CHAPI/VAX-Qbus

The CHARON-VAX Application
Programming Interface

(CHAPI) for Qbus peripheral

CHAPI/VAX-Qbus

The CHARON-VAX Application
Programming Interface

(CHAPI) for Qbus peripheral
emulation in Windows

Software Resources
Intaearnationsl
page ii

© 2003 -2004 Software Resources International S.A

Copyright © 2003 - 2004 Software Resources International S.A.

All rights reserved. Under the copyright laws, this publication and the software
described within may not be copied, in whole or in part, without the written
consent of Software Resources International. The same proprietary and
copyright notices must be affixed to any permitted copies as were affixed to
the original. This exception does not allow copies to be made for others,
whether or not sold. Under the law, copying includes translating into another
language or format.

The CHARON name and logo is a trademark of Software Resources
International. PDP-11, VAX, MicroVAX and Qbus are trademarks of the
Hewlett-Packard Company. Windows is a registered trademark in the United
States and other countries, licensed exclusively through Microsoft
Corporation, USA. All other trademarks and registered trademarks are the
property of their respective holders.

Software Resources International makes no representations that the
description of the CHAPI/VAX-Qbus interface in this publication will not
infringe on existing or future patent rights, nor does this description imply the
availability of relevant products or granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Document number: 30-16-013
16 June 2004

Printed in Switzerland.

© 2003 -2004 Software Resources International S.A page iii

CHAPI/VAX-Qbus manual

Contents

© 2003 -2004 Software Resources International S.A page iv

CHAPIIVAX-Qbus manual

3.20 Decrypting critical data.
T 7 = 1N

2. LPV11 implementation........coocererinnnsssssresmmnssssssssssnsssssssssssnssssnnas 44
A.2 LPV11.CXX SOUICE fil€.....ceereemeeeririirriirrrennennsssnssrsersssssnmsssssssssesnennnes 44
1. VAXPrint appliCation........ccccererinsssmmmsmmmnsssssssssssssssssssssssssssssssnees 65
A.3 VAXPRINT.CPP SoUrcCe file.........ceveveriiiiirnissssnnnnnnnenssssssrennsssssensennns 65
A.4 VAXPRINT.H SOUICE file.....ceeeeeeeeeiiiriirinerreeeeesssss s essesesess s snmss s snmnn e 83
A.5 WINSOCK.CPP SOUICE fil@......eereemmeereiriirrirrnrnnnnnssssssssersnssssnnssssnnnses 87
A.6 WINSOCK.H SOUICE file......ccoerrrnmmnmnmmmennrenrnrrirrrrressssssssssssssssssssensnnnns 93
A.7 Configuration file entry........cccccccmiiininne ... 94
1 Lo 1= S 95

[10-01-040] © 2002 Software Resources International S.A

CHAPI/VAX-Qbus manual

Conventions

Throughout this manual these conventions are followed:

Notation

$ or >

User Input
<path>

[]

Description

The dollar sign or the right angle bracket in
interactive examples indicates operating system
prompt.

Bold type in examples indicates source code.

Bold type enclosed by angle brackets indicates
command parameters and parameter values.

In syntax definitions, brackets indicate items that are
optional.

In syntax definitions, a horizontal ellipsis indicates
that the preceding item can be repeated one or
more times.

© 2003 -2004 Software Resources International S.A page Vi

CHAPIIVAX-Qbus manual

Chapter 1 Introduction

1.1 Scope

CHARON-VAX is the generic name of a family of VAX system

emulators made by Software Resources

CHARON-VAX

Windows
Host hardware

International. These
emulators provide an

Application Application accurate model of a
System Utlites System Utiiies complete VAX system:
System libraries System libraries CPU, memory, disks,

Operating Operating tapes, serial lines, and
system code system code

other controllers.

Several
implementations of
CHARON-VAX allow

‘
hardware

runtime access to the

emulated peripheral
busses using an application programming interface (CHAPI). This
CHAPI concept was originally developed for the CHARON-11 PDP-
11 emulator. The CHAPI/11 implementation was successfully used
by our resellers to extend the emulator functionality with peripheral
device support not available in the standard product release.

The concept of the CHAPI/11 has also been implemented for
CHARON-VAX peripherals on the emulated Qbus. The CHAPI/VAX-
Qbus version (referred to as CHAPI further on) described in this
manual covers several CHARON-VAX implementations for a
Windows 2000/XP host system. The use of CHARON Application
Programming Interfaces for other host platforms, emulated VAX
systems or other peripheral busses is not covered in this manual.

© 2003 -2004 Software Resources International S.A page 1

CHAPI/VAX-Qbus manual

1.2 Implementation requirements

Every Qbus peripheral has a specific bus interface through which it
communicates with the VAX. In order to implement a Qbus
peripheral with CHAPI you must have access to the hardware design
details of the peripheral. For standard peripherals this is often
described in its user guide or visible from the device driver sources,
for custom peripheral designs you need the original design data.
Design details include register definitions, interrupt vectors, DMA
features and programming and test information.

For a standard VAX operating system to work with a CHAPI based
peripheral implementation, the user written controller emulation must
present the same CSRs, VECTORs and DMA features of its
hardware equivalent. A full understanding of the device operation
should be acquired before proceeding to implement an emulation of
of a peripheral device using CHAPI.

The implementation of a user written Qbus peripheral device using
CHAPI usually has the form of a C++ WIN32 DLL. Good C++ design
skills are required to successfully implement and test such a CHAPI
based peripheral. Appendix B and C list as an example an LPV11
emulation implementation mapping the output to the default
Windows host printer.

CHAPI is a licensed option for certain CHARON-VAX emulators.
Licensing CHAPI does not imply any verification or approval of
Software Resources International that emulation of a peripheral
using CHAPI is technically possible, will work as intended or will not
infringe on any patent or licensing rule.

page 2 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

Chapter 2 CHAPI structure

2.1

CHAPI requirements and solution

architecture

The CHAPI provides the ability to load dynamically (at run-time,
during configuration phase) additional emulator components that
implement customer specific devices (for the QBUS in the version
discussed in this manual). The CHAPI architecture defines a
programming interface of communication between such a loadable
component and the core of the CHARON-VAX emulator. This
interface must contain the following elements:

Inform the loadable component when it is necessary to create,
initialize, terminate, and destroy instances of a device.

Provide a means of configuring instances of a device as
specified in the emulated VAX configuration.

Deliver bus signals (such as BUS RESET, IRQ
ACKNOWLEDGE) to instances of a device.

Provide access of the emulated VAX CPU(s) to device
control/status registers for each instance of device.

Deliver bus requests (interrupt requests) on behalf of an instance
of a device.

Provide a means of reading/writing memory for DMA capable
devices.

Provide a means of license verification in order to protect the
loadable component from uncontrolled distribution.

Provide a means of message logging coordinated with message
logging of the CHARON-VAX emulator itself.

© 2003 -2004 Software Resources International S.A page 3

CHAPI/VAX-Qbus manual

To meet the above needs the loadable components are implemented
as .DLL modules in the Windows host platform. They define a set of
procedures, data structures, and behaviors that allow the core of the
CHARON-VAX emulator and the loadable component to
communicate as required.

2.2 Loadable component naming
conventions

Each loadable component must have a name, typically assigned by
the developer of the component. This name must be sufficiently
unique to allow users to identify the component. As far as the
loadable component usually represents a class of peripheral devices,
it is recommended to derive the name of the loadable component
from the name of the device class.

The name of the .DLL module is constructed as follows:
<COMPONENT-NAME>.DLL

where <COMPONENT-NAME> represents the name of the loadable
component. The use of delimiting characters in <COMPONENT-
NAME> (spaces, tabs, and other “invisible” characters) is not
allowed.

2.3 Component loading and initialization

.The CHARON-VAX emulator is responsible for loading a loadable
component, using the Win32 API. To do this, CHARON-VAX
processes a pair of load and set directives in the corresponding
configuration file:

load chapi <CFG-NAME>
set <CFG-NAME> dll=<PATH-TO-DLL>

where <CFG-NAME> and <PATH-TO-DLL> are the relevant values
for the component. After loading the module into memory, the

page 4 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

CHARON-VAX emulator core creates the necessary context and
calls the module initialization routine.

Note that if a particular CHAPI loadable component is configured to
load any more than once, the corresponding .DLL module is loaded
only once, but the initialization routine is called for each configured
instance. For example, suppose the configuration file contains the
following lines:

load chapi TTA

set TTA dli=dI11.dll

load chapi TTB

set TTB dli=dI11.dll

Processing the above lines, the CHARON-VAX emulator loads the
DL11.DLL once, and then calls the corresponding initialization
routine first for TTA and then for TTB.

The moment of calling the initialization routine corresponds to the
processing of the set command, when the value <PATH-TO-DLL>
(dI11.dll in this case) is assigned to the dll parameter.

The module initialization routine has a predefined name and calling
conventions, and must be declared in the source code (assuming the
Visual C++ programming language) as follows:

__declspec(dllexport)
void * __cdecl <COMPONENT-NAME>_INIT

(const chapi_in * ci, chapi_out * co, const char *
instance_name);

where <COMPONENT-NAME> represents the name of the loadable
component (see also “Loadable component naming conventions”
above). Note that the name of initialization routine must be converted
to upper case. For example, the loadable module called di11.dll shall
declare its initialization procedure as follows:
__declspec(dllexport)
void * __cdecl DL11_INIT

© 2003 - 2004 Software Resources International S.A page 5

CHAPI/VAX-Qbus manual

(const chapi_in * ci, chapi_out * co, const char *
instance_name);

The moment when the CHARON-VAX emulator calls the component
initialization routine shall be considered by the loadable component
as a request to confirm the creation of a new instance of the device
provided by the component.

The component initialization routine responds to the confirmation
request with its return value. The CHARON-VAX emulator considers
any value other than zero as a confirmation, and a zero value as a
rejection. In case of confirmation, the CHARON-VAX emulator uses
this value as an opaque identifier. Later it passes this identifier as an
additional parameter to certain procedures of the CHAPI protocol.

24 Communication context binding

The CHAPI protocol defines a communication channel between the
CHARON-VAX emulator and the loadable component. Since the
emulator can load multiple loadable components, and each
component can create several instances of devices, this can result in
many communication channels.

Each communication channel binds the CHARON-VAX emulator to
one instance of a device provided by a loadable component. The
communication channel is described at each end by the
communication contexts. Each side of the communication is
responsible for creating and supporting its own contexts and setting
up those contexts on behalf of the other side. The CHAPI protocol
defines a set of rules of this context setup and support, which is
called context binding.

The CHARON-VAX emulator creates its own communication context
when processing the load command to load its configuration. It
creates a descriptor of the chapi_in communication context (the
chapi_in descriptor for short), fills it with zeros, and then fills certain
fields with non-zero values. It also creates a descriptor of the

page 6 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

chapi_out communication context (the chapi_out descriptor) and fills
it with zeros. At that moment the CHARON-VAX emulator is in
principle ready to issue a creation confirmation request by calling the
component initialization routine.

The loadable component shall create its own contexts (if any) in its
initialization routine, just before confirming the creation of new device
instance. The loadable component shall fill all required fields of the
provided descriptor of the chapi_out communication context with
their respective values.

The loadable component is allowed to remember the data path to
both the chapi_in and the chapi_out descriptors provided to the
component by the CHARON-VAX emulator. The loadable
component is not allowed to modify any fields in the descriptor of the
chapi_in communication context that is provided to the component
by the CHARON-VAX emulator.

Upon receiving a confirmation, the CHARON-VAX emulator
completes setting up its own context by filling the remaining fields of
the descriptor of the chapi_in communication context. The CHARON-
VAX emulator is allowed to terminate setting up its contexts when
receiving a rejection from the initialization routine of the loadable
component.

The contexts binding process shall be considered done if, and only if:
1. The whole configuration has been loaded, and

2. The loadable component has confirmed the creation of a device
instance.

2.5 Run-time communication

The run-time communication over the CHAPI communication
channel is defined in terms of operations or transactions. Each
operation is either initiated by the CHARON-VAX emulator or by the
instance of the device provided by the loadable component. The side

© 2003 - 2004 Software Resources International S.A page 7

CHAPI/VAX-Qbus manual

originating the operation is called the initiator of the operation. Each
operation must be processed by the other side of the communication
channel, which is called the target of the operation.

Both the CHARON-VAX emulator and the loadable component are
designed to work in a multithreaded environment. Therefore no
assumptions shall be made regarding the thread in which any
particular operation is initiated. Nevertheless, certain operations put
some restrictions on the way in which both sides of the CHAPI
communication are allowed to initiate those operations.

Before the operation is initiated, the initiator shall prepare the
operation context. When prepared, the initiator calls the
corresponding routine provided by the counterpart to process the
operation. Entry points to these routines are supplied in the
corresponding fields of the chapi_in and the chapi_out descriptors by
both sides of the CHAPI communication.

The CHAPI introduces the following types of operations:

» Access to the device control and status registers (both read and
write). Such an operation is only initiated by the thread
interpreting VAX CPU instructions. Therefore the target shall
finish processing such an operation as soon as possible. Note
that the CHARON-VAX emulator is allowed to run several
threads interpreting VAX CPU instructions.

