
EK-KD1EA-MM-001

KD11-EA

central processor

maintenance manual

digital equipment corporation « maynard, massachusetts

First Edition April 1977

Copyright © 1977 by Digital Equipment Corporation

The material in this mahual is for informational
purposes and is subject to change without notice.

Digital Equipment Corporafion assumes no respon-
sibility for any errors which may appear in this

manual.

Printed in U.S.A.

This document was set on DIGITAL’s DECset-8000

computerized typesetting system.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC DECtape PDP

DECCOMM DECUS RSTS

DECsystem-10 DIGITAL TYPESET-8

DECSYSTEM-20 MASSBUS TYPESET-11

UNIBUS

CHAPTER 1

CHAPTER 2

2.1

2.2

2.3

2.4

2.4.1

2.4.2

2.5

2.6

CHAPTER 3

CHAPTER 4

4.1

4.2

4.2.1

422

4.2.3

424

4.2.5

4.2.6

4.3

4.3.1

4.3.2

433

434

4.4

4.4.1

442

4423

4.5

4.5.1

452

4.5.3

4.5.3.1

4.5.3.2

4533

4.53.4

4.5.3.5

4.6

4.7

CONTENTS

Page

OVERALL DESCRIPTION

INSTRUCTION SET

INTRODUCTION e, 2-1

ADDRESSING MODES e 2-1

PDP-11/34A INSTRUCTIONS o e 2-4

INSTRUCTION EXECUTIONTIME 2-25

Basic Instruction Set Timing 2-25

Bus Latency Times e 2-30

EXTENDED INSTRUCTION SET 2-30

INSTRUCTION SET DIFFERENCES 2-31

CPU OPERATING SPECIFICATIONS

DETAILED HARDWARE DESCRIPTION

INTRODUCTION e e d e e s d e 4-1

DATAPATH e 4-1

General Description L e 4-1

Arithmetic Logic Unit (ALU) 4-5

Scratchpad e e e 4-7

Bleg ee e e 4-12

ALU Multiplexer (AMUX) e 4-21

Processor StatusWord 4-21

CONDITION CODES o e e e e e e e e e e 4-25

Instruction Categorizing ROM 4-25

Byte Multiplexer (BYTEMUX) 4-25

Cand VDecode ROM 4-26

Condition Code Signal CCZH 4-26

UNIBUS ADDRESS AND DATA INTERFACE 4-26

Unibus Drivers and Receivers 4-26

Unibus Address Generation Circuitry 4-26

Internal Address Decoder 4-30

INSTRUCTION DECODING i b e . 4-30

General Description Lo 4-30

Instruction Register 4-31

Instruction Decodere e e e e e e e e e 4-31

Instruction Decoder Circuitry 4-31

Double-Operand Instructions 4-32

Single-Operand Instructions 4-34

Branch Instructions 4-35

Operate Instructions 4-35

AUXILIARY ALUCONTROL 4-36

DATA TRANSFER CIRCUITRY 4-40

iii

4.7.1

4.7.2

4.7.2.1

4.7.2.2

4.7.2.3

4.7.2.4

4.7.2.5

4.7.2.6

4.7.2.7

4.7.2.8

4.7.2.9

4.7.2.10

4.8

4.9

4.10

4.10.1

4.10.2

4.10.3

4.11

4.11.1

411.2

4.12

4.12.1

4.12.1.1

4.12.1.2

412.1.3

4.12.1.4

412.1.5

4.12.2

412.2.1

412.2.2

412.2.3

412.3

4.12.3.1

4.12.3.2

4.12.33

4.12.4

4.12.4.1

4.12.4.2

4.12.5

4.12.5.1

41252

4.12.6

4.12.6.1

CONTENTS (CONT)

Page

General Descriptiono 440

Control Circuitry o . e 4-40

Processor Clock Inhibit 4-40

Unibus Synchronization 4-40

Bus Controlo 4-41

NO-SACK Timeout Circuitry 4-4?

MSYN/SSYN Time-Out Circuitry 4-43

Bus Errors e e e e e e 4-46

Parity Errors Lo 4-46

End of Transfer Circuitry« 4-46

Data-in-Pause Transfer 4-46

Odd Address Detectiono oL 4-46

POWER FAIL/AUTO RESTART 4-49

PROCESSOR CLOCK e e e e e e e 4-50

PRIORITY ARBITRATION o e 4-52

Bus Requests Lo 4-52

Nonprocessor Requests (NPRs) 4-55

Halt Grant Requests L. 4-55

SERVICE TRAPS e e e s 4-57

General Description Looo 4-57

Circuit Operation oo e 4-57

MEMORY MANAGEMENT o oo 4-58

General e e e e e e e e 4-58

Introduction L. e e e e e e e 4-58

Programmingoe 4-59

Basic Addressing Lo . o e e e 4-59

Active Page Registers 4-59

Capabilities Provided by Memory Management 4-60

Relocation e e e e 4-60

Virtual Addressingo 000 4-60

Program Relocation 0. 4-61

Memory Units oL o e 4-63

Protection L . e e 4-63

Inaccessible Memoryo o 000 e d e e 4-63

Read-Only Memory oo 4-63

Multiple Address Spaceo o000 4-63

Active Page Registers oo 4-64

Page Address Registers (PAR) 4-65

Page Descriptor Registers 0. 4-65

Virtual and Physical Addresseso 4-70

Construction of a Physical Address 4-70

Determining the Program Physical Address 4-71

Status Registers oo 4-72

Status Register O(SRO)o 4-72

v

4.12.6.2

4.12.7

4.12.8

4.13

4.13.1

4.13.2

4.13.3

CHAPTER §

5.1

5.2

Figure No.

2-1

22

2-3

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-23

CONTENTS (CONT)

Page

Status Register 2 (SR2) 4-74

Mode Description oo 4-74

Interrupt Conditions Lo 4-74

CONTROL STORE o e . 4-75

General Description 4-75

Branching Within Microroutines 4-75

Control Store Fields L. 4-77

MICROCODE

MICROPROGRAM FLOWSo .. 5-1

FLOW NOTATION GLOSSARY oo .. 5-1

FIGURES

Title Page

Addressing Mode Instruction Formats 2-2

PDP-11 Instruction Formats 2-24

Extended Instruction Set Number Formats 2-30

KD11-EA Block Diagram 4-2

Simplified KD11-EA DataPath 4-3

ALU Block Diagram 4-6

Scratchpad Timing 4-8

Scratchpad Address Multiplexer (SPAM) 4-9

B Leg Block Diagram, 4-12

BREG Block Diagram 4-13

BX REG Block Diagram 4-15

BMUX Block Diagram, 4-16

B Leg Shift Logic e, 4-18

AMUX Block Diagram, 4-22

Processor StatusWord Lo 4-24

Byte Multiplexer 4-25

Rotate Instructions 4-27

Cand VDecode ROM L, 4-28

Unibus Transceiver 4-28

Processor Clock Cycle Timing 4-29

Unibus Address Logic Block Diagram 4-29

Unibus Synchronizer 4-40

NO-SACK Timeout Circuitry o s 4-42

SSYN/MSYN Control 4-44
Data Transfer Multiplexer 4-45

Error Logic 4-47

Figure No.

4-24

4-25

4-26

4-27

4-28

4-29

4-30

4-31

4-32

4-33

4-34

4-35

4-36

4-37

4-38

4-39

4-40

4-41

4-42

5-1

Table No.

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

3-1

4-1

4-2

4-3

4-4

4-5

4-6

4-7

FIGURES (CONT)

End-of-Transfer Logic 0oL

Odd Address Detection

BUS AC LO and BUS DC LO Timing Diagram

Processor Clock Circuit o e e

Priority Arbitration Synchronizero

Priority Bus Controlo

Active Page Registers oL oo

Simplified Memory Relocation Example

Relocation of a 32K Word Program into 124K-Word Physical Memory . .

Page Address Register Lo

Page Descriptor Registero oo

Example of an Upward-Expandable Page

Example of a Downward-Expandable Page

Interpretation of a Virtual Address o000

Displacement Field of Virtual Address

Construction of a Physical Address

Format of Status Register O(SRO)

Format of Status Register 2 (SR2)o

Control Store Fields« . . . oo

KDI11-EA Simplified Flow Diagram

TABLES

Addressing Modes L Lo e e e

Single Operand Instructions 0oL

Double Operand Instructionso oo

Program Control Instructions oo

Miscellaneous Instructions Lo oo

Condition Code Operators« v v v i v i i vt v

PDP-11/34A Instruction Set L oo

Programming Differences oo o000

Standard and Modified Unibus Pin Assignments

Function Units of the KD11-EA DataPath

ALU Functions and Control Signals

Scratchpad Enabling Configurationsand Modes

SPAM Input Data Sources

SPM Register Utilization L0

B and BX Register Enabling Configurations and Modes

BMUX Enabling Configurations and Modes

Vi

Page

4-48

4-48

4-50

4-51

4-54

4-56

4-60

4-61

.. 4-62

4-65

4-65

4-67

4-68

4-70

4-70

4-71

4-72

4-74

4-76

5-2

Table No.

4-8

4-9

4-10

4-11

4.12

4-13

4-14

TABLES (CONT)

Title Page

Processor Status Word Register Bit Assignments 4-23

Auxiliary Control for Binary and Unary Instructions 4-38

Priority Service Order 4-53

Vector Addresses L e 4-58

PAR/PDR Address Assignments e e 4-64

Access Control Field Keys 0. 4-66

Relating Virtual Address to PAR/PDR Set 4-72

vii

PREFACE

This manual describes the KD11-EA Central Processing Unit (M8265 and M8266). The user must

have a general knowledge of digital circuitry and a basic understanding of PDP-11 computers to

completely understand the contents of this manual.

The following related documents may be valuable as references:

PDP-11 Peripherals Handbook

PDP-11/34 Processor Handbook

PDP-11/34 System User’s Guide (EK-11034-OP)

KD 11-EA Print Set (MP00043)

X

CHAPTER 1

OVERALL DESCRIPTION

The KDI1-EA is a 2-board central processing unit (CPU) that is combined with a memory system,

Unibus terminators, and optional peripherals in a DD 11-P backpanel to build a basic PDP-11/34A

computer. The unit connects directly to the Unibus as a subsystem, and is capable of controlling the

time allocation of the Unibus for peripherals, performing arithmetic and logic operations, and decod-

ing instructions. It can perform data transfers directly between 1/0 devices and memory, do both

single- and double-operand addressing, handle both 16-bit word and 8-bit byte data, and address up to

128K of Unibus address space via a memory management system.

The KD11-EA is program-compatible with both the KD11-A (PDP-11/35 and PDP-11/40 computer

systems) and the LSI-11 (with the inclusion of the two special LSI-11 instructions). It contains the

KT11-D Memory Management System (optional with the KD11-A, not offered with the LSI-11) and

executes the Extended Instruction Set (EIS) instructions, which were optional with the KD11-A and

standard with the LSI-11. The KD11-EA, when used in conjunction with the FP11-A floating point

option, will execute the Full Floating Point Instruction Set (FP11-C compatible).

1-1

CHAPTER 2

INSTRUCTION SET

2.1 INTRODUCTION

The KD11-EA is defined by its instruction set. The sequences of processor operations are selected

according to the instruction decoding. The following describes the PDP-11/34A instructions and

instruction set addressing modes along with instruction set differences from those of the KD11-A,

KD11-B, and KD11-D.

2.2 ADDRESSING MODES _

Data stored in memory must be accessed and manipulated. Data handling is specified by a PDP-

11/34A instruction (MOV, ADD, etc.), which usually indicates:

1.

2.

3.

The function (operation code)

A general-purpose register to be used when locating the source operand and/or locating the

destination operand

An addressing mode (to specify how the selected register(s) is to be used)

Because a large portion of the data handled by a computer is usually structured (in character strings, in

arrays, in lists, etc.), the PDP-11/34A has been designed to handle structured data efficiently and

flexibly. The general registers may be used with an instruction in any of the following ways:

1.

2.

As accumulators. The data to be manipulated resides within the register.

As pointers. The contents of the register are the address of the operand, rather than the

operand itself.

As pointers, which automatically step through core locations. Automatically stepping for-

ward through consecutive core locations is known as autoincrement addressing; automat-

ically stepping backward is known as autodecrement addressing. These modes are

particularly useful for processing tabular data.

As index registers. In this instance the contents of the register and the word following the

instruction are summed to produce the address of the operand. This allows easy access to

variable entries in a list.

PDP-11/34As also have instruction addressing mode combinations that facilitate temporary data stor-

age structures for convenient handling of data which must be frequently accessed. This is known as the

“stack.”

2-1

In the PDP-11/34A, any register can be used as a ‘“‘stack pointer” under program control; however,

certain instructions associated with subroutine linkage and interrupt service automatically use Register

6 as a “hardware stack pointer.” For this reason, R6 is frequently referred to as the “SP.”

R7 is used by the processor as its program counter (PC).

Two types of instructions utilize the addressing modes: single-operand and double-operand. Figure 2-1
shows the formats of these two types of instructions. The addressing modes are listed in Table 2-1.

L .3 *x %X

T T =T T T T T ! T 1 :] T

MODE ! (@ Rn

1 1 1 1 1 1 1 L 1 i i 1 -

15 6 5 4 3 2 0
L ~ A -~ J

OP CODE DESTINATION ADDRESS FIELD

» =SPECIFIES DIRECT OR INDIRECT ADDRESS

*% =SPECIFIES HOW REGISTER WILL BE USED

*%% = SPECIFIES ONE OF 8 GENERAL PURPOSE REGISTERS

(a)

* % * k5.5, *% * . ***,'

T T T T , T | T T

OP CODE MODE b@ Rn MODE : (© Rn
| 1 { 1 | I ! |

15 12 11 10 9 8 6 5 4 3 2 0
| Y A v J

SOURCE ADDRESS FIELD DESTINATION ADDRESS FIELD

» = DIRECT/DEFERRED BIT FOR SOURCE AND DESTINATION ADDRESS
+%x= SPECIFIES HOW SELECTED REGISTERS ARE TO BE USED

%% = SPECIFIES A GENERAL REGISTER

(b)

1-1227

Figure 2-1 Addressing Mode Instruction Formats

Table 2-1 Addressing Modes

Binary Assembler

Mode Code Name Syntax* Function

Direct Modes

0 000 Register Rn Register contains operand.

2 010 Autoincrement (Rn)+ Register contains address of oper-
and. Register contents incremented

after reference.

4 100 Autodecrement -(Rn) Register contents decremented

before reference register contains

address of operand.

6 110 Index X(Rn) Value X (stored in a word following

the instruction) is added to (Rn) to

produce address of operand. Nei-

ther X nor (Rn) is modified.

Deferred Modes

1 001 Register @Rnor (Rn) Register contains the address of the

Deferred operand.

3 o011 Autoincrement @(Rn)+ Register is first used as a pointer to

Deferred a word containing the address of

the operand, then incremented

(always by two, even for byte

instructions).

5 101 Autodecrement @-(Rn) Register is decremented (always by

Deferred two, even for byte instructions) and

then used as a pointer to a word

containing the address of the

operand.

7 111 Index Deferred @X(Rn) Value X (stored in the memory

word following the instruction) and

(Rn) are added and the sum is used

as a pointer to a word containing

the address of the operand. Neither

X nor (Rn) is modified.

2-3

Table 2-1 Addressing Modes (cont)

Binary Assembler

Mode Code Name Syntax* Function

PC Addressing

2 010 Immediate #n Operand follows instruction.

3 011 Absolute @#A Absolute address follows
instruction.

6 110 Relative A Address of A, relative to the
instruction, follows the instruction.

7 111 Relative Deferred | @A Address of location containing
address of A, relative to the instruc-

tion, follows the instruction.

* Rn = Register

X, n, A = next program counter (PC) word (constant)

2.3 PDP-11/34A INSTRUCTIONS

The PDP-11/34A instructions can be divided into five groups:

Single-Operand Instructions (shifts, multiple precision instructions, rotations)

Double-Operand Instructions (arithmetic and logical instructions)

Program Control Instructions (branches, subroutines, traps)

Operate Group Instructions (processor control operations)

Condition Code Operators (processor status word bit instructions)

Tables 2-2 through 2-6 list each instruction, including byte instructions for the respective instruction
groups. Figure 2-2 shows the six different instruction formats of the instruction set, and the individual
instructions in each format.

2-4

Table 2-2 Single Operand Instructions

Mnemonic OP Code Operation Condition Codes Description

CLR 0050DD* (dst)* <0 N: cleared Contents of specified destination are replaced with zeroes.
CLRB 1050DD Z: sct

Clear V: cleared

C: cleared

COM 0051DD (dst) < n (dst) N: set if most significant Replaces the contents of the destination address by their

COMB 1051DD bit of result is O logical complement (each bit equal to O set and each bit equal

Complement Z: setif result is O to 1 cleared).

V: cleared

C: set

INC 0052DD (dst) < (dst) + 1 N: set if result is less than O Add 1 to the contents of the destination.

INCB 1052DD Z: setit resultis O

Increment V: set if (dst) was Q77777

C: not affected

DEC 0053DD (dst) < (dst) -1 N: set if result is less than O Subtract 1 from the contents of the destination.

DECB 1053DD Z: setif resultis O

Decrement V: set if (dst) was 100000

C: not affected

NEG 0054DD (dst) < -(dst) N: set if result is less than O Replaces the contents of the destination address by its 2’s com-

NEGB 1054DD Z: setif result is O plement. Note that 100000 is replaced by itself.

Negate V: set if result is 100000

C: cleared if result is O

ADC 0055DD (dst) « (dst) + C N: set if result is less than O Adds the contents of the C-bit into the destination. This permits

ADCB 1055DD Z: setif result is O the carry from the addition of the low-order words/bytes to be

Add Carry V: setif (dst) is 077777 and | carried into the high-order results.

Cisl

C: setif (dst)is 177777 and

Cisl

2-5

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

SBC

SBCB

Subtract Carry

TST

TSTB

Test

ROR

RORB

Rotate Right

ROL

ROLB

Rotate Left

0056DD

1056DD

0057DD

1057DD

0060DD

0061DD

1061DD

(dst) < (dst) -C

(dst) < (dst)

(dst) < (dst)

rotate right

one place.

(dst) < (dst)

rotate left

one place.

Z

set if result is less than O

set if result is O

set if (dst) was 100000

cleared if (dst) is O and C

is 1

set if result is less than O

set if result is O

cleared

cleared

set if high-order bit of

the result is set

. set if all bits of result

are 0

loaded with the exclusive-

OR of the N-bit and the

C-bit as set by ROR

. set if the high order bit of

the result word is set

(result < 0); cleared

otherwise

. set if all bits of the

result word = 0Q; cleared

otherwise

loaded with the exclusive-

OR of the N-bit and C-bit

(as set by the completion

of the rotate operation)

loaded with the high order

bit of the destination

Subtracts the contents of the C-bit from the destination. This

permits the carry from the subtraction of the low order words/

bytes to be subtracted from the high-order part of the result.

Sets the condition codes N and Z according to the contents of

the destination address.

Rotates all bits of the destination right one place. The low-

order bit is loaded into the C-bit and the previous contents of

the C-bit are loaded into the high-order bit of the destination.

Rotate all bits of the destination left one place. The high-

order bit is loaded into the C-bit of the status word and the

previous contents of the C-bit are loaded into the low-order

bit of the destination.

2-6

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

ASR

ASRB

Arithmetic

Shift Right

ASL

ASLB

Arithmetic

Shift Left

0062DD

1062DD

0063DD

1063DD

(dst) < (dst) N:

shifted one

place to the

right.

(dst) « (dst) N:

shifted one

place to the left.

set if the high order bit

of the result is set

(result < 0), cleared

otherwise

set if the result = 0;

cleared otherwise

. loaded from the exclusive-

OR of the N-bit and C-bit

(as set by the completion

of the shift operation).

. loaded from low order bit

of the destination

set if high-order bit of the

(result < 0); cleared

otherwise

set if the result = 0; cleared

otherwise

. loaded with the exclusive-

OR of the N-bit and C-bit

and C-bit (as set by the

completion of the shift

operation)

. loaded with the high-order

bit of the destination

Shifts all bits of the destination right one place. The high-

order bit is replicated. The C-bit is loaded from the low-order

bit of the destination. ASR performs signed division of the

destination by two.

Shifts all bits of the destination left one place. The low-order

bit is loaded with a 0. The C-bit of the status word is loaded

from the high-order bit of the destination. ASL performs a

signed multiplication of the destination by 2 with overflow

indication.

2-7

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

ASH 072RSS R < R Shifted N: set if result <O;cleared The contents of the register are shifted right or left

Arithmetic Arithmetically NN otherwise. the number of times specified by the source

Shift places to right or Z: set if result = O; cleared operand. The shift count is taken as the low-order

left otherwise. 6 bits of the source operand. This number ranges

Where NN = (src¢) V: set if sign of register from -32 to +31. Negative is a right shift and posi-

changed during shift; cleared | tive is a left shift. See Paragraph 2.5 for example.

otherwise.

C: loaded from last bit shift

out of register.

ASHC 073RSS R, Rvl«< R, Rvl N: set if result <0; cleared The contents of the register and the register ORed

Arithmetic The double word otherwise. with one are treated as one 32-bit word. Rvl (bits

Shift Combined is shifted NN Z: set if result = 0; cleared 0—15) and R (bits 16—31) are shifted right or left

places to the right otherwise. the number of times specified by the shift count.

or left, where NN = | V: set if sign bit changes The shift count is taken as the low-order 6 bits of

(src) during the shift; cleared the source operand. This number ranges from -32

otherwise. to +31. Negative is a right shift and positive is a

C: loaded with high-order bit | left shift.

when right shift (loaded with | When the register chosen is an odd number, the

the last bit shifted out of the | register and the register ORed with one are the

32-bit operand). same. In this case, the right shift becomes a rotate.

The 16-bit word is rotated right the number of bits

specified by the shift count. See Paragraph 2.5 for

example.

SXT 0067DD (dst) < 0if N bit N: unaffected If the condition code bit N is set then a -1 is placed

Sign Extend is clear Z: set if N bit clear in the destination operand: if N bit is clear, then a

(dst) « -1 N bit

is set

V: cleared

C: unaffected

0 is placed in the destination operand. This instruc-

tion is particularly useful in multiple precision

arithmetic because it permits the sign to be extended

through multiple words.

2-8

Table 2-2 Single Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

SWAB 0003DD Byte 1/Byte O N: set if high-order bit of Exchanges high-order byte and low-order byte of the

Swap Byte Byte O/Byte 1 low-order byte (bit 7) of destination word (destination must be a word

result is set; cleared address).

otherwise.

Z: set if low-order byte of

result = 0; cleared otherwise.

V: cleared

C: cleared

Table 2-3 Double Operand Instructions

Mnemonic OP Code Operation Condition Codes Description

MOV 01SSDD* (dst) « (src) T N: set if (src) <O0; cleared Word: Moves the source operand to the destination location.
MOVB 11SSDD otherwise The previous contents of the destination are lost. The source

Move Z: setif (src) = 0: cleared operand is not affected.

otherwise Byte: Same as MOV The MOVB to a resistor (unique among

V: cleared byte instructions) extends the most significant bit of the low

C: not affected order byte (sign extension). Otherwise. MOVB operates on

bytes exactly as MOV operates on words.

CMP 02SSDD (src) - (dst) N: set if result <0, cleared Compares the source and destination operands and sets the

DMPB 12SSDD [in detail, otherwise condition codes which may then be used for arithmetic and

Compare (src) +~ Z: set if result = 0; cleared logical conditional branches. Both operands are unaffected.

(dst) + 1] otherwise The only action is to set the condition codes. The compare is

V: set if there was arithmetic | customarily followed by a conditional branch instruction. Note

overflow (i.e., operands that unlike the subtract instruction the order of operation is

were of opposite signs (src) - (dst), not (dst) - (src).

and the sign of the des-

tination was the same

as the sign of the result);

cleared otherwise.

C: cleared if there was a

carry from the most sig-

nificant bit of the result;

set otherwise

2-9

Table 2-3 Double Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

BIT 03SSDD (src) A\ (dst) - N: set if high order bit of Performs logical AND comparison of the source and destination

BITB 13SSDD result set: cleared other- operands and modifies condition codes accordingly. Neither

Bit Test wise the source nor destination operands are affected. The BIT in-

Z: set if result = 0; cleared struction may be used to test whether any of the corresponding

otherwise bits that are set in the destination are clear in the source.

V: cleared

C: not affected

BIC 04SSDD (dst) < ~ (src) N: set if high order bit of Clears each bit in the destination that corresponds to a set bit

BICB 14SSDD /\ (dst) result set; cleared other- in the source. The original contents of the destination are lost.

Bit Clear wise The contents of the source are unaffected.
Z: set if result = 0;cleared

otherwise

V: cleared

C: not affected

BIS 05SSDD (dst) < (src) N: set if high order bit of Performs inclusive-OR operation between the source and des-

BISB 15SSDD /\ (dst) result set; cleared other- tination operands and leaves the result at the destination

Bit Set wise address; i.e., corresponding bits set in the destination. The

Z: set if result = 0; cleared contents of the destination are lost.

otherwise

V: cleared

C: not affected

ADD 06SSDD (dst) < (src) N: set if result O; cleared Adds the source operand to the destination operand and stores

Add + (dst) otherwise the result at the destination address. The original contents of

Z: set if result = 0: cleared the destination are lost. The contents of the source are not

otherwise affected. Two’s complement addition is performed.

2-10

Table 2-3 Double Operand Instructions (Cont)

Condition Codes DescriptionMnemonic OP Code Operation

ADD (Cont)

SUB 16SSDD (dst) < (dst) -

Subtract (src) in detail,

(dst) + ~ (src)

+ 1 (dst)

set if there was arithmetic

overflow as a result of the

operation (that is, both

operands were of the same

sign and the result was of

the opposite sign); cleared

otherwise.

