pcpn
- lnencdloook

- E0%00R0
digital equipment corporation

Copyright 1969 by
Digital Equipment Corporation

PDP is a registered trademark
of Digital Equipment Corporation

The material in this handbook is for information pur-
poses only and is subject to change without notice.

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

PDP-11 SYSTEMS
UNIBUSccceeeee.
KA1l PROCESSOR
- Priority Interrupts

~ Reentrant Code
General Registers
Instruction Set
Addressingccoeiiiininn.
Asynchronous Operation e
PACKAGING
SOFTWARE

CHAPTER 2 SYSTEM INTRODUCTION

SYSTEM DEFINITION ...)

SYSTEM COMPONENTS
UNIBUS ...,
Single Bus
Bidirectional Lines
Master-Siave Relation .
Interlocked .Communication
Dynamic Master-Stave Relation ...
KA1l CENTRAL PROCESSOR
General Registerscoooiiieiiiiiie e eeeeeeees

Central Processor Status Registerccovvvvevveeeninn,

CORE MEMORYovviiiiiiiccii et

PERIPHERAL DEVICESc.c........

SYSTEM INTERACTION

- TRANSFER OF BUS MASTER

PRIORITY STRUCTURE
NPR Requests
Interrupt Requestsc..cooviiiiiiieeeieeeee e

CHAPTER 3 ADDRESSING MODES

INTRODUCTIONcccovvvveeenn. e rneeanes rereeeeenerrninrnaes
ADDRESS FIELDS e \
‘General Register Addressing
JIndexed Addressingc.cceeiieennn
Autoincrement Mode Addressing .
Autodecrement Addressingccccoveeveieiicnicreiein,

STACK PROCESSINGc.ooooiviiiein,

USE OF THE PC AS A GENERAL REGISTER
Immediate Addressing rererren e e
Absolute Addressing

- Relative Addressing
Deferred Relative Addressing
USE OF THE SP AS A GENERAL REGISTER
DOUBLE OPERAND ADDRESSING ...,

CHAPTER4 INSTRUCTION SET

INSTRUCTION TIMINGocooooovvcmmcerrmnernnerenseneesises s
NOTATION ..oo..ocoovererreserecsenneenenenee e enncenonns et

WONNNNOGM GGG ;G

WRNNNNDNN -

"DOUBLE OPERAND: INSTRUCTIONS e reerree et eee e et e beraseseaseseane
Arithmetic Operations ;
Boolean Instructions

BRANCHESooovooeeeeerereenn.
Unconditional Branch

« Simple Conditional Branches
Signed Conditional Branches
Unsigned Conditional Branches
JUMP Lo

SUBROUTINES g
Examples

SINGLE OPERAND INSTRUCTIONS
Multiple Precision Operations
Rotates ..ot
Shiftscccoeeins
Examplesccoocevviieeinn.

BYTE OPERATIONS
Double Operand Byte Instructlons
Example ...
Single Operand Instructions

CONDITION CODE OPERATORSccccovvvivevevecrnnnene

MISCELLANEOUS CONTROL INSTRUCTIONS

PROCESSOR TRAPScccoovviiiirinieiieeneriinereenenns
Trap Instructions
Stack Overflow Trap
Bus Error Traps

Trace Trapscooiiriiiiieeii et et crraa s se b e et

CHAPTER5 ADDRESS ALLOCATION

ADDRESS MAP errreeeerreane
Interrupt and Trap Vector
Processor Stack and General Storage ..
Peripheral Registers

CORE MEMORYooeoeeeii,
Read-Write Core Memory
Read-Only Core Memory :
Wordlet MemOryt

CHAPTER 6 PROGRAMMING OF PERIPHERALS

DEVICE REGISTERSooooveiercreeeenieininieceen e rveeeeaaenees
CONTROL & STATUS REGISTERS :

Device Function Bits

Memory Extension ... rreeeee eeeres

Done Enable and Interrupt Enable

Condition Bits

Unit Bits

Error Bitsc..oclenee
DATA BUFFER REGISTERS
PROGRAMMING EXAMPLES—NON |NTERRUPT
INTERRUPT STRUCTURE
PROGRAMMING EXAMPLE

CHAPTER 7 PERIPHERAL BULLETINS ’ .

TELETYPE (MODEL LT33:-DC/DD)ccoovievviieiieeiinieeereie e
SiZe ..o
Power Requirement

v

» ~

TELETYPE CONTROL (MODEL KL11)
Teletype Control
Keyboard/Reader Operation

Registers (TKS, TKB) TS
Teleprinter/Punch

Registers (TPS, TPB) .
Programming Example
Peripheral Address Assignments
Mounting ...

HIGH-SPEED PERFORATED TAPE READER (MODEL PC11)

Tape Reader ...
Registers (PRS, PRB)
Programming Example ...
Peripheral Address Assignments ...

Tape Punch
Registers (PPS, PPB)
Programming \Example
Peripheral Address Assignments

Mounting

Environmental

Line Frequency Clock (Model Kw11-L)

Register ...

Peripheral Address A55|gnments

Mounting

Vector Address

Priority Level et e e

CHAPTER 8 DESCRIPTION OF THE UNIBUS .

GENERAL CONCEPTS OF THE UNIBUS
Single BUSsooiiii e,
Bidirectional Bus :

Dynamic Master-Slave Relation ...
UNIBUS SIGNALS ...,
NON-INTERRUPT SIGNALScovi,

Data Linesam L

Master Sync & 'Slave Sync
Parity Available & Parity Bit
Initialization ...
Spare 1 & Spare 2 ...
INTERRUPT SIGNALS
Bus Request Lines
/ Bus Grant Lines
Non-Processor Request
Non-Processor Grant
_‘Selection Acknowledge
Interrupt (and) Bus Busy
UNIBUS DATA TRANSFER OPERATIONS ..
DATO and DATOBcooovviiiiieeecc,
DATI and DATIP ...

i

INIR[IS CONTRO!

AP IV IErwr Al SN e 2 T8nrtm corsenarerassise

Priority Arbitration

Selection of Next Bus Mlafiber

Interrupt Sequence

Exampte of Interrupt, etc.cc.cooiniiiiiniiiie

Example of NPR Operation

CHAPTER 9 INTERFACHNG

REGISTERS ..ottt tne et e
BUS DRIVERS AND RECEIVERS R
ADDRESS SELECTOR e

INTERRUPT CONTROLc.ocoeveninnnnen.
DEVICE CONTROL LOGIC ..o e iiiennens

CHAPTER 10 CONFIGURATION AND HMSTALLATION PLANNING

MODULAR CONSTRUCTION ... s
MOUNTING BOXES AND CABINETS

PDP-11 Tabletop Box for 11/20, Etc.ocievvieininicine

PDP-11 Basic Mounting Box
PDP-11 Tabletop Extension Mounting Box
PDP-11+Freestanding Base Cabinet
Freestanding Programmer's Table
SYSTEM UNITS AND CABLESccooooivevirnnne

Peripheral Mounting Unit

Blank System Unit

Unibus Module

Unibus Cable

CABLE REQUIREMENTS

PDP-11/20 POWER REQUIREMENTS
TELETYPE REQUIREMENTS .
ENVIRONMENTAL REQUIREMENTS

INSTALLATION PROCEDURE

CHAPTER 11 PAPER TAPE SOFTWARE SYSTEM

PTS FEATURES
PAL-11A Assembler
ED11 Editor

ODT On-Line Debugging

10X Input/Output, etc. .
Math Package
Loadersc.oeeeinnnn

Core Dump Routines

CHAPTER 12 THE OPERATOR’S CONSOLE
CQNSOLE ELEMENTS ...

Indicator Lights
Register Displays
Switch Register
Control Switches
CONTROL SWITCH OPERATION

APPENDIX A—PDP-11 INSTRUCTION REPERTOIRE

APPENDIX B—ADDRESSING SUMMARY
ADDRESSING MODES
General Register Addressing

PC Register Addressing

RRRRBRBR

87
87
87
87
87
89

91

95
95
95
95

INSTRUCTION FORMATS ..o 95
APPENDIX C~—ADDRESS MAP e 97

APPENDIX D—UNIBUS OPERATIONS
DATA-TRANSFERS ...,

DATO and DATOB
PTR-PRIORITY TRANSFER

INTR—INTerRupt ...
GENERAL NOTES ON THE BUS OPERATIONS

vil

The PDP-11 is available in two versions—PDP-11/10 and PDP-
11/20. The basic PDP-11/10 contains 1,024 words of read only
memory in conjunction with 128 words of read/write memory and -
the basic PDP-11/20 includes 4,096, words of read/write memory.

vil

CHAPTER 1
INTRODUCTION

This publication is a handbook for Digital Equipment Corporation's PDP-11.
It provides a comprehensive overview of the system structure, the instruction
repertoire, input/output programming, peripherals, general interfacing, soft-
ware, and console operation.

PDP-11 is Digital's answer to the demand for a modular system for real-time
data acquisition, analysis and control. PDP-11 systems can handle a wide -
variety of real-time control applications—each. system being individually
tailored from a comprehensive array of modular building blocks. Digital is
unique among manufacturers of small-scale computers.in its ability to pro-
vide not only fast and efficient processing units, but also a large family of its
own compatible 1/O devices including A/D and D/A converters, magnetic
tape, disk storage, paper tape, and displays, as well as a wide range of
géneral-purpose modules. This capability offers the user a new, more efficient
approach to real-time systems.

The following paragraphs introduce the new PDP-11 by way of highlighting
several of the important design features that set it apart from other machines
in its class. Subsequent chapters of this manual place these features in their
proper context and provide detailed descriptions of each.

PDP-11 SYSTEMS .
The PDP-11 is available in two versions designated as PDP-11/10 and PDP-
read-only memory, and 128 16-bit words of read-write memory. The basic
PDP-11/20 contains a KAl 1 processor and 4,096 words of 16-bit read-write
core memory, a programmer’s console, and an ASR-33 Teletype. Both ver-
sions can be similarly expanded with either read-write or read-only memory
and peripheral devices.

UNIBUS -

" Unibus is the name given to the single bus structure of the PDP-11. The
processor, memory and all peripheral devices share the same high-speed
bus. The Unibus enables the processor to view peripheral devices as active
memory locations which performr special functions. Peripherals can thus be
addressed as memory. In other words, memeory reference instructions .can
operate directly on- control, status, or data registers in peripheral devices.
Data transfers from input to output devices can bypass the processor com-
pletely.

KA1l PROCESSOR

The KA1l processor incorporates a unique combination of powerful features
not previously available in 16-bit computers.

‘Priority Interrupts—A four-level automatic priority interrupt system permits
the processor to respond automatically to conditions outside the system, or
in the processor itself. Any number of separate devices can be attached to
each level. i

Each peripheral 'device in a PDP-11 system has a hardware pointer to its own
unique pair of memory locations which, in turn, point to the device's service
routine. This unique identification eliminates the need for polling of devices

to identify an interrupt, since the interrupt servicing hardware selects and
begins executing the appropriate service routine.

The device’s interrupt priority and service routine priority are independent.
This allows dynamic adjustment of system behavior in response to real-time
conditions.

The interrupt system allows the processor continually to compare its own
priority levels with the levels of any interrupting devices and to acknowledge
the device with the highest level above the processor’s priority level. Servic-
ing an interrupt for a device can be interrupted for servicing a higher priority
device. Service to the lower priority device can be resumed automatically
upon completion of the higher level servicing. Such a process, called nested .
interrupt servicing, can be carried out to any level. -

Reentrant Code—Both the interrupt handling hardware and the subroutine
call hardware are designed to facilitate writing reentrant code for the
PDP-11. This type of code allows use of a single copy of a given subroutine
or program to be shared by more than one process or task. This reduces the
amount of core needed for multi-task applications such as the concurrent
servicing of many peripheral devices.

General Registers—The PDP-11 is equipped with eight general registers. All
. are program-accessible and can be used as accumulators, as pointers to
memory locations, or as full-word index registers. Six registers are used for
general-purpose access while the seventh and eighth registers are used as
a stack pointer and program counter respectively.)

Instruction Set—An important feature of the PDP-11 instruction set is the
availability of double operand instructions. These instructions allow memory-
to-memory processing and eliminate the need to use registers for storage of
intermediate results. By using double operand instructions, every memory
location can be treated as an accumulator. This significantly reduces the
length of programs by eliminating load and store operations associated with
single operand machines. ‘

Addressing—Much of the power of the PDP-11 is derived from its wide range
of addressing capabilities. PDP-11 addressing modes include list sequential
addressing; full address indexing, full 16-bit word addressing, 8-bit byte
addressing, stack addressing, and direct addressing to 32K words.

Variable length instruction formatting allows a minimum number of bits to
be used for each addressing mode. This results in efficient use of program
storage space.

Asynchronous Operation—The PDP-11's memory and processor operations
are asynchronous. As a result, 1/O devices transferring directly to or from
memory may steal memory cycles during instruction operation.

PACKAGING

The PDP-11 has adopted a modutar approach to allow custom configuring of

systems, easy expansion, and easy servicing. Systems are composed of basic

building blocks, called System Units, which are completely independent sub-

systems connected only by pluggable Unibus and powef connections.
" There is no fixed wiring between them. An example of this type of subsystem

is a 4,096-word memaory module.

System Units can be mounted in many combinations within the PDP-11

hardware, since there are no fixed positions for memory or 1/O device con-

trollers. Additional units can be mounted easily and connected to the system

2

in the field. In case maintenance is required, defective System Units can be
replaced with spares and operation resumed within a few minutes.

SOFTWARE

A compite package of user-oriented software includes:

Absolute assembler providing object and source listings

String-oriented editor

Debugging routines capable of operating in a priority interrupt environ-
ment -

Input/cutput handlers for standard peripherals

Relocdtable integer and floating point math library

All PDP-11 processors, memories and peripherals are electrically
and mechanically modular subsystems supported in System Units.

which are simply plugged together to form a computer tailored to
user needs. :

© 4

CHAPTER 2

SYSTEM INTRODUCTION

. SYSTEM DEFINITION .
Digital Equipment Corporation’'s PDP-11 is a 16-bit, general-purpose, parallel-
logic computer using two's complement arithmetic. The PDP-11 is a variable
word length processor which .directly addresses 32,768 16-bit words or
65,536 8-bit bytes. All communication between system components is done
on a single high-speed bus called a Unibus. Standard features of the system
~ include eight general-purpose registers which can be used as accumulators,
index registers, or address pointers, and a muiti-level automatic pnonty in- .
terrupt system. :

-SYSTEM COMPONENTS

UNIBUS—There are five concepts that are very important for understanding
both the hardware and software implications of the Unibus. .

Single Bus—The Unibus is a single, common path that connects the central
processor memory, and all peripherals. Addresses, data, and control informa-
tion are sent along the 56 lines of the bus.

The form of communication is the same for every device on the Unibus. The
processor uses the same set of signals to communicate with memory as with
peripheral devices. Peripheral devices also use this set of signals when com-
municating with the processor, memory, or other peripheral devices.

Peripheral device registers may be manipulated as flexibly as core memory
by the centrai processor. Aii the instructions that can be appiied to data in
core memory can be applied equally well to data in peripheral device regis-,
- ters. This is an especially powerful feature, considering the special capability
of PDP-11 instructions to process data in any memory location as though it

were an accumulator.

Bidirectionat Lines—Unibus lines are bidirectional, sé that the same signals
which are received as input can be driven as output. This means that a
peripheral device register can be either read or set by the central processor
or other peripheral devices; thus, the same register can be used- for both
input and output functions. .

Master-Slave Relation—Communication between two devices on the bus is
in the form of a master-slave relationship. At any point in time, there is one
device that has control of the bus. This controlling device is termed the
“bus master.” The master device controls the bus when communicating with
another device on the bus, termed the ‘“‘slave.” A typical example of this
relationship is the processor, as master, fetching an instruction from mem-
ory (which is always a slave). Another example is the disk, as master, trans-
ferring data to memory, as slave.

Interlocked Communication—Communication on the Unibus is interlocked
so that for each control signal issued by the master device, there must be a
response from the slave in order to complete the transfer. Therefore, com-
munication is independent of the physical bus length and the response time
of the master and slave devices. The maximum transfer rate on the Unibus
is one 16-bit word every 750 nanoseconds, or 1.3 million 16-bit words- per
second.

Dynamic Master-Slave Relation—Master-siave relationships are dynamic. The
Pprocessor, for example, may pass bus control to a disk. The disk, as master,
could then communicaté with a slave memory .bank. .

Since the Unibus is used by the processor and all 1/O devices, there is a
priority structure to determine which device gets control of the bus. There-
fore, every device on the Unibus which is capable of becoming bus master
has a ‘priority assigned to it. When two devices which are capable of becom-
ing a bus master request use of the bus simuitaneously, the device with the
higher priority will receive control first. Details of what conditions must be
satisfied before a device will get control of the bus are givén in the section
on System Interaction. '

KA1l CENTRAL PROCESSOR—There are four major features which are of
particular interest to the programmer: 1), the General Registers; 2), the
Processor Status Word; (3), the Addressing Modes; and 4), the Instruction
Set. The addressing modes and the instruction set of the PDP-11 processor
will be discussed in detail in Chapters 3 and 4.

General Registers—The KA1l processor contains eight 16-bit general regis-
- ters. These eight general registers (referred to as RO, R1, R7) may
-be used as accumulators, as index registers, or as stack pointers. One of
these registers, R7, is reserved as a program counter (PC). Generally, the
PC holds the address of the next instruction, but it may point to data or
to an address of data. The register R6 has the special function of processor
stack pointer.)

Central Processor Status Register—The Central Processor Status Register
(PS) contains information on the current priority of the processor, the result
of previous operations, and an indicator for detecting the execution of an
instruction to be trapped during program debugging. The priority of the
central processor can be set under program control to any one of eight.
levels. This information is held in bits 5, 6, and 7 of the PS.
Four bits of the. PS are assigned to monitoring different -results of previous
instructions. These bits are set as follows:

Z—if the result was zero

N—if the result was negative i M

C—if the operation resulted in a carry from the most significant bit

V—if the operation resuited in an arithmetic overflow

The T bit is used in program debugging and can be set or cleared under pro-
gram control. If this bit is set, when an instruction is fetched from memory
a processor trap will be caused by the completion of the instruction’'s
execution.)

/ Central Processor Status Register (PS)))
CORE MEMORY--The PDP-11 allows both 16-bit word and 8-bit byte ad-
dressing. The address space may be filled by core memory and peripheral
device registers. The top 4,096 words generally are reserved for .peripheral
device registers. The remainder of address space can be used for read-write .
core memory or read-only core memory. :

Read-write core memory is currently available in 4,096 16-bit word segments.
This memory has a cycle time of 1.2 microseconds and an access time of
500 nanoseconds. It is. a standard part of a PDP-11/20 system.

4
Read-only core memory (ROM) is available in 1,024 16 bit-word segments.
The access time of the ROM is 500 nanoseconds. Memory is also available in
128 16-bit word segments with a 2.0 microsecond cycle time. Both 1,024
words of read-only memory and 128 words of read-write memory mount in
a single System Unit and are a standard part of the PDP-11/10 system.

PERIPHERAL DEVICES—The ASR-33 Teletype with low-speed paper tape
reader and punch is provided in the basic PDP-11/20 system. Options for the
PDP-11 include a paper tape reader capable of reading 300 characters per
second, a paper tape punch with an output capacity of 50 characters per
second, and additional Teletype units. Provision is made for the addition
of numerous peripheral devices. These include standard DEC perlpherals as
well as other devices which will be unique to the PDP-11.

SYSTEM INTERACTION

At any point in time only one device can be in control of the bus, or be bus
master. The master communicates with another device on the bus which is
called the slave.-Usually, the established master will communicate with the
slave in the form of data transfers.

Full 16-bit words or 8-bit bytes of information can be transferred on the bus
between the master and the slave. The information can be instructions, ad-
dresses, or data. This type of operation occurs when the processor, as
master, is fetching instructions, operands, and data from memory, and re-
storing the results into memory after execution of instructions. Pure data
transfers occur between a disk control and memory.

TRANSFER OF BUS MASTER-—When a device (other than the central pro-
cessor) is capable of becoming bus master and requests use of the bus, it is
generally for one of two purposes: 1) to make a non-processor transfer of
data directly to or from memory, or 2) to interrupt program execution and
force the processor to branch to a specific address where ‘an interrupt
service routine is located.

PRIORITY STRUCTURE—When a device capable of becoming. bus master
requests use of the bus, the handling of that request depends on the loca-.
tion of that device in the priority structure. These factors must be considered
to determine the priority of the request:

1. The processor’s priority can be set under program control to one of
eight levels using bits 7, 6, and 5 in the processor status register.
These three bits set a priority level that inhibits granting of bus re-
quests on lower levels.

2. Bus requests from external devices can be made on one of five re-
quest liries. A non-processor request (NPR) has the highest priority,
and its request is honored by the processor between bus cycles of
an instruction execution. Bus request 7 (BR7) is the next highest

~priority, and BR4 is the lowest. The four lower level priority requests
are honored by the processor between instructions. When the pro-
cessor's priority is set to a level, for example 6, all bus requests on
BR6 and below.are ignored.

3. When more than one device is connected to the same bus request
(BR) line, a device nearer the central processor has a higher priority
than a device farther away. Any number of devices can be connected
to a given BR or NPR line.

Oncé'a device other than the processor has control of the bus, it is for one
of two types of requests: 1) NPR Request, 2) Interrupt Request.

NPR Requests—NPR data transfers can be made between any two peripheral
devices without the supervision of the processor. Normally, NPR transfers
are between a mass storage device, such as a disk, and core memory.
The structure of the bus also permits device-to-device transfers, allowing .
customer-designed peripheral controllers to access other devices such as
disks directly. .

An NPR device has very fast access to the bus and can transfer at high data
rates once it has control. The processor state is nét affected by the transfer;
therefore the processor can relinquish control while an instruction is in
progress. This can occur at the end of any bus cycle except in between a
read-modify-write -sequence. (See Chapter 8 for details). In the PDP-11, an
NPR device can gain bus control in 3.5 microseconds or less. An NPR device
in control of the bus may transfer 16-bit words from memory at memory
speed or every 1.2 microseconds in the PDP-11/20 or every 1.0 microseconds
in the PDP-11/10.

Interrupt Requests—Devices that request interrupts on the bus request lines
(BR7, BR6, BR5, BR4) can take advantage of the power and flexibility of
the processor. The entire instruction set is available for manipulating data
and status registers. When a device servicing program must be run, the task
currently under way in the central processor is interrupted and the device
service routine is initiated. Once the device request has been satisfied, the
processor returns to the interrupted task.

in the PDP-11, the return address for the interrupted routine and the proces-
sor status word are held in a “stack.” A stack is a dynamic sequential
list of data with special provision for access from one end. A stack is also
called a “push down” or “LIFO” (Last-In First-Out) list. Storage and re-
trieval from stacks is called “pushing” and ‘“popping’”’ respectively. These
operations are illustrated in Figure 2-1.

In the PDP-11, a stack is automatically maintained by the hardware for inter-
rupt processing. Thus, higher level requests can interrupt the processing of
lower level interrupt service, and automatically return control to the lower
level interrupt service routines when the higher level servicing is completed.