* Request a bus interrupt. Such an operation is only initiated by
the device instance. The target of the operation must remember
the bus interrupt request.

* Request for a bus interrupt acknowledge. Such an operation is
only initiated by the thread(s) interpreting VAX CPU instructions.
Therefore the target shall finish processing such an operation as
soon as possible.

» Direct memory access. Such an operation is only initiated by the
device instance.

page 8 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

e Synchronization request. Such an operation is only initiated by
the device instance. The target of the operation must remember
the synchronization request.

¢ Synchronization request acknowledgement. Such an operation is
only initiated by the thread interpreting VAX CPU instructions.
Therefore the target shall finish processing such an operation as
soon as possible.

e Arequest for processing bus power events.
e Arequest for processing bus reset events.
* Arequest for changing the configuration.

* Message log request.

* Protection and license verification.

The side of the CHAPI communication that is a target of a
transaction provides a routine for processing the transaction. This
routine is identified by an entry point stored in either the chapi_in or
the chapi_out descriptors, depending on the operation. Thus
transactions initiated by the CHARON-VAX emulator are processed
by routines specified in the chapi_out descriptor, and transactions
initiated by the device instance are processed by routines specified
in the chapi_in descriptor. This is why the device instance must
memorize the data path to at least the chapi_in descriptor.

Both the CHARON-VAX emulator and the loadable component are
allowed to omit (that is set to 0) some or all entry points in the
chapi_in and the chapi_out descriptors respectively. An absent entry
point for a certain operation means that the operation is not
supported and shall not be initiated by the counterpart. An entry point
set to zero is considered absent.

© 2003 - 2004 Software Resources International S.A page 9

CHAPI/VAX-Qbus manual

2.6 The CHAPI communication context
descriptors

The paragraph covers the details of the communication context
descriptors and the component initialization process.

The CHAPIL_IN communication context descriptor

The chapi_in descriptor contains entry points to routines provided by
the CHARON-VAX emulator, as well as base address of control and
status registers (CSRs) and base interrupt vector, which might be
specified in the configuration file (see below). The chapi_in
descriptor structure is defined as follows:

typedef struct {
void * const context;
unsigned int base_b_address;

unsigned int base_i_vector;

void (CHAPI * put_ast)
(const chapi_in * ci,
unsigned long delay,
ast_handler fun,
void * argl,
int arg2);

void (CHAPI * put_sst)
(const chapi_in * ci,
unsigned long delay,
sst_handler fun,
void * argl,
int arg2);

void (CHAPI * put_irq)
(const chapi_in * ci,
unsigned int vec,
unsigned long delay,
irq_handler fun,

page 10 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

void * argl,
int arg2);
void (CHAPI * clear_irq)
(const chapi_in * ci,
unsigned int vec);
unsigned int (CHAPI * read_mem)
(const chapi_in * ci,

unsigned int addr,
unsigned int len,
char * buf);

unsigned int (CHAPI * write_mem)
(const chapi_in * ci,

unsigned int addr,
unsigned int len,
const char * buf);
io_space_id_t (CHAPI * create_io_space)
(const chapi_in * ci,
unsigned int addr,
unsigned int len);
void (CHAPI * move_io_space)
(const chapi_in * ci,
io_space_id_t space_id,
unsigned int addr,
unsigned int len);
void (CHAPI * destroy_io_space)

(const chapi_in * ci,
io_space_id_t

space_id);

void (CHAPI * decrypt_data_block)
(const chapi_in * ci,
void * buf,
unsigned int len);

void (CHAPI * log_message)

(const chapi_in * ci,

© 2003 - 2004 Software Resources International S.A page 11

CHAPI/VAX-Qbus manual

const char * buf,
unsigned int len);
} chapi_in;

The context field is defined by the CHAPI and initialized by the
CHARON-VAX emulator solely for its own use and shall not be
changed as well as used by the component in any way.

The base_b_address field contains the starting bus address of the
device instance I/O region. Usually it is an address of the device’s
control and status register (CSR). The CHARON-VAX emulator
provides a value in this field upon completion loading the
configuration. Initially it is set to 0. The CHAPI allows user to override
this value with configuration parameters (see below).

The base_i_vector field contains the starting interrupt vector
address, assigned to the device. The CHARON-VAX emulator
provides a value in this field upon completion loading the
configuration. Initially it is set to 0. The CHAPI allows user to override
this value with configuration parameters (see below).

The put_ast field contains an entry point to the corresponding
routine. The CHARON-VAX emulator provides a value in this field
before calling the loadable component initialization routine. Initially
set to 0. Later but before calling the initialization routine the
CHARON-VAX emulator is allowed to put non-zero value into the
field.

The put_sst field contains an entry point to the corresponding
routine. The CHARON-VAX emulator provides a value in this field
before calling the loadable component initialization routine. Initially
set to 0. Later but before calling the initialization routine the
CHARON-VAX emulator is allowed to put non-zero value into the
field.

The put_irq field contains an entry point to the corresponding
routine. The CHARON-VAX emulator provides a value in this field
before calling the loadable component initialization routine. Initially

page 12 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

set to 0. Later but before calling the initialization routine the
CHARON-VAX emulator is allowed to put non-zero value into the
field.

The clear_irq field contains an entry point to the corresponding
routine. The CHARON-VAX emulator provides a value in this field
before calling the loadable component initialization routine. Initially
set to 0. Later but before calling the initialization routine the
CHARON-VAX emulator is allowed to put non-zero value into the
field.

The read_mem field contains an entry point to the corresponding
routine. The CHARON-VAX emulator provides a value in this field
before calling the loadable component initialization routine. Initially
set to 0. Later but before calling the initialization routine the
CHARON-VAX emulator is allowed to put non-zero value into the
field.

The write_mem field contains an entry point to the corresponding
routine. The CHARON-VAX emulator provides a value in this field
before calling the loadable component initialization routine. Initially
set to 0. Later but before calling the initialization routine the
CHARON-VAX emulator is allowed to put non-zero value into the
field.

The create_io_space field contains an entry point to the
corresponding routine. The CHARON-VAX emulator provides a
value in this field before calling the loadable component initialization
routine. Initially set to 0. Later but before calling the initialization
routine the CHARON-VAX emulator is allowed to put non-zero value
into the field.

The move_io_space field contains an entry point to the
corresponding routine. The CHARON-VAX emulator provides a
value in this field before calling the loadable component initialization
routine. Initially set to 0. Later but before calling the initialization

© 2003 - 2004 Software Resources International S.A page 13

CHAPI/VAX-Qbus manual

routine the CHARON-VAX emulator is allowed to put non-zero value
into the field.

The destroy_io_space field contains an entry point to the
corresponding routine. The CHARON-VAX emulator provides a
value in this field before calling the loadable component initialization
routine. Initially set to 0. Later but before calling the initialization
routine the CHARON-VAX emulator is allowed to put non-zero value
into the field.

The decrypt_data_block field contains an entry point to the
corresponding routine. The CHARON-VAX emulator provides a
value in this field before calling the loadable component initialization
routine. Initially set to 0. Later but before calling the initialization
routine the CHARON-VAX emulator is allowed to put non-zero value
into the field.

The log_message field contains an entry point to the
corresponding routine. The CHARON-VAX emulator provides a
value in this field before calling the loadable component initialization
routine. Initially set to 0. Later but before calling the initialization
routine the CHARON-VAX emulator is allowed to put non-zero value
into the field.

Note that the CHARON-VAX emulator is not required to initialize all
the fields of the chapi_in communication context descriptor before
calling the initialization routine. The CHARON-VAX emulator is
allowed to initialize these fields later. More details follow.

The CHAPI_OUT communication context
descriptor

The chapi_out descriptor contains entry points to routines provided
by the loadable component, as well as address range of control and
status register 1/0 space and number of interrupt vectors. The
chapi_out descriptor structure is defined as follows:

typedef struct {

page 14 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

void * const context;
unsigned intb_address_range;

unsigned int n_of _i_vector;
unsigned inti_priority;
void (CHAPI * stop)
(const chapi_out * Cco);
void (CHAPI * start)
(const chapi_out * co);
void (CHAPI * reset)
(const chapi_out * co);
void (CHAPI * write)
(const chapi_out * co,
unsigned int addr,
int val,
bool is_byte);
int (CHAPI * read)
(const chapi_out * co,
unsigned int addr,
bool is_byte);
int (CHAPI * set_configuration)
(const chapi_out * co,

const char *
parameters);

} chapi_out;

The context field is defined by the CHAPI solely for use by the
loadable component. The CHARON-VAX emulator initializes the field
with 0. Later it updates the field with the value returned by the
component initialization routine. Afterwards the CHARON-VAX
emulator does not make any attempts to use the value of the field in
any way. The loadable component is supposed to use the context
field to bind the communication context to private data structures.

© 2003 - 2004 Software Resources International S.A page 15

CHAPI/VAX-Qbus manual

The b_address_range field contains the length of the I/O space in
bytes the CHARON-VAX emulator shall reserve for control and
status registers of the device instance. The field is obligatory. So the
loadable component shall provide a non-zero value in this field when
processing the request to confirm creation of device (i.e. in the
corresponding <COMPONENT_NAME>_INIT routine). The
combination of the base_b_address and b_address range
shall meet the following requirements:

* The length of address range must be a power of two. Or more
formally:

(b_address range & (b_address _range - 1)) ==

e The address range shall be naturally aligned. Which means that
the base_b_address shall be aligned to the boundary, which
is multiple of b_address_range. Or more formally:

(base_b_address + (b_address_range - 1))
== (base_b_address | (b_address _range - 1))

The n_of _i_vector field contains number of interrupt vectors the
CHARON-VAX emulator shall allocate for the device instance. The
field is obligatory, and the loadable component shall provide a non-
zero value in this field when processing the request to confirm
creation of device (i.e. in the corresponding
<COMPONENT_NAME>_INIT routine).

The i_priority field contains a priority at which the CHARON-VAX
emulator shall process the interrupt requests originated by the device
instance. The field is obligatory provided that n_of_i_vector field is
non-zero, otherwise the field might be left unspecified. So the
loadable component shall provide a non-zero value in this field if
necessary when processing the request to confirm creation of device
(i.e. in the corresponding <COMPONENT _NAME>_INIT routine).

The stop field contains an entry point to the corresponding routine.
The field is optional. The loadable component provides a value in

page 16 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

this field when processing the request to confirm creation of device
(i.e. in the corresponding <COMPONENT _NAME>_INIT routine).

The start field contains an entry point to the corresponding routine.
The field is optional. The loadable component provides a value in
this field when processing the request to confirm creation of device
(i.e. in the corresponding <COMPONENT _NAME>_INIT routine).

The reset field contains an entry point to the corresponding routine.
The field is optional. The loadable component provides a value in
this field when processing the request to confirm creation of device
(i.e. in the corresponding <COMPONENT _NAME>_INIT routine).

The write field contains an entry point to the corresponding routine.
The field is optional. The loadable component provides a value in
this field when processing the request to confirm creation of device
(i.e. in the corresponding <COMPONENT _NAME>_INIT routine).

The read field contains an entry point to the corresponding routine.
The field is optional. The loadable component provides a value in
this field when processing the request to confirm creation of device
(i.e. in the corresponding <COMPONENT _NAME>_INIT routine).

The set_configuration field contains an entry point to the
corresponding routine. The field is optional. The loadable component
provides a value in this field when processing the request to confirm
creation of device (i.e. in the corresponding
<COMPONENT_NAME>_INIT routine).

Note that the component initialization routine is required to properly
initialize b_address_range, n_of i_vector, i_priority, start,
and stop fields of the chapi_out communication context descriptor.
Other fields might be setup later.

© 2003 - 2004 Software Resources International S.A page 17

CHAPI/VAX-Qbus manual

2.7

Initialization steps

Now when structure of communication contexts is available, it is time
to present more information on component initialization process .
The initialization steps are as follows:

1.

As soon as the CHARON-VAX emulator has finished processing
the load command, it creates necessary internal structures
representing the device and allocates resources for both the
chapi_in and the chapi_out communication context descriptors.

The communication context descriptors are initialized with all
zeros.

The CHARON-VAX emulator then creates all required private
data structures and binds the communication context to them
properly initializing the context field of the chapi_in
communication context descriptor.

If the corresponding routines are supported the CHARON-VAX
emulator initializes the decrypt data block and the
log_message fields of the chapi_in communication context
descriptor. So the component initialization routine might use
them.

As soon as the CHARON-VAX emulator assigns a value to the
dll parameter, it loads the .DLL module, if necessary, and calls
the component initialization routine.

As soon as the component initialization routine returns, the value
returned is checked against zero. If the value is zero then the
CHARON-VAX emulator considers the initialization failed,
releases all the allocated so far resources (if any), and reports an
error. Otherwise the CHARON-VAX emulator updates the
context field of the chapi_out communication context descriptor
with this value and proceeds with initialization.

page 18 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

2.8

Run-time execution contexts

The CHAPI is based on a multithreaded software execution model.
This means that procedures defined by the CHAPI run in different
threads. The CHAPI selects the CPU instruction interpretation thread
as a special execution context, so that all the procedures invoked in
that thread are invoked in the execution context synchronized to the
CPU instruction interpretation thread.