. set if there was a carry from

the most significant bit of

the result; cleared other-

wise.

set if result < O; cleared

otherwise

. set if result = Q; cleared

otherwise

set if there was arithmetic

overflow as a result of

the operation (i.e., if

operands were of op-

posite signs and the sign

of the source was the

same as the sign of the

result); cleared otherwise

. cleared if there was a

carry from the most

significant bit of the

result; set otherwise

Subtracts the source operand from the destination operand and

leaves the result at the destination address. The original contents

of the destination are lost. The contents of the source are not

affected. In double precision arithmetic, the C-bit, when set,

indicates a borrow.

* SS = source (address mode and register)

1 (src) = source contents

2-11

Table 2-3 Double Operand Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

MUL 070RSS R, Rvl< Rx(src) N: set if product is <0; The contents of the destination register and source

Multiply cleared otherwise. taken as two’s complement integers are multiplied

Z: set if product is O; and stored in the destination register and the suc-

cleared otherwise. ceeding register (if R is even). If R is odd, only the

V: cleared low-order product is stored. Assembler syntax is:

C: set if the result is less MUL S,R.

than -2'° or greater than (Note that the actual destination is R, Rvl which

or equal to 2'° -1. reduces to just R when R is odd.)

(See Paragraph 2.5.1 for example).

DIV 071RSS R, Rvl < R, Rvl N: set if quotient <0; The 32-bit two’s complement integer in R and Rvl

Divide (src) cleared otherwise. is divided by the source operand. The quotient is

Z: set if quotient = 0; left in R; the remainder is of the same sign as the

cleared otherwise. dividend. R must be even.

V: set if source = 0 or if the (See Paragraph 2.5.2 for example.)

absolute value of the register

is larger than the absolute

value of the source. (In this

case the instruction is

aborted because the quotient

would exceed 15 bits.)

C: set if divide O attempted;

cleared otherwise.

XOR 074RDD (dst) < Rv (dst) N: set if the result <0; The exclusive OR of the register and destination

cleared otherwise.

Z: set if result = 0;

cleared otherwise.

V: cleared

C: unaffected

operand is stored in the destination address. Contents

of register are unaffected. Assembler format is

XOR R,D.

2-12

Table 2-4 Program Control Instructions

Mnemonic OP Code Operation Condition Codes Description

BR 000400 PC « PC + Unaffected Provides a way of transferring program control within a range

Branch XXX (2 X offset) of -128 to +127 words with a one word instruction. It is an

unconditional branch.

BNE 001000 PC <« PC + Unaffected Tests the state of the Z-bit and causes a branch if the Z-bit is

Branch if not XXX (2 X offset) is clear. BNE is the complementary operation to BEQ. It is

equal ifZ=0 used to test inequality following a CMP, to test that some bits

set in the destination were also in the source, following a BIT,

and generally, to test that the result of the previous operation

was not 0.

BEQ 001400 PC «<PC + Unaffected Tests the state of the Z-bit and causes a branch if Z is set. As

Branch if equal XXX (2 X offset) if an example, it is used to test equality following a CMP opera-

Z=1 tion, to test that no bits set in the destination were also set in

the source following a BIT operation, and generally, to test

that the result of the previous operation was O.

BGE 002000 PC < PC + Unaffected Causes a branch if N and V are either both clear or both set.

Branch if greater XXX (2 X offset) if BGE is the complementary operation to BLT. Thus. BGE

than or equal NvV=0 always causes a branch when it follows an operation that

caused addition to two positive numbers. BGE also causes a

branch on a 0 result.

2-13

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

BLT 002400 PC <« PC + Unaffected Causes a branch if the exclusive-OR of the N- and V-bits are 1.

Branch if less XXX (2 X offset) if Thus, BLT always branches following an operation that added

than NVv=] two negative numbers, even if overflow occurred. In particular,

BLT always causes a branch if it follows a CMP instruction

operating on a negative source and a positive destination (even

if overflow occurred). Further, BLT never causes a branch when

it follows a CMP instruction operating on a positive source and

negative destination. BLT does not cause a branch if the result

of the previous operation was 0 (without overflow).

BGT 003000 PC < PC + Unaffected Operation of BGT is similar to BGE, except BGT does not

Branch if greater XXX (2 X offset) cause a branch on a 0 result.

than if Zv (N

V)=0

BLE 003400 PC «PC + Unaffected Operation is similar to BLT, but in addition will cause a branch

Branch if less than XXX (2 X offset) if if the result of the previous operation was 0.

or equal to Zv(NTMV)

=1

BPL 100000 PC <« PC + Unaffected Tests the state of the N-bit and causes a branch if N is clear.

Branch if plus XXX (2 X offset) if BPL is the complementary operation of BMI.

N=0

BMI 100400 PC < PC + Unaffected Tests the state of the N-bit and causes a branch if N is set. It is

Branch if minus XXX (2 X offset) if used to test the sign (most significant bit) of the result of the

N=1 previous operation. |

2-14

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

BHI 101000 PC < PC + Unaffected Causes a branch if the previous operation causes neither a carry

Branch if higher XXX (2 X offset) if nor a 0 result. This will happen in comparison (CMP) operations

C=0 as long as the source has a higher unsigned value than the

destination.

BLOS 101400 PC < PC + Unaffected Causes a branch if the previous operation caused either a carry

Branch if lower XXX (2 X offset) if or a 0 result. BLOS is the complementary operation to BHI.

Or same CvZi=1 The brar.ch occurs in comparison operations as long as the

source is equal to or has a lower unsigned value than the

destination. Comparison of unsigned values with the CMP

instruction to be tested for “‘higher or same” and “higher” by

a simple test of the C-bit.

BVC 102000 PC < PC + Unaffected Tests the state of the V-bit and causes a branch if the V-bit is

Branch if V-bit XXX (2 X offset) if clear. BVC is complementary operation to BVS.

clear V=0

BVS 102400 PC < PC + Unaffected Tests the state of V-bit (overflow) and causes a branch if the

Branch if V-bit set XXX (2 X offset) if V-bit is set. BVS is used to detect arithmetic overflow in the

V=1 previous operation.

BCC 103000 PC < PC + Unaffected Tests the state of the C-bit and causes a branch if C is clear.

BHIS XXX (2 X offset) if BCC is the complementary operation to BCS.

Branch if carry C=0

clear

Branch if higher

than the same

BCS 103400 PC < PC + Unaffected Tests the state of the C-bit and causes a branch if C is set. It is

BLO XXX (2 X offset) if used to test for a carry in the result of a previous operation.

Branch if carry set

Branch if lower

C=1

2-15

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

JMP 0001DD PC < (dst) Unaffected JMP provides more flexible program branching than provided
Jump with the branch instruction. Control may be transferred to any

location in memory (no range limitation) and can be accom-

plished with the full flexibility of the addressing modes. with

the exception of register mode 0. Execution of a jump with

mode O will cause an illegal instruction condition. (Program

control cannot be transferred to a register.) Register deferred

mode is legal and will cause program control to be transferred

to the address held in the specified register. Note that in-

structions are word data and must therefore be fetched from

an even numbered address. A boundary error trap condition

will result when the processor attempts to fetch an instruction

from an odd address.

2-16

Table 2-4 Program Control Instructions (Cont)

Mnemeonic OP Code Operation Condition Codes Description

JRS 004RDD (tmp) <« (dst) Unaffected In execution of the JSR, the old contents of the specified

Jump to (tmp is an inter- register (the linkage pointer) are automatically pushed onto

subroutine nal processor the processor stack and new linkage information placed in

register) the register. Thus, subroutines nested within subroutines to any

{ (SP) < reg depth may all be called with the same linkage register. There

(push reg con- is no need either to plan the maximum depth at which any

tents onto proces- particular subroutine will be called or to include instructions

sor stack) in each routine to save and restore the linkage pointer. Further,

reg < PC PC since all linkages are saved in a re-entrant manner on the pro-

holds location fol- cessor stack, execution of a subroutine may be interrupted,

lowing JSR; this and the same subroutine re-entered and executed by an in-

address PC < terrupt service routine. Execution of the initial subroutine can

(tmp), now put in then be resumed when other requests are satisfied. This pro-

(reg) cess (called nesting) can proceed to any level.

JSR PC, dst is a special case of the PDP-11 subroutine call

suitable for subroutine calls that transmit parameters.

RTS 00020R PC < (reg) Unaffected Loads contents of register into PC and pops the top element

Return from (reg) < SP 1 of the processor stack into the specified register.

subroutine
Return from a non-re-entrant subroutine is typically made

through the same register that was used in its call. Thus, a

subroutine called with a JSR PC, dst exits with an RTS PC,

and a subroutine called with a JSR RS, dst may pick up

parameters with addressing modes (RS) +, X (R5), or @X (R5)

and finally exit, with an RTS RS.

2-17

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

MARK 0064NN SP < SP + 2xnn Unaffected Used as part of the standard PDP-11 subroutine return

PC <« RS convention. MARK facilitates the stack cleanup pro-

RS < (SP) t cedures involved in subroutine exit. Assembler format

nn = number of is: MARK N

parameters

Example:MOV R5,-(SP) ;place old RS on stack

MOV P1,«(SP) ;place N parameters on

MOV P2,-(SP) ;the stack to be used

;there by the subroutine

MOV PN,<(SP) ;places the instruction

MOV #MARKN,~SP) :MARK N on the stack

;set up address at Mark

MOV SP,R5 :N instruction

JSR PC,SUB ;jump to subroutine

At this point the stack is as follows:

OLD RS

Pl

PN

MARK N

OLD PC

And the program is at the address SUB which is the

beginning of the subroutine.

SUB: sexecution of the subroutine itself

RTS R5: ;the return begins

This causes the contents of R5 to be placed in the PC

which then results in the execution of the instruction

MARK N. The contents of old PC are placed in R5

MARK N causes: (1) the stack pointer to be adjusted to

point to the old RS value; (2) the value now in R5 (the

old PC) to be placed in the PC; and (3) contents of the

old R5 to be popped into RS, thus completing the return

from subroutine.

2-18

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

SOB 077R00 R«<R-1 Unaffected The register is decremented. If it is not equal to 0, twice

Subtract one and plus offset | if this result # the offset is subtracted from the PC (now pointing to the

branch if not 0 then PC « PC following word). The offset is interpreted as a six-bit

equal to O - (2 x offset) positive number. This instruction provides a fast, efficient

method of loop control. Assembler syntax is:

SOB R,A

where A is the address to which transfer is to be made if

the decremented R is not equal to 0. Note that the SOB

instruction cannot be used to transfer control in the

forward direction.

BPT 000003 1 (SP) < PS N: loaded from trap vector Performs a trap sequence with a trap vector address of 14.

Break-point Trap V (SP) < PC Z: loaded from trap vector Used to call debugging aids. The user is cautioned against

PC < (14) V: loaded from trap vector employing code 000003 in programs run under these

PS < (16) C: loaded from trap vector debugging aids.

I0T 000004 } (SP) < PS N: loaded from trap vector Performs a trap sequence with a trap vector address of

IOT Trap 1 (SP) « PC Z: loaded from trap vector 20. Used to call the I/O executive routine IOX in the

PC < (20) C: loaded from trap vector paper-tape software system and for error reporting in the

PS < (22) disk operating system.

2-19

Table 2-4 Program Control Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

EMT 104000 J (SP) « PS N: loaded from trap vector All operation codes from 104000 to 104377 are EMT

Emulator Trap V (SP) <« PC Z: loaded from trap vector instructions and may be used to transmit information to

PC < (30) V: loaded from trap vector the emulating routine (e.g., function to be performed).

PS < (32) C: loaded from trap vector The trap vector for EMT is at address 30; the new central

processor status (PS) is taken from the word at address 32.

CAUTION

EMT is used frequently by DEC system software

and is therefore not recommended for general use.

TRAP 104400 to { (SP) < PS N: loaded from trap vector Operation codes from 104400 to 104777 are TRAP instruc-

104777 { (SP) « PC Z: loaded from trap vector tions. TRAPs and EMTs are identical in operation, except

PC < (34) V: loaded from trap vector that the trap vector for TRAP is at address 34.

PS < (36) C: loaded from trap vector
NOTE

Since DEC software makes frequent use of EMT, the

TRAP instruction is recommended for general use.

NOTE: Condition Codes are unaffected by these instructions

*DD = destination (address mode and register)

(dst) = destination contents

2-20

Table 2-5 Miscellaneous Instructions

Mnemonic OP Code Operation Condition Codes Description

RTI 000002 PC < (SP) t N: loaded from processor Used to exit from an interrupt or trap service routine.

PSW « (SP) 1 stack The PC and PSW are restored (popped) from the pro-

Z: loaded from processor cessor stack. If the RTI sets the T-bit in the PSW, a

stack trace trap will occur prior to executing the next

V: loaded from processor instruction.

stack

C: loaded from processor

stack

RTT 000006 PC < (SP) 1 N: loaded from processor This is the same as the RTI instruction, except that it

PS < (SP) t stack inhibits a trace trap, while RTI permits a trace trap.

Z: loaded from processor If a trace trap is pending, the first instruction after the

stack RTT will be executed prior to the next “T” trap. In

V: loaded from processor the case of the RTI instruction, the “T” trap will

stack occur immediately after the RTIL.

C: loaded from processor

stack

MFPI 0065SS (temp) < (src) N: set if the source <0; This instruction pushes a word onto the current stack

MFPD 1065SS V (SP) « (temp) otherwise cleared from an address in previous space. Processor Status

Z: set if the source =0; (bits 13, 12). The source address is computed using

otherwise cleared the current registers and memory map.

V: cleared

C: unaffected

MTPI 0066SS (temp) < (SP) 1 N: set if the source <0; This instruction pops a word off the current stack

MTPD 1066SS (dst) < (temp) otherwise cleared determined by PS (bits 15, 14) and stores that word

Z: set if the source =0;

otherwise cleared

V: cleared

C: unaffected

into an address in previous space PS (bits 13, 12).

The destination address is computed using the cur-

rent registers and memory map.

2-21

Table 2-5 Miscellaneous Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

MFPS 1067DD (DST) < PSW N: set if PSW bit 7=1; *The 8-bit contents of the PS are moved to the

DST Lower otherwise cleared. effective destination. If destination is mode O, PS

8 bits Z: set if PS[0:7]=0; bit 7 is sign-extended through upper byte of the

otherwise cleared. register, and destination operand is treated as a byte

V: cleared address.

C: not affected

MTPS 1064SS PSW <« (SRC) Set according to *The 8 bits of the effective operand replace the

effective SRC operand current contents of the PSW. The source operand

0-3. address is treated as a byte address. Note that PSW

bit 4 cannot be set with this instruction. The SRC

operand remains unchanged.

*Because there is no hardware to prevent execution

of these instructions in User mode, it is necessary

for the system software to prevent any reference to

the PSW address by a user.

HALT 000000 Unaffected Causes the processor operation to cease. The console

is given control of the processor. The console data

lights display the address of the HALT instruction

plus two. Transfers on the Unibus are terminated

immediately. The PC points to the next instruction

to be executed. Pressing the CON key on the console

causes processor operation to resume. No INIT

signal is given.

2-22

Table 2-5 Miscellaneous Instructions (Cont)

Mnemonic OP Code Operation Condition Codes Description

WAIT

RESET

000001

000005 PC (SP)

PSW (SP)

Unaffected

Unaffected

Provides a way for the processor to relinquish use of

the bus while it waits for an external interrupt. Having

been given a WAIT command, the processor will not

compete for bus by fetching instructions or operands

from memory. This permits higher transfer rates

between device and memory, as no processor-induced

latencies will be encountered by bus requests from

the device. In WAIT, as in all instructions, the PC

points to the next instruction following the WAIT

operation. Thus, when an interrupt causes the PC and

PS to be pushed onto the stack, the address of the

next instruction following the WAIT is saved. The exit

from the interrupt routine (i.e., execution of an RTI

instruction) will cause resumption of the interrupted

process at the instruction following the WAIT.

Sends INIT on the Unibus for 100 ms. All devices on

the Unibus are reset to their state at power-up.

2-23

Table 2-6 Condition Code Operators

Mnemonic Op Code Instruction

CLC 000241 Clear condition code C.

CLV 000242 Clear condition code V.

CLZ 000244 Clear condition code Z.
CLN 000250 Clear condition code N.

CCC 000257 Clear all condition code bits.
SEC 000261 Set condition code C.

SEV 000262 Set condition code V.

SEZ 000264 Set condition code Z.

SEN 000270 Set condition code N.

SCC 000277 Set all condition code bits.

NOTE

Selectable combinations of condition code bits may

be cleared or set together. The status of bit 4 controls

the way in which bits 0, 1, 2, and 3 are to be modi-

fied. If bit 4 = 1, the specified bits are set; if bit 4 =

0, the specified bits are cleared.

1. Single Operand Group {CLR,CLRB,COM,COMB,INC,INCB, DEC,DECB,NEG,NEGB, ADC,ADCB,SBC,SBCB,TST,TSTB,ROR,RORB,ROL.,ROLB,ASR, ASRB,
ASL,ASLB, JMP, SWAB)

OP Code Dst

| |) | | | |] !) { | 1 1
15] [5 o}

2.0oubte Operand Group(BIT,BIT8,BIC,BICB,BIS,BISB,ADD,SUB)

OP Code Src dst

L | 1 i |]] 1] | { 1 1

1% 12 11 6 5 o}

3.Program Control Group

a.Branch(ail branch instructions)

OP Code offset

] i 1 |] 1 1 | 1 \ | i) 1

15 8 7 0

b.Jump To Subroutine {(JSR)

reg Src/dst

) L L 1 i] !] | J 1 |]

c.Subroutine Return (RTS)

0 0 0 2 o] reg

] { 1 ! 1 | !] 1 1 L 1 1

d.Traps (break point, IOT,EMT,TRAP)

OP CODE

| i L | I | |] ! 1] I] !]

4.0Operate Groupe {HALT,WAIT,RTI,RESET)

0P CODE

i) L] ! ! 1 ! 1 | 1 ! | |]

5.Condition Code Operatfors(all condition code instructions)

0 o} 0 2 4 N z v C

1 L L | | |] | !]

Figure 2-2 PDP-11 Instruction Formats

2-24

11-1226

2.4 INSTRUCTION EXECUTION TIME

The execution time for an instruction depends on the instruction itself, the modes of addressing used,

and the type of memory being referenced. In the most general case, the instruction execution time is the

sum of a source address (SRC) time, a destination address (DST) time, and an execute, fetch (EF) time.

Instr Time = SRC Time + DST Time + EF Time

Some of the instructions require only some of these times, and are so noted in Paragraph 2.4.1. All

timing information is in microseconds, unless otherwise noted. Times are typical; processor timing can

vary +10%.

2.4.1 Basic Instruction Set Timing

Table 2-7 lists the PDP-11/34A instruction set, together with the timing characteristics and memory

cycles required. The timing requirements for determining instruction execution time are listed below.

Double-Operand {(all instructions)

Instr Time = SRC Time + DST Time + EF Time

Single-Operand (all instructions)

Instr Time = DST Time + EF Time

Branch, Jump, Control, Trap, and Miscellaneous (all instructions)

Instr Time = EF Time

NOTES

1. The times specified apply to both word and byte

instructions, whether odd or even byte.

2. Timing is given without regard for NPR or BR

servicing.

3. If the memory management is enabled, instruc-

tion execution times increase by 0.12 us for

each memory cycle used.

4. All timing is based on memory with the follow-

ing performance characteristics:

Access Time Cycle Time

Memory (us) (us)

Core 0.510 1.1

(MM11-DP)

MOS 0.635 0.920

(MS11-JP)

2-25

Table 2-7 PDP-11/34A Instruction Set

SOURCE ADDRESS TIME

Source Memory Core MOS

Instruction Mode Cycles (MM11-DP) (MS11-JP)

s us

Double Operand 0 0 0.00 0.00
1 1 1.13 1.26

2 1 1.33 1.46

3 2 2.37 2.62

4 1 1.28 1.41

5 2 2.57 2.82

6 2 2.57 2.82

7 3 3.80 4.18

DESTINATION TIME

Destination Memory

Instruction Mode Cycles Core MOS

Modifying Single-Operand 0 0 0.00 0.00

and Modifying Double- | 2 1.62 1.74

Operand (Except MOV, 2 2 1.77 1.89

SWAB, ROR, ROL, ASR, 3 3 2.90 3.15

ASL) 4 2 1.77 1.89

5 3 3.00 3.25

6 3 5.10 3.35

7 4 4.29 4.66

MOV 0 0 0.00 0.00

1 1 0.93 0.93

2 1 0.93 0.93

3 2 2.17 2.29

4 1 1.13 1.13

5 2 2.22 2.34

6 2 2.37 2.49

7 3 3.50 3.75

MTPS 0 0 0.00 0.00

1 1 0.95 0.95

2 1 1.13 1.26

3 2 2.26 2.51

4 1 1.13 1.26

5 2 2.26 2.51

6 2 2.44 2.69

7 3 3.57 4.20

2-26

Table 2-7 PDP-11/34A Instruction Set (Cont)

DESTINATION TIME

Destination Memory

Instruction Mode Cycles Core MOS

MFPS 0 0 0.00 0.00

1 1 0.64 0.64

2 1 0.64 0.64

3 2 1.95 2.08

4 1 0.82 0.82

5 2 1.95 2.08

6 2 2.13 2.26

7 3 3.26 3.51

EXECUTE, FETCH TIME

Destination ' Memory
Instruction Mode Cycles Core MOS

Double Operand

ADD, SUB, CMP, BIT, BIC, 1 2.03 2.16

BIS, XOR

MOV 1 1.83 1.96

Single Operand

CLR, COM, INC, DEC, ADC, 1 1.83 1.96

SBC, TST

SWAB, NEG 1 2.03 2.16

ROR, ROL, ASR, ASL | 2.18 2.31

MTPS 2 2.99 3.12

MFPS 2 1.99 2.12

EIS Instructions (use with DST times)

MUL 8.82* 8.95*

DIV (overflow) 2.78 2.91

12.48 12.61

ASH 1 4.18** 4.31%*

ASHC 1 4.18** 4.31**

Memory Management Instructions

MFPI(D) 2 3.07 3.14

MTPI(D) 2 3.37 3.34

2-27

Table 2-7 PDP-11/34A Instruction Set (Cont)

EXECUTE, FETCH TIME

Destination Memory

Instruction Mode Cycles Core MOS

SWAB, ROR, ROL, ASR, 0 0 0.00 0.00

ASL 1 2 1.42 1.54

2 2 1.57 1.69

3 3 2.70 2.95

4 2 1.62 1.74

5 3 2.80 3.05

6 3 2.90 3.15

7 4 4.09 4.46

Non-modifying 0 0 0.00 0.00

Single Operand and 1 1 1.13 1.26

Double Operand 2 1 1.28 1.41

3 2 2.42 2.67

4 1 1.33 1.46

5 2 2.52 2.77

6 2 2.62 2.87

7 3 3.80 4.18

MFPI(D) 0 0 0.00 0.00

MTPI(D) 1 1 0.98 1.24

2 1 1.32 1.44

3 2 2.20 2.45

4 1 1.18 1.44

5 2 2.20 2.45

6 2 2.40 2.65

7 3 3.59 3.96

Branch Instructions

BR, BNE, BEQ, (Branch) 1 2.18 2.31

BPL, BMI, BVC, BVS, BCC,

BCS, BGE, BLT, BGT, BLE,

BHI, BLOS, BHIS, BLO

(No Branch) 1 1.63 1.76

SOB (Branch) 1 2.38 2.51

(No Branch) 1 1.98 2.11

2-28

Table 2-7 PDP-11/34A Instruction Set (Cont)

EXECUTE, FETCH TIME

Destination Memory

Instruction Mode Cycles Core MOS

Jump Instructions

IMP 1 1 1.83 1.96

2 1 2.18 2.31

3 2 3.12 3.37

4 1 2.03 2.16

5 2 3.07 3.32

6 2 3.07 3.32

7 3 4.25 4.78

JSR 1 2 3.32 3.44

2 2 3.47 3.59

3 3 4.40 4.65

4 2 3.32 3.44

5 3 4.40 4.65

6 3 4.60 4.85

7 4 5.69 6.06

RTS 2 3.32 3.57

MARK 2 4.27 4.52

RTI, RTT 3 4.60 4.98

Set or Clear C,V,N, Z 1 2.03 2.16

HALT 1 1.68 1.81

WAIT 1 1.68 1.81

RESET 1 100 ms 100 ms

10T, EMT, TRAP, BPT 5 7.32 7.7

*Add 200 ns for each bit transition in serial data from LSB to MSB.

**Add 200 ns per shift.

2-29

2.4.2 Bus Latency Times |

Interrupts (BR requests) are acknowledged at the end of the current instruction. For a typical instruc-

tion, with an instruction execution time of4 us, the average time to request acknowledgement would

be 2 us.

Interrupt service time, which is the time from BR acknowledgement to the first subroutine instruction,

is 7.32 us max for core, and 7.7 us for MOS.

NPR (DMA) latency, which is the time from request to bus mastership for the first NPR device, is 2.5

us max.

2.5 EXTENDED INSTRUCTION SET

The Extended Instruction Set (EIS) provides the user with the capability of extended manipulation of

fixed-point numbers. Use of the EIS instructions does not degrade processor timing or affect NPR

latency. Interrupts are serviced at the end of an EIS instruction.

The EIS instructions are:

Mnemonic Instruction Op Code

MUL Multiply 070RSS

DIV Divide 071RSS

ASH Shift arithmetically 072RSS

ASHC Arithmetic shift combined 073RSS

The number formats are shown in Figure 2-3. Examples of the operation of each instruction are

presented in the paragraphs that follow.