Here is an éxample of this procedure. A peripheral requires service and
requests use of the bus at one of the ‘BR levels (BR7, BR6, BR5, BR4). The
operations undertaken to ‘“‘service’’ the device are as follows:

EQ /51 !
CORE
— z
LAN EMPTY 2. PUSHING A . 3.PUSHING ANOTHER
STACK DATUM ONTO DATUM ONTO- THE
THE STACK STACKS
/Ez /sz /Es /53
E1 E1 E4 E1
EQ - EQ £Q €0
4. ANOTHER 5. POP 6. P
AnoT USH 7. POP

Fig 2-1 lllustration of Push and Pop Operations

8

. 1. Priorities permitting, the processor relinquishes the bus to that
device.

2. When the device has control of the bus, it sends the processor an
interrupt command with the address of the words in memory con-
taining the address and status of the appropriate device service
routine.

3. The processor then ‘‘pushes’-—first, the current central processor
status (PS) and then, the current program counter (PC) onto the
processor stack.

4. The new.PC and PS (the “‘interrupt vector”) are taken from the loca-
‘tion specified by the.device and the next location, and the device

[] 'y
4. PROCESS 1 INTERRUPTED
1. PROCESS @ IS RUNNING
STACK POINTER {SP} 400 WITH PCePCy AND 400
POINTING TO LOCATION STATUS = PSy.
Pe. : PROCESS 2 iS STARTED
SP—=POB;
PROGRAM P—» PCA
PS1
TEY
TEQ
PCO
PS@
23 PROGRAM
2 INTERRUPT STOPS e
PROCESS @ WITH
PC=PCg AND STATUS=® 4¢0.
PSg STARTS PROCESS 1
Sp—» PCO °
5.PROCESS 2 COMPLETES
. PSO WITH A RTI INSTRUCTION 00
Po: (DISMISSES INTERRUPT) -
PROGRAM PC IS RESET TO PCy AND

STATUS IS RESET TO PS¢
PROCESS 1 RESUMES

SP —e TE4
TEO®
PCO
PSO
23 PROGRAM
3. PROCESS 1 USES STACK 2
FOR TEMPORARY 400
STORAGE (TEg ,TEy)
6 PROCESS 1 RELEASES - @
- THE_TEMPORARY po.
P —» TEA STORAGE HOLDING g
TE® AND TE1
TE®
) SP— PCo
PSO)
PO
PROGRAM 13 PROGRAM
7. PROCESS 1 COMPLETES L4

ITS OPERATION WiTH A .
RTI 400.

PC iS5 RESET TO PCo
AND_STATUS IS RESET
TO PS

? SP—ePQ
PROCESS @ RESUMES PROGRAM

Figure 2-2 Nested Device Servicing

9

service routine is begun. Note that those operations all occur auto-
matically and that no device-polling is. required to determine which
service routine to-execute.

. 7.2 microseconds is the time interval between the central processor’'s
receiving the interrupt command and the fetching of the first instruc-
tion. This assumes there were no NPR -transfers during this time.
. The device service routine can resume the interrupted process by
.executing the RTI (Return from Interrupt) ifistruction which “pops”
the processor stack back into the PC and PS. This requires 4.5
microseconds if there are no intervening NPR's.

. A device service routine can be interrupted in turn by a sufficiently
high priority bus request any time after completion of its first in-
struction.

. If such an interrupt occurs, the PC and PS of the device service
routine are automatically pushed into the stack and the new device
routine initiated as above. This ‘“nesting” of priority interrupts can
go on to any level, limited only by the core available for the stack.
More commonly, this process will nest only four levels deep since
there are four levels of BR signals. An example of nested device
servicing is shown in Figure 2-2. A rough core map is given for each
step of the process. The SP points to the top word of the stack as
shown.

10

' CHAPTER 3
ADDRESSING MODES'

Most data in a program is structured in some way—in a table, in a stack, in
a table of addresses, or perhaps in a small set of frequently-used variables
local to a limited region of a program. The PDP-11 handles these common
data structures .with addressing modes specifically designed for each kind
of ‘access. In addition, addressing for unstructured data is general enotgh
to permit direct random acgess to all of core. Memory is not broken up into_
pages and fields (often awkward and wasteful of core storage).

Addressing in the PDP-11 is done through the general registers. Programs
requiring several stacks can use the general registers for stack pointers.
Those requiring many local variables can use general registers as accumu-
lators. The general registers can be used interchangeably as index registers
or as sequential list pointers to access tabularsdata. Address arithmetic may
be done directly in the general registers.

- ADDRESS FIELDS ,

PDP-11 instruction words contain a 6-bit address field divided into two sub-
fields selecting the general register and the mode generating the effective
address. -

[||1||1|||||11'°°‘|"°"“"*J
- INSTRUCTION WORD

The register subfield specifies which of the eight general registers is to be
used in the address calculation. The mode subfield indicates how this register
is to be used in determining the operand. These modes will be described
in the following paragraphs. :
GENERAL REGISTER ADDRESSING—The general registers will be used .as
simple accumulators for operating on frequently-accessed variables. In this
mode, the operand is held directly in the general register. The general reg-
" isters are in fast memory, (280-nanosecond cycle time) resulting in a speed
improvement for operations on these variables.

PAL-11, the PDP-11 assembler, interprets instruqtions of the form

OPR R
as general register operations. R has been defined as a register name and
OPR is used to represent a general instruction mnemonic. The address field
for general register operations is

R
ADDRESS FIELD - GENERAL REGISTER
MODE
OMODE (S INDICATED AS AN OCTAL DIGIT)

Operands that are pointed to -by addresses (indirect or deferred) are de-
noted to PAL-11 by the @ symbol. Thus, instructions of the form

OPR @R
specify deferred register addressing and have the following address field.

ADBRESS FIELO-DEFERRED REGISTER N
. MODE

11

Deferred register addressing may also be selected in PAL-11 'by the form
OPR (R). .

INDEXED ADBRESS|NG——-The general registers may be used as index reg-
isters to permit random access of items in tables or stacks of data. Instruc-
tions of the form

OPR X(R)

specify indexed mode addressing. The effective address is the sum of X
and the contents of the specified general register R.

. -
The index word containing X follows the instruction word.
ADDRESS FIELD-INDEXED MODE
N ———,

rermcron | ' T]
’lNDEXIUiDL T) X » 1

INDEXED ADORESSING

Index mode addressing can be deferred to permit access of data elements
through tables or stacks of their addresses The address field for index de-
ferred mode is

R
ADDRESS FIELD-DEFERRED INDEXED
MODE

It is specified by instructions of the form
' OPR @X(R)

AUTOINCREMENT ADDRESSING—Autoincrement addressing provides for
automatic stepping of a pointer through sequential elements of a table
of operands. In this mode, the address of the operand is taken from the
general register and then the contents of the register are stepped (incre-
mented by one or two) to address the next word or byte depending upon
whether the instruction operates on byte or word data Instructions of the
form . :

OPR (R)+

specify autoincrement addressing. The address field for automcrement ad-
dressing is

ADORESS FIELD~ AUTOINCREMENT

This mode may also be deferred. Instructions of the form

OPR @(R)+ .
specify deferred autoincrement addressing and assemble with the followmg
address field.

ADORESS FIELD ~ AUTOINCREMENT
DEFERRED MODE

.

. AUTODECREMENT ADDRESSING—Autodecrement addressing steps the spe-
cified general register to the next lower byte (decrement by one) or word

12

(decrement by two) address and -uses the new contents of the general reg-
ister as the operand address. Instructions of the form

-OPR —(R)
specify autodecrement addressing. The address field for autodecrement ad- *
dressing is -

ADDRESS FIELD- AUTOINCREMENT
’ MODE

This mode also may be deferred and specified by instructions of the form
OPR @ —(R). When deferred the address field is

ADORESS FIELD~- AUTOINCREMENT -
DEFERRED MODE

STACK PROCESSING

The combination of autoincrement addressing in which the general register is
stepped forward after the operand address is determined and autodecrement
addressing in which the general register is stepped backward before the
.operand address is determined is the basic requirement for convenient low
overhead stack operations.

The PDP-11 has extensive stack processing capabilities. The stack pointer
(SP), R6, maintains a stack for the nested handling of interrupts. All of the
general registers can maintain stacks under program control. Elements in
the middle of stacks may be accessed through indexed addressing. This

nrn\urlnc for convenient access of dynamically assigned temporary storag
pio TCU convenient acless oF Gynamicany assigneG wimporary siorage,

especially useful in nested procedures.

USE OF THE PC AS A GENERAL REGISTER

There are special implications in the use of the addressing modes already
described when applied to the PC (R7). The use of the PC with the address-
ing modes described above generates immediate, absolute, relative, and
deferred relative addressing.

IMMEDIATE ADDRESSING—Immediate addressing provides time and space
improvement for access of constant operands by including the constant in
the instruction. The instruction word referencing an immediate operand
specifies autoincrement addressing through the program counter. The ad- °
dress field would be

7

ADDRESS FIELD-IMMEDIATE MODE

The program counter points to the word after the instruction word. The con-
tents of this word are therefore used as the operand and the program counter
is stepped to the next word. PAL-11 recognizes address expressions of the
form “#n" as immediate operands and codes them with the address field
shown above followed by a word of data (n).

A full word is assembled for immediate operands even in byte instructions
so that instruction words are always fetched from even locations.

ABSOLUTE ADDRESSlNG—The conteﬁts of the Iocafion following the instruc-

13

tion word may be taken as the address of an operand by specifying deferral

in immediate mode addressing. That is, instructions of the form
: OPR @#A .

refer to tive operand at address A. PAL-11 assembles address expressions of
this form ir_rto an address field

ADDRESS FIELD-ABSOLUTE MOOE

followed by a word containing the oPerand address.

RELATIVE ADDRESSING—Relative addressing specifies the operand address
relative to the instruction location. This is accomplished by using the PC as
an index regis‘t_er. The PC is considered as a base address. The offset, the
distance between the. location of the operand and the PC, is held in the
index word of the instruction. PAL-11 assembles instructions of the form

OPR A

(where A has not been assigned as a name of a general register) as an
instruction word with the address field

ADORESS FIELD-RELATIVE MODE

N

followed by an index word of the form

A-ADDRESS OF THIS WORD-2

access to data through memory locations holding operand addresses. The
“@" character specifies deferred addressing; i.e., OPR @A. The address field
for deferred relative addressing is

7 7
ATORESS FIELD-DEFERRED
RELATIVE MODE

USE OF THE SP AS A GENERAL REGISTER

The processor stack pointer will in most cases be the general register used
in PDP-11 stack operations. Note that the content of SP, (SP), refers to the
top element of the stack, that —(SP) will push data onto the stack, that
(SP)4 will pop data off the stack, and that X(SP) will permit random access
of items on the stack. Since the SP is used by the processor for interrupt
handling, it has a special attribute: autoincrements and autodecrements are
“always done in steps of two. Byte operations using the SP in this way will
simply leave odd addresses unmodified.

DOUBLE OPERAND ADDRESSING

Operations which imply two operands such as add, subtract and compare
are presented in the PDP:11 by instructions which specify two addresses. The
instruction word for Such operations is of the form

BLER T l T] I T 1 I T | T 1
| OP FIELD SOURCE ADDRESS FIELD ODESTINATION ADDRESS FIELD
A4 1] L 1 1 L 1 1 | |
INSTRUCTION WORD~ DOUBLE OPERAND INSTRUCTIONS

Instruction Word—Double Operand Instructions

14

L'y

and is followed by index words and immediate operands for the source and
destination address fields as appropriate. Source address calculations are
performed before destination address calculations. Since each operand may
be anywhere in core storage or in the general registers, each memory location
is thus effectively provided with the arithmetic capabilities of an accumulator.
Further, since peripheral device registers and memory location are addressed
in the same way, the contents of peripheral data buffers can be stored or
loaded directly to and from memory without use of any general register. This
means that interrupt routines can be executed without saving and restoring
any of the general registers.

15

o1

. .:o_um:_anu‘ Aue Ajjenpia ug
pasn aq 03 s|etaydiiad pue SaLOWSBW JO SHIOMIBU Buimolle snqiun
e pajjed snqg |esisAlun B ypm Jaindwod 3q-9T e St IT-ddd 9yl

CHAPTER 4
INSTRUCTION SET

This chapter presents the order code for the PDP-11. Each PDP-11 instruc-
tion is described in terms of five parameters: operation, effect on condition
codes, base timing, assembler mnemonics, and octal representation. Special
comments are included where appropriate.

NOTATION
The following notations will be used in this section:
(XXX) : The contents of XXX
sSrc . The Source Address
dst : The Destination Address
A : Boolean “AND’ Function
v : Boolean ‘“OR’ Function
¥ : Boolean ““Exclusive OR” Function
~ : Boolean ‘NOT” Function (Complement)
- : “‘becomes”’
0 : “is popped from the stack”
d : “is pushed onto the stack”
INSTRUCTION TIMING

The PDP-11 is an asynchronous processor in which, in many cases, memory
and processor operations are overlapped. The execution time for an instruc-
tion is the sum of a basic instruction time and the time to determine and
fetch the source and/or destination operands. The following table shows the
addressing times required for the various modes of addressing source and
destination operands. The instruction time for each operation is given
(throughout this chapter) for the 11/20 configuration. All times stated are
subject to 209, variation.

ADDRESSING FORM TIMING
(src or dst) 3"0 (us)t dst (us)t
Q
(R) or @R 1.5 1.4%
(R) + 1.5 1.4%
—(R) 1.5 1.4%
@(R) + 2.7 2.6*
@—(R) 2.7 2.6*
BASE(R) 2.7 2.6*
@BASE(R) or @(R) 3.9 3.8+

* dst time is .4 us. less than listed time if instruction was a

CoMPare, CoMPare Byte

Bit Test, Bit Test Byte

TeST, or TeST Byte

none of which ever modify the destination word.

t referencing bytes at odd addresses adds 0.6us to src and dst times.
DOUBLE OPERAND INSTRUCTIONS—Double Operand Instructions are repre- :
sented in assembly language as: :
OPR src, dst
where src and dst are the addresses of the source and destination operands
respectively. The execution time for these operations is comprised of the
source time, the destination time, and the instruction time. The source and
destination times depend on addressing modes and are described in the pre-

ceding table.

17

Arithmetic Operations—

MOVe MOV src, dst 23us
F 1 l src l dst J
l 1 1 1 | I 1 [} [1 l [1
15 2 6 5 0

‘Operation: (src) - (dst)

Condition Codes:

Z: set if (src) = O; cleared otherwise
N: set if (src) < O; cleared otherwise
C: not affected

V: cleared

Description: Moves the source operand to the destination location. The pre-
vious contents of the destination are lost. The contents of the source are
not affected. '

The MOV instruction is a generalization of ‘load,” “store,” *‘setup,” ‘push,”
“‘pop,” and interregister transfer operations.

General registers may be loaded with the contents of memory addresses with
instructions of the form:
MOV src, R

Registers may be loaded with a counter, and pointer values with MOV in-
structions:

Operands may be pushed onto a stack by:
MOV sr¢, -(R)

and may be popped off a stack by:
MOV (R)4, dst

Interregister transfers are simply:

MOV RA, RB
(RA and RB are general registers)

Memory-to-memory transfers may be done with the MOV instruction in the
general form:

MOV src, dst
ADD ADD src, dst 23us
=]
[0 I 1 -t 5 1 lsrc 1] 1 1 i l 1 '
15 12 U 6 S5 . (o]

Operation: (src) 4 (dst) » (dst)

Condition Codes: Z: set if result = 0; cleared otherwise

N: set if result < O; cleared otherwise

C: set if there was a carry from the most significant bit
of the result; cleared otherwise

V: set if there was arithmetic overflow as a result of the
operation, that is, if both operands were of the same
sign and the result was of the opposite sign; cleared
otherwise

i8

Description: Adds the source operand to the destination operand and stores
the result st the destination address. The original contents of the destination
are lost. The esmtents of tive sowrce are not affected. Two's comphc}zt addi-
tion is performenl.

The ADD instruction includes as special cases the “‘add-to-register,” ‘‘add-to-
memory,” and ‘edd-register-to-register’’ functions:

Add-toRegister ADD src, R

Add-to-Memory ADD R, dst

Add Register-to-Register ADD RA, RB

Arithmetic may also be done directly in memory by the general form ADD
instruction
ADD src, dst

Use of this form saves considerable loadingy and storing of accumulators.

Two spacial cases of the ADD instruction are particularly useful in compilers,
interpreters, and other stack arithmetic processes:
ADD (l;}+. (R)
(where R is the stack pointer)
whlch replaces the top two elements jof the stack with their sum; and ADD
src, (R), which increases the top element of the stack by the contents of
the source address. '

The “Add Immediate” operation is yet another speclal case of this general-
ized ADD instruction:

ADD #n, dst

Immediate operations are useful in dealmg wnth constant operands Note
that:

ADD #n, R
steps the register R (which may be an index register) through n addresses
eliminating the need for a special “add-to-index- register’” instruction.

All these special cases of the ADD mstructlon apply equally well to the other
- double operand instruetions that follow.

SuBtract ' SUB src, dst . 23us
, $rC dst]
F J. L s 1 I i 1 l 1 i [1 1 I F I— |
15 2 u 6 5 o

Operation: (dst) — (src) - (dst) [in detail, (dst) 4+ ~ (src) + 1 - (dst)]
Condition Codes: Z: set if result = 0; cleared otherwise
k N: set if result < O; cleared otherwise.
C: cleared if there was a carry from the most significant
bit of the resuit; set otherwise
V: set if there was arithmetic overflow as a result of the
operation, that-is, if.the operands were of opposite
- signs and the sign of source was the same as the
. sign of the result; cleared otherwise.

Description: Subtracts the source operand from the destination operand and

leaves the result at the destination address. The original contents of the
destination are lost. The contents of the source are not affected.

19

N

CoMPars st -
2 src dst J
l ° | 1 1 1 1 | 1 1 1 1 1
15 12 i . 6 5 o}

-Operation: (src) — (dst) [in detail, (src) 4+ ~ (dst) + 1]

Condition Codes: Z: set if result = O; cleared otherwise

N: set if result < 0; cleared otherwise

C: cleared if there was a carry from the most significant
bit of the result; set otherwise

V: set if there was arithmetic overflow; that is, operands
were of opposite signs and the sign of the destination
was the same as the sign of the result; cleared
otherwise.

Description: Arithmetically compares the source and destination operands.
Affects neither operand. The only action is to set the condition codes
appropriately.

Boolean Instructions—These instructions have the same format- as the

double operand arithmetic group. They permit operations on data at the
bit level.

Bit Set BIS src,dst 2.3us

) YN B B

15 . 12) ’ 6 5) o

. Operation: (src) V (dst) - (dst)

Conditiort Codes: Z: set if result == 0; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected
V. cleared

Description: Performs “‘Inclusive OR” transfer between the source and des-
tination operands and leaves the result at the destination address; that is,
corresponding bits set in the source are set in the destination. The original
contents of the destination are lost. The source is not affected.

B8It Clear ~ BIC src, dst 29us
o] 4 src dst J
L] 1 L 1 1 I 1 1 1 [1
15 12 1" 6 5 [o]

Operation: ~ (src) A (dst) > (dst)

Z: set if result = O; cleared otherwise
N: set if high-order bit of result set; cleared otherwise -
C: not affected

V: cleared -

Conditions Codes:

Description: The BIC instruction clears each bit in the destination that cor-
responds to a set bit in the source. The original contents of the destination -
are lost. The contents of the sources are unaffected. '

*There is no read/modify/write cycle in the CMP, BIT, and TST opemtions Th4s savcs
0.4 s in ail destination address modes except register mode.

20 »

BIt Test i BIT src, dst) . 2.9us*

' i°| .3' I 1 ‘"C'l 1 I’] 1 dl" I i 1 j
e 15 - 2 1] 6 5 .)

Operation: (src)b A (dst)

Condition Codes: Z: set if result = O; cleared otherwise
N: set if high-order bit of result set; cleared otherwise
C: not affected

V: cleared

Description: Performs logical ‘‘and’’ comparison of the source and destination
operands and modifies condition codes accordingly. Neither the source nor
destination operands are affected.

The BIT instruction may be used to test whether any of the corresponding
bits that are set in the destination are also set in the source or whether
all corresponding bits set in the destination are clear in the source.

Note .that the operations of BIS, BIC, and BIT are parallel in that the same
mask may be used to set, clear and test the state of particular bits in a word.

BRANCHES—Branches have the instruction format

Operation Bxx loc Instruction Time
I operation code of fset
| 1 1 | 1 1 | 1 1 1 1 | 1 1

15 .8 7 (o]

The offset is treated as a signed two's complement displacement to be mui-
tiplied by 2 and applied to the program counter. The program counter points
to the next word in sequence. The effect is to cause the next instruction to
" . be taken from an address, “loc”, located up to 127 words back (— 254
bytes) or 128 words- ahead (+ 256 bytes) of the branch instruction. PAL-11
gives an error indication in the instruction if ““loc” is outside this range.

The PDP-11 assembler handles address arithmetic for the user and com-
putes and assembles the proper offset field for branch instructions in the
form

Bxx loc

where loc is the address to which the branch is to be made The branch
instructions have no effect on condition codes.

Unconditional Branch—

BRanch (Unconditional) . BR loc 2.6us

[°l|°||1°|l4|1|1||1|I
15 8

7 (¢}

Operation: loc - (PC)

Description: Provides a way of transferring program control within a limited
range with a one word instruction. The execution time is equal to the in-
struction time (2.6us) for the operation.

21

Simple Corniditional ‘Branches—Conditioned branches combine in one instruc-
tion a conditional skip, unconditional branch sequence.

Tummg for the conditional branches is shown as execution time if the con- .
dition is not met, followed by the execution time if the condition is met (and
a program branch occurs).

Bronch on EQual(Zero) BEQ loc 1S5us,26us
offset

L°,l LA NI l‘l R I R N .]

15 8 7 o

Operation: loc» (PC)ifZ =1

Description: Tests the state of the Z-bit and causes a_branch if Z is set. It
is used to test equality following a CMP operation, to test that no bits set
in the destination were also set in the source following a BIT operation, and
‘generally, to test that the result of the previous operatlon was zero

Thus the sequence

- CMP AB ; compare A and B
BEQ C ; branch if they are equal

willbranchtoCifA=B (A — B =0)
and the sequence

ADD AB ° ; addAtoB

BEQ C ; branch if the resuit = 0
will branchtoCifA+4+ B=0.
Branch on Not F-:--;-'l’--'-‘ BNE loc ‘4.5us.2.6us
) of fset
I O] 4% 1 4ty qo ' I
15 8 7 [}

Operation: loc -» (PC) if Z =0

Description: Tests the state of the Z-bit and causes a branch if the Z-bit is
clear. BNE is the complementary.operation to BEQ. It is used to test in-
equality following a CMP, to test that some bits set in the destination were
also set in the source, following a BIT and, generally, to test that the result
of the previous operation was not zero.

Branch on Minus BMI loc i.5u.s, 2.6us

offset
bl A L l‘l ' R N
15 8 7 o

Operation: loc > (PC) if N = 1

Description: Tests the state of the' N-bit and causes a branch if N is set. It
is used to test the sign (most significant bit) of the resuit of the previous -
operation.

Branch on PLus 8PL loc . . L5us, 26us

offset
| Jol l 101 |'° 1 | 1 1 l L 1

15 - 8 7 . o

22

Operation: loc » (PC) if N = O.

Description: Tests the state of the N-bit and causes a branch if N is clear.
BPL is the complementary operation to BMI.