The CHAPI restricts the use of certain procedures to execution
context in the following way:

All the procedures identified by entry points stored in put_sst,
put_irq, clear_irq, and move_io_space fields of a chapi_in
communication context descriptor shall be invoked in the
execution context synchronized to the CPU instruction
interpretation thread.

All the procedures identified by entry points stored in
create_io_space and destroy io_space fields of a
chapi_in communication context descriptor shall be invoked in
the same execution context. To guarantee that the loadable
component is required to call those routines only from the
routines identified by the start and the stop fields of the
chapi_out communication context descriptor.

The CHAPI also guarantees that:

All the procedures identified by entry points stored in read,
write, and reset fields of a chapi_out communication context
descriptor are invoked in the execution context synchronized to
the CPU instruction interpretation thread.

All the procedures identified by fun argument in the procedure
calls to put_ast, put_sst, and put_irq procedures, identified
by corresponding fields of a chapi_in communication context

© 2003 - 2004 Software Resources International S.A page 19

CHAPI/VAX-Qbus manual

descriptor, are invoked in the execution context synchronized to
the CPU instruction interpretation thread.

» All the procedures identified by entry points stored in start and
stop fields of a chapi_out communication context are invoked in
the same execution context.

* Any procedure call does not change the execution context.

e Each thread has its own execution context.

page 20 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

Chapter 3 CHAPI operation

3.1 Reading the device control and status
register

The operation of reading a device control and status register belongs
to the class of operations previously called “Access to device control
and status registers”. The CHARON-VAX emulator initiates such an
operation. More precisely, one of the VAX CPU instruction
interpretation threads is the initiator. The device is considered to be a
target of the operation.

In order to perform the operation, the initiator invokes a routine
identified by the read field of the chapi_out descriptor. The initiator
provides in addr parameter a bus address of the register to read
from, and in is_byte parameter the length of transaction. The
procedure is invoked as follows:

const chapi_out * co = ...;
if (co->read) {
val = co->read(co, addr, is_byte);

}

The example above shows that the device is not obliged to support
the indicated operation.

3.2 Writing device control and status
register

The operation of writing device control and status register belongs to
the class of operations previously called “Access to device control
and status registers”. The CHARON-VAX emulator initiates such an
operation. More precisely, one of CPU instruction interpretation

© 2003 - 2004 Software Resources International S.A page 21

CHAPI/VAX-Qbus manual

threads is the initiator. The device is defined as a target of the
operation.

In order to perform the operation, initiator invokes a routine identified
by the write field of the chapi_out descriptor. The initiator provides
in addr parameter a bus address of the register to read from, in val
parameter a value to be written, and in is_byte parameter the
length of transaction. The procedure is invoked as follows:

const chapi_out * co = ...;
if (co->write) {
co->write(co, addr, val, is_byte);

}

The example above shows that the device is not obliged to support
the indicated operation.

3.3 Creating additional 1/0 space

The operation of creating additional I/O space belongs to the class of
operations previously called “Access to device control and status
registers”. Such an operation is initiated by the device instance. The
CHARON-VAX emulator is defined as a target of the operation.

In order to perform the operation, initiator invokes a routine identified
by the create_io_space field of the chapi_in descriptor. The
initiator is to provide initial bus location of the I/O space in the addr
and the len arguments. The combination of the addr and the len
shall meet the following requirements:

e The length of address range indicated by the len must be a
power of two. Or more formally:

(len & (len - 1)) ==

e The address range shall be naturally aligned. Which means that
the addr shall be aligned to the boundary, which is multiple of
the len. Or more formally:

page 22 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

(addr + (len - 1)) == (addr | (len - 1))
The procedure is invoked as follows:
io_space_id_t sid = 0;
const chapi_in * ci = ...;
if (ci->create_io_space) {
sid = ci->create_io_space(ci, addr, len);

}
if (sid == 0) {

/* failed to create the io space*/
}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. Also it gives a clue why
the device instance is supposed to remember the chapi_in
descriptor.

In the example above the device is supposed to store the (hon-zero)
result of create_io_space procedure. Later this value is to be used
as /0 space identifier for subsequent calls (if any) to
move_io_space and destroy_io_space procedures.

The device is to make sure that any additional I/O space created by
the CHARON-VAX emulator on behalf of the device is destroyed with
destroy_io_space procedure (see below). The suggested
behavior is to create additional 1/0O spaces (if necessary) when
processing bus power-up condition and destroy it when processing
bus power-down condition (see below).

3.4 Destroying I/O space

The operation of destroying (additional) I/O space belongs to the
class of operations previously called “Access to device control and
status registers”. Such an operation is initiated by the device
instance. The CHARON-VAX emulator is defined as a target of the
operation.

© 2003 - 2004 Software Resources International S.A page 23

CHAPI/VAX-Qbus manual

In order to perform the operation, initiator invokes a routine identified
by the destroy io_space field of the chapi_in descriptor. The
initiator is to provide an I/O space identifier in the sid argument. The
procedure is invoked as follows:

io_space_id _t sid = ...;

const chapi_in * ci = ...;

if (ci->destroy_io_space) {
ci->destroy_io_space(ci, sid);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. But nevertheless it is
guaranteed that the CHARON-VAX emulator does either support
both the create_io space and the destroy_io_space
procedures, or does not support any of them. Also it gives a clue why
the device instance is supposed to remember the I/O space identifier
returned in the previous call to create_io_space procedure (see
above), and the chapi_in descriptor.

3.5 Changing 1I/O space bus location

The operation of changing (additional) I/O space bus location
belongs to the class of operations previously called “Access to
device control and status registers”. Such an operation is initiated by
the device instance, when in execution context synchronized to the
CPU instruction interpretation thread. The CHARON-VAX emulator is
defined as a target of the operation.

In order to perform the operation, initiator invokes a routine identified
by the move_io_space field of the chapi_in descriptor. The initiator
is to provide an I/O space identifier in the sid argument and new bus
location of the 1/0 space in the addr and the len arguments. The
combination of the addr and the len shall meet the following
requirements:

page 24 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

» The length of address range indicated by the len must be a
power of two. Or more formally:

(len & (len - 1)) ==

e The address range shall be naturally aligned. Which means that
the addr shall be aligned to the boundary, which is multiple of
the len. Or more formally:

(addr + (len - 1)) == (addr | (len - 1))
The procedure is invoked as follows:

io_space_id_t sid = ...;

const chapi_in * ci = ...;

if (ci->move_io_space) {
ci->move_io_space(ci, sid, addr, len);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. Also it gives a clue why
the device instance is supposed to remember the 1/0O space identifier
returned in the previous call to create_io_space procedure (see
above), and the chapi_in descriptor.

3.6 Requesting a bus interrupt

The operation of requesting a bus interrupt belongs to the group of
operations previously called “Request for bus interrupt”. Such an
operation is initiated by the device instance, when in execution
context synchronized to the CPU instruction interpretation thread.
The CHARON-VAX emulator is defined as a target of the operation.
Actually the CPU instruction interpretation thread is supposed to
respond to the bus interrupt request.

In order to perform the operation, initiator invokes a routine identified
by the put_irq field of the chapi_in descriptor. The procedure is
invoked as follows:

© 2003 - 2004 Software Resources International S.A page 25

CHAPI/VAX-Qbus manual

const chapi_in * ci = ...;
if (ci->put_irq) {
ci->put_irq(ci, vec, delay, fun, argl, arg2);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. Also it gives a clue why
the device instance is supposed to remember the chapi_in
descriptor.

3.7 Removing a bus interrupt request

Removing a bus interrupt request belongs to the “Request for bus
interrupt” group of operations. Such an operation is initiated by the
device instance, when in context synchronized to the CPU instruction
interpretation thread. The CHARON-VAX emulator is defined as a
target of the operation. It is the task of the CPU instruction
interpretation thread to respond to the operation of removing bus
interrupt request.

To perform the operation, the initiator invokes a routine identified by
the clear_irq field of the chapi_in descriptor. The initiator shall
indicate through the vec parameter the vector of the interrupt
requests to clear. The target shall clear all the interrupt requests
previously originated by the initiator through the vector supplied. The
procedure is invoked as follows:

const chapi_in * ci = ...;
if (ci->clear_irq) {
ci->clear_irq(ci, vec);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. Also it gives a clue why
the device instance is supposed to retain the chapi_in descriptor.

page 26 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

3.8 Bus interrupt acknowledge

Acknowledging the bus interrupt request is currently the only
operation defined within the group of operations called “Request for
bus interrupt acknowledge”. The CHARON-VAX emulator (one of the
CPU instruction interpretation threads) initiates such an operation.
The device instance is defined as a target of the operation.

In order to perform the operation, the initiator invokes a routine
identified by the fun parameter, supplied during corresponding
request for bus interrupt. See the “Requesting a bus interrupt” above.
The procedure is invoked as follows:

irq_handler fun = ...;
if (fun) {
vec = fun(argl, arg2);

}

The example above shows that the device is not obliged to support
the indicated operation. Which means that it is allowed to supply 0
for fun parameter when requesting a bus interrupt through the
put_irq entry point of the chapi_in descriptor. Note that the CHAPI
defines additional argument supplied through the argl and the
arg2 parameter to help the target dispatching requests.

The bus interrupt acknowledge procedure indicated by the fun is
supposed to return the interrupt vector in case of acknowledgement.
In this case the CHARON-VAX emulator uses the returned value as
interrupt vector instead of the vector supplied through the previous
call to the put_irq procedure. If the bus interrupt is not
acknowledged, the bus interrupt acknowledge procedure shall return
zero (0) indicating that the interrupt vector is not valid.

The CHAPI guarantees that the bus interrupt acknowledge
procedure identified by the fun argument is invoked in the execution
context synchronized to the CPU instruction interpretation thread.

© 2003 - 2004 Software Resources International S.A page 27

CHAPI/VAX-Qbus manual

3.9 Reading emulator memory (DATA-OUT
DMA)

Reading the CHARON-VAX emulator memory belongs to the “Direct
Memory Access” class of operations. This operation is initiated by
the device instance. The CHARON-VAX emulator is defined as a
target of the operation.

To perform the operation, the initiator invokes a routine identified by
the read_mem field of the chapi_in descriptor. The initiator
provides in the addr parameter a starting bus address of the
memory region to read from, in the len parameter the length of
transaction (length of transfer), and in the buf parameter the
address of private buffer to transfer to. The procedure is invoked as
follows:

const chapi_in * ci = ...;
if (ci->read_mem) {
unsigned int t_len = ci->read_mem(ci, addr, len,
buf);
if (t_len < len) {
}
}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. Also it shows why the
device instance must remember the chapi_in descriptor. Note the
result processing in the example above. The condition (t_len <
len) might be considered by the initiator as an attempt to read non-
existent memory.

page 28 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

3.10 Writing emulator memory (DATA-IN
DMA)

Writing the CHARON-VAX emulator memory belongs to the “Direct
Memory Access” class of operations. Such an operation is initiated
by the device instance. The CHARON-VAX emulator is defined as a
target of the operation.

To perform the operation, the initiator invokes a routine identified by
the write_mem field of the chapi_in descriptor. The initiator
provides in the addr parameter a starting bus address of the
memory region to write to, in the len parameter the length of
transaction (length of transfer), and in the buf parameter the
address of private buffer to transfer from. The procedure is invoked
as follows:

const chapi_in * ci = ...;
if (ci->write_mem) {
unsigned int t_len = ci->write_mem(ci, addr,
len, buf);
if (t_len < len) {
}
}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. It also shows why the
device instance is must remember the chapi_in descriptor. Note the
result processing in the example above. The condition (t_len <
len) might be considered by the initiator as an attempt to write non-
existent memory.

© 2003 - 2004 Software Resources International S.A page 29

CHAPI/VAX-Qbus manual

3.11 Synchronizing execution with the VAX
CPU thread

Synchronizing execution with the VAX CPU instruction interpretation
thread belongs to the “Synchronization request” class of operations.
Such an operation is initiated by the device instance. The CHARON-
VAX emulator is defined as the target of the operation. More
precisely the VAX CPU instruction interpretation thread is required to
respond to the operation.

To perform the operation, the initiator invokes a routine identified by
the put_ast field of the chapi_in descriptor. The initiator provides in
the fun argument an entry point to the procedure to be synchronized
with the VAX CPU instruction interpretation thread, and in the argl
and the arg2 arguments additional parameters to be passed later
on to that procedure. The procedure is invoked as follows:

const chapi_in * ci = ...;
if (ci->put_ast) {
ci->put_ast(ci, fun, argl, arg2);

}

The example above shows that the CHARON-VAX emulator is not
required to support the indicated operation. It also shows why the
device instance must memorize the chapi_in descriptor.