15 14)

16-BIT SINGLE WORD: S NUMBER

] | 1 |

15 14 0
(‘

S HIGH NUMBER PART

| |] 1

32-BIT DOUBLE WORD: < 15

LOW NUMBER PART

1 1 L]_ 1

S is the sign bit.

S = 0 for positive quantities

S = 1 for negative quantities; number is in 2's

complement notation

11-4453

Figure 2-3 Extended Instruction Set Number Formats

2-30

Multiply Instruction - MUL 070RSS

Example: 16-bit product (R is odd)

000241 , CLC ;Clear carry condition code

012701,400 , MOV #400,R|

070127,10 , MUL #10, R1

1034xx , BCS ERROR :Carry will be set if

;product is less than

;=213 or greater than or ;equal to 2!*

;no significance lost

Before After

(R1) = 000400 (R1) = 004000

Divide Instruction - DIV 071RSS

Example: ’

005000 , CLR RO

012701,20001 , MOV #20001,R1

071027.2 , DIV #2,R0

Before After

(R0) = 000000 (R0O) = 010000 Quotient

(R1) = 020001 (R1) = 000001 Remainder

Arithmetic Shift Instruction - ASH 072RSS

Example: ASH RO, R3

Before After

(R3) = 000003 (R3) = 000003

(R0O)=001234 (R0O) = 012340

Arithmetic Shift Combined Instruction - ASHC 073RSS

Example: Similar to the example for the ASH instruction except that two registers are used.

2.6 INSTRUCTION SET DIFFERENCES

Table 2-8 lists the instruction set differences between the PDP-11/34A and other PDP-11 machines.

2-31

Table 2-8 Programming Differences

11/05 and 11/10 11/35 and 11/40 11/04 11/34A

GENERAL REGISTERS (including PC and SP)

OPR%ZR (R)+

or OPR%R ,«R)

OPR%R ,@(R)+

OPR%R ,@<(R)

(Using the same register

as both source and

destination)

JMP(R)+ or JSR

register, (R)+ (jump

using autoincrement)

MOV PC, @#A or

MOV PC, A (Moving

the incremented PC

to a memory address

referenced by the PC)

Stack Pointer (SP),

R6 used for referenc-

ing.

Initial contents of R

are used as the source

operand.

Contents of R are

incremented by 2,

then used as the new

PC address.

Location A will con-

tain PC + 2.

Using the SP for

pointing to odd

addresses or non-

existent memory

causes a halt (double

bus error).

Contents of R are

incremented by 2 (or

decremented by 2),

before being used as

the source operand.

Initial contents of P

are used as new PC.

Location A will con-

tain the PC of the

move instruction +4.

Odd address or non-

existent memory

references with SP

cause a fatal trap with

a new stack created at

locations 0 and 2.

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/05

2-32

Table 2-8 Programming Differences (Cont)

11/05 and 11/10 11/35 and 11/40 11/04 11/34A

GENERAL REGISTERS (including PC and SP) (Cont)

Stack Overflow Stack limit fixed at

‘4004 overflow (going

lower) checked after

modes 4 and S using

R6, and JSR and traps.

Overflow serviced by

an overflow trap. No

red zone.

Variable limit with stack

limit option. Overflow

checked after JSR, traps,

and address modes 1, 2,

4, and 6. Non-altering

references to stack data

are always allowed.

There is a 16-word

yellow (warning) zone.

Red zone trap occurs if

stack is 16 words below

boundary; PS and PC

are saved at locations

Oand 2.

Same as 11/05 Same as 11/05

TRAPS AND INTERRUPTS

RTI Instruction

RTT Instruction

Processor status odd

byte at location

777777

First instruction after

RTI instruction is

always executed.

Not implemented

Odd byte of PS can be

addressed without a

trap.

If RTI sets the T-bit,

the T-bit trap is acknowl-

edged immediately after

the RTI instruction.

First instruction after

RTT is guaranteed to

be executed.

Same as 11/05

Same as 11/40

Same as 11/40

Same as 11/05

Same as 11/40

Same as 11/40

Same as 11/05

2-33

Table 2-8 Programming Differences (Cont)

11/05 and 11/10 11/35and 11/40 11/04 11/34A

GENERAL REGISTERS (including PC and SP) (Cont)

T-bit of PS

Bus Errors

PC contains odd

address

PC contains an

address in nonexist-

ent memory

Register contains

odd address and

instruction mode 2

Register contains

address in nonexist-

ent memory and

instruction mode 2.

Interrupt service

routine.

T-bit can be loaded

by direct address of

PS or from console.

PC unincremented

PC incremented

Register unincremented

Register incremented.

The first instruction

will not be executed

if another interrupt

occurs at a higher

priority.

Only RTI, RTT traps

and interrupts can load

the T-bit

Same as 11/05

PC unincremented

Register incremented

Register incremented.

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/05

Same as 11/05

Register unincremented

Same as 11/05

Same as 11/40

Same as 11/05

Same as 11/40

Same as 11/05 except

for MOV mode 2 and

MTPI where the

register will be incremented.

Same as 11/04 except for

MOV mode 2 destination

and MTPI where the

register will be incremented.

Same as 11/05

2-34

Table 2-8 Programming Differences (Cont)

11/05 and 11/10 11/35and 11/40 11/04 11/34A

GENERAL REGISTERS (including PC and SP) (Cont)

Priority order of

of traps and

interrupts

MISCELLANEOUS

Swab and V-bit

Instruction set

Memory management

violation during a

trap sequence

Odd address

Time-out

Halt instruction

Trap instructions

Trace trap

Stack overflow

Power fail

Halt from console

V-bit is cleared.

Basic set

Does not apply

Halt instruction

Odd address

Stack overflow (red)

Mem mgt error

Time-out

Parity

Trap instruction

Trace trap

Stack overflow (yellow)

Power fail

Halt from console

Same as 11/05

Basic set and Mark,

RTT, SOB, SxT, XOR.

EIS adds: MUL, DIV

ASH, ASHC.

FIS adds: FADD,

FSUB, FMUL, FDIV.

KT11-D adds: MTPI,

MFPI.

If a mem mgt viola-

tion occurs between

the first and second

push down of the stack

during a trap sequence,

the status of the CPU

before the violation is

placed as the PS on the

the Kernel stack.

Halt instruction

Bus error

Trap instruction

Trace trap

Stack overflow

Power fail

Halt from console

Interrupts

Next instruction fetch

Same as 11/05

Basic set and RTT

Does not apply

Same as 11/40

except no red

zone stack over-

flow

Same as 11/05

Basic set and Mark,

RTT, SOB, SxT, XOR,

MUL, DIV, ASH,

ASHC, MTPI, MFPI,

MTPS, MFPS. (MTPS

and MFPS are new

instructions used for

LSI-11.)

If a mem mgt viola-

tion occurs between

the first and second

push down of the stack

during a trap sequence,

the status of the vector

+2 of the original trap

is placed as the PS on

the Kernel stack.

2-35

Operating Temperature

Relative Humidity |

Input Power

Physical Size

Interface Requirements

Power and Ground Pinouts

Number of Integrated

Circuits

CHAPTER 3

CPU OPERATING SPECIFICATIONS

5° to 50° C (41° to 122° F)

20 to 95% (without condensation)

+5 Vdc £5% at 4.5 A (typical) per module (M 8265 and M 8266)

Two hex modules (8-1/2 X 15 in.)

All 1/0 signals are available on connectors A and B. These sig-

nals are pin-compatible with modified Unibus pinout as shown

in Table 3-1. The bus loading on each of these Unibus lines is

equivalent to one bus load.

+5 V: pins AA2, BA2, CA2, DA2, EA2, EA2

GND: pins AC2, AT1, BC2, BT1, CC2, CT1, DC2, DT1, EC2,

ET1, FC2, FT1

231 (M 8265 = 123, M8266 = 112)

3-1

"d[npouwr[orpuosAjrredAqpasnsuld,AS-|ANNOYD|TAd1071041010d|7dd14dT14dd|TNVTNASKTNASWN|1Ad10710V1010V|1449«1d|ANNOY¥D|INV
11D110|7141vdd1vdd|cadT1€1dTeIa|T¢IV
dNNO¥D|dNNO¥O|114AS+ANMDOVELvd|ANNO¥YD|1ad1¥1d1v1a|11V191V191V|7SddANNO¥D|aANNOo¥n|o41110111|IVTLIVT1L1V[sd154491649|104121d121|IVTvIV11V|¥4INIOdLS4L|ANNOYD|7441600160|UVTSIV151V|1494FdVdSHsOd|1494910141010v121V171V|TddAS+AS+|tvdT1L001.L0d|THV
TEIV1€V|1492AVdSH99d|1vd718001804|IHV101V101V|N4AO0Z+|ANNOID|TAVT504150d|TV
111V111V|INdA0T+HLOE9|1AV1900190|14V180V180V|TG19441949|NV1€0dT1€0d|T4VT60V160V|TIdA0T+HOIN|[NV1001%0d|13V
190V190V|T41,491,89|CTLV11001104|TAV

1LOV1.0V|1714ANNOYD|ANNOYD|11V1204120d|14V
140V190V|T4TddNTIYIN|TSVANNO¥D|ANNOYD|IV
150V150V|1MASI+dMIOVELvd|ANQOUD|ISV100d100|1DV
120V120V|gTM0VSTMOVS|a4VINIOdLS4L|ANNO¥D|74V

T€0V1€0VIrdAST+dNDVELvd|ANNOWD|1YVTYLNITYINI|19V
100V100V|CTHYTASq4TASAd|TdVAS+AS+|TVV
110V110V|THA«0d|ANNOYD|1dVTLINITLINI|IVV[eustS[eusisuid[eusig[euslSuid[eustg[eusIguig
payipopiepuelgpayipoprepuelsPayIpOWprepuelg

SUdWUBISSYulgsnquu(}payIpojAlpukpiepuelS|-¢dqelL
3-2

CHAPTER 4

DETAILED HARDWARE DESCRIPTION

4.1 INTRODUCTION r

The following paragraphs contain a detailed circuit description of the KD11-EA Central Processing

Unit (CPU), which is used in the PDP-11/34A Computer. Segments of the CPU, shown in Figure 4-1,
are analyzed separately, using the block diagrams contained in this manual and the KD 11-EA circuit
schematics. _

4.2 DATA PATH

4.2.1 General Description

The simplified KD11-EA data path consists of six function units, as shown in Figure 4-2. Circuit
schematics K1-1 through K1-4 (D-CS-M8265-0-1) each contain one 4-bit slice of the data path. Table
4-1 briefly describes the function of each of the six function units.

Data flow through the data path is controlled, directly or indirectly, by the Control Store circuitry on
the control module (M8266). Each Control Store ROM location (microinstruction) generates a unique

set of outputs capable of controlling the data path elements and determining the ALU function to be
performed. Sequences of these ROM microinstructions are combined into microroutines, which per-
form the various PDP-11 instruction operations.

4-1

[4
:1

NNvad

weldelqYoolva-11dN-y2indig
SN8INNv31v02073Y

p—0S1»4/QXOW$SegumsSTYN9IS|OT
a!HLVdVivg1X3—1w(G-2)*01-13)

ae
[6-2)‘8-2))

vEA_9190799XNWY[(0:1)SXNWYwnw¥31S193Y(2-2)‘1-2X)a

NToel1-13)TO¥LINOS.XNWLy[¢—¥0d-¥vdJAONNIVvg...iwWOY3Y01So5SLyaEl.\T0Y1INODIatWoYsul,10%19keflHqua934DONd4otv-en)MSd_JzniISm_mEdiwO(Ol_ll'AMI—V_VANuNx.man:AOINV::aMsd%0019300030[T0¥1INODTOHLNOIingHONVH8-N
(b=4=1-L))(p-IXel-L))(-1“1-13)y

yvd019071WdSXN(G-2M)(9-2M)Hoge?)Xssunvmfio_llTOHLINOD300030NV(o1"<m>3ma}QfllPtNIVXnvd'1oI+L+]vivaooT(6=1))(L-1M)(-I=]-1¥)(b=1d=1-12)48X8¥laQvol—W1vEA(0:1)300N8(0:1)3GOW8a
4-2

2\
ENABLE DATA

BUS DATA

SSMUX [15:00]

g KT MODES VBA
+ N

S CC DATA 15:00

| MoCE
SWAP BX MODE 1— BMODE 1 o SCRATCH PAD ‘r r] VBA 15

AUX SWAP + SEX s 1 epbrs [2
—_— < BREG — MEMORY PAR’SCONTROL PSW MUX MUX BXREG ENAB (TR1 STATE) SRO SR2 VBA 14

R EOSEX 8X MODE 0 BMOD
VBA 13

+1

% Yy Vv
EXTERNAL DATA PATH BLEG 0

BMUX VBA

BLEG 1] KT 6-12
SRO |

KT MUX
PAR + PDRAMUX S1

(TRI STATE) A &
LOAD PSW PSW A MUX TRI STATE AMUX SP KT MUX

AMUX SO 15:00 ENABLE COMPARATCH
y A

[f | CONSTANTS ‘
(VECTORS)

aEamm—ALU CIN B A
— BUS CONTROL

ALU S3 VIRTUAL BUS G, G

U s2 ADDRESS von e ACCESS €AL ALU (VBA) VBA SS CONTROL

ALU S1 ED BITS ACFO, ACF1

ALU SO Z?‘Z‘ PROCESSOR

ALU MODE Y ; MODES
! PSWY 15,14, 13, 12

BUS DATA BUS DATA 15:00 ADDERS KT ERROR

LOGIC

ERKORS

PHYSICAL BUS comg:;relow _— NON RESIDENT
" ADDRESS 17:00 (PBA) _ foc;lc LOAD BA
g USED IN INTERNAL READ ONLY

o ADDRESS DECODE
_l5 LOGIC PACE LENGTH

BA

CC DATA 6:17 L.JUF

|———— ENABLE ADDRS VBA j
A 05 RELOCATE

BUS ADDRS

<

DEFINITIONS: SRO — MEMORY MANAGEMENT CONTROL REGISTER 0" %
SR2 — MEMORY MANAGEMENT CONTROL REGISTER ’2” KT ERROR

PAR — PAG ADDRESS REGISTER DISABLE MSYNM

PDR — PAGE DESCRIPTION REGISTER IgEzr;JGTRAP

11-8183

Figure 4-2 Simplified KD1i-EA Data Path

Table 4-1 Function Units of the KD11-EA Data Path

Unit Function

Arithmetic Logic Unit (ALU)

ALU Multiplexer (AMUX)

Processor Status Word Register

(PSW)

Swap Sign Extend Multiplexer

(SSMUX)

The heart of the data path is the ALU, which is the logic ele-

ment that manipulates the data. It is capable of performing 16

arithmetic or 16 logic (Boolean) operations on two 16-bit oper-

ands to produce a 16-bit result. The A input comes from either

the scratchpad memory or the memory management system; the

B input comes from the B leg. The ALU output is sent to the

AMUX.

The AMUX is a 4-to-1 tristate multiplexer that controls the

introduction of new data and the circulation of available data

through the data path. Input to the AMUX is both external

(from the Unibus data lines) and internal (from the ALU, PSW,

or constants). The AMUX output is sent to the SSMUX.

When the signal TRI STATE AMUX L 1s asserted, these multi-

plexers assume a high impedance state and external data can be

input to the SSMUX from the connector J1 on the M8265

module.

The PSW register is a 12-bit register that contains information

on the current processor priority, condition codes (C, V, Z, and

N) which indicate the results of the last instruction, a *““trap” bit

(TBIT) which causes automatic traps after each fetch instruc-

tion used during program debugging, and both the current and

previous memory management modes (Kernel or User). PSW

input comes from the SSMUX or from condition code logic;

PSW output is sent to the AMUX.

This multiplexer controls the form in which data is output from,

or recirculated into, the data path. The SSMUX can pass the

data unchanged, swap the high and low bytes, sign-extend the

low byte into the entire word, or simultaneously swap high and

low bytes while sign-extending the high byte (which becomes the

new low byte) into the entire word. SSMUX input comes from

the AMUX or from the external data path (connector J1) if the

AMUX assumes a high impedance state. SSM UX output goes

to either the rest of the computer system (via the Unibus), the

other sections of the processor (the control section, via the

Instruction register, and the memory management system), or

to other portions of the data path (the PSW, the B leg, and the

scratchpad memory).

4-4

Table 4-1 Function Units of the KD11-E Data Path (Cont)

Unit Function

B Leg The B leg of the ALU consists of two 16-bit registers (B and BX)

and a 4-to-1 multiplexer (BMUX). Both registers can shift left

or right independently, or together they can perform full 32-bit

shifts. The BMUX selects one of the four functions (BREG,

BXREG, +1, +16) and connects to the B input of the ALU.

The B leg is used to store operands for the ALU, to implement

rotate and shift instructions, and to implement Extended

Instruction Set (EIS) instructions. B leg input comes from the

SSMUX. B leg output goes to the B input of the ALU.

Scratchpad Memory (SPM) This random access memory can store sixteen 16-bit words in

: eight processor-dedicated registers and eight general-purpose

(user available) registers. One of the general-purpose registers is

used as a stack pointer, another as the program counter. Input

to the scratchpad memory is from the SSMUX. Output, which

can be buffered and latched to enable reading from one address

and modifying another during the same cycle, goes to the A

input of the ALU and to the Virtual and Physical Bus Address

registers.

4.2.2 Arithmetic Logic Unit (ALU)

The ALU (Figure 4-3) is divided into four 4-bit slices (K1-1, K1-2, K1-3, and K1-4 each contain a

slice), with each slice consisting of one 4-bit ALU chip (74S181) and part of a Look-Ahead Carry

Generator chip (745182).

ALU Inputs | 7

The A input to each ALU chip comes from one of the scratchpad memory (SPM) registers or from the

KTMUX, as specified by the Control Store microinstruction being performed. (Refer to Paragraph

4.2.3 for details.) The B input comes from the B leg multiplexer (BMUX) logic, and can take the form

of the B register contents, the BX register contents, a constant 0, a constant 1, or a constant 16. (Refer

to Paragraph 4.2.4 for details.)

4-5

LIBE-LY

wederqYooigNIV¢-p2and1g—lnll.ll.llllllllll.lllnllllllllll..lul.l.lIII.(V21907HOOIL3IWHL
IYY)3JA0WNyS$314

103dS
NOILONN

4
NV$314123dSu/_

<Gl-0S118
Gi-21 5118

Si
-9

]

HOLVYH3INIDAYYVYDAVIHYMOOT

@/oo||w@o@_3oyB-1—Bb200koo32000i0s2PRit —_-—|-~4Ny4Ny4Ny_{€-1M)v|(2-td)v(1-14)v
®d9D®d99®d9NIw_—~—~—wwnwnw~@EN)_o-|~

[]

29%99lgo90499_ H300WNV8-2M
€S-0SNV93718

AHOWIN

HOWJS
WOWNHJ)

931v

TNIDNV8-2X

ALU Functions ,

The function performed by the ALU is controlled by the four Selection bits (S3, S2, §1, §0), the Mode
bit (M), and the Carry-In bit (CIN). Table 4-2 lists the ALU functions of the KD11-EA and the
corresponding bit patterns for the six control signals,

Table 4-2 ALU Functions and Control Signals

ALU Control Signals

ALU Function S3 S2 S1 SO CIN M

ZERO 0 0 1 1 0 1

A 0 0 0 0 0 1

A plus | 0 0 0 0 0 0

A minus 1 1 1 1 1 1 0

A minus B 0 1 1 0 0 0

A 1 1 1 1 0 1

B 1 0 1 0 0 1

A plus B | 0 0 1 1 0

AB 1 0 1 1 0 1

AB 0 0 1 0 0 1

A plus B plus | 1 0 0 0 0 0

AplusA 1 1 0 0 1 0

B 0 1 0 1 0 1

A plus A plus 1 1 1 0 0 0 0

A+ B 0 1 1 0 0 1

4.2.3 Scratchpad

The scratchpad consists of a random access memory that can store sixteen 16-bit words, and can be
used for various functions. Scratchpad operation is divided into four 4-bit slices, with K1-1, K1-2, K1-
3, and K 1-4 (D-CS-M8265-0-1) each containing one slice. The scratchpad address multiplexer circuitry
is shown on K2-4.

Data Input

Data to be written into the scratchpad is channeled from the SSMUX and clocked into the scratchpad

registers.

Addressing the Scratchpad

The address of the scratchpad memory register to be accessed is generated by the scratchpad address

multiplexer (SPAM), located on the control module (K2-4). Depending on the state of the select lines

to the SPAM, the source of the address can be any of the following:

The Control Store ROM (ROMSPA03:ROMSPAQO).

Instruction Register Source Field (IR08:1R06)

Instruction Register Destination Field (IR02:IR00)

Bus Address (PBA03:00)

47

Reading from the Scratchpad

[f the Control Store circuitry forces a low on the K1-10 ENAB GR L line at the beginning of a

machine cycle, the tristate outputs of the scratchpad will be enabled. Ninety or 120 nanoseconds after

the cycle begins (allows the scratchpad address to set up), K1-5 TAP 30 H goes low, allowing data

stored in the selected scratchpad register to be latched in the output buffer SP15:SP0O lines. This data

will continue to be read during the rest of the machine cycle. (See Figure 4-4.) Table 4-3 shows the

various scratchpad enabling configurations and the modes they select.

|l= MACHINE CYCLE

TAP 30H|]

ENAB GR L |

SP WRITE L |

E
W
W

PROC CLK L_J

READ SOURCE WRITE INTO

SCRATCH PAD DESIGNATICN

REGISTER SCRATCH PAD REGISTER

LATCH SCRATCH PAD

OUTPUT BUFFERS

TAP 30 H 7 7

meoow [[L 1

PROC CLK L |_] L L] |
je—— 180 —

NOTE:

Source and Designation Register do not

have to be the same. Register selected

may be changed (See SPA Mux description)

for second haif of machine cycle.

11-3878

Figure 4-4 Scratchpad Timing

Table 4-3 Scratchpad Enabling Configurations and Modes

OD | WE | CLK | OS |Mode Outputs

L X X L [OUTPUT STORE Data from last addressed location

X L 5 X | WRITE DATA Data being written (if OD = L and OS = H)

L X X H | READ DATA Data stored in addressed location

H X X L [OUTPUT STORE High-impedance state

H X X H |OUTPUT DISABLE High-impedance state

4-8

Latching of Outputs

When the OD (pin 12) and OS (pin 13) inputs are both low, the data being read from the scratchpad

that is addressed is latched into the buffers on the output of scratchpad memory (SP15-00). Once those

outputs are stabilized, they are not affected by any modifications to the scratchpad memory address

lines for the remainder of the cycle.

Clocking the Scratchpad

The REG CLK H clock signal clocks data from the SSMUX lines into the scratchpad register and

writes that data into scratchpad memory. TAP 30 H unasserted, placing a high at the OS input (pin 13)

of the scratchpad, is all that is required for a read operation. Both a read and a write can take place

during the same machine cycle. Figure 4-4 shows the scratchpad timing for one machine cycle.

Scratchpad Address Multiplexer (SPAM)

The SPAM (Figure 4-5) generates the four address signals that select the desired scratchpad register, or

word. The SPAM (shown in print K2-4 of D-CS-M8266-0-1) consists of two 74S153 dual 4-line-to-1-

line data multiplexers, or a total of four 4-to-1 multiplexers, all with a common strobe input signal

(GND) and common address input signals (S1 and 30). Four data input sources are connected so that,
when the SPAM is addressed and strobed, it generates one 4-bit output, selected from one of the four

sources. Table 4-4 lists the sources of SPAM input data and the address input signal configurations

that select them,

PBA | > D (K2-4)

IR-SRC | ; B .
0SPAM F :> SPM

IR-0ST [N ¢ 74813

CONTROLSTORE ROM L >A $(1:0)

K2-9 SPA DST

SEL (1:0) (1)H (K2-4)

L > B

745157 F

K2-9 SPA SRC

SEL (1:0) (1) H >

STB NOTE:
SPA= 6, forced to 16 for

user mode ROM,IR-SRC,

IR-DST.

K1-5 TAP 30 H 11-3880

Figure 4-5 Scratchpad Address Multiplexer (SPAM)

werdoidordy£qHH91100:€0sngvddaUon9[3g191130y2]0SUO))WIOI]UOT}I9[0G
TT|or-ed00:€0s1'dVdSWO\1915130y9soding-[erauonuono9feg1938180y
1H.|00:70sig1918139yuondNIISUjJpuelad()uoneUNS9(]UO1)09]3G1315139yH1|00:80S19)SI139yuonoNIsu]qpueradQso1nog0SISyuugdd1nogndujuofjounJ01N0g

NVdSs30.1nogeje(Indu]AVAS-92198

4-10

Scratchpad Memory Organization

The scratchpad memory (SPM) is a 16-word-by-16-bit random access read/write memory composed
of four 16-word-by-4-bit bipolar (85S68) memory units (K1-1 through K1-4). The 16-word-by-16-bit
organization of this memory provides 16 storage registers that are utilized as shown in Table 4-5.

Table 4-5 SPM Register Utilization

Register

Number | Description

RO

R1

R2

R3

R4

RS

General-Purpose Registers

R6 (Processor Stack Pointer)

R7 (Program Counter)

R10 Temporary Storage

R11 Unused

R12 Temporary Storage

R13 Temporary Storage

R14 Unused

R15 Temporary Storage

R16 Processor Stack Pointer

(Memory Management User Mode)

R17 Temporary Storage

4-11

Scratchpad Outputs

Data outputs from the scratchpad are fed to the ALU as the A leg input and to the memory manage-

ment system.

42.4 B Leg

The B leg (Figure 4-6) of the ALU consists of three components: the B register, the BX register, and the
B leg multiplexer (BMUX). Each of these components is divided into four 4-bit slices, with circuit
schematic prints K1-1, K1-2, K1-3, and K 1-4 each containing a slice. Data from the SSMUX can be
clocked into either register. Register contents can be shifted either individually as 16-bit words or

together as a double (32-bit) word.