Branch on Carry Set B8CS loc 1.5us,2.6us

l'||°|||3||4||l|'|l||l

15 8 7 . (o]

Operation: loc > (PC) if C =1

Description: Tests the state of the C-bit and causes a branch if C is set. It
is used to test for a carry in the result of a previous operation.

Branch on Carry Clear BCC loc 15us,2.6us
' oftset .

KN
15 8 7 o]

Operation: loc > (PC) if C =0

Description: Tests the state of the C-bit and causes a branch if C is clear.
BCC is the complementary operation to BCS.

Branch on oVerflow Set B8VS loc 15us,26us

offset J
'] 4% 4 .2, 14 ' S U
15 _ 8 7 0

Operation: loc > (PC) if V=1

Description: Tests the state of the V-bit (overflow) and causes a branch’ if
the V-bit is set. BVS is used to detect arithmetic overflow in the previous
operation.

Branch on oVerfiow Cleor BVC loc 1.5us,2.6us
offset I
L’ l ,° I 42, 169 Y I SR T
15 8 7 [o]

-

Operation: loc > (PC) if V=10

Description: Tests the state of the V-bit and causes a branch if the V-bit is
clear. BVC is the complementary operation to BVS.

Signed Conditional Branches—Particular combinations of the condition code
bits are tested with the signed conditioned branches. These instructions are
used to test the results of instructions in which the operands were consid-
ered as signed (two’s complement) values.

Note that the sense of signed comparisons differs from that of unsigned

comparisons in that in sigried 16-bit, two’s complement arithmetic the
sequence of values is as follows:

23

largest ... 077777

077776
positive .
" 000001
000000
177777
177776
negative
100001
smallest 100000
whereas in unsigned 16-bit arithmetic the sequence is considered to be °
highest ... 177777
000002
000001
lowestccoocoiiiiiiiiiin, 000000
Branch on Less Than(Zero) BLT loc 1.5 ;Ls. Z.Guﬁ
offse'
Lot w0y 1 LNT L]
15 o

Operation: loc> (PC) f N¥v =1

Description: Causes a branch if the “Exclusive OR” of the N- and V-bits are’
1. Thus BLT will always branch following an operation that added two neg-
ative numbers, even if overflow occurred.

In particular, BLT will always cause a branch if it follows a CMP instruction
operating on a negative source and a positive destination (even if overflow
occurred). Further, BLT will rever cause a branch when it follows a CMP
instruction operating on a positive source and negative destination. BLT
will not cause a branch if the result .of the previous operation was zero
. (without overflow).

Branch on Greater than or Equal(Zero) B8GE loc 1.5us,2.6u8

Lol Lo, | .2, 1:‘ T

7 (o]

Operation: loc > (PC) if N¥V =0

Description: Causes a branch if N and V are either both clear or both set.
BGE is .the complementary operation to BLT. Thus BGE will always cause
& branch when it follows an operation that caused addition to two positive
numbers. BGE will also cause a branch on a zero result.

24

Branch on Less than or Equal(Zero) BLE loc 15 us, 2.6us

offset
Iol 10 %9y 1 43, 104 PR T SR T T

15 8 7 - -~ 0

Operation: loc » (PC) if ZV(N¥V) =1

Description: Operation of BLE is similar to that of BLT but in addition will
.cause a branch if the result of the previous operation was zero.

Branch on Greater Than(2ero) BGT loc 15us,2.6us
y offset
o I [l 0 L I 1 3 1 l o L | 1 L l L 1
15 8 7 ’ o}

Operation: loc —» (PC) if Zv (N¥V) =0

Description: Operation of BGT is similar to BGE, except that BGT will not
cause a branch on a zero result.

Unsigned Conditional Branches—The Unsigned Conditional Branches pro-
vide a means of testing the resuit of comparison operations in which the
operands are considered as unsigned values.

B}onch on Hlgher BHI 15us,2.6us

l . T offset]

BN | 1 9, | AT B L 1 ' T

15 8 7 o
Operation: loc » (PC) if both CandZ = 0

Description: Causes a branch if the previous operation caused neither a carry
nor a zero result. This will happen in comparison (CMP) operations as long
as the source has a higher unsigned value than the destination.

Bronch on LOwer or Same BLOS loc . 1.5us,26us
L a I offset - J
L IR TR BT I R T R T B A
15 8 7 : [¢]

Operation: loc»> (PC)ifCvZ =1

Description: Causes a branch if the previous operation caused either a carry
or a zero result. BLOS is the complementary operation to BHI. The branch
will occur in comparison operations as long as the source is equal to, or has
a lower unsigned value than, the destination.

Companson of unsigned values with the CMP instruction can be tested for
“*higher or same’” and “‘higher”” by a simple test of the C-bit. For convenience,
the mnemonics BHIS (Branch on Higher. or Same) and BLOS (Branch on
Lower Or Same) have been defined such that BHIS = BCC and BLO = BCS.

Branch on Higher or Same BHIS loc 1.5us,2.6us
’ offset
b l 1 o 1 l 1 3 1 l ° 1 I] i l 1 1 —l
15 8 7 .)

Operation: loc—> (PC) ifC =0

Description: BHIS is the same instruction as BCC

25

Branch on i.Ower 8L0 ot

[Loy | y3, gl 1 ™
15 B8

Operation: loc > (PC) if C =1
Description: BLO is the same instruction as BCS

The following example illustrates the use of some of the instructions and
addressing modes described thus far. Two new instructions are used: INC
(INCrement) and ASL (Arithmetic Shift Left) which respectively, add 1 (INC)
and multiply an operand by 2 (ASL). Their operation is fully described later
in this chapter. :

This example demonstrates the generation of a table (histogram) that shows
the frequency of occurrence of each value in another table (within a range
of values 1-100). Histogram generation (including initialization) requires
22 words. Values outside the range 1-109 are ignored.

HIST: MOV #OTABLE, RO
MOV # —100., R1
'CLR (RO)+

INC R1

BNE CLOOP

MOV # ITABLE, RO
MOV # —1000., R1
MOV #100., R2
MOV (RO)+, R4
BLE NOCOUNT
CMP R4, R2

BGT NOCOUNT
ASL R4

INC OTABLE (R4)
INC R1

BNE HLOOP

HALT

CLOOP:

NOCOUNT:

;set up to clear output table
;100 entries in output table
;clear next entry

;check if done

;if not, continue clearing
;set up input pointer
;length of table

;max input value

;get next input vaiue
;ignore if less than or equal zero
;check against max value
;ignore if greater

;2 bytes per table entry
;increment proper element
;input done?

;if not, continue scanning
;histogram complete

The JuMP Instruction—JMP (JuMP) provides more flexible program branch-
ing then is provided with the branch instructions. Control may be transferred
to any location in memory (no range limitation) and can be accomplished
with the full flexibility of the PDP-11 addressing modes.

Jump JMP dst 1.2us
| . dst
o l 1 o 1 l 1 0 1 l 1 ! 1 1 1 | 1 1
15 . 6 5 o

Operation: dst > (PC)

Conditioned Codes: not affected

Description: Register mode is illegal in JMP instructions and will cause an
“illegal instruction’” condition. (Program control cannot be transferred to a
register.) Register deferred mode is-legal and will cause program control to
be transferred to the address held in the specified register. Note that instruc-
tions are word data and must therefore be fetched from an even-numbered

26

address. A “boundary error’’ condition will result when the processor at-
tempts to fetch an instruction from an odd address.

Deferred index mode JMP instructions permit transfer of control to the
address contained 'in a selectable element of a table of dispatch vectors.

SUBROUTINES—The subroutine call in the PDP-11 provides for automatic
nesting of subroutines, reentrancy, and muitiple entry points. Subroutur]es
may call other subroutines (or indeed themselves) to any level of nesting
without making special provision for storage of return addresses at each
level of subroutine call. The subroutine calling mechanism modifies no fixed
location in memory and thus also provides for reentrancy. T!ﬁs allows one
copy of a subroutine to be shared among several interrupting processes.

Jump to SubRoutine JSR reg,dst 4.2 .us
dst
LO l L o 1 l A 4 1 | I'eq 1 | '} L i l J ! 1
15 9 8 6 5) o
Operation: dst —» (tmp) (tmp is an internal processor register)

(reg) | (push reg contents onto processor stack)
(PC) —> (reg) (PC holds location following JSR; this address
(tmp) > (PC) now put in reg)

Condition Codes: not affected

Description: Execution time for JSR is the sum -of instruction and destination
times. In execution of the JSR, the old “contents of the specified_register,
(the “linkage pointer’’), are automatically pushed onto the processor stack
and new linkage information placed in the register. Thus subroutines nested
within subroutines to any depth may all be called with the same linkage
regfster. There is no need either to plan the maximum depth at which any
particular subroutine will be called or to inciude instructions in each routine
to save and restore the linkage pointer. Further, since all linkages are saved
in a reentrant manner—on the processor stack—execution of a subroutine
" may be interrupted, the same subroutine reentered and executed by an
interrupt service routine. Execution of the initial subroutine can then be
resumed when other requests are satisfied. This process (called nesting) can
proceed to any level.

A subroutine called with a JSR reg, dst instruction can access the arugments
following the call with either autoincrement addressing, (reg) -+, (if argu-
ments are accessed sequentially) or by indexed addressing, X(reg), (if ac-
cessed in random order). These addressing modes may also be deferred,
@ (reg)+4 and @X(reg) if the parameters are operand addresses rather than
the operands themselves.

JSR PC, dst is a special case of the PDP-11 subroutine call suitable for
subroutine calls that transmit parameters through the general registers. No
register except the program counter is modified by this call.

Another special case of the JSR instruction is JSR PC, (SP)4+ which ex-
changes the top element of the processor stack and the contents of the
program -counter. Use of this instruction allows two routines to swap pro-
gram contro! and resume operation when recalled where they left off. Such

“~routines are called '‘co-routines.”
1

Return from a subroutine is done by the RTS instruction: RTS reg loads the
cbntents of the reg into the PC and pops the top element of the processor
stack into the specified register.

27

ReTurn from Subroutine RTS reg 3.5us
. " reg J
°f 49, I |°| I‘lzn] lol I L1
S5 ’ / 3 2 [

Operation: (reg) -» (PC)
3 1 (reg)
Condition Codes: not affected

Description: Loads content of reg into PC and pops the top element of the
processor stack into the specified register. Execution time for RTS is equal
to the basic instruction time.

Return from a subroutine is typically made through the same register that
was used in its call. Thus, a subroutine called with a JSR PC, dst exists
with a RTS PC and a subroutine called with a JSR R5, dst, picks up param-
eters with addressing modes (R5)4-, X(R5), or @X(R5) and finally exists
with a RTS R5. : :

Programming Examples of the Use of Subroutines—

1. Passing arguments in subroutine calls—The subroutine TOLER
checks each element in an array of unsigned integers to determine
whether any elements are outside specified limits. If all are within
tolerance, the value O is returned in the register RO, If TOLER find
an .element out of tolerance, it returns the address of the bad
element + 2 in RO. The calling sequence for TOLER is:

« JSR R5, TOLER
- WORD ARRAY ;address of array tq be

;checked (‘WORD expres-

;sion—defines a word equal

;to the value of the expres-

;sion)

:minus # of items in array

;upper limit of tolerance

;lower limit of tolerance

;subroutine returns here

- WORD —LENGTH
« WORD HILIM
+ WORD LOLIM

:Tolerance Check-Array Elements Within Limits?

28

TOLER: MOV (R5)+, RO ;get array address
MOV (R5)+4, R1 ;get minus the length
MOV (R5)4-, R2 ;get high tolerance limit
MOV (R5)+, R3 ;get low tolerance limit
TLOOP: MOV (RO)+, R4 ;get next element of array
CMP R4, R2 ;check it against high limit
BHI TEXIT ;leave routine if higher
CMP R4, R3 ;check it against low limit
BLO TEXIT ;leave routine if lower
INC R1 sincrement . count, check
;whether at end of array
- BNE TLOOP ;continue if not at end yek
CLR RO ;exit with RO = 0 if all ok
TEXIT: RTS RS ;return, RO holds poirter

yor O

The instruction INC R1 increases the contents of R1 by 1 and the instruction
CLR RO zeroes the register RO

2.

Saving and restoring registers on the stack—This subroutine pushgs
RO-R5 onto the stack. It is called by:

JSR R5, SAVE
SAVE: MOV R4, —(SP) ;R5 was pushed by the JSR"
MOV R3, —(SP) ;RS will be at the bottom
"+ ;of the stack
N - MOV R2, —(SP) ;R4, R3, R2, R1, and RO
;in order
MOV R1, —(SP) :will be above it
MOV RO, —(SP) ;RO is at the top of the
: ;stack
JMP R5 ;R5 holds the return ad-
;dress

The TST operation is equivalent to comparing the operand with O, i.e.,

TST opr = CMP opr, #0

The only effect is to set the appropriate condition codes.

The following example illustrates a subroutlne to restore RO-R5 from the

stack.

REST: TST (SP) + ;this increments the SP by 2
MOV (SP)+4, RO ;the registers are restored
MOV (SP)+4, R1 ;in reverse order to that in
MOV (SP)+, R2 which
MOV (SP)4-, R3 ;they were put on the stack
MOV (SP)+4, R4 ;R5 is loaded into the PC
RTS RS and the old R5 restored

The operation TST (SP)4 removes the top element on the stack. At the time
it is used, the top element holds the contents of R5 that. were saved by the
call to REST. Since R5 is to be loaded with the value saved on the stack
by SAVE, this information is not needed.

3. Stacks, recursion, and nesting——The following subroutine converts

an unsigned binary integer to a string of typed ASCIl characters. In
the routine, the remainders of successive divisions by 10 are saved
and then typed in reverse order.

The operation of the subroutine is to call a part of itself (begin-
ning with DECREM) repeatedly until a zero quotient is calculated
by an integer divide subroutine, IDIVR. At each iteration, the dividend
is divided by 10, the resulting quotient replaces the dividend, and
the remainder is pushed onto the processor stack. The processor
stack thus holds interleaved data (remainders) and control informa-
tion (return addresses from calls to DECPNT and DECREM) when
the quotient finally comes up as O and the branch iis made to
DECTTY. The portion of the routine beginning at DECTTY then pops
a remainder from the stack, converts it to an ASCIl character, types

- it and then returns control to DECTTY (with RTS PC) until the stack

is reduced finally to its state immediately after the call to DECPNT.

29

o
g.¢
i)
3

A charactér is typed in DECTY by loading the teleprinter buffer
(TPB) and waiting for the teleprinter READY flag, the most significant

bit of the low-order byte of the teleprinter status word (TPS),
to be set.

. The symbols CR and LF are assumed equal to the ASCIl repre-

sentations for carriage return and line feed respectively.

This’ subroutine types the unsigned integer in RO. It illustrates recursion and

the use of stacks.

DECPNT: MOV #10., R2 ;set up divisor of 10
DECREM: JSR PC, IDIVR ;subroutine divides (RO) by
i(R2)
MOV R1, —(SP) ;quotient is in RO, remain-
;der is in R1
TST RO ;after pushing remainder
- ;onto stack test quotient
BEQ DECTTY ;if the quotient is 0, we're
:done getting remainders
JSR PC, DECREM ;if not try again
DECTTY: MOV (SP)+, RO ;get next remainder
: ADD #60, RO ;make an ASCII character
TTYOUT: MOV RO, TPB -;type the ASCII character in
;RO
TTYLUP: TST TPS ;wait for the teleprinter to
;be done
BPL TTYLUP “;TPS is negative when th
: ;TP is done :
CMP. #CR, RO ;was the character of a car-
;riage return
BEQ TTYLF ;if not: return, if so; get a
;line feed
RTS PC ;returns either to DECTTY
. ;or main program
TTYLF: MOV '#LF, TPB ;type a line feed ,
' BR TTYLUP ;and wait for it to be com-

;pleted

. Muitiple entry points—In the example that follows, the subroutines
described above are used to type out all the entries in a table of
unsigned integers that are not within specified tolerance. .

The subroutine TOLER is entered -at TOLER for initialization and at -
- TLOOP to pick up each bad entry of the array after the first one.

The subroutine DECPNT is entered at DECPNT to print the value of
the unsigned binary number held in RO and at TTYOUT to print the
ASC! character held in RO. TTYOUT prints the carriage return, line
feed sequence when it sees the carriage return character.

This routine types all out-of-tolerance elements of an integer array.
The program starts at TYPOUT.

30

TYPFIN:
TYPOUT:

TYPCHK:

HALT

JSR R5, TOLER

. WORD ARRAY

. WORD —LENGTH
. WORD HILIM

. WORD LOLIM
BEQ TYPFIN

JSR R5, SAVE
MOV —(RO0), RO
JSR PC, DECPNT
MOV #CR, RO
JSR PC, TTYOUT

JSR R5, REST
JSR R5, TLOOP

BR TYPCHK

;suspend processor opera-
;tion, wait for key continue
;get address of bad item;
;initialization entry

;address of array

;-length of array

;high limit

Jlow limit

:Z-bit is set if no more out
;of limits

;an element is out of limits,
;save registers

;RO holds address 4 2, get
;operand into RO

sprint out number

;type CR, LF

;note use of second entry
;point

;restore registers

;continue searching array,

_ ralternate entry

;another bad element?

SINGLE OPERAND INSTRUCTIONS-Single Operand Instructions are repre-

sented as:
OPeRation

OPR dst

Instruction Time

‘Il'lll

operation code

1 L

dst
i 1 | L1

15

6

5 o]

The execution time for single operand instructions is the sum of the basic
instruction time and destination a’ddress time for the operation.

General Operations—

CLeaR CLR dst 2.3us
| | dst
0 1 ° 1 I 1 5 1 I 1 ° 1 1 1 1 1 1 I
15 [5 o
Operation: 0 > (dst)
Condition Codes: Z: set .
N: cleared
C: cleared
V: cleared
Description: Zeroes the specified destination.
INCrement * INC—dst 2.3us
: dst .
ljJ L 0‘I l] 5 1 l 1 2 1 1 1 |] 1 J
15 6 5)

Operation: (dst) 4+ 1 > (dst)

Condition Codes: Z: set if the result is O; cleared otherwise
N: set if {je result is < 0; cleared otherwise
C: not affected
V: set if (dst) held 077777; cleared otherwise

Description: Aqu 1 to the contents of the destination.

31

DECrement DEC dst 2.3us
dst

Lot oy 1 usy 1 ogsy |0 L,
15

-3 5 e

Operation: (dst) — 1 —» (dst)

Condition Codes Z: set if the result is O; cleared otherwise
N:~set if the result is < O; cleared otherwise
V: not affected
C: set if (dst) was 100000; cleared otherwise

Description: Subtracts 1 from the contents of the destination.

NEGate NEG dst 2.3us
dst
l 0] 0 %] 5%, 1 P4y 1 1]) 1
15 -6 5 [}

Operation: — (dst) > (dst)
Condition Codes: as in SUB dst, #0

= Z: set if the result is O; cleared otherwise
N: set if the result is < O; cleared otherwise
C: cleared if the result is 0; set otherwise

V: set if the result is 100000; cleared otherwise

Description: Replaces the contents of the destination address by their two's
complement. (However, 100000, is replaced by itself—in two’s complement
notation the most negative number has no positive counterpart.)

TeST TST dst 23us*
dst]
[°1 © 1 l £ 3 1 1 7 1 11 | 1 1
15 6 5 o

Operation: 0 — (dst)

Condition Codes: as in CMP #0, dst

set if the result is O; cleared otherwise
set if the result is < O; cleared otherwise
cleared

cleared

- 502n3

Description: Sets the condltlon codes Z and N accordlng to the contents of
the destination address.

COMplement COM dst 23us
. dst
I£ l i ° 1 I 1 5 I l 1 ! 1 | A 1 l 1 1
15 6 5 B (o]

Operation: ~ (dst) > (dst)

Condition Codes: Z: set if result is 0; cleared otherwise
N: set if most significant bit, of result set; cleated other-
wise
C: set
V: cleared

Description: Replaces -the : contents: of the destmatlon address by their
logical complement (each: bit .gqual to. O is_set. and each bit equal to'1 is
cleared).

* See the note for the CMP instruction.

32

Multiple Precision Operations—It is sometimes convenient to do arithmetic
on operands considered as muitiple words.- The PDP-11 makes special pro-

vision for such operations with the instructions ADC (ADd Carry) and SBC
" (SuBtract Carry).

ADd Carry ADC dst 2.3us

dst
{OI lol l 151 l 151 l 1 1 | 1 1 J
15 .

6 5 o

Operation: (dst) 4 (9) - (dst)

Condition Co;:les: . Z: -setif result = 0; cleared otherwise
N: set if result < 0; cleared otherwise
C: set if (dst) was 177777 and (C) was 1; cleared other-
wise
V: set if (dst) was 077777 and (C) was 1; cleared other-
wise.

Description: Adds the contents of the C-bit into the destination. This permits
the carry from the addition of the two low-order words to be carried into the
high-order result.

Double precision addition may be done with the following instruction se-
quence: '

ADD AGC, BO ; add low-order parts
ADC B1 ; add carry into high-order
ADD Al,\Bl ; add high-order parts
SuBtract Carry SBC dst 23us
dst
‘lol WAl I R AT T O B ' IJ

15 6 5 0
Operation: (dst) — (C) - (dst)

Condition Codes: Z: set if the result 0; cleared otherwise
N: set if the result < O; cleared otherwise
C: cleared if the result is 0 and C = 1; set otherwise
V: set if the result is 100000; cleared otherwise

Description: Subtracts the contents of the C-bit from the‘de,stination. This
permits the carry from the subtraction of two low-order wotds to be sub-
tracted from the high-order part of the result.

Double precision subtraction is done by: -

SUB A0, BO -
SBC B1
SUB Al, Bl
Double precision negation is accomplished with:
NEG BO ;negate low-order part; sets C unless BO =0
SBC Bl ;makes “NEG B1"” = “COMB B1’’ unless BO =0
¢ NEG Bl ;negate high-order part)

Rotates—Testing of sequential bits of a word and detailed bit manipulation
are aided with rotate operations. The instructions ROR (ROtate Right) and
ROL (ROtate Left) cause the C-bit of the status register to be effectively
appended to the destination operand in circular bit shifting.

33

___RoL~

dst 1 1 ROR
(c) ‘ L 1 ‘ R | 1 L 1 , i L 1 1 1
15 N 0
ROMate Right ROR dst ' - 2.3us
° l dst l
| O] 4 °3 | 4%, 1 9% L4 PR |
- 15 . 6 -] o}

Condition Codes: Z: set if all bits of result = O; cleared otherwise.

N: set if the high-order bit of the resuit is set; cleared
otherwise

C: loaded with the Iow-order bit of the destination

V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the rotate operation).

Description: Rotates. all bits of the destination right one place. Bit O is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into bit 15 of the destination. -

ROtate Left ROL dst 2.3us
I dst
o | 1 0 1 I L € 1 L 1 ! 1 l 1] l 1 1
15 6 5 [5)
Condition Codes: Z: set if all bits of the result word = Q; cleared other-
wise

: set if the high-order bit of the result word is set;
cleared otherwise
C: loaded with the high-order bit of the destination
V: loaded with the Exclusive OR of the N-bit and C-bit
(as set by the completion of the rotate operation)

b4
4

Description: Rotates all bits of the destination Ieﬁ one place. Bit 15 is loaded
into the C-bit of the status word and the previous contents of the C-bit are
loaded into bit O of the destination.