3.12 Synchronized invocation with the VAX
CPU thread

Synchronized invocation (with the CPU instruction interpretation
thread) belongs to the class of operations called “Synchronization
request acknowledge”. The CHARON-VAX emulator initiates such
an operation. The device instance is defined as the target of the
operation.

page 30 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

To perform the operation, the initiator invokes a routine identified by
the fun argument previously supplied in the corresponding request
for synchronizing execution to the VAX CPU instruction interpretation
thread. The initiator provides in the argl and the arg2 arguments
additional parameters previously supplied together with the fun
argument requesting for synchronizing execution to the VAX CPU
instruction interpretation thread. The procedure is invoked as follows:

ast_handler fun = ...;
if (fun) {

fun(argl, arg2);
}

The example above shows that the device is not obliged to support
the indicated operation. It is allowed to supply 0 for the fun
parameter when requesting synchronizing execution with the VAX
CPU instruction interpretation thread. Note that the CHAPI defines
additional parameters supplied through the argl and the arg2
arguments to help the target dispatching requests.

The device shall consider the synchronized invocation request as a
reaction of the CPU instruction interpretation thread of the CHARON-
VAX emulator to the previously issued request for “Synchronizing
execution”.

The CHAPI guarantees that the procedure identified by the fun
argument is invoked in the execution context synchronized with the
VAX CPU instruction interpretation thread.

3.13 Delaying synchronized execution

Delaying synchronized (with the CPU instruction interpretation
thread) execution belongs to the “Synchronization request” class of
operations. Such an operation is initiated by the device instance. The
CHARON-VAX emulator is defined as a target of the operation. More
precisely the CPU instruction interpretation thread is required to
respond to the operation.

© 2003 - 2004 Software Resources International S.A page 31

CHAPI/VAX-Qbus manual

To perform the operation, the initiator invokes a routine identified by
the put_sst field of the chapi_in descriptor. The initiator provides in
delay argument a number of CPU instructions to interpret, in fun
argument an entry point to the procedure to be synchronized with the
CPU instruction interpretation thread after the specified humber of
CPU instructions are interpreted, and in the argl and the arg?2
arguments additional parameters to be passed later on to that
procedure. The put_sst routine is invoked as follows:

const chapi_in * ci = ...;
if (ci->put_sst) {
ci->put_sst(ci, delay, fun, argl, arg2);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. Also it gives a clue why
the device instance is supposed to remember the chapi_in
descriptor.

3.14 Delayed synchronized invocation

The operation of delayed invocation is part of the class of operations
called “Synchronization request acknowledge”. The CHARON-VAX
emulator initiates such an operation. The device instance is defined
as the target of the operation.

In order to perform the operation, the initiator invokes a routine
identified by the fun argument - previously supplied in the
corresponding request - delaying synchronized (with the CPU
instruction interpretation thread) execution. The initiator provides in
argl and arg2 arguments additional parameters previously
supplied together with the fun argument requesting delaying
synchronized (with the CPU instruction interpretation thread)
execution. The procedure is invoked as follows:

sst_handler fun = ...;
if (fun) {

page 32 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

fun(argl, arg2);
}

The example above shows that the device is not obliged to support
the indicated operation. This implies that it is allowed to supply O for
the fun argument when requesting delaying synchronized (to the
CPU instruction interpretation thread) execution. Note that the
CHAPI defines additional parameters supplied through the argl and
arg2 arguments to help the target dispatching requests.

The device shall consider the delayed synchronized invocation
request as a reaction of the CPU instruction interpretation thread of
the CHARON-VAX emulator to the previously issued request for
“Delaying synchronized execution”.

The CHAPI guarantees that the procedure identified by the fun
argument is invoked in the execution context synchronized to the
CPU instruction interpretation thread.

3.15 Processing a bus power-up condition

Handling the bus power-up condition belongs to the class of
operations called “Request for processing bus power events”. The
CHARON-VAX emulator initiates such an operation when “powering”
up the configured node.

In order to perform the operation, the initiator invokes a routine
identified by the start field of the chapi_out descriptor. The
procedure is invoked as follows:

const chapi_out * co = ...;
if (co->start) {
co->start(co);

}

The example above shows that the device is not obliged to support
the indicated operation.

© 2003 - 2004 Software Resources International S.A page 33

CHAPI/VAX-Qbus manual

3.16 Processing a bus power-down condition

Handling the bus power-down condition belongs to the class of
operations called “Request for processing bus power events”.. The
CHARON-VAX emulator initiates such an operation when “powering”
down the configured node.

In order to perform the operation, initiator invokes a routine identified
by the stop field of the chapi_out descriptor. The procedure is
invoked as follows:

const chapi_out * co = ...;
if (co->stop) {
co->stop(co);

}

The example above shows that the device is not obliged to support
the indicated operation.

3.17 Processing a bus reset condition

Handling the bus reset condition is currently the only operation
defined within the class of operations called “Request for processing
bus reset events”. CHARON-VAX initiates such an operation when
resetting the I/O subsystem of the configured node. The CPU
instruction interpretation thread is likely (but not necessarily) the
initiator of such an operation.

In order to perform the operation, initiator invokes a routine identified
by the reset field of the chapi_out descriptor. The procedure is
invoked as follows:

const chapi_out * co = ...;
if (co->reset) {
co->reset(co);

page 34 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

The example above shows that the device is not obliged to support
the indicated operation.

3.18 Changing the configuration

Changing the configuration is currently the only operation within the
class of operations called “Request for changing the configuration”.
The CHARON-VAX emulator initiates such an operation when
loading the configuration. The CHAPI defines the additional
configuration option parameters, and passes device specific
configuration information to the device instance as indicated by the
following example:

load chapi <CFG-NAME>
set <CFG-NAME> dll=<PATH-TO-DLL>
parameters="..."

To perform the operation, the initiator invokes a routine identified by
the set_configuration field of the chapi_out descriptor. The
initiator provides in the parameters argument a character string,
as specified in the configuration for the parameters option. The
procedure is invoked as follows:

const chapi_out * co = ...;
if (co->set_configuration) {
co->set_configuration(co, parameters);

}

The example above shows that the device is not obliged to support
the indicated operation.

3.19 Message logging

Message logging is currently the only operation defined in the class
of operations called “Message log request”.

© 2003 - 2004 Software Resources International S.A page 35

CHAPI/VAX-Qbus manual

The CHARON-VAX emulator enables the component that logs

messages in the emulator's log file. Both the CHARON-VAX
emulator and the loadable component may initiate such an
operation, but only the emulator can be a target.

To perform the operation, the initiator invokes a routine identified by
the log_message field of the chapi_in descriptor. The initiator
provides a formatted message in a buffer, pointed to by buf
argument, of length (in bytes) as indicated by len argument. The
procedure is invoked as follows:

const chapi_in * ci = ...;
if (ci->log_message) {
ci->log_message(ci, buf, len);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. It also shows why the
loadable component instance must remember the chapi_in
descriptor.

3.20 Decrypting critical data

The operation of decrypting protected data is currently the only
operation defined in the class of operations called “Protection and
license verification”. The CHARON-VAX emulator enables the
component decrypting encrypted data . Both the CHARON-VAX
emulator and the loadable component may initiate such an
operation, but only the emulator can be a target.

In order to perform the operation, the initiator invokes a routine
identified by the decrypt data_block field of the chapi_in
descriptor. The initiator provides a buffer containing encrypted data.
The length of the buffer (in bytes) must be a multiple of 8. The
buffer's address and length are indicated by buf and len arguments
respectively. The procedure is invoked as follows:

page 36 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

const chapi_in * ci = ...;

if (ci->decrypt_data_block) {
ci->decrypt_data_block(ci, buf, len);

}

The example above shows that the CHARON-VAX emulator is not
obliged to support the indicated operation. It also shows why the
loadable component instance must retain the chapi_in descriptor.

© 2003 - 2004 Software Resources International S.A page 37

CHAPI/VAX-Qbus manual

1. CHAPI.H

This appendix provides the source code listing of the CHAPI.H file.
This file contains the general declarations and definitions necessary
for building loadable components.

1l

// Copyright (C) 1999-2003 Software Resources
International.

// All rights reserved.

i

// The software contained on this media is proprietary
to and embodies

// the confidential technology of Software Resources
International.

// Posession, use, duplication, or dissemination of the
software and

// media is authorized only pursuant to a valid written
license from

// Software Resources International.

i

#if !defined(__CHAPI_H_)
#define _ CHAPI_H__

#if defined(__cplusplus)

extern "C" {

#endif // defined(__cplusplus)
#define CHAPI /* nothing is here */

#if !defined(__chapi_in_context_p)

© 2003 -2004 Software Resources International S.A page 38

CHAPIIVAX-Qbus manual

typedef void * const __chapi_in_context_p;
#endif // 'defined(__chapi_in_context_p)

typedef void (CHAPI * __chapi_ast_handler_p)
(void * argl, int arg2);

#if !defined(ast_handler)
#define ast_handler __chapi_ast_handler_p
#endif // !defined(ast_handler)

typedef void (CHAPI * __chapi_put_ast_procedure_p)
(const struct __chapi_in * ci,
unsigned long delay,
__chapi_ast_handler_p fun, void * argl, int arg2);

typedef void (CHAPI * __chapi_sst_handler_p)
(void * argl, int arg2);

#if !defined(sst_handler)
#define sst_handler __chapi_sst_handler _p
#endif // 'defined(sst_handler)

typedef void (CHAPI * __chapi_put_sst_procedure_p)
(const struct __chapi_in * ci,
unsigned long delay,
__chapi_sst_handler_p fun, void * argl, int arg2);

typedef unsigned int (CHAPI * __chapi_irq_handler_p)
(void * argl, int arg2);

#if !defined(irq_handler)

#define irq_handler __chapi_irq_handler_p
#endif // !defined(irq_handler)

© 2003 - 2004 Software Resources International S.A page 39

CHAPI/VAX-Qbus manual

typedef void (CHAPI * __chapi_put_irq_procedure_p)
(const struct __chapi_in * ci,
unsigned int vec, unsigned long delay,
__chapi_irq_handler_p fun, void * argl, int arg2);

typedef void (CHAPI * __chapi_clear_irq_procedure_p)
(const struct __chapi_in * ci,
unsigned int vec);

typedef unsigned int (CHAPI *

__chapi_read_mem_procedure_p)
(const struct __chapi_in * ci,
unsigned int addr, unsigned int len,
char * buf);

typedef unsigned int (CHAPI *

__chapi_write_mem_procedure_p)
(const struct __chapi_in * ci,
unsigned int addr, unsigned int len,
const char * buf);

#if !defined(__chapi_io_space_id_t)
typedef void * __chapi_io_space_id _t;
#endif // !defined(__chapi_io_space_id_t)

typedef _chapi_io_space_id_t (CHAPI *

__chapi_create_io_space_procedure_p)
(const struct __chapi_in * ci,
unsigned int addr, unsigned int len);

typedef void (CHAPI *

__chapi_move_io_space_procedure_p)
(const struct __chapi_in * ci,
__chapi_io_space_id_t space_id,

page 40 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

unsigned int addr, unsigned int len);

typedef void (CHAPI *

__chapi_destroy io_space_procedure_p)
(const struct __chapi_in * ci,
__chapi_io_space_id_t space_id);

typedef void (CHAPI *
__chapi_decrypt_data_block_procedure_p)
(const struct __chapi_in * ci,
void * buf, unsigned int len);

typedef void (CHAPI *
__chapi_log_message_procedure_p)
(const struct __chapi_in * ci,
const char * buf, unsigned int len);

typedef struct __chapi_in {
__chapi_in_context_p context;
unsigned int base_b_address;
unsigned int base_i_vector;
__chapi_put_ast_procedure_p put_ast;
__chapi_put_sst_procedure_p put_sst;
__chapi_put_irq_procedure_p put_irq;
__chapi_clear_irq_procedure_p clear_irq;
__chapi_read_mem_procedure_p read_mem;
__chapi_write_mem_procedure_p write_mem;
__chapi_create_io_space_procedure_p
create_io_space;
__chapi_move_io_space_procedure_p move_io_space;
__chapi_destroy_io_space_procedure_p
destroy_io_space;
__chapi_decrypt_data_block_procedure_p
decrypt_data_block;

© 2003 - 2004 Software Resources International S.A page 41

CHAPI/VAX-Qbus manual

__chapi_log_message_procedure_p log_message;
} chapi_in;

#if !defined(__chapi_out_context _p)
typedef void * const __chapi_out_context_p;
#endif // !defined(__chapi_out_context_p)

typedef void (CHAPI * __chapi_start_procedure_p)
(const struct __chapi_out * co);

typedef void (CHAPI * __chapi_stop_procedure_p)
(const struct __chapi_out * co);

typedef void (CHAPI * __chapi_reset_procedure_p)
(const struct __chapi_out * co);

typedef int (CHAPI * __chapi_read_procedure_p)
(const struct __chapi_out * co,
unsigned int addr,
bool is_byte);

typedef void (CHAPI * __chapi_write_procedure_p)
(const struct __chapi_out * co,
unsigned int addr,
int val,
bool is_byte);

typedef int (CHAPI *
__chapi_set_configuration_procedure_p)
(const struct __chapi_out * co,
const char * parameters);

typedef struct __chapi_out {
__chapi_out_context_p context;

page 42 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

unsigned int b_address_range;
unsigned int n_of_i_vector;
unsigned int i_priority;
__chapi_start_procedure_p start;
__chapi_stop _procedure_p stop;
__chapi_reset_procedure_p reset;
__chapi_read_procedure_p read;
__chapi_write_procedure_p write;
__chapi_set_configuration_procedure_p

set_configuration;

} chapi_out;

#if defined(__cplusplus)
} /* extern "C" */;

#endif // defined(__cplusplus)

#endif // !defined(__CHAPI_H_))

© 2003 - 2004 Software Resources International S.A page 43

CHAPI/VAX-Qbus manual

2. LPV11
implementation

This appendix provides the source code listing of the LPV11.CXX
file. This file provides as an example of CHAPI device programming
a CHAPI compatible implementation in CHARON-VAX of the LPV11
Qbus printer interface. The VAXprint example listed in the next
appendix will send the LPV11 output to the default printer in the
Windows host system.