B MOD
MODE 292 S1]s@] F

B MODE @1 L | L |HOLD

SHIFT
S1 SO SR L1 H RiGHT

B SHIFT
REG. Hl L [CerT

BITSD-15) («1-1eK1-4) H | H [LOAD

74194 ”fl

CLK SL

PROC. CLK0 L] +1 3
SHIFT IN B +16 —2 B

FROM ALC

sS (K1-1+K1-4)

— 08 MODE 91 :> T1 5‘0
St SO SR BLEG@! BLEG 0@

B s1lsp| F
srsey REC

(Kt-1=Ki-4) L!'L | B

CLK SL L | H | BX

I H 16

SHIFT IN BX St | s@ F H H 4+1

L | L |HOLD

SHIFT
L | H |RiGHT]

SHFT

HL [LeFT

H | H |LOAD

11-3881

Figure 4-6 B Leg Block Diagram

4-12

B Register T e -

The B register (B REG) is a general-purpose storage register (Figure 4-7) on the B leg of the ALU,
consisting of four 4-bit bidirectional universal shift registers (74194). The mode control lines of the
four 4-bit registers are connected in parallel, so that the signals K2-8 B MODE 00 L and K2-8 B
MODE 01 L select the function that will be performed by the B register when clocked by K1-5 PROC
CLK L. Table 4-6 shows the various functions and the shift configurations that select them.

K2-8 BMODE 90 L ——K2-8 BMODE } {fi'
y

S1 S@ SR

B REG 1
BITS 12-15 (K1-4) |[BITS 12415

74194

LK SL BIT 12

{—& ' L
ST SOSR| |giT 11

B REG

BITS 8- > (K1-3) [BITS8-11)
74194

K-10 SHIFT IN O7 H —
> TO BMUX

FROM SS MUX I 31 50 SR BIT 7

B REG

BITS 4-7 > (K1-2) [BITS 4->
74194

CLK SL BIT4

K1-5 PROC CLK L—] }—

I r

S1 SO SR BIT 3

S1]5@ [FUNCTION
B REG

BITS @-3 J|> (ki-1) [B1TS o-3> L|L | HOLD
74194 . SHIFT

L | H| RiGHT
CLK SL SHIFT

; HiL | CeFT
H|H| LoaD

K1-10 SHIFT IN B H

11-5184

Figure 4-7 BREG Block Diagram

4-13

Table 4-6 B and BX Register Enabling Configurations and Modes

Mode Mode

01 00 Function (when PROC CLK L goes high)

L L Hold Contents of register do not change.

L H Shift Right Contents are shifted right one bit.

H L Shift Left Contents are shifted left one bit.

H H Parallel Load Data from SSMUX is loaded into B register

and appears at output.

The B register can be shifted as an 8-bit byte or a 16-bit word. The signal K1-10 SHIFT IN B deter-
mines what is shifted into the B register. When the contents of this register and the BX register are

combined into a 32-bit word, the B register contains the upper 16 bits.

BX Register

The BX register (BX REG) is a general-purpose storage register (Figure 4-8) on the B leg of the ALU,

consisting of four 4-bit bidirectional universal shift registers (74194), similar to the B register. The
mode control lines of the four 4-bit registers are connected in parallel, so that the signals K2-8 BX

MODE 00 L and K2-8 BX MODE 01 L select the function to be performed when the BX REG is

clocked by K1-5 PROC CLK L. The BX register can be shifted as a 16-bit word or, in conjunction with
the B register, as a 32-bit word. In the latter case, the BX register contains the lower 16 bits of the 32-
bit word, and the shift right (SR) input of the most significant register in the BX register is connected

to the zero bit of the B register. Table 4-6 shows the various functions and the shift configurations of

K2-8 BX MODE 00 L and K2-8 BX MODE 01 L that select them.

B Leg Multiplexer (BMUX)

The BMUX (Figure 4-9) consists of three 2-to-1 multiplexers and a 4-to-1 multiplexer, and is used to

select the proper input to be used as an operand on the B leg of the ALU. The BMUX can select the

contents of either the B REG or BX REG, or can act as a constant generator (constants 16, 1, or 0),
depending on the configuration of signals K2-8 B LEG 00 H and B LEG 01 H (Table 4-7) and the state

of K2-4 DISAB MSYN +1 L.

4-14

K1-1 BREG @90 (1) H

___{::::i*-

S1 S@ SR

BX REG |)

BITS 12-15 > (K1-4) [BITS12-15
74194

BIT 12
CLK SL

K1-5 PROC CLK L — { f t—

e
St S@ SR

BIT 11

BX REG

BITS 8-11 > (K1-3) [BITS 8~‘1>
74194

BIT8
CLK SL

|

K FROM SS MUX (:) TO BMUX

—i5 1
S1 SO SR BIT 7

BX REG

BITS 4-7 > (K1-2) |BITS 4->
74194

CLK SL BIT 4

K2-8 BX MODE Of L — {

K2-8 BX MODE 00 L — | i

ST SO SR BIT 3

1 | so [FUNCTION
BX REG

BITS O-3 fi'> (K1-1) [BITS0-3> L L | HOLD
74194 J SHIFT

RIGHT

CLK SL SHIFT

I HIL] LEFT

H { H{ LOAD

Ki1-10 SHIFT INBX H

11-3883

Figure 4-8 BX REG Block Diagram

4-15

(K1-4)

FROM BX REG BITS ‘2_115>B
B MUX

FlBITs 12-15

74157

BITS 12—15>A

STB SO

P —
(K1-3)

BITS 8-11 2B

B MUX

FBITS 8-11

74157

FROM B REG BITS 8—11>A

STB SO

K2-8 BLEG OOH CIP 1
K2-8 BLEG O1H

(K1-2) .|

T

BITS 4-7 ¥B

V'l B Mux

FIBITS 4-7

N 74157

BIT 3 BITS 4—2/A

BIT 2

A BT STB S0

K2-4 DISABLEBIT @ CE
MSYN + 1 L J

5 {K1-1)

BIT 3)

K2-8 AUX _1BIT 2 N

CONTROL (1) H |giT1 >c B MUX

/7[72&@ FIBITS 0-3

BITS 0-3 }B
74153

BITS 0-3 JA
S 5@

|

T TO ALU

BLEG|BLEG
FUNCTION

B-REG

BX-REG

16

I
T
i
x
|
r

x
|
r
|
x
o

1

Figure 4-9 BMUX Block Diagram

4-16

11-3884

Table 4-7 BMUX Enabling Configurations and Modes

B Leg B Leg

01 00 Function Description

L L B REG Passes data from the B register to the BMUX out-
puts. This is the most common configuration.

L H BX REG Passes data from the BX register to the BMUX

outputs. This is used principally for EIS

instructions.

H L +16 Forces the constant +16 into the BMUX outputs

to preset a counter that is used for EIS instructions.

H H +1 Forces the constant +1 into the BMUX outputs

during operations in which the contents of a regis-

ter are being incremented or decremented by two.

- - 0 By asserting DISABLE MSYN +1 L, this con-

figuration forces the constant 0 into the BMUX

outputs during operations in which the contents of

a register are being incremented or decremented by

one. (The signal K2-8 ALU CIN L to the ALU

from the control module provides the one.)

B Leg Shift Capabilities

Each of the four shift registers (74194) that make up each register (B REG and BX REG) has the

capability of being shifted left or right, as indicated in Table 4-6 and Figure 4-10. The B register can be

shifted as an 8-bit byte or a 16-bit word; the BX register can be shifted as a 16-bit word or, in con-

junction with the B register, as a 32-bit word.

Byte Shifts

If the mode control lines (K2-8 B MODE 00 L and K2-8 B MODE 01 L) specify a shift left, B REG

15:00 are shifted one position toward the most significant bit at the clock pulse K1-5 PROC CLK L

going high. The signal K1-10 SHIFT IN B H is shifted into bit 00 via the SL input. This signal is

generated by the SHIFT MUX (E119 on print K1-10) as a function of the select signals K2-8 SHIFT

MUX 01 L and K2-8 SHIFT MUX 00 L. The shift right input to B REG bits 07:04 comes from the

BYTE MUX (E108 on print K1-10). Assertion of K2-5 BYTE L (indicating a byte instruction) causes

bit 07 of the B REG to be loaded directly by K2-5 SERIAL SHIFT H; if K2-5 BYTE L is high,

however, B REG bit 07 is loaded from B REG 08. B REG bit 15 is loaded from K1-10 SHIFT IN BH

during a shift right (just as B REG bit 00 is loaded during a shift left), and can be loaded with itself,

K2-5 SERIAL SHIFT H, ground, or BX REG bit 15, depending on the SHIFT MUX. For a shift

‘right, BX REG bits 15:01 are shifted one position toward the least significant bit, and BX REG bit 15

is loaded with B REG bit 00. Thus, for all right shifts, the BX REG acts as the low-order 16 bits of a

32-bit word made up of B REG and BX REG. For a shift left, BX REG bits 15:00 are shifted one bit

position toward the most significant bit. BX REG bit 00 is loaded with the signal K1-10 SHIFT IN BX

H, which is generated by the SHIFT MUX. Depending on the configuration of the SHIFT MUX

control lines K2-8 SHIFT MUX 00 L and K2-8 SHIFT MUX 01 L, the BX REG may be loaded with

any of four possible inputs: K1-4 ALU COUT H, the output of the EIS overflow detection logic (E100

on print K1-10), ONE, and ZERO.

4-17

r— S et GETS S =y

Sr]_| |

' 12-15

(K1-4) SL I

|

gl
(K1-10) I (K1-83.)11SL

F I ¥ |

: | [areF
STB SO | lx-2) st |

T =
K2-5 BYTE L ' SR|_ |

0-3 .

| k- sL |

K1-10 SHIFT INB H i_ B REG_I

L (K1-10) — | —
i {_ 12 158R _Icg - |

K2-5 SERIAL SHIFT H a Fo | (K1-4) SL
BO)

SHIFT |
AD MUX l Y j

|
Y | 8-1 74194

A;‘ I (K1-4) sL[) I

(Kgl‘s'm +3D c1 | -
OVERFLOW B F1 $. I
DETECTION | | .., 5F |

LOGIC Al
(K1-2) SL[]

ENAB CLR S1 s@

T N : =1Ki-4 ALU CONT H |

K2-8 ENABOVXL | \ 5 o oiFT | O_BSR

K2-5 LOADIR H MUX 01 L | (K1-1) sL |
K2-8 SHIFT MUX D0OL i 2 ? _JKe-2 PROC"N'TD KI-1OSHIFT INBX H e _BEG'

11 - 3885

Figure 4-10 B Leg Shift Logic

4-18

Specific Shift and Rotate Operations |

The shifting requirements for the ASL, ASR, ROL, ROR, ASH, and ASHC instructions are described

briefly below.

Arithmetic Shift Left (ASL) - Shifts all bits of the destination left one place. The low-order
bit is loaded with a 0. The C-bit of the status word is loaded from the high-order bit of the

destination. ASL performs a signed multiplication of the destination by 2, with overflow

indication.

Arithmetic Shift Right (ASR) - Shifts all bits of the destination right one place. The high-
order bit is duplicated. The C-bit is loaded from the low-order bit of the destination. ASR

performs signed division of the destination by two.

Rotate Left (ROL or ROLB, depending on whether a word or byte operation) — Rotates all

bits of the destination left one place. The high-order bit is loaded into the C-bit of the status

word, and the previous contents of the C-bit are loaded into the low-order bit of the

destination.

Rotate Right (ROR or RORB) - Rotates all bits of the destination right one place. The low-
order bit is loaded into the C-bit, and the previous contents of the C-bit are loaded into the

high-order bit of the destination.

Arithmetic Shift (ASH) - Shifts the contents of the register right or left the number of times

specified by the source operand. The shift count is taken as the low-order six bits of the

source operand. This number ranges from -32 to +31. Negative is a right shift and positive

is a left shift.

Arithmetic Shift Combined (ASHC) - Treats the contents of the register and the register

ORed with one as one 32-bit word. Rv1 (bits 15:00) and R (bits 31:16) are shifted right or left

the number of times specified by the shift count. The shift count is taken as the low-order six

bits of the source operand. This number ranges from -32 to +31. Negative is a right shift
and positive is a left shift. (When the register chosen is an odd number, the register and the

register ORed with one are the same. In this case, the right shift becomes a rotate. The 16-bit

word is rotated right the number of bits specified by the shift count.)

NOTE

When R is an even-numbered register, Rv1l will be

the next highest register. If R is an odd-numbered

register, Rvl will be the same register (e.g., if R =

R4, then Rvl = RS; if R = RS, then Rvl = RS).

4-19

BMUX Operation

Three 2-to-1 multiplexers (74157s) are used to switch B leg bits 15:04. Their select lines are tied in

parallel with each other and with the SO line of the 4-to-1 multiplexer (two 74153s) used to switch B leg

bits 03:00. The SO line is signal K2-8 B LEG 00 H. Signal K2-8 B LEG 01 H is connected to the enable

lines of the 2-to-1 multiplexers and to the S1 line of the 4-to-1 multiplexer. Table 4-7 describes the

enabling configurations and modes for these two select signals, which are logically determined as

follows:

1. If both K2-8 B LEG 00 H and K2-8 B LEG 01 H are low, the 4-to-1 multiplexer (E9 and E6

on print K1-1) selects the A input and the 2-to-1 multiplexers (E30 on print K1-2, E20 on

K1-3, and E40 on K1-4) select the A inputs; the data from the B REG is switched to the

BMUX output.

2. If K2-8 B LEG 01 H is low and K2-8 B LEG 00 H is high, the 4-to-1 multiplexer selects

input B, the 2-to-1 multiplexers remain enabled, and the data from the BX REG is switched

to the BMUX output.

3. If K2-8 B LEG 01 H is high and K2-8 B LEG 00 H is low, the 2-to-1 multiplexers are not

enabled. The 4-to-1 multiplexer selects input C, where bit 0 is low and bits 03:01 are con-

nected to K2-8 AUX CONTROL (1) L unasserted, generating a +16 constant to the B leg.

4. If both K2-8 B LEG 01 H and K2-8 B LEG 00 H are high, the 2-to-1 multiplexers are still

disabled and the 4-to-1 multiplexer selects input D, where bits 03:01 are grounded and bit 00

is connected to K2-4 DISABLE MSYN +1 L unasserted, generating a constant of +1 to the

B leg. '

5. If,in 4 above, K2-4 DISABLE MSYN +1 L is asserted, a constant of 0 is generated to the B

leg.

Constants +16, +1, and 0

The purpose of generating the constants +1 and 0 on the B leg input of the ALU is to aid the processor

to perform autoincrement and autodecrement operations. During either operation, if a word instruc-

tion is being performed, the specified register is incremented or decremented by two; if a byte instruc-

tion is being performed, the register is incremented or decremented only by one. The actual ALU

operation is: -

RESULT = A LEG DATA + B LEG DATA + ALU CIN.

The ALU always uses the K2-8 ALU CIN L signal to increment or decrement the A leg input by one;

thus, the B leg input must provide the constant +1 or 0 to obtain the correct autoincrement or auto-

decrement result for both byte and word instructions. A B leg constant of +1 is generated by enabling

the least significant bit of the BMUX output (bit 00) and forcing all other bits (15:01) to 0. To generate

a constant 0, even bit 00 is cleared. The actual constant generated is defined by the state of the K2-4

DISABLE MSYN +1 L signal, which is determined by the Control Store.

4-20

4.2.5 ALU Multiplexer (AMUX)

The AMUX (Figure 4-11) consists of four 4-to-1 tristate multiplexers (74S253s), each one dedicated to

a 4-bit slice of the AMUX. If the signal K1-1 TRI STATE AMUX H is asserted, the STB input will be

high and each multiplexer will assume a high impedance state. This condition will allow external data

to be brought into the KD11-EA data path via connector J1. If the STB input is low, the output of

each multiplexer will follow one of the inputs, corresponding to the binary value of select lines St and

SO (K1-10 AMUX S1 H and K1-10 AMUX SO H, respectively), as follows:

1. Unibus Data Function - If both S1 and SO are low (binary 0), the 4-to-1 multiplexers select
input A, Thus, each 4-bit slice of the AMUX switches Unibus data into the data path.

2. Constant’s Function - Certain operations require the introduction of specific numbers into

the data path. (For example, the data path must generate a vector of 24 for a power-fail trap,

or 114 for a parity trap.) Access to these and other numbers is facilitated by storing certain

constants in a read-only memory and presenting them to the constant’s input of the AMUX.

If S1 is low and S0 is high (binary 1), the multiplexers select input B (the constant’s input).

Bits 11:08 are not used.

3. ALU Input - If S1 is high\and SO is iow (binary 2), the multiplexers select the ALU inputs
(input C). |

4. PSW Input - If both S1 and SO are high (binary 3), the multiplexers select the PSW input

(input D).

4.2.6 Processor Status Word

The Processor Status Word (PSW) register contains information on the current and previous memory

management mode, the current processor priority, a processor trap for debugging, and the condition

code results of the previous operation. The PSW bit assignments and uses are shown in Table 4-8.

The PSW (Figure 4-12) is a 12-bit register composed of three quad D-type flip-flops (74175s) and one

separate D-type latch. The first of these (E97 on print K1-1) stores the condition code bits (N, Z, V,

and C), and derives its input from the PSW MUX, a quad 2-line-to-1-line multiplexer (E98 on K1-1)

according to the state of the SO select line. When high, SO selects the B inputs (SSMUX bits 03:00);

when low, SO selects the A inputs, which come from the condition code logic (print K1-10). The

selected inputs are passed to the f-outputs of the multiplexer and into the PSW.

A second quad D-type flip-flop (E99 on K1-2) is used to store the three KD 11-EA processor priority

bits, which it obtains from SSMUX bits 07:05. A separate 74S74 (E109 on K1-2) is needed to store the

Trace Trap flag (T-bit), which can be loaded from the K1-2 SSMUX 04 H line.

The third quad D-type flip-flop (E82 on K1-4) stores the bits containing the current and previous

status of the memory management mode. SSMUX bits 15 and 14 provide the in»ut for PSW bits 15

and 14, which are then rerouted through a quad 2-line-to-1-line multiplexer (E92 on K1-4) and multi-

plexed with SSMUX bits 13 and 12 according to the state of the SO select signal [K2-9 FORCE

KERNEL (1) H] to provide the input for PSW bits 13 and 12. Thus, PSW bits 15 and 14 reflect the

current status of the memory management mode, while PSW bits 13 and 12 indicate the previous

status,

All flip-flops in the PSW are clocked, directly or indirectly, by clocking signal K1-5 REG CLK L. All

of the enabling signals come from the Control Store.

4-21

weldelqYoolgXNV11-F2in3ig
S81G

-11L

SQ.‘.......O)

XANSS01
H0SXNWV0L-LHLSXNWY0L-LY

0sIs
@aivas||,3ONVQ3dWIHOIHvvLvaSNaINDMSdHH1nMvTHIAqASINV.ISNODLNVISNODH|v|100:51XNVXOWYviva

)nv
1

sngINNTA(os|1s|a1s
NOIL

ONNJ

aMSd

XNV
0g1s1alsHXNV31V1S14l€L

4-22

Table 4-8 Processor Staths Word Register Bit Assignments

PSW Bit Name Use

15:14 Memory Management Contain the current memory management modes.

Current Mode

13:12 Memory Management Contain the previous memory management modes.

Previous Mode

11:08 Unused

07:05 Priority Set the processor priority.

04 Trace When this bit is set, the processor traps to the trace

vector. Used for program debugging.

03 N Set when the result of the last data manipulation is

negative,

02 V4 Set when the result of the last data manipulation is

Zero.

01 A Set when the result of the last data manipulation

produces an overflow.

00 C Set when the result of the last data manipulation

produces a carry from the most significant bit.

4-23

SS MUX (15:14) | fi'>B|Ts(:<1;=.:l))

(K1-4) PSW(15:12) | MEM.MGMNT, MODE
PSW (15:14) B

BITS (13:12)

PSW MUX CLR CLK

13:12 A ——(fSS MUX {) E>STB <0
FORCE KERNAL (1) H Q |

LOAD H PSW 777
(K1-2)

PSW(07:05)

SS MUX (07:05) | PRIORITY

ToO

({ REG. CLK) CLR CLK AMUX
[(LOAD PSW LOW)+{LOAD PSW 12-15)] 5]

SS MUX 04 0 (k1-2)

PSW@4a [T-BIT

(REG CLK)- (LOAD PSW) CLK

CLR

$S MUX (03:00) :>B (K1-1) (K1:1)
PSW (03:00)

PSW MUX F> C.V,N,Z

ACC LOGIC [:>STB o CLR LK

(AUX CONTROL)-(LOAD PSW LOW)

PROC INIT L

(REG CLK)- [(LOAD PSW) +

(LOAD PSW LOW)+ (LOAD CC)]

11-3887

Figure 4-12 Processor Status Word

4-24

4.3 CONDITION CODES . .

The logic necessary for determining the condition codes is shown on sheets Ki-idhanth®2+52ahdcan!
be subdivided into three parts, each of which is discussed in some detail in this section. Gonstraints fol
each condition code bit are shown in the instruction set specifications (Chapter 2). B

4.3.1 Instruction Categoriiing ROM
The Categorizing ROM (E68 on sheet K2-5) decodes the instructions in the IR and categorizes them
into eight groups, based on their effect on the carry and overflow condition codes. These groups are as
follows:

Group Instructions

MOV, BIT, BIS, BIC, and non-PDP-11 instructions

INC, DEC

CLR, TST,SWAB

ADD, ADC

NEG,CMP,COM

SUB, SBC

Rotate instructions

UnusedV
N
N

E

W
K

-
~

Three of the four outputs of the Categorizing ROM are used to provide a binary representation of one
of the above instruction categories for the C and V Decode ROM (E107 on K1-10). The fourth output

(K2-5 BYTE L) decodes the fact that the instruction in the IR is a byte instruction and is fed to the
select input of the BYTE MUX (E108 on K1-10).

4.3.2 Byte Multiplexer (BYTE MUX)

The BYTE MUX (E108 on K1-10) is a quad 2-line-to-1-line multiplexer (74S157) that determines the

N condition code bit and the K1-10 SHIFT IN 07 H signal for the B REG (Figure 4-13). A single select

input (K2-5 BYTE L) selects the A inputs when a byte operation is performed, and the B inputs when

the operation is not a byte.

“(K1-10)
K1-3 BREG #8 ()H ———{ B@ f@ —— K1-10 SHIFT INOT H

K2-5 SERIAL SHIFT H ——] AQ®

Ki-4 ALU 15 H — B1
f1 K1-10CC N H

K1-2 ALU @7 H — A BYTE
MUX

K1-4 SP 15 (1) H —— B2 (E108)
745157 2

K1-2 SP@7 (1)H —{ A2 — 70 C + V DECODER

K1-4BLEG 15 H ——{ B3 ROM

K1-2 BLEG @7H —— A3 £f3 —

STB)

K2-5 BYTE L

11-3888

Figure 4-13 Byte Multiplexer

4-25

Output signal K1-10 CC N H assumes the level of K1-4 ALU 15 H when the instruction being per-
fesmibdsis& Qbirherkralibn, and the level of K1-2 ALU 07 H when the instruction is a byte operation.
Byteloperetiofs.may be performed on either the high or low bytes of the input word, depending on
whether the processor microcode has already swapped bytes before the condition codes are detected.

For shift right operations, the K1-10 SHIFT IN 07 H output assumes the level of the K1-3 BREG 08
(1) H input when a word instruction is performed, and the level of the K2-5 SERIAL SHIFT H output
of the ROT/SHFT ROM (E62 on print K2-5) for a byte operation. The diagrams in Figure 4-14
indicate the operations performed by various instructions.

4.3.3 C and V Decode ROM :

The C and V Decode ROM (E107 on K 1-10) determines the values of the carry and overflow condition
code bits as a function of the instruction being performed (Figure 4-15). Inputs to this ROM come
from the ROT SHIFT ROM (E62 on K2-5), the PSW [K1-1 CBIT (1) H], the BYTE MUX, and the
Categorizing ROM (E68 on K2-5). Outputs K1-10 CC V H and K1-10 CC C H are fed via the PSW
MUX (E98 on K1-1) to the PSW register.

4.3.4 Condition Code Signal CC Z H

Each 4-bit slice of the data path contains an ALU output via a gate (type 8815) reflecting whether all
four of the bits in that slice are ZERO. If the instruction being performed is a byte operation, condition
code signal K1-10 CC Z H assumes the combined state of signals K1-1 0-3=0 H and K1-2 4-7=0 H:
for a word operation, K1-10 CC Z H assumes the combined state of those signals together with K1-3
8-11=0 H and K1-4 12-15=0 H. Thus, K1-10 CC Z H is asserted if bits 00 through 07 = 0 for a byte
operation and if bits 00 through 15 = 0 for a word operation. Assertion of K2-5 BYTE L selects byte
operation.

4.4 UNIBUS ADDRESS AND DATA INTERFACE

4.4.1 Unibus Drivers and Receivers

Standard bus transceiver circuits (type 8641) are used to interface the processor data path to the
Unibus address (BUS A00:A17) and data (BUS DQ0:D15) lines. These circuits are shown on prints
K1-1 through K1-4, and on K1-6. Figure 4-16 shows the logic diagram for an 8641.

4.4.2 Unibus Address Generation Circuitry

A unique feature of the KD11-EA is that KT11-D equivalent memory management capability is built
into the 2-board processor. During Unibus transfers, virtual bus addresses are obtained from the
scratchpad memory (SPM) and the Physical Bus Address (PBA) register, if relocation is not enabled,
and latched in the Virtual Bus Address (VBA) register shown on print K1-6. Figure 4-17 shows the
actual VBA clock timing, while Figure 4-18 shows Unibus address logic in block diagram form.