SWAp Bytes SWAB dst © 23us
I dst
o l 1 0 1 l L 0 £ - I 1 3L I i 1 I i A
15 6 5 0

Condition Codes: Z: set if low-order byte of result = O; cleared otherwise
N: set if high-order bit of low-order byte (bit 7) of result
is set; cleared otherwise
C: cleared
V: cleared

Description: Exchanges high-order byte and low-order byte of the destination
word (dst must be a word address).

Shifts—Scaling data by factors of 2 is accomplished by the shift instryctions:

ASR—Arithmetic Shift Right
ASL—Arithmetic Shift Left

The sign bit (bit 15) of the operand is replicated in shifts to the right. The
low-order bit is filled with O in shifts to the left. Bits shifted out of the C-bit
are lost. -

Condition Codes: Z: set if the result = 0; cleared otherwise

N: set if the high-order bit of the result is set; cleared
otherwise

C: loaded from the Iow order bit of the destination

V: loaded from the Exclusive OR of the N-bit and C-bit

-(as set by the completion.of the shift operation)

Descruptmn Shifts all bits of the destination right one place. Bit 15 is repli-
cated. The C-bit is loaded from bit O of the destination. ASR performs signed
division of the destination by 2.

Arithmetic Shift Left ASL dst 23us

[OI 1 %, I ;sl | 3, 1 1 | ;1 1

Condition Codes: Z: set if the result = O; cleared otherwise

N: set if the high-order bit of the result is set; cleared
otherwise

C: loaded with the high-order bit of the destination

V: loaded with the Exclusive OR of the N-bit and C-bit

(as set by the completion of the shift operation) .

Description: Shifts all bits of the destination left one place. Bit O is loaded
with a 0. The C-bit of the status word is loaded from the most significant bit
of the destination. ASL performs a signed multiplication of the destination
by 2.

Multiple precision shifting is done with a sequence of shifts and rotates.

Double Precision Right Shift:

ASR Al; low-order bit of Al to C-bit
ROR AQ; C-bit to high-order bit of AO

Double Precision Left Shift:

ASL AO;. high-order bit of AO to C-bit
ROL Al; C-bit to low-order bit of Al

Normalizatidn of operands (scaling of the operand until the operand taken
as a 15-bit fraction with sign is in the range — 14, < operand < 14) pro-
ceeds as follows:

NORM: ASL A ; shift O’s into low-order bit
BEQ NFIN ; if the result is O, the operation is
; complete
BVC NORM ™ if the sign did not change, contmue
ROR A ;restore the sign
BR = NDONE ; normalization complete
NFINmct ROR A B ﬁéstore the sign: 000000 or 100000
Tanto CASR 0 Ao a’ﬂﬁl’féplicéte ¥ 000000 or 140000
NDONE:

35

Double precision normalization proceeds similarly:

DNORM: ASL AO ; double precision left shift
ROL Al .
BEQ DZERO ; high order result 0?. if so, check low
BVC DNORM ; if the sign did not change, continue

ROR Al ; restore the sign
BR . DNDONE ; normalization complete
DZERO: TST AO ; low order zero, too?
BNE DNORM ; if not, continue normalization
ROR Al ; restore the sign; 000000 or 100000
ASR Al ; and replicate it; 000000 or 140000

DNDONE:

The following example illustrates the use of shifts and rotates in a 16-bit un-
signed integer multiply subroutine. Access of operands through address
parameters following the subroutine is also shown. The multiplication takes
115-170 us in in-line code. The entire subroutine. as shown below takes
approximately 200 us and requires 16 words. The calling sequence is JSR

R5, MULT. ;
- WORD MCAND ; address of multiplicand P
- WORD MPLIER ; address of multiplier
- WORD PROD ;-address of product

MULT: CLR RO
MOV @ (R5) 4+, R1 ; get multiplier into R1
MOV @ (R5) -+, R2 ; get multiplicand into R2

MOV #-—16., R3 ; set counter
MLOOP: ASL RO) ; double prec shift
ROL R1 ; shift and add mulitiply
BCC NOADD ; most significant bit governs add
ADD R2, RO ; if set add in multiplicand
ADC R1 ; keep 32-bit product
NOADD: 'INC R3 ; done?
BNE MLOOP ; if not continue
MOV (R5) 4, R2~ ; get address to store prod.
MOV RO, (R2) 4 ; put low-order away, move to high
MOV R1, (R2) ; put high-order away
RTS RS ; return to calling program

BYTE OPERATIONS—The PDP-11 processor includes a full complement of
instructions that manipulate byte operands. Addressing is byte-oriented so
that instructions for byte manipulation are straightforward. In addition, byte
instructions with autoincrement or autodecrement direct addressing cause
" the specified register to be stepped by one to point to the next byte of data.
Byte operations in register mode access the low-order byte of the specified
register. These provisions enable the PDP-11 to perform as either a word or
byte processor.

Timing of byte instructions is the same as for word instructions except that
an additional 0.6 us is required for access of bytes at odd addresses.

Double Operand Byte Instructions—

‘MOVe Byte MOVB sro,dst 23us
[\ : l src I : dst - J
|| R S R T | 'R S N R |

15 12 6 S o

36

Operation: (src) - (dst)
Condition Codes: Set on the byte result as in MOV

Description: Same as MOV instruction. The MOVB instruction in register mode
(unique among byte operatibns) extends the- most significant bit of the byte
register (sign extension). Otherwise MOVB operates on bytes exactly as MOV
operates on words.

CoMPare Byte CMP8 src,dst 23us*
©osrc dst
r‘ | Ll [| r TR T 4‘]
15 12 1" 6 5 0
Operation: (src) — (dst) ; in detail (src) 4+ ~ (dst) + 1

Condition Cades: Set on the byte result as in CMP

Desc¢ription: Same as CMP instruction.

Blt Set Byte BISB src,dst 2.3us

) _ sre dst J

m 15 l Lo 1 o4 g l S D | ~
15 12 N 6 5 (o]

Operation: (src) V (dst) - (dst) .
Condition Codes: Set on the byte result as in BIS
Description: Same as BIS.

Bit Clear Byte BICB src , dst 2.3us
i sfc ’ dst
ITI 41 I 'R W S T l I A N J
15 2 1" . 6 5 o} .

Operation: ~ (src) (dst) > (dst)
Condition Codes: set on the byte result as in BIC

Description: Same as BIC.

Bit Test Byte BITB sre, dst o 23us®

sre dst
FIIL[ILI1IIIIIII]

15 2 N 6 5 S 0

Operation: (src) (dst)
Condition Codes: Set on the byte result as in BIT
Description: Same as BIT.

The following subroutine scans a packed character string of variable length
lines, removes blanks and unpacks the string to left-justified length lines.
INSTRING is the address of the INput STRING, OUTSTRING is the address
of the OUTput String. EOLCHAR, SPCHAR, and EORCHAR are the End Of
Line CHARacter, SPace CHARacter, and End of Record CHARacter respec-
tively. -

* See the note for the CMP instruction.

LNLINE is the Length of uNpacked LINES. The routine requires 24 words.

EDIT: MOV #INSTRING, RO ; set up input byte pointer
MOV #OUTSTRING, R1 ; set up output byte pointer
MOV #EOLCHAR, R2 ; put high use constant in reg.
. MOV #SPCHAR, R3 ; to save time in loop
NOLINE: MOV #LNLINE, R4 ; R4 holds # char left in line
NXTCHR: MOVB (RO) 4 ,R5 ; get next byte
CMP R5, R2 ; end of line?
BEQ FILINE ; if yes, fill line
CMP R5, R3 ; blank?
BEQ NXTCHR ; if yes, skip character
DEC R4 ; decrement # of characters left in line
MOVB R5, (R1) + ; move byte to output string
BR NXTCHR ; continue
FILINE: CLRB (R1) + ; put a blank byte in output
DEC R4 ; decrement # char left
BNE FILINE ; continue if not end
CHKEND: CMPB (R0O), # EORCHAR ; end of record?

BNE NULINE . ; if not EOR, start next line

Single Operand Byte Instructions—

CLeaR Byte CLRB dst . 2.3us
dst J

‘1 .9 | 485, t 409, l PR A
15 6 5 [o]

Operation: 0 > (dst)
Condition Codes: Set on the byte result as- in CLR
Description: Same as CLR

INCrement Byte INCB dst 23us

[]
1 490, | 45, 1 ;2, I T B U
15

Operation: (dst) + 1 > (dst) .
Condition Codes: Set on the byte result as in INC -

Description: Same as INC. The carry from a byte does not affect any other
byte. - R i
DECrement Byte DECB- dst 23us

dst
! I 1 ° 1 l I 5 1 I i 3 1 I 1 I l I 1
15 6 5 o

Operation: (dst) — 1 — (dst)
Condition Codes: Set on the byte resuit as in DEC
Description: Same as DEC.

NEGate Byte NEGB -dst _ 23us

Operation: —(dst) > (dst) ; in detail, ~ (dst) 4 1 - (dst)
Condition Codes: Set on the byte result as NEG
Description: Same as NEG.

TeST Byte TSTB dst o 2.3us*
: i . dst J
[‘ I 1 0 1 I i 5 1 l [7 1 L 1 1 l 1 1
15)

Operation: 0 — (dst)
Condition Codes: Set on the byte result as TST

Description: Same as TST. _
COMplement Byte COMB dst ’ 2.3us

’ dst l
L‘l N S N I [R
15 6 5)

Operation: ~ (dst) - (dst)
Condition Codes: Set on the byte result as COM

Description: Same as COM.

ADd Carry Byte ADCB dst ' 23us
dst I
I_’ | 1 ° 1 I 1 5 A | 1 5 1 l 1 1 l i 1
15 ! 6 5 o

Operation: (dst) 4 (C) — (dst)
‘Condition Codes: Set on the byte result as ADC
Description: Same as ADC. i

SuBtract Carry Byte SBCB dst . 2.3us
dst I
[1 l i 01 i 1 5] 1 6y 1 1 | 1 1
15 : : 6 5 (o]

Operation: (dst) — (C) - (dst)
Condition Codes: Set on the byte result as SBC

Description: Same as SBC.

ROtate R'ght Byte RORB dst 23us®
dst

I ‘1 ,0, I ,8, 1| 19 1 I TR BT I

5 - 6 5 o

Operation: as in ROR on byte operands
Condition Codes: Set on the byte result as ROR
Description: Same as ROR

* See the note for the CMP instruction.

39

ROtate Left Byte ROLB dst v 23us¥
B 1

T 2
ast
1' lol I 161 | Isl I 1 1 l 1 IJ
15 6 S . (o]

Operation: as in ROL on byte operands
Condition Codes: set on the byte results as ROL
Description: Same as ROL

Arithmetic Shift Right Byte ASRB dst 23us¥

1| 1% I lG.I | 12y ' N
15 6 5 [}

Operation: as in ASR on byte operands
Condition Codes: set on the byte result as ASR

Description: Same as ASR

Arithmetic Shift Left Byte ASLB dst 23us¥
. dst J
E Il 4% | 48,3 1 43, ' DA R 1
15 6 5 - (o]

Operation: as in ASL on byte operands
Condition Codes: set on the byte results as ASL

Description: Same as ASL

-CONDITION CODE OPERATORS—Condition code bperators set and clear con-
dition code bits. Selectable combinations of these bits may be cleared or set
together in one instruction. -

Condition Code Qperators 1Sus

[AEnann
oy 40, L 4o, 1 42,4 4 e
15 : s 4 3 2 1 0 .

Condition code bits corresponding to bits in the condition code operator
(bits 3-0; N, Z, V, C) are modified according to the sense of bit 4, the set/
clear bit of the operator. The following mnemonics are permanent symbols
in the assembler:

Mnemonic Operation Op Code Mnemonic Operation Op Code

CLC Clear C 1000241 SEC Set C 000261
CLv - Clear V 000242 SEV Set V 000262
ClL.Z Clear Z 000244 SEZ Set Z 000264
CLN Clear N 000250 SEN Set N 000270

Timing for all condition code operators is the basic instruction.time (1.5us)
for the operators. (The codes 000240 and 000260 are the shortest ‘‘no-opera-
tion’’ instructions.)

¥ Shift and rotate operations require an' additional 0.6 ps to access bytes at odd
addresses.

40

Combinations of the above set or clear operations mav be ORed together to
Combinations of the above set or clear operations may pe UXed ogether 1o

form new instruction mnemonics. For example: CLCV = CLC ! CLV. The new
instruction clears C and V bits. (*'!"” signifies “inclusive or' in PAL-11.)

MISCELLANEOUS CONTROL INSTRUCTIONS

RESet ExTernal bus RESET : 20 ms
0] 4O, | 4% 1 4% | 404 1 .51_J
15 o]

Condition Codes: not affected

Description: Sends an INIT pulse along the Unibus by the processor. All
devices on the bus are reset to their state at power-up.

WAi? for InterrupT WAIT 1.8.us
Iiolklol l. 0, | 9,] 1 %1 } L l
15 : (o]

Condition Codes: not affected ‘ .

Description: Provides a way for the processor to relinquish use of the bus
while it waits for an external interrupt. Having been given a WAIT command,
the processor will not compete for bus use by fetching instructions or
operands from memory. This permits higher transfer rates between a device
and memory, since no processor-induced latencies will be encountered by
bus requests from the device. In WAIT, as in all instructions, the PC points
to the next instruction following the WAIT operation.

Thus when an interrupt causes the PC and PS to be pushed onto the proces-
sor stack, the address of the next instruction following the WAIT is saved.
The exit from the interrupt routine (i.e. execution of an RT! instruction) will
cause resumption of the interrupted process at the instruction following the
WAIT.

HALT HALT 1.8us
R l 1.0 L 19 1 4,09 1 109, 1 0 94]
1 ‘ : [¢]

Condition Codes: not affected

Description: Causes the processor operation to cease. The console is given
control of the bus. The console data lights display the contents of RO; the
console address lights display the address of the halt instruction. Transfers
on the Unibus are terminated immediately. The PC points to the next in-
struction to be executed. Pressing the continue key on the console causes
processor operation to resume. No INIT signal is given.

Processor Traps —Processor Traps are internally generated interrupts.
Error conditions, completion of an instruction in trace mode (i.e. T-bit of
status word set), and certain instructions cause traps. As in interrupts, the
current PC and PS are saved on the processor stack and a new PC and PS
are loaded from the appropriate trap (interrupt) vector. See Appendix C for
a summary of Trap Vector Addresses.

Iragg Instructions—Trap Instructions provide for calls to emulators, 1/O
monitors, debugging packages, and user-defined interpreters.

41

EMulotor Trops EMT xxx] 89us

['ll°|'l |4||°|l| Lo |.J
7

15 8 0

Operation: (PS) | SP
(PC) | sP
(30) » PC
(32) > PS

Condition Codes: loaded from trap vector.

Description: Performs a trap sequence with a trap vector address of 30.
All operation codes from 104000 to 104377 are EMT calils. The low-order
byte, bits 0-7 of the EMT instructions, may be used to transmit information
lo the emulating routine (e.g., function to be performed). The trap vector
for EMT is at address 30. The new PC is taken from the word at address 30;
the new central processor status (PS) is taken from the word at address 32.

TRAP TRAP xxx 8.9us

. XXX
[-'l l°| I 14 141 1 I 1 1 I 1]
8 7 :

15

(o}

Operation: as in EMT except the trap vector is located at 34.
Condition Codes: loaded from trap vector.
Description: Performs a trap sequence with a trap vector address of 34.
Operation codes from 104400 to 104777 are TRAP instructions. TRAPs and
EMTs are identical in operation, except that the trap vector for TRAP is at
address 34. ’ s

170 Trap 10T 8.9us

LOL lol l |°| I lol I Iol l l4lJ
15

Operation: as EMT except the trap vector is located at address 20 and no
information is transmitted in the low byte. ’

Condition Codes: Ioadéd from trap vector.
Description: Used to call the I/ O executive routine 10X,

No defined mnemonic 000003 89us

Lol‘ 4% | 40y] 4o {40, 143, I
15 » 0

Operation: Same as 10T except that trap vector is located at address 14.
Condition Codes: loaded from trap vector.
Description: Used to call debugging aids. The user is céutioned against -

employing code 000003 in programs run under these debugging aids.

42

ReTurn from Interrupt RTI 4.8.us

‘ r°i 4 9, | 49,] 40, } ,0, I‘IZJ_J
15 o

Operation: SP 1 (PC), SP 1 (PS).
Condition Codes: loaded from processor stack.

Description: Used to exit from an interrupt or TRAP service routine. The PC
and PS are restored (popped) from the processor stack. :

Instruction traps are also caused by attempts to execute instruction codes
reserved for future processor expansion (reserved instructions) or instruc-
tions with illegal addressing modes (illegal instructions). Order codes not
corresponding to any of the instructions described above are considered to
“be reserved instructions. lllegal instructions are JMP and JSR with register
mode destinations. Reserved and iliegal instruction traps occur as described
under EMT, but trap through vectors at addresses 10 and 04 respectively.

Stack Overflow Trap—Stack .Overflow Trap is a processor trap through the
vector at address 4. It is caused by referencing addresses below 400, through
the processor stack pointer R6 (SP) in autodecrement or autodecrement de-
ferred addressing. The instruction causing the overflow is completed before
the trap is made.

Bus Error Traps—Bus Error Traps are:

1. Boundary Errors—attempts to reference word operands at odd ad-
-dresses.

2. Time-Out Errors—attempts to reference addresses on the bus that
made no response within 10 us. In general, these are caused by at-
tempts to reference nonexistent memory, and attempts to reference
nonexistent peripheral devices. *

Bus error traps cause processor traps through the trap vector address 4.

Trace Trap—Trace Trap enables bit 4 of the PS word and causes processdr
traps at the end of instruction executions. The instruction that is executed
after the instruction that set the T-bit will proceed to completion and then
cause a processor trap through the trap vector at address 14.

The following are special cases and are detailed in subsequent paragraphs.

. The traced instruction cleared the T-bit.

. The traced instruction set the T-bit.

. The traced instruction caused an instruction trap.

. The traced instruction caused a bus error trap.

The traced instruction caused a stack overflow trap.

The process was interrupted between the time the T-bit was set and
the fetching of the instruction that was to be traced.
The traced instruction was a WAIT.

The traced instruction was a HALT.

/

PN oOrwWN

. An instruction that cleared the T-bit—Upon fetching the traced instruction
an internal flag, the trace flag, was set. The trap will still occur at the end
of execution of this instruction. The stacked status word, however, will have
a clear T-bit.

43

An instruction that set the T-bit—Since the T-bit was already set, setting it
again has no effect. o

An instruction that caused an Instruction Trap—The instruction trap. is_
sprung and the entire routine for the service trap is executed. If the service
- routine exists with an RTI or in any other way restores the stacked status
word, the T-bit is set again, the instruction following the traced instruction
is executed and, unless it is one of the special cases noted above, a trace
trap occurs.

An instruction that caused a Bus Error—This is treated as in an Instruction
Trap. The only difference is that the error service is not as likely to exit
with an RT1, so that the trace trap may not occur.

An instruction that caused a stack overflow—The instruction completes
execution as usual—the Stack Overflow does not cause a trap. The Trace
Trap Vector is loaded into the PC and PS, and the old PC and PS are pushed
onto the stack. Stack Overflow occurs again, and this time the trap is made.,

An interrupt betweéen setting of the T-bit and fetch of the traced instruction—
The entire interrupt service routine is executed and then the T-bit is set again
by the exiting RTI. The traced instruction is executed (if there have been no

other interrupts) and, unless it is a special case noted above, causes a trace
trap.

Note ‘that no interrupts are acknowledged between the time of fetching any
trapped instruction (including one that is trapped by reason of the T-bit being
set) and completing execution of the first instruction of the trap service.

A WAIT—The trap occurred immediately. The address of the next instruction
is saved on the stack.

-

* A HALT-——The processor halts. When the continue. key on the console is
pressed, the instruction following-the HALT is fetched and executed. Unless
it is one of the exceptions noted above, the trap occurs immediately follow-
ing execution.

Trap priorities—In case multiple' processor trap conditions occur simultane-
ously the following order of priorities is observed (from high to low):

1. Bus Errors

2. “Instruction Traps
3. Trace Trap

4. Stack Overflow Trap

The details on the trace trap process have been described in the trace trap
operational description which includes cases in which an instruction being
traced causes a bus error, instruction trap, or a stack overfiow trap.

If a bus error is caused by the trap procéss handling instruction traps, trace
traps, stack overflow traps, or a previous bus error, the processor is halted.

If a stack overflow is caused by the trap process in handiing bus errors, in-

struction traps, or trace traps, the process is completed and then the stack
overflow trap is sprung. :

CHAPTER 5

ADDRESS ALLOCATION

The PDP-11 provides for a very flexible addressing structure. Both 16-bit
words and 8-bit bytes can be directly addressed. Addresses are 16-bits long
allowing for direct addressing of 32,768 words or 65,536 bytes.

ADDRESS MAP

As a result of the organization of the PDP-11, bus addresses serve several
functions. A map. of possible PDP-11 bus address. allocation is shown

BUS ADDRESS

0

400,

160000,

177777,

CONTENT

Program Counter

Processor Status Word

Stack Pointer Overflow Limit

Stacks, Program and Data Storage

Status Register and
Data Buffer Register

Device Address Register
Word Count Register
Memory Address Register
Control and Status Registers

Figure 5-1

Simplified Address Allocation Map

45

3

Processor._
Trap Vectors
and Device
Interrupt
Vectors

Typical
Registers for
Programmed
Transfer
Device

Typical
Registers
for a
Block
Transfer
Device

in Figure 5-1. Three areas of addresses of particular interest to the pro-
grammers are: 1) Interrupt and Trap Vectors; 2) Processor Stack and General
Storage; and 3) Peripheral Device Registers.

INTERRUPT AND TRAP VECTORS—Addresses between location zero and
location 400, are generally reserved for interrupt and trap vectors.

PROCESSOR STACK AND GENERAL STORAGE—Addresses between 400,
and the limit of implemented core are available for the processor stack or
other programs and data. The highest address in this region is 157777,

- PERIPHERAL DEVICE REGISTERS—Addresses above 160000, generally are
reserved for peripheral device status, control, and data registers. The general
registers and the processor status can be addressed from the program
console using addresses in this area.

A more detailed address allocation map can be found in Appendix D.

CORE MEMORY

The three types of core memory that can be used in a PDP-11 system are:
1) Read-Write Core Memory; 2) Read-Only Core Memory; and 3) Wordlet
Memory. These merhories can be located anywhere in address space provided
they do not overlap. They do not have to be in continuous address locations.

MM11-E READ WRITE CORE MEMORY—The MM11-E has the followmg
specifications:

Capac;ty: 4,096 16-bit words or 8,192 8-bit bytes -

Cycle Time: 1.2 microseconds

Access Time: 500 nanoseconds

Configuration: Planer 3-wire, 3-D using 22 mil cores

Packaging: One standard PDP-11 System Unit

Interface: Designed to work with PDP-11 bus, TTL- compatlble

MR11-A READ-ONLY CORE MEMORY (ROM)—The ROM has the following
specifications:

Capacity: 1,024 16-bit words or 2,048 8-bit bytes

Access Time: 500 nanoseconds

Configuration: 2-piece core with wire brald 256 wires, 64 cores

Packaging: 3/4 of one standard PDP-11 System Unit

Interface: Designed to work with PDP-11 bus, TTL-compatible

MW11-A WORDLET MEMORY—The wordlet memory is used with ROM sys-

tems and provides read-write memory capacity for temporary data and in-

struction storage.