Note that this code is provided 'as is' to illustrate the CHAPI concepts
described in this manual. Use of this code is entirely at your own risk
and Software Resources International does not warrant that this
code would not violate any patents nor that it will function correctly in
an operational environment. The CHAPI interface can be changed at
any time without prior notice.

A.2 LPV11l.CXX source file

1l

// Copyright (C) 2004 Software Resources
International.

// All rights reserved.

1l

// This code is provided on an 'as is' basis.

// Software Resources International SA carries no
responsibility for

// the application of this code in any way or form.
Il

// Link project using input Ws2_32.lib library
#include <WinSock2.h>

#include <chapi.h>

© 2003 -2004 Software Resources International S.A page 44

CHAPIIVAX-Qbus manual

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#include <stdlib.h>

i

// Default bus address & interrupt vector
// Used if not specified in .cfg file

i

#define DEFAULT_ADDRESS 017777514
#define DEFAULT_VECTOR 0200

Il
// Output file extension

1

#define OUTFILE_EXT ".Ipv11l"

/l
// Debug trace routine

1l
static void trace(const chapi_in * ci, const char *str)

if(ci !'= 0 && ci->log_message != 0) {
ci->log_message(ci, str, strlen(str));
}
}

/l

// This class implements LPV11 device.

// LPV11_INIT routine will create a new instance,
// and a pointer to it will be used as a "context" in
CHAPI_OUT

/l

class Ipvll {
private:

void trace(const char *str) { ::trace(ci, str); } //
debug trace routine

© 2003 - 2004 Software Resources International S.A page 45

CHAPI/VAX-Qbus manual

const chapi_in * ci; // pointer to CHARON-supplied
structure

char * outfile_name; // output file/device name

/1

// LPV11 uses only 1 1/0 region and 1 interrupt
vector.

// If they aren't specified in .cfg file, default values
will be used.

// So, to avoid additional checking
(specified/unspecified)

// in all places where we need these values, they are
calculated

// during device start and stored here.

1l

unsigned int b_address; // Bus address

unsigned int i_vector; // Interrupt vector

enum { // LPCS & LPDB bits definitions
Ipcs_error = 0x8000, // Error condition detected
Ipcs_ready = 0x0080, // Device ready flag
Ipcs_int = 0x0040, //Interrupt enable bit
Ipdb_data = 0x007f, // Data mask

HH

bool int_enabled; // Interrupt enabled flag
bool error; // Error flag

// Ring buffer.

// In order to speed up completion of write()
procedure,

// data written to LPDB register is just stored here.

// Working thread will do the real job in the
background.

enum {

ring_buf size = 1 << 10, // Must be a power of 2

};

char ring_buf[ring_buf _size];

unsigned int volatile ring_start;

unsigned int volatile ring_done;

unsigned int volatile ring_end;

page 46 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

// Device is ready if we have some space to store
data

bool ready() { return (ring_end + 1 - ring_start) %
ring_buf size !=0; }

// When data is written to LPDB, sst will be
requested to wake up
// working thread <kick_delay> instructions later.
enum {
kick_delay = 1000,
HH

bool sst_pending; // And we don't want more then 1
sst request at a time.

// sst callback for kicking working thread
static void kick_wrk_thread(void * argl, int arg2);
void kick_wrk_thread();

// This function will request interrupt and free ring
buffer

static void irq_requestor(void * argl, int arg2);

void irq_requestor(unsigned int delta);

// This function is used to cleanup ring buffer
static void set_ring_start(void * argl, int arg2);
void set_ring_start(unsigned int new_ring_start);

enum {
wrk_event = 0, // Working thread is waiting for
this event to process data

io_event, // Auxiliary event used by the
working thread
cancel_event, // Auxiliary event used to inform

working thread that it should cleanup 1/0
termination_event, // This event is used to
terminate working thread
total_events // Events count

b

© 2003 - 2004 Software Resources International S.A page 47

CHAPI/VAX-Qbus manual

HANDLE events[total_events]; // Event handles
HANDLE wrk_thread; // Working thread
handle

HANDLE outfile; // Handle to the output file

OVERLAPPED ovl; // And overlapped structure for
it

// Working thread procedure

static DWORD WINAPI wrk_thread_proc(LPVOID
IpParameter);

DWORD wrk_thread_proc();

public:

// Constructor/destructor

Ipvl1l(const chapi_in * _ci, const char *
instance_name);

~Ipv11();

// Tells us if the instance was created/initialized
properly
bool valid();

// Callbacks provided to CHARON in CHAPI_OUT
void start();

void stop();

void reset();

int read(unsigned int addr, bool is_byte);

void write(unsigned int addr, int val, bool is_byte);
int set_configuration(const char * parameters);

protected:
// start VAXPrint using LPV11l command parameters
bool bStartApp;
char m_AppCmd[1024];

bool UseTCPIP;
bool bReset;

STARTUPINFO si;
PROCESS_INFORMATION pi;

page 48 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

SOCKET sock;
SOCKET connection_sock;

char Message[256];
void GetSystemErrorMessage(DWORD dwErr);

protected:
// TCPIP connection parameters
char hostname[256];
long portnum;

Y

1l ---- ---- ---- ---
void Ipv1ll::GetSystemErrorMessage(DWORD dwErr)
{

LPTSTR IpszTemp = NULL;
DWORD dwRet = FormatMessage(
FORMAT_MESSAGE_ALLOCATE_BUF

FER
I
FORMAT_MESSAGE_FROM_SYSTEM

I
FORMAT_MESSAGE_ARGUMENT_ARRAY,
NULL,
dweErr,
LANG_NEUTRAL,
(LPTSTR)&lIpszTemp,
0,
NULL);
if('dwRet) {
trace("Unable to detect the problem");
sprintf(Message, "0x%X\n", dwErr);
}
else {
//remove cr and newline character
IpszTemp[strien(lpszTemp)-2] = '\0';
sprintf(Message, "Communication error: %s (0x
%X)\n", IpszTemp, dwErr);
}

© 2003 - 2004 Software Resources International S.A page 49

CHAPI/VAX-Qbus manual

if(lIpszTemp != NULL) {
LocalFree((HLOCAL) IpszTemp);
}

trace(Message);

return;

}

void Ipv11::kick_wrk_thread(void * argl, int arg2)

((Ipvll *)argl)->sst_pending = false; // clear
indicator

((Ipv1l1 *)argl)->kick wrk thread(); // and call real
procedure

}

void Ipv11l::kick wrk_thread()

{
SetEvent(events[wrk_event]); // wake up working
thread

}

void Ipvl1l::irq_requestor(void * argl, int arg2)

((Ipv1ll *)argl)->irq_requestor(arg2); // call real
procedure

}

1l ---- ---- ---- ----
void Ipvl1l::irq_requestor(unsigned int delta)

{

// Free some space in the ring buffer.
// This will make device ready again.
ring_start += delta;

// And request interrupt, if enabled.
if(int_enabled)

page 50 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

ci->put_irq(ci, ci->base_i_vector, 0, 0, this, 0);

}

void Ipvll::set_ring_start(void * argl, int arg2)

((Ipvll *)argl)->set_ring_start(arg2); // call real
procedure

}

/l ---- ---- ---- ---
void Ipvll::set_ring_start(unsigned int new_ring_start)

{
ring_start = new_ring_start;

}

DWORD WINAPI Ipv11::wrk_thread_proc(LPVOID
IpParameter)

{

return ((Ipv11 *)lpParameter)-
>wrk_thread_proc(); // call real procedure

}

1/ -—-- -—-- -—-- ---
DWORD Ipv1l::wrk_thread_proc()
{
if(UseTCPIP) {
int rc = 0;
int so_true = 1;
WSADATA info;

if (WSAStartup(MAKEWORD(2,0), &info)) {
trace("Socket: WSAStartup error");
return(FALSE);

}

sock = ::WSASocket(AF_INET, SOCK_STREAM, 0O,
0,0,
WSA_FLAG_OVERLAPPED);
if(sock == INVALID_SOCKET) {

© 2003 - 2004 Software Resources International S.A page 51

CHAPI/VAX-Qbus manual

rc = ::WSAGetLastError();
trace("Socket: Can't create socket");
return(FALSE);

}

if (::setsockopt(sock, SOL_SOCKET,
SO REUSEADDR,
(const char *)&so_true, sizeof(so_true))
== SOCKET_ERROR) {
rc = ::WSAGetLastError();
closesocket(sock);
trace("Socket: Can't setsockopt
SO_REUSEADDR");
return(rc);
}

sockaddr_in sa;
memset(&sa, 0, sizeof(sa));

sa.sin_family = PF_INET;
sa.sin_port = htons((short)portnum);

// bind the socket to the internet address
if(bind(sock,(sockaddr
*)&sa,sizeof(sockaddr_in))==SOCKET_ERROR) {
rc = ::WSAGetLastError();
closesocket(sock);
trace("Socket: Can't bind");
return(FALSE);

}
if(listen(sock, SOMAXCONN) == SOCKET_ERROR)

rc = ::WSAGetLastError();
closesocket(sock);

trace("Socket: Can't listen");
return(FALSE);

}

// Start VAXPrint
ZeroMemory(&si, sizeof(si));

page 52 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

si.cb = sizeof(si);
ZeroMemory(&pi, sizeof(pi));

if(bStartApp) {
if(!CreateProcess(NULL, // No module name
(use command line).
m_AppCmd, // Command line.
NULL, // Process handle not

inheritable.
NULL, // Thread handle not
inheritable.
FALSE,// Set handle inheritance to
FALSE.
0, // No creation flags.
NULL, // Use parent's environment
block.
NULL, // Use parent's starting
directory.
&si,
&pi)) {
trace("VAXPrint start failed");
}
}

connection_sock = accept(sock, NULL, NULL);
if(connection_sock == INVALID_SOCKET) {
rc = ::WSAGetLastError();
if(rc '= WSAEWOULDBLOCK) {
closesocket(sock);
trace("Socket: Can't accept");
return(FALSE);
}
}
}

bool io_pending = false; // We don't want more then
1 1/0 operation at a time

DWORD written; // Number of bytes written by
the last operation

for(;;) {

© 2003 - 2004 Software Resources International S.A page 53

CHAPI/VAX-Qbus manual

DWORD signaled_object =
WaitForMultipleObjects(total_events, events,
FALSE, INFINITE);
switch(signaled_object - WAIT_OBJECT _0) {
case cancel_event:
Cancello(outfile); // cancel pending I/

// cleanup ring buffer
ring_done = ring_end;
ci->put_ast(ci, 0, set_ring_start, this, ring_end);
continue;
case io_event: //1/0 completed
ovl.Offset += written;
io_pending = false;
// fall through
case wrk_event: // we have something to work
on...
if(io_pending)
continue;

unsigned int num_to_print = ring_end -
ring_done;
if(! num_to_print)
continue;

// Allocate contiguous buffer to use in WriteFile
char * outbuf = new char [num_to_print];
// Copy data there... this may be optimized...
for(unsigned inti = 0; i < num_to_print; i++) {
outbuf[i] = ring_buf[(ring_done + i) %
ring_buf_size];

if(UseTCPIP) {
written = send(connection_sock, outbuf,
num_to_print, 0);
if(written != num_to _print) {
DWORD lasterror = GetLastError();
GetSystemErrorMessage(lasterror);

page 54 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

connection_sock = accept(sock, NULL,

NULL);
if(connection_sock == INVALID_SOCKET)
{
trace("Socket: Can't listen");
error = true;
}
}
}
else {

if(! WriteFile(outfile, outbuf, num_to_print,
&written, &ovl)) {
if(GetLastError() != ERROR_10 _PENDING) {
trace("WriteFile failed");
error = true; // IRQ will be requested a
few lines later anyway
} else {
io_pending = true;
}
}
}

delete[] outbuf;

// Advance ring_done. This will NOT change
device status to READY.

ring_done += num_to_print;

// Device will be made READY in this AST

ci->put_ast(ci, 0, irq_requestor, this,
num_to_print);

continue;

}

break;

}

return 0;

}

1 - - - ===
Ipvll::lpvll(const chapi_in * _ci,
const char * instance_name)