If the memory management circuit is not enabled (K1-8 RELOCATE H is not asserted), the address
that was clocked into the Physical Bus Address register is used as address data for the 8641 transceivers
and driven onto the Unibus address lines.

When the memory management circuit is enabled (K1-8 RELOCATE H asserted), a selected reloca-
tion constant (detailed description in Paragraph 4.12) is added to the contents of the VBA before it is
latched into the BA and driven onto the Unibus.

4-26

ROR

RORB

WORD:

Lo b v b b o by |
15 10

BYTE:

ROLB

WORD:

IEI'_1 I B R NI B J
15 40

BYTE:

I 00D ‘] l EVEN]

R I T
15 3 7] ‘TB

ASR

ASRB

WORD:

[ti:rl PR N R T A N N N A S R] IHI
)

BYTE

T]44}"’IHI [S }_‘III
l 15| ODD ADDRESS B8 | i EVEN ADDRESS Y

ASL

ASLB

WORD:

e Le
15 0

BYTE:

IHI'_{ T I OIII‘—{, T B R T B I °
15 ODD ADDRESS 8 7 EVEN ADDRESS o

11-3952

Figure 4-14 Rotate Instructions

4-27

K2-6 1R DECODE (1) L

K2-5 IR 15 (1)H —

K2-5 IR 14 (1) H —

K2-5IR13 (1) H —

K2-51R12 (1) H —

K2-5 IR 10 (1) H

K2-5 IR09 (1) H —

K2-5 IR 08 (1) H ——

K2-5 IR 07 (1) H

K2-5 IR 06 (1) H —

(K2-5)

CATEGORIZING

ROM

E68

+5V

K2-5 BYTE H

K2-5 CC CODE O2 H

K2-5 BYTE L

K2-5 CC CODE O1 H

K2-5 CC CODE OOH

FROM

BYTE MUX

K2-5 ROT CBIT (1) H—

K1-1 CBIT (1) H—

{K1-10)

C+V

DECODE

ROM

E107

— K1-10 CCV H

—K1-10 CCCH

Figure 4-15 C and V Decode ROM

UNIBUS LINES

11-5187

s

>

>

>

D,

> of >

Figure 4-16 Unibus Transceiver

4-28

11-3891

LOAD VBA

weutT 0 [[[[1
DELAY LOAD VBA LOAD VBA

LOAD BA LOAD BA

LOAD BA

TAP 120 H | | [| | | f |

proccLkL | § —»{ f«30ns |} 1

|<—180ns—>'<———240ns—b|

<«—— SHORT CYCLE + LONG CYCLE —»

1-3900

Figure 4-17 Processor Clock Cycle Timing

K1-6FROM PAR [PAGE ADDRESS FIELD Brsnio Y (KI°®

ADDER

K1-6 K1-6¢)BITSIZ-G> BITs 17-6 M <18 (K1-8)

VBA BA [BITS17-6_ M DRIVER
| -

! — A 3BITS1S-2Xoik cLR WS CLK

rom L— aursw—@
DATA PATH BITS 17-6

K1-5 LOAD VBA M _ 1 K1-8 RELOCATE H e
K2-2 PROC INIT L —— K1-5 LOAD BAR L | |

BITS 5-0 > ORIVER [

3
BIT1S— BIT 17
8IT 14 —

BIT ,3_[‘ BIT 16

K2-1 ENAB ADDRS L

Figure 4-18 Unibus Address Logic Block Diagram

4-29

TO

UNIBUS

11-3892

4.4.3 Internal Address Decoder

The receiver haif of the bus transceivers continually monitors the Unibus address lines. If the processor

1s running (HALT RQST L or BUS SACK L are not asserted), these transceivers allow the Internal

Address Decoder circuit (print K1-10) to detect transfers to or from the PSW and memory manage-

ment registers. Note, however, that the CPU does not allow access to its general registers through their

Unibus addresses while it is running.

While the processor is halted (BUS SACK L is asserted), this decoder circuit enables data transfers

between CPU registers and Unibus peripheral devices. A list of these CPU registers and their Unibus

addresses is shown below; the registers are discussed in Paragraph 4.12.

PSW 777776 R10 777710

RO 777700 R11 777711

R1 777701 R12 777712

R2 777702 R13 777713

R3 777703 R14 777714

R4 777704 R15 177715

R5 777705 R16 777716

R6 777706 R17 177717

R7 777707

4.5 INSTRUCTION DECODING

4.5.1 General Description

Two methods are used to control instruction decoding, one using microroutine selection and the other

using auxiliary ALU control. Dual control is required because of the large number of instructions that

require source/destination calculations. Auxiliary ALU control is evoked whenever the microcode

executes the action X = Y OP B as a result of a specific instruction.

There are two prerequisites to a thorough understanding of the instruction decoding procedure. One is

a knowledge of the microbranching process, and the other is a knowledge of the PDP-11 instruction

format. |

The following facts pertain to the KD11-EA /PDP-11 instruction set:

1. In general, the PDP-11 operation code is variable from 4 to 16 bits.

2. A number of instructions require two address calculations; an even larger number require

only one address calculation. There are also a number of instructions that require address
calculations, but do not operate on data.

3. All op codes that are not implemented in the KD11-EA processor must be trapped.

4. There are illegal combinations of instructions and address modes that must be trapped.

5. There exists a list of exceptions in the execution of instructions having to do with both the

treatment of data and the setting of condition codes in the processor status word.

4-30

4.5.2 Instruction Register

Each PDP-11 instruction obtained from memory is stored in the 16-bit instruction register (IR). This
register consists of three 6-bit D-type 74174 registers (E56, E66, and E67 on K2-5) and one 74574 D-

type flip-flop (E34). The purpose of the IR is to store the instruction for the complete instruction cycle
so that the IR Decode and Auxiliary ALU Control circuits can decode the correct control signals
throughout the instruction cycle.

The IR latches data from the SSMUX 00-15 lines on K2-7 LOAD IR L and the leading edge of K1-5
PROC CLK L.

On the trailing edge of K2-9 BUT SERVICE (1) H, all the IR bits except K2-5IR15 (1) H are cleared.

[K2-5 IR 15 (1) H is set by the same signal transition.] This means that the IR Decode circuit will see a

conditional branch instruction in the IR after every service microstep. This action prevents the proces-

sor from decoding a HLT instruction after an Initialize condition.

If a bus error (BE) occurs while the Control Store output signal Enable Double Bus Error (K2-8

ENAB DBE L) is asserted, the whole IR is cleared (PDP-11 Halt), causing the processor to halt

automatically. Bus errors occurring without the K2-8 ENAB DBE L signal have no effect on the IR.

K2-8 ENAB DBE L is only asserted during certain microwords in the trap sequence to prevent the

possibility of a second bus error occuring (Double Bus Error), which would cause the trap sequence to

be re-entered before it is completed. For example, if R6 (Stack Pointer) were an odd address, the first

bus reference using the stack in the trap routine would cause another trap (Odd Address), a sequence

that could tie up the CPU indefinitely if not for the Halt and Double Bus Error facilities. In short, any

error during the four memory references of the trap sequence is fatal.

4.5.3 Instruction Decoder

4.5.3.1 Instruction Decoder Circuitry - The Instruction Decode (prints K2-5 and K2-6) and Control

Store (prints K2-7 through K2-10) circuitry could be thought of as an internal microprocessor that

interprets PDP-11 instructions and translates them into a set of microinstructions, each consisting of

40 control signals. These control signals then determine the operation of the data path and Unibus

control circuitry.

A block diagram of this internal microprocessor is shown in Figure 4-1. Note that all outputs of the

Control Store ROMs (K2-7 through K2-10) are latched in hex D-type registers (74S174s).

Nine of these latched signals (K2-7 MPC 08 H through K2-7 MPC 00 H) are fed back to the inputs of

the Control Store ROM as the next microinstruction address (and can then be called the micro-PC).

The wired-OR capability of these lines allows the IR Decode circuitry to force microbranching

addresses on certain enabling conditions. The actual microbranch address will depend on the instruc-

tion being decoded, the instruction mode used (modes 0-7), and the operand required (source or

destination).

The IR Decode circuitry is shown on prints K2-5 and K2-6. It consists of two 512 X 4 ROMs; nine 256

X 4 ROMs; two 32 X 8 ROMs; and 74S03, 74502, 74800, and 74S10 logic gates. The following

descriptions are based on instruction types. Complete block diagrams of the microcode flow are avail-

able in the KD 11-EA print set.

NOTE

The signal FP11-A ATTACHED L is input to the

IR DECODE PROM (E70 on K2-6) to prevent a

Reserved Instruction Trap from occurring for

17xxxx codes while the floating point option (FP11-

A) is installed.

4-31

4.5.3.2 Double-Operand Instructions - Double-operand instructions require two address calculations,
one for the source and one for the destination operand. The microbranch to the sequence of micro-
instructions that determine the source operand is initiated by the Control Store output signal K2-6 IR
DECODE (1) H. When this signal is enabled, the IR Decode ROMs DOP Decode (E69 and E70 on
print K2-6) check the instruction in the IR (op code bits IR15-12). If the instruction is a double-
operand type, the ROM outputs are asserted as follows:

ROM Outputs

Type K2-6 K2-7 K2-7 K2-7 KK2-7 K2-7

Instruction IR Code 00OL MPCO7L MPCO6L MPCOSL MPCO4L MPCO3L

MOV (SM0*DMO) 1 1 0 0 0 1

DOP (MOV+SUB)

MOD (SM0*DMO) 1 0 1 1 0 0

(ADD, BIC, BIS)

SUB (SM0*DMO0) 1 1 0 1 0 0

DOP (SM0*DMO0) 1 0 1 0 0 1

Illegal Instructions 0 0 0 0 0 0

DOP NONMOD (SM0*DMO0) | 1 l 0 1 1 1
(CMP, BIT)

NOTE

Ground on the MPC lines represents a logic ““1.”

Coupled with the microprocessor outputs of the DOP DEC ROM are the outputs of a set of type

74503 gates on K2-6. These gates, when enabled, place the contents of the source mode field (IR 11:09)
of the PDP-11 instruction being decoded onto the MPC 00:02 lines. These gates are enabled by the K2-

6 SRCH ROM output only when the instruction being decoded is of the double-operand type, the K2-
6 IR DECODE (1) L signal is asserted, and the instruction is not reserved (K2-6 IR CODE 00 L
unasserted).

A summary of the various source microaddresses is shown below:

Source Octal

Instruction Mode Microbranch Address

DOP (SM0*DMO0) 0 110

1 111

2 112

3 113

4 114

5 115

6 116

7

Reserved DOP 00

NOTE

A ground on the MPC lines represents a logic 1.

4-32

The DOP DEC ROMs described above are also used to decode the microprocessor address for the

various Control Store destination operand routines. When the K2-7 BUT DEST L input is asserted by

the miscellaneous control field circuitry of the Control Store, the DOP DEC ROMs decode the

instructions, determine whether it is a modifying or nonmodifying instruction, and generate the fol-
lowing micro-PC addresses.

ROM Outputs

Type K2-7 K2.7 K2-7 K2-7 K2-7
Instruction MPCO7L MPCO6L MPCOSL MPCO4L MPCO3IL

Moyve 0 0 1 | 0 1
(SM0*DMO0)

Modify 0 0 1 1 1
(ADD BIS BIC but

not MOV or SUB)

Nonmodify 0 0 1 1 0

(CMP BIT)

SUB 0 0 1 0 0

The circuitry used to decode the destination mode field of the instruction being decoded is similar to

that described above for microaddressing the source operand routine. A set of 74S03 gates on K2-6 is

used to place the contents of K2-5 IR 05 (1) H through K2-5 IR 03 (1) H on the lines when enabled.

For double-operand instructions, enabling occurs when the MPC miscellaneous control field asserts

K2-7 BUT DEST L.

ROM E74 on print K2-6 is also considered to be part of the DOP Decoder circuitry. This ROM

decodes all Extended Instruction Set (EIS) instructions, generating the following micro-PC addresses

when K2-6 IR DECODE (1) H is asserted:

ROM Outputs

Type K2-6 K2-7 K2-7 K2-7 K27 K2-7

Instruction IR Code OOL MPCO7TL. MPCO6L MPCOSL MPCO4L MPCO3L

Multiply or Divide 1 | 1 0 0 1 0

(MUL, DIV) '

Arithmetic Shift or | 1 0 0 1 |

Arithmetic Shift Combined

(ASH,ASHC)

SOP | 1 0 1 1 0

XOR 1 0 | 0 0 |

Reserved 0 0 0 0 0 0

4-33

The K2-6 DEST L output of the EIS Decoder ROM (E74) allows the 74S03 (E65) on print K2-6 to

place the contents of the destination mode field of the instruction being decoded onto the micro-PC

(MPC0O0-MPCO02) lines. This microbranching technique is similar to that described above for micro-

addressing the source operand routine. Use of the EIS instructions does not degrade processor timing

or affect NPR latency.

4.5.3.3 Single-Operand Instructions - Unlike double-operand instructions, single-operand instruc-

tions only require one address calculation to obtain the necessary operand. Complete SOP instruction

decoding is done with the two 256- X 4-bit ROMs (E59 and E60).

The SOP Microbranch ROM (E60) monitors the necessary IR input lines and asserts the correct

micro-PC address on lines K2-7 MPCO03-L through K2-7 MPC 06 L when the K2-6 IR DECODE (1) L

signal is asserted and the SOP enable signal K2-5 IR 12-14=0 H is true. The K2-6 DEST L output is

also activated when an SOP instruction is decoded. This signal enables the destination mode mon-

itoring circuitry described in the double-operand instruction decoding section. Microaddresses for

SOP instructions are shown below.

Base

Microbranch

Instruction Address

SOP Modify 040

(CLR,COM,INC,DEC)

SOP Non-Modify 160

(TST)

NEG S 150

Rotate and Shift 170

JSR ‘ 150

-~ JMP - 020
MARK

SWAB 030

MFPI (D) 100

MTPI (D) 250

"MFPS , 130

MTPS 120

The SOP Microbranch ROM (E60) is also used to decode JSR instructions. This decoding is per-

formed in the same manner as that for SOP instructions. The K2-6 DMO H input to the ROM is used

to detect the illegal instruction JMP or JSR destination mode 0. When this occurs, no micro-PC

address is allowed on the ROM outputs.

4-34

The SOP Decode ROM (ES9) monitors the same input signals as the SOP Microbranch ROM. Its

purpose, however, is to decode illegal, reserved, and trap instructions. The three output signals K2-6

IR CODE 00 L through K2-6 IR CODE 02 L are enabled as follows:

IR Code

Instructions 02 01 00

Reserved 1 1 0

Illegal 1 0 1

(JMP or JSR Mode 0)

EMT 0 1 0

Trap 0 0 1

The fourth output signal of the SOP Decdoe ROM enables the destination mode monitoring circuitry

described in the double-operand instruction decoding section.

4.5.3.4 Branch Instructions - Conditional branch instructions are completely decoded by the Branch

DEC ROM (E72 on print K2-6). This ROM is enabled when bits IR11:IR14 are all low and the K2-6

IR DECODE (1) L signal is active. The input lines monitored are the four condition code bits (N, Z, V,

and C) and four IR bits (IR15, 10, 9, and 8). When a branch is decoded, the K2-7 MPC 07 L output

signal is enabled. The branch instruction microcode routine in the Control Store will sign-extend the

branch offset and shift it left one place.

4.5.3.5 Operate Instructions - There are three 256- X 4-bit ROMs in the instruction-decoding circui-

try for decoding PDP-11 operate instructions. These ROMs are the Reset/Trap Decode, Trap Decode,

and Op Branch ROMs (E63), all found on K2-6.

The Op Branch ROM (E63) monitors IR output lines IR00:IR07. It is enabled when IR08 and IR 15

are low and K2-6 IR DECODE (1) L is active. The PDP-11 operate instructions are decoded into the

following micro-PC addresses on the ROM outputs K2-7 MPC 00 L through K2-7 MPC 03 L.

Microbranch

Instruction Address

Reset 003

RTI/RTT 011

Set Condition Codes 007

Clear Condition Codes 006

RTS 004

Wait 014

The Reset/Trap Decode ROM (E54) decodes Reset, RTT, and RTI instructions and activates the
outputs K2-6 START RESET H and K2-6 ENAB TBIT H accordingly. This ROM also allows the
lower PSW bits (K2-6 DISABLE LOAD PSW H) to be loaded only from the stack when the processor
is operating in User mode (memory management restriction). It also treats a Reset instruction as a
NOP in User mode.

4-35

The TRAP DEC ROM (ES3) has the same inputs as the Op Branch ROM. Its purpose is to decode
Halt, reserved, trap, and illegal instructions, and to enable the outputs accordingly. The K2-3 USER
MODE H input also allows this ROM to treat Halt instructions as reserved instructions when oper-
ating in the memory management User mode.

IR Code

Instruction 02 01 00

Reserved | 1 0

Illegal 1 0 1

BPT _ 1 0 0
10T ‘ 0 | 1

HALT Enable HLT RQSTL

4.6 AUXILIARY ALU CONTROL

The AUX Control circuitry on the KD11-EA consists of three bipolar ROMs, shown on K2-5.

ROM Name

32- X B-bit DOP (E83)

256- X 4-bit SOP (E62)

256- X 4-bit ROT/SHIFT (E62)

These ROMs determine the ALU operation to be performed whenever the microcode executes the

action X « Y OP B, where Y designates a scratchpad register and X designates either the B REG or a

scratchpad register.

The AUX DOP ROM (E83) decodes double-operand instructions, and is enabled by K2-8 AUX

SETUP H. The following table expresses the outputs of this ROM as a function of the instruction

being performed. (B represents the B register, A represents any scratchpad register, and F represents

the ALU output.)

ROM Outputs

ALU Func Code Func Code Func Code Func Code

Instruction Operation 03H 02H 01H 00H

MOV (B) FeA 0] 0 |

COMP (B) F < A minus B 0] 0 0

ADD F « A plus B 1 0 0 0

SUB F « A minus B 0 | 0 0

BIT (B) F—AB 1 0 0]

BIC (B) F—AB 1 0 1 0

BIS (B) F—~A+B 1 0 1 |

XOR F-A(® B 1 1 0 0

4-36

The AUX SOPP ROM (E61) decodes single-operand instructions, and is enablec'i by K2:8 AUX SETUP
H. The following table expresses the ROM outputs as a function of the SOP instruction decoded.

ROM Outputs

ALU Func Code Func Code Func Code Func Code

Instruction Function 03H 02H 01H 00H

SWAB F<A 0 1 0 1
CLR (B) F «ZERO 0 0 0 0
COM (B) F<A 0 0 0 1
INC (B) F <A plusl 0 0 1 0
DEC (B) F « A minus 1 0 0 1 |

NEG (B) F « A minus B 0 1 0 0
ADC (B) F<A

plus CBIT (0) 0 1 0 1

F < A plus

CBIT (1) 0 0 | 0

SBC (B) F<A

minus CBIT (0) 0 1 0

1

F « A minus

CBIT (1) 0 0 1 1

TST (B) F<A 0 1 0 1

ROR (B) F~B 0 1 1 0

ROL (B) F<B 0 1 | 0

ASR (B) F<B 0 1 1 0

ASL (B) F B 0 1 1 0

MARK N/A 0 0 0 0

MFPI F«A 0 1 0 1

MTPI F<A 0 1 0 1

SXT F « NBIT (0) 0 0 0 0

F «NBIT (1) 0 1 1 0

MTPS F~A 0 1 0 1

MFPD F<A 0 1 0 1

MTPD F~A 0 1 0 1

MFPS FeA 0 1 0 1

Auxiliary control signals are also necessary for performing rotate and shift operations. The

ROT/SHFT ROM (E62) on K2-5 decodes these instructions and outputs those control signals

required to shift the contents of the B REG. Inputs K1-1 BREG 00 (1) H, K1-10 CC N H, and K1-1

CBIT (1) H also determine the K2-5 SERIAL SHIFT H and K2-5 ROT CBIT (1) H signals. The

SERIAL SHIFT H signal is sent to the BYTE MUX (E108 on K1-10), where it is used in determining

the K1-10 SHIiFT IN 07 H signal used in the B REG shifting operation. K2-5 ROT CBIT (1) H is used

in the calculation of the new carry condition (C and V Bit ROM - E107 on K1-10). Note that for all

rotate and shift operations, the AUX SETUP is performed on the B « B step before each X « Y OP B

step previously mentioned. This is done to allow the condition codes to be set up without slowing the

processor.

Table 4-9 summarizes the auxiliary control instructions.

4-37

Table 4-9 Auxiliary Control for Binary and Unary Instructions

Condition Codes
ALU

Instruction Nand Z A% C Function CIN

MOV(B) Load Cleared Not affected A Logical 0

CMP(B) Load Load like Subtract. Load like Subtract. A minus B 0

BIT(B) Load Cleared Not affected A e B Logical 0

BIC(B) Load Cleared Not affected AeB Logical 0

BIS(B) Load Cleared Not affected A < B Logical 0

ADD Load Set if operands are same Set if carry out. A plus B 0

sign and result different.

SUB Load Set if there was arithmetic Set if carry. A minus B 0

overflow as a result of the

operation (i.e., if operands

were of opposite signs and

the sign of the source was

the same as the sign of the

result; cleared otherwise.

XOR Load Cleared Not affected A*B 0

CLR(B) Load Cleared (like Add) Clear 0 0

COM(B) Load Cleared Set A 0

INC(B) Load Set if destination held Not affected A plus 1 +1

100000 before operand.

DEC Load Set if result is 100000. Not affected A minus 1 1

NEG(B) Load Set if result is 100000. Cleared if result is O; A minus B 0

set otherwise.

ADC(B) Load Set if destination was Set if destination was A plus CBIT 0
077777 and C =1, 177777 and C = 1.

SBC(B) Load Set if destination was Set if destination was A minus CBIT 0
100000. Oand C = 1; cleared

otherwise.

4-38

Table 4-9 Auxiliary Control for Binary and Unary Instructions (Cont)

Condition Codes
ALU

Instruction Nand Z A\ C Function CIN

TST(B) Load Cleared Cleared A Logical 0

ROR(B) Z«1 Unaffected (0) B Logical 0

[f(15:01)*C=0

N<C

ROL(B) Z«1 Unaffected (15) B Logical 0
If(14:00)*C=0

N«(14) B(7)

ASR(B) Z<1 Unaffected 0« (15 B Logical 0

If(15:01)=0

N<N

ASL(B) Z<1 C < (15 B Logical 0

1f(14:01)=0

N<(14)

SWAB Load Cleared Cleared A Logical 0

SXT Z—Load Cleared Cleared 1 0

N—Unaffected

MFPI Load Cleared Unaffected A Logical 0

MTPI Load Cleared Unaffected A Logical 0

MTPS Z—Set Cleared Unaffected A Logical 0

If SRC(7)=0

N—Set

If SRC(7)=1

MFPD Load Cleared Unaffected A Logical 0

MTPD Load Cleared Unaffected A Logical 0

MFPS Z—Set Cleared Unaffected A Logical 0

If PS(7)=0

N—Set

If PS(7)=1

4-39

4.7 DATA TRANSFER CIRCUITRY

4.7.1 General Description

All Unibus data transfers are controlled by the DAT TRAN circuitry on K2-1. This logic monitors the

busy status of the Unibus, controls the processor bus control lines BBSY, MSYN, C1, and C0, and
detects parity errors (PEs), and bus errors (BEs).

4.7.2 Control Circuitry

4.7.2.1 Processor Clock Inhibit - All processor data transfers are initiated by K2-8 BUF DAT TRAN

(1) H. When K 1-5 TAP 30 H goes high, the signal combines with K2-1 ABORT RESTART L (nor-

mally a logic 1) to enable K2-1 TRAN INH I, shutting off the processor clock until the transfer is

completed. The following conditions must also exist to allow the processor clock to be shut off:

a. K2-1 MSYN (1) H high AND K2-1 SSYN H low.

b. K2-1 CACHE HIT H low OR K2-1 CLK MSYN H low.

The signal CACHE HIT L is generated if the cache memory option is being implemented and the
cache has determined that it has the data being requested. Ten bus address lines are brought to the J1
connector on the M8265 module. When K2-1 START TRAN L is asserted during a DATI cycle, the

cache uses the BA lines to determine if it has the data. If the data is in cache, then CACHE HIT L and
TRI STATE AMUX L are asserted. These signals cause the processor to abort the Unibus transfer
and to receive data via the external data path. The external signal CACHE HIT L will cause K2-1

CACHE HIT H to be asserted. This signal will restart the processor clock when K2-1 CLK MSYN H

goes true (approximately 150 ns after K2-1 START TRAN L).

4.7.2.2 Unibus Synchronization - The synchronizer logic shown in Figure 4-19 (from K2-1) arbitrates

whether the processor or some other Unibus peripheral will control the Unibus. A logic 1 level (+3 V)

at the set input of the E31 flip-flop on K2-1 specifies that the bus is presently in use. Each of the inputs

that combine to create this level monitors a specific set of bus conditions.

(2-1 DATIP (1) L

<2-1 DATIP(O) L

K2-1 BBSY H

K2-2 NPR H
7402 \10)
Eon | K2-1 BUS IN USE H

K2-2 NPG (1) H

K2-2 NO SACK L
q

2 -
D 18

7474

E31
4

3 5 Rl - STARTS DATA
© oPg)0 5 TRANSFER

1 cesT 40ns I100pf

1

K2—1 GET BUS H

11-6189

Figure 4-19 Unibus Synchronizer

4-40

NPR

(K2-2 NPR H)

BBSY

(K2-1 BBSY H)

NPG

[K2-2 NPG (1) H]

NO SACK L

(K2-2 NO SACK)

DATIP (0) L

[K2-1 DATIP (0) 1]

BUS SSYN L

A Unibus peripheral has asserted a nonprocessor request

(NPR) and wishes to gain control of the bus immediately.