Capacity: 128 16-bit words or 256 8-bit bytes

Cycle Time: 2.0 microseconds

Access Time: 1.0 microsecond

Configuration: 5-Wire, 3D

Packaging: 1/4 standard PDP-11 single System Unit-

Interface: The wordlet memory will work with the ROM and interfaces
- through the ROM System Unit to the PDP-11 bus. .

46

CHAPTER 6
PROGRAMMING OF PERIPHERALS

Programming of peripherals is extremely simple in the PDP-11—a special
class of instructions to deal with input/output operations is unnecessary.
‘The Unibus permits a unified addressing structure in which control, status,
and data registers for peripheral devices are directly addressed as memory
locations. Therefore all operations on these registers, such as transferring
information into or out of them or manpulating data within them, are per-

- formed by normal memory reference instruction.

The ability to use all memory reference instructions on peripheral device.
registers greatly increases the flexibility of input/output programming. in-
formation in a device register can be compared directly with a value and a
branch made on the result.

CMP #101, RRB
BEQ SERVICE

" In this case the program looks for 101, from the paper tape reader data
buffer, and branches if it finds it. There is no need to transfer the informa-
tion into an intermediate register for comparison. .

When the character is of interest, a memory reference instruction can trans-
fer the character into a user buffer in core or in another peripheral device.

MOV PRB, LOC

This instruction transfers a character from the paper tape reader buffer into
a user-defined location.

All arithmetic operations can be performed on a peripheral device register.

- ADD #10, "'DSX
This instruction will add 10, to a display's x-deflection register.

All peripheral device registers can be treated as accumulators. There is no
need to funnel all data transfers, arithmetic operations, and comparisons
through a single or small number of accumulator registers.

DEVICE REGISTERS

_All peripheral devices are specified by a set of registers which are addressed
as core memory and manipulated as flexibly as an accumulator. There are
two types of registers associated with each device: 1) Control and Status Reg-
isters (CSR); and 2) Data Registers.

CONTROL AND STATUS REGISTERS (CSR)—Each peripheral has one or more

control and status registers which contain all the information necessary to

communicate with that device. The general form of a control and status
- register is shown below.

E. EXPANDS B ———————EXPANDS
T 1 1 P [S S 1
l ERRIORS l BUSY | UNIT l DONE ENB | ENB EXTENSION TWCTDIN
"
15 4 13 1”2 " 10 9 e T € -] 4 3 2 t [

General Control and Status Register

This general form does not necessarily apply to any device, but is presented
as a format which could be used as a guideline for designing peripheral

47

ha P R s P LT P

will reatira mara than civtaan hite and w :
herefore will reguire aaaqitiona

I IUYUILL JIIVIG IS SIALCTHT UILS aliu

devices. Many devices wnll require less than sixteen status bits. Other devices
+| P Y S B
LY 1 Stauus

and control registers.

Device Function Bits—These three bits specify operations that a device is
to perform. An example of one operation for a paper tape reader is read
one character. For a disk one operation would be read a block of words from
memory and store them on the disk.

Memory Extension Bits—These two bits are reserved for future expansion.
They will allow devices to use a full 18 bits to specify addresses on the bus.

-Done Enable and Error Enable Bits—These two bits are independently pro-
grammable. If bit6is set, an interrupt will occur as a result of a function
done condition. If bit 5 is set, an interrupt will occur as the resuit of an
error condition. This occurs when one or more of the error bits is set to a
one. To initiate an interrupt routine to read from the paper tape reader,
the instruction

MOV #101, PRS

could be used. This sets bit O and bit 6 of the paper tape reader control and
status register. Setting bit O starts the read operation and setting bit 6
enables an interrupt to occur when the read operation™is complete.

Condition Bits—The CSR contains a DONE bit, a READY bit, or a DONE-
BUSY pair of bits, depending on the device. These bits are set and cleared
by the hardware, but may be queried by the program to determine the
availability of the device. For example, the teleprinter status register (TPS)
has a READY bit (7) that is cleared on request for output and then set when
output is. complete. The keyboard status register (TKS) has a DONE-BUSY
pair (Bits 7 and 11) that distinguishes between no input (DONE = BUSY
= 0), input under way (DONE = 0, BUSY = 1), and input complete (DONE
=1, BUSY = 0).

The DONE bit could be used to control an input loop for reading from: the
paper tape reader as follows:

LOOP: TSTB PRS ; test low byte of paper tape status registér
’ BPL LOOP ; branch back if DONE bit (bit 7) is not set

Unit Bits—Some peripheral systems have more than one device per control.
For example, a disk system can have muitiple surfaces per control and an
analog-to-digital converter can have multiple channels The unit bits select
the proper surface or channel.

Error Bits—Generally there-is an individual bit associated with a specific
error. When more bits are required for errors, they can be obtained by ex-
panding the error section in the word or by using another status word.

Example of Control and Status Registe'r—The high-speed paper tape reader
control and status register (PRS) is as follows:

DONE
susy . DONE
I"’APE i I I l l ENB
[7 0

These bits may be read or set by instructions which use the appropriate
effective address. Bit O of the PRS is the function bit for reading one char-

=]

48

acter. Incrementing the PRS will set bit O and cause one character to be
read. The instruction

INC PRS

performs that function. MOV #1, PRS does the same thing but takes one
more word.

DATA BUFFER REGISTERS—Each device has at least one buffer register
for temporarily storing data to be transfer into or out of the computer. The
number and type of data registers is a function of the device. The paper
tape reader and punch use single 8-bit data buffer registers.. A disk would
use 16-bit data registers and some devices may use two 16-bit registers for
data buffers.

PROGRAMMING EXAMPLES

PROGRAM CONTROLLED DATA TRANSFER WITH THE INTERRUPT DISABLED
—Single character 1/O devices (teletype, paper tape reader/punch) have an
addressable register buffer through which data is transferred. For input, the
data buffer register is the source operand of the instruction used to get the
data; for output, it7is the destination operand. For example assuming the
paper tape reader interrupt is not enabled, character input could proceed
as follows: -

MOV R, —(SP)

MOV . #BUFFER, R
START: INC PRS

save R on the stack
pointer to input buffer into register R
start up reader

LOOP: BIT PRS, #100200 test DONE and ERROR bits
BEQ LOOP branch back if none on yet
BMI ERROR branch to error routine if minus
ister to user’s buffer and increment
pointer

CMP #LIMIT R,
BGE START
MOV (SP)+, R

MOVB PRB, (R)+ ; move byte from device buffer reg-
check for end of buffer
; get next character
; restore R

Character output to the paper tape punch might be executed as follows:

MOV RO, —(SP) ; save RO
MOV R1l, —(SP) ; save R1
MOV NCHAR, RO ; *number of characters into RO
MOV BUFFER, Rl ; user buffer address into R1
LOOP: BIT PPS, #100200 1 test-device ready and error bits
BEQ LOOP ; fall through if on
BMI ERROR . ; branch on error .
MOVB (R1)4, PPB ; output character, increment pointer
DEC RO . ; decrement character counter (and
; set condition codes)
‘BGT LOOP } ; repeat if greater than zero
MOV (SP)4, . RO ; restore RO
MOV (SP)+, R1 ;

restor‘e R1

BLOCK TRANSFER WITH THE INTERRUPT DISABLED—High-speed block
transfer devices use the Unibus to make data transfers between the device
and core memory. These devices are provided with addressible registers
that control the flow of data.

49

A typical set might be:
1. Control and status register
2. Memory address register
3. Word count register
4. Device address register

Loading the device address register would in general initiate the transfer,
which then proceeds without processor intervention. The device issues non-
processor ‘requests for the Unibus that, when granted, allow direct data
_transfer between the device and memory. These requests are interleaved
with processor.requests for the bus. If very fast transfer is required, the
processor may execute a WAIT instruction after starting the block transfer.

The DONE or appropriate -error bits are set in the CSR with completion of
the transfer or when an error occurs. These may be enabled to cause an
interrupt or may be tested to determine when the device needs assistance.

A block transfer could be executed as follows:

MOV #401, DKS, ; read block of data (function 1)
) ; from unit 1

MOV #BUFADR, DKMA ; buffer address to memory ad-
; dress register)

; word count to word count register
; block number to device address
; register, which starts the trans-

fer

MOV #BUFCNT, DKWwWC
MOV #BLKNO, DKDA

-; when data is needed.

LOOP: BIT #DKMSK, DKS test done bit and error bits

BEQ LOOP- : branch back if none on
BIT #DKEMSK, DKS ; test for any error bits
BNE ERROR ; branch if any on

; data is now in buffer at BUFADR
INTERRUPT STRUCTURE .

If the appropriate interrupt enable bit is on, in the control and status register
of a device, transition from O to 1 of the DONE or READY bit causes an
interrupt request to be issued to the processor. Also if DONE or READY is a
1 when the interrupt enable is turned on, an interrupt request is made. If
the device makes the request at a priority greater than that at which the
processor is running and no other conflicts exist, the request is granted and
the interrupt sequence takes place:

a. the current program counter and processor status are pushed onto
the processor stack;)

.b. the new PC and PS are loaded from a pair of iocations (the interrupt
vector) in low core unique to the interrupting device.

Since each device has a unique interrupt vector which dispatches control to
the appropriate interrupt handling routine immediately, no device polling is
required. Furthermore, since the PS contains the processor priority, the
priority at which an interrupt request is serviced can be set under program
control and is independent of the priority of the interrupt request. The

50

ReTurn from Interrupt instruction is used to reverse the action of the
interrupt sequence. The top two words on the stack are popped into the PC
and PS, returning controi to the interrupted sequence.

PROGRAMMING EXAMPLE

A paper tape reader interrupt service could appear as follows:

First the user must initialize the service routine by specifying an address
pointer and a word count

INIT: MOV #BUFADR, #0 set up address pointer

POINTR=.—-2 in third word of MOV instruction.
MOV #CNTR, #0 set up character count in
CRCNT =.—2 third word of MOV instruction.

read a character with interrupt
; enabled.

-y e wE wE e owa

MOV #101, PRS

When the interrupt request occurs and is acknowledged, the processor stores "
the current PC and PS on the stack. Next it picks up the interrupt vector or
new PC and PS beginning at location 70s. The next instruction executed is
the first instruction of the device service routine at PRSER.
PRSER: TST PRS ; test for error

BMI ERROR branch to error routine if
’ ; bit 15 of PRS is set.
move character (byte)
from reader to buffer
increment pointer ~
decrement character count

MOVB PRB, @POINTR

INC POINTR
DEC CRCNT

wa we mE es we oma e gy ma W

BEQ - DONE branch when input done
-INC PRS start reader for next character
DONE: RTI return from interrupt

51

The DIGITAL M225 module contains 8 high speed general-purpose
registers. The M225 general registers provide program fiexibility
when used as accumulators, index registers, and pointers to data
words,

"52

o CHAPTER 7

TELETYPE (MODEL LT33- DC/DD)

The standard Teletype Model 33 ASR (Automatic Send-Receive) can be used
to type in or print out information at a rate of up to ten characters per sec-
ond, or to read in or punch out perforated paper tape at a ten characters
per second rate. Signals transferred between the 33 ASR and the control
logic are standard serial, 11-unit code Teletype signals. The signhals consist
of “marks'’ and ‘‘spaces’’ which correspond to idle and bias current in the
Teletype serial line, and to O's and 1’s in the control and computer. The
start mark and subsequent eight bits are each one unit of time duration and
are followed by the stop mark which is two units.

The 8-bit code used by the Model 33 ASR Teletype unit is the Americal
Standard Code for Information Interchange (ASCIl) modified. To convert the
ASCII code to Teletype code, add 200 octal (ASCIl 4 200, = Teletype).

The Model 33 ASR can generate all assigned codes except 340 through
374 and 376. The Model 33 ASR can detect all characters, but does not
interpret all codes that it can generate as commands. The standard number
of characters printed per line is 72. The sequence for proceeding to the next
line is a carriage return followed by a line feed. Punched tape format is as
follows:

Tape Channel 87 654 s 321
. Binary Code 10 110 100

(Punch = 1) .

Octal Code 2 ; 6 4

(S = Sprocket)

SIZE— Floor space approximately 2214 " wide, 1814 " deep
Cable length 8 feet

MODEL POWER REQUIREMENTS
LT33-DC 115 V £10% 60 %045 Hz
LT33-DD 230 V %10% 50 *0.75 Hz

TELETYPE CONTROL (MODEL KL11)

TELETYPE CONTROL-—Serial information read or written by a Teletype unit
is assembled or disassembled by the control for parallel transfer on the
Unibus. The control also provides the flags which cause a pnonty interrupt
and indicate the availability of the teletype.

KEYBOARD/READER—The Teletype control contains an 8-bit buffer (TKB)
which assembles and holds the code for the last character struck on the
keyboard or read from the tape. Teletype characters from the keyboard/
reader are received serially by the 8-bit -shift register TKB. The code of-a
Teletype character is loaded into the TKB so that ‘‘spaces’ correspond to
binary O's and holes, ‘“‘marks,” correspond to binary 1's. Upon program
command, the contents of the TKB may be transferred in parallel to a
memory location or a general register.

A character is read from the low-speed reader by setting the Teletype reader
enable bit, (RDR ENB), to a 1. This sets the busy bit (BUSY) to a 1. When a
Teletype character starts to enter, the control de-energizes a relay in the

53

Telétype unit to release the tape feed latch. When released, the latch
mechanism stops tape motion only when a complete character has been
sensed, and before sensing of the next character is started. When the charac-
ter is available in buffer (TKB), the busy bit (BUSY) is cleared and the done
flag (DONE) is set. If the interrupt is enabled, a request is made for the bus
at level 4 (BR4). The interrupt vector is at location 60.. The DONE bit is
cleared by any instruction which reads the contents of the buffer (TKB) into
the processor. If the DONE flag is cleared before the interrupt is granted, no
interrupt will occur. The keyboard must be read within 18 milliseconds of
DONE to ensure no loss of information.

Registers
Teletype Keyboard Status (TKS)

T [l ToL] B

—Busy L—INT ENB T—ror
. DONE ENB
Bit - ,
0 RDRENB Requests that one character be read from the

reader; set from the bus: (Note: Setting RDR
ENB causes tape to advance by one character
which is shifted into TKB if DONE is cleared.)
Receipt of START bit on the serial input line sets
BUSY, clears RDR ENB and clears TKB.

6 INT ENB 0—No interrupt; 1-—Attach the keyboard and
reader to the priority interrupt system at bus
request level 4.

7 DONE Character available; cleared by reading the buf-
fer (TKB).
11 BUSY Character is being read; set by RDR ENB going

to a_ 1. Cleared by DONE going to a 1.

1 The following notation will be used throughout this chapter for describing registers.
0 — A power clear sets this bit to 0.
1 — A power clear sets this bit to 1.
* — This bit can only be read from the bus.
} — This bit can only be set from the bus. If it is read, it will always appear
as zero.

Teletype Keyboard Buffer (TKB),

[8-BIT CHARACTER *I
18 ~ 8 7 o

’]’ELEPRINTERIPUNCH—On program command, a character is sent in parel-
lel from a memory location (or a general register) to the TPB shift register
for transmission to the teleprinter/punch unit. The control generates the
start “‘space,”” then shifts the eight bits serially into the Teletype unit, and
then generates the stop “‘marks.’” This transfer of information from the TPB
into the teleprinter/punch unit is accomplished at the normal Teletype rate
and requires 100 milliseconds for completion. The READY flag in the tele-
printer/punch indicates that the TPB is ready to receive a new character. A
maintenance mode is provided which connects the TPB output to the TKB
input so that the parallel serial and serial paraliel shifting may be verified.

54

Registers
_ . Teleprinter Status Word (TPS)

[Tl T]

I_ l—IN'l' ENB ‘-—MAINTENANCE

READY CONTROL
Bit :
2 MAINT Maintenance function which connects TPB serial
output to TKB serial input. ‘
6 INT ENB 0—No interrupt; 1—attaches the Teleprinter to
the priority interrupt system at BR4.
7 READY Set by punch/printer DONE; cleared by loading

the teleprinter-buffer (TPB).
Teleprinter Buffer (TPB)

[~ 8-BIT CHARACTER DATA 1'—I

15 8 7 : (o]

PROGRAMMING EXAMPLE—To read a character from tape and echo it on
the printer:
ECHO: INC TKS ; set RDR ENB

= TSTB TKS ; test for DONE set

BPL —2 test again if not set
TSTB TPS test for printer READY set
BPL .—2 test again if not set

put input character into output
buffer to be printed

MOVB TKB, TPB

BR ECHO ; return for another character
PERIPHERAL ADDRESS ASSIGNMENTS
TKS 177560
TKB 177562
TPS 177564
TPB 177566
VECTOR ADDRESS Keyboard/Reader 60
Teleprinter/Punch 64

PRIORITY LEVEL set to BR4—Teletype printer is lower than the Teletype
keyboard ’ :

MOUNTING—Requires one small peripheral controller mounting space (14 '
of a DD11 or one of two such spaces in KA11)

HIGH-SPEED PERFORATED TAPE READER PUNCH AND
CONTROL (TYPE PC11)

TAPE READER—This device senses 8-hole perforated paper or Mylar tape
photo-electrically at 300 characters per second. The reader control requests -

reader movement, transfers data from the reader into the reader buffer
(PRB), and signals the computer when incoming data is present. It does this

55

by setting a DONE bit. If the interrupt is enabled and the interrupt is granted,
the processor traps to location 70, and may immediately begin executing the
service routine for the paper tape reader.

Registers
"Paper Tape Reader Status Word (PRS)

15 1" . 7T 8 o}
I* . 3 *
o 0 L olol Lol

L error L susy L LNt ENs L ror
’ DONE : ENB
Bit .
0 RDR ENB Requests read of next character; can be set from
bus only if ERROR = 0. Clears PRB, sets BUSY.
6 INT ENB 0—No interrupt; 1—attached to priority interrupt
system at BR4. (Note: Interrupt occurs when INT
ENB is a 1 and either the error flag, ERROR, or
the done flag, DONE, becomes a 1.)
7 DONE Set by character available; cleared by reading the
paper, tape reader buffer (PRB).
11 BUSY Set by RDR ENB going to a 1; cleared by DONE
. goingtoal.. Coa
15 ERROR Error Flag — Set or cleared by out-of-tape sensor

or off line switch. :

Paper Tape Reader Buffer (PRB)

r | 8-BIT CHARACTER *I

15 8 7 0
o/
PROGRAMMING EXAMPLE—Tape reading subroutine (not using interrupt):
READ: INCB PRS ; enable reader
TEST: ©BIT #100 200 PRS ; test for error or done
BEQ TEST ; branch back if not done
BMI ERROR ; branch if error =1
MOVB PRB, RO ;- get character from buffer
RTS R ; return to caller
ERROR: (message type out routine)
HALT ; wait for operator intervention
JMP READ ; try again when continug switch is hit.

TAPE PUNCH—This option of a Royal McBee paper tape punch that per-
forates 8-hole tape at a rate of 50 characters per second. Information to be
punched on a line of tape is loaded in an 8-bit punch buffer (PPB) from a
memory location or one of the general registers. The punch flag, READY,
becomes a 1 at the completion of punching action, signaling new information
may be transferred into the punch buffer and punching initiated.

56

Registers
Paper Tape Punch Status Word (PPS)

15 7T 6 o

E » -
[o l : [1 [o [' l
L —ErROR L—INT.ENB
DONE
Bit
6 INT ENB 0—No Interrupt; 1—Attached fq priority interrupt
system. (Note: An interrupt occurs when INT ENB
is a 1 and either the ERROR flag or the READY flag
becomes a'l.) 4
7 READY Set by punch done; cleared by loading the paper
tape punch buffer (PPB). ,
15 ERROR Error Flag—Set by out-of-tape sensor, or unit power
off switch.

Paper Tape Punch Buffer (PPB)

[’ l 8-BIT CHARACTER DATA ']

15 8 7 ’ 0

" Loading the buffer initiates punching.

PROGRAMMING EXAMPLE

PUNCH: BIT #100200, PPS ; test for ready or error
BEQ PUNCH

" BMI ERROR
MOV RO, PPB ;
RTS R H
. ERROR: (message type out)

HALT; wait for operator to fix punch
JMP PUNCH; try again when Continue is hit.

PERIPHERAL ADDRESS ASSIGNMENTS

PRS 177550
PRB 177552
PPS 177554
PPB 177556

VECTOR ADDRESSES—Reader 70
Punch 74

PRIORITY LEVEL—Set to BR4. Punch is lower than reader.

MOUNTING—Electromechanical assembly—EIA Standard 19” rack, 101%"
vertical mounting space, by 1715 " deep.

PC11-M Controller—One small peripheral controlier mounting space (14
of DD11 or one of two such places in KAl11l).

57

ENVIRONMENTAL

55°—100°F ' o
20% —959% RH (without condensation) —
MODEL DESCRIPTION . POWER REQUIREMENTS
" PC11 Reader, Punch & Control 115+109%, 60 Hz
PC11A Reader, Punch & Control 115+109% 50 Hz
PR11 Reader & Control 115+109% 50-60 Hz

‘LINE FREQUENCY CLOCK (TYPE KW11-L)

The KW1kL real time clock provides a method of measuring time intervals
at line frequency. This clock consists of a frequency source and control logic.
When enabled the clock causes an interrupt every 16.6 or 20 milliseconds,
depending upon lifie frequency.

Register
Line Time Clock Status Register (LKS)

L [oTol |
LC:R{(NTR ENB

Bit :
6 INTR ENB When set, an interrupt will occur every time CLOCK goes true.
Cleared by program or reset or start sequence.

7 CLOCK Set to 1 every 16.6 milliseconds (60 Hz) or 20 milliseconds (50 -
Hz). Cleared by reading LKS, RESET or pressing the START

’ switch.
PERIPHERAL ADDRESS ASSIGNMENTS
LKS _ 177546
VECTOR ADDRESS 100
PRIORITY LEVEL BR6

MOUNTING—This option plugs into the KA1l processor.

58

CHAPTER 8

DESCRIPTION OF THE UNIBUS

Qommu'niéation between all system units in a PDP-11 configuration is done
by a single common bus: the Unibus. All communication—both instructions -
and logical operations~—is defined by a set of 56 signals. This set of 56 sig-
nals is used for program controlled data transfers, direct memory data trans-
fers, priority bus control, and program interrupt.

This chapter presents the concepts of the Unibus and how they affect pro-
gram software and interfacing hardware. The use of the 56 bus signals to
effect data transfers and to control bus use is also described.

GENERAL CONCEPTS OF THE UNIBUS

There are five major aspects of the Unibus that affect both software and
hardware considerations in the PDP-11.

~SINGLE BUS—The set of 56 signals that comprise the Unibus is the one
and only bus connecting all peripheral devices, memories, and the central
processor. Thus, to every device there exists a single set of signals by which
it can be interrogated by the processor or other devices, or be used by the
device itself to transfer data to and from memory.

The processor uses this same set of signals to communicate with all mem-
ories and devices. The important point here is that the form of the com-
munication used by processor and- peripheral devices is identical. Conse-
quently, the same set of program instructions used to reference memory
is used to reference peripheral devices. (A look at the PDP-11 instruction
set will reveal that there are no explicit 1/0 instructions.)

Peripheral devices in a PDP-11 system are designed to respond to the Unibus
in the same manner as memory. Device status registers, device con-
trol registers, and device data registers are each assigned unique ‘““memory”
addresses. For example, the instruction MOVB RO, PUNCH would load the
punch buffer register with an 8-bit character contained in RO. Other in-
structions would monitor the punch status and the program could deter-
mine when the punching operation was complete.

