

Risks vs. Benefits of VAX/Alpha Emulation

Stanley F. Quayle, P.E. 18 Years of VMS Consulting

Today's Goals

- Recognizing candidates for emulation
- Preparing for emulation
- Minimizing migration time
- Validating the migration
- How to discuss the value of a solution, not just the cost
- Available emulators

Shameless Plug Alert ™

Quayle Consulting Inc. is a Value-Added Reseller (VAR)
of the CHARON-VAX and CHARON-AXP products
manufactured by Stromasys.

Everybody's Doing It

- Virtual Systems are everywhere!
 - VMware, Xen, etc. for Intel
 - AS/400 emulators
 - Data General emulators
 - OpenVMS under HP-UX

What are the Benefits?

- Improve up-time and reliability
- Save floor space, power, maintenance costs
- Make the application faster
- Make the system "fit" into the current data center design
- Preserve the past investment in the application

The hope is that an emulator will allow the use of new hardware in the future, without having to change the application

When **Not** to Emulate – Part 1

- Dependent on instruction timing
 - Example: MicroVAX II controlling linear accelerator
- "Magic" hardware
 - Example: Space Shuttle ground test equipment
 - Q-bus is supported by some emulators
 - Other DEC buses are not supported by anything
- Some equipment doesn't have modern interfaces
 - 8" floppies
 - DSSI disks, CI, video disks
 - DECtalk

When **Not** to Emulate – Part 2

- Applications that provide life support
- No way to "image" existing system to emulator
 - Do you have the original media?
 - Is it readable?
 - And how do you get the data over?
- Is it acceptable to validation authorities?

When **Not** to Emulate – Part 3

- Impossible validation requirements
 - Can you really test 2³² cases?
 - Got any missiles handy?
- Impossible contracting requirements
 - Is it wise to replace a system that comes with a 12" thick contract?

Good Candidates for Emulation

The emulator maps modern hardware into something that the old application and OS recognizes:

- Network connections
- Serial ports
 - Terminal servers are "network" devices
- Disks
- Tape drives

What are the Risks?

- The emulator may not replicate the original system faithfully
- The emulator may fail, dropping users or even corrupting data
- The host system could fail, making the virtual environment inaccessible
- Non-VMS system administrators don't understand the solution
- Some customers try to go "cheap"
 - Run under VMware
 - Non-server hardware

Risk vs. Benefits

- The emulation provider and the customer must work together to decide whether emulation is the best solution
- How about VEST/AEST instead?
 - Middleware dependencies
 - Licensing dependencies
- Do you have current OS and application experience?
- I tell customers:

"If you like your application before emulation, you'll like it more after. If you hate your application before emulation, you'll hate it just as much."

Preparing for Emulation – Part 1

- Evaluate all software licenses for validity on emulated system
 - HP, Oracle, Process Software transfer licenses
 - Other 3rd-party licenses, especially Ross Systems licenses
- Develop a validation plan
 - Customer's disaster-recovery plan can be a good starting point
 - Heavy customer involvement to "buy" the migration,
 they need to "buy" the validation
- A proof-of-concept migration might be necessary

Preparing for Emulation – Part 2

- Do everything on the original system that you can
 - Load migration scripts
 - Test disks for integrity (ANALYZE/DISK for VMS)
- Get temporary addresses (IP, DECnet, etc.) to use on emulator while copying the OS and application
- Install emulator and build empty disk files
- Quiesce the system
 - Shut down databases
 - Lock out users
 - Stop queues

Minimizing Migration Time

- The data copied fastest is the data that isn't copied
 - Delete/purge log files and other cruft
 - Compress stuff that won't be needed immediately
 - ZIP and similar tools are widely available
- Find stuff that can be copied before the migration
- For a network copy, make sure you get max bandwidth
- Parallel streams help
 - Example: Three source VAX systems each with a tape drive,
 copying to 3 tape drives on the emulator

Validating the Migration – Part 1

- Attempt to mount the disks
- Validate the disk structures
- Boot from the system disk image, bypassing any application startup
 - Analyze & fix any startup errors, or prove that they're identical to those on the original system
- Verify access to disk drives, tape drives, serial ports, network, etc.

Validating the Migration – Part 2

- Make changes as necessary
 - In VMS, create logical names to map old device names to new names, etc.
- Have client execute validation plan
 - You might have to help the customer, or even do the validation yourself
 - Quote this up-front on a T&M basis, so there are no surprises

Value vs. Cost

- You must be able to demonstrate that the solution will provide more value (reliability, etc.) than it costs
 - No one buys a computer to just take up floor space they need to run an application
 - If price was the only consideration, we wouldn't have cars
- Technical people are generally not trained in sales
- Emulation should be just one of many tools you have

Emulator Choices – SIMH

SIMH is an open-source VAX and PDP-11 emulator

- The price is right: free
- Some support is available
- If it breaks, you own all the pieces
- No direct access to hardware
- Not certified by HP as being a true emulation of a VAX

Emulator Choices – CHARON-VAX

CHARON-VAX is a commercial-grade VAX emulator

- Certified by HP as being a true emulation of a VAX
- Support is available through VARs and Stromasys
- Products range from 128 MB single-processor systems to 3 GB, 6-processor SMP systems
- Can access physical disk and tape drives, including SAN storage
- Some support for some other devices in CHARON-TB version
- Thousands of systems installed world-wide
- Hosted on Windows or Integrity OpenVMS

Emulator Choices – NuVAX

NuVAX is a commercial-grade VAX emulator

- Certified by HP as being a true emulation of a VAX
- Support is available through VARs and The Logical Company
- Comes with dedicated server and optional Q-bus card cage
- Real-time host OS (QNX)
- Replicates most original VAX instruction times

Free Alpha Emulators

These emulators are a way to "give back" to the VMS community. They also provide a pool of volunteer beta testers. They offer limited memory, disks, and performance.

- PersonalAlpha (Stromasys)
 - Limited version of CHARON-AXP
 - Not for commercial use
- FreeAXP (Migration Specialities)
 - Can be used for low-performance commercial applications

Both run on 32-bit Windows

Emulator Choices – CHARON-AXP

CHARON-AXP is a commercial-grade Alpha emulator

- Passes all Alpha architecture validation tests
- Support is available through VARs and Stromasys
- Products range from AlphaStation 200 to 32-processor AlphaServer GS320
- Can access physical disk and tape drives
- Installed base in the low hundreds
- Requires 64-bit Windows host

Emulator Choices – Avanti

Avanti is a commercial-grade Alpha emulator

- Support is available through VARs and Migration Specialities
- Will be available soon
- Host OS can be 64-bit Windows, Linux, or Integrity

Emulator Choices – PDP-11

- Some emulators:
 - SIMH
 - NuPDP from The Logical Company
 - CHARON-TB from Stromasys
 - Osprey from Strobe Data
 - Ersatz-11 from D Bit

Questions?