Another Unibus peripheral already has control 'of the bus, and
is asserting a bus busy (BBSY) signal.

An NPR device has requested control of the Unibus and the

KDI11-E processor has issued a nonprocessor request grant

(NPG). The condition may exist where the NPR device has

already recognized the NPG and has dropped its NPR signal,

while not yet having asserted a SACK or BBSY.

A device has requested control of the Unibus. The KD 11-E pro-

cessor has issued a grant, and the device has returned SACK L,

causing NO SACK L to go high. The condition may exist where

only SACK L remains on the Unibus for a period of time before

the peripheral asserts BBSY.

When this input is true, all of the above signals are overridden.

It indicates that the processor is performing a DATIP

(Read /Modify/Write) operation, and has control of the Unibus

(BBSY asserted). NPR devices may, however, be granted bus

control, but must wait until the processor releases BBSY before

asserting theirs. (DATIP operations dictate worst-case bus

latencies for NPR devices.)

A data transfer is still being completed; therefore, the processor

must wait before initiating another.

If none of the above Bus-in-Use conditions exist, the E31 flip-flop on K2-1 can be set when K2-1 GET

BUS H is asserted. K2-1 GET BUS H is asserted by K2-8 BUF DAT TRAN (1) H and remains

asserted until K2-1 GET BUS H goes low followed by the assertion of TAP 30 H. Setting E31 starts

the transfer.

4.7.2.3 Bus Control - Once the E31 flip-flop is set, the DAT TRAN circuitry begins a Unibus data

transfer operation by asserting K2-1 ENAB ADDRS L, triggering the following actions:

1. Enables the bus address drivers (BUS A15:A00 on K1-6).

2. Enables the BBSY driver (K2-1).

3. Enables the bus control signals BUS C0 and BUS C1, which determine the kind of transfer

being performed.

Cl1 Co

0 0

0 1

1 0

1 1

Operation

DATOB

The actual condition of these control lines is determined by K2-8 BUF CO (1) H and K2-8

BUF C1 (1) H.

4. Enables the bus data drivers (BUS D00-BUS D15) if the operation being performed is a

DATO.

4-41

4.7.2.4 NO-SACK Timeout Circuitry - The circuit shown in Figure 4-20 (from K2-10) asserts BUS

SACK L on the Unibus if a device requesting Unibus control does not assert SACK within 22 us after

a grant line has been enabled

The grant signals (K2-2 BG L and K2-2 NPG L) are ORed at E35. The output of E35 provides one

enabling signal to a NAND gate (E8) and triggers a monostable multivibrator (E14). The outputs of

E35and E14 are ANDed at E8 to produce BUS SACK L. The monostable effectively delays (by 22 us)

the assertion of BUS SACK L since it produces a 22 us pulse that prevents E8 from being enabled.

BUS SACK L, when asserted, will cause the processor to drop the grant line, which will, in turn, cause

this circuit to drop BUS SACK L.

This circuit prevents the processor from being hung if a grant line is asserted and BUS SACK is not

returned by the device requesting bus control. If the requesting device returns BUS SACK, this circuit

will not assert BUS SACK since the grant line will be dropped before the monostable times out. K2-2

HALT PEND L and K2-2 BG (1) H are ANDed on E35 to prevent a HALT GRANT from being

timed out.

+5Vv

R5

c115 30K
2200 PF

P 7
9 5

1= 10 ’ 12
74123

E14

22us 5

p——

0l 12

1

12|

HALT PEND L —{ 7400 1

13 | €35 ' 3V
K2-2BG(1) H ——{ \ R62 L 10 ARZ

. 3 220 sag1 BUS SACK L
2 ——V Y E8

K2-2 NPG L q

470PF

T 11-5186

Figure 4-20 NO-SACK Timeout Circuitry

4-42

4.7.2.5 MSYN/SSYN Time-Out Circuitry - Unibus specifications require that the BUS MSYN L
control signal be enabled no sooner than 150 ns after the bus address, data, and control lines have been
asserted. To meet this requirement, the circuitry in Figure 4-21 has been incorporated into the DAT
TRAN logic (K2-1).

The multiplexer (E10) shown in Figure 4-22 helps adapt the DAT TRAN circuitry to the type of bus
operation being performed (DATI or DATO). Specific functions performed are as follows:

1. Generates the correct Unibus control signals [K2-1 UBUS CO (1) H and K2-1 UBUS C1 (1)
H].

2. Inhibits the detection of parity errors during DATO operations.

3. Generates an End of Transfer (EOT L) signal as soon as BUS SSYN is returned by an
addressed peripheral.

4. Delays the assertion of BUS MSYN, using the clock signal K1-5 ALLOW MSYN H, which
does not become asserted until the Physical Bus Address register has been loaded.

, NOTE ,

This applies only to DATI or DATIP. During

DATO or DATOB, the bus address is never loaded

in the same microcycle that does the DATO or

DATOB.

The RC circuit shown in Figure 4-21 prevents the MSYN flip-flop (E31) from being clocked until

approximately 150 ns after the bus address and control lines are placed on the bus. Once this latch is

set, BUS MSYN L is activated and the SSYN TIMEOUT one-shot E16 is triggered. When SSYN is

returned by the addressed peripheral, both the MSYN flip-flop (E31) and the SSYN TIMEOUT one-

shot are cleared. The processor clock is then freed by the release of K2-1 TRAN INHL. If a DATI or

DATIP operation is being performed, that will be clocked into either the scratchpad, B REG, PSW, or

IR on the next low-to-high transition of K1-5 PROC CLK L.

If a DATO or DATOB operation is being performed, the data bus drivers are disabled after SSYN is

returned from the addressed peripheral but before the MSYN line is unasserted.

4-43

[01u0)NASIN/NASS1¢-p2nsigdilva40j1vqQ404pajiessoun
80.1vQJoO1vQ@Jojpajisssy

06L
G-t

L

|7(+)NASW-2
SIH(1)104n88-2X%

S

-
93

HNASWLNIL-2M9-593|@HU)L34)XOVS2~-2XLHNASW1-2)

9

Twor-an||ze3(11YO¢]om_.ost/&HNASS-2¢e
H(L)0LL-2Y8cl913+924el—L

HNVYLL8VIS-2y
3\

G+AN|8y690
H(1)104ng8-2X*7NVHL1vd4N8-2

e

Os3H(@)NASW1-2)60013HNASWMOTTVG-IA854018vd
-

-5_BoTEENRese3|SH(@)NASW125T(1)NASW-26alOo—9552lH(1)NASW1-2)"z>ws_HNASS1-2)
M01-2MHWHSng139L-2)897

HL¥08Yg¥N3|-2)2134
7LIH3HOVDAg

HLIH3JHOVD-2
9H3SNNISNg|-2X

(1)diiva1-2M

4-44

BUS PB L

AM1

BUSPAL

K1-5 TAP 30 H —
13

74500 Yo 9

K2-1 ABORT RESTART L —12{E® 10

K2-1 SSYN H—2]

9
K2-1 SSYN (1) H—

4

Rs8 K2-1 SSYN H K2-1 CACHE HITH —_ o\ 6

WA= 45V koot MSYN (0) H —— K2-1 CLK MSYN H —— E25
EV2

Ki-5 ALLOW MSYN H — 745157

] K2-1 DET PEZH 3|5g E10 ol

Q8640 \2 24132 \3 15 2o
|79 B° i| E2 g| 8837)14 '3

E1 B3470 ms L] F3H2_k2-1 PARITY ERROR H
—AMW— +5 = 14,2 2

< | c
1 L s 1374510
O 8837 \10 5 B1 Fi 7 EOT L 1]E40

9 E 74132 \ .6 5 a1

O a4l E2
= 10

B2 Fe2

c70

220 pf ENAB EOT H STB so
015 1

4 74175 7C82

K2-5 BYTE H E13 R1(1)}—K2-1 UBUS C@ (1)H7408 \6 | 5] 5
K2-8 BUF C0 (1) H— 5] E49 R1(0)P—K2-1 UBUS C@ (1) L

13 mheKe S C1 (1) HR3 (1 K2-1 UBU
K2-8 BUF C1 (1) H D38 BUF C1 (1) R3 ()4

K2-1BUF DAT TRAN L

4l , ROME—
RO (D)}

1T 12152 R2(1)1—?~
= R2(O)}——

CLR CLK

1K2-2 PROC INITL — °
DE2

K1-5 TAP 30 H —»

K2-8 BUF DAT TRAN (1) H

74500 \§
E6

K2

K2-1 TRAN INHL

9
810 @ K2-1 GET BUS H

@

K2-1 BUF DAT TRAN L

|

74500 }3
2| e25

11.56191

Figure 4-22 Data Transfer Multiplexer

4-45

4.7.2.6 Bus Errors — Once the SSYN TIMEOUT one-shot is triggered, SSYN must be returned

within 22 us. If SSYN is not returned in this time, E16 times out, setting the TIMEOUT flip-flop

(E32). The output of this latch then generates the signal K2-1 ABORT RESTART L and pulse K2-1

ABORT H. K2-1 ABORT RESTART L reenables the PROC CLK and K2-1 ABORT H sets the Bus

Error flip-flop (E33). This same pulse that sets the Bus Error flip-flop also clears the micro-PC address

latches (MPCO00 through MPCO008) on K2-7, forcing the processor to enter the service microroutine on

the next PROC CLK L low-to-high transition.

4.7.2.7 Parity Errors - If a data transfer is being performed with a parity memory (e.g., MS11-JP or

MMI11-DP), all parity errors detected by the memory will be reflected back to the KD11-E on the

Unibus lines BUS PA L and BUS PB L on K2-1 (Figure 4-23).

ControlError

PA PB Description

0 0 No Parity Error

0 1 Parity Error on DATI

| 0 Reserved for future use

1 1 Reserved for future use

Errors detected while performing a DATIP or DATI [K2-8 BUF C1 (1) H unasserted] will result in the

Parity Error flip-flop (E34) being set when SSYN is returned to the processor. Processor operations

resulting from Parity Error will be discussed further in Paragraph 4.11, Service Traps.

4.7.2.8 End of Transfer Circuitry - To synchronize the DAT TRAN logic with the main KD11-E

processor clock, the End of Transfer (EOT) circuitry (Figure 4-24) has been incorporated into the CPU

(K2-1). During a DATI or DATIP, an EOT L signal is generated approximately 100 ns after SSYN is

returned to the processor. That EOT L removes the processor clock disabling signal (Paragraph

4.7.2.1), K2-1 TRANINH L. During a DATO or DATOB, K2-1 TRAN INH L is unasserted immedi-

ately when SSYN is returned.

4.7.2.9 Data-in-Pause Transfer - Another circuit included in the DAT TRAN logic detects Data-in-

Pause (DATIP) transfers and controls the bus control signal BBSY. When a DATIP

(Read/M odify/Write) bus operation is initiated, the flip-flop (E32) is latched, forcing the processor to

hold BBSY L until the DATO portion of the routine has been completed. While BBSY is asserted, no

other Unibus peripheral can seize control of the bus. This feature often determines the maximum bus

latency for NPR devices (K2-1).

4.7.2.10 Odd Address Detection — The circuitry shown in Figure 4-25 is incorporated in the KD11-E

to detect odd address errors. ROM ES80 (print K2-8) monitors the signals K2-8 BUF DAT TRAN (1)

H, K2-5BYTE H, and K1-6 VBAOO (1) H, and asserts K2-8 DISABLE MSYN L when an odd address

is detected. The multiplexer circuit (E39 on K2-4) forces the processor to always autoincrement or

autodecrement the PC (R7) or the SP (R6) scratchpad registers by two, regardless of the type of

instruction being performed. This is done by preventing the K2-4 DISABLE MSYN +1 L signal from

being asserted.

4-46

dllvqQ40|1vQ40jpajsessoun801vQaJoO0lvQ10}pajsessy H(1)104n88-2X¥%TLINIO04d2-2MT301AH3S1N82-2M

ve3

wOolIAW\

210dWNYD2-2)

_%)

X0k

ge3
H1808Y1-2)

T(1)391-23|o9soMlm_m\H(1)381-2)S
Qfl

2v3|2lT(1)oL1-2)
|

o)W=
Qm

ALo340viblGl¢
1

adsn
g

H3d130|-2X

4-47

$ R5 K2-1 ENAB EOT H

6lg
K2-1 SSYNH 8 10 PART [k2-1EOTL

E£35 5 OF E10f——
K2-1 MSYN (1)H 9 £2 5(p

STB S@

59 |1

K2-1 DET PE H K2-1_BUF DAT TRANL

%xK2-8 BUF C1(1) H

Asserted for DATO or DATOB

* K2-8 BUF C1(1)H Unasserted for DAT?1 or DATIP 11-5193

Figure 4-24 End-of-Transfer Logic

74502
—J] 27101 2 B3 1

— Mux
E95 \ 6 -

10| E3g 1 14 | E20)3 5@0 K2-4
K2-3 R6+7 L _JJL —O J DISABLE

24502 74504 MSYN+IL

K1-5 TAP 30 H

K2-8

BUF DAT TRAN(1)H

2
K2-9 SS @1 H |

K2-9 $S 06 H L]
3 256 x 4 -——

K2-8 BUF DAT TRAN (1) H
: | ESO

K2-8 AUX CONTROL (1) H 4 11
K2-8 DISAB MSYN L

12 1 K2-5 BYTE H 5
E86 11

K1-6 VBA % E>O 6
2% (1) H 1

L
-7

K2-6 MOVE L 13 14

11-5194

Figure 4-25 0Odd Address Detection

4-48

4.8 POWER FAIL/AUTO RESTART

The KD11-EA power fail/auto restart circuitry (K2-3) serves the following purposes:

1. Initializes the microprogram, the Unibus control, and the Unibus to a known state immedi-

ately after power is applied to the computer.

2. Notifies the »microprogram of an impending power failure.

3. Prevents the processor from responding to an impending power failure for 2 ms after initial

startup.

The actual power fail/auto restart sequences are microprogram routines. The operation of the power

fail/auto restart circuitry depends on the proper sequencing of two bus signals: AC LO and DC LO.

Because of the electrical properties of the Unibus drivers and receivers, the entire computer system

must be powered up for the machine to operate. Therefore, the processor is notified of a power fail in

peripherals, as well as in its own ac source.

The notification of power status of any PDP-11 system component is transmitted from each device by

the signals BUS ACLO L and BUS DCLO L (K2-3). The power-up sequence (Figure 4-26) shows that

BUS DC LO L is unasserted before BUS AC LO L is unasserted. When BUS DC LO L is not asserted,

it is assumed that the power in every component of the system is sufficient to operate. When BUS AC

LO L is not asserted, there is sufficient stored energy in the regulator capacitors of the power supply to

operate the computer for 5 ms, should power be shut down immediately.

As ac power is removed, BUS AC LO L is asserted first by the power supply warning the processor of

an impending power failure. When BUS DC LO L is asserted, it must be assumed that the computer

system can no longer operate predictably. Memories manufactured by DIGITAL use BUS DCLOL

as a switched signal, turning them off even if power is still available. Time at2 (Figure 4-26) is the time

delay between the assertion of BUS ACLOL and the assertion of BUS DC LO L; this time delay must

be greater than 5 ms. This allows for power to be rapidly cycled on and off. According to PDP-11

specifications, upon system startup a minimum of 2 ms run time is guaranteed before a power fail trap

occurs, even if the line power is removed simultaneously with the beginning of the power-up sequence.

After the power fail trap occurs, a minimum of 2 ms run time is guaranteed before the system shuts

down. Given the tolerances permitted in the timing circuitry used in most equipment, at2 must be

greater than 5 ms.

When a pending power fail is sensed, a program trap occurs, causing the present contents of PC (R7)

and the PSW to be pushed onto the memory stack, as determined by the contents of R6 (Stack Pointer

register). The PSW is then loaded with the contents of location 263 and R7 with the contents of 24;.

Processing is continued with the new R7 and PSW. The user’s program must prepare for the impend-

ing power failure by storing away volatile registers and reloading location 245 and 265 with a power-up

vector. This vector points to the beginning of a restart routine.

When power is restored, the processor loads the PC (R7) with the contents of location 245 and the

PSW with the contents of location 26;. After loading these registers, the user program presumably will

prepare locations 24g and 26g for another power failure. If the HLT RQST L input is asserted by an

external switch closure, the processor powers up through locations 24s and 26z, and halts.

Schematics for the power fail, auto restart, and bus reset logic are on K2-3. One-shot E 14 generates a
150-ms processor INIT pulse as soon as BUS DC LO L is nonasserted after power is applied to the
processor. At the end of 150 ms, the PUP one-shot (E7) is fired if BUS DC LO L is not asserted and the

processor begins the PC and PSW load routine. The PUP one-shot generates a 2-ms pulse, during
which the assertion of BUS AC LO L is ignored.

4-49

{+5V l fls—[

BUS AC LO L gy

+3V {

BUS DC LO L OV———J ‘)S—-_l
’{At" — }<—At2>5ms

INIT | at1>0ms L
‘-—450 ms—b{

POWER UP I I {)L

PDWN [I I
—)

11-3950

]

Figure 4-26 BUS AC LO and BUS DC LO Timing Diagram

The triggering of the 150-ms INIT one-shot also resets the POWER INIT flip-flop (E24). Setting this

flip-flop forces the Control Store to run the power-up routine beginning at micro-PC address 001. It is
this routine that reads locations 24; and 26g for the new PC and PSW.

After PUP has timed out, the assertion of BUS AC LO L would fire the one-shot PDWN (E7). Upon
entering the next service microcode state, K2-3 PFAIL H is latched into E19 (K2-2), causing a power

fail trap to be recognized by the microprogram on entering the next service state. Various traps are
arbitrated by the BUT service ROMs (E52 and E51 on K2-3).

If a momentary power failure occurs that causes the assertion of BUS AC LO L but does not cause the
assertion of BUS DC LO L, the processor will restart when the PDWN one-shot times out, retrigger-

ing the INIT one-shot.

When a Reset instruction is decoded by ROM E54 (on K2-6), the ROM output signal START RESET

H is clocked into the Start Reset flip-flop (ES4 on K2-2). This flip-flop output triggers a 100-ms INIT,

after which the processor continues operation.

4.9 PROCESSOR CLOCK

The processor clock circuitry for the KD11-EA is shown in Figure 4-27 and on print K1-5. A delay line

is used to generate a pulse train, to which the entire processor is synchronized. Because the KD 11-EA

is a fully clocked processor, events that result in the alteration of storage registers occur only on

defined edges of the processor clock.

If all clock disable inputs are unasserted, the clock will begin running as soon as +5 V is applied. The

length of an operating cycle can be either 180 ns or 240 ns, depending on the nature of the instruction

being performed. Most microinstructions employ the shorter cycle, with the longer one only necessary

when the machine is performing a DATO or DATOB, or in situations where the condition code must

be determined before an operation can be performed. Long cycles are also used in loading the Bus

Address register when memory management is turned on.

4-50

+5V

R20 R21

1K 1K

FS1

MAN CLK L —

R30

220

FE1

MAN CLK ENAB L —

+5V

k2-2 proc.NIT. LFD23
L TFC1 4474510\ 6

K2-1 TRANIN H Coid

K2 BG INIT L E94

1

10474510\ 8

K1-10 ASSERT SSYN L 94/ES4

1
E102(”15 30 45 62 75 90 1351201351

|2 133 [12 a 105 9[6:]1—4

745157

E96
——32 0 fo |€
2 2

6£10 2 2 B1 i1 12 1
7408 \ 6 51 A |

74504 5|
106 10 B2 . 1

11 A2 £2

13

A3 £3 |12

STB SP

1

K1-8 RELOCATE H —]

R25 Foq

220 K2-8 LOAD EA (1) H

;J[D?—‘WV—‘L

7408
E106 K1-5 LOADUBAHE%J

» K1-5 ALLOW MSYN H

74503\ 11
E95 K1-5 LOAD BAR L?

EV2
K2-8 LONG CYCLE (1) L

y

3 8
B0 K1-5 TAP 120 H

74504 5 6

£18 TAP 30L

K1-5 TAP 90 H

K1-5 TAP 30 H

13 JI"RR | k1-5 1134 cLK L
12 5

F105 74537 Yo | 9 -

74504 —— |2 E83 ggiz’? 8 K1-5 PROC CLK H
3 4 O EM2

E105 = > Ki-5 TAP 30 H

6 EM1

74504 74837 K1-6 PROC CLK L4]1E84

2
3

745371 QO—‘ K1-5 REG CLK L

K1-5 REG CLK H

Figure 4-2

11-6197

7 Processor Clock Circuit

4-51

The clock is turned on and off by the gating of the feedback through the delay line. Taps of 120 ns, 90

ns, and 30 ns make it possible to vary the length of the cycle, according to a signal input [K2-8 LONG

CYCLE (1) L] from the Control Store, as the processor clock timing diagrams in Figure 4-17 show.

The indicated jumpers are inserted at W1 and W2 in the standard configuration; the overall cycle can

be slowed down slightly (approximately 30 ns) by inserting jumpers at the alternate locations (shown

on K1-5 by dotted lines) instead. It is also possible to disable the clock manually and use the manual

clock input; any TTL-compatible waveform may be employed. Multiplexer E96 issues the feedback

signal that, in effect, determines the length of the cycle.

The clock is turned off by the appropriate signal under the following conditions:

1. During a BUS INIT that is not caused by a RESET

2. During the INIT portion of the power-up routine

3. During the INIT portion of the power-down routine

4. During a Reset

5. During the BUT Service arbitration delay

6. During a priority interrupt

7. While BUS SACK is asserted by an interrupting device (not for NPR transfers)

8. During bus data transfers

9. After a Halt instruction is executed

10. When the manual clock is enabled

4.10 PRIORITY ARBITRATION

4.10.1 Bus Requests

The KD11-EA responds to bus requests (BRs) in a manner similar to that of the other PDP-11 proces-

sors. Peripherals may request the use of the Unibus in order to make data transfers or to interrupt the

current processor program by asserting a signal on one of the four BR lines, numbered BR4, BRS,

BR6, and BR7 in order of increasing priority. For example, if two devices, one at priority 5 and the

other at priority 7, assert BRs simultaneously, the device at priority 7 is serviced first. Furthermore, if

the processor priority, determined by PSW bits 07:05, is at level 4, only devices requesting BRs at levels

higher than 4, such as BR7, BR6, or BRS, are serviced. Table 4-10 contains the order of priority for all

BRs and other traps.

4-52

Table 4-10 Priority Service Order

Priority Service Order

Highest

Lowest

Halt Instructions

Odd Address

Memory Management

Error

Time-Out

Parity Error

Trap Instruction

Trace Trap

Stack Overflow

Power Fail

Halt from Console

BR7

BR6

BRS

BR4

Next Instruction Fetch

Because a BR can cause a program interrupt, it may be serviced only after completion of the current

instruction in the IR. A device that requests a program interrupt must, at the appropriate time, place a

vector address on the Unibus data lines. The processor first stacks away the current contents of PSW

and R7; then a new PSW is loaded from the contents of the vector address plus two and a new PC is

loaded with the contents of the vector address. Further discussion of how the processor handles this

BR routine is contained in the section on Service (Paragraph 4.11).

NOTE

The signal K2-2 PFAIL BR PEND H is generated

on the M8266 board and routed to connector J2 (pin

7). This signal is asserted high if the BG lines are

high or the signal K2-2 PFAIL (1) H is asserted (i.e.,

K2-2 PFAIL BR PEND H is asserted if an interrupt

must be serviced). The FP11-A (floating point

option) will use this signal to abort long instructions,

thereby maintaining the system interrupt latency

under 20 us.

4-53

Arbitration logic for BRs is contained on print K2-2 and in Figure 4-28. All BRs are received directly
from the Unibus (Unibus receivers E17), and latched into register E19 (quad D-type latch, 74S174)
when the microprogram enters the next service state [K2-9 BUT SERVICE (1) H is true]. The BR
Priority Arbitration ROM (E29) then determines whether the present processor priority [PSW (7:4)] is
higher than the highest BR received and, if not, which BR received has the highest priority. Arbitration
performed by E29 in the order of priority are shown below.

HLT RQST

PSW7

BR7

PSW6

BR6

PSWS5

BRS

PSW4

BR4

K2-2 RESET (1) H 9)

K2-2 ALLOW BG H

K2-2 SACK RET (1) H
8 k2-2 86 INH L

K2-2 BUT SERVICE L

K2-2 NOSACK H 13

E11 1 K2-2 CLK BG H

K2-2 BUT SERVICE(IH

(2'1 R17 5 6 K2-2 BG ENAB H
4 E212[s —_15 ‘ [

R18 9 8 K2-2 NPG ENABH
A _L E2]

c56

BUS NPR L /;E

K2-2 NPG (0) H

NI N

5

AS? *0O o)3 K2-2 NPR H
K2-2 RCD INITH 4| E /

1

13 K2-2 RCDINIT L

K2-2 PROS INIT H 12) E9 >

11-5195

Figure 4-28 Priority Arbitration Synchronizer

4-54

If the highest BR received is of a higher priority level than the processor, the corresponding grant

enable ROM output is asserted low (Figure 4-29). With no HLT RQST or trap instruction pending,

the processor clock will be disabled by the K2-2 BG INH L signal. The actual bus grant is not trans-

ferred to the Unibus until the Enable BG flip-flop (E12) is set. Grants (both BG and NPQG) are

controlled by the synchronizer logic shown in Figure 4-28 and on print K2-2.

This circuitry arbitrates whether a bus grant (BG) or a nonprocessor grant (NPG) will result, depend-

ing on which flip-flop input line (set or reset) was deactivated first. The set input K2-2 BUT SERVICE

L will cause the flip-flop to issue the BG ENAB H signal after a delay of 175 ns. Once the flip-flop is

set, the bus grant arbitrated by the BR Priority Arbitration ROM (E29) is channeled onto the Unibus

(bus driver E77). When the requesting peripheral receives BG, it returns BUS SACK L.