BIDIRECTIONAL BUS—Unibus bus signals are bidirectional—the signal re-
ceived as an-input can be driven as an output, as shown in Figure 8-1.

RECEIVE. BUS SIGNAL

BUS SIGNAL

. Figure 81 Bidirectional Nature of the Bus

MASTER-SLAVE RELATION-—At any one point in time, there is one device,
called the master, that has control of the bus. The master device controls

59

the bus to communicate with other devices, called slaves, on the bus. An
example of this relationship is the processor (master) fetching an instruction
from memory (which is always a slave).

INTERLOCKED COMMUNICATION—For each control signal issued by the
master device, there is a response from the slave; thus bus communication
_ is independent of the physical bus length and the response time of the mas-
ter and slave devices. Also, master-slave relationships can exist in nearly
any combination between fast-responding and slow-responding devices.

DYNAMIC MASTER-SLAVE RELATION—Master-slave relationships are dy-
namic. The processor, for example, can pass bus control to a disk. The disk,
as master, could then communicate with a slave memory bank.

UNIBUS SIGNALS

The 56 Unibus signals can be divided into two major groups—the interrupt
group and the non-interrupt group. The interrupt group can then be sub-
divided into two classes—the request and contro! class and the grant class.
All bus signals except the grant class are bidirectional in nature and are
connected to every device (though they may not be used by every device).
The grant signals, because of their special nature in priority bus control
(to be explained later), are bussed through each device and are unidirectional
in nature.

NON-INTERRUPT SIGNALS

Data Lines (D < 15:00 >)—(Note that thé notation A <a:b> specifies
b — a 4 1 signal lines which are named Aa through Ab.) The 16 data lines
are used to transfer information between master and slave. This is the bit

format: »
| HIGH BYTE | LOW BYTE

15 8 7 o]

Address Lines (A < 17:00 >)—The 18 address lines are used by the master
device to select the slave (a unique core memory or device register address)
with which it will be communicating. This is the bit format of the 18 signals:

[17lqelqsl 7 ‘ ﬁoj'

BYTE POINTER— I
|

EXT. —+ PROGRAM ADDRESS

A < 15:01 > are used to specify a unique 16-bit word group. In byte opera-
tions, AOO is used to specify the byte being referenced. If a word is refer-
enced at X (X must be even, since words can be addressed on even bound-
aries only), the low byte can be referenced at X and the high byte at X + 1.

A < 15:00 > are supplied by the software as memory reference addresses.
Al7 and A16 are used as extended memory bits for relocation and as pro-
tection schemes in future systems. In the PDP-11/20 and the PDP-11/10,
Al7 and Al6 are asserted or forced to 1 whenever an attempt is made to
reference a memory location where Al15 = Al4 = Al13 = 1. Thus the hard-
ware converts the 16-bit software address to a full 18-bit-bus address.

An address map is shown in Figure 8-2.

60

SOFTWARE ADDRESS HARDWARE ADDRESS

000000-017777 000000-017777
’ 1st 4K
MEMORY BANK '
020000-037777 020000-037777
2nd 4K
MEMORY BANK
| [

1 '
140000-157777 - 140000-157777
7th 4K

MEMORY BANK h
160000-177777 760000-777777
PERIPHERAL
BANK
Figure 8-2 Address Map .

The peripheral bank is composed of the processor's fast memory, status
register, console switch register, and all device registers.

Control Lines (C < 1.0 >)—These two bus signals are coded by the master
device to indicate to the slave one of four possible data transfer operations.

Master Synchronization and Slave Synchronization (MSYN, SSYN)—MYSN
is a control signal used by the master to indicate to the slave that address
and control information is present. SSYN is the slave’s response to MSYN

Initialization (INIT)—This signal is é power clear signal asserted by the con-
sole and the processor which is used to reset peripheral devices.

PA, PB, SP1, SP2—These lines are not implemented on the PDP-11/10 or
PDP-11/20.

INTERRUPT SIGNALS

Bus Request Lines (BR < 7:4 >)—These four bus signals are used by
peripheral devices to request control of the bus.

Bus Grant Lines (BG < 7:4 >')—These signals are the processor's response
ta a BR. They will be asserted only at the end of instruction execution.

Non-Processor Request (NPR)—This is a bus request from a periphei’al
device to the processor.

Non-Processor Grant (NPG)—This isthe processor's response to an NPR. It
occurs at the end of bus cycles within the instruction execution.

Selection Acknowledge (SACK)—SACK is asserted by a bus-requesting device
that has received a bus grant. Bus control will pass to this device when the
current master of the bus completes its operations.

INTERRUPT (INTR)—This signal is asserted by the master to start program
interruption in the processor.

‘Bus Busy (BBSY)—This signal denotes bus in use by a master device.

UNIBUS DATA TRANSFER OPERATIONS
Direction of data transfers on the Unibus is defined in relation to the master

61

device. A data transfer from processor to memory (always a slave) is *‘data
out,” and a transfer from memory to processor is ‘‘data in.”

TYPES OF DATA TRANSFERS—The type of data trénsfer being made between
master and slave is determined by the C lines coded as follows:

¢ | co

0 O | DATI- DATa In

0 1 DATIP-DATa In,Pause

1 O | DATO -DATa Out

q 1 | DATOB-DATa Out, Byte |

DATO AND DATOB—The DATO and DATOB operations are used to transfer
data out of the master to the slave. DATO is used to transfer.a word to the
address specified by A < 17:01 >. The slave ignores AO0 and the data ap-
pears onD < 15:00>. DATOB is used to transfer a byte of data to the ad-
dress specified by A < 17:00 >. AQ0 = O indicates the low byte, and data
appears on D < 07:00 >; AOO = 1 indicates the high byte, and data appears
on D < 15:08 >.

DATI AND DATIP—The DAT! and DATIP operations transfer data from a slave
whose address is specified on A < 17:01 > into the master. Both transfers
are made in words on D < 15:00 >. In destructive read-out devices, DATI
commands a read-write operation, while a DATIP commands a read operation
only and sets a pause flag. When the device receives the subsequent DATO
or DATOB and its pause flag is set, the usual read cycle is skipped and an
immediate write cycle is initiated. Thus, DATIPs are immediately followed
by a DATO or DATOB to effect a read-modify-write data exchange. In non-
destructive read-out devices, DATI and DATIP are treated identically.

This diagram illustrates the data flow in the four data transfers:
DATI OR DATIP
DATA = D<15:00>

15 817 0

SLAVE IIQEGISTER

HIGH BYTE |, LOW BYTE
MASTER]

S] 1

DATOBAAOO » DATOBAAOO
DATA=D<15:08 > . | DATA=D <07:00 >

DATO
DATA=Df5200>

Figure 8-3 Data FloW

Note that all transfers into the master are word operations; it is up to the
master to accept the appropriate byte. On a DATOB, the master must place
the byte on the appropriate data lines; the slave must accept the proper byte.

DATA TRANSFER EXAMPLES—The bus operations used by the processor for
a typical instruction sequence ‘illustrates how the data transfer operations
are used. The “‘program’’ starts at location 1000:
1000: INCB @RO
ADD #3, @RO

where RO contains 500.and location 500 contains 10023. The result of this

]

62

instruction sequence will leave 10027 in location 500. In binary form, this
coding appears as:

1000: 105210 ;INCB @RO
1002: 062710 ;ADD (PC)+, @RO
1004: 000003 ;3

. The following table lists the bus operations that result as a consequence
of these two instructions:

7

Processor Cycle Bus Operation Bus Address Data Transferred
Fetch DATI (PC) = 001000 105210
Destination DATIP (RO) = 000500 010023
Execute DATOB ’ (RO) = 000500 000024
Fetch DATI : (PC) = 001002 062710
Source DATI (PC) = 001004 000003
Destination DATIP (RO) = 000500 010024
Execute DATO (RO) = 000500 010027

Noohwhe

Note that in-step 3, it is inconsequential what data appears on D < 15:08 >;
the slave accepts only the modified low byte.

A second example of bus 'operation compares the contents of the Teletype
keyhoard data buffer whose address is 177560 with the ASCII value for the
letter ““A."”

200: . CMPB @ #177560, #301

This instruction is assembled in three words as follows:

200: 123727 ;CMPB @(R7)+, (R7)+
202: 177560 ;Address of data buffer
204: 000301 ;301

The processor will execute this instruction with these Eycles:

Processor Cycle Bus Operation "Bus Address Data Transferred
1. Fetch DATI (PC) = 200 123727)
2. Source DATI (PC) = 202 177560

3. Source DATI 777560 ASCII

4. Destination DATI (PC) = 204 000301

5. Execute none — condition codes set internally.

Note that in step 3, the software specmed address 177560 was converted to
the bus address 777560.

SIGNAL DESCRIPTION OF DATA TRANSFERS—Figure 8.4(a) shows the sig-
nal flow between master and slave during a DATO operation. (The sequence
is similar for DATOB except that only a byte of information is transferred.)
The master sets Control for DATO, sets Address for the unique slave address,
and sets Data for the information to be transferred. The master then asserts
MSYN. This signal is received by the slave that recognizes its address; it
responds by accepting the data arid asserting SSYN. SSYN is received by the
master which then negates Control, Address, Data, and MSYN. The slave
sees MSYN negated and negates SSYN. The master device continues its.
operation when it sees SSYN negated. -

63

'MASTER : SLAVE
OPERATION: DATO '

AC,D

MSYN ‘ .
* SSYN

MSYN

A,C,D

B ‘ *

Figure 8-4(a)

The flow of signals for DATI is shown in Figure 8.4(b). (DATIP is similar
except that the internal operation of the siave device is modified.) The master
sets Control for DATI, sets Address for the slave to be selected, and asserts
MSYN. The selected slave responds by setting Data for the information re-
quested and asserts SSYN. The master sees SSYN, accepts -the data, and
then negates Control, Address, and MSYN. The slave sees MSYN negated
and negates SSYN. The master continues when it sees SSYN negated.

A more detailed signal sequence for the DATI, DATIP, DATO, and DATOB bus
operations can be found in Appendix D.

124
W
<
- 2

MASTER - / SLAVE

OPERATION: DATI

AC
MSYN

r ' SSYN,D

MSYN

A,C 1

r SSYN,D

Figure 8-4(b)
UNIBUS CONTROL OPERATIONS

The following section will deal with how a device becomes master of the bus
.and how control of the bus is transferred from one device to another. Two
additional bus operations will be presented—the PTR (Priority Transfer) and
INTR (Interrupt).

r4

In normal operation, the processor is bus master, fetching instructions and

. operands from memory. Other devices on the bus have the capability of
becoming bus master, and use the bus for one of two purposes: 1), to gain
direct memory access or 2), to interrupt program execution and force the
processor to branch to a specific address.

PRIORITY ARBITRATION—Transfer of bus control from one device to another
is determined by a priority scheme in which three factors must be considered.

First, the prbcessor’s priority is determined by bits 7, 6, and 5 in the pro-

64

’

cessor status register. These three bits set a priority level that inhibits
granting of bus requests on lower levels.

‘Second, bus requests from external devices can be made on one of five
request lines. NPR has the highest priority, and its request is honored by the
processor between bus cycles of an instruction execution. BR7 is the next
highest; BR4 is the lowest. These four lower level requests are honored by
the processor between instructions, except when the instruction currently
being executed causes an internal trap (either an error or trap instruction).
In this case, BR requests will not be honored until completion of the first
instruction after the trap sequence. Thus if two requests are made to the
processor for bus control, the higher of the two requests will be honored first.

Third, in response to a bus request, the processor may honor the request by
asserting a bus grant (BG) corresponding to the line on which the bus re-
quest was made. This signal is passed serially through each device in the
system. If a device had made a request, it would. block the grant signal
and prevent it from reaching the following devices. Thus, in this ‘“‘pass-the-
pulse” chain, the device that is closest to the processor has the highest
priority on that request level.

This table lists device priorities:
Highest: Devices on NPR
: Processor when priority — 111 -
Devices on BR7 .
Processor when priority = 110
Devices on BR6
Processor when priority = 101
Devices on BR5
Processor when priority = 100
Devices on BR4
Processor when priority = 011
Internal options '
Processor when priority = 010
_Internal options ,

Processor when priority = 001
Internal options

Lowest: Processor when priority — 000

When the processor’s priority is set at N, all requests for bus control at '
level N and below are ignored.

SELECTION OF NEXT BUS MASTER—The signal sequence by which a device
becomes selected as next bus master is the PTR (Priority Transfer) bus
operation. Note that this operation does not actually transfer bus control;
it only selects a device as next bus master. it takes one additional condition
to complete the transfer: the current bus master must complete its bus
operations. The signal that indicates this is BBSY. Thus, when a device makes
an NPR or BR request to the processor for bus control, it waits until it first
becomes selected as next bus master by the PTR operation and second, it
no longer senses BBSY, The negation of the BBSY signal indicates that
the current master has completed its bus operation. The selected device
now becomes bus master and asserts BBSY itself.

INTERRUPT SEQUENCE—Once the device has bus control and is asserting
BBSY itself, it is sole user of the bus until it releases its control. This release
of control can be made either actively or passively. Passive release is realized

65

N

by negating BBSY. Bus contral will then pass to either a device that was
selected in the meantime by another PTR sequence or back to the processor,
which will continue where it was interrupted. Active release of bus control
is realized through the INTR bus-sequence.

The INTR (interrupt) operation is used by the bus master to transfer to the
processor a memory address (called the interrupt vector). Two consecutive
words, the starting address of an interrupt service routine and a new status
word, are stored at the jnterrupt vector address. After the INTR sequence is
complete, the processor automatically becomes bus master and begins a trap
‘sequence in which it stores the current value of the PC and PS on the stack
and fetches a new PC and PS from the location pointed to by the interrupt
vector. Thus, the next instruction executed is the start of the interrupt
service routine.

It is illegal to issue an INTR command after gaining control of the bus by
requesting on an NPR line. NPR requests are granted during instruction
execution and external bus masters must restrict their bus use*to nonpro-
cessor activities.

Interrupt Servicing Sequence Example—The following is an example of the i
INTR sequence. T

When a peripheral requires service and requests control of the bus with a
BR signal, the operations undertaken to “service” the device are as follows:

@ Gain Control of the Bus—When the processor has no higher priority tasks
to complete, it relinquishes the bus to that device. Higher priority items are
(in order of priority):

Acknowledging an NPR request]

Handling a processor error (illegal instructions, requirements for non-
existent memory, etc.))
Completing the current instruction

Acknowledging a trace trap '

Continuing a higher priority process

Acknowledging a higher level BR signal

Acknowledging same level BR signals for devices closer to the processor

Noosrw be

® Do INTR Sequence—when the device has control of the bus, it initiates
an INTR sequence, transferring to the processor the interrupt vector address
which specifies two words in memory containing the address and status of
the appropriate device service routine. N

® Push OId Interrupt Vector Onto Stack—The processot then ‘‘pushes’—
first, the current central processor status (PS) and then the current program
counter (PC) onto the processor stack.

® Fetch New Interrupt Vector—The new PC and PS (the “interrupt vector’)
are taken from the address specified by the device, and the device service
routine is begun. Note that those operations all occur automatically and that
no device polling is required to détermine which service routine to execute.

Example of NPR Operation—Disk operation gives an example of a device
‘which uses the bus for direct memory access. Under program control, the
processor would initialize registers in the disk control that specify word count
(WC, number of words in block of data to be transferred), memory address
(MA, the address at which the block of data is found or is loaded), and Track
Address (TA, the point on the disk where the block of data starts). Also, the

66

program would set certain function bits in the disk's command and status
register that specify_a read or write funhction. For this example, assume the
disk was set to read. N

Once the disk’s control registers are initialized, the disk control logic starts
a search for the requested data. (The processor in the meantime has con-
tinued in its program execution.) When the disk has found the data, it
assembles the first 16-bit word from the disk surface into its data register.
The disk now requests bus control via the NPR request line. The processor,
when it has completed its current bus cycle of the current instruction and
no higher NPR requests exist, grants control of the bus to the disk. The disk,
as bus master, effects a DATO bus -operation, transferring the contents to
its data buffer to the core address held in its MA. The MA is now incremented
and the WC is decremented. When the DATO operation is complete, the disk
passively releases control of the bus.

When the second word has been assembled, the disk again requests bus
control, does a data transfer; and then releases bus control. This cycle is
repeated until the WC reaches zero. At this point, the disk has completed
the transfer that was requested.

To notify the program that the transfer is finished, the disk initiates a request
for bus control at the BR level, gains control when higher priority requests
are satisfied, and does an immediate INTR to the processor and causes the
program to branch to a specific service program (as described in the previous
example). ~

Details of the INTR and PTR bus operations can be found in Appendix D.

67

The plug-in console board with modular construction is supplied
in the basic 11/20 configuration. In addition to aiding program-
ming, console contributes to ease of maintenance on the PDP-11.

CHAPTER 9

Interfacing

A typical device bus interface as shown in Figure 9-1 is composed of five
major components: 1), Registers; 2), Bus Drivers and Receivers; 3), Address
Selector; 4), Interrupt Control; and 5), Device Control Logic.

REGISTERS

Each device is assigned bus addresses at which the program can inter-
rogate and/or load the device status, control, and data registers. The stan-
dardized mapping for these registers and the bit assignments of the com- "
mand/status register (CSR) were given in Chapters 5 and 6.

As shown in Figure 9-1, all information flow between the device logic and
the Unibus is done through the registers. In general, registers are designed
to be both loadable and readable from the bus. This allows the program to
use such instructions as APDD RO, REG, or INC REG. However, registers can -
be ‘“one-sided,”” either ‘‘read-only’” or ‘write-only.”” Examples of read-only
bits are the DONE and BUSY flags in the device’'s CSR. These bits are de-
rived from the internal state of the device logic and are not under direct
program control. Write-only registers are used when it is unnecessary to
read back information. Attempting to read such a register would result in an
all-zero transfer. The instructions effective with this type of register are then
limited to those which load the register such as MOV RO, REG, or CLR REG
(as opposed to ADD REG, RO, or INC REG).

N

D<1I3: 00>

BBSY, INTR T
SACK , 28R [sus orvers] [sus orivers] [eus omvers] [eus orivers]

<8702 mrez
SSYN

T
B—_ DEVICE
-~

N I— Loee

TOMMAND
AND
STATUS
Ay
ADORESS
SELECTOR i REGSTER I
A<IT00> wios — [“rReaisTeEr
c<ie> w2
usTN

0<15:00> .
|

-

UNIBUS

Figure 9.1 Typical Peripheral Device Interface

BUS DRIVERS AND RECEIVERS

To maintain the transmission-line characteristics of the Unibus, special cir-
cuits are required to pass signals to and from the bus. The majority of bus
signals (all except the five grant lines) are received, driven and terminated
- as shown in Figure 9-2.

69

r— /7 - -1
| +5 | | +5, f
I a I R |
[I I I
| I t- l
| R3 [RECEIVER | re |
| I ‘ I I
—q
I I I I
o= L=
| M930 I { M930 |
| E U S | L —_—d
DRIVER

R1, R2=180.0 5% 174W
R3, R4 =390.0L 5% 1/4W

Figure 9.2 Typical Unibus Line

Information is received from the bus using gates which have a high input
impedance and proper logic thresholds. High input levels must be greater
than 2.5 V with an input current less than 160 na. Low level input must be
less than 1.4 V with an input current greater than O pa.

Information transmitted on the bus must be driven with open collector drivers
capable of sinking 50 ma with a collector voltage of less than .8 V. Output

_ leakage current must be less than 25 ua. -

in PDP-11 systems, the bus signals are terminated at both ends by resistor
dividers provided on the M930 module. Physically, an M930 is located in

the processor; another is located at the last unit on the bus. A bus signal
" sits at logical “0" (inactive, or negated state) at a voitage of 3.4 V. A bus
line is at logical ‘1" (active, or asserted) when it is pulled to ground.

Drivers and receivers meeting these specifications are évailable on the
M783, M784 and M785 modules as shown in Figures 9-3, 9-4 and 9-5.

70

M105 ADDRESS SELECTOR

Thc ' M105 Address Selector as shown in Figure 9-6 is used to provide gating
signals for up to four device registers. The selector decodes the 18-bit bus
address on A < 17:00 > as follows:

o

[
(¢
(1)

LI o

T
0
U

8881 P

[
*
.

eset b

L]
UIOAY

Figure 9.3 M783 Unibus Drivers

|

T
uuuﬁuuu
.

) D)

Figure 9.4 M784 Unibus Receivers
71

°)
;

B '

o

o——)
B)

o—

o————] O
) '

o)
o—1 ©
DS
oO0— C
B '

o0— >

|
@

T
»

by

8881 O

Figure 9.5 M785 Unibus Drivers and Receivers

AOO is used for byte control. AO1 and A02 are decoded to provide one of
four addresses. A < 12:03 > are determined by jumpers on the card. When
the jumper is in, the selector will look for a O on that address line-
A < 17:13 > must all be 1's—(this defines the external bank). Other bus
inputs to the selector are C < 1:0 > and MSYN. The single bus output is
SSYN. The user signals are SELECT 0, 2, 4, and 6 (corresponding to the
decoding of A02 and AO1, one of which is asserted when A < 17:13 > are all-
1's and A < 12:03 > compare with the state of the jumpers. Other user sig-
nals are OUT HIGH (gate data into high byte), OUT LOW (gate data into low
byte), and IN (gate data onto the bus). The equations for these last three

signals are as follows:

OUT HIGH
OUT LOW

IN

DATO + DATOB*ACO
DATO -+ DATOB*ACO
DATI -+ DATIP

where “4'" means a logical or and “*"" means a logical and. .
Use of the M105, drivers, receivers and a flip-flop register is shown in Fig-

ure 9-7.

72

EXT. CAP

~ *
SSYN L
MSYN L cozfu:ot.
A17L - -
—d SELECT @ W
A
a D
D
R
a O12 E SELECT 2 W
—_—C—o01n gq ‘S .
—O—01 00— p
—QO—09 0— SELECT 4 H
—ag—o08 0—{ § 4
—q—o07 0—4 0
——a—06 0— ¢
——Qq—05 O0— SELECT 6 H
—_—04 00—
AQ3L ——OG—O03 O—
Ao2L]
AQIL
A?L GATING okl
1L OUT LOW H
coL —_— CONTROL IN H
MIO5 ADDRESS
SELECTOR

" Figure 9.6 M105 Address Se!ector
M782 INTERRUPT CONTROL

The M782 Interrupt Control module contains the necessary logic circuits to
allow a peripheral device to gain bus control and perform a program inter-
rupt. The three circuits on this card are block diagrammed in Figure 9-8.
Note that only signals relevant to the user's interface are shown; bus
signals SSYN, BBSY and SACK have been omitted for clarity.

The Master Control circuit is used to gain bus control. When INT and INT
ENB are asserted, a bus request is made on the request line to which BR
_is jumpered. When the processor issues the corresponding grant and other
bus conditions are met, the MASTER signal is asserted, indicating that this
device now has bus control. Note that this circuit also can be used to gain
bus control on an NPR line for a device which requests the bus for direct
memory access. .

