halt), causing the processor to halt
automatically. Bus errors occurring without the K2-8 ENAB DBE L signal have no effect on the IR.
K2-8 ENAB DBE L is only asserted during certain microwords in the trap sequence to prevent the
possibility of a second bus error occuring (Double Bus Error), which would cause the trap sequence to
be re-entered before it is completed. For example, if R6 (Stack Pointer) were an odd address, the first
bus reference using the stack in the trap routine would cause another trap (Odd Address), a sequence
that could tie up the CPU indefinitely if not for the Halt and Double Bus Error facilities. In short, any
error during the four memory references of the trap sequence is fatal.

4.5.3 Instruction Decoder

4.5.3.1 Instruction Decoder Circuitry - The Instruction Decode (prints K2-5 and K2-6) and Control
Store (prints K2-7 through K2-10) circuitry could be thought of as an internal microprocessor that
interprets PDP-11 instructions and translates them into a set of microinstructions, each consisting of
40 control signals. These control signals then determine the operation of the data path and Unibus
control circuitry.

A block diagram of this internal microprocessor is shown in Figure 4-1. Note that all outputs of the
Control Store ROMs (K2-7 through K2-10) are latched in hex D-type registers (74S174s).

Nine of these latched signals (K2-7 MPC 08 H through K2-7 MPC 00 H) are fed back to the inputs of
the Control Store ROM as the next microinstruction address (and can then be called the micro-PC).
The wired-OR capability of these lines allows the IR Decode circuitry to force microbranching
addresses on certain enabling conditions. The actual microbranch address will depend on the instruc-
tion being decoded, the instruction mode used (modes 0-7), and the operand required (source or
destination).

The IR Decode circuitry is shown on prints K2-5 and K2-6. It consists of two 512 X 4 ROMs; nine 256
X 4 ROMs; two 32 X 8 ROMs; and 74503, 74502, 74800, and 74S10 logic gates. The following
descriptions are based on instruction types. Complete block diagrams of the microcode flow are avail-
able in the KD 11-EA print set.

NOTE
The signal FP11-A ATTACHED L is input to the
IR DECODE PROM (E70 on K2-6) to prevent a
Reserved Instruction Trap from occurring for
17xxxx codes while the floating point option (FP11-
A) is installed.

4-31

4.5.3.2 Double-Operand Instructions - Double-operand instructions require two address calculations,
one for the source and one for the destination operand. The microbranch to the sequence of micro-
instructions that determine the source operand is initiated by the Control Store output signal K2-6 IR
DECODE (1) H. When this signal is enabled, the IR Decode ROMs DOP Decode (E69 and E70 on
print K2-6) check the instruction in the IR (op code bits IR15-12). If the instruction is a double-
operand type, the ROM outputs are asserted as follows:

ROM Outputs
Type K2-6 K2-7 K2-7 K2-7 KK2-7 K2-7
Instruction IR Code OL MPCO7L MPC061. MPCOSL MPCO04L. MPCO3L
MOV (SM0*DMO) 1 1 0 0 0 1

DOP (MOV+SUB)
MOD (SM0*DMO) I 0 1 1 0 0
(ADD, BIC, BIS)

SUB (SM0*DMO) 1 1 0 1 0 0
DOP (SM0*DMO0) | 0 1 0 0 1
Illegal Instructions 0 0 0 0 0 0
DOP NONMOD (SM0*DMO0) 7 1 l 0 1 1 1
(CMP, BIT)
NOTE

Ground on the MPC lines represents a logic ““1.”

Coupled with the microprocessor outputs of the DOP DEC ROM are the outputs of a set of type
74503 gates on K2-6. These gates, when enabled, place the contents of the source mode field (IR 11:09)
of the PDP-11 instruction being decoded onto the MPC 00:02 lines. These gates are enabled by the K2-
6 SRCH ROM output only when the instruction being decoded is of the double-operand type, the K2-
6 IR DECODE (1) L signal is asserted, and the instruction is not reserved (K2-6 IR CODE 00 L
unasserted).

A summary of the various source microaddresses is shown below:

Source Octal
Instruction Mode Microbranch Address
DOP (SM0*DMO0) 0 110

1 111

2 112

3 113

4 114

5 115

6 116

7
Reserved DOP 00

NOTE

A ground on the MPC lines represents a logic 1.

4-32

The DOP DEC ROMs described above are also used to decode the microprocessor address for the
various Control Store destination operand routines. When the K2-7 BUT DEST L input is asserted by
the miscellaneous control field circuitry of the Control Store, the DOP DEC ROMs decode the
instructions, determine whether it is a modifying or nonmodifying instruction, and generate the fol-
lowing micro-PC addresses.