Upon receiving BUS SACK L, the processor clears its Enable BG flip-flop, removing the bus grant

from the Unibus, and sets the SACK RET flip-flop to keep the processor clock disabled. Removal of

bus grant causes the peripheral to drop its BUS SACK L (provided that BBSY is unasserted), assert

BUS INTR L and BBSYL, and enable a vector address onto the Unibus data lines. The processor then

deskews the removal of SACK, clears the SACK RET flip-flop (E5), and enables the processor clock

again. Once in operation, the processor clocks the peripheral vector address into the B REG, returns

BUS SSYN L, and begins running the microcode trap routine that branches the processor to the

interrupt handling program determined by the vector obtained.

4.10.2 Nonprocessor Requests (NPRs)

NPRs are a facility of the Unibus that permit devices on the Unibus to communicate with each other

with minimal participation of the processor. The function of the processor in servicing an NPR is to

yield control of the bus in a manner that does not disturb the execution of an instruction by the

processor. For example, the processor will not relinquish the bus following the DATI portion of a

DATIP transfer.

When the reset input of E5 (K2-2 NPR H) becomes unasserted before the set input, and BUS SACK L

is not true, the flip-flop issues K2-2 NPG ENAB H, enabling the BUS NPG H Unibus line and

granting the bus to the DMA device. The requesting device then returns BUS SACK L, clearing the

NPG, and waits until the bus is free (no BBSY).

4.10.3 Halt Grant Requests

The KDI11-EA implements what is, in effect, another priority level by monitoring the

HALT/CONTINUE switch on the front panel. When a Halt is detected (HLT RQST L asserted), the

processor recognizes it as an interrupt request (refer to priority levels in Paragraph 4.10.1) upon enter-

ing the next service microstate. The processor then inhibits the processor clock and returns a recogni-

tion signal (K2-2 HLT GRANT H), causing the console to drop HLT RQST L and assert BUS SACK

L, gaining complete control of the Unibus and the KD11-EA.

The user can maintain the processor in this inactive state (Halted) indefinitely. When the HALT switch

is released, the user’s console releases BUS SACK L, and the processor continues operation as if

nothing had happened.

4-55

[o1juo)sngAyiolld6Z-2Indig
R_

No

¥

6

Sl

G137MOVSON2-2mAveb2t61413lydH9dNsng!N313LH8VN39dN2-2)Oa
H(1)9dN2-2)9

e
H98MOV2-2)oLg1m0L1&HSLNVH9GVN32-2)H{1)134MOVS2-2¥86

-:ot6

AG623gz3|O}clitoG213gz3(&}
GlyI21H6982-2)2Na8t210G+

2ywqH298sng
G+

OlH(1)Tivdd2-2MX

4-56

4.11 SERVICE TRAPS

4.11.1 General Description

All interrupts, error traps, and instruction traps are recognized and serviced by the KD11-EA when
the processor enters what is called the service microinstruction state. The functions performed during
this state are most critical to the operation of the processor.

When the service state is entered, all bus interrupts, error traps, and instruction traps realized during
the performance of the last instruction are arbitrated by the service ROMs (E51 and E52 on print K2-
3). Each trap condition is then serviced according to its priority, as listed in Table 4-10.

4.11.2 Circuit Operation

The service ROMs (ES1 and E52 on print K2-3) service a specific trap by generating a vector address
unique to that trap condition (Table 4-11). Upon leaving the service state, the processor is forced to
push its present program counter (PC) and processor status word (PSW) onto its memory stack and
fetch a new PC from the location specified by the vector address. A new PSW is then obtained from the
next memory location after the vector. The end result of these operations is that the processor is now
performing a software subroutine written by the user that could correct or indicate the occurrence of a
specific error.

The various trap conditions that cause the processor to vector are as follows:

Bus Errors A bus error indicates that the processor has attempted to access
nonexistent memory or odd address (non-byte), or a memory

location that did not return BUS SSYN within 22 us. The detec-

tion circuitry for bus errors is described in Paragraph 4.7.2.6 of
this manual.

Stack Overflow Error Any attempt by the processor to decrement the contents of the
Stack Pointer register (R6) below the 400-location stack limit

(K1-10 8-15 = 0 H will result in the Stack Overflow flip-flop

(E24 on K 2-3) being set on the next transition of K1-5 PROC

CLK L. [Note that this does not apply to user stack (R16).]

Parity Error - | iParity error detection circuitry is described in Paragraph
- 4.7.2.7.

Power Failure " The pdwer failure circnitry is described in Paragraph 4.8.

Trace Trap o ' This trap is program-controlled by'the user, allowing him to
insert a processor/user interactive subroutine into his main pro-

gram. The circuitry is described in Paragraph 4.2.6.

Reserved Instructions Signals IR CODE 00 L-IR CODE 02 L are generated by the IR

Illegal Instructions Decode ROMs on K2-6 for these conditions. Their decoding is

EMT Instructions discussed in Paragraph 4.5.3.

Trap Instructions

Upon entering the service microinstruction state, the service ROMzs (E51 and ES2 K2-3) monitor any

combination of the above trap conditions which, if true, cause the assertion of microprocessor address

line K2-7 MPC 00 L. While still in the service state, the ROM also generates a specific vector address

(Table 4-11), using outputs K2-3 C2 H, K2-3 C3 H, and K2-3 C4 H, and channels it onto the processor

AMUX lines to the SSMUX by activating K1-10 AMUX SO H.

4-57

Table 4-11 Vector Addresses

Octal Unibus

Vector Address Trap Conditions

004 Time-Out, Odd Address, and Stack Overflow Errors
010 Illegal and Reserved Instructions

014 T-Bit Trap (BPT)

020 Input/Output Trap (I0T)

024 Power Fail

030 Emulator Trap (EMT)

034 Trap Instruction

114 Memory Parity Errors

250 Memory Management Errors

Before leaving the service state, the service ROMs also clear the condition that caused the original

trap. This is done either by asserting K2-3 STOV SERV H or K2-3 PFAIL SERV H, or by performing

the steps in the trap service routine. For those traps specified by the IR Code lines, however, it is

necessary to remove the instruction in the IR. This is done through microcode output K2-9 BUT

SERVICE (1) H, which ORs with K2-2 PROC INIT H to generate K2-3 SERV IR H and, hence, K2-3

SERV IR (1) L, removing the trap instruction from the IR. This prevents the processor from looping

on the same trap condition.

For bus requests (BRs), the BUS INTR L control signal is allowed to force K2-7 MPC 00 L during

service, provided that there are no other traps of higher priority. By enabling this line, the processor

will branch to the trap routine. Higher priority BR interrupts are prevented from receiving BG by K2-

9 BUT SERVICE (1) H.

NOTE

The signal SERVICE BR PFAIL (enabled by the

FP11-A floating point option) is input to the service

ROM (ES2) from the J2 connector on the M8266

board. When this signal is asserted, the processor

will only service Bus Request or Power Fail inter-

rupts during the service state. SERVICE BR PFAIL

is asserted when servicing an interrupt after aborting

a floating point MUL, MOD, DIV, ADD, or SUB

operation.

4.12 MEMORY MANAGEMENT

4.12.1 Genefal

4.12.1.1 Introduction - This section describes the memory management unit of the KD11-EA Central

Processor. The KD11-EA provides the hardware facilities necessary for complete memory manage-

ment and protection. It is designed to be a memory management facility for systems where the memory

size is greater than 28K words and for multiuser, multiprogramming systems where protection and

relocation facilities are necessary.

4-58

4.12.1.2 Programming - The memory management hardware has been optimized toward a multi-

programming environment and the processor can operate in two modes, Kernel and User. When in

Kernel mode, the program has complete control and can execute all instructions. Monitors and super-

visory programs would be executed in this mode.

When in User mode, the program is prevented from executing certain instructions that could:

Cause the modification of the Kernel program.

Halt the computer.

Use memory space assigned to the Kernel or other users.

Issue a Reset.e
l

S

In a multiprogramming environment, several user programs could be resident in memory at any given

time. The task of the supervisory program would be to: control the execution of the various user

programs, manage the allocation of memory and peripheral device resources, and safeguard the integ-

rity of the system as a whole by careful control of each user program.

In a multiprogramming system, the management unit provides the means for assigning pages (reloca-

table memory segments) to a user program and preventing that user from making any unauthorized

access to those pages outside his assigned area. Thus, a user can effectively be prevented from acciden-

tal or willful destruction of any other user program or the system executive program.

Hardware-implemented features enable the operating system to dynamically allocate memory upon

demand while a program is being run. These features are particularly useful when running higher level

language programs, where, for example, arrays are constructed at execution time. No fixed space is

reserved for them by the compiler. Lacking dynamic memory allocation capability, the program would

have to calculate and allow sufficient memory space to accommodate the worst case. Memory manage-

ment eliminates this time-consuming and wasteful procedure.

4.12.1.3 Basic Addressing - The addresses generated by all PDP-11 family central processor units

(CPUs) are 18-bit addresses. Although the PDP-11 family word length is 16 bits, the Unibus and CPU

addressing logic actually is 18 bits. Thus, while the PDP-11 word can only contain address references

up to 32K words (64K bytes) the CPU and Unibus can reference addresses up to 128K words (256K

bytes). These extra two bits of addressing logic provide the basic framework for expanding memory

references.

In addition to the word length constraint on basic memory addressing space, the uppermost 4K words

of address space are always reserved for Unibus I/O device registers. In a basic PDP-11 memory

configuration (without management), all address references to the uppermost 4K words of 16-bit

address space (160000-177777) are converted to full 18-bit references with bits 17 and 16 always set to

1. Thus, a 16-bit reference to the I/O device register at address 173224 is automatically internally

converted to a full 18-bit reference to the register at address 773224. Accordingly, the basic PDP-11

configuration can directly address up to 28K words of true memory, and 4K words of Unibus I/O

device registers.

4.12.1.4 Active Page Registers - The memory management unit uses two sets of eight 32-bit Active
Page registers (shown on print K1-7). An APR is actually a pair of 16-bit registers: a Page Address
register (PAR) and a Page Descriptor register (PDR). These registers are always used as a pair and
contain all the information needed to describe and relocate the currently active memory pages (Figure
4-30). S

One s.et of APRs is used in Kernel mode, and the other in User mode. The choice of which set to be
used is determined by the current CPU mode contained in the processor status word.

4-59

KERNEL ACTIVE PAGE REGISTER

N
o
O
g
d
D
w
N
n
N
=
0

PAR PDR

USER ACTIVE PAGE REGISTER

~
N
o

b

w
m
N
n
-
—
=
O

PAR PDR

11-1396

Figure 4-30 Acti?e Page Registers

4.12.1.5 Capabilities Provided by Memory Management

Memory Size (words) 124K, max (plus 4K for 1/0O and registers)

Address Space Virtual (16 bits)

Physical (18 bits)

Modes of Operation Kernel and User

Stack Pointers 2 (one for each mode)

Memory Relocation

Number of Pages 16 (8 for each mode)

Page Length 32 to 4096 words

Memory Protection No access

Read-only

Read/write

4.12.2 Relocation

4.12.2.1 Virtual Addressing - When the memory management unit is operating, the normal 16-bit

direct address is no longer interpreted as a direct physical address (BA) but as a virtual address (VBA)

containing information to be used in constructing a new 18-bit physical address. The information

contained in the VBA is combined with relocation and description information contained in the Active

Page register (APR) to yield an 18-bit BA.

4-60

Because addresses are automatically relocated, the computer may be considered to be operating in

virtual address space. This means that no matter where a program is loaded into physical memory, it

will not have to be “relinked”; it always appears to be at the same virtual location in memory.

The virtual address space is divided into eight 4K-word pages. Each page is relocated separately. This
is a useful feature in multiprogrammed timesharing systems. It permits a new large program to be

loaded into discontinuous blocks of physical memory.

A page may be as small as 32 words, so that short procedures or data areas need occupy only as much

memory as required. This is a useful feature in real-time control systems that contain many separate

small tasks. It is also a useful feature for stack and buffer control.

A basic function is to perform memory relocation and provide extended memory addressing capability

for systems with more than 28K of physical memory. Two sets of Page Address registers are used to

relocate virtual addresses to physical addresses in memory, These sets are used as hardware relocation

registers that permit several users’ programs, each starting at virtual address 0, to reside simultaneous-

ly in physical memory.

4.12.2.2 Program Relocation - The Page Address registers are used to determine the starting address
of each relocated program memory. Figure 4-31 shows a simplified example of the relocation concept

as implemented by the circuitry on print K1-6.

CPU MEM MGMT

RELOCATION
R aEes CONSTANT

A = 6400
(VBA) B = 100000

PHYSICAL MEMORY

l | L

PROGRAM B

s 100000

i PHYSICAL ADDRESS(BA) PROGRAM A

006400

000000

n-3906

Figure 4-31 Simplified Memory Relocation Exémple

4-61

Program A, starting address 0, is relocated by a constant to provide physical address 6400;. If the next

processor virtual address is 2, the relocation constant will then cause physical address 64025, which is

the second item of Program A, to be accessed. When Program B is running, the relocation constant is

changed to 100000s. Then, Program B virtual addresses, starting at 0, are relocated to access physical

addresses starting at 100000s. Using the Active Page Address registers to provide relocation eliminates

the need to “relink” a program each time it is loaded into a different physical memory location. The

program always appears to start at the same address.

A program is relocated in pages consisting of from 1 to 128 blocks. Each block is 32 words in length.

Thus, the maximum length of a page is 4096 (128 X 32) words. Using all of the eight available Active

Page registers in a set, a maximum program length of 32,768 words can be accommodated. Each of the

eight pages can be relocated anywhere in the physical memory, as long as each relocated page begins

on a boundary that is a multiple of 32 words. However, for pages that are smaller than 4K words, only

the memory actually allocated to the page may be accessed.

The relocation example shown in Figure 4-32 illustrates several points about memory relocation.

1. Although the program appears to be in contiguous address space to the processor, the 32K-

word physical address space is actually scattered through several separate areas of physical

memory. As long as the total available physical memory space is adequate, a program can be

ioaded. The physical memory space need not be contiguous.

2. Pages may be relocated to higher or lower physical addresses with respect to their virtual

address ranges. In the example shown in Figure 4-32, page 1 is relocated to a higher range of

physical addresses, page 4 is relocated to a lower range, and page 3 is not relocated (even

though its relocation constant is non-zero).

3. All of the pages shown in the example start on 32-word boundaries.

4. Each page is relocated independently. There is no reason why two or more pages could not

be relocated to the same physical memory space. Using more than one Page Address register

in the set to access the same space would be one way of providing different memory access

rights to the same data, depending on which part of a program was referencing that data.

PROCESSOR KT11-D

VIRTUAL ADDRESS PAGE | RELOCATION PHYSICAL MEMORY

RANGES NO. | CONSTANT SPACE

160000-177776 7 | 1500xx 400000 - 417776

140000 - 157776 6 | 0200xx 320000 - 337776

120000~ 137776 5 | 1000xx 250000 - 267776

100000 - 117776 4 | 0200%x 150000 - 167776

060000 - 077776 3 | 0600XX 100000 - 117776

040000 - 057776 2 | 2500xx 060000 - 077776

020000- 037776 1 | 3200xx 020000 - 037776

000000- 017776 0 | 4000xx

11-1398

Figure 4-32 Relocation of a 32K Word Program into

124K-Word Physical Memory

4-62

4.12.2.3 Memory Units

Block - 32 words

Page 1 to 128 blocks (32 to 4096 words)

No. of Pages 8 per mode

Size of Relocatable Memory 27,768 words max (8 X 4096)

4.12.3 Protection

A timesharing system performs multiprogramming; it allows several programs to reside in memory

simultaneously, and to operate sequentially. Access to these programs, and the memory space they

occupy, must be strictly defined and controlled. Several types of memory protection must be afforded

a timesharing system. For example:

1. User programs must not be allowed to expand beyond allocated space, unless authorized by

the system.

2. Users must be prevented from modifying common subroutines and algorithms that are resi-
dent for all users.

3. Users must be prevented from gaining control of or modifying the operating system

software,

The memory management option provides the hardware facilities to implement all of the above types
of memory protection.

4.12.3.1 Inaccessible Memory - Each page has a 2-bit access control key associated with it. The key is
assigned under program control. When the key is set to 0, the page is defined as non-resident. Any
attempt by a user program to access a non-resident page is prevented by an immediate abort. Using
this feature to provide memory protection, only those pages associated with the current program are

set to legal access keys. The access control keys of all other program pages are set to 0, which prevents
illegal memory references.

4.12.3.2 Read-Only Memory - The access control key for a page can be set to 2, which allows read
(fetch) memory references to the pages, but immediately aborts any attempt to write into that page.
This read-only type of memory protection can be afforded to pages that contain common data, sub-
routines, or shared algorithms. This type of memory protection allows the access rights to a given

information module to be user-independent. That is, the access right to a given information module

may be varied for different users by altering the access control key.

A Page Address register in each of the sets (Kernel and User modes) may be set up to reference the
same physical page in memory and each may be keyed for different access rights. For example, the
User access control key might be 2 (read-only access), and the Kernel access control key might be 6

(allowing complete read/write access).

4.12.3.3 Multiple Address Space - There are two complete, separate PAR/PDR sets provided: one set

for Kernel mode and one set for User mode. This affords the timesharing system with another type of

memory protection capability. The mode of operation is specified by the processor status word current

mode field, or previous mode field, as determined by the current instruction.

4-63

Assuming the current mode PSW bits are valid, the Active Page register sets are enabled as follows:

PSW (Bits 15,14) PAR/PDR Set Enabled

00 Kernel mode

(l)(l) Illegal (all references aborted on access)
11 User mode

Thus, a User mode program is relocated by its own PAR/PDR set, as are Kernel programs. This

makes it impossible for a program running in one mode to accidently reference space allocated to

another mode when the Active Page registers are set correctly. For example, a user cannot transfer to

Kernel space. The Kernel mode address space may be reserved for resident system monitor functions,

such as the basic input/output control routines, memory management trap handlers, and timesharing

scheduling modules. By dividing the types of timesharing system programs functionally between the

Kernel and User modes, a minimum amount of space control housekeeping is required as the time-

shared operating system sequences from one user program to the next. For example, only the user

PAR/PDR sets needs to be updated as each new user program is serviced. The two PAR /PDR sets

implemented in the memory management unit are shown in Figure 4-30.

4.12.4 Active Page Registers

The memory management unit provides two sets of eight Active Page registers (APRs). Each APR

consists of a Page Address register (PAR) and a Page Descriptor register (PDR). These registers are

always used as a pair and contain all the information required to locate and describe the current active

pages for each mode of operation. One PAR /PDR set is used in Kernel mode and the other is used in

User mode. The current mode bits (or in some cases, the previous mode bits) of the processor status

word determine which set will be referenced for each memory access. A program operating in one

mode cannot use the PAR/PDR sets of the other mode to access memory. Thus, the two sets are a key

feature in providing a fully protected environment for a timesharing multiprogramming system.

A specific processor I/O address is assigned to each PAR and PDR of each set. Table 4-12 is a

complete list of address assignments.

NOTE ,

Unibus devices (except DMA and programmer’s

console) cannot access PARs or PDRs. The internal

address decode logic (print K1-10) allows only the

processor to access these registers.

Table 4-12 PAR/PDR Address Assignments

Kernel Active Page Registers User Active Page Registers

No. PAR PDR No. PAR PDR

0 772340 772300 0 777640 777600

1 772342 772302 | 777642 777602

2 772344 772304 2 777644 777604

3 772346 772306 3 777646 777606

4 772350 772310 4 777650 777610

S 772352 772312 5 777652 777612

6 772354 772314 6 777654 777614

7 772356 772316 7 777656 777616

4-64

In a fully protected, multiprogramming environment, the implication is that only a program operating

in the Kernel mode would be allowed to write the PAR and PDR locations for the purpose of mapping

user’s programs. However, there are no restraints imposed by the logic that will prevent User mode

programs from writing into these registers. The option of implementing such a feature in the operating
system, and thus explicitly protecting these locations from user’s programs, is available to the system

software designer.

4.12.4.1 Page Address Registers (PAR) - The Page Address register (PAR), shown on print K1-7 and

I in Figure 4-33 contains the 12-bit Page Address Field (PAF) that specifies the base address of the

page.

1 PAGE ADDRESS FIELD

(PAF)

11-1036

Figure 4-33 Page Address Register

Bits 15-12 are unused and reserved for possible future use.

The Page Address register may be alternatively thought of as a relocation constant, or as a base
register containing a base address. Either interpretation indicates the basic function of the Page

Address register (PAR) in the relocation scheme.

The Page Address register (PAR) may be regarded as either a base register containing a base address or

a relocation constant. Bits are fed directly from the SSMUX to an address selected by the PAR/PDR

ADRS MUX (E91 on print K1-7) when enabled by K1-10 PAR & PDR LOW L. The three scratchpad

memories that comprise the PAR (E78, E79, and E80 on print K1-7) are clocked by K1-5 REG CLK

H. The two associated with PAR 03:00 and PAR 07:04 are enabled by K1-10 LOAD PAR LOW L,

while the other (PAR 11:08) is enabled by K1-10 LOAD PAR HIGH L. Outputs of the PARs are fed

directly to the KTMUX on print K1-9, and can be channeled onto the scratchpad output lines

(SP15:00) when K1-10 PAR & PDR L is asserted and K1-10 KTM UX SO L is unasserted. This allows

the contents of the registers to be accessed by a DATI or DATIP.

4.12.4.2 Page Descriptor Registers - The Page Descriptor register (PDR) comprises four scratchpad

memories (E81, E88, E90, and E89 on print K 1-7) and contains information regarding page expansion,

page length, and access control (Figure 4-34). Bits are fed directly from the SSMUX to an address

selected by the PAR/PDR ADRS MUX (E89 on print K1-7) and clocked by K1-5 REG CLK H.

15 14 8 7 & 5 4 3 2 1 0

/ PAGE LENGTH FIELD e £ //
v TIA W ACF

Cen (PLF) 7 : L o %
WRITTEN INTO I 11-1395

EXPANSION DIRECTION

ACCESS CONTROL FIELD

\\

Figure 4-34 Page Descriptor Register

4-65

Access Control Field (ACF)

This 2-bit field (PDR 02:01) of the PDR describes the access rights to the specified page. The access
codes or “keys” [K1-7 ACF 2 (1) H and K1-7 ACF 1 (1) H from E88] specify the manner in which a

page may be accessed and whether or not a given access should result in an abort of the current
operation. A memory reference that causes an abort is not completed and is terminated immediately.

Aborts are caused by attempts to access non-resident pages, page length errors, or access violations,

such as attempting to write into a read-only page. All memory management traps vector through

location 250 and can be used as an aid in gathering memory management information.

In the context of access control, the term “write” is used to indicate the action of any instruction which

modifies the contents of any addressable word. A “write” is synonymous with what is usually called a

“store” or “‘modify” in many computer systems. Table 4-13 lists the four ACF keys and their func-

tions. The ACF is written into the PDR under program control.

Table 4-13 Access Control Field Keys

ACF Key | Description Function

00 0 Non-resident Abort any attempt to access this non-resident page.

01 2 Resident read-only Abort any attempt to write into this page.

10 4 Unused Abort all accesses.

11 6 Resident read /write Read or write allowed. No trap or abort occurs.

Expansion Direction (ED)

The ED bit located in PDR bit 3 indicates the authorized direction in which the page can expand. A

logic 0 in this bit (ED = 0) indicates the page can expand upward from relative zero. A logic 1 in this

bit (ED = 1) indicates the page can expand downward toward relative zero. The ED bit is written into

the PDR under program control. When the expansion direction is upward (ED = 0), the page length is

increased by adding blocks with higher relative addresses. Upward expansion is usually specified for

program or data pages to add more program or table space. An example of page expansion upward is

shown in Figure 4-35.

When the expansion direction is downward (ED = 1), the page length is increased by adding blocks

with lower relative addresses. Downward expansion is specified for stack pages so that more stack

space can be added. An example of page expansion downward is shown in Figure 4-36.

NOTE

To specify a block length of 42 for an upward-expan-

dable page, write the highest authorized block num-

ber directly into the highest byte of PDR. Bit 15 is

not used because the highest allowable block number

is 177,.

4-66

PAR

000 001 111 000

PAF = 0170 :l

PDR

0 0101001 CO0OO Q 110

PLF =515 = 41,, BLOCK NO.

ED=0=UPWARD EXPANSION

ACF=6=READ/WRITE

NOTE:

TO SPECIFY A BLOCK LENGTH OF 42 FOR AN UPWARD EXPANDABLE

PAGE, WRITE HIGHEST AUTHORIZED BLOCK NO. DIRECTLY INTO HIGH

BYTE OF PDR. BIT 15 IS NOT USED BECAUSE THE HIGHEST ALLOWABLE BLOCK

NUMBER 1S 177g

VIRTUAL ADDRESS BLOCK NO> PDR BLOCK NO-PAGE LENGTH ERROR (PLE)

/

7
/BLOCK 1774 7

4

ADDRESS RANGE //{BLOCK 1764 77
OF POTENTIAL PAGE S,

EXPANSION BY

CHANGING THE PLF

iy S % i 7

b

LA" BLOCK 52 -

024176

BLOCK 514

024100

ANY BLOCK NUMBER

GREATER THAN 40 (51g)

(VA<12:06>) 514)

WiLL CAUSE A PAGE

LENGTH ABORT.