4

73

-- — -1peq sne |

08t

— —710Q $NE - — —1L¢0 sne

o8t

08¢

F — ——18@g s - — -—168d SNE |- — — 510 SN8

08¢

r—
Tlllw.lam

-

¥+ 934 133738

i AR,

Y3IMLO 2 0 934 103738
a

4 93
0]

\/T‘LDHJ -...;o._:s

)
8'03y
o |

693

(=]
On—owx ‘\,

-1
_
_
| _
_ _
e _
_
_
_
_

. _xzai»_ao

" NI

1888

|8e9

_ ¥0LIIN3S _
$S3uaQv

— =)

Figure 9.7 Typical Peripheral Device Rggister

74

In addition to two Master Control circuits, a third logic network provides the

necessary signals and gating to perform the INTR bus operation. When either

of the START INTR signals is asserted, the INTR bus signal is asserted

along with a vector address on D < 07:02 >. Bits 07:03 are determined by

jumpers on the card. A jumper “‘in” forces a O in that bit. Bit 2 is controlled

by Vector Bit 2. When the processor responds to the INTR signal by asserting -
SSYN, the INTR DONE signal is asserted. This line is used to clear the

condition which asserted INTR START.

INT A
‘——l] BR A
INTENB P !
A

BG IN A C";‘ST‘;‘E(;'L BG OUT.
. T =
CLEAR A b MASTER

START INTR A
START INTR B :} > :

VECTOR BIT 2 INTR P- BUS INTR
CONTROL

s
T
4
§

INT B)
BR B
INT ENB]
B

8 MASTER BG OUT
_Bemws [oL |2ST
8)
R MASTER
CLEAR B . T

Figure 9.8 M782 Interrupt Control

Figure 9-9 shows a possible interconnection of the M782 to provide inde-
pendent interrupts for two possible conditions in a device: ERROR and DONE.
The ERROR and DONE signals shown in Figure 9-9 are signals from bits 15
and 7 in a device’s CSR. Likewise ERROR INT ENB and DONE INT ENB are
derived from the CSR. Both interrupts in this example are tied to the BR4
level; the corresponding grant line BG4 enters the ERROR Master Control and
is passed on to the DONE Master Control. Thus, ERROR has a slightly higher
priority interrupt level than DONE.

Both MASTER signals are tied to the INTR control. Thus, whenever either
ERROR or DONE gains bus control, an INTR operation is initiated. Note
that Vector Bit 2isa 1l or O as a function of which master control
is interrupting. Also, INTR DONE is tied to MASTER CLEAR to clear the
master condition.

DEVICE CONTROL LOGIC .
The type of control logic for a peripheral depends on the nature of the
device. Digital offers a wide line of general-pyrpose logic modules for im:

plementing control logic. These modules are described in detail in another
Digital publication: The Logic Handbook.

ERROR INT ENB A

" o BUS BR4 L
S BEAN N - Jusren G
A .
MASTER START INTR A L s
CLEAR H MASTER AL 0-0—p— #us berL
0-0—-f— Bus DesL
O--O—p— Bus DesL
O—O—~— BUS DPAL
TART INTR
oomE T ® 8L 00— 8us DSL
ENB H D—- aus pe2L
DONE W h— - BUSINTR L
. VECTOR BIT 2 M _| INTR DONE A H
. m BUS BGS OUT W .

1

b1

E
sus 1S MADE ON LEVEL 4
INTERRUPTS TO 104
INTERRUPTS TO 100
HAS HIGHER PRIORITY THAN
F"' ..;«fc‘u"‘ “ERRON" RECEIVES

il

Figure 9.9 Typical interconnection of M782 Interrupt Control

76 .

CHAPTER 10

CONFIGURATION AND INSTALLATION PLANNING

MODULAR CONSTRUCTION ‘

Physically, the PDP-11 is composed of a number of System Units. Each
System Unit is composed of three 8-slot connector blocks mounted end-to-
end as shown in Figure 10-1. The Unibus connects to the System Unit at
the lower left and at the upper left. Power also connects to the unit in the
leftmost black. A System Unit is connected to other System Units only via
the Unibus.

UNIBUS CONNECTION
N

POWER-\ ___7 L - . . _
N | i | e |@
- — == =

UNIBUS (MNECTION
Figure 10.1 System Unit

The remainder of the System Unit contains logic for the processor, memory
or.an 1/O device interface. This logic is composed of single height, double
height, or quad height modules which are 8.5 " deep.

The use of System Units allows the PDP-11 to be optimally packaged for
each individual application. Up to six System Units can be mounted into a
single mounting box. For a basic PDP-11/20 system, the processor/console
would fill 215, System Unit spaces and 4096 words of core memory would
fill one System Unit space. This leaves 21/, spaces for user-designated op-
tions. This would allow the user to add 8,192 words of additional core
memory, a Teletype control, and a High-Speed Paper Tape Control, or 4,096
words of core memory and six Teletype interfaces. Larger systems will
require a BA11-EG or BA11-ES Extension Mounting Box which contains space
for six additional System Units.

The use of System Units also facilitates expansion of systems in the field
and service. To add an additional option to a PDP-11 system, the proper
System Unit is mounted in the Basic or Extension Mounting Box and the
Unibus is extended. Servicing of the PDP-11 can be done by swapping
modules or by swapping System Units.

MOUNTING BOXES AND CABINETS

The PDP-11 is available as either a tabletop or rack- mounted configura-
tion. The rack-mounted configuration may be installed in a DEC cabinet or
mounted in a customer cabinet. The PDP-11 mounts in an EIA standard 19-
inch cabinet. The rack-mounted PDP-11 has tilt-slides as standard mount-
ing hardware. -

- The following mounting units and cabinets are available for PDP-11 systems.

PDP-11 TABLETOP BOX AND POWER SUPPLY FOR 11/20, 11/10 SYSTEMS
(BA11-CC AND H720)—This cover and box may be spemfled with a basic
11/20 and 11/10 system and includes:

‘1. H720 Power Supply

2. 15’ of power cord with ground wire

=

77

- For 115 V standard, 3-prong, U-ground, 15-ampere connectors
— For 230 V pigtail leads on one end
3. Cooling Fans

4. Filter
5. Programmers Console with 11/20 or Turn-Key Console with 11/10

Approximate 'Size—11" high, 20" wide, 24" deep. Figure 10-2 shows the
layout of this unit. .

"

Figure 10.2 Table Top PDP-11 Dimensions

Approximate Weight—100 ibs. (including CP, console and 4K core)

Power—120 V * 10%,, 47-63 Hz 6 amps. single phase
~ (BA11-CC and H720-A)

230V % 109%, 47-63 Hz 3 amps. single phase
(BA11.CC and H720-B)

PDP-11 BASIC MOUNTING BOX AND POWER SUPPLY (BA11-CS AND H720)
—This basic mounting box may be specified with a basic 11/20 or a 11/10
system and includes: i

. Tilt and Lock Chasis Slides

. H720 Power Supply

. 15’ of power cord with ground wire

For 115 V standard, 3-prong, U-ground, 15-ampere connector

For 230 V pigtail lead$ on one end

. Cooling Fans .

. Filter

- Programmers Console with 11/20 or Turn-Key Console with 11/10

Approximate Size—ibl/z” high, 19” wide, 23” deep. Figures 16-3, 10-4 and
10-5 show the layout of this unit and give slide dimensions.

OB | WM

78

Approximate Weight—90 Ibs. (including CP, cdnsole and 4K core):

Power—120 V *10%, 47-63 Hz

6 amps.

(BA11-C5 and H720-A) +

230V £10%, 47-63 Hz

3 amps.

(BA11-C5 and H720-B) -

™S

10-1/2"

1

=

al

single phase

single phase

Figure 10.3 Rack Mountable PDP-11 Dimensions

¥ |*

Y FRONT PANEL

:CMSSIS —L

4
¥

1

N
l\.h"

174" 7116
- SLOT TYR

34"

—T—Qor SUDE

if - €3 CHASSIS
'ﬁfff.wio,f_—f~773[“_* [________.jl,“ﬂ
- [: < L
‘l_-o *l‘ =T o : ik | :
~a <D Efesr—o !
B N asesoo sior e Lo
¥ N =]

SIDE VIEW OF MOUNTING HARDWARE

Figure 10.5 Side View of Mounting Hardware

79

- PDP-11 TABLETOP EXTENSION MOUNTING BOX (BA11-EC)—The tabletop
Extension Box is supplied, when ordered, for mounting of up to 6 additional
System Units which can not be contained in the Basic Mountmg Box. This

unit is supplied with:

1. 15’ of power cord with ground wire

- For.115 V standard, 3-prong, U-ground, 15-ampere connector
— For 230 V pigtail leads on one end

2. Cooling Fans

3. Filter

4. Front Panel

5. Unibus Cable from Basic Mounting Box, 86" long.

Approximate Size—11" high, 20" wide, 24" deep

Power—120 V = 109%,, 47-63 Hz 6 amps. - single phase
{(when H720-A is added)
230V £10%, 47-63 Hz 3 amps. . single phase.
{when H720-B is added)

PDP-11 EXTENSION MOUNTING BOX (BAl11-ES)-—The Extension Box is sup-
plied, when ordered, for mounting of up to 6 additional System Units which

- can not be contained in the Basic Mounting Box. This unit contalns

. Tilt and Lock chassis slides

. 15’ of power cord with ground wire

For 115 V standard, 3-prong, U-ground, 15-ampere connector

For 230 V pigtail leads on one end

. Cooling Fans

+ Filter

. Front Panel

. Bus Cable from Basic Box, 8' 6” long

oobw] | M=

Approximate size—1014 " high, 19” wide, 23" deep

Power—120 V £ 10%, 47-63 Hz 6 amps. single phase
(when H720-A is added)-

230V *+109%, 47-63 Hz 3 amps. single phase
(when H720-B is added)

PDP-11 FREESTANDING BASE CABINET (H960-CA)—This optional cabinet
cabinet can be used to mount the BA11-CS Basic Mounting Box and a
BAl1-ES Extension Mounting Box supplied with Tilt and Lock chassw slides
in addition to other PDP-11 equipment. .

Panel capacity is six 104" high mounting spaces, each of which is covered
with black plastic panels if equipment is not mounted——(5 panels, maximum,
supplied). .

items supplied with the cabinet include:

H950-A Frame

H952-E Coasters

. H-952-F Levelers

. H-952.C Fan Assembly (in top of cabinet)
H-950-S Filter

PDP-11 Logo

H-950-B Rear Door _

1014, " Plastic Bezels, maximum of 5 supplied
. Two H952-A End Panels

CONOOPWNE

80

10. H950-D Mounting Panel Doors

11. H952-B Stabilizer Feet

12. #7406782 Kick Plate

13. #7005909 Power Dnstnbutwn Panel (ac and dc, mounted on upper
left side)

Approximate Size—22" wide, 39” deep (including stabilizer feet), 7114” high
Approximate Weight—150 Ibs. (without computer)

Voltage—115.V 60 Hz (for fans)
230 V 50 Hz (for fans)

PDP-11 POWER SUPPLY SUBSYSTEM H720—This Power supply is used in
the Basic and Extension Mounting boxes and supplies power to all devices
.mounted in one of these boxes. It is included in.basic PDP-11 systems,
but must be ordered separately with a BA11ES or BA11EC Extension Mount
ing Box.

Approximate Size—1614" wide, 8” high, 6” deep
Approximate Weight—25 |bs.
Voltages—(specify input voltage)

IN 108v *=10%, 47-63 Hz 6 amps (H720A)
120V £109%, 47-63 Hz 6 amps (H720A)
216V *=109%, 47-63 Hz 3 amps (H7208B)
228V +10%, 47-63 Hz 3 amps (H720B)
240V +£109%, 47-63 Hz 3 amps. (H720B)

OouT 45V =59, : - 12 amps
—15V £59, . 10 amps

+8RMS (unregulated) 1.5 amps,
—22V - (unregulated) 1.0 amps’

FREESTANDING PROGRAMMER’S TABLE (H952-HA)—This freestanding table
fits directly below the programmer’'s console in the Freestanding Base
* Cabinet and extends into the cabinet approximately 1”. The surface plate is
. supported by its own adjustable height legs.

Approximate Size—20” extension from cabinet, 19” wide, 27" above floor

SYSTEM UNITS AND CABLES

The following items are available for mounﬁng standard and special periph-
eral device logic into a PDP-11 system.

PERIPHERAL MOUNTING UNIT (DD11-A)—The DD11 is a prewired System
Unit which allows standard small peripheral interfaces to be mounted in a
PDP-11 system. It accepts standard small peripheral interfaces (up to 4)
such as the KL11 Teletype Control or the controller portion (PC11-M) of the
High Speed Reader/Punch. For mounting, it reqmres one-5|xth (1/6) of a
BA11l Mounting Box.

BLANK SYSTEM.UNIT (BB11)—The BB11 consists of three 288-pin con-
nector blocks connected end-to-end. This unit is unwired except for Unibus
and power connections and allows customer-built interfaces to be integrated
easily into a PDP-11 system. For mounting it requnres one-sixth (1/6) of a
BA11 Mounting Box. .

81

UNIBUS MODULE (M920)—The M220 is a double module which connects
the Unibus from one System Unit to the next within a -Mounting Box. The
printed circuit cards are separated ‘by 1” for this” purpose. A single M920
will carry all 56 Unibus signals .and 14 grounds.

~-UNIBUS CABLE (BC11A)—The BC11A is a 120-conductor ﬂexpnnt cable used
to connect System Units in different mounting boxes or a peripheral:device
which is removed from the mounting boxes.

The 120 signals consist of the 56 Unibus lines plus 64 grounds. Signals and
grounds aiternate to minimize cross talk.

Type Length
BC11A-2. 2!
BC11A-5 5
BC11A-8A 8’6"
BC11A-10 10’
BC11A-15 15’
BC11A-25 25°

CABLE REQUIREMENTS

When an Extension Mounting Box is used, an external cabie, the BCllA, is
the only signal: conngction between mounting boxes. This external bus cable
may also be used to connect other peripherals to the PDP-11. The maximum
combined, internal and external, bus cable length is 50°. ~

PDP-11/20 POWER REQUIREMENTS :

Input Voltage and Current—105 125 Vac, 6 amperes, 210-260' Vac 3 am-
peres, (single phase)

Line Frequency—47-63 Hz

Power Dissipation—400 watts -

A standard 15-foot, 3-prong,” U-ground, 15-ampere, line cord is provided on-
the rear of the PDP-11 for connection to the power source on 120 Vac
models. On 230 Vac models, a 15-foot, 3-conductor cable with pigtails is
provided.

- TELETYPE REQUIREMENTS

The standard Teletype requires a floor space approximately 2214, mches
wide by 1814 inches deep. The Teletype cable length restricts |ts location to
wnthm 8 feet of the side of the computer.

fnput Voltage——115 Vac +=109%, 60 Hz +0.45 Hz, 230 Vac *10%, 50 Hz
+0.75 Hz '

Line Current Drain—2.0 amperes
Power Dissipation—150 watts

The Teletype plugs into the rear of the PDP-11 Basic Mounting Box and is
turned ON and OFF by the power switch on the front panel of the PDP-11.

ENVIRONMENTAL REQUIREMENTS

The PDP-11 is desighed to operate from 410 to 450°C and with a relative
humidity of from 20 to 959% (without condensation).

82

" INSTALLATION PROCEDURE
The PDP-11 is crated for shipment to the customer site to prevent damage.
Installation is provided by DEC personnel at the customers site.

Computer customers may send persorinel to instruction courses on computér
operation, programming, and maintenance conducted regularly in Maynard,
Massachusetts, Palo Alto, California, and Reading, England.

83

B |

The PDP-11 has adopted a modular packaging approach to allow
custom configuring of systems, easy expansion and easy servicing.

CHAPTER 11

PAPER TAPE SOFTWARE SYSTEM
PAPER TAPE SOFTWARE SYSTEM (PTS)

PTS is a compatible group of software packages designed to aid development
of PDP-11 application programs. A brief description of each item with its
major features is offered below with detailed programming information avail-
able in corresponding software user’'s manuals.

PTS FEATURES

® 4K Absolute Assembler
® Symbolic Program Editor for edltmg of paper tape which is string onented

® On-Line Debugging Aid allowmg rapid and accurate modification of assem-
bled programs

® /0O Driver Routine. allowing subroutine level communication with periph-
eral devices and double buffered input/autput operation concurrent with
running programs

® Floating Point Math Package using both reentrant and relocatable code
® General Utilities including loaders and dump routines

PAL-11A ASSEMBLER—This two- or three-pass assembler runs on a PDP-11
with 4K words of core memory and an ASR-33. It will also accommodate a
high-speed reader/punch. Optional outputs include the absolute object code,
an assembly listing containing each source statement, and an indication of
any errors detected in the statement. A sympol table may be alphabetlcally
listed.

ED11 EDITOR—The PDP-11 Editor (ED11) allows the user to type identified
" portions of source program on the teleprinter and to make corrections.or
additions. This is accomplished by typing simple commands that cause the
Editor toread, print, punch out on paper tape, search, delete and/or add to
the text of the program.

Use of the ED11 presupposes no special knowledge or technical skill beyond
that of the operation of explicitly defined one-character commands. The
. commands are grouped according to function: input, positioning of the
current-character location pointer, output, search (which is done by charac-
ter string), insert, delete, and exchange of text portions.

ED11 uses 2,000 words of core and requires an ASR-33 unit which includes
a printer, keyboard, paper tape reader and paper tape punch. Alternatively,
a KSR-33 may be used in conjunction with the high-speed paper tape reader
and punch.

ODT-11 ON-LINE DEBUGGING TECHNIQUE—ODT-11 is a core resident pro-
gram which allows the user to debug his binary programs at the console by
running them in specific segments and checking for expected results at vari-
ous points. If modification of the program is needed, the user can alter the
contents of the appropriate location by ““opening’ it and typing in new data.
Two versions of ODT are available, one being a subset of the other. The
larger system uses 750 words of core and utilizes an ASR-33, or a KSR-33
and a high-speed paper tape punch and reader. The smaller version uses the
same peripherals and 500 words of core. Up to eight breakpoints can be set
using the larger .version of ODT, while one breakpoint is allowed in the
smaliler version.

85

Debugging operations alternate between commands to ODT and the running
of the program to be debugged. Breakpoints are set in the user's program by
ODT commands, and a command to run starts execution of the program.
When a breakpoint is encountered, the program run is suspended, and the
progress of its execution can be monitored and altered. This is accomplished
by using commands to open memory Iocatlons of interest, as well as special
registers.

An operator may examine and change the operating priority of both ODT
and the user's program, the mask and address range for searches, results
of logical and arithmetic operations, the SP and PC, and the general registers.

Other commands will search for values of specified bits of a word, or for |

references to an address within an address range, calculate 16-bit and 8-bit
offsets to an address and restart the running of the user's program at any
address.

10X Input/Output Utility 'Peripheral Driver—IOX is a set of service routines
allowing single or double buffered 1/O processing on .an ASR-33 and/or a high-
speed paper tape reader and punch. This routine allows the user to make
simple assembly language calls specifying devices and data forms to accom-
plish interrupt-controlled data transfer concurrent with execution of the run-
ning program. Multiple devices can be run simultaneously.

I0X frees the user from the details of dealing difectly with the device and
allows deve|opment of programs which may be run under the direction of a
monitor with minimum modification.

10X also provides some degree of real-time control by allowing user programs
to be executed at priority levels at the completion of some device action or
data transfer.

MATH PACKAGE—A number of commonly used subroutines are available to
simplify programming. These routines are reentrant and relocatable to pro-
vide maximum flexibility. Arguments are treated as floating point numbers
with a signed 31-bit fraction and a signed 15-bit exponent. Subroutines sup-
plied include:

ADD

MULtiply

SUBtract

Divide

SIN

cos

ATAN

FIX—FLOAT

FLOAT—FIX .

NORmalize

(integer MULtiply and DIVide are also supplied)

LOADERS—Two loaders are used:
® A Bootstrap loader loads the ABSolute loader and jumps to it.

® ABSolute loader loads PAL-11A output, checks for checksum errors and
jumps to a user program or haits when done.

CORE DUMP ROUTINES—Routines are provided which dump specified
ranges of core locations on paper tape in absolute format or on the tele-
printer in octal.

86

CHAPTER 12
' THE OPERATOR’S CONSOLE

"The PDP-11 Operator's Console has been configured to achieve convenient
control of the system. Through switches and keys on the console, programs
or information can be manually inserted or modified. Also indicator lamps on
the console face display the status of the machine, the contents of the Bus
Address-Register and the data at the output of the data paths.

The console is shown in F igure 12-1.

G Ta[1]

dighl equipment corpordtion-maynard.

ADDRESS REBISTER AuN s PETCH EXEC
— T) 1 I 1 - |

- DATA - SOURCE_ DESTWATION _ADORESS

L 1 I T I] [T 10]
T ot

e v sl v nmle] v w sl el Il sz T+ m“““%’_f i

J/
Figure 12-1

CONSOLE ELEMENTS
The console has the following indicators and switches:
1. A bank of 8 indicators, indjcating the foilowing conditions or oper-

~ations: Fetch, Execute, Bus,.Run, Source, Destination and Address

(2 bits). ’

An 18-bit Address Register Display

-A 16-bit Data Register Display

An 18-bit Switch Register

Control Switches:

opPhwh

. LOAD ADDR (Load Address)
. EXAM (Examine) .

- CONT (Continue)

. ENABLE/HALT .

S/INST—S/CYCLE (Single Instruction/Single Cycle)
START

DEP (Deposit)

(R W N Y

INDICATOR LIGHTS—The indicators signify specific machine functions,
operations, or states. Each is defined below.
" 1. Fetch—indicates that the' central processor is in the state of fetching
_an instruction.
2. Execute—indicates that the central processor is in the state of
executing an instruction.

87

3. Bus—indicates that a peripheral is controlling the bus. It is lit when
BBSY (Bus busy) is asserted, uniess the processor (wmcn inciudes
the console) is asserting BBSY.

Run—indicates that the processor is running. It momtors the control
flip-flop for the internal clock.

. Source=—indicates that the central processor is- obtaining source
data except from an internal register.

. Destination—indicates that the central processor is obtaining des-
tination data (except from an internal register).

. Address—identifies the source or destination address cycle of the
central processor, using two lights that are decoded zero, one, two,
or three. When references are made via the Unibus to the'addresses,
the lights tell the machine’s source or destination cycle. For an in:
ternal register reference, there is a “zeroth” addressing operation.

REGISTER DISPLAYS—The Operator’'s Console has an 18-bit Address Regis-
ter Display and a 16-bit Data Register Display. The Address Register Display
is tied directly to the output of an 18-bit flip-flop register called the Bus
Address Register. This register displays the address of data examined or
deposited.

.The 16-bit data register is divided on the face of the console by a hne into
two 8-bit bytes. This register is tied to the output of the processor data paths
and will reflect the output of the processor adder.

SWITCH REGISTER—The PDP-11/10 and PDP-11/20 can reference 216 hytes
addresses. However, the Unibus has expansion capability for 218 byte ad-
dresses. In order that the console can access the entire 18-bit address

scheme, the switch register is 18 bits wide. These bits are assigned as 0
+hrnnnh 17. The hnghncf two are used nnl\l as addrecses, A switch in the

oSt

“up”’ posntlon is considered to have a “1" value and in the “down’ position
to have a 0" value. The condition of the 18 switches can be loaded into the
bus address register or any memory location by using the appropriate control
switches which are described below.