© 2003 - 2004 Software Resources International S.A page 55

CHAPI/VAX-Qbus manual

UseTCPIP = false;

bReset = false;

bStartApp = false;

strcpy(&m_AppCmd[0], "");

ci = _ci;

int_enabled = false;
error = false;
sst_pending = false;

ring_start = ring_done = ring_end = 0;

for(inti = 0; i < total_events; i++) {
events[i] = CreateEvent(NULL, FALSE, FALSE,
NULL);
if(events[i] == NULL) {
trace("cannot create event");
}
}

outfile = INVALID_HANDLE_VALUE;

memset(&ovl, 0, sizeof(ovl));
ovl.hEvent = events[io_event];

outfile_name = new char[strlen(instance_name) +
sizeof(OUTFILE_EXT)];
if(outfile_name != NULL) {
strcpy(outfile_name, instance_name);

wrk_thread = CreateThread(NULL, O,
wrk_thread_proc, this, 0, NULL);
if(wrk_thread == NULL) {
trace("cannot create thread");
}
}

Ipvll::~lpvl1ll1()

page 56 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

if(wrk_thread !'= NULL) {
SetEvent(events[termination_event]);
WaitForSingleObject(wrk_thread, INFINITE);
wrk_thread = NULL;

}

for(int i = total_events - 1; i >= 0; i--) {
if(events[i] != NULL) {
CloseHandle(eventslil);
events[i] = NULL;
}
}
}

i -——- -——- -——- -—-
bool Ipvl11l::valid()
{

for(inti = 0; i < total_events; i++) {
if(events[i] == NULL)
return false;
}

if(wrk_thread == NULL) {
return false;

}

if(outfile_name == NULL) {
return false;

}

return true;

}

/l ---- ---- ---- ---
void Ipvll::start()
{

// we have not so much to do here...

b_address = ci->base_b_address;

i_vector = ci->base_i_vector;

int_enabled = false;

© 2003 - 2004 Software Resources International S.A page 57

CHAPI/VAX-Qbus manual

error = false;

if(!UseTCPIP) {
if(outfile_name != NULL) {
outfile = CreateFile(outfile_name,
GENERIC_WRITE,
FILE_SHARE_READ, NULL, OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL |
FILE_FLAG_OVERLAPPED, NULL);
if(outfile != INVALID_HANDLE_VALUE) {
ovl.Offset = GetFileSize(outfile, NULL);
} else {
trace("cannot open file");
}
}
}
}

Il ---- ---- ---- ----
void Ipv11l::stop()
{

if(bReset) {
bReset = false;
}
else {
if(UseTCPIP) {
if(pi.hProcess != INVALID HANDLE_VALUE) {
UINT uExitCode = 0;
BOOL res = TerminateProcess(pi.hProcess,
uExitCode);
iflres==0) {
DWORD |_err = GetLastError();
}

CloseHandle(pi.hProcess);
if(pi.hThread != INVALID HANDLE_VALUE) {
CloseHandle(pi.hThread);
}
}

WSACleanup();

page 58 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

}
else {
if(outfile_name != NULL) {
DeleteFile(outfile_name);
delete[] outfile_name;
outfile_name = NULL;

}

if(outfile !'= INVALID_HANDLE_VALUE) {
CloseHandle(outfile);
outfile = INVALID_ HANDLE_VALUE;
}
}
}

SetEvent(events[cancel_event]); // request working
thread to cancel 1/0

// And close the output
if(!UseTCPIP) {
if(outfile != INVALID_HANDLE_VALUE) {
CloseHandle(outfile);
outfile = INVALID_HANDLE_VALUE;
}
}
}

1/ ---- ---- ---- ---
void Ipvll::reset()
{

bReset = true;

stop();
start();

}

/l ---- ---- ---- ---
int Ipvll::read(unsigned int addr, bool is_byte)
{
if((addr - b_address) == 0)
return (ready() ? Ipcs_ready : 0)

© 2003 - 2004 Software Resources International S.A page 59

CHAPI/VAX-Qbus manual

| (int_enabled ? Ipcs_int : 0)
| ((error && ! is_byte) ? Ipcs_error : 0);

// return O if LPDB is read
return O;
}

/l ---- ---- ---- ----
void Ipv1l1l::write(unsigned int addr, int val, bool
is_byte)
{
// Do nothing if attempting to write to high-order
byte of LPCS/LPDB
switch(addr - b_address) {
case 0: // LPCS: only bother about interrupt
enable/disable
if(val & Ipcs_int) {
int_enabled = true;
} else {
int_enabled = false;
}
break;
case 2: // LPDB: use lower 7 bits only. If not
ready, do nothing.
if(ready()) {
ring_buf[ring_end++ % ring_buf_size] = val &
Ipdb_data;
if(!ready()) { // Ring buffer is full => kicj
working thread immediately
kick_wrk_thread();
} else if(! sst_pending) { // Else, kick it a bit later...
if not already directed so
sst_pending = true;
ci->put_sst(ci, kick_delay, kick_wrk_thread,

this, 0);

}
}
break;
}
}

page 60 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

/1

int Ipvll::set_configuration(const char * parameters)

{

// Parse command line, obtain required parameters

char *opt_host = "host=";
char *opt_port = "port=";
char *opt_app = "application="";

UseTCPIP = false;

char *ptr = NULL;
striwr((char *)parameters);

if((ptr=strstr(parameters, opt_port)) != NULL) {
UseTCPIP = true;

strcpy(hostname, "localhost");
portnum = 0;

ptr += strlen(opt_port);
portnum = atoi(ptr);

}

if((ptr=strstr(parameters, opt_host)) != NULL) {

ptr += strlen(opt_host);

inti =0;

while(*(ptr+i) && isalnum((int)*(ptr+i))) {
hostnameli] = *(ptr+i);
i+=1;

}

hostnameli] = '"\0';

}

if((ptr=strstr(parameters, opt_app)) != NULL) {
UseTCPIP = true;

ptr += strlen(opt_app);

intj =0;
while(*ptr && (*ptr !="\")) {

© 2003 - 2004 Software Resources International S.A page 61

CHAPI/VAX-Qbus manual

m_AppCmd[j] = *ptr;
J++;
ptr ++;

}
m_AppCmd[j] = "\0';

if(ptr) {
ptr ++;
}

if(strlen(m_AppCmd)) {
bStartApp = true;
}
}

return 0;

}

/l ---- ---- ---- ----
/l

// A number of wrappers to be passed to CHARON
/l

#define CALL(co, func, arglist) ((Ipv11l *)(co-
>context))->func arglist

static void CHAPI Ipv11_start(const struct _chapi_out *
co)
{ CALL(co, start, ()); }

static void CHAPI Ipv11l_stop(const struct __chapi_out *
co)
{ CALL(co, stop, ()); }

static void CHAPI Ipv11_reset(const struct __chapi_out
* co)
{ CALL(co, reset, ()); }

static int CHAPI Ipv11_read(const struct __chapi_out *
co,

unsigned int addr, bool is_byte)
{ return CALL(co, read, (addr, is_byte)); }

page 62 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

static void CHAPI Ipv1l1_write(const struct _chapi_out
* co,

unsigned int addr, int val, bool is_byte)
{ CALL(co, write, (addr, val, is_byte)); }

static int CHAPI Ipv1l1l_set_configuration(const struct
__chapi_out * co,

const char * parameters)
{ return CALL(co, set_configuration, (parameters)); }

//
// Initialization routine
1/
CHAPLINIT(LPV11)
(const chapi_in * ci, chapi_out * co, const char *
instance_name)
{
if(ci == NULL) {
trace(ci, "CHARON didn't provide us CHAPI_IN.
Giving up");
return 0;

}

if((ci->put_irq == 0)
|| (ci->put_ast == 0)
|| (ci->put_sst == 0))
{
trace(ci, "CHARON didn't provide us one of the
following procedures:\n"
“\tput_irg\n"
"\tput_ast\n"
"\tput_sst"
"Giving up"”
);
return 0;

}

Ipvll *dev = new Ipv11(ci, instance_name);
if((dev == NULL)

© 2003 - 2004 Software Resources International S.A page 63

CHAPI/VAX-Qbus manual

|| (! dev->valid()))
{
trace(ci, "cannot create LPV11 instance. Giving
up");
if(dev '= NULL)
delete dev;
return 0;

}

co->context = dev;

co->base_b_address = DEFAULT_ADDRESS;
co->b_address_range = 4;
co->base i vector = DEFAULT _VECTOR;
co->n_of i_vector = 1;

co->i_priority = 4;

co->start = Ipv1ll_start;

co->stop = Ipvll_stop;

co->reset = Ipvll_reset;

co->read = Ipvll_read;

co->write = Ipvll_write;
co->set_configuration = lpvl1l_set_configuration;

return dev;

page 64 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

1. VAXPrint
application

This appendix provides the source code listing of the CHARON-VAX
VAXPrint application. For the purpose of demonstrating the CHAPI
LPV11 implementation, this application is started from LPV11 dll (as
a parameter in configuration file), connected to the LPV11 via a TCP/
IP socket (host name and port number are configuration file
parameters).

VAXprint sends the characters received from the socket to the
Windows default printer. The user can specify the font face name
and the font size as parameters in the CHARON-VAX configuration
file.

A.3 VAXPRINT.CPP source file

/l

// Copyright (C) 2004 Software Resources International
SA

/l

// This code is provided on an 'as is' basis.

// Software Resources International SA carries no
responsibility for

// the application of this code in any way or form.

/l

1/ -—-- -—-- -—-- ---
#include "StdAfx.h"

#include "MainFrm.h"

#include "VAXPRINT.h"

#include "WinSock.h"

#include <stdio.h>
#include <stdlib.h>

© 2003 -2004 Software Resources International S.A page 65

CHAPI/VAX-Qbus manual

#include <iostream> // basic_string
#include <tchar.h>

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = _ FILE_;
#endif

#define countof(x) (sizeof(x)/sizeof(x[0]))
#define DATA _BUFSIZE 4096

T N
// CVAXPRINTApp

BEGIN_MESSAGE_MAP(CVAXPRINTApp, CWinApp)
II{{AFX_MSG_MAP(CVAXPRINTApp)
//}Y}YAFX_MSG
ON_COMMAND(ID_HELP, CWinApp::OnHelp)

END_MESSAGE_MAP()

T e N
// CVAXPRINTApp construction

CVAXPRINTApp::CVAXPRINTApp()
{

// No line is in buffer
buffer_size = 0;

//Default settings for printer

strcpy(m_FontName, "");

FontSize = DEFAULT _FONT SIZE;

offset = FontSize;

MaxCharactersinLine = -1;
TabSize=8;

page 66 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

//No Document is open
DocumentlsOpen = false;
reading_status = 0;

// Initialize the critical section.
InitializeCriticalSection(&GlobalCriticalSection);

//Initialize Icon
memset(&lcon, 0, sizeof(NOTIFYICONDATA));
Icon.cbSize = sizeof(NOTIFYICONDATA);

}

CVAXPRINTApp::~CVAXPRINTApp()

{
}

T T
// The one and only CVAXPRINTApp object

CVAXPRINTApp theApp;

i
// CVAXPRINTApp initialization

BOOL CVAXPRINTApp::Initinstance()
AfxEnableControlContainer();

#ifdef _AFXDLL

Enable3dControls(); // MFC in a shared DLL
#else

Enable3dControlsStatic(); / MFC is statically linked
#endif

/| Get Socket Name, name of serial line and
application name

char *cmdLine = GetCommandLine();

striwr(cmdLine);

© 2003 - 2004 Software Resources International S.A page 67

CHAPI/VAX-Qbus manual

strcpy(hostname, "localhost");
porthnum = 0;

char *opt_host = "host=";

char *opt_port = "port=";

char *opt_font = "font=";

char *opt_fontsize = "fontsize=";
char *ptr = NULL;

// check for host parameter
if((ptr=strstr(cmdLine, opt_host)) != NULL) {
ptr += strlen(opt_host);
inti=0;
while(*(ptr+i) && isalnum((int)*(ptr+i))) {
hostnameli] = *(ptr+i);
i+=1;
}
hostnameli] = "\0';

}

// check for port parameter

if((ptr=strstr(cmdLine, opt_port)) != NULL) {
ptr += strlen(opt_port);
portnum = atoi(ptr);

}

if(portnum <=0) {
return(FALSE);
}

// check for font parameter
if((ptr=strstr(cmdLine, opt_font)) != NULL) {
ptr += strlen(opt_font);
ptr +=1;//"'\'
inti =0;
while(*(ptr+i) && (*(ptr+i) '="\")) {
m_FontNamelil = *(ptr+i);
i+=1;
}

m_FontNameli] = "\0';

page 68 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

if(strlen(m_FontName) > 30) {
// MSDN: The length of typeface name of the
font
// must not exceed 30 characters
m_FontName[30] = "\0;
}

}

// check for fontsize parameter
if((ptr=strstr(cmdLine, opt_fontsize)) != NULL) {
ptr += strlen(opt_fontsize);
FontSize = atoi(ptr);
if((FontSize <=0) || (FontSize >= 100)) {
FontSize = DEFAULT_FONT_SIZE;
}

else {
FontSize = FontSize * 10;

offset = FontSize;

DWORD lasterror = 0;

lasterror = m_LPV11Socket.Initialize();
if(lasterror) {
GetSystemErrorMessage(lasterror);

}

// try to connect...
do {
lasterror =
m_LPV11Socket.ConnectSocket(hostname, portnum);
if(lasterror && (lasterror !=
WSAECONNREFUSED)) {
GetSystemErrorMessage(lasterror);
}

else if(lasterror == WSAECONNREFUSED) {
Sleep(200);