01 70XX START

51 BLOCKS

b————]

e—

AUTHORIZED PAGE

LENGTH = 42,, BLOCKS

017276

BLOCK 2

017200

OR O THRU 51g=

52g BLOCKS
017176

BLOCK 1

017100

017076

BLOCK O

0241XX END

+—BASE ADDRESS OF PAGE017000

11-1030

Figure 4-35 Example of an Upward-Expandable Page

4-67

——ACTIVE PAGE REGISTER CONTENTS—W

PAR PDR

000 001 111 000 01010110 0000 1 110

. ; : 3

PAF=O1?O———~———J
PLF=126g = 860

ED =1= DOWNWARD EXPANSION

TO SPECIFY PAGE LENGTH FOR A DOWNWARD EXPANDABLE PAGE,

WRITE COMPLEMENT OF BLOCKS REQUIRED INTO HIGH BYTE OF PDR.

IN THIS EXAMPLE,A 42-BLOCK PAGE IS REQUIRED.

PLF IS DERIVEDAS FOLLOWS:

4240= 52g ; TWO'S COMPLEMENT= 1264
VIRTUAL ADDRESS BLOCK NO.<PDR BLOCK NO.-» PAGE LENGTH ERROR (PLE)

AUTHORIZED PAGE

LENGTH=42 40 BLOCKS

036776

BLOCK 177g

036700

036676

BLOCK 176g

036600

036576

BLOCK 175g

036500

]
A e NP N S W

FIRST BLOCK OF DOWNWARD

EXPANDABLE PAGE

0170XX PAGE BASE

126 BLOCKS

0316XX START

52 BLOCKS

031676

BLOCK 126g

031600

ADDRESS RANGE

OF POTENTIAL PAGE

EXPANSION BY

CHANGING THE PLF

L0000
'BLOCK 1254¢

2,7
/BLOCK1243;2

i -, 017176

ol 017100
;7ELOCK 77
/
2

7/, 011076

’;BLOCK 0%
7 017000

0367XX END

A BLOCK NUMBER

REFERENCE LESS

THAN 126 g

[(VA <12:06> LESS THAN 126g)
WILL CAUSE A PAGE

LENGTH ABORT.

~«—BASE ADDRESS OF PAGE

11-1031

Figure 4-36 Example of a Downward-Expandable Page

4-68

Written Into (W)

The W bit located in PDR bit position 6 indicates whether the page has been written into since it was

loaded into memory. W = 1 is affirmative. The W bit is automatically cleared when the PAR or PDR

of that page is written into. It can only be set by the control logic (print K1-7). In disk-swapping and

memory overlay applications, the W bit can be used to determine which pages in memory have been

modified by a user. Those pages that have been written into must be saved in their current form; those

that have not been written into (W = 1) need not be saved, and can be overlaid with new pages, if

Page Length Field

The 7-bit page length field (PLF) located in PDR bits 14:08 specifies the authorized length of the page

in 32-word blocks. The PLF holds block numbers from 0 to 1775, thus allowing any page length from 1

block to 128 blocks. The PLF is enabled by K1-10 LOAD PDR HIGH L, and written into the PDR

under program control.

PLF for an Upward-Expandable Page

When the page expands upward (ED = 0), the PLF must be set to one less than the intended number of

blocks authorized for that page. Thus, if the number of blocks authorized is 523 or 42, the PLF is set

to Slg or 41,0, with block O being the page boundary and the first block of the page. A comparator

network (E61 and E72 on print K1-8) compares the virtual address block number (VBA 12:06) with

the PLF to determine whether the VBA is within the authorized page length. If the VBA block number

is less than (A < B) or equal to (A = B) the PLF, the VBA is within the authorized page length. If the

VBA block number is greater than (A > B) the PLF, a page length fault is detected by the hardware

and K1-8 KT FAULT L is issued to the DAT TRAN circuitry on print K2-1, where it generates K2-1

ENAB ABORT H, causing a trap. When the expansion direction is upward, the page length is

increased by adding blocks with higher relative addresses. Upward expansion is usually specified for

program or data pages to add more program or table space (Figure 4-35).

PLF for a Downward-Expandable Page | 4_

The capability of providing downward expansion for a page is intended specifically for those pages

that are to be used as stacks. In the PDP-11/34A, a stack starts at the highest location reserved for it,

and expands downward toward the lowest address as items are added to the stack. If the page is to be

downward-expandable, the PLF must be set to authorize a page length (in blocks) that starts at the

highest address of the page, which is always block 177;s. The rationale for complementing the number

of blocks required to obtain the PLF is as follows:

Maximum Block No. Minus PLF Required Length Equals

1775 = 525 = 125s

12710 = 4210 = 8510

Figure 4-36 contains an example of a downwafd-expandable page. A page length of 42 blocks is
arbitrarily chosen to match the upward-expandable example shown in Figure 4-35.

NOTE

The same PAF is used in both examples. This is done

to emphasize that the PAF, as the base address,

always determines the lowest addressof the page,

whether it is upward- or downward-expandable.

4-69

4.12.5 Virtual and Physical Addresses

The memory management Unibus addressing circuitry is shown on print K1-6. When memory man-

agement is enabled (K1-8 RELOCATE H asserted), the processor ceases to load Unibus addresses

directly from the scratchpad via the Bus Address register multiplexer latches (E44, E55, and E65).

Instead, addresses are relocated by various constants obtained from the memory management circui-

try. (Selected PAR contents are added to the VBA using adders E45, E56, and E66.)

4.12.5.1 Construction of a Physical Address - The basic information needed for the construction of a

physical address (PA) comes from the virtual address (VBA), which is illustrated in Figure 4-37, and

the appropriate PAR set.

APF DF

! 1 1 Y

ACTIVE PAGE FIELD DISPLACEMENT FIELD

1-3908

Figure 4-37 Interpretation of a Virtual Address

The virtual address (VBA) consists of:

1. The Active Page Field (APF). This 3-bit field determines which of eight Active Page registers
(APRO-APR?7) will be used to form the physical address (BA). The PAR/PDR ADRS

MUX (E91 on print K1-7) actually selects the specific PAR.

2. The Displacement Field (DF). This 13-bit field contains én’addr'ess relative to the beginning
of a page. This permits page lengths up to 4K words (2!3 = 8K bytes). The DF is further

subdivided into two fields as shown in Figure 4-38.

BN DIB

1 Il 1

BLOCK NUMBER ’ DISPLACEMENT IN BLOCKS

11-3909

Figure 4-38 Displacement Field of Virtual Address

The displacement field (DF) consistsof:

1. The Block Number (BN). This 7-bit field is interpreted as the block number within the
current page.

2. The Displacement in Block (DIB). This 6-bit field contains the displacement within the

block referred to by the block number.

4-70

The remainder of the information needed to construct the physical address comes from the 12-bit page

address field (PAF) (part of the Active Page register) and specifies the starting address of the memory

which that APR describes. The PAF is actually a block number in the physical memory, ¢.g., PAF = 3
indicates a starting address of 96 (3 X 32 = 96) words in physical memory.

The formation of the physical address is illustrated in Figure 4-39.

VIRTUAL
APF BLOCK NO. DIB ADDRESS

11 015 12

L g ACTIVE PAGE//// // PAGE ADDRESS FIELD ‘ REGISTER
/ 1 1

1

PHYSICAL BLOCK NO

1

| l
6 5 Y 0

]--__-__-[oIB

~ (DISPLACEMENT IN BLOCKS)

PHYSICAL

ADDRESS

11-3907

" Figure 4-39 Construction of a Physical Address

The logical seq'uence involved in constructing a physical address is as follows:

1. Select a set of Active Page registers depending on current mode.

2. The active page field of the virtual address is used to select an Active Page register (APRO-
APR?Y).

3. The page address field of the selected Active Page register contains the starting address of

the currently active page as a block number in physical memory.

4. The block number from the virtual address is added to the block number from the page

address field to yield the number of the block in physical memory which will contain the

physical address being constructed.

5. The displacement in block from the displacement field ofthe virtual address is joined to the

physical block number to yield a true 18-bit physical address.

4.12.5.2 Determining the Program Physical Address - A 16-bit virtual address can specify up to 32K

words, in the range from 0 to 177776 (work boundaries are even octal numbers). The three most

significant virtual address bits designate the PAR /PDR set to be referenced during page address relo-

cation. Table 4-14 lists the virtual address ranges that specify each of the PAR/PDR sets.

4-71

Table 4-14 Relating Virtual Address to PAR/PDR Set

Virtual Address Range PAR/PDR Set

000000-17776

020000-37776

040000-57776

060000-77776

100000-117776

120000-137776

140000-157776

160000-177776 N

A
N

D
A

W

—
O

NOTE

Any use of page lengths less than 4K words causes
holes to be left in the virtual address space.

4.12.6 Status Registers

Aborts generated by the protection hardware are vectored through Kernel virtual location 250. Status
registers SRO and SR2 are used to determine why the abort occurred. Note that an abort to a location
which is itself an invalid address will cause another abort. Thus the Kernel program must ensure that

Kernel virtual address 250 is mapped into a valid address; otherwise a loop will occur which will

require console intervention.

4.12.6.1 Status Register 0 (SR0) - SRO contains abort error flags, memory management enable, plus
other essential information required by an operating system to recover from an abort or service a
memory management trap. The SRO format is shown in Figure 4-40. Its address is 777572. Circuitry

used to implement the SRO register is shown on print K1-8.

SR DR | ADDRESS

—

ABORT- NON-RESIDENT _4 ’ T l J . A
ABORT-PAGE LENGTH ERROR
ABORT-READ ONLY

ACCESS VIOLATION
MAINTENANCE MODE

MODE

PAGE NUMBER

ENABLE MANAGEMENT

f1- 391

Figure 4-40 Format of Status Register 0 (SRO)

4-72

Bits 15-13 are the abort flags. They may be considered to be in a *“priority queue’ in that flags to the

right are less significant and should be ignored. For example, a “non-resident’ abort service routine

would ignore page length and access control flags. A “page length” abort service routine would ignore

an access control fault.

| NOTE

Bit 15, 14, or 13, when set (abort conditions), causes

the logic (E121 generates K1-8 ERROR H) to freeze

the contents of SR0 bits 1 to 6 and status register

SR2. This is done to facilitate recovery from the

abort. '

Protection is enabled when an address is being relocated (K1-8 RELOCATE H is active). This implies

that either SRO, bit 0, is equal to 1 (memory management enabled) or that SRO, bit 8, is equal to 1 and

the memory reference is the final one of a destination calculation (maintenance/destination mode).

Note that SRO bits 0 and 8 can be set under program control to provide meaningful memory manage-

ment control information. However, information written into all other bits is not meaningful. Only

that information which is automatically written into these remaining bits as a result of hardware

actions is useful as a monitor of the status of the memory management unit. Setting bits 15-13 under

program control will not cause traps to occur. These bits, however, must be reset to 0 after an abort or

trap has occurred in order to resume monitoring memory management.

Abort-Non-Resident :

Bit 15 is the Abort-Non-Resident bit [K1-8 NR (1) H]. It is set by attempting to access a page with an

access control field (ACF) key equal to 0 or 4 or by enabling relocation with an illegal mode in the

PSW.

Abort-Page Length

Bit 14 is the Abort-Page Length bit [K1-8 PL (1) H]. It is set by attempting to access a location in a

page with a block number (virtual address bits 12-6) that is outside the area authorized by the page

length field (PFL) of the PDR for that page.

Abort-Read-Only

Bit 13 is the Abort-Read-Only bit [K1-8 RO (1) H]. It is set by attempting to write in a read-only page

having an access key of 2.

NOTE

There are no restrictions that any abort bits could

not be set simultaneously by the same access

attempt.

Maintenance/Destination Mode

Bit 8 specifies maintenance use of the memory management unit. It is used for diagnostic purposes.

For the instructions used in the initial diagnostic program, bit 8 is set so that only the final destination

reflerence is relocated. It is useful to prove the capability of relocating addresses, in destination mode

only.

Mode of Operation

Bits 5 and 6 indicate the CPU mode (User or Kernel) associated with the page causing the abort

(Kernel = 00, User = 11).

4-73

Page Number

Bits 3-1 contain the page number of reference. Pages, like blocks, are numbered from O upward The

page number bitis used by the error recovery routine to identify the page being accessed if an abort

occurs. .

Enable Relocation and Protection

Bit 0 1s the Enable bit. When it is set to 1, all addresses are relocated and protected by the memory

management unit. When bit 0O is set to 0, the memory management unit is disabled and addresses are

neither relocated nor protected.

4.12.6.2 Status Register 2 (SR2) - SR2 (shown on print K1-9) is loaded with the 16-bit virtual address

(VBA) at the beginning of each instruction fetch but is not updated if the instruction fetch fails. SR2 is

read-only; a write attempt will not modify its contents. SR2 is the virtual address program counter.

Upon an abort, the result of SRO bits 15, 14, or 13 being set will freeze SR2 until the SRO abort flags

are cleared. The address of SR2 is 777576 (Figure 4-41).

]

ADDRESS

16-BIT VIRTUAL ADDRESS 777576

11-3910

Figure 4-41 Format of Status Regi—ser 2 (SR2)

4.12.7 Mode Description

In Kernel mode, the operatmg program has unrestricted use of the machine. The program can map

users’ programs anywherein core and thus explicitly protect key areas (including the device registers

and the processor status word) from the user operatmg environment.

In User mode, a program is inhibited from executing a Halt mstructlon and the processor will trap
through location 10 if an attempt is made to execute this instruction. A Reset instruction resultsin

execution of a NOP (no-operation) instruction.

There are two stacks, called the Kernel stack and the User stack, used by the central processor when
operating in either the Kernel or User mode, respectively.

Stack limit violations are dlsabled in User mode. Stack protectlon is provrded by memory protect

features.

4.12.8 Interrupt Conditions

The memory management unit relocates all addresses. Thus, when management is enabled, all trap,

abort, and interrupt vectors are considered to bein Kernel mode virtual address space. When a vec-

tored transfer occurs, controlis transferred according to a new program counter (PC) and processor

status word (PSW) contained in a 2-word vector relocated through the Kernel Active Page register set.

When a trap, abort, or interrupt occurs, the “push” of the old PC (old PSW) s to the User/Kernel R6

stack specified by CPU mode bits 15 (14) of the new PSW in the vector (00 = Kernel, 11 = User). The

CPU mode bits also determine the new APR set. In this manner it is possible for a Kernel mode
program to have complete control over service assignments for all interrupt conditions, since the

interrupt vector is located in Kernel space. The Kernel program may assign the service of some of these

conditions to a User mode program by simply setting the CPU mode bits of the new PSW in the vector

to return control to the appropriate mode.

474

User Processor Status (PS) operates as follows:

User Traps, Explicit

PSW Bits User RTL,RTT Interrupts PSW Access

Cond. Codes (3—0) | Loaded .from stack ‘Loaded from vector *

Trap (4) Loaded from stack Loaded from vector Cannot be changed

Priority (7-5) . Cannot be changed Loaded from vector *

Previous (13-12) | Cafinot be changed Cépied from PS (15, 14) *

Current (15-14) Cannot be éfianged Loaded ffom vector *

*Explicit operations can be made if the processor status is mapped in user space.

4.13 CONTROL STORE

4.13.1 General Description

The Control Store circuit (prints K2-7 through K2-10) consists of twelve 1024-word by 4-bit bipolar

ROMs, eight hex D-type flip-flops, and an assortment of multiplexers and gates. This logic operates in

a fashion similar to a microprocessor having 10 address lines and 48 data output lines with a fixed set

of ROM program routines.

Each Control Store ROM location can generate a specific set of outputs capable of configuring the

data path, determining the function performed by the arithmetic/logic unit (ALU), influencing the

DAT TRAN circuitry, or exercising general control over the total KD11-EA operation. The contents

of each location are configured in such a way that sequences of locations can be combined into micro-

routines that perform the various PDP-11 instruction operations. Each ROM location is, therefore,

considered as a microinstruction or microstep.

4.13.2 Branching Within Microroutines

Each microinstruction in the Control Store specifies the location of the next microstep in a sequence.

After the execution of a microstep, the outputs of ROMs E110, E109, and E10 are latched into E90

and E92 (microprogram counter latch) to specify the location of the next microstep. Conditional

branching within a microroutine is accomplished by wire-ORing signals generated by external hard-

ware onto the MPC lines when directed by some other Control Store output. Typical wire-ORed

signals include the following:

Instruction Decode The microroutines contained in the Control Store are designed

to perform efficiently the operations specified by the various

PDP-11 instructions. Specific microroutines are implemented

for specific instructions. The main purpose of the IR Decode

circuitry is to translate the PDP-11 instruction in the IR to a set

of bits that can be wire-ORed onto the MPC lines upon request

(IR DECODE L), developing the next control word. A descrip-

tion of the specific addresses for each instruction is included in

Paragraph 4.5.3 of this manual.

4-75

Trap Decode

PWR Restart

A routine has also been included in the Micro Store to imple-

ment an error routine that pushes and pops the PC and PSW

onto or off the processor stack. Upon request of the Control

Store [K2-9 BUT SERVICE (1) H], the MPC 00 line can be

enabled by the Service ROM (ES1), causing a microbranch to

this microroutine.

Upon performing a power restart, the MPC is cleared by an

Initialize signal (INIT). The power-up circuitry on print K2-3

then enables the MPC 00 line, forcing the Control Store to per-

form the power-up routine beginning at MPC address 001.

In general, microsteps are not executed from numerically sequential locations in the Control Store;
therefore, care should be taken in following the flows described in Chapter 5 of this manual.

Figure 4-42 shows the format of all 1024 words in the KD 11-EA Control Store. The fields, the possible
values they contain, and the significance of each value are described below.

00 01 02 03 04 05 06 o7 08 09 10 11 12 13 14 15

BUF ENAB

DATA
TRAN MAINT

N AN w, —
2\ v
MPC MISC BUS

CONTROL CONTROL

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

LOAD | LONG | AUX 8 BX ovx | DBE

BAR |CYCLE| CONT

" I\ ~ /__w I\ —~ J

ALU CONTROL SSMUX AMUX

CONTROL CONTROL

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

SPA | SRC FORCE| PREV | BUT

SEL | SEL RSV | MODE | SERV

\ -)
e —~

BUT SPA DEST FORCE ROM

SEL KERNEL SPA

~ Figure 4-42 Control Store Fields

4-76

11-4252

4.13.3 Control Store Fields |
Use the KD 11-EA flow diagrams as reference for actual control field bit patterns.

Field F-ielvd Length - Description

MPC 9 ‘Nine-bit micro-PC address, which specifies the ROM loca-
tion of the next microstep to be performed.

Miscellaneous Control Three multipléxed control lines that generate the following
enable signals:

LOAD IR L - Allows loading of the Instruction register

(print K2-5).

LOAD PSW L - Allows the PSW register to be loaded upon

completion of this microstep (prints K1-1 through K1-4).

LOAD CC L - Allows the condition codes N, Z, V, and C to

be loaded upon completion of this microstep (print K1-1).

BUT DEST L - Enables microbranch to destination operand

microcode sequence (print K2-6).

ENAB STOV L - Enables the stack overflow detection cir-

cuit (print K2-3).

LOAD COUNT L - Allows the counter circuit (print K2-10)

to be loaded upon completion of this microstep.

CLK COUNT L - Enables the counter clock circuit (print

K2-10).

BUF DATTRAN | | Enables the data transfer circuitry (print K2-1). Indicates that

the processor is performing a Unibus transfer during this

microstep.

Bus Control 2 | Enables the Unibus control lines BUS CO L and BUS C1 L,

as follows:

Cl(HH CO(1)H Transfer

0 0 DATI

0 1 DATIP

1 0 DATO

1 1 DATOB

ENAB MAINT I | Enables the memory management maintenance relocation

feature.

LOAD BAR 1 | ~ Allows the Physical Bus Address register (BA on print K1-6)
to be loaded during this microstep.

4-77

Field

LONG CYCLE

AUX CONTROL

ALU S3-ALU SO

ALU MODE,

ALU CIN

BLEG 01:00

B, BX, OVX,

DBE, CONTROL

SSMUX

CONTROL

AMUX

CONTROL

BUT BITS

SPA SRCSEL

Field Length

1

2

Description

Forces the processor to perform a longer (2‘40 ns) machine
cycle during this microstep. Typically this is done during bus

DATO:s.

Enables the Auxiliary Control ROMs during operate instruc-

tion microsteps.

Determine the operation performed by the 16-bit ALU

according to Table 4-2. These lines are also wire-ORed,

allowing the Auxiliary Control circuitry to determine the

ALU operations according to Table 4-2.

These multiplexed outputs control the operation of the B reg-

ister and BX register during each microstep and detect over-

flow or double bus errors.

Controls the select lines of the SSMUX according to the
following:

Select | SS 01 H SS00 H

Straight 0 0

Sign Extend 0 1

Swap Bytes 1 0

External Data 1 1

Controls the select lines of the AMUX according to the
following:

Data | AMUX S1 AMUX S0

PSW | 0 0
ALU 0 1

Vector 1 0

Unibus 1 1

Encoded control lines that select the specific microbranch

condition that can occur during this microstep.

Controls the select lines of the scratchpad address multiplexer

during the first half of this microstep.

Field Select SEL 1 SEL 0

ROM 0 0

RS 0 |

RD 1 0

1 |RBA

4-78

Field

SPA DST SEL

FORCE RSV

PREVIOUS

MODE

BUT SERVICE

Force Kernel

ROM SPA

Field Length

2

Description

Controls the select lines of the scratchpad address multiplexer

during the second half of this microstep.

Field Select SEL 1 SELO

ROM 0 0

RS 0 1

RD 1 0

RBA 1 1

Controls which source register will be selected by the scratch-

pad address multiplexer. If RS = is an even-numbered regis-

ter, then RSVl = Register 1. If, however, RS = an odd-

numbered register, then RSV1 = the same register.

Allows the processor to perform this microstep using the pre-

vious memory management mode [PSW (13:12)].

Indicates that the processor has entered the Service micro-

step. Enables the Service ROM (ES50), causing the processor

to recognize any pending errors or interrupts.

Forces the processor to perform this microstep in the memo-

ry management Kernel mode.

Allows the microinstructions from the Control Store to deter-

mine which scratchpad register will be addressed during the

next microstep, unless otherwise specified by the scratchpad

address multiplexer control lines previously mentioned.

4-79

CHAPTER 5

MICROCODE

5.1 MICROPROGRAM FLOWS ‘

A complete set of microinstruction flows is shown in block diagram form in the KD11-EA print set.

Figure 5-1 is a simplified version that provides an overview and aids in using the detailed flows. No

attempt will be made in this manual to trace each path of this microcode, but the following examples

should provide an adequate background for the reader.

5.2 FLOW NOTATION GLOSSARY

The block flows should be self-explanatory. To aid in understanding them, the following glossary of

flow notation should be reviewed.

Designation Definition

BA Unibus Bus Address lines

- Minus the operator

; Separator

DATI ~Initiate DATI operation on Unibus

+ Plus the arithmetic operator

PC Program Counter = scratchpad register 7 (R7)

B B register

IR Instruction register

BX BX register

RS Scratchpad register specified by the source portion of the current instruction

[IR (08:06)]

RD Scratchpad register specified by the destination portion of the current

instuction [IR (02:00)]

RN Scratchpad register n specified by the Control Store ROM SPA lines

ENAB STOV Enable the stack overflow detection logic

ENAB DBE Enable the double bus error detection logic.

DATO Initiate DATO operation on Unibus.

DATIP Initiate DATIP operation on Unibus.

Rn OP B ALU function determined by the auxiliary ALU control logic as a function

~of the instruction currently in the Instruction register.
BUT Branch on microtest.

LOAD CC Set condition codes (N, Z, V and C) according to the result of operation

being performed by the ALU.

UDATA Data being received from the Unibus data lines BUS D00 L through BUS

DIS L.

RSVI Source register specified by source portion of current instuction [IR (08:06)]

ORed with a logical 1. Example: If RS is even, RSV1 would be the next

highest register (RS = 4, RSV1 = 5); if, however, RS is odd, RSV1 would be

the same register (RS = 5, RSVI1 = 5).

- Assignment operator.

MAINT Indicates that the memory management Maintenance feature is enabled.

Previous Indicates that this microstep is using the previous memory management

mode.

5-1

weideiqmo[dpayndunsva-11aM
[-6

2an81
§

618E-1|-[—!‘uxil*,l,eTr!ll’|fi

4i———-ot—d=1530doaans1805S1ygYMS“SdiWans-AOWPWa-PWSPWA-BWSNNNue-_—b—11P—15304045307onJOWNON93N2013S118/11y14HS/10¥Sd4W40
40

1530QoWi
haaneQOWdoS-(aNS+AOWIFTTMMYVYW1P2048v31D1edSr|TPOHSV/HSY[1(Q)IdLW[400

m;

QOWNON@Wa-PWS@Wa-@ws|||fod3oNvHo|||LeIIR,o'ganbd40$40@AOWHONVYE1353y’TM191dan|

4
i|i300034y

1HOL13
4

dv
y

L1\\\\\T1v44Md»<_3DIAH3S
WOY41¥VviS3y

5-2

KD11-EA ,

CENTRAL PROCESSOR Reader’s Comments
MAINTENANCE MANUAL

EK-KD1EA-MM-001

Your comments and suggestions will help us in our continuous effort to improve the quality and usefulness of

our publications.

What is your general reaction to this manual? In your judgment is it complete, accurate, well organized. well

written, etc.? Is it easy to use?

What features are most useful?

What faults do you find with the manual?

Does this manual satisfy the need you think it was intended to satisfy?

Does it satisfy your needs? ' Why?

Would you please indicate any factual errors you have found.

Please describe your position.

Name— _ Organization

Street ______ Department
C
l
t
y

-

S
t
a
t
e

Z
i
p
 o
r
 C
o
u
n
t
r
y

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.P

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

i i [i

Postage will be paid by:

Digital Equipment Corporation

Technical Documentation Department

Maynard, Massachusetts 01754

| [

=

	001
	002
	003
	004
	005
	006
	007
	009
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	03-01
	03-02
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	05-01
	05-02
	x1
	x2