CONTROL SWITCHES—The switches .listed in item 5 of the ‘““Console
Elements” have these specific control functions:

1. LOAD ADDR—transfers the contents of the 18- blt switch reglster
into the bus address register. :

2. EXAM—displays the contents of the location specified by the bus
address register. \

3. DEP—deposits the contents of the low 16 bits of the switch reglster
into the address then displayed in the address register. (This switch
is actuated by raising it.)

4. ENABLE/HALT—allows or prevents running of programs. For a pro-
gram to run, the switch must be in the ENABLE position (up). Placing
the switch in the HALT position (down) will halt the system. :

5. START—starts executing a program when the ENABLE/HALT switch
is in the ENABLE position. When the START switch is depressed, it

- asserts a system initialization signal; the system actually starts when
the switch is released. The processor will start executing at the
address which was last loaded by the LOAD ADDR key.

6. CONT—allows the machine to continue without initialization from
whatever state it was in when halted.

7. S/INST-S/CYCLE—determines whether a single instruction or a
single bus cycle is performed when the CONT switch is depressed
while the machine is in the halt mode,

~

88

When the system is running a program, the LOAD ADDR, EXAM, and DE-
POSIT functions are disabled to prevent disrupting the program. When the
machine is to be -halted, the ENABLE/HALT switch is thrown to the hait
position. The machine will halt either at the end of the current instruction,
or at the end of the current bus cycle, depending upon the position of the
S/INST-S/CYCLE switch.

‘OPERATING THE CONTROL SWITCHES

When the PDP-11 has been halted, it is possible to examine and update bus
locations. To examine a specific location, the operator sets the switches of
the switch register to correspond to the location’s address. The operator then
presses LOAD ADDR, which will transfer the contents of the switch register
into the bus address register. The location of the address to be examined is
then displayed in the address register display. The operator then depresses
EXAM. The data in that location will appear in the data register display.

If the operator then depresses EXAM again, the bus address register will be
incremented by 2 to the next word address and the new location will be
examined. In the PDP-11, the bus address register will always be pointing to
the data currently displayed in the data register. The incrementation occurs
when the EXAM switch is depressed, and then the location is examined.

The examine function has been designed so that if LOAD ADDR and then)
EXAM are depressed, the address register will not be incremented. In this
case, the location reflected in the address register display is examined
directly. However, on the second (and successive) depressings of EXAM, the
bus address register is incremented. This will continue for successive de-
pressings as long as another control switch is not depressed.

If the operator finds an incorrect entry in the data register, he can enter new
data there by putting it in the switch register and raising the DEP key. The
address register will not increment when this data is deposited. Therefore,
when the operator presses the EXAM key, he can examine the data he just
deposited. However, when he presses EXAM again, the system will increment.

If the operator attempts to examine data from, or deposit data into, a non-
existent memory location, the “time out’” feature will cause an error flag. The
data register will then reflect location 4, the trap location, for references to
nonexistent locations. To verify this condition, the operator should try to
deposit some number other than four in that location; if four is still indi-
cated, this would indicate that either nothing is assigned to that location, or
that whatever js assigned to that location is not working properly.

When doing consecutive examines or consecutive deposits, the address will
increment by 2, to successive word locations. However, if the programmer is
examining the fast registers (the ‘‘scratch pad” memory), the system only
increments by 1. The reason for this is that once the switch register is set
properly, the programmer can then use the four least significant bits of the
switch register in examining fast memory registers from the front panel.

To start a PDP-11 program, the programmer loads the starting address of
the program in the switch register, depresses LOAD ADDR, and after ensur-
ing that the ENABLE/HALT switch is in the ENABLE position, depresses
S‘lé’ART. The program will ‘start to run as soon as the START switch is re-
leased.

The Run indicator lamp is driven off the flip-flop that controls the clock.
Normally, when the system is running, not only will this light be on, but the

89

_other lights (Fetch, Execute, Source, Destination, the Address lights, and the
Address and Data registers) will be flickering. If the run light is on, and none
of the other indicators are flickering, the system -could be executing-a “‘wait"
instruction which waits for an interrupt. \

While in the halt mode, 'if the operator wishes to do a siggle instruction, he
places the S/INST-S/CYCLE switch in the S/INST position -and depresses
CONT. When CONT is depressed, the console momentarily passes control to
the processor, allowing the machine to execute one instruction before regain-
‘ing control. Each tiiie the CONT switch is depressed, the machine will

execute one instruction.

Similarly, if the operator wishes to have the machine perform a single bus
cycle, he places the S/INST-S/CYCLE switch in the S/CYCLE position and
presses CONT. The machine will then perform one complete bus cycie and
halt. The operator cannot do an'examine or deposit function at the end of a
single bus cycle unless the cycle ends coincidental with the end of an in-
struction. This prevents altering machine flow. Only when the machine is at
the end of an instruction and in the halt mode can the examine or deposit
functions operate.

To start the machine running its program again, the operator-places the
ENABLE/HALT switch in the ENABLE position, and depresses the CONT
switch. . : ~ .

APPENDIX A—PDP-11 INSTRUCTION REPERTOIRE

Instruction
Mnemonic Operation

DOUBLE OPERAND GROUP: OPR scr, dst

MOV(B) MOVe (Byte)
(src) -» (dst)
CMP(B) CoMPare (Byte)
- (src) — (dst)
BIT(B) =~ BIt Test (Byte)
(src) A (dst)
BIC(B) BIt Clear (Byte)
~ (src) A (dst) > (dst)
BIS(B) Blt Set (Byte)
(src) vy (dst) » (dst)
ADD ADD ° .
(src) 4 (dst) »> (dst)
SUB - ' SUBtract
- (dst) — (src) - (dst)

CONDITIONAL BRANCHES: Bxx loc

BR BRanch (unconditionally)
loc » (PC)
BNE Branch if Not Equal (Zero)
“ loc> (PC)IfZ=0
BEQ Branch if Equal (Zero) .
loe-> (PCYifZ=1
BGE . Branch if Greater or Equal (Zero)
loc> (PCYiIfNVV =0)
BLT Branch if Less Than (Zero)
loc—> (PC)IfNV¥V =1
BGT Branch if Greater Than (Zero)

loc> (PC)IfZV(NVYV=0)
BLE Branch if Less Than or Equal (Zero)
loc> (PC)ifZV(N¥V)=1

BPL Branch if PLus

loc> (PC)ifN=0
BMI Branch if Minus
) loc—> (PC)ifN=1
BHI Branch if Higher

loc> (PC)ifCvZ=0
BLOS . Branch if LOwer o Same

loc» (PC)ifCvZ=1
BVC Branch if oVerflow Clear

<~ loc> (PC)iIfV=0

BVS Branch if oVerflow Set

loc—» (PC)ifV=1

, BCC Branch if Carry Clear

(or BHIS) loc> (PC)ifC=0
BCS Branch if Carry Set
(or BLO) loc> (PC)ifC=1

91

Y

OP Code

-18SDD
-28SDD
38SDD
4SSDD
-5688DD
06SSDD
16SSDD

0004XX

0010XX -

0014XX
0020XX
0024XX
0030XX
0034XX
1000XX

. 1004XX
1010XX -

1014XX
1020XX
1024XX
1030XX

1034XX

Condition

Codes

ZNCV Timing

Vv —0
VYV Y
Vv =0
Vv —0
Vv —0
VY Y
VYV

2.3
2.3*
2.9*%
2.9
2.3
23
23

26—
26—
26—
26—
26—
2.6—
26—
26—
26—
26—.
26—
26—
26—
26—

2.6 —

-

SUBROUTINE CALL: JSR reg, dst
"JSR - Jump to SubRoutine 004RDD —— 4.2
(dst)> (tmp), (reg) | :
(PC) = (reg), (tmp) » (PC)
SUBROUTINE RETURN: RTS reg :
RTS ReTurn from Subroutine 00020R —_— 3.5
: (reg) > PC, 1 (reg)

SINGLE OPERAND GROUP: OPR dst

CLR(B) CLeaR (Byte) -050DD 1000 2.3
0 - (dst))

COM(B) COMpiement (Byte) 051DD ¢ Y00 23
~ (dst) - (dst) .

INC(B) INCrement (Byte) “052DD yy—y 23
(dst) + 1 - (dst)

DEC(B) DECrement (Byte) 083D ¢ y—y 2.3

: (dst) — 1 > (dst)

NEG(B) NEGate (Byte) 084DD Yy VvV 2.3
~(dst) + 1> (dst)

ADC(B) ADd Carry (Byte) 055DD Vv VYV 2.3
(dst) + (C) - (dst)

SBC(B) SuBtract Carry (Byte) 056DD V¢V v/ V 2.3
(dst) — (C) ~ (dst)

TST(B) TeST (Byte) 057DD ¢ y 00 2.3*%

— (dst)
ROR(B) ROtate Right (Byte) 060DD Y/ VV 2.3°
- rotate right 1 place with C
ROL(B) . ROtate Left {(Byte) 061DD Y ¢V VvV 2.3°
, rotate left 1 place with C
ASR(B) Arithmetic Shift Right (Byte)- . 062DD yyvY Y 2.3°
- shift right with sign extension . y

ASL(B) Arithmetic Shift Left (Byte) 063DD yY vy 2.3°
shift left with lo-order zero

JMP JuMP 0001DD —— 1.2
(dst) -» (PC)

SWAB SWApD Bytes : 0003DD y Y00 2.3
bytes of a word are exchanged

CONDITION CODE OPERATORS: OPR 1.5

Condition Code Operators set or clear combinations of condition code bits.
Selected bits are set if S = 1 and cleared otherwise. Condition code bits cor-
responding to bits set as marked in the word below are set or cleared.

CONDITION CODE OPERATORS:

TN B0 O E
| I T N W

1% ’

Thus SEC — 000261 sets the C bit and has no effect on the other condition
code bits (CLC = 000241 clears the C Blt)

OPERATE GROUP: OPR-

HALT HALT 000000 1.8
processor stops; (RO) and the HALT address in lights
WAIT WAIT 3 000001 1.8

processor releases bus, waits for interrupt

92

RTI ReTurn from Interrupt 000002 VVvVyYy 48

1 (PC), 1 (PS)
10T Input/Output Trap 000004 Vvvyy 8.9
- (PS) |, (PC) |, (20) » (PC), (22) » (PS)

RESET RESET R 000005 —_— 20 ms.
an INIT pulse is issued by the CP - -

EMT ° EMulator Trap 104000—104377 Yvvy 89
(PS) §, (PC) |, (30) > (PC), (32) » (PS)

TRAP TRAP 104400—104777 Yyvvy 89
(PS) |, (PC) |, (34) » (PC), (36) - (PS)

NOTATION: 7

1. for order codes -

word/ byte bit, set for byte (4+100000)
~ SS—source field, N
" DD—destination field
XX—offset (8 bit)

2. for operations

A and,
v or,
~ not,
() contents of,
¥ XOR
J “is pushed onto the processor stack”
1 “the contents of the top of the processor stack is
popped and becomes'’
- “becomes”’
3. for timing
* 0.4 us less if not register mode
— 0.9 us less if conditions for branch not met
° 1.2 us more if addressing odd byte

(0.6 us additional in addressing odd bytes otherwise)

4. for condition codes

set conditionally
not affected
cleared

set

I—IO'\

93

' The PDP-11 derives speed and memory efficiency from its Wide

range of addressing capabilities.

ADDRESSING. M

ODES-

[wooe [rewser]

15

CONDITIONAL BRANCHES: Bxx.loc (loc={offset-2)+.+2)

src or’ dst

GENERAL REGISTER ADDRESSING. -)

- Timing (»s)
Mode Description Symbolic - src dst
0 - register R 00 ° 00
1 register deferred @ Ror (R) 1.5 1.4
2 auto increment (R) + 1.5 14
3 auto increment deferred @ (R) + 2.7 2.6
4 auto decrement — (R) 15 14
5 auto decrement.deferred @ — (R) 2.7 26
6 indexed . X (R) 2.7 2.6
7 indexed deferred @ X(R)yor@ (R) 39 38

MODE
=17
src or d#t
PC REGISTER ADDRESSING
Timing us)
Mode Description Symbolic src dst
2 immediate #n 1.5 1.4
3 absolute @ #A 2.7 26
-6 relative A 27 26
7 relative deferred @A 3.9 38
INSTRUCTION FORMATS
DOUBLE OPERAND GROUP: OPR src,dst:
X T .
2 " 6 5 o

Ill]oplcooil‘ll‘lllillil

15

9 8

95

o

SUBROUTINE CALL: JSR reg, dst

roj 1 OJ . l l‘ 1 l lv'.'j l i l“'l 1 |
15

SUBROUTINE RETURN:. RTS reg

y - reg
|T)l lL [401 1 '1124 | Jol I i1
15

3 2 (o]

-

SINGLE OPERAND GROUP. OPR dst

Ll [l 1 IOP fODEl J l‘ 1 ’l 1 "ld"l A ‘ L]

15 6 95 0

CONDITION CODE OPERATORS:

Loy oo oo vz el e
15 s 4 3 2 4 (o]

400

.
.

APPENDIX C—ADDRESS MAP

USER DEVICE INTERRUPT VECTOR
BUS ERROR, ILLEGAL INSTRUCTION, STACK OVERFLOW TRAP

VECTOR _
RESERVED INSTRUCTIONS TRAP VECTOR
CODE 000003 AND TRACE TRAP VECTOR
IOT INSTUCTION TRAP VECTOR
'POWER FAIL INTERRUPT VECTOR
EMT INSTRUCTION TRAP VECTOR
TRAP INSTUCTION TRAP VECTOR

SYSTEM SOFTWARE COMMUNICATION

TELEPRINTER INTERRUPT VECTOR)
TELETYPE KEYBOARD AND LOW SPEED READER INTERRUPT

VECTOR :
HIGH SPEED PAPER TAPE PUNCH INTERRUPT VECTOR
HIGH SPEED PAPER TAPE READER INTERRUPT VECTOR

(additional interrupt vectors)

PROCESSOR STACK
PROGRAM AND DATA
RESIDENT SYSTEM SOFTWARE

(ABSOLUTE LOADER, BOOTSTRAP, 1/0O EXECUTIVE)

(end of implemented storage)

160000

SMALL READ-ONLY STORAGE UNITS

-

OTHER PERIPHERAL DEVICE REGISTERS

177550 HIGH SPEED READER AND PUNCH DEVICE STATUS AND BUFFER

REGISTERS

97

)

177560 TELETYPE KEYBOARD AND PUNCH DEVICE STATUS AND BUFFER
REGISTER B : . '

177576
177600

RESERVED FOR EXPANSION OF PROCESSOR REGISTERS

177677
177700

GENERAL ' REGISTERS RO — R7

177776 ~CENTRAL PROCESSOR STATUS REGISTER (PS) -

- APPENDIX D—UNIBUS OPERATIONS

There are ‘six bus operations: four to effect data transfers, one to transfer
bus control, and one to effect a program interrupt. This appendix describes
the signal interaction on the Unibus to perfofm these six operations.

DATA TRANSFERS

. The four data transfers use the C lines coded as follows:

Cl co '

0 0 DATI-DATa In

0 1 DATIP-DATa In, Pause
1 0 DATO-DATa Out

h 1 DATOB-DATa Out, Byte

DATI AND DATIP—These two bus operations transfer data from a slave
whose address is specified by A < 17:01 > into the master. Both transfers
are made in words on D < 15:00 >. In destructive read-out devites,
" DATI commands a read-restore operation, while DATIP commands a read-
pause operation and the setting of a pause flag. DATIPs are to be followed
by a DATO or DATOB to effect a read-modify-write data exchange. In non
destructive read-out devices, DAT| and DATIP are treated identically. The
‘sequence of operations is as follows: ,
1. Master puts address on A, 0 or 1 on C, and waits 150 nanoseconds.
(75 nanoseconds for deskewing address 4+ 75 nanoseconds for ad-
dress decoding).
. Master asserts MSYN.
. Slave decodes address, sees O or 1 on C, and MSYN and Wegins read
cycle (flip-flop register would simply gate flop outputs to bus).
4. Siave completes read cycle, outputs data to D lines, and asserts
SSYN. If the slave is a destructive read-out device, it now restores
data on a DATLI: it sets a pause flag on a DATIP.

wnN

‘ Figure D-1 shows the signals for a DATI operation.
' _DATI
SIGNALS AT MASTER
ADDRESS-CONTROL —I 7

DATA
MSYN _T

SSYN

SIGNALS AT SLAVE
ADDRESS-CONTROL ———— 1 R
DATA

7

I

MSYN
SSYN

AT
READ |RESTORE

MEMORY CYCLE —

T=SIGNAL AS TRANSMITTED .
. R=SIGNAL AS RECEIVED

I-:igure D-1DATI Operation

99

-

------ OOVAL aedd casmiba PN Yy et | [Y JUIRRY % P
maater JLES OOTIN dllu waild IU "d"U5b‘LU"U$, ITHNHTIUIT (Udle

kewing - internal gating deskewing).

S.}l'l

6. Master strobes data, drops MSYN, and waits 75 nanoseconds (des-
kew address). .
7. Master drops A and C and waits for SSYN to fall.
8. Slave sees MSYN fall and drops SSYN and D lines.
9. Master sees SSYN fall, signaling end of bus operation.
~ NOTES: ’ :
1. Step 1 of the next data transfer may begin at step 7 of the current DATI or
DATIP.
‘2. Step 2 of the next data transfer may begin at step 9 of the current DATI or
DATIP.

DATO AND DATOB—These two bus operations transfer data out of the mas-
ter to the slave. DATO is used to transfer a word to the address specified
by A < 17:01 >. The slave ignores AOO and the data appears on D < 15:00 >.
DATOB is used to transfer a byte to the address specified by A < 17:00 >
AO0 = 0 indicates. the low byte and data appears on D < 07:00 >; AOO=1
indicates high byte and data appears on D < 15:08 >. The sequence of op-
eration is as follows:

1. Master puts address on A, data on D, 2 or 3 on C, and waits 150
nanoseconds (75 nanoseconds for deskewnng address + 75 nano-
seconds for address decoding).

2. Master asserts MSYN.

3. Slave decodes address, sees 2 or 3 on C and MSYN and strobes in
word or byte. When slave has taken data, it asserts SSYN. If the slave
is a destructive read-out device and its pause flag is set (hv DATIP),

slave begins write cycle; if :not, slave must first do a read cycle to
clear the memory cell and then a write.
4. Master sees SSYN and drops MSYN and waits 75 nanoseconds (des-
‘kew address).
- 5. Master drops A, D, and C, and waits for SSYN to fall.
6. Slave sees MSYN fall and drops SSYN.
7. Master sees SSYN fall, signaling end of bus operation.

%

Figure D-2 shows the signals for a DATO operation.
DATO ' ‘
SIGNALS AT MASTER

L]

ADDRESS-CONTROL — T L
oata —I T] 1
MsyN ———— It 1
SSYN m

SIGNALS AT SLAVE ° :
[|
ADDRESS-CONTROL R .

patA ——— IR]

MSYN — R~ —]

SSYN —=2 T L
MEMORY CYCLE JCLEAR [WRITE 1

Figure D-2 DATO Qperation

100

' \
NOTES: , :
1. Step 1 of the next data transfer may begin at step 5 of the current DATO or
DATOB. : . _ .
2. Step 2 of the next data transfer may begin at step 7 of the current DATO or °
DATOB.)

\
PTR-PRIORITY TRANSFER

This bus operation is used to pass control of the bus from one master to
another. The steps which follow are performed simultaneously with the data
transfers: X

0. Current master device always has BBSY asserted. .

1. Requesting device asserts its assigned BR line.

2. Processor sees BR asserted, determines which BR is highest, and
asserts the corresponding BG line if the processor's current priority
level allow that level of bus request.

3. Each device that receives the BG passes it on to the next device

unless it itself is requesting. N

The BG is propagated along the priority chain until it reaches the

first requesting device. This device becomes selected as next bus -

master and does not allow the BG to pass to succeeding devices.

. The selected device asserts SACK and drops its BR, and waits for

BBSY, BG, and SSYN to drop. .

. The processor sees SACK and drops BG.

. The device which is current master completes its data transfers,

drops BBSY, and ceases to be bus master. ’

. The selected device sees BG, BBSY, and SSYN drop, becomes bus

master, asserts BBSY, drops SACK, and begins data transfers.

. New master relinquishes bus control, either to the processor or to a
requesting device, by dropping BBSY at the end of its last bus op-
eration. This is termed a passive release of bus control.

NOTES: .

1. NPR bus requests are handled as above.

2. Processor defers action on BR <7:4> until last bus cycle of an instruction
execution or interrupt sequence, NPR is acted upon immediately.

3. Processor becomes bus master and asserts BBSY whenever it sees BBSY = 0
and no other device has been selected or is being selected as next bus master.

4. Processor will not execute step 2 if SACK is asserted. See note 2 under INTR.

>

© ® N o

Figure D-3 shows the signals for a PTR operation. ’
PTR
SIGNALS AT DEVICE
BR ﬁ
86 L
IT

SACK
SIGNALS AT PROCESSOR
R ————Jr 1
6 —uo— T L .

SACK IR

T’z SIGNAL AS TRANSMITTED
R = SIGNAL AS RECEIVED

Figure D-3 PTR Operation

101

INTR—INTerRupt

This bus operation is initiated by a master immediately after receiving bus
control to effect a program interrupt in the processor. It proceeds as follows:

PpPOMNEO

- 8.

NOTES:

Device has become bus master via PTR and BBSY is asserted.
Master puts interrupt vector address on D and asserts INTR.
Processor sees INTR and waits 75 nanoseconds (deskew data).
Processor strobes data and asserts SSYN.

Master sees SSYN, drops INTR, .D, and BBSY. The master has now
relmquised bus control directly to the processor. The INTR sequence
is termed an active release of bus control.

Processor sees INTR drop and drops SSYN and. ‘enters interrupt
sequence to update PC and PS.

’

1. Step 1 must be made slmultaneously with step 8 of PTR; that’is, SACK cannot

)

be dropped until INTR is asserted.

2 When the processor sees SACK drop, it waits 75 nanoseconds (deskew). |f, at

that time, INTR = 1, the processor issues no BG’s until the interrupt sequence
is complete. .

Figure D4 shows the signals for the INTR operation.

INTR
SIGNALS AT MASTER

BBSY 1 -
DATA ——rdT 1 .
INTR T L — —
SSYN . — __

) AT PR
B8BSY ¢ —UJT
patA —— IR r—
INtR —— R -
SSYN - T | I

T = SIGNAL AS TRANSMITTED
R = SIGNAL AS RECEIVED

Figure D-4 INTR Operation

GENERAL NOTES ON THE BUS OPERATIONS

1.

A master device doing a read-modify-write operation must keep bus
control BBSY asserted for both bus transactions (both the DATIP

- and the DATO or DATOB). This is the one case where an NPR request

will not be honored between bus transactions.

. A device becomes master by the PTR operation. If the reéquest for -

bus control was made on the NPR line, bus control must be released
passively (by dropping BBSY). Bus control is then passed either back
to the processor to execute the next bus cycle of the instruction or
to another device requesting on the NPR line. If a device becomes
master via a' BR request line, control may be passed actively back
to the processor by using the INTR operation or passively (by drop-

102

ping BBSY); If control is given up actively, only NPR requests will be
“honored during the interrupt sequence of updating the PC and PS.
If control is given up passively, control may pass either to the
. processor to fetch the next instruction or to an NPR requesting

device.

103

The PDP-11 provides Direct Device Addressing. All memory and
devices on the Unibus are directly addressable and may be op-

erated upon by all computer instructions. Direct device to device
transfers are possible.

104