}
} while(lasterror == WSAECONNREFUSED);

© 2003 - 2004 Software Resources International S.A page 69

CHAPI/VAX-Qbus manual

// Load Icons

hDeflcon = AfxGetApp()-
>Loadlcon(IDI_MAINFRAMEALTER);

hWorkicon = AfxGetApp()-
>Loadlcon(IDR_MAINFRAME);

// Set Tips

sprintf(DefaultMessage,"VAXprint: Connected to
CHARON-VAX");

sprintf(WorkingMessage,"VAXprint: Receiving
information from CHARON-VAX...");

// Initialize printer
InitializePrinter();

// Start Mainframe based on CDialog class

CMainFrame* pMainFrame = new CMainFrame;

if(!pMainFrame->Create(IDD_MAINDIALOG)) {
return FALSE;

}

pMainFrame->ShowWindow(SW_HIDE);

m_pMainWnd = pMainFrame;

// Start Printing Thread
CWinThread* pPrintingThread =
AfxBeginThread(printing_thread, this);

return TRUE;
}

1l ---- ---- ---- ----
int CVAXPRINTApp::Exitinstance()
{

// Remove Icon from the tray
Shell_Notifylcon(NIM_DELETE, &lcon);

if(hDeflcon) {
Destroylcon(hDeflcon);

}

page 70 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

if(hWorklcon) {
Destroylcon(hWorklcon);

}

return CWinApp::Exitlnstance();
}

/! -——- -——- -——-
// Read Information

[

UINT CVAXPRINTApp::reading_thread(LPVOID pParam)

return ((CVAXPRINTApp*)pParam)-
>reading_thread();

}

UINT CVAXPRINTApp::reading_thread()

while(true) {
// Wait till the buffer is sent to printer and only
then receive new line
WaitForSingleObject(GetNextLine, INFINITE);

// Read pipe and get status of reading
reading_status = read_buffer();

// If connection to CHARON-VAX is broken exit the
thread
if(reading_status == 1) {
// Signal that the new line is received
SetEvent(LinelsReceived);

else if(reading_status ==0) {
// Signal that the new line is received
SetEvent(NoDataReceived);
}
else {
SetEvent(BadConnection);
return 0;

© 2003 - 2004 Software Resources International S.A page 71

CHAPI/VAX-Qbus manual

}
} // while
}

/l ---- ---- ---- ----
int CVAXPRINTApp::read_buffer()
{

char character;
unsigned long received;

// Intitialization
_try {
// Enter critical section
EnterCriticalSection(&GlobalCriticalSection);
buffer_size = 0;
memset((void *)&buffer[0], O,
MAX_BUFFER_SIZE);

}

__finally {
// Release ownership of the critical section.
LeaveCriticalSection(&GlobalCriticalSection);

}
bool ReadCharacter = false;
while (true) {

received = 0;
received = m_LPV11Socket.ReceiveByte();

if(received < 1) {
ReadCharacter = false;
return(received);

}
else {
ReadCharacter = true;
}
// Request ownership of the critical section.
_try {

EnterCriticalSection(&GlobalCriticalSection);

page 72 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

if(ReadCharacter) {
character = m_LPV11Socket.sock_buf[0];

switch (character) {
case '\f': // page terminator (form feed)

received
case '\n': // line terminator (line feed)
received
if('buffer_size) {
buffer[buffer_size++]=""
}
buffer[buffer_size] = "\0';
return(1);
case '\r': // return of carret is ignored
continue;
default: // copy the character to the buffer
if(character == 0x20) {
character ="'";
}
buffer[buffer_size++] = character;
// Check whether the line is too long to fit
// in one line on paper
if(buffer_size >= MaxCharactersinLine) {
buffer[buffer_size] = "\0';
return(1);
}
}
}
}
__finally {

// Release ownership of the critical section.
LeaveCriticalSection(&GlobalCriticalSection);

}
} // while

© 2003 - 2004 Software Resources International S.A page 73

CHAPI/VAX-Qbus manual

return(0);

[[======== -—— -——
// Print Information
[[======== -——- -——-

// Printing Thread function. It reads buffer from
CHARON-VAX pipe
// and sends it to printer.

UINT CVAXPRINTApp::printing_thread(LPVOID pParam)

return ((CVAXPRINTApp*)pParam)-
>printing_thread();
}

i -——- -——- -——- -——-
UINT CVAXPRINTApp::printing_thread()
{

// Create Events for data exchange between threads

BadConnection = CreateEvent(NULL, FALSE, FALSE,
NULL);

NoDataReceived = CreateEvent(NULL, FALSE,
FALSE, NULL);

LinelsReceived = CreateEvent(NULL, FALSE, FALSE,
NULL);

GetNextLine = CreateEvent(NULL, FALSE, TRUE,
NULL);

m_events[NoDataReceivedEvent] =
NoDataReceived;

m_events[BadConnectionEvent] = BadConnection;

m_events[LinelsReceivedEvent] = LinelsReceived;

//Start Reading Thread

CWinThread* pReadingThread =
AfxBeginThread(reading_thread, this);

page 74 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

// Wait till some information is received from
CHARON-VAX

// or timeout occurs

while (true) {

DWORD signaled_object =
WaitForMultipleObjects(TotalEvents, m_events,
FALSE, 5000);

switch(signaled_object - WAIT _OBJECT 0) {
case BadConnectionEvent:
if(DocumentlisOpen) {
EndDocumentPrinting();
}

// Exit
AfxGetMainWnd()-
>PostMessage(WM_QUIT);
return(0);

case LinelsReceivedEvent:
// Create new document if the document is not
created
if('DocumentisOpen) {
if(buffer_size) {
if(!StartDocumentPrinting()) {
return(0);
}
}
}

// Do actual printing
if(buffer_size) {
print_buffer();
buffer_size = 0;

}

/! Get next line
SetEvent(GetNextLine);
break;

© 2003 - 2004 Software Resources International S.A page 75

CHAPI/VAX-Qbus manual

case NoDataReceivedEvent:

case WAIT_TIMEOUT: // Reading thread keeps

on reading

then

n);

on);

// Print last line if the document is open and

// close the open document
if(DocumentisOpen) {
_try {
EnterCriticalSection(&GlobalCriticalSectio

if(buffer_size) {
print_buffer();
buffer_size = 0;
}

}
__finally {
LeaveCriticalSection(&GlobalCriticalSecti

}

EndDocumentPrinting();

}

else {
if(buffer_size) {
if(!StartDocumentPrinting()) {
return 0;
}

}

if(buffer_size) {
print_buffer();
buffer_size = 0;
}
}
SetEvent(GetNextLine); // Get next line
break;

default:

// some error occured
return(0);

}
} // while

page 76

© 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

return 1;

}

print_buffer()
int CVAXPRINTApp::print_buffer()
{
// Set tabulation parameters
TEXTMETRIC tm;
dcPrinter.GetTextMetrics(&tm);

int TabStopPosition[2];
TabStopPosition[0] = TabSize *
tm.tmAveCharWidth;

// Do printing
dcPrinter.TabbedTextOut(0, offset, _T(buffer),
strlen(buffer), 1, TabStopPosition, 0);

// Correct offset and continue on next page if
required
offset+=FontSize;
if(offset > (VRes-FontSize)) {
offset = FontSize;
dcPrinter.EndPage();
dcPrinter.StartPage();

}

return true;
} // print_buffer()

/l ---- ---- ----
// Initialization & Preparation
/l ---- ---- ----
int CVAXPRINTApp::InitializePrinter()
{
// get the default printer
CPrintDialog dig(FALSE);
dlg.GetDefaults();

© 2003 - 2004 Software Resources International S.A page 77

CHAPI/VAX-Qbus manual

// is a default printer set up?
hdcPrinter = dlg.GetPrinterDC();
if(hdcPrinter == NULL) {
#if DEBUG
AfxMessageBox("Cannot find default printer!");
#endif
return(false);

}

// initialize docinfo

memset(&docinfo, 0, sizeof(docinfo));
docinfo.cbSize = sizeof(docinfo);
docinfo.lpszDocName = T("CHARON-VAX output");

// Calculate maximum character number in one line
// attach DC to the default printer
dcPrinter.Attach(hdcPrinter);

// get height and width of the page to print
HRes = dcPrinter.GetDeviceCaps(HORZRES);
VRes = dcPrinter.GetDeviceCaps(VERTRES);

// Calculate maximum character number in one line
TEXTMETRIC tm;
dcPrinter.GetTextMetrics(&tm);
if(tm.tmAveCharWidth) {
MaxCharactersinLine = HRes /
tm.tmAveCharWidth;
}
else {
MaxCharactersinLine = 40;

}

// detach DC
dcPrinter.Detach();
// Calculate maximum character number in one line

return(true);

page 78 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

int CVAXPRINTApp::StartDocumentPrinting()
{
// attach DC to the default printer
dcPrinter.Attach(hdcPrinter); // should be done only
once

// get height and width of the page to print
HRes = dcPrinter.GetDeviceCaps(HORZRES);
VRes = dcPrinter.GetDeviceCaps(VERTRES);

// if it fails, complain and exit gracefully
if(dcPrinter.StartDoc(&docinfo) < 0) {
#if DEBUG
AfxMessageBox("Printer wouldn't initalize");
#endif
return false;
}
else {
// start a page
if(dcPrinter.StartPage() < 0) {
#if DEBUG
AfxMessageBox("Could not start page");
#endif
dcPrinter.AbortDoc();
return false;

}

// Choose some font

char *font_face = &m_FontName[0];

if(!strlen(font_face)) {

font_face = "Arial";

}

font.CreatePointFont(FontSize, font_face,
&dcPrinter);

pOIldFont = dcPrinter.SelectObject(&font);

// Calculate maximum character number in one
line

TEXTMETRIC tm;

dcPrinter.GetTextMetrics(&tm);

if(tm.tmAveCharWidth) {

© 2003 - 2004 Software Resources International S.A page 79

CHAPI/VAX-Qbus manual

MaxCharactersinLine = HRes /
tm.tmAveCharWidth;
}
else {
MaxCharactersinLine = -1;

}

// Reset Offset
offset = FontSize;

}

// Set Printing Icon

Icon.hlcon = hWorklcon;

_tesncpy(Icon.szTip, WorkingMessage,
countof(lcon.szTip));

Shell_Notifylcon(NIM_MODIFY , &lcon);

// Set the flag that document is open
DocumentisOpen = true;
return true;

}

Il - - - -
int CVAXPRINTApp::EndDocumentPrinting()
{

DocumentisOpen = false;

// Do last operations of document printing
dcPrinter.EndPage();

dcPrinter.EndDoc();
dcPrinter.SelectObject(pOldFont);

// Delete font and detach DC
font.DeleteObject();
dcPrinter.Detach();

// Set Default Icon

Icon.hicon = hDeflcon;

_tesncpy(lcon.szTip, DefaultMessage,
countof(lcon.szTip));

Shell_Notifylcon(NIM_MODIFY , &lcon);

page 80 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

return true;

}

/l ---- ---- ---- ==
void

CVAXPRINTApp::GetSystemErrorMessage(DWORD
dwErr)

char buff[256];

LPTSTR IpszTemp = NULL;

DWORD dwRet =
FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFE
R

I
FORMAT_MESSAGE_FROM_SYSTEM

I
FORMAT_MESSAGE_ARGUMENT_ARRAY,

NULL,

dweErr,

LANG_NEUTRAL,

(LPTSTR)&IpszTemp,

0

N'ULL);
if(!'dwRet) {
sprintf(buff, TEXT("0x%X"), dwErr);
}
else {

// remove cr and newline character
IpszTemp[_tcslen(lpszTemp)-2] = TEXT('\0');
sprintf(buff, "Communication error: %s (0x%X)",
IpszTemp, dwErr);
}

if(IpszZTemp != NULL) {
LocalFree((HLOCAL) IpszTemp);
}

#if DEBUG
AfxMessageBox(out, MB_ICONSTOP);

© 2003 - 2004 Software Resources International S.A page 81

CHAPI/VAX-Qbus manual

#endif

return;

}

page 82 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

A.4 VAXPRINT.H source file

i

// Copyright (C) 2004 Software Resources International
SA

i

// This code is provided on an 'as is' basis.

// Software Resources International SA carries no
responsibility for

// the application of this code in any way or form.