ROM Outputs
Type K2-7 K2-7 K2-7 K2-7 K2-7
Instruction MPCO7L MPCO6L. MPCOSL MPCO4L MPCO3L
Move 0 0 1 0 1
(SM0*DMO0)
Modify 0 0 1 1 1
(ADD BIS BIC but
not MOV or SUB)
Nonmodify 0 0 1 1 0
(CMP BIT)
SUB 0 0 1 0 0

The circuitry used to decode the destination mode field of the instruction being decoded is similar to
that described above for microaddressing the source operand routine. A set of 74S03 gates on K2-6 is
used to place the contents of K2-5 IR 05 (1) H through K2-5 IR 03 (1) H on the lines when enabled.
For double-operand instructions, enabling occurs when the MPC miscellaneous control field asserts
K2-7 BUT DEST L.

ROM E74 on print K2-6 is also considered to be part of the DOP Decoder circuitry. This ROM
decodes all Extended Instruction Set (EIS) instructions, generating the following micro-PC addresses
when K2-6 IR DECODE (1) H is asserted:

ROM Outputs
Type K2-6 K2-7 K2-7 K2-7 K27 K2-7
Instruction IR Code 0. MPCO7L MPCO6L. MPCOSL MPCO4L MPCO3L
Multiply or Divide)\ _ 1 0 0 1 0
(MUL, DIV) ‘
Arithmetic Shift or 1 1 0 0 1 1
Arithmetic Shift Combined
(ASH,ASHC)
SOP 1 1 0 1 1 0
XOR 1 0 1 0 0 1
Reserved 0 0 0 0 0 0

4-33

The K2-6 DEST L output of the EIS Decoder ROM (E74) allows the 74S03 (E65) on print K2-6 to
place the contents of the destination mode field of the instruction being decoded onto the micro-PC
(MPC00-MPCO02) lines. This microbranching technique is similar to that described above for micro-
addressing the source operand routine. Use of the EIS instructions does not degrade processor timing
or affect NPR latency.

4.5.3.3 Single-Operand Instructions - Unlike double-operand instructions, single-operand instruc-
tions only require one address calculation to obtain the necessary operand. Complete SOP instruction
decoding is done with the two 256- X 4-bit ROMs (ES9 and E60).

The SOP Microbranch ROM (E60) monitors the necessary IR input lines and asserts the correct
micro-PC address on lines K2-7 MPCO03-L through K2-7 MPC 06 L when the K2-6 IR DECODE (1) L
signal is asserted and the SOP enable signal K2-5 IR 12-14=0 H is true. The K2-6 DEST L output is
also activated when an SOP instruction is decoded. This signal enables the destination mode mon-
itoring circuitry described in the double-operand instruction decoding section. Microaddresses for
SOP instructions are shown below.

Base
Microbranch
Instruction Address
SOP Modify 040
(CLR,COM,INC,DEC)
SOP Non-Modify 160
(TST)
' NEG | 150
Rotate and Shift 170
JSR ‘ 150
JMP , 020
MARK
SWAB 030
MFPI (D) 100
MTPI (D) 250
"MFPS 130
MTPS 120

The SOP Microbranch ROM (E60) is also used to decode JSR instructions. This decoding is per-
formed in the same manner as that for SOP instructions. The K2-6 DMO H input to the ROM is used
to detect the illegal instruction JMP or JSR destination mode 0. When this occurs, no micro-PC
address is allowed on the ROM outputs.

4-34

The SOP Decode ROM (ES59) monitors the same input signals as the SOP Microbranch ROM. Its
purpose, however, is to decode illegal, reserved, and trap instructions. The three output signals K2-6
IR CODE 00 L through K2-6 IR CODE 02 L are enabled as follows:

IR Code
Instructions 02 01 00
Reserved 1 1 0
Illegal 1 0 1
(JMP or JSR Mode 0)
EMT 0 1 0
Trap 0 0 1

The fourth output signal of the SOP Decdoe ROM enables the destination mode monitoring circuitry
described in the double-operand instruction decoding section.

4.5.3.4 Branch Instructions - Conditional branch instructions are completely decoded by the Branch
DEC ROM (E72 on print K2-6). This ROM is enabled when bits IR11:IR 14 are all low and the K2-6
IR DECODE (1) L signal is active. The input lines monitored are the four condition code bits (N, Z, V,
and C) and four IR bits (IR15, 10, 9, and 8). When a branch is decoded, the K2-7 MPC 07 L output
signal is enabled. The branch instruction microcode routine in the Control Store will sign-extend the
branch offset and shift it left one place.

4.5.3.5 Operate Instructions — There are three 256- X 4-bit ROMs in the instruction-decoding circui-
try for decoding PDP-11 operate instructions. These ROMs are the Reset/Trap Decode, Trap Decode,
and Op Branch ROMs (E63), all found on K2-6.

The Op Branch ROM (E63) monitors IR output lines IR00:IR07. It is enabled when IR08 and IR15
are low and K2-6 IR DECODE (1) L is active. The PDP-11 operate instructions are decoded into the
following micro-PC addresses on the ROM outputs K2-7 MPC 00 L through K2-7 MPC 03 L.

Microbranch
Instruction Address
Reset 003
RTI/RTT <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>