I

#ifndef _VAXPRINT H__
#define _ VAXPRINT H__

#include "WinSock.h"

#if 'defined _VAXPRINT
#define _VAXPRINT

#if !
defined(AFX_VAXPRINT_H_ 54DCE038 9078 _11D4 All
E_0080C853BDF9_INCLUDED)

#define

AFX_VAXPRINT _H_54DCE038 9078 11D4 Al11E_0080C
853BDF9__INCLUDED _

#if _MSC_VER > 1000
#pragma once
#endif // _MSC_VER > 1000

#ifndef _AFXWIN H

#error include 'stdafx.h' before including this
file for PCH
#endif

#include "resource.h" // main symbols

© 2003 - 2004 Software Resources International S.A page 83

CHAPI/VAX-Qbus manual

T
// CVAXPRINTApp:

// The buffer size id fixed. It's equal to 2048 symbols,
#define MAX_BUFFER_SIZE 2048

// Font size is fixed as well
#define DEFAULT_FONT_SIZE 100

// 1d for event used
enum {
NoDataReceivedEvent = 0,
LinelsReceivedEvent = 1,
BadConnectionEvent = 2,
TotalEvents =3

}

// -—-- -—-- -—-- -—--
class CVAXPRINTApp : public CWinApp
{
public:
// Constructors and destructors
CVAXPRINTApp();
~CVAXPRINTApp();

// Printing Thread definition
static UINT printing_thread(LPVOID pParam);
UINT printing_thread();

// Reading Thread definition
static UINT reading_thread(LPVOID pParam);
UINT reading_thread();

// Auxilliary functions

int read_buffer();

int print_buffer();

int InitializePrinter();

int StartDocumentPrinting();
int EndDocumentPrinting();

page 84 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

// Auxilliary flags
int reading_status;
int DocumentisOpen;

// Buffer for printing
char bufferflMAX_BUFFER_SIZE];
int buffer_size;

// Specific Parameters for printing
int FontSize;

int offset;

HDC hdcPrinter;

DOCINFO docinfo;

CDC dcPrinter;

CFont font;

CFont *pOIldFont;

// Page parameters
int HRes;
int VRes;
int MaxCharactersinLine;
int TabSize;

// Synchronization
HANDLE m_events[TotalEvents]; // Event handles

// Message handlers
HANDLE NoDataReceived;
HANDLE LinelsReceived;
HANDLE BadConnection;
HANDLE GetNextLine;

CRITICAL_SECTION GlobalCriticalSection;

// Tray Icons
NOTIFYICONDATA Icon;
HICON hDeflcon;

HICON hWorklcon;

char DefaultMessage[80];
char WorkingMessage[80];

© 2003 - 2004 Software Resources International S.A page 85

CHAPI/VAX-Qbus manual

void GetSystemErrorMessage(DWORD dwErr);

protected:
// Connection parameters
char hostname[256];
long portnum;

// font face name
char m_FontName[256];

int SockErr;

// socket for communicaion with LPV11
Socket m_LPV11Socket;

I/ {{AFX_VIRTUAL(CVAXPRINTApp)
public:

virtual BOOL Initinstance();
virtual int Exitinstance();
//}}YAFX_VIRTUAL

/I{ {AFX_MSG(CVAXPRINTApp)
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

}

I T T
//{{AFX_INSERT_LOCATION}}

// Microsoft Visual C++ will insert additional
declarations immediately before the previous line.
#endif // !
defined(AFX_VAXPRINT_H_ 54DCE038 9078 _11D4 All
E_0080C853BDF9_INCLUDED)

#endif

#endif

page 86 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

A.5 WINSOCK.CPP source file

This is the TCP/IP socket used inside the VAXPrint application

/l

// Copyright (C) 2004 Software Resources International
SA

/l

// This code is provided on an 'as is' basis.

// Software Resources International SA carries no
responsibility for

// the application of this code in any way or form.

1l

/! -——- -——- -——-
#include <errno.h>
#include "WinSock.h"

"

int Socket::m_SocketCount = 0;

1/ ——=- ——=- ——=-
int Socket::Start()
{
if(!m_SocketCount) {
WSADATA info;
if (WSAStartup(MAKEWORD(2,0), &info)) {
return(WSAGetLastError());
}

}

++m_SocketCount;

return(0);

}

// -——- -——- -——-
void Socket::End()

{
#if 0

© 2003 - 2004 Software Resources International S.A page 87

CHAPI/VAX-Qbus manual

// Already done by Charon, overwise Charon can't
terminate until

// VAXPrint has manually finished

WSACIleanup();
#endif
}

/! -—— -—— -——
Socket::Socket() : sock(0)

{
Start();

refCounter = new int(1);

}

/! -——- -——- -——-
int Socket::Initialize()

{
int rc = 0;
int so_true = 1;

sock = ::WSASocket(AF_INET, SOCK STREAM, 0, O,
0,0);
if(sock == INVALID_SOCKET) {
rc = ::WSAGetLastError();
return(rc);

}

if (::setsockopt(sock, SOL_SOCKET, SO REUSEADDR,

(const char *)&so_true, sizeof(so_true))
== SOCKET_ERROR) {
rc = ::WSAGetLastError();
closesocket(sock);
return(rc);

}

return(rc);

}

/! -——- -——- -——-
Socket::Socket(SOCKET s) : sock(s)

page 88 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

{
Start();
refCounter = new int(1);

SockErr = 0;
};

1/ ---- ---- ----
Socket::~Socket()

{

if (! --(*refCounter)) {
Close();
delete refCounter;

}

--m_SocketCount;
if(!m_SocketCount) {
End();
}
}

// -—-- -—-- -—--
Socket::Socket(const Socket& other)

{

refCounter = other.refCounter;
(*refCounter)++;
sock = other.sock;

m_SocketCount++;

SockErr = other.SockErr;

}

i -——- -——- -——-
Socket &Socket::operator=(Socket& other)

{

(*other.refCounter)++;

refCounter = other.refCounter;
sock = other.sock;

© 2003 - 2004 Software Resources International S.A page 89

CHAPI/VAX-Qbus manual

m_SocketCount++;
SockErr = other.SockErr;

return *this;

}

1/ ---- ---- ----
void Socket::Close()
{
#if O
// WSA library already closed by Charon,
// overwise Charon can't terminate until VAXPrint
manually finished
if(sock != INVALID SOCKET) {
if(closesocket(sock) '=0) {
SockErr = ::WSAGetLastError();
}
}
#endif

}

/l ---- ---- ----
int Socket::ReceiveByte()

{

unsigned long received = 0;
unsigned long flags;
WSABUF buf_dsc;
OVERLAPPED ovl;

if(::WSAWaitForMultipleEvents(1l, &hSocketEvent,
false, 1000, false)
!'= WSA_WAIT_FAILED) {

WSANETWORKEVENTS NetEv;
if(WSAEnumNetworkEvents(sock,hSocketEvent, &
NetEv) ==0) {

// now data inside read queue
if(NetEv.INetworkEvents & FD_READ) {
buf_dsc.buf = &sock_buf[0];

page 90 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

buf _dsc.len = 1; // reading byte

flags = MSG_PARTIAL;
ovl.Offset = 0;
ovl.OffsetHigh = 0;

if(::WSARecv(sock, &buf dsc, 1, &received,

&flags, 0,0) !=0) {

int err = WSAGetLastError();

if((err == WSA_OPERATION_ABORTED) ||
(err == WSAECONNABORTED) ||
(err == WSAESHUTDOWN) ||
(err == WSAENOTSOCK) ||
(err == WSAENOTCONN) ||
(err == WSAENETDOWN) ||
(err == WSANOTINITIALISED)) {
return(-1);

return(0);
}

else {
return(1);
}

}

else
if(NetEv.INetworkEvents & FD_CLOSE) {

// host close connection

WSACloseEvent(hSocketEvent);
return(-1);

}
}
}
else {
return(0);
}

return(received);

}
I

© 2003 - 2004 Software Resources International S.A page 91

CHAPI/VAX-Qbus manual

int Socket::SendByte(const char ch)
{
int sended;
sended = send(sock, &ch, 1, 0);
return(sended);

}

/! ---- ---- ----
int Socket::ConnectSocket(const char *host, int port)
{
hostent *he;
if((he=gethostbyname(host)) == NULL) {
SockErr = ::WSAGetLastError();
return(SockErr);

}

sockaddr_in addr;

addr.sin_family = AF_INET;

addr.sin_port = htons(port);
addr.sin_addr = *((in_addr *)he->h_addr);
memset(&(addr.sin_zero), 0, 8);

if(::connect(sock, (sockaddr *) &addr,
sizeof(sockaddr)) == SOCKET_ERROR) {
SockErr = ::WSAGetLastError();
return(SockErr);

}

hSocketEvent = WSACreateEvent();
if(::WSAEventSelect(sock, hSocketEvent,
FD_READ)) {
return FALSE;
}

return(0);

}

page 92 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

A.6 WINSOCK.H source file

This is the header file for the TCP/IP socket implementation.

/l

// Copyright (C) 2004 Software Resources International
SA

/l

// This code is provided on an 'as is' basis.

// Software Resources International SA carries no
responsibility for

// the application of this code in any way or form.

1l

#ifndef _ SOCKET_H__
#define _ SOCKET H__

/! -——- -——- -——-
#include <WinSock2.h>

1/ ---- ---- ----
class Socket
{
public:
Socket();
Socket(SOCKET s);

virtual ~Socket();

Socket(const Socket&);

Socket & operator=(Socket&);

int Initialize();

int ConnectSocket(const char *host, int port);
// Send/Receive data using socket

int SendByte(char ch);
int ReceiveByte();

© 2003 - 2004 Software Resources International S.A page 93

CHAPI/VAX-Qbus manual

void Close();
int SockErr;
protected:
HANDLE hSocketEvent;
int *refCounter;
public:

SOCKET sock;
char sock_buf[256]; // only first byte really used

private:
static int Start();
static void End();
static int m_SocketCount;

}

#endif

A.7 Configuration file entry

The CHAPI interface, the LPV11 DLL and the VAXprint application
are defined in the CHARON-VAX configuration file as listed below.
Note that a CHAPI enabled version of CHARON-VAX is required and

that the "set lpv1 .." line must be entered as a single text line:
#

configure a parallel printer port

#

load chapi Ipvl

set Ipv1l dll=Ipv11.dll parameters="port=10004
application='vaxprint.exe -port=10004 -font=\Courier
New\ -fontsize=10""

page 94 © 2003 - 2004 Software Resources International S.A

CHAPIIVAX-Qbus manual

Index

COMPONENES. ..ttt ettt e et e e e e e e e e e e e e e e a e s e s s eeeees
Q11 AE= 1= (o o T 4,18
NN =T 411 T PP PPPRRPPRS 4
DeSCHPLOr fIEI.eiiiiiee e
D AdAreSS_TANGE. .. uviie ettt 16
base_b_AdArESS. ..o 12
base_i_vector
ClBAN T ettt
(o10] 41 () PP
CrEALE_0_SPACE. ... ueiiiteeeiteee ettt et e et s e et 13
decrypt_data_bIOCK..........ooiiiiiiiiiie 14
ESIIOY 10 _SPACE..... i eieiiee ettt ettt e e e e e et 14
[01101111/ T T PP PP PP PP PPPPPI
log_message
move_io_space
T) Y=o (o PR

A1 ST 1110 PSP PPPPUPPPRPPUPPPNt
NOAtiON CONVENTIONS. ... iviieee e ettt e sttt e e e e e e e e e st eeeaeeeeeaaeeeeeeesnrenees Vi
OPErAtiON CIASS.......uviiieiiiiiiiie et e e e e e e e e e e eaaeas

BUS INEEITUPL. ...t

Bus interrupt aCkNOWIEAGE.uvviiii et

Bus power

BUS TESEL....eiiitiie ittt ettt st e st e et e st e e et ae e e erae e s raaaaaeaeas

Configuration change reqUEST...........ccvveriiiiiriiee e

© 2003 - 2004 Software Resources International S.A

CHAPI/VAX-Qbus manual

Device control and status

MESSAGE 100 MEOUESL.......eeieiiiieiiii ettt
Protection and license Verification.............ccccovveiiiiiiiiine e,
Synchronization reQUESL............ccoiiviirieiiiiiii e

Synchronization request acknowledgement

page 96 © 2003 - 2004 Software Resources International S.A

Reader’s comments

We appreciate your comments, suggestions, criticism and
updates of this manual by email. Our email address is:
charon@softresint.com

Please mention that it concerns the CHAPI/VAX-Qbus
Application interface manual, version 16 June 2004,
document number 30-16-013.

If you found any errors, please list them with their page
number.

mailto:charon@softresint.com

	 Conventions
	Chapter 1 Introduction
	1.1 Scope
	1.2 Implementation requirements

	Chapter 2 CHAPI structure
	2.1 CHAPI requirements and solution architecture
	2.2 Loadable component naming conventions
	2.3 Component loading and initialization
	2.4 Communication context binding
	2.5 Run-time communication
	2.6 The CHAPI communication context descriptors
	2.7 Initialization steps
	2.8 Run-time execution contexts

	Chapter 3 CHAPI operation
	3.1 Reading the device control and status register
	3.2 Writing device control and status register
	3.3 Creating additional I/O space
	3.4 Destroying I/O space
	3.5 Changing I/O space bus location
	3.6 Requesting a bus interrupt
	3.7 Removing a bus interrupt request
	3.8 Bus interrupt acknowledge
	3.9 Reading emulator memory (DATA-OUT DMA)
	3.10 Writing emulator memory (DATA-IN DMA)
	3.11 Synchronizing execution with the VAX CPU thread
	3.12 Synchronized invocation with the VAX CPU thread
	3.13 Delaying synchronized execution
	3.14 Delayed synchronized invocation
	3.15 Processing a bus power-up condition
	3.16 Processing a bus power-down condition
	3.17 Processing a bus reset condition
	3.18 Changing the configuration
	3.19 Message logging
	3.20 Decrypting critical data

